
R.K. Ghosh

Wireless
Networking and
Mobile Data
Management

Wireless Networking and Mobile Data Management

R.K. Ghosh

Wireless Networking
and Mobile Data
Management

123

R.K. Ghosh
Department of Computer Science
and Engineering

IIT Kanpur
Kanpur, Uttar Pradesh
India

ISBN 978-981-10-3940-9 ISBN 978-981-10-3941-6 (eBook)
DOI 10.1007/978-981-10-3941-6

Library of Congress Control Number: 2017933466

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04GatewayEast, Singapore 189721, Singapore

This book is dedicated to three wonderful
persons.
To my teacher Professor G. P. Bhattacharjee,
who believed that my achievements were not
accidental but both expected and deserved.
To my wife Sarbani and to my daughter
Ritwika. Without their support and
understanding it would not have been
possible. At times Sarbani felt the book will
never appear in print though my little one
never expressed it in so many words, perhaps
she believed her mom.

Preface

This book grew out of the class notes around which a course on mobile computing
was taught to the senior undergraduate and the masters’ students at IIT Kanpur.
These students unknowingly became guinea pigs in the process of my under-
standing of the subject.

The certain topics included in this book have been produced in different forms
distributed over a number of other books or collections. In that sense, the uniqueness
of the current text lies in putting the contents in an understandable form woven
through a single thread. Giving a different orientation to the work of others is not
quite easy. Most of the times I felt that the original text of the work is perhaps the best
way to communicate. However, while teaching certain material in the class, a few
interesting ideas emerged out of the queries by the students. These ideas provided
cues for improved presentations. Maybe a discernable reader will find that some
of the topics in this book have been presented in sufficient details, while a few other
topics perhaps could have been presented in a better way. Specially, I feel a rea-
sonable understanding of smart environment would require more space than I could
allocate in this book. In trying to fit it within the scope of the book, context-aware
infrastructure became a dominant theme in my presentation. However, I believe that
building smart environment, in itself, is an engineering problem which is understood
best by practice than by learning through literature or a book.

The book is organized into two parts consisting eight chapters each. Part I deals
with wireless networking, while Part II addresses mobile data management issues.
The effort was to strike a balance between the two parts and provide the readers
what I believe is a comprehensive treatment of the subject. The material for the
mobile data management part was more or less gathered directly from the original
articles, as most of the available books in the area at the time when I start writing
this book were just unrelated collections of research literature. Fortunately, there are
many excellent texts on wireless networking part. But, these books were written
with the target audiences having background either in electrical engineering or in
physics. Very few books, if at all, dealt with protocol level details in somewhat
sketchy manner. However, these texts did substantially influence the material
presented in first part of the book. My class notes gradually developed over the

vii

years and matured somewhat unconsciously in the form a monograph as it appears
now.

Chapter 1 of the book is an introduction to mobile distributed environment and
some interesting innovative applications in the area. Instead of a conventional
introduction to book, this chapter provides the reader a general understanding of the
issues that arise in the context building pervasive mobile applications and smart
environment. The subsequent five chapters deal with the range of wireless net-
working technologies. It includes cellular-based wireless communication,
telecommunication protocols such as GSM, GPRS, and UMTS, and short-range
radio communication protocols such as WLAN, Bluetooth, IR, ZigBee, and
6LoWPAN. The remaining two chapters of the first part deal with routings in
mobile ad hoc network, mobile operating systems and application-level protocols
such as Mobile IP, WAP, and Mobile Shell (Mosh).

Part II of the book deals with mobile data management. This part begins with a
chapter on WSN-related protocols, namely routing, interoperability, and multi-
sensor integration. Though the contents of the chapter appear to lean more toward
network than data, the two main reasons for clubbing it with mobile data man-
agement are as follows: (i) WSNs unlike IP-based network are data-centric net-
works and (ii) multisensor integrations employ sophisticated mathematical tools for
fusion of data. More precisely, data is used as a communication token for routing in
WSN. On the other hand, data fusion requires rich mathematical techniques that
deal with detection, association, correlation, estimation, and combination of sensory
data. The next chapter deals with the techniques for location management in
GSM-type network for tracking personal and terminal mobilities. Here again, the
decision to classify the chapter under mobile data management part is driven by the
fact that the volume of location data far exceeds the size of a database that can be
handled by a conventional database application. Specially, capturing location data
related to personal mobility requires interesting data management and machine
learning techniques. The remaining topics related to mobile distributed environment
included in this part are as follows: design of algorithms, data dissemination,
indexing, caching, replications, and storage management. The last chapter of the
book does not directly deal with data management issues, but it talks about
context-aware infrastructure for building smart environments.

The pre-requisite relationships between the contents of chapters are shown in
Fig. 1. The solid lines show direct dependencies, and dotted line indicates indirect
dependencies of the chapters. The book is written in a way, so that it does not
require any pre-requisite other than the standard undergraduate knowledge of
computer networks and algorithms. Having a bit of working knowledge about
operating system (OS) could also help the reader to understand some of the prac-
tical issues described in the context of building mobile distributed applications.

The subject matter of the book has been chosen with a balanced assessment
of the requirements of a target audience that would consist of senior undergradu-
ates, masters, as well as research students. Practicing engineers perhaps may not get
particularly excited about the book, as most of the content as well as the treatment

viii Preface

of the contents is biased more toward theory than implementation. However, I
believe that the chapter on smart environment and context-aware computing would
provide a few pointers to ideas on leveraging mobile cloud computing for building
smart applications.

Kanpur, India R.K. Ghosh
December 2016

Chapter 1

Chapter 2

Chapter 3Chapter 5Chapter 4 Chapter 6

Chapter 9Chapter 8Chapter 7 Chapter 10

Chapter 11

Chapter 12 Chapter 14

Chapter 13 Chapter 15

Chapter 16

Fig. 1 Pre-requisite structure of chapters

Preface ix

Acknowledgements

It is always a pleasure to thank all those from whom I received help, support, and
encouragements directly or indirectly. Among these individuals, colleagues, and
friends, one name that stands out is Hrushikesha Mohanty of University of
Hyderabad. I learnt a lot about the subject with him. We jointly organized a few
workshops and conferences in the general area of mobile distributed computing.
Another very distinguished person who helped and always motivated me through
his wisdom is R.K. Shyamasundar of IIT Bombay. It was always a pleasure to talk
to him and discuss half-baked and immature ideas. I extend my sincere thanks to
him. I acknowledge with thanks the support and encouragements that I received
from Anup Kumar of University of Louisville. Anup is not only a great friend to
have, but is always available for any help and support academic or otherwise.
Several of his suggestions and comments helped me to improve the presentation of
this book. I also extend my thanks to Sajal K. Das of Missouri University of
Science and Technology who offered a few suggestions on initial drafts of few
chapters. His suggestions were always very specific and helpful. My special thanks
are reserved for all my students who silently suffered my ignorance of the subject at
initial stages and made me learn the subject. Finally, working with my editor Ms.
Suvira Srivastava, the project coordinator Ms. Sathya Karupaiya, and the produc-
tion editor Mr. V. Praveen Kumar was fun. I thank them for their patience and
perseverance.

xi

Contents

Part I Wireless Networking

1 Mobile Distributed Systems: Networking and
Data Management . 3
1.1 Introduction . 3
1.2 Mobile Pervasive and Ubiquitous Computing 4
1.3 Characterizing Mobile Distributed System 4
1.4 Mobile Cloud Computing . 7
1.5 OS for Mobile Devices . 10
1.6 Mobile Applications . 10

1.6.1 mHealthcare. 11
1.6.2 Logistic and Transport Management 12

1.7 Smart Environments . 13
1.7.1 Context Aware Computing . 15
1.7.2 Driverless Cars . 15

1.8 Organization of Book . 18
References. 19

2 Cellular Wireless Communication . 21
2.1 Introduction . 21
2.2 Frequency Planning . 23

2.2.1 Co-channel Interference . 27
2.2.2 Cell Splitting and Sectoring . 31

2.3 Traffic Intensity. 34
2.4 Channel Assignment . 38

2.4.1 Fixed Channel Assignment . 41
2.4.2 Dynamic Channel Assignment Policies 45

2.5 Handoff. 48

xiii

2.5.1 Handoff Policies . 50
2.5.2 Handoff Protocols . 51

References. 53

3 GSM, GPRS and UMTS . 55
3.1 Introduction . 55
3.2 GSM Architecture . 56

3.2.1 Mobile Station . 57
3.2.2 Base Station Subsystem. 58
3.2.3 Network Subsystem . 59
3.2.4 GSM Radio Resources. 60
3.2.5 Channel Types. 60
3.2.6 Frame Structure . 63

3.3 GSM Signaling Protocols . 64
3.4 Call Setup . 66

3.4.1 Mobile Terminated Calls . 67
3.4.2 Mobile Originated Calls. 70
3.4.3 Mobility Management . 70

3.5 GPRS Network . 73
3.6 UMTS. 79

3.6.1 UTRAN. 80
3.6.2 WCDMA. 83
3.6.3 Handoffs in UMTS . 88
3.6.4 UMTS Interface Protocol Model 90
3.6.5 Radio Network Layer . 92

References. 93

4 Wireless Local Area Network. 95
4.1 Introduction . 95
4.2 Mobility Support and Wireless Networks 96
4.3 WLAN Standards . 98

4.3.1 IEEE Standards . 99
4.4 Network Topology . 102
4.5 Physical Layer and Spread Spectrum . 104

4.5.1 Standard for PHY and MAC Layers 104
4.5.2 Spread Spectrum . 105
4.5.3 Protocol Stack . 110

4.6 MAC Sublayer . 111
4.6.1 Radio Access Technologies . 111
4.6.2 Multiple Access Protocols . 112
4.6.3 ALOHA. 113
4.6.4 CSMA/CA. 115

xiv Contents

4.6.5 Distributed Coordination Function 116
4.6.6 Point Coordination Function 122

References. 124

5 Short Range Radio Protocols: Bluetooth and IR 125
5.1 Introduction . 125
5.2 Bluetooth . 126

5.2.1 Packet Format . 130
5.2.2 Protocol Stack . 132
5.2.3 Bluetooth-Enabled Applications. 135

5.3 Infra Red . 137
5.3.1 IR Protocol Stack . 138

5.4 Comparison of Bluetooth and Infrared 143
References. 144

6 Low Power Communication Protocols: ZigBee,
6LoWPAN and ZigBee IP . 147
6.1 Introduction . 147
6.2 IEEE 802.15.4 . 149
6.3 ZigBee Protocol Stack . 149
6.4 6LoWPAN . 161

6.4.1 IPV6 . 162
6.4.2 IP Over IEEE 802.15.4 . 164
6.4.3 Compression, Fragmentation and Reassembly 165
6.4.4 Routing . 170
6.4.5 CoAP Protocol. 172
6.4.6 RPL Routing Protocol . 173

6.5 ZigBee IP . 175
6.5.1 Protocol Stack . 175

References. 176

7 Routing Protocols for Mobile Ad Hoc Network 179
7.1 Introduction . 179
7.2 Classification of Routing Protocols . 181

7.2.1 Distance Vector Routing . 183
7.3 Destination-Sequenced Distance Vector Routing. 183

7.3.1 Advertisement of Routes . 184
7.3.2 Propagation of Link Break Information 185
7.3.3 Stability of Requirements. 185
7.3.4 Guarantee for Loop Free Paths 186
7.3.5 Forwarding Table and Update Propagation 187
7.3.6 Example. 188

7.4 Dynamic Source Routing . 190
7.4.1 Overview of the Algorithm . 191
7.4.2 Route Discovery . 191

Contents xv

7.4.3 Route Maintenance . 192
7.4.4 Piggybacking on Route Discovery. 193
7.4.5 Handling Route Replies . 194
7.4.6 Operating in Promiscuous Mode 195

7.5 Ad hoc On-demand Distance Vector Routing 196
7.5.1 Design Decisions . 196
7.5.2 Route Tables . 197
7.5.3 Unicast Route Discovery and Maintenance 198
7.5.4 Multicast Route Discovery and Maintenance 203

7.6 Zonal Routing Protocol. 208
7.6.1 Routing Zones . 208
7.6.2 Interzone Routing . 209
7.6.3 Bordercast Tree and Query Control 211
7.6.4 Random Delay in Query Processing 213
7.6.5 Route Caching . 214

References. 214

8 Mobile OS and Application Protocols . 217
8.1 Introduction . 217
8.2 Mobile OS . 219

8.2.1 Smartphones . 219
8.2.2 Difficulties in Adopting Desktop OS 221
8.2.3 Mobile OS Features . 222
8.2.4 Mobile OS Platforms . 224
8.2.5 J2ME. 225
8.2.6 Symbian OS . 228
8.2.7 Android OS . 230
8.2.8 Iphone OS (iOS) . 232
8.2.9 Comparison of iOS and Android 234
8.2.10 Cross Platform Development Tools 235

8.3 Mobile IP . 236
8.3.1 Overview . 238
8.3.2 Agent Discovery . 239
8.3.3 Registration . 240
8.3.4 Routing and Tunneling . 242

8.4 Mobile Shell (Mosh). 244
8.4.1 Overview of Mosh. 245
8.4.2 State Synchronization Protocol 246
8.4.3 Design Considerations of Terminal Emulator 249
8.4.4 Evaluation of Mosh . 250

8.5 Wireless Application Protocol. 251
8.5.1 Performance Bottleneck Faced by HTTP 251
8.5.2 WAP Protocol Stack . 254

References. 260

xvi Contents

Part II Mobile Data Management

9 Data Centric Routing, Interoperability and Fusion in WSN 265
9.1 Introduction . 265
9.2 Characteristics of WSN. 266

9.2.1 WSN Versus MANET . 267
9.3 Architecture of WSN . 268

9.3.1 Communication Architecture 269
9.3.2 Network Organization . 270

9.4 Routing in Sensor Network. 271
9.4.1 Classification of Routing Protocols 272

9.5 Flat Network Based Routing. 273
9.5.1 Hierarchical Routing Protocols 275
9.5.2 Location Based Routing Protocols 276
9.5.3 Selection of Forwarding Neighbor 278

9.6 Routing Based on Protocol Operation. 280
9.6.1 Multipath Routing Protocols 281
9.6.2 Query Based Routing Protocols 282
9.6.3 Negotiation Based Routing Protocols. 282

9.7 Interconnection of WSNs to the Internet. 283
9.7.1 NAT Based IP-WSN Interconnection 285

9.8 Data Fusion in WSN. 287
9.8.1 Definitions . 288
9.8.2 Data Collection Model. 289
9.8.3 Challenges in Data Fusion . 291
9.8.4 Data Fusion Algorithms. 291

References. 296

10 Location Management. 299
10.1 Introduction . 299

10.1.1 Registration and Paging . 301
10.2 Two Tier Structure . 301

10.2.1 Drawbacks of Fixed Home Addresses 302
10.3 Hierarchical Scheme . 302

10.3.1 Update Requirements. 303
10.3.2 Lookup in Hierarchical Scheme. 304
10.3.3 Advantages and Drawbacks . 304

10.4 Caching. 305
10.4.1 Caching in Hierarchical Scheme 307

10.5 Forwarding Pointers . 308
10.6 Replication . 309
10.7 Personal Mobility . 311

10.7.1 Random Process, Information and Entropy 311
10.7.2 Mobility Pattern as a Stochastic Process 315

Contents xvii

10.7.3 Lempel-Ziv Algorithm . 320
10.7.4 Incremental Parsing . 323
10.7.5 Probability Assignment . 326

10.8 Distributed Location Management . 327
10.8.1 The Call Setup Protocol. 329
10.8.2 Update . 329
10.8.3 Data Structures and System Specification 330
10.8.4 The Cost Model. 333

References. 334

11 Distributed Algorithms for Mobile Environment 337
11.1 Introduction . 337
11.2 Distributed Systems and Algorithms . 338
11.3 Mobile Systems and Algorithms . 339

11.3.1 Placing Computation . 340
11.3.2 Synchronization and Contention 340
11.3.3 Messaging Cost . 341

11.4 Structuring Distributed Algorithms . 344
11.5 Non-coordinator Systems . 344

11.5.1 All Machines are Equivalent 345
11.5.2 With Exception Machines . 347
11.5.3 Coordinator Based Systems . 349

11.6 Exploiting Asymmetry of Two-Tier Model. 351
11.6.1 Search Strategy . 352
11.6.2 Inform Strategy . 354
11.6.3 Proxy Strategy . 356

11.7 Termination Detection. 361
11.7.1 Two Known Approaches . 362
11.7.2 Approach for Mobile Distributed Systems 362
11.7.3 Message Types . 363
11.7.4 Entities and Overview of Their Actions. 365
11.7.5 Mobile Process . 365
11.7.6 Base Stations . 366
11.7.7 Handoff . 368
11.7.8 Disconnection and Rejoining 370
11.7.9 Dangling Messages . 370
11.7.10 Announcing Termination . 372

References. 372

12 Data Dissemination and Broadcast Disks . 375
12.1 Introduction . 375
12.2 Data Access Issues in Mobile Environment 376
12.3 Pull and Push Based Data Delivery . 377
12.4 Dissemination in Mobile Environment 379

xviii Contents

12.5 Comparison of Pull and Push Models. 380
12.6 Classification of Data Delivery Models. 382
12.7 Broadcast Disk . 384

12.7.1 Flat Periodic Broadcast Model. 384
12.7.2 Skewed Periodic Broadcast . 385
12.7.3 Properties of Broadcast Programs 385
12.7.4 Advantages of Multi-Disk Program 388
12.7.5 Algorithm for Broadcast Program 388
12.7.6 Parameters for Tuning Disk Model 390
12.7.7 Dynamic Broadcast Program 390
12.7.8 Unused or Empty Slots in Broadcast Disk. 391
12.7.9 Eliminating Unused Slot . 392

12.8 Probabilistic Model of Broadcast . 396
12.9 Memory Hierarchy . 398
12.10 Client Cache Management . 399

12.10.1 Role of Client Side Caching 400
12.10.2 An Abstract Formulation . 400
12.10.3 Consideration for Caching Cost 402
12.10.4 Cost-Based Caching Scheme: PIX and LIX. 402
12.10.5 Pre-fetching Cost . 403

12.11 Update Dissemination . 405
12.11.1 Advantages of Broadcast Updates 405
12.11.2 Data Consistency Models . 405

References. 406

13 Indexing in Air . 409
13.1 Introduction . 409
13.2 Address Matching and the Directory. 411
13.3 Preliminary Notions . 412
13.4 Temporal Address Matching Technique 412
13.5 Tuning Time and Access Latency. 412
13.6 Indexing in Air . 413

13.6.1 (1, m) Indexing Scheme. 414
13.7 Distributed Indexing Scheme . 416

13.7.1 Distributed Indexing with No Replication 418
13.7.2 Replication Based Distributed Indexing 419
13.7.3 Full Path Replication Scheme 420
13.7.4 Partial Path Replication . 421
13.7.5 Access Protocol . 425

13.8 Exponential Indexing . 428
13.8.1 Generalized Exponential Indexing 429
13.8.2 Analysis. 432

Contents xix

13.9 Hash A . 436
13.10 Hash B . 439
References. 442

14 Caching and Data Replication in Mobile Environment 443
14.1 Introduction . 443
14.2 Caching, Prefetching and Hoarding. 444
14.3 Invalidating and Refreshing Cache . 446
14.4 Strategies for Caching with Stateless Servers 447

14.4.1 TS Strategy . 447
14.4.2 AT Strategy . 448
14.4.3 Signature Strategy . 448

14.5 Requirements for Replication . 452
14.5.1 Pitfalls of Replication . 455

14.6 Replication Techniques . 457
14.7 Rule Based Reconciliation Approach . 458

14.7.1 Two-Tier Replication . 458
14.7.2 Performance Analysis . 460
14.7.3 Caching and Replication in CODA 462

14.8 Relaxed Data Consistency Models . 464
14.8.1 Requirements for Session Guarantees 467
14.8.2 Implementation Related Issues. 471

References. 473

15 Storage Systems for Mobile Environment . 475
15.1 Introduction . 475
15.2 Disconnected Mode of Operation . 476
15.3 Rover Toolkit . 477

15.3.1 Design of Rover Toolkit . 478
15.4 Mobile Distributed File Systems . 482
15.5 CODA . 482

15.5.1 Overview of CODA. 483
15.5.2 Scalability . 486
15.5.3 Disconnection and Failures . 488
15.5.4 Replica Control Strategy . 489
15.5.5 Visibility of Updates . 492
15.5.6 Venus and Its Operations. 493
15.5.7 Reintegration . 497

15.6 InterMezzo . 498
15.6.1 Filtering Access to Files . 499
15.6.2 Protocols . 501
15.6.3 Functions of Lento. 502
15.6.4 Recovery and Cache Validation. 503

xx Contents

15.7 File System for Connected Clients . 504
15.7.1 Concurrency Control . 505
15.7.2 Conflict Detection and Resolution 505
15.7.3 Cache Replacement . 507

References. 507

16 Context-aware Infrastructures for Smart Environment 509
16.1 Introduction . 509
16.2 Terminology and Historical Prospectives 510
16.3 Designing Context-aware Applications 511

16.3.1 Representation of Contextual Data. 511
16.3.2 Extraction of Contextual Data 512
16.3.3 Adaptability . 514

16.4 Formal Modeling of Contexts . 515
16.4.1 ConChat Model . 517

16.5 System Requirements . 521
16.5.1 Inhabitants Centered Requirements 521
16.5.2 Technology Related Issues. 523

16.6 Middleware Architectures . 526
16.6.1 Layered Middleware Architecture 527
16.6.2 Service Oriented Middleware. 528
16.6.3 Agent Oriented Middleware. 530
16.6.4 Object Oriented Middleware 532

16.7 Smart Applications . 532
16.7.1 Context-aware Applications Using Smart Phones . . . 534

References. 539

Index . 541

Contents xxi

About the Author

R.K. Ghosh is a professor in the Department of Computer Science and
Engineering at the Indian Institute of Technology Kanpur. Earlier, he held a pro-
fessor’s position in the Department of Computer Science and Engineering at the
Indian Institute of Technology Guwahati. A few of the other positions he has held
in the past include a UN teacher fellow at the International Institute for Software
Technology (IIST) Macau, a visiting scientist at INRIA Sophia Antipolis, France,
and a visiting faculty in the Department of Computer Science at the University of
Texas at Arlington, USA. His primary research interests are in mobile computing,
distributed systems, and wireless networks.

Dr. Ghosh has published extensively in professional journals on wireless sensor
networks, mobile applications and services, parallel and distributed systems, graph
theory, and the operation of large data centers. He has co-authored one book and
edited several conference proceedings, as well as authored a few book chapters in
the general area of mobile applications and services. Dr. Ghosh has worked on
several sponsored research projects related to parallel processing, distributed soft-
ware engineering, mobile computing and cloud computing. A few of these projects
involved international collaborations with the researchers from the University of
Trento, Italy, Airbus Industrie, France, Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia, University of Melbourne, Australia, and
University of Texas at Arlington, USA. His pedagogic interests led to a collection
of animation programs for teaching data structure and algorithms at the under-
graduate level. A partial collection of these animation programs grouped as Ghosh’s
collection is available at http://algoviz.org/node/641.

xxiii

Acronyms

3G Third Generation
3GPP Third-Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
6LoWPAN Low-power Network on IPv6
8-PSK Octagonal Phase-Shift Keying
ABR Associativity-Based Routing
ACCH Associated Control CHannels
ACL Asynchronous Connection Less
ACO Augmented Channel Occupancy
AGCH Access Grant CHannel
AMA Active Member Address
AODV Ad hoc On-Demand Distance Vector
AP Access Point
API Application Programming Interface
APL APplication Layer
ARP Address Resolution Protocol
ARQ Automatic Repeat reQuest
AU Application Unit
AuC Authentication Center
BCCH Broadcast Control CHannel
BCH Broadcast CHannel
BCO Borrowing with Channel Order
BER Bit Error Rate
BFA Borrow from the First Available
BFR Borrowing From the Richest
BS Base Station
BSA Basic Service Area
BSC Base Station Controller
BSS Base Station Subsystem

xxv

BSS Basic Service System
BSSAP Base Station System Application Part
BSSGP BSS GPRS application Protocol
BSSID BSS Identifier
BTS Base Transceiver Station
CAC Channel Access Code
CAN Community Area Network
CASS Context-Aware Substructure System
CCCH Common Control CHannels
CDMA Code Division Multiple Access
CEPT Conference of European Post and Telecommunication
CFP Contention-Free Period
CGI Common Gateway Interface
CGSR Cluster Gateway Switch Routing
CoA Care-of Address
CoAP Constrained Application Protocol
CoBrA Context Broker Architecture
CODA COnstant Data Availability
CRC Cyclic Redundancy Code
CS Circuit Switching
CSCF Control Session Control Function
CSMA/CA CSMA with Collision Avoidance
CSMA Carrier Sensing and Multiple Access
CTS Clear to Transmit
DAC Device Access Code
DAO Destination Advertisement Object
DCA Dynamic Channel Assignment
DCCH Dedicated Control CHannels
DCF Distributed Coordination Function
DDCA Distributed Dynamic Channel Assignment
DHCP Dynamic Host Control Protocol
DIFS DCF Inter-Frame Spacing
DIO DODAG Information Object
DIS DODAG Information Solicitation
DISCUS Distributed Source Coding Using Syndromes
DODAG Destination-Oriented Directed Acyclic Graph
DoS Denial of Services
DRNC Drift RNC
DSC Distributed Source Coding
DSDV Destination-Sequenced Distance Vector
DSR Dynamic Source Routing
DSSS Direct-Sequence Spread Spectrum
DTD Document-Type Definition
DTX Discontinuous Transmission
EDGE Enhanced Data rates for GSM Evolution

xxvi Acronyms

EIR Equipment Identity Register
ESS Extended Service Set
ETSI European Telecommunication Standard Institute
ETX Expected Transmission count
EUI Extended Unique Identifier
FA Foreign Agent
FAC Final Assembly Code
FACCH Fast Associate Control CHannel
FCA Fixed Channel Assignment
FCCH Frequency Correction CHannel
FCS Frame Check Sequence
FDD Frequency Division Duplex
FDMA Frequency Division Multiple Access
FEC Forward Error Correction
FFD Full Function Device
FFH Fast Frequency Hopping
FHSS Frequency Hopping Spread Spectrum
FSR Fish-eye State Routing
FTP File Transfer Protocol
GEAR Geographical and Energy-Aware Routing
GGSN Gateway GPRS Support Node
GMM GPRS Mobility Management
GMSC Gateway MSC
GoS Grade of Service
GPRS General Packet Radio Service
GPS Geographical Positioning System
GPSK Gaussian Phase-Shift Keying
GRPH GRouP Hello
GSM Groupe Speciale Mobile
GSR Global State Routing
GTP GPRS Tunneling Protocol
HA Home Agent
HEC Header Error Check
HLR Home Location Register
HRN Handover Reference Number
HSCSD High-Speed Circuit-Switched Data
HSS Home Subscriber Service
HTML Hypertext Mark-up Language
HTTP Hypertext Transfer Protocol
IAC Inquiry Access Code
IAM Initial Address Message
IARP IntrAzone Routing Protocol
IAS Information Access Service
IBSS Independent BSS
ICMP Internet Control Message Protocol

Acronyms xxvii

IEEE Institute of Electronics and Electrical Engineers
IERP IntErzone Routing Protocol
IFH Intermediate Frequency Hopping
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber's Identity
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IR Infrared
ISDN Integrated Service Digital Network
L2CAP Logical Link Access Protocol
LAI Location Area Identifier
LAN Local Area Network
LAP Link Access Protocol
LAPD Link Access Protocol for ISDN D-Channel
LAR Location-Aided Routing
LIX LRU PIX
LLC Link Logical Layer
LLN Low-power Lossy Network
LM-IAS Link Management Information Access Service
LM-MUX Link Management MUltipleXing
LMP Link Manager Protocol
LMR Lightweight Mobile Routing
LODA Locally Optimized Dynamic Assignment
LRU Least Recently Used
LS Location Server
LSAP Link Service Access Point
LSAP-SEL Link Service Access Point SELector
M2M Machine to Machine
MAC Medium Access Control
MAC Medium Control Adaptation Protocol
MACT Multicast route ACTivation
MANET Mobile Ad hoc Network
MAP Mobile Application Protocol
MCC Mobile Cloud Computing
MDS Mobile Distributed System
MGCF Media Gateway Control Function
MGW Media Gateway
MH Mobile Handset
MIMO Multiple-Input and Multiple-Output
MLME MAC layer Management Entity
MN Mobile Node
MOC Mobile Originating Call
Mosh Mobile shell

xxviii Acronyms

MS Mobile Station
MSC Mobile Switching Center
MSISDN Mobile Station ISDN
MSRN Mobile Station Roaming Number
MT Mobile Terminal
MTC Mobile Terminated Call
MTP Message Transport Part
MTU Maximum Transmission Unit
NAV Network Allocation Vector
NCH Notification CHannel
NDM Normal Disconnected Mode
NLA Next-Level Aggregator
NLME Network Layer Management Entity
NRM Normal Response Mode
NSAPI Network Service Access Point Identifier
NSS Network Subsystem
NWK NetWorK layer
OBEX OBject EXchange protocol
OBU Onboard Unit
OCB Office Code Book
OFDM Orthogonal Frequency Division Multiplexing
OSI Open System Interconnection
OVSF Orthogonal Variable Spreading Factor
PAN Personal Area Network
PCF Point Coordination Function
PCH Paging CHannel
PDA Personal Digital Assistant
PDN Packet Data Network
PDU Protocol Data Unit
PHY Physical Layer
PIFS PCF Inter-frame Spacing
PIMSI Packet IMSI
PIN Personal Identity Number
PIX Probability Inverse frequency X
PLL Physical Link Layer
PLMN Public Land Mobile Network
PMA Passive Member Address
PMS Power Management System
PS Packet Switching
PSTN Public Switched Telephone Network
QoS Quality of Service
QSPK Quadrature Phase-Shift Keying
RAB Radio Access Bearer
RACH Random Access CHannel Associativity-Based Routing
RAI Routing Area Identification

Acronyms xxix

RERR Route ERRor packet
REST REpresentational State Transfer
RETOS Resilient, Expandable, and Threaded Operating System for Wireless

Sensor Networks
RFD Reduced Function Device
RFID Radio Frequency IDentification
RLC Radio Link Control
RNAAP Radio Network Access Application Part
RNC Radio Network Controller
RNC Regional Network Center
RNL Radio Network Layer
RoLL Routing over Low-power and Lossy networks
RPL Routing Protocol for Low-power and lossy networks
RREP Route REPly packet
RREQ Route REQuest packet
RRM Radio Resource Manager
RSS Received Signal Strength
RSSI RSS Indicator
RSU Road Side Unit
RTS Request to Transmit
RTT Round-Trip Time
SACCH Slow Associated Control CHannel
SCCP Signaling Connection Control Part
SCH Synchronization CHannel
SCO Synchronous Connection Oriented
SDDCH Stand-alone Dedicated Control CHannel
SDP Service Discovery Protocol
SFH Slow Frequency Hopping
SGSN Servicing GPRS Support Node
SIFS Short Inter-Frame Spacing
SIM Subscriber Identity Module
SIR Signal-to-Interference Ratio
SLA Site-Level Aggregator
SLP Service Location Protocol
SMS Short Messaging Service
SNDCP Subnetwork Dependent Convergence Protocol
SNPDU Subnetwork Dependent Protocol Data Unit
SNR Signal-to-Noise Ratio
SOCAM Service-Oriented Context Middleware
SPIN Sensor Protocol for Information via Negotiation
SRNC Servicing RNC
SS Supplementary Service
SSH Secure SHell
SSID Service Set Identifier
SSL Secure Socket Layer

xxx Acronyms

SSP State Synchronization Protocol
SSR Signal Stability Routing
TAC Type Approval Code
TCAP Transaction Capability Application Part
TCH Traffic CHannel
TCP Transmission Control Protocol
TCS Telephone Control Specification
TDD Time-Division Duplex
TDMA Time-Division Multiple Access
TIMSI Temporary IMSI
TLA Top-Level Aggregator
TLS Transport Layer Security
TNL Transport Network Layer
TORA Temporarily Ordered Routing Algorithm
TRAU Transcoder and Rate Adaptation Unit
TSN Transient Social Networking
TTL Time To Live
TTP Tiny Transport Protocol
UCAM Unified Context-Aware Application Model
UDP User Datagram Protocol
UE User Equipment
UMTS Universal Mobile Telecommunication System
URL Uniform Resource Locator
UTRAN UMTS Terrestrial Radio Access Network
UUID Universally Unique IDentifier
UWB Ultra-Wideband
V2V Vehicle to Vehicle
VHE Virtual Home Environment
VLR Visitor Location Register
VOC Volatile Organic Compounds
VoIP Voice over IP
VPN Virtual Private Network
WAE WAP Application Environment
WAN Wide Area Network
WAP Wireless Application Protocol
WCDMA Wideband CDMA
WDP WAP Datagram Protocol
WHART Wireless Highway Addressable Remote Transducer
WiFi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WML Wireless Markup Language
WPAN Wireless Personal Area Network
WRP Wireless Routing Protocol
WSN Wireless Sensor Network

Acronyms xxxi

WSP WAP Session Protocol
WTAI Wireless Telephone Applications Interface
WTL WAP Transport Layer
WTLS WAP Transport Layer Security
XML Markup Language
ZC ZigBee Coordinator
ZDO ZigBee Device Object
ZR ZigBee Router
ZRP Zonal Routing Protocol

xxxii Acronyms

List of Figures

Figure 1.1 WSN for patient monitoring . 4
Figure 1.2 Architectural taxonomy of DS including mobility 5
Figure 1.3 Enabling technologies for MCC. 8
Figure 1.4 General architecture of MCC. 9
Figure 1.5 Mobile pervasive computing . 11
Figure 1.6 System architecture for smart freight

management [16] . 13
Figure 1.7 Context aware call forwarding application [5] 14
Figure 1.8 A reference architecture for VANET [2] 17
Figure 1.9 A reference protocol architecture for VANET [2]. 18
Figure 2.1 Cell packing of a coverage area . 22
Figure 2.2 Frequency reuse concept . 23
Figure 2.3 A regular hexagon inscribed in circle of radius R 24
Figure 2.4 Cell distance using hexagonal cell geometry 25
Figure 2.5 Cluster area approximates to a regular hexagon 26
Figure 2.6 Co-channel cells . 27
Figure 2.7 Interferences due to propagation of co-channel

signals . 29
Figure 2.8 Co-channel interference considering exact cell

geometry . 31
Figure 2.9 Cell splitting . 32
Figure 2.10 Cell sectoring . 33
Figure 2.11 Interference pattern with cell sectoring 33
Figure 2.12 Distribution of the arrival of requests

and their servicing . 34
Figure 2.13 Queuing discipline and service of call requests 36
Figure 2.14 Markov chain representing system state

and transitions . 36
Figure 2.15 Borrowing affects co-channels cells of donor cell. 42
Figure 2.16 Channel switching with borrowing 44
Figure 2.17 ACO matrix of cell i . 46

xxxiii

Figure 2.18 Handoff scenarios at cell boundaries. 49
Figure 2.19 The generic procedure of handoff 53
Figure 3.1 GSM architecture. 56
Figure 3.2 GSM channel classes . 61
Figure 3.3 Structure of a normal GSM frame or burst 63
Figure 3.4 Structures of FCCH, SCH and RACH frames

or bursts . 64
Figure 3.5 GSM network components . 65
Figure 3.6 Protocol for incoming call to a mobile 67
Figure 3.7 Message flow over radio channels for mobile

terminated call setup . 69
Figure 3.8 Signaling for mobile originated call setup 69
Figure 3.9 Channel activity needed for location update 71
Figure 3.10 GSM inter BSC handover procedure 72
Figure 3.11 GPRS/GSM combined architecture. 75
Figure 3.12 GPRS protocol stacks. 77
Figure 3.13 UTRAN architecture . 82
Figure 3.14 Orthogonal spreading code for different spreading

factors . 84
Figure 3.15 Elimination of near far effect. 85
Figure 3.16 Softer handoffs in WCDMA FDD mode 89
Figure 3.17 Soft handoff in WCDMA FDD mode. 90
Figure 3.18 The UMTS protocol model . 91
Figure 3.19 UMTS transport network protocols and interfaces 91
Figure 3.20 Radio network layer protocols . 93
Figure 4.1 Mobility supports on LAN and WAN. 97
Figure 4.2 Channelization of 2.4 GHZ band for WLAN. 99
Figure 4.3 Lower and middle subband channelization scheme

for 802.11a . 100
Figure 4.4 Upper subband channelization scheme for 802.11a. 100
Figure 4.5 Transmit spectrum mask . 101
Figure 4.6 WLAN basic topologies . 103
Figure 4.7 IEEE standard architecture for PHY and MAC layers 105
Figure 4.8 Frequency hopping spread spectrum 106
Figure 4.9 Frequency hopping spread spectrum 107
Figure 4.10 DSSS using with spreading factor 6 108
Figure 4.11 Protocol stack for 802.11 . 110
Figure 4.12 Contrasting different access technologies. 112
Figure 4.13 Frames generation and transmission under pure

ALOHA . 113
Figure 4.14 Hidden and exposed terminal problems. 115
Figure 4.15 Logic of DCF basic transmission mode 117
Figure 4.16 Data transmission from one station to another 117
Figure 4.17 DCF RTS/CTS mode of transmission 119

xxxiv List of Figures

Figure 4.18 Solutions to hidden/exposed terminal problem 119
Figure 4.19 RTS/CTS mode shortens interval of collision in DCF. 120
Figure 4.20 Receiver side solution to check LAN misbehavior 121
Figure 4.21 Effects of missing CTS. 122
Figure 4.22 Superframe structure and PCF . 123
Figure 5.1 Bluetooth network . 127
Figure 5.2 Piconets and scatternet . 128
Figure 5.3 Functional overview of piconet . 129
Figure 5.4 Transmission slots of master and slaves 130
Figure 5.5 Single slot and multi slot Bluetooth packets 131
Figure 5.6 Frame format for Bluetooth network. 131
Figure 5.7 Bluetooth packet header . 132
Figure 5.8 Bluetooth protocol stack . 133
Figure 5.9 Structure of Bluetooth profiles . 136
Figure 5.10 Protocol stacks for various Bluetooth applications 136
Figure 5.11 IR for replacement of cable connection. 137
Figure 5.12 Infrared communication cone. 138
Figure 5.13 IR protocol suite . 138
Figure 5.14 The IrLAP frame structure . 139
Figure 5.15 Flow of IrLAP operation. 141
Figure 6.1 ZigBee protocol stack. 150
Figure 6.2 Channels in three operating frequency bands 151
Figure 6.3 ZigBee network topologies . 152
Figure 6.4 ZigBee packet structure . 152
Figure 6.5 IEEE 802.15.4 MAC super frame 153
Figure 6.6 Slotted CSMA-CA algorithm. 155
Figure 6.7 Unslotted CSMA-CA algorithm . 155
Figure 6.8 Beacon-enabled transmission in ZigBee 156
Figure 6.9 Illustrating address assignment (in hexadecimal)

to ZigBee devices . 158
Figure 6.10 Network formation process executed by ZC 158
Figure 6.11 The network discovery process executed

by a child device . 159
Figure 6.12 The process of joining executed by a child device 159
Figure 6.13 The process of joining executed by a parent device 160
Figure 6.14 Re-joining steps executed by orphan child

and its parent . 161
Figure 6.15 Protocol stack for an IPv6 edge router

with 6LoWPAN support . 162
Figure 6.16 Network part of IPv6 address . 163
Figure 6.17 Address translation: IPv4–IPv6 . 164
Figure 6.18 6LoWPAN protocol stack . 165
Figure 6.19 Header compression in 6LoWPAN. 166

List of Figures xxxv

Figure 6.20 Header compression in 6LoWPAN using stacked
header . 166

Figure 6.21 Headers for point to point short packet transmission. 167
Figure 6.22 Stateless compression of packets in 6LoWPAN 169
Figure 6.23 Fragmented packet headers . 170
Figure 6.24 Header compression for mesh routing. 170
Figure 6.25 Mesh routing in 6LoWPAN network 171
Figure 6.26 Architecture of CoAP [10] . 172
Figure 6.27 CoAP and HTTP stacks . 173
Figure 6.28 ZigBee IP stack layering architecture 176
Figure 7.1 Ad hoc network. 180
Figure 7.2 Classifying routing algorithms . 181
Figure 7.3 Count to infinity problem . 183
Figure 7.4 Flooding due to fluctuations in routes. 186
Figure 7.5 An example for execution of DSDV. 188
Figure 7.6 B unicasting piggyback data (D’s RREP) to S 194
Figure 7.7 Loop formation in using cached data for route reply. 195
Figure 7.8 Reflecting shorter route updates . 195
Figure 7.9 A possible loop . 200
Figure 7.10 Intermediate node unicasting a RREP 201
Figure 7.11 Route discovery. 202
Figure 7.12 Route maintenance. 203
Figure 7.13 Grafting a new branch to multicast tree 204
Figure 7.14 Pruning after a member node leave the multicast group . . . 206
Figure 7.15 Repairing link breakage in AODV 207
Figure 7.16 Two-hops routing zone of S . 209
Figure 7.17 Bordercasting and operation of IERP 210
Figure 7.18 Extended routing zone of node c 212
Figure 7.19 Directing route discovery query from a source. 212
Figure 7.20 Detection of route discovery query. 213
Figure 7.21 Random delay in query processing. 214
Figure 8.1 Java 2 platforms—the big picture. 225
Figure 8.2 J2ME software stack . 226
Figure 8.3 Symbian OS architecture. 229
Figure 8.4 Android software stack . 231
Figure 8.5 Life cycle of an Android application 232
Figure 8.6 iOS software stack . 233
Figure 8.7 Software stack for a cross platform tool 236
Figure 8.8 DHCP operation . 237
Figure 8.9 ICMP packet format for agent advertisement 240
Figure 8.10 Registration process . 241
Figure 8.11 Format of registration request message 241
Figure 8.12 Format of registration reply message 242
Figure 8.13 IP-in-IP encapsulation. 242

xxxvi List of Figures

Figure 8.14 Tunneling and routing in mobile IP 243
Figure 8.15 Simplified view of SSH protocol [4] 246
Figure 8.16 Design of Mosh protocol [4] . 247
Figure 8.17 Comparative evaluation: SSH versus Mosh [4] 251
Figure 8.18 World wide web communication model 252
Figure 8.19 WAP programming model . 253
Figure 8.20 WAP protocol stack . 254
Figure 8.21 Structure of a WML deck . 256
Figure 8.22 Example of a WML deck . 257
Figure 8.23 An equivalent WMLScript for a WML deck 258
Figure 9.1 Components of a sensor node . 269
Figure 9.2 Communication architecture of sensor node. 269
Figure 9.3 Layered organization of sensor node 270
Figure 9.4 Clustered organization of sensor node. 271
Figure 9.5 Implosion and overlap problems 274
Figure 9.6 Funneling effect in WSN . 275
Figure 9.7 Geographical forwarding in a grid deployment [22] 279
Figure 9.8 Recursive geographical forwarding [22] 280
Figure 9.9 Sequential assignment routing algorithm 283
Figure 9.10 NAT based IP/WSN integration . 285
Figure 9.11 Serial forwarder for WSN to IP communication [34] 286
Figure 9.12 Downstream communication between IP

and WSN [34]. 286
Figure 9.13 Data/information fusion [35] . 289
Figure 9.14 Marzullo’s fusion technique with reliable sensor [52] 295
Figure 9.15 Data compression in DISCUS [35]. 296
Figure 10.1 Location space of all objects . 300
Figure 10.2 Move in two-tier scheme . 302
Figure 10.3 Tree-based organization of location servers 303
Figure 10.4 Caching in hierarchical location scheme 307
Figure 10.5 Forwarding pointers in hierarchical scheme 309
Figure 10.6 GSM type location area map (Source [3]) 315
Figure 10.7 One step state transition diagram for personal mobility 318
Figure 10.8 Trie built by classical Lempel-Ziv algorithm 323
Figure 10.9 Enhanced trie . 325
Figure 10.10 The model . 328
Figure 11.1 Search cost . 342
Figure 11.2 Mobile to mobile communication. 343
Figure 11.3 Summary of cost model . 343
Figure 11.4 Atomic broadcast using fixed/moving coordinator 350
Figure 11.5 Conceptual model of a moving coordinator system. 351
Figure 11.6 Illustration of handoff process . 368
Figure 12.1 Client and server initiated data delivery mechanisms 378
Figure 12.2 Data delivery models . 378

List of Figures xxxvii

Figure 12.3 Taxonomy of data transfer . 384
Figure 12.4 A flat broadcast disk . 385
Figure 12.5 Broadcast programs [1]. 386
Figure 12.6 Formulation of maximum waiting time 386
Figure 12.7 Bandwidth allocation by broadcast algorithm. 389
Figure 12.8 Many unused slots may be generated by

broadcast program . 392
Figure 12.9 Eliminating unused slots . 394
Figure 12.10 Memory hierarchy of broadcast disks [1] 398
Figure 12.11 A view of client side cache . 401
Figure 12.12 Cost of prefetching . 402
Figure 12.13 Illustrating pre-fetch cost . 404
Figure 13.1 Illustrating timing parameters . 413
Figure 13.2 Distributed indexing . 417
Figure 13.3 A three level index tree [1] . 418
Figure 13.4 Distributed indexing with no replication 419
Figure 13.5 Distributed indexing with full path replication 420
Figure 13.6 Partial path replication . 422
Figure 13.7 Control index . 423
Figure 13.8 Number of index nodes for the replicated part 426
Figure 13.9 Exponential indexing . 428
Figure 13.10 Exponential indexing using data segment grouping 432
Figure 13.11 Retrieving data bucket with record key 15 438
Figure 13.12 Scenarios depicting data miss and index miss 438
Figure 13.13 Access time using modified hashing function 440
Figure 13.14 Comparison of displacements [6] 441
Figure 14.1 A transaction performs N times as much job

with N replicas [9] . 456
Figure 14.2 Client centric consistency models. 465
Figure 14.3 RYW guarantee . 468
Figure 14.4 MR guarantee . 468
Figure 14.5 WFR guarantee . 469
Figure 14.6 MW guarantee. 470
Figure 15.1 Interaction of application and the components

of Rover toolkit . 479
Figure 15.2 CODA name space in clients. 483
Figure 15.3 Remote access of shared files system 484
Figure 15.4 Fetching file in CODA . 485
Figure 15.5 Interaction of CODA components 485
Figure 15.6 Side effect of CODA’s RPC2 . 486
Figure 15.7 Invalidation notification using RPC and RPC2. 487
Figure 15.8 Transition between cache and replication at client 490
Figure 15.9 Venus state transitions . 494
Figure 15.10 InterMezzo system [11] . 500

xxxviii List of Figures

Figure 15.11 Upcall and network request handling by Lento [11] 503
Figure 16.1 Processing of sensory data to contextual

information [2] . 513
Figure 16.2 Levels of adaptability . 514
Figure 16.3 Global characteristics of adaptable applications 515
Figure 16.4 Interactions of ConChat application units 520
Figure 16.5 Infrastructural framework of smart environment [1] 523
Figure 16.6 Architecture for context management 526
Figure 16.7 Generic architecture for context management [36] 528
Figure 16.8 Architecture of SOCAM [17] . 529
Figure 16.9 Processing sensor data to context [29] 531
Figure 16.10 Data flow in context toolkit [12] 532
Figure 16.11 Schematic representation of a contextor [32] 533
Figure 16.12 Adaptivity scenario using smart phone sensors 534
Figure 16.13 Flow of displacement data from wheel to smart phone 535
Figure 16.14 Orientation axes of smart phone. 536
Figure 16.15 Integrated health monitoring system 537
Figure 16.16 Formation of a TSN for handling a distress situation 538

List of Figures xxxix

List of Tables

Table 4.1 Summary of wireless communication technologies 98
Table 4.2 Physical properties of IEEE standards for WLAN 102
Table 5.1 Comparison of physical characteristics of Bluetooth

and Infrared . 144
Table 6.1 Summary of ZigBee, Bluetooth and Infrared 148
Table 6.2 Forming an EUI address from a MAC address 163
Table 6.3 Header compression . 167
Table 6.4 Dispatch header . 167
Table 6.5 Encoding header . 168
Table 6.6 Explanation HC1 bit patterns for NH values. 168
Table 7.1 Forwarding table of MH4 . 189
Table 7.2 Advertised route table for node MH4 189
Table 7.3 Change in forwarding table of node MH4 190
Table 7.4 Change in forwarding table of node MH4 190
Table 9.1 Ad hoc network versus sensor network 268
Table 10.1 An encoding scheme with prefix property 312
Table 10.2 An example for LAI crossing by a mobile 316
Table 10.3 Sequence of cells representing movement history 316
Table 10.4 Frequencies of symbols corresponding to three contexts. 318
Table 10.5 Encoding of different phrases . 321
Table 10.6 Decoding of phrases . 322
Table 10.7 Conditional probabilities of movement prediction 327
Table 10.8 Notations used for cost analysis . 333
Table 12.1 Asymmetry in link capacities of wireless networks 381
Table 12.2 Expected delays for arrival of items on channel 387
Table 12.3 Expected delays for arrival of items on channel 387
Table 13.1 Tuples corresponding to non-replicated roots 422
Table 13.2 Notations for analysis of exponential indexing 433
Table 14.1 Summary of replica update strategies. 456
Table 14.2 Notations used in description of consistency models 467
Table 14.3 Summary of operations for consistency guarantees 472

xli

List of Algorithms

Algorithm 1 DSR algorithm . 192
Algorithm 2 Actions of WAP gateway . 254
Algorithm 3 Lempel-Ziv encoder . 321
Algorithm 4 Decoder for LeZi update . 322
Algorithm 5 Enhanced decoder for LeZi update . 324
Algorithm 6 Method get_LSId(MH_id) . 330
Algorithm 7 Method localUpdate(MH_id, MSCold, MSCnew) 331
Algorithm 8 Method update(MSC, MH_id) . 331
Algorithm 9 Method remoteDelete(region_Id, MH_id) 331
Algorithm 10 Method lookup(MH_id, MSC) . 332
Algorithm 11 Method localLookup(MSC, MH_Id). 332
Algorithm 12 Method remoteLookup(MH_id) . 333
Algorithm 13 Lamport’s bakery algorithm . 345
Algorithm 14 Search strategy: actions of BS . 353
Algorithm 15 Search strategy: actions of MH. 353
Algorithm 16 Inform strategy: actions of BS . 355
Algorithm 17 Inform strategy: actions of MH . 356
Algorithm 18 Proxy strategy: actions of proxy . 357
Algorithm 19 Proxy strategy: actions of MH . 358
Algorithm 20 Actions of a mobile process Pj

m . 366
Algorithm 21 Actions of a BS process Pi . 367
Algorithm 22 Handoff protocol. 369
Algorithm 23 Disconnection protocol . 370
Algorithm 24 Rejoining protocol . 371
Algorithm 25 Handling dangling messages. 372
Algorithm 26 Generation of broadcast program . 389
Algorithm 27 Using empty slots . 395
Algorithm 28 Generating broadcast program . 397
Algorithm 29 Access algorithm for (1, 1) indexing 414
Algorithm 30 Access protocol for fetching record with key K 425
Algorithm 31 Downloading data. 425

xliii

Algorithm 32 Initial probe . 430
Algorithm 33 Index search . 431
Algorithm 34 Global index search . 431
Algorithm 35 Retrieval of data . 431
Algorithm 36 Access protocol using hashing . 437
Algorithm 37 TS strategy for caching. 449
Algorithm 38 AT strategy for caching . 450
Algorithm 39 Cache invalidation . 452
Algorithm 40 Creating and opening a directory . 501
Algorithm 41 Conflict detection & resolution . 506

xliv List of Algorithms

Part I
Wireless Networking

Part I of the book consists of eight chapters including Chap. 1. Chapter 1 provides
a gentle introduction to the environment of a Mobile Distributed System (MDS).
It begins with terminology used for describing computing in MDS environments,
and then provides a characterization of MDS. Following this, enabling technologies
and a few interesting mobile applications have been discussed. Chapter 2 deals with
the general concepts behind cellular wireless communication system that forms the
foundations of every wireless communication system. This is followed up in Chap. 3
where cellular based telecommunication protocols such as GSM, GPRS and UMTS
protocols have been discussed. Additionally, it focuses on some interesting physical
layer encoding issues related to management of GSM radio resources. The next two
chapters deal with WLAN and WPAN, both of which are based on short range radio
transmissions. However, the domains of applications of these two networking sys-
tems are different. WLAN is meant for networking of computers. On the other hand,
WPAN is meant for person centric networking based on Bluetooth and Infrared.
Chapter 4 deals with WLAN while Bluetooth and Infrared protocols have been dis-
cussed in Chap. 5. Wireless Sensor Network (WSN) communication works in MAC
layer. A number of new standards based on IPv6 have been developed to intergrate
WSNswith IP based networks. Asmentioned in Chap. 1 building smart mobile appli-
cations and services rely on contextual information gathered by WSNs. WSNs are
low power lossy data centric networks which need energy efficient communication
protocols. Chapter 6 is devoted to ZigBee and 6LoWPAN and other related proto-
cols which rely on IEEE 802.15.4 physical layer standards. ZigBee IP is a newer
standard released for implementation in 2013. It has been developed as a super spec-
ification on existing ZigBee standards with a view to support legacy deployments.
For energy efficient operations, routing is based on RoLL while CoAP provides
an energy efficient implementation of REST protocol. Mobile Ad hoc NETworks
(MANETs) belong to another special type of self organizing networks which play
important role in the context of providing mobile services to the end users. MANETs
nodes implement IP layer, but used for communication without any infrastructural
support. The routing in MANETs offer interesting theoretical challenges in terms
of finding shortest path in a network where node topology is highly dynamic and
local processing power at nodes is low. Some interesting and classical MANET
routing algorithms have been discussed in Chap. 7. The topic of Chap. 8 is mobile

2 Wireless Networking

application framework. It provides a comprehensive review of mobile OSes cur-
rently in vogue. It also describes three generic application protocols, viz., Mobile IP,
Wireless Application Protocol (WAP) and a Mobile Shell (Mosh). The goal of these
protocols is to maintain internet connectivity. Our idea of including these protocols
is to make the reader aware of the special design issues that come up in creating
applications due to mobility of end hosts and low data rates of wireless networks.

Chapter 1
Mobile Distributed Systems: Networking
and Data Management

1.1 Introduction

Convergence of wireless networking, Internet, embedded processing, and cloud com-
puting led to a multi dimensional shift in computing paradigms. Foundations were
laid through advancements in wireless networking, miniaturization, and low power
embedded processing. Wireless networking itself triggered a revolution in commu-
nication landscape. It became possible to move without wire while maintaining con-
nectivity with the network and the Internet. Miniaturization reduced the form factor
of the devices. The advances in battery technology coupled with low power embed-
ded processing capabilities made the devices light weight (such as phones, laptops,
PDA), portable and powerful. With cloud computing, it was possible to implement
“pay per service” model of payment as well as accessibility of personalized services
any where, at any time.

Besides personal communication devices, embedded technology led to emergence
of self organizing low cost Wireless Sensor and Network (WSN). Low power wireless
standards such as ZigBee, 6LoWPAN, RPL, and COAP implementing IPv6 made it
possible to integrate WSN with the Internet. Through WSNs, it became possible to
build unattended distributed data centric networks for global information dissemina-
tion. The information gathered by WSNs could be disseminated to mediating systems
for the detection of important events and to trigger appropriate responses from corre-
sponding actuation systems. Figure 1.1 illustrates a generic diagram of a WSN based
patient monitoring. In this book, our goal is to deal with two important areas namely,
wireless networking protocols and mobile data management. Our aim is to focus
on the foundations of enabling technologies rather than the applications. Enabling
technologies provide necessary capabilities for designing and implementing innova-
tive mobile pervasive applications. The book has been conceived and written in this
context. The book consists of 16 chapters including the current one. In this chapter
our aim is to examine the issues that commonly arise in building mobile distributed
applications and services instead of trying to provide chapter wise summarization of
the contents.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_1

3

4 1 Mobile Distributed Systems: Networking and Data Management

Fig. 1.1 WSN for patient monitoring

1.2 Mobile Pervasive and Ubiquitous Computing

Pervasive computing and ubiquitous computing are often used interchangeably in
connection with the applications developed using mobile distributed systems. But
there are subtle differences. Pervasiveness implies “anything whose presence is dif-
fused”. Ubiquitous, on the other hand, means “anything which is omnipresent”.
Pervasive computing tends to lean more towards mobile computing while ubiqui-
tous computing is more close to embedded processing, intelligence and richness in
interface experience. In some sense, ubiquitous computing subsumes a number of
overlapping ideas from pervasive computing. It extends the idea of computers and
networking being closely interwoven with our environment which do not require
any human attention. Persons or inhabitants of the environment are important cen-
tral theme of pervasive computing. In contrast, community and environment are
dominant themes of ubiquitous computing where person centric computing is indi-
rectly subsumed. Weiser [26] visualized the convergence between communication
and computing in terms of availability of an omnipresent, and omniscient infrastruc-
ture servicing information. However, the ultimate goal of both computing paradigms
is to bring comfort to human lives.

1.3 Characterizing Mobile Distributed System

A mobile system by definition consists of portable devices which run on batteries
and have wireless communication interface for networking. Using mobile portable
devices, the users can remain connected while moving from one place to the other.
This introduces following two new elements in a distributed system: (i) dynamicity
in networking, and (ii) asymmetry in the capabilities of the nodes. An architectural

1.3 Characterizing Mobile Distributed System 5

Fig. 1.2 Architectural
taxonomy of DS including
mobility

M
ob

ile
D
is
tr
ib
ut
ed

S
ys
te
m

(M
D
S
)

User

Device

N/W connection

Execution

Mobile

Static

Mobile

Static

Wired (reliable)

Wireless (intermittent)

Static

Dynamic

taxonomy of Distributed Systems including mobility is shown in Fig. 1.2. To under-
stand the implications of the mobility, first we need to study the characteristics of a
Distributed System (DS), and then examine how mobility complicates the computing
scenario in a DS.

In defining a distributed system, one is reminded of Leslie Lamport’s celebrated
definition of a distributed system [14]:

Definition 1.1 (Lamport [14]) A distributed system is the one in which your com-
puter becomes unusable due to failure of a computer you did not know existed.

The definition embodies the concept that a distributed system presents a single
coherent system though it may typically consists of a number of geographically sep-
arated autonomous but stationary computers connected by high bandwidth network
links. Some of the basic characteristics of such a computing model are:

1. An application is typically partitioned into a number of smaller tasks, and the
responsibility of executing these tasks is evenly shared on by a set of participating
computers.

2. Every computer is assumed to have enough resources to complete a task assigned
to it in the expected duration of time.

3. Communication among computers is carried over high bandwidth wired links and
mostly hidden from the users.

4. The users interact with a distributed application through a single console regard-
less of the location of the remote computer where interaction actually takes place.

5. Scaling is inherent, and a distributed system is extensible.
6. Partial failures can be masked.

6 1 Mobile Distributed Systems: Networking and Data Management

7. Computer systems can be replaced, repaired without user being aware of occur-
rences of such problems during the time a distributed application is being exe-
cuted.

8. Network connection is assumed to be robust.
9. The computers are assumed to be connected to main power supply.

Decoupling the location of computing [9] from the method of computing, a uni-
fied framework can be defined for a distributed system which supports mobility
of all kinds. Mobility can be supported at different levels of distributed computing
such as: the users, the devices, the access network, the backbone network, and the
data/application nodes. Basically, it means that the location of computing is concep-
tually defined by realizing that every bit of information and every operation has a
well-defined location at the scale of geographical experience [9]. The user’s loca-
tion, the location of data in the hard drive or the memory, the location of computing
resources, the link location, etc., are all well-defined. The important set of locations
include [9]:

1. The location of the user, where the result have to finally be intimated.
2. The location of the user’s computer which may be a fixed location such as on the

user’s office desk, or it may be co-located and changes with the location of the
user.

3. The location of network used to transmit information to or from the user’s com-
puter.

4. The location, where the information gets processed according to the user’s request.
5. The location, where the necessary data is stored.
6. The location, where the input data is provided to the network or the storage

locations.
7. The location, where the data get interpreted, processed, compiled or otherwise

prepared for storage.
8. The location, where the data are measured.
9. The location, that are representable, the special case of geographic data.

The last pair of locations, stated above, pertain to the geographic data as these loca-
tions are always defined in the sense there is no dynamicity.

The computing in a uniprocessor system is the one in which every location except
the last are the same. The only possibility of changing location is offline storing of
data. The offline transfer of data to the location of computing incurs considerable
cost. In the case of wired distributed systems, the locations can be widely separated
and the cost for going from one location to other is low due to availability of high
bandwidth (wired) network links. In the case of MDS, the cost of location change may
be considerable. The cost increases across all the locations stated above, specially if
a mobile user changes his/her location too frequently. In a MDS, the mobility and
the portability nature of the devices together with the dynamicity of the network
topology affect the cost across all the top seven locations listed above.

1.3 Characterizing Mobile Distributed System 7

User’s mobility and terminal mobility:
It relates to the top two locations in the list. At different stages of a computation,
tracking a user’s location itself may become quite expensive. Terminal mobility is
normally decoupled from the user’s mobility. Because a user may use a PDA, or a
mobile phone, or a laptop or even a static workstation at different times. In Chap. 10
of the book, we specifically address the problem of tracking terminal mobility.

Another aspect of personal and terminal mobility is the possibilities of newer
and more innovative person centric applications. We discuss a few of these applica-
tions. Important generic ideas in the context of these applications are presented in
Chaps. 13–16.

Wireless and wired network:
Due to user’s mobility and terminal mobility, the location of network links change
very frequently. Specially, when wireless links are used, the cost shipping data
increases tremendously. The mobile nodes are resource poor. Therefore, the exe-
cution cost of any computation on a mobile portable device more compared to the
execution cost of the same computation on a desktop or a workstation. The inherent
asymmetry in computing capabilities of fixed and mobile nodes calls for relocation
of computation for minimizing computation cost. The asymmetry of costs in the
fixed part versus the dynamic part of the network, necessitates a paradigm shift in
the design of algorithm for mobile distributed environment. Chapter 11 of the book
deals with the algorithm design issues in MDS environment in extensive details.

Both cost and interoperability are important issues in MDS due to heterogeneity
of wireless network standards. A sound understanding network protocols is a foun-
dational requirement in this respect. Therefore, Chaps. 2–9 of this book focus on
various protocols and standards of wireless networks.

1.4 Mobile Cloud Computing

This book is not about cloud technology. However, as stated in the previous section,
the running mobile applications and services exclusively on mobile devices is not
possible, as they face severe resource constraints in terms of energy, memory, and
computing power. Offloading complex computations to the fixed part of the network
enables the mobile devices to conserve energy significantly and operate longer. Such
an approach cuts down the response time.

Cloud computing has been recognized widely as new generation of computing
infrastructure that offer utility driven software services [6] under distributed settings.
The integration of mobile distributed system and cloud computing, therefore, offer
a “best of both” approach in building mobile application and services. The cloud
service providers such as Google, Amazon, Yahoo, offer cloud services at low cost.
Resources can be rapidly provisioned on-demand, and released elastically. The man-
agement functions for cloud services are provided through publicly accessible APIs.

http://dx.doi.org/10.1007/978-981-10-3941-6_10
http://dx.doi.org/10.1007/978-981-10-3941-6_13
http://dx.doi.org/10.1007/978-981-10-3941-6_16
http://dx.doi.org/10.1007/978-981-10-3941-6_11
http://dx.doi.org/10.1007/978-981-10-3941-6_2
http://dx.doi.org/10.1007/978-981-10-3941-6_9

8 1 Mobile Distributed Systems: Networking and Data Management

Through these APIs, the application developers can easily integrate cloud services
into their softwares.

According to MCC forum [6]:

Definition 1.2 (MCC Fourum) Mobile Cloud Computing at its simplest, refers to
an infrastructure where both the data storage and the data processing happen outside
the mobile device. Mobile cloud applications move the computing power and data
storage away from mobile phones and into the cloud, bringing applications and
mobile computing to not just smartphone users but a much broader range of mobile
subscribers.

An alternative view of MCC is: it combines mobile web with cloud computing
to enable the users to access applications and services on the Internet [4, 15]. The
infrastructure supported part of a Mobile Distributed System (MDS) has been viewed
in terms of cloud immediately after the cloud computing technology was launched
in 2007 [6].

It is possible to offer mobile services and run mobile applications on smartphones
due to several supporting technologies in both hardware and software. These include,
miniturization of computing devices, sensor network, phone OS, Wireless network-
ing, and cloud infrastructure as illustrated in Fig. 1.3. Portable hand held devices (e.g.,
Android, Windows Mobile, iOS) are terminals where users access mobile services.

Fig. 1.3 Enabling technologies for MCC

1.4 Mobile Cloud Computing 9

Sensor networks are specialized low power devices for gathering contextual data that
can be used for many innovative and personalized mobile services and applications.
Specially, sensors are important elements for healthcare, smart home type of appli-
cations. Wireless communication is made possible through infrastructures such as
GSM, WiFi, WiMAX. Taking advantage of multiple communication interfaces will
need a number of supporting system softwares including mobile operating system.
By integrating cloud computing with mobile distributed system through the Internet,
application developers can create and deploy mobile services widely and offer mobile
services anytime, anywhere and to any person. The overall architectural framework of
MCC based on enabling technologies is shown in Fig. 1.4. In the general architecture
of MCC, we implicitly assume that mobile devices obtain services from a remotely
placed central data center. Although, functionalities of a data center are distributed
over a highly parallel architecture, a mobile device has to access it through a Wide
Area Network (WAN) and may at times suffer from moderate to long latency. To
get around this problem, cloudlets are also deployed close to service locations. The
underlying idea is to move clouds close to the mobile users by deploying cloudlets
near the access points. Cloudlets can be formed dynamically on any device having
resource in the LAN [24]. In the MCC architecture in Fig. 1.4, possible points where
cloudlets can be placed are near AP on the LAN, near BS and close to RNC.

RDC: Regional Data Center
BS: Base Station
RNC: Regional N/W Center
AP: Access Point

RNC

BS

Wireless core

RDCRDC

RDC

RDC

Fig. 1.4 General architecture of MCC

10 1 Mobile Distributed Systems: Networking and Data Management

1.5 OS for Mobile Devices

As explained above, a critical element of MDS is Operating System (OS) support at
the end devices. An OS is a set system softwares that define abstractions for optimized
access of hardware capabilities of a device. In other words, OS is an interface between
system architecture and the application developers or users.

Mobile OS does not include operating systems for laptops. A laptop is seen more
as convenient computing device that can be carried in a bag, weighs about 2–3 kg,
having a hard disk and sufficient RAM. Laptops typically run on general purpose
OSes designed for desktops or workstations. However, the same may not hold strictly
for a ultra thin hybrid laptop that can function both as a PC and a tablet. Though
hybrid laptops are not as big as conventional laptop, the hardware design leaves a
feeling of being cramped as a laptop and too bulky as tablet or PDA. These laptops
have a small size keyboard with limited functionality, limited flash memory, and
small display. Such a laptop switches between two OSes to provide the required
functionality of the one system or the other.

A mobile communication device is equipped with multiple wireless communi-
cation interfaces such as IR, Bluetooth, WiFi, GSM-GPRS, NFC, and GPS. It runs
a set of important services such as voice calls, short messaging service, camera
functionality, touch screen functionality, GPS based location service. Therefore, a
mobile device needs a OS that can enable it to run these services and allow the users
to access the in-built communication interfaces. Advanced smartphones have many
added features such as high speed CPUs, GPUs, large flash memory and multi thread-
ing capabilities which are found in conventional laptops. Therefore, mobile OS has
evolved into a complex multitasking OS, and merits a closer look in the context of
development of mobile applications.

Chapter 8 of this book introduces mobile OS as an abstraction layer for System on
Chip (SoC) and explains rationale behind a microkernel based approach to design of
mobile OS. Further, it discusses the difficulties involved in adopting desktop OSes to
the mobile systems. After presenting the features of a mobile OS, the kernel features
are discussed. As case studies, four mobile OSes, viz., J2ME, Symbian, Android and
iOS have been included. Finally, a comparison of Android and iOS environments
has been made.

1.6 Mobile Applications

To provide a platform relevant to the contents of book, let us now introduce some basic
type services one expects from a mobile distributed system. Figure 1.5 illustrates a
few of these application. We investigate two of these applications a little deeper
in order to provide the reader with an idea about the potentials that exist. In fact,
a number of venture capitalists are ready to commit large amount of investments

http://dx.doi.org/10.1007/978-981-10-3941-6_8

1.6 Mobile Applications 11

GSM Network

Earth Station

Smart Home

Smart Transport

Doctor’s Monitor

B
od

y
A

re
a

N
et

w
or

k

Blutooth

m-Healthcare
System

Fig. 1.5 Mobile pervasive computing

even in start up companies that come up with business plans to provide personalized
services over mobile distributed systems.

1.6.1 mHealthcare

One of the very important mobile applications is round the clock health care and
monitoring system for the patients with chronic diseases, and the senior citizens.
Darrel West [28] cites Cisco Visual Networking Index [12] to predict that global
mobile traffic may to increase by 18-folds between 2011 and 2016, and about 10
billion mobile devices could be in use world wide. According to WHO [18], the use
of mobile health care is expected increase substantially in three areas:

1. Assisting the management of chronic diseases,
2. Assisting the elderly people staying alone, and
3. Assisting the pregnant mothers staying alone.

12 1 Mobile Distributed Systems: Networking and Data Management

The use of mobile health apps are predominantly (over 35% of time) for health
queries processed by call centers, mhealth apps are also used for other tasks such
as fixing appointments with physicians by SMS, treatment reminders, telemedicine,
accessing patient records, monitoring patients, physician decision support.

From technological prospectives, mHealth support is realizable for sophisticated
care and monitoring [3, 10, 23]. The vision of mobile healthcare presented in [23]
covers both applications and requirements of such a system. It encompasses three
aspects of monitoring: (i) short term (home monitoring), (ii) long term (hospitals) and
(iii) personalized monitoring. In order to provide end to end solution, the healthcare
support must involve detection and management of incidences, emergency inter-
vention, hospital transfers and treatments. Wireless network based solutions use
WLAN, ad hoc wireless network, infrastructure-based wireless networks such as
GSM/3G/4G/5G. The general framework of the system appears in Fig. 1.1. Varsh-
ney [23] identified that context awareness and reliability are specific challenges
which have not been properly addressed in a comprehensive framework of wireless
health monitoring system. The major part of context awareness can be derived from
patient’s medical history. But there could be also variations due to current state of
the patient, the availability of specific experts and the medicines, and so on.

1.6.2 Logistic and Transport Management

Logistics and transport management form one of the important area of automation
due to the inherent complexity of involved operations. Big logistics firms such as
DHL, having operations over 200 countries around the globe, offer integrated logistic
solution for entire supply chain from the manufacturers/suppliers to the retailers to the
consumers. These companies use RFID, WSN and internet technologies to automate
their supply chain management operations.

The last mile connectivity for logistic supply chain management is provided by
transport vehicles. Intel offers a solution blueprint for an intelligent transport system
with IoT [16]. It outlines monitoring of vehicle dynamics, intelligent navigation, fleet
management along with a series of value added services. According to this solution,
each vehicle is to be fitted with multiple sensing units, and an on-board terminal.
The terminal will consist of data storage, GPS module, vehicle condition collection
module, real-time clock, wireless communication module and a data communication
interface.

Once vehicles are made to speak for themselves, linking these with customer data
center applications is technologically straightforward through cloud infrastructure.
An overall architecture as illustrated in Fig. 1.6 has been proposed in [16].

1.7 Smart Environments 13

Configurator State management Clearing house

Intel IoT Platform

Application
firewall

Logistic Gateway Software

Sensor
Software

C
om

m
on

So
tw

ar
e

Application
platform

suite

Sensor
Hardware

Gatway
Hardware

SDKs

New op-
erational
solution

New
analytics
solution

Legacy
systems

Customer data center applicationSmart vehicle platform

Cloud

Fig. 1.6 System architecture for smart freight management [16]

1.7 Smart Environments

Smart environment is a term sometime ill-used and sometimes abused. However, in
absence of proper terminology, it has been used to describe an environment where
inhabitants are offered sophisticated technology based services. Weiser et al. [27]
defined ubiquitous computing as:

Definition 1.3 (Ubiquitous computing [27]) A physical world that is richly and
invisibly interwoven with sensors, actuators, displays and computational elements
embedded seamlessly in everyday objects of our lives and connected through a con-
tinuous network.

We feel that the above definition succinctly captures the generic nature of any smart
environment. The definition of smart environment given subsequently by Young-
blood et al. [29] tries to amplify the comfort of the inhabitants over the supporting
technologies describing ubiquitous computing framework.

Definition 1.4 (Smart environment [29]) A smart environment defined as the one
that is able to acquire and apply knowledge about the environment and its inhabitants
in order to improve their experience in that environment.

14 1 Mobile Distributed Systems: Networking and Data Management

Location

Active badge
sensor

Location

Active badge
sensorinterpreter

to Name
Badge ID

widget widget

Discoverer

PBX extn
UserRoom to

interpreter
aggregator

Active Badge
application

One aggregator
for each user

Fig. 1.7 Context aware call forwarding application [5]

Smart environment is alternatively referred to as ambient intelligence. Augusto
and McCullagh [1] defined ambient intelligence as follows:

Definition 1.5 (Ambient intelligence [1]) A digital environment that proactively, but
sensibly, supports people in their daily lives.

Definitions 1.4 and 1.5 imply that the smartness of environment is dependent
on the abilities to provide added comfort to the inhabitants rather than the degree
of technological sophistication. So, probably it is more appropriate to the use term
smart environment for emphasizing physical infrastructure of sensors, actuators and
network [17].

The requirements of each inhabitant vary from the other and also vary from
one environment to the other. However, there is a set of common attributes which
improve experience of inhabitants in a smart environment. More specifically, a smart
environment

1. Optimizes productivity of inhabitants,
2. Improves ease of working,
3. Minimizes operational cost, and
4. Ensures security of inhabitants.

To this end, the environment must acquire knowledge of events and apply the same
to respond to the occurrence of an event. For execution of a response, the envi-
ronment should actuate actions from devices and objects in the environment which
largely automate task possibly requiring minimal unobtrusive assistance from human
inhabitants. It should adapt to the changes in the environment and its inhabitants.
Above all privacy and security of inhabitants should be preserved. The set of generic
requirements appear like a wishlist unless requirements these are seen in the context
of specific environment. So, to motivate the reader we first introduce the concept of
context aware computing and then follow it up with a concrete description of a smart
environment.

1.7 Smart Environments 15

1.7.1 Context Aware Computing

A typical application using context for its services is provided by Xerox PARC’s
active badge system [25, 26]. The active badge system was developed for personal
emergency related communication with the wearer who is engaged in work in high
security installation. Normally, considering security risks, the phone numbers are not
revealed for contacting persons working in high security installations. So, establish-
ing contact with such persons is a problem. However, by use of context awareness, the
problem can be solved neatly. The entire system is explained in Fig. 1.7. The system
consists of a number of infrared based sensor distributed over the installation. These
sensors can detect Active Badges worn by people working inside the installation.
Sensor detecting a badge then links the location of the wearer from a location widget
corresponding to it. The collected information about the tag ID and its location are
sent to the user’s aggregator. There is a user aggregator for each user. The aggregator
collects location information from each location widget for their corresponding users
and shares the same to the discoverer. Every component of the application must reg-
ister with the discoverer to be able to locate the users. The application then uses the
discoverer to locate the user aggregator and the room to phone extension interpreter.
After getting the related information, the application forwards the telephone calls.
So the users can talk to each other, and in the case of emergency a person can be
located and the call can be forwarded.

Dey and Abowd [5] have reported about Context Toolkit which they developed as
a distributed infrastructure which provides abstractions such as widgets, interpreter,
aggregators, services and discovers for building the context aware applications. The
distributed infrastructure supports reliable cross platform communication between
distributed objects. Simple object communication mechanisms HTTP and XML are
used for encoding messages. This means TCP/IP is one of the requirement for the
communication to happen. We will discuss more details about context abstractions
in Chap. 16.

1.7.2 Driverless Cars

It is now common place to see people using navigation system to find routes to
reach unknown addresses. The navigational applications mainly uses GPS and satel-
lite route maps to guide people for this purpose. These software may provide some
additional assistance information for safe driving. These include speed limits for the
various highways and roads, weather conditions, terrain features, etc. The primary
purpose is still limited to finding route from a source to a destination. However, build-
ing driverless car requires complex interplay of GPS navigation system, car cruise
control and other vehicles on the road. It represents a sufficiently smart environment
for a small number of inhabitants, i.e., the passengers of the car.

http://dx.doi.org/10.1007/978-981-10-3941-6_16

16 1 Mobile Distributed Systems: Networking and Data Management

Though a number of technological challenges still remains unresolved, Google has
successfully executed test runs of driverless cars on local streets [13]. It is expected by
2020, high way driving can be completely handed over to automated cruise control.
Major auto makers such as Mercedes-Benz, Nissan, Volvo, BMW and Audi have
already built their test models [13].

The successful realization of a driverless car is heavily dependent on integration
of diverse technologies. First of all, it needs a very advanced hardware as far as car
control is concerned. Two different directions of cruise controls, namely, longitudinal
(break and speed), and lateral (steering and trajectory) are needed. The reaction time
depends on speed of car and the colliding objects. The anticipation of colliding
object’s trajectory, speed assessment, etc., are important inputs to estimate how the
car should apply optimum control to avoid collision or damage to self. The objects
may be of different types such as a random pedestrians, or a cyclist or a speeding car
or even animals. It requires a 360◦ view of surroundings. Inputs from multiple sensing
units such as laser sensors, cameras, and radars will be needed for the purpose. Exact
deployments of different sensing units needs careful simulations with normal traffic
conditions on road system. The problem is to find accurate placement of sensing units
so that the data collected by sensors should be able to provide enough real time data
as the car is being driven. Some sensors may have to be roof mounted, others placed
on the front or rear bumpers, many other underneath the car and the on different
side fenders, etc. Google mapped entire California road system (172,000 miles) for
a simulation purpose. It indicated that the sensors would be sending high volume
and high velocity data (about 1 GB per second) [13]. It will require sophisticated big
data analytics to process data and provide inputs to the autonomous driver.

Vehicle to vehicle (V2V) communication is conceptualized as peer to peer ad
hoc network which can alleviate the problems by sharing information about traffic
situation among vehicles in a sections of roads. V2V communication architecture
consists of vehicles mounted with on board units/application units (OBU/AU), smart
signals, road side units (RSU), smart street signs, and other artefacts on the street with
wireless interfaces. A reference architecture is shown in Fig. 1.8. In a V2V network
four communication types are possible:

1. In-vehicle communication
2. Vehicle to vehicle communication
3. Vehicle to broadband communication
4. Vehicle to RSU communication.

In-vehicle communication is for the domain inside vehicle. It typically raises alert
messages related problems that is specific to a vehicle. For example, hitting low
fuel, air pressure variation on wheels, driver is feeling drowsy and, so on. Vehicle to
vehicle communication is used for inter vehicles domain. It may send out informa-
tion related traffic situation, constructions on roads, diversion to be taken, or some
vehicle needs help, and so on. Vehicle to broadband communication is related cloud
processing requirements as well as infotainments. Vehicle to RSU communication
enables vehicle to learn real-time updates and re-routing plans, etc.

1.7 Smart Environments 17

AU: Application Unit
GW: Gateway
OBU: On Board Unit
HS: Hot Spot
RSU: Road Side Unit

Access Network

AU

OBU AU

OBU

AU

OBU

Node Server

GW

RSU RSU

HS

GSM/WiMAX

IEEE 802
a/b/g/n

IEEE 802.11p

Fig. 1.8 A reference architecture for VANET [2]

The protocol architecture of V2V communication should be able to distinguish
among three types of wireless communication technologies: IEEE 802.11p, conven-
tional WLAN IEEE 802.11a/b/g/n and GPRS/UMTS. On the top these physical layer
specific network layer technologies should coordinate with the transport layers. The
basic reference architecture for protocols will be as shown in Fig. 1.9. However, in
implementation some MAC layer could be merged into one single layer. Typically,
the wireless standards for V2V network specifies a range up to 300 m. So about
5–10 hops network could disseminate information of about 1.5 km from a vehicle.
Another supporting technology is cloud-based information processing. The cloud
communication could be through 4G/5G with vehicle terminals.

In summary some of the research themes centered around driverless car connected
to the contents of this book are:

• Modeling of wireless networks and new protocols with QoS support.
• Vehicle to vehicle ad hoc networks.
• Localization and location based services.
• Multi sensor data fusion and processing.
• Context aware computing.
• Cloud processing support with new data analytics.

18 1 Mobile Distributed Systems: Networking and Data Management

In
fo

rm
at

io
n

C
on

ce
nt

ra
to

r

Safe driving
application

Traffic efficiency
application

Infotainment
application

V2V transport TCP/UDP/Other

IPv6 optimized for mobile systems
V2V network

V2V MAC Layer
Extn of IEEE 802.11p

IEEE 802.11p PHY

IEEE 802.11p
a/g/b/n MAC

IEEE 802.11p
a/g/b/n PHY

Other radios
(UMTS/GPRS)

Fig. 1.9 A reference protocol architecture for VANET [2]

1.8 Organization of Book

The main purpose of the material covered in this book is to provide the reader a
deeper understanding of wireless communication and data management.

The first part of the book consists of seven chapters (Chaps. 2–8), deal with dif-
ferent wireless networks standards, protocols, routings and applications. There are
many excellent text books [8, 19, 21, 22] which cover physical layers of wireless
communication system that includes mathematical theories behind characteristics
and propagation of radio waves. In this book our focus is in the realm of standards,
protocols, routings and applications.

A number of books addressing many aspects of mobile data management have
been published in the past [7, 11, 20]. However, there are not many well known books
where mobile data management appears as a central theme of the text in an organized
manner. The second part of the book, consisting of eight chapters (Chaps. 9–16)
dealing with mobile data management, is an attempt in this direction. We created an
organization with a view that senior undergraduate students and research scholars
may find it helpful to develop interests in the area.

There was a slight dilemma in deciding whether the contents of Chap. 9 can be
strictly classified as under mobile data management issues. Apart from sensor fusion,
it deals with two network related issues in WSNs namely, routing and integration
with IP. We justify our decision to classify Chap. 9 under mobile data management
on the basis of following facts:

• Sensor nodes unlike IP based nodes are data centric, and WSN routing is data
centric.

• Many existing deployments of WSNs interoperate with IP network through spe-
cialized sensor gateways which implement middlewares for IP integration.

http://dx.doi.org/10.1007/978-981-10-3941-6_2
http://dx.doi.org/10.1007/978-981-10-3941-6_8
http://dx.doi.org/10.1007/978-981-10-3941-6_9
http://dx.doi.org/10.1007/978-981-10-3941-6_16
http://dx.doi.org/10.1007/978-981-10-3941-6_9
http://dx.doi.org/10.1007/978-981-10-3941-6_9

1.8 Organization of Book 19

• Sensor fusion techniques included in this chapter strictly represent data manage-
ment issues.

References

1. J.C. Augusto, P. McCullagh, Ambient intelligence: concepts and applications. Int. J. Comput.
Sci. Inf. Syst. 4(1), 1–28 (2007)

2. R. Baldessari, The author team. C2C and CC system (2007). http://elib.dlr.de/48380/1/C2C-
CC_manifesto_v1.1.pdf

3. A. Boukerche, Y. Ren, A secure mobile healthcare system using trust-based multicast scheme.
IEEE J. Sel. Areas Commun. 27(4), 387–399 (2009)

4. J.H. Christensen, Using RESTful Web-Services and Cloud Computing to Create Next Genera-
tion Mobile Applications,The 24thACMSIGPLANConferenceCompanion onObjectOriented
Programming Systems Languages and Applications (OOPSLA), Oct 2009, pp. 627–634

5. A.K. Dey, G.D. Abowd, A conceptual framework and a toolkit for supporting rapid prototyping
of context-aware applications. Human-Comput. Inter. (HCI) J. 16(2-4):97–166 (2001)

6. H.T. Dinh, C. Lee, D. Niyato, P.A. Wang, Survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Commun. Mobile Comput. 13(18), 1587–1611 (2013)

7. B. Reza (ed.), Mobile Computing Principles: Designing and Developing Mobile Applications
with UML and XML (Cambridge University Press, New York, USA, 2004)

8. V.K. Garg, Wireless Networks Evolution: 2G to 3G (Morgan Kaufman, 2010)
9. M.F. Goodchild, D.M. Johnston, D.J. Maguire, V.T. Noronha, Distributed and Mobile Com-

puting, A Research Agenda for Geographic Information, Science (2004), pp. 257–286
10. A.V. Halteren, R. Bults, K. Wack, D. Kontantas, I. Widya, N. Dokovsky, G. Koprinkov, V. Jone,

R. Herzog, Mobile patient monitoring: the mobile health system. J. Inf. Technol. Healthc. 2(5),
365–373 (2004)

11. T. Imielinski, H.F. Korth (eds.), Mobile Computing (Kluwer Academic Publishers, Norwell,
MA, USA, 1996)

12. Cisco Visual Networking Index, Global Mobile Data Traffic Forecast Update, 2011–2016,
February 14 2012

13. T. Jiang, S. Petrovic, U. Ayyer, S. Husain, Self-driving cars: disruptive or incremental. Appl.
Innov. Rev. 1, 3–22 (2015)

14. L. Lamport, Distribution. Technical report, Microsoft, 1987
15. L. Liu, R. Moulic, D. Shea, Cloud service portal for mobile device management, The 7th IEEE

International Conference on E-Business Engineering (ICEBE), Nov 2010, pp. 474–478
16. G. Moakley, Smart freight technology powered by internet of things. http://www.intel.com/

content/www/us/en/internet-of-things/solution-briefs/smart-freight-technology-brief.html,
Jan 2014

17. H. Nakashima, H. Aghajan, J.C. Augusto, Handbook of Ambient Intelligence and Smart Envi-
ronments (Springer, 2009)

18. World Health Organization, mhealth: new horizons for health through mobile technologies.
Second Global Survey on eHealth 3 (2011)

19. K. Pahlavan, P. Krishnamurthy, Principles of Wireless Networks: A Unified Approach, 1st edn.
(Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001)

20. E. Pitoura, G. Samaras, Data Management in Mobile Computing (Springer, 2012)
21. T.S. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice Hall

PTR, 2002)
22. J.H. Schiller, Mobile Communications (Addison-Wesley, 2003)
23. U. Varshney, Pervasive healthcare and wireless health monitoring. Mobile Netw. Appl. 12,

113–127 (2007)

http://elib.dlr.de/48380/1/C2C-CC_manifesto_v1.1.pdf
http://elib.dlr.de/48380/1/C2C-CC_manifesto_v1.1.pdf
http://www.intel.com/content/www/us/en/internet-of-things/solution-briefs/smart-freight-technology-brief.html
http://www.intel.com/content/www/us/en/internet-of-things/solution-briefs/smart-freight-technology-brief.html

20 1 Mobile Distributed Systems: Networking and Data Management

24. T. Verbelen, P. Simoens, F.D. Turck, B. Dhoedt, The Third ACM Workshop on Mobile Cloud
Computing and Services (MCS ’12), Cloudlets: Bringing the Cloud to the Mobile User (ACM,
New York, NY, USA, 2012), pp. 29–36

25. R. Want, A. Hopper, V. Falcao, J. Gibbons, The active badge location system. ACM Trans. Inf.
Syst. 10(1), 91–102 (1992)

26. M. Weiser, Some computer science issues in ubiquitous computing. Commun. ACM 36(7),
75–84 (1993)

27. M. Weiser, R. Gold, J.S. Brown, The origins of ubiquitous computing research at PARC in the
late 1980s. IBM Syst. J. 38(4), 693–696 (1999)

28. D. West, How mobile devices are transforming healthcare. Issues Technol. Innov. 18(1), 1–11
(2012). May

29. G.M. Youngblood, D.J. Cook, L.B. Holder, E.O. Heierman, Automation intelligence for the
smart environment, The International Joint Conference on Artificial Intelligence, pp. 1513–
1514 (2005)

Chapter 2
Cellular Wireless Communication

2.1 Introduction

Originally, the focus of mobile radio systems design was towards increasing the cov-
erage of a single transceiver. A single powerful base station was employed to provide
connectivity to all mobile devices in a service area. Since spectrum length allocated
for private communication is limited, it led to spectral congestion in the service
area when large number of mobile clients became concurrently active. Typically, in
radio communication system, a user requires about 30 kHz for voice communication.
Therefore, if a high power antenna is mounted on a large tower to cover an entire
town, it can support just about 25 MHz/30 kHz = 833 users, assuming that 25 MHz
spectral band is available for private communication. An obvious way to get around
the technical limitations and increase both the capacity and coverage is to reuse allo-
cated frequencies without interferences. The idea was driven by a simple counter
thought to the use of high powered transceiver. When a limited range transceiver is
used then the wireless connectivity can be provided only in a small finite area of few
hundred square meters. However, the frequency of an already deployed transceivers
can now be reused by deploying another similar transceiver at a distance where the
new transceiver does not interfere with the transceivers which were deployed earlier.
In other words, spectral congestion can be eliminated by developing an architecture
that would allow spatial multiplexing.

The concept of cellular architecture [3, 5, 6, 9] became the turning point in wire-
less communication technologies based on frequency reuse. The success of spatial
multiplexing depends not only on elimination of interferences but also to provide
continuous uninterrupted coverage. To provide continuous coverage, the uncovered
gaps in coverage area should be serviced by the transceivers operating with frequen-
cies different from the previously deployed transceivers. The proposed deployment
of transceivers is equivalent to partitioning of a large coverage area using certain
small finite continuous area which may be appropriately called as a cell and serviced
by a single transceiver.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_2

21

22 2 Cellular Wireless Communication

The frequency reuse problem can be viewed in terms of map coloring. In a map,
regions are typically demarcated by different colors. If two adjacent regions are
colored by same color then it is difficult to distinguish one from the other. Since,
multi-colored printing is expensive, as few colors as possible should be used for
coloring of a map. It is well known that map coloring can be accomplished by use
of four colors [11]. In a way, frequency reuse can be seen as similar to reuse of
colors in coloring of a map. There are, however, many differences. Frequency reuse
requires a minimum separation between cells which is dependent on the strength of
signal interferences between the cells. However, one single color can be used for
coloring two regions in a map provided a separation of one region exists in between
the two. The problems like co-channel and adjacent channel interferences which are
encountered in planning of frequency reuse have no parallels in the map coloring.

Under ideal scenario, wireless signals may be assumed to propagate equally in
all directions. Therefore, a cell representing the coverage area of an antenna can be
considered as a circle. To provide continuous coverage, we need to find a packing
of the desired area using circles, each having an area equal to that of a cell. The
packing has to be done in a way such that there are no uncovered gaps in the service
area. This is possible in the way as illustrated by Fig. 2.1 where the circles overlap
minimally. The common chords of a circle with adjacent overlapping circles define
a hexagonal area within that circle as indicated by the hexagon in the figure. The
collection of hexagons like the one shown in the figure, packs the service area without
leaving gaps. From here on, we will consider a cell to be a regular hexagon as
explained. In reality, however, this is not the case. Radio waves like light waves are
affected by reflection, refraction, diffraction, absorption, polarization and scattering.
In reality terrain structures could be very different from one coverage area to another.
There may be tall buildings, hillocks and tall trees which come in the way of signal

Fig. 2.1 Cell packing of a coverage area

2.1 Introduction 23

transmission. The actual shape of a cell is typically determined by field measurements
radio signal propagation. But for convenience in presentation of basic ideas, assuming
the cell to have a hexagonal boundary would suffice.

2.2 Frequency Planning

Figure 2.2 illustrates the frequency reuse concept. The set of cells in same shade,
use the same frequency. Typically, an antenna is designed to work over the entire
frequency spectrum. But it is possible to block most part of the spectrum and leave
only a small group of selected channels on an antenna. So, a cell can be assigned
a selected group of channels for communication inside it. The group of channels
allocated to one cell will thus be different from the groups of channels assigned to
the antennas of its geographically adjacent cells. The process of allocating channel
groups to cells in a coverage area is called frequency reuse or frequency planning.

If a system has C duplex channels then each cell x can be allocated a set of Cx

channels, where Cx < C. Assuming that C channels are equally divided among a
group of N cells where each cell gets Cx number of channels, C = N × Cx. The
group of N cells which collectively share C channels is called a cluster. If there are
Rc replicated clusters, the capacity K of the system is K = Rc × N × Cx = Rc × C.
This means that the capacity of a cellular system is directly proportional to the number
of clusters. Since a cluster defines a full reuse of the set of allocated frequencies, the

Fig. 2.2 Frequency reuse
concept

24 2 Cellular Wireless Communication

size of a cluster is the determining factor for capacity of a cellular based wireless
communication system.

The cells which use same frequencies for communication are referred to as
co-channel cells. Co-channel interferences can be minimized by increasing the reuse
distance. So, if the cell radius is not changed, the cluster sizeN should be increased in
order to increase the co-channel distance. But ifN becomes large then a given service
area can be covered by only a few number of clusters. So, the capacity of the service
area, which depends on the replication of clusters, cannot be increased substantially.
If the value of N is decreased then more clusters will be needed to cover the service
area, so the capacity will increase. When cluster size becomes small, the distance
between co-channel cells will become small. Though it allows reuse of the same
frequency more frequently, the co-channel interferences increase. Thus, in order to
maximize the capacity over a coverage area while it is desirable to keep N low, care
should be taken so that co-channel interferences do not begin to affect the quality of
communication.

The effect of frequency reuse can be best understood through a simple exam-
ple. Suppose, initially a single high power transceiver was operating with a private
spectrum of 25 MHz. This transceiver was replaced by 28 low power transceivers.
Let the cluster size be 7. Then the effective spectrum allocation increases by four
fold to 25 MHz × 4 = 100 MHz after replacing the high power transceiver. Each
cell gets an allocation of 25 MHz/7 = 3.57 MHz of spectrum under the new sys-
tem. Assuming voice communication to require 30 KHz, each cell can support up to
3.57 MHz/30 kHz = 119 users. The number of users in each cluster remains at 119
× 7 = 833. However, due to replications of clusters, the total number of users that
can be supported under the new system increases by four fold to 833 × 4 = 3332.

With underlying assumption of a hexagonal layout of cells, it is possible to derive
the formula for reuse distance. Let us first examine the geometry of a hexagonal cell.
As shown in Fig. 2.3, the length of a side of a regular hexagon inscribed in a circle of
radius R is also equal to R. Each side of this regular hexagon is at a distance R

√
3/2

units from the center of hexagon. The area of such a hexagon is 6(
√

3/4)R2 unit2.

Fig. 2.3 A regular hexagon
inscribed in circle of radius R

R
√
3
2R

2.2 Frequency Planning 25

Fig. 2.4 Cell distance using
hexagonal cell geometry

√
3iR

√
3jR

√
3jR cosθ

√
3jR sinθ

θ

D

C(0, 0)

A(i, 0) C ′(i, j)

j-axis

i-axis

Now let us see how the reuse distance can be calculated. But, before that the unit
for measurement of distance should be abstracted out from consideration. To realize
it, we assume the centers of cells to be at integer coordinates. The arrangement of
the cell centers according to hexagonal layout, thus, form a grid system whose axes
are at an angle of π/3. Using the above fact and some simple properties of regular
hexagon, the following lemma provides the relationship between the distance of a
co-channel cell from a cell.

Lemma 2.1 Let the coordinate of a cell C be (0, 0) and that of its co-channel cell
C′ be (i, j). Then co-channel distance D = CC′ is equal to R

√
3(i2 + ij + j2), where

R denotes the length of a side of the regular hexagon representing a cell.

Proof Consider the Fig. 2.4. Since, the coordinates of the cell centers are given by a
pair of integers, and the axes of the coordinate system between them form an angle
of θ = π/3, C′ can be reached from C by traversing i cells in one axial direction
then turning π/3 in clockwise and then hopping j cells in the other axial direction.
From the above figure, distance AB = √

3jR cos π/3, BC′ = √
3jR sin π/3. So

D2 = (
√

3iR + √
3jR cos π/3)2 + (

√
3jR sin π/3)2

= R2(3i2 + 6ij cos π/3 + 3j2 cos2 π/3 + 3j2 sin2 π/3)

= R2(3i2 + 3ij + 3j2)

= 3R2(i2 + ij + j2)

Each cell in a cluster is assumed to have identical wireless range, and equal number
of channels. So, the number of cells, N , per cluster can be obtained by determining
the area of the cluster and then dividing it by the area of a cell. The area of a cluster
can be found easily from the simple analysis of hexagonal geometry.

26 2 Cellular Wireless Communication

Fig. 2.5 Cluster area
approximates to a regular
hexagon

(a) Cluster hexagon.

(b) Area of cluster hexagon.

C C’

A

B

Lemma 2.2 The cluster size N = i2 + ij + j2.

Proof Consider the diagram in Fig. 2.5a. Let the large regular hexagon enclosing a
cluster be referred to as cluster hexagon for brevity. Consider the shaded tiny triangles
in the figure. A pair of adjacent shaded triangles one inside and the other outside
the cluster hexagon are congruent. So the area of the cluster of cells is equal to the
cluster hexagon indicted in Fig. 2.5a.

Now consider Fig. 2.5b. The distance between the centersC andC′ of two adjacent
cluster is D. The angle CAB is equal to π/3. So, the length CA = (D/2)/ sin π/3 =
D/

√
3 which is equal to the radius of the cluster hexagon.

As explained earlier, the area of a single hexagonal cell of sideR is 6R2
√

3/4. Since,
a cluster is also a regular hexagon of side D/

√
3, its area is given by Clusterarea =

6 D2

4
√

3
. Since the area of cluster divided by the area of one cell should be equal to N ,

we have

2.2 Frequency Planning 27

Fig. 2.6 Co-channel cells

1 1

1

11

1

1

N =
(

D2

4
√

3

)
/

(
R2

√
3

4

)

= D2

3R2
= 3R2(i2 + ij + j2)

3R2

= i2 + ij + j2

Figure 2.6 depicts co-channel cells of a cell which use the same frequency. Here
i = 2 and j = 2, and cluster size is N = 22 + 2.2 + 22 = 12. The ratio D/R = √

3N
denoted byQ represents co-channel reuse ratio. A small value ofQ meansN is small.
This leads to large capacity. However, when Q is large, it leads to low interference;
hence better transmission quality. A trade off has to be made between capacity and
transmission quality.

2.2.1 Co-channel Interference

Co-channel interference is one of the major problem faced by service providers
in setting up wireless communication service. For a good understanding of how
interference could affect communication, it is important to examine radio signal
measurement and propagation.

DeciBel is the unit used for the measurement of relative strengths of radio signals
from two different radios. Ten deciBels (dB) equals one Bel (B) which represents the
power ratio of 1:10. A power ratio of 1:100 equals 2 B or 20 dB. Similarly, the power
ratio 1:1000 is measured as 3 B or 30 dB. Use of log scale in measurement of relative
power strengths simplifies the calculation. The log scale expression log10 (P2/P1),
gives the measurement of relative power strength due to amplification in Bels. For
example, if an amplifier outputs 100 W with an input of 100 mW, then the power gain

28 2 Cellular Wireless Communication

due to amplification is log10(100/0.1) = log10 1000 = 3 B or 30 dB. In the case of
radio signal measurements, power ratios are usually very small. So, deciBels is the
preferred unit for expressing smaller power ratios. Accordingly, the formula

10 log10 (P2/P1) ,

is normally used for measuring relative power strengths between the two radio
sources.

When the measurement of power strength is made with reference to 1 W then
the unit of measurement is denoted by dB or dBW. Sometimes power strength is
measured with reference to 1 mW, and the unit of measurement is denoted by dBm.
Unless stated otherwise, the unit of measurement here will be dBm. Zero dBm equals
1 mW. In general, a power of P watts equals x dBm, where

x = 10 log10

(
P

10−3

)
= 30 + 10 log10 P

A negative gain indicates a signal decay or attenuation, which is represented by a
power ratio less than 1.

Let us consider an example to understand the significance of log scale in compu-
tation. Suppose, a micro-wave system uses a 10 W transmitter. This transmitter is
connected by a cable with 0.7 dBm loss to a 13 dBm antenna. Let the atmospheric
loss be 137 dB on transmission. The receiver antenna with 11 dBm gain connected
by a cable with 1.3 dBm loss to a receiver. Then the power at the receiver can be
calculated as follows:

Transmitter output: 10 W = 10000 mW.
Amplification gain at transmitter: 10log10(10000/1) = 40 dBm.

Then the relative strength of power at the receiver equals (40 − 0.7 + 13 − 137) dBm
= −84.7 dBm including the amplification gain, atmospheric loss and loss due to
cable connecting the amplifier to its antenna. On the receiver side, the antenna and
the connecting cable together lead to (11–1.3) dBm gain. So the net power received
by the receiver is (−84.7 + 9.7) dBm = −75 dBm.

The co-channel interferences experienced by a cell is due to the use of same group
of channels in the nearby cells. The quality of the signals received from the current
base station is affected by co-channel interferences. As Fig. 2.7 depicts, the wireless
signals from the base stations in co-channel cells around a cell ripple out much like
waves in water when a stone is thrown into the center of a pond. The ratio of the signal
strength from the current cell and the strength of co-channel interferences, provides
a measure for the quality of communication. The Signal to Interference Ratio (SIR)
should be monitored by individual mobile terminals. If the strength of interference
increases compared to the strength of signal, then the quality of communication
deteriorates. A Mobile Terminal (MT) experiencing low SIR should try to switch to
a neighboring cell which may provide better SIR. The SIR is given

2.2 Frequency Planning 29

Fig. 2.7 Interferences due to
propagation of co-channel
signals

S/I = S/

(
i0∑

i=1

Ii

)

,

where Ii is the interfering signal received from co-channel i, and i0 is the number of
adjacent co-channel cells.

In free space, the average signal strength known to decay according a power law
involving the distance between the transmitter and the receiver. Let d be the distance
between the transmitter and the receiver, and P0 be the power received at a near-
by reference point in the far-field region (with a distance of 2λ) of the transmitter
antenna. Then the average received powerPr at receiver from the transmitting antenna
is given by:

Pr = P0

(
d

d0

)−n

.

In realityPr is proportional to the expression in the right hand side of the equation.
Here, the constant of proportionality is assumed to be 1. However, its actual value
will depend on antenna gain, path loss exponent and carrier wavelength. The above
equation for power received, when expressed in terms of dBm, becomes

Pr(dBm) = P0(dBm) − 10n log10

(
d

d0

)
.

30 2 Cellular Wireless Communication

Now let us examine the topological configuration of cells, and study how a MT
may arrive at a better approximation of SIR. Suppose, the MT is at a distance Di

from i-th co-channel cell. The distance is measured from the cell center where the
corresponding base station is located. So, the signal attenuation from ith co-channel
cell is proportional to D−n

i . The signal strength beamed from the current base station
to the mobile terminal is proportional to R−n, where R is the radio range of the base
station. Assuming all interfering co-channel base stations to be at equal distance
from the MT, the SIR (in dB) is equal to

S/I =
(

R−n/

(
i0∑

i=1

D−n
i

))

= (D/R)n

i0

=
(√

3N
)n

/i0.

(2.1)

Let the minimum value of SIR for good voice quality be 18 dBm. In order to check
whether a cluster size of N = 7 in a cellular based wireless system with the path loss
exponent n = 4 would meet the requirement of voice quality, let us compute SIR
value received by a MT which is located at center of its current cell. Using Eq. 2.1:

10 log10(S/I) = 10 log10

((√
3N

)4
/i0

)

= 10 log10

((√
21

)4
/6

)

= 10 log10 73.5

= 10 × 1.865

= 18.65

As the SIR value is above the required threshold of 18 dBm, a cluster size of 7 is
alright when path loss exponent is 4.

When cell sectorization is used with 120◦ sectors, the number of co-channel cells
which is reduced from 6 to 2 for N = 7. Therefore,

S/I = 1

2

(√
3N

)n

Thus the increase in SIR with sectorization is 3 times more than that without
sectorization.

The scenario that a MT will be located at the center of the current cell, occurs
very rarely. So, topological configuration of the current cell, its co-channel cells and
the position of MT should be taken into account for computing SIR. Figure 2.8 [10]
depicts a realistic topological configuration. It is assumed that MT is located at the

2.2 Frequency Planning 31

Fig. 2.8 Co-channel
interference considering
exact cell geometry

D

D + R

D − R
D

D + R

D − R

F

F

F

FF

FF

MT

boundary of its current cell. The signal strength received by MT at this position from
is at the lowest possible level. With cluster size of 7, there will be two co-channel
cells at a distance D − R from MT, two at a distance D and two others at a distance
D + R as indicated in Fig. 2.8. So the ratio of power strengths of the current base
station and the other interfering base stations, with path loss factor n = 4, is

S/I = R−4

2(D − R)−4 + 2D−4 + 2(D + R)−4

= 1

2(
√

21 − 1)−4 + 2(
√

21)−4 + 2(
√

21 + 1)−4

The above expression is equal to 49.56. In terms of deciBels the value of SIR will
thus be 10 log10 49.56 = 17 dBm. Since the value of SIR is lower than acceptable
threshold the voice quality will not be good.

2.2.2 Cell Splitting and Sectoring

As observed earlier, frequency reuse can be increased using smaller cells. But smaller
cells will lead to shorter co-channel distance; and therefore, an increase in co-channel
interferences. The challenge is to keep interference low and increase the capacity.
After a cellular service area has been planned and the infrastructure is in place, any
incremental change like adding channels to a cell for handling the increase in traffic
load is expensive and difficult to execute. However, two simple ideas, namely,

1. Cell splitting
2. Cell sectoring

are found to be quite effective for handling the increase in traffic load.

32 2 Cellular Wireless Communication

Fig. 2.9 Cell splitting

in−splitting between−splitting

Areas with high traffic load

Cell splitting allows creation of smaller cells out of a standard cell. The advantage
of cell splitting is that it uses the same idea of spatial multiplexing with smaller cells
called microcells. The antennas can be placed on the top of buildings, hills and
even on the lamp posts. Smaller cells are placed in or between large cells. Figure 2.9
illustrates the two possible splittings where radius of every microcell is half the radius
of a standard cell. Splitting increases the number channels because the number of
channels per unit area increases. But the trade off is in terms of increase in co-
channel interference. As Eq. 2.1 in Sect. 2.2.1 indicates, co-channel interference can
be controlled by keeping the ratio D/R unchanged. If D is decreased, R must also
be decreased to keep the ratio at same value. Thus, the transmission power of newly
introduced microcells must be reduced to avoid the co-channel interference.

Let Ps be the output power of the transceiver of a standard cell, and Pm be the
output power of the transceiver of a microcell. Then the received power Pr at cell
boundaries of the two cells are:

Pr[original cell] ∝ PsR−n

Pr[micro-cell] ∝ Pm(R/2)−n

It means that the ratio of transmit powers of a microcell versus a normal cell is
1:16 when path loss exponent is 4. It is not necessary to split all the cells. Sometimes
it becomes difficult to exactly identify the coverage area that would require cell
splitting. So in practice different cell sizes may co-exist. This calls for careful fine-
tuning of power outputs by transceivers so that a safe distance is maintained among
the co-channel cells and the co-channel interference is kept at a minimum level. But
it makes the channel assignment quite complicated. As we observed, two different
transmit powers will be needed to support cell splitting. The channels in a normal
cell needs to be divided into two groups: (i) the one corresponding to normal transmit
power, and (ii) the other corresponding to a reduced transmit power. The splitting
determines the sizes of two channel groups. Initially, only a few channels belong to
the reduced transmit power group. But as traffic grows, more and more channels will
be required, causing the group of channels with reduced transmit power to grow in
size. The splitting continues until the channels used in an area are all of low transmit

2.2 Frequency Planning 33

power. However, the presence of dual cell size calls for better channel switching with
mobility of the users. The movements within microcells will lead to more frequent
channel switching compared to the movements within normal cells.

Cell sectoring is also used to address the problem of capacity increase. With this
approach transmit power of channel is concentrated into a finite sector of the cell.
The omni-directional antenna of the cell is replaced by several directional antennas.
The sectoring causes receipt of co-channel interference and transmission only within
a specified region of the cell. So, it leads to greater reuse of frequencies. Normally a
cell is partitioned into three sectors of 120◦ or six sectors of 60◦ each as in Fig. 2.10.
When sectoring is used the channels of a cell are partitioned into sectored groups,
and the channels of a group is used only in one sector. As may be observed from
Fig. 2.11, with cluster size of 7, the cells labeled F are co-channel cells. Each cell can

120◦60◦

Fig. 2.10 Cell sectoring

F

F

F

F

F

F

F

Fig. 2.11 Interference pattern with cell sectoring

34 2 Cellular Wireless Communication

receive signals only from two co-channel cells to its left. So, the cells at the center,
which is within the signal propagation cones of its two co-channel cells on the left,
may receive signals only from these two cells. The signal propagation cone of the
co-channel cell vertically up to the left does not include the center cell, so the latter
is not affected by co-channel interference due to the former cell.

2.3 Traffic Intensity

An important measurement related to capacity is traffic intensity. In a Telecom sys-
tem, this measurement is an estimation of traffic pattern, pick load, and channel
requirements. The traffic intensity varies over the day. The probability of securing a
connection in busy hours is directly related to traffic intensity. The unit of measure-
ment is Erlang [2]. One Erlang is equal to the total traffic generated by the voice
calls amounting to 60 min. For example, if there are 40 calls in 1 h with each call
having an average duration of 5 min, then the traffic in Erlang is:

Traffic in hour = (40 × 5)/60 = 3.33 Erlangs.

Formally, in a lossy system, Grade of Service (GoS) determines the probability of
call blocking, which is computed by Erlang B traffic model. Erlang B traffic model
is used by Telecom companies to determine the number of lines required to run a
service based on anticipated traffic and future expansion.

Let λ be arrival rate and μ be service rate. Then 1/λ is the average time between
arrival of two consecutive requests and 1/μ is the average service time. For example,
if the average duration of a connection is 3 min, then 1/μ = 0.05 (hour), equivalently,
in an average μ = 20 calls can be serviced per hour. To illustrate a concrete case, refer
to Fig. 2.12 depicting the arrival of call requests and the servicing of these requests
for 5 users. The intervals Ii = ai+1 − ai, for 1 ≤ i ≤ 4 represent the inter-arrival time.
The duration of call services are represented by intervals S1 = d1 − a1, S2 = d2 − d1,
S3 = d3 − d2, S4 = d4 − d3, S5 = d4 − d5. The arrival and service rates are given by
expressions 1/E(Ii) and 1/E(Si) respectively, where E(.) represents the expected
values of the corresponding intervals.

The inter-arrival times for connection requests are typically modeled by Poisson
distribution [13]. A Poisson process is a sequence of events which are randomly
spaced in time. In a wireless network different users seek connections at different
times independent of one another. Therefore, the call requests (representing events)
in a cell can be represented by a Poisson process. The rate λ of a Poisson process
is the average number of number events (arrival of call requests) per unit time over

Fig. 2.12 Distribution of the
arrival of requests and their
servicing a1 a2 d1 a3 d2 a4 d3 a5 d4 d5

2.3 Traffic Intensity 35

a long period. The probability of n call requests arriving during an interval of time
[0, δ) under Poisson process is,

Pr[nt+δ − nt = n] = (λδ)n

n! e−λδ , for n = 0, 1, . . . ,

where nt denotes the number of arrivals since the time t = 0, and δ is the call inter-
arrival time. For example, if we observe a system from some arbitrary time t ≥ 0
during a small interval of time δ ≥ 0, the probabilities of arrival of number of call
requests are:

Pr[nt+δ − nt = 0] = 1 − λδ + O(δ2)

Pr[nt+δ − nt = 1] = λδ + O(δ2)

Pr[nt+δ − nt ≥ 2] = O(δ2),

where O(δ2) represents the probability of more than 1 call request arriving in time
δ. Since, δ is small, no more than 1 call request can arrive at the system during this
interval. Therefore, the event of two or more calls arriving in the system within an
interval of δ can be considered as impossible. In other words, terms of O(δ2) can be
safely ignored.

Assume that the number of channels is C. It means C connection requests can be
serviced concurrently. Therefore, we have M/M/C kind of queuing system [2] with
following parameters:

• The arrival process is Poisson with arrival rate λ.
• The service time is exponential with servicing rate μ.
• The number of servers or the channels for serving the connection requests is C.
• The capacity or number clients which can be in the queue is also C.

The service scenario is best understood as a system with a limited number service
lines connecting a large number of input lines (one for each call request) as shown
in Fig. 2.13a. Figure 2.13b illustrates the same, but depicts how some of the service
requests are met and others are dropped with probability of dropping a request being
Pb.

Initially, 0 channels are used by system. Over a small interval the system may
continue in state 0 with a probability of 1 − λδ. The system will change to state 1
from state 0 with a probability λδ. But if one channel is already in use (i.e., system
in state 1) then transition to state 0 will take place with a probability of μδ. This
implies that the systems continues in state 1 with a probability of 1 − λδ − μδ. So
the system states and transitions is depicted by Fig. 2.14. Over a long period of time,
the system reaches steady state. In a steady system if n channels remain occupied
then, writing global balance equation for the steady state, we get

λδPn−1 = nμδPn, n ≤ C,

λPn−1 = nμPn,

P1 = (λP0)/μ.

36 2 Cellular Wireless Communication

Li
m

ite
d

nu
m

be
r

of
ou

tp
ut

lin
es

C
al

lr
eq

ue
st

s

Switching
framework

(a) Servicing request.

1

2

C

. .
.

λPb

C
al

la
rr

iv
al

s

λ(1 − Pb)

C
al

ld
ep

ar
tu

re
s

E(x) = 1
µ

n(t)

(b) Queueing discipline.

Fig. 2.13 Queuing discipline and service of call requests

0 1 2 C
· · ·
· · ·

λδ

μδ

λδ

2μδ 3μδ

λδ

Cμδ

λδ

1 − λδ 1 − λδ − μδ 1 − λδ − 2μδ 1 − λδ − Cμδ

Fig. 2.14 Markov chain representing system state and transitions

The equation expresses the fact that transition from Pn−1 to Pn is same as the
transition from Pn to Pn−1. Solving the recurrence in balance equation,

Pn = P0

(
λ

μ

)n 1

n! .

Note that the sum of probabilities of the system being any of the states n =
0, 1, 2, . . ., is 1. So, we have

∑C
0 Pn = 1. Now substituting for Pn in summation in

terms of P0,
C∑

0

P0

(
λ

μ

)n 1

n! = 1

2.3 Traffic Intensity 37

Therefore,

P0 = 1
∑C

n=0

(
λ
μ

)n
1
n!

.

We already know that PC = P0

(
λ
μ

)C
1
C! . This leads us to the expression for PC

as follows:

PC =
(

λ
μ

)C
1
C!

∑C
n=0

(
λ
μ

)n
1
n!

The traffic intensity is determined by the ratio of arrival and departure rates. This
ratio should not be allowed to exceed 1, otherwise request queue will build up. So,
traffic intensity is actually a measure of congestion in the system. Let the traffic
intensity be represented by A = λ/μ. Now substituting A for traffic intensity Erlang
B formula becomes:

PC = AC 1
C!∑C

n=0 A
n 1
n!

.

The above formula is known as blocked call cleared formula as it determines the
GoS for traffic system without a queue for blocked calls. Using Erlang B formula, the
probability that a client’s call request will not be serviced in a blocked call cleared
system is:

Pr[call blocking] = AC/C!
∑C

n=0 A
n/n! .

To make computation of probability simple, the right hand side of the above
equation can be rewritten as follows:

AC/C!
∑C

k=0 A
n/n! = 1

1 + ∑C
1

(
C
A

) (
C−1
A

)
. . .

(
C−n+1

A

)

The expression under summation in the numerator can be unrolled and recast
using Horner’s rule as follows:

C

A
+ C

A
.
C − 1

A
+ . . . + C

A
.
C − 1

A
. . .

1

A
= C

A

(
. . .

(
1 + 2

A

(
1 + 1

A

))
. . .

)
.

The use of above expression restricts round-off and truncation errors in compu-
tation.

For an illustration of Erlang B formula, consider the following example. Suppose
there are 240 connection requests per hour in peak time. So, the arrival rate is λ = 240.
Let the average call duration be 3 min, or 0.05 h, then the service rate μ = 20. It
gives A = 240/20 = 12. Note that average number of request per hour 1/λ, and the

38 2 Cellular Wireless Communication

average call duration is 1/μ. Hence, the ratio A = λ/μ being equal to the product
of the average number of requests and the average duration of the calls, is called the
busy hour traffic (BHT). If there are 25 channels then the probability of call being
blocked due to non-availability of a channel is given by

Pb = 1225 1
25!∑25

n=0 12n 1
n!

= 3.78 × 10−4.

For a fixed value of A, we can indeed prove that the call blocking probability
for busy hour traffic decreases with increase in C. When the number of channels
increased by 1, the number of channels become C + 1. In steady state, balance
equation tells us that (C + 1)μPC+1 = λPC . Applying a sequence of simplifications
we get:

PC+1 = λ

μ

PC

C + 1
= A

C + 1
.

AC/C!
1 + ∑C+1

1 Ak/k!
<

AC/C!
C+1
A

∑C+1
1 An/n!

= AC/C!
C+1
A

∑C
0 An+1/(n + 1)!

= AC/C!
∑C

0 ((C + 1)/(n + 1))(An/n!)
<

AC/C!
∑C

0 An/n! = PC .

The boundary values for the above probability distribution function arePr[C = 0]
= 1, and Pr[C = ∞] = 0. Since the function is monotonic, with a given value of A,
and a given value of call blocking probability p, there is a smallest integer C, such
that the inequality Pr[C] < p holds. This implies that the method of bisection can
be applied to obtain the value of C.

2.4 Channel Assignment

Frequency planning consistent with the twin objective of increasing the capacity
and guaranteeing the minimum co-channel interference is very important for effi-
cient communication over wireless interfaces. The objective of frequency reuse can
be met by employing different techniques such as partitioning the spectrum along
frequency, time, or code. Frequency division scheme partitions spectrum allocating
distinct frequency bands. A small guard band is placed between two adjacent bands
to separate the frequencies. Time division achieves channel separation by disjoint
time intervals called slots, while code division ensures channel separation by using

2.4 Channel Assignment 39

different modulation codes. It is possible to combine different channel separation
schemes. For example, time division and frequency division can be combined to
divide each frequency band (obtained from frequency division) into time slots. The
bottom line of the division principles is to maximize the separation of a channel with
desired quality and also to maximize the channel utilization.

Broadly speaking channel assignments can be classified either as fixed or dynamic.
The choice of specific channel assignment policy affects the performance. The
impacts are felt in terms of quality of services as a connected mobile device moves
from one cell to another. For example, an active communication may get terminated
if mobile terminal moves from one cell to another which has no free channel. Thus
channel assignment is one of the critical element of mobile communication.

Each cell is allocated a fixed number of channels in a fixed channel assignment
scheme. A new connection in a cell can be activated only if there is a free channel. If
all the channels are occupied then the request for a connection cannot be accommo-
dated. It means an active communication will get terminated if a connected mobile
terminal moves from a cell to another having no free channel. Many variations to
fixed channel assignment scheme exists in order to eliminate the unpleasant interrup-
tions during an ongoing communication. The process by which an active connection
can be maintained as a mobile terminal moves from one cell to another is called
handoff. Handoff provides the basic capability of mobility with an active connection
in a cellular based wireless communication system, a detailed discussion on handoff
can be found in Sect. 2.1.

In dynamic channel allocation schemes, no channel is permanently allocated to
any cell. Each time a base station requires a channel to be allocated for a call, it
requests the mobile switching center (MSC) for the allocation of a channel. The
switch then allocates a channel using some sophisticated algorithms that can take
care of the future call blockings, the volume of inter-cell and intra-cell handoffs, and
co-channel interferences among other things. The effectiveness of dynamic channel
allocation depends on MSC’s ability to collect real-time data on channel occupancy,
traffic distribution and received signal strength indication (RSSI) of all channels
on a continuous basis. So, dynamic channel allocation increases both storage and
computational load on the MSCs.

Channel assignment schemes can be implemented either in centralized or in decen-
tralized fashion. In a centralized assignment, a central controller assigns the chan-
nels. In a decentralized assignment, many possibilities exists. The channels may be
assigned by the local cell, or by the cell where the call originated, or even selected
by mobile devices.

A general approach for the solution of the channel assignment problem is to use
graph abstraction for representing cellular system, and transform the problem into
a graph coloring problem. Then, the existing solutions for graph coloring can be
applied for solving channel assignment problem.

Interference graph plays an important role in planning channel assignment. Such
a graph is defined as follows:

40 2 Cellular Wireless Communication

• Every vertex represents a cell or a base station.
• Each edge (u, v) is associated with a weight W (u, v) which is proportional to the

maximum strength of signal interference between cells represented by u and v.
• There is also a system wide value W representing the minimum separation (max-

imum permissible signal interference) between any pair of channels allocated to
the same cell.

• Each vertex v is also associated with a non-negative integer which indicates the
channel requirements for the cell represented by v.

In theory, such a graph is a complete graph with lot of edges having 0 weights.
In order to avoid interference, two channels a and b can be allocated to different
cells u and v provided |a − b| ≤ W (u, v). This means frequency band representing
channel a and that representing channel b cannot have mutual interference exceeding
the prescribed weight W (u, v). The value W is used to ensure minimum channel
separation for channels allocated to a single cell. That is, if channels a and b are used
in the same cell, then |a − b| ≤ W .

The graph theoretic formulation given above is not quite concrete. From the point
of view of a service provider, the important formulations are those that can handle
both resource allocation and traffic constraints in different cells. Let us, therefore,
discuss about such formulations. Suppose the number of cells be Ncell, and Ti is pro-
jected traffic requirement in cell Ci, i = 1, 2,Ncells. Then along with the constraints
as stated earlier, new constraints concerning traffic requirements should be added.
Therefore, the formulation of channel assignment is as follows:

Problem formulation Given a number of cells Ci, 1 ≤ i ≤ Ncells, the requested traf-
fic Ti per cell Ci, the interference graph with weights Wij and local interference
constraint W , assign channels to cells so that

1. All frequency constraints are met.
2. Cell Ci gets Ti channels chnij, 1 ≤ i ≤ Ncells, 1 ≤ j ≤ Ti.
3. The quantity

Nchannels = max{chnij}

is minimized.

The above formulation implies that each cell gets channel allocation according
to its traffic requirements, and the overall system requirements for the channels is as
small as possible.

In most general setting, the channel assignment can be posed as constraint sat-
isfaction problem. An n × n symmetric matrix C = {cij}, known as compatibility
matrix is defined, where cij represents the minimum frequency separation required
between cells i and j, and n represents the number of cells. The minimum separation
between the frequencies used by two cells ensures that the communication in each
cell is free from the interference due to the communication in the other. Since the fre-
quency bands are the evenly spaced, they can be identified by integers. The number
of channels required for each cell is represented by a requirement vector M = {mi},

2.4 Channel Assignment 41

i = 1, . . . , n. The frequency assignment vector F = {Fi} is such that Fi is a finite
subset of the positive integers which defines the frequencies assigned to cell i. F is
admissible provided it satisfies the following constraints:

|Fi| = mi, for i = 1, . . . n
|f − f ′| ≥ cij, where f ∈ Fi and f ′ ∈ Fj

The first constraint is needed to satisfy the channel requirement and the second
constraint is needed to satisfy the interference free compatibility between each pair
of cells. The largest integer belonging to F is known as the span of the frequency
assignment. Note that the largest integer represents the minimum number of channels
required for the frequency assignment. So, F with the minimum span constitutes the
solution to the problem channel assignment. The problem is known to be NP hard [3].

2.4.1 Fixed Channel Assignment

In fixed channel assignment (FCA) scheme, a fixed number of channels is assigned
to each cell. The set of available channels is partitioned into N disjoint sets, where
N is the cluster size. As we already know N = D2/3R2 is related to reuse distance
D, and cell radius R.

In a FCA scheme, each of the N cells in a cluster are assigned the same number
of channels. If the distribution of traffic load is uniform, then the uniform channel
distribution works fine. The overall average call blocking (connection not material-
izing due to non-availability of a channel) probability will be same as call blocking
probability in a cell. But, hardly such an ideal situation ever occurs. There may be
both temporal and spatial fluctuations in traffic across the cellular service area. Due
to short term variations in traffic, most of the times a FCA scheme is not able to
maintain the quality of service and network capacity that may be attainable even
with static traffic demand.

2.4.1.1 Borrowing

To remedy this, when a request for a connection is placed in a cell that has no nominal
free channels, a common sense driven approach is to borrow a free channel from one
of its neighboring cells. The cell which borrows is referred to as the acceptor while
cell which lends is known as the donor. The selection of a free channel from a donor
cell should be such that it does not adversely affect the donor cell’s ability to satisfy a
subsequent request for a connection, and at the same time the borrowed channel does
not introduce added interferences on the existing connections in the acceptor cell.
In other words, the selection of both the donor cell and the channel to be borrowed
should minimize:

42 2 Cellular Wireless Communication

1. The probability of donor cell not being able to service a connection request due
to non availability of a nominal channel, and

2. The interference due to communication over the borrowed channel on the active
communications in the acceptor cell.

The first condition can be met by selecting the donor from one of the neighboring
cells (of the acceptor cell) that has the largest number of free channels. The strat-
egy of Borrowing From the Richest (BFR) will also most likely meet the second
condition. Because with the availability of more channels, the probability of the bor-
rowed channel interfering with the other active channels in the acceptor’s cell will
be expectedly low. Once the borrowed channel has been identified, it is locked in the
co-channel cells of the donor cell which are at a distance smaller than channel reuse
distance from the acceptor cell. Furthermore, the channel that is allocated should be
the one that locked in most cells.

To understand the above constraints let us consider an example as shown in
Fig. 2.15. Let C1 be richest neighboring of C which requires a channel. C will then
borrow a channel from C1. The borrowed channel should be locked in cells C1, C2

and C6 as the distances of these cells from C are smaller than the prescribed reuse
distance. Therefore, borrowing of a channel affects several channels. However, if
borrowing is planned carefully then the same channel may concurrently serve as a
borrowed channel in different acceptor cells. For example, if cell X now needs to
borrow a channel from its neighboring cell C5, then C5 can loan out the channel that
C has borrowed from C1. This is because, C and X are at a distance more than the
required reuse distance from each other. Therefore, using the same borrowed channel
at C and X will not create any additional interference in communication.

Any sophisticated borrowing method will incur penalties for complex searchings.
So, a simpler option could be to Borrow from the First Available (BFA) channel from
a neighboring cell. However, for implementing BFA, the initial channels assignment
is bit different than direct assignment of channels to cells as is done in other FCA
schemes. The set of channels is first divided into groups and each group is assigned
to cells at a reuse distance D. The channels in a group are numbered in sequence.
A group of channels assigned to a cell is subdivided further into two subgroups A
and B. The channels belonging to A are used exclusively for calls originating from

Fig. 2.15 Borrowing affects
co-channels cells of donor
cell

C2

C6

C5

C4

C3

C1

C1

C

X

donor

acceptor

2.4 Channel Assignment 43

a cell. A cell C can lend channels to another neighboring cells C′ only when one is
available in subgroup B of C. On arrival of a call request, the nominal channels in
the cell are scanned in order and the first available channel is assigned for the call.
If no nominal channel is found, then (acceptor) cell C′ searches for a free channel in
an adjacent cell C having the largest number of channels in group B. As explained
earlier, a channel is considered available for borrowing if it is also free in two other
co-channel cells (using directional locking strategy) of that chosen neighboring cell.
The first free channel encountered in this order is borrowed. This method is known
as Borrowing with Channel Order (BCO). Interestingly, BCO compares favorably
with the system that performs exhaustive complex searches to identify the channel
to be borrowed from a neighboring cell. Furthermore, it has an advantage over other
methods by being computationally less expensive.

After the communication over the borrowed channel is complete, that the bor-
rowed channel should be returned to the donor cell. Since borrowing is done due
to non-availability of a nominal free channel, the question which naturally arises
is whether the borrowed channel should be returned as soon as one of the nominal
channels of the acceptor cell becomes free. Interestingly, the decision whether or not
to free a borrowed channel could influence systems performance.

Channel reallocation concept is used in conjunction with directional lockings to
improve the performance of the system and minimize connections on the borrowed
channels. The rules for the channel reallocation are as follows.

1. When a nominal channel becomes free and there is an active connection on a
higher order nominal channel in the same cell then this connection is transferred
to the lower order nominal channel.

2. When a nominal channel in local cell becomes free and there is an active connec-
tion on a borrowed channel from a neighboring cell, then the borrowed channel is
returned to neighboring by transferring the connection to a newly freed nominal
channel.

3. When borrowed channel becomes free due to termination of a connection in
neighboring cell, and there is another active connection on a lower order bor-
rowed channel in the same cell, then communication on lower order channel is
transferred to the higher order channel. This requires a channel switching neigh-
boring cell.

4. A nominal channel in a cell may be blocked due to lending by a co-channel
cell to a different cell. If such a channel becomes is completely unlocked (in all
directions), then any active connection on either on a borrowed channel or on a
higher order channel is immediately switched to the unlocked channel. It leads
to a channel switching in local cell.

The reallocation rules are illustrated by Fig. 2.16. Figure 2.16a shows a channel
switching within the same cell. It happens because there is ongoing communication
on a lower order nominal channel, i.e., channel no. 7 when a higher order nominal
channel, i.e., channel number 4 becomes free. Figure 2.16b shows a channel switch-
ing that takes place between two cell. The acceptor cell on the top has borrowed
channel no. 19 from the donor cell at the bottom. Once nominal channel 7 becomes

44 2 Cellular Wireless Communication

1 2 3 5 6 7 8 9 104

call ends

switch this call(intra−cell)

channel occupancy

(a) Switching due to rule 1.

11 19 201812 13

2 3 4 5 8 9 101 76

channel occupancy

Doner Cell

Acceptor Cell

channel occupancy

(b) Switching due to rule 2.

2 3 4 5 6 7 8 9 10

12 13 1918 20

call ends

switch call (intra−cell)

channel occupancy

Acceptor Cell

(c) Switching due to rule 3.

1 2 3 4 5 6 8 9 10

11 12 13 20

completely unlocked

7

19

(no interference)

Channels occupancy

Acceptor Cell

Doner Cell

Channels occupancy

(d) Switching due to rule 4.

1

11

channel occupancy

Doner Cell
switch call (inter−cell)

switch call (inter−cell)

call ends

Fig. 2.16 Channel switching with borrowing

free in the acceptor cell then channel 19 is returned back to the donor cell. An inter-
cell handoff is executed to realize such a channel switching. Figure 2.16c illustrates
the switching, where the borrowed channel of the donor is switched to a lower order
channel if such a channel becomes free in the donor cell. Finally, Fig. 2.16d illustrates
the switching when a locked nominal cell become unlocked in the acceptor cell. Note
this case refers to situation where borrowing is implemented with directional lock-
ing, and channel 7 is also be locked in other directions due to borrowing by another
adjacent cell.

The channel borrowing strategies, outlined above, result in lower blocking than
fixed allocation under light and moderate traffic conditions [15]. Under heavy traffic
condition, channel borrowing could create domino effect due to blocking of borrowed
channels in respective co-channel cells. These cells being deprived of their nominal
channels would in turn have to resort to borrowing and, thus, creating the domino
effect that would require a comprehensive channel reallocation strategy as in [15]. So
fixed channel allocation sometimes may provide better performance than schemes
relying on channel borrowing.

2.4 Channel Assignment 45

2.4.2 Dynamic Channel Assignment Policies

Due to temporal bursts in traffic, FCA schemes are found to be inadequate for han-
dling traffic and lead to inefficient channel utilizations. DCA schemes have been
proposed as remedies, where no channel is allocated permanently to any cell. Chan-
nels are allocated to cells on need basis. After a connection terminates, the channel
is returned back to the central pool. So, the key idea behind DCA scheme is to evolve
a procedure for the evaluation of cost in using each candidate channel for a con-
nection request. The cost function should take into account: (i) radio signal strength
measurements at the end devices, (ii) the acceptable average call blocking, (iii) the
number of future call blocking, (iv) the distribution of channel occupancy under
the current traffic conditions, (v) co-channel/adjacent channel interferences, and (vi)
the QoS related requirements by the clients. So, DCA strategies can be designed to
adaptively adjust to the traffic conditions as well as assurance of desired GoS and
QoS. The design of a perfect cost function is understandably difficult as it needs to
balance complex trade offs in optimization involving several attributes as indicated
above. These difficulties in design of cost function made DCA an area of intensive
research [5].

DCA algorithms are of two types based on the type of control, viz., centralized
and distributed. In centralized DCA, a central controller determines the channel
allocation for each connection request. There is no fundamental difference between
different centralized DCA schemes except for the difference in cost function used in
the selection of a channel. Some of the known approaches under this category are:

• First available (FA): it assigns the first available channel by ensuring that the
channel reuse constraints are not violated. The search for the candidate channel
is fast, and the scheme is simple. FA is found to perform better than most of the
FCA schemes by 20% in low to moderate traffic conditions.

• Locally optimized dynamic assignment (LODA): it assigns the channel in response
to a request from a cell by minimizing the future call blocking possibilities in the
nearby cells.

• Channel reuse optimization: it tries to optimize reuse distance while allocating
a channel for a new request. The fundamental idea behind this approach is to
maximize spatial multiplexing. The shorter is the reuse distance, the greater is the
channel reuse over the service area. Therefore, with this scheme network capacity
also increases.

• Maximum use in reuse ring: it selects the channel for allocation by finding the one
that is used in most cells in co-channel set. Note that co-channel cell form a reuse
ring as explained earlier in Figs. 2.6 and 2.7.

• Mean square: it selects the channel that minimizes the mean square of the distances
among cells using same channel.

• Nearest neighbor: it selects the available channel occupied in the nearest cell in
distance ≥ D.

Most of the channel reuse optimization schemes [5] as described above try to
employ local optimizations. The 1-clique [7] scheme, however, employs a global

46 2 Cellular Wireless Communication

Fig. 2.17 ACO matrix of
cell i

Cell Channel Number Free
Number 1 2 3 4 5 6 7 8 . . . M Channels

i x x . . . 0
i1 x x x . . . 0
i2 x . . . 2
i3 x x x . . . 0
i4 x x . . . x 4
...

...
...

...
...

...
...

...
...

...
...

...
iki x x . . . 3

optimization scheme. It builds a graph for every channel, where each vertex represents
a cell, and two vertices in this graph are connected by an edge if and only if the cells
corresponding to the end vertices do not have co-channel interference. So, each graph
reflects channel allocations possibilities. An actual channel assignment is done from
several possibilities so that as many vertices as possible, still remain available for
allocation. The scheme works fine for small number of channels and a small service
area (with few cells). But for a coverage area with large number of cells and large
number of channels the computation time becomes prohibitive.

Distributed DCA (DDCA) schemes depend either on local information about
availability of free channels in the neighborhood of the requesting cell or rely on
signal measurements [12]. The focus of the most of the work in DDCA schemes has
been on channel reuse [1] sometimes even at the cost of interference.

The cell based DDCA schemes rely on local information. Each cell keeps track of
free channels by storing the information in an augmented channel occupancy (ACO)
matrix along with sufficient additional information that enables a base station to
determine if a channel can be assigned. ACO matrix at cell i is an (M + 1) × (ki + 1)

matrix, where M is the number of channels in the system and ki is the number of
neighboring cells within the co-channel interference distance from cell i. Figure 2.17
shows ACO matrix for some cell i. When the column corresponding to a channel has
no entry, it means that channel is free and can be assigned to cell i. Each entry in the
last column gives the number of assignable channels available in the cell represented
by the entry. Note that this number would be equal to the number of empty columns in
ACO matrix of the corresponding cell. For example, ACO[i,M + 1] = 0 represents
the fact that the cell i does not have any assignable free channel. Therefore, the ACO
matrix for cell i has no empty column. Similarly, ACO[i2,M + 1] = 2 indicates that
there are 2 free channels in cell i2. Equivalently, ACO matrix of cell i2 has 2 empty
columns.

Since no free channels are available in a cell as in i, when cell i needs an additional
channel, it searches for channel that corresponds to an empty column in the first row
of the ACO matrix. However, assigning any such channel may lead to a number of
reassignments of other channels. The reassignment cost should also be minimized.
Therefore, the candidate channel should be one that has no entry in the first row
and also has minimum number of total entries. For example, column 6 of the ACO
matrix has no entry in first row, and has only one entry for row i4. It indicates that

2.4 Channel Assignment 47

channel 6 is currently occupied by only cell i4. Since, ACO[i4,M + 1] = 5, cell i4
has 5 assignable free channels. Therefore, the ongoing call in cell i4 on channel 6
can be shifted to one of the free channels. If the shifting is successful then channel
6 becomes assignable in cell i. The contents of ACO matrix is updated by collecting
channel occupancy information from the interfering cells. The cell corresponding to
each entry of the chosen column is requested to shift its ongoing call from the current
channel to a free channel. After each of the requested cells reports completion of
call shifting, the chosen channel is declared free and assignable in the requester cell.
However, requests to multiple cells for shifting could cause unpredictable delays
and lead to higher probabilities of failures. So, from implementation prospectives,
processing only one channel shifting request appears practical.

In addition to co-channel interference, adjacent channel interference (ACI) caused
by use of close frequency channels results in premature handoffs, call drops, and
cross connectivity. The effects of ACI can be minimized by use of sophisticated
channel filters, but cannot be eliminated altogether. DCA methods discussed so far
have focused only on co-channel interference. But it is possible to address the issue
of ACI by adding extra restriction on the channel selection from the ACO matrix in
DDCA algorithm described above. Assume ACI effects to be negligible with channel
separation of Nadj. Then for every column which have an entry in the first row of the
ACO matrix for a cell, Nadj − 1 adjacent columns either to the left or the right cannot
have an entry in the first row. It means if a channel k has been allocated to a cell i then
all channels corresponding to adjacent columns k − j, and also those corresponding
to adjacent columns k + j, for j = 1, . . . ,Nadj − 1, cannot be allocated by the cell i.

At the time of assigning a new channel c to cell i, the algorithm should ensure that
the channels corresponding to Nadj − 1 adjacent columns to the left or to the right of
column c for the row i in ACO matrix do not have a entry in the first row of ACO
matrix for cell i. It means those group of channels should not have been allocated
earlier to cell i.

The channel allocation algorithm based on the above strategy works as follows.
When cell i receives a connection request, it searches the first row of the ACO matrix
for a consecutive group of 2Nadj − 1 empty entries such that column corresponding
to the column at the center of the group is empty. If the search is successful, the cell
i assigns the channel represented by the central column. If no group of 2Nadj − 1
empty columns can be found, then cell i looks for a group of consecutive 2Nadj − 1
empty columns in the first row where center column c has a single entry and the
related cell (let it be j) has an assignable free channel as indicated by a non-zero
entry in ACO[j,M + 1]. After the column j has been identified, cell i requests cell j
to shift the ongoing call on the channel c to one of its free channels. Once the shifting
is over, and j reports the completion, cell i can assign channel c to new call request.

As an example, supposeNadj = 2. To satisfy a request for assigning a new channel,
a search is initiated for a group of 3 consecutive columns having no entries in first
row of the ACO matrix provided in Table 2.17. Any such group can only be identified
between columns 3–7. However, no group of 3 empty columns can be found between
columns 3–7. So, we try to find a group of 3 columns such that center column has
just one entry and that the cell related to the entry has assignable free channels.

48 2 Cellular Wireless Communication

The columns 5–7 provide such a group, with only cell i4 occupying the channel
6. Since i4 has 4 assignable free channels it can be requested to shift the ongoing
communication from channel 6 to some free channel satisfying the adjacent channel
interference restrictions. After cell i4 vacates channel 6, cell i can allocate the same
to the new request.

Some DDCA techniques considers the channel allocation as a resource sharing
problems [4]. The underlying idea is that channel is a resource which must be shared
among neighboring cells in a mutual exclusive manner. There are two important dif-
ferences in classical mutual exclusion (ME) and channel sharing among neighboring
cells.

• Firstly, in classical ME two competing processes are not allowed to share a
resource, but a channel sharing among cells are permitted as long as they sat-
isfy the constraint of reuse distance.

• Secondly, in channel allocation, not a single but a collection of resources should
be handled.

Many DCA schemes exists for the channel assignment. An interested reader may
look at some excellent references [5] for more details on the topic.

2.5 Handoff

Mobility is the key feature of a cellular based wireless communication system. How-
ever, in a bid to increase the capacity, increasingly smaller cell size are used. Main-
taining continuity of service poses a challenge with use of reduced cell size. Normally
on cell crossings, a mobile user experiences deterioration in the quality of ongoing
communication. The deterioration of service is attributed to one of the following two
reasons:

1. Signal quality deterioration. The quality of a signal is determined by a set of
parameters such as, RSS, Signal to Noise Ratio (SNR), and bit error rate (BER).
RSS attenuates with distance from the serving base station, slow fading (shadow
fading or lognormal fading) and fast fading (Rayleigh fading) [10].

2. Traffic load. When the capacity of the current cell has either reached or is about
to reach its maximum capacity.

With smaller cells, the frequency of cell crossing by a mobile user is expected
increase. Under this circumstance, the continuity of an active connection for a mobile
user can only be maintained by handoffs (or handovers) through a sequence of inter-
mediaries (intermediate cells).

The RSS from the base station of the cell from which a mobile user is moving away
decays gradually. As opposed to this, the RSS from the cell, into which the mobile is
moving, increases gradually. If the link to the new base station is formed either before
or almost immediately around the time when the link to old base station goes down,
then it is possible to keep connection active. Thus, a handoff is the transition of signal

2.5 Handoff 49

transmission from one base station to another geographically adjacent base station.
By executing a handoff in-sessionmobility to a user can be supported. As explained in
Sect. 2.4, a frequency switching may sometimes be needed when a mobile terminal is
moving within a cell. Such a switching is called an intra-cell handoff. Our attentions
here, however, is limited to only inter cell handoffs.

Cells overlap, so a mobile terminal or the device could be within the range of
multiple base stations around the boundary of a cell. It facilitates maintenance of an
active connection while the user migrates from one cell to a geographically adjacent
cell. The network decides—with or without the assistance of user’s mobile handset
(MH)—which base station will handle the transmission of signals from and to the
MH. Handoff should be transparent to the user. In other words, it should provide
assurance that the communication will neither be lost nor be terminated unless user’s
hardware is out of the range of all base stations.

The important first step of a handoff process is the early detection of the handoff
condition. The handoff can then be initiated before the current connection is broken.
Once an active connection is completely severed there is no way to restore it. A
particular threshold of signal is needed for acceptable level of ongoing communica-
tion. In the case of voice communication it could be between −90 and −100 dBm. A
slightly stronger signal level is used as the threshold for initiation of handoff process.
The margin between the threshold signal for handoff and the minimum usable signal
level is known as the handoff hysteresis Δ. Formally, hysteresis can be defined as

Δ = Shandoff − Smin,

where Shandoff represents the threshold for performing handoff, and Smin denotes the
minimum level of signal strength needed for the voice communication. The value of
Δ can neither be too large nor be too small for the handoff to work smoothly.

Figure 2.18 depicts the different handoff situations when a mobile terminal travels
from stationBS1 toBS2 along a straight line. At time t0 the mobile host receives signal
only from BS1. At time t1 received signal strengths from both base stations become

Fig. 2.18 Handoff scenarios
at cell boundaries

A B C D

BS1 BS2

RSSI from BS2RSSI from BS1

t0

t1
t2

Movement of mobile terminal

Hystersis

50 2 Cellular Wireless Communication

comparable. But as the mobile user reaches pointB, the signal strength received from
BS2 dominates, even though the signal from BS1 is still above the acceptable level.
The handoff must begin after mobile terminal reaches point A and completed before
it reaches point C. If handoff latency is δt then, the handoff must be performed δt
time before reaching the threshold C. Therefore, handoff should start when strength
of signal from BS1 is little higher and should be completed on or before reaching C.
If handoff is not complete before the mobile reaches point C then the signal from
BS1 deteriorates fast. So, when the mobile reaches point D, the call gets terminated.

It has already been indicated that handoff should be performed when the received
signal strength is below a certain threshold. However, the signal measurement mech-
anism for handoff should not be considered as a simple one-off instantaneous mea-
surement. The reason is due to multipath fading, instantaneous measurement of signal
may not provide a correct estimation of distance between the mobile and its current
base station. So, the signal strength should be measured over a certain time interval,
and the average of such measurements should be the basis for the decision to perform
a handoff.

The window of time for performing handoff is provided by length of hysteresis.
To reduce the overhead of handoffs, the attempt should to optimize Δ. The value of
Δ depends on several factors such as:

• Environment.
• Speed of direction of mobile’s movement.
• Time required to perform handoff.

The use of hystersis is aimed at reducing the ping-pong effect. However, the delay
is also not without cost. It increases interference, reduces the quality of service. The
delay could as well lead to a call dropping. A velocity adaptive handoff algorithm
could enforce more frequent measurement of signal strengths by adjusting length of
averaging window in which RSSs from neighboring BSes are averaged. The direction
parameter assigns more weightage to execution of handoff in favor of BSes towards
which the mobile is moving [8].

2.5.1 Handoff Policies

A simple approach would be to prioritize the channel assignments for handoff
requests ahead of the requests for new calls. It results in a tolerable increase in
call blocking probability while reducing the probability of dropped calls.

Another approach is to pre-allocate a certain number of handoff channels called
guard channels. Only these channels should be used for handoffs. If the guard chan-
nels are not available then the handoff will be serviced by other channels.However, if

2.5 Handoff 51

all guard channels are occupied then, a handoff call should compete with new call for
allocation of the channels outside the guard band of channels. This strategy keeps the
probability of a call blocking under an acceptable level, but increases the probability
of a dropped call. There is also a possibility that guard channels are under utilized,
while new call requests cannot be met due to non-availability of free channels. Such
a situation leads to an inefficient spectrum utilization. The concept of reserved chan-
nels would be appropriate for dynamic channel assignment scheme. Because the
guard channels can be allocated from a central pool. So the non-availability of a free
channel for new call requests does not become a local problem.

Typically, when no channel is available, new call requests are made to wait in
a queue with the hope that handoff calls or some of the ongoing connections may
release their respective channels. Once a channel becomes free, one of the queued
new call request can be serviced. The strategy works well because, a user any way has
to wait for an interval of time before expecting establishment of a connection against
his/her request. In the case of a handoff too, there is a certain finite time interval
during which the existing call connection is retained, and a new channel is assigned
for the handoff. Therefore, it is also possible to enqueue a handoff request albeit for a
small interval of time. The position of handoff request in the queue depends on how
close the mobile is to the boundary of the cell. Higher priorities can be assigned to the
mobiles that are close to a cell boundary or moving very fast while lower priorities
can be assigned to the mobiles still inside a cell boundary, or are moving slowly.

Whichever entity (the network or the mobile terminal) that makes the handoff
decision uses some metrics. It applies the relevant algorithms on the basis of those
metrics, and assures required performance guarantees. The most critical metric for a
handoff decision is the measurements of signal strengths received at the mobile from
the current base station and the neighboring base stations which are probable candi-
dates to handle the frequency switching. The measurement process should be able
to avoid unnecessary handoffs. For example effecting handoff during a temporary
fading may result in ping pong effect and put pressure on network due to unnecessary
handoffs. On the other hand, if a distance dependent fading (caused by mobile user
moving away from current base station) is not properly detected it could result in
termination of the connection before handoff can be initiated.

2.5.2 Handoff Protocols

Three types of entities are involved in a handoff:

1. User’s mobile handset (MH),
2. Base station (BS) to which MH is currently connected and BSes in the neighbor-

hood of MH’s movements, and
3. MSCs controlling the above group of BSes.

52 2 Cellular Wireless Communication

So, both network entities (BSes and MSCs) as well as user’s MH may initiate and
control a handoff process. Based on the nature of controlling entity or the entities,
the handoff protocols can be classified into three basic types.

• Network controlled.
• Mobile assisted.
• Mobile controlled.

In network controlled protocol, the decision for handoff is based on measurements
of RSSs of mobile terminal at a number of adjoining base stations. The entire handoff
process which includes measurements, channel switching and network switching,
etc., takes approximately around 100–200 ms. As opposed to this, in mobile assisted
handoff process MH measures the RSSs it receives from BSes in its neighborhood
and the decision for handoff is made by the network entities. Mobile assisted handoff
may take upto 1 s. In mobile controlled handoff user’s MH takes decision to execute
handoff. This type of handoff requires a short reaction time, just about the order of
0.1 s. MH measures RSS of neighboring BSes and interference levels of all channels.
Then it initiates handoff if the signal strength from the serving BS is lower than
another neighboring BS by a pre-determined threshold. Mobile controlled handoff
being a completely decentralized process, relieves the network from a high overhead
specially in a high density micro-cellular system.

Several different mechanisms exist for realizing handoff. However, the common
goals which every handoff mechanism should try to achieve are:

1. Handoffs should be performed quickly.
2. Interruption in connection due to a handoff should be imperceptible to users.
3. Handoffs should be performed infrequently.
4. Handoffs should be performed successfully.

Figure 2.19 illustrates the generic procedure for execution of handoff. The mobile
terminal reports about the signal measurements to serving base station. If the serving
base station decides about the handoff, it informs the Mobile Switching Center (MSC)
that a handoff is required. The MSC then send a handoff request to the new base
station. The new base station allocates the required resources for the handoff and
sends handoff request accept to the MSC. Then the MSC issues handoff command
to the old base station which informs the same to the mobile terminal. The mobile
terminal requests for a link establishment with the new base station. After link has
been established, handoff completion command is issued by the new base station to
the MSC. Following this, the MSC instructs the old base station to flush the resources
for the mobile terminal being used for communication. The old base station flushes
the resources and the handoff is complete. The basic handoff procedure described
above may be augmented by other participating components such as one or more base
station controllers (BSC) and one or more MSCs depending on the structure of the
network. There are many resources to be managed in wireless cellular communication
system. These include channel assignment, signal to interference ratio (SIR), transmit
power control, etc. All these may influence handoff decisions in some way or the

2.5 Handoff 53

MH BSold MSC BSnew

Report measurements

Handoff required
Handoff request

Handoff request ack

Handoff command
Handoff command

Handoff access

Handoff establishment
Handoff complete

Flush command

Flush complete

Handoff decision

Resource allocation

Fig. 2.19 The generic procedure of handoff

other. So, for a better overall performance, adaptive handoff protocols have been
designed by integrating such resource optimization with handoff decisions [14].

References

1. F.A. Cruz-Pérez, D. Lara-Rodŕiguez, Distributed dynamic channel assignment with violation
to the reuse pattern for microcellular networks. IEEE Trans. Veh. Technol. 51(6), 1375–1385
(2002)

2. D. Gross, C.M. Harris, Fundamentals of Queueing Theory. Wiley Series in Probability and
Statistics, 4th edn. (Wiley, New York, USA, 2008)

3. W.K. Hale, Frequency assignment: theory and applications. Proc. IEEE 68, 1497–1514 (1980)
4. J. Jiang, T.H. Lai, N. Soundarajan, On distributed dynamic channel allocation in mobile cellular

networks. IEEE Trans. Parallel Distrib. Syst. 13(10), 1024–1037 (2002)
5. I. Katzela, M. Naghshineh, Channel assignment schemes for cellular mobile telecommunication

systems: a comprehensive survey. IEEE Pers. Commun. 3, 10–31 (1996)
6. V.H. MacDonald, AMPS: the cellular concept. Bell Syst. Tech. J. 58, 15–41 (1979)
7. K. Okada, F. Kubota, On dynamic channel assignment strategies in cellular mobile radio sys-

tems. IEICE Trans. Fundam. Electron Commun. Comput. Sci. E75-A:1634–1641 (1992)
8. T. Onel, C. Ersoy, E. Cayirci, G. Parr, A multicriteria handoff decision scheme for the next

generation tactical communications systems. Comput. Netw. 46, 695–708 (2004)
9. G.P. Pollini, Trends in handover design. IEEE Commun. Magaz. 82–90 (1996)

10. T.S. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice Hall
PTR, 2002)

11. N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem. J. Comb. Theor.
70, 2–44 (1997)

12. M. Serizawa, D.J. Goodman, Instability and deadlock of distributed dynamic channel allocation,
43rd IEEE VTC, 1993, pp. 528–531

13. D. Stirzaker, G. Grimmett, Probability and Random Processes (Oxford Science Publication,
Oxford University Press, 1992)

54 2 Cellular Wireless Communication

14. N.D. Tripathy, J.H. Reed, H.F. VanLandingham, Handoff in cellular systems. IEEE Pers. Com-
mun. 5, 26–37 (1998)

15. M. Zhang, T.P. Yum, Comparisons of channel-assignment strategies in cellular mobile tele-
phone systems. IEEE Trans. Veh. Technol. 38(4), 211–215 (1989)

Chapter 3
GSM, GPRS and UMTS

3.1 Introduction

Groupe Spéciale Mobile (GSM) was established by an initiative from Conference of
European Post and Telecommunication (CEPT). The group had several committees
with representatives from all major European telecom operators and manufacturers.
The aim of these committees was to develop standards for pan-European digital
land-mobile telecommunication service targeting mobile users by replacing incom-
patible analog system. The responsibilities of developing the standards now rests
with European Telecommunication Standard Institute (ETSI). ETSI re-defined the
abbreviation GSM as Global System for Mobile. The aim is to formulate a set of
common specifications for European wide public mobile telephone system with fol-
lowing criteria:

• Good speech quality.
• Efficient spectral usage.
• Low terminal and service cost.
• Mobile hand-held terminal support.
• International roaming support.
• ISDN capabilities.

The first GSM standard was released in 1990. The commercial GSM service started
in 1991. By 1993, GSM technology spread outside Europe and became de facto
world standard for mobile telephone service. GSM allows terminal mobility via a
Subscriber Identity Module (SIM) which carries a personal number issued to the
mobile user. SIM contains many subscriber related information including a personal
identity number (PIN), and PIN unblocking code as a safeguard against any un-
authorized use. Undoubtedly, GSM is most widely deployed and the fastest growing
cellular based mobile telephone technology in the world today. It is still undergoing
a continuous process of evolution. High Speed Circuit Switched Data (HSCSD) [1],
Enhanced Data rates for GSM Evolution (EDGE) [2] and General Packet Radio Ser-
vice (GPRS) [3] were added to GSM network to provide enhanced features, new

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_3

55

56 3 GSM, GPRS and UMTS

functionalities and increased data rates. GPRS standards were released in 1997 by
ETSI. It eliminates the annoying requirement for repetitive dial-ups to establish con-
nections. Furthermore, it provides throughput in excess of 40 Kbps. Advanced com-
peting technology like UMTS has entered into the commercial market for providing
data rates better than GPRS. However, in reality UMTS is not radically different
from GSM. It redefines base station technology, but requires GSM as base support
technology. In this chapter our discussion is mainly centered around the base GSM
technology. We take a look on GPRS and also examine how UMTS has been posi-
tioned up the ladder of mobile communication technology by re-jigging GSM.

3.2 GSM Architecture

GSM network was developed over the generic cellular architecture discussed in the
previous chapter. It employs mainly three basic equipment and modules for imple-
menting the functionalities of mobile telephone network over the cellular architec-
ture. These are:

• Mobile Station (MS) or the subscriber’s equipment and the modules.
• Base Station Subsystem (BSS).
• Network Subsystem (NSS).

Figure 3.1 outlines GSM architecture. A MS or a Mobile Station consists of a sub-
scriber equipment or a handset with a SIM card. The five main components of the
Network Switching SubSystem (NSS) are: AuC, HLR, VLR, MSC and EIR. The Base

TRAU BSC

TRAU BSC

A-bis

A-bis

A-bis

Um

BSS1

BSS2

MSC

EIRAuC

HLR

H F

BD

C
A

A

VLR

NSS1

NSS2

VLR

MSC

B

EG

MS

Fig. 3.1 GSM architecture

3.2 GSM Architecture 57

Station Subsystem (BSS) has two major components, namely, a Base Station con-
troller (BSC) and a number of Base Transceiver Stations (BTSes). Let us now examine
various subsystems of the GSM architecture in more details.

3.2.1 Mobile Station

A subscriber’s equipment and its associated module consist of a hand-held equip-
ment known as a Mobile Station (MS) (also known as Mobile Handset (MH)) and a
Subscriber Identity Module (SIM).

Mobile Handset (MH):
The equipment or the MH is essentially a combined unit for transmission and recep-
tion of voice and data having circuits responsible for:

• Time and frequency synchronizations,
• Measuring and reporting signal strengths from BTSes,
• Encoding speech and messages,
• Error correction codes for transmission over the air, and
• Compressing and decompressing data and speech.

Each mobile terminal has a unique identity known as International Mobile Equip-
ment Identity (IMEI). IMEI number is usually inscribed on the battery compartment
of an MS. This number can be retrieved from a mobile phone by keying-in “*#06#”.
An IMEI number maps a valid device to a user, and works as a safeguard against
stolen device. IMEI number is a 15 digit number which carries:

• Six digit Type Approval Code (TAC),
• Two digit Final Assembly Code (FAC),
• Six digit Serial Number (SN),
• One checksum digit (C).

FAC is a manufacture specific number. FAC has been discontinued since April
1, 2004, and TAC has been expanded to eight digits. The first two digits of the
expanded TAC represents the country code. The remaining six digit are for the
manufacturer’s identity. The checksum is calculated using Luhn’s (or “modulus 10”)
algorithm [4] by involving all digits. The check digit is neither transmitted over radio
nor stored in Equipment Identity Register (EIR).

On a user’s request the service provider can blacklist an IMEI, preventing unau-
thorized use of a stolen device. However, IMEI number have no relationship with
the personal data concerning a user or a subscriber.

Subscriber Identity Module (SIM):
A subscriber needs to insert a SIM into his/her mobile equipment to be able to

make voice call or access data services. A SIM is a portable smart card having a
small memory. It carries following important information related to a user:

58 3 GSM, GPRS and UMTS

1. International Mobile Subscriber’s Identity (IMSI)
2. Authentication Key Ki ,
3. Cipher Key Kc,
4. Three important confidentiality algorithms known as A3, A5 and A8.

SIM also stores some permanent as well as temporary data related to the user. These
include access control, location area identity, forbidden Public Land Mobile Network
(PLMN), additional GSM services and the subscriber specific information.

IMSI and PIMSI (Packet IMSI) belong to the class of permanent data stored in
a SIM. IMSI is a 64-bit field. It is sent to the GSM network when a user requests a
connection. The network uses IMSI to retrieve information related to the subscriber’s
credentials and subscription. However, most of the time when an MS, is roaming
TIMSI (a randomly generated data from IMSI) is sent in place of IMSI. TIMSI is
assigned by the locally responsible VLR. Therefore, it is not possible to determine
the presence of a mobile in a cell just by listening to radio channels.

The authentication key Ki is a 128-bit value also stored on database of GSM
network known as Authentication Center (AuC). Ki can not be retrieved by SIM
interface. SIM provides an algorithm referred to as A3 to pass Ki to AuC. Ki is
required for the purpose of authentication.

Algorithm A5 is used for encryption and decryption of data between MS and BS.
For encryption, SIM uses a cipher key Kc which is a 64-bit value generated using a
random number through key generator algorithm A8.

3.2.2 Base Station Subsystem

The BSS consists of three components: (i) Base Transceiver Station (BTS), (ii) Base
Station Controller (BSC) and (iii) Transcoder and Rate Adaptation Unit (TRAU).
A BTS usually referred to as a Base Station (BS). No confusion should arise, if we
use these terms interchangeably in the text. A base station provides the last mile
connectivity to an MS. It is the key communication equipment in a cell service area.
It is responsible for communication with MS. Its functions include antenna, modem
and signal processing.

A Base Station Controller (BSC) manages radio resources of one or more BSes.
It handles channel setup, frequency hopping, handoffs and also acts as an interface
between a Mobile Switch Center (MSC) and its BSes. A BSC receives measurements
from the MSs and controls handoffs for the MSs. A BSC can manage upto 40 BSes.
However, an MSC which controls several BSCs would typically provide a few lines
to a BSC. Therefore, one of the important task of BSC is to act as a concentrator.
Many low capacity BS connections to BSC are concentrated into a relatively small
number of connections from an MSC.

Mobile to mobile transmission path involves BSS to NSS and then NSS to BSS
transitions. The bit rate supported by GSM radio interface is 13 Kbps for full rate and
5.6 Kbps for half rate. An MSC is basically a PSTN/ISDN switch which supports a

3.2 GSM Architecture 59

data rate of 64 Kbps. The compression and formats of two sides are different which
necessitates transcoding and rate conversion. Rate adaptation adapts the transmission
rate of digital voice or data traffic on radio links (which is about 16 Kbps) to the
standard data rate of 64 Kbps achievable from an MSC through the conventional
networks. Transcoding involves conversion of formats as well a compression. The
voice and data traffic originating from mobile stations through BSes are compressed
and converted into 64 Kbps data format. The method consists of multiplexing a few of
the low speed speech or data streams and convert them into standard 64 Kbps format.
Using compression TRAU could bring reduction in the transmission cost by as much
as 75%. TRAU is placed close to MSC and between MSC and BSC. TRAU is also
responsible for generating comfort noise for discontinuous transmission (DTX). DTX
is used to increase power efficiency in operation of transmitter. It takes advantage of
the fact that in a normal conversation, only about 40% of an active connection time is
used. The transmitter can be turned off during the silence period for power efficiency.
Therefore, the biggest challenge here is to detect voice activity. The detection process
must distinguish between noise and voice. If voice is misinterpreted as noise and
transmitter is turned off annoying clipping will be heard at the receiver end. On the
other hand, if noise is misinterpreted as voice then efficiency of DTX goes down. So,
TRAU generates comfort noise, matching the background noise, which indicates the
receiver end that the transmitter is not dead.

3.2.3 Network Subsystem

An MSC is the key component of a GSM network subsystem. It provides the func-
tionalities needed to handle mobile subscriber’s handset such as registration, authen-
tication, location updates, handoffs, connection routing, and mobility. It needs to
keep track of the updated status and the location of an MS. The location database
is partitioned into Home Location Register (HLR) and Visitors Location Register
(VLR). Location databases may be stored in separate location servers, but VLR is
usually co-located with MSC. The other elements of GSM network include:

1. Gateway MSC (GMSC), which is connected to PSTN and ISDN network,
2. Equipment Identity Registers (EIR), and
3. AUthentication Center (AUC).

EIR store MS’s IMEI while AUC is an important database used to authenticate the
mobile user.

Guaranteeing transmission of voice or data of a given quality over the radio link
is an important function of GSM network. There is another set of equally important
functions which a GSM network should perform. Supporting user’s mobility is one
of these. The network should be able to detect movements of individual mobile
users and switch active connections to the channels under new cells to which the
respective users may have migrated. The task of preserving an active connection is
realized by implementing handoff (also known as handover) mechanism on GSM

60 3 GSM, GPRS and UMTS

network. Handoff ensures that existing communication remains active across many
transient movements of the users. The other important function of GSM network is to
facilitate both national and international roaming support for the mobile subscribers.
Allowing migration from one administrative network domain to another involve
credential checks like identity, and authenticity. After establishing user’s credentials
the network should be able to reroute connection and keep track of each user’s
locations as the user moves. The GSM network provides a number of functions
for efficient handling of roaming. These functions are handled through signaling
protocols between the different components of the GSM networks mentioned above.

3.2.4 GSM Radio Resources

Before, discussing GSM protocols it is important to understand the radio resources
and management of these resources. GSM uses a mix of FDMA and TDMA and
combines this with frequency hopping schemes for allocating radio resources. FDMA
allocates a dedicated frequency to each user for the duration of his/her use. For a
FDMA system, a large frequency bands is needed to handle communication among
large number of users. Since, only a limited radio frequency band is available, FDMA
system is not scalable. TDMA allows several users to share a channel by time-sharing
the usage. TDMA is normally used in conjunction with FDMA. A frequency channel
is partitioned into fixed number of time-slots, and a selected time-slot is allocated to
a user for the duration of his/her communication.

3.2.5 Channel Types

The operating bands in GSM are 900 MHz, 1800 MHz and 1900 MHz. Each of
the above frequency band is divided into uplink and downlink. For example, GSM
900 MHz split into: (i) 890–915 MHz for uplink (mobile to BS), and (ii) 935–
960 MHz for downlink (BS to mobile). Each of these 25 MHz band is partitioned
into 124 carriers of 200 KHz each leaving 200 KHz guard band from the left edge
of the band. Similarly, the uplink and downlink bands for other two GSM operating
bands are:

• 1800 MHz: 1710–1785 MHz for uplink, and 1805–1880 MHz downlink,
• 1900 MHz: 1850–1910 MHz for uplink, 1930–1990 MHz for downlink.

The 1800 MHz band provides 374 pair of carriers whereas the 1900 MHz band pro-
vides 299 pairs of carriers.

Each carrier is segmented using TDMA into 8 time-slots of duration 0.577 ms
per-slot. So, each carrier lasts for 8 slots 0–7 called a frame or a burst. A frame/burst
time is 0.577 ms×8 = 4.165 ms. The recurrent pattern of a particular time slot in

3.2 GSM Architecture 61

GSM
Logical
channels

TCH
TCH/F

TCH/H

CCH

CCCH

DCCH

BCH

RACH

AGCH

PCH

NCH

SDCCH

SACCH

FACCH

CBCH

FCCH

SCH

BCCH

Downlink

Bidirectional

Downlink

Uplink

Fig. 3.2 GSM channel classes

each frame constitutes a single logical channel. The repetition of a particular time
slot occurs every 4.615 ms which is the time interval for one frame.

GSM logical channels are built on the top of physical channels. Logical chan-
nels address the issues related to information exchanges between MS and BSS. As
Fig. 3.2 indicates, GSM distinguishes between traffic channels (for user data) and
control channels (for network control messages). Some of the channels are unidi-
rectional while others are bidirectional. The unidirectional downlink channels are
for communication from BS to MS. Same TDMA structuring of channels is used
for both down and up links. However, the numbering of the slots for Traffic CHan-
nels (TCH) is staggered by 3 time slots to prevent a mobile from transmitting and
receiving at the same time. Traffic channels are defined using multiframe structures
consisting of 26 TDMA frames with a recurrent interval of 120 ms (=4.615 ms×26).
Out of 26 TDMA frames 24 are used for traffic, 1 frame is used for Slow Associated
Channel and 1 frame is left unused. Control channels are defined in a multiframe
structure consisting of 51 (=4.615ms×51) TDMA frames having recurrent interval
of 235.4 ms.

GSM control or signaling channels can be divided into four classes, namely,

1. Broadcast CHannels (BCH),
2. Common Control CHannels (CCCH),
3. Dedicated Control CHannels (DCCH), and
4. Associate Control CHannels (ACCH).

The broadcast control channels are used by BS to provide synchronization informa-
tion to MS. Depending on information flow, we can distinguish the broadcast channels
further into four different subtypes, namely, (i) Broadcast Control CHannel (BCCH),

62 3 GSM, GPRS and UMTS

(ii) Synchronization CHannel (SCH) and (iii) Frequency Correction CHannel
(FCCH), and (iv) Cell Broadcast CHannel (CBCH). BCCH is used by a base station
to provide network parameters to an MS. SCH is used to inform training symbol
sequence for demodulating transmitted information by a BS. FCCH is reserved for
providing frequency reference of the system for synchronization of an MS. CBCH is
used for transmitting messages to be broadcast to all mobile stations within coverage
of a cell. For example, it can be used as an option for emergency warning systems
for broadcast of an emergency situation.

The common control channels support establishing links between mobile stations
and network. The important CCCH are: (i) Random Access CHannel (RACH), (ii)
Access Grant CHannel (AGCH), (iii) Paging CHannel (PCH) and (iv) Notification
CHannel (NCH). RACH is a purely uplink channel used by the mobiles to access of
services such as voice call, SMS, responding to paging and sending registration. It
employs the principles of slotted ALOHA (see Sect. 4.6.3) for competitive multiple
access by different mobile stations. The remaining three control channels are down-
link channels. PCH is used for searching or paging a mobile device by its IMSI or
TIMSI. AGCH is used to grant accesses when a mobile has either been successfully
paged on PCH or it has initiated a request through RACH. It sets up signaling by
assigning a stand-alone dedicated control channel (SDCCH) or a TCH to a mobile
station. NCH is used to notify a group of mobiles about voice broadcast service.
CCCH channels occupy slot 0 in a frame and repeat back every 51 frame times.
When more capacity is required slots 2, 4, or 6 can be used.

Dedicated Control CHannels (DCCH) are for bidirectional information flow
between mobile stations and base stations. Two main DCCHs are: (i) Stand-alone
Dedicated Control CHannel (SDCCH), and (ii) Slow Associated Control CHannel
(SACCH). A SDCCH channel is maintained between a mobile station (MS) and
a BS for exchange of message relating to call establishment, authentication, loca-
tion update, SMS, etc. An associate channel does not exist by itself. Slow Associated
Control CHannel (SACCH) is always associated with a TCH or SDCCH. It is used to
inform MS about frequencies of neighboring cells, time synchronization and power
control on the downlink. The uplink is used for sending signal measurements and
other parameters from MS that aids in arriving at handover decisions. It can be used
to transmit SMS when associated with a TCH. This is the reason why an SMS can
be delivered when the user is busy with a call.

A Fast Associated Control CHannel (FACCH) is not a control channel in true
sense. It is a TCH that turns momentarily into a control channel thereby stealing
some time slots from associated TCH for urgent information such as handoff, call
disconnect, call connect, etc. After the use of FACCH is over, the channel turns back
into the traffic channel.

http://dx.doi.org/10.1007/978-981-10-3941-6_4

3.2 GSM Architecture 63

3.2.6 Frame Structure

There are four types frame or burst structures, namely,

1. Normal frame, used to carry voice or data,
2. Frequency correction frame, used on FCCH,
3. Synchronization frame, used on SCH,
4. Random access, used on RACH.

Each of these frames has a length of 156.25 bits and a slot duration of 0.577 ms,
but have different structures. The first three frames carry 142 bits of information,
while the information contents in the last frame is 77 bits. The structure of a normal
frame is shown in Fig. 3.3. The tail bits form a group of 3 bits placed at both at
the beginning and the end of a frame to allow the mobile to adjust to the required
power levels (which increase and decrease sharply on transitions between active
and inactive states). The data bits are coded in two groups of 57 bits each separated
by 26 bits of training sequence. The training sequence is used for synchronization
of the receiver to eliminate or mask multipath propagation effects. A guard period
equivalent to 8.25 bits length is used to avoid any possible overlap of two mobiles
during power build up time. There is 1 bit stealing flag after each group of Data
bits. Stealing bit indicates whether the data bits pertains to signal or user data. An
associated control channel would set stealing bit when it temporarily uses the channel
to send signals. The Channel quality depends on propagation effects or multipath
fading. To ensure average channel quality, a slow frequency hopping is employed. It
changes frequency every frame time. Frequency hopping additionally helps to reduce
co-channel interference.

The structure of the remaining three frames are shown in Fig. 3.4. Traffic channel
frames are transmitted in groups of 26 known as 26-multiframe. Since, transmit time
of each TDMA frame (8 slots) is 4.615 ms, the transmit time for a 26-multiframe is
4.615 ms×26 = 120 ms. Control frames, on the other hand, are transmitted in groups

5254321 24232221..........0

0 1 2 3 4 5 6 7
TDMA frame

3 1 7575

ataDataD Training TT S S

frames 0−11: TCH 12: SACCH 13−24: TCH 25: Unused

8.253

156.25 bits

GP

1 26

duration: 4.165 ms

Fig. 3.3 Structure of a normal GSM frame or burst

64 3 GSM, GPRS and UMTS

3

3

8

3

3

Fixed bit pattern

Synch sequence stibdetpyrcnEstibdetpyrcnE

9393 64

Synch sequence Encrypted bits

3641

142

68.25

GP

GP

GP

8.25

8.25

3

T T

T

T T

T

Synchronization burst

Frequency correction burst

Access burst

Fig. 3.4 Structures of FCCH, SCH and RACH frames or bursts

of 51, known as 51-multiframe. A superframe consists of either 51 of 26-multiframes
or 26 of 51-multiframes. A hiperframe consists of 2048 superframes. Thus, a hiper-
frame consists of 2048×26×51 frames, and has a transmit time 1566 ms.

3.3 GSM Signaling Protocols

The GSM has two different types of interfaces: Um and Abis. Um refers to air inter-
face, and used for communicating between MS and BSS. Abis collectively consists
of 9 interfaces from A to I. The interface A is between BSS and MSC. It manages
allocation of radio resources for mobility of MS and its management. The interfaces
B to H are internal to MSC functions. Location database may be maintained at some
location servers different from MSC. So, B, C, D are wire interfaces for accessing
HLRs and VLRs. Most MSCs store VLR database locally. So interface B may be
internal to MSC. C interface is between HLR and Gateway MSC (GMSC). The calls
originating from outside GSM go through a GMSC to extract routing information.
Mobile Application Part protocol (MAP/C) is used over C interface to get this infor-
mation. MSC may also use this interface to forward billing information to HLR
after connection has been setup. The D interface is between VLR and HLR. The
data related to location of MS is exchanged over D interface using MAP/D proto-
col. The E interface is between two different MSCs. Handoff uses MAP/E protocol
for exchange data related to handoff between the anchor and the relay MSCs. The
F interface is between MSC and equipment identity register (EIR). It uses MAP/F
protocol to check identity (IMEI) of MS. The G interface is between MSC and SMS
gateway, it uses MAP/G protocol for transfer of short messages. The I is the interface
between MS and MSC which relays transparently through BSS.

The signaling protocol of GSM consists of 3 layers. As Fig. 3.5 shows, GSM
protocols are spread across the four GSM network entities, namely, MS, BS, BSC
and MSC. Layer 1 and 2 respectively represent physical and data link layer. Layer 3,
unlike in OSI model, does not exactly represent the network layer. Its protocols are

3.3 GSM Signaling Protocols 65

FDMA/TDMA

CM

MM

R
ad

io
 in

te
rf

ac
e

MH

layer2

Message
layer
(layer3)

m

RM
RM

LAPD LAPDm LAPD

BTSM

LAPD MTP

RM

BTSM

A
−

in
te

rf
ac

e

MSCBSS

BS

BSC

SCCP

BSSAP

CM
MM

BSSAP

SCCP

MTP layer2

layer1

(layer3)
layer
Message

Layer 1 Layer 1 Layer 1layer1

Fig. 3.5 GSM network components

used for communication of network resources, mobility, code format and call related
messages between network entities. So, it is more appropriate to refer layer 3 as the
message layer rather than network layer.

Layer 2 protocol is provided by LAPDm which is a modified version of Link
Access Protocol for ISDN D-channel (LAPD) of ISDN stack to work within the
constraints of radio paths. LAPDm does not use any flag. Consequently, bit stuffing
type of mechanism cannot be employed for the purpose of frame delimitation. Frame
delimitation is handled at the physical layer. The two main modifications affected in
LAPD are for:

1. Handling the requirements for tight synchronization of TDMA.
2. Distinguishing the padding and the information part in transmission frames.

The information part in a transmission frame is indicated by inclusion of a length
field which replaces LAPD flags while FEC flag is removed altogether.

Layer 3 consists of three sublayers, namely,

1. Resource management (RM) is implemented over the link between MS and BSS.
This sublayer oversees the establishment and the maintenance of stable uninter-
rupted communication links spanning both radio and wired links between MS
and MSC. A part of RM’s responsibility is also to manage handoffs. MS and BSS
control most of the functions in RM, though some are also performed by MSC.

2. Mobility management (MM) sublayer handles mobility management and main-
tains the location information of MS apart from performing authentication and
the related crypto controlled procedures.

3. Connection management (CM) sublayer sets up connection at the user’s request.
Its functions are divided among three distinct tasks, viz., connection control,
SMS and supplementary services. Connection control is related to circuit oriented
services. SMS provides for point to point short message service. Supplementary
services allows modification and checking of supplementary services.

Layer 3 implements Message Transport Part (MTP) of SS7 which is used for com-
munication in wired part of PSTN. It also handles the Signaling Connection Control

66 3 GSM, GPRS and UMTS

Part (SCCP) over the link between MSC and BSS. MM and CM sublayers provide
certain functionalities of transport, session and presentation layers of OSI model.

BSS elements, BTS and BSC implement dual stacks as they have to handle not
only radio resource allocation, deallocation, handover, etc., on Um interface but also
have to handle relay and maintain connectivity over A interface.

Between MS and BTS, RR protocols are for radio resource management. RR
layer is responsible for maintaining both radio and fixed links between MS and
MSC. The major task is to maintain radio session which is the time when MS is in
dedicated mode. Besides this RR layer also responsible for configuration of radio
channels including allocation of dedicated channels. MM layer protocols are for
keeping track of mobility of MS so that the when calls are made they can be routed
to MS. MM protocols are also responsible for authentication and security of MS.
CM layer is responsible for maintaining circuit connectivity, supplementary services
and SMS.

BSC protocols are made up of layers communicating over Abis interface. The RR
sublayer of BTS stack is changed to BTS Management (BTSM). BTSM’s task is to
oversee link relay function between BTS and BSC. Some radio resource management
functions are also performed at BSC. The services to be managed include paging of
MS, handover calls, power control and call termination. Accordingly, RR protocols
are responsible for use, allocation, reallocation and release of GSM channels. The
part of dual stack at BSC which communicates with MSC over A interface has to
supervise the relay using MTP of SS7. For communication between MSC and BSC,
BSS Mobile Application Part (BSSMAP) and Direct Application Part (DTAP) of
SS7 protocol are used.

Besides having corresponding protocols to communicate with BSC, MSC stack
includes RR and CM sublayers. The protocols of these sublayers are required for
mobility management of MS and resources related radio communication. Each user
has a HLR that stores a user’s location and the list of services which the user has
subscribed to. A user location is tracked by using VLR. When a user roams, it notifies
a new VLR about its new location. The said VLR then uses SS7 [5] based signal to
relay the location information to the corresponding HLR.

3.4 Call Setup

In GSM there is a distinction between the calls originating from a mobile (outgoing)
and the calls terminating at a mobile (incoming). In case of an incoming call, the
process will be same irrespective of the fact whether the call originates from a mobile
or a PSTN landline. So, we examine the issues of call terminating at mobile separately
from call originating at mobile.

3.4 Call Setup 67

3.4.1 Mobile Terminated Calls

An incoming call to a mobile is known as a Mobile Terminated Call (MTC). An
incoming call is initiated when a subscriber dials a mobile ISDN number. Though
mobile stations MS keep GSM network informed about their locations, it is not
sufficient for setting up a call to a mobile station. After a calling party dials the
number, PSTN first identifies the network to which the called MS belongs, and locates
the GMSC for that network. Figure 3.6 illustrates the steps involved in processing of a
MTC incoming call. As indicated by the figure, the process of call setup can be broken
down into three basic tasks, namely, (i) finding route to the MSC responsible for the
MS, (ii) paging the correct mobile and obtaining response from it, (iii) assigning
a traffic channel for the call. Steps 1–4 are for discovering the route to the correct
MSC, while the actual routing of call to the target MSC is done in step 5. Steps 6–8
are responsible for paging related task. Authentication, and security related checks
are performed in steps 9–12. We provide a stepwise description of these activities
below.

Step 1: The identity of network is extracted from MSISDN itself. PSTN sends
initial address message (IAM) to the GMSC.

Step 2: GMSC forwards the MSISDN to HLR and requests for the routing infor-
mation.

Step 3: HLR extracts the IMSI and SS7 address for the MSC/VLR which is cur-
rently servicing the MS. It then contacts the concerned MSC/VLR and requests
it to assign an MSRN to the call. MSRN or mobile station roaming number is
allocated by MSC/VLR from a set of available roaming numbers.

Step 4: MSC/VLR forwards the MSRN to HLR. HLR forwards both MSRN and
routing information to GMSC. MSRN is used by GMSC for routing telephone
call to target MSC.

Step 5: GMSC then sends an IAM with MSRN to the servicing MSC/VLR for
routing the call.

GMSC MSC BSS

HLR VLR BSS

BSS

1
PSTN/ISDN

2 4

5
10 11 12 12

764

3

99

8 8

8

8

Fig. 3.6 Protocol for incoming call to a mobile

68 3 GSM, GPRS and UMTS

Step 6–7: After MSC/VLR receives the MSRN it releases the same and proceeds
with call set up related activities. It gets Location Area Identity (LAI) from VLR.
The released MSRN can now be reused.

Step 8: MSC sends a paging request for locating the BS under which the called
MS is active.

Step 9: Since IMSI and TIMSI are included in the paging message, the called MS
recognizes that the paging request and responds.

Step 10–12: After getting paging response, the next task that network does is to
establish the authenticity of the MS. Once authenticity check becomes successful,
the mobile is requested to turn into cipher mode. Then the setup message for
incoming call is also sent by the base station.

Finally, the call is complete when the caller disconnects. The process discussed
above gives a top level description of call setup procedure. It does not deal with the
critical issues related to management of radio resources during call setup. Let us,
therefore, examine how radio resources are allocated for establishing a successful
call.

Initially the called mobile is in idle state. During this state a mobile handset
keeps getting system parameters over broadcast control channel BCCH (step 0). As
explained earlier, GMSC first obtains MSRN and contacts MSC for paging the called
mobile on PCH channel (step 1). The mobile responds to the paging message over
the uplink channel RACH (step 2) with intention to connect but does not respond
to paging until it gets SDDCH assigned to it. The message flow over different radio
channels for successful materialization of paging and subsequent authentication of
mobile are shown in Fig. 3.7a. BSS responds to the mobile’s request for call setup on
AGCH (step 3) by sending an immediate assignment message informing MS about
the SDDCH. The network does not yet know the identity of the paged MS, until it
sends a paging response over SDCCH (step 4). BSS then sends a random number for
MS to generate cipher key and also sends challenge to MS (step 5) for the purpose
of authentication. MS responds to this message by sending signaling response and
generation of the cipher key Kc (step 6). In the next step (step 7), BSS requests MS
to transmit in cipher mode to which MS respond by an acknowledgement (step 8).
All the message exchanges until this point (steps 3–8) takes place over SDDCH.

After mobile turns into cipher mode, BSS sends the setup message for incoming
call and provides a traffic channel. The traffic channel is initially treated as control
channel and once connection is fully established it turns into a traffic channel. So, BSS
allocates traffic channel when it alerts the mobile about incoming call. In response
to alert, the receiver generates ringing sound on the mobile. The channel activities
for the call setup are illustrated in Fig. 3.7b.

3.4 Call Setup 69

BCCH
system params

PCH

RACH

AGCH

SDCCH

paging for IMSI

channel request

assign SDCCH

paging ack

SDCCH

send RAND & request
for SRES, K c

SDCCH
auth response

SDCCH
in cipher mode

request to transmit

SDCCHmode request
ack cipher

2

0

1

3

4

5

6

7

8

(a) Paging

incoming call
Setup message for

9 SDDCH

10
SDDCH

release SDDCH
assign traffic channel

FACCH
ack assignment

11

alert mobile
FACCH12

FACCH 13
connect

connect ackFACCH14

traffic flow

FACCH
disconnect16

15 15

release
FACCH

FACCH
release complete

17

18

mobile
starts ringing

(b) Call setup

Fig. 3.7 Message flow over radio channels for mobile terminated call setup

(a) Signalling

BCCH
System parameters

RACHChannel request

AGCH
Assign SDDCH

SDCCH

Authentication request
SDDCH

0

Authentication response
SDDCH

6

7

Call request

SDDCH
Ack cipher mode request

SDDCH
Request cipher mode

1

2

3

4

5

(b) Radio interface

GMSC

MSC BSS

HLR

PSTN/ISDN

6

7

9

2

3 4

8 5

10 1

MS

Fig. 3.8 Signaling for mobile originated call setup

70 3 GSM, GPRS and UMTS

3.4.2 Mobile Originated Calls

A mobile originated call may terminate at a mobile or a PSTN number. The signaling
requirements for mobile orginated call is shown in Fig. 3.8. When a call request is
made from a mobile device, network first seeks authenticity of subscriber (steps 1–2
in Fig. 3.8a. Once authenticity has been established, security checks are performed
(steps 3–4). Check on resource availability (steps 5–8) is performed after security
checks becomes successful. Finally the call is established (steps 9–10).

Earlier in the previous section, we saw that the availability radio resources is
critical for a connection to materialize in mobile terminated call. Likewise, a call
originating from mobile requires radio interface before establishment of a connection.
A mobile originated call may terminated at mobile or a landline. We have already
examined the channel activity at radio interface for a mobile terminated call. So, it
suffices to just focus on the exchanges that occur on the radio channels at the caller’s
side.

Initially, when a mobile wishes to make a call, it sends a request on RACH channel
for the allocation of a stand-alone dedicated control channel (SDCCH). BSS uses
AGCH to inform mobile about the access grant by allocating a SDCCH. Following
the allocation of a SDDCH, the information relating to mobile’s authentication and
security checks are carried out. After this a traffic channel (TCH) is assigned to
MS, and the voice transfer occurs. The details of signaling mechanism for acquiring
SDCCH for a mobile terminated call has been illustrated in Fig. 3.7a. The channel
activity which occur on radio interface at caller’s side is illustrated in Fig. 3.8b.

3.4.3 Mobility Management

Mobility management is the key issue in GSM network. The issue of mobility man-
agement for an active connection (handoff) with respect to generic cellular network
has been discussed earlier in the previous chapter. In GSM implementation, a group
of cells constitutes what is known as paging area. The whole service area is par-
titioned into a number of paging areas. For the purpose of establishing a call to a
mobile, its paging area should be searched. If the mobile is active then it responds to
paging message. However, it can do so only if the message is correctly directed to the
mobile’s paging area. Furthermore, paging area should not be very large. Otherwise,
paging will generate unnecessary message flows over the network. To handle this
problem, each mobile updates its location area identity (LAI) every time there is a
change in paging area. MS gets notification about LAI from its base station. SIM
stores current LAI and TIMSI whenever a change occurs. If the LAI stored in SIM
is not the same as the LAI being broadcast by BS, then a change is noted and the
LAI update is performed by MS. MS needs radio resources to register the change in
HLR. The channel activities for the same is explained in Fig. 3.9.

3.4 Call Setup 71

Fig. 3.9 Channel activity
needed for location update BCCH

System parameters

RACHChannel request

AGCH
Assign SDDCH

SDCCH
Location update request

Authentication request
SDDCH

0

1

Authentication response

SDDCH Cipher mode request

Cipher mode confirmed
SDDCH

Location update confirmed
SDDCH

SDDCH

SDDCH

Ack new location

Release SDDCH

SDDCH

2

3

5

6

7

8

10

9

Location update handles mobility when a mobile moves from one paging area
to another. However, a more challenging problem in handling mobility occurs when
a mobile is holding an active connection. In this case, the major requirement is
for channel switching. We have discussed mobility management of active mobile in
cellular network in the context of handoff. The way channel switching or the handoffs
are managed in GSM network, is not very different from what we discussed in a
cellular network. So, our focus here is on the handoff procedure specific to GSM.
Handoff involves three basic steps, namely,

1. Signal measurement,
2. Handoff decision, and
3. Handoff execution.

Signal measurement report is transmitted periodically by MS. MS gather measure-
ment values of 16 neighboring BSes and sends a report containing six strongest
measurements over one of the 4 interleaved SACCHs. The handover decision and
selection of target cell are made either by BSC or MSC. BSC makes a decision if the
cell to which MS should be handed over is under its control. Otherwise BSC sends
its global cell ID and a BSSMAP message for handover request to MSC. MSC then
sends a BSSMAP message for handover request to new BSC. The message includes
channel type, and whether queueing is permissible or not.

The new BSC on receiving the request sends a BTSM channel activation message
to its BS. It includes Handover Reference Number (HRN), handover type, channel
number and type. Once the BS’s acknowledgement is received the new BSC sends
acknowledgement to the MSC’s handover request message with HRN or handover

72 3 GSM, GPRS and UMTS

CSMCSBSBCSBSM BS old oldnewnew

measurement

ACK

BTSM:

RR Phy info

SABM (2)

UA (2)

BTSM:

ACK

CHN−ACT

HCMD (HRN, new cell)

HO Detect

HO CMP

CHN REL.

ACK

HCMD

HO ACC

BSS MAP
HREQ

decision
handover

RESLT.
Measurement REP.
SACCH

BTSM: HRN,

ov
er

 F
A

C
C

H

BTSM: ESTI.

BSS MAP: HO CMP

BSS MAP: HO Detect

BSS MAP: HREQ

BSS MAP:

BSS MAP: CLR

Fig. 3.10 GSM inter BSC handover procedure

reference number. The MSC now responds to the old BSC with handover command.
The old BSC in turn sends handover command to the MS over FACCH. The MS sends
a handover access message to the new BS over FACCH. The new BS on the receipt
of this message sends a BTSM handover detected message to the new BSC. The new
BSC then sends BSSMAP handover detection message to the MSC. After this the BS
sends physical information message providing the physical channels to be used for
transmission by the MS. The MS responds by Set Asynchronous Balance Message
(SABM) to the new BS. The new BS then sends two messages one to the new BSC
indicating link establishment and the other to the MS which is a unnumbered answer
layer-2 message.

The MS finally sends a handover complete message to the new BSC. The new
BSC forwards the handover complete message to the MSC. At this point handover
is complete. So, the MSC sends a BSSMAP message asking the old BSC to clear
radio resource used for MS. The old BSC sends a BTSM channel release message
to the old BS. Once the old BS acknowledges the same, handover is complete. The
entire process is illustrated by Fig. 3.10.

In GSM, a intra-BSS handoffs due to channel switching within same cell or
between cells under the coverage of same BSS may be handled independently by the
BSS itself. But after performing an intra-BSS handoff, the BSS informs the MSC
about the completion of the process. Intra BSC handover follows a process similar
to inter BSC handover. Furthermore, channel switching may occur within same cell,
between different cells under the coverage of a single BSS, or between cells under
the coverage of different BSSs, and even different MSCs.

3.5 GPRS Network 73

3.5 GPRS Network

GSM is a circuit switched network that allows low speed data services. The transfer of
data is allowed only during the time, the user occupies channel. Since data exchanges
tend to be bursty, the circuit switched networks are unsuitable for large volume data
transmission. A user has to pay for the entire duration of connection regardless
of actual percentage of time the channel is engaged in transfer of data. General
Packet Radio Service (GPRS) leverages GSM network to build a packet based mobile
cellular network. It is architectured as an overlay network on GSM through a core
IP based network consisting of two new nodes, some enhancements to BSS, certain
software upgrades for HLR/VLR, and some new network interfaces. The important
nodes in the GPRS core network are Serving GPRS Support Node (SGSN) and
Gateway GPRS Support Node (GGSN). The upgrades for existing GSM nodes MSC,
BTS, BSC, HLR and VLR are required to make them handle packetized data transfers.
The BSC is connected to SGSN through frame relay link [6].

The two fundamental advantages of exchanging data on GPRS over that on GSM
are:

1. Flow of data involving many users can be multiplexed and routed through multiple
routes by packetizing data, and

2. Long latency for reconnection is eliminated by providing analways on connection.

Furthermore, due to packetized data transfers, GPRS supports a data rate that is
3 times more than what can be supported by GSM network. The billing is done
according to the number of packets transmitted by an individual user rather than the
duration of connection time. By multiplexing data transfers for several users, the
service providers can also increase the capacity of data services offered by them.

The data rate supported by GPRS is in the range 9.6–171 Kbps depending on
the radio conditions. Under good radio conditions, it can reach speed upto 50 Kbps
downstream and upto 20 Kbps upstream as opposed to GSM’s maximum rate of
14.6 Kbps with HSCSD (High Speed Circuit Switched Data) service. On the top of
this, GPRS also provides robust connectivity. By using increased redundancies in
data encodings, it provides resistances to radio losses during data transfers. GPRS
uses 4 different coding schemes CS1–CS4 [7] depending on radio conditions. CS1
has highest level of error correction, while CS4 has the least error correction support.
CS2 is equivalent to GSM Circuit Switched Data (CSD) bearer service [8]. A data
rate of 9.05 Kbps with 1 slot is attainable by using CS1. Whereas the highest data rate
171.4 Kbps is reached with 8 slots using CS4. Though theoretical data rate achievable
is 171.4 Kbps, normal allocation includes:

• 1 slot for a control packet,
• at least 2 slots to be set aside for voice traffic, and
• the remaining slots may possibly allocated to packet traffic.

74 3 GSM, GPRS and UMTS

In all 29 combinations of downlink and uplink slots can be defined. The maximum
data rate one user can expect consists of 4 slots downlink and 1 slot for uplink. The
4 slots downlink provides a data rate of 4×13.4 Kpbs = 53.6 Kbps, and 1 slot uplink
gives 13.4 Kbps.

Retransmission ensures data reach BSS before it gets forwarded on to GPRS core
network. Since GPRS is packet based, all IP applications like email, web access,
instant messaging, file transfers, ssh, etc., can run on GPRS. It can also provide
end-to-end VPN accesses to private campus networks, e.g., a university LAN.

The mobile subscribers need specialized GPRS enabled mobile devices to connect
to GPRS network. GPRS mobile stations (MSs) are backward compatible with GSM
for voice calls, but GSM MSs cannot handle packetized data or the enhanced radio
interfaces. Since GPRS packetizes the traffic, multiple users can share the radio
resources. The specific upgrades required over GSM network elements for building
GPRS overlay are as follows:

• BSS augmented with an additional hardware module called Packet Control Unit
(PCU) manages the packet transfers between an MS and GPRS core network apart
from supporting data frame retransmission and other GPRS functions. PCU can
be a separate unit associated with a BSS.

• HLR and VLR databases need software upgrades to handle packet data for GPRS
traffic, GPRS related subscriber’s data, and the mobility management. Since, the
location information can only be accessed via the SS7, GPRS network nodes also
have to interact with the SS7 network.

• A set of new network interfaces are needed for interaction between network ele-
ments for handling GPRS connections. The need for defining these interfaces have
been necessitated by the fact that in pure GPRS units signaling is transported on IP
backbone, whereas GSM elements use SS7 for transport of signals. So, interfaces
are needed for interoperability between two signaling methods.

The core GPRS network consists of IP network with two additional new nodes
GGSN and SGSN. SGSN is directly connected to BSS. For GPRS services SGSN
performs a role similar to what MSC/VLR do in GSM. It controls the link between
network and MS by providing session management and GPRS Mobility Management
(GMM) functions such as handover, paging, attach, detach, etc. SGSN has to access
GSM databases for performing mobility management functions and fetching the
individual GPRS subscriber’s profile. The other important task of SGSN is to keep
the count of packets exchange involving individual MSs for the purpose of billing.
The flow of data between GGSN and SGSN is tunneled by use of GPRS Tunneling
Protocol (GTP).

GGSN is the GPRS gateway to the external network or public Packet Data Network
(PDN). Its role in GPRS network is similar to that of GMSC in GSM network. GGSN
is responsible for

• Handling roaming of MS by rerouting incoming traffic to the appropriate SGSN
where the MS may be available.

• Authenticating access requests between GPRS and PDN.

3.5 GPRS Network 75

IPn/w

BSC SGSN

SMSIMSC
SMS−GMSC/

GGSN

Gd

Gb Gn

MSC
VLR

HLR
D

GrGs

EIR

Gf Gc

GMSC ISDN
PSTN/

Gi

GGSN
Gp

Fig. 3.11 GPRS/GSM combined architecture

• Connecting to HLR through new Gc interface.
• Providing firewall function on Gi interface to PDN.
• Providing tunneled accesses from GPRS network to Virtual Private Networks

(VPNs),
• Providing Quality of Service,

The most important job of GGSN is to route incoming packet to appropriate SGSN
so that it can reach the destination MS. GGSN converts GPRS packets from SGSN to
format of packet data protocol for the external network. It also converts the destination
IP address of incoming packets to GSM address of the destination MS, and forwards
those packet to responsible SGSN.

The GSM and GPRS combined network architecture is illustrated by
Fig. 3.11 [6].

A user’s mobile station must attach with GPRS support node SGSN to avail
GPRS services. It is a GMM process. It is transparent to BSS and executed by
SGSN. The execution of attach is initiated by an MS which supplies mobile’s IMSI
(International Mobile Subscriber’s Identity) or P-TMSI (Packet Temporary Mobile
Subscriber’s Identity) to SGSN. The IMSI is same as in GSM. P-TMSI has similar
role as Temporary Mobile Subscribed Identity (TMSI) assigned by MSC/VLR. TMSI
is used in GSM for identity confidentiality of the MS used by the user. P-TMSI is
assigned if the user wants only GPRS service as specified by the attach type. The
type of attach specifies whether an MS wants only GPRS or both GPRS and GSM
services. To initiate an attach, the MS also supplies a number of other attributes
which includes the type of attach requested, Routing Area Identification (RAI), and
Ciphering Key Sequence Number, etc. The SGSN executes attach and informs HLR if
RAI has changed. If the attach type is both GSM and GPRS then SGSN also performs
location update with VLR if Gs interface exists. A detach simply disconnects the
user from GPRS network.

76 3 GSM, GPRS and UMTS

A successful attach does not yet permit the MS for data exchanges. A Packet
Data Protocol (PDP) context is required to activate a packet communication session
between a MS and the SGSN. The context is defined by the mapping and the routing
information between the MS and the GGSN. To initiate an context activation process,
the MS has to provide the following information to SGSN.

• A static IP address, or a request for an IP address.
• The identity of the Access Point where the MS wishes to connect.
• The desired Quality of Service (QoS) and a Network Service Access Point Iden-

tifier (NSAPI).

It is possible to establish multiple PDP context sessions between an MS and SGSN
for different concurrently running of applications. For instance, the applications for
mail, and Internet could run concurrently. The NSAPI discriminates the packets of
different applications from one another identifying them. After SGSN has obtained
information needed for context activation, it determines the GGSN connected to the
access network and forwards the request to that GGSN. The GGSN then connects
the MS to the desired AP. The GGSN also assigns transaction identifiers for the com-
munication of data to the specific MS between the GGSN and SGSN. The SGSN’s
request includes information on a negotiated QoS, based on the subscription infor-
mation of the user and the availability of the services. When the communication and
activation at GGSN become successful, the appropriate information is forwarded to
the mobile.

Three operation modes of a GPRS enabled MS are:

1. Class A mode: where the MS is allowed simultaneous GSM and GPRS services
being attached to both services.

2. Class B mode: where the MS is attached to both services but can operate only
one service at a time.

3. Class C mode: where the MS is attached only to GPRS service.

For optimized use of radio resources, mobility management and attach procedures
are combined for class A and class B mode. Since GPRS is an always-on network,
the state of MS with respect to this network is important for location update and
routing purposes. In GPRS network a mobile can be one of three states, viz., idle,
standby, and ready. In the idle state the mobile is unreachable. When it performs a
GPRS attach the mobile moves to the ready state. It remains in the ready state till
its ready timer expires. On performing a detach from the ready state a mobile goes
back to the idle state, and all PDP contexts get deleted. The standby state is reached
when the mobile has not sent or received any data for a long time, this causes the
ready timer to expire.

Figure 3.12 [6] shows GPRS protocol stacks. The protocols can be viewed from
two planes,

• Signaling plane: consist of protocols providing control and support functions for
the protocols in transmission plane.

3.5 GPRS Network 77

RLC

MAC
PLL
RFL RFL

MAC
PLL

Networkservices

RLC BSSGP

services

LLC

Application

Relay
LLC

BSSGP
Network

SNDCP

layer (IP)
Network

Relay

Data link
layer

IP

TCP/UDP
SNDCP GTP

layer
Physical

layer layer
PhysicalPhysical

Data link

TCP/UDP

Network
layer (IP)

Physical
layer

layer

IP

GTP

Um Gb Gn Gi

MS

BSS

SGSN

GGSN

Fig. 3.12 GPRS protocol stacks

• Transmission plane: consists of protocols for transmission of users’ data and asso-
ciated signaling. The protocols of this plane can be divided into three classes,
namely,

1. Between MS and SGSN,
2. Between SGSNs and between SGSNs and GGSNs, and
3. Interfacing with SS7.

Some of the functions of the protocols belonging to signaling plane are discussed
earlier. GMM and Session Management (SM) form the signaling protocols between
MS and SGSN. GMM provides functions for mobility and location update of MS.
SM supports activation, modification, and deactivation of PDP contexts. Between
two GGSNs, the important signaling protocols are GTP, TCP, and UDP. GTP (GPRS
Tunneling Protocol) is responsible for tunneling signal messages between SGSNs and
between SGSNs and GGSN in the core GPS network. For reliable transfer of PDUs,
TCP (Transmission Control Protocol) can be used across the Gn interface between
SGSN and GGSN if they belong to same PLMN. However, Gp interface is to be used
between SGSN and GGSN if they belong to different PLMNs. In fact, many-to-many
relationship exists between SGSNs and GGSNs [7]. One GGSN routes data form one
PDN to many SGSNs, while one SGSN may route data to many GGSNs interfacing
with different PDNs. User Datagram Protocol (UDP) carries PDUs across the same
Gn interface when reliability is not important. IP (Internet Protocol) is used to route
user data and signaling information across the Gn interface.

The protocols facilitating interoperability of GPRS and SS7 on signaling plane
are MAP, SCCP, TCAP and MTP. MTP (message transfer part) allows exchange of
signaling messages in SS7 network. MAP (mobile application part) is essentially
a mobile specific extension of SS7. It allows mobility related signals like location
updates, users’ profiles, handoffs, etc., to be transported within different nodes of
GSM-GPRS network across SS7 network. The exchange of MAP messages are

78 3 GSM, GPRS and UMTS

realized over TCAP (transaction capabilities application part) and SCCP (Signal
Connection Control Part). The Base Station System Application Part (BSSAP+)
includes functions of GSM’s BSSAP. It helps to transfer signal information from
SGSN to VLR. It involves mobility management when a coordination of GPRS and
GSM nodes is needed. For example, a combined GSM-GPRS attach, paging via
GPRS for an incoming GSM call, or a combined GPRS and non-GPRS location
update would need a coordination of both GPRS and GSM nodes.

There interfaces used for signal exchanges between SS7 and GPRS networks are:

• Gr interface: exists between SSGN and HLR. Through Gr interface SSGN retrieves
or updates location information and the GPRS profile for mobile subscriber.

• Gc interface: is defined between GGSN and HLR. GGSN contacts HLR to deter-
mine address of SGSN to which MS is located and if MS is reachable.

• Gf interface: is defined between SGSN and EIR. It is used by SGSN to fetch IMEI
of the mobile station from EIR.

• Gs interface: connects databases of SSGN and MSC/VLR. It allows coordination
of circuit switched and packet switched pagings in the SGSN as well as location
information of any MS attached to both packet switched and circuit switched ser-
vices. BSS Application Part (BSSP) allows mobility functionality to be managed
in Gs interface.

• Gd interface: defined between an SGSN and gateway for short message service.
The progress of a SMS for delivery to an MS in circuit or packet mode requires
a gateway function between mobile network and the network that provides access
to SMS center. An SMS delivered to an MS is routed from the gateway of SMS
towards SGSN on Gd interface when SMS is delivered on GPRS.

The transmission plane protocols and their functions are described below:

• Subnetwork Dependent Convergence Protocol (SNDCP): is used for transfer of
packets between the mobile and the SGSN. It converts network layer Packet Data
Units (PDUs) into suitable format (called SNPDUs) for the underlying subnetwork
architecture and also compresses the SNPDUs for efficient data transmission.
SNDCP manages transfer of PDUs for multiple PDP contexts.

• Data link layer: it consists of two sublayers, LLC (between MS and SGSN) and
RLC/MAC (between MS and BSS). LLC establishes a reliable logical link between
an MS and its SGSN. It ensures data confidentiality by using ciphering functions.
RLC/MAC stands for Radio Link Control and MAC. RLC’s task is to establish
a reliable radio link between MS and BSS. It performs MAC functions like seg-
mentation of LLC frames into RLC blocks as well as reassembly of RLC blocks
into LLC frames. The MAC controls the accesses radio channels by several MSs.
The primary responsibility of MAC is thus contention management and collision
avoidance. RLC/MAC layer can support both ack and non-ack modes of operation.

• Physical layer: it is split into two sublayers, Physical Link Layer (PLL) and physical
Radio Frequency Layer (RFL). PLL oversees data transfer over physical channel
between MS and BSS. Its responsibilities include data unit framing, data coding,
detection and correction of transmission errors over the physical medium. PLL

3.5 GPRS Network 79

uses RFL services whose basic responsibility is for modulation and demodulation
of physical wave forms and checking conformity with GSM specification.

• BSS GPRS application Protocol (BSSGP) is concerned with delivery of routing
and QoS information between BSS and SGSN.

GPRS support both IPv4 and IPv6. Gi interface is for interoperability of IP network
with external or public data network. From outside GPRS appears like any other IP
subnetwork with GGSN acting as a gateway to that IP network. A user wanting to
exchange data with an IP network gets an IP address from the set of IP address space
of the GPRS operator. For mobile users, it is necessary to have a dynamic IP assigned.
So, a DHCP server is installed in GPRS network. Address resolution between GSM
and IP addresses is performed by GGSN using appropriate PDP context. Tunneling
between GPRS private IP and external IP network prevents any unauthorized accesses
to PLMN. Thus, the configuration of GPRS network is designed with an aim to make
it appear as a wide area wireless extension to the Internet for the mobile devices.

3.6 UMTS

The architectural enhancements to radio based wide area wireless networks intro-
duced in the form of 2G networks [9]. Higher data rates supported by 2G networks
redefined the way mobile networks were used. Still 2G networks suffer from a num-
ber of limitations. The important among these are low transfer rates, low efficiency
of circuit-switching data transfers, proliferation in number of standards. So, the
efforts to enhance 2G networks were focused around removing these limitations.
It resulted in High Speed Circuit-Switched Data (HSCSD) [1], GPRS standards [3],
and Enhanced Data Rates for Global Evolution (EDGE) [2]. The common objective
of all these initiatives was to find solutions that would yield higher transfer rates
without requiring any major architectural changes in the existing network. The rea-
son for avoiding major architectural change was mainly dictated by the fact that
the substantial investments were made for setting up 2G networks. Any large scale
change will not only require huge investments but old investments also have to be
written off as non performing assessts.

HSCSD approach gets around the problem of low data rate simply by bundling
multiple time slots together instead of using single slot for transfer of data. GPRS
supports packetized data transfers by introducing only minimal changes in core GSM
network. The migration from circuit-switching domain to packet-switching domain
is considered to be the major advantage of GPRS networks. It is possible to offer
data rates upto 115 Kbps in GPRS. EDGE employed better modulation techniques
to increase data rates of GSM and GPRS up to 3 times. It used Octagonal Phase
Shift Keying (8-PSK) in place of Gaussian Minimum Phase Shift Keying (GPSK).
So EGPRS (GPRS enhancement with EDGE) is able to support data rates up to
384 Kbps. But these enhancements of existing standards are considered inadequate

80 3 GSM, GPRS and UMTS

in terms of bandwidth and the capabilities needed to support 3G services. The air
interface is found to be the main bottleneck in providing greater bandwidth.

In 1998, the 3rd Generation Partnership Project (3GPP) [10] was launched in
cooperation with six partners led by European Telecommunication Standard Institute
(ETSI). The objective of 3GPP was to develop third generation mobile system with
the core network based on GSM. After a year, another 3G Partnership Project for wide
area cellular wireless networks called 3GPP2 was launched by American National
Standard Institute (ANSI). Their objective was to keep ANSI-41 network as the core
for 3G networks.

International Mobile Telecommunication-2000 (IMT-2000) group formed under
the International Telecommunication Union to define interfaces between the two
parallely developing 3G networks, one evolving out of GSM and the other out of
ANSI-41. The key motivation for the defining interfaces is to offer seamless roam-
ing services between 3GPP and 3GPP2 networks. Realizing the importance of this
universal roaming characteristic, 3GPP adopted the name Universal Mobile Telecom-
munication Service (UMTS) for 3G mobile systems. The process of evolution from
2G to 3G can thus be seen to happen along three planes, viz., technical, network and
services.

In technical plane, the evolution is centered around an all IP cellular based
wide area wireless network unlike GSM/GPRS which are predominantly based on
switch centric networks. The first version of UMTS specification, known as 3GPP
release 99 [10], while retaining majority of the core GPRS/GSM network func-
tionalities introduced a new wireless access technology known as Wide band Code
Division Multiple Access (WCDMA) [11]. With WCDMA technology, it was possi-
ble to increase capacity of 2G networks to support higher data rates. The new 3GPP
release 4 [12] optimizes air interface even further. Though most modifications are
directed towards the core GSM/GPRS network elements, backward compatibility is
retained for supporting 2G services.

3.6.1 UTRAN

UMTS Terrestrial Radio Access Network (UTRAN) [13] constitutes the main exten-
sion to GSM Core Network (CN) for providing and maintaining connectivity with
User Equipment (UE). UTRAN sits between Uu and Iu interfaces.

In the network plane, the UMTS is organized under three functional groups of
network elements:

1. Radio Access Network, known as UTRAN, responsible for both Radio Resource
Management (RRM), and Mobility Management (MM).

2. Core Network (CN) responsible for communication management. It involves all
switchings and routings of calls and data connections to the external networks,
besides managing sessions, and mobility related information.

3.6 UMTS 81

3. User equipment (UE) represents the end device. With UE the user roams about
in the service area, and accesses 3G services.

The evolution along the service plane is evaluated on the basis of classes of data
carrier services supported by 3G networks as against those supported by 2G or 2.5G
networks. The services provided to the end users are the yard-stick for measuring the
benefits of using 3G over 2G/2.5G. The question is: what killer applications can be
supported by these networks? The throughput of 2.5G networks provide bandwidth
sufficient for web browsing, large email messages, maps for real-time navigation
and basic multimedia services. But killer applications like video conferencing, voice
over IP, full motion video, online 3D gaming and streaming music require enhanced
data rates which can only be provided by 3G networks. The always on characteristic
of 3G network offers some additional advantages. For example, in applications like
road navigation, it will be preferable to have real-time traffic and other navigation
related information. There are four QoS classes of service in 3G for different types
of traffic.

• Conversation class consisting of voice, video, telephony and video gaming.
• Streaming class representing multimedia video on demand and webcast.
• Interactive class such as web browsing, network games, data base access.
• Background class which includes email, SMS and downloading.

In addition to the above, UMTS supports Virtual Home Environment (VHE). VHE
presents the portability of personal service environment to the users across network
boundaries. A user can consistently retain the same personalized features even with
world wide roaming capabilities. VHE has capabilities to adapt to both network and
the UE. It automatically converts the messages to formats suitable for the UE.

UMTS is developed as a layered architecture independent of the underlying net-
work. This is possible by defining standard interfaces between the network layer
and the application layer. The network layer comprises of network elements under
the control of service provider. The application layer or the service layer may be
controlled by service logic and algorithms running over third party servers. So, the
problem of proliferation of standards can be short-circuited by defining open stan-
dards for the interfaces.

Figure 3.13 illustrates the organization of UTRAN architecture and its interfaces
with rest of the CN. The main task of UTRAN is to create and maintain Radio
Access Bearers (RAB) for communication between the user equipment (UE) and the
core network (CN). RAB offers an illusion to the CN about the existence of a fixed
communication path to UE. This relieves CN from the burden of maintaining radio
connectivity with UE. The two open interfaces Uu and Iu link UTRAN to UE and
CN respectively.

UTRAN consists of two new nodes, namely, Node B and Radio Network Con-
troller (RNC). A set of Node Bs are controlled by one RNC. A RNC and its set of
Node Bs together define Radio Network Subsystem (RNS). The role of a RNC may
be viewed as similar to that of a Base Station Controller (BSC) in a GSM network.
Likewise, a Node B is functionally is similar to a Base Station in a GSM network.

82 3 GSM, GPRS and UMTS

3G GGSN3G SGSN3G MSC/VLR

RNC RNC

Node B Node BNode BNode B Node BNode B

Uu

GnGs

Iur

Iub

Iu

U
T
R
A
N

PSTN/ISDN Internet

Fig. 3.13 UTRAN architecture

The rest of the GSM and GPRS network entities like MSC, SGSN, HLR, etc., are
extended to adapt to UMTS requirements. So, all three service, GSM, GPRS and
UMTS are integrated into overall network having interfaces A, Gb, Abis and the
new interface Iub and Iur. Where Iub and Iur respectively represent the interfaces
between a RNC and a Node B and between two RNCs. These two interfaces are open.
So, RNC and Node B may be brought from different vendors and can be connected
via Iub interface.

UTRAN communicates with CN via Iu interface which has two components,
namely, Iu-CS and Iu-PS. Iu-CS supports circuit switching services whereas
Iu-PS supports packet switching services. Iu-CS connects RNC to MSC in a similar
way as GSM-A interface does. Iu-PS connects RNC to SGSN as the interface Gb
does in GPRS. The interface, Iur, between two different RNCs has no equivalent in
GSM network. RNC enables autonomous Radio Resource Management (RRM). It
handles the exchanges of control messages across Iu, Iur and Iub interfaces besides
being responsible for the operation and maintenance of RNS elements. The user’s
packetized data coming from Iu-PS, and the circuit switched data coming from Iu-CS
are multiplexed together for multimedia transmission via Iur, Iub and Uu interface
to and from the user’s equipment. The last two interfaces, Iu and Uu are also open
interface. Thus, UMTS has four new open interfaces, viz., Iub, Iur, Iu and Uu.

The functionalities of a RNC can be grouped into two, RRM, and control function.
It uses Iur interface to autonomously handle RRM relieving CN from the burden of
RRM. RRM consists of a set of algorithms which determines a stable radio path and
also assures QoS through efficient sharing and managing of the radio resources. The
control functions comprise of certain support functions for RRM, setup, maintenance

3.6 UMTS 83

and release of the radio bearers. All serving control functions such as call admission,
handoffs, congestion, etc., are managed by a single RNC. This RNC is called Serving
RNC (SRNC). Thus SRNC terminates Iu link for both UE and Radio Network Access
Application Part (RNAAP) signaling to and from CN. The RNCs which control the
cells used by an UE are known as Drift RNCs (DRNCs). When a handoff occurs,
one of the DRNCs becomes the SRNC. So, a DRNC is involved in inter-RNC soft
handoff. A soft handoff is characterized by make before break. This means the UE
remains connected with the DRNC while connection is being established with SRNC.
So, at intervening time between connection establishment and completion of handoff
UE is actively connected to two RNCs.

Node B is the network entity which provides physical radio connection to UE in
a cell. It can be co-located with a GSM base station. Node B connects to UE via
WCDMA Uu radio interface and connects via Iub interface to RNC. The main task
of Node B is to convert data from Uu interface. It includes forward error correction,
rate adaptation, WCDMA spreading and despreading, and also quadrature phase
shifting key (QSPK) modulation on air interface. It also performs the measurement
of the quality of connection, determines the frame error rate, and communicates these
measurements to RNC for soft handoffs. Additionally, Node B assists in helping UE
for power adjustments on both on downlink and uplink.

The UMTS UE is equivalent to MS in GSM. It has a UMTS SIM (USIM) card. The
Mobile Equipment (ME) is enabled to receive UMTS service when it has a USIM. UE
has three classes of functions as counterparts for functions of Node B, RNC and CN
respectively. For example, Node B and UE participate for power control, radio mea-
surements, signal spreading/despreading, modulation and demodulation of signals.
Similarly, RNC and UE counterparts interwork for radio resource control, ciphering
and deciphering, handoff management. UE and CN counterparts collaborate for MM,
authenticity check, session management and QoS negotiation.

3.6.2 WCDMA

UTRAN air interface uses Wide Band CDMA (WCDMA). WCDMA is a DSSS based
CDMA where user’s data is spread over a wide band. A certain amount of power is
needed for transfer of information. Let this power be denoted by Pi . If Pi is spread
over a wide band then effective power requirement for information transmission over
a carrier frequency (small point in the band) is very low. Let it be denoted by Pe.

Pi =
∫
entireband

Pe

A small increase in Pe increases total power by a significant amount; and hence the
amount of information transmitted. Furthermore, the transmitted information, being
spread over a wide band by a pseudo random code, cannot be distinguished from

84 3 GSM, GPRS and UMTS

C1

C21 C22

C42 C41 C44 C43

1,1,-1,-1 1,1,1,1 1,-1,-1,1 1,-1,1,-1

1

1-,11,1

Fig. 3.14 Orthogonal spreading code for different spreading factors

noise. So, direct sequence spread spectrum (DSSS) is ideal for coded information
exchanges.

WCDMA uses a wider band than CDMA for spreading data signals. The data is
encoded twice before it is sent over air interface. The first encoding involves multi-
plication with channelization code. The channelization codes belong to Orthogonal
Variable Spreading Factor (OVSF) code family [14]. The orthogonality of OVSF
codes enables separation of different coded channels transmitted over the same air
interface. In the uplink direction this code is necessary to separate data and control
information from the same UE. In the downlink direction this encoding separates
different users in the same cell. With OVSF codes it is possible not only to main-
tain orthogonality of codes with different spreading factors (different lengths), but
also to support different user data rates. The orthogonal spreading code of different
spreading factors can be constructed from a binary tree form as shown in Fig. 3.14.

The recursive formula for generating this code can is as follows:

c2n =

⎛
⎜⎜⎜⎝

c2n,1

c2n,2
...

c2n,2n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

(
cn,1 cn,1
cn,1 −cn,1

)
(
cn,n cn,n
cn,n −cn,n

)
⎞
⎟⎟⎠

The second encoding step is a scrambling process. It does not expand the required
bandwidth, but it just rearranges the bit order. In uplink direction, scrambling helps
to distinguish between UEs, and in downlink it becomes necessary to distinguish
between different cells of same base station. The scrambling codes belong to Gold
family [15]. Each code has a length of 10 ms resulting in a code of length 38400
chips if a 3.84 Mcps chip rate is used.

3.6 UMTS 85

Fig. 3.15 Elimination of
near far effect

M1 M2

Tall building

15mW
3mW

Wm03Wm03

(a) Near far condition

M1 M2

Tall building

5mW 5mW

Wm05Wm01

(b) Power control eliminates it.

WCDMA incorporates functions for control of multiple radio accesses and their
users. The four main functions among these are power control, soft and softer hand-
offs, admission control and congestion control.

The biggest disadvantage of DSSS is the near-far effect. All stations may be
transmitting at the same time. Since, every station has a different code, simultaneous
transmission is possible. However, a receiver may be unable to detect weaker signals
due to the presence of a stronger signal. Figure 3.15a depicts the condition for near
far effect. It shows two transmitters (mobile stations M1 and M2) are transmitting at
the same time to a base station (BS). As signal strength decays according to inverse
square law. Therefore, even if M1 and M2 transmit their respective signals at the same
strength, the received signal strength from M1 is much lower than the received signal
strength from M2. It happens due to the fact that M2’s distance is more than M1’s
distance from BS. Furthermore, M2’s signal experiences blocking due to tall objects
like office buildings as depicted in the figure. The near far effect can be eliminated
by power control. The idea is to equalize the received signal strengths from various
transmitters. For example, suppose initially

1. M1 transmits its signals at 30 mW, and the received signal strength at BS is 15 mW,
and

2. M2 transmits its signals at 30 mW and the received signal strength at BS is 3 mW.

M1’s signal strength is cut to half when it is received at BS. On the other hand, M2’s
signal strength is reduced by a factor 10 when it reaches BS. Suppose BS determines

86 3 GSM, GPRS and UMTS

that the received signal strength of 5 mW is sufficient for it. BS should asks M1 to
adjust their respective transmission powers to equalize the received signal strengths.
So, M1 decreases its transmission power to 10 mW, and M2 increases transmission
power to 50 mW.

So, the major challenge in WCDMA is to design power control algorithms that
maintain all signals having same power level at the receiver. Figure 3.15b shows
near-effect can be nullified by power control mechanism. The idea is to reduce power
output from transmitter C1 which is close to BS, so that the received signal strengths
from both C1 and C2 are equal.

The shared downlink in WCDMA resource consists of transmission power and
channelization codes in Node B (UMTS analogue of BS in GSM), while in the uplink
the shared radio resource basically the involves management of user interference at
BS. As indicated above, power control regulates transmission power of terminal and
minimizes interference of multiple users using the same carrier frequency. More
users could be accommodated in the same frequency, by proper adjustment of trans-
mission power. In summary, power control helps to establish good quality link over
time between the user and the base station regardless of the distance between the
two. The adjustment of transmit power is done by comparing the current Signal-to-
Interference Ratio (SIR) with a target SIR. Additionally, power control can help in
cell breathing [16]. Cell breathing defines the balance between the coverage and the
capacity. With a small number of users, good quality can be achieved over a long
distance. So the cell size can be large. As the number of users becomes large, the
users must come closer to base station to get a good quality link, or equivalently the
cell size should be small.

WCDMA does not place a hard limit on network capacity. So, the entry of a new
user is welcome as long as a code is available for that user. But entry of a new user
will cause interference level to go up. Thus the capacity is physically bounded by
the rise in noise level due to increased load on the system. So, the cell breathing
gets reduced. The admission control is a mechanism which reduces overloading of
the system [11] and avoids reduction in cell breathing. It permits or denies the new
connection on the basis of admissible load of the network. The admission control is
employed in both uplink and downlink because of the system’s capability for serving
different services with different requirements related to capacity and quality.

Hdandoff as explained in Sect. 3.6.3 is an important part of a cellular communi-
cation system which provides the basic mobility support to a user with an active con-
nectivity. Soft and softer handoff types are supported when WCDMA uses frequency
division duplex (FDD) mode. WCDMA uses two duplexing methods, time division
duplexing (TDD) and FDD. FDD needs paired frequency bands for downlink and
uplink, whereas TDD needs unpaired frequency bands. TDD does not allow large
propagation delay between transmission and reception as it could cause collision
between transmit and receive time slots. So, TDD can be suitable for environments
with low propagation delays, and for small cells [11]. One advantage of TDD mode
is that a large asymmetry is possible between uplink and downlink rates. With care-
ful network planning, TDD mode can be used for applications that derive advantage
out of asymmetry between downlink and uplink, web browsing is an example of

3.6 UMTS 87

such an application. Handoff strategy in WCDMA depends on the duplexing mode.
Since, UMTS combines with GSM-GPRS network, handoff type will depend on the
interface being used.

The basic idea in executing a soft or a softer handoff is to choose a data stream that
will provide the best connection quality. The final signal in WCDMA is constructed
by summing up the signals from different sources. Two combining operations viz.,
micro diversity and macro diversity are employed for the same. In WCDMA, the
Node B receiver uses a rake receiver. A rake receiver is a system of multiple small
receivers, called fingers, designed to counter multipath fading. A signal on radio path
is reflected from trees, buildings, ground and even water. At the receiving end many
copies of the same signal reach with a different phase and time. Each finger of a rake
receiver decodes a different multipath component. Then contributions of all fingers
are combined to make best use of different transmissions in each of the transmission
path. This combining process is known as micro-diversity. So, Node B functions as
a micro diversity point and summed up signal is used. A UE may get signals from
different cells. These cells constitute its active set. So, an UE may also use cells
belonging to different Node Bs. Therefore, macro diversity also exists at RNC level.
But RNC does not have a rake receiver. So combining signal at RNC should use
some other approach like quality of data. Thus the two combining techniques micro
diversity at Node B and macro diversity at RNC level help to counter multi path
fading effects and help to determine which data stream will provide the best quality.

At times, even with admission control, the system may get overloaded. This can
happen due to excessive movements of UEs. When the system load exceeds a thresh-
old, congestion control measures are activated. It consists of following techniques.

1. Reducing bit rate of services that are insensitive to increase in delays.
2. Inter-frequency handoffs.
3. Handoffs for moving the users to GSM.
3. Dropping connections.

All the above mentioned measures attempt to prevent degradation of the quality of
the user’s experience in an overloaded cell untill congestion problem is solved. If the
first action fails to work, the next action is to move some of the users to less loaded
alternative frequencies. If inter-frequency handoff does not help, then third action
is to move some users to GSM. The final and drastic action is to drop some of the
connections, so that the quality on the remaining connections does not degrade.

The UMTS CN is responsible for handling all communication services. It includes
switching of circuit-switched calls and routing of data packets. CN offers function-
alities in two domains, Circuit-Switching (CS) domain and Packet-Switching (PS)
domain. The entities specific to CS domain in CN are MSC, Media Gateway (MGW),
and GMSC. The functions of these entities have been discussed earlier in connection
with GSM network.

CN offers PS type connection in PS domain. A PS type connection transports
user’s information by dividing it into equal sized blocks of concatenated bits or
packets. These packets are reassembled at the receiver end to provide the actual
information. The two basic entities of CN in PS-domain are derived from GPRS core

88 3 GSM, GPRS and UMTS

network nodes SGSN and GGSN. The functions of these entities have been discussed
under GPRS. UMTS CN supports four QoS classes of communication as explained
earlier.

The IP Multimedia Subsystem (IMS) represents the entities of CN that provision
for multimedia services in UMTS. The task of provisioning includes the collection
of signalling and the bearer related network multimedia services. These services are
based on IETF defined session control capabilities [17]. IMS consists of three main
logical functions, namely, Call Session Control Functions (CSCF), Media Gateway
Control Function (MGCF) and the Media Gateway (MGW). A Home Subscriber
Server (HSS) is also introduced to keep the profile of the user function in a similar
way as the HLR does in GPRS.

3.6.3 Handoffs in UMTS

The possible handoff types in UMTS are:

• FDD soft/softer handoff
• FDD inter-frequency hard handoff
• FDD/TDD handoff (change of cell)
• TDD/FDD handoff (change of cell)
• TDD/TDD handoff
• Handoff to UMTS (from GSM)
• Handoff to GSM

In FDD mode, WCDMA supports two types of handoffs, viz., soft and softer. The
user equipment (UE) is allowed to use two air interfaces in overlapping areas of two
adjacent cells. In soft handoff the user’s equipment is simultaneously connected to
two or more cells on the same frequency with two or more base stations.

Normally a soft intra-frequency handoff takes place in softer handoff. It occurs
between different carrier frequencies in a high capacity area. Handoffs enable the
User’s Equipment (UE) to maintain a good quality active connection while moving
between cells. In reality softer handoff is not a handoff. For softer handoff, the UE
combines more than one radio link to improve the quality of signal. Node B combines
the data from more than one cell to obtain good quality data from the UE. A UE can
simultaneously support up to eight radio links, though actual number of links depends
on the number of fingers in the rake receiver. Typically four links are simultaneously
accessible to a UE. A radio connection initially established in one cell. The network
then initiates intra-frequency measurements to determine if the UE can connect to
another cell for improving the quality of data exchanges between itself and the RNC.
On finding a suitable cell, active set update procedure is executed. It adds and deletes
one or more radio links to active set of the UE. The process of update is such that
at least one common link is always present. Figure 3.16 depicts the softer handoff
scenario.

3.6 UMTS 89

(a) Involving one Node B.

(b) Involving different Node B.

RNC

Node B1 Node B2

Iub Iub

RNC

Node B1 Node B2

Iub Iub

Fig. 3.16 Softer handoffs in WCDMA FDD mode

90 3 GSM, GPRS and UMTS

RNC RNC

Node B1

Node B1

Node B1

Node B1

Iur
Iu
b

Iu
b

Iu
b

Iu
b

Fig. 3.17 Soft handoff in WCDMA FDD mode

Soft handoff is same as softer handoff except that cells involved belong to more
than one Node B. In this case combining of link measurements is done by RNC.
Softer handoff becomes a bit complicated when it involves between cells under
different RNCs. In this case, an Iur connection is established by Drift RNC (DRNC)
(from where the UE moved) and data is transferred to Serving RNC (SRNC). Since
handoffs are initiated by RNC, the core network is not burdened to handle them.
Figure 3.17 illustrates the soft handoff scenario.

Hard handoff is characterized by break before make. It means the current con-
nection is snapped before new connection is established. It exhibits a temporary
interruption in connectivity. Intra-frequency hard handoff occurs in TDD mode. In
this case channelizing code and scrambling code for the UE would change, but the
frequency is unchanged. Inter-frequency hard handoff requires that the UE should
be capable of supporting more than one frequency. Handoff process can be initiated
either by the network or by the UE. Normally network initiates it through radio
bearer control messages. The UE initiated handoff occurs when the UE performs a
cell update and sends this to the RNC on a different frequency from the one it is
connected.

3.6.4 UMTS Interface Protocol Model

The generic UMTS protocol model is structured as a set of horizontal and vertical
layers as shown in Fig. 3.18. The horizontal layering separates the generic transport
related issues from the UMTS specific issues related to air interface. The bottom
most layer is called Transport Network Layer (TNL). It is responsible for general
purpose transport services to all UMTS network entities across the interfaces. The

3.6 UMTS 91

remaining layers, namely, Radio Network Layer (RNL) and System Network Layer
(SNL) are responsible for UMTS specific functions among the network elements.
Usually the control data and the user data are also distinguished by creating vertical
separations across all three horizontal layers. The functions related to transfer of
control data are referred to as control plane functions and those related to transfer of
user data are known as user plane functions.

The TNL functions handle transport and routing of both control and user data
across all network interfaces. The TNL protocols can be further divided into two lay-
ers: physical layer and data link layer. The physical layer of UMTS radio interface
is based on WCDMA technology, whereas the physical layer of the UMTS terres-
trial interfaces can be based on a different transmission technology such as ATM.
The transport layer protocols and its interworking across both radio and terrestrial
interfaces are shown in Fig. 3.19.

In UTRAN, the data generated at the higher layers are carried over the air interface
by different physical channels. The transport channels are unidirectional which can
be either shared by multiple users or dedicated to a few selected users. SRNC is
responsible for the radio interface activities of the UE on the WCDMA transport
channel. The nodes labeled B only maintain the WCDMA physical channels.

control plane

Radio Network Layer

control plane

Transport Network Layer
user plane

control plane

user plane

user plane
System Network Layer

Fig. 3.18 The UMTS protocol model

Fig. 3.19 UMTS transport
network protocols and
interfaces

MAC

Tr
an

sp
or

t

W
C

D
M

A
la

ye
r 1WCDMA

layer 1

FP

RLC RLC
MAC

Tr
an

sp
or

t

Tr
an

sp
or

t
la

ye
rs

Tr
an

sp
or

t
la

ye
rs

FP

Iub IuUu

UE Node B SRNC CN

92 3 GSM, GPRS and UMTS

The data link layer over the Uu interface is defined by two link layer protocols,
namely,

1. Medium Access Control (MAC), and
2. Radio Link Control (RLC).

The responsibility of MAC protocol is to map logical channels onto the appropriate
transport channels depending on the type of data to be transported. RLC is responsible
for segmentation and reassembly of variable-length higher layer Protocol Data Units
(PDUs) into a number of RLC-PDUs. It also provides for packet retransmission
to handle transmission errors. On the control plane, the RLC services known as
signalling Radio Bearers, are used by the RRC network layer. On the user plane,
RLC services are used by the service-specific protocol layers such as Packet Data
Convergence Protocol (PDCP) on the PS domain.

The terrestrial part of TNL use existing protocols from ATM and TCP/UDP/IP
family of protocols. These non UMTS protocols are included on the stack along with
some adaptation protocols such as GPRS Tunneling for IP or AAL(n) for ATM. IP
based transport is applied only for PS domain user plane traffic in backbone network
and at the Iu interface. But ATM transport protocol dominates in UTRAN side.

3.6.5 Radio Network Layer

The fundamental task of UTRAN radio interface protocols is multiplexing traffic
flows of different kinds from different sources. The layering applied to RNL is
dictated by the distinct responsibilities assigned to the layers in terms of OSI model.
However, the layers named simply as layer 1, 2 and 3, and should by no means be
considered as equivalent to the three lowest layers of OSI model. The three layers
are:

1. Radio physical layer
2. Radio link layer
3. Radio network layer

The physical layer provides services as a set of WCDMA transport channels. So, the
physical layer performs initial multiplexing task, i.e., mapping flows between trans-
port channels to WCDMA physical channels in both forward and reverse directions.

The overall layering architecture of the RNL protocols is depicted in Fig. 3.20
The radio link layer is another multiplexing layer. However, it does not make any
significant contribution to dynamic sharing of the capacity in WCDMA radio inter-
face. Its job is to provide a kind of wrapper service, so that upper layer gets a unified
view of existence of a set of radio bearers on which different types of traffic can be
carried over the radio. The medium access control (MAC) sublayer controls the use
of the transport block by ensuring that the allocation decisions (done on UTRAN
side) are enforced on both ends of the radio interface. The Radio Link Control (RLC)

3.6 UMTS 93

Fig. 3.20 Radio network
layer protocols

Physical layer

MAC layer

Radio Link Control layer

logical channels

user plane
radio bearers

RRC

control plane
radio bearers

user planecontrol plane

transport channels

PDCP
BMC

control

sublayer provides link layer functionality to the logical channels provided by MAC
sublayer. RLC includes some adaptations in usual link layer functions to cater to the
special characteristics of radio transmission. Network layer protocols operating on
the top of RNL create communication service for the UEs over the communication
paths maintained by RNL. The control plane protocols which control communication
between UEs and CN comprise of two sublayers. The lower sublayer is responsible
for Mobility Management (MM). The top sublayer operating on the top of MM con-
sists of a number of service specific communication management protocols such as
Session Management, Short Messaging Service, Supplementary Service (SS).

References

1. G.T.G.S.M. Specifications, 02.34. High speed circuit switched data (HSCSD), Stage 1. Version
5(2) (1997)

2. A. Furuskär, S. Mazur, F. Müller, H. Olofsson, EDGE: Enhanced data rates for GSM and
TDMA/136 evolution. IEEE Pers. Commun. Mag. 6(3), 56–66 (1999)

3. J. Cai, D. Goodman, General packet radio service in GSM. IEEE Commun. Mag. 35(10),
122–131 (1997)

4. H.P. Luhn, Computer for verifying numbers, US patent US2950048 A, August 2005
5. T. Russell, Signaling System #7, 4th edn. (McGraw-Hill, New York, 2002)
6. B. Gharibi, L. Logrippo, Understanding GPRS: The GSM packet radio service. Comput. Netw.

34, 763–779 (2000)
7. C. Bettsetter, Mobility modeling in wireless network categorization, smooth movement, and

border effects. ACM SIGMOBILE: Mob. Comput. Commun. Rev. 5(3), 55–66 (2001)

94 3 GSM, GPRS and UMTS

8. J. Eberspächer and H.J.Vögel, GSM Switching, Service and Protocols (John Wiley, 2001)
9. V. Perira, T. Sousa, P. Mendes, and E. Monteiro, Evolution of mobile communications: from

voice calls to ubiquitous multimedia group communication. In The 2nd International Working
Conference on PerformanceModelling and Evolution of Hetergeneous Networks (HT-NET’04)
(Yorkshire, UK, 2004)

10. A. Scrase, J. Meredith, and E. Group, Overview of 3GPP release 99: Summary of all releases
99 features, Version 05/03/04 (2004)

11. E. Dahlman, S. Parkvall, and J. Sköld, 4G LTE/LTE-Advanced for Mobile Broad Band (Aca-
demic Press, Elsevier, 2011)

12. ETSI. 3GPP a global initiative: The mobile broadband standard. (2001), http://www.3gpp.org/
specifications/releases/76-release-4

13. H. Kaarnen, A. Ahtianinen, L. Laitinen, S. Naghian, V. Niemi, UMTS Networks: Architecture
(Mobility and Services, Wiley Online Library, 2001)

14. B.D. Andreev, E.L. Titlebaum, and E.G. Friedman, Orthogonal code generator for 3g wireless
transceiver. In GLSVLSI’ 03 (Washington DC, USA, April 2003) pp. 28–29

15. R. Gold, Optimal binary sequence for spread spectrum multiplexing. IEEE Trans. Inf. Theor.
13(4), 619–621 (1967)

16. V. V. Veeravalli and A. Sendonaris, The coverage capacity tradeoff in cellular CDMA system.
IEEE Transaction on Vehicular Technology (1999) pp. 1443–1451

17. J. Rosenberg, H. Schulzrinne, G. Camarillo, J.P. Johnston, R. Sparks, M. Handley, and
E. Schooler, SIP: Session initiation protocol. RFC-3261 (2002), http://www.ietf.org/rfc/
rfc3261.txt

http://www.3gpp.org/specifications/releases/76-release-4
http://www.3gpp.org/specifications/releases/76-release-4
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

Chapter 4
Wireless Local Area Network

4.1 Introduction

All radio communication technologies are developed on cellular architecture. How-
ever, the major technological hurdle in use of radio communication is the ability to
build seamless convergent solutions for mobile users. Availing services across het-
erogeneous networks is still a problem for mobile users. The numerous challenges
encountered in this respect are mainly due to the following reasons.

1. Multiple access technologies, and administrative domains.
2. Multiple types of services such as voice, data, video, etc.
3. Availability of services every where and all the time.
4. Efficient delivery of traffic.

From the stand point of application development and convenience of usages, inno-
vations in building convergent solutions are more important than the discovery of
new networking technologies. Still availability of new networking technology would
eventually lead to easy and efficient implementation of convergent communication
solutions in overcoming heterogeneity of networks. Thus, a sound understanding of
wireless network is an important starting point for developing exciting new applica-
tions for mobile computing systems.

In general, wireless data networks can be divided broadly into four different
categories based on their intended use.

1. Wide area networks (WANs) are created and maintained by cellular carriers.
WANs can be viewed as connectionless extensions to circuit switched networks,
created in order to facilitate communication between persons and groups belong-
ing to geographically dispersed locations spread over large areas, such as across
cities or across countries. The main utility of WANs lies in connecting different
LANs and MANs, so that computers and users of one domain can communicate
with computers at different domains located far apart.

2. Metropolitan area networks (MANs) are created and maintained as a backbone
network technology for interconnecting a number of local area networks or LANs.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_4

95

96 4 Wireless Local Area Network

Its coverage spans a large geographical area such as a city or a block of buildings
spread over a sufficiently large physical area or a campus.

3. Local area networks (LANs) are created and maintained by small institutions
or organizations for close communication related to professional interactions,
collaboration between persons and groups belonging to an institution or an orga-
nization.

4. Personal area networks (PANs) are created by individuals, usually self-organize,
self-maintained. PANs are exclusively for person centric communication with
interfaces to local neighborhood and the rest of the world.

Though both WLAN and PAN are based on short range radio transmission tech-
nologies, the two have distinct domains of applications. PAN applications typically
require low volume, more secure transmission compared to WLANs. Therefore, low
range radio transmission technologies such as Bluetooth or ZigBee, are ideally suited
for person centric data services as needed by PANs.

In contrast, GSM is the core radio based transmission technology for the applica-
tions that require data service over WANs. GSM offers very low speed data service,
because mobility management in wide area network is the main focus in GSM. GPRS,
EDGE, HSCSD standards which were developed around GSM provided enhanced
data rates over WANs by creating packet based network extensions to conventional
circuit switched connection of the GSM network.

GSM, GPRS and UMTS have been discussed in the previous chapter. We plan
to study PAN separately in Chap. 5 while limiting the focus of the current chapter
to the principles and the theories on which wireless LANs are established and used.
In order to organize this chapter as a precursor to subsequent discussion on wireless
networks, we also take closer looks at: (i) how mobility affects the data rates, and
(ii) the details of standards for different wireless networks.

4.2 Mobility Support and Wireless Networks

Figure 4.1 gives a brief introduction on the relationship of achievable data rates with
mobility support. WLAN supports only slow mobility while WAN (GSM/wideband
cellular) supports range of mobilities starting from discrete and slow to continuous
fast (vehicular) mobility. For example, PAN, implemented over Bluetooth, supports
slow mobility in an enclosed room, and lies somewhere between fixed and slow
mobility (no more than the speed of walking). The mobility in Bluetooth is neither
fully controlled nor discrete like in wired LAN. Though wired LAN is fixed, with
DHCP, it can provide very limited discrete and slow mobility. A user can access
network resources by moving to different locations within a single network adminis-
trative domain by changing the terminal’s point of attachment with the wired network
through DHCP.

Wide area network data services are typically based on telephone carriers, and built
over the new generation voice plus data networks. It offers continuous fast mobility

http://dx.doi.org/10.1007/978-981-10-3941-6_5

4.2 Mobility Support and Wireless Networks 97

Bluetooth Fixed Wired LAN

DHCP: Discrete slow mobility

WCDMA

GSM
Sl
ow

m
ob
ili
ty

Fa
st

m
ob
ili
ty

No mobility

Wireless LAN

1Mbps 10Mbps 54Mbps 1000Mbps

Fig. 4.1 Mobility supports on LAN and WAN

at a vehicular speed. So, GSM and wideband cellular data services has become as
ubiquitous as voice calls over the cell phones. Over WANs, the reachability of the
data is more important than the quality of the data. The cost of infrastructure sup-
porting WAN services is very high. So, data services over WANs are more expensive
compared to those offered through WLAN or Bluetooth.

Wireless MAN (WMAN) is used mainly as a back haul network connecting dif-
ferent wireless LANs. It is ideal for a broadband wireless point to point and point to
multipoint connectivity. So, WMAN serves as alternative to cable and DSL modem
for last mile broadband access. It can support a few other interesting applications
such as IPTv and VoIP. WMAN is based on industry standards known as WiMAX [9]
(Worldwide Interoperability for Microwave Access) as it works on Microwave band.
There are two variants of WiMAX, one operating in unlicensed frequency band 2–11
GHz while the other operating on licensed band 10–66 GHz. WMAN offers a range
up to 50 km and data rate up to 80 Mbps.

Wireless LAN is supported usually by wired infrastructure and provide one-hop
wireless connectivities to the clients within a small distance. The typical coverage
area could be a university, small enterprise, hospital, airport, etc. Considering the
requirements of the clients, wireless LAN should support high data transfer rates as
opposed to WANs. WLANs operate on the unlicensed part of the wireless communi-
cation spectrum. Its range may spill over to the streets and exposed to vulnerability
if the placement of access points are not planned carefully.

In contrast, Bluetooth allows wireless accessibility in enclosed rooms and offers
some sort of a physically supervised access. For example, the room access may be
through passkey/card, and the devices could either block visibilities through software
or demand pass keys for allowing access. Accessories like keyboard, mouse, etc.,

98 4 Wireless Local Area Network

Table 4.1 Summary of wireless communication technologies

Networks PAN LAN MAN WAN

Standards Bluetooth 802.11a/g/b 802.16 GSM/GPRS,
CDPD, CDMA

Speed <1 Mbps 1–54 Mbps 22+ Mbps 10–384 kbps

Range Short Medium Medium-long Long

Applications P-to-P Enterprise
network

P-to-P and
P-to-MP

PDA/mobile
cellular access

can be connected to a computer without cables using Bluetooth. Computers can
also be connected to cell phones, or cell phones to head sets over Bluetooth. PANs
sometimes termed as ad hoc networks, since they do not depend on pre-existing
network infrastructure for connectivity. The participating nodes connect in ad hoc
fashion when they are in range of one another. The network disappear as participating
nodes move away. PANs like WLAN also support one hop communication and can be
seen more as value addition to WLANs. They should not be confused with wireless
ad hoc network which are multi-hop network and their usability is independent of
WLANs.

The usage of different wireless communication technologies characterized by
speed, range and applications are summarized in Table 4.1.

4.3 WLAN Standards

Wireless local area network or WLAN extends a wired infrastructure network by
attaching devices known as wireless Access Points (APs). An AP provides network
connectivity for a short distance, up to 500 m in the clear air. Multiple number of
clients can connect through one access point. WLAN may, therefore, be viewed as
a point to multi-point communication technology much like a community radio net-
work. The architecture of WLAN is not just for replacement of cable, it also provides
untethered broadband internet connectivity. It is a solution for coverage of hot spots
like airports, university campus, hospitals, convention centers, government/corporate
offices, plants, etc. CISCO, Intel, IBM, Apple are among the companies which manu-
facture equipment and accessories to setup WLANs. WLAN can support significantly
lower data transfer rates between 11 and 54 Mbps. The latest WLAN standard IEEE
802.11n [7] could offer speed up to 300 Mbps. As opposed to WLANs, Wired LANs
can support data rates between 100 and 1000 Mbps. Most high performance comput-
ing platforms rely on wired LANs that can reach peak transfer rates up to 40 Gbps
over point-to-point connections.

4.3 WLAN Standards 99

4.3.1 IEEE Standards

WLANs mostly use wireless Ethernet technology based on IEEE 802.11 stan-
dards [6]. There are three well known operational standards for WLANs, namely,
IEEE 802.11a, IEEE 802.11b and IEEE 802.11g. IEEE 802.11 standard was first
proposed in 1997. After two years in 1999, IEEE 802.11b [13], known popularly as
WiFi, was released. It uses 2.4 GHz unlicensed spectrum, and supports the transfer
rates in the range of 5–11 Mbps. IEEE 802.11a was also released around the same
time. The industry name for the implementation of IEEE 802.11a is WiFi5 because
it uses the frequency spectrum in 5 GHz band. It uses more efficient transmission
method called Orthogonal Frequency Division Multiplexing (OFDM) in its physical
layer for better performance. In 2003, IEEE announced 802.11g standard in 2.4 GHz
band using OFDM. It supports a raw data rate of 54 Mbps as against 11 Mbps by
802.11b. As both 802.11g and 802.11b operate in same 2.4 GHz band, they are com-
patible to each other. Total of 14 overlapping channels exists at a spacing of 5 MHz
from the left outer band edge as shown in Fig. 4.2. Since each channel width is
22 MHz, and the center frequency fc of channel 1 is 2.412 GHz, the upper frequency
fu of channel 1 must be 2.423 GHz. This means any channel whose lower frequency
fl is higher than 2.423 GHz would be non-overlapping with channel 1. Since, chan-
nel 6’s fl = 2.426 GHz, channel 6 is non-overlapping with channel 1. Similarly
fu = 2.448 GHz for channel 6, and fl of channel 11 is 2.451. So channel 11 is non-
overlapping with 6. Therefore, in IEEE 802.11b supports just three non-overlapping
channels, namely 1, 6 and 11, and uses transmit spectrum mask to limit power leak-
age to the adjacent channels. It causes the energy outside ±11 MHz around the center
frequency fc to drop down by 30 dB relative to the peak energy at fc. Similarly, the
signal must attenuate by at least 50 dB outside ±22 MHz around fc relative to peak
energy at fc. Note that this may still cause some amount of interference in adjacent
channel.

2

3

4

2412

2417

2422

2427

24325 2457

2452

2447

2442

24376

7

8

9

10

13

14 2484

2472

2467

2462

12

11

2401 2495

1

Fig. 4.2 Channelization of 2.4 GHZ band for WLAN

100 4 Wireless Local Area Network

IEEE 802.11a is particularly well suited for multiple users running applications
that require high data rates. It supports a maximum raw data transfer rate of 54 Mbps.
802.11a is designed originally for three distinct subbands 5.15–5.25, 5.25–5.35 and
5.725–5.825 GHz. This implies that every 40 MHz channel spans over 4 channel num-
bers. The lower and middle subbands have total of eight carriers of width 40 MHz
at 20 MHz spacing. The upper subband has four carriers also at 20 MHz spacing.
The outermost channels in lower and middle subbands are at 30 MHz spacing from
the band edges. Figure 4.3 illustrates the channelization scheme. However, the out-
ermost channels in the upper subband are at 20 MHz spacing from the band edges.
Channelization for the upper subband is illustrated by Fig. 4.4. A spectral mask is
used in 802.11a to limit the power leakage into the adjacent channels. The power
output drops down sharply after a spacing of 9 MHz on both the sides of central
frequency. After 11 MHz spacing from the central frequency, the power output goes
down steadily and becomes as low as −40 dB at ±30 MHz from the central frequency
fc as shown in Fig. 4.5. In Europe the lower and the middle segments are free, so a
total of eight non-overlapping channels are offered. Each channel is of width 20 MHz
centered at 20 MHz intervals. Since, 802.11a uses OFDM, it can employ multiple car-
riers. OFDM is based on the inverse idea of code division multiple access (CDMA).
CDMA maps multiple transmissions to a single carrier whereas OFDM encodes
a single transmission into multiple sub-carriers. OFDM is able to use overlapping
sub-carriers because one can be distinguished from the other due to orthogonality.
However, 802.11a was not as popular as 802.11b. Due to higher frequency, the range
of 802.11a network is short compared to that of 802.11b. It covers just about one
fourth of the area covered by 802.11b. Furthermore, 802.11a signals cannot penetrate
walls and other obstructions due to shorter range. The use of 802.11a, thus, never
really caught on.

30 MHz 30 MHz

5150 5180 5200 5220 5240 5260 5280 5300 5320 5350

 40 MHz

Fig. 4.3 Lower and middle subband channelization scheme for 802.11a

Fig. 4.4 Upper subband
channelization scheme for
802.11a

 40 MHz

20 MHz 20 MHz

5725 5745 5765 5785 5805 5825

4.3 WLAN Standards 101

-40

-28

-20

0

-30 -20 -11 -9 3020119

Power in dB

fc

Fig. 4.5 Transmit spectrum mask

The IEEE 802.11b standard, using DSSS as physical layer, sets aside 14 channels
for WLAN usage. But the governmental restrictions in different countries may not
allow the use of certain channels. USA and Canada allow channels 1–11, most of
Europe except Spain and France allow 1–13 channels. Where Japan allows all 14
channels for WLAN usage. France allows four (10–13) and Spain allows only two
(10–11) channels for WLAN. The channels are overlapping. For avoiding adjacent
channels rejection at the receiver end, there should be a gap of 30 MHz between
neighboring channels. The center frequencies (the actual channel frequency used for
communication between a receiver and transmitter) are located at 5 MHz intervals.
According to the adjacent channel rejection demand, there should be five channels
in-between to avoid interference caused by the neighboring access points. So, out of
fourteen channels, at most three are non-overlapping. In other words, at most three
access points can be placed adjacent to one another.

IEEE 802.11n is a relatively new standard, finalized in 2009 [7]. It could achieve
higher transfer rate by relying on multiple input and multiple output (MIMO) anten-
nas [15]. It operates on both 2.4 and 5 GHz bands. IEEE 802.11n allows up to four
transmit and four receive antennas. The number of simultaneous data streams is
restricted by the minimum number of antennas used on both ends of a connection.
The notation n1 × n2 : n3, where n3 ≤ max{n1, n2}, is used to describe a MIMO
antenna’s capabilities. The first parameter n1 gives the maximum number of trans-
mit antennas, the second parameter n2 specifies the maximum number of receive
antennas that can be used by the radio. The third parameter n3 restricts number of
spatial data streams that can be used by the radio. That is the number n3 indicates that
the device can only send or receive on n3 antennas. Therefore, on a 2 × 2 : 2 radio a
device have two receive and two transmit antenna, however, only two simultaneous
data streams can be supported.

A summary of physical properties of different IEEE standards for wireless local
area network appears in Table 4.2.

102 4 Wireless Local Area Network

Table 4.2 Physical properties of IEEE standards for WLAN

Standard IEEE 802.11a IEEE 802.11b IEEE 802.11g

Bandwidth
(Mbps)/Chanl. width
(MHz)

300/20 83.5/22 83.5/22

Basic N/W sizea 254 254 254

Maximum packet size 104 B 341 B 2048 B

Inter-node range 10m 1–10m 1 m

Protocol stack size 4–32 kB >250 kB ≈425 kB

Number of channelsb 12/8 11/3 11/3

Maximum raw data
rate Mbps

54 11 54

Modulation OFDM DSSS/CCK DSSS/PBCC

Topology BSS BSS BSS

Architecture

Protocol CSMA/CA CSMA/CA CSMA/CA

Traffic type Text Text, audio,
compressed video

File, and object
transfers

Battery life Years Days Months

Success matrics Reliability, low power,
low cost

Low cost, low latency,
convenience

Reliability, secured,
privacy, low cost

Application Sensor network Consumer electronics,
cell phones

Remote control

a0 and 255 are special addresses
bTotal and number of non-overlapping channels

4.4 Network Topology

IEEE 802.11 supports two basic topologies for wireless networks: (i) independent
networks, and (ii) infrastructured networks.

A single access point and all stations associated with this access point together
define a Basic Service Set (BSS). A BSS is different from the coverage area of an
access point which is referred to as a Basic Service Area (BSA). A Basic Service
Set IDentifier (BSSID) uniquely identifies each BSS. So, a BSSID can be seen as
analogous to a work group in Microsoft .NET environment. The MAC address of
the access point for a BSS serves as the BSSID for that BSS. Though MAC address
is machine friendly, a user will find it difficult to remember. It is, therefore, unfair to
expect that a user would provide BSSID to connect to a BSS. A user friendly name
known as Service Set IDentifier (SSID) is used to identify a BSS. An SSID is referred
to as a name of a WLAN or the network. Typically, a client can receive the SSID of
a WLAN from its access point. However, for security reasons, some wireless access
points may disable automatic SSID broadcast. In that case client has to set the SSID
manually for connecting itself to the network. An Independent BSS (IBSS) is an ad
hoc network that does not have an access point. In an IBSS every station should be

4.4 Network Topology 103

(a) Independent network topology.

Ethernet
segment

Firewall

Internet

(b) Infrastructured network topology.

Fig. 4.6 WLAN basic topologies

in range of each other. The first station which starts the network chooses the SSID
for IBSS. Each station in an IBSS broadcasts SSID by turn which is performed in a
pseudo random order.

Figure 4.6 depicts the two basic topologies described above. Independent network
services are available to the stations for communication within a small geographi-
cal coverage area called a Basic Service Area (BSA) much like a cell in a cellular
architecture. In the case of infrastructured network, the communication among nodes
is controlled by a distributed coordination function which will be discussed later in
Sect. 4.6. There are specialized nodes called access points (APs) through which wire-
less stations communicate. The communication can span over at most two wireless
hops. One from the sender to its AP, and the other from the AP of the receiver to
itself when both the sender and the receiver are wireless enabled. Both the receiver
and the sender may be linked to same AP or two different APs. APs essentially
act as relay points and vital to the WLAN architecture. The placement of the APs
should be planned in advance to provide coverage to the wireless stations. The plan-
ning should consider issues such as maximizing coverage, minimizing interferences,

104 4 Wireless Local Area Network

restricting blind spots (the areas with no wireless coverage), minimizing unwanted
signal spillovers, and maximizing opportunities for implementing the Extend Service
Set (ESS). ESS facilitates Internet connectivity for mobile nodes.

4.5 Physical Layer and Spread Spectrum

The purpose of a communication system is to transfer information. But transmission
in baseband suffers from many problems. Firstly, baseband signals, being limited
to few kHz, cannot fully utilize the bandwidth. Secondly, the noise due to external
interferences and electronic circuits reduce the signal to noise ratio at the receiver.
Thus, the receiver cannot receive the transmission properly. If the wire length is
shorter than wavelength (as in base band), the wire would act as an antenna. Con-
sequently, the biggest challenge originates from the requirement of infrastructure.
For example, if we want to communicate in a signal bandwidth of 3000 Hz, the
wavelength λ = c/3.103 = 3.108/3.103 = 100 km. The theory of antenna [5] tells
us that any conducting material can function as an antenna on any frequency. Fur-
thermore, the height antenna should be about one quarter of the wavelength in free
space on smooth flat terrain. So, with λ = 100 km, the required height of antenna
would be 25 km. Erecting vertical antennas reaching heights more than few meters
is impractical. However, with modulation it is possible to reduce the length of the
antenna which makes its erection practical. For example, if the signal is modulated
with a carrier wave at 100 MHz, then λ becomes c/108 m = 3 m. So, an antenna
height of (3/4) m = 75 cm would suffice for the communication.

4.5.1 Standard for PHY and MAC Layers

IEEE standards focus on the bottom two layers, physical (PHY) and medium access
control (MAC) of the OSI model [14]. The Logical Link Layer specification is
available in IEEE 802.2 standard. The architecture is designed to provide a transparent
interface to the higher level layers for the clients. The client terminals may roam about
in WLAN yet appear stationary to 802.2 LLC layer and above. So existing TCP/IP
remains unaffected and need not be retooled for wireless networks. Figure 4.7 shows
the different IEEE standards for MAC and PHY layers.

IEEE standards specify use of two different physical media for connectivity in
wireless networks, namely, optical and radio. Infrared (IR) supports wireless optical
communication. Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence
Spread Spectrum (DSSS) are meant for radio based connectivity. Both IR and FHSS
operate in 2.4 GHz band, while DSSS operates in 5 GHz band.

IR operates only in baseband, and is restricted to the Line Of Sight (LOS) oper-
ations. In order to minimize damages to human eye, IR transmission is restricted
to about 25 m. The LOS requirement restricts mobility. But diffused IR signal [11]

4.5 Physical Layer and Spread Spectrum 105

Infra Red(IR) 2.4GHz FHSS 2.4GHz DSSS 5GHz OFDM

802.11h/TGg Data
Spectrum

Managed 802.11a

802.11g/TGg Data
Rate Extension

6/9/12/18/22/24/
33/48/54 Mbps)802.11b TGb High

Data Rate Extension
(5.5/11 Mbps)

802.11 DSSS
(1/2 Mbps)

(1/2 Mbps)
802.11 FHSS802.11IR

(1/2 Mbps)

802.11g/TGg Data
Rate Extension

6/9/12/18/22/24/
33/48/54 Mbps)

Physical Layer

Fig. 4.7 IEEE standard architecture for PHY and MAC layers

can fill enclosed area like ordinary light, so it offers a better option for operating
in baseband. For diffused IR, the adapters can be fixed on ceiling or at an angle, so
that signals can bounce off the walls, and consequently changing the location of the
receiver will not disrupt the signal.

4.5.2 Spread Spectrum

Spread spectrum uses radio frequency transmission as physical layer medium. Two
spread spectrum strategies are Frequency Hopping Spread Spectrum (FHSS) and
Direct Sequence Spread Spectrum (DSSS). FHSS is an intra building communication
technology whereas DSSS is for inter building communication. Spread spectrum
essentially spreads a signal, so that it can be transmitted over a wider frequency band
than the minimum bandwidth required by the signal. The transmitter spreads the
energy initially concentrated on a narrow band across a number of frequency band
channels using a pseudo-random sequence known to both the transmitter and the
receiver. It results in increased privacy, lower interference, and increased capacity.
The generic technique of spread spectrum transmission is as follows:

1. Input is fed into channel encoder, it produces analog signal with narrow band-
width.

2. Signal is then modulated using spreading code or spreading sequence. The spread-
ing code is generated by pseudo-noise whereas spreading sequence is obtained
by pseudo-random number generator.

The modulation increases the bandwidth of the signal to be transmitted.

106 4 Wireless Local Area Network

Fig. 4.8 Frequency hopping
spread spectrum

po
w

er

frequency

hopping

Figure 4.8 illustrates the transmission pattern of a FHSS radio. FHSS changes
transmission frequency periodically. The hopping pattern of frequency is determined
by a pseudo-random sequence as indicated by the figure. FHSS partitions the 2.4 GHz
band into 79 channels, each of 1 MHz wide, ranging from 2.402 to 2.480 GHz. It
allocates a different frequency hopping patterns for every data exchange. The sig-
nal dwell time cannot exceed 400 ms in a particular frequency. A maximum length
packet takes about 30 ms. Thus, a small amount of data is sent on each channel
for a designated time period before FHSS radio hops to a different frequency. After
hopping, the transmitter resynchronizes with the receiver to be able to resume the
transmission. The pseudo-random sequence of hopping pattern minimizes probabil-
ity of interference. The radio spends only a small amount of time in any single carrier
frequency. So, it would experience interference, if at all, only for that duration. The
chance of experiencing interference in every carrier frequency is low. It is virtually
impossible to design any jammer for FHSS radios. FHSS comes in three variants,
namely, slow frequency hopping (SFH), intermediate (rate) frequency hopping (IFH)
and fast frequency hopping (FFH).

Let Th be the hop period and Tb be the bit period. A SFH transmitter uses a
frequency for several bit periods. Equivalently, Tb is smaller than Th in a SFH,
i.e., Tb = Th/k, for k = 1, 2, 3, Thus, in a SFH the base band message rate
Rb = 1/Tb ≥ Rh . As shown in Fig. 4.9, the transmitter T x1 uses frequency f 3 for
2Tb periods. The period for which a transmitter uses the same frequency is referred to
as dwell time Td . For slow hopping, Td ≥ Tb. Figure 4.9 also shows hopping pattern
for transmitter T x2. It dwells in a particular frequency for half the Tb period. In gen-
eral, for FHF Td < Tb, and Tb = kTh for k = 1, 2, 3, The number of frequency
hopping for T x2 is twice the number for T x1. Bluetooth system uses frequency
hopping spread spectrum.

FHSS uses only a small portion of bandwidth at any time. As opposed to FHSS,
DSSS uses a fixed carrier frequency for the transmission. But instead of using
a narrow band, it spreads the data over a wide frequency band using a specific
encoding scheme called PN (pseudo-noise) code. The justification of spread spectrum
is provided by Shannon-Hartley channel capacity equation [12]

C = B × log2(1 + S/N).

4.5 Physical Layer and Spread Spectrum 107

Fig. 4.9 Frequency hopping
spread spectrum

0

1 1

0

1

f4

f3

f2

f1
t

f

Sl
ow

ho
pp

in
g
(T

×
1)

D
at
a

Td

Tb

Td
f4

f3

f2

f1
t

f

Fa
st

ho
pp

in
g
(T

×
2)

In the above equation, C represents the capacity in bits per second which is the
maximum data rate for a theoretical bit error rate (BER). B is the bandwidth and
S/N is signal to noise ratio. Since, S/N represents environmental condition, and the
frequency is limited, the equation essentially means that B is the cost to be paid if the
performance, C , is to be increased. Another way to look at the equation is that even
in difficult environmental condition, i.e., when S/N is low, it is possible to increase
performance (C) by injecting more bandwidth. Now let us try to eliminate log2 term
from the above equation. Converting the log term in base 2, and assuming S/N � 1,

C/B = (1/ ln 2) × ln(1 + S/N)

= 1.443 × ((S/N) − (1/2) × (S/N)2 + (1/3) × (S/N)3 − . . .

= 1.443 × (S/N), neglecting higher order terms.

≈ S/N

The above simplified equation implies that for a given noise to signal ratio, error
free transmission can be ensured by spreading which is equivalent to increasing band-
width. As along as, the PN codes are orthogonal, data of users can be distinguished
from one another on the basis their respective PN codes even if these data occupy
the same spectrum all the times. The pseudo-noise code is more popularly referred
to as chipping sequence. To transmit each bit of actual data, a redundant bit pattern
of bits or chips is generated. For example, as shown in Fig. 4.10 a single bit of data

108 4 Wireless Local Area Network

PN sequence

input data

transmitted
signal

PN sequence

output data

signal
received

T
ra

ns
m

itt
er

R
ec

ei
ve

r
spreadingcode

Fig. 4.10 DSSS using with spreading factor 6

is represented by six chips.This implies that each user’s bit has a duration Tb, while
the chipping sequence consists of smaller pulses or “chips” such that each chip has
a duration of Tc (≤ Tb).

Instead of using 0 and 1 for chips, a bipolar notation where −1 replaces 0 and
+1 replaces 1, is more commonly used for denoting the chip sequence. The ratio
Tb/Tc is called spreading factor, which represents the number of chips used for one
bit of actual data. Longer the spreading ratio, more resistent is the transmitted data
to interference. Equivalently, the probability of recovering the actual data is high.
In most applications involving private/public communication, a spreading factor
between 10 and 100 is used. As opposed to that, the applications related to military
and security may use spreading factors upto 10,000. IEEE 802.11, for example,
employs Barker code [2] sequence 10110111000, which has a spreading factor of
11. Barkar code is short, have a good balance (difference between 1s and 0s is small)
and exponentially decreasing number of run lengths (1/2k of the runs have length 2k ,
k = 0, 1, . . .). and exhibit good correlation properties. Since adjacent bit correlation
is very low, Barkar codes are ideal for CDMA [10]. Also Shanon-Hartley’s equation
tells us that lower the spreading factor, higher is the bandwidth available to the user.

It may be noted that the chipping code is related to a user, and independent of data
or signal. If a sequence such as 101100 is used for encoding 0 then the 1’s complement
of the sequence, 010011 is used for encoding 1 as depicted in Fig. 4.10. The product
(bitwise XOR) of the spreaded data is transmitted. Since the radio transmission is
analog, the spreaded data should be modulated with a radio carrier before transmitter
can actually send it. For example, if a user’s signal requires a bandwidth of 1 MHz,
employing 11-chip Barker code would result in a signal of 11 MHz bandwidth. After
converting the digital data to analog signal, the radio carrier has to shift this resulting
signal to the carrier frequency, i.e., 2.4 GHz band.

For recovering data at the receiver end, the two step modulations of transmitted
data is reversed using the same carrier as the transmitter. It results in the signal which

4.5 Physical Layer and Spread Spectrum 109

is of the same bandwidth as the original spreaded signal. Some additional filters may
be used to generate this signal. The receiver must use the same chipping sequence
as employed by the transmitter’s end in order to recover the spreaded data by one
XOR operation. The receiver should be synchronized precisely with the transmitter
in order to know this chipping sequence and bit period. During a bit period, an
integrator adds all these products. The process of computing products of chips and
signals, and the adding of the products in an integrator is known as the correlation.
The device executing the process is called a correlator. After the sum of products are
made available by the integrator, a decision unit samples these sums for each period
and decides if a sum represents a 0 or an 1.

For the output at the receiver end to be identical to actual data, the following
equation must hold:

si (t).ci (t).ci (t) = si (t),

where si (t) is signal, ci (t) is the spreading code for i th mobile. In other words, the
spreading code must be such that ci (t).ci (t) = 1. After recovering the spreaded data,
it is multiplied (bitwise XOR) with the chip sequence corresponding to transmitter
and integrated. To illustrate this, let us take a small example with 11-bit Barker
code 10110111000. Let the actual data be 011. Barker code spread binary 0 to
10110111000 and binary 1 to 01001000111. So the spreaded code for actual data
011 is equal to:

[10110111000 01001000111 01001000111]

The XOR operation of spreaded data with Barker chipping sequence followed by
the integrator’s sum at the end of each bit-stream interval will be shown below.

spreaded data: [10110111000 01001000111 01001000111]
chip sequence: [10110111000 10110111000 10110111000]

XOR: [00000000000 11111111111 11111111111]
sums over Tb, 2Tb, 3Tb : (0)10 (11)10 (11)10

The sum over a chip interval would map either to binary 0 or 1. In the above
example, sum (0)10 maps to 0, whereas sum (11)10 maps to 1. So, the data received
is 011. In general, integration does not result in a clear distinction between 0 and
1 as shown above. This necessitates use of a threshold comparator to take care of
the worst case scenario with maximum number of channels in the system. With the
above technique, even if one or more chips are flipped in transmission due to noise,
it would be possible to get the correct information. As an example, suppose we use
11 bit Barkar code and the information received is such that

• two of the bits were flipped in the first and the third blocks, and
• one of the bits was flipped in the second block,

110 4 Wireless Local Area Network

as shown below:

spreaded data: [10110111000 01001000111 01001000111]
received: [00100001000 11110111111 11011110111]

sums over Tb, 2Tb, 3Tb : (2)10 (9)10 (11)10

Then the threshold comparator can still map the information received to 011.
DSSS uses more bandwidth than FHSS, yet considered to be more reliable and

rejects interference. The processing gain G is provided by the ratio of spreading
bandwidth against the information rate R, i.e., G = B/R. Note that the information
rate R is the inverse of bit stream interval Tb. Consequently, the signal to noise ratios
for input and output are related by the processing gain as follows.

(S/N)out = G × (S/N)in.

Similarly, the bandwidth requirement is 1/Tc, where Tc is chip interval. So,
processing gain G can be alternatively expressed as the ratio Tc/Tb.

Since, distinct orthogonal scrambling codes are used, the user data can be distin-
guished from the data mix at the receiver end. Spreading introduces redundancy in
data, so even if some bits are damaged in transmission user data can be recovered
without the need for the retransmission of signal.

4.5.3 Protocol Stack

The physical layer corresponds more or less to the OSI physical layer. Physical layer
has a variety of implementation options, namely, IR, Bluetooth or FHSS, 802.11a
OFDM, 802.11b DSSS, 802.11g OFDM, etc. Each one will also have a MAC sub-
layer. Together with logical link layer, MAC sublayer constitutes the Data Link Layer
as indicated in Fig. 4.11.

802.11
IR FHSS

802.11 802.11 802.11a
OFDMDSSS

802.11b
DSSS OFDM

802.11g

Logical Link Layer

Upper layers

Layer
Data Link

Fig. 4.11 Protocol stack for 802.11

4.6 MAC Sublayer 111

4.6 MAC Sublayer

The responsibility of medium access control (MAC) layer is to ensure that radio
systems of different nodes share the wireless channels in a controlled manner, i.e.,
with mutual fairness and without collisions. The two resources of a radio system are
(i) frequency, and (ii) time. So, the radio access methods of wireless channels can
be classified either in frequency domain or in time domain. In frequency domain,
sharing is ensured by using non-overlapping frequency bands within the allocated
communication spectrum. On the other hand, sharing in time domain is made possible
by allowing entire bandwidth to each node for a short period of time called slot. Since,
data transmission can be carried out in bursts, sharing is possible among multiple
nodes in both frequency and time domains. In this type of sharing scheme, each
user can use a certain frequency on certain time slots. The idea of two dimensional
sharing is extended to a third dimension where multiple senders use orthogonal code
sequences to send data at the same time in full bandwidth. Orthogonal codes ensures
that concurrent communications can be separated at the receiving ends using the
respective orthogonal codes employed by the transmitters. The sharing of wireless
channels in this way can be referred to as sharing in code domain.

4.6.1 Radio Access Technologies

Thus, in summary the different access technologies used by the radio systems are:

1. FDMA: assigns channels using distinct frequencies in frequency domain.
2. CDMA: assigns orthogonal code sequences in code domain.
3. TDMA: assigns time slots for transmission in time domain.
4. CSMA: assigns transmission opportunities on statistical basis on time domain.

In FDMA, a frequency is allocated to a transmission on demand. It will remain
engaged until the transmission is over. A frequency can be reallocated for another
transmission only when the ongoing transmission on that band is complete. But, a
channel sits idle when not in use. Normal channel bandwidth is 30 kHz with guard
band of 30 kHz. FDMA is best suited for analog transmission. Since transmission is
continuous, it does not require any framing or synchronization. But tight filtering is
required to reduce interferences.

TDMA supports multiple transmissions by allocating frequency for a specified
time slot to each transmission. Once the slot time is over, the same frequency may be
assigned to another transmission. TDMA allocates further time slots to an unfinished
transmission in future to complete the communication. It may, thus, be viewed as
enhancements over FDMA achieved by dividing spectrum into channels by time
domain. Only one user is allowed in a time slot either to receive or to transmit. Slots
are assigned cyclically.

112 4 Wireless Local Area Network

User 1

User 2

User 3

User n

t

f FDMA

t

f TDMA

U
se

r
1

U
se

r
2

U
se

r
3

U
se

r
n

U
se

r
1

U
se

r
2

U
se

r
3

U
se

r
n

s

t

f
CDMA

Fig. 4.12 Contrasting different access technologies

CDMA utilizes entire spectrum for each transmission. Each transmission is
uniquely coded using a randomly generated code sequence which are known before
hand to both sender and the receiver (they synchronize). Then the data is encoded
using random code sequence before transmission. Since code sequences are orthog-
onal, transmitted data can be recovered at receiver end even if the receiver gets a
combination of different transmissions by different senders in the same time span.
Figure 4.12 shows hows multiple transmissions are carried out using different access
technologies.

CSMA (Carrier Sensing and Multiple Access) is a statistical based technique
for allowing opportunity of radio access for transmission to competing station. The
idea is derived from human way of carrying out conversation. Listening to channel
before initiating a transmission could save unnecessary efforts in retransmissions by
avoiding probable collisions. Before initiating a transmission, a station senses the
channel, and if a signal is detected then the initiating station defers its transmission.

4.6.2 Multiple Access Protocols

Each mobile station has a wireless interface consists of transmitter unit and receiver
unit. These units communicate via a channel shared among other different mobile
stations. Transmission from any node is received by all nodes. This creates the prob-
lems of contentions. If more than one station transmit at the same time on the same
channel to a single node then the collisions occur. Thus, a protocol must be in place
for the nodes to determine whether it can transmit on a specific channel. Such a
protocol is referred to as a multiple access protocol. Multiple access protocols are of
two different types, namely,

4.6 MAC Sublayer 113

1. Contention protocols: these protocols function optimistically, and try to resolve
contention by executing a collision resolution protocols after each collision.

2. Conflict-free protocols: these protocols operate by preventing any occurrence of
a collision.

4.6.3 ALOHA

ALOHA is a simple minded contention type MAC protocol developed at the Uni-
versity of Howaii [1, 3]. There is no explicit allocation of a shared channel for com-
munication under the pure ALOHA scheme. The transmitting stations start sending
whenever they have data. Under this scenario, collisions do occur and the received
frames are often damaged. Since wireless transmissions are broadcast based, the
sending stations can determine the collisions by listening to the channel. When a
collision is detected the sending station backs off for a random time before attempt-
ing a retransmission. In absence of possibility of listening, acknowledgements are
needed to determine if the sent data were received correctly.

A possible scenario of transmission of frames in pure ALOHA involving three
transmitting stations is depicted in Fig. 4.13. There is just one receiver and many
senders. Each sender may send new frames and also retransmit the frames which
were damaged due to collisions. It implies there may be attempts to transmit several
frames per frame time, taking into account both new and old (due to retransmissions)
frames. The question one would ask is why this simple scheme may work at all? This
can be answered best by analyzing its performance.

C

B

A
a2 a3

b1 b3

c1

b2

c2

a1

duration of collisions

random delays

Fig. 4.13 Frames generation and transmission under pure ALOHA

114 4 Wireless Local Area Network

For the convenience of analysis, following assumptions are used:

1. Total number of stations is N .
2. Frames are of equal length, i.e., frame time is t .
3. All user transmits with a probability p during time t .

According to the above assumptions, the average number of frames in a pure ALOHA
system is Np. The stations are assumed to operate independently. So, the frame
transmissions are independent events which can be modeled by Poisson distribution

P(k) = λke−λ

k! ,

where λ = Np is the frame transmission rate, and P(k) is the probability of k trans-
mission occurring in a frame time t .

Let the time be divided into slots of frame time t . So, frame transmission started by
a station at time t0 + t suffers a collision if some other station generates a frame in time
intervals (t0, t0 + t) and (t0 + t, t0 + 2t). It implies that the period of vulnerability
of a frame in transmission is 2t . In other words, a generated frame always gets
successfully transmitted provided there is no other frame available for transmission
during its vulnerable period of 2t . The probability P0[2t] for no traffic being generated
during time 2t is obtained from the Poisson distribution with rate λ′ = 2Np:

P0[2t] = (2Np)0e−2Np

0! = e−2Np,

Throughput is obtained by multiplying P0[2t] and the mean number of frames
available for transmission during a frame time, which is:

P[success] = Np.P0[2t] = Np.e−2Np.

The maximum value of P[success] occurs at Np = 1/2, i.e., Pmax [success] =
1/2e = 0.184. Equivalently, throughput is just 18.4%. Though the performance is
bad, ALOHA does work.

A variation of pure ALOHA is slotted ALOHA which doubles the capacity. In
this protocol, the time is divided into slots of size equal to frame time. A station has
to agree to align each transmission with a slot boundary. So, whenever a station has
a packet to send, it wait till the beginning of the next slot boundary. So the collision
can occur only during the interval of a slot. It leads to cutting down the period of
vulnerability to half as compared to pure ALOHA. So, the probability that no other
frame is generated during a frame time P0[t] = e−Np. Therefore, the probability that
a frame will not suffer a collision during its transmission is P[success] = Np.e−Np.
This implies that the maximum throughput achievable in slotted ALOHA is 1/e, i.e.,
36.8%.

4.6 MAC Sublayer 115

4.6.4 CSMA/CA

As explained in Sect. 4.6.1, CSMA is a probability based multiple access scheme for
radio resources for WLAN. IEEE standard specifies two ways to resolve contention
in medium access through CSMA when multiple nodes attempt to transmit simulta-
neously. It supports two transmission modes, viz., asynchronous and synchronous:

1. Distributed Coordination Function (DCF) is a mechanism for resolving con-
tention without a central arbiter when access attempts were made independently
by a multiple number of stations. The protocol resolves contention by employing
virtual carrier sensing.

2. Point Coordination Function (PCF) is a mechanism for restricted resolution of
contention within infrastructure BSS. It does so with help of a coordinator resid-
ing in access point itself.

DCF supports asynchronous mode while synchronous mode is supported by PCF.
Since PCF supports synchronized mode, it provides a connection oriented mode.
Implementation of DCF is mandatory in all 802.11 equipment, but PCF’s imple-
mentation is optional. Furthermore, implementation of PCF relies on DCF. It cannot
operate in ad hoc mode, while DCF can operate in both independent and infrastructure
modes.

Since, PCF depends on DCF, let us examine DCF first. DCF supports asynchro-
nous mode of transmission. The major problem in design of DCF is in handling
hidden and exposed terminals. The hidden terminal problem, as shown in Fig. 4.14a,
occurs if the transmitting station accesses the medium even when another station is
actually using the medium. Using carrier sensing, station A is not able to detect pres-
ence of carrier as A is not in the range of C . So, it accesses medium for transmitting
to B when C is actually transmitting data to B. A and C are hidden from each other.
The crux of the problem is that the absence carrier does not necessarily mean idle
medium.

Data
Data

B CA

C can not hear A’s transmission

collision occurs here
(a) Hidden terminal.

B CA D

B’s transmission to AC hears

exposed terminal

(b) Exposed terminal.

Fig. 4.14 Hidden and exposed terminal problems

116 4 Wireless Local Area Network

The exposed terminal case, as indicated by Fig. 4.14b, occurs when stations A and
B are already talking, and station C , which is within B’s range, wrongly concludes
the carrier to be busy overhearing the ongoing transmission between A and B, and
refrains from initiating exchanges with D. Stations C and D are exposed terminals.
So, in the context of exposed terminals, the problem is other way round, i.e., the
presence of carrier does not necessarily mean busy medium.

4.6.5 Distributed Coordination Function

DCF solves both hidden and exposed terminals problems by getting rid of carrier
sensing. The protocol CSMA/CD is modified as CSMA/CA. That is, collision detec-
tion (CD) is replaced with the mechanism of collision avoidance (CA). In CSMA/CA,
a transmitting station first checks to ensure that channel is free for a fixed duration of
time. Each station then chooses to wait for a randomly chosen period of time. From
among the contending stations, the station whose waiting time expires first gains
access to the channel. The randomly chosen waiting time for a station is known as
its backoff timer. As soon as the channel is occupied by a station, the countdown of
back timer in each unsuccessful station is suspended until the channel becomes free
again.

To understand the role of backoff timer and collision avoidance, a more detailed
examination of DCF protocol is needed. DCF consists of a basic mode and an optional
RTS/CTS access mode. In the basic mode, sending station senses channel before
transmitting. If the medium is free for a DIFS interval it is assumed to be free. The
sender then waits for backoff period and starts sending. The backoff period is set
from an interval [0, W − 1], where W is set to a pre-specified value, and is known
as contention window.

4.6.5.1 DCF Basic Mode

For the basic DCF mode, the MAC frame transmission logic is provided in Fig. 4.15.
When a station wishes to transmit multiple number of packets, the protocol forces

every subsequent packet except the first one to have a minimum of one random
backoff even if the channel is free. Therefore, the generation of a random backoff is
enforced after the transmission of the first packet. If by chance backoff timer is set
to 0 every time the attempt to transmit a new packet is made then the sender could
cause other contending stations to wait for indefinite time.

Once a station gains the access of the medium, the countdown of backoff timers
of all other contending stations is suspended. The countdown is resumed when the
medium becomes idle again for DIFS period. The use of backoff timers has three
important uses:

4.6 MAC Sublayer 117

START

CW = 2; backoff=0;
trials=0; Max trials=n

Wait for
data frame

Medium idle?

Wait for IFS

Medium idle?

Transmit frame

Transmit ok?

CW = 2 ∗ CW

trials=trials+1

Max trials?

backoff= rand([0, CW]) Wait until EOT

Wait for IFS

Medium idle?

backoff =0?

backoff=backoff-1

FAILURE

SUCCESS

Yes No

No

YesNo

Yes

NoYes

Yes

No

No

Yes
Transfer of the first frame

C
ou

nt
do

w
n

fr
oz

en
Fig. 4.15 Logic of DCF basic transmission mode

Data from A ACKACK

countdown
backoff

DIFS DIFS

SIFS

Fig. 4.16 Data transmission from one station to another

1. Collision avoidance: avoid collision among contending stations,
2. No starvation: no waiting station will be blocked from gaining access of medium

indefinitely,
3. Bounded wait: the stations waiting for a longer time gain priority over other

waiting stations.

The process of transmitting data from a station A to another station B is illustrated
in Fig. 4.16.

A collision may still occur in the case when backoff timers of two or more con-
tending stations simultaneously reach zero countdown. In this case, each sending
station must choose a random backoff value to avoid repeated collision. The value
of the random backoff is:

backof f = �rand() × slotT ime�,

118 4 Wireless Local Area Network

where i is number of consecutive failures, rand() is chosen from interval [0,W − 1],
and slot time is 20 µs. The contention window is set dynamically, when a station
successfully completes a data transfer it restores the window value W to Wmin . The
value of contention window is doubled, each time a station fails to transmit a frame,
until it reaches the maximum value Wmax . It implies the value W ∈ [Wmin,Wmax].
The failure of data transmission is determined by non-receipt of acknowledgement
within specified time interval.

For unicast data transfer, the receiver sends an ACK. An ACK packet has a higher
priority because if a station is made aware of successful transfer, it would not retrans-
mit the data. This helps to cut down the pressure on the available bandwidth. To ensure
that transmission of ACK is not cut in the race among the contending stations trying
to access of the medium, the receiving station (which wishes to send ACK) waits
only for a Short InterFrame Spacing (SIFS). The typical value of SIFS is 10 µs,
whereas DIFS = 2 × slotT ime + SIFS = 50 µs.

4.6.5.2 DCF Advanced (RTS/CTS) Mode

In RTS/CTS mode, at first a dialogue is initiated between the sender and the receiver.
The sender sends RTS (request to send) which is a short message. RTS contains NAV
(network allocation vector) that includes times for

1. Sending CTS (clear to send),
2. Sending actual data, and
3. Three SIFS intervals.

A CTS is sent by a receiver to a sender in order to signal the latter to access the
medium. CTS is considered as a short high priority packet much like ACK. So,
before gaining access to medium, for sending CTS, the receiver waits for SIFS time.
After the CTS is received by the sender, it just waits for SIFS time before accessing
the medium, and following which the sender starts to send data. Finally, when the
data have been received, the receiver waits for a SIFS time before sending the ACK.
This explain why 3 SIFS are needed along with the time for sending CTS and data.
CTS also includes NAV, so that other station trying to gain access to medium would
know the duration for which the medium will remain busy between the sender and
the receiver. But NAV of CTS does not include CTS itself unlike NAV of RTS. The
RTS/CTS mode of DCF is illustrated in Fig. 4.17. As indicated in the figure, once A
has been cleared by B for sending, C has to wait till

DIFS + NAV(RTS) + contention interval

before it can try to gain access to the medium.
By including NAVs, the stations involved in exchange of RTS and CTS inform

other stations in their respective neighborhood about the duration of time the conver-
sation would continue. In other words, these stations receive carrier busy information
in advance.

4.6 MAC Sublayer 119

C

B

A
DIFS

SIFS

SIFS

SIFS

DIFS

RTS DATA

DATA

CTS ACK

t

contention

NAV=CTS+Data+Ack+3.SIFS
NAV=Data+Ack+2.SIFS

Note: NAV(RTS) does not include RTS, but carried by RTS
 NAV(CTS) does not include CTS, but carried by CTS

Fig. 4.17 DCF RTS/CTS mode of transmission

RTS C cannot hear RTS

CTS C hears CTS

A transmits C cannot transmit

A B C

B transmits

RTS C hears RTS

CTS

C cannot hear CTS

C transmits

C continues
...

C continues

A B C D

C to D transmission is unaffected

(a) Hidden terminal.

(b) Exposed terminal.

Fig. 4.18 Solutions to hidden/exposed terminal problem

DCF with RTS/CTS mode solve both hidden and exposed terminal problems. The
solution to hidden and exposed terminal problem is illustrated by Fig. 4.18. In hidden
terminal problem (see Fig. 4.18a) station C becomes aware of medium being busy
when it hears the CTS from B in response to RTS request from A. So, C defers its
attempt to access the medium until NAV set in CTS from B expires. To understand
how RTS/CTS mode solves exposed terminal problem refer to Fig. 4.18b. The RTS
sent by station B to station A is heard by station C . However, C being not in range
of A, does not hear the CTS from A. Therefore, C would conclude that the carrier is
free, and may initiate a RTS/CTS dialogue with D.

120 4 Wireless Local Area Network

C

B

A
DIFS

SIFS

SIFS

SIFS

DIFS

RTS DATA

DATA

CTS ACK

t

contention

NAV=CTS+Data+Ack+3.SIFS

Danger of collision

C may not hear NAV in RTS (hidden from A)

NAV=Data+Ack+2.SIFS

(a) Danger of collision.

B

A
DIFS

SIFS

SIFS

SIFS

RTS DATA

CTS ACK

ACK
SIFS

DATA
A’

B’
t

t

interval of collision

interval of
collision

(b) Collision interval.

Fig. 4.19 RTS/CTS mode shortens interval of collision in DCF

Still there is a possibility of a collision even in RTS/CTS mode. This is exhibited
by Fig. 4.19a, where a station C , not being in the range of station A, is unable to hear
RTS sent to station B. However, the interval of collision in RTS/CTS mode is limited
to RTS plus the SIFS interval as indicated by Fig. 4.19b. The figure also provides a
comparison of the intervals of collision in two modes of DCF. In DCF basic mode,
the interval of collision is equal to the duration of data transmission plus the SIFS
interval which may at times be unpredictably long.

4.6.5.3 Monitoring of Misbehaving Stations

There may be a smart station which uses a number of tricks to increase its chance
of accessing the medium in order to increase its throughput. If traffic is known to be
bursty, then a misbehaving station could send burst of packets ignoring MAC rules
and minimize its average delay. Some of these tricks could be [4, 8]:

4.6 MAC Sublayer 121

• Node may choose backoff timer from a smaller range of values than the contention
window range [0,W − 1].

• Contention window is not doubled after a collision.
• DIFS, SIFS and PIFS are not used properly. For example, a node may delay CTS

and ACK; or instead of waiting for DIFS time, the node may transmit when it
senses the channel to be idle.

• When exchanging RTS-CTS, NAV can be set to a value much larger than actually
needed.

By using the first trick, a station gets an unfair advantage in accessing the medium
ahead of other contending stations, since countdown of backoff timer of the misbehav-
ing station reaches 0 faster than that of others. With the second trick, a misbehaving
station can always outsmart other well-behaved stations when a collision occurs.

We need some solutions to block the unfair advantages that a misbehaving station
might gain by resorting to trick mentioned above. Some possible approaches could be

1. Monitor throughput of each sender.
2. Monitor the distribution of per packet backoff for each sender.
3. Receiver side detection mechanisms.

Monitoring requires a delay. Because the relevant meta data must be logged for a
while before an analysis can be done. Furthermore, sending station can choose a
random backoff but send burst of traffic in a bursty traffic environment to ward off
monitoring mechanism. The receiver side solution looks better. The access point
can monitor each of the sender’s behavior. The receiver side monitoring process is
explained in Fig. 4.20. The receiver side solution is summarized as follows.

1. The receiver assigns a backoff b to the sender. So, the receiver can control the
backoff behavior and the monitoring becomes simple.

2. The receiver then verifies whether the sender has actually backed off for an
interval exceeding assigned backoff.

3. If observed backoff is less than assigned backoff then the receiver adds extra
penalty to new backoff.

The use of RTS-CTS handshake was proposed mainly for solving hidden and
exposed terminal problem through virtual carrier sensing mechanism. It also improves
throughput by reducing the probability of collisions by limiting the period of collision
to a short interval (bounded by RTS+SIFS). However, the stations involved in RTS
collision fail to get CTS, and prevented from sending data. The network also incurs

Fig. 4.20 Receiver side
solution to check LAN
misbehavior

RTS CT
S

D
A

TA

A
CK

(B
) RTS

Receiver

Sender
B

observed backoff

122 4 Wireless Local Area Network

X

Y

S

B

A
DRTS S

B

A
DRTS

missing CTSmissing CTS

Scenario−2Scenario−1

Fig. 4.21 Effects of missing CTS

an overhead due to increase in number of RTS-CTS control packets. As the num-
ber of RTS-CTS packets increases, the probability of RTS collision also increases.
Though an analysis of overhead is difficult due to complexity and unpredictability of
wireless environments, there is a possibility of under-utilization of channel capacity
due to implementation of virtual carrier sensing mechanism. It may occur due to non-
receipt of a CTS. Two scenarios involving missing CTSs and their effects have been
illustrated in Fig. 4.21. In the first case, there is an ongoing communication between
stationsX and Y . On overhearing the above exchange, station D concludes that car-
rier is busy and would not send CTS to S’s RTS. The problem may get aggravated
further, as stations A and B which are in range of S on hearing RTS set their NAVs.
So, A and B would be prevented from communicating until their NAVs expire. In the
second case, the destination node D simply has moved to a new location and unable
to respond to RTS from S. However, A and B set their NAVs on hearing RTS from
S. The CTS never materializes from D, but the NAVs set by A and B prevent both
from engaging into a conversation.

It may be noted that IEEE 802.11 standard specifies use of the same MAC layer
for different physical layer implementations like IR, FHSS and DSSS. However, the
numerical values of MAC parameters such as slot time, SIFS, DIFS, frame size, etc.,
are different for different physical layer implementations.

4.6.6 Point Coordination Function

The Access Point (AP) works as the coordinator for PCF. The time is divided into
superframes each consisting of a Contention Allowed Period (CAP) and a Contention
Free Period (CFP). The maximum duration of a superframe should be bounded to
allow both contention and contention free traffic to co-exist. The contention period
should give sufficient time to send at least one data frame. The maximum duration
for CFP is denoted by CFPmax . DCF is used during CAP and PCF is used during
CFP. PCF polls individual nodes in its polling list, which is arranged according to
the priorities, to find when they can access the medium. To block DCF stations from
interrupting CFP, PCF uses a PCF InterFrame Spacing (PIFS) between PCF data

4.6 MAC Sublayer 123

Beacon

Beacon

Beacon

Poll 1 Poll 2+data EndACK

ACKPoll 2+data

null
Poll 1

SIFS SIFS SIFSPIFS PIFS DIFS

RTS Data

ACK

Beacon

Beacon

Beacon

CTS

contention−free period contention period

superframe

Fig. 4.22 Superframe structure and PCF

frames which is shorter than DCF InterFrame Spacing (DIFS). In order to prevent
starvation during CFP, there should be space for at least one maximum length frame
to be sent during CFP. It ensures that every station is allowed to send at least one
frame.

The access point which acts as the coordinator, polls the stations in the round
robin fashion. The polled station must always respond. If there is no data to be sent
then a polled station must respond with a null frame. If all stations cannot be polled
during a CFP, then the polling is resumed at the next station during next CFP. If
a polled station is unsuccessful in sending data then it may retransmit data during
subsequent CFP when polled.

Figure 4.22 provides the structure of the superframe. At the beginning of every
contention free period, the AP sends beacon frame to all station in basic service
area (BSA) after it finds the medium to be idle for PIFS interval. The beacon frame
contains CFPmax , beacon interval, and the BSS identifier. All stations in the BSS set
their network allocation vector (NAV) appropriately, and do not attempt to initiate
CAP communication during CFP after a CFP-begin beacon has been received.

AP polls each station in its polling list by sending a data and CF-poll frame.
When a station receives Data and a CF-poll frame, it responds after waiting for SIFS
period. The response would consist of Data and CF-ACK frame or only CF-ACK
frame (with no payload). AP after receiving frames from the station may again send
Data, CF-ACK, a CF-poll frame or just Data and a CF-poll frame. Notice that if
CF-ACK not received from AP then it indicates that data has not been received.
Once again the receiving station responds to AP with Data or null frame as explained
above. AP continues the polling of each station until it reaches CFPmax time. When
time bound is reached the AP terminates contention free period by sending a CF-end
frame.

124 4 Wireless Local Area Network

References

1. N. Abramson, The ALOHA system—another alternative for computer communications, Fall
Joint Computer Conference (AFIP Press, 1970), pp. 281–285

2. R.H. Barker, Group synchronizing of binary digital sequences. Commun. Theor. 273–287
(1953)

3. R. Binder, N. Abramson, F. Kuo, A. Okinaka, D. Wax, ALOHA packet broadcasting—a ret-
rospect, 1975 National Computer Conference (AFIPS Press, 1975), pp. 203–215

4. H. Li, M. Xu, Y. Li, Selfish MAC layer misbehavior detection model for the IEEE 802.11-
based wireless mesh networks, The 7th International Symposium, APPT 2007, vol. LNCS-4847
(2007), pp. 381–391

5. Y. Huang, K. Boyle, Antennas: From Theory to Practice (Wiley, 2008)
6. S. Kerry and The Author Team IEEE-SA, Part 11: wireless LAN medium access control (MAC)

and physical layer (PHY) specifications (2007)
7. B.P. Kraemer and The Author Team IEEE-SA, Part 11: wireless LAN medium access control

(MAC) and physical layer (PHY) specifications (2009)
8. P. Kyasanur, N.H. Vaidya, Selfish MAC layer misbehavior in wireless networks. IEEE Trans.

Mobile Comput. 4(5), 502–518 (2005)
9. B.G. Lee, S. Choi, Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi

(Artech House, 2008)
10. A. Mitra, On pseudo-random and orthogonal binary spreading sequences. Int. J. Inf. Commun.

Eng. 4(6), 447–454 (2008)
11. E.L. Oschmann, J.P. Welch, Wireless diffuse infrared LAN system (1994)
12. C.E. Shannon, The mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423

(1948)
13. IEEE-SA standard board, Part 11: Wireless LAN medium access control (mac) and physical

layer (phy) specifications: higher-speed physical layer extension in the 2.4 Ghz band (1999)
14. A.S. Tanenbaum, Computer Networks, 6th edn. (Prentice Hall, 2015)
15. The Author Team-IEEE-SA, IEEE 802.11n-2009-amendment 5: enhancements for higher

throughput (2009)

Chapter 5
Short Range Radio Protocols: Bluetooth
and IR

5.1 Introduction

A personal communication model is defined in terms of a person’s interactions in
three spaces [10], namely,

1. Personal space,
2. Immediate neighborhood, and
3. The rest of the world

A personal space is centered around a person, or in close vicinity of the person. An
immediate neighborhood is the community where a person lives in. The rest of the
world is the space outside the community of a person. The description of personal
communication model (given above) though generic, looks imprecise. The space
boundaries are loosely defined. So, there is a need to concretize the space modeling
through practical examples. The Book of Visions 2000 [10] describes three typical
scenarios, namely, (i) a smart healthy home, (ii) a professional environment, and
(iii) a futuristic multimedia traveler. Customized extensions of these scenarios can
be found in military environment too [4].

An example oriented modeling creates more confusion instead of eliminating the
ambiguities. It is, therefore, important to abstract out the definitions of the spaces via
use-case semantics. For example, the person centric communication space originates
from a user’s interaction requirements around the close proximity. A person’s close
proximity is defined through the wearable and the portable devices on the person’s
body. A person’s apparels, and PDAs or laptops form a Personal Area Network
(PAN) [5]. The reach of a PAN is only a few meters centered around a person. But it
offers capabilities to communicate with the person’s community as well as with the
rest of the world via wired or wireless backbones. The communication among the
members in a community is facilitated by Community Area Network (CAN) [11],
while communication outside CAN is handled through Wide Area Network (WAN).
A PAN may be wired or wireless. A wired PAN uses a USB or an IEEE 1394
interface (serial bus) for the network connectivity. Wireless PANs are formed using

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_5

125

126 5 Short Range Radio Protocols: Bluetooth and IR

wireless network technologies like Infra Red, Bluetooth, Ultra-wideband (UWB) [9],
HomeRF [8], Z-wave [13], or ZigBee [2].

The purpose of this chapter is to discuss about two popular wireless personal area
communication technologies, namely, Infra Red, Bluetooth. ZigBee, on the other
hand, is a PAN communication technology that is more relevant to machine two
machine communication. ZigBee protocol is, therefore, discussed separately in the
following chapter.

Bluetooth is originally conceived as a wireless technology for replacing cables
connecting portable and fixed devices located within a short distance from one
another. The main focus of development in Bluetooth is the interoperability of the
devices manufactured by different vendors. So, Bluetooth cannot just be consid-
ered as a wireless communication interface, but it should allow devices to discover,
explore and utilize services offered by one another.

Infra Red (IR) is not based on radio communication. It provides optical wireless
communication in unregulated space. IR network adapters can offer virtually unlim-
ited bandwidth. It is easy to confine IR signals by opaque barriers in the line of sight
(LOS). Therefore, IR provides low cost secure communication which is ideal for
WPAN.

5.2 Bluetooth

Bluetooth specification [6] defines a radio based short range, low power wireless com-
munication technology. Bluetooth was initially conceived and developed by Ericson
as a cable replacement technology for connecting peripherals and accessories such
as headphone, keyboards to devices like laptops, desktops, mobile phones, tablets,
etc. Since then it has evolved as an industry standard for short range radio based
wireless communication technology for Personal Area Network (PAN). It is, there-
fore, appropriate to view Bluetooth as wireless communication technology for PAN
of all the devices tied to the personal operating space of an individual. Bluetooth
network operates like a seamless peer-to-peer, self configurable, one hop network. It
is different from WLAN. Bluetooth needs a host for its existence, whereas WLAN
is a network component and independent of a host. IEEE 802.15.1 [5] standard
(released in 2002) reviewed Bluetooth technology and provided additional resources
for implementing Bluetooth on devices.

A Bluetooth radio works in 2.4 GHz unlicensed Radio Frequency (RF) band. It
forms an 1-hop ad hoc network using frequency hopping spread spectrum, which
hops 1600 times per second between 79 frequencies in the frequency band from 2.402
to 2.48 GHz. Each frequency channel is of 1 MHz wide. Frequency switching time
is 220 µs. Bluetooth supports a maximum data rate of 710 kbps with a maximum
packet size exceeding 300 bytes.

Depending on transmit power requirements, Bluetooth devices can be classified
into three classes:

5.2 Bluetooth 127

Fig. 5.1 Bluetooth network

Database

Ad hoc N/W

Cable replacement

Cable replacement

Data access points

Server

1. Class 1: up to 100 mW, but the devices dynamically adjust their requirements to
avoid interferences with other devices.

2. Class 2: up to 2.4 mW, and
3. Class 3: up to 1 mW.

Three principal usage models for Bluetooth network have been described by
Fig. 5.1. These include:

1. Cable replacement,
2. Data access, and
3. Peer to peer ad hoc connection.

The primary use of Bluetooth is a person centric communication technology is rooted
at connecting laptops with cell phones, mouse, headphones and other accessories
without wires. The second most important use of Bluetooth is for LAN and Internet
connectivity. A cell phone can be turned into a wireless hot spot to which devices can
hook up to the Internet via Bluetooth connectivity. Likewise, GPRS or CDMA based
public pay phones at the airports can be upgraded to work as Bluetooth modems and
allow Internet access to the travelers. Of course, this has to be made possible by the
assistance of higher-level protocols such as PPP on the top of serial port. The other
main use of Bluetooth is to create an ad hoc peer to peer network of devices for
person centric services.

The usage models dictate some of the engineering challenges in the operations of
a Bluetooth network.

• Flexible application topology: Bluetooth devices should have capabilities to
choose and connect to the peers in its neighborhood.

• Self configurable: Even with the constraints of selective connectivity requirements,
Bluetooth should still be self configurable.The users will find it too complicated

128 5 Short Range Radio Protocols: Bluetooth and IR

to use, unless a Bluetooth device figures out by itself whom should it or should it
not talk, and how.

• QoS for voice: Bluetooth must be able to provide QoS support for voice commu-
nication.

• Lowpower operation: Since, Bluetooth is primarily positioned as a communication
technology for PAN, the power requirement to support its capability must be very
low. If there is a need for frequent recharging of battery then the users would find
it irritating to use Bluetooth.

• Small form factor: The portability requirements for the PAN devices enforce the
requirement for a small form factor for these devices. Adding Bluetooth capabili-
ties should not cause an increase in size of the devices.

• Low cost: Though it will be convenient to have Bluetooth replace cables, the
cost factor cannot be ignored. So, Bluetooth enabled devices should not be more
expensive than their wired counterparts.

A set of Bluetooth nodes, sharing a common channel, consists of at most 8 nodes
organized in the form of a star topology. One of these (center of star) is called the
master, and the remaining nodes are known as slaves. This basic star topology is
referred to as a piconet [3]. It is possible to extend a piconet by merging two or
more piconets to form a what is known as a scatternet. When a device is present in
more than one piconets, it should time-share and synchronize with the masters of
the respective piconets to avoid interference. As shown in Fig. 5.2, a node common
to two piconet, known as a bridge and may be a slave in both piconets. The bridge
node may also act as a master in one piconet and slave in the other. The master node
controls transmission schedule of all devices in piconet.

Bluetooth devices waiting to be connected to a piconet are in standby or listening
mode. In this mode, the radios of the devices waiting to be discovered by other
radios of other devices or for a request to be connected to the piconet. The process of
discovery is triggered by an inquiry command by a Bluetooth device. The listening
radios respond with their FHS (Frequency Hopping Sequence) packets. It provides
the inquiring node a list of all the Bluetooth devices in the range with their respective
Global ID (GID). To establish a connection, the master node pages a responding
slave with its own GID. The paged radio then responds giving its GID. Following

bridge

Piconet Scatternet

Fig. 5.2 Piconets and scatternet

5.2 Bluetooth 129

Fig. 5.3 Functional
overview of piconet

Connected

Sniff

Transmit
data

Parked
PMA

Hold
AMA

Low power modes

PageInquiry

Standby

AMA: 3 bit address
PMA: 8 bits address

AMA

AMA

AMA

this the master node’s radio sends an FHS packet to the slave. The paged slave then
loads master’s GID, adjusts its own clock offset to synchronize with the master’s
clock, and this completes the establishment of a connection.

When a Bluetooth device joins a piconet, it gets a 3-bit Active Member Address
(AMA). After a piconet has 8 members (including the master), the master can take
subsequent slave devices and put them on park mode in the piconet. The radios
of parked devices are synchronized with the master’s clock, but are assigned 8-
bit Passive Member Addresses (PMA) instead of 3-bit AMAs. AMA and PMA
combination allow up to 256 radios to reside in a piconet. However, only eight of
these can be active at any time. The parked radios listen at a beacon interval to get
any data addressed to them.

Figure 5.3 gives a functional overview of forming and maintaining a piconet. Apart
from the park mode, a Bluetooth device can be in two other low power modes: (i)
sniff, and (ii) hold as shown in above figure. In the sniff state, a device can be told
to transmit data on specific intervals. For example, the keyboard of desktop can be
asked to send data after 25 slots. However, in the hold state no data transmission can
take place. The park state differs from the two low power states mentioned above.
In the parked state, a Bluetooth device keeps its radio synchronized with the master
device, and a PMA, instead of an AMA, is assigned to it. A parked device can become
active on receiving a wakeup call from the master. On each beacon interval, it looks
for a wakeup call from the master and finds out (i) if the device has been asked to
become active, or (ii) wishes to become active, or (iii) have been sent any broadcast
data.

Bluetooth supports two types of physical links:

1. Synchronous Connection Oriented (SCO), and
2. Asynchronous Connection Less (ACL).

A SCO link is a point to point link between a master and a slave. Typically, SOC links
carry voice transmissions, and use only reserved time slots. A master can support
upto 3 SCO links to one or multiple slaves. A slave can also support upto 3 links to
the same master, but can support only two SCO links to different masters. The master

130 5 Short Range Radio Protocols: Bluetooth and IR

transmits to a slave in its own reserved time slot (even numbered) while the slave
responds in the following slave-to-master time slot (odd numbered). SCO packets
are just single slot packets, and none of them carries a CRC. Since Bluetooth uses
Forward Error Correction (FEC) code and a slot time is very small, the degradation
of voice transmission is not noticeable even in a noisy environment. Therefore, SCO
packets are never retransmitted. ACL links are used for data transmission. There
can be just one ACL link per piconet. Only the addressed slave can respond to data
transmission by the master. Though ACL can also use FEC in payload, automatic
repeat request (ARQ) can also be applied causing packets to be retransmitted.

5.2.1 Packet Format

Time division multiplexing is used to share channel across multiple slaves. Each
channel is divided into slots. The master node determines the slot time in which a
slave sould transmit. The slaves can sleep during inactive slots. A slot time is 625 µs.
The slots are numbered from 0 to 227 − 1 using master node’s clock time with cycle
of length 227. A 28 bit counter is used for the clock which wraps around after 228 −1.
The length of one clock tick is 312.5 µs. So, a slot consists of 2 clock ticks, and a
Bluetooth clock ticks at the rate of 3.2 kHz. The repetition interval for the clock is
approximately 23 h.

The transmission of packets between a master and a slave is illustrated in Fig. 5.4.
A Bluetooth packet or frame may be of 1, 3 or 5 slots long. With single slot packets
a maximum data rate of 172 kbps can be reached. However, with multislot packets,
higher data rates due to reduction in the packet header overhead and better turn
around time. A single slot packet can hop at the rate of 1/(625×10−6) = 1600 hops
per second.

A 5-slot packet has a payload of 341 bytes or 2728 bits. The total time for a 5-slot
transmission should also include 1 extra slot for transmission of acknowledgement
(ACK) from the master. Since a slot is 2 ticks long, in 12 clock ticks 2728 bits
are transmitted. The time required for the same is 6 × 625µs = 3.75 ms, giving a
maximum bandwidth = (2728/0.00375) bits per second, or 710 kbps. A comparison

f(k)

625µs

Master

Slave

f(k + 2) f(k + 4)

f(k + 1) f(k + 3)

Fig. 5.4 Transmission slots of master and slaves

5.2 Bluetooth 131

f(k) f(k + 1)

TX RX

TX

f(k + 2) f(k + 3)

TX RX

TX

TX

f(k + 4) f(k + 5)

TX RX

RXRX

f(k + 6)

TX

TX

TX

3-slots

5-slots

Fig. 5.5 Single slot and multi slot Bluetooth packets

Fig. 5.6 Frame format for
Bluetooth network

code
Access Header Payload

Voice CRCHeader Data

0..2745bits54bits72bits

1/3/5 slots1 slot

of single slot and multi-slots packet is shown in Fig. 5.5. The figure also identifies
the transmission slots TX and RX.

The structure of a Bluetooth frame is shown in Fig. 5.6. Each Bluetooth frame
starts with a 72-68 bits long access code. It consists of a preamble, a sync word, and
a trailer. A fixed zero-one pattern of 4 symbols defines a preamble. It is used to signal
the arrival of a packet at a receiver. Sync word is used for timing synchronization
with the receiver. A 4 bit trailer gets appended to the sync word if packet header
follows immediately thereafter. So, the length of access code is dependent on the
presence of the packet header. If the packet header is present then the length access
code is 72 bits, otherwise it is 68 bits.

Access codes are of three types:

1. Channel Access Code (CAC): identifies a piconet with the master’s ID. All
packets sent over same piconet channel will have same channel access code.

2. Device Access Code (DAC): used for special signaling requirements such as
paging and response to paging.

3. Inquiry Access Code (IAC): has two subtypes, namely, General IAC (GIAC)
and Dedicated group IAC (DIAC). GIAC is used to inquire about any Bluetooth
device while DIAC is used to inquire about group of devices that share a common
characteristic.

The packet header, if present, consists of 18 bits. To avoid retransmission, rate
1/3rd FEC is used. In this FEC scheme, each bit is transmitted 3 times and a triplet of

132 5 Short Range Radio Protocols: Bluetooth and IR

Fig. 5.7 Bluetooth packet
header ChecksumSAFTypeAddress

8b1b 1b 1b3b 4b

bit is mapped to the majority bit in the same. So, total length of the header becomes
18 × 3 = 54 bits.

There are 6 fields in the packet header besides a checksum as shown in Fig. 5.7.
These six fields are: Active Member Address (AMA), Type, Flow (F), ARQ (A),
SEQN (S) and HEC. The AMA represents the address of an active member in a
piconet, and it is specified by 3 bits. A 4-bit type field is used to specify the packet
type which is associated with link characteristics. It can define 16 different types of
payloads. A SCO link packet may be of 4 types, whereas a ACL link may be of 7
types. The type code also tells about the number of slots that current packet occupies.
A single bit flow flag can be set to 1 to indicate “stop” flow when receiver’s buffer is
full. It is only applicable for ACL links. SCO packets can flow in even if stop bit is
set. The next bit is for Automatic Repeat reQuest (ARQ). It indicates the success or
the failure of transmission. The 1 bit field which follows ARQ is SEQN. SEQN is
inverted with a new packet. Header Error Check (HEC) is a 8-bit field for checking
integrity of header.

5.2.2 Protocol Stack

Bluetooth stack consists of four set of layers:

1. Bluetooth core protocol,
2. Cable replacement protocol
3. Telephone control protocol, and
4. Adopted protocol.

The core protocol layer is present in every Bluetooth devices. It provides four impor-
tant set of protocols on the top of Bluetooth RF layer. These core protocols are:
Baseband, Link Manager Protocol (LMP), Logical Link Control Adaptation Proto-
col (L2CAP), and Service Discovery Protocol (SDP). The protocols of other layers
are used on need basis. The cable replacement protocol RFCOMM provides RF-
oriented emulation of the serial cable line settings and the status. It emulates full
9-pin RS 232 serial port over an L2CAP channel. Telephone Control Specification
Binary (TCS Binary) provides three functionality, namely, call control, group man-
agement and connectionless TCS. Call control deals with signalling for establishing
and releasing voice and data connection between Bluetooth devices. Group man-
agement handles signalling for management of groups within Bluetooth devices.
Connectionless TCS deals with exchange of signalling information not related to an
ongoing call. The adopted set of protocols are defined by specification of standards

5.2 Bluetooth 133

commands
AT

WAE

WAP

TCP/UDP/IP

PPP

RFCOMM

TCS

L2CAP

LMP

Bluetooth Baseband

Audio

OBEX

vCard/
vCal

Bluetooth RF

SDP

B
lu

et
oo

th
 c

or
e

pr
ot

oc
ol

s

Telephone control protocolAdopted protcols

replacement
prtocol

cable

Host Control Interface

Fig. 5.8 Bluetooth protocol stack

by other organizations and integrated with overall Bluetooth protocol. The idea is
that the protocols from other existing standard should not be reinvented and would
be incorporated with Bluetooth on need basis.

Apart from the protocol layers, there is also a Host Control Interface (HCI). HCI
specifies the implementation of commands for Bluetooth hardware through uniform
interface for accessing baseband commands, link manager commands, hardware
status registers and event registers.

The architecture of Bluetooth protocol suite is as shown in Fig. 5.8. Besides
exhibiting functional dependencies among the four layers of Bluetooth stack, it also
illustrates how the various Bluetooth protocols interact.

The combination of RFCOMM, TCS-Binary and adopted protocol layer essen-
tially provides application oriented transport protocols for allowing applications to
run over Bluetooth core layer. Since Bluetooth specifications are open, additional
protocols like HTTP, FTP, etc., can be integrated in an interoperable fashion on the
top of Bluetooth transport framework or on the top of application oriented protocols
that leverage Bluetooth specific transport service.

Bluetooth devices form a piconet via physical RF links, established through Base-
band and Link Control layer. Inquiry and paging mechanisms are used by the layer to
synchronize frequency hopping sequence and clocks of different Bluetooth devices.
Baseband provides both SCO links and ACL and multiplexes the packets on the same

134 5 Short Range Radio Protocols: Bluetooth and IR

RF link. ACL packets are used for data while packets meant for SCO link may con-
tain audio or a combination of audio and data. The audio data is transferred between
devices by opening an audio link. It does not have to go through L2CAP.

Link Manager Protocol (LMP) is responsible for setting up the link between
Bluetooth devices. It is concerned with authentication, security and encryption. Apart
from negotiating Baseband packet sizes. Additionally, it is also responsible for power
control and duty cycle of Bluetooth units in a piconet.

Logical Link Control Adaptation Protocol (L2CAP) may be viewed as the data
plane for the Bluetooth link layer. The size of Baseband packets are too small for
transportation to higher layer protocol. So L2CAP provides a thin layer for export-
ing big size packets to higher layers. This task, obviously, can be realized through
a generic segmentation and reassembly protocol. But L2CAP is highly optimized
for the job together with the Baseband layer. For example, since the Baseband pack-
ets are already CRC protected, there is no need to check data integrity. Likewise,
the Baseband packets are assumed to be reliably delivered in proper sequence. So,
L2CAP could just concentrate on the simple logic for segmentation and reassembly
of Baseband packets.

The higher layer protocols can be multiplexed and demultiplexed by using chan-
nels. A channel should be viewed a logical instance of connection between two
L2CAP end points serving a single application. It is possible to create multiple
instances of a channel between any two L2CAP end points. Each data stream is car-
ried in a different channel. Each packet sent over the channel carries a tag identifying
the channel. The receiver can uniquely identify both the source and the protocol being
transported over the channel by examining the channel identifier tag. L2CAP specifi-
cation also has a provision for a connectionless channel in order to support broadcast
and multicast group communication. However, this is still under development [6].

In order to be able to exchange data over a Bluetooth link, the end devices must
support compatible sets of protocols. So, prior to starting of an application, sometimes
it may be necessary to configure protocol and set the stack parameters. Bluetooth’s
Service Discovery Protocol (SDP) standardizes the procedure for a device to query
and discover the types of services supported by another device. SDP operates in
client-server mechanism. The server provides a list of service description records
about the characteristics of the services. A client can issue SDP queries to browse
through all available service description records, and retrieve the required attribute
values of a service from the corresponding records.

A universally unique identifier (UUID) is assigned at the time of defining the
service. The uniqueness of identifier provides the ability to distinguish between two
independently created services. This is similar to placing a UDDI registry record as in
the case of web services. If the UUID of the service is already known to a client, then
the specific service attributes can be queried easily. The alternative search procedure,
as indicated earlier, is to browse and select one out of the list of available services.
Thus, Bluetooth SDP is not as powerful as other generic service discovery protocols
like SLP (Service Location Protocol) and Jini. But SDP is optimized to run over
L2CAP. The limited search capabilities can also lead to efficient and small foot print
for implementation on small devices.

5.2 Bluetooth 135

To establish a L2CAP channel, the link manager is expected to perform certain
Baseband-specific control checks. The important among these are creation of piconet,
assignments of master-slave role, and link configuration. These control functions are
part of the Bluetooth link layer, and depend on the link manager to exchange link
manager packets. Depending on the operating environment, the link manager must
adjust certain piconets as well as link-specific parameters. A few of these adjustable
parameters are for: adjusting power level, increasing the packet size, and changing
the QoS demand on an ACL.

The primary objective of the Bluetooth specifications is interoperability. The inter-
operability requirements originates from the following incompatibilities:

1. Applications may run on different devices.
2. A device may use a protocol stack from one vendor and a Bluetooth chip from

a different vendor.

Interoperability between the applications can only be achieved if the implementations
conform to the same core and profile specifications. All Bluetooth chips implement
the Baseband and LMP specifications. So, at the lowest layer, this uniformity ensures
interoperability over the air. However, part of Bluetooth stack consisting of L2CAP,
SDP, and RFCOMM layers may be implemented either in firmware or in software.
At the lowest layer, a Bluetooth stack interfaces with a Bluetooth chip through the
standard Host Control Interface (HCI). This seems to suggest that porting a Bluetooth
stack from one platform to another may not be difficult. However, the task of porting
is not as easy due to absence of a standardized API for accessing the control functions.
An application should use the API provided by the stack implementor to initiate a
Bluetooth inquiry for discovering other devices in its neighborhood. It forces the
application developers to know API specific to the stack implemented by a vendor.

5.2.3 Bluetooth-Enabled Applications

Applications are implemented using Bluetooth profiles. Bluetooth profiles specify
wireless communication interface between a pair of Bluetooth enabled devices. There
is a wide range of profiles which describe different types of applications. Three
key information in a Bluetooth profile are: (i) the format of user interface, (ii) the
dependence on the other profiles, (iii) the part of Bluetooth protocol stack needed
by the profile. A Bluetooth device must be compatible with the subset of Bluetooth
Profiles in order to provide services such as file transfer, cable free connectivity,
wireless modem connectivity, personal area network, etc. These profiles sit on the
top of Bluetooth core protocols and may require some additional protocols. The
structure of the general Bluetooth access profile with protocol requirement is shown
in Fig. 5.9. The generic access profile consists of service discovery profile, telephone
control specification profile, and serial port profile. Serial port profile requires the
communication and generic object exchange profiles. Apart from the core Bluetooth
protocols, the requirements of other protocols for implementation of a Bluetooth
application will depend on the specific profile and its dependence on other profiles.
The protocol requirements of some of the applications are given in Fig. 5.10.

136 5 Short Range Radio Protocols: Bluetooth and IR

Generic access profile

Generic object exchange profile

Serial port profile

profile
Intercom

Headset profile

Dial−up network profile

Fax profile

LAN access profile
Synchronization profile

File transfer profile

TCS based profiles

Object push profile

Chordless telephone
profileapplication profile

Service discovery

Fig. 5.9 Structure of Bluetooth profiles

AT commands PPP SDP

RFCOMM

L2CAP

Modem Emulation/Driver Application

LAN access

IP

PPP

RFCOMM

L2CAP

SDP

SDP

File transfer application

L2CAP

RFCOMM

OBEX AT commands

RFCOMM

SDP

L2CAP

Audio

Headset application

(a) Dialup connection. (b) LAN access.

(c) FTP application. (d) Handset application.

Fig. 5.10 Protocol stacks for various Bluetooth applications

5.3 Infra Red 137

5.3 Infra Red

IrDA (Infrared Data Association) standard [7] provides the specification for short-
range free space optical communication based on Infra Red (IR) light which have a
wavelength in the range of 859–900 nm. The approximate communication distance
supported by IR is 1 m with a maximum data rate of up to 4 Mbps. A low power IR
standard is also defined, whose range can be as low as 20 cm. Lower range prolongs
the life of batteries.

There are many advantages in using IR connectivity. First of all, no prior regulatory
approval is required for optical communication. Unlike radio frequencies, IR is free
from interferences. Therefore, it provides robust connectivity leading to safe use
in environments such as avionics, medical instruments, or military equipment. IR-
enabled wireless connectivity facilitates easy mobility in personal space. Finally,
the cost of IR connection is as low as wire connection. So, replacement of wired
connection using IR is advantageous on many counts.

IR is predominantly used for replacing wire connection (RS 232 port) in short
range communication. A normal wired connection to a host is illustrated in Fig. 5.11.
The connection is through a host controller. The host controller has a RS 232 line
driver and provides RS 232 port as the connection interface to outside world. RS 232
port is attached to a DB-9 connector and then a serial cable. DB-9 is a common 9 pin
connector for serial cable. For the replacement of cable, MCP21xx protocol handler
substitutes RS 232 line driver and DB-9 connector is replaced by optical transceiver.
The emittance of light performs the functions of cable connection.

IR based communication is restricted within a range of a circular cone having 30◦
half angle with respect to the axis of communication. The receiver can receive the
signal within a circular cone having a half angle of 15◦. As illustrated in Fig. 5.12
transmission from the source S1 would be able to reach receiver R1, but it cannot
reach receiver R2 as it falls outside the stipulated communication cone.

Communication in IR system resembles client/server programming model TCP
and WinSock APIs. Transmission is half duplex, i.e., simultaneous transmission and
reception are not possible. The receiver is blinded by the light of its own transmit-
ter when the transmission is on. However, two way communication is possible by
alternately switching between transmission and reception modes. The client appli-
cation connects to a server application by providing the server device address on
that server. Applications on different devices can open multiple reliable connection
between themselves for sending and receiving data.

Fig. 5.11 IR for
replacement of cable
connection

controller
Host

RS−232

MCP21xx

protocol handler

DB−9

transciever
optical

wire

light

138 5 Short Range Radio Protocols: Bluetooth and IR

Fig. 5.12 Infrared
communication cone

o30

S

1R

R2

o15

1m or less

communication cone of S
does not interset the

this receiver cone

A base IR equipment, consists of a pair of devices, the one is primary and the other
is secondary. A primary device is responsible for selecting a secondary device in its
visual space. Initially, a primary device enters the discovery phase, and examines
every device visible within its communication cone. A secondary device responds
to the primary device’s discovery, then two devices negotiate their capabilities, and
jump to highest common transmission speed. So, notwithstanding the existing dif-
ferences in respective capabilities, the connection can be optimized to match each
other’s capabilities. The primary device controls the timing of the link for two way
communication. But both primary and secondary devices are bound by some hard
constraints and communicate fast by turning around the link.

5.3.1 IR Protocol Stack

IR protocol stack consists of two groups of layers, viz., mandatory and optional as
shown in Fig. 5.13. The mandatory set of protocols (shaded dark) consists of:

Fig. 5.13 IR protocol suite

In
fo

rm
at

io
n

Se
rv

ic
e

A
ce

ss

(Tiny TP)
Transport protcol

IR link access protocol (IrLAP)

Physical layer

IR link manager protocol (IrLMP)

exchange
Object

protocol
(IrOBEX)

IrLAN IrCOMM

5.3 Infra Red 139

• Physical Layer: which is responsible for signal management or the optical portion
of the transmission.

• Link Access Protocol (IrLAP): it establishes the basic reliable connection.
• Link Management Protocol (IrLMP): its role is to multiplex services and applica-

tion on the link access protocol.
• Information Access Service (IAS): it provides directory (yellow page) services on

a device.

The set of optional protocols (lightly shaded) usually found in an IrDA implemen-
tation are:

• Tiny Transport Protocol (TinyTP): it adds per-channel flow control to keep data
transmission smooth.

• OBject EXchange protocol (IrOBEX): it assists in easy transfer of files and data
objects. Usually be needed by many applications.

• Parallel, and serial port emulation protocol (IrCOMM): it enables existing appli-
cations using parallel or serial communication to work with IR communication
without any problem.

• Local Area Network access protocol (IrLAN): it enables LAN access for laptops
and other devices with slow pedestrian mobility.

The communication begins at a normal data rate of 9600 bits per second, then
settles at a speed compatible with the receiver device. The possible data rates could
be 2400, 9600, 19200, 38400, 57600, 115200, 4000000 bps. Apart from optical
transmission, the other major responsibility of physical layer is framing. The framer
is a software layer which accepts incoming frames from hardware and presents it to
IrLAP. The framer also adjusts the speed of the hardware as desired by IrLAP. The
format of IrLAP frame [1] is depicted in Fig. 5.14. The Beginning of a Frame (BoF)
and End of a Frame (EoF) are specified by a unique identifier. The Frame Check
Sequence (FCS) is, a 8-bit value, calculated from contents of IrLAP packet. BoF,
EoF and FCS are implemented by the framer (in the physical layer). The 7 bits of the
address field represent the address of the secondary device, and the remaining 1 bit
indicates whether the frame is a command or a response. The control field contains
sequence numbers (not relevant for the unnumbered frames), frame type identifiers
(supervisory/information), and command codes. The information field contains the
actual data and can have a maximum size of 2048 bytes. Interested reader can refer
to [1] for more details on frame format.

IrLAP, which sits on the top of the framer, corresponds to the data link layer of OSI
model. It is based on high level and synchronous data link control. For reliable data
transfer, IrLAP supports retransmission, low level flow control, and error detection.
However, it is advisable to use Tiny TP in place of low level flow control. Data delivery

Fig. 5.14 The IrLAP frame
structure BOF AddressControl Data SCF FOE

8b 8b 8b8b 16b16384b

140 5 Short Range Radio Protocols: Bluetooth and IR

may fail if the path of infrared beam is blocked. The environmental characteristics
influencing the development of IrLAP are:

• Point-to-point connections: such as the connection between digital camera and
desktop/laptop. The distance range is usually 1 m or less.

• Half-duplex transmission: as explained earlier, only half duplex communication
is possible. But link can be switched around frequently for bi-directional commu-
nication.

• Narrow cone of communication: as illustrated by Fig. 5.12, the communication is
possible if the receiver’s communication cone is within the transmitter’s commu-
nication cone.

• Hidden nodes: the nodes not in current communication cone of an IR device,
cannot immediately receive the transmission. They must wait to find if the link
turns around before they can enter into a communication.

• Interference: IrLAP of a device must overcome the interference from other IR
devices, ambience light of room including the sun light and the moon beams.

• Absence of collision detection: any collision should be handled at software level,
hardware design does not include protection against collisions.

The operations in IrLAP are divided between a master and a slave with each
having distinct responsibilities. In each connection, one device plays the role of a
primary device. A primary device shall not normally suffer from resource problem.
Typically, a desktop or a laptop would take up the role of a primary station. The three
main responsibilities of primary station are:

1. Sending control frames to initiate a connection,
2. Controlling data flow, and
3. Dealing with unrecoverable data link errors.

The slave or the secondary station sends only response frames. The typical IR sec-
ondary devices are printer, camera and other resource constrained or less complex
devices. IrLAP has three operational modes, viz., link initialization, normal (discon-
nected), and connected. During initialization IrLAP chooses a random 32-bit address
for the device. It is possible for IrLAP to choose the same device address for multiple
devices. But there are mechanisms to detect and resolve conflicts arising out of choice
of same address. After a link has been initialized IrLAP enters normal disconnected
mode (NDM). In NDM mode, the device must listen to find if a communication is
ongoing (medium is busy). The absence of activity for more than 500 ms implies that
the medium is free, and a connection can be established. The other mode of operation
is known as normal response mode (NRM). A device in connected state operates in
this mode. Figure 5.15 explains the state transitions in IrLAP’s operation.

The responsibility of device discovery procedure is to detect other IrDA devices
within communication range of the host. If some of the participating devices have
duplicate addresses, then address resolution procedure is initiated by one of the
conflicting devices. The initiator asks the other device to choose another address.

5.3 Infra Red 141

discovery
Device

Address
resolution

Start Connect Information
transfer

Reset

Disconnect

Fig. 5.15 Flow of IrLAP operation

A specific slot marker is also given to the conflicting device to respond with a new
address. If the conflict still exist, the process of address resolution is repeated. After
resolution process is completed, the application layer may be able to decide about
connecting to one of the discovered devices. The connection is established when the
application layer requests for a connection. The connection request is serviced by
IrLAP by generating a Set Normal Response command Mode (SNRM) frame with
poll bit on. The poll bit mandates a response from the remote device. It basically
tells that the source (requester) wishes to initiate a connection. If the remote device
wishes to accept the connection request, then it responds by an Unnumbered Ack
(UA) frame with final bit set. After that the requester becomes the primary and the
connection accepting remote node becomes the secondary.

The IrLMP is the third layer of IrDA specification. It provides support for two
main functions, viz., (i) Link Management MUltipleXing (LM-MUX), and (ii) Link
Management Information Access Service (LM-IAS). LM-MUX, which sits on top of
IrLAP layer, provides link multiplexing support for application level. LM-IAS pro-
vides directory service through which applications can discover devices and access
the information base in a remote device. LM-MUX used for addressing individual
connection among those multiplexed. It adds an overhead of 2 bytes to address fields
of each IrLAP frame. These address fields uniquely identify the Link Service Access
Points (LSAPs) in both source and destination. Each LSAP is addressed by 7-bit
selector (LSAP-SEL). LSAP-SELs within range (0x)01 to (0x)6F can be used by
application. LSAP-SELs (0x)00 and (0x)70 respectively are for IAS server and con-
nectionless data service. The remaining LSAP-SEL values from (0x)71 to (0x)7F
are currently unused. LM-IAS works like a service registry. It maintains information
about the services provided by a host device. Remote devices may discover the ser-
vices available on host, and learn about the configuration information for accessing
the services through LM-IAS. For example, IAS provides LSAP-SEL value which
is the most important piece of information for locating a service.

With several IrLMP connections operating together, the data flow among the peers
becomes complicated. IrLMP shares the link provided by IrLAP between primary
and secondary devices. IrLAP’s flow control mechanism is not equipped to handle
such problems. The simple reason is that once the IrLAP flow control is turned on

142 5 Short Range Radio Protocols: Bluetooth and IR

one side, the flow of data on LAP connection (which carries all the LMP connections)
ceases completely in that direction. So, unless the LAP flow control is turned off,
the other side cannot get any data. However, this causes serious disruption in its
function, specially if timers are involved. Furthermore, deadlock may occur or flow
in some connections could as well be uneven considering the requirements of the
applications. For example, while a device is waiting for its peer application’s response
before releasing buffer, a different connection may use up the remaining buffer space.
This would cause IrLAP to flow control the link until buffer space becomes available.
Now, if both connection wait for responses from remote devices before releasing the
respective buffer spaces then a deadlock situation can occur.

Tiny TP (TTP) [12] is IrDA’s transport protocol. It lies on the top of IrLMP
layer. TTP is responsible for maintaining per-channel flow control, and oversees the
overall smooth communication. Maintaining multiple IrLMP connections on a single
IrLAP connection is complex. TTP maintains flow per-LMP connection basis. TTP
applies a credit based mechanism to control per-LMP connection. One credit point
is assigned for the permission to send one LMP packet. The receiver sends credits to
the transmitter. The number of credits can vary between 1 and 127. Periodically, the
receiver would issue more credits. If the sender has no credit it cannot send data. So,
the senders using up credits at faster pace are likely to suffer. Note that the role of
the sender, and the receiver are not fixed, both sides of a LMP connection can send
as well as receive. So, both sides will issue credits and use credits issued by each
other. Credit bytes are sent as part of a LMP data packet. So there is no need to use
extra packets as long as there is data to send and credit to issue. The design of a good
credit policy requires careful planning. The other function of TTP is segmentation
and reassembly. TTP breaks large data into pieces called service data units (SDU).
The maximum size of SDU is negotiated at the time of TTP/LMP connection. The
broken pieces should be re-assembled at the receiving end.

IrOBEX stands for infrared object exchange. The protocol’s responsibility is for
transfer of files and other data objects. It functions like a mini HTTP for IrDA. How-
ever, it does not have resources like HTTP, and its target devices have different usage
models than web. Furthermore, HTTP is more a pull based object exchange archi-
tecture, while IrOBEX is evenly balanced supporting both pull and push. IrOBEX
design is quite comprehensive, which simplifies the development of communication
based applications. It has following components:

• Session protocol: it specifies the rules for operations like Get and Put related to
exchange of object during a connection. It allows termination of an object transfer
without closing the connection, and also a graceful closing of the connection.

• Object model: it basically specifies a flexible and extensible representation for
describing objects.

• Use and extension rules: it allows defining new session operations and new object
types.

• IAS entry: for a default OBEX server and the description of its capability.

5.3 Infra Red 143

The infrared communication protocol (IrCOMM) provides for serial and parallel
port emulation. It enables the legacy applications that use serial and parallel commu-
nication to use infrared without change. Basically, IrCOMM aids in replacement of
cables by virtual wires for connecting computers with its peripherals like keyboard,
mouse, printer, etc. It enables direct synchronization of such devices by selecting a
virtual COM port of the computer.

IrLAN Provides LAN access for laptops and other devices. It offers following
capabilities:

• A computer can attach to a LAN via an Access Point Device, an IR LAN Adapter.
• Two computers can communicate as though they are attached to a LAN with access

to the other machines’ directories and other LAN capabilities. So, a computer can
be attached to a LAN through a second computer if the latter is already attached
to the LAN.

The description on IrDA protocol in this section touches all mandatory and a few
important optional IrDA protocols. Yet, it remains incomplete without a discussion
on how an arbitrary data object is exchanged from one device to another. Object
exchange protocol IrOBEX or OBEX is the most basic and desirable feature of IrDA
stack. A wide range of objects can be exchanged through IrOBEX which functions
much like HTTP protocol. Both are designed as request-response type of protocol
for exchanging arbitrary data between the devices. Both support GET and POST
commands make it possible to transfer binary data between the devices. Both have
headers which describe the content and the body. In fact, it will not be an over
statement to call OBEX as IrDA HTTP protocol. Yet there are many dissimilarities
between the two. The design of HTTP is more pull oriented compared to OBEX which
is evenly balanced for both pull and push. OBEX is designed specially for resource
constrained devices and works only on single hop distance between the source and the
destination devices. OBEX is stateful unlike HTTP which is fundamentally stateless
but uses cookies to maintain state.

OBEX consists of two important components, namely, (i) representation model
for objects, and (ii) a session protocol which puts a structure around the conversation
between two devices. The session protocol resides on the top of TinyTP, which is a
reliable transport protocol. No additional protocol is needed except for the upper layer
APIs which allow communications through TinyTP. The protocol layering remains
as indicated in Fig. 5.13.

5.4 Comparison of Bluetooth and Infrared

A comparison of the physical characteristics of Bluetooth and Infrared is provided in
Table 5.1. Bluetooth works over radio communication, whereas Infrared is an optical
communication framework. So it can avoid detection. Therefore, it can find use in

144 5 Short Range Radio Protocols: Bluetooth and IR

Table 5.1 Comparison of physical characteristics of Bluetooth and Infrared

Bluetooth Infrared

Standard 802.15.1 IrDA

Focus Cable replacement Remote control

Basic N/W size 8 Limited by LOS

Maximum packet size 341 B 2048 B

Inter-node range 1–10 m 1 m

Protocol stack size >250 kB ≈425 kB

Number of channels 79 30◦ cone

Baseband (kb/s) 710 115–4000

Spreading FHSS Optical, 860 nm

Topology Ad hoc Client/server

Architecture Star, Tree, Cluster Peer-to-Peer

Protocol Pt to Multi Pt Pt to Pt

Traffic type Text, Audio, Compressed
Video

File, and object transfers

Battery life Days Months

Success matrics Low cost, low latency,
convenience

Reliability, secured, privacy,
low cost

Application Consumer electronics, cell
phones

Remote control

short range communication between computers aboard naval warships, planes and
armoured vehicles. Yet, the requirement of line of sight for optical communication
is a major handicap for IR based communication.

References

1. P. Barker, A.C. Boucouvalas, Performance modeling of the IRDA protocol for infrared wireless
communications. IEEE Commun. Mag. 113–117 (1998)

2. P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, Y.F. Hu, Wireless sensor networks: a
survey on the state of the art and the 802.15.4 and zigbee standards. Comput. Commun. 30(7),
1655–1695 (2007)

3. F. Bennett, D. Clarke, J.B. Evans, A. Hopper, A. Jones, D. Leask, Piconet: embedded mobile
networking. IEEE Pers. Commun. 4(5), 8–15 (1997)

4. L. Boucher, M. Churavy, T. Plesse, D. Marquart, G. Stassinopoulos, S. Kyriazakos, N.
Papaoulakis, D. Nikitopoulos, T. Maseng,Wireless personal area networks (WPANs). Technical
report, NATO Research and Technology Organization (2005)

5. I. Gifford, C. Bisdikian, T. Siep, IEEE 802.15 WPAN task group 1 (TG1) (2002), www.ieee802.
org/15/pub/TG1.html

6. Bluetooth Special Interest Group, Bluetooth core specification, https://www.bluetooth.com/
specifications/bluetooth-core-specification. Accessed 30 June 2010

7. C.D. Knutson, J.M. Brown, IrDA Principles and Protocols (MCL Press, 2004)

www.ieee802.org/15/pub/TG1.html
www.ieee802.org/15/pub/TG1.html
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification

References 145

8. K.J. Negus, A.P. Stephens, J. Lansford, Homerf: Wireless networking for the connected home.
IEEE Pers. Commun. 7(1), 20–27 (2000)

9. D. Porcino, W. Hirt, Ultra-wideband radio technology: potential and challenges ahead. IEEE
Commun. Magaz. 41(7), 66–74 (2003)

10. Wirelss Strategic Initiative-IST Project, The Book of Visions 2000: Wireless World Version 1.0
(Wireless World Research Forum, 2000)

11. C.A. Szabo, I. Chlamtac, E. Bedo, Design considerations for broadband community area net-
works, The 37th Hawaii International Conference on System Sciences (2004)

12. S. Williams, D. Suvak, P. McClellan, F. Novak, A Flow-Control Mechanism for Use with irlmp
(Tiny tp, 1996)

13. Z-wave, Z-wave protocol overview, May 2007. v.4

Chapter 6
Low Power Communication Protocols:
ZigBee, 6LoWPAN and ZigBee IP

6.1 Introduction

IEEE 802.15.1 wireless standard, using Bluetooth for marketing and compliance,
targeted the segment of consumer communication applications. It supports medium
to high data rates for text, audio, voice, and video. But, IEEE 802.15.1 is not suit-
able for the unique needs of sensor and control devices. IEEE 802.15.4 [1] standard
adopted a generic approach to meet the challenges of wireless sensor networks. The
motivation behind this approach was to address the control and monitoring require-
ments of smart homes and hospitals, industrial automation, ship navigation, weather
prediction, crop and habitat monitoring, and security and surveillance management.
ZigBee [2] alliance, of more than 100 companies, was set up for marketing and com-
pliance of IEEE 802.15.4. ZigBee provides supports low range wireless personal
area network. The power consumption of a ZigBee chip is very low. In fact, at this
level of consumption, a AAA battery can last for a year.

ZigBee devices spend most of time in snoozing, and thus have very low duty-
cycles. It uses a simple protocol stack compared to Bluetooth. Its implementation
also requires a smaller software code compared to Bluetooth. Therefore, ZigBee
should not be treated as a competing but a complementary technology to Bluetooth.
ZigBee is oriented more towards monitoring and controlling applications than actual
data transfers. It supports two way communication between multiple devices over
simple networks, using very little power. The low power consumption is the unique
selling point of ZigBee and positions it ideally for WPAN as well as for number of
applications involving smart/pervasive environments. Some of the potential ZigBee
applications could be:

• Sensors monitored automation control for industrial and commercial applications.
• Sensor monitored control and alert system for critical in-patients at hospitals.
• Security surveillance, lighting, and ambience control application for smart homes.
• Remote controlled toys and games.
• PC and peripheral (mouse, key board, joystick, etc.) networking without cables.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_6

147

148 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

Table 6.1 Summary of ZigBee, Bluetooth and Infrared

ZigBee Bluetooth Infrared

Standard 802.15.4 802.15.1 IrDA

Focus Control and
monitoring

Cable replacement Remote control

Basic N/W size 255/65535 8 Limited by LOS

Maximum packet size 104 B 341 B 2048 B

Inter-node range 10 m 1–10 m 1 m

Protocol stack size 4–32 kB >250 kB ≈425 kB

Number of channels 27 79 30 ◦ cone

Baseband (kb/s) 20–250 710 115–4000

Spreading DSSS FHSS Optical 860nm

Topology Ad hoc Ad hoc Client/Server

Architecture Star Star, Tree, Cluster Peer-to-Peer

Protocol CSMA/CA Pt to Multi Pt Pt to Pt

Traffic type Text Text, Audio,
Compressed Video

File, and object
transfers

Battery life Years Days Months

Success matrics Reliability, low power,
low cost

Low cost, low latency,
convenience

Reliability, secured,
privacy, low cost

Application Sensor network Consumer electronics,
cell phones

Remote control

• Various consumer electronic applications like remote program controlling of TV,
home theatre, etc.

Table 6.1 provides a comparative summary of the Bluetooth and IR with ZigBee
protocol.

The major problem with ZigBee network is that it lacks seamless integration
with IP based networks. ZigBee network provide interoperability through a complex
application level gateway node which implement a serial forwarder to handle two
way communications.

The communication is based on multicast address. Therefore, seamless integra-
tion of ZigBee and IP based network is a subject of intense research. 6LoWPAN,
developed initially with a focus to optimize the use of IEEE 802.15.4 stack, has
emerged as a competing network technology. It provides interoperability through a
simple bridging device. 6LoWPAN is based on IPv6 addressing scheme. So indi-
vidual nodes in 6LoWPAN network are addressed using IPv6 addresses. However,
6LoWPAN has lagged behind ZigBee in acceptability. Though on the acceptability
and the popularity parameters ZigBee out-rivals 6LoWPAN, there are many com-
pelling reasons for the use of IP based networks. The most important among these
reasons is the emergence of intelligent embedded systems. Through the logic of
embedded processing one device on its own can initiate communication with other

6.1 Introduction 149

devices over the Internet. This paradigm of Machine to Machine (M2M) commu-
nication over the Internet has made it possible to realize the concept of Internet of
Things (IoTs).

In the context of M2M communication, some of the important requirements are
as follows:

• Uniform addressing, naming, discovery and lookup.
• Interoperability of all IP networks irrespective of underlying network technology

such as GPRS, WiFi, Ethernet.
• Uniform routing mechanism.
• Availability of network management tools, ping, traceroute, etc.
• End to end reliability and hop by hop reliability.

Recognizing the importance of M2M communication specially for implementing
Smart Energy Meters, ZigBee IP was developed as super specification on ZigBee in
2008 [3]. It was then released in 2013 for vendor implementation [4]. In this chapter,
we address these issues in course of discussion centered around ZigBee, 6LoWPAN
and ZigBee IP protocol stacks.

6.2 IEEE 802.15.4

IEEE 802.15.4 is the standard for 2.4 GHz low power, low date rate wireless embed-
ded communication system. The standard was proposed initially in 2003 and then
revised in 2006 [1]. Some of the features of this standard are:

• Supports data transfer rates between 20–250 kbps.
• Supports 128-bit AES encryption.
• Uses CSMA for channel sharing, and has provisions for MAC level acknowledge-

ments for reliability.
• Supports both long (64-bit) and short (16-bit) addressing modes with unicast and

broadcast capabilities.
• Supports maximum payload of 127 bytes in physical layer.
• Only 72–116 bytes available for payload after MAC layer framing.

IEEE 802.15.4 standard only defines MAC and PHY layers. ZigBee, 6LoWPAN,
Wireless HART, ISA100.11a are defined on the top of IEEE 802.15.4. It supports
two types of devices: Full Function Device (FFD) and Reduced Function Device
(RFD).

6.3 ZigBee Protocol Stack

The full ZigBee protocol stack is a combination of IEEE 802.15.4 PHY, MAC along
with network, security and application protocols made available through ZigBee
alliance. In other words, ZigBee leverages IEEE 802.15.4 [1] specification for WPAN

150 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

object1 object 2

Application objects

object 240......

Physical Layer: PHY

Network Layer: NWK

Application Support Layer: APS

Medium Access Control Layer: MACSe
cu

ri
ty

 s
er

vi
ce

s

ZigBee Device
Object: ZDO

m
an

ag
em

en
t

D
ev

ic
e

se
rv

ic
es

U
se

r

IE
E

E

Z
ig

B
ee

Fig. 6.1 ZigBee protocol stack

at the two lowest layers, viz., PHY and MAC. Network (NWK), and Application
(APL) layers are defined by ZigBee standards as shown in Fig. 6.1. Though the
responsibility for application development rests on the user, ZigBee alliance devel-
oped specification for some application profiles in areas such as smart energy, home
automation, telecom applications, plant monitoring, commercial building automa-
tion, and health care. An application profile specify the type of messages to be trans-
mitted over the air for the application. The devices having same application profiles
can interoperate. The actual application code is supplied by equipment designer.

Besides transmitting and receiving packets across the physical medium, the phys-
ical layer (PHY) is responsible for the activation and the deactivation of radio trans-
ceiver, energy detection, link quality indication, channel selection, clear channel
assessment. PHY is based on Direct Sequence Spread Spectrum, operating on two
frequency bands, namely, 2.4GHz, and 868–915MHz. The data rates offered at these
bands are 250Kbps for 2.4 GHz and 40Kbps at 915 MHz and 20Kbps at 868MHz.
Low data rates at low frequency provide lower propagation losses and longer range.
On the other hand, higher rate leads to better throughput, lower latency and lower
duty cycle. In physical layer IEEE 802.15.4 specifies channel access through CSMA-
CA or slotted CSMA-CA protocol. A total of 27 channels are available over three
unlicensed bands: (i) 16 in 2.4 GHz band, (ii) 1 in 868.3MHz, and (iii) 10 in 902–
928MHz. Figure 6.2 illustrates the channels availability in the three operating fre-
quency bands. The sensitivity of receivers for 2.4 GHz band is −85dBm, while that
for 868/915MHz is −92dBM. The advantage of 6–8dBm in lower frequency band
comes from the low data rate. The device range depends on the receiver sensitivity
and the transmit power.

MAC layer employs 64-bit IEEE and 8-bit short addressing. Short addressing is
used for ad hoc network IDs. Theoretically, ultimate network size could be as large
as 264 with long addressing; and in most case this is more than what may be needed
for building a smart environment. Even with 8-bit local addresses, the network size
can be of 255 nodes, which is also more than the requirements involving a personal
area networking in most cases. Three classes of devices are supported, namely,

6.3 ZigBee Protocol Stack 151

902MHz 928MHz868.3MHz

2MHz

2.
4

G
H

z
ba

nd
86

8/
91

5
M

H
z

ba
nd

5MHz

2.4GHz

Fig. 6.2 Channels in three operating frequency bands

1. Reduced Function Device (RFD),
2. Full Function Device (FFD), and
3. Network Coordinator.

Each ZigBee device is mapped to one of three classes RFD, FFD and N/W coor-
dinator. RFDs operate in snooze mode, and wake up infrequently for sending data,
then go back to sleep. ZigBee supports three different network topologies: mesh,
tree and star. Each network has at least one FFD and a combination of FFDs plus
RFDs. One of the FFDs functions as the coordinator while others function as routers
for WPAN. RFDs are end devices. The routers are intermediate nodes which allow
exchange of data from the end devices to the coordinator and extend network beyond
the radio range of the coordinator. Since a router acts as local coordinator for end
devices, it must implement most of the coordinator’s capabilities. Normally FFDs
(coordinator and routers) are powered by the main power supply, and their radios
are on all the time. In contrast, the end devices are designed to function in a very
low-duty cycle, allowing them to extend their battery life as much as possible by
long period of snoozing. A star network is a 1-hop network, where all devices are
connected to the coordinator FFD. In a mesh network, a RFD node is connected to
a FFD which routes data to and from the coordinator. Figure 6.3 shows instances of
star, mesh and tree topologies. As indicated by the figure, the end devices (RFDs)
are linked to FFDs or routers. A cluster of one FFD with its associated RFDs forms
a star topology. For a tree topology the coordinator is at the root and end devices
may communicate with the coordinator either directly or through a router. There are
several alternative routes from an end device to the coordinator through different
routers in the mesh topology. The existence of alternative routes provides reliability
in transmission, but is transparent to the end devices.

A simple frame structure is used for messaging. The frame structure com-
bined with message acknowledgement provides reliable transmission. For improving
latency, nodes rely on beacon structures described below. ZigBee packets are smaller
compared to Bluetooth packets. But unlike Bluetooth which allows up to 8 nodes

152 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

Mesh Tree

FFD router

FFD coordinator

RFD end device

Star

Fig. 6.3 ZigBee network topologies

CF NSF Address Field Payload FCS

2B 1B 0−20B <=127B 2B

Fig. 6.4 ZigBee packet structure

in a piconet, ZigBee allows formation of a large wireless mesh network which may
consist of up to 254 nodes. A ZigBee MAC frame consists of 5 fields including the
payload. The first field is 2-byte long frame control, which indicates the type of the
MAC frame being transmitted. The next 1-byte field denotes the frame sequence
number. The third field represents address field. It specifies the format of the address
field and controls the acknowledgement. The size of the address field varies from 0
to 20 bytes. The payload size cannot exceed 127 bytes. The last field is 2-byte frame
check sequence which is used for CRC. The packet format is shown in Fig. 6.4.

IEEE 802.15.4 MAC defines four separate frames:

1. Beacon frame: which is used by the coordinator to transmit beacons.
2. Data frame: which is used for data transfers.
3. Acknowledgement frame: which is used for confirming the successful reception

of a frame.
4. MAC command frame: which is used for all MAC peer-to-peer entity control

transfers.

There are two different channel access mechanisms: (i) beacon-enabled, and (ii)
beaconless. In the beaconless mode, devices rely on acknowledgement feature for
reliable transmission. Since, power management is an area of concern, the use of
beacon-enabled channel access is recommended for improved latency and longer
snoozing periods. In beacon-enabled networks, ZigBee routers transmit periodic
beacons to advertise their presence in the network. The beacon frames sent by the
coordinator act like a clock. It supports a slotted transmission scheme. The bea-
con interval may vary between 15 ms and 252 s. The nodes may sleep between
beacon intervals, and thus, lower their duty-cycles. It not only helps in improved
latency, but also to extend battery life. The end devices (RFD nodes) synchronize their

6.3 ZigBee Protocol Stack 153

duty-cycle to wakeup only when a beacon is about to be broadcast. The beacons,
therefore, are important for mesh and tree networks. The RFDs can save battery
energy and increase their life expectancies by planning their sleep and wakeup cycles
with beacon broadcasts.

The channel access is split into:

1. Contention Free Period (CFP), and
2. Contention Access Period (CAP).

A CFP consists of Guaranteed Time Slots (GTS) assigned by the coordinator to the
devices, no CSMA-CA is needed for channel access during this time. There may
be up to 7 GTS, and the duration of a GTS may be more than 1 slot period. The
minimum duration of a CAP is 60 symbols. During a CAP, the nodes use CSMA-CA
to access channel.

The values of macBeaconOrder, BO , and macSuperFrameOrder, SO ,
determine the duration of different portions of the super frame. BO specifies the
interval at which the coordinator should transmit its beacon frames. The beacon
interval BI and BO are related by the formula

BI = aBaseSuperFrameDuration × 2BO , 0 ≤ BO ≤ 14.

The super frame is ignored if BO = 15. SO determines the length of the active
portion of the super frame. The super frame duration, SD, and SO are related by the
formula

SD = aBaseSuperFrameDuration × 2SO , 0 ≤ SO ≤ 14.

If SO = 15 then the super frame should not remain active after the beacon.
The active portion of each super frame is partitioned into equally spaced slots

of duration 2SO×aBaseSlotDuration, and consists of three parts, namely, (i)
beacon, (ii) a CAP and (iii) a CFP. The beacon is transmitted at the beginning of
slot 0 without using CSMA-CA. CAP follows immediately after beacon. The CAP
duration should be minimum of aMinCAPLength unless more time is required.
CFP may or may not be present. But when present, it should always follow CAP at
the beginning of a slot boundary. The length of CFP is equal to total length of all
GTSs. Figure 6.5 shows a beacon bounded super frame structure with GTS, CAP,
CFP and inactive period.

1 32 4 5 6 7 8 9 10 11 1213 14 15

inactiveTG TGContention Access Period

beacon
CAP CFP

0

beacon

Fig. 6.5 IEEE 802.15.4 MAC super frame

154 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

For transmissions within a CAP, two variations of CSMA-CA algorithm are used:
(i) slotted CSMA-CA, and (ii) unslotted CSMA-CA. In the slotted CSMA-CA algo-
rithm, the backoff period boundaries of every device in a ZigBee network is aligned
with a superframe slot boundaries of the coordinator. Each time a device wants to
transmit a data frame during contention period, it synchronizes to the boundary next
to the backoff period. In unslotted case, no such synchronization is required.

For execution of CSMA-CA algorithm, 3 important variables are maintained by
each device:

1. N B: the number of times the algorithm backs-off while attempting a new trans-
mission, it is initialized to 0 for a new transmission.

2. CW : contention window which is initialized to 2 before a new transmission
attempt and reset to 2 each time the medium is found busy.

3. BE : Backoff exponent which gives the number of backoff periods that a device
must wait before attempting to access the medium.

The unit of time is a slot time (aUnitBackoffPeriod) that has a default value
of 20 symbols. In slotted CSMA-CA, all three values are initialized, and the next
backoff period is located. In unslotted CSMA-CA, N B and BE are initialized and the
transmission attempt is delayed by random backoff periods in the range [0, 2BE−1],
then the physical layer is requested to perform a Clear Channel Assessment (CCA),
and the subsequent steps of MAC algorithm are executed if possible. But if the
medium is not idle, then BE is incremented ensuring that BE ≤ maxBE. In the
slotted case CW is also reset to 2. If the value of N B < maxCSMAbackoffs,
then the sender returns back to a fresh attempt for channel access. Otherwise the
sending attempt fails and CSMA-CA terminates. In slotted CSMA-CA, the MAC
layer checks to ensure that contention window has expired before transmission. CW
is first decremented, if CW = 0, then transmission is allowed on the boundary of
next backoff period. Otherwise, it asks once again for a channel clear assessment by
physical layer. In unslotted case the transmission begins immediately if channel is
idle. The slotted and the unslotted CSMA-CA algorithms are provided in Figs. 6.6
and 6.7 respectively.

ZigBee allows three different types of data transfers. The type of transfer is depen-
dent on transfer end-points, viz., from a coordinator to a device, from a device to a
coordinator, and between two peer devices. Figure 6.8 illustrates the control and data
exchanges for two-way transmission between a device and the coordinator in beacon-
enabled mode. A device must first listen to the beacon from the coordinator before it
attempts to transfer. As shown in Fig. 6.8(a), when a beacon is found, the device syn-
chronizes to superframe structure and sends the data to the coordinator at the correct
time using slotted CSMA-CA. In the beacon mode, the coordinator transfers data
on request from a device as shown in Fig. 6.8(b). The coordinator indicates pending
message from a device through a beacon. The device which periodically listens to
beacon, first transmits a MAC command requesting data using slotted CSMA-CA.
The coordinator could optionally acknowledge the request, and subsequently send
the requested data. Finally, device may also optionally send an acknowledgement.

6.3 ZigBee Protocol Stack 155

START

NB = 0; CW = 2;
BE = minBE

Locate backoff
period boundary

Delay for rand(2BE − 1)
unit backoff period

Perform CCA on
backoff period boundary

Medium idle?

CW = 2;NB = NB + 1;
BE = min{BE + 1,maxBE}

NB > limit?

FAILURE

CW = CW − 1 CW = 0?

SUCCESS
No

Yes

Yes Yes

No

No

Fig. 6.6 Slotted CSMA-CA algorithm

START

NB = 0;
BE = minBE

Delay for rand(2BE − 1)
unit backoff period Perform CCA

Medium idle?

NB = NB + 1; BE =
min{BE + 1,maxBE}

NB > limit?

FAILURE SUCCESS

NoYes

No Yes

Fig. 6.7 Unslotted CSMA-CA algorithm

In the beaconless mode, IEEE 802.15.4 uses a slightly modified CSMA-CA. It
does not involve RTS-CTS exchange. So, it does encounter hidden terminal problem
in a multihop settings. After successful transmission of a data frame, a SIFS interval is
reserved. A SIFS interval should be longer than ACK message but shorter than ACK
window duration. Each device listens before it attempts to transmit. This strategy
reduces the probability of occurrence of a collision. The waiting period is chosen
randomly from an contention window duration which is defined at the network start

156 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

beacon

Data

Coordinator Device

ACK (optional)

T
im

e

(a) Transmission to the coor-
dinator.

beacon

Coordinator Device

Data request

Data

ACK (optional)

ACK (optional)

T
im

e

(b) Transmission from the
coordinator.

Fig. 6.8 Beacon-enabled transmission in ZigBee

up. A device tries to transmit its packet only after the expiry of contention time.
When a collision is detected then the transmitting node backs off by doubling its
previous waiting time. After five transmission retries are made the waiting interval
is set to its maximum value. The modification in back off algorithm is considered
justified because the traffic loads in ZigBee network are not expected to be high. In a
situation with low traffic load, the modified back off algorithm will eventually allow
a device to transmit its packet. The network layer of ZigBee performs several critical
responsibilities for topology management and routing such as:

• Starting a network
• Joining and leaving a network
• Configuring a new device
• Generating NPDU
• Addressing
• Topology specific routing
• Neighbor discovery
• Route discovery

These responsibilities are shared by three components of network layer namely,

1. Network Layer Data Entity (NLDE): is responsible for generation of Network
level PDU (NPDU) and topology specific routings.

2. Network Layer Management Entity (NLME): is responsible for configuring a new
device forming a network, joining and leaving a network, addressing, neighbor
discovery, route discovery and reception control.

3. Network Information Base (NIB): maintains current settings of the network layer.
This includes information on the number of retries, PANId or network address of
a particular node. Such information may be set through management commands.

From a functional view point, as explained earlier, ZigBee network consists of end
devices, routers and a coordinate. A ZigBee coordinator is an FFD which manages
the whole network. A coordinator is capable of initiating and forming a network.

6.3 ZigBee Protocol Stack 157

All ZigBee devices must provide at least two simple topology control capabilities,
namely, (i) joining a network, and (ii) leaving a network. The coordinator has addi-
tional responsibilities such as (i) assignment of logical network addresses, and (ii)
maintaining a list of neighboring devices, (iii) accepting a join request. A coordina-
tor assigns a 16-bit short network addresses to its children by using a mathematical
function. Further, it specifies certain parameters for any router node to assign logical
addresses to its children. These parameters are:

• The maximum number of children Cm any device may have,
• The maximum number of children Rm out of Cm (Cm ≥ Rm) that may have router

capability.
• The maximum depth Dm of a Zigbee End Device (ZED).

The nodes having no routing capabilities are known as ZED. The depth, associated
with each device, determines the number of hops to reach the coordinator following
child-parent links. The depth of coordinator is 0, each of its children has a depth 1,
and so on. A device uses the parameters Cm , Rm , Dm and its depth d to determine
its capabilities to accept children. It computes a value Cskip as follows:

Cskip(d) =
⎧
⎨

⎩

1 + Cm(Dm − d − 1), if Rm = 1
1 + Cm − Rm − CmRDm−d−1

m
1 − Rm

, otherwise

If Cskip(d) = 0, then the device is a ZED. The value of Cskip(d) �= 0 for a
non ZED. Essentially Cskip pre-allocates a sub-block of addresses to a device for
assignment of short addresses to children under it.

A parent device, with a non-zero Cskip, assigns an address one greater than its
own address to its first associated child router device. The other child routers get
addresses separated by Cskip(d) of parent according to the following formula.

Achild =
{
Aparent + (n − 1) × Cskip(d) + 1, for n = 1

Aparent + (n − 1) × Cskip(d), for n > 1,

where Aparent , Achild are the addresses of the parent and the child respectively, and
1 ≤ n ≤ (Cm − Rm) is the number of children having router capabilities.

The address of a child end device (without router capabilities) is calculated accord-
ing to the following formula.

Achild = Aparent + Rm × Cskip(d) + n

Figure 6.9 provides an example illustrating the address allocation according to rules
discussed above. The values used are: Cm = 5, Rm = 3, Dm = 3. For the particu-
lar example shown in Fig. 6.9, the PAN coordinator reserves address blocks: 1–21,
22–42, 43–63 for the three permitted children devices with router capabilities. The
addresses 64 and 65 are reserved for the two permitted child end devices.

158 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

0000

coordinatorrouters

Cskip(1)=6

Cskip(0)=21

Cskip(2)=1

depth=0

depth=1

depth=2

00410040
0001

0014

0016

0015 0023 0024

Fig. 6.9 Illustrating address assignment (in hexadecimal) to ZigBee devices

MLME scan request

PANId & Address
select channel

MLME set request

MLME set confirm

MLME start request

MLEM start confirm

formation request
NLME network

APL NWK MAC

formation confirm
NLME network

perform energy
detection scan

MLME scan confirm

MLME scan request

MLME scan confirm
perform active scan

Fig. 6.10 Network formation process executed by ZC

A FFD may wish to become a ZigBee Coordinator (ZC) by scanning all channels
to locate one suitable channel. After channel selection, ZC broadcasts a beacon
containing PAN identifier to initialize a PAN. A ZigBee Router (ZR) or a ZigBee
Device Object (ZDO) which hears a beacon from an existing network may join
this network by invoking association process. If multiple beacons are available to a
device, then it chooses the beacon sender with smallest hop count as the coordinator.
It is up to the beacon sender whether to accept the join request or not on the basis
of its current capacity and the permitted duration of association. If the association
becomes successful, the coordinator’s response will be a short address assignment to
the requesting device. A device encounters the orphan problem when all its neighbors
have run out of their respective capacities and unable to accept any additional join
request.

The procedure for network formation by a ZC is explained in Fig. 6.10. The appli-
cation layer (APL) in the coordinator node starts with network formation request to its

6.3 ZigBee Protocol Stack 159

MLME beacon notification

MLME scan confirm

NWKAPL MAC
NLME network
discovery request

discovery confirm
NLME network

MLME scan request

perform passive
or active scan

perform active scan

...
...

...
.

MLME beacon notification

Fig. 6.11 The network discovery process executed by a child device

perform
authentication

NLME start router request

NLME start router confirm

MLME associate confirm

MLME associate request

perform
association

MLME start request

MLME start confirm

NLME joining confirm

NLME joining request

select suitable PAN

Fig. 6.12 The process of joining executed by a child device

Network Layer Management Entity (NLME). The NLME request triggers sequence
of message exchanges between network layer and MAC layer. The MAC Layer
Management Entity (MLME) performs scans to assist NLME to select a channel.
The subsequent exchanges finally leads MLME to confirm formation of the network
which is passed on to APL and the formation completes.

Joining a network is governed by a similar process executed by the child devices.
The child device may be a ZR or ZDO. The request can be accepted only by a
ZC. The first step of join is to go for a network discovery. The discovery process
is explained in Fig. 6.11. After the discovery has been done the child performs the

160 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

NWKAPL MAC
NLME network
discovery request

MLME assoc indication

check extended address &
assign logical address

MLME assoc response

MLME comm−stat indication
NLME join indication

Fig. 6.13 The process of joining executed by a parent device

actual joining process by executing the steps explained in Fig. 6.12. The parent of the
node requesting join must execute corresponding association process. On receiving
association indication from the MAC layer management entity (MLME), the network
layer checks its sub-block of addresses and determines appropriate short logical
address for the child and responds to MAC Layer’s request. On receiving status
indication from its child, the MLME sends the same back to NLME at the parent.
The NLME then sends this association indication to APL. The process is explained
in Fig. 6.13.

When a coordinator decides to detach one of the associated device from the PAN,
it sends a disassociation notification to the device using indirect transmission. On
receiving the notification, the device sends an acknowledgement. But the acknowl-
edgement is not a necessary pre-condition for the coordinator to disassociate the
device. If a device wishes to leave a PAN, it sends disassociation notification to
its current coordinator. On receiving the notification, the coordinator would send an
acknowledgement. Device would consider itself as disassociated even if the acknowl-
edgement from the coordinator does not arrive. Disassociation of device becomes
completed by removing reference to PAN. Similarly, PAN’s disassociation from the
device is complete when the coordinator removes all references to the departing
device.

A device may lose its association due to reception problem or when the coordi-
nator switches its communication channel. When it happens the device is said to be
orphaned. An orphaned device may attempt to rejoin a coordinator by performing
an orphan channel scan. The coordinator on receiving orphan notification, checks to
determine if the device was associated with it previously. If so, then the coordinator
sends a command for re-association. The orphan rejoining procedure executed by
child and parent devices are explained in Fig. 6.14.

6.4 6LoWPAN 161

NWKAPL MAC

MLME orphan indication

search for address in
reserved sub−block

MLME orphan response

comm−status indication
MLME

pa
re

nt
 p

ro
ce

du
re

 f
or

 r
ej

oi
ni

ng
ch

ild
 p

ro
ce

du
re

 f
or

 r
ej

oi
ni

ng

NWKAPL MAC
NLME network

join request
MLME scan request

perform orphan scan

MLME scan confirm

NLME join confirm

Fig. 6.14 Re-joining steps executed by orphan child and its parent

6.4 6LoWPAN

The motivation behind 6LoWPAN proposal is to define IP over IEEE 802.15.4 stack.
The idea is to leverage the IP networking while taking advantage of low energy oper-
ations of MAC and PHY layers of IEEE 802.15.4 standards. It enriched the applica-
tion space from all small, handheld battery powered devices to embedded control and
monitoring devices including sensor nodes. It created the space for what is widely
known as “Internet of Things” (IoT). 6LoWPAN uses IPv6 address space to over-
come the problem of scaling in device addressing. Therefore, it is more appropriate
to define 6LoWPAN as IPv6 over Low-Power wireless networks. It is defined mainly
by IETF standards RFC 4919 [5] and 4944 [6]. Interoperability between IPv6 and
LoWPAN network is due to edge routers with 6LoWPAN support. Within 6LoW-
PAN network, the routers or the hosts need not work with full IPv6 or UPD header
formats. The protocol stack at edge router must have support for both conventional
IPv6 as well as LoWPAN adaptability as shown in Fig. 6.15.

162 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

Fig. 6.15 Protocol stack for
an IPv6 edge router with
6LoWPAN support 6LoWPAN

MAC
IEEE 802.15.4

IEEE 802.15.4
PHY

Ethernet MAC

Ethernet PHY

IPv6 (Network Layer)

adaptation

6.4.1 IPV6

Let us first understand how IPv6 is important for defining IoT space. IPv6 is defined in
RFC 2460. IPv6 is not merely an extension of IPv4, but a complete reformulation IP
addressing scheme. The host identity is decoupled from network address. IPv6 allow
for auto configuration when routers are not present. So, both routing and address
management become simple. Though majority of network traffic is still IPv4, this
address space is completely exhausted. So, all machines, as well as routers now pro-
vide for IPv6 addressing support. Most organizations are now on the IPv6 transition
phase. The growth of IPv6 traffic over the last few years has been phenomenal.

An IPv4 address consists of 4 octets or a 32-bit address. IPv6, on the other hand,
uses 128 bit address space consisting of 3.4× 1038 possible addresses which provides
roughly about 15 million addresses per square inch of the Earth’s surface. IPv6
eliminates the need for NATing and simplifies the routing. There is no need for ARP
or DHCP even Mobile IP for supporting unrestricted mobility of nodes. IPv6 address
is computed from layer 2 or MAC address. Each address has a life time and three
scopes, namely, (i) link-local, (ii) site-local, and (iii) global. The total length of 3 ID
fields in an IPv6 address is 128 bits. The lengths of individual IDs are as follows:

1. Global ID is 48 bits,
2. Subnet ID is 16 bits, and
3. Interface ID is 64 bits.

The interface ID is constructed from 48-bit MAC ID by expanding it to 64-bit
Extended Unique Identifier (EUI). The six octets of 48-bit MAC address is parti-
tioned into 3 higher and 3 lower octets. Then leading octet’s second bit from the
right is flipped. A pair of octets FE:FE is inserted in between these two parts to form
an 8-octet address. The process of forming EUI from a MAC address is illustrated
in Table 6.2. This way every LAN segment gets a 64 bit address. Thus, up to 264

interface IDs are possible. As shown in Fig. 6.16, the network part of the address
also has 64 bits. It is partitioned into 16-bit subnet address and 48-bit global address.
A single global network address, i.e., one single site can have up to 216 = 65536
subnets. The subnet address is also referred to as Site Level Aggregator (SLA). The
remaining 48 higher address bits defining the global network ID has three fields:

1. The first 3 bits define address types.
2. The next 13 bits define Top Level Aggregator (TLA)
3. The remaining 32 bits are for Next Level Aggregator (NLA)

6.4 6LoWPAN 163

Table 6.2 Forming an EUI address from a MAC address

MAC address: 00:0E:81:2E:B6:D1

Flip the second LSB of the leading octet 02:0E:81:2E:B6:D1

Split the address into two halves 02:0E:81 and 2E:B6:D1

Insert FE:FE between two halves and
contenate

02:0E:81:FE:FE:2E:B6:D1

00 0E 81 2E B6 D1

ADT TLA NLA SLA

3

64 bits

13 24 16

64 bits

Link Local Address

 0E 81 FE FE 2E B6 D102

EUI address

Given MAC Address

LSB 2 is flipped

Fig. 6.16 Network part of IPv6 address

Possible address types are: (i) unicast link-local, (ii) anycast, and (iii) multicast.
A unicast address is defined as the address for a single interface. But, a unicast

address also has a scope. So, one interface ID could be associated with three dif-
ferent unicast addresses. The possible scopes can be unique global, unique local
and link-local. All link-local addresses are identified by the prefix FE80::/10. A
link-local address is used for communication between source and destination in a
single LAN, and not forwarded off the router. Each interface ID has an associated
link-local address. Unique local address is recognized by the prefix FC00::/7.
However, it requires 8th bit to be set 1 for locally assigned local address, and if
8th bit is unset then the address is not used (reserved for future use). So, in real-
ity the prefix is for the unique local unicast address FD00::/8. A unique local
address is reachable outside a particular link but not routable across the Internet. It
has limited meaning inside a particular domain. For a global address, 40 bits are
reserved. Global addresses are reachable across the Internet. There are different pre-
fixes for global unicast addresses that identify the unique regional registry to which
the address belongs. For example, prefix2400:0000::/12,2600:0000::/12,
2800:0000::/12,2A00:0000::/12,2C00:0000::/12, refer respectively
to APNIC, ARNIC, LACNIC, RIPE NCC, and AfriNIC registries.

A multicast address represents a set interfaces belonging to many nodes. Multicast
addresses also have assigned scopes. Link-local multicast addresses are meant for
nodes within a link and not meant for forwarding off that link. Organizational multi-
cast addresses are recognizable within a limited scope of one particular domain and

164 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

6to4 prefix

IPv4 address

Octet representation
of IPv4 address

192.168.0.1

C0A8:0001

2002:AC1C:1173::/48

2002::/16

IPv6 prefix

Fig. 6.17 Address translation: IPv4–IPv6

not meant to be valid across Internet. Global multicast addresses are usable across
the Internet. Some of the known prefixes for multicast addresses are: FF02::1,
FF02::2 and FF02:0:0:0:0:1:FFXX:XXXX which respectively represent
link-local for all node addresses, link-local for all routers, and link-local for all
nodes with matching interface IDs.

Anycast packets get delivered to any one of the host interfaces configured for
anycast address, which usually is the nearest one according to distance measurements
by routing protocol. A multicast packet is delivered to all members of a multicast
group.

To give an idea about the basic features of IPv6 addressing scheme, let us begin
with an example where two IPv6 networks are connected over an IPv4 router. The
network prefix 2002::/16 is reserved for IPv6-to-IPv4 traffic. The next 32 bits of
network prefix is reserved for IPv6-to-IPv4 router. Let the IPv4 address of router be
192.168.0.1. The octet representation of the IPv4 address isC0A8:0001. Therefore,
IPv6 prefix of the router will be 2002:C0A8:0001::/48 as shown in Fig. 6.17.
When a IPv6-to-IPv4 router gets a packet with prefix 2002::/16, it knows that next
32 bits represents IPv4 address, and tunnels the packet to the correct IPv4 address.

6.4.2 IP Over IEEE 802.15.4

6LoWPAN defines IPv6 over energy constrained wireless area network [5, 6]. The
implementation of 6LoWPAN requires low memory and overall code size is small.
On the top of this, it facilitates direct end-to-end integration with the Internet. A
6LoWPAN node can be programmed using standard socket API. There are many
factors which influence the architecture of IP over IEEE 802.15.4. Some of the keys
issues are:

1. Design of header. In standard IP network, an IP packet header is 40 bytes while
IEEE 802.15.4 supports a MTU of 127 bytes. Usually, the payload is in form of
parameter value pair which is not more than 8 bytes.

2. Packet fragmentation. The interoperability requirement implies that incoming
packet length from IP network can often be very large. IPv6 links can support up
to 1280 bytes [7].

6.4 6LoWPAN 165

Fig. 6.18 6LoWPAN
protocol stack

IEEE 802.15.4 MAC (unslotted CSMA/CA)

IEEE 802.15.4 PHY

IPv6 with 6LoWPAN adaptation layer
(routing, fragmentation and reassembly)

TCP/UDP

Application using socket interface

3. Link layer routing. A single IEEE 802.15.4 node may have multiple radios. Either
the origin or the destination or both may use short 16 bit addresses or long 64 bit
EUI addresses.

4. IP layer routing. IEEE 802.15.4 supports multiple radios, so it can utilize any of
the available radios over a single hop. IP layer on top of this should also be able
to handle routing over a mesh of 802.15.4 nodes.

5. 6LoWPAN impact on energy. Implementing IP over IEEE 802.15.4 puts certain
inherent overheads. Optimizing the overhead will be a challenge.

The protocol stack is illustrated by Fig. 6.18. The transport layer of 6LoWPAN
does not provide for TCP connection while network layer uses IPv6. In some sense,
6LoWPAN can be viewed as an adaptation layer for handling routing, fragmentation
and reassembly over IEEE 802.15.4 MAC layer. Three major functions of adaptation
layer are:

1. TCP/IP header compression,
2. Packet fragmentation and reassembly, and
3. Routing.

6.4.3 Compression, Fragmentation and Reassembly

The header length of an IPv6 packet is 40 bytes. Apart from IPv6 header, UDP and
ICMP headers consume additional 4 bytes each. The length of TCP header is 20 bytes.
Since, the size of an IEEE 802.15.4 frame is just 128 bytes, without compression,
it leaves just a few bytes for payload. Without the header compression, as Fig. 6.19
indicates the maximum payload size of a IPv6 UPD packet is only 53 bytes. Apart
from MAC, UDP and IPv6 headers, there is also a 2B 6LoWPAN header marked L.
Without compression 64 bit addressing is used. However, when header compression
is applied, 16 bit addressing can be used. When compression is applied on both IPv6
and UDP headers, only 6B is needed. This implies that the maximum size of payload

166 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

MAC FCSL

21 4

UDP Payload

1084

Full UDP/IPv6 packet

Minimal UDP/6LoWPAN packet

MAC FCSUDPL

21 1 40 4538

Payload

IEEE 802.15.4 frame of size 127 bytes

2

IPv6

Fig. 6.19 Header compression in 6LoWPAN

802.15.4 header IPv6 compressed
header IPv6 payload

802.15.4 header IPv6 compressed
header IPv6 payloadFragment header

802.15.4 header IPv6 payloadIPv6 compressed
headerFragment headerMesh routing

header

Fig. 6.20 Header compression in 6LoWPAN using stacked header

can be stretched to 108 bytes. The format of compression is defined in RFC 4944
[6].

Low power wireless technology supports link layer addressing. So, there is a need
for mapping between link layer addressing and IPv6 addressing, which is achieved
through compression. The nodes are assumed to be part of one IPv6 subnet with
unique MAC addresses. Global prefix is assumed to be known to all nodes in the
network, while link-local prefix is indicated by header compression format. So, only
compressed header for local prefix can be used. Multicast addresses are also com-
pressed. As Fig. 6.20 shows, the compression scheme is based on the concept of
stacked headers. The compressed header being encapsulated within the payload of
802.15.4 MAC frame. Three examples of using stacked combination of header lay-
outs are:

1. Point to point short packet transmission,
2. Fragmented IP packet transmission, and
3. Mesh transmitted packets.

Every 6LoWPAN packet header carries a single byte dispatch value which iden-
tifies the packet and the applicable compression type. The first two bits of dispatch
header indicate type of the packet. Five defined types are as illustrated in Table 6.3.

6.4 6LoWPAN 167

Table 6.3 Header compression

00 Not a Low PAN packet

01 Normal dispatch

10 Mesh header

11 Fragmentation header

6.4.3.1 Stateless Compression of IPv6 Packets

The payload of a short packet can be accommodated within a single 802.15.4 MAC
frame. Leaving aside the 2 bits dispatch header, the remaining six bits for point to
point transmission of short packets are set according to the type of header compres-
sion that is expected to follow. Out of 64 possible dispatch header patterns, only five
have been defined so far. One extension byte may be used for dispatch header to
allow up to 256 header types. The extension byte is indicated when all six pattern
bits are set to 1 in the first byte. A layout of dispatch header for 6LoWPAN frames is
shown in Table 6.4. The full layout of packet header for point to point transmission
of short packets is shown in Fig. 6.21. The use of HC1 scheme is based on the fact
that interface ID part of IPv6 is created from MAC address of the host. Therefore,
both can be elided. However, compression of network part of IPv6 address poses
difficulty. It can only be compressed if the network address is a link-local address,
i.e., FE80::/64. HC1 allows for independent compression of each half of both source
and destination addresses by appropriately setting the respective groups bits in HC1,
namely, SA (Source Address) and DA (Destination Address). SA and DA occupy 2
bits each. This encoding is depicted in Table 6.5. The remaining part of HC1 header
represent following components of an IPv6 header:

Table 6.4 Dispatch header

Identifier Header compression

000001 IPv6 header is uncompressed

000010 HC1 compression encoding used for IPv6
header

111111 Additional byte for dispatch header

Fig. 6.21 Headers for point
to point short packet
transmission

01 000010 Compressed 16 bit addresses of Src, Dst

00 000001 Uncompressed IPv6 addresses of Src, Dst

168 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

Table 6.5 Encoding header

SA/DA Prefix Interface ID

00 Sent in-line Sent in-line

01 Sent in-line Derived from L2 or mesh
address

10 Assumed to be link-local
(FE80::/64)

Sent in-line

11 Assumed to be link-local
(FE80::/64)

Derived from L2 or mesh
address

Table 6.6 Explanation HC1 bit patterns for NH values

Pattern Description

00 Next header is sent in-line

01 Next header = 17 (for UDP packet)

10 Next header = 1 (for ICMP packet)

11 Next header = 6 (for TCP packet)

1. Version number which is alway 6, and not sent.
2. Two fields indicating traffic and flow class, and are usually set to 0 in IPv6. C

bit is set if these fields are 0. If C bit is clear then these bits are included in
non-compressed header.

3. Payload length can be extracted from remaining part of length of a 6LoWPAN
packet. So, this field is not sent.

4. The size of the next header (NH) is 1 byte. It contains a number of values that are
found more normally than others.

5. Hop limit is not compressed and sent in-line with non-compressed fields.

HC1 bits are set as shown in Table 6.6 for interpretation of NH values. Non-
compressed fields follow HC1 and HC2 headers with hop limit being the first field.
The non-compressed fields occur in the same order as they do in HC1 header.

Besides, HC1 compression scheme, 6LoWPAN also allows for UDP header com-
pression through HC2 scheme. However, as stated earlier, if HC2 were to be present
then the NH value should be inferred as 17 from HC1. The first three bits of HC2 indi-
cate compression of source port, destination port and the length. Length compression
is easy, as it can be computed from number of bytes remaining in 6LoWPAN frame.
Compression of port numbers is difficult, since it implies that ports are known apriori.
However, it is possible to compress if the range of ports are known. For example,
all ports between 61616 and 61631 can be compressed to lower 4 bits, assuming
higher bits to be F0B. So, by setting both S and D bits in HC2 it is possible to save 3
bytes. Any non-compressed UDP fields follow the non-compressed fields of HC1 in
order they occur in UDP header. The advantage of both HC1 and HC2 compression
schemes is that they work without any input concerning state. Stateless compression

6.4 6LoWPAN 169

01000010 C NH

header
dispatch

HC1 header

8 1 1222

01000010 NH Non−compressed fields

header
dispatch

HC1 header

1 12228

0

1

1 1 1

LS D Non−compressed fields

HC2 header

5

SA DA

AD CAS

Fig. 6.22 Stateless compression of packets in 6LoWPAN

scheme need no synchronization and require simple algorithms. Figure 6.22 illus-
trates the stateless header compression as explained above for HC1 (without HC2)
and also for both HC1 and HC2.

6.4.3.2 Header Format for Fragmented Packets

If the payload fits into a single IEEE 802.15.4 frame, then it is unfragmented and
6LoWPAN encapsulation should not contain a fragment header. However, if the
datagram cannot be accommodated within a single frame then the datagram is frag-
mented, and the corresponding frames would contain appropriate headers for the
fragmented frames.

The dispatch header for fragmented packet transmissions of large packets requires
5 bits. The initial two bits are set to 11. The next 3 bits are set to 000 for the first
fragment of a large packet. The bit pattern 100 is used for the remaining fragments
of the large packet transmission. Notice that 3 bits are left out from the original 8-bit
dispatch header. These bits are now included to define an expanded 11 bit fragment
size. Except for the first fragment, all subsequent fragments also require an offset
to calculate the correct address of the first byte of payload carried by the current
frame. The header layout for fragmented packet transmission is shown in Fig. 6.23.
The fragmented packets also carry a tag of size 2 bytes. It represents the sequence
number of the packet carrying the current fragment.

6.4.3.3 Compression of Mesh Header

The dispatch header for mesh under routing is represented by bit pattern 10 which
requires just 2 bits. The next two bits indicate the addressing used for source (S) and
destination (D). These bits are set as indicated below:

170 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

11000 datagram size datagram tag

16 bits11bits

(a) First fragment header

datagram size datagram tag

16 bits11bits

11100 datagram offset

8 bits

(b) Subsequent fragment header

Fig. 6.23 Fragmented packet headers

Fig. 6.24 Header
compression for mesh
routing

11000 fragment size

11bits

11000 fragment size

11bits

fragment offsetfragment tag

16bits 8bits

fragment tag

16bits

S/D =
{

0, source/destination address is 64 bit EUI

1, source/destination address is 16 bit short address

The next 4 bits represent hops left, which allows up to a maximum 16 hops in mesh
under routing. This limitation is not restrictive, as normally 6LoWPAN networks
have a small diameter. Hops left is followed by source and destination addresses,
and require either 16 or 64 bits depending on whether short or long addressing is
used. So, for mesh under routing header compression reduces the packet header to 5
bytes as indicated in Fig. 6.24.

The second major function of adaptation layer is to handle fragmentation and
reassembly of packets. This is necessitated by the fact that IPv6 layer supports an
MTU of 1280 bytes. Therefore, for two way communication between IP network
and 6LoWPAN nodes fragmentation and reassembly are important basic steps.

6.4.4 Routing

The problem of routing requires attention in two different spaces, namely,

1. Mesh routing in PAN space, involving only 6LoWPAN nodes.
2. Routing packets between IPv6 domain and PAN domain.

6.4 6LoWPAN 171

PHY

802.15.4. MAC

IPv6

Application

Adaptation

Transport

PHY

802.15.4. MAC

IPv6

Application

Adaptation

Transport

PHY

802.15.4. MAC

IPv6

Application

Adaptation

Transport

Mesh−under routingMesh−over routing

Fig. 6.25 Mesh routing in 6LoWPAN network

Mesh routing in 6LoWPAN can occur either in link layer, or in network layer. Link
layer mesh routing is known as mesh-under and transparent to IP. IP or network layer
routing is known as route-over. Figure 6.25 illustrates these routing.

Mesh-under routing is performed at the adaptation layer, the network layer is not
involved. Routing and forwarding is performed by the link layer using 6LoWPAN
header. In order to send packet to the destination either the EUI 64-bit or 16-bit
short address is used. As indicated in Fig. 6.25, multiple mesh under routings may be
needed to send packets close to the destination, located at a single IP hop from the
source. As both link layer originator’s address and the address of the final destination
are included in header, mesh routing for any protocol is possible in adaptation layer.
IP packets are fragmented at the adaptation layer and different fragments are sent
to the next hop by mesh routing. These fragments may follow different paths to
reach the destination. When all fragments are received successfully, reassembly is
performed by the adaptation layer at the destination before delivering these to the
upper layer.

As shown in Fig. 6.25, routings decisions in mesh-over routing are made in net-
work layer. Each link layer hop is also an IP hop. The network layer uses encapsulated
IP header, available as payload of MAC frame, to take decision on routing. The job of
adaptation layer is to map MAC frame and IP headers. A fragments of a fragmented
IP packet are sent to next hop as stored by routing table. When all fragments arrive
successfully, adaptation layer creates an IP packet by reassembling the fragments and
sends to the network layer. If the packet is for the receiving node, then the IP packet
is delivered to the upper layer. Otherwise, the network layer forwards the packet to
the next hop closer to the destination.

172 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

6.4.5 CoAP Protocol

Constrained Application Protocol (CoAP) [11] provides a request response type of
interaction model for M2M communication which is similar to HTTP. The idea
behind CoAP proposal is meant for extending web technology down to the require-
ments of small constrained devices [11] as illustrated by Fig. 6.26. It is basically
an efficient REST (REpresental State Transfer) protocol. CoAP is designed to meet
several requirements that originates from a constrained network. Though similar to
HTTP, CoAP has a low overhead and allows for multicast. HTTP uses TCP as trans-
port service which is unsuitable for push based services. HTTP is too complex for
constrained devices. CoAP uses UDP as transport service, so it does not require com-
plex congestion control protocol of TCP. But CoAP provides UDP bindings for the
reliability and multicast support. CoAP uses REST methods GET, POST, PUT and
URI like HTTP. To cope up with the unreliability of UDP, CoAP employs a retrans-
mission mechanism. Therefore, CoAP is not just a compression of HTTP protocol,
it is designed as a clean efficient REST protocol. However, it is not a replacement
for HTTP. The variations in HTTP and CoAP stacks are depicted in Fig. 6.27. Trans-
action layer of CoAP handles single message exchange between the end points. It
supports four different type of messages:

1. Confirmable: requires an acknowledgement.
2. Non-confirmable: does not require any acknowledgement.
3. Acknowledgement: acknowledges a message.
4. Reset: indicates a confirmable message has been received but the context is

missing.

constrained
resource

network

server

HTTP
HTTP

CoAP

CoAP

CoAP

C
oA

P

server

client

proxy

T

T

T

T

T

subscribe/notify
reliablity

low latency

IoT cloud

Internet

mapping/
caching

HTTP

Fig. 6.26 Architecture of CoAP [10]

6.4 6LoWPAN 173

Fig. 6.27 CoAP and HTTP
stacks

6LoWPAN

TCP

HTTP

6LoWPAN

UDP

Transaction

Req./Resp.

C
oA

P

The request/response layer is responsible for the transmission of requests to the
devices and getting the corresponding responses. The REST request are piggybacked
on confirmable/non-confirmable messages, and the responses are piggybacked on the
corresponding acknowledgement messages. A confirmable message is retransmitted
after a default timeout and an exponential backoff is used between timeouts until the
recipient sends an acknowledgement. If a CoAP server is unable to handle a request
immediately, it sends an acknowledgement for the received message. The response is
sent afterwards. Tokens are used for matching the responses with the corresponding
requests. For more details on CoAP the reader is referred to the original IETF draft
on CoAP [11].

6.4.6 RPL Routing Protocol

Link state routing algorithms maintain routes by scoped flooding while distance
vector based routing algorithms use periodic updates to propagate routing updates.
Both approaches are unsuitable for low bandwidth lossy networks. RPL is a dis-
tance vector based algorithm with the design objectives spelt out in a series of RFCs
[12–15]. The protocol is designed for Low power, Lossy Network (LLN) that uses
IPv6. RPL uses two important techniques to reduce control traffic for topology main-
tenance, namely,

1. Polite gossip, and
2. Parent switching.

The routing updates are propagated using Trickle Algorithm [12]. It uses polite
gossip to react quickly to the updates, but as the same update gets circulated in the
network, the algorithm quickly ceases its activity. The technique is as follows:

• An update is broadcast locally by a node, if its own data is not consistent with
what it hears from others.

• But if a node hears the same update then it becomes silent, i.e., transmission is
suppressed.

• On hearing an old update, a node broadcasts the most recent update.

174 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

In other words, on hearing a new update, a node broadcasts the same in order to
trigger other nodes to broadcast. On hearing an old update, node understands that
there is at least one node (from which it received the old data) which has not received
the new update.

The other important technique that RPL uses is switching parent to achieve reli-
ability. Since LLN is an unstable network, the nodes tend to lose connectivity fre-
quently. To take care of such instability, each node maintain multiple potential parents
and switches quickly away from the routes that are no longer available. It keeps track
of the variability in link state by estimating ETX, i.e., estimated number of transmis-
sions. As a result, it does not have to initiate route repair as often as other existing
routing algorithms do.

6.4.6.1 DODAG Construction

The most important idea behind the routing scheme is the construction of a Desti-
nation Oriented Directed Acyclic Graph (DODAG). A DODAG is built for a single
destination or sink. The sink node is also referred to as the root of the DODAG. A
DODAG is built by using a single Objective Function (OF) that determines how the
routing metric is computed. The use of different OFs define different DODAGs to
co-exist over the same physical network. For example, on the same physical network
one OF may be used to define a DODAG on the basis of expected transmission and
another OF may be used to define a DODAG based on residual battery power of the
nodes.

Each node n computes its rank, where the rank gives its relative position with
respect to the root. So, rank of n increases or decreases depending on whether it
moves away or moves towards the root. The rank can be based on simple hop count
or defined by a function which depends on certain constraints. It requires four types
of control messages:

1. DIO (DODAG Information Object): Stores routing control information. It includes
for example, the rank of a node in current instance of RPL, IPv6 address of the
root node.

2. DAO (Destination Advertisement Object): Its main purpose is to propagate des-
tination information upstream along the DODAG. This information is used for
downstream routing.

3. DIS (DODAG Information Solicitation): It enables a node to acquire DIO message
from a reachable neighbor.

4. DAO-ACK: It is an acknowledgement sent by the recipient of a DAO message.

These four types of control messages are defined as ICMPv6 information messages
[16].

As explained above, for topology maintenance, it extends trickle algorithm [12]
for controlled sending of DIO messages over the network. For a stable network, DIO

6.4 6LoWPAN 175

messages are sent infrequently, but in an unstable network, DIO messages are sent
frequently. From a DIO message, the recipient gets the RPL instance and knows which
DODAG it is a part of. Hence it can compute its own rank. The rank computation
would depend on the rank of the parent and OF carried by the DIO message. If a
node is moving closer to the root, then it can apply “make before break” approach
to poision the existing route after it activates the new route. Because this can never
lead to a loop.

Most of the time, the local repair can reconnect a node to its DODAG, if current
parent becomes unresponsive. Most of the time, the local repair increases the rank of
the node, and needed when an inconsistency is detected. The need for global repair
arises when the root wants to reconfigure the network. Each node recomputes its
rank and selects a new parent set.

For supporting source routing to various nodes, each node sends out DAO message
which carries information about parent set on DODAG until it reaches the root. The
root gathers DAO information for each node in order to construct downstream route
for the node. For more details on DODAG construction and routing, the readers are
referred to [17].

6.5 ZigBee IP

One of the major problems in interoperability of ZigBee with IP based networks
is security. To connect a ZigBee node to the Internet, two different sets of security
associations are needed:

1. One to handle the connection between a ZigBee node to ZigBee Gateway, and
2. Another to handle the Gateway to IP node connectivity.

Therefore, vulnerability to the attacks increases manifold. In contrast, 6LoWPAN
uses IPv6, and does not require any additional security mechanism for end-to-end
communication. Additionally, it also leaves more room for payload [8]. So, a relook
was necessary on ZigBee stack to incorporate support for IP.

6.5.1 Protocol Stack

ZigBee IP is a super specification for IPv6 stack and developed initially for Smart
Energy Meter application. The approach in developing super specification is dictated
by the following two important reasons:

1. Implementing a full stack from scratch would have created problem interoper-
ability with legacy ZigBee networks already deployed in the field.

2. The cost of interoperability should not increase the complexity and the size of the
code for ZigBee stack too much.

176 6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP

Fig. 6.28 ZigBee IP stack
layering architecture

 (ND, RPL)

Network
Management

6LoWPAN adaptation

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Security
Stack

Security
App

Transport Layer

IPv6
(UDP/TCP)

Application Layer
(CoAP)

ZigBee IP draws much of the concepts from 6LoWPAN, especially the header com-
pression and the fragmentation ideas. It uses Routing Protocol for Low-power and
Lossy Networks (RPL) for routing. The downstream routing is managed without IP
tables. The network nodes route their data to a central device which uses source rout-
ing to route data back to devices. It also supports both transport protocols: UDP and
TCP. Figure 6.28 shows the layering architecture of the stack. Besides 6LoWPAN
adaption layer for header compression and fragmentation, the network management
incorporates IPv6 Neighbor Discovery (ND) [9] to find IP addresses of directly reach-
able neighbors. Neighbor discovery works for networks where the router is always on
[9]. The basic problem in transmission between an IP node and a ZigBee node arises
due to mismatch in sizes of MTUs in the two networks. MTU size is 1280 octets
in IPv6 and that in IEEE 802.15.4 consists of 127 octets. For downstream transmis-
sion, an incoming IPv6 datagram is broken down into small pieces called fraglets.
The size of a fraglet is 127 octets including the payload and the compressed header.
Each fraglet of an IP packet is sent as a separate downstream packet. For upstream
transmission fraglets are recombined into a single datagram and then handed over to
upper IP layer.

References

1. P. Kinney, P. Jamieson, J. Gutierrez, IEEE 802.15 WPAN task group 4 (TG4) (2004), www.
ieee802.org/15/pub/TG4.html

2. P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, Y.F. Hu, Wireless sensor networks: a
survey on the state of the art and the 802.15.4 and zigbee standards. Comput. Commun. 30(7),
1655–1695 (2007)

3. ZigBee Standard Organization. Zigbee smart energy profile specification, Dec 2008. Document
075356r15

4. ZigBee Alliance. ZigBee IP: The first open standard for IPv6-based wireless mesh networks,
Mar 2013

5. N. Kushalnagar, G. Montenegro, C. Shumacher, IPv6 over low-power wireless personal area
network (6LoWPAN): overview, assumptions, problem statement, and goals, http://www.rfc-
editor.org/info/rfc4919. Aug 2007. RFC-4919

www.ieee802.org/15/pub/TG4.html
www.ieee802.org/15/pub/TG4.html
http://www.rfc-editor.org/info/rfc4919
http://www.rfc-editor.org/info/rfc4919

References 177

6. G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 packets over IEEE
802.15.4 networks, https://tools.ietf.org/html/rfc4944. Sept 2007. RFC-4944

7. S. Deering, R. Hinden, Internet protocol, version 6 (IPv6) specification, https://tools.ietf.org/
html/rfc2460. Dec 1998. RFC-2460

8. E. Toscano, L. Lo Bello, Comparative assessments of IEEE 802.15. 4/ZigBee and 6LoWPAN
for low-power industrial WSNs in realistic scenarios, in The 9th IEEE International Workshop
on Factory Communication Systems (WFCS), 115–124, 2012

9. T. Narten and The Author Team for RFC-4861. Neighbor discovery for ip version 6 (IPv6),
https://tools.ietf.org/html/rfc4861. Sept 2007. RFC 4861

10. Z. Shelby, Coap: The web of things protocol, https://www.youtube.com/. May 2014
11. Z. Shelby, K. Hartke, C. Bormann, The constrained application protocol (coap), https://tools.

ietf.org/html/rfc7252. June 2014. RFC-7252
12. A. Brandt, J. Buron, G. Porcu, Home automation routing requirements in low-power and lossy

networks, 2010. RFC 5826
13. The Author Team for RFC-5548. Routing requirements for urban low-power and lossy net-

works, https://tools.ietf.org/html/rfc5548. May 2009. RFC-5548
14. J. Martocci and The Author Team for RFC5867. Building automation routing requirements in

low-power and lossy networks, https://tools.ietf.org/html/rfc5867. June 2010. RFC-5867
15. K. Pister and The Author Team for RFC-5673. Industrial routing requirements in low-power

and lossy networks, https://tools.ietf.org/html/rfc5673. Oct 2009. RFC-5673
16. A. Conta, S. Deering, M. Gupta, Internet control message protocol (ICMPv6) for the internet

protocol version 6 (IPv6) specification, https://tools.ietf.org/html/rfc4443. Mar 2006. RFC-
4443

17. T. Winter and The Author Team for RFC-6550. Rpl: Ipv6 routing protocol for low-power and
lossy networks, https://tools.ietf.org/html/rfc6550. Mar 2012. RFC-6550

https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc4861
https://www.youtube.com/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc5548
https://tools.ietf.org/html/rfc5867
https://tools.ietf.org/html/rfc5673
https://tools.ietf.org/html/rfc4443
https://tools.ietf.org/html/rfc6550

Chapter 7
Routing Protocols for Mobile Ad Hoc
Network

7.1 Introduction

A Mobile Ad hoc NETwork (MANET) is a multihop wireless network consisting
of a number of mobile devices forming a temporary network. No established wired
infrastructure or centralized network administration exists to support communication
in a MANET. A MANET differs from a wired network in many ways. Some of these
are attributable to general characteristics of wireless networks, while the others are
due to the characteristics specific to MANETs [4]. Some of the typical characteristics
a MANET are:

• The users in a MANET may neither wish nor be in a position to perform any
administrative services needed to set up or to maintain a network.

• The topology of a MANET changes dynamically due to mobility of the nodes.
• Each node in a MANET is completely autonomous and acts both an ordinary node

and a router.
• A node in a MANET has relatively less resources compared to a node in wired

network.
• All nodes have similar capabilities and identically responsible for communication

in a MANET.
• Any mobile node may either join, or leave MANET at any point of time.

The problems associated with wireless connectivity combined with the limitations of
MANET create a number of difficulties in designing routing protocols. In particular,
these protocols are expected to address and resolve the following important issues.

1. Communication in a MANET is broadcast based. Unless carefully designed,
routing protocols may generate high volume of unnecessary traffic in the network
leading to flooding and congestion.

2. In order to participate in discovery and maintenance of the routes, the nodes in a
MANET should be in active mode. However, no node should be forced to wake
up when it is operating in low energy mode to save its battery power.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_7

179

180 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.1 Ad hoc network

A B

C

3. The processing load due to discovery and maintenance of routes should be dis-
tributed as much evenly as possible among the nodes in a MANET.

4. Many redundant paths have to be maintained between every pair of source and
destination. This may causes unnecessary increase in the size of routing updates
that must be sent over the network.

Each node in a MANET has a fixed wireless range. Any mobile host which
appears inside the range of a transmitting host can listen/capture the messages being
transmitted. In a MANET, every active node is expected to participate in forwarding
a message towards the destination node. If a destination host is not directly reachable
from a source then all hosts which receive the transmission from the source, forward
the same to their respective neighbors. The neighbors, in turn, repeat the same until
the message finally reaches the destination. For example, consider Fig. 7.1 where A,
B andC represent three mobile hosts. The wireless ranges of these hosts are indicated
by the respective circles having centers at A, B and C. The figure indicates that A and
B are within the wireless range of each other, so are B and C. But C cannot receive
any transmission directly from A, as it is not in the range of A. If A were to send a
message to C then B must cooperate to forward the same to C. Thus, the design of
an efficient routing protocol in MANET poses a number of difficulties depending on
the degree of severities of the constraints mentioned above. This explains why the
area offers a rich source of problems for research.

A number of routing schemes have been proposed [1, 8, 9, 11, 12, 14–16] for
mobile ad hoc networks. Most of these algorithms based on existing Internet routing
algorithms. The performance evaluations of the routing algorithms can be based on
a set of common parameters, namely,

• Distributiveness in execution.
• Ability to find loop-free paths between a source and a destination.
• Ability to find cheaper routes between a source and a destination.
• Ability to restrict flooding the network with broadcast transmission during route

discovery.
• Ability to quickly establish a route between a source and a destination.
• Ability to avoid congestion at nodes by providing alternative routes between a

source and a destination.

7.1 Introduction 181

• Ability to maintain or repair a route between a source and a destination quickly, by
localizing the route maintenance, when the network topology undergoes a change.

• Ability to provide quality of service (QoS).

An exhaustive study of the routing algorithms could be a book by itself. An
interested reader may refer to an excellent collection of selected articles on ad hoc
network [13]. Only a few important and widely cited routing schemes are the subject
of our discussion here.

7.2 Classification of Routing Protocols

Routing in any network can be viewed abstractly as finding and maintaining the
shortest-path between two communicating nodes in a weighted graph. Each node
maintains a preferred neighbor, which is the next hop on the path to reach a des-
tination. Each data packet should have the address of the destination in its header.
An intermediate node forwards a data packet to the next hop closer to destination
by consulting the locally maintained table known as route table. The routing proto-
cols differ in the manner in which the routing tables are constructed and maintained.
Based on characteristics of the routing protocols, Royer and Toh [17] have suggested
a classification scheme. As shown in Fig. 7.2, the routing schemes can be classified
into two broad classes, namely,

• Table driven or proactive, and
• Source initiated on-demand or reactive

Examples of distance vector based table driven protocols are Destination Sequenced
Distance Vector (DSDV) [14], Wireless Routing Protocol (WRP) [10] and Cluster
Gateway Switch Routing (CGSR) [2]. DSDV is a distributed version of Bellman-
Ford shortest path algorithm which relies on destination sequence numbering scheme
to avoid loops. CGSR protocol is a logical descendant DSDV protocol. But, it uses

Ad hoc routing
protocols

Table driven

DSDV WRP GSR

FSR

Hybrid

ZRP

Source initiated,
on demand

AODV DSR LMR

TORA

ABR

SSRCGSR LAR

Fig. 7.2 Classifying routing algorithms

182 7 Routing Protocols for Mobile Ad Hoc Network

a clustered multihop organization scheme for network instead of a flat structure.
WRP [10] does not use sequence number, but uses second-to-last hop information
for each destination. It forces each node to check consistency of its predecessor’s
information to avoid count-to-infinity problem. Fisheye State Routing (FSR) [12]
protocol is a direct descendant of Global State Routing (GSR) [1] protocol. GSR is
a link state routing algorithm it exchanges vector of link states among the neighbors
during route discovery.

Examples of source initiated reactive protocols are Ad hoc On-demand Distance
Vector (AODV) [15], Dynamic Source Routing (DSR) [8], Lightweight Mobile Rout-
ing (LMR) [7] and Associativity-Based Routing (ABR) [18]. AODV [15] is inspired
by DSDV protocol. Instead of proactively maintaining routes, AODV reactively dis-
covers routes when needed. Like DSDV, it uses destination sequence number to avoid
formation of loops. In DSR [8], each source provides the complete path to a chosen
destination for routing a packet. Each node maintains a route cache for the routes
to other nodes that it is aware of. The route cache of a node is updated as the node
learns about new routes to more destinations. Location Aided Routing (LAR) [9] uses
location information to reduce flooding during route discovery. The major problem
in LAR is that it requires nodes to be aware of their location information. Route
discovery and establishment is similar to AODV and DSR.

LMR [7] is a link reversal based routing scheme based on Gafni-Bertsekas [6]
algorithm. The objective of LMR is not to find shortest path but to find any path
between a source and destination pair. Temporarily Ordered Routing Algorithm
(TORA) [11] is a direct descendant of LMR. The key feature of TORA is local-
ization of control messages in the neighborhood where the topology changes occurs
in the network. In order to accomplish it, the nodes maintain routing information
about immediate neighbors. ABR [18] obtains stable route by selecting routes on
the basis of degree of association stability among mobile nodes. Every node sends
out periodic beacons to notify its existence which is used to update the respective
associativity ticks of the current node with the beacon dispatch nodes. Association
stability of one node with another is defined by connectivity over time and space.
Signal Stability Routing (SSR) [5] is a logical descendant of ABR. It chooses route
based on signal strength and location stability.

In this chapter our attempt is not to give a full review, but focus discussion on
a few interesting protocols which exposes the characteristics and the abstraction of
routing problem in a network with dynamic topology.

All MANET routing protocols are based on existing Internet routing protocols.
Primarily three design approaches are used for Internet routing protocols, namely,

• Distance vector,
• Link state, and
• Link reversal.

Our discussion in this chapter is restricted only to distance vector based routing
algorithms. Focusing only on distance vector algorithms may appear to be an incom-
plete exploration of the area. However, the reasonbehind this decision is to introduce

7.2 Classification of Routing Protocols 183

Fig. 7.3 Count to infinity
problem A B C A B C

A B C A B C

(2, B, C) (1, C, C)

Link breaks

(2, B, C) (∞, –, C)

(2, B, C) (3, A, C)

update

(4, B, C) (3, A, C)

update

the problem domain to the reader rather than just throwing up research challenges.
Furthermore, we believe that ad hoc networks are mostly low diameter and small
sized networks. Therefore, the research efforts made in design of multihop, scalable
routing algorithms have only theoretical value with no practical utility.

7.2.1 Distance Vector Routing

The abstract model of an underlying ad hoc network is a graph. Every node v main-
tains the table of distances dxvw for each destination node x, where w ∈ Lv (adjacency
list of v). In order to send a message from a source v to a destination x the next hop is
selected among the neighbours of v which returns the minimum value of the metric
dxvw. At an intermediate hop, the same rule is applied to forward the message to the
next hop. The process is repeated till the destination is reached. The message is,
thus, forwarded from a source to a destination by a sequence of hops via the shortest
possible path between the two nodes.

A major problem that may arise in formation of a route using a distance vector
routing scheme is referred to as count-to-infinity. Figure 7.3 provides an illustration
of the problem. Initially, A knows distance to C via B to be 2 units. Suppose the
link B to C breaks (e.g., timer expires). But before B can advertise its own routing
table, it receives update from A indicating there is a path of 3 units to C available
through A. B updates the distance to C as 3 not knowing the fact that route via A
includes itself. B then sends the update to A. After receiving the update from B, A
updates distance to C as 4. The cycle of update exchanges keep continuing resulting
in count-to-infinity problem.

7.3 Destination-Sequenced Distance Vector Routing

Destination Sequenced Distance Vector (DSDV) is a distance vector based routing
protocol. It is essentially a distributed version of the classical Bellman-Ford [3]
shortest path algorithm modified for dynamically changing network topology. The
fundamental problem in employing the distance vector routing algorithm in a mobile
environment is formation of loops. Since, the nodes are mobile, the change in network
topology occurs rapidly. Consequently, the information maintained at each node

184 7 Routing Protocols for Mobile Ad Hoc Network

quickly becomes stale. It may, therefore, not only introduce loop but may also exhibit
count to infinity problem.

DSDV maintains routing tables at each node for routing packets from a source to
a destination. Each routing table contains a list of destinations with the number of
hops to reach a destination. Each entry of a routing table is tagged with a sequence
number assigned by the corresponding destinations. The source node consults its
routing table for the destination and sends the data packet to the next hop in the path
to the desired destination. The next hop repeats the actions and forwards to the node
which is the next nearest hop to the destination and so on, until the destination is
reached. The major issue in DSDV is the maintenance of the routing tables.

7.3.1 Advertisement of Routes

All nodes periodically transmit the route updates, or as soon as any new information
about the change in topology is available. However, there is no fixed time interval
for the propagation of updates. This follows from the fact that the mobile hosts are
not expected to maintain any kind of time synchronization in movements.

Each mobile node advertises its own routing table to its current neighbors. Since
the routes may change frequently due to movement of mobile nodes, the advertise-
ment of routing table is carried out on a regular basis. The regular advertisement of
routes allows the mobile hosts to continue in doze mode and resume as they wish.
So, even if a node (not in active mode) misses out the current route advertisements,
it receives a route advertisement on turning to active mode.

Forwarding a message from a source to a destination requires support from other
mobile hosts. However, the nodes operating in doze mode should not be forced to
participate in forwarding of a message. A route advertisement packet broadcast by a
node consists of the following important information.

1. The recent most destination sequence number of the route to a destination as
known to the source.

2. The address of the destination.
3. The number of hops required to reach the destination.

A node on receiving a new route information should broadcast the same to its neigh-
bors. Apart from adding a new broadcast sequence number, the transmitting node
increments the number of hops by one to indicate that the new route to destination
includes itself as a hop. The broadcast sequence number is different from the desti-
nation sequence number. A broadcast sequence number helps to eliminate repeated
forwarding of the same route advertisement. Unless stated otherwise, a sequence
number always means a destination sequence number.

For the purpose of forwarding a data packet, the route with most recent sequence
number is used though the same is not typically used for route re-advertisement.
The route re-advertisement is held back to allow some settling time for a new route
information.

7.3 Destination-Sequenced Distance Vector Routing 185

Two different route updates are advertised: (i) incremental update, and (ii) full
update. The incremental updates are small and advertised more frequently than the
full updates. An incremental update typically needs less than a single NPDU (Net-
work Protocol Data Unit). As number of updates grows, due to increased mobility
of nodes with time, just sending incremental updates do not work. The number of
entries in the forwarding table becomes large to fit into a single NPDU. In this sit-
uation it is preferable to go for a full dump. Full dumps are transmitted relatively
infrequently and may require a number of NPDUs. The interval of time between two
full dumps will depend on the frequency of movements of the mobile hosts.

7.3.2 Propagation of Link Break Information

When a node N detects a broken link to a neighbor M, then N generates a fresh
sequence number and modifies the distance of each destination to ∞ for which M
was an intermediate hop. This is the only instance in DSDV where a sequence number
for a route table entry is generated by nodes other than the destinations. The sequence
numbers for real (finite) routes are always even numbers. The sequence numbers of
the routes with broken links (with route metric ∞) are always odd numbers. A broken
link is, thus, easily identified as the one tagged with an odd sequence number.

7.3.3 Stability of Requirements

DSDV requires a stability time for propagation of route information. It helps to
absorb fluctuations in the route tables during the period of quick changes of network
topology. It also eliminates the need to rebroadcast the route updates that arrive with
the same sequence number. The new information about topology received at a node
is allowed to settle for a while, before being advertised by the node.

It is possible that during the interval of route settling time, the network experiences
further changes in topology after the arrival of the latest route update. The reason
behind this can be attributed to continuity of node movements. If a node has just
began to move then it is expected to continue move for some time before it pauses
at a place for a while. By employing a delay in route advertisement, the problem
re-advertisement of the routes in quick successions (which may lead to a broadcast
storm) is controlled. If the stability delay is not employed, flooding can occur even
when a destination does not move. Such a scenario can be constructed as follows as
depicted in Fig. 7.4 adopted from the example from the original DSDV paper [14].
The route update for the destination node M8 reaches a node say M6 from both
M5 and M7. The collection of nodes in the network is such that paths reaching M6
from M8 can be grouped into two classes. One set of these paths is such that every
path in it passes through M5 and do not intersect any of the paths from the second
set each of which passes through M7. Suppose M6 receives the route update from

186 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.4 Flooding due to
fluctuations in routes

Collection A Collection B

M5 M7

M6

M8

No common node
exists between A and B

M7 eight seconds earlier than that from a path via M5. Also let the number of hops
in a path via M5 is 20 and that in a path through M7 is 19. Suppose this happens
every time a new sequence is issued by M8. Then the path information for M8 at M6
fluctuates back and forth every time a new sequence number is issued at M8. If any
new route information gets propagated without stability delay, the receiving node
propagates the routes with new metrics in quick succession to its neighborhood. It
causes flooding in the network.

7.3.4 Guarantee for Loop Free Paths

Assume that system is in steady state. All tables of all nodes have converged to actual
shortest paths. Then the collection of next hops for any destination D is logically an
inverted rooted tree with the root at D.

Consider an inverted tree for one destination, say x, and examine the changes that
occur due to movements of the nodes. Let G(x) be the directed graph of x defined
by the edges of the form (i, ni(x)), where ni(x) is the next hop for destination x at
node i.

Lemma 7.1 The operation of DSDV ensures at every instant G(x) is loop-free.

Proof Potentially a loop may be introduced if ni(x) changes. If ni(x) is set to nil, it
implies a link break. Therefore, a loop cannot be formed.

Assume that ni(x) is changed to a non-null next hop. There are two ways in which
ni(x) at i can change when i receives an update about a new route to x from a neighbor,
say k with sequence number sk(x), namely

7.3 Destination-Sequenced Distance Vector Routing 187

1. sk(x) > si(x), where si(x) is the sequence number for destination x in the route
table at i.

2. sk(x) = si(x), but metric dk(x) < di(x).

In the first case i cannot introduce a loop. Because i propagates the sequence
number si(x) to its downstream neighbors only after receiving it from any of its
current neighbors. Therefore, the sequence number stored at any of the neighbors of
i is always greater or equal to that stored at the node i. In fact, the set of sequence
numbers stored at intermediate nodes upstream from any node i to the destination x
forms a non-decreasing series. If indeed, k were to introduce a loop, then it would
mean sk(x) ≤ si(x) which contradicts the assumption sk(x) > si(x).

The loop-free property in the second case follows from the fact that in the presence
of static or decreasing link weights, the algorithm always maintains loop-free paths.

7.3.5 Forwarding Table and Update Propagation

A forwarding (routing) table stored at each node is used to forward packets from
the node to the next hop along a route to a destination. A basic routing table entry
consists of the following fields:

• Destination: the address of the destination node.
• Next hop: the next node along the path from the current node to destination.
• Metric: the number of hops required to reach the destination.
• Sequence number: the sequence number assigned by the destination to the current

table entry.
• Install time: the time when the current entry was made. It helps to determine when

the stale routes are to be deleted.
• Stable data: is a pointer to a structure holding information of a new route which

is likely to supersede the current route after sometime.

If all links on a route to a destination are live then the corresponding sequence
number for that destination must be even. Install time is used to detect if any route
has become stale (expired). However, install time is not very critical for working of
DSDV algorithm, because detection of a link breakage is propagated through the ad
hoc network immediately.

The stable data is a pointer to a structure that stores the information about the
stability of routes to a destination. The stability information is used to dampen fluc-
tuations routes. The fluctuations may happen due to continuity of the node movements
that has not yet settled. The stable data records the last and the average settling time
for every route. Therefore, when a node, say N , receives a new route R, N does not
immediately advertise R unless it is a route to a previously unreachable destination.

188 7 Routing Protocols for Mobile Ad Hoc Network

A new route to an existing destination is advertised only after 2*(average settling
time). Essentially, DSDV keeps two routing tables. One table is used for forwarding
the packets, and the other one is used for advertising of the route updates. The adver-
tised route table of a node is constructed from its stable data, and has the following
structure:

destination

metric

sequence_number

For advertising routes, a node places the route to itself as the first entry. Then all
the nodes which have experienced significant change in topology, since the previous
advertisement, are placed. A change in route metric is considered as a significant
change. The rest of the advertised route table is used to include all nodes whose
route sequence numbers have changed. If too many updated sequence numbers are
advertised then a update cannot be included in a single packet. To get around this
problem, a fair selection policy may be used to transmit the updates in round-robin
fashion by several incremental update intervals.

7.3.6 Example

Consider the snap shot of the routes in an ad hoc network shown in Fig. 7.5. This
figure is adopted from the original paper [14]. Prior to the movement of a mobile
host MH1 to a new position as indicated in the figure, the forwarding table [14] for
a node, say MH4, could be as shown in Table 7.1. The above table does not include

MH3 MH4

MH2 MH6

MH5

MH6

MH8

MH1

MH1

Moves to

Fig. 7.5 An example for execution of DSDV

7.3 Destination-Sequenced Distance Vector Routing 189

Table 7.1 Forwarding table of MH4

Destination Next hop Metric Flag Sequence
number

Install time

MH1 MH2 2 S180_MH1 T001_MH4

MH2 MH2 1 S384_MH2 T001_MH4

MH3 MH2 2 S444_MH3 T001_MH4

MH4 MH4 0 S236_MH4 T001_MH4

MH5 MH6 2 S352_MH5 T002_MH4

MH6 MH6 1 S278_MH6 T001_MH4

MH7 MH6 2 S232_MH7 T002_MH4

MH8 MH6 3 S190_MH8 T002_MH4

Table 7.2 Advertised route table for node MH4

Destination Metric Sequence number

MH4 0 S236_MH4

MH1 2 S180_MH1

MH2 1 S384_MH2

MH3 2 S444_MH3

MH5 2 S352_MH5

MH6 1 S278_MH6

MH7 2 S232_MH7

MH8 3 S190_MH8

information concerning stable data. However, the advertised route table for the node
MH4 may be as the one shown in Table 7.2. Suppose now MH1 moves to a new
position as shown in Fig. 7.5 by a dashed line; the direction of movement is indicated
by the arrow head. The new position is within the neighborhood of nodes MH7 and
MH8. The old link betweenMH1 andMH2 gets snapped. The new route to destination
MH1 is advertised and a new metric is finally received by node MH4 after sometime.
The internal forwarding table at node MH4 changes as indicated by Table 7.3. Notice
that the flag for MH1 has been set to M indicating that the route entry has changed.
The install time of the entry also has changed. The advertised route table also changes
at MH4. This table has new information as illustrated by Table 7.4. Except for the
node MH1 the metrics for all other nodes remain unchanged.

190 7 Routing Protocols for Mobile Ad Hoc Network

Table 7.3 Change in forwarding table of node MH4

Destination Next hop Metric Flag Sequence
number

Time instal

MH1 MH6 3 M S580_MH1 T500_MH4

MH2 MH2 1 S486_MH2 T001_MH4

MH3 MH2 2 S634_MH3 T001_MH4

MH4 MH4 0 S856_MH4 T001_MH4

MH5 MH6 2 S502_MH5 T002_MH4

MH6 MH6 1 S378_MH6 T002_MH4

MH7 MH6 2 S358_MH7 T002_MH4

MH8 MH6 3 S390_MH8 T002_MH4

Table 7.4 Change in forwarding table of node MH4

Destination Metric Sequence number

MH4 0 S856_MH4

MH1 3 S580_MH1

MH2 1 S486_MH2

MH3 2 S634_MH3

MH5 2 S502_MH5

MH6 1 S378_MH6

MH7 2 S358_MH7

MH8 3 S390_MH8

7.4 Dynamic Source Routing

Dynamic source routing [8] is a reactive protocol. DSR uses source routing to route
the messages. In other words, the entire sequence of hops from a source to a destina-
tion is embedded with message packets that gets exchanged between the two nodes.
This is in contrast with the other reactive routing protocols such as TORA [11], or
AODV [15], where the sender just has to know the next hop to the destination. The
advantages of keeping the route information with the source are as follows.

• The requirement for periodic route advertisement is eliminated.
• In a less dynamic environment DSR provides valid routes more often than not.
• DSR finds a route also when links are unidirectional.
• DSR initiates a route discovery in the case when route becomes invalid.

Periodic route advertisement not only consumes bandwidth, but also requires the
nodes to be in connected state in order to receive the route advertisements. So, DSR
by eliminating periodic route advertisements enables wireless devices to conserve
battery power when no significant node movements take place, i.e., network topol-
ogy remains mostly static. If the routes between source and destination pairs are

7.4 Dynamic Source Routing 191

known, DSR can almost always provide valid routes. In the wireless environments,
the quality of message transmission between hosts may not exactly be the same in
both directions. DSR may initiate a route discovery in order to send a route reply.
More specifically, DSR approach to routing does not require the network links to be
bidirectional.

The basic assumptions for DSR to work properly are as follows.

• The hosts can move without notice, but they do so with a moderate speed with
respect to packet transmission latency.

• The speed of movement of nodes is also moderate with respect to the wireless
transmission latency of the underlying network hardware in use.

• The hosts can turn into promiscuous mode to listen to the activities within their
respective wireless range to learn about new routes.

7.4.1 Overview of the Algorithm

Each node in the network maintains a route cache. The routes learned by a node are
stored in its route cache. In order to send a packet, a node first checks the route cache
for a valid route to the desired destination. If no route can be found, then a route
discovery is initiated to discover a route to the destination. The normal processing at
the node continues, pending the route discovery. The packets meant for the desired
destination may be buffered at the sending node till such time when a route to
the destination has been determined. Alternatively, the packet may be discarded and
retransmitted after the path to the destination has been discovered. This eliminates the
need to buffer the packet. Each entry in route cache is associated with an expiry time,
after which the route entry is purged from the cache. It is possible that a route may
become invalid due to any node (the source, the destination or an intermediate node)
on the path moving out of wireless transmission range, failing or being switched
off. Monitoring the validity of the route is called route maintenance. When route
maintenance detects a problem of the kind mentioned above, route discovery may
be called again to discover a fresh route to the destination.

7.4.2 Route Discovery

The route discovery scheme works by flooding a Route REQuest (RREQ) packet.
An RREQ packet contains source ID, destination ID, route record and a unique
request ID, set by the source. The request ID allows intermediate nodes to discard
the duplicate RREQ and to prevent network flooding.

The RREQ processing is quite straightforward. When an intermediate node N
receives a RREQ, it should first ensure that either the same RREQ or a RREQ for

192 7 Routing Protocols for Mobile Ad Hoc Network

Algorithm 1: DSR algorithm.

begin
if source ID and request ID matches with any recent RREQ packets then

discard the packet // Duplicate RREQ.
end
else

if address of target ID matches with any recently seen RREQs then
discard the packet // RREQ for same target from a different

source.
end
else

if target ID matches with the ID of the processing node then
extract the route record from the request packet; // Accumulated in

the route record of RREQ packet
Unicast a reply back to source by using the extracted route;

end
else

// Processing node is an intermediate node.
append address of self with the route record of RREQ packet;
re-broadcast RREQ;

end
end

end
end

the same destination has not been forwarded by it earlier. In both these cases N is
awaiting a route reply to arrive from the destination. So, it need not forward another
copy of the RREQ. The processing of RREQ has been described in Algorithm 1.
There is also a slight anomaly in sending a unicast reply. When a route reply has to
be sent to the initiator of the route discovery, the possible alternatives are:

• If the destination has an entry for the source in its own route cache, this route may
be used to send the reply packet.

• Otherwise, it is possible to use the reverse of route record extracted from the request
packet. In this case we consider that the route is bidirectional (with symmetric
links).

• The third possibility is to let the reply packet ride piggyback to source on a RREQ
packet initiated by the destination for the discovery of a route to source.

7.4.3 Route Maintenance

Since, DSR is a source initiated routing scheme, route maintenance is basically
limited to monitoring link breaks along a route at the time of message transmission.
There are three ways of monitoring the error in route.

7.4 Dynamic Source Routing 193

1. Hop-by-hop acknowledgement.
2. Passive acknowledgement.
3. End-to-end acknowledgement.

In hop-by-hop acknowledgement, at each hop, the node transmitting the packet
can determine which link of the route is not functioning, and sends an error packet
to the source. But the hop-by-hop acknowledgement would require a low level (data
link layer) support. If the underlying network does not support such a low level
acknowledgement mechanism, passive acknowledgement can be utilized to discover
the route in error. The passive acknowledgement works as follows. After sending a
packet to next hop a node promiscuously listens to the transmission of the packet
by the next hop to the subsequent hop. If no transmission could be detected then
the it may be assumed that there is a break in link between next hop and the hop
following it. The other straightforward technique could be to seek explicit end-to-
end acknowledgement by setting a bit in forwarding message packet itself, which
indicates an acknowledgement should be sent to the source. The problem of sending
explicit acknowledgement back to the source is quite similar to the problem of sending
a corresponding route reply packet back to the original sender of a route request. If
the wireless transmission between two hosts works equally well in both directions
the acknowledgement can be sent in the reverse direction using the same route as
the one used by the original message. Otherwise, the host detecting a broken link,
sends the error packet back to the source if the former has an entry for the latter in
its route cache. When there is no unicast route to the source, the error packet can
be sent by the detecting host by piggybacking the error on a RREQ packet for the
original sender.

7.4.4 Piggybacking on Route Discovery

When the links are unidirectional, the concept of piggybacking of data along with
the route discovery can be used to amortize the message delivery time with route
discovery delay. If a RREQ is propagated all the way upto a destination, piggybacking
has no problem except that the size of piggybacked data must be small. However,
the piggybacked data is lost if some intermediate node on the route that has a cached
route to the destination sends a route reply from the cached data and discards the
RREQ packet.

Without the loss of generality, let us examine the problem for the case that a route
discovery from source to destination is over and a route reply should now be sent from
the destination back to the source. As shown in Fig. 7.6, a route S → G → H → D
has been detected after a route discovery was initiated by S for D. Now a route reply
(RREP) should be unicast to S by D. But suppose no such unicast route from D to
S is known. Then D must now initiate a route discovery for the target S, but it sends
RREP as piggyback data on RREQ for S. Suppose (an intermediate) node B on the
route from D to S has a route, say B → A → S, in its route cache. So B can unicasts

194 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.6 B unicasting
piggyback data (D’s RREP)
to S

S D

A

C
B

G H
E

RREQ with piggyback RREP
RREP for S to D route from D

RREP for D to S route from B

RREQ for the route from D to S, via B → E → H → D. But piggybacked data
(RREP) from D to S will be lost unless B unicasts to S the RREP being piggybacked
by D with its RREQ to S. The blue arrows represent unicasting of RREP from D
for S to D path by the intermediate node B. The green arrows represent unicasting
of RREP from B for D to S route. The red arrows indicate the RREQ from D for
destination S which carries piggyback RREP from D for the S to D path.

7.4.5 Handling Route Replies

Problems may arise when several mobile hosts receiving RREQ from an initiator
send RREPs from their respective local route caches. Two noticeable problems arise
due to asynchronous and autonomous operations of mobile hosts.

1. A number of hosts may send replies creating a flooding problem.
2. It is possible that the reply reaches the initiator from a host which is at a longer

distance slightly ahead of time than that from a host at a shorter distance from
the destination.

In order to avoid the problem of simultaneous replies and to eliminate replies indi-
cating longer routes, following simple mechanism may be employed. Every node
with a cached route to the destination delays the sending of RREP. The delay is set
as d = H ∗ (h − 1 + r), where, H is a suitably chosen small constant, 0 < r < 1
a randomly generated number, and h is the number of hops to reach the destination
from the node sending the route reply. The delay d in sending route replies takes
care of the situation where a reply with a poor route metric being sent earlier to the
initiator than a reply with a better route metric. By operating in promiscuous mode a
host may listen to all route replies reaching at any of its neighbours during the delay
period. The host will not transmit the RREP packet if it listens to any RREP for the
same target (the destination address for the RREQ packet) of a route request.

The more serious problem in using route cache for route reply is formation of a
loop. Though the cached data for route entries themselves may not include loops,
a loop may appear when a route gets established during the route discovery phase.
For example, consider Fig. 7.7 where A has a cached route to destination D when

7.4 Dynamic Source Routing 195

Fig. 7.7 Loop formation in
using cached data for route
reply

A B C D

path B A B C D has a loop

node B initiates a route discovery for D. Node A sends the route to D from its cached
data to B, which is A → B → C → D. So the source route from B to D will become
B → A → B → C → D. This route contains a loop, any message from B to D has
to traverse A → B path once in backward direction and once in forward direction.
To avoid such a loop formation, a possible approach could be as follows. If a route
reply from cached data also includes the initiator, then this route is spliced into two
parts. The first part is from the host that sent reply to the initiator and the second part
is from the initiator to the target. The latter part is cached locally at the initiator. So,
the entire path B → A → B → C → D is spliced at A and the part B → C → D
is sent to B in route reply. However, DSR prohibits any node from sending a RREP
for the route where the node itself does not appear. There are two reasons why this
is not allowed.

1. Firstly, if a node N is a part of the route it returns, the probability of route’s
validity increases. This is due to the fact, that N will get a RERR if the route
were invalid.

2. Secondly, if and when a route becomes invalid then N , which originally sent the
RREP, also gets the RERR when the route is invalidate. This ensures that stale
data is removed from N’s route cache in a timely manner.

7.4.6 Operating in Promiscuous Mode

As discussed earlier in the previous subsection, the problem of receiving several
route replies and the routes longer than the shortest route to the destination can be
eliminated by turning into promiscuous receive mode. Operating in promiscuous
receive mode is found to be advantageous in reflecting shorter route updates, spe-
cially in mobile environment. Consider the situation as depicted in Fig. 7.8. Node
N1 transmits a packet to some destination through the nodes N2 and N3 with N2
being the next hop and N3 being the second hop on the route. Since nodes operate
in promiscuous receive mode, N3 receives the packet being sent from N1 to N2, and
infers that the actual route can be shortened by eliminating the hop N2. This situation

Fig. 7.8 Reflecting shorter
route updates N1 N2 N3

196 7 Routing Protocols for Mobile Ad Hoc Network

can occur when N1 moves closer to N3. In this case N3 sends an unsolicited RREP to
N1 which can then update the local route cache. But the major problem in operating
in promiscuous receive mode is that the nodes must be power-on most of the time.

7.5 Ad hoc On-demand Distance Vector Routing

Ad hoc On-demand Distance Vector (AODV) [15] routing is an adaptation of the
classical distance vector routing algorithm to the mobile case. It is a distributed
routing algorithm, and like DSDV algorithm employs a sequence number for each
entry in the routing table maintained by a node. The sequence number is created
either by the destination or by the leader of the group in a multicast group. A node
always uses the route with the highest sequence number from among the available
alternatives routes to a destination.

AODV uses three basic types of messages:

1. Route REQuest (RREQ),
2. Route REPly (RREP) and
3. Multicast route ACTivation (MACT).

The first two types of messages have obvious meanings. MACT message is used
along with RREQ and RREP to maintain multicast route trees. The significance of
MACT message will be clear when multicast routing is discussed.

Each node along a route from a source to a destination maintains only the next
hop entry in AODV. Therefore, the size of route table at each node is small. AODV
reduces the need for system wide broadcasts by localizing the propagation of changes
in the network topology. For example, if a link status does not affect the ongoing
communication or the maintenance of a multicast tree then no broadcast occurs. A
global effect is observed only when a distant source attempts to use a broken link.
One or more nodes that are using a link are informed when it breaks.

AODV also maintains a multicast tree for group communication. Hence multicast,
broadcast and unicast all are integrated into a single protocol. The route tables also
create or update the reverse route as a RREQ is being pushed progressively from the
source towards the destination. So any node, on a path along which RREQ has been
forwarded, can reach the source node by using the reverse pointers.

7.5.1 Design Decisions

Some of the design decisions in AODV are as follows.

• The routes not used are expired and discarded.
• After the primary route has expired, an alternative route is used, if one is available

7.5 Ad hoc On-demand Distance Vector Routing 197

• If available, an alternative route can be used to bypass a broken link on the primary
route.

By expiring the unused routes, maintenance of stale routes can be avoided. However,
managing simultaneous aging process of multiple routes between a source and a
destination is not easy. Although in theory, the use of alternative routes is possible,
the same may also become invalid by the time primary route expires. Furthermore,
bypassing broken link may not always be possible if all alternative routes use the
same broken link.

7.5.2 Route Tables

AODV does not attempt to maintain routes. The routes are discovered as and when
needed, and maintained as long as they are used. AODV uses sequence number
to eliminate loops. Every node maintains its own sequence number. The sequence
number of a multicast group is maintained by the leader of the group. A route table
and a multicast route tables are maintained at each node.

The four important parts of a route table entry are: next hop, destination
sequence number, hop count, and life time. A typical entry in a route
table consists of the following fields:

Source and destination IP addresses

Destination sequence number

Hop count

Next hop

Expiry time

Routing flags

Last hop count

List of precursors

Each intermediate node N along a route maintains a list of active nodes which use
N as the next hop to forward data packets to a given destination D. All such nodes
are called precursors of N . A node is considered active if it originates or forwards
at least one packet for the chosen destination within active_timeout period.
The active_timeout period is typically 3000 ms. The precursor list is required
for route maintenance when a link breaks. The routes to a destination from all the
precursors of a nodeN become invalid if and when the route fromN to the destination
becomes invalid.

The entries in a multicast route table are similar to route table except for the
following additional information:

• More than one next hops are stored.
• Each hop associated with activated flag and a direction.
• A route can be used only after activated flag has been set.

198 7 Routing Protocols for Mobile Ad Hoc Network

• Direction is either upstream or downstream relative to the group leader.

The requirement for maintaining these extra fields will become clear when the dis-
covery and the maintenance of multicast routes are discussed.

7.5.3 Unicast Route Discovery and Maintenance

A node which needs a route to a destination broadcasts a RREQ. Any intermediate
node with a current route destination can unicast a RREP to the source. The infor-
mation obtained by RREQ and RREP messages help to build routing tables. The
sequence numbers are used to eliminate the expired routes.

7.5.3.1 Creating a RREQ

A node wishing to send a packet to some destination, first searches the local routing
table for a matching entry. If the source has a route then it forwards the packet to
the preferred next hop. Otherwise a route discovery is initiated by creating a RREQ.
The required fields for a RREQ are:

Src_ID

Dest_ID

Src_seqNo

Dest_seqNo

Broadcast_ID

The Src_seqNo number is used to refresh the reverse routes to a source. The
Broadcast_ID and Src_ID pair uniquely identify a RREQ. After forwarding a
RREQ, a node stores the same in a RREQ cache for sometime. It helps to restrict
flooding. For example, if an old RREQ arrives again at a node possibly through
an alternative path, then the node by examining RREQ cache can determine it, and
discard the RREQ. It prevents an RREQ from looping around.

Since AODV assumes bidirectional links, a RREQ is also used for constructing
a reverse path to a source. By storing the reverse next hop, an intermediate node
can unicast a received RREP to the source. The source broadcasts the RREQ and
sets a time out for the reply. Timeout for the reply ensures that a node does not wait
indefinitely for receiving a RREP. Dest_seqNo is the sequence number of the last
known path to the destination.

7.5 Ad hoc On-demand Distance Vector Routing 199

7.5.3.2 Processing a RREQ

On receiving a RREQ, a node first checks its RREQ cache to determine if the cur-
rent RREQ was an old RREQ already seen by the node. If the source ID and the
broadcast ID match a RREQ present in the cache, the recipient node discards the
RREQ. Otherwise it sets up a reverse route entry for the source node in the route
table. The reverse route entry consists of <src_ID, src_seqNo, hop_cnt,
nbr_ID>, where nbr_ID is the ID of the neighbor from which the RREQ was
received. Thus, for the reverse path nbr_ID becomes the next_hop. As and when
a RREP is received for the RREQ, the current node can forward the RREP to the
source through the downstream neighbor on the reverse route towards the source. An
intermediate node, receiving a RREQ, can also unicasts a RREP back to the source
if it has an unexpired entry for the destination, and the sequence number of this entry
is greater than or equal to the destination sequence number (the last known sequence
number) carried by the RREQ packet. Note that the unexpired path means that the
path is active.

AODV provides a loop free route from a source to destination by employing
sequence numbers like DSDV. A formal proof for the fact that AODV avoids forma-
tion of a loop is provided in Lemma 7.2.

Lemma 7.2 AODV provides a loop free paths between source and destination pairs.

Proof The key idea behind the proof is that a route from a source to a destination
imposes a logical ordering of the nodes along the path, based on the destination
sequence numbers and hop count. The proof is based on the following two key
assumptions:

• A higher sequence number has precedence over hop count, and
• For the same sequence number, lower hop count has the precedence.

AODV forces discovery of loop-free route from a source to destination by imposing
the above conditions on the sequence numbers. According these, a node v can select
w as its next hop on the path to a destination D provided

• The destination sequence number at v is less than the destination sequence number
at w, or

• The destination sequence numbers are same but DIST(v,D) < DIST(w,D)

We can rephrase the sequence number conditions using the notion of downstream
and upstream nodes on a path. If on a path from v to D, w is closer to D than v, then w
is considered as downstream to v with respect to D. The loop freedom is guaranteed
because AODV never finds a path to a destination from a downstream node (w) via
an upstream node (v). Let us assume that a loop exists as shown in the Fig. 7.9. The
table shows the sequence number and the next hop for the route to destination D
corresponding to the intermediate nodes I1, I2 and I3. The loop is represented by the
links I1 → I2, I2 → I3 and I3 → I1. According to the sequence number condition:

T1 ≤ T2,T2 ≤ T3, and T3 ≤ T2 so, T1 = T2 = T3 (7.1)

200 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.9 A possible loop

I1 I2

I3

I3I1 I2
Destination
Destination
sequence no.
Next hop

D DD
T1 T T2 3

I I I12 3

S X
D

Let Hi the number of hops from Ii → Ii+1 mod 3. Now applying the sequence
number condition with relations 7.1 we must have Hi = Hi+1 + 1. But for our
example, H1 = 1, H2 = 1 and H3 = 1. So H3 �= H1 + 1, which is a contradiction.
Therefore, a loop cannot exist.

7.5.3.3 Expanding Ring Search

By localizing the search area for route discovery, it is possible to restrict flooding.
For localizing the search, the trick is to use an expanding ring search by setting a
TTL (time to live) value. The TTL specifies the diameter of the subsection of N/W
in which RREQ must be flooded. If a route to the target not found in that subsection
of the N/W, a new RREQ with an increased TTL is launched. The TTL value is
recorded in the route table. For subsequent route discovery to the same destination,
the starting TTL is set to the value in the route table. This approach progressively
enlarges the section of the network in which route request packet is to be flooded. It
localizes the route request to a portion of the network where the destination is most
likely to be found.

RREP processing
An RREP packet has five fields:

Src_ID

Dest_ID

Dest_seqNo

Hop_cnt

Lifetime

When any node receives a RREQ, it can generate and send RREP for the RREQ
provided that:

7.5 Ad hoc On-demand Distance Vector Routing 201

Fig. 7.10 Intermediate node
unicasting a RREP

S D

I

B
C

RREP

RREP

I sends RREP for D

active route:{I, B, C, D}

1. The node has an active route to the destination, and
2. The destination sequence number of the route currently being used by the node

equal to or greater than the destination sequence number carried in the RREQ
packet.

If an intermediate node generates an RREP, then it should include hop count to the
destination, lifetime for the expiry of the current route, and the destination sequence
according to the information available in its own routing table.

The scenario where an intermediate node can send RREP is illustrated in Fig. 7.10.
Node I sets the hop count to 3 as it is 3 hops away from the destination node D. When
no intermediate node along the path from source to destination has any active path,
the RREQ eventually will reach the destination. On receiving RREQ, the destination
node will generate and send a RREP.

An intermediate node sets up the forward path to destination when it receives a
RREP. At first, it creates a local route entry for the forward path as follows.

• Takes the node ID from RREP to define the next hop to destination.
• Takes the ID of destination for indexing the route table.
• Adds 1 to hop count and stores the same in the entry.
• Takes the lifetime from RREP and places it in the entry.

After a route table entry has been created, the hop count carried by RREP is incre-
mented by one. This ensures that if the route to destination were to pass through the
current intermediate node, then the hop count would also include the current node.
Finally, the RREP is forwarded towards the source by using the next back hop or the
next hop of the reverse route entry. Finally the RREP reaches the source and a route
entry corresponding to destination is created. Clearly, RREP is a targeted unicast
packet, because it is forwarded by using the next hop entries available in the routing
tables of the nodes upstream towards the source.

Each time a route is used, its life time is updated. The route discovery process
is explained in Fig. 7.11. The flooding of RREQ is shown by solid lines, the arrows
denote the direction of flooding. The dashed lines with arrows indicate the direction
in which RREP traverses. The time outs received by the source, from the nodes not
having routes to the destination are also indicated in the figure.

202 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.11 Route discovery

Source

Destination

Time outsRREQ
RREP

7.5.3.4 Route Maintenance

A route is maintained as long as it is needed. The movements of the nodes affecting
active paths are only considered. The route maintenance is responsible primarily for:

1. Detecting link breaks on active paths, and
2. Building alternative paths when node movements occur.

Routes may become invalid due to movement of nodes. For example, if the source
node moves, a route discovery should be re-initiated if the path to destination is
still needed. Every node must maintain its neighborhood information to detect any
movement as soon as it happens.

Neighborhood information
Typically, the neighborhood information at a node is maintained by periodic broad-
cast of hello messages from its neighbors. If a node N has not sent anything (either a
message or a hello message) within the last hello_interval, N sends a hello
packet to inform the neighbors that it is still in the vicinity. Hello packet is in reality
an unsolicited RREP. Hello packet is not rebroadcast, as it carries a TTL = 1. A
change in neighborhood of a node N is indicated if N fails to receive consecutive
allowed_hello_loss of packets from another node, which was previously in
the neighborhood of N . The typical value of allowed_hello_loss = 2. On
receiving a hello message from a neighbor, a node updates the lifetime of that neigh-
bor. If an entry for the neighbor does not exist, then the node creates one.

Link breaks
A link break on a route from a source to a destination is detected when the
downstream neighbors of that link on the route fails to receive consecutiveallowed_
hello_loss hello packets in the usual hello interval. Link break is propagated
upstream by sending a RERR packet. The RERR packet originates from the upstream
end node detecting the break. As explained earlier, every node maintains a list of
precursors for each destination. A precursor is an upstream neighbor of the node
that uses the current node as the next hop for a valid route to a chosen destination.
For each broken link, the upstream end node (the end node closer to the source)

7.5 Ad hoc On-demand Distance Vector Routing 203

Fig. 7.12 Route
maintenance

S

N0

N1

N2
N3

D

N3’s new
position

RERR

Next hop

sends RERR to all the nodes in its list of precursors. These precursors are exactly
those nodes which use the upstream end node as the next hop for a valid route to the
destination.

A source re-initiate route discovery when it receives a RERR packet from each
of its downstream neighbors has next hop entry for an active route to the destination.
Figure 7.12 shows an active path from source S to destination D passes through four
intermediate nodes N0, N1, N2, N3. After a while node N3 moves away to a new
position. Due to breakage of links (N1,N2) and (N2,N3), the route from S to D
is no longer valid. The route has to be invalidated by sending a route error packet
(RERR) from N2 which is the farthest upstream intermediate node on the route. The
dashed arrows indicate the path that RERR traverses using precursors on the route
from N2 to S.

7.5.4 Multicast Route Discovery and Maintenance

A multicast route discovery is essentially an extension of unicast route discovery. A
node N initiates a multicast route discovery if

• Either N wants to send data to a group, or
• N wants to join a multicast group.

N initiates a multicast route discovery by creating a RREQ with destination IP address
of the group. If N knows about the group leader G and has a valid path to G then
it can unicast the RREQ by including the IP address of G, the last known sequence
number of the group, and a join flag if N is interested to join the group.

If RREQ is marked join then only members of group can respond. Otherwise,
any node with fresh enough path to group can respond. A RREQ with join is
processed by a node N as follows:

• If N is not a member of the multicast group, it creates a reverse entry for the source
and rebroadcasts the RREQ.

• If N is a group member then it responds to RREQ by adding an unactivated entry
for the source in its multicast table.

204 7 Routing Protocols for Mobile Ad Hoc Network

If N receives a RREQ (without join flag) for a group then RREQ is processed as
follows:

• If N is not a member of the group and does not have a route to the group it creates
a reverse entry to the source and rebroadcasts RREQ.

The source waits for a time out to receive a reply. It can rebroadcast RREQ increment-
ing the broadcast ID by one. The source continues rebroadcast RREQ till it receives
a reply or the number of broadcast becomes equal to rreq_retries after which
it declare itself as the leader. Figure 7.13a illustrates how RREQ with join flag gets
flooded in the network and a new tree branch is grafted into the multicast tree. The
nodes labeled by R are not members of the multicast group, but are routers for the
group. The new node N which wants to join the multicast group sends RREQ with
join flag on. After RREQ has spread through the network RREPs originate from
two router nodes and two group members. Then RREPs spread in the network as

(a) Spreading RREQ.

G

R

R

(b) Sending RREPs.

G

R

R

R newly added
group member

addition of
tree branch

a new
router node

N

(c) Adding a new branch.

G

R

R

Group
leader

Group
member

Router

Fig. 7.13 Grafting a new branch to multicast tree

7.5 Ad hoc On-demand Distance Vector Routing 205

illustrated by Fig. 7.13b. Finally, Fig. 7.13c shows that the new tree branch consisting
of a new router node and N are added into the tree.

After a tree branch is added to the multicast tree, the nodes in the newly grafted
branch should be activated by sending an explicit activation message on the branch.
The reasons for requirement of an explicit activation are:

• RREPs for join request should trace out the path to the source so that one of the
potential tree branches can be grafted into multicast tree.

• Besides forwarding of the RREP with join request, the RREPs for non-join requests
may also be forwarded in order to set up paths to multicast tree. Grafting a tree
branch for non-join request is not warranted.

• Multicast data packets are sent as broadcast traffic. So, all the nodes which for-
warded the RREPs to the source node have fresh routes to multicast tree. If explicit
activation were not needed, potentially, all these nodes which sent RREPs for a
branch can forward data packets to multicast group.

The last point is particularly important, as it may lead to inefficient use of bandwidth
when all nodes involved may potentially create large amount of network traffic.
Therefore, only one of possible branches should be allowed to forward data to mul-
ticast group.

The source waits for the length of the interval for route discovery before it can
use the path. At first, the source unicasts a MACT message to the node from which it
received the RREP. The upstream neighbour sets active flag against the source in
its own route table before forwarding the same to the next hop upstream towards the
originator. Each node on the route sets active flag for hop, and forwards MACT
to the next upstream neighbor until it reaches the originator of RREP.

MACT message is used also for deactivating an existing path if it is not needed any
more. The deactivation proceeds as follows. If a leaf node (of the multicast group)
wishes to leave the group, then the node may just prunes itself from the multicast
tree. The next upstream hop deletes the entry corresponding to the deserter. But if a
non-leaf node wishes to leave the group, it cannot detach itself from the tree. Such
nodes must continue to serve as a router for the multicast group. On receiving a
MACT with prune flag, a node N deletes the entry corresponding to the source of the
current MACT. If N is a router and the deletion of the previous hop turns into N a
leaf node, then N would initiate its pruning by sending a MACT with prune flag. But
if the N is a group member, then it may not want to revoke its group membership.
The deletion of branch using MACT is shown in Fig. 7.14.

7.5.4.1 Maintenance of Multicast Routes

A unicast route is maintained only as long as it is required. However, in the case of
musticast routes, a multicast tree should be maintained for the entire lifetime of the
existence of the group. Every link requires maintenance so that each group member
can access the multicast group. A link is assumed to have a lifetime which is equal to

hello_lifetime = (1 + allowed_hello_losses) × hello_interval).

206 7 Routing Protocols for Mobile Ad Hoc Network

Fig. 7.14 Pruning after a
member node leave the
multicast group

G

R

R

R

N

node wants
to leave

MACT
with prune

(a) Mact for leaving tree.

G

R

R

R

N

with prune
MACT

leaf and leaves
becomes a

(b) Tree after pruning.

If no data packet is sent within a fixed interval calledhello-interval, each node
must receive a broadcast from its next hop neighbor in multicast tree. The broadcast
may either be a RREQ, or a group hello or a hello packet. The hello packet, as stated
earlier, is a RREP with TTL value 1.

If a link M → N breaks, then the downstream node N of the broken link initiates
a route discovery for the multicast group. The upstream node of the broken link M
may just be a router for the multicast tree. If M becomes a leaf node after link break,
it tries to detach itself. It does so, by sending a MACT with prune flag to its upstream
node in the tree. However, MACT is sent only after prune_timeout. The idea
behind allowing a timeout is that M may still be available nearby N . If N initiates
a route discovery to multicast tree, it may get connected to the multicast tree by an
alternative path through M. For repairing the route, N sends a RREQ packet with a
small TTL value, which includes also its distance of N from the group leader. The
reason for a small TTL is that M may still be available nearby. Any node X, having
an active route to multicast group, can respond to RREQ provided X is as close to
the group leader as N . The above restriction prevents any node in the same side of
break as N from responding. If this check is not enforced then a loop can occur if
route replies were received from the nodes on both side of the link break. Figure 7.15
illustrates the route repair process. After N is able to add its subtree to multicast

7.5 Ad hoc On-demand Distance Vector Routing 207

partition
N/W R

R

GL2

GL1

(a) Network partition.

R

R

GL2

GL1

R

(b) Merging partitions.

Fig. 7.15 Repairing link breakage in AODV

tree, it sends a MACT message to its next hop for activating the link. N also sends
a MACT with update flag to its downstream neighbors. This message includes the
new depth of N from the group leader. The downstream descendants in N’s subtree
update their respective depths from the group leader when they receive the MACT
with update flag.

If node initiating repair does not receive any RREP after rreq_retries, then
it is assumed that network is partitioned. Under this scenario, the partitioned nodes
must also declare a new group leader. If N is a member of the multicast group then
it can declare itself as the group leader. It sends then MACT message with update
flag to its downstream neighbors. If N is not a group member and becomes a leaf
node after link break, then it can decide to prune itself by sending a prune message
to next hop downstream. This action is also repeated at the downstream successor
if N has only one neighbor. However, if N has more than 1 downstream successors
then it selects one of the successors and sends a MACT with the group leader flag
indicating the next node which is a member of the group receiving the MACT should
become the new group leader. After the group leader is selected the multicast group
has more than 1 group leaders due to partition.

Topological changes over time may reconnect the two network partitions. The
nodes in a tree partition learn about connectivity status when a GRouP Hello (GRPH)
message is received from another partition. The ID of the group leader they receive
will be different from known ID of the group leader. If a group leader receives
GRPH message for the group for which it is the leader, then the leader with lower
IP address GL1 initiate a reconnection by unicasting a RREQ with repair flag to the
other group leader GL2 using the node from which it received GRPH. The RREQ
also includes GL1’s multicast group sequence number. Every node in GL2’s tree
which receives this RREQ forwards it towards GL2. When RREQ reaches GL2, it
updates the group sequence number by taking the maximum of two and adding 1
to it. Then a RREP is sent back to GL1. This RREP also should have repair flag.
As the RREP traverses back on the path from GL2 to GL1 every link along the

208 7 Routing Protocols for Mobile Ad Hoc Network

path is oriented towards GL1, the nodes update their routing tables, activate the link.
The tree partitions are connected when RREP reaches GL1 with GL2 becoming
the leader. Every node is updated about the new group leader’s identity by GRPH
message. GRPH is periodically broadcast from the group leader as an unsolicited
RREP with TTL value larger than the diameter of the network. It reaches every node
in the tree which update their sequence number and the group leader’s ID.

7.6 Zonal Routing Protocol

Zonal Routing Protocol (ZRP), proposed by Haas and Perlman [16], is a dynamic
zone based hybrid routing scheme. The scope of proactive scheme is restricted to
a local neighborhood of each node called its zone. A route to a distant node is
determined by querying a subset of nodes in the network. The protocol relies on the
following important observation.

• Routing can be efficient if the topology changes in network can be quickly dis-
seminated in the local neighborhood.

The above basic idea of restricting the propagation of changes in network topology
only to the local neighborhood where the changes take place is also used by fishey
state routing (FSR) [12]. However, the granularity of propagation in FSR is controlled
only by varying the periodicity of update propagation according to distance. FSR
distributes information about topology changes over the whole network at some
regular though larger time interval compared to DSDV.

ZRP combines the characteristic of creating a route on-demand as in reactive rout-
ing schemes with the property of fast convergence that is typical to proactive routing
algorithms. It restricts the propagation of topology changes to the local neighbor-
hoods of the involved nodes, and creates a route between a pair distant nodes on-
demand. Only active routes between distant nodes are maintained as the topology
changes. Topology changes are not propagated over the entire network.

7.6.1 Routing Zones

A node maintains routes to all destinations within its local neighborhood called its
routing zone. In other words, a node’s routing zone consists of all nodes which may
be reached from it by a fixed number of hops, say 1 to 2. This fixed number, denoted
by ρ, defines the routing zone is called zone radius. For example, in Fig. 7.16 the
routing zone for s consists of nodes {a, b, c, e, h, i, j, k} which are within two hops
from s. The nodes {e, f , g, h, i, k} are peripheral nodes of the routing zone of s. The
radius ρ of a routing zone is adjustable, and usually a small constant. Since it is not
possible to control or predict the presence of the number of mobile nodes in an area,
the number of nodes in a routing zone may potentially be very large if ρ is not small.

7.6 Zonal Routing Protocol 209

Fig. 7.16 Two-hops routing
zone of S

Sk

a

j

d

b

e

i

h

g

f

c

Zone of S

A large routing zone would generate a large amount of update traffic. This apart, the
diameter of an ad hoc network usually does not exceed 5 or 6. Consequently, the
very purpose of ZRP is defeated if a large zone radius is selected. In other words,
with large zone radius, ZRP no longer remains a hybrid protocol.

Each node proactively maintains information about the routes to all other nodes
within its routing zone. Therefore, the updates are propagated locally. Periodic rout-
ing updates do not flood the entire network, and full dumps for routing updates are
not needed. The nodes use a proactive protocol called IntrAzone Routing Protocol
(IARP) to maintain the routing information in its routing zone. It is interesting to
observe that nothing prevents a node from using a different proactive schemes from
other nodes. However, the problem in this approach is that different control packets
of varying length and structures will be needed to maintain intrazone routes. Usually
DSDV [14] is used for IARP.

7.6.2 Interzone Routing

An IntErzone Routing Protocol (IERP) is used for discovery of route on-demand
to the destinations beyond a source’s own routing zone. Theoretically, IERP can be
based on any reactive protocol. It does not matter which reactive protocol is chosen
for IERP as long as that protocol is able to exploit the information about local
routing zone topology maintained by IARP to guide the query for route discovery.
This is achieved by delivering the route request queries from a receiving node to the
peripheral nodes in its routing zone. The delivery service is called bordercasting.
The bordercasting is illustrated by Fig. 7.17. The source labeled S has a zone radius
ρ = 2. The nodes {a, b, c, d, e, h, i} belong to its routing zone. If S were to send
a datagram to D and does not have a valid route to D then a route discovery is
initiated by S. Since, D does not belong to routing zone of S, S bordercasts a route
request to the peripheral nodes {e, f , g, h, i} of its routing zone. Each node receiving
bordercast checks for availability of the destination in their respective zones before a

210 7 Routing Protocols for Mobile Ad Hoc Network

S

a

d

b

e

i

h

g

f

c

E
E

E

E E

Zone of S

IERP (bordercast)

IARP (DSDV)

E

A

J

n

x

o

p

m

k

l

Zone of J

E
E

E

E

E

Q

z

y

DD

r

v

u

t

A

E

Zone of Q

Fig. 7.17 Bordercasting and operation of IERP

repeat bordercast of the query in their own zones. So g bordercasts the request to J .
Since, D does not belong to J’s routing zone, J again bordercasts route discovery to
n, x, o and p. Node o’s bordercast finally reaches Q. Since, D belongs to routing zone
of Q, the route discovery is over. The bordercasts collectively construct a tree. The
branches of the tree are indicated in Fig. 7.17 by solid links labeled T. The forwarding
path S → g → J → Q, thus, gets created. The discovery process is complete when
a route reply is sent back to the source. The procedure for route discovery by a source
S to a destination D is summarized below:

• S first checks its own routing zone to find D. If D is found, then S sends the packet
to D using local routing table of S.

• Otherwise (D does not belong to routing zone of S), S bordercast (unicasts to
border nodes) RREQ to peripheral nodes of its zone.

• If any of the peripheral nodes finds D in its zone, then it responds by sending
RREP to S. If a peripheral node does not have a path to D then it re-bordercasts
the RREQ.

In Fig. 7.17, the dotted circles represent the routing zones of the respective nodes
S, J and Q. Routing zones of g, o, and other involved nodes have not been shown
as these zones are not relevant to the route. Node Q finds D in its routing zone, so
it sends RREP to S. The routing zones of other nodes involved in route discovery
procedure are not explicitly shown as it will clutter the figure. However, the reader
can imagine how a bordercast is carried out.

7.6 Zonal Routing Protocol 211

7.6.3 Bordercast Tree and Query Control

A bordercast tree is defined by a root node r and the peripheral nodes of r’s routing
zone. The root of the tree appends complete forwarding path map in a RREQ packet.
For example, node S include the path map as shown below.

Query message
Border node Relay node
e c
f c
g b
h d
i d

The overhead of including forwarding path in RREQ grows linearly with the size
of routing zone. Therefore, the number of hops defining a routing zone should be a
small constant ρ. Bordercast effectively introduces an exponential path multiplying
scheme into route discovery procedure. Therefore, though the route discovery is
expected to be fast, control of flooding remains an issue.

ZRP supports a distributed construction of bordercast tree. This allows an interior
node of a routing zone to participate in construction of bordercast tree. Each node
proactively tracks topology of a region extending beyond its own routing zone. An
interior node x of a bordercast tree constructs an entire tree ρ hop tree from the root
node by proactively tracking a topology of the region consisting of ρ+ρ−1 = 2ρ−1
hops away from it. Figure 7.18 depicts extended routing zone for relay interior node
c of S’s routing zone. Maintaining an extended routing zone adds overhead to IARP,
because router re-advertisements should include information about extended zone.
However, it helps interior nodes to save on query traffic overhead in the reactive
route discovery (IERP). So there is a trade-off between overhead of maintaining an
extended routing zone and saving in RREQ traffic.

The main motivation of query control mechanism is to ensure that search for
destination is guided from the source in all outward directions. It serves to reduce
flooding, and also to guide the query reaching the destination quickly. The implemen-
tation framework is to prevent a query from re-entering a covered zone. Figure 7.19
illustrates how the query should be dispersed from a source node in all directions [16]
so that it reaches targeted destination and prevented from re-entering already covered
regions.

Two types of advance query detection techniques QD1 and QD2 are used for early
termination of route discovery queries [16]. QD1 is concerned with direct relay of
bordercast messages. When an interior node relays a bordercast message, it prevents
messages flowing over downstream branches leading to peripheral nodes inside the
covered region of the network. As Fig. 7.18 demonstrates, node c has full knowledge
of S’s routing zone. Therefore, c can terminate re-bordercast of S’s query back to
its routing zone from a node belonging to the uncovered region in c’s extended

212 7 Routing Protocols for Mobile Ad Hoc Network

Sa

c

b

e

f

g

h

Routing
zone of S

i

d

c’s extended
routing zone

of c’s extended zone
a peripheral node

Fig. 7.18 Extended routing zone of node c

Fig. 7.19 Directing route discovery query from a source

7.6 Zonal Routing Protocol 213

Fig. 7.20 Detection of route
discovery query

Sa

c

b

e

f

g

h
i

d
Routing

zone of Sk

QD1 by relay nodes

QD2 by overhearing

zone. The query detection technique QD2 is used by the nodes of a routing zone
which have overheard a route discovery query. These nodes can terminate the query
if a re-bordercast is received directly from any node in the uncovered region. In a
single channel transmission, QD2 can be detected by any node in transmission range
of a relaying node. The capability for QD2 can be implemented through IP and
MAC layer broadcasts. For example, as illustrated in Fig. 7.20 node k in S’s routing
zone overhears query from a, and participates in preventing the same query from
re-entering S’s region. The other nodes in S use QD1 as all of these node participate
in forwarding the query.

7.6.4 Random Delay in Query Processing

Random query processing delay introduces asynchronicity in forwarding queries.
The idea behind the approach is to ensure that the same query does not reach a
node simultaneously by different paths. Each node waits for a random time before
it constructs the bordercast tree. As the nodes waits to send the query, it could also
detect queries from other bordercasting nodes and prune the overlapping branches
in the bordercast tree. For example, as shown in Fig. 7.21 nodes a and b both receive
query at the same time. If they both rebroadcast the query simultaneously, they will
later come to know that both were spreading the same query in overlapping regions
and wasting bandwidth. But using the random delay approach, bwithholds the query,
while a schedules its query much in advance. Furthermore, a uses QD1 to know about
the same query from b when it launches its own query. Therefore, a can prune its
downstream branches belonging to b’s zone.

214 7 Routing Protocols for Mobile Ad Hoc Network

b

a

b

a

for its own bordercast
b uses a random delay

Fig. 7.21 Random delay in query processing

7.6.5 Route Caching

Active routes are cached at intermediate nodes. The route cache can be used to
reduce frequency of route discovery. When the nodes on an active route move, that
route becames invalid. If the link breaks occur upstream towards the destination then
instead of initiating a fresh discovery of route, it will be less expensive to repair the
existing route locally with the help of route cache. A local repair works by patching
the invalid route to the destination from the nearest upstream node from the first link
break. Thus the local repair constructs a bypass to avoid the first broken link on the
existing path. In theory a route may be patched up many times. But in practice, the
route may deviate appreciably from a shortest route after one or two such patchings.
Therefore, after a few local repairs, the source may decide to initiate a fresh route
discovery. This scheme follows the approach similar to that we found in use of
forward pointer for location update schemes described earlier.

References

1. T.W. Chen, M. Gerla, Global state routing: a new routing scheme for ad-hoc wireless networks,
1998 IEEE International Conference on Communication (1998), pp. 171–175

2. C.-C. Chiang, W. Hsiao-Kuang, W. Liu, M. Gerla, Routing in clustered multihop, mobile
wireless networks with fading channel. IEEE SICON 97, 197–211 (1997)

3. T. Corman, C. Leiserson, R. Rivest, C. Stein, Introduction toAlgorithms (MIT Press, Cambridge
MA, USA, 2001)

4. S. Corson, J. Macker, Mobile ad hoc networking (MANET): routing protocol performance
issues and evaluation considerations, http://www.ietf.org/rfc2501. January 1999. RFC-2501

5. R. Dube, C. Rais, W. Kuang-Yeh, S. Tripathi, Signal stability-based adaptive routing (SSA)
for ad hoc mobile networks. IEEE Pers. Commun. 4(1), 36–45 (1997)

6. E. Gafni, D. Bertsekas, Distributed algorithms for generating loop-free routes in networks with
frequently changing topology. IEEE Trans. Commun. 29(1), 11–18 (1981)

http://www.ietf.org/rfc2501

References 215

7. L. Ji, M. Corson, A lightweight adaptive multicast algorithm, Globecom’98 (1998), pp. 1036–
1042

8. D.B. Johnson, D.A. Maltz, DSR the dynamic source routing protocol for multihop wireless ad
hoc networks, ed. by C.E. Perkins. Ad Hoc Networking, Chap. 5 (Addison-Wesley, 2001), pp.
139–172

9. Y.B. Ko, N.H. Vaidya, Location-aided routing (LAR) in mobile ad hoc networks. Wireless
Netw. 6(4), 307–321 (2000)

10. S. Murthy, J.J. Garcia-Luna-Aceves, An efficient routing protocol for wireless networks. ACM
Mobile New. Appl. J. 183–197 (1996)

11. V.D. Park, M.S. Corson, A highly adaptive distributed routing algorithm for mobile wireless
networks, IEEE INFOCOM’97 (1997)

12. G. Pei, M. Gerla, T.W. Chen, Fisheye state routing in mobile ad hoc networks, ICDCSWorkshop
on Wireless Networks and Mobile, Computing (2000), pp. D71–D78

13. C.E. Perkins (ed.), Ad Hoc Networking (Addison-Wesley, 2001)
14. C.E. Perkins, P. Bhagawat, Highly dynamic destination-sequenced distance-vector (DSDV)

algorithm for mobile computers. Comput. Commun. Rev. 234–244 (1994)
15. C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing, The 2nd IEEEWorkshop

on Mobile Computing Systems and Applications (1994), pp. 90–100
16. M.R. Perlman, Z.J. Haas, Determining the optimal configuration of the zone routing protocol.

IEEE J. Sel. Areas Commun. 17(8), 61–81 (1999)
17. E.M. Royer, C.K. Toh, A review of current routing protocols for ad-hoc mobile wireless net-

works. IEEE Mag. Pers. Commun. 17(8), 46–55 (1999)
18. C.K. Toh, Associativity-based routing for ad-hoc mobile networks. Wireless Pers. Commun.

4, 103–139 (1997)

Chapter 8
Mobile OS and Application Protocols

8.1 Introduction

Protocol level details on how a mobile network such GSM/GPRS, WLAN or WPAN
functions is of no concern to most of the users of mobile technology. An ordinary
user is interested for ubiquitous access of information over mobile devices. In other
words, the users would expect these mobile access protocols to work seamlessly
giving a feeling that the access is as easy as it is on wired networks. For instance,
a mobile user will be interested to access information and interact with services
provided over the Internet. Some of the popular form of interactions include Web
browsing, messaging service, SSH, etc.

Mobile devices maintain connectivity to the rest of the world through various
cellular based wireless networks such as GSM, GPRS, 3G, LTE, Bluetooth and IEEE
802.11x. The network connectivity is intermittent due to inadequate coverage, signal
interferences, and low bandwidth. So mobile OS are designed to manage service
interruption and ad hoc reconnection attempts. When reconnecting back to network,
a device may use a new wireless channel. From the prospective of use case scenarios,
many of the utility services accessed by the mobile users are location dependent.
Therefore, Mobile OS should be able to opportunistically combine location service
from different networks, GPS and compass for the benefit of applications. Normally,
a user is careful about losing mobile devices, yet small devices are prone to accidental
mishandling as well as misplacement. Though a mobile OS cannot provide a complete
security solution, it should at least incorporate provisions by which services can be
stopped from unauthorized accesses. Increasingly, mobile devices are getting more
powerful and resource rich. Research on mobile grids have explored way to harness
aggregated computational capabilities of mobile devices. However, this research still
in infancy and remains within confines of academic and research labs. Considering
OS issues are just too many, the discussion on mobile OS in this chapter is organized
around the basic features, focusing on the minimality and the essential components.

In addition to mobile OS, our aim is to cover three protocols, namely, Mobile IP,
Mosh and WAP. Mobile IP [1] is a modification of wire line IP at the Internet level

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_8

217

218 8 Mobile OS and Application Protocols

which allows a user to receive messages irrespective of his/her home registration
area. A wire line IP assumes a fixed unique attachment point for a node. Messages
can be delivered over the Internet by tagging them with corresponding IP addresses
of the nodes. An IP address with a port number identifies a unique connection from
among several concurrent services that may be running on a node. A route from
node S to a destination node D may not be the same as the route in the reverse
direction. Between two communicating end points, TCP [2] distinguishes one internal
session from another by using IP addresses of the respective endpoints along with
the demultiplexing selector for each session. IP address allows to identify a route to
a destination. The only other thing that may influence routing of packets is network
congestion due to excessive traffic.

SSH [3] command is quite familiar in the context of accessing remote computers
from any where. SSH works beautifully when network delays, and packet losses are
within tolerable limits. However, SSH does not support IP roaming. It works on a
terminal emulator which processes one character at a time. This implies SSH traffic
from a server consists of a lot of packets having very small payloads. All the echos or
in-line editing are performed by a remote computer known as the server. Therefore,
it becomes completely useless when packet losses occur. In other words, SSH can-
not handle intermittent network connections or networks experiencing long delays.
Wireless networks, on which mobile services are based, often experience long delays
and intermittent connectivity. On such an environment SSH becomes ineffective and
useless. Mosh [4] or mobile shell is a remote terminal application which not only can
handle IP roaming, but also supports client side predictive echoing and line editing.
It does not require any change in the server side software for running applications.
Mosh is essentially a shell application that can work without requiring a connection
to be maintained over flaky links to support a user’s movements. Since SSH uses TCP,
preserving terminal session becomes an issue for supporting IP address roaming as
the user moves about. Mosh on the other hand uses UDP.

Wireless Application Protocol (WAP) [5] is a framework for accessing many
value added services over Internet and enterprise intranets using mobile devices.
Apart from known hurdles in information access over wireless interfaces, small
form factor of mobile devices calls for a whole new approach to the presentation of
information. WAP framework was formulated as an industry wide global standard to
bring development of all applications over mobile wireless networks. The targeted
applications include microbrowsers, scripting, email, chat, instant messaging service
among others. So, WAP is not just a single protocol but a protocol suite. Accessing
Internet resources on hand held wireless devices becomes efficient through WAP.

It is expected that the discussion in the chapter will provide enough pointers to
create applications which can interoperate irrespective of communication technolo-
gies and a whole range of hand held devices with different capabilities as well as
form factors.

8.2 Mobile OS 219

8.2 Mobile OS

A Mobile Operating System (MOS) is designed for mobile devices such as PDAs,
tablets, and smartphones. Although laptop computers are also portable mobile
devices, they do not belong to the category of devices which can be classified as
mobile phones. Usually, laptops run on desktop OSes. Unlike smartphone, laptops are
neither equipped with modems nor possess a variety of sensors. However, some vari-
ety of ultra thin hybrid laptops have touch screen support, foldable display, front/back
cameras, detachable or sliding keyboards, pen support, and a few sensors such as
accelerometer, ambient light sensor, gyroscope, GPS and compass. When equipped
with modems, these devices can also function as tablets.

Mobile OSes have been implemented taking various resource constraints of
mobile devices into account. These include limited energy and limited computing
capabilities, small form factors and non conventional input/devices. It forces imple-
mentation to be oriented more towards gestures, touch and voice based interactions.
Mobile devices maintain connectivity to the rest of the world through various cel-
lular based wireless networks such as GSM, GPRS, 3G, LTE, Bluetooth and IEEE
802.11x. The network connectivity is intermittent due to inadequate coverage, signal
interferences, and low bandwidth. So mobile OSes are designed to manage service
interruption and ad hoc reconnection attempts. When reconnecting back to network,
a device may use a new wireless channel. From the prospective of use case scenar-
ios, many of the utility services accessed by the mobile users are location dependent.
Therefore, Mobile OS should be able to opportunistically combine location service
from different networks, GPS and compass for the benefit of applications.

8.2.1 Smartphones

Among various mobile devices, smartphones dominate mobile device market. Most
people, specially those in age group of 18–35 years, tend to access mobile services
through smartphones. So, the discussion on mobile OS remains incomplete without
a reference to smartphones.

Smartphones have brought in a sea of changes and convenience in daily lives world
over. An estimate [6] projects that the smartphone users base will reach 2.87 billion by
2020. As of 2016, there are about 2.1 billion users of smartphones. The rate of growth
is more in emerging economy than in rich economy. The reason is attributable to the
fact that smartphones serve endpoints for maintaining both connectivity and control
over contents and services even if the conventional communication infrastructure is
not very good. Therefore, people belonging to low and middle income group depend
heavily on smartphones for their livelihood.

220 8 Mobile OS and Application Protocols

8.2.1.1 OS as an Abstraction Layer for SoC

Battery life is a critical aspect in determining the user’s experience on a smartphone.
Due to portability reasons, the phone battery should be slim, light weight and a
long lasting power pack. As opposed to an ordinary cell phone, the design goals of
a smartphone are: thinner device, slimmer battery, bigger screen, faster CPU, and
larger memory size. Some of the design goals are mutually conflicting. To achieve
these goals, smartphones use SoC (System on Chip) [7] processors. SoC defines an
integrated design that includes CPU, GPUs, a number of co-processors, and memory.
Roughly speaking, SoC is equivalent to the mother board of a desktop computer.

Our focus in this chapter is not smartphone architecture. However, the perfor-
mance and the speed of execution of applications depend on the architectural para-
meters of a computer. A user’s experience is not only determined by the applications
that run on a smartphone but also how fast the applications can run.

An operating system leverages hardware and provides software abstractions that
can be exploited by the developers to provide rich user’s experience. In abstraction,
a SoC design can be viewed as a collection of network of modules. Each module
provides a specific service. The connection between services is supported by bus or
network. The OS requirements as follows [8].

• In order to take take full advantages of modularity of SoC architecture, OS design
must be modular. To provide the best performance, it should be possible for a devel-
oper to abstract out the application design according to the knowledge whether a
particular OS functionality is implemented in hardware or software.

• Modular approach in the SoC design means, the hardware designers may also
regroup SoC components even during the development process. Smartphone OS
design should be able to adapt to these changes without requiring a redefinition of
hardware abstractions presented to the application layer.

• If a specific hardware functionality is defined by overly generic abstractions, then
it might prevent an application from exploiting the advantages of that the hardware
component through the specific OS abstraction.

• OS should also provide for the protection and the concurrency control. It implies
different parts of the OS and the application (e.g., interrupt handlers, drivers,
application code, etc.) cannot (expect to) interfere with each other.

• Due to the application specific nature of SoC, it will be necessary to port the OS
to many different platforms. The OS and application code should, therefore, be
highly portable. There should not be any cross dependency involving different
functions of the OS. In other words, each OS function must be well encapsulated.

• Since, most SoC systems have real-time and dependability requirements, it is
desirable that OS abstractions are amenable to verification of correctness and
temporal analysis.

In view of the above, a micro kernel based approach to the design of OS appear to
be ideal for (reconfigurable) SoC based devices.

8.2 Mobile OS 221

8.2.1.2 OS as a Interface Layer for Applications

At the highest level, the design and the implementation of an OS is dependent on type
of the system and the hardware. At a level lower than hardware abstraction layer,
OS must be designed meet the requirements of both the users and the system. The
user requirements stem from the convenience in use, reliability, security and speed.
In contrast, the system goals are guided by ease of implementation, maintenance,
flexibility, performance and efficiency as explained in Sect. 8.2.1.1.

A number of studies have made been made to explore of the diversity in the use of
smartphones [9]. These studies primarily indicate two different aspects in the use of
a smartphone, viz., (i) convenience, and (ii) innovation. In an average, about 22 Apps
are installed by an Android user while about 37 Apps are installed by Iphone user [10].
The voice based communication over a smartphone is not substantially different from
the level it is found with a ordinary cell phone. In an average, the number of voice
calls per phone is around 5.7 calls per day [11]. The use of a smartphone is found
to be oriented predominantly for non-voice based applications [12]. All the user
sessions concerning applications or computation except for voice calls, are referred
to as non-voiced. Texting forms a major part of the non-voice usages. According to
one study, each user in an average access SMS or instant messaging app 11.2 times
per day [11]. Still there is substantial diversity in the use of non-voice Apps. The
types of usages can be classified as follows [11]:

• Recreational
• Instant messaging
• Communication and Internet
• Transport and travel
• Banking and m-commerce
• Knowledge and work

A few knowledge user (those having background in CS) may use a smartphone for
App development, but this type of users are only a few. Considering the usage patterns
and the diversity of use, two the major concerns in wide spread use smartphones are:
(i) energy drainage, (ii) resource scarcity. Some of the resource limitations include
low CPU capabilities, display, memory, user interfaces, etc.

8.2.2 Difficulties in Adopting Desktop OS

From the point of view of OS kernel, the difference between desktop OS and Mobile
OS is little. About 250 patches (amounting to 3MB of code) were defined for the
Linux kernel to tailor it for Android [13]. These patches are primarily aimed at ful-
filling the requirements of certain basic functionalities, and overall conservation of
resources. Mobile devices should enforce tight power management features, sup-
port non-conventional I/O devices. For example, the inputs may be gesture based or
through keypad, touch screen, camera, and audio. For portability reasons, a mobile

222 8 Mobile OS and Application Protocols

device has a small form factor, and depends on the battery for its operation. So,
the conservation of resources is extremely important. Some of the enhancements
includes incorporating of new drivers [14]. For example, in Android, a Alarm driver
manages timer, which wakes up the device from sleep. Ashmem drivers manages
sharing of memory at kernel level. Mobile devices normally support only a small
flash memory. So, sharing data and services is important when a device runs multiple
applications. Binder driver is needed for interprocess communication. Interprocess
communication is supported through the use of shared memory. A service which reg-
isters as a IPC service does not have to keep track of different threads in execution.
The binder monitors, handles and manages all the threads, and facilitates communi-
cation between the processes through shared memory. The binder also takes care of
synchronization between the processes.

Mobile OS generally does not kill an application. All other applications opened by
a user continue to run in the device even after the user switches to a new application.
A running application is killed only when the device runs out of memory. Even then,
the state of the application is saved to enable quick launch. The desktop version of
Linux distribution comes with a huge GNU C library. It provides library routines
as per ISO standard C specification for programming. This library is far too large
for mobile phones. For example, glibc also provides Native POSIX Thread Library
(NPTL). NPTL offers high performance, but only suitable for the computers having
adequate resources as they require large disk foot prints. For a device with limited
resources, NPTL is not suitable. Only a few threads may run concurrently in a mobile
device. So, many of the features like mutex conditional variables are considered as
unnecessary [14].

8.2.3 Mobile OS Features

Three major responsibilities of an OS are memory management, process management
and inter process communication. The implementation of virtual memory is a major
requirement of memory management for a desktop computer. In a mobile device,
implementation of virtual memory is not needed. In the event of a device hitting a low
memory level, the running applications are simply killed in increasing order of their
priorities. Therefore, many complications including swapping which are necessary
for the implementation virtual memory could be eliminated. However, a mobile OS
should implement highly secure memory protection schemes to ensure applications
do not access each others data or address space.

Normally, for memory protection, desktop computer employ Address Space Lay-
out Randomization (ASLR) technique [15]. It randomizes base point of the stack,
the heap, the shared libraries and the base executables. So, it becomes difficult to
guess the foot prints of a code residing in the memory. As a result, network based
control hijacking attack become difficult. Mobile OS spends time to minimize the
boot time, the power consumption, the memory foot prints and the application launch
time. Typically, the libraries are pre-linked for this purpose. Sometimes even library

8.2 Mobile OS 223

addresses are hard-coded. Furthermore, due to security reasons the file system on
device is mounted in the read only mode. So, it is not possible for a binary editor to
modify the image of a device memory. In [16] a modified randomization scheme is
proposed for the pre-linked code in a mobile devices.

Generally, mobile OS employs user initiated event driven interactions. There-
fore, the client-server session based IPC is an ideal choice for the communication
mechanism among user space components.

8.2.3.1 Kernel

Mobile OS typically employ micro kernel approach for provisioning OS services.
The approach does not just mean that the kernel is of small size, rather it provides a
set of essential OS services which are used by a different set of other processes that
team up together to provide high level OS services to the applications. The system
level services such as file system, network interface and TCP/IP are implemented
as user libraries, and do not need privileged executions. Access to these services are
coordinated by the kernel through a client-server mechanism. The kernel is directly
responsible for the management and the protection of memory for both the user
applications and the applications providing the OS services. The kernel also provides
few other core system services such as process management, scheduler service, and
driver modules. Since, high level OS services are implemented as non-privileged
processes, it is possible to extend the OS services using APIs in the user written
applications.

8.2.3.2 Execute in Place (XIP)

Diskless devices support execute In Place (XIP). XIP is used in smartphones in order
to execute programs directly from storage without copying them into the RAM.
Mobile OS leverage XIP to optimize the use of memory during the execution of an
application. XIP not only speeds up execution, but also indirectly extends the amount
of shared memory. Therefore, the total memory requirement is also reduced.

8.2.3.3 Application Framework

Mobile users have options to avail the services offered via a plethora of mobile
Apps. Many of the Apps are designed for the convenience in transactions related to
banking, travel and electronic commerce. A rich set of Apps also exists for social
networking, gaming, fitness, healthcare, and multi-media entertainment. There is a
huge scope for abusing the Apps route with malicious intent to harm the users of
the mobile devices. Therefore, mobile security poses big challenge. Sandboxing is a
simple idea to isolate the Apps and prevent any malicious app from monitoring the
activities or the execution of another App. Sandboxing works as follows. A user ID

224 8 Mobile OS and Application Protocols

(UID) different from the invoking user is assigned to an application at the time of
installation. The access control for each application’s UID are statically assigned at
the time of installation. Mobile OS enforces the discretionary access control regime
according to the UID of each application when it executes.

Although Apps run in a sandbox environment, the application specific data are
often stored in shared resources. Therefore, it may be possible for one App to access
the data of another App. By collecting footprints of various data items, it may also
be possible to make intelligent guesses about the transactions through data mining
and other learning techniques. Therefore, data caging is used in conjunction with
sandboxing to isolated application data.

8.2.3.4 Security Issues

One of the simple techniques is filtering out unverified Apps and controlling the
release of third party Apps. Employing the process of App vetting before the release
of an App could be a practical solution in this respect. For Android system, Google
developed Bouncer testing mechanism [17]. It is a well known way of app vetting.
However, malicious App developer may use evasive techniques to dodge the App
vetting process. One simple way is to employ obfuscation techniques whereby, a
malicious App uses the finger prints of dynamic analysis of the vetting system and
avoids the detection of malicious code. So, when the same App subsequently runs
in a actual device the malicious code get triggered.

Antivirus is another complementary method of used to ensure security. However,
antivirus softwares have limitations [18]. An antivirus program typically scans the
code and package information in an App, but cannot understand the runtime behav-
iors. Monitoring of runtime behavior is necessary for better detection method. One
possible idea could be to instrument Apps for monitoring their runtime behaviors.
So, Apps need to be repackaged. However, application repackaging is not supported
by most systems. Another approach could be to identify all sensitive calls that an
application makes to Java API, and replace them by special functions that monitors
the behaviors. However, this approach is possible only for the Apps written in Java.
Any other approach will require changes in different layers of OS stack.

8.2.4 Mobile OS Platforms

A variety of Mobile OS platforms exists and used. Notable among these are:

• J2ME
• Palm OS
• Symbian
• BlackBerry OS
• Android

8.2 Mobile OS 225

• Windows Mobile OS
• iOS

Any attempt to provide a comprehensive review of the internals of mobile OSes is
beyond the scope of this book. Therefore, our focus in this chapter is restricted to
review of four widely used mobile OSes, namely, J2ME, Symbian, Android and iOS.
The choice has been dictated by the historical aspects of the development of mobile
OSes as well their popularities among the users.

8.2.5 J2ME

Sun Microsystems released three different editions of Java 2 platform to meet the
entire range of computing requirements from enterprise servers to small personal
devices. Java 2 Enterprise Edition (J2EE) provides the server based solutions for
the computing needs of enterprises. Java 2 Standard Edition (J2SE) is cut out for
the software solutions on desktops and workstations. Finally, Java 2 Micro Edition
(J2ME) addresses the computing requirements of Java enabled hand held portable
devices such pagers, personal organizers, PDAs and phones. The Java big picture is
illustrated by Fig. 8.1.

A set of specifications defines a J2ME platform for programming of small personal
devices. It consists of three building blocks, namely, Configuration, Profiles, and
Optional packages. Optional packages define a set of APIs for supporting some
additional behaviors and common features. Bluetooth and JDBC may be present as
a part of optional packages. Configuration and Profile are two important building
blocks of the J2ME architecture. Each specification set is referred to as a profile.

JVM

Java Enterprise
Edition

Optional
Packages

Java Standard
Edition

Optional
Packages

CDC

Foundation
Profile

Personal
Base Profile

Personal Profile

KVM

CLDC

MIDP

Card VM

Card API

J2MEsuite

Fig. 8.1 Java 2 platforms—the big picture

226 8 Mobile OS and Application Protocols

Each J2ME profile is built by extensions of the basic capabilities of the configuration
layer in J2ME stack. The configuration and the profiles for a device are developed
on the basis of the hardware features of the device and the targeted for the use of the
device.

8.2.5.1 Configuration

Configuration layer defines the abstractions for generic mobile devices having similar
capabilities. Configuration layer is implemented over the host JVM that relies on the
host OS as shown in Fig. 8.2. Configuration layer is closely inter-woven with JVM
in order to capture the essential capabilities of each family of devices. The members
of a family of devices are distinguished by the specifications defined by the profile
layer. A profile specification is implemented by a set Java class libraries. To meet
the requirements of a new device type, either a set of new class libraries should be
added or the existing libraries should be modified and extended suitably.

There are two different types of configurations, CDC (Connected Device Config-
uration) and CLDC (Connected, Limited Device Configuration). CDC configuration
is meant for virtual machines hosted on a desktop or on a laptop. CDC consumes
higher memory resources compared to CLDC. CLDC requirements are supported
through a small virtual machine called KVM defined on the top of JVM. KVM is
designed for Java programs that require a total memory of only few kBs. KVM can
be viewed as a restriction or contraction mapping of JVM functionalities. It support
as much JVM capabilities as possible for nontrivial Java programming on resource
constrained devices. Basic KVM features and its responsibilities can be outlined as
follows:

Fig. 8.2 J2ME software
stack

Hardware

OS

Configuration

Optional
PackagesProfile Proprietary

OEM classes

Applications

8.2 Mobile OS 227

• The design goal of KVM is to create the smallest possible complete JVM for
running Java programs in an environment limited by a total memory size of few
kilo bytes. In other words, KVM is a light weight JVM for hand held devices.

• The static memory foot print of KVM should be under 100 kB.
• KVM should allow programming on the small devices retaining all the important

features of Java programming.
• KVM should be portable to any device without requiring retrofitting. However,

KVM should be modular, and customizable on the installed devices.
• KVM is written in C. So, it can be compiled and used on both Window and Unix

based platforms.

CLDC ensures security in following way. Firstly, all the downloaded Java class
files are subjected to a verification step by the virtual machine. Secondly, the appli-
cations are executed in isolation under a sandbox environment. Overriding of classes
in protected system packages are disallowed.

CLDC also provides a set of APIs for new I/O types and known as Generic
Configuration Framework (GCF). GCF is a part of javax.microedition.io
package. It specifies interfaces for the different types of inputs and outputs. CDC
being a superset of CLDC includes GCF. CDC requires GCF for file and datagram
support. CDC based profiles requires resource rich devices and does not work on
low end devices.

8.2.5.2 Profiles

Several generic profiles are available. Some of these are:

1. Foundation Profile (FP)
2. Personal Basis Profile (PBP)
3. Personal Profile (PP)
4. Personal Digital Assistant Profile (PDAP)
5. Mobile Information Device Profile (MIDP)

Foundation Profile is the Base Profile on which all other profiles are created. FP
only targets for the device with network connectivity but without GUI. Personal Basis
Profile adds basic user interface to FP profile. The devices which can support complex
user interfaces typically use Personal Profile. PDAP defines profile for personal
digital assistants. Functionally, PDAP is similar to MIDP. MIDP is responsible for
three important tasks: (i) display, (ii) storing of simple database tables in non-volatile
memory, and (iii) HTTP based connectivity using CLDC-GFC. MIDP works in an
environment where the device is characterized by certain minimum capabilities:

• At least 96 × 56 pixel display on device,
• At least about 170 kB of non-volatile memory, out of which

228 8 Mobile OS and Application Protocols

1. At least 128 kB should be set aside for running Mobile Information Device (MID),
2. At least 8 kB should be available for storage of MIDlets data, and
3. At least 32 kB should be reserved for JVM operations,

• A keypad, or a keyboard, or a touch screen is available on the device for user’s
input, and

• The device has bi-directional wireless connectivity.

Apart from hardware capabilities, MIDP also requires following assistance from
native OS of the device.

• To be able to run JVM, it is absolutely essential for the host OS to implement
exception handling and process interrupts.

• The host OS should provided for the scheduler capabilities.
• Though file system is not a requirement, OS should provide support for basic read

and write operations on the persistent storage.

MIDP applications are known as MIDlets in keeping with the well known Java ter-
minology of referring executable program as a (*) lets. MIDlet applications are sub-
classes of javax.javamicroedition.midlet.MIDlet defined in MIDP
profile. MIDlets can be viewed as applets on Java enabled mobile phones.

A MIDlet life cycle has three states, namely, (i) start, (ii) pause, and (iii) destroy.
In the start state, a MIDlet acquires resources and starts execution. In a pause state,
the resources are released and MIDlet remains in the wait state. From the pause state,
a MIDlet may either resume in the active state, or enter the destroy state. On entering
the latter state, the MIDlet releases all the resources and kills itself by halting the
execution of the associated threads. A MIDlets suite is packaged as a JAR file. All
MIDlets in a single JAR can access the database of one another. Since, the focus
here is Mobile OS, we do not to go into the details of MIDlet programming. An
interested reader may refer to other resource including complete reference to J2ME
for the same.

8.2.6 Symbian OS

SIBO [19] was an early incarnations of Symbian OS introduced in 1988. It is, essen-
tially, a 16-bit organizer coded in C. SIBO’s Unique Selling Point (USP) was power
management. It could be ported easily to a variety of devices including PCs. By mid
1990s 32-bit devices started appearing, and SIBO was junked in the favor of a 32-bit
system known as EPOC [19]. EPOC was developed with an object oriented approach
right from the beginning and was written in C++. Communication capabilities were
added, so that hand held devices could access various system services as well as
coordinate the accesses to the peripheral devices. It also opened up possibility of
expanding communication to provide multimedia services.

Symbian was developed as an open OS support for the devices manufactured by
different companies. Nokia, Ericsson, Sony Ericsson together contributed for 75%

8.2 Mobile OS 229

Kernel services & Hardware abstraction

Base services

Application services

UI framework

J2ME

Generic
OS

Services

Common Services

Telephony
Services

Serial
Comm &
Short Link
Services

Networking
Services

Multimedia
& Graphic
Services

Connectivity
Services

Fig. 8.3 Symbian OS architecture

of the stakes in Symbian. Symbian based phones were immensely successful until
Android and iPhone based smartphones started to appear in the market.

Symbian OS ran only on ARM processors. Symbian architecture is described in
Fig. 8.3. It separates the user interface from the OS engine. It is a micro kernel based
architecture that supports preemptive multitasking and multithreading execution with
memory protection. Micro kernel approach reduces kernel size to a minimum by
provisioning only essential services. This is appropriate for the resource poor devices.
Symbian micro kernel contains a scheduler, provides services for both memory and
device management. An important concept for memory protection is data caging.
Using data caging an application protects its own data in a private partition which
cannot be accessed by other applications. For example, data caging is ideal for the
applications which carry out financial transactions.

Accesses to various system services are designed along the lines of the client-
server access model. The client can access the services through the APIs exposed
by the base service layer. Network, telephony and file system support are accessible
through a set of libraries which form the OS base service layer. Networking stacks
include TCP/IP (dual mode IPv4/IPv6), WAP, IrDA, Bluetooth, and USB. Most
Symbian devices have pre-built telephony supports for circuit switched voice and
data (CSD and EDGE ECSD) and packet switched data (GPRS and EDGE EGPRS),
CDMA circuit switched voice and data and packet switched data. Furthermore, it
is possible to implement newer standards using extensible APIs of the telephony
subsystem.

Symbian provides abstraction to the hardware and supports device independent
Hardware Abstraction Layer (HAL) which is located below the OS base service
layer. Real-time guarantees to both kernel and user threads are provided through

230 8 Mobile OS and Application Protocols

kernel. Symbian OS employs a strong security regime. An application is required to
present credentials signed by an established security authority for performing any
sensitive operation. A Symbian device rely on secured protocols such like HTTPS,
TSL, and SSL for management of certificates and encryption. Additionally, the WIM
Framework (WAP Identification Module) provides the capabilities to carry out secure
transactions using non-repudiation based on digital signatures. Symbian offers a rich
set of applications for browsing, messaging, multimedia, over the air data synchro-
nization, file transfers, etc.

8.2.7 Android OS

Android OS was developed by a consortium called Open Handset Alliance led by
Google. The first version of android was released in September 2008. There are
several versions of android each has a fancy name such as Cupcake, Donut, Eclair,
Froyo, GingerBread Honeycomb, IceCreamSandwich, Jelly Bean, Kitkat, Lolipop,
Marshallmallow, and Nougat [20]. Nougat is the latest stable release of Android
system.

Android OS stack consists of four layers as shown in Fig. 8.4. The bottom-most
layer is basically the Linux kernel. This layer should be viewed as the hardware
abstraction layer. It performs four important tasks, namely, memory management,
interprocess communication, driver support and power management. Driver support
is available for a number of drivers including display, camera, keypad, WiFi, flash
memory, binder, audio, etc. Through driver support, Android can be ported to new
devices. Power management is extremely important for any mobile phone. So, ker-
nel abstractions are useful for enforcing power management polices. Binder driver
handles interprocess communication.

The next layer from the bottom consists of a set of libraries including the runtime
system for Android. The runtime system consists of a set of core library routines
and Dalvik VM. Dalvik VM is essentially an optimized implementation of Java
runtime system and provides for a Java like programming framework. Application
framework is the next higher layer of the software stack. All the user applications
are implemented on the top of this layer.

The life cycle of an Android application is shown in Fig. 8.5. There are three main
states in the life cycle of an application, namely, active, pause, and destroy. From the
start state, an application migrates to the active state. In active state, the application
is in execution. From the active state, an application can transit to the pause state in
order to allow execution of another application. An application in the pause state, may
either resume its activities or migrate to the destroy state where all its activities are
shutdown. An application in the pause state may also be killed, if enough free memory
is not available for another application activated by the user. The killed application
is reactivated when the user navigates back to the killed application. From the pause
state, the application may also be stopped and destroyed or shutdown.

8.2 Mobile OS 231

Linux Kernel

WiFi DriverCamera DriverDisplay DriverKeypad Driver

Binder (IPC)
Driver

Audio Driver
Power

Management
Flash Memory

Driver

Library routines

Media
Framework

Open GL libC

SQLite
Surface
Manager Free type

SGL SSL WebKit

Core library
routines

Dalvik VM

Runtime system

Application framework

Activity Manager Windows Manager Resource Manager

Content Provider Location Manager Telephony Manager

Notification Manager Package Manager View System

Applications

Contacts Dialer Browser Other apps · · ·

Fig. 8.4 Android software stack

The interesting part of Android memory management is in enforcement of the
life cycle model for an application in preference over the usual virtual memory
implementation with swapping. At a high level, the application swapping employed
by Android and the swapping employed by OS are the same. The aim is to free
memory for another active application. Life cycle model avoids the complications
associated with the implementation of virtual memory. An important reason for
avoiding swapping is to minimize the number of writes on the flash memory. A flash
memory has limited longevity as far as the number of writes is concerned. Whereas,
repeated writes have little impact on the longevity of a normal hard disk.

Android uses two different types of memory killers to free memory. Out Of
Memory Killer (OOMK) is a kill all kind of killer which kills minimum number of
applications to free enough memory for a new application. This kill method does not
distinguish between applications. So, it may remove important applications from the
memory to create free space for a foreground application. On the other hand, Low
Memory Killer (LMK) distinguishes the applications in decreasing order of priorities
into six different classes, namely,

232 8 Mobile OS and Application Protocols

Activity started

onCreate()

onStart()

onResume()

Active running

onPause()

onStop()

onDestroy()

Application
shutsdown

Process
is killed

onRestart()

Memory needed for
another app

User resumes
activity of app

A
pp

go
es

ba
ck

to
fo
re
gr
ou

nd
App resumes activity

App resumes activity

Fig. 8.5 Life cycle of an Android application

• Foreground_App: a process which is currently running in the foreground.
• Visible_App: a process only hosting the activities that are visible to the user.
• Secondary_Service: a process holding a secondary server.
• Hidden_App: is a process only hosting the activities that are not visible.
• Content_Provider: a process with a content provider.
• Empty_App: a process without anything currently running in it.

LMK starts killing applications in increasing order of the priorities until sufficient
free space is created in the memory for the foreground application.

8.2.8 Iphone OS (iOS)

Iphone operating system (iOS) like Mac OS X is based on Mach kernel. Mach kernel
was developed at CMU in a bootstrapped manner from Free 4.2BSD. It requires about
half a GB of storage in the device. Ordinarily, no third party application is allowed.
However, jailbreaking can be used to run third party applications in an Apple phone
or IPad. The software stack consists of five layers as indicated in Fig. 8.6. Core OS

8.2 Mobile OS 233

Fig. 8.6 iOS software stack

Hardware

Core OS

Core Services

Media

Cocoa Touch

layer essentially represents the OS kernel. Apple developers performed an evolution
of Mach OS X micro kernel (Darwin) make it ready for ARMv5 chipset which
was used in iPhones and IPads. Besides kernel, the Core OS layer is made up of
drivers and basic OS interfaces. Kernel is responsible for the memory management
while drivers provide interface to the hardware. Libraries are used by Apps to access
low level features of device hardware. Core service layer basically consists of core
foundation network (CFN). CFN presents a set of C based interfaces for the data
management and the fundamental software services that are useful to the application
environments and the applications. CFN defines abstractions for common data types,
and supports internationalization with Unicode string storage. It also provides utilities
such as plug-in support, XML property lists, URL resource access, and preferences.
The second layer from top is referred to as media layer. Media layer defines a software
framework for the application developers to make use of audio, graphics and various
multimedia capabilities of an iOS based device in the user Apps. The top layer of
the software stack is known as Cocoa Touch Layer (CTL). App developers make
use UIKit framework of CTL for look and feel of their Apps. UIkit framework
provides support for key apple technologies like multi touch events and control,
push notifications, multitasking among others. It provides interfaces to accelerometer,
localization and camera. App developers rely heavily on gesture based inputs such as
tapping, pinching and swiping which form a part of CTL’s touch based technology.

iOS SDK bundles tools necessary for designing, creating, debugging, testing and
optimizing softwares. It also includes native and web applications, and dynamic
libraries but excludes device drivers. SDK has built-in framework, shared libraries,
Xcode tool, iOS simulator and iOS developer’s library. Like Eclipse platform, Xcode
is used for managing application projects, editing, compiling, running, and debugging
code. There is also an Interface Builder tool for assembling the UI. Similarly, an
instruments tool is available for performing runtime analysis and debugging. iOS
Simulator can be used for testing iOS applications by simulating the iOS technology
stack on a Mach OS X. It makes testing faster, since a developer does not need to
upload the application to a mobile device. The iOS Developer Library is the source
for documentation helpingapplication development. iOS applications are written in

234 8 Mobile OS and Application Protocols

Objective C which is derived from ANSI C and augmented by objective oriented
syntax borrowed from Smalltalk.

8.2.9 Comparison of iOS and Android

Symbian foundation has disintegrated completely. The last Symbian based smart-
phone Purview 808 was introduced by Nokia in February 2012 [21]. From 2012,
virtually no Symbian release was publicly announced, as Nokia moved it to closed
licensing. Blackberry till date remains a closed platform, and has failed to reach
masses. Window mobile has not been quite popular among the general users. Nokia,
after abandoning Symbian, has migrated to windows mobile system. According to a
statistics [22] Android OS commands 87%, while iPhone commands just about 11%
of the market share of mobile phone OS market world wide for the second quar-
ter of 2016. This implies only 2% of the smartphones have other OSes. Therefore,
Android and iOS are the two main competitors in mobile OS segments. Our focus
in this section is on comparison of these two systems.

Being an open system, Android has several advantages over iOS. Android appli-
cation can be crowd sourced. The users can get their hands on Android system and
customize applications according to their likes and dislikes. However, download-
ing applications from the sources outside Google play store may introduce viruses
or worms in the device. Only Googly play store has a serious vetting process with
antivirus features. iOS does not allow Apps to be downloaded from any sources
other than the official App store. Apple enforces a code signing process whereby an
application developer must sign the code using the Apple issued certificate before
uploading the same to the App store. Unsigned codes cannot be uploaded. It ensures
that codes do not possess any malwares or viruses. It does not mean apple devices are
completely immune to hacking, malware, spyware or viruses. However, the chances
of these happening to an iOS device is much less compared to an Android device.

Both iOS and Android implement memory randomization or Address Space Lay-
out Randomization (ASLR) for memory protection. iOS had employed address ran-
domization right from beginning. In Android, ASLR was added since the Jelly Bean
release. Memory randomization makes it difficult for the viruses or the malwares to
guess the exact locations for attacking the application code.

Encryption mechanism is used in both iOS and Android. But device encryption
was not available for Android release lower than 3.0. Encryption API for Android
was release first time in Ice Cream Sandwich 4.0. Device encryption in iOS was
introduced in iPhone 3GS.

8.2 Mobile OS 235

8.2.10 Cross Platform Development Tools

For the application developers, it becomes a productivity linked difficulty if every
application needs to be retooled for one or the other OS. Consequently, cross platform
development tools have become an important development framework [23] for appli-
cations. There are many cross platform tools such as: Rhomobile [24], Titanium [25]
and PhoneGap [26]. These tools allow UI development using web technologies like
HTML, CSS and Java. However, the UIs developed over native development frame-
work are always rated better than the corresponding UIs developed over cross plat-
form tools.

Some of the important requirements of a cross platform development tool are as
follows [23]

• Multiple OS support: The platform must support application developments for
multiple mobile OSes particularly Android and iOS.

• Rich UI set: It should provide support for a rich set of UIs, and possibly include
support for customizable parameters based UI programming. Multimedia I/O, 2D
and 3D animations enhances the user’s experience. So, it should be possible to
develop such interfaces on the cross platform tools.

• Backend connection support: Many mobile Apps for information, entertainment,
navigation, social media interactions need backend connectivity. Therefore, the
tools should also provide smooth support for backend connectivity protocols and
platform independent data format.

• Optimization for power consumption: Energy drainage is a common issue affecting
all portable devices, irrespective of native OS support. The generated Apps should
be optimized for power consumption.

• Security and privacy: Security are privacy are two important area of concerns in
use of mobile applications. Typically, mobile phones store highly sensitive and
private data concerning personal identity. Therefore, the developers would always
be apprehensive about the security support provided by cross platform tools.

• Installed app extension support: A extension to old installed Apps should be pos-
sible through updates or patches.

A generic layered architecture of a cross platform development tool is provided in
Fig. 8.7.

The application developers use web technologies to implement the functionalities
of applications. Cross platform tools enable implementation of interface, access of
storage facility, and device specific features (e.g., sensors, camera, contacts) which
interact with a JavaScript API. The Javascript API interacts with the native API of
the mobile platform. Finally, executables for different platforms are generated by
building the application.

236 8 Mobile OS and Application Protocols

Hardware

Hardware Abstraction Layer

Android API iOS API Window OS
API

Operating Systems

Cross Platform Framework

Plug-ins Java Script
API

UI
Components

Applications Using Web Technologies

Fig. 8.7 Software stack for a cross platform tool

8.3 Mobile IP

Mobile IP [1] is a modification of wire line IP at the level of Internet enabling mobile
users receive messages independent of the point of attachment. A wire line IP address
refers to a unique fixed point of attachment for a node. Messages can be delivered by
tagging them with IP address and port number pairs. This means an IP address allows
to identify a node from millions of available nodes in the Internet. By having a stable
IP address assigned to a computer, IP packets from other computers in the Internet
can always be delivered at the same computer. In a wired network, the nodes are
mostly static with a fixed point of attachment to the Internet. Dynamic Host Control
Protocol (DHCP) [27] provides discrete slow mobility to static nodes in a wired LAN.
It combines IP address assignment protocol with mobility. Using DHCP, a node can
change its point of attachment with limited functionality. Figure 8.8 illustrates how
DHCP service operates. For assignment of an IP address, a newly booted machine
broadcasts a DHCP DISCOVER packet. A DHCP relay agent is needed for each
LAN, as limited broadcast may not reach DHCP server if the server does not belong to
the same LAN. DHCP relay agent has the IP address of DHCP server. It intercepts all
DHCP packets including DISCOVER packet and send DHCP DISCOVERY packet
as a unicast packet to the DHCP server which may be located in a distant network.

8.3 Mobile IP 237

DHCP offer DHCP offer

DHCP discover DHCP discover

DHCP request DHCP request

DHCP reply

DHCP realse

(a) DHCP discovery.

0.0.0.0 68
67Brdcast addr

0.0.0.0 68
Brdcast addr 67

MAC address

192.168.1.1 67
DHCP OFFER

192.168.1.2
Lease time:3600

192.168.1.1 67

192.168.1.2
Lease time:3600

DHCP ACK

MAC address

DHCP DISCOVER

DHCP REQUEST

Start using 192.168.1.2

DHCP Client DHCP Server

step 3

step 4

step 1

step 2

(b) DHCP operation.

Fig. 8.8 DHCP operation

DHCP leases out a new IP address to a requesting node for a limited period. The
lease period is renewed before expiry as long as the node remains connected and
keeps sending renewal requests. When a node changes its attachment to the Internet
its IP changes, and as a result all IP clients on the node will stop working. The node
needs to restarts its Internet subsystems. Typically, users do not selectively restart
the Internet services, but reboot the system. So, the DHCP mechanism, at best, can
provide mobility to the extent that the point of attachment of a terminal in the network
can be changed. It essentially implies that the requirement of a stable IP address is
in direct conflict with node’s ability to become mobile.

The portability of nodes enabled through DHCP is also fairly complex. Most
application use Fully Qualified Domain Name (FQDN) which should be mapped to
an IP address. In order to find mapping of FQDN to an IP address, an application

238 8 Mobile OS and Application Protocols

typically seeks assistance from a DNS service. However, when IP addresses are
allocated dynamically, the DNS will be unable to resolve the mapping unless mapping
updates are provided to DNS for each and every FQDNs. Since DNS is the most
important administrative component of a network, any application designed to alter
data must have to be tested and trusted fully before deployment. The updates have
to be applied to DNS at frequent intervals. So, there is a possibility that the entire
network service may go for toss if these updates are incorrect. Specially, in network
having large number mobile devices, even providing DNS portability would be fairly
complex task.

In view of the technical complications in maintaining IP connectivity of a
portable and mobile device to Internet, a simple and easily scalable approach is
needed. Notably, the approach should neither affect the protocol stack nor require
re-engineering of the applications.

8.3.1 Overview

Mobile IP protocol provides a simple mechanism to deliver packets to a mobile node
when it moves out from its home network. Mobile IP has been designed to avoid all
the complications of DHCP mentioned above. It supports mobility of nodes through
cooperation of three subsystems:

1. A mobility discovery mechanism which allows a mobile node to detect its move-
ments in the Internet,

2. An IP registration mechanism which allows the mobile node to register its IP
address with an agent of the home network after the node obtains an IP address
from the new network.

3. A packet delivery mechanism which delivers packets to a mobile nodes when it
is away from the home network.

The interactions between three subsystems are accomplished through the following
three functions:

1. Agent discovery. There are routers which advertise their availability to offer
service on a wireless link to mobile nodes appearing in the neighbourhood.

2. Registration. After a node successfully obtains an IP address (called its care-of
address) in a foreign network, registration process enables the node to inform the
newly acquired IP address to an agent belonging to home network.

3. Tunneling. It is a process by which the home agent encapsulates the datagram
meant for a mobile node to be delivered to the care-of address (foreign agent) of
the mobile node.

Sometimes an additional function called reverse tunnel may also be needed. Reverse
tunneling is a process through which the foreign agent encapsulates datagram meant
for a correspondent node from a mobile host to be delivered at the home agent. Home
agent decapsulates the packet before directing the same to the correspondent node.

8.3 Mobile IP 239

In a foreign network, a mobile node effectively uses two IP addresses at a time: (i)
a home address (HA) and (ii) a care-of address (CoA). The HA is static. It is used to
identify a mobile node’s TCP connections, if any. A CoA is dynamic, which changes
as often as the mobile node changes its point of attachment to the Internet while
roaming. Therefore, CoA can be viewed as a topologically significant address of a
mobile node. CoA specifies the network number that identifies the point of current
attachment of a mobile node with respect to the network topology. HA insulates other
communicating nodes from the complications of following the mobility a mobile
node. Therefore, other nodes on the Internet are oblivious to roaming of a mobile
node, and transmit packets to the latter by using its HA.

Mobile IP requires the existence of a topologically static network node or a router
called the home agent. A mobile node (MN) registers IP of its new point of attachment
(i.e., CoA) with a home agent when it is away from home network. The home agent
intercepts all the packets having MN as destination, and delivers these packets to
MN’s current point of attachment in the foreign network. So, it is important for the
home agent to know a mobile node MN’s new attachment point as it moves. MN
should register its new care-of address (CoA) with the home agent every time its CoA
changes. It is the responsibility of the home agent to deliver packets from the home
network to CoA of MN. In other words, when a MN is away from home network,
HA acts as a proxy for the MN.

All the packets with the MN as destination are intercepted by HA. HA then creates
a new packet corresponding to each packet it receives on behalf of MN. It constructs
a new IP header with CoA of MN as the destination address. The corresponding old
packet forms the payload of a newly created packet. Each newly created packet uses
a higher level protocol number indicating that the next protocol header is also an
IP header. Then each such a newly created packet is transmitted by the home agent.
The packet modification as explained above is essentially a redirection process called
tunneling. The mobile node’s home address is prevented from influencing the routing
of the encapsulated packet till it reaches at CoA of the node. The packet from a sender
S for a mobile node MN , located topologically in a foreign network, is encapsulated
by creating a IP header. The packet is tunneled to foreign agent which decapsulates
the packet and redirects it to correct destination (or the mobile node MN).

8.3.2 Agent Discovery

Agent discovery is similar to the one that is used by the nodes in Internet for discov-
ery of routers running ICMP (Internet Control Message Protocol) router discovery
protocol [28]. It involves the routers to broadcast router advertisements periodically.
The agent advertisement is the most critical component of Mobile IP functions. The
structure of the ICMP packet for agent discovery in Mobile IP is illustrated in Fig. 8.9.
The packet has following fields:

240 8 Mobile OS and Application Protocols

Fig. 8.9 ICMP packet
format for agent
advertisement Type Sqn No.Length

Lifetime

....

Zero or more care−of addresses

Flags Rsvd

8 8 16

1. Type: It distinguishes among various extensions to ICMP router advertisements
which may be used by a mobility agent. Provision exists for many extensions,
the most important being extension the type 3 which is for the advertisement of
mobility agent.

2. Length: Specifies the length of a single extension. For example, the length of type
3 extension depends on many care-of address that may be defined. Typically, one
care-of address is defined.

3. Sequence number: It essentially represents freshness of the router advertisement.
Sequence number is incremented by 1 for each successive advertisement.

4. Lifetime: Specifies the expiry time of the current advertisement.
5. Flags: There are seven flags representing various features supported by mobility

agents. We will discuss more about the flags, later in the text.
6. Care-of address: IP addresses to be used by mobile nodes.

A home agent need not necessarily offer a care-of address service. But it still
needs to broadcast mobility agent advertisement in order to allow a mobile node to
detect that it has returned back to home network. A mobility agent need not provide
the default router address as it would be found in other ICMP router advertisement.

The flagsH andF respectively represent home and foreign agent. A mobility agent
may offer both services, so both H and F may be set. The flag B set to indicate that
the foreign agent is busy. However, B cannot be set unless F is also set. The flag R
denotes registration required, and is meaningful for care-of address co-located with
the mobility agent. Encapsulation protocol preferred by the foreign network is known
by three flags: G, M, and V. M is used when minimal encapsulation [29] is preferred.

8.3.3 Registration

The process of registration involves a MN registering its CoA with the designated HA
in its home network. Figure 8.10 illustrates the sequence diagram of the registration
process. As one may notice, it is similar to the process of acquiring IP address
from DHCP. Initially, MN sends a registration request to foreign agent. Foreign
agent forwards the request to home agent on behalf of MN. Home agent sends a
registration reply back to foreign agent which completes the registration process.
The format of the registration request appears in Fig. 8.11. Flag G or M indicates a

8.3 Mobile IP 241

Fig. 8.10 Registration
process request

registration

registration
request

registration
reply

registration
reply

MN FA HA

Fig. 8.11 Format of
registration request message

Type Flags Rsvd Lifetime

Home agent

Care−of address

Identification

Extensions

Home address

88 16

home agent whether IP-in-IP or minimal encapsulation is preferred by the foreign
agent. Setting V bit, in request message, tells the foreign agent that Von Jacobson
header [30] compression is desired. Registration message is sent using UDP protocol.

The structure of a registration reply is shown in Fig. 8.12. It consists of type, code,
and lifetime field. Lifetime field informs a mobile node about the duration of time
for which the registration of the care-of address will be honored by a home agent.
When a registration request is rejected, code field tells the mobile node what went
wrong. In the case, a registration request is accepted, the code field contains a 0.
Request may be rejected either by foreign agent or by home agent. An interesting
scenario occurs when the registration request sent by mobile node contains a directed
broadcast address for finding a home agent. The registration request is rejected by
every home agent. However, the reject replies received by the mobile node contains
addresses of the available home agents. So, the mobile node can try again with a
valid home agent address for a fresh registration, and it will succeed.

Registration request procedure has been designed to resist two types of attacks:
(i) masquerade attack, and (ii) replay attack. In first type of attack, a node imper-
sonates as a foreign agent and diverts all traffic meant for a mobile node to itself by
sending a fake registration message. In the second case, a malicious agent replays an
old registration message and effectively isolates a mobile node from the network.

In order to guard against malicious users registration, the registration request is
protected by inclusion of a non-reproducible value with the identification field of

242 8 Mobile OS and Application Protocols

Fig. 8.12 Format of
registration reply message

8

Type

Home address

Home agent

Identification

Extensions

Code

8 16

Lifetime

the request. The value changes with each new request. The value may either be a
timestamp or a nonce. The home agent and the mobile node should agree, before
hand, on the unforgeable values that could accompany the registration request.

Three different authentication extensions are defined for use in mobile IP. These
are: (i) mobile to home, (ii) mobile to foreign and (iii) foreign to home. Each uses a
different security parameter index (SPI). SPI defines the security context to be used
to compute authenticator. The context consists of authentication algorithm, and the
secret (keys) to be used.

8.3.4 Routing and Tunneling

After the CoA registration for a mobile node becomes successful, the home agent
intercepts all datagrams meant for the mobile node. The home agent then tunnels
(encapsulates) all these packets to the same to care-of address provided by the mobile
node. Although there may be many ways to encapsulate, the simplest one is IP-in-
IP [31] encapsulation [32]. Figure 8.13 illustrates the encapsulation technique. The
care-of address becomes destination address in the tunnel header. By including IP
protocol value of 4, the encapsulated packet indicates that payload carried by it
is again an IP packet. The inner packet is not modified except for decrementing
TTL value by 1. Compared to IP-in-IP encapsulation minimal encapsulation has less
overhead. But it can be used, if all the entities, namely, mobile node, home agent
and the foreign agent agree to do so. Minimal encapsulation uses protocol value 55
against 4 of IP-in-IP encapsulation. The length of minimal encapsulation header is 12
or 8 depending on whether or not the original source IP address is present. It allows
the original datagram to be fragmented at home agent. However, this encapsulation
cannot be used if the original datagram is already fragmented, because there is no
room to insert fragmentation information.

Fig. 8.13 IP-in-IP
encapsulation

inner
IP headerheader

tunnelouter
IP header Data

8.3 Mobile IP 243

If the delivery of a tunneled datagram to care-of address fails, then ICMP error
message is received by the home agent. But an ICMP error message can incorporate
only 8 bytes of datagram in error. So, when an ICMP error message is returned, it
may not contain original source of the tunneled packet. Under this scenario, how
would a home agent notify about the error to the original source of the datagram?
If a home agent keeps track of a care-of address including the sequence number of
the tunneled packet then the returned ICMP error message may be matched against
the stored information, and a notification can be relayed back to original source.
However, there is a small problem in forwarding the notification. The correspondent
node must not be aware of the existence of a tunnel. So, a home agent needs to modify
ICMP error message from network unreachable to host unreachable. A home agent
also keeps track of many other tunnel parameters such as maximum transmission unit
(MTU), TTL for the encapsulated datagrams. The collection of tunnel parameters
can be found in [32].

Mobile IP allows a mobile node to send data packets to a host directly using
standard IP routing scheme. So, the packet flow in both directions constitute a triangle
routing pattern. Inward flow is routed through home agent to care-of address of mobile
node, while outward flow from mobile node to a correspondent does not require
any rerouting and follows standard IP routing. However, due to security reasons,
ingress filtering used at a network may discard packets originating from any foreign
node (belonging a different network). This implies that mobile node cannot transmit
packets directly to a node outside the network it is visiting. The solution to this
problem is to apply a tunneling also in the reverse direction [33]. All datagrams from
mobile node in a foreign network can then be routed through the home agent. The
tunneling and the reverse tunneling are illustrated pictorially in Fig. 8.14. As it is clear
from the figure, with reverse tunneling the overhead of routing data packets between
a mobile node and a correspondent node (CN) increases considerably specially when

normal ro
utin

g

Internet

HA

FN

MN

normal routing

forei
gn

 netw
ork

tunnel

CN

(a) Tunneling

CN
MN

tunnel

reverse

FA

forei
gn

 netw
ork

HA

no
rm

al
 ro
ut

in
g

Internet

(b) Reverse tunneling

Fig. 8.14 Tunneling and routing in mobile IP

244 8 Mobile OS and Application Protocols

CN, in turn, belongs to a foreign network. In this case, the two-way traffic between
CN and MN has to pass through double-tunneling.

Mobile IP has been designed to operate together with normal IP routing. The
network may have both types of nodes: those which implement mobile IP and those
which do not. It should be possible for an normal correspondent node, not imple-
menting mobile IP, to communicate with a mobile node. The normal node would use
normal IP routing. It sends an ARP (address resolution protocol) request to home
network for resolving the address of mobile node before sending any message. This
works fine as long as mobile node is actually present in home network. The nodes in
the home network may also cache the address of the mobile node for use. However
when the mobile nodes moves away to a foreign network, ARP would be unable
to resolve any request. Also the nodes that have cached mobile node’s address, and
attempts to use stale information while trying to communicate with the mobile node.
In either case, any attempt to communicate with the mobile node fails.

Mobile IP is expected to handle both the situations stated above. It deals with these
situations in the following way. The home agent broadcasts gratuitous ARPs to all
nodes. The objective of broadcasting gratituitous ARPs to ensure that all nodes which
have cached the MAC address of the mobile node should update the corresponding
cache entry. The details of handling ARP request for a roaming mobile node, are as
follows:

1. Home agent supplies its own MAC address and continues gratuitous broadcasts
for sometime to ensure that every node in the network has received the ARP
broadcast and updated their respective cached entry.

2. During the time a mobile node MN is away from its home network, the home
agent intercepts any ARP request meant for MN and supplies its own link-layer
address

3. As soon as the mobile node MN comes back to home network, the home agent
sends another series of gratuitous ARPs to assist other nodes to evict stale cache
entries concerning the mobile node.

Mobile IP does not, however, specify a mechanism to update ARP cache in a foreign
network. So, mobile nodes should never broadcast an ARP request or an ARP reply
packet in a visited network. Otherwise it will be hard to contact mobile node after it
moves away.

8.4 Mobile Shell (Mosh)

Before discussing the architectural design of Mosh, let us first understand why a new
shell program is necessary at all? SSH [3] has been in use since mid 90s. SSH lacks
support for IP mobility. To understand why, consider the environment needed for
SSH to run.

1. Firstly, SSH runs on TCP [2]. A TCP connection is represented by a connection
tuple: (src_IP, src_port, dest_IP, dest_port). A TCP connec-
tion breaks if any of the four fields of its connection tuple is modified.

8.4 Mobile Shell (Mosh) 245

2. Secondly, in SSH every character is echoed and in-line editing is performed at a
server or a remote computer.

3. More importantly, in a cellular mobile environment, the performance of a TCP
connection is severely affected by micro mobility protocols (handoff) which
introduce packet losses and duplications, delays, jitters and break before make,
etc. [34].

In summary, the basic assumptions for SSH to operate is an efficient, non-lossy high
bandwidth network. It does not understand what to send. Therefore, it sends out
everything that an application puts out. The size of data can be in megabytes. To
support rendering of SSH output at the client terminal, the round trip time should
be typically in few milliseconds. In contrast, in a relatively unloaded 3G network,
the round trip latency may exceed several hundreds of milliseconds. The delay may
cause the buffers to overflow due to concurrent bulk transfers. A delay of several
orders in magnitude of the tolerable range of milliseconds, renders SSH useless for
any interactive operations on mobile devices.

8.4.1 Overview of Mosh

Having understood the reasons behind the obvious inadequacies of SSH in dealing
with IP mobility, Winstein and Balakrishnan [4] set the design goals of Mobile Shell
(Mosh) which offers solutions to the problems mentioned above. Mosh supports IP
roaming. It can operate on intermittent and inherently lossy low bandwidth network
connection. One of the smart approach employed in Mosh is predictive client-side
echoing and line editing. So, Mosh gives the user a feeling that the remote computers
are local. This becomes possible because Mosh uses a different approach in local
echoing. It runs the terminal emulator at the server-side. The client and the server
maintain images of the terminal states synchronized. In contrast, SSH sends an
octet stream over the network and hands it over to the terminal emulator on the
client side for its display. In summary the two major techniques which makes Mosh
advantageous compared to SSH are:

1. State Synchronization Protocol (SSP). This is a secure object synching protocol
which runs on the top of UDP [2]. SSP synchronizes abstract objects with IP
roaming on intermittent and low bandwidth lossy network.

2. Speculative Display Rendering. Display is rendered immediately when the client
is able to guess with confidence. It is also possible to repair the display even if
prediction is not 100% correct.

246 8 Mobile OS and Application Protocols

8.4.2 State Synchronization Protocol

SSH protocol is simple. As illustrated by Fig. 8.15, it consists of two basic elements,
namely, a pseudo terminal and a terminal emulator. SSH client runs the terminal
emulator on the top of the pseudo terminal. The server side application conveys the
output octet stream over encrypted TCP connection that exists between the client
and the server. The pseudo terminal on the SSH client uses the terminal emulator for
rendering the display on screen.

The technical contribution from Mosh research [4] was to synchronize abstract
objects instead of octet stream. The goal was to build a low latency object synchro-
nization protocol and to combine this with a local user interface that replaces SSH.
The protocol does not need to know the inner details of an object, but it can distin-
guish between two states of an object. An object also has to provide a patch vector
that can be applied to its previous state for synchronization of the two states. It is
the object implementation that determines the synchronization. In other words, if the
object implementation is incorrect, then SSP may lead to wrong synchronization.

In the specific case of mobile terminal emulation, the recent most state of the
screen is sent to a client by the server using a frame rate that adjusts to the network
conditions. So, the network buffers do not experience overflow conditions. The server
side can buffer the generated keystrokes and optimize the transfer of the resulting
octet stream. However, this luxury is not possible on the client side which must send
each and every keystroke. SSP runs in both directions, client and server. At the client
side, the objects represent the history of the user’s input while at the server side the
objects represent the responses in terminal window.

Fig. 8.15 Simplified view of
SSH protocol [4]

AES + RSA AES + RSA

TCPTCP

Pseudo−terminal Pseudo−terminal

Application Terminal emulator

Server Client

8.4 Mobile Shell (Mosh) 247

The design goals of SSP are as follows:

1. It should ensure authentication and login through existing infrastructure, namely,
SSH.

2. It should not use any privileged code.
3. It should update the remote host to the sender’s current state as fast as possible.
4. It should allow a roaming client to change its IP, and the change should be trans-

parent to the client.
5. It should recover from the errors due to dropped or reordered packets.
6. It should ensure authenticity and confidentiality.

Since SSP does not have any privileged code, the key exchanges take place outside
the main SSP activities. The bootstrapping of the terminal session performed by
running a script under a privileged server. Login to a remote host is performed
through established means of a connection like SSH. The server program listens on
a higher order UDP port and provides a random shared encryption key. After this
the SSH connection is no longer needed, and can be stripped down. This approach
represents a smart way of leveraging existing infrastructure for a reliable and secure
authentication. After login becomes successful, and SSH connection has been teared
down, the client talks directly on the established UDP port.

As shown in Fig. 8.16, SSP basically works on object layers and runs on UDP.
The server side exports an object called screen. This object has the contents of the
terminal display from application running at the server. The client side, on the other
hand, exports the object called key strokes which is a verbatim transcript of the key
strokes made by the user of the client.

Datagram layer maintains roaming connectivity. The payload received from
the transport layer is appended with an incrementing sequence number, and then
encrypted by the datagram layer before being sent it as a UPD datagram. The

Pseudo−terminal

Mosh terminal emulator

Application

KeystrokesScreen

SSP

AES−OCB

UDP

sender receiver

Pseudo−terminal

SSP

AES−OCB

UDP

sender receiver

predictive
local echo

Keystrokes Screen

Terminal emulator

Server Mosh Client

Fig. 8.16 Design of Mosh protocol [4]

248 8 Mobile OS and Application Protocols

datagram layer is also responsible for maintaining the round trip time estimate of the
link and the user’s public IP address.

8.4.2.1 Authentication and Privacy

Mosh encryption mechanism is designed on the top of AES-128 [35] in Offset Code
Book (OCB) mode [36]. OCB integrates message authentication with block cipher
encryption. Therefore, it provides both privacy and authenticity through only a single
key. Repeated and reordered packets are handled by diff operator. Every datagram
represents a diff between a numbered source state and a numbered target state. No
replay cache or history state needs to be maintained.

8.4.2.2 Mobility

The server comes to know about client’s roaming by naming connection independent
of network. The connection which is traditionally known by IP and port numbers, now
mapped to a sequence number protected by encryption. When the server receives an
authenticated packet from the client with a higher sequence number, it stores client’s
IP and UDP port numbers from the received datagram. So knowing about client’s
roaming becomes simple and automatically maintained. The approach appears bit
of a reversal of SSH where application writes into a TCP socket and oblivious to
network conditions. However, SSP forces the application to be aware of the network
conditions and the alerts. SSP is responsible for the rest of the synchronization for
maintaining the connection.

8.4.2.3 Speculative Local Echo

Another major function of datagram layer is speculative local echo. The client side
terminal emulator makes a prediction on the effect of keystrokes made by the user
and later verifies the same against authorative screen sent by the server. The user’s
keystrokes in most of the Unix applications are echoed at the current cursor location.
So, it is possible to approximate the response from the remote application.

Transport layer synchronizes the states of the local and the remote hosts. The
transport sender updates the receiver to the current state by sending three things,
namely, the state of the sender, the state of the receiver and the binary difference
between two states. The difference is logical difference, and the exact details are
computed from the object type and object implementation and do not depend on
SSP. For instance, the user’s input depend on every keystroke whereas the difference
in screen states is defined by creating a minimal message that changes the client’s
screen to the server’s current screen.

8.4 Mobile Shell (Mosh) 249

8.4.2.4 Update Frame Rate

As SSP does not need to send every octet it receives from the remote host, the frame
rate can be controlled to suite the conditions of the network. The minimal interval
between frames is set to half the RTT estimate. So, just one instruction will ever
be in transit from the client to the remote host. The maximum frame rate is fixed at
50 Hz which roughly matches the limit of human perception. This frame rate also
saves unnecessary traffic on low-latency links.

The transport sender uses delayed acks to reduce the volume of the packets. A
delay of 100 ms was found to be sufficient to piggyback a delayed ack on the host
data. The server also takes a pause since the time its object is modified before sending
off an instruction. This is a clever way of avoiding sending of partial updates in quick
successions. A collection interval of 8 ms was recommended as optimal on the basis
of some application traces.

SSP also sends heartbeats, so that the server gets fast updates on the change in
client’s IP. Additionally, it helps the client terminal to warn the user when there
was no recent response from the server. An interval of 3 s was used for sending a
heartbeat. It reduces unnecessary traffic due to heartbeats but at the same time found
to be sufficient for handling IP roaming.

8.4.3 Design Considerations of Terminal Emulator

Terminal emulator has to be redesigned suitably in order to comply with the require-
ments of the SSP’s object interface. The client’s keystrokes are sent to the server and
applied on the server side emulator. The authoritative state is maintained by the server
side terminal and SSP synchronizes this back to the client. The client speculates the
effects of keystrokes, and in most cases applies them immediately. The client learns
about the success of its predictions when receives the authoritative state from the
server. This observation allows it to raise its confidence level in deciding whether to
display the predictions on the client terminal. In case of high latency connection, the
predictions are underlined to ensure that user is not misled about the result. As and
when the server’s responses arrive the underlined text disappears gradually. If there
are mistakes in predictions, they are removed within one RTT time. This approach
of predictive display works because most Unix applications either echo the user’s
keystroke at the current cursor location or wait for the response from the application.
In fact, the choice is between display of keystrokes or to wait for the octet streams
to arrive from the server. In high latency networks, clearly the choice for speculative
echo boosts interactiveness and distinguishes it from one with packet losses. The
predictions are not made immediately, the strategy used is to predict when the user
hits a key but not to display it immediately. The predictions are grouped together in
form of an epoch, and displayed together. So either all predictions for an epoch are
correct or incorrect. The predictions are made in the background. If one prediction is

250 8 Mobile OS and Application Protocols

confirmed by the server then all predictions for the epoch are displayed immediately
to the user.

The prediction of echo and its display needs assistance from the server side.
In order the display to function correctly, the Mosh client should be able to get a
confirmation on its prediction from the server. The initial attempt was to determine
whether the predicted echo was displayed on the screen by the time Mosh server
has acknowledged the keystroke. This strategy was not satisfactory, because some
applications could take a long time to respond after the input was presented to them.
So, the server’s acknowledgement for a keystroke may arrive before echo is present
in the screen state. This leads the client to conclude that the prediction is wrong even
if the response from application was correctly predicted. It produces flickers on the
screen as the echo is initially displayed, then removed, and when the response arrives
from the server, it is displayed again.

One solution to remove flickers was to use a timeout on the client side. A prediction
can be considered as correct until a certain timeout occurs or the server’s response
arrives. However, due to network jitters the acknowledgement from the server may
arrive well after the timeout. Using a long timeout interval does not make sense as
there is a possibility that the incorrect prediction would stay on for a long time.

The solution that works out well is to implement a server side timeout. This
timeout is fixed at 50 ms. This value is arrived at on the consideration that the timeout
interval should be fast enough to detect a mis-prediction and at the same time should
be sufficiently long for a response to arrive from a reasonably loaded server. So, the
client is associated with a terminal object. It contains an echo ack field that represents
the latest keystroke given as input to the application for at least 50 ms, and the effect
of the keystroke should appear on the current screen. This ensures that client does
not timeout on its own. So network jitters cannot affect the client ability to predict
echos correctly. The down side is that the server keeps sending an extra packet every
50 ms to send an echo ack after a keystroke.

8.4.4 Evaluation of Mosh

As the paper indicates [4], the Mosh was evaluated by using traces from 40 h of real-
world usage by six users who contributed about 10,000 keystrokes together. The plot
reproduced from original paper shown in Fig. 8.17 indicates that 70% of the time
Mosh was confident in prediction and the responses were almost instantaneous. A
major portion of the remaining 30% keystrokes where Mosh predictions failed were
for navigations such as north, south east or west of an application screen such as the
mail client. So latency distribution in these cases are as comparable as SSH. When
Mosh prediction was erroneous, it was able to correct the keystrokes within RTT time
for 0.9% of keystrokes. The errors were found to occur due to word wrap, i.e., for
the characters which were printed near the end of a line moved to the next line at an
unpredictable time. Overall Mosh response latency was less than 5 ms compared to
503 ms for SSH. Mosh is available for download from http://www.mit.edu. Elaborate

http://www.mit.edu

8.4 Mobile Shell (Mosh) 251

Fig. 8.17 Comparative evaluation: SSH versus Mosh [4]

installation instructions for all flavors of Linux environments, Android app for client
terminal and also Chrome add-on are available for Mosh terminal.

8.5 Wireless Application Protocol

Wireless Application Protocol (WAP) [37] defines a set of standards for developing
mobile services over wireless networks. The necessity of defining protocol standards
for mobile services arose due to the facts that

1. Internet protocols are neither designed to operate efficiently over mobile networks
nor optimized for low resources, and

2. Small factor of mobile devices. For example, it is not possible to fully display
desktop versions of web sites.

At first we need to understand why a new protocol such as WAP is necessary at
all when HTTP (Hyper Text Transfer Protocol) together with HTML have been used
so successfully for web services over wired networks.

8.5.1 Performance Bottleneck Faced by HTTP

HTTP defines the information exchange standards over world wide web [38]. It sup-
ports information flow between a web browser (HTTP client) and a web server
(HTTP server). It is a stateless, request-response type of protocol designed for

252 8 Mobile OS and Application Protocols

networks with high bandwidth and long latencies. Though HTTP is independent of
transport protocol, a TCP connection is implicitly assumed for lossless information
exchange.

Being dependent on the establishment of a TCP connection, HTTP suffers all
TCP related performance inadequacies. Some of the notable reasons for performance
degradation due to TCP are:

• For establishing a TCP connection a three way handshake is necessary.
• The lower bound of transaction time for a client’s HTTP request to reach the

webserver is at least two RTTs.
• The default size of a TCP segment is 536B for remote connection though TCP

can negotiate for a maximum segment size of 1460B. So TCP breaks the output
stream into smaller chunks before sending.

• The performance of HTTP is also affected due to TCP slow start mechanism.

Apart from the TCP related performance bottleneck, there are other problems with
HTTP such as:

• It uses long protocol headers, transmits the contents in uncompressed form, and
employs primitive caching mechanism.

• It expects two communicating ends to speak HTML [39] language.
• Though multiple HTTP requests can be made over a single TCP connection, each

object request has to be a separate transaction. This implies that every request has
to make a separate trip.

HTML is basically a description language for passing the data through HTTP. HTML
assumes high resolution, high color displays, existence of mouse and hard disk.
Typically, the web page designers ignore capabilities of end system, they only focus
on optimizing the design of the webpage. In summary, HTTP is designed for networks
with high bandwidth and long latencies.

The overall picture of Internet communication model over HTTP is illustrated by
Fig. 8.18.

HTML/
Java Scripts

Web browser Web server

IP stack IP stack

programs
CGI scripts,

HTTP request

HTTP response

Client Server

Fig. 8.18 World wide web communication model

8.5 Wireless Application Protocol 253

Encoders &
Decoders

CGI scripts,
programs,

etc.

Contents

WAP Gateway Web Server

req. (URL)

resp. (cont.)

WAE micro
browser

Encoded
request

Encoded
response

Client

Fig. 8.19 WAP programming model

Cellular service providers anticipated enormous scope for business reach that
could lead to effective globalization by having real time interactive services related
to travel, banking, finance, weather, stock trading, etc. However, cellular service
providers quickly realized that in view of the limitations of HTTP/HTML mentioned
above, the existing web infrastructure has to be re-engineered for defining a new
communication standard over cellular network. This led to Ericsson, Motorola, Nokia
and others to form a consortium for working on a standard which will enable mobile
application developers to build interactive applications with enhanced interactive
value added services that provide near real-time responses.

As shown in Fig. 8.19, WAP programming model consists of three main compo-
nents: the client, the WAP gateway and the web server. The important elements of
WAP programming model are:

1. WAP device: It is basically a wireless enabled, portable client device such as a
smart phone, or a PDA.

2. WAP client: An entity which receives the web contents from the WAP gateway.
3. WAP content/application server: An entity where information or web/WAP appli-

cation resides.
4. WAP gateway: Also known as WAP proxy. It acts both as a client and a server

and performs translation of WAP protocol stack to WWW protocol stack. It also
has content encoder/decoder.

The client’s micro-browser uses web server contents accessible over the network. In
a wired network, a HTTP GET request is made by the client to the web server. The
content of the URL in the form of a HTML page sent as a HTTP response to the client.
However, services created through HTML page are not only excessively resource
intensive but also too heavy for mobile devices, considering display limitation of
small screens. Compute-intensive services carrying redundant information should
be optimized for their accessibility on mobile devices. WML (Wireless Markup
Language) standards [40] were developed precisely for this. Typically WML pages

254 8 Mobile OS and Application Protocols

are encoded in binary in order to reduce the amount of data transmission over a
wireless interface. WAP architecture provisions a WAP gateway for such encoding
of the WML pages. The gateway machine acts as a mediator between wired and
wireless network domains by helping in protocol conversion and data formatting. A
WAP gateway performs following four important tasks as indicated by Algorithm 2.
The HTTP request, created by the WAP gateway at line 1, is processed for the URL
by an appropriate web server which delivers either a static WML file or processes a
CGI script to return a dynamically created WML file. The WML file is wrapped by
a HTTP header and sent back to the WAP gateway. The received WML is compiled
in binary format at line 5, before being sent back as a response to the request of the
mobile phone at line 6. The phone’s micro-browser processes the WML file received
from the WAP gateway to display the contents on the screen.

Algorithm 2: Actions of WAP gateway

begin
// Request is binary encoded

1 receive a WAP-request from a mobile device;
2 translates WAP-request into a HTTP form for URL;
3 sends HTTP-request;
4 await for a WML response from an web server;
5 compile and encode received-WML in binary format;
6 send encoded WML response back to mobile;
end

8.5.2 WAP Protocol Stack

The protocol stack for WAP is shown in Fig. 8.20. It consists of several components
which include wireless application environment (WAE), session (WSP) and trans-

TCP/UDP

TSL−SSL

HTTP

HTML
Java scriptApplication Layer (WAE)

Session Layer (WSP)

Transaction Layer (WTP)

Security Layer (WTLS)

Transport Layer (WDP)

additional services

and applications

Internet stackBearers (GSM/GPRS, UMTS, CDMA, CDPD, ...)

Fig. 8.20 WAP protocol stack

8.5 Wireless Application Protocol 255

action support (WTP), security (WTL) and data (WDP). At the bottom of the WAP
stack, WDP sits on a number of wireless service bearers such as GSM, SMS, CDMA,
HSCD, CDPD, HSCD, etc. With respect to OSI reference model, WAE is analogous
to Application Layer. WSP, WTP, WTL, and WDP have responsibilities comparable
to corresponding layers of OSI reference model as illustrated by Fig. 8.20.

8.5.2.1 Wireless Application Environment

WAE provides environment for a mobile client to interact with web applications
through a micro-browser. So the basic elements of WAE are as follows:

• Specification for a micro-browser that controls the user’s interface and is able to
interpret both WML and WML script.

• Content generators applications, written in WML script, which produces the con-
tent formats in response to a specific micro-browser requests.

• Content encoders, such as wireless bitmap, which allow the micro-browser to
support color, images, audio, video, phone book, animation, etc.

• Wireless telephony application (WTAI) is basically a collection of extensions for
call and feature control mechanisms.

Micro-browser acts as the user agent, and initiates the requests for contents. Apart
from the requested contents, additional contents can be generated depending on
the capabilities of the mobile device. The device capabilities are inferred from the
user agent based on standard negotiation mechanism. This negotiation is performed
through WSP mechanism. Three important characteristics exchanged during the
negotiation are: versions of WML, WML-script supported, support for image format,
and floating-point.

Wirelss Markup Language:

WML is an XML based markup language, designed specifically for wireless handheld
devices, optimized for small screens and limited memory capacity. A WML document
is called a deck and a WML page is called a card which is a separate viewable
entity and the basic unit of navigation like an HTML page. Sometimes, people try
to compare WML entities to HTML entities. But there are a few difference. Each
viewable HTML page is represented by a separate HTML file. But a WML deck is
represented by a URL address like an HTML page. WML files are stored as static text
files on a web server. These files are encoded in binary format by the WAP gateway for
onward transmission to a browser by the wireless connection. HTML page undergo
no such transformation when transmitted to client. WML browser reads an entire
deck of cards at a time. So, while navigating between the cards, the browser does not
need any interaction with the web server. This structure is organized by keeping in
mind that typically phone users quickly flip through cards before viewing a specific
card of their interest. While creating code for a card, WML developer should be
aware of the screen boundaries of a phone display. One of the important problem
that one has to worry about is that there are many WAP devices of varying screen

256 8 Mobile OS and Application Protocols

<p>Paragraph</p>

...

<p>Paragraph</p>

<wml>

<card id=first_card title="first">

</card>

<wml>

and hypertext links
Text, image, forms

<!DOCTYPE wml PUBLIC
 "−//WAPFORUM//DTD WML 1.2//EN"
 "http://www.wapforum.org/DTD/wml12.dtd">

<?xml version="1.0"?>

Fig. 8.21 Structure of a WML deck

sizes. Therefore, WML card size needs to be tested at least on a set of few important
phones. On the other hand, an HTML developer does not have to worry about screen
boundaries, as static devices have sufficiently large screens.

The structure of a WML document or deck is shown in Fig. 8.21. First two lines
declare that the document is an XML document and its document type definition
(DTD) [41] with its URL. The first line specifies the version number of XML being
used. A deck can have many cards, the figure shows only one card. The structure
of other cards will be similar. The card may have links to other WML documents,
images, and media files. Figure 8.22 illustrates an example of a WML document.
Figure 8.22(a) gives the WML file for the page which is displayed in Fig. 8.22(b).

WMLScript:

As explained earlier, WML was created to provide web service accessibility sim-
ilar to HTML on mobile devices in a resource optimized manner. Dynamic code
cannot be written using WML. WMLScript, developed precisely for this purpose, is
based on ECMAScript which is a standardized version of JavaScript [42]. However,
WMLScripts are not embedded within WML pages, WML pages contains URL links
for WMLScripts. So, the WMLScript code is placed in a file separate from WML.
The scripts are compiled at the server into byte code before being sent back to clients.
They serve the following important functions:

1. Validation of the user’s inputs.
2. Accessing functionalities of a user agent.
3. Generation of messages and dialog boxes for alerts, errors.

8.5 Wireless Application Protocol 257

(a)

(b)

Fig. 8.22 Example of a WML deck

4. Seeking confirmation from the user for execution of certain actions. It basically
saves a round trip time and bandwidth for giving a response.

5. Extension of WAP devices for accessing device or vendor specific APIs.
6. Addition of conditional logic by downloading procedural logic as required.

Many useful functions are available in standard WMLScript library. The details about
using WMLScript library is beyond the scope of this book. However, for the sake of
completeness, we just include a small example in Fig. 8.23.

258 8 Mobile OS and Application Protocols

(a)

(b)

Fig. 8.23 An equivalent WMLScript for a WML deck

8.5.2.2 Wireless Session Protocol

WSP (Wireless Session Protocol) provides connection based services to the appli-
cation layer. It creates an active session between the client and the WAP gateway in
order to facilitate the content transfers. WSP also enables thin mobile clients to oper-
ate efficiently over low bandwidth cellular and wireless communication networks.
WSP browsing application is based on HTTP 1.1 standards [38] with some additional
features such as mobility of client terminal, binary encoding, push data functional-
ity, service parameter negotiation, session suspend and resume. WSP supports both
WDP and WTP. WDP (Wire Datagram Protocol) is a connectionless datagram ser-
vice, whereas WTP (Wireless Transaction Protocol) is a connection oriented service
defined on the top WDP.

8.5.2.3 Wireless Transaction Protocol

WTP operates on the top of unreliable datagram service. Therefore, WTP is built as a
transaction or request-response model well suited for the requests for web contents.
WTP cannot handle streams. So, TCP based streaming applications such as telnet or
SSH cannot be carried over WTP. However, WTP provides reliability on the top of
unreliable WDP.

8.5 Wireless Application Protocol 259

8.5.2.4 Wireless Transport Layer Security

The most important security weakness in WAP can be attributed to use of the WAP
gateway. WAP Transport Layer Security (WTLS) used between the WAP gateway
and the device. WAP does not specify any security infrastructure for exchanges
between a WAP gateway and a web server. After information has been delivered at
the WAP gateway, it flows in clear text unless a SSL session is established between
the WAP gateway and the web server. Even if SSL/TSL is used, the WAP gateway
has access to unencrypted data for a brief period of time before it flows out to the web
server. So it is the responsibility of the gateway vendors to ensure that no unencrypted
data gets stored into the disk, and the memory used by decryption and encryption
processes are cleared before the same is handed over to the OS of the machine. WAP
gateway should prevent OS from swapping in or swapping out member pages. WAP
standards have no explicit specification for the trust that is expected to exist between
the mobile device user and the WAP gateway. So, for any sensitive data such as
electronic banking transactions, a bank should not rely on a client’s default WAP
gateway [43].

WTLS security protocol operates above transport layer and is based on TLS.
TLS, built over Secure Socket Layer (SSL) which is a widely used security protocol
for the Internet applications such as email, online payment systems, etc. WTLS’s
responsibilities are to ensures data integrity, data confidentiality, authentication and
protection against DoS (Denial of Services) attacks. However, the responsibility of
WTLS ceases once the communication reaches WAP gateway where wireless net-
work terminates. In a wired environment, a web client and a web server communicate
directly. Therefore, end-to-end security could be ensured by SSL session. Over wire-
less when transaction is made on a mobile phone (client), WTLS first establishes a
session between a WAP gateway (server). The security parameters such as encryp-
tion protocols, public keys, and other associated long term security associations are
negotiated during this handshaking phase. There is also a lightweight handshaking
phase where security parameters are not negotiated but these are borrowed from
another session. After the session has been established, all communication between
client and server are encrypted accordingly. It is possible for a session to last for
few days. However, allowing a session to continue for long increases probabilities
of attack. So, WTLS allows keys to be also renegotiated during a session. Though
WTLS allows use of certificates, it demands storage at mobile nodes and incurs cost
for transmission over the wireless interface.

WAP also provisions for a tamper-proof device called Wireless Identity Module
(WIM). WIM is an WAP equivalent of SIM in GSM. It provides private and public
keys to perform digital signature and verification of security certificates.

8.5.2.5 Wireless Datagram Protocol

WDP (Wireless Datagram Protocol) is the basic elements of the WAP transport layer.
It specifies how the existing data transport services should be used to deliver data to

260 8 Mobile OS and Application Protocols

the upper layers. WDP is an adaptive datagram service, and supports different bearer
services. For example, if IP bearer is used then WDP protocol adapts UDP, while for
SMS bearer it specifies mandatory use of source and destination port numbers. All
the details are hidden from the upper layer which see WDP as the only consistent
vehicle for data transport. Therefore, WTLS can operate in a consistent manner over
WDP.

References

1. C.E. Perkins, in Mobile IP Design Principles and Practice (Pearson Education, 1998)
2. J. Postel, Transmission control protocol, https://tools.ietf.org/html/rfc793. September 1981

(RFC 793)
3. T. Ylonen, C. Lonvick, The secure shell (SSH) connection protocol, https://tools.ietf.org/html/

rfc4254. January 2006 (RFC-4254)
4. K. Winstein, H. Balakrishnan, Mosh: an interactive remote shell for mobile clients, in 2012

USENIX Annual Technical Conference (Sunny Boston, Mass., USA) pp. 171–182, 13–15 June
2012

5. O.M. Alliance, Wireless application protocol architecture specification, http://technical.
openmobilealliance.org/affiliates/wap/wap-210-waparch-20010712-a.pdf. 12 July 2001

6. The Statista Portal. Number of smartphone users worldwide from 2014 to 2020 (in bil-
lions), https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
Accessed 27 Dec 2016

7. G. Martin, H. Chang, System-on-chip design, in ASICON 2001, 4th International Conference
on ASIC Proceedings (2001), pp. 12–17

8. F. Engel, I. Kuz, S.M. Petters, S. Ruocco, Operating systems on SOCS: a good idea? in 25th
IEEE International Real-Time Systems Symposium (RTSS 2004), pp. 5–8

9. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, D. Estrin, Diversity in
smartphone usage, in Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services (ACM, 2010), pp. 179–194

10. C. Shin, J.-H. Hong, A.K. Dey, Understanding and prediction of mobile application usage for
smart phones. in Proceedings of the 2012 ACM Conference on Ubiquitous Computing (ACM,
2012), pp. 173–182

11. T.M.T. Do, J. Blom, D. Gatica-Perez, Smartphone usage in the wild: a large-scale analysis of
applications and context, in Proceedings of the 13th International Conference on Multimodal
Interfaces (ACM, 2011), pp. 353–360

12. A. Rahmati, L. Zhong, Studying smartphone usage: lessons from a four-month field study.
IEEE Trans. Mob. Comput. 12(7), 1417–1427 (2013)

13. The eLinux Community Portal. Android kernel features (2015), http://elinux.org/Android_
Kernel_Features. Accessed 28 Dec 2016

14. F. Maker, Y.-H. Chan, A survey on android vs. linux. Technical report, University of California,
2009

15. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh, On the effectiveness of
address-space randomization, in Proceedings of the 11th ACM Conference on Computer and
Communications Security (ACM, 2004), pp. 298–307

16. H. Bojinov, D. Boneh, R. Cannings, I. Malchev, Address space randomization for mobile
devices, in Proceedings of the Fourth ACM Conference on Wireless Network Security (ACM,
2011), WiSec’11, pp. 127–138

17. H. Lockheimer, Android and security, google mobile blog (2012), http://googlemobile.
blogspot.fr/2012/02/android-and-security.html. Accessed 27 Dec 2016

18. Neal Leavitt, Mobile phones: the next frontier for hackers? IEEE Comput. 38(4), 20–23 (2005)

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc4254
https://tools.ietf.org/html/rfc4254
http://technical.openmobilealliance.org/affiliates/wap/wap-210-waparch-20010712-a.pdf
http://technical.openmobilealliance.org/affiliates/wap/wap-210-waparch-20010712-a.pdf
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://elinux.org/Android_Kernel_Features
http://elinux.org/Android_Kernel_Features
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://googlemobile.blogspot.fr/2012/02/android-and-security.html

References 261

19. B. Morris, in The Symbian OS Architecture Sourcebook: Design and Solution of a Mobile
Phone OS (John Wiley & Sons, 2007)

20. Community Editors, Android version history (2016), https://en.wikipedia.org/wiki/Android_
version_history. Accessed 28 Dec 2016

21. I. Lunden, Nokia confirms the pureview was officially the last symbian phone, https://
techcrunch.com/2013/01/24/nokia-confirms-the-pure-view-was-officially-the-last-symbian-
phone/. January 2013. Accessed 27 Dec 2016

22. The Statista Portal. Global mobile OS market share in sales to end users from 1st quarter 2009
to 1st quarter 2016 (2016), https://www.statista.com/statistics/266136/global-market-share-
held-by-smartphone-operating-systems/. Accessed 27 Dec 2016

23. I. Dalmasso, S.K. Datta, C. Bonnet, N. Nikaein, Survey, comparison and evaluation of cross
platform mobile application development tools, in 9th International Wireless Communications
and Mobile Computing Conference (IWCMC) (IEEE, 2013), pp. 323–328

24. The Rohmobile Community Portal. Rohmobile suite documentation, http://docs.rhomobile.
com/en/5.4/home. Accessed 28 Dec 2016

25. The Wikipedia Community Portal. Appcelerator titanium, https://en.wikipedia.org/wiki/
Appcelerator_Titanium. Accessed 28 Dec 2016

26. The Wikipedia Community Portal. Apache cordova, https://en.wikipedia.org/wiki/Apache_
Cordova. Accessed 28 Dec 2016

27. R. Droms. Dynamic host configuration protocol (1997), https://tools.ietf.org/html/rfc2131
(RFC 2131)

28. S. Deering (ed.), The author team of RFC-1256. ICMP router discovery messages, http://www.
ietf.org/rfc/rfc1256.txt. September 1991 (RFC-1256)

29. C. Perkins, Minimal encapsulation within IP, http://tools.ietf.org/html/rfc2004. October 1996
(RFC-2004)

30. V. Jacobson. Compressing TCP/IP headers for low-speed serial links, https://tools.ietf.org/
html/rfc1144. February 1990 (RFC-1144)

31. W. Simpson, IP in IP tunneling (1995), https://tools.ietf.org/html/rfc1853 (RFC 1853)
32. C. Perkins, IP encapsulation within IP (1996), http://tools.ietf.org/html/rfc2003 (RFC-2003)
33. G.E. Montenegro, Reverse tunneling for mobile IP, revised (2001), https://tools.ietf.org/html/

rfc3024 (RFC 3024)
34. G. Bhaskara, A. Helmy, TCP over micro mobility protocols: a systematic ripple effect analysis,

in IEEE 60th Vehicular Technology Conference, VTC2004-Fall, vol. 5 (IEEE, 2004), pp. 3095–
3099

35. T. Krovetz, P. Rogaway,The software performance of authenticated-encryption modes, in The
18th International Conference on Fast Software Encryption, 2011 (FSE 2011), pp. 306–327

36. Ted Krovetz and Phillip Rogaway. The OCB authenticated-encryption algorithm (2014), https://
tools.ietf.org/html/rfc7253

37. O.M. Alliance, Technical_wap2_0_20021106 (2002), http://technical.openmobilealliance.org/
Technical/technical-information/material-from-affiliates/wap-forum#previous

38. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, Hypertext
transfer protocol-HTTP/1.1, https://www.ietf.org/rfc/rfc2616.txt. June 1999 (RFC-2616)

39. Tim Berners-Lee and Team of Contributors of HTML. Html living standard (2016), https://
whatwg.org/pdf

40. Wireless Application Protocol Forum. Wireless application protocol wireless markup lan-
guage specification (2000), http://technical.openmobilealliance.org/tech/affiliates/wap/wap-
238-wml-20010911-a.pdf (Version 1.3)

41. World Wide Web Consortium et al., Html 4.01 specification (1999)
42. A. Rauschmayer, in Speaking JavaScript: An In-depth Guide for Progammers (O’Reilly, 2014)
43. D. Singelée, B. Preneel, The wireless application protocol (WAP). Cosic Internet Report (2003)

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history
https://techcrunch.com/2013/01/24/nokia-confirms-the-pure-view-was-officially-the-last-symbian-phone/
https://techcrunch.com/2013/01/24/nokia-confirms-the-pure-view-was-officially-the-last-symbian-phone/
https://techcrunch.com/2013/01/24/nokia-confirms-the-pure-view-was-officially-the-last-symbian-phone/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://docs.rhomobile.com/en/5.4/home
http://docs.rhomobile.com/en/5.4/home
https://en.wikipedia.org/wiki/Appcelerator_Titanium
https://en.wikipedia.org/wiki/Appcelerator_Titanium
https://en.wikipedia.org/wiki/Apache_Cordova
https://en.wikipedia.org/wiki/Apache_Cordova
https://tools.ietf.org/html/rfc2131
http://www.ietf.org/rfc/rfc1256.txt
http://www.ietf.org/rfc/rfc1256.txt
http://tools.ietf.org/html/rfc2004
https://tools.ietf.org/html/rfc1144
https://tools.ietf.org/html/rfc1144
https://tools.ietf.org/html/rfc1853
http://tools.ietf.org/html/rfc2003
https://tools.ietf.org/html/rfc3024
https://tools.ietf.org/html/rfc3024
https://tools.ietf.org/html/rfc7253
https://tools.ietf.org/html/rfc7253
http://technical.openmobilealliance.org/Technical/technical-information/material-from-affiliates/wap-forum#previous
http://technical.openmobilealliance.org/Technical/technical-information/material-from-affiliates/wap-forum#previous
https://www.ietf.org/rfc/rfc2616.txt
https://whatwg.org/pdf
https://whatwg.org/pdf
http://technical.openmobilealliance.org/tech/affiliates/wap/wap-238-wml-20010911-a.pdf
http://technical.openmobilealliance.org/tech/affiliates/wap/wap-238-wml-20010911-a.pdf

Part II
Mobile Data Management

Part II of the book deals withMobile DataManagement. It consists of eight chapters.
Therewas a slight dilemma in decidingwhether the contents of Chap. 9 can be strictly
classified as under mobile data management issues. Apart from sensor fusion, Chap.
9 deals with two network related issues inWSNs namely, routing and integrationwith
IP. We justify the decision to classify this chapter under mobile data management
due to following reasons:

• Sensor nodes unlike IP based nodes are data centric.
• Many existing deployments of WSNs interoperate with IP network through spe-
cialized sensor gateways which require middlewares for IP integration.

• Sensor fusion techniques fall strictly in realm of data management issues.

Chapter 10dealswith locationmanagement issues. It addresses both terminal andper-
sonal mobilities. Tracking personal mobility is modeled through a random process
quantifiable in terms of infromation entropy. Tracking terminal mobility requires
support of a location database. The focus here is primarily on how location database
should be organized to optimize tracking. In Chap. 11 of the book, the issues related
to design of algorithms in mobile distributed environment have been discussed. We
examine some generic issues like relocation of computation, synchronization and
coordination in the context of general strategies for design of algorithms for MDS
environment specially with a view to optimize messages over wireless channels. In
Chap. 12, our focus is on data dissemination in a mobile distributed environment.
The basic idea discussed here is to treat the medium of air as a storage medium.
By provisioning for caching at both client and server sides, a multi level memory
hierarchy is defined for push based data delivery systems. Chapter 13 is concerned
with mixing of index information with broadcast data. It explains clever mapping
of conventional indexing into strictly a sequential medium. Through partial replica-
tion of indexing information with data it is possible to perform random access on
a sequential medium like air. Chapter 14 is concerned with caching and replication
issues in mobile environments. It considers mobility of end nodes and new applica-
tion semantics in use of caching and replication strategies in mobile environment.
Chapter 15 deals with mechansims for sharing of data in mobile distributed systems.
Three different mechanisms, namely, distribute objects, replicated storage system,
and file system have been described. But the main focus of the chapter is on CODA

264 Mobile Data Management

file systems, as it addresses a range of network outages typically experienced by a
mobile node due to intermittent network connectivity. Chapter 16 deals with the role
context aware computing in building smart environments. We do not confine our-
selves specifically to any smart environment. Our idea is to make the reader aware
of the issues around building smart environment.

Chapter 9
Data Centric Routing, Interoperability
and Fusion in WSN

9.1 Introduction

Wireless sensor networks (WSNs) are mostly used for sensing and gathering data
from environment on a continuous basis. The gathered data may pertain to various
events related to monitoring and controlling applications such as:

• Environmental conditions,
• Vital parameters of patients,
• Movement and migration of habitats.
• Pest attacks on crops,
• Radiation levels in nuclear plant,
• Deep sea navigation,
• Seismic activities,
• Electronic surveillance, etc.

Accurate detection of specific events and monitoring of the events for the intervals
of occurrences could be critical to implementation of certain functionalities of smart
devices (smart phone, house hold appliances, or IoTs [1]). Furthermore, in response
to these events, the behaviors of “things” or the devices must change in expected
ways. The actuation of a specific behavior in a device is made possible through two
important preparatory stages related to gathering of actuation data:

1. Dissemination of queries to sensors.
2. Collection of observed data from sensor nodes.

There are also passive monitoring applications, where the query dissemination is
unimportant. Data collected through passive monitoring generally are collated by
human experts and the actuation process is set in motion on the basis of a decision
support system used by the human experts. So, it makes sense to consider the above
two activities as parts of overall data gathering process using WSNs. Many sensors
may report similar observations when they are in close proximity. The flow of redun-
dant data generates unnecessary network traffic and affects performance. A smart

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_9

265

266 9 Data Centric Routing, Interoperability and Fusion in WSN

approach would be to fuse the data in some way to reduce the network traffic, and
yet not lose any significant observation. As far as query dissemination is concerned,
one idea could be to spread a query from the data sinks assuming bi-directional links.
However, random spreading of queries may lead to congestion in WSN network due
to redundant traffic. On the other hand, unicasting queries to the targeted nodes is
not possible due to absence of node addressing mechanism for WSNs.

In Chap. 6, the focus was on ZigBee, 6LoWPAN and ZigBee IP protocols for low
power wireless communication. These network protocols define IPv6 based standards
for internetworking large number of sensors and connecting them to the Internet. Yet
most of the existing WSN deployments, do not support any addressing mechanism
for individual nodes. Any discussion on WSNs and their importance in realization
of IoTs and smart environments remains incomplete without an understanding of the
operational details concerning data gathering by WSNs. Therefore, in this chapter the
focus of our discussion will be on the following four interrelated issues concerning
data collection by WSNs:

1. Architecture of WSN.
2. Routing in WSN.
3. Integrating IP and WSN.
4. Data fusion in WSN.

9.2 Characteristics of WSN

Two of the most important technical limitations that distinguish the operations of
WSNs from other network of computing devices as explained earlier are:

1. Lack of IP based addressing mechanism.
2. Resource scarcity at nodes, particularly the stored energy.

A WSN is a data centric network unlike Mobile Ad hoc NETwork (MANET). It
is not possible to send a query to a specific sensor node. However, a query can
be disseminated to sensor nodes for reporting values of a attribute or a class of
attributes of the observed data. It is also possible to restrict dissemination of queries
to a selected bunch of sensor nodes in close proximity to a location, or a region.
Energy is a major resource bottleneck for continuous operation of WSN. Generally,
it is assumed that the power consumption is mainly due to the operations of the radio
interface [2–4]. Therefore, excessive attention has been placed in developing energy
aware communication protocols.

Power consumption due to sensing module of a sensor node is generally ignored.
However, emissions of toxic gases are measured in units of voltage levels. For accu-
racy in measurements, voltage levels are allowed to settle down for a while. Con-
sequently, the sensing modules may consume comparatively more energy than the
radio interfaces depending on the type of sensors being deployed. For example, NO2,
or VOC (Volatile Organic Compounds) sensors may at times can account for about

http://dx.doi.org/10.1007/978-981-10-3941-6_6

9.2 Characteristics of WSN 267

2/3rd of total energy consumption [5]. The application developers, therefore, have to
understand the specification of a sensor in order to develop efficient code for sensor
specific power control mechanisms. Kim et al. [5] developed an automated Power
Management System (PMS) on the top of RETOS [6] operating system for sensor
nodes . Following similar approaches, it may be possible to build PMS for many
other types of sensor nodes. However, the utility of PMS may become obsolete with
newer approaches based on the concept of energy packetization generally used in
smart grid [7, 8]. The approach combines the transfer of power units with the com-
munication from one source to another. So, the communication can still be carried
out even when the intermediate nodes are about to die out. Novel energy aware rout-
ing schemes based on energy distribution through packetization can be developed in
future for transmission of sensory data.

In summary, the following are some of the important characteristics of WSN
which we need to keep in mind while dealing with WSNs:

1. Highly distributed architecture of WSNs.
2. Nodes in a WSN operate autonomously with very little local coordination.
3. Nodes in a WSN do not have any global addressing mechanism like IP, the com-

munication is carried out in data centric mode.
4. Energy consumption is a major design consideration in operation of sensor nodes.

So, communication and data processing must be performed in energy efficient
manner.

5. Scalability of WSN depends on the density of the nodes per unit area.

9.2.1 WSN Versus MANET

An ad hoc network like a WSN is also a self organized wireless network of
autonomous nodes which depend on battery. But the similarity between the two
ends there. Sensor nodes are mostly static while the nodes in an ad hoc network
are mobile. An ad hoc network is address centric and each node has a global IP
address. Ad hoc nodes are represented by PDAs and handheld devices carried by the
users who happen to be human. In contrast, sensor nodes are not carried by people.
These nodes mostly are deployed in different environments some of which could be
inaccessible. The number of nodes in a sensor network is several orders higher in
magnitude than the number of nodes in a mobile ad hoc network. The sensors collect
data objects of all kinds, related to both animate and inanimate things belonging
to an environment. A node in ad hoc network in more powerful has more resources
compared any sensor node. The routing protocols for mobile ad hoc network function

268 9 Data Centric Routing, Interoperability and Fusion in WSN

Table 9.1 Ad hoc network versus sensor network

Property Ad hoc network Sensor network

Hardware Ad hoc nodes use the state of the art
processors, and have reasonably better
resources

Sensor nodes are cheap and have lower
computing and communication
capabilities

Deployment Deployment is sparse. Depends on the
number of active users in the area

Dense unattended deployment with
large number of nodes. Typically many
orders higher in magnitude than ad hoc
network

Topology Highly dynamic May vary due to the variation in
wireless signals but mostly static

Mobility Ad hoc nodes are mobile Sensor nodes are usually static unless
mounted on vehicles, or worn by living
beings

Routing Address centric, each node has an IP
address. Operate at IP layer

Data centric, operate at MAC layer

Energy Uses stored battery power, but battery
can be changed or recharged

Nodes operate in tighter power budget.
Being deployed in unattended
inaccessible places, battery change or
charging is usually impossible

QoS QoS is driven by the requirements to
minimize network traffic

QoS is driven by the requirements to
minimize energy

Applications Distributed computing Monitoring and data gathering

at network layer and require significant amount of resources whereas the routing in
WSN typically function at MAC layer. Table 9.1 summarizes the differences.

9.3 Architecture of WSN

Building of tiny devices such as a sensor node was possible due to advances in
Micro Electro-Mechanical Systems (MEMS) [9]. By inter-networking hundreds or
thousands of sensors, a WSN is created. To give a background, let us begin with
architecture of a sensor node.

At a very basic level, a sensor node as shown by the block diagram in Fig. 9.1
consists of three components:

1. A battery or power source,
2. A processor board with CPU, memory and sensing hardware,
3. A radio board with transceiver, which is connected by an antenna.

9.3 Architecture of WSN 269

Fig. 9.1 Components of a
sensor node

Power Unit
Power

Generator

Sensing Unit Processing
Unit

Location Finding System Transciever

As the figure illustrates, the processor board connects CPU with sensing h/w and
a small flash memory. There is a wireless transceiver which implements the physical
and MAC layers, and connected to a radio antenna. Sensor nodes runs one of the
many variants of OSes [10]. Among these, Tiny OS [11] and Contiki [12] are popular
among the implementers.

9.3.1 Communication Architecture

The protocol level details and the communication architecture of sensor node were
discussed earlier in Chap. 6 in context of ZigBee and 6LoWPAN. For the sake of com-
pleteness in discussion, we provide a logical view of communication architecture in
Fig. 9.2. The network layer located in sensor board is responsible for routing, topol-
ogy control, in-network data processing, data dissemination, storage and caching.

Fig. 9.2 Communication
architecture of sensor node

Applications

MAC layer

Physical layer

Network layer

serial link

Radio board

Sensor processor board

http://dx.doi.org/10.1007/978-981-10-3941-6_6

270 9 Data Centric Routing, Interoperability and Fusion in WSN

Fig. 9.3 Layered
organization of sensor node

4−hop
5−hop

3−hop

2−hop

1−hop

BS

6−hop

layer2

layer3

layer4

layer5

layer6

layer1

The MAC layer and the PHY layer are located on the radio board. The responsibilities
of PHY layer include radio communication, access to sensing hardware, controlling
actuation circuit, and signal processing hardware. The MAC layer is primarily respon-
sible for sleep and wake up scheduling, and channel access schemes.

9.3.2 Network Organization

WSN use two basic type of organizations for data communication.

1. Layering,
2. Clustering.

Mostly the nodes are homogeneous and assumed to have a fixed communication
range. Assume that sensor nodes are distributed in a rectangular region as shown in
Fig. 9.3 with the base station (BS) being located at the left bottom corner of rectangle.
In layering organization, the nodes 1-hop away from BS form layer-1, the nodes 2-hop
away form layer-2 and so on as indicated in the diagram. The problem of funneling
is quite common in a layered organization. It happens due to the fact that the nodes
closer to BS die out must faster compared to the nodes at the periphery of network.

Clustered organization was proposed primarily to eliminate funneling problem.
Figure 9.4 illustrates how clustered organization communicate data to the BS. Basi-
cally, each cluster head act as an intermediate data sink for the nearby nodes which
are referred to as regular nodes. A network may have about 5–10% nodes as cluster
heads depending on the requirements. Cluster heads may in turn form a layered orga-
nization. In practice, most of the cluster network topologies are two tiered, though it is
also possible to create complex hierarchical topologies. Cluster heads are responsible
for data aggregation of their respective clusters before data gets routed to BS.

9.4 Routing in Sensor Network 271

Fig. 9.4 Clustered
organization of sensor node

BS

CHn

CH2

CH1

9.4 Routing in Sensor Network

Let us first examine some of the basic characteristics of sensor networks which influ-
ence design of routing protocols. One of the important difference from IP networks
is addressing of the sensor nodes. Typically, hundreds and thousands of sensor nodes
form a WSN. The nodes have to establish connectivity irrespective of distribution of
nodes in the network. Most applications do not care about the node IDs from which
data is received but are interested only in observed data from certain locations.

Mostly the sensor nodes are static. As opposed to this in conventional IP networks,
the nodes may have slow discrete movements. In most cases, a sensor network is
deployed to serve only one specific application. Knowing geographic positions (lati-
tude, longitude) of a node is advantageous in some applications as the observed data
can be meaningfully associated with a specific geographical area. However, using
GPS hardware in a node is infeasible due to following reasons:

• GPS does not work indoors, it may not even work in dense jungle, construction
sites or deep canyons.

• GPS operation requires some power. Energy drain out occurs comparatively faster
when GPS hardware is integrated with a sensor node.

• Integrating GPS with sensor node also increases the cost of sensor nodes.

Therefore, localization (determining position) of nodes is performed through various
geometric and approximate method based on the idea of trilateration [13]. Trilater-
ation methods are not only compute-intensive but also error prone. Observed data
exhibit certain amount of locality. So, there may be a fair amount of redundancy in
data flowing into base station. Eliminating redundancy in data flow could extend the
life of the network. Considering the inherent characteristics of WSNs in mind, the
design of routing protocols

272 9 Data Centric Routing, Interoperability and Fusion in WSN

• Should not depend on any global addressing schemes like IP.
• Should balance energy levels of the nodes.
• Should be able to handle sudden failures of the nodes, and unpredictable changes

in topology.
• Should work without GPS or any precision positioning system.
• Should be power aware and minimize redundant information flow by applying

various data fusion techniques.

Lack of global addressing mechanism is not a big problem, as a WSN is more a
data centric than a node centric network. The information is requested based on the
attribute values. For example, suppose we have a deployment of sensors to measure
environmental temperature. Then the query may be of the form: “Is temperature is
above 50 ◦C?” Then, only those nodes which have measured value v > 50 should
report their measurements. The discovery and maintenance of routes in a WSN are
nontrivial problems. This is due to the fact that WSNs have to operate with low energy
budgets. Some nodes may die out quickly if network traffic is not uniformly shared
by all the nodes. Even without GPS, locations can be prestored in the nodes before
deployment, or locations can be estimated after the deployment by using trilateration
techniques. So, the position information of the nodes can be used to route the data
to the desired region rather than flooding into the whole network.

9.4.1 Classification of Routing Protocols

One of the excellent surveys on the routing protocols in sensor networks is made by
Al-Karaki and Kamal [14]. There are several ways to classify the routing protocols.
One classification scheme based on the network structure classifies the protocols into
three classes, namely,

1. Flat-network based routing.
2. Hierarchic-network based routing.
3. Location-based routing.

In a flat network structure, every node is equal in status, and perform the same set of
operations. In hierarchical network structure, the nodes have an implicit difference
in roles and perform operations according to their assigned roles. In location based
routing, the nodes exploit positional advantage to guide data to flow in and out of
the selected region in the network. Some routing protocols can adapt to the changing
network conditions such as topology change, change in energy level of nodes, etc.

Another way to classify routing protocols is based on the operation of protocols.
It defines five different types of protocols, namely,

1. Negotiation based routing.
2. Mutilate based routing.
3. Query based routing.
4. QoS based routing.

9.4 Routing in Sensor Network 273

5. Coherent based routing.

To give a flavor of various routing protocols, we plan to discuss only a few well
known protocols. The readers who are interested to explore more, may refer to the
original survey paper by Al-Karaki and Kamal [14].

9.5 Flat Network Based Routing

In this class of routing algorithm, every node has the same role, and they cooperate
together to distribute data over the entire network. Typically, in such networks, the
base station sends out queries for data either from a selected region or on the basis of
certain attributes and waits for the same to arrive. Each sensor having data matching
to a query responds. To facilitate the responses, each query should contain an accurate
description of the needed data. A number of data centric routing protocols exist in
literature. It is neither possible nor the focus of this book to discuss all the routing
protocols. A short summary of SPIN [15] is provided as it is one of the earliest work
in the area which focuses on energy saving issues.

SPIN (Sensor Protocol for Information via Negotiation) was proposed by Heinzel-
man et al. [15]. It belongs to a family of adaptive routing protocols. SPIN treats each
node as a potential base station or data sink. So, any node may be queried to obtain
all information about gathered data. Basically, the approach is to eliminate three
common problems noticed in most sensor routing protocols:

• Implosion: The nodes in classical routing algorithms work by flooding, i.e., sending
data to all the neighbors. It leads to the same data being received by a node multiple
number of times as shown in Fig. 9.5(a). Node E receives data item d multiple
number of times.

• Overlap: The data from the same overlap region arrives via different paths which
results in increases in network traffic and leads to the wastage of bandwidth, and
the energy. This problem is illustrated by Fig. 9.5(b). Node C receives overlapping
data d1 and d2 multiple number of times.

• Resource blindness: No node cuts down its activities, even if the energy level is low.
Since the nodes operate with pre-stored power resources, cutting down activities
of the nodes with low energy level helps to extend the overall network lifetime.

SPIN is based on two main ideas, namely

1. Negotiation, and
2. Resource-adaptation.

SPIN uses negotiation before sending data. It uses principle of locality to control
data dissemination. The underlying idea is that the nodes in same neighborhood
most likely have similar data. So, each node should only distribute those data which
other nodes do not have. A node on receiving new data broadcasts the meta data in the
form of advertisements (ADV messages) to the neighborhood in the first stage. Meta

274 9 Data Centric Routing, Interoperability and Fusion in WSN

Fig. 9.5 Implosion and
overlap problems

A

B C D

E

d

d d

dd

d

(a) Implosion.

A B

D

C

d1 d2

(b) Overlap.

data is a short synopsis of data which the node possesses. SPIN does not specify
the format of the meta data, the format is decided by the application developers.
However, the guiding principles for the creation of meta data are:

1. The meta data descriptors of distinguishable data are also distinguishable.
2. Likewise the meta data descriptors of the non-distinguishable data are also non-

distinguishable.

The nodes which receive ADV messages (meta data) check whether they have the
corresponding data. If not, then they send out request (REQ messages) for the adver-
tised data. On receiving REQ message, the advertising node sends DATA to the
requesting node. The same three stage process {ADV, REQ and DATA} of data dis-
semination repeated at a new node. This way the data propagates throughout the
whole network. Each node also has a resource manager to monitor its current level
of resources. Before processing or transmitting data, the application needs to check
resource level by querying the resource manager. Depending on energy threshold,
the node may reduce its participation in the protocol. A node may participate if it
can be sure of completing the three stage distribution process.

9.5 Flat Network Based Routing 275

Fig. 9.6 Funneling effect in
WSN

base station

9.5.1 Hierarchical Routing Protocols

Hierarchical routing protocols defines two separate roles for the sensor nodes, viz.,
cluster heads and regular nodes. The idea of having certain nodes to perform the
roles of cluster heads is mainly to eliminate funneling effect on nodes near the base
station (BS). Figure 9.6 illustrates funneling effect. It occurs due to the fact that in
multihop routings, energy drains out faster from the nodes near the BS than the nodes
at the periphery. Since, the drain out of energy is not evenly distributed among the
nodes, some of the nodes end up with shorter lifetime than the others. To mitigate the
funneling effect the concept of 2-tier routing was proposed [16]. The role of cluster
heads is assigned to nodes with higher energy levels. The nodes having lower energy
levels, perform sensing and send the observations to a cluster head in proximity.
A cluster head, typically, performs data aggregation/fusion. It reduces the number
of messages needed to transmit the data pertaining to observations made by a set of
sensors deployed in a region. Apart from mitigating funneling effect, the 2-tier routing
protocols also contribute to the overall efficiency, the scalability and extending the
lifetime of a network [14].

Low Energy Adaptive Cluster Hierarchy (LEACH) [16] is an example of two-
tier routing algorithm. It uses a randomized rotation approach to assign the roles
of cluster heads to the sensor nodes so that the battery of no particular sensor node
drains out faster than the others. LEACH also applies compression of data by fusion
technique to optimize the volume of data transmission from the cluster heads to the
base station.

The cluster heads are elected from among the regular nodes. The number of cluster
heads is determined in advance. It depends on a number of network parameters such
as topology, relative costs of computation versus communications [16]. A node n
chooses a random value v, where 0 < v < 1. If v < T(n), then the node becomes
cluster head for the current round r. The threshold T(n) is defined as follows:

T(n) =
⎧
⎨

⎩

P
1 − P ∗ (r mod 1

P)
, if n ∈ G

0, otherwise

276 9 Data Centric Routing, Interoperability and Fusion in WSN

where,

P is the desired percentage of cluster heads in the network, and
G is the set of nodes that have not been cluster heads in the last 1

P rounds.

For example, if 5% nodes are to be assigned the role of cluster heads then P = 0.05.
Initially, r = 0, and each node has the probability P to become a cluster head. Once
a node becomes a cluster head then it cannot become a cluster head for subsequent
1
P = 20 rounds. The nodes which were cluster heads for round number r, become
eligible for cluster head role in r + 1

20 round.
The cluster heads broadcast an advertisement offering data aggregation service

to the rest of the other nodes. The cluster heads use CSMA MAC protocol for the
advertisement using the same transmit energy. The regular nodes should be in listen
mode during this phase of the algorithm. Once the first phase is over, the regular
nodes will know which cluster they belong to. This decision will be based on the
RSSI of advertisement messages from the various cluster heads. The nodes then
send their leader acceptance message to their respective cluster heads. Again CSMA
MAC protocol is used for this transmission. During this phase the cluster heads must
keep their receivers on.

Based on the received acceptance messages, each cluster head creates a TDMA
schedule for receiving transmission from its cluster members. This schedule is broad-
cast back to the members. After the transmission schedule has been decided, trans-
mission begins. Each node sends it data during its allocated transmission schedule.
To receive the transmission the cluster head must keep its receiver on. After all trans-
missions are received, each cluster head applies compression and fusion techniques
to create a consolidated message for the data received from the region under it. In
the last phase of a round, a cluster head sends the report about the data pertaining to
its region to the base station. Since the base station may be located far away from a
cluster head, this is high energy transmission phase. The important conclusions from
LEACH experimentation are as follows [16]:

1. LEACH cuts down the requirement for communication energy by a factor of 8
compared to direct transmission protocol.

2. The first death in network occurs 8× times later.
3. The last death in network occurs 3× times later.

9.5.2 Location Based Routing Protocols

Location of a node is the fundamental element of information used by this class of
routing algorithms. The relative positions of the source and the destination provides a
sense of direction in which the data should flow thereby restricting the flooding. The
localization or the estimation of the positions of nodes is a one time task as the sensor
nodes are mostly static. There are many GPS less localization algorithms that can
estimate locations of the nodes by exchanging information between neighbors [13,

9.5 Flat Network Based Routing 277

17–19]. Most of the algorithms in this category apart from restricting flooding also
prescribe a sleep and wake up schedule for the nodes in order to save energy [20,
21]. Some of the location-based algorithms were developed for mobile ad hoc net-
works [20, 21], but are also applicable to sensor networks.

As an example, we discuss Geographical and Energy Aware Routing (GEAR) [22],
which is motivated by the fact that most of the time the queries for data are location
(region) related. In other words, a query packet is routed to a set of nodes (forming
a region or a neighborhood) instead of a single node. It assumes every node is aware
of its current location.

GEAR relies on recursive dissemination of a query, and considers energy level in
nodes while selecting neighbor for forwarding the queries. There are two phases in
the process to disseminate a query to a targeted region of a network, namely,

Phase 1: It uses energy aware neighbor selection to push the query to the target
region.

Phase 2: Inside the target region, it uses two different rules to forward the query to
the destination.

In the first phase while packets are pushed towards the target region, the residual
levels of energy is considered.

• If there is a node closer to the target region than the query forwarding node, then
the query is forwarded to all such nodes.

• Otherwise, the distance is also used in combination with the energy to get around
an energy hole.

In the second phase, the query gets disseminated inside the target region. Either
a recursive geographic forwarding, or a restrictive flooding is used. The recursive
geographic forwarding works as follows. A node Ni receiving the query creates four
sub regions. Then it creates four copies of the query and sends one copy to each
of these four sub regions. The recursive query dissemination is carried out until the
farthest point of the region is within the direct range of the forwarder but none of the
neighbors are within the region. However, the recursive splitting may be expensive
when the density of sensors is low. Additionally also it may create routing loops. So
in this case pure geographical distance metric is used for efficiency.

The most important idea that can be termed as the main operating logic of the
protocol is computation of the energy aware neighbor. The centroid of the target zone
R is considered as the logical destination location D. On receiving a packet, a node N
sends the packet progressively towards the target region while balancing the energy
consumption across all the neighbors.

Each node N maintains a cost lc(N,R), known as learned cost, from zone R. N
infrequently updates lc(N,R) to its neighbors. If a node does not have lc(Ni,R) for
a neighbor Ni, then it estimates a cost ec(Ni,R), given below, as a default value for
lc(Ni,R).

ec(Ni,R) = αd(Ni,R) + (1 − α)e(Ni)

278 9 Data Centric Routing, Interoperability and Fusion in WSN

where,

1. α is an adjustable value in range (0, 1),
2. d(Ni,R) is distance of Ni from centroid D of region R, and
3. e(Ni) is the consumed energy at node Ni normalized by the maximum energy

consumed across all the neighbors.

Once a nodeN has selected a neighborNs, it updates its own energy status as follows:

lc(N,R) = lc(Ns,R) + C(N,Ns),

where C(N,Ns) is the energy consumed for sending a packet on link (N,Ns).
C(N,Ns) is a function of residual energy levels at Ns and N and the distance between
N and Ns.

A discerning reader will notice that ec is a weighted sum of distance of a neighbor
from the target region, and the normalized consumed energy at the neighbors. The
estimated function, ec, is basically derived from an obvious considerations of the
energy drain out principle. It is borne out from following two significant observations:

• In circumstance where all the neighbors have same level of residual energy, the
value of ec depends on distance from the target region. Consequently, it amounts
to selection of the neighbor using a greedy approach, where the node closer to the
target region becomes the automatic choice.

• If, on the other hand, all the neighbors are at the same distance from the target
region, the choice is dependent on the local minimization, which is essentially a
load balancing strategy.

9.5.3 Selection of Forwarding Neighbor

Having understood the cost functions, let us find how selection of forwarding neigh-
bor is carried out. Two possible scenarios that need to be examined are:

1. Each packet P carries ID of the target region R. If there are neighbors close to R,
then a neighbor having minimum lc(Ni,R) value will be picked up for forwarding.
So, P will be routed progressively closer to R while balancing energy usage.

2. If all neighbors are far away from N itself, then N is said to be in a hole. When
there is no hole the learned cost lc(Ni,R) and the estimated cost ec(Ni,R) are the
same. If there is a hole, then the learned cost and the update rule help to avoid the
holes in the path to destination.

To see how it works, we consider the example quoted in the original paper [22].
Figure 9.7 illustrates a grid deployment where three nodes marked G, H and I have
no residual energy to participate in forwarding. The target node is T and packet
originated from S. Assume that grid nodes are placed at equal distance from its east,

9.5 Flat Network Based Routing 279

Fig. 9.7 Geographical
forwarding in a grid
deployment [22]

H IG

C DB

S

F

K L T

west, north and south neighbors. Without loss of generality, we may assume these
distances to be one unit each. The grid layout imply each node has 8 neighbors: east,
north-east, north, north-west, west, south-west, south, south-east.

Initially, at time 0, learned costs and estimated cost will be same.

lc(S,T) = 3, lc(B,T) = ec(B,T) = √
5

lc(C,T) = ec(C,T) = 2, lc(D,T) = ec(D,T) = √
5

On receiving a packet P, S forwards it to the lowest cost neighbor, i.e., C. But C finds
itself in a hole as all of its neighbors are a larger distance than itself. So, C forwards
it to the neighbor N with minimum lc(N,T). If ties occur, then they are broken by
node ID. This implies among the neighbors C will pick B, and update its learned cost

lc(C,T) = lc(B,T) + C(C,B) = √
5 + 1

At time 2, when node S receives another packet P′ for same region T , the values of
learned cost for B, C and D are as follows:

lc(B,T) = √
5, lc(C,T) = √

5 + 1, and lc(D,T) = √
5

So, S has a choice to forward P′ to B or D, but B’s ID is lower than D. Therefore,
S will forward P′ to B instead of C. In actual execution of the algorithm, packet
forwarding from S will oscillate between C and B. Once a packet is delivered to T ,
the learned cost (LC) value will be propagated 1 hop back, and every time a packet
is successfully delivered LC-value will be propagated 1 hop back, and finally it will
converge after delivery of n packets if distance from S to T is n hops. Intuitively, LC-
value together with update rule assist the scheme to avoid holes. For further details
in this regard, the readers may refer to [22].

280 9 Data Centric Routing, Interoperability and Fusion in WSN

Fig. 9.8 Recursive
geographical forwarding [22]

N

S

After a packet P reaches the target region R it can use simple flooding with
duplicate suppression method to guide the packet to actual destination. A recursive
forwarding method has been proposed in LEACH to control flood. Since, packets
are forwarded to the centroid of target region R, the bounding box of R can be split
into one subregions as illustrated in Fig. 9.8, and one copy of packet P is sent to the
centroid of each of the subregion recursively. The recursive forwarding is continued
until the stopping condition is met. The stopping criterion is met when either a region
has no other node in its subregion. To determine the stopping condition we check
if the farthest point of the region is within the range of the node but none of its
neighbors are inside the region.

9.6 Routing Based on Protocol Operation

The set of routing protocols we will discuss in this section are based on characteristics
of operation of protocols. A protocol may be of three types:

1. Multipath based routing.
2. Query based routing.
3. Negotiation based routing.

Multipath routing uses multiple paths to a destination. This category of routing
protocols enhance the network performance and are resilience to failure of the links.
In query based routing, source nodes propagate the query for fetching the data. The
nodes having matching data send replies back to the node that initiated the query.
In negotiation based protocols, the routes are obtained through negotiation based on
the QoS metrics such as delay, energy or bandwidth, etc. The main advantage of a

9.6 Routing Based on Protocol Operation 281

negotiation based routing protocols is that it eliminates redundant transmissions of
data which is specially important for a resource poor networks. Let us have a closer
look at some instances of these three classes of routing protocols.

9.6.1 Multipath Routing Protocols

Since, multiple paths to a destination are used, these routing protocols have overhead
in terms of generating higher network traffic compared to those which use single
path. Alternative paths are maintained by sending control packets from time to time.
These protocols, therefore, assure increased reliability in data delivery and resilience
to failures. The resilience can be measured by the number of paths available between
the source and the destination. Many instances of multipath routing protocols are
available in literature [23–28].

Most of the protocols in this category, focus on the energy issues and choose to
activate one of the available paths on the basis of either the residual energy on the
path or pro-actively route data to maintain a balance of energy at different nodes.
The idea is to extend the network lifetime as well as reliability. In [24], the focus
is particularly on enhancing the reliability. It introduces a function for analyzing
the trade-off between the degree of multipath and the failing probabilities of the
available paths. It partitions a packet into subpackets with an added redundancy
and sends each subpacket through one of the available paths. Due to availability of
redundant information, the reconstruction of the original packet is possible even if
some subpackets are lost.

The other interesting idea in class of multipath routing algorithms is presented by
directed diffusion [26]. It uses the idea of publish and subscribe approach to send
data of interest to the inquirers. An inquirer expresses an interest I . The sources
that can service the interest I send the data to the inquirer. The inquirer effectively
turns into a data sink and floods the interest. A forwarder typically maintains a local
cache of the interests and stores an incoming interest if it is not already present in
the cache. Initially an interest is diffused at a low data rate. Bidirectional gradient is
established on all the links during the flooding. The sensor system samples data at
the highest rate of all the gradients. The data is sent out using unicast as the reverse
links are formed while the gradient is established. The initial low rate is known as
exploratory. Once a sensor is able to report data, the reinforcement of the gradient
occurs. Positive reinforcement is triggered by the data sink resending the interest with
shorter intervals. The neighbor node witnessing the higher rate positively reinforce
at least one neighbor that uses its data cache. It usually selects an empirically low
latency path.

282 9 Data Centric Routing, Interoperability and Fusion in WSN

9.6.2 Query Based Routing Protocols

Directed diffusion [26] also represents a query based routing algorithm as interest
diffusion essentially amounts to sending queries. Another instance of query based
algorithm is presented by rumour routing protocol [29]. It essentially works in two
stages. Initially, long-lived agents are used to create paths to the events when they
occur. When a query related to the event is generated, it gets routed along that path.

The basic idea is as follows. The agents are basically long-lived messages circu-
lating in the network. Each node maintains a list of its neighbors and a table of events
with forwarding information to all events. The events may have an expiration time
to restrict size of the event table. When a node generates an event, it probabilistically
creates an agent with route length 0. The probability is used, because other nodes
noticing the event, may also create agents. It may be too much of overhead if each
node noticing the event creates a separate agent. The agent then travels in the net-
work with a TTL (time to live) value in terms of the number of hops. When an agent
travels, it combines the event table of the originating node with the visited nodes. It
also updates the event table when a shorter path is found at a visited node. A node
generates a query unless it learns a path to a required event. If no route is available,
the node transmits the query to a random direction. If the response is not received
after a finite wait time, the node then floods the network with the query. Clearly, the
routing protocol has a significant overhead due to agent circulation, random query
initiation, etc.

9.6.3 Negotiation Based Routing Protocols

Negotiation based routing are typically the choice for QoS requirements. However,
as explained in SPIN protocol [15] earlier in the text, negotiation can be used for
suppressing unnecessary transmissions. In fact, even in QoS requirement based rout-
ing, the path which cannot provide required QoS, will also not receive unnecessary
network traffic. There are many other examples of routing protocols [30, 31] where
negotiation is the main basis for routing.

In general, QoS metrics could be specified by

1. Application,
2. Protocol’s overall goal,
3. Protocol’s strategy to route data.

For example, at the application level QoS may refer to the frequency of data, and
the quality of data. At protocol level, the strategy could be the shortest path, on
occurrences of events, etc. The overall goal of a routing protocol could be extend-
ing lifetime, minimizing energy, etc. Most QoS based algorithm will require fre-
quent recomputation of the routes as existing ones may no longer promise QoS after
extended periods of use.

9.6 Routing Based on Protocol Operation 283

Fig. 9.9 Sequential
assignment routing algorithm

S

A

C

D

B

E

G

F

Sequential Assignment Routing (SAR) [31] is stated to be one of the earliest
routing algorithm that utilized negotiation [14] involving factors such as energy,
QoS on path and the priority levels of the packets. SAR creates multiple trees with
root of the tree and the data sink being within each others ranges. Each tree grows
outward from the sink avoiding the nodes with low throughput or high delay. It can
provide multiple paths for the data to be transmitted from each node to the data sink.
So, the higher priority data packets can be transmitted via low delay paths, at the
same time the lower priority packets from the same node can take a higher delay
but a higher residual energy path. An example is provided in Fig. 9.9. As the figure
shows, nodes E, F, G have alternative paths to sink. E can be reach S via A or C
with paths of length 2 and 3 respectively. Similarly, F can reach S through paths of
lengths 4 and 3 respectively from A and B. G can reach data sink S either through
B or through D with respective path lengths of 3 and 2. Depending on which path
provides better value for chosen QoS metric, the data to sink can take one of the
possible alternative paths.

9.7 Interconnection of WSNs to the Internet

Initially, the objective of WSN research was on data gathering connected with spe-
cialized systems for automation, control and monitoring. Instead of standardized
protocols, highly specialized protocols using one or more gateways were considered
as adequate for accessing WSN data over the Internet. However, WSNs without IP
integration offered an inflexible framework for the development of newer applica-
tions. It required retooling of network protocols within WSNs [32].

New IPv6 based standards such as 6LoWPAN and ZigBee IP were proposed
for WSN in order to introduce flexibility and easy interoperability with computer

284 9 Data Centric Routing, Interoperability and Fusion in WSN

networks. The problems in integration of IP with WSN may be seen from two different
aspects:

1. Differences in the communication pattern and capabilities WSN and IP, and
2. Expected operational capabilities of WSNs after integration.

The problems arising out of the differences in communication pattern are due to
practical usage scenarios involving WSN deployments. The flow pattern of data in
TCP/IP network is between the two ends of a connection. In contrast, the data flow
patterns in WSN are either many to one, or one to many. For example, a query may
be broadcast from a sink node to all sensors for reporting their individual measured
values. Similarly, all sensors having values above the threshold placed by a query
should report their respective measurements to the sink node.

The problem arising out of the difference in communication capabilities are due
to the variations in standards defining the two protocol stacks: WSN and TCP/IP.
Firstly, any non trivial deployment of WSN would consist of hundreds and thou-
sands of nodes. So building and maintaining a global addressing scheme for even a
mid sized WSN deployment is not quite easy. It requires prohibitive administrative
overheads. Secondly, the ad hoc nature of deploying sensor requires WSNs to be
self-configurable. Thirdly, in an IP based network bandwidth requirement for data
transfer is high (images, video, sound, etc. can be transferred). This implies IPv4 is
not feasible for WSNs. IP header itself too large compared to IEEE 802.15.4 PPDU
which is the defined standard for physical layer of sensor nodes. Fourthly, a number
of existing WSN deployments do not implement IP stack. The only way to commu-
nicate with sensor nodes belonging to such a WSN is possible through specialized
gateways. Therefore, the integration IP networks with WSNs not implementing either
6LoWPAN or ZigBee IP is a real concern for interoperability.

WSN protocols work at link layer not at IP layer. MAC protocols for WSN are
specially designed for periodic listen and sleep schedule. If the schedules of lis-
ten and sleep can be properly planned then it helps to reduce energy wastage and
enhance lifetime of WSN. The main sources of energy waste can be attributed to
following [33]:

1. Collisions: it not only increases latency but retransmissions also contribute sub-
stantially in energy drain out.

2. Overhearing: a node unnecessarily picks up a piece of data not destined for itself.
3. Control packets: using large number of control packets is another source of energy

waste.
4. Idle listening: the major source of wastage is wait and listen for packets that may

not come. In fact, at least half the time is lost in idle listening, and it may consume
energy in excess of 50%.

Considering the energy wastage issue, MAC layer scheduling makes sense.

9.7 Interconnection of WSNs to the Internet 285

9.7.1 NAT Based IP-WSN Interconnection

Non IP based solutions to integration of IP with WSN are motivated by two favorable
aspects of the whole problem. Firstly, in WSN, each node gather data from environ-
ment and reports its observation to a single data sink either directly or may be via
multiple hops. So, a WSN effectively operates like an inverted directed tree with
base station or the data sink as the root. Secondly, the nodes in WSN are accessible
only through base station which acts as a gateway or a proxy. So, a WSN appears
like a private network with an independent gateway. Therefore, the most common
approach, to integration of WSN and IP, is motivated by NAT semantics for accessing
the Internet from private networks.

A WSN operates with IP network through a proxy or gateway. The proxy needs
to implement both the protocol stacks: IP and WSN. The scenario of integration is
illustrated by Fig. 9.10. Proxy becomes a gateway for communicating with sensor
node from IP network. Sending data upstream from sensors to a IP node is not a big
problem. Placing a serial forwarder between base station and IP node would serve
this purpose [34] as illustrated in Fig. 9.11.

The downstream communication is problematic. Frame structure of two networks
are different. A server module can be created specially for providing a NAT like
semantic for IP to sensor communication. The problem of sensor not having IP
address is solved by treating the sensor network as private network and provid-
ing NAT services to address a specific sensor node. A one to one mapping sensor
nodeIDs and portIDs is created. The server assigns a portID to each nodeID.
For downstream routing, reverse mapping is necessary. So, server module stores the
reverse mapping of portIDs to nodeIDs. One of the problem with this solution
is that the mapping is not static due to variation in propagation pattern of radio sig-
nals. Therefore, provision should be made to ensure change in mapping specially
regarding change of parents in the tree. The sensor nodes send control packets from
time to time to make the server aware of modification in tree structure. Accordingly,
the server modifies its information and maintains the WSN tree.

Initially, IP nodes desiring to access data service from a specific WSN are required
to register with the respective servers. A server offers this registration service on a

Fig. 9.10 NAT based
IP/WSN integration

IP

Non−IP
WSN

Client

Ineternet

NAT based
WSN routing

protocol

286 9 Data Centric Routing, Interoperability and Fusion in WSN

SerialForwarder

root

IP Network WSN

serial interface

Base station

IP host

 Server Sensor

Fig. 9.11 Serial forwarder for WSN to IP communication [34]

. .
 .

.

TTP−Sensor

Registration port

Port sending data

Port both receiving and sending data

TTP−Server

IP host

Sensor node sending data

Sensor node both receving and sending data

Port number: 10123
Nodeid: 25

Port number 10123 is
mapped to nodeid 25
at the base station

Fig. 9.12 Downstream communication between IP and WSN [34]

known universal port. When data is received from sensor nodes, the same is dissem-
inated to all registered IP hosts as UDP packets. The payload of WSN data packet is
sent as payload of UDP packet at a universal port for availing services of downstream
communication. The server node stores a mapping of sensor nodes to port numbers.
When a registered IP node wants to communicate with a specific sensor node, the
node sends the packet addressed to specific port ID. The server module takes care
of disseminating information to specific node. Figure 9.12 provides a brief sketch of
the process involved.

Source routing is needed for downstream routing. The reason for this is it needs
very little support from forwarding node. MAC level ACK is used for retransmission
requirements, if any. The server module takes care of packet formation when it
receives a downstream packet for a specific sensor node. The server creates the source
routing packet with the help of the tree information available to it. The communication
is then staged through the serial forwarder. For further details concerning the protocol
the reader is referred to [34].

9.8 Data Fusion in WSN 287

9.8 Data Fusion in WSN

In a data centric network, the communication paradigm is driven by flow of data.
Communication is mostly point to multipoint, i.e., either multicast or any cast. The
data and its context defines the destination of a data flow. The shift in commu-
nication paradigm from address centric to data centric introduces the problem of
organizing data as communication token. In particular, when network has compara-
tively large, the number of data generation sources, like in a WSN, the volume of data
is unmanageably high. Only meaningful data with assured quality should participate
in communication. This implies (i) the accuracy of data, and (ii) the elimination of
unwanted data should be included among the important parameters for the definition
of the quality of data. Data fusion in WSN primarily achieve the aforesaid objectives.
Before going deeper into data fusion techniques, let us examine the question: why
data fusion is important in the context of WSNs?

Sensors measure raw data, for example, temperature, pressure, humidity, luminos-
ity, radiation levels, air pollutants, etc. There may be errors in these measurements
due to various reasons including the sensors being erroneous. Furthermore, these
raw data make little sense unless they are processed and interpreted. So, the key to
use of WSN is the interpretation of the sensed raw data. Typically the sensed data
received from multiple data sources are combined to improve the quality and the effi-
cacy of interpretation. Apart from eliminating errors, combining data from multiple
sources also helps to eliminate sensor failures, temporal and spatial coverage prob-
lems. Sensor fusion is particularly important for supporting applications for smart
environments. For example, in smart health care system the vital parameters of a
critical patient are monitored on continuous basis, and alarms should be raised when
these parameters exhibit abnormalities. If the measurements are not accurate, then
the patient’s life could be endangered. Similarly, if the radiation levels in operations
of a nuclear power plant are not correctly monitored it can lead to disastrous conse-
quences. In summary, the sensor equipped monitoring systems lead to the detection
of events which sets in motions actuation processes to enhance the ability of a sys-
tem to respond smartly. Data fusion can be seen as the process of combining data
collected from multiple sources to enhance the quality of data in a cheaper way and
raises its significance.

Simple aggregation techniques like summing, finding minimum or finding max-
imum have been used to reduce the volume of data in order to minimize the traffic
or data flow. Other sophisticated fusion techniques are used for enhancing quality
of data. There is some amount of confusion as well as disagreements in understand-
ing the terminology of data fusion [35]. The problem comes from the fact that the
terminology has been developed out of various systems, architectures, applications,
methods, theories about data fusion [35]. There is no unified terminology for descrip-
tion of data fusion. Nakamura et al. [35] mention many different ways to describe
general term of data and information fusion.

288 9 Data Centric Routing, Interoperability and Fusion in WSN

9.8.1 Definitions

Let us discuss a few of these definitions just to understand why lot of confusions
surround the concept of data diffusion. The first definition is from the lexicon of US
Department of Defense [36]. It says:

Definition 9.1 Data fusion is a multi-level and multifaceted process dealing with
automated detection, association, correlation, estimation and combination of data
and information from multiple sources.

The above definition does not restrict itself to sensory data alone. Data can be sourced
from a variety of other sources such as satellites, remote sensing equipments, robotics,
etc. The objective of the second definition proposed in [37] is to capture the improved
accuracy of data. According to this definition:

Definition 9.2 Data fusion is combination of data from multiple sensors, and related
information provided by associated databases, to achieve improved accuracy and
more specific inferences than could be achieved by the use of a single sensor alone.

The third definition is developed with an objective of describing enhanced quality
of data [38] in the context of application or applications it is intended to serve. It
defines:

Definition 9.3 Data fusion is a formal framework in which are expressed means and
tools for the alliance of data originating from different sources. It aims at obtaining
information of greater quality; the exact definition of greater quality will depend
upon the application.

The fourth one is a verbose definition used in the context of data fusion in robotics
and vision. It tries to capture both the use of fusion data, and its interaction with the
environment. It prefers the term multisensor integration over data fusion. According
to this definition multisensor integration [39] is:

Definition 9.4 The synergistic use of information provided by multiple sensory
devices to assist in the accomplishment of a task by a system; and multisensor fusion
deals with the combination of different sources of sensory information into one
representational format during any stage in the integration process.

However, among the community of WSN researchers, fusion is typically seen as
an aggregation of data [40–42]. In some sense, the definition of data aggregation
appears to refer to composition of raw data into piece of information that can be used
for filtering unwanted information and also to summarize the contents. Accordingly,
data aggregation [40] is defined as follows.

Definition 9.5 Data aggregation comprises the collection of raw data from perva-
sive data sources, the flexible, programmable composition of the raw data into less
voluminous refined data, and the timely delivery of the refined data to data consumers.

9.8 Data Fusion in WSN 289

Fig. 9.13 Data/information
fusion [35]

sensor aggregation
data

fusion

Sensor integration

Information/data fusion

Figure 9.13 [35] illustrates the subtle differences that exist among multisensor
integration, data aggregation, sensor fusion and information/data fusion. Information
essentially refers to processed or organized data. However, certain data may already
be organized in some way before it gets accessed by destinations. So, two terms
at times refer to the same concept and can be used interchangeably. In a coarse
granularity, sensor fusion and data aggregation encompassed within the both sensor
integration and data/information fusion. Multisensor integration relates to fusion of
data only from sensors. So, it is restrictive in general context of data fusion. Though
sensor fusion can be just aggregation of data from sensors, it can include more
elaborate form of data processing. Similarly, the generic meaning of data aggregation
does not just relate to aggregation of data collected from sensors alone.

9.8.2 Data Collection Model

The key design issues in sensor data diffusion are:

1. How do the interests to acquire sensor data get disseminated?
2. How do the sensor nodes keep track of different interests?
3. How do the nodes propagate data when subscribed events occur?
4. How do the nodes apply data processing (aggregation/fusion) as the data get

propagated towards the sink?

The interests are expressed on the basis of the attributes. For example, if the sensors
are deployed to monitor forest fire, then an interest can be expressed as follows:

{Type = Fire, Subtype = Amber, Interval = 2 m,

Time = 1 h,Region = [−20, 20, 300, 200]}

The interest gets disseminated to all sensors belonging to region specified by the
bounding box [−20, 20, 300, 200]. The sensors are supposed to monitor the fire. The
fire can be of different Subtypes, e.g., subtype Amber could mean that a forest fire
breakout is predicted. Other subtypes could be Red, or Black meaning that fire is now
on, and may have disastrous consequences. The time parameters instructs the sensor

290 9 Data Centric Routing, Interoperability and Fusion in WSN

to send observations for the next 1 h in intervals of 2 m. The interests are flooded into
the network. All the sensor nodes with matching data commence reporting to data
sink from which the interest originated.

Now, let us examine how a sensor node reports when an event occurs? For example,
suppose a sensor node sensed a high temperature in its vicinity, it could create a tuple
of the form:

{Type = Heat, Subtype = VeryHot,Temperature = 200,

Location = [101, 205],Timestamp = 14 : 50 : 05,Confidence = 0.7}

It includes three key items of information, namely, location of the source, timestamp
and confidence value apart from the attribute values. So, the data sink can analyze
the occurrences of the events.

The diffusion starts with initial expression of interests for data by the sink. The
interest may be viewed as a subscription for the events in a broader framework of a
publish subscribe model. The interest and the arrival of data are combined cleverly
to set up a gradient for the data to flow. The process is described as follows:

• The initial interest is essentially an exploration phase. During this phase, the data
sink sets a larger interval for the data sampling by the sensor nodes.

• The second phase is concerned with the creation of gradient and its reinforcement.
After receiving the first few data items related to interest, the sink refreshes the
interest by using the reverse path. In the refreshed interests, the sink lowers the
sampling interval for the sensor nodes.

In exploration phase, the interests are sent with larger interval primarily to reduce
flooding. The interest get disseminated by flooding.

The processing of interest dissemination works as follows

1. Each node creates an interest cache.
2. When a node receives an interest, it checks if the interest has an entry in the local

interest cache.
3. If no entry exists, then the node caches the interest and also creates a reverse

gradient by listing the neighbor who sent the interest.
4. It then forwards the interest to its other neighbors excluding the neighbor from

which it received the interest.

Many routes may be created in the reverse direction (from sources to sink) for the
flow of data. If the flow of data is allowed with high frequency from the sources,
it could lead to huge network traffic even before the best path can be determined.
Unnecessary network traffic should be minimized.

The flow of data requires time to settle for the best route as it starts flowing. For
settling on the best route, there is no need to use any extra control packets. By making
use of flow of data and refreshing interest, the best route can be settled. A gradient is
formed when data starts arriving at the sink from the targeted sensors. The data sink
tries to reinforce the reverse path through which first few items of data arrived. So,

9.8 Data Fusion in WSN 291

it sends refreshed interests by lowering the monitoring interval. This way the route
settles down with an appropriate gradient and flooding can be restricted.

As far as reporting is concerned, the interval of reporting is the key consideration.
There are three possibilities here. The system may depend on a periodic reporting.
For example, in the application that requires monitoring of some kind, the sensed
data is sent periodically for analysis. In other applications, reporting may be based
on the queries. In yet another set of applications event-triggered reporting could be
important.

9.8.3 Challenges in Data Fusion

Data fusion addresses four qualitative aspects of the data [43], namely

1. Imperfection,
2. Correlation,
3. Inconsistency, and
4. Disparateness.

Imperfection covers uncertainty, imprecision and granularity. Uncertainty raises
doubts about the value of data, while imprecision originates from the measurement
related errors. It includes vagueness, ambiguity and incompleteness in the measure-
ment. The degree of data granularity represents its ability to expose level of details.

Correlation exhibit dependencies in data. Fusion of correlated data may create
problems unless dependencies are handled carefully. Inconsistencies mean that the
same data from different sources do not match. Integrity of data becomes an issue
if data is not consistent. Finally, disparateness means data presented from different
sources in different format. Some data may be raw, some may be semi-processed
and others may be processed. Fusion of such data could be challenging.

Imperfection in data mostly handled by methods having origins in statistical
methods. Some of this methods are based on probability theory [44], rough set
theory [45], fuzzy set [46], Dempster-Shafer theory [47]. Probability theory is used
to handle uncertainty. Fuzzy set used to remove vagueness. Evidential and belief the-
ory (Dempster-Shafer) is used to eliminate both uncertainty and ambiguity in data.
Rough sets are used for granularity problem.

9.8.4 Data Fusion Algorithms

There are many ways data fusion can be performed. Classification of fusion tech-
niques can be made on the basis of various criteria such as (i) data abstraction level
(ii) purpose, (iii) parameters (iii) types of data, and (iv) mathematical foundations.
Nakamura et al. [35] have presented an excellent comprehensive review on the topic.
The contents, presented here, have been drawn largely from the above paper. But

292 9 Data Centric Routing, Interoperability and Fusion in WSN

our focus is limited to only a few algorithms designed on the basis of interesting
mathematical framework.

According to [35], the purpose of applying a fusion algorithm can be the following:

1. To derive an inference that can assist in making a decision.
2. To estimate certain value or a vector of values from the sensor observations.
3. To determine the features representing aspects of an environment from the raw

sensory data.
4. To compute reliable abstract sensors which can be used for time synchronization

so that the sensors can maintain upper and lower bounds on the current time.
5. To aggregate sensor data for the purpose of overcoming the problem of implosion

and overlap of data (explained earlier in 9.4.1).
6. To compress similar data by exploiting spatial correlation among sensor data.

Apart from the classes of algorithms mentioned above, there has been some attempts
to tackle data fusion problem based on information theory [48]. The purpose is
to increase the reliability by fusion of data from multiple sensors. For example, it
may be possible to correlate observations from multiple sensing capabilities such as
acoustic, magnetic, luminosity, etc. It increases reliability as well confidence in sensor
observations. This class of algorithms are still in infancy. They need to overcome the
difficulties such as uncertainties in measurements of entropies of source nodes, and
efficient conversion of observations to entropies.

9.8.4.1 Bayesian Inference and Dempster-Shafer Belief Model

Let us examine two inference models which have been used extensively indata fusion
area [35]. The first one is the Bayesian inferencing model, where the uncertainty is
represented by conditional probabilities describing the belief. It is based on the well
known and classical Bayes’ rule [49]:

Pr(Y |X) = Pr(X|Y)Pr(Y)

Pr(X)
,

where the probability Pr(Y |X) represents the belief of hypothesis Y with known
information X. It essentially states that the probability of Y given X is obtained by
multiplying Pr(Y) with the probability Pr(X|Y) of X given Y is true, with Pr(X)

being a normalizing constant. The problem with Bayesian rule is it requires either
the exact or near approximate guess of probabilities Pr(X) and Pr(X|Y). In WSN,
Bayesian inference rules have been used mostly for localization problem based on
fusing information from the mobile beacons [50].

Dempster-Shafer theory [47] is a mathematical tool for combining independent
evidence components in order to arrive at a decision. It determines the degrees of
belief for one question from the subjective probabilities of a related question. This
theory is extensively applied in the expert system [51]. The main features of this
theory are:

9.8 Data Fusion in WSN 293

• Each fact has a degree of support belonging to interval [0, 1], where

– 0 represents no support,
– 1 represent full support.

• A set of possible conclusions is represented by

Θ = {θ1, θ2, . . . , θn}

where:

– Each θi is mutually exclusive, i.e., only one can hold.
– Θ is exhaustive, i.e., at least one θi must hold.

Dempster-Shafer theory is concerned with the evidences that support subsets of
outcomes in Θ . The power set of Θ is defined as the frame discernment which
represents all possible outcomes. For example, if Θ = {a, b, c} then the frame of
discernment is given by:

φ, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}

The empty set φ has probability 0. Also {a, b, c} has probability 0, because by
assumption only one of the outcomes would hold, not all.

Furthermore, it defines four different measurable functions:

• Mass function: For a A ⊆ P(Θ) mass function m(A) is simply the proportion of
all the evidences that support A. The mass expresses all the relevant evidences that
supports the claim that actual state belongs to A and not to any particular subset
of A.

• Belief function: The belief in A ⊆ P(Θ) is defined as the sum of masses of an
element which are subsets of A including itself. For example, if A = {a, b, c}, then

bel(A) = m(a) + m(b) + m(c) + m(a, b) + m(b, c) + m(c, a) + m(a, b, c)

• Plausibility function: Plausibility of A, pl(A) is the sum of all the mass of the sets
that intersect with A.

• Disbelief function. Disbelief or doubt in A is simple bel(¬A). It is calculated by
summing all mass values of elements that do not intersect A.

Dempster-Shafer theory associates a certainty with a given subset A by defining a
belief interval which is [bel(A), pl(A)]. The belief interval of a set A defines the
bounds within which probability of outcome A lies. Dempster-Shafer theory also
defines a composition rule for combining effects of two basic probability masses:

m1 ⊕ m2(φ) = 0

m1 ⊕ m2(A) =
∑

x∩Y=A m1(X)m2(Y)

1 − ∑
X∩Y m1(X)m2(Y)

294 9 Data Centric Routing, Interoperability and Fusion in WSN

Dempster-Shafer theory has been used in sensor data fusion because it is con-
sidered to be more flexible than Bayesian inference rule. It allows each source to
contribute different levels of details to information gathering [35]. For example, to
quote an example from [35], suppose there are two different sensors S1 and S2. Sup-
pose S1 can recognize the roar of a male feline, while S2 can recognize the roar of a
female feline. Now a third sensor, S3 is also there that can distinguish between the
roars of a Cheetah and a Lion. Dempster-Shafer theory allows us to combine the data
from three sensors to conclude whether the recorded roar is that of a male/female
Cheetah. Dempster-Shafer theory does not assign a priori probabilities to unknown
events unlike Bayesian model. The probabilities are assigned only when supporting
facts are available.

9.8.4.2 Reliable Abstract Sensors

Marzullo [52] proposed the idea of a reliable abstract sensor for arriving at an interval
that will always contain the actual value of a desired physical state variable. It has
been used in the context of time synchronization, wherein the sensors can perform
external synchronization by maintaining the upper and lower bound on the current
time.

The term reliable abstract sensor has been used to define one of the three sensors:
concrete sensor, abstract sensor and reliable abstract sensor. A concrete sensor is a
physical sensor, an abstract sensor is an interval of value representing the measure-
ment of a state variable provided by a concrete sensor. A reliable abstract sensor is
the interval that assuredly always contain the real value of the physical variable. So,
abstract sensors are mathematical entities representing the concrete sensors.

Marzullo [53] proposes a fault tolerant averaging algorithm for agreement in dis-
tributed system. This algorithm is the basis for NTP [54]. Subsequently Marzullo [52]
adopted the same algorithm for reliable abstract sensors. It assumes that at most f out
of n ≥ 2f + 1 sensors can be faulty. Let I = {I1, I2, . . . , In} be the set of intervals
produced by abstract sensors. The idea is to compute Mf

n = [low, high] by fault
tolerant averaging, i.e.,

1. low is the smallest value belonging to at least n − f intervals,
2. high is the largest value belonging to at least n − f intervals.

The algorithm computes the fault tolerant averaging in O(n log n). Clearly,Mf
I cannot

give more accurate value than the most accurate sensor when n = 2f + 1. Also any
minor changes in input could produce a very different output. In other words, the
result is unstable. To appreciate the implication of fault tolerant averaging consider
an example illustrated by Fig. 9.14. It represents intervals I1, I2, I3 and I4 reported by
four sensors S1, S2, S3 and S4, respectively. Let one of these four sensors be faulty.
Since, I2 and I3 do not intersect, one of S2 and S3 must be faulty. Marzullo’s interval
overlapping method produces the intervals Mf

I as shown in Fig. 9.14. It produces
unstable output, as can be checked by shifting the interval I3 to right.

9.8 Data Fusion in WSN 295

Fig. 9.14 Marzullo’s fusion
technique with reliable
sensor [52]

Mf
I

S4’s interval

S3’s interval

S2’s interval

S1’s interval

S1 and S2 do not intersect.
One of them is faulty

9.8.4.3 Compression

Distributed Source Coding (DSC) is a compression technique for correlated data from
multiple sources [55]. The sources are distributed and do not communicate for coding.
The compressed data is sent to a central sink node for decoding. Kusuma [56] and
Pradhan et al. [57] proposed Distributed Source Coding Using Syndromes (DISCUS)
framework for data compression.

To understand the coding, let us consider an example. Suppose the observations
from sensors are coded in a 3-bit word. So, the possible observations are {000, 001,
010, 011, 100, 101, 110, 111}. These observations are grouped into 4 cosets whose
elements have hamming distance of three, i.e.,

1. Coset 1: {000, 111} with index 00
2. Coset 2: {001, 110} with index 01
3. Coset 3: {010, 101} with index 10
4. Coset 4: {011, 100} with index 11.

A node sends its observation by sending only the corresponding index. A node S2

can decode S1’s observation by the fact that hamming distance between its own
observation and the observation of S1 is 1. For example, if S1’s observation is 101, it
sends 10 to S2. Let S2’s observation be 101, then S2 and can decode S1’s observation
from the index 10 and the fact that hamming distance between two observations is
1. The overall framework of data compression by DISCUS framework is illustrated
by Fig. 9.15.

The data fusion is not just limited to sensor fusion or multisensor integration.
It refers to the larger context of fusion of data from various source as in robotics,
remote sensing, etc. So, the data fusion techniques have their origin even before
wireless sensor were deployed. But interestingly, it was possible to adopt many of
the techniques of fusion to multisensor integration. In this chapter, the scope of

296 9 Data Centric Routing, Interoperability and Fusion in WSN

Fig. 9.15 Data compression
in DISCUS [35]

Coset Index
{000,111} 00
{001,110} 01
{010,101} 10
{011,100} 11

S1 S2

101 100

S1 = 101

discussion is limited to the extent of exposing mathematical richness of a few of
these techniques to the reader. However, sufficient pointers to extensive literature
have been provided for an interested reader to follow up further readings.

References

1. S. Distefano, G. Merlion, A. Puliafito. Sensing and actuation as a service: a new development
for clouds, in The 11th IEEE Internation Symposium on Network Computing and Applications
(2012), pp. 272–275

2. G. Anastasi, M. Conti, M. Di Francesco, A. Passarella, Energy conservation in wireless sensor
networks: a survey. Ad hoc Netw. 7(3), 537–568 (2009)

3. K.C. Barr, K. Asanović, Energy-aware lossless data compression. ACM Trans. Comput. Syst.
(TOCS) 24(3), 250–291 (2006)

4. G.J. Pottie, W.J. Kaiser, Wireless integrated network sensors. Commun. ACM 43(5), 51–58
(2000)

5. S. Choi, N. Kim, H. Cha, Automated sensor-specific power management for wireless sensor
networks, in 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (IEEE
Computer Society, Atlanta, GA, USA. Atlanta, GA, USA, 2008), pp. 305–314

6. H. Kim, H. Cha, Towards a resilient operating system for wireless sensor networks, in USENIX
Annual Technical Conference, General Track (2006), pp. 103–108

7. X. Fang, S. Misra, G. Xue, D. Yang, Smart gridthe new and improved power grid: a survey.
IEEE Commun. Surv. Tutor. 14(4), 944–980 (2012)

8. T. Hikihara, Power router and packetization project for home electric energy management, in
Santa Barbara Summit on Energy Efficiency (2010), pp. 12–13

9. J.M. Kahn, R.H. Katz, K.S.J. Pister. Next century challenges: mobile networking for “smart
dust”, in Mobicom’99 (Seattle, Washington, USA, 1999), pp. 271–278

10. M.O. Farooq, T. Kunz, Operating systems for wireless sensor networks: a survey. Sensors11(6),
59005930 (2011) (Basel, Switzerland)

11. P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, D. Culler, TinyOS: an operating system for sensor network, in Ambient
intelligence (Springer, Berlin Heidelberg, 2005), pp. 115–148

12. A. Dunkels, B. Gronvall, T. Voigt, Contiki-a lightweight and flexible operating system for
tiny networked sensors, in 29th Annual IEEE International Conference on Local Computer
Networks (IEEE, 2004), pp. 455–462

References 297

13. J. Wang, R.K. Ghosh, S.K. Das, A survey on sensor localization. J. Control Theory Appl. 8(1),
2–11 (2010)

14. J.N. Al-Karaki, A.E. Kamal, Routing techniques in wireless sensor networks: a survey. IEEE
Wirel. Commun. 11(6), 6–28 (2004)

15. W. Heinzelman, J. Kulik, H. Balakrishnan, Adaptive protocols for information dissemination in
wireless sensor networks, in The 5th ACM/IEEEMobicom Conference (MobiCom 99) (Seattle,
WA, 1999), pp. 174–85

16. W. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol
for wireless microsensor networks, in The 33rd Hawaii International Conference on System
Sciences (HICSS 00), January 2000

17. N. Bulusu, J. Heidemann, D. Estrin, GPS-less low cost outdoor localization for very small
devices. Technical report, University of Southern California, April 2000. Technical report 00-
729

18. S. Capkun, M. Hamdi, J. Hubaux, GPS-free positioning in mobile ad-hoc networks, in The
34th Annual Hawaii International Conference on System Sciences (HICSS’01) (2001), pp.
3481–3490

19. A. Savvides, C.C. Han, M. Srivastava, Dynamic fine-grained localization in ad-hoc networks
of sensors, in The Seventh ACM Annual International Conference on Mobile Computing and
Networking (MobiCom), pp. 166–179, July 2001

20. B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, SPAN: an energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless networks. Wirel. Netw. 8(5), 481–494
(2002)

21. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad-hoc rout-
ing, in The Seventh Annual ACM/IEEE International Conference on Mobile Computing and
Networking (2001), pp. 70–84

22. Y. Yu, D. Estrin, R. Govindan, Geographical and energy-aware routing: a recursive data dis-
semination protocol for wireless sensor networks. Technical report, University of California at
Los Angeles, May 2001

23. J.H. Chang, L. Tassiulas, Maximum lifetime routing in wireless sensor networks, in Advanced
Telecommunications and Information Distribution Research Program (ATIRP), College Park
(MD, USA, March, 2000), p. 2000

24. S. Dulman, T. Nieberg, J. Wu, P. Havinga, Trade-off between Traffic Overhead and Reliabil-
ity in Multipath Routing for Wireless Sensor Networks (In WCNC Workshop, New Orleans,
Louisiana, USA, 2003)

25. D. Ganesan, R. Govindan, S. Shenker, D. Estrin, Highly-resilient, energy-efficient multipath
routing in wireless sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(4),
1125 (2001)

26. C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks, in ACM MobiCom 00 (Boston, MA, 2000), pp.
56–67

27. Q. Li, J. Aslam, D. Rus. Hierarchical power-aware routing in sensor networks, in The DIMACS
Workshop on Pervasive Networking, May 2001

28. C. Rahul, J. Rabaey, Energy aware routing for low energy ad hoc sensor networks, in IEEE
Wireless Communications and Networking Conference (WCNC), vol 1 (Orlando, FL, USA),
pp. 350–355. 17–21 March 2002

29. D. Braginsky, D. Estrin, Rumor routing algorithm for sensor networks. In International Con-
ference on Distributed Computing Systems (ICDCS’01), November 2001

30. J. Kulik, W.R. Heinzelman, H. Balakrishnan, Negotiation-based protocols for disseminating
information in wireless sensor networks. Wirel. Netw. 8, 169–185 (2002)

31. K. Sohrabi, J. Pottie, Protocols for self-organization of a wireless sensor network. IEEE Person.
Commun. 7(5), 16–27 (2000)

32. A.P. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, M. Zorzi, Architecture and protocols
for the internet of things: a case study, in 8th IEEE International Conference on Pervasive
Computing and Communications (PERCOM Workshops) (IEEE, 2010), pp. 678–683

298 9 Data Centric Routing, Interoperability and Fusion in WSN

33. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor net-
works, in The 21st International Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), New York (USA, June, NY, 2002), p. 2002

34. S. Shekhar, R. Mishra, R.K. Ghosh, R.K. Shyamasundar, Post-order based routing and transport
protocol for wireless sensor networks. Pervasive Mob. Comput. 11, 229–243 (2014)

35. E.F. Nakamura, A.A. Loureiro, A.C. Frery, Information fusion for wireless sensor networks:
methods, models, and classifications. ACM Comput. Surv. 39(3) (2007)

36. F.E. White, Data fusion lexicon. Technical report, U.S. Department of Defense, Code 4202
(NOSC, San Diego, CA, 1991)

37. D.L. Hall, J. Llinas, An introduction to multi-sensor data fusion. Proceedings of IEEE 85(1),
6–23 (1997)

38. L. Wald, Some terms of reference in data fusion. IEEE Trans. Geosci. Remote Sens. 13(3),
1190–1193 (1999)

39. R.C. Luo, M.G. Kay (eds.), Multisensor Integration and Fusion for Intelligent Machines and
Systems (Ablex Publishing, New Jersey, USA, 1995)

40. N.H. Cohen, A. Purakayastha, J. Turek, L. Wong, D. Yeh. Challenges in flexible aggregation
of pervasive data. Technical report, IBM Research Division, Yorktown Heights, NY, USA,
January 2001. IBM Research Report RC 21942 (98646)

41. K. Kalpakis, K. Dasgupta, P. Namjoshi, Efficient algorithms for maximum lifetime data gath-
ering and aggregation in wireless sensor networks. Comput. Netw. 42(6), 697–716 (2003)

42. R. Van Renesse, The importance of aggregation, inFutureDirections inDistributedComputing:
Research and Position Papers, ed. by A. Schiper, A.A. Shvartsman, H. Weatherspoon, B.Y.
Zhao, vol NCS 2584 (Springer, Bologna, Italy, 2003), pp. 87–92

43. B. Khaleghi, A. Khamis, O. Karray, Multisensor data fusion: a review of the state-of-the-art.
em. Inf. Fus. 14(1), 28–44 (2013)

44. H.F. Durrant-Whyte, T.C. Henderson, Multisensor data fusion, in Handbook of Robotics, ed.
by B. Siciliano, O. Khatib (Springer, 2008), pp. 585–610

45. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data (Kluwer Academic
Publishers, Norwell, MA, USA, 1992)

46. A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
47. G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, 1976
48. P.K. Varshney, Distributed Detection and Data Fusion (Springer, New York, USA, 1967)
49. T.R. Bayes, An essay towards solving a problem in the doctrine of chances. Philosop. Trans.

R. Soc. 53, 370–418 (1763)
50. M.L. Sichitiu, V. Ramadurai, Localization of wireless sensor networks with a mobile beacon,

in The 1st IEEE International Conference onMobile Ad Hoc and Sensor Systems (MASS 2004)
(IEEE, Fort Lauderdale, FL, USA, 2004), pp. 174–183

51. P.P. Shenoy, Using dempster-shafer’s belief-function theory in expert systems, in Advances in
the Dempster-Shafer Theory of Evidence, ed. by R.R. Yager, J. Kacprzyk, M. Fedrizzi (John
Wiley & Sons, Inc., New York, NY, USA, 1994), pp. 395–414

52. K. Marzullo, Tolerating failures of continuous-valued sensors. ACM Trans. Comput. Syst.
(TOCS) 8(4), 284–304 (1990)

53. K. Marzullo, Maintaining the time in a distributed system: an example of a loosely-coupled
distributed service. PhD thesis, Stanford University, Department of Electrical Engineering,
Stanford, CA, 1984

54. D.L. Mills, Computer Network Time Synchronization: The Network Time Protocol (Taylor &
Francis, 2011)

55. Z. Xiong, A.D. Liveris, S. Cheng, Distributed source coding for sensor networks. IEEE Signal
Process. Mag. 21(5), 80–94 (2004)

56. J. Kusuma, L. Doherty, K. Ramchandran, Distributed compression for sensor networks, in The
2001 International Conference on Image Processing (ICIP-01), vol 1 (IEEE, Thessaloniki,
Greece, 2001), pp. 82–85

57. S.S. Pradhan, K. Ramchandran, Distributed source coding using syndromes (DISCUS): design
and construction. IEEE Trans Inf Theory 49(3), 626–643 (2003)

Chapter 10
Location Management

10.1 Introduction

The most important problem arising out mobility support is tracking of mobile
objects. A mobile object may represent an automobile, a cellular phone, a PDA,
a laptop or even a piece of software. The location management is concerned with the
ability to track or locate a moving object with an intention to communicate.

At an abstract level, a location management scheme involves two operations:

• Look up or search which locates a mobile object.
• Update which records the new location, each time a mobile object makes a move.

The search and update operations are also basic to a conventional database system.
But there are three significant differences in operation of a database and a location
management scheme:

• A database records only precise data, whereas a location management scheme has
to deal with imprecisions of various kind in location data.

• The update requirements in a database is directly linked with data consistency
problem. An update must be applied to a database as soon as it is received. The
update requirements in maintaining location data, depends on the ability of a
location management scheme to tolerate the degree of imprecision in location
data.

• The number of updates handled by a location management scheme is several times
more than the updates any moderate sized database can handle.

The reason behind large number of updates that any location management is expected
to handle can be explained as follows. There is absolutely no control in proliferation
of mobile devices. In a cell size of about half a kilometer radius, roughly about 1000
mobile devices may be active at any point of time. Assuming every such mobile object
makes just about five moves in a day (in 12-h period), the total number of updates
exceeds 10,000 calculated at the rate of one insertion and one deletion per move

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_10

299

300 10 Location Management

Fig. 10.1 Location space of
all objects

A

B

L
oc

at
io

n
av

ai
la

bi
lit

y

Update
 cu

rre
ncy

Location precision

per mobile object. Suppose a small city has a cellular coverage area of 1000 cells
of the above kind. The active mobile devices operating in this city may potentially
generate up to a minimum of a million location updates in 12-h period. Clearly, no
conventional database can match the scale of updates expected to be handled by a
location management scheme.

The three dimension of the approaches to the management of location information
and its use can thus be identified as

• Availability: Represents the availability of location information at all the network
sites or at a few selected places in the network.

• Imprecision: Represents the exactness of the location information.
• Currency: Represents the regularity of the location updates.

An abstract view of the space of location management problem is depicted in
Fig. 10.1. The position B in the location space refers to the situation when exact
information is maintained for each and every network sites. The location updates is
required for every move and should be disseminated to all the sites. Under this sce-
nario look up becomes immediate. The other extreme case represented by position
A. It refers to the situation where no information about the location of any object
is maintained anywhere in the network. The search for a mobile object under this
situation becomes an exhaustive search of all the network sites. In between the above
two extremities, several combination of approaches regarding location updates and
look ups are possible.

We implicitly assume that location management is supported by a cellular network
architecture acting as the backbone. Furthermore, location management is handled
either in the data link or the network layer. Though cellular architecture is not the only
possibility, it is a good candidate to understand the issues that arise in the location
management. In absence of a infrastructures backbone architecture, an alternative
approach such as global positioning system has to be used to locate mobile objects.

10.1 Introduction 301

10.1.1 Registration and Paging

There are two distinct mobility types involving mobile devices [2].

1. Terminal mobility: Allows a terminal identified by an identity independent of its
point of attachment in the network. It allows a terminal to be attached to different
points of a fixed network at different time. Therefore, allows mobility with respect
to the point of attachment with the fixed network.

2. Personal mobility: It is associated with a user. A user gets a distinct identity
independent of terminal s/he uses. Personal mobility allows the users to receive
or make calls any where through any terminals.

In practice there is no distinction between terminal and personal mobilities in a
mobile network. Since, terminals are portable and carried by the users, a personal
mobility always accompanied by a movement of the terminal carried by the user. In
other words, personal and terminal mobilities occur concurrently.

In order to facilitate location tracking, a mobile user has to explicitly register, and
notify about the location of the terminal to one or more location servers belonging
to the fixed network [2]. The granularity of location data may vary from a single
cell to a group of cells. The paging process is a system initiated polling by sending
signals to the likely locations to track the users. When the exact location of a user is
known, a single paging operation suffice. By changing the size of registration area,
flexibility in combination of paging and registration can be attained.

10.2 Two Tier Structure

In two tier scheme [13], there are two location registers per mobile hosts:

1. home location register (HLR), and
2. visitors location register (VLR).

Every mobile user is associated with a HLR which is located at a network location
prespecified for each user. It is essentially a database for the home location of a user.
Home location is a group of cells in which a user is normally expected to move
around. Initially, a user registers his/her mobile handset in home location to avail the
cellular service. A HLR maintains the current location of an user. The HLR entry
corresponding to a user gets updated every time the user makes a move.

Each zone also maintains a VLR database, each entry in VLR is associated with
a user currently active in that zone. In HLR-VLR scheme, the call setup is quite
straightforward. When a user A in a location area LAIi wants to communicate with
another user B in a cell belonging to LAIj, then the VLR in LAIi is searched first. If
there is no entry for B, the search is then directed to the HLR maintained at LAIb
which is the home location area of B. Thus, the location update process for tracking
movement of an user is as follows:

302 10 Location Management

LAIa

HLRh VLRh

A · · ·

LAIj

HLRj VLRj

· · · A

LAIiHLRi VLRi

· · · A

Fig. 10.2 Move in two-tier scheme

• When a user moves from a cell in LAIi to a cell under LAIj then the HLR of the
user in its home location area gets updated.

• The VLR entry for the user is deleted from VLR database for area LAIi, and an
entry for the user is created in VLR database maintained for area LAIj,

Figure 10.2 illustrates the movement of user A from a cell under LAIi to a cell under
LAIj. LAIa denotes the home location of A.

10.2.1 Drawbacks of Fixed Home Addresses

The home location is permanent. Thus long-lived mobile objects cannot change their
homes. In other words, porting a mobile phone from one neighborhood to a different
neighbourhood is not possible without explicit intervention by the service operators.
The two-tier approach does not scale up too well as a highly distributed system
would. Often the distant home locations may have to be contacted for look up even
in the case of moderately mobile objects. In other words, the locality of the moves
is not captured very well in a two-tier system.

10.3 Hierarchical Scheme

Hierarchical schemes [1, 8] are designed to take advantage of locality of movements.
The location database at an internal node contains location information of users in the
set of zones under the subtree rooted at the node. The information stored may simply

10.3 Hierarchical Scheme 303

Fig. 10.3 Tree-based
organization of location
servers

x 1

2

5 6 7

x 3

x 25

8 9 10x

4

11 12 13

be a pointer to the lower-level location server or the current location. A leaf node
serves a single zone. The organization of location servers in a tree-based hierarchical
scheme is illustrated in Fig. 10.3. A zone can be considered as a location area or a
single cell served by a mobile support station.

The performance of any location management scheme is clearly dependent on
two factors [5, 6], namely,

1. The frequency of the moves made by the users.
2. The frequency of the calls received by each user.

Based on these factors we can define two performance metrics:

(i) local call to mobility ratio, and
(ii) global call to mobility ratio.

Let Ci be the expected number of calls received, and let Ui be the number of location
area crossings made by a mobile user over a duration of time T . The fraction Ci/Ui

is the global call to mobility ratio for time T . If Cij represents expected number of
calls from location LAIj to the user in time T , then the local call to mobility ratio
(LCMR) is the ratio Cij/Ui. Local call to mobility ratio LCMRij at any internal node
j of tree hierarchy can be computed as

∑
k LCMRik , where k is a child of j.

10.3.1 Update Requirements

Typically, location information at internal nodes of in the hierarchy are stored as
pointers. As an MH A moves from a cell in LAIi under location server LSi to a new
location, say to the cell LAIj under location server LSj, the tree paths:

• from LCA(LSi,LSj) down to LSi and
• from LCA(LSi,LSj) down to LSj

should be updated. For example in the Fig. 10.3 each node represents a location
server. Each leaf server store location information of mobile users in one location

304 10 Location Management

area. When a mobile user A moves from a cell in the location area under the server
25 to a cell in location area under the server 26, then updates will be needed at the
nodes 3, 8, 9, 25, 26.

• At 8, 25 entries for A should be deleted.
• At 3, the entry for A should be updated.
• At 9, 26 new entries should be created for A.

If actual information on cell ID is stored at each node from the root to a leaf,
then path from the root to LCA(LSi,LSj) also has to be updated. However, typically
pointers are stored. For example, if A is in a cell under 25, nodes 1, 3, 8 should have
pointers leading to node 25 which indicates that A is in a cell under 25, and the cell
ID information for A would be available in node 25. After a time t, suppose A moves
to cell under 26, then all the nodes 1, 3, 9, 26 must be updated to indicate that A is
now in a cell under 26. The information about location of A from node 25 should
also be deleted.

10.3.2 Lookup in Hierarchical Scheme

The look up operation in hierarchical scheme can start with search for a mobile
object A getting initiated at the neighbourhood, i.e., bottom up in the tree hierarchy.
If A is not found in the current level of the hierarchy then the search process is just
pushed one level up the hierarchy. Since the root maintains information about all
the objects, the look up is bound to succeed at a higher level of the hierarchy. For
example, suppose a search is initiated at a cell under LAIi for the mobile object Om

which is currently located in a cell under LAIj. The look up for Om begins at location
server LSi, until it reaches LCA(LSi,LSj) where an entry for Om will be found. After
that following the pointers to Om, the search traverses down the hierarchy along the
path from LCA(LSi,LSj) to LSj.

10.3.3 Advantages and Drawbacks

The tree-based hierarchical scheme does not require HLR and VLR type databases
to be maintained. It supports locality of call setup process. However, it requires
updates to be done at a number of location servers on different levels of hierarchy.
The location information for each mobile object has to be replicated at each node
on the tree path from the root to the leaf node corresponding to the location area in
which the mobile object is located. The load for updates increases monotonically at
the internal nodes higher up the hierarchy. The storage requirement also increases at
higher levels.

10.4 Caching 305

10.4 Caching

Caching of locations [1, 6] is used primarily to reduce the lookup cost. It also helps
to reduce the delay in establishing links. The idea has its root on the conventional
use of caching.

In the two-tier architecture, when a large number of calls originate from the
coverage area under a specific MSC to a particular mobile belonging to a different
MSC, then the ID of the mobile and the address of its serving VLR can be stored at
the calling MSC. This helps not only to reduce the signaling cost but also to reduce
the delay in establishing the connection. Each time a call setup is attempted, the
overhead associated with caching is as follows:

• First, the cached information of VLR is checked at calling MSC. If a cache hit
occurs, the VLR of the callee is contacted directly.

• When the called mobile moves out of cached VLR, a cache miss occurs. Then the
HLR of the called mobile is contacted to establish the call.

Checking cache at calling MSC adds little to overhead. On the other hand, if cache
hit occurs, then the saving on signaling cost and the call setup latency improves.
However, when called mobile crosses over to a new location area, old cache entry
becomes invalid. So a cache revalidation is made by updating the old entry.

From the point of view of pure location update (no cache), new VLR address
should be registered with HLR [9], and old VLR address should be purged from
HLR. So, a location update cost is:

updatenocache = cost(VLRnew ↔ HLR) + cost(VLRold ↔ HLR)

For establishing a call in absence of a cache, HLR of the called mobile should be
queried to obtain the address of VLR of the new region where the mobile is active.
So, the cost of a lookup in a system without cache is:

searchnocache = cost(VLRcaller ↔ HLR) + cost(HLR ↔ VLRcallee)

If the expected number of calls from a particular MSC to a particular mobile is
ρ, then the cost for establishing calls will be

updatenocache + ρ × searchnocache

Estimation of ρ requires an analysis of the call traces. A study [11] reveals that
a user typically receives 90% of calls from his/her top 5 callers. A location area can
be ranked according to the number of calls a user receives from that area.

Computation of local call to mobility ratio (LCMR) allows us to obtain a theo-
retical estimate of cache placement policy. Let us first model the calls received by a
mobile and its mobility. Calls to a mobile and its movements are unrelated. Let the
call arrival time at a mobile in a service area is exponentially distributed with mean

306 10 Location Management

arrival rate λ. Then probability distribution function is:

λe−λt .

Similarly, let the residence time of a mobile in a location area be exponentially
distributed with mean residence time 1/μ, i.e., the probability distribution function
for the residence time is:

μe−μt .

Let pcache represent the probability that the cached information for a mobile at
a location area is correct. In other words, pcache defines the probability that mobile
has not moved from its current location since it received the last call from the same
location area. So,

pcache = Prob[t < t1] =
∫ ∞

0
λe−λt

∫ ∞

t
μe−μt1dt1dt = λ

λ + μ

In order to know if caching could beneficial, we need to find the relationship
between calls received by a mobile and the number of moves it makes in between
receiving calls. Let,

1. CB represent the lookup cost of connection setup in basic scheme, i.e., if caching
is not used, and

2. CH represent the cost when caching is used.

In other words, CH is the cost of retrieving the address of VLR associated with the
MSC where the called mobile is active directly from the VLR associated with MSC
from where the call originated. Estimation of CB, on the other hand, involves two
things: (i) the cost of accessing HLR entry of the called mobile from VLR of calling
MSC, and (ii) the cost of retrieving VLR address of called mobile and caching the
same at the caller MSC. Hence,

CH = cost(VLRcaller ↔ VLRcallee)

CB = cost(VLRcaller ↔ HLR) + cost(HLR ↔ VLRcallee)

A cost saving is possible in caching scheme, only if

pcacheCH + (1 − pcache)(CB + CH) ≤ CB,

where pcache is the probability of a cache hit. From the above inequality, we find that
pT = min{pcache} = CH/CB. This implies that caching would be useful in saving
cost, if

pcache > pT ≥ CH/CB,

where pT denotes threshold for the cache hit.

10.4 Caching 307

Calling MSC typically uses Local Call to Mobility Ratio (LCMR) for determining
if caching could be cost effective. LCMR is equal toλ/μ. Relating LCMR to threshold
for cache hit, we have

LCMRT ≥ pT/(1 − pT)

10.4.1 Caching in Hierarchical Scheme

In a hierarchical architecture, caching can be deployed to reduce the lookup time.
Combined with forward and reverse bypass pointers, caches can be placed at a higher
level of the hierarchy to service the calls originating from a group of cells rather than
a single cell. The tradeoff of placing cache at a higher level is that the calls have to
traverse a longer path. The idea is illustrated by Fig. 10.4. When a connection setup is
requested from a mobile phone in a location area LAIi to a mobile phone in location
area LAIj, the control message traverses up the tree from LSi to LCA(LSi,LSj) and
then downwards to LSj. The call setup requires an acknowledgement (ack) to be sent
from LSj back to LSi along the same path. All the ancestors of LSi in the hierarchy
overhear this ack message, and one of them, say LSai , can create a forward bypass
pointer to LSj. Likewise, a reverse bypass pointer can be created from an ancestor
of LSj to LSi. A cache can be deployed at LSai for the callees located in the cells
belonging to LAIj. Then subsequent calls from the callers active under coverage area
LAIi may be able to reach the location database LSj via a shorter route through the
forward bypass pointer at LSai . Similarly, the acknowledgement messages originating

reverse bypass pointer

forward bypass pointer

search trail

1

2 2

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19

Fig. 10.4 Caching in hierarchical location scheme

308 10 Location Management

from the callees under LAIj traverse a shorter path to LSi using the reverse bypass
pointer. If the level of LSai is high then all the callers from its subtree can use the
forward bypass pointers for the callees under the subtree of LSj. But each call have to
traverse a longer path up to LSi, and may incur longer average lookup time, because
the latency for locating the callee in the subtree of LSaj would depend on its size.

10.5 Forwarding Pointers

For a mobile user receiving relatively less calls compared to the moves, it is expensive
to update all the location servers holding the location of the user on every move. It
may be cheaper to leave a forwarding pointer to the new location at the previous
location of the user. Then any call arriving at the old location can be re-routed to
the current location by the forward pointer, and the update to the database entries
holding a user’s location can be made less frequently.

In two-tier architecture, if a user is frequently away from home, and the user’s
moves are mostly localized around the neighborhood of its current locations, then
the location updates to the user’s HLR would require long latencies. In order to
avoid such updates requiring long latencies, forward pointers may be used. It works
as follows. Whenever the user makes a move in the neighborhood of its current
location, a forward pointer for the new location is placed in the VLR of the serving
location. Therefore, when a call to the user reaches its home location server, the
call can be diverted to the present location of the user. The call diversion is possible
because HLR can access the VLR associated with the user’s first location away from
home. The other locations of the user can now be reached by following a chain
of forward pointers starting from the first VLR. The chain of forward pointers are
allowed to grow up to a predetermined length of K . When the user revisits a location,
the potential loop condition in forward pointers chain is avoided by an implicit
compression due to a location update in current VLR on a fresh move by the user.
The approach of forwarding is applied on a per user basis.

Forwarding pointer strategy can also be applied to the hierarchical architecture.
In a simple forwarding strategy, the pointers are placed in the leaf level. No update
is performed up the tree path as a user moves from one location to another. But a
forwarding pointer is left at the previous location to the current location.

In a level forwarding strategy, the forwarding pointer is placed at a higher level
location server in the hierarchy. In this case, more updates are required to delete the
database entries of lower level location servers of the previous location, and also to
insert the current location into lower level ancestor location servers of the current
location. Figure 10.5 illustrate the two schemes for placing the forward pointers. The
dashed pointers illustrate the level forwarding while the ordinary pointers illustrate
simple forwarding. Assuming mobile usermu to be initially located in cell 11 decides
to move to a the cell 14, then simple forwarding places a forward pointer at the old
leaf level location server 11 as indicated by the ordinary pointers. Whereas in the case
of level forwarding, a forward pointer is placed at the ancestor location server 2 at

10.5 Forwarding Pointers 309

1

2

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19

mu

mu

mu

mu

level forwarding

simple forwarding

3

Fig. 10.5 Forwarding pointers in hierarchical scheme

level 3 which points to the location server 3 which is an ancestor of the new location.
In this case, the updates are more than that required in simple forwarding. This is
because, the entries concerning new location of mu should be made at nodes 3, 6,
and 14 and database entries for mu at nodes 2, 5, and 11 are to be deleted.

10.6 Replication

Replication [5, 8] is another mechanism to reduce the cost for lookup. A high CMR
(call to mobility ratio) value is the guiding principle for replication of the location
of a user at selected nodes in the hierarchy.

In a two-tier architecture, replication may be employed, if the cost of replication
is not more than the cost for non-replication. When many calls originate from a
location area LAIj to a mobile user, it may be cost effective to replicate the location
of the user at the location server LSj. However, if the user moves frequently then
the maintenance of the replica incurs a heavy cost. A replica does not merely have
location information. It also includes service information parameters such as call
blocking, call forwarding, QoS requirements like the minimum channel quality and
the acceptable bandwidth. Thus replicas should not be considered merely as extension
of cache entries. Replicas may maintained both at the caller and the callee. If Cij is
the expected number of calls made from cells in LAIj to a user over a period of time
T , α is saving on replication at LSj, β is the cost per update, and Ui is the number of
updates then

310 10 Location Management

α.Cij ≥ β.Ui (10.1)

should hold in order that the replication of the user at LSj to be cost effective. The
replicas of the user are kept at all the frequent callers areas which satisfy inequal-
ity 10.1. The set of the caller locations where the replica of a user is maintained is
called a working set for that user. Every time a call is made to the user:

• From a member of the user’s working set, no update is needed,
• From a non-member then if inequality 10.1 is found to be true then that cell is

added to the working set of the user.

On the other hand, when the user makes a move:

• Inequality 10.1 is evaluated for every member of the working set,
• If it fails to hold for location area LAIk , then it is removed from the working set.

The storage requirement for a single user’s profile of size F in basic multi-tier
location database having L levels is F + ptr × (L − 1), where ptr is the size of
a pointer (user ID + database ID). If the profiles are replicated then the cumulative
storage requirements should not exceed the storage space available in the database [7].

Apart from storage constraint, the decision to place a replica should also be based
on minimization of network communication cost. In two-tier model, LCMR (local
call to mobility ratio) is used for this purpose. A user i’s profile is replicated a database
j, only if LCMRij exceeds a minimum threshold, say Rmin. In hierarchical database,
it is impossible to arrive at a single parameter for databases at different levels of the
hierarchy. However, by using an additional parameter Rmax, it is possible to arrive at
a decision. The computation of LCMRij for hierarchical database is done by a simple
bottom up summing the LCMR values of its children. Clearly, if high LCMR value is
the criterion for the selection of replication then when a node is selected for placing a
replica, all its ancestor nodes also should be selected for replica placement. Therefore,
this selection process results in excessive updates at higher levels of databases. This
calls for setting a number of constraints including high (Rmax) and low (Rmin) marks
for LCMR values to determine the nodes in the hierarchy which may be selected for
placing replicas. The rules for selecting replication site are as follows [7]:

1. If LCMRij < Rmin, replica of i’s profile is not placed at site j.
2. If LCMRij ≥ Rmax, then always place replica of i’s profile at site j if the constraints

on L and N are satisfied, where L represents hierarchy level, N is the bound on
the number of maximum number of replicas for a user.

3. IfRmin ≤ LCMRij < Rmax, then the decision to place i’s profile at site jwill depend
on database topology.

The other constraints are the level of location server in the hierarchy, and the
maximum number of replicas to be placed. The reader is referred to [7] for details
of analysis and the algorithm for placing replicas.

10.7 Personal Mobility 311

10.7 Personal Mobility

In the context of location management, there is a trade off between search and update.
Most of the location management schemes are based on the approach to balance
between search and update. To what extent the trade off can swing between the two
will depend on the bound on signaling requirements. But the question is how to define
a bound on signaling requirements? Furthermore, even if a bound can be defined, is
it possible to reach the bound? Due to technological limitations, it is difficult to find
satisfactory answers to above questions. However, analyzing problem of location
management from a different track, we notice that terminal mobility and personal
mobility are tightly coupled in a cellular communication network. In reality a mobile
equipment is a portable device, and cannot move on its own. The movement of a
mobile terminal is caused by the movements of the user carrying it. The movement
of a person or the user of a mobile terminal can be considered as a path in some
random process [3, 12].

10.7.1 Random Process, Information and Entropy

Let us explore a bit about the randomness of a process. If the volume of information
content in a random process is high then the unpredictability is low. The probability
of occurrence of an event contains the amount of information about the event. For
example, if the probability of occurrence of an event A is known to be more than
the probability of occurrence of another event B, then the amount of information
available about A is more than that available for B. In other words, A’s occurrence is
more predictable than B’s occurrence. This qualitative measure of information can
be interpreted in terms of surprisal. Shannon [10] formulated surprisal as measure
of information content in a system. It captures the following two important aspects:

1. The extent of randomness is determined by the size of entropy.
2. If randomness of a process is more, its unpredictability is higher.

For example, if an event E is known to happen always, then there is no surprisal in
its occurrence. Equivalently, E’s occurrence carries no information at all. In contrast,
if E is a rare event, the fact that E has occurred is a surprise. So, the information it
provides is high. The relationship between probability p(E) of an event E and the
size of expected information H(E) of E’s occurrence can be expressed as follows:

p(E) → 0 implies H(E) → ∞
p(E) → 1 implies H(E) → 0,

where
p(E): proability of event E
H(E): expected information conent in occurrence of E

312 10 Location Management

In other words, the richness in information varies as the inverse of the probability.
The above connection between p(E) and H(E) is captured by Shannon as follows:

H(E) = p(E) × 1

log p(E)

The reason for using logarithmic function instead of simple inverse is that it
makes entropy an extensive property. In other words, if there are two systems A and
B, then the total entropy should be additive. Any base greater than 1 should work.
Typically, the base of logarithm is taken as 2, since log2 q bits are needed to represent
a quantity q.

The amount of information is measured in number of bits. For example, 3000 bits
are needed in order to transmit the results of 1000 rollings of an unbiased hypothetical
eight sided dice. If the dice is known to be biased, and the probability distribution is
known, then a variable length encoding can be used. Since, the information bits are
transmitted together, the encoding should be such that it is possible to disambiguate
the block of bits representing the results of different rollings of the dice. This implies
that the encoding must have prefix property which ensures that no code is a prefix of
any code.

For example, let the probability distribution for a biased dice be:

p(i) =
{

1/2i, for i ≤ 7

1/2i−1, for i = 8,

Since, half the number of rollings result in 1, the shortest code should be used for
1. On the other hand, the code for the rarest event (a rolling that results in 8) could be
the longest. A possible encoding scheme with the above mentioned properties would
be as illustrated in Table 10.1. The above encoding satisfies the prefix property. The
average number of bits needed for encoding the result of 1000 rollings is

1

2
+ 2 × 1

4
+ 3 × 1

8
+ . . . + 7 × 1

128
+ 8 × 1

128
= 1.984

So, with more information, the average number of bits required for transmitting
the result 1000 rolling of the biased 8 sides hypothetical dice is reduced from 3000
to 1984 bits.

To reinforce our understanding, consider flipping of a biased coin. Suppose head
shows up just once in 1000 flips. Let a 0 represent the fact that the result of a toss

Table 10.1 An encoding scheme with prefix property

Results
of rolling

1 2 3 4 5 6 7 8

Code 0 10 110 1110 11110 111110 1111110 1111111

10.7 Personal Mobility 313

is a head. Similarly, let 1 represent a tail. Suppose the coin is tossed one million
times. Without using any clever encoding, 1 bit will be required for the result of each
toss. So, transmitting the result of one million tosses requires a million bits. Since
a head shows up only once in 1000 flips of the biased coin, we may just record the
sequence number of tosses that resulted in a head. The missing sequence numbers
will then represent tails. Any number between 1 and 106 can be represented by at
most log 106 = 20 bits. Therefore, the information transfer for the result of 1000
flippings of biased coin will need just 20 bits. A total of 20000 bits will be needed
for transmitting the results of one million tosses.

From the above examples, let us try to abstract out the answer to the general
case of information coding for a random event. Consider a conventional dice with
six faces to find an answer to the above question. If the dice is unbiased, the
probability of occurrence of any value is p = 1/6, the number of bits required =
log 6 = − log(1/6) = − log 6. The result of one throw requires log 6 = 2.58 bits.
It is not immediately apparent how the result any particular throw of a dice can be
encoded by less than 3 bits. However, if we group g successive throws, the results
can coded by less than 6g bits. For example, the number of possible outcomes for a
group of three throws = 63 = 216 < 255, and 0–255 can be coded using 8 bits. Thus,
for a biased probability distribution, the number of bits required for the optimal code
is determined by

−
∑

x

p(x) × log p(x).

The examples discussed in this section, point to the fact that a rare event (probabil-
ity of occurrence is low) has a high information content. In the coin toss example, the
information content in occurrence of a head is − log(1/1000) = log 1000 = 9.9658.
So, 10 bits will be needed to represent the occurrence of a head. As against this infor-
mation contents in appearance of a tail is − log(999/1000) = 0.0044 bit. The average
information content is given by:

(1/1000) × 10 + (999/1000) × 0.0044 = 0.0114 bit.

Let us try to generalize the method of determining information content as outlined
in the above example. Suppose, the probability of an outcome Ai of a random event
A is p(Ai). Then the expected value of self information in A

H(A) =
n∑

i=1

p(Ai) × log

(
1

p(Ai)

)

= −
n∑

i=1

p(Ai) × log p(Ai)

According to Shannon [10], H(A) represents the entropy of A.

314 10 Location Management

Suppose X and Y is a pair of discrete random variables with joint probability
distribution p(x, y), where x ∈ X , y ∈ Y . The joint entropy of X and Y is:

H(X,Y) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y)

Assume that the conditional entropy H(Y |X) represents the information content
of a random event Y given that some event X has occurred. H(Y |X) is given by the
formula:

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x) = −

∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)

Joint entropy and conditional entropy are closely related. Joint entropy is the sum
of entropy of the first random variable and the conditional entropy of the second
random variable given the first.

H(X,Y) = −
∑

x∈X

∑

y∈Y
p(x, y) log p(x, y)

= −
∑

x∈X

∑

y∈Y
p(x, y) log(p(x)p(y|x))

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x) −

∑

x∈X

∑

y∈Y
p(x, y) log p(y|x)

= −
∑

x∈X

∑

y∈Y
p(x, y) log p(x) + H(Y |X)

= −
∑

x∈X
p(x) log p(x) + H(Y |X)

= H(X) + H(Y |X) = H(Y) + H(X|Y).

The generalization of the above result, known as chain rule, says:

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi|Xi−1, . . . ,X1).

If the random variables are known to be independent then according to the chain
rule:

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi).

10.7 Personal Mobility 315

10.7.2 Mobility Pattern as a Stochastic Process

In order to capture the personal mobility, a user’s movement is considered as a
random process. In a cellular infrastructure, a user’s mobility can be represented as
a sequence of cells that the user has visited. In a GSM type network, each symbol
represents a Location Area Identity (LAI) consisting of several cells. There is a
possibility that certain substrings of LAIs have repeated occurrences in a string of
LAIs representing a user’s movement. Such repetitions essentially represent locality
of a user’s movements. By characterizing mobility as probabilistic sequence, mobility
can be interpreted as a stochastic process.

At first we need to be clear on two issues:

1. How a user may move in a service area?
2. How the movements may be recorded?

Figure 10.6 illustrates an example for a service area consisting of eight LAIs a,
b, c, d, e, f, g, h. The shapes of actual cell areas are not hexagonal, but
irregular geometric contours. The cell contours are determined by actual field mea-
surement of signal strengths. Multiple cells are grouped into an LAI. The topology
of LAIs in coverage area can be abstracted in form of a graph shown along side. Each
node in the graph represents an LAI. Two nodes are connected with edge if and only
if the corresponding LAIs are adjacent to each other. With the graph abstraction as
explained above, the mobility pattern of a user is represented as a walk in the graph.
A walk is formed by the updates of the user’s locations as a user moves and enters
new LAIs.

The mobiles send their location updates to network subsystem. The frequency of
update is controlled by one of following three possible ways.

• Distance based updates: In the distance based updates, mobile terminals keep track
of the Euclidean distance from the time of the last update. If distance travelled from
the last update crosses a threshold D, the mobile should send an update.

• Movement based: A mobile sends an update if it has performed n cell crossings
since the last update.

• Time based: a mobile sends periodic update.

It is also possible to combine three update schemes in several possible ways. For
example, distance based updates can be combined with movement based updates or

Fig. 10.6 GSM type
location area map
(Source [3])

h a

c

e

d

bg

f

a b c

ef

gh
d

316 10 Location Management

Table 10.2 An example for LAI crossing by a mobile

Crossings in morning

Time 11:04 11:32 11:57

Crossing a → b b → a a → b

Crossings in afternoon

Time 3:18 4:12 4:52

Crossing b → a a → b b → c

Crossings in evening

Time 5:13 6:11 6:33 6:54

Crossing c → d d → c c → b b → a

Table 10.3 Sequence of cells representing movement history

Update scheme Movement history

T = 1 h aaabbbbacdaaa. . .

T = 1/2 h aaaaabbbbbbbbaabcddcaaaa. . .

M = 1 abababcdcba. . .

M = 2 aaacca. . .

T = 1 h, M = 1 aaababbbbbaabccddcbaaaa. . .

time based updates. Similarly, movement based updates can be combined with time
based updates, and so on.

Let us consider an example to understand how different updates schemes would
generate the updates. Suppose the service is started at 9.00 AM. An example of
LAI crossings is provided in Table 10.2. With the movement history, shown earlier
in Table 10.2, the LAI sequences reported by different update schemes may be as
shown in Table 10.3.

In summary, the movement history of a user is represented by a string v1, v2, v3, . . .,
where each symbol vi, i = 1, 2, . . ., denotes the LAI reported by the mobile in ith
update. The symbols are drawn from an alphabet set V representing the set of LAIs
covering the entire service area. The mobility of a user is characterized as a stationary
stochastic process {Vi}, where Vi’s form a sequence of random variables, and each
Vi takes a value vi from set V .

Before proceeding further, let us define a stochastic process.

Definition 10.1 (Stochastic process) A stochastic process is stationary if the joint
probability distribution does not change when shifted in time or space.

If observed over time, a normal mobile user is most likely to exhibit the preference
for visiting known sequence of LAIs in a time invariant manner. Equivalently, the
correlation between the adjacent LAIs in the string of visited locations remains
unchanged over all periods of time. Consequently, personal mobility pattern can be
treated as a stationary stochastic process. Thus,

10.7 Personal Mobility 317

Pr[V1 = v1, V2 = v2, . . . , Vn = vn] = Pr[Vl+1 = v1, Vl+2 = v2, . . . , Vl+n = vn].

The above general model could aid in learning, if a universal predictor can be con-
structed. Let us explore the possibility of evolving a statistical model for a universal
predictor. The common models used for interpreting the movement history are:

• Ignorant Model (IM)
• Identically Independent Distribution (IID)
• Markov Model (MM)

IM disbelieves and disregards past history. So the probability of any LAI residence
is the same, i.e., 1/8 for each of the 8 LAIs for the chosen example.

IID model assumes that the values random variables defining a stochastic process
are Identically and Independently Distributed. It uses relative frequencies of symbols
for estimating the residence probabilities of the LAIs. Assuming time and movement
based scheme the probabilities for the string aaababbbbbaabccddcbaaaa, are:

p(a) = 10/23, p(b) = 8/23, p(c) = 3/23, p(d) = 2/23,

p(e) = p(f) = p(g) = p(h) = 0.

The string consists of 23 symbols. Symbols e, f, g, h do not occur at all.
While the probability of occurrence of any of the remaining symbols is determined
by its relative frequency.

The simplest Markov model is a Markov chain where distribution of a random
variable depends only on distribution of the previous state. So, this model assumes
the stochastic process to be a stationary (time-invariant) Markov chain defined by:

Pr[Vk = vk|V1 = v1, . . . , Vk−1 = vk−1]
= Pr[Vk = vk|Vk−1 = vk−1]
= Pr[Vi = vi|Vi−1 = vi−1]

for arbitrary choices of k and i. Notice that the LAIs e, f, g, h are not visited at
all. This implies each of these four LAIs have zero residence probability or equiva-
lently, the effective state space is {a, b, c, d}. One step transition probabilities
are:

Pi,j = Pr[Vk = vj|Vk−1 = vi],

where vi, vj ∈ {a,b,c,d}, are estimated by relative counts. So, the movement profile
can be represented by the corresponding transition probability matrix:

P =

⎡

⎢
⎢
⎣

2/3 1/3 0 0
3/8 1/2 1/8 0
0 1/3 1/3 1/3
0 0 1/2 1/2

⎤

⎥
⎥
⎦

318 10 Location Management

Fig. 10.7 One step state
transition diagram for
personal mobility

a b c d

2/3
1/2 1/3

1/21/3 1/31/8

3/8 1/3 1/2

Table 10.4 Frequencies of symbols corresponding to three contexts

Order-0 Order-1 Order-2

a(10)|Λ
b(8)|Λ
c(3)|Λ
d(2)|Λ

a(6)|a b(1)|c
b(3)|a c(1)|c
a(3)|b d(1)|c
b(4)|b c(1)|d
c(1)|b d(1)|d

a(3)|aa a(2)|ba a(1)|cb
b(2)|aa b(1)|ba d(1)|cc
a(1)|ab a(1)|bb d(1)|cd
b(1)|ab b(3)|bb b(1)|dc
c(1)|ab c(1)|bc c(1)|dd

Note that a occurs 6 out of 9 times in context of a and 3 times out of 8 times
in context of b. The values of other transition probabilities can be found likewise.
Thus, the state transitions with the respective probabilities can be viewed as shown
in Fig. 10.7. Let Π = [p(a) p(b) p(c) p(d)]T be in steady state probability vector.
Solving Π = Π × P with p(a) + p(b) + p(c) + p(d) = 1, we obtain p(a) = 9/22,
p(b) = 4/11, p(c) = 3/22 and p(d) = 1/11.

To summarize the above discussion, though IID is the first step toward adaptive
modeling, it can never be adaptive. The optimal paging strategy dependents on the
independent probabilities of symbols {a,b,c,d,e,f,g,h}. But, if we already know
that the user has reported the last update as d then neither a nor b should be paged.
So, IID ignore the knowledge of the previous update.

Order-1 Markov model carries information to the extent of one symbol con-
text. For uniformity, IM is referred to as order-(−1) Markov model, and IID
as order-0 Markov model. Order-2 Markov model can be constructed by count-
ing the frequencies of symbols appearing in order-2 contexts for the sequence
aaababbbbbaabccddcbaaaa. Table 10.4 provides frequencies of different sym-
bols for all three contexts.

According to order-1 model the probability of taking the route a → b → c →
b → c → d is:

=(9/22) × (1/3) × (1/8) × (1/3) × (1/8) × (1/3)

=1/4224 = 2.37 × 10−4

It is unlikely that any user will ever take such a zig-zag route. Though the prob-
ability is very low; still it is not zero. However, if order-2 model is used then the
proposed route will be impossible. So, the richness of the information helps.

The question is how much of the past history should be stored so that it could lead
to a good prediction? Storing the movement history for every movement of a user
is not practical. The conditional entropy is known to be a decreasing function of the

10.7 Personal Mobility 319

number of symbols in a stationary process [4], implying that the advantage of higher
order contexts die out after a finite value. To appreciate this fact, we need compare
per symbol entropy rates H(V) for a stochastic process V = {Vi}. This quantity is
defined as

Definition 10.2

H(V) = lim
n→∞

1

n
H(V1, V2, . . . , Vn).

if the limit exists. The conditional entropy rate H ′(V) for the same process is defined
by

H ′(V) = lim
n→∞

1

n
H(Vn|V1, . . . , Vn−1),

if the limit exists.

Using the above definition, let us compute H ′(V) for the three different models
for the example for personal mobility we have used in the text.

• Order-(−1) model:
Vis are independently and uniformly distributed, so p(vi) = 1/8 for all vi ∈
{a,b,c,d,e,f,g,h} in the chosen running example. Due to independence of
events, p(vn|v1, . . . vn−1) = p(vn). Therefore,

H(V) = H ′(V) = −
∑

vi

p(vi) log p(vi)

=
8∑

i=1

(1/8) log 8 = log 8 = 3.

The above equation implies that the per symbol entropy rate is 3 bits for order-(−1)
model.

• Order-0 model:
In this case, Vis are Independently and Identically Distributed. Due to indepen-
dence p(vn|v1, . . . vn−1) = p(vn). Therefore,

H(V) = H ′(V) = −
∑

vi

p(vi) log p(vi)

= (10/23) × log(23/10) + (8/23) × log(23/8)

+ (3/23) × log(23/3) + (2/23) × log(23/2)

≈ 1.742.

Therefore, the per symbol entropy rate for order-0 model is 1.742 bits which is
much better than order-(−1) model.

320 10 Location Management

• Order-1 model:
In this case, Vis form Markov chains. So p(vn|v1 . . . vn−1) = p(vn|vn−1) = Pvn−1,vn .
Substituting steady state probabilities p(a) = 9/22, p(b) = 4/11, p(c) = 3/22
and p(d) = 1/11, we find

H ′(V) = −
∑

vi

p(vi)

⎛

⎝
∑

j

Pi,j logPi,j

⎞

⎠

= 9

22

(
2

3
log

3

2
+ 1

3
log

3

1

)

+ 4

11

(
3

8
log

8

3
+ 1

2
log

2

1
+ 1

8
log

8

1

)

+ 3

22

(

3 × 1

3
log

3

1

)

+ 1

11

(

2 × 1

2
log

2

1

)

≈ 1.194.

Note that 3 bits are sufficient to represent any symbol from a space of eight symbols
{a, b, c, d, e, f , g}. So order-(−1) model cannot resolve uncertainties in any of the
three bits. But both order-0 and order-1 models exhibit richness in information and
gradual decrease in entropy rates. The entropy rates H(V) and H ′(V) are same
in both order-(−1) and order-0 MM due to independence of the events related to
symbols. However, when order-1 MM is used, the per symbol entropy rate is 1.194
bits. It improves the entropy rate substantially over order-(−1) and order-0 models.

A mobile terminal’s location is unknown for the interval between two successive
updates. The approach in LeZi update is to delay the updates, if the path traversed
by mobile is familiar. The information lag does not impact paging, because system
uses prefix matching to predict location with high probability.

10.7.3 Lempel-Ziv Algorithm

LeZi update is based on Lempel-Ziv’s text compression algorithm [14]. The algo-
rithm provides a universal model for variable-to-fixed length coding scheme. The
algorithm consists of an encoder and decoder. The encoder incrementally parses the
text into distinct phrases or words (which have not been observed so far). A dictio-
nary is gradually built as phrases keep coming. LeZi update’s encoder is identical to
the encoder of Lempel-Ziv’s algorithm (see Algorithm 3). It runs at mobile terminal.
The encoding process can be best explained by executing it on a string of symbols.
Let the example string be:

aaababbbbbaabccddcbaaaa

Table 10.5 illustrates how encoding of each phrase is realized. The first incoming
phrase is a, Λ or the null phrase is its prefix. The null phrase is assumed to be a
prefix of any phrase having one symbol, and the index of Λ is set to 0. So, a is coded

10.7 Personal Mobility 321

Algorithm 3: Lempel-Ziv encoder

begin
// Encoder at mobile or compressing algorithm.
dictionary = null;
phrase w = null;
while (true) do

wait for next symbol v;
if (w.v in dictionary) then

w = w.v;
end
else

encode < index(w), v >;
add w.v to dictionary;
w = null;

end
end

end

Table 10.5 Encoding of different phrases

Index Prefix Last symbol Input phrase Output

1 Λ a a (0, a)

2 a a aa (1, a)

3 Λ b b (0, b)

4 a b ab (1, b)

5 b b bb (3, b)

6 bb a bba (5, a)

7 ab c abc (4, c)

8 Λ c c (0, c)

9 Λ d d (0, d)

10 d c dc (9, c)

11 b a ba (3, a)

12 aa a aaa (2, a)

as 0a. The index of an incoming phrase is determined by the position of the phrase
in the dictionary which is largest proper prefix of the current phrase. A proper prefix
excludes the last symbol in a phrase. For example, let us see how the next incoming
phrase aa is encoded. The largest proper prefix of aa is a. Since the position of a
is 1 in the dictionary, the index of the incoming phrase is 1. Therefore, appending
a to 1, we get the encoding of aa as 1a. Therefore using encoding algorithm the
string aaababbbbbaabccddaaaa is encoded as: 0a, 1a, 0b, 1b, 3b,
5a, 4c, 0c, 0d, 9c, 3a, 2a.

A code word consists of two parts (i) an index, and (ii) a symbol. The index
represents the dictionary entry of the phrase which is the prefix of the code word.
The prefix completely matches with the code word symbol-wise except for the last

322 10 Location Management

symbol. Therefore, the decoding consists of finding the prefix and appending the last
symbol to it. The major distinction between LeZi update and Lempel-Ziv’s algorithm
is in the decoder part. In the case of LeZi update, the decoder executes at the network
side. The decoder algorithm is provided in Algorithm 4.

Algorithm 4: Decoder for LeZi update

begin
// Decoder at the system side. It basically decompresses

the string.
while (true) do

wait for the next code word < i, s >;
decode phrase = dictionary[i].s;
add phrase to dictinary;
increment frequency of every prefix of the phrase;

end
end

To see how the decoding process works, we consider code word specified in
terms of tuples <index, last_symbol> and illustrate the decoding with the help of
Table 10.6. When the code word tuple is received, the index part is extracted first. For
example index part in the input tuple (0,a) is 0. The index is then used to retrieve
the phrase from the dictionary. Since, index of Λ is 0, the phrase retrieved is Λ. Then
symbol of input codeword is concatenated with retrieved phrase, i.e. a is appended
to λ. Since Λ+a = a, the decoding of (0, a) outputs the phrase a. Similarly, when
the code word (5, a) is received, the phrase having index 5 is extracted from the
dictionary, and the symbol a is appended to it producing the output bba. Along with

Table 10.6 Decoding of phrases

Input tuple Prefix phrase Last symbol Output phrase

(0, a) Λ a a

(1, a) a a aa

(0, b) Λ b b

(1, b) a b ab

(3, b) b b bb

(5, a) bb a bba

(4, c) ab c abc

(0, c) Λ c c

(0, d) Λ d d

(9, c) d c dc

(3, a) b a ba

(2, a) aa a aaa

10.7 Personal Mobility 323

the decoding, frequency count of all the prefixes are incremented. For example, when
phrases (0, a), (1, a), (1, b), (4, c), and (2, a) get decoded a’s frequency
count is incremented. So, total frequency count for a is 5. Similarly, frequency count
aa is incremented during decoding of (1, a) and (2, a), and total frequency
count of phrase aa is computed as 2.

The decoding process helps to build conditional probabilities of larger contexts
as larger and larger phrases are inserted into the dictionary. So, dictionaries are
maintained at system as well as at each mobile terminal. A mobile terminal sends
the updates only in coded form. It delays sending of update until a pre-determined
interval of time has elapsed. The updates are processed in chunks and sent to the
network as a sequence code words of the form C(w1)C(w2)C(w3) . . ., where each
phrase wi, for i = 1, 2, . . ., is a non-overlapping segment of symbols from the string
v1v2v3 . . . that represents the LAIs visited by the mobile since the time of sending
the last update to the network. So, LeZi update can be seen as a path based update
scheme instead of LAI based update.

10.7.4 Incremental Parsing

The coding process is closely inter-twined with the learning process. The learning
process works efficiently by creating the dictionary and searching it for the existence
of incoming phrases. An input string v1v2 . . . vn is parsed into k distinct phrases
w1,w2, . . . ,wk such that the prefix (all symbols except the last one) of the current
incoming phrase wj is one of the previously occurring phrases wi, 1 ≤ i < j. So,
the context statistics related to all prefixes can be updated during the parsing of the
current phrase itself. In addition, the prefix property also allows to store the history
efficiently in a trie.

Figure 10.8 depicts the trie produced by classical Lempel-Ziv algorithm for the
string in the example. The numbers alongside the symbols represent the frequency

Fig. 10.8 Trie built by
classical Lempel-Ziv
algorithm

Λ

a(5) b(4) c(1) d(2)

a(2)

a(1)

a(1)

a(1)

b(2)

c(1)

b(2) c(1)

a b

c

b

c

a

a

a

b

d
c

a

324 10 Location Management

computed by Lempel-Ziv algorithm. The process of computing frequencies has been
explained in the previous subsection.

A new dictionary entry can be created by appending one symbol to an already
existing phrase in the dictionary. An existing phrase terminates at a node of the trie.
An appended symbol to an existing phrase appears as a label of an edge leading from
terminating node of the phrase to another. As the incremental parsing progresses,
larger and larger phrases are stored in the dictionary. Consequently, conditional prob-
abilities among the phrases starts to build up. Since there is limit to the richness of
higher order Markov model, Lempel-Ziv’s symbol-wise model eventually converge
to a universal model.

As far as personal mobility is concerned, the location updates can be viewed
as that of generating a new symbol for the sequence representing the movement
history of the form v1v2 . . . vn. So, the movement history can be parsed into distinct
substrings and new update can be inserted into a trie which gradually builds the
personal mobility pattern.

However, we cannot use Lempel-Ziv compression based model in a straightfor-
ward way. One serious problem with the above compression model is that it fails to
capture conditional entropy early on due to following reasons:

• It works on one phrase at a time.
• Decoding algorithm counts only the frequencies of the prefixes of a decoded

phrase.
• It is unaware about the contexts that straddle phrase boundaries.

All of the above slow down the rate of convergence. LeZi update uses an enhanced
trie, where frequencies of all prefixes of all suffixes are updated. So instead of using
the decoder of the previous section LeZi update uses a slightly altered decoder as
provide by Algorithm 5. By doing so, it captures the straddling effect.

Algorithm 5: Enhanced decoder for LeZi update

begin
// Works for symbols straddling phrase boundaries.
while (true) do

wait for the next code word < i, s >;
decode phrase = dictionary[i].s;
add phrase to dictinary;
increment frequency of every prefix of every suffix the phrase;

end
end

The revised frequency counting method for phrases in LeZi update is as follow:

• Find all the prefixes of all the suffixes of each incoming phrase.
• Increment the frequency each time a particular prefix is encountered starting from

zero.

10.7 Personal Mobility 325

Fig. 10.9 Enhanced trie Λ

a(10)

a(3)

a(1) c(1)

b(2)

b(8) d(2)

c(1)

c(3)

c(1)b(2)a(2)

a(1)

Let us examine the effect of considering all prefixes of all the suffixes in generating
frequency counts for symbols in the example string. For the phrase aaa:

• Suffixes are aaa, aa and a, so the frequency counts of all prefixes of aaa, aa,
and a are incremented.

• The frequency counts of aa incremented by 2.
• The frequency counts of a incremented by 3.

The total count for a can be found by considering phrases a, aa, ab, ba, abc,
bba, and aaa. The enhanced trie obtained by LeZi update method is provided by
Fig. 10.9.

In order to estimate the effectiveness of the new model for personal mobility
against the model that is based on the classical Lempel-Ziv compression scheme, let
us compute the entropies for each case. The conditional entropy without considering
suffixes (see Fig. 10.8):

H(V1) = 5

12
log

12

5
+ 1

3
log 3 + 1

12
log 12 + 1

6
log 6

≈ 1.784. bits, and

H(V2|V1) = 5

12

(

2 × 1

2
log 2

)

+ 4

12

(
1

3
log 3 + 2

3
log

3

2

)

+ 1

6
log 6

≈ 0.723 bits.

Other two terms of H(V2|V1) being 0 are not included in the expression. The
estimate for H(V) = (1.784 + 0.723)/2 = 1.254 bits. The conditional probabilities
of all order-2 contexts are 0.

When all the prefixes of all the suffixes are considered, the frequency count would
be as shown in trie of Fig. 10.9. With enhanced tries, we still have

326 10 Location Management

H(V1) = 10

23
log

23

10
+ 8

23
log

23

8
+ 3

23
log

23

3
+ 2

23
log

23

2
≈ 1.742. bits, and

H(V2|V1) = 10

23

(
3

5
log

5

3
+ 2

5
log

5

2

)

+ 8

23

(

2 × 2

5
log

5

2
+ 1

5
log 5

)

≈ 0.952 bits.

Therefore, the estimate for H(V) = (1.742 + 0.952)/2 = 1.347 bits when all
the prefixes of all the suffixes are considered, implying that the suggested enhance-
ments carry more information. Hence, location update based on the enhancements
is expected to perform better than the simple Lempel-Ziv compression method.

10.7.5 Probability Assignment

The prediction of a location for mobile terminal is guided by the probability estimates
of its possible locations. The underlying principle behind the probability computation
is PPM (prediction by partial matching). PPM uses the longest match between the
previously seen strings and the current context. Our interest is in estimating the
probability of occurrence of the next symbol (LAI) on a path segment that may
be reported by the next update. A path segment is an LAI-sequence generated when
traversing from the root to a leaf of the sub-tries representing the current context. The
conditional probability distribution is obtained by the estimates of the conditional
probabilities for all LAIs given the current context.

Suppose no LeZi type update is received after receiving aaa and we want to find
the probability of predicting the next symbol as a. The contexts that can be used are
all suffixes of aaa except for itself, namely, aa and a and Λ (null context). PPM
tells that to determine the probabilities only the previously seen phrases should be
considered. Therefore, the possible paths that can be predicted with the contexts aa,
a and Λ are as shown in Table 10.7. Start from the highest order context, i.e., aa. The
probability a in this context is 1/3. The probability of a null prediction in the context
aa is 2/3. It leads to order 1 (with null prediction) context, where the probability of
a’s occurrence is 2/10 = 1/5. Now fall back to order-0 (with null prediction), which
has probability 5/10 = 1/2. The probability of a’s occurrence in order-0 is 5/23. So
the blended probability of the next symbol being a is

1

3
+ 2

3

(
1

5
+ 1

2

(
5

23

))

= 0.5319

To examine a variation, consider the occurrence of phrase bba after receiving
aaa. The phrase bba does not occur in any of the contexts 1 or 2. The probabilities
of escape from the order-1 and the order-2 contexts with null prediction are:

10.7 Personal Mobility 327

Table 10.7 Conditional probabilities of movement prediction

aa (Order-2) a (Order-1) Λ (Order-0)

a(1)|aa
Λ(2)|aa

a(2)|a
aa(1)|a
b(1)|a

bc(1)|a
Λ(5)|a

a(5)|Λ ba(2)|Λ d(1)|Λ
aa(2)|Λ bb(1)|Λ dc(1)|Λ
ab(1)|Λ bba(1)|Λ Λ(1)|Λ

abc(1)|Λ bc(1)|Λ
b(3)|Λ c(3)|Λ

• Order 2 context: (with phrase aa), the probability of null prediction is 2/3 (out of
3 occurrences of aa).

• Order 1 context: (with phrase a), the probability of null prediction is 1/2, because
Λ occurs 5 times out of 10.

In summary, the idea of prediction works as follows. It starts with a chosen highest
order of context, and then escape to the lower orders until order 0 is reached. This
essentially means given a path segment we try to predict the next symbol with high
probability.

Therefore, the blended probability of phrase bba is

0 + 2

3

(

0 + 1

2

(
1

23

))

= 0.0145

Since a occurs once and b occurs twice in the phrase bba, the individual proba-
bilities of symbols a and b respectively are: (1/3) × 0.0145 = 0.0048, and 0.0145×
(2/3) = 0.0097.

10.8 Distributed Location Management

In earlier sections of this chapter, we discussed about various location manage-
ment schemes. Each scheme essentially uses some form of distribution of location
information across the network. The underlying ideas is that location information is
organized in a way such that the cost and latency in determining the exact location
of a mobile device are minimized. Yet, the effect of information distribution on the
performances of lookups and updates could be limited for wide area roaming of the
mobile users. This is due to the fact that the distant network messages have to be
exchanged to support wide area roaming. In this section, we describe a distributed
system for storing and accessing location information.

The scheme grew out of the idea of maintaining the location information of a
user in a single database at a time instead of replicating in several levels of hierarchy
as described in Sect. 10.3. The entire coverage area is divided into several location
areas or regions and consists of three levels of hierarchy. Each region consists of a

328 10 Location Management

Fig. 10.10 The model

A subset of LSsAnother subset
of LSs

Region 4

Region 5 Region 3

Region 2Region 1

number of mobile switching centers (MSC), and the area under coverage of each
MSC consists of a number of cells. Each cell is served by a base station (BS).
Logically all mobile users which visit a region are partitioned into groups. There
will be a Location Server (LS) in a region of coverage corresponding to each group
of the mobile users. The location data of a mobile user is always stored in the LS that
corresponds to its group in the region when the user visits a region. The grouping of
mobile stations and the region division could be unrelated or related in some way.
The matching LSs of the matching groups of mobile users in different regions are
connected to each other. In other words, the model consists of

• LSs partitioned up into subsets.
• The LSs belonging to same subsets are interlinked.
• There is a LS of each subset in every region.
• Each mobile user can map to only one such subset.
• The location data of a mobile host MH visiting a region R is stored at a LS in R

such that the LS is the member of subset of LSs to which the MH is mapped.

The model is depicted in Fig. 10.10. The regions in the figure are demarcated by heavy
lines. Each cell is represented by a hexagonal area. There are two LSs per region, each
belonging to a different subset as indicated by filled blue and red circles respectively.
Each LS serves roughly for the volume of users in 2–3 cells. The LSs belonging to
same subset are fully interconnected. Though the figure does not indicate, each MSC
is connected to all the LSs in the same region. In other words, LSs are part of GSM’s
network subsystem.

10.8 Distributed Location Management 329

10.8.1 The Call Setup Protocol

An MSC initiating a call setup on behalf of a caller sends a request for lookup to
the local LS for the required (callee) mobile host (MH). The identity of the local LS
can be determined by a simple hash function applied to the callee’s ID. The local LS
looks in its own registers. If the entry is found then LS returns the cell location of the
callee. The requesting MSC can then carry out the call switching between the caller
and the callee using the GSM call set up procedures as explained in Chap. 3. If the
entry is not found, then the local LS multicasts a request message for the callee to
the other LSs belonging to the same subset. If the callee is registered (it should be
on) then one of LSs should reply. Following which the call switching is carried as in
the previous case.

10.8.2 Update

When a MH moves from one location to the other its location information should
be updated. It works as follows. The MH reports for registration to an BS under an
MSC in the region where it moves. The MSC applies a hash function to determine
the subset of LSs that maintain the location for MH. The process of update depends
on the type of the move made by the MH. The moves are of the following types.

• Move within the region.
• Move between the regions.

If a MH moves from one cell to another cell under a same MSC then no update
is required. However, if the MH moves from a cell to a cell under a different MSC
in the same region, then an entry will be found in the local LS of the subset. The LS
will update the information and send a de-registration to old MSC.

If the MH did not belong to the current region, i.e., it moved from a different
region, the local LS multicast the information to the other LSs of its own set in the
neighborhood. The new LS would know the possible regions from which the MH
may have come. These regions are those which have common border with the current
region. It depends on the location of the current region and its shape. One of the LSs
of the neighbouring region must have an entry corresponding to MH. The LS having
the entry then delete the same, and sends a delete entry message to the MSC which
was serving the MH in the region. In case the registration message from the mobile
device itself includes the ID of the previous LS or the region, the current LS can send
unicast message to the previous LS.

http://dx.doi.org/10.1007/978-981-10-3941-6_3

330 10 Location Management

10.8.3 Data Structures and System Specification

The important data structures for implementation of the lookup and update protocols
are:

• location[MH_id]. This is the set of data registers available at an LS. The
entry in each register is the Cell_id of the MSC which has the MH with MH_id.
Additionally it may contain entries for all MHs whose hash function map to LS.
This information would help in call setup between the mobiles belonging to the
same LS set.

• LSforRegion[Region]. This is a table to lookup the LSs (other members of
the same subset) which are associated with the LS holding the table. Each MH
must be associated with one LS in each region which would contain the location
of the MH.

• neighborRegion[MSC]. This is an array of neighboring regions for a partic-
ular MSC. If the coverage area of an MSC is completely within the interior of a
region, the array will be empty. On the other hand, the border MSC (whose cov-
erage area forms a part of the region’s border) will have a number of neighboring
regions depending on the shape of the regions.

As shown in Algorithm 6 a simple hash function can be used to determine the index
of the subset of LSs. Hence, the specific LS in the current region associated with a MH
can be found by applying the hash to ID of the MH. The variablenumLSperRegion
defines the number of LSs in a region. This helps in determining the load on each
LS.

Algorithm 6: Method get_LSId(MH_id)

begin
return MH_id mod numLSperRegion; // Apply hash to get LS ID.

end

A MH is expected to send updates about its locations from time to time. The
frequency of update depends on the update protocol. On receiving a location update,
at first a local update is attempted by the current MSC. If the conditions for a local
update are not met, then a remote update is attempted by the MSC. Suppose an MH
moves from a cell under MSCold and joins a cell under another MSC, say, MSCnew,
where both MSCold and MSCnew belong to the same region, then a local update is
needed. Algorithm 7 specifies local update method. However, no update is needed
for the movements of an MH between cells under the same MSC, because GSM
underlay takes care of updating VLR.

The update method in Algorithm 8 is executed by a LS when it is informed
about the movement of mobile host to the current region. As the update method
indicates, in case an MH has moved from a region outside the current region then

10.8 Distributed Location Management 331

Algorithm 7: Method localUpdate(MH_id, MSCold , MSCnew)

begin
// Executed by the MSC on behalf of a MH.
LS_id = get_LSId(MH_id);
LS[LS_id].localUpdate(MH_id, MSCold , MSCnew);

end

remoteDelete method should be executed by the new LS storing location update
from the roaming MH. Algorithm 9 gets invoked to delete entry for MH from the LS
in the neighborhood. Only one of the LSs in the neighborhood may have a entry for
the MH.

Algorithm 8: Method update(MSC, MH_id)

begin
// Executed by LS of the region.
if (exists(location[MH_id]) then

if (location[MH_id] != MSC) then
// MH moved within same region but from one MSC to

another.
replaceEntry(MH_id, MSC);

end
// Do nothing if location is unchanged
return;

end
// MH was not in region under the LS of the current region,

it must have arrived to the current region from a
neighboring region.

for (i ∈ neighborRegions[MSC]) do
// Issues a remoteDelete to delete MH entry from LSs of

the neighborhood region. Only one LS have such an
entry.

remoteDelete(i, MH_id); // See the Algorithm 9.
end
insertEntry(MH_id, MSC); // Update needed in current region.

end

Algorithm 9: Method remoteDelete(region_Id, MH_id)

on receiving (remoteDelete) begin
if (exists(location[MH_id] in LS[region_Id]) then

deleteEntry(MH_id);
end

end

332 10 Location Management

The method remoteDelete is called by an LS when it determines that a MH
has moved from a region outside its own region. It sends remote delete request to LSs
of its own set in the neighboring regions. It is assumed that the methods for inserting,
deleting, or replacing an entry have obvious implementations and the details of these
specifications are not provided here.

A lookup is necessary for paging during call set up. A local lookup is executed
by the MSC of the caller to determine if the callee belong to the same region. A
region based calling mechanism can be useful for modeling tariffs by a GSM service
provider. Algorithm 10 illustrates local lookup method.

Algorithm 10: Method lookup(MH_id, MSC)

begin
LS_id = get_LSId(MH_id);
return LSforRegion[LS_id].localLookup(MSC, MH_id);

end

A local lookup fails in the case the local associated LS does not have an entry for
the callee. In this case, a remote lookup initiated by local LS by sending a multicast
message to the other LSs belonging to the same subset as the local LS in the caller’s
region. Algorithm 11 combines both local and remote lookup into a single method.
One final part of the lookup method is provided by Algorithm 12. It allows a LS to
check the location entries when LS receives a lookup message. If an entry is found
then it returns the entry. Otherwise, it returns NULL indicating a failure.

Algorithm 11: Method localLookup(MSC, MH_Id)

begin
if (exists(location[MH_id]) then

// Local lookup successful.
return location[MH_id];

end
else

// Perform remote Lookup for MH.
for each (region i)
remoteLoc = LSforRegion[i].remoteLookup(MH_id);
if (remoteLoc != NULL) then

return remoteLoc;
end
// All remote lookups fail. MH must be in power off

mode.
return NULL;

end
end

10.8 Distributed Location Management 333

Algorithm 12: Method remoteLookup(MH_id)

on receiving (a lookup message) begin
if (exists(location[MH_id]) then

return location[MH_id];
end
else

return NULL;
end

end

10.8.4 The Cost Model

The cost of each operation required to update the LS entries as MH moves and the
find an MH can be modeled using a set of simple assumptions as listed in Table 10.8.

Local Update Cost.

Using the above cost model, the cost of a local update can be computed by analyzing
the involved steps.

• First, new MSC must find out its associated location server LS. This requires a
simple application hash function. The cost of this step is H.

• New MSC send a message to its local LS for update. This cost is t.
• The LS, on receiving the message, performs a search or register lookup for update

which is RL.
• The new LS must send information of this update to the old LS. This enable old

LS to purge the entry. The cost of sending this message is t.
• After receiving the information the old LS deletes its register entry. The cost for

deletion is MD.

Adding all the cost together, the total update cost: 2t + H + RL + MD

Table 10.8 Notations used for cost analysis

Notation Description

t Time unit for delivery of local network message

X A multiple of cost of the delivery of remote
network message as compared to the delivery
of a local network message

RL Register lookup time at an LS

H Time to perform hash

MD Time to perform delete MSC

LN Lookup time in the neighbouring regions for
the new MSC

334 10 Location Management

Remote Update Cost.

The break-up for the cost computation of a remote update is as follows.

• New MSC hashes to determine LS subset which holds the entry. The cost of
performing hash is H.

• After identifying the LS subset, New MSC must sends a message to LS belong to
subset which is available in local region. The cost of sending this message is t.

• The LS of the local region then determines probable neighbouring regions for the
new MSC. This cost is LN .

• The LS then sends delete MSC message to the all the neighbouring regions incur-
ring a cost of Xt

• The next step is to search remote LS for MH entry which takes time RL
• The remote LS sends message to old MSC for deletion incurring a cost of t.
• Old MSC then deletes the MH entry with a cost of MD.
• Local LS now performs a register lookup for creating a new entry for MH. For

this it incurs a cost of RL.

The overall cost is obtained by adding all the cost mentioned above. It, therefore,
works out as 2t + Xt + H + 2RL + MD + LN .

Similarly, the cost for local lookup time and the remote lookup time can also be
found. These costs are:

1. Local lookup time = 2t + H + RL.
2. Remote lookup time = 2t + Xt + H + 2RL.

References

1. I.F. Akyildiz, J.S.M. Ho, On location management for personal communications networks.
IEEE Commun. Magaz. 34(9), 138–145 (1996)

2. I.F. Akyildiz, J. McNair, J. Ho, H. Uzunalioglu, W. Wang, Mobility management in current
and future communications networks. IEEE Netw. 12(4), 39–49 (1998)

3. A. Bhattacharya, S.K. Das, Lezi-update: an information-theoretic framework for personal
mobility tracking in pcs networks. Wireless Netw. 8, 121–135 (2002)

4. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)
5. J.S.M. Ho, I.F. Akyildiz, Dynamic hierarchical database architecture for location management

in pcs networks. IEEE/ACM Trans. Netw. 5(5), 646–660 (1997)
6. R. Jain, Y.-B. Lin, An auxiliary user location strategy employing forwarding pointers to reduce

network impacts of pcs. Wireless Netw. 1(2), 197–210 (1995)
7. J. Jannink, D. Lam, N. Shivakumar, J. Widom, D.C. Cox, Efficient and Flexible Location

Management Techniques for Wireless Communication Systems, Mobicom ’96 (1996), pp. 38–
49

8. E. Pitoura, G. Samaras, Locating objects in mobile computing. IEEE Trans. Knowl. Data Eng.
13(4), 571–592 (2001)

9. K. Ratnam, I. Matta, S. Rangarajan, Analysis of Caching-Based Location Management in
Personal Communication Networks, The Seventh Annual International Conference on Network
Protocols (ICNP ’99), Washington, DC, USA, 1999 (IEEE Computer Society, 1999), pp. 293–
300

References 335

10. C.E. Shannon, The mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423
(1948)

11. N. Shivakumar, J. Jannink, J. Widom, Per-user profile replication in mobile environments:
algorithms, analysis, and simulation results. Mobile Netw. Appl. 2(2), 129–140 (1997)

12. C. Song, Q. Zehui, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility.
Science 327(5968), 1018–1021 (2010)

13. J.I. Yu, Overview of EIA/TIA IS-41, Third IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC ’92) (1992), pp. 220–224

14. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans.
Inform. Theory 24(5), 530–536 (1978)

Chapter 11
Distributed Algorithms for Mobile
Environment

11.1 Introduction

From the prospectives of the application developers, a mobile computing system
is a distributed systems consisting of thousands of mobile computers and a set of
static computers connected by wireless networks [1]. A major part of the research in
mobile computing system is directed towards establishing and maintaining connec-
tivity between two types of computers through bridges between wireless with wired
networks [2]. Over the years, however, mobile computing has emerged as a distinct
paradigm for problem solving which is characteristically different from conventional
distributed computing.

From an abstract point of view, a mobile computing system can be seen as a graph
that consists of a fixed core of static nodes and a dynamic set of mobile leaf nodes [3].
Structurally, the organization is similar to a cellular mobile telephone network. The
mobile leaf nodes can be viewed as a set of persistent messages moving through
graph. With this underlying graph model, traditional distributed algorithms can be
implemented directly on mobile system. Unfortunately, a direct mapping of distrib-
uted algorithms to mobile environment is not practical due to limited bandwidth,
fragility of wireless links and many other resource specific constraints associated
with mobile nodes.

A commonsense driven approach to design a distributed algorithm for mobile
system will be to assign computing tasks to the fixed part of the system as much
as possible. It intrinsically formulates a logical two-tier approach for computing
in a mobile distributed environment. By offloading compute intensive tasks to the
static computers [4, 5], mobile devices can save critical resources including batteries.
Before we expand on the idea of two-tier approach, let us examine the differences
between a traditional distributed system and a mobile computing system a bit more
in details.

The mobility of a computing node brings up two important new issues in data
delivery [6]:

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_11

337

338 11 Distributed Algorithms for Mobile Environment

1. Locating a node for delivery of message, and
2. Transparent semantic routing of the message to the node.

Consequently, any attempt to map existing distributed algorithms for execution in
mobile computing environment in a simple way is unlikely to meet much success.
Nevertheless, observing the differences between mobile computing and distributed
systems will help in recognizing the issues that may arise in design of distributed
algorithms or restructuring existing distributed algorithms for execution on mobile
computing systems.

11.2 Distributed Systems and Algorithms

A distributed system consists of a set of autonomous computers (nodes) which com-
municate through a wired network. A program which runs on distributed system is
typically organized as a collection of processes distributed over different nodes. A
distributed computation consists of four iterative steps:

1. Broadcasting,
2. Gathering information,
3. Executing joint computation, and
4. Agreeing on coordinated actions.

The last three steps are closely related. Information gathering in a distributed setup
requires the participants to share local information amongst themselves. Similarly,
the progress of a joint computation requires exchange of partial results amongst the
participants. In fact, any coordinated action requires information sharing. Since the
processes are distributed over a set of autonomous computers, all such synchroniza-
tion requirements can be met either through a shared memory or through exchange
of messages over the network among the nodes. A shared memory in a distrib-
uted system is implemented at the software level either transparently by extending
the underlying virtual memory architecture, or explicitly through a set of library
functions. In other words, message passing is the basic interface for sharing and
exchanging of information between computers in a distributed system.

All distributed algorithms are designed with following basic assumptions about
the capabilities of the participating nodes:

1. The nodes are static and their locations (IP/MAC addresses) are known in advance.
No cost is incurred for locating a host.

2. The participating nodes are resource rich, having enough computation power,
memory.

3. The nodes are powered by continuous supply of power, and remain active during
the execution of programs.

4. The inability to receive a message by a node, due to a power failure, is treated as
a failure of the algorithm.

11.2 Distributed Systems and Algorithms 339

5. The message setup cost is fixed, and same for all the messages. The latency due
to message transmission dominates communication cost.

6. The size of a message is limited by size of MTU supported by network, and the
transmission cost of a message between two fixed nodes is fixed.

7. Sufficient bandwidth is available for transfer of messages.
8. Transmission of a large amount of data between two nodes is accomplished by

fragmenting it into several messages, and transmitting each of these messages
separately.

11.3 Mobile Systems and Algorithms

Before dealing with the design of distributed algorithms for mobile environment,
there is need to understand how the efficiencies of such algorithms can be evaluated.
The evaluation criteria influence the design of efficient algorithms. The efficiency
requirements of a distributed algorithm for mobile distributed environment should
focus on:

• Minimization of communication cost,
• Minimization of bandwidth requirement,
• Meeting all the synchronization requirements, and
• Overcoming the resource constraints of mobile hosts.

Bandwidth is usually treated as a resource. Therefore, the impact of poor bandwidth
can be examined along with the other resource constraints.

Synchronization is a key issue for the correct execution of any distributed algo-
rithm. Unlike static clients, mobile clients can appear and disappear in any cell of a
service area at any time. The synchronization techniques have to be adjusted to han-
dle dynamically changing locations of the peers. Thus, there is a need to evolve of a
new model for evaluating the cost of distributed algorithms in mobile environments.
Some of the easily identifiable cost criteria are:

• Computation on a mobile node versus that on a static node,
• Relocating computation to static host, and
• Communication on wireless channels,

There is also a number of other characteristics of a mobile distributed system which
influence the cost computation. In particular, network disconnection and recon-
nection introduce complications in evaluation of the cost. Furthermore, the cost
model applicable to mobile infrastructured network cannot directly be extended to
infrastructureless mobile ad hoc networks. Therefore, separate cost models have to
be evolved for different mobile distributed environments.

Finally, the cost model is of little help unless, algorithm designer adopt appropriate
strategies in design of algorithms. In this connection, two major issues which an
algorithm designer must appropriately address are:

340 11 Distributed Algorithms for Mobile Environment

• How a computation in a mobile environment can be modeled?
• How synchronization and contention problems arising thereof can be resolved?

11.3.1 Placing Computation

Whenever an operation is executed on a remote object, at first a message is sent to
the node that hosts the object. The desired operation is then performed by the remote
node on behalf of the initiating host. It is convenient to assume that the mobile host
logically executes the required set of operations directly on a remote node by sending
a message. Sending a message to a mobile host is a two-step process:

1. The first step is to locate the mobile host.
2. The next step is to actually send the message.

If destination of the message is a fixed host, the above two steps can be carried out
by the base station (BS) of the source mobile node within the fixed network. The BS
being a part of fixed network would be able to forward the message to the destination
node by using the IP forwarding protocol. It does not involve location search. This
implies the first step is unnecessary for a destination which is a static node. Thus,
sending a message to a fixed host is a lot cheaper than sending a message to a mobile
host. Therefore, it is preferable to avoid sending messages to mobile hosts except for
the case when both sender and the receiver are under the same BS. Since a mobile host
should try to avoid sending messages to another mobile host, executing operations
on objects resident in another mobile host should be avoided. So, the first design
principle is:

Principle 1 [7] To the extent possible, all remotely accessed objects should be
resident on the fixed hosts.

In other words, a node which hosts an object, requires both computing power and
bandwidth. Therefore, frequently accessed objects should not be stored in mobile
hosts. The role of a mobile host in a thread of execution is normally restricted to
initiating operations on a remote object by sending message to the fixed node holding
the object.

11.3.2 Synchronization and Contention

Whenever a particular resource is concurrently accessed from a number of remote
agents, the competing agents should follow a well defined contention resolution
protocol. We can treat each resource as an object. A sequence of operations being
initiated from a specific place (a mobile host) can be called a thread of execution.
Thus, an execution scenario is represented by many concurrently running threads
trying to operate on an object. For the moment, let us not make any assumptions

11.3 Mobile Systems and Algorithms 341

about where this object is located (at the risk of violating Principle 1). It may be
either be resident on a fixed host or on a mobile host. The concurrent threads compete
to gain access to the object.

Concurrent operations on an object by the competing threads should not leave the
object in an inconsistent state. In other words, any attempt to access a shared object
should be synchronized by mutual exclusion of competing threads. Let us examine
the issue of object consistency a bit more to understand why mutual exclusion is an
important issue for synchronization in a distributed settings. The execution of distrib-
uted algorithms can be visualised as a repeated pattern of communication followed
by computation. The computation is limited to the individual hosts and during the
execution of a computation, a host may need to communicate with its neighbors or
other nodes for exchanging the results of partial computations. So the progress of a
computation also needs synchronization. The synchronization requirements, among
other things, may involve initialization of parameters for the next phase of compu-
tation. Thus a distributed system of hosts exhibit repeated bursts of communication
in between the periods of local computations.

When hosts become mobile, one additional cost parameter, namely, cost of loca-
tion lookup is introduced. Furthermore, due to resource poorness in mobile hosts,
the cost assignment criteria for computational resources become drastically differ-
ent from that used for fixed host. The communication cost also needs to distinguish
between messaging over the wired and the wireless links. A simple technique, to
avoid the high resource cost at mobile hosts is to relocate compute intensive parts of
an algorithm to the fixed hosts as much as possible. Badrinath, Acharya and Imielin-
ski [7] proposed three different strategies, namely, the search, inform and proxy to
handle the issue of location search cost in the context of restructuring distributed
mutual exclusion algorithm on a logical ring network. The techniques proposed by
them are generic in nature and, therefore, can be used in synchronization require-
ments of distributed algorithms such as executing critical section of a code. We
examine these strategies in this section.

11.3.3 Messaging Cost

The most important complexity measures of any distributed algorithm is the com-
munication cost. It is dependent on the number of messages exchanged during one
execution of the algorithm. But when hosts are mobile, the communication com-
plexity should also include the cost of location search. Location search includes the
messages exchanged to locate a mobile host in the coverage area. We know that
mobile hosts have severe power constraints. They can transmit messages only on
wireless links which require substantial amount of power. Furthermore, wireless
links offer low bandwidth. Therefore, the cost of communication over a wireless
link is more expensive than the cost of communication over a wired link. Badrinath,
Acharya and Imielinski [7] proposed three different measures of cost for counting
the number of messages exchanged during the execution of a distributed algorithms

342 11 Distributed Algorithms for Mobile Environment

Search
initiator

Cf

Total cost = (Nbss + 1)Cf

MN2

MN1

Fig. 11.1 Search cost

in a mobile computing environment. The cost model is specified by defining the units
of cost as follows:

• Cw: cost of sending a message from MH to BS over wireless channel (and also
identical to the cost in the reverse direction)

• Cf : cost of sending a message from a static node to another another static by the
wired N/W.

• Cs: cost of searching/locating the current base station BScur of an MH and for-
warding a message from a source base station BSsrc to BScur .

Cw is assumed to represent a higher multiplicative cost compared to Cf . We may,
therefore, assume Cw to be equivalent to k. Cf , where k > 1 is an appropriately
chosen constant.

The simplest strategy to locate a mobile host is to let the searching base station
query all the other base stations in the coverage area. The base station which responds
to the query is the one which services the mobile host in the cell under it. The
querying base station can then forward the message meant for the mobile host to
the responding base station. So, the messages exchanged for a location search as
illustrated by Fig. 11.1 are:

1. In the first round, all the base stations, except one, receive message from the
querying base station. It requires exchange of (NBS − 1) × Cf messages.

2. The base station, servicing the searched mobile host, responds. It incurs a cost of
Cf .

3. Finally the querying base station forwards a message (data packet) to the respond-
ing base station. This incurs a cost of Cf .

11.3 Mobile Systems and Algorithms 343

Adding all the three costs, the worst case cost for a search:

Cs = (NBS + 1) × Cf .

The cost of transmitting a message from a mobile host (MH) to another mobile
host (MH′) is determined by overhead of search, and the cost of actual message
transfer. The break down of the cost is given below.

1. The source MH sends the message to its own base station BS. The cost incurred
for the same is: Cw

2. BS then initiates a search for the destination MH′ to locate its base station BS′
under whose cell area MH′ is currently active. BS delivers the message to BS′.
The cost of the locating MH′ and delivering message to BS′, as explained, is Cs.

3. After receiving the message from BS, BS′ delivers it to MH′. This action incurs
a cost of Cw.

Now adding all the costs together, the worst case cost of transmitting a message from
a mobile host MH to another mobile host MH′ in the worst case is:

2Cw + Cs.

Figure 11.2 explains how a message from a source mobile can be delivered to a
destination mobile.

The analysis of the cost structure which Badrinath, Acharya and Imielinski [7]
have proposed, is captured by Fig. 11.3. It succinctly explains two aspects, namely,

Fig. 11.2 Mobile to mobile
communication Cw Cw

Cs

MN1 MN2

Fig. 11.3 Summary of cost
model hi

gh
lo

w

Wireless network

cost hgihwol

Fixed network

co
m

pu
ta

tio
n

communication

computation
search cost

computation
communication

344 11 Distributed Algorithms for Mobile Environment

• The major component of the cost in a mobile distributed environment is due to
communication.

• However, the computation is also slow in mobile hosts. So, in the cost due to
computation is relatively high compared to the cost in conventional distributed
system.

Relocating computation on the fixed host makes sense. But, relocation may mean
communication between a fixed host and a mobile host. After computation is over,
the fixed host needs to report the result back to the mobile host. This would need a
search for locating the mobile host.

11.4 Structuring Distributed Algorithms

Attempts to execute distributed algorithms directly without any restructuring for
mobile environment may lead to design of inefficient algorithms. Inefficiencies, in
design of algorithms for mobile distributed environment, as observed in the previous
section arise out of synchronization, the asymmetry in model of the computation, and
the imbalance in communication cost between wired and wireless interfaces. From
the point of view of algorithm design, the problems are dependent on the abstract
notions of coordination and control in distributed algorithms. As an analogy, consider
the issue of quality in software design process. The efficiency of algorithms addresses
the quality in the problem domain. But when algorithms are converted to software
processes, the issue of quality goes beyond the problem domain. It becomes linked
to the choice of technologies for the implementation such as computers and their
capabilities, underlying network, storage, programming tools and languages, etc.

In a distributed computing environment, the control is not exercised by a single
computer. So the efficiency issue, i.e., the issue of quality must consider how control
and coordination are exercised in the execution of distributed algorithms. Therefore,
in order to structure distributed algorithm for execution in a mobile environment we
also need to consider the problem of coordination and control. The class of distributed
systems can be categorized as follows.

• Non-coordinator based systems:
• Coordinator based systems.

11.5 Non-coordinator Systems

In a non-coordinator based system, all the machines are equivalent. Therefor, no
machine can exercise any control on another machine. A non-coordinator system
is known more popularly as a peer-to-peer system. There are two different types of
non-coordinator based systems. In the first type of non-coordinator based system,
each peer execute the same code. In the second type, a few of the machines execute
some specialized code, while the rest execute the same code.

11.5 Non-coordinator Systems 345

11.5.1 All Machines are Equivalent

In such a system, each machine roughly shares the same amount of computational
and communication load. Such systems can easily be modified to work in a mobile
computing environment. We illustrate this with Lamport’s Bakery algorithm [8] for
mutual exclusion. In the Bakery algorithm, a process waiting to enter the critical
section chooses a number. It allows all processes which have chosen smaller numbers
to enter into the critical section before itself. The ties are resolved by process IDs,
allowing the process with the lower ID to enter the critical section. Lamport’s original
algorithm makes use of two shared arrays, each consisting of n elements. One element
is assigned for each process in each shared array. The values in a shared array can be
examined by any process. In a peer to peer settings, no shared arrays can be used. So,
local variables choose and value are maintained by each process. A process uses
message passing mechanism when it needs to examine the values of local variables
of another process. The pseudo code of the algorithm appears in Algorithm 13.

Algorithm 13: Lamport’s bakery algorithm
boolean choosingi = false;
int numberi = 0;
while (1) do

choosingi = true;
set valuei = max {valuej|j �= i, j = 0 . . .NMH − 1} + 1;
choosingi = false;
for (j = 0; j < NMH, j != i; j + +) do

while (choosingj) do
{busy wait ...}

end
while (numberj != 0) && ((numberj, j) < (numberi, i)) do

end
end
.
.
.

{ Critical section code}
.
.
.

numberi = 0;
end

Lamport’s Bakery algorithm requires very little computation, and can be easily
performed on a mobile device. So, ignoring computation we may just focus on the
communication aspects. The execution of the algorithm in a mobile host MH can be
analyzed in three distinct parts.

346 11 Distributed Algorithms for Mobile Environment

1. Choose own number.
2. Wait for the mobile hosts with lower numbers to avail their turns.
3. Execute the critical section.

In the first part of the execution, an MH fetches the numbers chosen by other
NMH − 1 mobile hosts in order to set its own number. So, an MH sends a query to
all other mobile hosts for fetching their respective local numbers. As the end hosts
are mobile, fetching each number involves location search for the other end host.
It is assumed that the requester does not move when it is waiting for the replies to
arrive. So, location search is not required for the delivery of the replies. Therefore,
the message cost incurred for fetching the number chosen by another mobile host
(2Cw + Cs). The overall the message cost incurred by MH for choosing its own
number is, therefore, equal to

(NMH − 1) × (2Cw + Cs).

In the second part of the execution, a requesting mobile host MH waits for all
mobile hosts to choose their numbers. Then subsequently, allow those hosts to execute
the critical section if their chosen numbers are smaller than the number chosen by
MH. The waiting part consists of two steps. It requires communication with other
mobile hosts to allow them choose their respective numbers and then allow the mobile
host having a smaller number to execute critical section. At the worst, a MH has to
wait till all other mobile hosts have finished choosing their respective numbers, and
availed their respective turns to enter the critical section assuming each one of them
has chosen a number smaller than the MH. The message cost involved in waiting
for one mobile host is 2(2Cw + Cs). In the worst case, an MH may have to wait for
NMH − 1 other mobile hosts to take their respective turns before the MH can enter
the critical section. This leads to an overall message cost of:

2(NMH − 1) × (2Cw + Cs).

The execution of code for critical section may perhaps involve some common
resources and possibly subsequent updates of those resources. It does not involve
any communication with other mobile hosts. Adding the message cost of three parts,
the overall communication cost for execution of Bakery algorithm only on mobile
hosts is

3(NMH − 1) × (2Cw + Cs).

Therefore, a straightforward way of mapping Lamport’s Bakery algorithm to mobile
peer to peer distributed system leads to a message cost of the order 6NMH × Cw.

The correctness of the algorithm is heavily dependent on the fact that the messages
are delivered in FIFO order. However, maintaining a logical FIFO channel between
every pair of mobile hosts has to be supported by the underlay network.

11.5 Non-coordinator Systems 347

11.5.2 With Exception Machines

This system similar to the previous category, where most of the machines execute the
same code, except only a few of them, which execute a different code. The machines
which execute a different code are known as exception machines. An example of this
category is Dijkstra’s self stabilizing algorithm [9]. It is a system consisting of a set
of n finite state machines connected in the form of a ring, with a token or privilege
circulate around the ring. The possession of the token enables a machine to change
its state. Typically, for each machine, the privilege state is defined if the value of a
predicate is true. The predicate is a boolean function of a machine’s own state and
the states of its neighbors.

The change of current state of a machine is viewed as amove. The system is defined
to be self-stabilizing if and only if, regardless of the initial state and token selected
each time, at least one token (privilege) is present and the system converges to a legal
configuration after a finite number of steps. In the presence of multiple tokens in the
system, the machine entitled to make the move can be decided arbitrarily. A legal
state of the system has the following properties:

• No deadlock: There must be at least one token in the system.
• Closure: Every move from a legal state must place the system into a legal state. It

means, once the system enters a legal state no future state can be illegal.
• No starvation: During an infinite execution, each machine should possess a token

for an infinite number of times
• Reachability: Given any two legal states, there is a series of moves that change

one legal state to the other.

Let us now look at Dijkstra’s algorithm involving K states where K > n, and system
consists of n+1 machines. Machine 0 is called the bottom machine, and the machine
n is called the top machine. All the machines together form a logical ring, where
the machine i has the machine i + 1 mod (n + 1) as its right hand neighbor, i =
0, 1, . . . , n. The legitimate states are those in which exactly one privilege is present.

For any machine, let the symbols S, L, R respectively denote the machine’s own
state, the state of left neighbor, and the state of the right neighbor. The rules for
change of states for this system are as follows.

• Bottom machine
if L = S then S = (S + 1) mod K .

• Other machines
if L �= S then S = L.

An initial configuration C0 may consists of at most n + 1 different states. At least
K − (n+ 1) states do not occur in C0. Machine 0 increments its state only after n+ 1
steps. Therefore, it reaches a state not in the initial configuration after at most n + 1
steps. All other machines i �= 0, copy states of their respective left neighbors. Hence,
the first time Machine 0 computes its state, such a state becomes unique in the ring.
Machine 0 does not get a chance to compute its state until the configuration reaches
S1 = S2, . . . , Sn = S0.

348 11 Distributed Algorithms for Mobile Environment

The details of how the self-stabilization works is not important for structuring
distributed algorithms to mobile environment. Let us look at the communication
that occurs between two machines. In self-stabilization algorithms, the essential
communication perspective is to access the registers for the left and right neighbors.
Thus, clearly these class of algorithms are very similar to the previous class of
algorithms and the presence of one or more exception machines does not make much
of a difference to the communication costs involved. However, only the neighbor’s
values are needed for the change of state. As most of the neighboring hosts are
expected to be under the same BS except for two at the edges, the overhead of
wireless communication is expected to be low.

In Dijkstra’s exception machine model, a single token or privilege circulates
around the logical ring. In such a ring organization of mobile hosts, the commu-
nication is restricted between a host and its left or right neighbors. If we structure
distributed mutual exclusion algorithm using a logical ring of cohorts, then it should
be possible to reduce the communication cost. The algorithm becomes very sim-
ple, we just let the privileged mobile to access mutual exclusion. If the privileged
machine is not interested, it just passes the privilege to the successor in the logical
ring. This way every mobile host gets one chance to use a critical resource in a
mutually exclusive manner during one full circulation of the token around the ring
of mobile hosts.

The analysis of the message cost of the token ring algorithm outlined above
(referred to as TR-MH) is provided below.

Both the sender and the recipient are mobile hosts. The message is sent first from
the sender to its local base station then from there to the base station under which
the recipient is found. So the cost of messages exchanged on wireless links is 2Cw.
The cost of locating a mobile host and subsequently sending a message to its
current base station is Cs.

Therefore the cost of token exchange between two successive MHs in the logical
ring is 2Cw + Cs. Assuming that the ring consists of NMH mobile hosts, the cost of
one full circulation token on the ring is NMH(2Cw + Cs). This cost does not include
the cost for mutual exclusion requests met during the circulation of the token. Let K
be the number of mutual exclusion requests satisfied during one complete circulation
of token around the ring. The maximum number of mutual exclusion that can be met
in one circulation of token is max{K} = NMH .

Each exchange of a message requires power both at the recipient and at the sender.
Every MH accesses wireless twice (once for acquiring and once for releasing) during
one circulation of the token through it. So, the energy requirement for executing this
algorithm is proportional to:

2NMHCw.

11.5 Non-coordinator Systems 349

11.5.3 Coordinator Based Systems

Many distributed algorithms involve a coordinator. The coordinator bears substan-
tially higher communication overhead compared to other participating nodes. It is
basically responsible for resolving the coordination issues related to synchroniza-
tion. A coordinator may or may not be fixed. In a fixed coordinator based system,
one node is assigned the role of the coordinator for the entire duration of execution
of the algorithm. However, in a moving coordinator based system the role of coor-
dinator can be performed by different hosts at different times. Thus the coordinator
is a function of time.

11.5.3.1 Fixed Coordinator Based System

Apart from the normal optimization for the mobile hosts, the communication pattern
involving the coordinator has to be specifically optimized. Such a strategy yields
better dividends in terms of reducing the communication cost, because most of the
communication load in a coordinator based system is centered around the coordinator.
Apart from increased communication load, it increases the probability of a failure,
as the coordinator is a single point of failure.

An example of the fixed coordinator system is encountered in the case of total
ordered atomic broadcast algorithms. The system consists of N hosts, each wishes
to broadcast messages to the other hosts. After a broadcast message is received, a
host time stamps the message and sends the same to a sequencer. On receiving the
relayed broadcast message from all the nodes, the sequencer sets the time stamp of
the message to the maximum of the received time stamps and then broadcast the
same back to all the hosts. In this way, the coordinator ensures a total ordering of
the broadcast messages. Figure 11.4 illustrates this process in a sequence diagram.
Host 3 in Fig. 11.4 is the sequencer or the coordinator. The execution of the above
atomic broadcast algorithm is mainly dependent on the coordinator. Therefore, in
order to structure the algorithms for execution in a mobile environment, we must first
turn our attention to the role of coordinator in a mobile environment. Obviously, if
the coordinator is mobile then execution of any coordinated action will be expensive.
It is, therefore, recommended that a static host should perform the coordinator’s job.
Since, the other hosts are mobile, search, inform or proxy strategies can be applied
depending on the mobility characteristics of entities in the system.

In the case where the algorithm is directly executed on the mobile hosts without
any change, the total cost incurred for each broadcast will be,

1. The cost of initial broadcast: (NMH − 1) × (Cs + 2Cw),
2. The cost of unicasting received message from the participating nodes to the coor-

dinator: (NMH − 1) × (Cs + 2Cw),
3. The cost of sending time stamped messages back to participants: (NMH − 1) ×

(Cs + 2Cw)

Therefore, the overall messaging cost is

350 11 Distributed Algorithms for Mobile Environment

coordinator

sender

time

host 1

host 3

host 4

host 5

host 2

Fig. 11.4 Atomic broadcast using fixed/moving coordinator

3(NMH − 1) × (Cs + 2Cw).

This can be improved marginally if the location of the coordinator cached by each
base station. The cost in that case would be

(2(NMH − 1) × (Cs + 2Cw) + (NMH − 1) × (Cf + 2Cw)

However, if the coordinator is placed on a BS, the cost is revised as follows:

1. Cost of initial broadcast: Cw + (NBS − 1) × Cf ,
2. Cost of informing receipt timestamps to the coordinator: (NBS −1)×Cf +NMH ×

Cw,
3. Cost of broadcasting coordinator’s final timestamp to participants: (NBS − 1) ×

Cf + NMH × Cw.

This leads to a overall message cost of

(2NMH + 1) × Cw + 3(NBS − 1) × Cf

Thus simple structuring of the atomic broadcast algorithm done by placing the coor-
dinator on a base station leads to substantial savings in the cost of messaging.

11.5.3.2 Moving Coordinator Based System

As shown in Fig. 11.5 the coordinator of the algorithm changes over time. The sender,
the coordinator and the receiver sets are the identical, but shown separately for the
sake of clarity.

In this case normal algorithm execution at mobile hosts again has the same com-
plexity as in the previous case. However, we can modify the system as follows:

1. One of the three strategies, search, inform and proxy, can be used for all the hosts
in the system.

2. As soon as a mobile host becomes a coordinator, the communication load on it
rises drastically in a short space of time. Hence the MH should inform its BS

11.5 Non-coordinator Systems 351

Fig. 11.5 Conceptual model
of a moving coordinator
system

Coordinator set

Sender set Receiver set

about change of status to coordinator, which is then broadcast to all base stations.
Also the MH during its tenure as the coordinator uses the inform strategy, while
other hosts use the search strategy.

Using these modifications, each step of the algorithm now requires

1. Cost of broadcast: Cw + (NBS − 1) × Cf ,
2. Cost of sending to coordinator: (NBS − 1) × Cf + NMH × Cw,
3. Cost of broadcasting back the time stamped message: (NBS−1)×Cf +NMH ×Cw,

and
4. Additional overhead associated with change of coordinator: (NBS − 1) × Cf +

NMH × Cw.

Thus the total cost works out as:

(2NMH + 1) × Cw + 3(NBS − 1)Cf + α(NMH × Cw + (NBS − 1) × Cf),

where a change of the coordinator occurs every α broadcasts. The cost of executing
the non-structured version of algorithm is: 3(NMH − 1)× (Cs + 2Cw). So, the saving
in cost is significant by simple structuring.

11.6 Exploiting Asymmetry of Two-Tier Model

Most distributed algorithms can be structured suitably for execution on mobile envi-
ronment by reducing communication costs. Still, if we consider the token ring algo-
rithm described in Sect. 11.5.1, two of the key issues are not addressed, viz.,

1. Every mobile in logical ring has to maintain active network connectivity during
the execution of the algorithm.

2. Relocation of computation to balance inherent asymmetry in mobile computing
environment is not possible.

For example, none of the mobile hosts in the token ring algorithm can operate either
in disconnected or in doze mode during the execution. This is because the token
cannot be sent to a disconnected successor node, and also if the mobile, holding

352 11 Distributed Algorithms for Mobile Environment

the token decides to operate in disconnected mode then other mobiles may have to
wait indefinitely to get their turns. The organization of distributed mobile system
point towards a two-tier model with inherent asymmetry in node capabilities. The
fixed nodes do not suffer from any of the resource related problem which the mobile
nodes have. So, in order to balance the inherent asymmetry in the system, if the token
circulation is carried out by fixed hosts, then it may be possible for the mobile hosts
to operate in disconnected or doze mode. Furthermore, it may also be possible to
relocate compute intensive tasks to the fixed hosts. This strategy not only removes
the burden on resources of mobile nodes, but also enhances the performance of
algorithms.

Using the above two-tier approach, Badrinath, Acharya and Imielinski [7] pro-
posed three different variations for structuring of token ring algorithm. Their main
strategy was based on exploiting the inherent asymmetry in computation model as
indicated design Principle 1 of Sect. 11.3.1. The token is assumed to circulate on a
ring in a previously determined sequence among the fixed hosts in infrastructured
part of the network supporting the mobile computation. A mobile host MH wishing
to access the token submits the request to its current BS. When the token becomes
available, it is sent to MH at its current base station, BS′. After using the token MH
returns it to BS′ which in turn returns the same back to BS. The cost of servicing
token depends on the way location of a MH is maintained.

11.6.1 Search Strategy

Pure search strategy scans the entire area under coverage of service to find a MH. The
algorithm consists of set of actions performed by the two component devices, namely,
base stations and mobile hosts. Each base station assumed to maintain two separate
queues: (i) a request queue Qreq, and (ii) a grant queue Qgrant . The token access
requests by mobile hosts at a base station are queued up in Qreq. When the token
is received by a BS from its predecessor in the logical ring, all pending requests
are moved into Qgrant . Then all the requests are serviced from Qgrant , while new
requests get added to Qreq. This implies all the requests made before the time token
arrives are serviced and the requests which arrive subsequently are kept pending
for the next round of servicing. After all requests are serviced, the token is passed
on to the successor base station in the ring. So, the actions of BS are as provided
in Algorithm 14 [7]: As far as a mobile MH is concerned, it can request for token
servicing at any point of time to its base station. Once token is received from the base
station, it uses the critical resource and returns the token after the use. So, the actions
performed by a MH are as indicated in Algorithm 15. The correctness of algorithm
relies on several implicit assumptions.

1. Firstly, all the message channels are assumed to be reliable and received in FIFO
order. FIFO order means that the messages actually arrive and in the order they
are sent. So, a mobile sends only one request at a time.

11.6 Exploiting Asymmetry of Two-Tier Model 353

Algorithm 14: Search strategy: actions of BS

begin
on receipt of (an ME request from MH) begin

add MH’s request to the rear of Qreq;
end
on receipt of (the token from the predecessor in the ring) begin

move all pending requests from Qgrant ;
repeat

remove request from the head of Qgrant ;
if MH which made the request is local to BS then

deliver the token to MH over wireless link;
end
else

search and deliver token to MH at its current cell;
end
await return of token from the MH;

until (Qgrant == empty);
forward token to BS’s successor in the logical ring;

end
end

Algorithm 15: Search strategy: actions of MH

on requirement for (an access of the token) begin
submit request to current local BS;

end
on receipt of (token from local BS) begin

hold the token and use the critical resource;
return the token to local BS;

end

2. Secondly, a mobile cannot make a fresh request at a base station where its previous
request is pending.

3. Thirdly, the algorithm does not handle the case of missing or captured token.
4. Fourthly, a mobile can hold token only for short finite duration of time.

With the above assumptions, it is clear that at any time only one MH holds the token.
Therefore, mutual exclusion is trivially guaranteed. The token is returned to the same
base station from which it was received. So, after the token is returned back, a base
station can continue to use it until all the pending requests before the arrival of token
have been satisfied. The maximum number of requests that can be serviced at any
base station is bounded by the size of the Qgrant at that base station when the token
arrives. No fresh request can go intoQgrant , as they are added only toQreq. So, a token
acquired by a base station will be returned after a finite time by servicing at most all
the requests which were received before the arrival of the token. This number cannot
exceed NMH , the total number of mobile hosts in the system. It implies that the token
will eventually reach each base station in the ring and, therefore, all the requests are
eventually satisfied in finite time.

354 11 Distributed Algorithms for Mobile Environment

It is possible, however, for a mobile to get serviced multiple number of times
during one circulation of token over the ring. It can happen in the following way.
A mobile submits a request at one base station BS and after being serviced by the
token, moves quickly to the successor of BS in the logical ring and submits a fresh
request for the token at the successor. Though it does not lead to starving, a stationary
or slow moving mobile may have to wait for a long time to get its turn. We will look
into a solution to this problem in Sect. 11.6.3.1.

The communication cost of the above algorithm can be analyzed as follows:

1. Cost for one complete traversal of the logical ring is equal to NBS × Cf , where
NBS is the number of base stations.

2. Cost for submission of a request from a MH to a base station is Cw.
3. If the requesting MH is local to a BS receiving the token then the cost of servicing

a request is Cw. But if the requesting MH has migrated to different base station
BS′ before the token reaches BS where the request was initially made, then a
location search will be required. So the worstcase cost of delivering token to the
requesting MH will be Cs + Cw.

4. The worstcase cost of returning the token to BS delivering the token to MH isCw+
Cf . Cf component in cost comes from the fact that MH may have subsequently
migrated from BS where it made request to the cell under a different base station
BS′.

Adding all the cost components, the worstcase cost of submitting a single request
and satisfying is equal to 3Cw + Cf + Cs. If K requests are met in a single traversal
of the ring then the cost will be

K × (3Cw + Cs + Cf) + NBS × Cf

Since, the number of mobile host requesting a service is much less than the total
number of mobiles in the system, K � NMH .

In order to evaluate the benefit of relocating computation to fixed network we have
to compare it with token ring algorithm TR-MH described earlier in this section where
the token circulates among mobile hosts.

• Energy consumption. The energy consumption in the present algorithm is propor-
tional to 3K as only 3K messages are exchanged over wireless links. In TR-MH
algorithm, it was 2NMH . As K � NMH , it is expected that 3K

2NMH
< 1

• Search cost. For the present algorithm it is K × Cs, whereas in the previous algo-
rithm the cost is NMH × Cs which is considerably more.

11.6.2 Inform Strategy

Inform strategy reduces the search cost. It is based on simple idea that the search
becomes faster if enough footprints of the search object is available before search
begins. In other words, a search is less expensive if more information is available

11.6 Exploiting Asymmetry of Two-Tier Model 355

about the possible locations of the mobile host being searched for. Essentially, the
cost of search increases with the degree of imprecision in locations information.
For example, if a MH reports about every change of its location to the BS, where it
initially submitted a token request, then search is not needed. The difference between
a pure search based algorithm to an inform based algorithm is that Qreq maintains
the location area information along with the request made by a mobile host, and
every mobile host with a pending request informs the change in location to the base
station where the request is made. Algorithm 16 specifies the actions of a BS [7].
The actions to be performed by a mobile host MH are provided in Algorithm 17.

Algorithm 16: Inform strategy: actions of BS

begin
on receipt of (a request from a local MH) begin

add the request < MH,BS > to the rear of Qreq;
end
on receipt of (inform(MH,BS′) message) begin

replace < MH,BS > in Qreq by < MH,BS′ >;
end
on receipt of (token from the predecessor of BS in ring) begin

move Qreq entries to the Qgrant ;
repeat

remove the request < MH,BS′ > at the head of Qgrant ;
if (BS′ == BS) then

deliver the token to MH over the local wireless link;
end
else

forward token to BS′ for delivery to MH;
end
await return of the token from MH;

until (Qgrant == empty);
forward token to BS’s successor in the ring;

end
end

To compare the search and inform strategies, we observe the following facts about
the search strategy:

• An MH makes MOB number of moves in the period between the submission of
request and the receipt of token.

• After each of these moves, a inform() message is sent to BS, i.e. the cost of inform
is MOB × Cf .

• Since the location of MH is known after each move it makes, there is no need to
search for its location.

• When token becomes available at BS and it is MH’s turn to use the token, then it
is directly despatched to BS′ where MH is currently found.

356 11 Distributed Algorithms for Mobile Environment

Algorithm 17: Inform strategy: actions of MH

on requirement of (token access) begin
submit request to its current local BS;
store the current local BS in the local variable req_locn;

end
on receipt of (token from BS req_locn) begin

access the critical resource or region
return token to BS (req_locn);
set req_locn to ⊥; // ⊥ indicates null

end
on a move byMH begin

send join(MH , req_locn) message to local BS
end
on entering (cell under a new BS) begin

if (req_locn �= ⊥) then
send a inform(MH,BS′) to BS (req_locn)

end
end

On the other hand, in the algorithm employing simple search, BS must search for the
current location of MH, incurring a cost Cs. Therefore, the inform strategy is more
cost effective compared to the search strategy provided MOB × Cf < Cs. In other
words if after submitting a request, the frequency of movement of a MH becomes low
then MH should inform BS about every change of location rather than BS searching
for it.

11.6.3 Proxy Strategy

Proxy strategy incorporates the ideas from both search and inform strategies. It
exploits the imbalance between the frequencies of the local and the global moves
made by a mobile host. Usually, a mobile host moves more frequently between cells
that are adjacent and clustered around a local area. Using this knowledge, the entire
coverage area consisting of all base stations is partitioned into contiguous regions,
where each region consists of a cluster of neighboring BSes. BSes within a region
are associated with a common proxy. A proxy is a static host, not necessarily a base
station. The token now circulates in a logical ring comprising of these proxies. Each
proxy, on receiving the token, becomes responsible for servicing the requests pending
in its request queue. So, the proxy strategy is just a minor variation of inform strategy
that can capture locality of moves made by mobile hosts. Only, implicit assumption
is that a mobile host must be aware of the the proxy assigned for handling token
requests originating from its current cell. Since the movements of a mobile host MH
at times can be unpredictable, it may not be possible for MH to pre-store the identity
of its proxy. So, each BS may send out periodic beacons that include the identity of its

11.6 Exploiting Asymmetry of Two-Tier Model 357

associated proxy. The actions executed by a proxy P are provided by Algorithm 18.
Similarly, the actions executed by mobile host MH are provided in Algorithm 19 For
convenience in analysis of proxy strategy, we use following notations [7]:

Algorithm 18: Proxy strategy: actions of proxy

begin
on receipt of (an ME request from MH) begin

// Request is forwarded by a BS within P’s local area
add request < MH,P > to the rear of Qreq;

end
on receipt of (a inform(MH,P′) message) begin

replace request (MH,P) in Qreq by (MH,P′);
end
on receipt of (token from the predecessor in ring) begin

move requests from Qreq to Qgrant ;
repeat

delete request < MH,P′) > from head of Qreq;
if (P′ == P) then

// MH located within P’s area
deliver the token to MH after local search;

end
else

// MH is in a different proxy area
forward the token to P′ which delivers it to MH;

end
await return of the token from MH;

until (Qgrant == empty);
forward token to P’s successor in ring;

end
end

1. Nproxy: denotes the total number of proxies forming the ring.
2. NBS: denotes the number of BSes in the coverage area, which means there are

NBS/Nproxy base stations under a region.
3. MOBwide: denotes the number of inter regional moves made by a MH in the period

between submitting a token request and receiving the token.
4. MOBlocal: denotes the total number of intra regional moves in the same period.

So, the total number of movesMOB is equal toMOBwide+MOBlocal. Before delivering
the token to a MH, a proxy needs to locate a MH amongst the BSes within its region.
This search is referred to as local search with an associated cost Cls. With the above
notations and assumptions, according to Badrinath, Acharya and Imielinsk [7] the
communication costs can be analyzed as follows:

1. The cost of one token circulation in the ring: Nproxy × Cf

2. The cost of submitting a token request from a MH to its proxy: Cw + Cf

358 11 Distributed Algorithms for Mobile Environment

Algorithm 19: Proxy strategy: actions of MH

on requirement (for access of token) begin
submit request < MH,P) > to local BS;
store the identity of local proxy in init_proxy;

end
on the receipt of (token from init_proxy) begin

use the token;
return the token to init_proxy;
set init_proxy to ⊥;

end
on a inter regional move begin

send a join(MH, init_proxy) message to new BS;
if (init_proxy /∈ {P,⊥}) then

// P′ is the proxy of new BS
new BS sends a inform(MH,P′) to init_proxy;

end
end

3. The cost of delivering the token to the MH: Cf + Cls + Cw

Cf term can be dropped from the cost expression above, if MH receives the token
in the same region where it submitted its request.

4. The cost of returning the token from the MH to the proxy: Cw + Cf

The above costs together add up to: 3Cw + 3Cf + Cls

If an inter regional move is made, then the current local BS of MH sends the
identity of new proxy to the proxy where MH submitted the request initially. The
cost for inform is, therefore, Cf . The worst overall cost for satisfying a request from
a MH, including the inform cost, is then

(3Cw + 3Cf + Cls) + (MOBwide × Cf)

If the token gets circulated on the set of proxies instead of the set of BSes, then the
cost of circulation is reduced by a factor of Nproxy/NBS . However, the workload is
comparatively higher on each proxy than the workload on a BS. Assuming all three
schemes service identical number of mutual exclusion requests in one full circulation
of ring,

• NBS static hosts share the load in the search strategy,
• Nproxy static hosts share the load under the proxy method.

The efficiency in handling mobility by each strategy can be compared by estimating
the communication cost in satisfying one token request.

search strategy: 3Cw + Cf + Cs

inform strategy: 3Cw + Cf + (MOB × Cf)

proxy strategy: 3Cw + (3 + MOBwide) × Cf + Cls

11.6 Exploiting Asymmetry of Two-Tier Model 359

The above expressions should be compared against one another in order to determine
which strategy performs better than the other. For instance, proxy strategy performs
better than search strategy, if

(3 + MOBwide) × Cf + Cls < Cf + Cs

≡ MOBwide + 2 < (Cs − Cls)/Cf
(11.1)

Search strategy requires a BS to query all the other BSes within a search region to
determine if a MH is active in a cell. The BS which currently hosts the MH responds.
Then the BS where MH originally submitted the request forwards the token to the
responding BS. The search cost is then equal to (Nregion + 1) × Cf , where Nregion

denotes the number of BSes within a search area. Replacing Cls in Eq. 11.1 by above
expression for search, we find:

MOBwide < NBS − (NBS/Nproxy) − 2

From the above expression, we may conclude that the proxy scheme performs better
than the pure search scheme if the number of inter regional moves is two less than
the total number of BSes outside a given region.

Now let us compare proxy with inform strategy. Proxy strategy is expected to
incur a lower cost provided:

(3 + MOBwide) × Cf + Cls < (MOB + 1) × Cf

≡ Cls < (MOB − MOBwide − 2) × Cf

≡ Cls < (MOBlocal − 2) × Cf

(11.2)

The cost of a local search equals (NBS/Nproxy + 1) × Cf , since all base stations have
to be queried by the proxy in its region and only the local base station of MH will
reply. So, the formula 11.2 above reduces to:

NBS/Nproxy + 2 < MOBlocal

From the above expression, we conclude that if the number of local area moves
performed by a mobile host exceeds the average number of BSes under each proxy
by just 2, then the proxy strategy outperforms the inform strategy.

11.6.3.1 Fairness in Access of the Token

There are two entities whose locations vary with time, namely, the token and the
mobile hosts. So we may have a situation represented by the following sequence of
events:

1. A mobile host MH submits a request to its current local base station BS.
2. It gets the token from the same BS and uses it,

360 11 Distributed Algorithms for Mobile Environment

3. It then moves to the base station BS′ which is the next recipient of the token,
4. The same MH submits a request for the token access at BS′.

The situation leads a fast moving mobile host to gain multiple accesses to the token
during one circulation of the token through the fixed hosts. It violates the fairness
property of the token access among the mobile hosts. So, we need to put additional
synchronization mechanisms in place to make the algorithms fair. Interestingly, the
problem of fairness does not arise in the algorithm TR-MH, which maintains the
logical ring amongst MHs. Therefore, we need to evolve ways to preserve the func-
tionality of fairness of TR-MH algorithm in the token algorithms which maintain
logical ring within the fixed network regardless of the mobility of hosts.

Of course, none of the algorithms, search, inform or proxy may cause starvation.
Because a stationary mobile host is guaranteed to get its request granted when the
token arrives in its local base station. We have already observed that the length of
the pending requests in request queue at a fixed host is always bounded. This means
after a finite delay each fixed host will release the token. Therefore, each requesting
mobile host at a base station will eventually gain an access to the token. In the worst
case, a stationary MH may gain access to the token after every other mobile host has
accessed the token once from every base station, i.e., after (NMH −1)×NBS requests
have been satisfied. A simple fix to the problem of fairness is as follows:

1. The token’s state is represented by loop count (token_val). It represents the
number of complete circulations performed by token around the logical ring.

2. A local count access_count is attached to each MH. It stores the number of
successful token accesses made by the MH.

3. When making an access request each MH provides the current value of access
count.

4. When a BS (or the proxy) receives the token, only requests withaccess_count
less than the token_val are moved from the request queue to the grant queue.

5. MH after using the token, copies the value of token_val to its local
access_count.

A MH reset its access_count to token_val after each access of the token.
Therefore, a MH may access token only once in one full circulation of the token
around the logical ring, even if the MH has a lower access_count. With the
modified algorithm, the number of token accesses, K , satisfied in one traversal of the
ring is limited to NMH (when the ring comprises of all BSes), while the value of K
could be at most NBS ×NMH otherwise. So the difference between the above modifi-
cation and the original scheme essentially represents a trade-off between “fairness”
of token access among the contending MHs and satisfying as many token requests
as possible in full circular traversal of the token.

Of course one can devise an alternative definition of “fairness” as in Defini-
tion 11.1.

Definition 11.1 (Fairness [7]) A mobile host, MH, having a low access count may
be allowed multiple accesses to the token during one traversal of the ring, with the

11.6 Exploiting Asymmetry of Two-Tier Model 361

limitation that the total number of accesses made by the MH does not exceed the
current token_val.

The above definition of fairness implies that if a mobile host MH has not availed
its share of token access for a number of token circulations, then MH can access
token multiple number of times bounded above bytoken_val -access_count.
The above fairness criterion can be easily implemented by simply incrementing
access_count of a MH on every access.

11.7 Termination Detection

There is a clear evidence that the generic design principle of exploiting asymmetry
in two-tier model would be very effective in structuring distributed algorithms for
mobile environment. However, the scope of discussion in the previous section was
restricted. It is just centered around design of mutual exclusion algorithm. Therefore,
we need to examine further how the design principle built around the asymmetry
approach could be useful for other problems as well. In this section we focus on
termination detection.

Termination of a distributed computation represents one of the global states of
the computation. Recording a global state of a distributed systems is known to be
difficult [10]. Therefore, it is difficult to record the termination state of a distrib-
uted computation. However, the termination, being one of the stable properties of
a distributed computation, can be observed. When a computation terminates, there
can be no messages in transit. Therefore, it is possible to design an algorithm which
does not interfere with the main computation but is able to detect termination of
the computation. More precisely, the termination detection algorithm determines
whether a distributed computation has entered a state of silence. In a silent state no
process is active and all the communication channels are empty, taking into account
unpredictable delays in message delivery.

An implicit assumption made by most termination detection algorithms is that the
main computation never enters an incorrect state. In the case of a mobile distributed
system, termination detection is more complex. The complexity is due to the fact
that the detection algorithm should also handle the issues arising out of many mobile
hosts operating in disconnected mode. Mobile hosts in disconnected mode should
not be disturbed. Of course, voluntary disconnection can be planned so termination
algorithm can handle them. But, in the cases of involuntary disconnections, mobile
hosts may not regain connectivity due to failure. In other words, an incorrect state at
times is indistinguishable from a correct state of the computation in mobile distributed
systems.

362 11 Distributed Algorithms for Mobile Environment

11.7.1 Two Known Approaches

In a termination state the channels are empty. Therefore, no message can reach any
of the process and consequently, no processes can become active ever again under
this state. There are two fundamentally different approaches to detect termination:

• Diffusion.
• Weight throwing.

A convenient model to visualize a distributed computation is a directed graph that
grows and shrinks as the computation progresses [11]. If such a graph contains an
edge from a node n1 to another node n2, then n2 is known as a successor of n1,
and n1 a predecessor of n2. Every node in a distributed computation starts with a
a neutral state. Dijkstra and Scholten [11] define that a diffusion based distributed
computation is initiated in a neutral state when the environment on its own generates
a message and sends it to its successor. After the first message has been sent, an
internal node is free to send messages to its successor. So, a diffusion computation
grows as a directed graph. After an internal node has performed its node specific
computation, it signals completion to its predecessors. In practice, though a two-
way communication is possible, the flow of computation messages is only in the
direction from a predecessor to a successor. The completion event can be viewed as
an acknowledgement for some computation message received earlier by the node. So
when completion event is eventually signaled back to environment, the distributed
computation is assumed to have terminated.

In weight throwing scheme [12–14], environment or starting process in neutral
state has a weight credit of 1 with it. Every message sent by any node is associated
with a weight. The sending node partitions the weight available with it into two
parts. One of the part is attached to the message before sending it while the other
part is retained by the sending node. The computation is started by the environment
generating a message of its own and sending it to its successor. Thereafter the internal
nodes send messages to their successors as in a diffusion computation. When the node
specific computations at a node is over, it signals completion of computation by a
weight reportage message to its predecessor besides setting its local weight to 0.
The weight reportage message carries the total weight left at a node at the time of
completion of the local node specific computation.

11.7.2 Approach for Mobile Distributed Systems

Termination detection in mobile distributed system follows a a hybrid approach [15].
It consists of running a simplified diffusion based termination detection algorithm
for the mobile part and a weight throwing based algorithm for the fixed part. The
base stations act as bridges between the two parts.

Let us first introduce a few notations which will be convenient to understand the
above protocol. A mobile distributed computation can be described by:

11.7 Termination Detection 363

1. A special process Pc called weight collector.
2. A set of base station processes denoted by Pi, for i = 1, 2,
3. A set of mobile processes, Pm

i , for i = 1, 2,
4. A set of messages.

The computation is started by the weight collector process. However, this does not
necessarily represent a limitation of the model. A computation may also be triggered
by a mobile process. In that case the weight collection will be performed by the
static process representing the current base station for the initiating mobile process.
In effect, the starting base station process becomes the environment node.

A mobile process can roam and execute handoff from one base station to another.
When a mobile process moves, the distributed computation on that process is sus-
pended. If a mobile process moves away from its current base station and unable to
find a new base station to which it can connect, then the mobile process is said to
be temporarily disconnected. Further, it is assumed that mobile process cannot carry
out any basic computation as long as it remains disconnected.

11.7.3 Message Types

Six different types of messages are needed for the algorithm. These are:

1. Mb: a basic message. If Mb is tagged with a weight w, then it is denoted by Mb(w).
2. Mwr(w): a reporting message with a weight w.
3. Mack(k): an acknowledgement for k basic messages.
4. MHF : handoff message. It contains four subtypes: MHF.req, MHF.ind , MHF.rep and

MHF.ack .
5. MDIS: message for temporary disconnection. It contains two subtypes: MDIS.req,

MDIS.ind

6. MJOIN : messages connected with rejoining of a disconnected mobile node. It
consist of two subtypes: MJOIN .ind and MJOIN .rep

Termination detection in a mobile distributed system is of two types:

(i) Strong termination, and
(ii) Weak termination.

A strong termination state is reached when all processes have turned idle, there are no
disconnected mobile process or any basic message in transit. In a weak termination
state all processes except disconnected mobile processes have reached the state as in
strong termination.

The protocol for termination detection in mobile systems should allow for a dis-
connected process to rejoin the computation at a later point of time. It is possible that

364 11 Distributed Algorithms for Mobile Environment

a mobile may be disconnected due to failure. In that case the mobile may not join
back. If the termination detection protocol does not have a provision to handle such
a situation, and then it will not work. Weak termination is an important indication of
anticipated system failure due to disconnected mobile processes. So, roll back and
recovery protocols can be planned around conditions involving weak termination.

The termination detection algorithm proposed by Tseng and Tan [15] divides the
protocol into several parts and specifies it in form of the actions by a mobile process,
a base station process and the weight collector process. Before we discuss these
algorithms it is necessary to understand how the mobile processes communicate
with static processes and while mobile hosts roams.

A mobile process always receives a message from a base station. But it can send
a message either to its local base station or to another mobile process. The message,
however, is always routed through the base station to which the mobile is connected.

When a mobile moves to another base station while being active then it requires a
handoff. A handoff is initiated by sending a MHF.req message. The responsibility for
carrying out the rest of the handoff process lies with the static part. Apart of sending
handoff, a disconnected mobile node may send a rejoin message on finding a suitable
base station to connect with. The rejoin message, denoted by MJOIN .req, is sent to the
base station with which mobile node attempts to connect. The only other message
that a mobile node could send is a signal for completion of local computation. This
message is sent to base station. After sending this the mobile turns idle. So the
relevant message types handled by a mobile host (MH) are:

• Mb: a basic message which one MH sends to another. Mb is always routed through
the base station of the sender MH. A base station after receiving a message Mb

from a mobile host (MH), appends a weight w to Mb and sends Mb(w) to the base
station of the receiving MH.

• MHF.req: This message is sent by an MH to its local base station for a handoff
request.

• MJOIN .req: This message is sent by a disconnected MH when it is able to hear radio
beacons from a base station of the network.

A base station can send a basic message either to a mobile node or to another
base station on behalf of a connected mobile. The base stations are also involved in
handoffs to facilitate roaming of mobiles. A disconnected mobile may rejoin when
it hears beacons from a base station over its radio interface. In order to perform
its tasks, a base station has to process and send different types of messages. These
message and intended use of these messages can be understood in the context of the
protocol discussed later.

11.7 Termination Detection 365

11.7.4 Entities and Overview of Their Actions

The termination detection protocol is carried out by actions of following three entities:

• Mobile nodes,
• Base stations, and
• Weight collector.

The termination detection protocol requires support at protocol level for roaming
and disconnected mobile processes. A roaming of mobile process is managed by
handoff protocol. Handoff protocol handles the transfer of weights associated with
basic computation messages to appropriate base station. Similarly, the concerned
base stations transfers associated weights of disconnected mobile processes to the
weight collector. The transfer of weights as indicated above ensures that every base
station can correctly transfer the weights to the weight collector when completion of
basic computation is signalled.

The protocol distinguishes between two sets of mobile processes:

• MPi: set of active mobile processes under base station BSi.
• DP: set of disconnected mobile processes in the system.

Each active mobile processes is associated with an active mobile node while each
disconnected process is associated with one disconnected mobile nodes. The set of
mobile processes involved in the computation is given by the union DP ∪ {∪iMPi}.

11.7.5 Mobile Process

A mobile process (which runs on a mobile host) can either receive a basic message
from a base station or send a basic message to another mobile process. All messages
either originating or terminating at a mobile host (MH) are routed through the current
base station of MH. When a mobile process receives a basic message it keeps a count
of the number of unacknowledged message received from the concerned base station.
So, mobile process knows the number of acknowledgements to be sent to the base
station when it has finished computation.

A mobile process Pm
j always routes a basic message Mb through its current base

station process Pi to another mobile process Pm
k . The process Pi attaches a weight

wi/2 to Mb and sends Mb(wi/2) to the base station hosting Pm
k . Pi also keeps track

of the acknowledgements it has received from all mobile processes. So no additional
protocol level support is required at Pm

j for sending a basic message to any other
process Pm

k .
Pm
j increments the number of unacknowledged messages by 1 when it receives a

basic message from Pi. A local counter in is used by a mobile process to update the
count of unacknowledged messages. So, Pm

j knows that it has to send acknowledge-
ments for in messages. Therefore, before turning idle, Pm

j signals the completion of

366 11 Distributed Algorithms for Mobile Environment

basic computation by sending an acknowledgement for in number of messages to
Pi. After the acknowledgement has been sent, in is set to 0. The summary of the
actions executed by a mobile node in the termination detection protocol is specified
in Algorithm 20.

Algorithm 20: Actions of a mobile process Pm
j

begin
// For sending a basic message to another process no

additional operation is needed.
on receipt of (a basic message from BS) begin

// Increment number of messages with pending acks.
in = in + 1;

end
on turning (idle from active) begin

// Send all the pending acks.
send Mack(in) to current base station;
in = 0;

end
end

11.7.6 Base Stations

Every message to and from a mobile process Pm
j is routed always through Pi, its

current base station process. Pi attaches a weight x from its available weights to
every message Mb from Pm

j before sending to the base station process Pl for the
destination. Pl receives Mb(x) = Mb + {x}. It extracts the weight x from Mb(x)
and adds x to its the current weight. After this, the message Mb = Mb(x) − {x} is
forwarded to Pm

k . This way any base station process can control the weight throwing
part of the protocol on behalf of all the mobile processes it interacts with.

In order to control the diffusion part, a mobile process Pi keeps track of the
messages it has sent to every mobile process Pm

j under it. Pi expects Pm
j to send

acknowledgement for each and every message it has received. The completion of
computation is signaled by sending the acknowledgements for all the messages of
Pi. When all the mobile processes Pm

j s involved in a computation have sent their final
acknowledgements to Pi, the termination in diffusion part is detected.

The rules for termination detection executed by a base station process Pi are as
specified by Algorithm 21.

Before we consider handoff and rejoin protocols, let us examine two important
properties of the protocol specified by actions of three entities we have described
so far.

11.7 Termination Detection 367

Algorithm 21: Actions of a BS process Pi

begin
on receipt of (Mb(x) for Pm

j from fixed N/W) begin
wi = wi + x; // Update local weight
Mb = Mb(x) − {x}; // Remove weight from Mb(x)
outi[j] = outi[j] + 1; // Record number of messages sent to Pm

j .
forward Mb (without appending x) to Pm

j ;

end
on receipt of (Mb from Pm

j for Pm
k) begin

if (Pm
k ∈ MPi) then
// Pm

k is local mobile process under Pi
outi[k] = outi[k] + 1;
forward Mb to Pm

k ;
end
else

// Destination Pm
k is non local

Mb(wi/2) = Mb + wi/2; // Attach weight to Mb.

wb
i = wb

i /2; // Reduce current weight held.
locate MHk’s base station BS�; // BS process P�

send Mb(wi/2) to P�;
end

end
on receipt of (Mack(k) from Pm

j ∈ MPi) begin
outi[j] = outi[j] − k; // Decrease number of pending acks by k
if (outi[k] == 0 for all Pm

k ∈ MPi) then
sends Mwr(wi) to Pc;
wi = 0;

end
end

end

Property 1 If outi[j] = 0 then Pm
j is idle and there is no in-transit basic messages

between Pi and Pm
j .

Proof When outi[j] = 0, all basic messages sent by Pi to Pm
j have been acknowl-

edged. So Pm
j must be idle. As every channel is assumed to be FIFO, if message M is

sent before M ′ over a channel, then M must be received before M ′ at the other end.
When Pm

j turns idle it sends acknowledgement for all the messages it has received
from Pi. So when this acknowledgement (which the last among the sequence of mes-
sages betweenPi andPm

j) is received byPi there can be no message in-transit message
on the channel because the acknowledgement would flush all other messages before
it.

Property 2 If wi = 0 then all mobile processes Pm
j ∈ MPi are idle and there is no

in-transit basic message within Pi

Proof Ifwi = 0, then the weights held byPi on behalf of all mobile processPm
j ∈ MPi

have been sent back to Pc. This can happen only if outi[j] = 0, for all Pm
j ∈ MPi. By

368 11 Distributed Algorithms for Mobile Environment

Property 1, it implies Pm
j is idle and there is no in-transit basic message between Pi

and Pm
j . Hence the property holds.

11.7.7 Handoff

When a mobile process Pm
j moves from its current cell under a base station BSi to a

new cell under another base station BSk then handoff should be executed. As a part
of the handoff process, the relevant data structure and the procedure for managing
termination detection protocol concerning Pm

j should be passed on to BSk .
Pm
j makes a request for handoff to BSk and waits for the acknowledgement from

BSk . If the acknowledgement is received then Pm
j starts interacting with BSk for ini-

tiating transfer of the data structure related Pm
j from BSi to BSk . If handoff acknowl-

edgement is not received within a timeout period, Pm
j retries handoff. The handoff

procedure is a slight variation from layer-2 handoff. In a cellular based wireless
network, when a handoff is initiated, old base station BSold sends handoff request
to mobile switching center (MSC). MSC then forwards the request to the new base
station BSnew (determined through signal measurements). BSold then accepts the
request and handoff command is executed through BSold . So, for the protocol level
support for handoff execution, the mobile process should send MHF.req to BSi iden-
tifying BSk . BSi accepts the request and also sends MHF.ack to Pm

j . After this Pm
j

starts communicating with BSk . BSi, before sending MHF.ack to Pm
j , also transfers

the needed data structure to BSk . The negotiation for transfer of link between BSi

and BSk may involve messages like MHF.ind and MHF.rep between BSi and BSk . The
handoff process has been illustrated in Fig. 11.6. To keep the protocol simple, Pm

j has
been shown to directly approach BSk for executing handoff. In response to handoff
indication message from BSk , process at BSi sends a message to BSk that includes:

• Count of the number of unacknowledged messages in respect of mobile process
Pm
j . These are the basic messages for which BSi was expecting acknowledgements

at the time Pm
j sought a handoff.

• A weight w = wi/2.

Fig. 11.6 Illustration of
handoff process

MN BSk BSi

HF.req

HF.ind

HF.reply

HF.ack

Start
communication

No weight
is attached

11.7 Termination Detection 369

The base station process Pi at BSi should check if Pm
k is the last mobile process under

it. In that case Pi should itself turn idle. But before turning idle, it should send its
existing weight credit to the weight collector process.

Once M(wi/2) has been received at BSk , it should update its own data structure
for keeping track of mobile processes. Thus the summary of the protocol rules for
handoff execution are as mentioned in Algorithm 22.

Algorithm 22: Handoff protocol

begin
// Actions of Pm

j

on detection of (Handofff conditions) begin
// BSk is the new BS for Pm

j

// Assume Pk in BSk handles the request
send MHF.req message to Pk and wait for MHF.ack ;
if (M.HF.ack received from Pk) then

start communicating with Pk ; // process Pk in BSk
end
else

after time out retry handoff;
end

end
// Actions of Pi of BSi
on receipt of (MHF.ind(Pm

j) from Pk) begin
send a MHF.rep(Pm

j , outi[j],wi/2) to Pk ;

MPi = MPi − {Pm
j }; // Pm

j no longer under Pi.
wi = wi/2;
if (outi[l] = 0 for all l ∈ MPi) then

// Pm
j is the last mobile process under Pi

send Mwr(wi) to Pc;
wi = 0;

end
end
// Actions of Pk of BSk
on receipt of (MHF.req from Pm

j) begin
sends a MHF.ind(Pm

j) to Pi; // No weight attached.

end
on receipt of (MHF.rep(Pm

j , outi[j],wi/2) from Pi) begin
MPk = MPk ∪ {Pm

j };
outk[j] = outi[j];
wk = wk + wi/2;
send a MHF.ack to Pm

j ;

end
end

370 11 Distributed Algorithms for Mobile Environment

11.7.8 Disconnection and Rejoining

It is assumed that all the disconnections are planned. However, this is not a limitation
of the protocol. Unplanned disconnection can be detected by timeouts and hello
beacons. When a mobile process Pj

j is planning a disconnection it sends MDISC.req

message to its current base station BSi. Then BSi suspends all communication with
Pm
j and sends MDISC.ind(Pm

j , outi[j],wi/2) to Pc. It will allow Pc to detect a weak
termination condition if one arises.

The rules for handling disconnection are, thus, summarized in Algorithm 23.

Algorithm 23: Disconnection protocol

begin
// Actions of Pm

j

before entering (disconnected mode) begin
send MDISC.req message to Pi;
suspend all basic computation;

end
// Actions of Pi of BSi
on receipt of (MDISC.req from Pm

j) begin
suspend all communication with Pm

j ;
send a MDISC.ind(Pm

j , outi[j],wi/2) to Pc;
MPi = MPi − {Pm

j };
wi = wi/2;
if (outi[k] == 0 for all Pm

k ∈ MPi) then
send Mwr(wi) to Pc;
wi = 0;

end
end
// Actions of weight collector Pc
on receipt of (MDISC.ind(Pm

j , outi[j],wi/2) from Pi) begin
DP = DP ∪ {Pm

j };
outc[j] = outi[j];
wDIS = wDIS + wi/2;

end
end

Final part of the protocol is for handling rejoining. If a mobile process can hear
the radio of signals from a base station it can rejoin that base station. For performing
a rejoin Pm

j has to execute Algorithm 24.

11.7.9 Dangling Messages

There may be messages in system which cannot be delivered due to disconnection or
handoff. Such dangling messages should be delivered if the mobile process recon-

11.7 Termination Detection 371

Algorithm 24: Rejoining protocol

begin
// Actions of Pm

j

on rejoining (a cell in BSi) begin
send MJOIN .req message to Pi and wait for reply;
if (MJOIN .ack is received from Pi) then

starts basic computation;
end
else

after timeout retry JOIN;
end

end
// Actions of Pi in BSi
on receipt of (MJOIN .req from Pm

j) begin
send a MJOIN .ind(Pm

j) to Pc; // No weight attached.

end
on receipt of (MJOIN .rep(Pm

j , outc[j],wDIS/2) from Pc) begin
MPb

i = MPb
i + {Pm

j };
outi[j] = outc[j];
send a MJOIN .ack to Pm

j ;
restart communication with Pm

j ;

end
// Actions of weight collector Pc
on receipt of (MJOIN .ind(Pm

j) from Pi) begin
if (Pm

j ∈ DP) then
sends a MJOIN .rep(Pm

j , outc[j],wDIS/2) to Pi;
DP = DP − {Pm

j };
if (DP = Φ) then

wc = wc + wDIS ;
end

end
end

end

nects at a later point of time. So, care must be taken to handle these messages. When
a mobile process is involved in a handoff it cannot deliver any message to static
host or base station. So, the mobile process hold such undelivered messages with it
until handoff is complete. This way message exchange history is correctly recorded.
Dangling messages at base stations are those destined for mobile processes involved
in handoff or disconnection. These messages are associated with weights which is
ensured by weight throwing part of the algorithm. So, handling dangling messages
becomes easy. All dangling messages from base station processes are sent to weight
collector. The weight collector process holds the messages for future processing.
This protocol is specified by Algorithm 25

372 11 Distributed Algorithms for Mobile Environment

Algorithm 25: Handling dangling messages

begin
// Actions of weight collector Pc
on receipt of (Dangling message with weight x) begin

wDIS = wDIS + x;
end
on completion of (Reconnection of Pm

j) begin
// Let Mb be a dangling message for Pm

j
Mb(wDIS/2) = Mb + wDIS/2;
wDIS = wDIS/2;
// Assume Pm

j reconects under BSi
send Mb(wDIS/2) to Pi;
if (dangling message list == Φ) then

// No disconnected mobile exists
wc = wc + wDIS ; // Reclaim residual weight
wDIS = 0;

end
end

end

11.7.10 Announcing Termination

The termination is detected by Pc when it finds wc + wDIS = 1. If wc = 1 then it is
a case of strong termination, otherwise it is case of weak termination. In the case of
weak termination wDIS > 0.

References

1. M.H. Dunham, A. Helal, Mobile computing and databases: anything new? SIGMOD Rec.
24(4), 5–9 (1995). December

2. G. Liu, G. Maguire Jr., A class of mobile motion prediction algorithms for wireless mobile
computing and communication. Mob. Networks Appl. 1(2), 113–121 (1996)

3. A.L. Murphy, G.C. Roman, G. Varghese, An algorithm for message delivery to mobile units, in
The 16th ACM Symposium on Principles of Distributed Computing (PODC’97), pp. 292–292,
1997

4. K. Kumar, Lu Yung-Hsiang, Cloud computing for mobile users: can offloading computation
save energy? Computer 43(4), 51–56 (2010)

5. K. Yang, S. Ou, H.H. Chen, On effective offloading services for resource-constrained mobile
devices running heavier mobile internet applications. IEEE Commun. Mag.46(1), 56–63 (2008)

6. S. Acharya, M. Franklin, S. Zdonik, Dissemination-based data delivery using broadcast disks.
IEEE Pers. Commun. 2(6), 50–60 (2001)

7. B.R. Badrinath, A. Acharya, T. Imielinski, Designing distributed algorithms for mobile com-
puting networks. Comput. Commun. 19(4), 309–320 (1996)

8. L. Lamport, A new solution of dijkstra’s concurrent programming problem. Commun. ACM
17, 453–455 (1974)

9. E.W. Dijkstra, Self-stabilizing systems in spite of distributed control. Commun. ACM 17,
643–644 (1974)

References 373

10. K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. (TOCS), 3(1), 63–75 (1985)

11. E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing computations. Inf. Process.
Lett. 11, 1–4 (1980)

12. S. Huang, Detecting termination of distributed computations by external agents, in The IEEE
Nineth International Conference on Distributed Computer Systems, pp. 79–84, 1989

13. F. Mattern, Golbal quiescence detection based on credit distribution and recovery. Inf. Proc.
Lett. 30, 95–200 (1989)

14. Y.C. Tseng, Detecting termination by weight-throwing in a faulty distributed system. J. Parallel
Distrib. Comput. 25, 7–15 (1995)

15. Y.C. Tseng, C.C. Tan, Termination detection protocols for mobile distributed systems. IEEE
Trans. Parallel Distrib. Syst. 12(6), 558–566 (2001)

Chapter 12
Data Dissemination and Broadcast Disks

12.1 Introduction

Data management is one of the important challenges in mobile applications. Due to
resource constraints, mobile devices are not equipped to run any interesting, non-
trivial stand-alone applications. On the other hand, the enabling technologies such
as cellular communication, wireless LAN, wireless data network and satellite ser-
vices have equipped mobile terminals with capabilities to access data/information
anywhere at any time. Researchers saw immense potentials in combining two fore-
mentioned aspects in complementary roles, for developing a powerful framework for
innovative person centric services. The key idea is to organize a mobile application
as a set of synchronized activities that requires very little computation at a mobile
end host, but capitalizes on globally available resources accessible through networks.
This would allow a mobile user to transact both official business, and financial trans-
actions. The possibilities of creating innovative commercial and financial models for
anytime, anywhere access of person centric services excited research in mobile data
management.

The core problem of data delivery over mobile wireless network became a major
challenge to the database community since the adaptation of the concept of object
oriented databases. In a wireless network, connectivity is not only flaky, but band-
width is also low. Furthermore, there is no control on the number of mobile users
which may appear in an area of cellular coverage. The scale is simply overwhelming.
The conventional data delivery model based on request and response (like HTTP)
cannot just match up to the challenge of scale.

The push based data delivery is considered as the most attractive option that may
allow a server to avoid being flooded by large number of client requests. Some early
work in the area of data dissemination inspired the research for data dissemination
in mobile distributed system. In 1734, broadcast emerged as a dominant theme for
high volume information dissemination by utilizing print media. Around 1898, radio
transmission was introduced, and in 1924 video streaming became a possible with

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_12

375

376 12 Data Dissemination and Broadcast Disks

invention of Television. Electronic transmission media not only served as entertain-
ment channels but also revolutionized dissemination of public information.

Around mid eighties two systems were implemented using broadcast delivery.
The first one is known as BCIS (Boston Community Information System) [8]. It was
a pilot project for dissemination of news and information over FM channel to about
200 clients having personal computers equipped with wireless interfaces. The system
used both push and pull based data delivery methods [3]. The second one called
Datacycle [10], was a high throughput oriented transaction system implemented over
public telephone system. It exploited transmission bandwidth of optical systems to
leverage database as a storage pump, and broadcast records repeatedly on a broadcast
channel. A transaction on a host could request an operation on database using a well
defined interface provided with the associated access manager. The operation was
decomposed into a specification to process records as they appear on the broadcast
channel. To complete a transaction, a host submits update/commit requests to the
access manager. Using a network uplink, the access manager sends the update request
to the update manager, which executes non conflicting updates on the database.

Theoretical results concerning performance of broadcast delivery models were
provided in [14]. Wong’s result, in particular, states that the lower bound of the
bandwidth requirement for the best possible mean response time of a broadcast page
is proportional to square root of its access frequency.

In this chapter our focus is primarily restricted to push based data delivery. How-
ever, it deals with classification of various options for data delivery in a client server
system along with the factors influencing these options. The major part of the chapter
is devoted to the idea behind treating an inherently sequential medium such as a
wireless communication channel organized in the form of logical disks on the air.
Furthermore, it shows that by treating the medium of air as part of a logical memory
hierarchy, data delivery mechanism can be organized extending from an individual
mobile client’s memory to a server’s disk.

12.2 Data Access Issues in Mobile Environment

At an end user’s level, the major concerns are:

1. Energy efficient accesses of requisite data,
2. Management of range of disconnections, and
3. Efficient processing of queries.

Therefore, indexing, caching and replications are as much relevant in mobile envi-
ronment as they are over the wired network with stationary hosts. However, due to
the unique physical characteristics of mobile terminals and wireless communication
medium these issues needed a revisit. In summary, the techniques for data manage-
ment in mobile distributed environment should be able to handle following four main
issues.

12.2 Data Access Issues in Mobile Environment 377

1. Mobility
2. Scaling
3. Disconnection
4. Access/delivery modes.

Data related to mobility may far exceed the complexity of any conventional large
database. It comprises of locating a mobile object, addressing, routing queries and
delivering responses. Some of these issues have been discussed under location man-
agement in the previous chapter. The issues arising out of scaling and disconnec-
tion are mainly handled through replication and caching strategies. Replication and
caching are discussed in Chap. 14. Access and delivery mechanisms are intertwined.
The role of delivery mechanism does not mean just putting loads of bits over commu-
nication channels, but organizing these bits through a structure that can be effectively
exploited to access data. But two most important constraints which come on the way
are:

• Availability of limited bandwidth, and
• Availability of limited battery power.

These constraints severely restrict transfer of large volume data. In a cellular based
network, the number of active mobile users cannot be controlled. If every mobile
uses a back channel to pull data for its own application from a fixed nodes, then
the channel saturates quickly and suffers from congestion too often. Availability of
limited energy in a mobile device is also a possible cause of planned disconnections,
as the user may wish to prolong battery life. So there is a need for energy efficient
access methods.

12.3 Pull and Push Based Data Delivery

A client application is the consumer of data and the server is the producer. In other
words, data and information are generated at the servers. So, the servers are repos-
itories of data/information that the client applications would require from time to
time. A server has to deliver appropriate data which the clients require for the appli-
cations to run. There are broadly two data delivery models as shown in Fig. 12.1. A
client initiated data delivery is essentially pull based. The client sends an explicit
request to a server. The responsibility of fetching data rests exclusively on the client.
On the other hand, when a server takes the responsibility of transferring data, then
transfer takes place in anticipation of a future access. No explicit request are made
from any client. The server estimates the data requirements of the client population
in a global context. A client must be alert during the time when the required data
for its application flows into a broadcast channel from a server. The data delivery
model adhering to this protocol referred to as push-based delivery. The delivery
model is analogous to TV transmission where the viewers tune to specific channel if
they wish to view a TV program. The channel caters to an expected general viewing

http://dx.doi.org/10.1007/978-981-10-3941-6_14

378 12 Data Dissemination and Broadcast Disks

··· ···

P
us

h

P
us

h

P
us

h

R
eq

ue
st

R
eq

ue
st

R
eq

ue
st

R
es

po
ns

e

R
es

po
ns

e

R
es

po
ns

e

Client initiated data delivery Server initiated data delivery

Client1Client1 Client2 Clientn Client2 Clientn

revreSrevreS

Fig. 12.1 Client and server initiated data delivery mechanisms

pattern on the basis of monthly ratings of the different TV shows. TV transmission,
thus, may not necessarily cater to specific individual choices. A similar situation is
witnessed in push-based data transfer. The information is not explicitly sought for,
but broadcast by a server to all or a group of clients. This method of data transfer is
referred to as data dissemination.

Figure 12.2 illustrates an implementation oriented view of data transfer mecha-
nism as applicable to the two data delivery models. In the pull-based data transfer
occurs in a request-response cycle. data transfer. In a push based transfer, data trans-
fer occurs on a broadcast channel. The server must have an idea of data that should
be pushed. Therefore, there may be a back channel through which profile informa-

Wireless channel

Broadcast schedule

Server

Request

Response

P
us

h
M

od
el

P
ul

lM
od

el

Offline collection of user’s profile

Mobile client

Fixed client

Fig. 12.2 Data delivery models

12.3 Pull and Push Based Data Delivery 379

tion of clients can be collected as indicated in the Fig. 12.2. Otherwise, the data
dissemination on broadcast channel can only be organized purely on the basis of a
knowledgeable assessment of the data requirements of the clients.

12.4 Dissemination in Mobile Environment

In mobile environment, there is a built-in asymmetry as mobile devices are resource
poor. Compute-intensive tasks are executed on the servers. Databases and other
storage repositories are also located on the servers. So, data dissemination techniques
in mobile environment are built around push based delivery mechanism, and rely on
broadcast or point to multipoint transmissions.

Pure push and pure pull represent two extreme data delivery methods. Between
the two extremities many delivery methods have been used. These methods were
determined by the varying requirements of data from the applications. On the basis
of design issues faced by applications, data delivery methods can be broadly classified
into four categories.

1. Data oriented,
2. Mechanism oriented,
3. Organization oriented,
4. Bandwidth oriented.

In the data oriented design, a client’s requirement of data can be of three types,
namely,

1. Publish only,
2. Demand driven,
3. Hybrid.

Certain data objects generated by a server assist a client learn about the occurrences
of events. The client does not require to process such data, but needs to know as
and when such data objects get generated. A server’s obligation is limited to publish
such data objects on downlink channel as and when these get generated. A client
accesses the desired data by passive listening and local filtering. Some applications
may require the clients to explicitly fetch certain data from a server and process
them. This requires a pull based delivery, wherein a clients places a demand for its
data requirement explicitly in form of queries over its uplink channel. The server
sends responses that resolve the queries. A hybrid delivery mechanism represents
a combination mechanism, where some data requirements are met by data objects
belonging to publish group and others are met by demand driven group of objects.
Normally, in a hybrid model there will be only a few objects belonging to demand
driven group.

Franklin and Zodnik [6, 7] observed application design spaces can be partitioned
according to mechanisms of data delivery, namely,

380 12 Data Dissemination and Broadcast Disks

1. Delivery initiation,
2. Scheduling strategy,
3. Communication type.

Delivery of data can either be initiated by a client or by a server. When initiated by
a client it represents essentially a pull model. On the other hand, when delivery is
initiated by a server, it represents push model. Scheduling basically deals with the
temporal mechanism of data delivery. The data is delivered on some pre-determined
schedule. Communication type can be: (i) unicast or point to point, (ii) multicast
or point to many points, i.e., one-to-many (iii) broadcast or one-to-all. There is a
difference between multicast and broadcast though both represent the communication
type that transmits data from one source to many destinations. In multicast the number
of recipients are known, whereas in broadcast the recipient can be any one. For
multicast, communication, a list of recipients should be maintained.

The organization of data delivery refers to the way data organized for delivery to
client. Two possible ways data can be organized, namely,

1. Broadcast program,
2. Selective tuning.

Broadcast program requires a server to anticipate the data requirements of its clients.
On the basis of the requirements, the server organizes a push schedule for data on
downlink channel. The data objects may be organized on a push schedule based on
client access priorities or bandwidth minimization or combination of both. We plan
to discuss more about broadcast program subsequently in this chapter as it represents
an important and interesting data dissemination technique specially in the context of
mobile distributed environments. Selective tuning requires a client to create its own
filtering and caching strategies for accessing data from the downlink channel. The
server embeds meta data and/or index along with information when pushing data on
downlink channel. Air indexing schemes are discussed in the next chapter.

Bandwidth oriented data delivery mechanism is concerned with apportioning of
bandwidth for pull and push. Normally, in a mobile environment much of the server
data is pushed on a downlink channel. Only a small fraction of bandwidth is allocated
for uplink communication. The uplink serves as a back channel for the demand
driven data delivery. However, in theory, bandwidth partitioning can be done either
(i) statically, or (ii) dynamically. In static allocation, the bandwidth is split in advance
between downlink and uplink. But this type of allocation may lead to under utilization
when access pattern is dynamic. Dynamic allocation is complex. It requires additional
runtime information about the changes in access patterns.

12.5 Comparison of Pull and Push Models

In a wired network, all the computers share the same physical medium (wire) for
data transfer. Therefore, data transmission capacities in both uplink and downlink
directions are the same. In wireless network, there is an asymmetry in capacity of

12.5 Comparison of Pull and Push Models 381

Table 12.1 Asymmetry in link capacities of wireless networks

Network type Technology Downlink Uplink

Satellite DirecPC 400 kbps 56.6 kbps (thru Tel.)

Cable TV Cable modem 10–30 Mbps 128 kbps (Shared)

Telephone ADSL, VDSL Modem 2 Mbps 9.6–640 kbps

Wireless 802.11 1–10 Mbps 9.6–19.2 kbps

links in two directions. The asymmetry in link capacities in the case of a few recent
examples N/W technologies have been provided in Table 12.1. Even, otherwise, the
asymmetry can occur even in a symmetric client-server setup. The anomalies in
bandwidths occur due to the fact that:

• Either physically different media are used for the uplink and the downlink con-
nections, or

• The same medium is split asymmetrically for uplink and downlink connections.

As the table indicates, depending on the N/W technology, the variations between
the downlink and the uplink capacities can range from 1:8 to 1:500. The asymmetry
can arise not only due to the limitation of N/W technology, but also due to load
asymmetry or data volume asymmetry. The load asymmetry is introduced when a
few machines in the N/W handle most of the messages. In particular, the service load
asymmetry may happen due to following reasons:

• The client-to-server ratio is high, so, the average load on a server is high.
• The updates are too frequent, so, the clients continually poll the servers for new

data.

In some application environments, the asymmetry in volume of data arises due to
mismatch in the volumes of data transmitted in each direction. For example, in
information retrieval type application, a few URLs (a mouse key click) may result
in a huge document to be downloaded. So, the requirements for uplink capacity is
much smaller than downlink. Typically wireless connectivity may offer only uni-
directional connections. So, the clients may be unable to connect by design rather
than just due to technical problems.

In a pull-based system, the clients must have a priori knowledge about what to
ask for. Pull-based data retrieval is typically similar to the RPC protocol. Each data
transfer from the server is initiated explicitly by a request from a client. In response
to the request form a client, the server transfers the requested data. The biggest
drawback to implement a pull-based data transfer system is that a back channel
should be made available to the clients for fetching desired data. The back channel
eats away bandwidth available for data transfer. In a typical environment, where the
clients are mobile, the congestion in back channel can be real bottleneck for fetching
data.

The availability, as well as the use of the back channel for clients is restricted
either because of the security reasons or due to the power problem at the clients, or

382 12 Data Dissemination and Broadcast Disks

both. The saturation of a server due to huge number of client requests may be another
severe problem. Indeed, if the request rate is higher than the service rate, the server
will eventually saturate. However, in traditional applications, it can be controlled.

In summary the scale of mobile computing environment seems to be the most
important factor contributing to the drawbacks of pull based data delivery model
[2, 11, 12].

The major advantages of a push-based data delivery model can be summarized as
follows:

• Efficiency: The transfer of data is needed only when the updates arrive at a server,
or when the new data gets created. Obviously, a client is not expected to know
when the new data gets generated at the server.

• Scalability: The push-based data delivery model translates into greater scalability.
A client need not poll the server in periodic intervals to check for the delivery of
data items it may need.

• Low bandwidth requirement: There is no need for deploying a back channel. The
transfer of data is initiated by the server when some updates are made or some
new data get created. So the utilization of entire bandwidth can be made possible
only via downstream link, and more data can flow on the channel. Furthermore,
the utilization of available bandwidth can be done optimally as it is coordinated at
the server end.

12.6 Classification of Data Delivery Models

In the context client-server paradigm the basic difference between data delivery
models lies in the fact whether the data transfer is initiated by a client or by the
server. Both pull and push based data delivery can be either periodic or aperiodic.

Aperiodic pull is found in traditional systems or request/response kind of data
delivery model. Periodic pull arises when a client uses polling to obtain the data it
is interested in. It uses a regular schedule to request for the data. Polling is useful in
applications such as remote sensing where a client can wait while sending repeated
probes, in periodic intervals, for the arrival of the data. The data by itself, is not
critical for immediate running of application. In summary, if the transfer is initiated
by the client then it can be one of the following types:

(i) Request/response: This is found in the traditional schemes such as RPC. A
client uses aperiodic pull over point-to-point physical link between the server.
Of course, the server may choose to use an one-to-many link for transfer of data.
For the client requesting the data, it appears as point-to-point, while the other
clients can snoop on the link and get data they have not explicitly requested.

(ii) Polling: In some applications such as remote sensing or control applications, a
system may periodically send request to a number of sites to obtain changed
values. If the information is sent over a point-to-point link, it is a pull based

12.6 Classification of Data Delivery Models 383

approach and known as polling. But if the data transfer is over an one-to-many
physical link then other clients can snoop.

The periodic push can be for the transmission of a set of data updates or newly
created data in a regular interval, such as updates in Stock prices. This data delivery
model is useful in situations where clients may not always be available. Since the
delivery is for unidentified clients, availability of some specific client or a set of
specific clients does not matter. The push based model is preferable for various
reasons such as:

• High request processing load or the load asymmetry generated by the clients, or
• A large number of clients are interested for the data being pushed, i.e., high client

to server ratio.

Aperiodic push is viewed as publish and subscribe type of data dissemination.
There is no periodic interval for sending out the data. The biggest problem in aperiodic
push is the assumption that the clients are always listening. In a mobile computing
environment the clients may like to remain disconnected till the exact time of arrival
of the required data for the reason of extending battery life. The clients may also move
to the cells different from where they initially wanted to get the data. The push-based
model is exposed to snooping, and a client may also miss out the required data, if it
is not listening at the opportune time when the data flows on the downlink channel.
So, a mechanism is needed to be in place for a client to be able estimate the time
for tuning to the downstream channel for the required data. Therefore, such a data
delivery model could considered as more appropriate to the situation where what is
sent out is not critical to immediate running of the application. On the positive side,
the push based transfer uses downstream channel more effectively. In summary, push
based data delivery can categorized as follows.

(i) Publish/Subscribe [13]: In this model of data delivery, the flow of data is initiated
by a server and is aperiodic. Typically, one-to-many link is used to transfer data.

(ii) Broadcast disks [1]: Basically, it is a periodic push mechanism. The clients wait
until the data item appears on broadcast. In a sense, it is like accessing of a
storage device whose average latency is half the interval at which the requested
item is repeated on broadcast. The periodic push can use either point-to-point or
one-to-many link; though, one-to-many is more likely.

Figure 12.3 provides a broad classification of data transfer mechanisms based on
the pull and push based delivery models and physical link characteristics as discussed
above.

The characteristics of a link have a role in deciding how the data delivery model
can scale up when there is no control in population of clients. In a point-to-point
communication, data sent from a source to a single client. Clearly, p-to-p (point-to-
point) transfers cannot scale up easily when the number of clients becomes large.
In one-to-many communication data is sent to a number of clients. One-to-many
communication can be either multicast or broadcast. Usually, multicasting is imple-
mented by sending data to a router which maintains the list of the recipients and

384 12 Data Dissemination and Broadcast Disks

Aperiodic

Pull

Request/
response Request/

response
with snoop

one-to-many

Polling
with snoop

one-to-many

Periodic

Triggers

Aperiodic

Push

Publish/
subscribe

one-to-many

Broadcast
disk

Periodic

one-to-many

Data delivery Models

p-to-p p-to-p

p-to-p

p-to-p
Polling

Fig. 12.3 Taxonomy of data transfer

forwards the data to those recipients. So the interests of clients should be known a
priori as opposed to broadcast where clients are unidentified. In one-to-many broad-
cast clients receive data for which they may not be interested at all.

12.7 Broadcast Disk

From the client’s perspective, periodic push is similar to accessing a secondary stor-
age. Therefore, the data delivery should be organized to give the best performance to
the clients as a local disk would. Suppose in a broadcast schedule, every item appears
only once. Then in the worst case, a client may have to wait for one broadcast period
for fetching the data item it requires. In the best case, the access can be immediate,
and it happens if the client tunes in to listen exactly at time when its item appears
in the broadcast channel. It is rarely, the case that all items are accessed equally
frequently. Generally, the access pattern tends to be skewed to a few hot spots. So
it makes sense to capture the pattern of accesses in a broadcast program. Broadcast
disk is a paradigm for organizing the structure of a periodic broadcast program.

12.7.1 Flat Periodic Broadcast Model

A generic broadcast disk model should be able to capture various access patterns. A
flat program is a degenerate case of the generic broadcast disk model. A flat broadcast
program shown in Fig. 12.4, can be considered as a logical disk spinning at a speed
of one spin in a broadcast period.

12.7 Broadcast Disk 385

A

B
C D

E

A

B
CD

E

Broadcast schedule

Server

Client Client Client

Fig. 12.4 A flat broadcast disk

12.7.2 Skewed Periodic Broadcast

Consider the case when the broadcast data is organized into a multiple number of
disks, and each disk spinning with a different speed. The data items are placed
into the fastest to the slowest spinning disks in descending order of frequencies of
accesses. That is most frequently accessed data is placed on the fastest disk. The
least frequently accessed data is placed on the slowest disk.

Depending on whether the broadcast data get updated or not, a periodic broadcast
can be considered static or dynamic. If the sequence of broadcast data remains the
same for every broadcast period, then the broadcast is static, otherwise it is dynamic.
In the case of dynamic periodic broadcast, the period of broadcast may also vary.

Another way to classify periodic broadcasts would be on the basis of the inter
arrival times of two consecutive instances of the same data item. The broadcast is
called regular, if the inter arrival time of two consecutive instances of the same data
item is fixed. The broadcast is irregular, if there is a variance in inter arrival times.

12.7.3 Properties of Broadcast Programs

From an abstract point of view, a broadcast programs visualized as an attempt to
generate a bandwidth allocation scheme. Given the access probabilities of each client,
the job of a broadcast program is to find the optimal fraction of the bandwidth which
may be allocated for an item. Assuming no caching at the clients, it is known that the
optimal bandwidth that can be allocated for an item is proportional to square root of
its access probability [4]. The simplest possible idea would be to generate a random
broadcast schedule according to the square root allocation formula; and then hope
that this broadcast schedule matches the average inter arrival time between any two
instances of same item as expected by the clients. However, the probability is almost

386 12 Data Dissemination and Broadcast Disks

negligible that a random broadcast program may minimize the expected delay due
to the variance in the inter arrival times.

Let us consider an example mentioned in [1]. It illustrates following three different
broadcast programs involving three pages A, B, and C shown in Fig. 12.5. The per-
formance characteristic of the last program (Fig. 12.5c) is identical to the case where
item A is stored on a single-page disk spinning two times faster than a two-page disk
storing items B and C. In this case, the waiting time for accessing page A is either
0 page or 1 pages, assuming that the requirement coincides with the broadcast of a
page boundary. Therefore, average wait is 0.5 page for A. Whereas the average wait
for page B or C is 1.5 pages. Assuming accesses for each page is equally likely, the
total wait (1/3)(0.5 + 1.5 + 1.5) = 7/6 page. In reality the requirement for a page
coinciding with the page boundary of a broadcast is low. So adding 1/2 page to the
total wait, we have the delay as 5/3 = 1.67 pages.

Let us derive the exact expression for the expected delay for an item I from the
point when the request is made. Suppose, a request for the value of I arises at some
point of time t falling in the interval j as shown in Fig. 12.6. If I is scheduled to arrive
during an interval in future, then the maximum waiting time is the interval of time
from the beginning of interval j to the starting of the transmission of I as indicated
in the figure. The time of t may appear any where within interval j. Assuming each
interval to be of unit time, t ∈ [0, 1), the expected delay is given by

N∑

1

∫ 1

0

(
tjmax(I) − t

)
dt =

N∑

1

(
tjmax(I) − 1

2

)
,

where N is the number of intervals. Each interval is the time required to transmit one
data item. Using the above formula, the expected delays for the arrival of different
items on the broadcast channel can be computed as illustrated by the Table 12.2.

Fig. 12.5 Broadcast
programs [1]

A B C
(a) Flat

A B CA
(b) Skewed

CA B A
(c) Multi-disk

Fig. 12.6 Formulation of
maximum waiting time

Request for
Ireceived

Transmission
of I starts

Interval j
tjmax(I)

12.7 Broadcast Disk 387

Table 12.2 Expected delays for arrival of items on channel

Arrival of
requests

Expected delay

tjmax(A) − (1/2) tjmax(B) − (1/2) tjmax(C) − (1/2)

Skewed Multidisk Skewed Multidisk Skewed Multidisk

Interval 1 0.5 1.5 1.5 0.5 2.5 2.5

Interval 2 2.5 0.5 0.5 3.5 1.5 1.5

Interval 3 1.5 1.5 3.5 2.5 0.5 0.5

Interval 4 0.5 0.5 2.5 1.5 3.5 3.5

Average 1.25 1 2 2 2 2

Table 12.3 Expected delays for arrival of items on channel

Access probability Expected delay

A B C Flat Skewed Multi-disk

0.333 0.333 0.333 1.50 1.75 1.67

0.5 0.25 0.25 1.50 1.63 1.50

0.75 0.125 0.125 1.50 1.44 1.25

0.9 0.05 0.05 1.50 1.33 1.10

1.0 0.0 0.0 1.50 1.25 1.00

The expected delays for the arrival of items A, B and C respectively are 1.25, 2,
2, in the case of clustered skewed broadcast, and 1, 2, 2 for the case of multi-disk
broadcast. If the probability of access for each item is equally likely, then the expected
delays for an item in two broadcast methods are:

Skewed broadcast : 1
3 (1.25 + 2 + 2) = 1.75

Multi-disk broadcast : 1
3 (1 + 2 + 2) = 1.67

Table 12.3 gives the computed delays (in terms of page broadcast period) for page
requests corresponding to distribution of access probabilities of the clients. In the
case of uniform page access probabilities, flat disk is the best. Non-flat programs
are better for skewed access probabilities. Obviously, higher the access probability
more is the bandwidth requirement. When page A is accessed with probability 0.5,
according to square root formula [4] the optimal bandwidth allocation works out
to be

√
0.5/(

√
0.5 + √

0.25 + √
0.25) which is 41%. The flat program allocates

only 33% (8% less in) bandwidth. Whereas the multi-disk program (in which page
A appears twice in the schedule) allocates 50% (9% excess in) bandwidth.

388 12 Data Dissemination and Broadcast Disks

12.7.4 Advantages of Multi-Disk Program

A multi-disk program performs better (results in less delay) than the corresponding
skewed program. This problem can be explained by what is known as “bus stop
paradox”. The paradox is explained as follows. Suppose there are buses plying to
different destinations D1 and D2, D3, etc., from a station S. The number of buses
to destination D1 is more than the available other destinations. But all the buses for
destination D1 are clustered in a small window of time tw in a day, whereas buses
to other destination are staggered in more or less in equal intervals throughout the
day. Under this scenario, if a person is unable to be reach S within the interval tw,
cannot get to the destination D1 for the entire day, although the probability of getting
a bus to destinations D1 is higher than the probabilities for other destinations. This
happens due the fact that the buses to other destinations are not clustered.

The probability of arrival of a request during a time interval is directly proportional
to the length of the interval. This implies that if the variance in broadcast rate (inter
arrival rate) of a page is high, then the expected delay increases. If the inter arrival
rate of a page is fixed then the expected delay to satisfy any requests for that page
at any random time is half of the interval between two successive broadcasts of the
same page. The randomness in inter arrival rate can also reduce the effectiveness
of a pre-fetching techniques. The client also cannot go into doze mode to reduce
the power consumption, because the time of arrival of the requested page cannot be
estimated. On the other hand, if interval of arrival is fixed, the update dissemination
can be planned by the server. This predictability helps in understanding of the update
semantics at the client. Therefore, the desirable features of a broadcast program are:

• The inter arrival time of the consecutive copies of a data item should be fixed.
• The length of a broadcast schedule should be pre-defined, after which it should

repeat. Equivalently, the periodicity of a broadcast should be fixed.
• It should use as much bandwidth as possible subject to the above two constraints.

12.7.5 Algorithm for Broadcast Program

Algorithm 26 generates a bandwidth allocation for a periodic push based broadcast
when information related to page usage is available. This algorithm was originally
proposed in [1].

Example
Consider a three disk program in which pages of D1 to be broadcast 2 times as
frequently as D2 and 3 times as frequently as D3. That is, the frequencies are: f1 =
6, f2 = 3 and f3 = 2 and Tmax = LCM(f1, f2, f3) = 6. This implies splitting disks
results in following chunks:

12.7 Broadcast Disk 389

Algorithm 26: Generation of broadcast program

begin
order the pages to be broadcast from hottest to coldest;
group the pages into multiple ranges;
// Each range represents a logical broadcast disk.
// Assume Ndisks disks denoted by D1, . . . ,DNdisk.
foreach (disk Di) do

// fi, must be an integral value.
choose relative frequency fi;

end
split each disk into smaller units called chunks;
Tmax = LCM{fi|1 ≤ i ≤ Ndisk};
foreach (disk Di) do

split Di into equal sized chunk Cij , j = 1, . . . ,Tmax/fi;
end
// Create broadcast program interleaving disk chunks.
for (i = 1; i ≤ Tmax, i + +) do

for (j = 1; j ≤ Ndisks, j + +) do
broadcast chunk Cj,((i−1) mod Tj+1);

end
end

end

Fig. 12.7 Bandwidth
allocation by broadcast
algorithm

1 4 5 1 6 72 31 8 9

1 2 3 4 5 6 7 8 91

12 34 5 6 7 8 91

minor cycle

2 31

major cycle

1
disk 1

2 3
disk 2

C CC11 21 22

4 5 6 7 8 91 2 3

4 5 6 7 8 9

C C C31 32 33

Hot

disk 3

Cold

1. Disk D1: splitting results in one chunk C11.
2. Disk D2: splitting results in two chunks C21,C22, and
3. Disk D3: splitting results in three chunks C31,C32,C33.

Though chunk size of a disk fixed, across the disks the size may be variable.
Figure 12.7 illustrates the broadcast program generated by the applying the above
algorithm. As shown in the Fig. 12.7, disk D1 consists of a single page and only
one chunk. Disk D2 consists of two pages and each chunk has one page. Disk D3

has six pages divided into three chunks, where each chunk has two pages. A minor
broadcast cycle consists of three chunks, one from each disks D1,D2,D3. Therefore,
each minor cycle consists of four pages, one page each from D1 and D2 and two

390 12 Data Dissemination and Broadcast Disks

pages from D3. One major broadcast cycle consist of Tmax = 6 minor cycles. So,
one major cycle consists of 24 pages. The allocation schedule produces three logical
levels of memory hierarchy.

• The first being the smallest and the fastest disk D1.
• The second being the disk D2 which is slower than D1.
• The last being the disk D3 which is slower but larger than both D1 and D2.

12.7.6 Parameters for Tuning Disk Model

Three main parameters to be tuned to particular access probability distribution are:

• The number of disks. It determines the different frequency ranges with which set
of all pages should be broadcast.

• The number of pages per disk. It determines set of pages of identical frequency
range on broadcast.

• The relative frequency of broadcast. It determines the size of disks, and hence the
arrival time.

The thumb rule is to configure the fastest disk to have only few pages. This because,
adding an extra page to the fastest disk adds significantly to the delay of arrival
time for the pages in the slower disks. The constraint requiring frequencies to be
positive integers leads to a broadcast schedule with fixed inter-arrival time for the
pages. A regularity in inter-arrival time substantially eases the maintenance of update
semantics, and the predictability helps the client side caching strategy. All pages in
the same disk get same amount of bandwidth as they are broadcast with the same
frequency.

12.7.7 Dynamic Broadcast Program

The algorithm discussed above generates a static broadcast program. It means there
is no change in the broadcast period, the amount of broadcast data or the values of
data. In other words, there is no dynamicity in broadcast data. But it is possible to
introduce dynamicity as follows.

• Item placement: Data may be moved around in between disks. It means items
of data traverse the levels of disk hierarchy. In other words, some item may lose
importance while other items may gain importance. The movement of items influ-
ences the client side caching strategy for pre-fetching (hoarding).

• Disk structure: The hierarchy of disks itself may be changed. For example, the
ratios of the disk speeds can be modified. An entire disk can be removed or a new
disk may be added.

12.7 Broadcast Disk 391

• Disk contents: The contents of disk may change. Extra pages may be added to a
disk or some pages may be removed from a disk.

• Disk values: Some pages on the broadcast may change in value.

Read-only and update type of broadcasts get affected by the dynamicity involving
Item placement, Disk structure and Disk contents. However, Disk value introduces
dynamicity that is applicable to the update scenario only. The modifications involving
Item placement or Disk structure influences the relative frequencies as well as the
order of the appearances of data items already on broadcast. Whereas the update of
the value of a data item does not alter the relative frequencies. So, in absence of the
updates, the first two types of modifications primarily affect the performance. The
performance of client side caching is affected as caching algorithms need information
about the latency of data items. This results in client side storage to be sub-optimally
used. However, an advance notification may mitigate the problem.

Dynamicity introduced due to Disk Contents does not influence the items that
appear on the broadcast. However, some items which appeared previously may dis-
appear and some new items may appear. It can be viewed an extreme case of the Item
Placement, i.e., the items removed may be assumed have infinite latencies and appear
in another disk. The clients can cache an item before it disappears if an advance warn-
ing is provided. Or even a client can evict the item from the cache to make room for
a new item. Data Value updates introduces the problem of data consistency. To take
care of this situation cached copies at client should be updated or invalidated.

12.7.8 Unused or Empty Slots in Broadcast Disk

The broadcast schedule may consists of many unused slots or pages [5]. It hap-
pens specially when the number of pages in a disk is not an exact multiple of the
number chunks into which the disk is partitioned. These unused slots may be used
opportunistically to enhance the quality of broadcast by including indexes, updates,
invalidations, or even the information pertaining to dynamically emerging situation.
The guiding principle of broadcast based dissemination is that the number of disks
should as small as possible. Normally, in the order of 2–5. However, the number of
pages to be broadcast is often substantially large. Therefore, the number of unused
slots, if any, is expected to be quite small in number. In other words, it may be possible
to tweak the relative frequencies slightly to reduce the number of unused slots.

If unused slots are not used sensibly, it may lead to substantial wastage of band-
width. To understand how it may occur, let us modify the previous example as follows.
Suppose a list of 12 pages are to be placed on the broadcast channel. We divide these
pages into 3 disks:

D1: has 1 page,
D2: has 2 pages, and
D3: has now 9 instead of 6 pages.

392 12 Data Dissemination and Broadcast Disks

Fig. 12.8 Many unused
slots may be generated by
broadcast program

C

12 34 5 6 7 8 9

2

C

3
C CC

4 5
C

6 7
C

8 9
C

11
C C C

10 121

1
disk 1

2 3
disk 2

4 5 6 7 8 9 1011
disk 3

12

2131110121

major cycle

minor cycle

EE EE

E E E E E E EE

empty slots

Hot Cold
4 5 6 7 8 9 10111 2 3 12

11 12 21 22 23 31 32 33 34 35 36

E

D1 is smallest and fastest, D3 is largest and slowest. Let the frequencies of D1, D2

and D3 be 3, 2, and 1 respectively. Since, Tmax = LCM(3, 2, 1) = 6, the chunking
algorithm divides pages of D1 into 6/3 = 2 chunks, the pages of D2 into 6/2 = 3
chunks and the pages of D3 into 6/1 = 6 chunks. The number of pages per chunk in
disk D1, D2 and D3 are �1/2� = 1, �2/3� = 1 and �9/6� = 2 respectively. So, the
chunking requires one empty page each to be padded to each chunk of disks D1 and
D2. In the case of D3, a padding of 3 empty pages is needed. So, at total of 5 empty
pages are inserted as padding to generate integer number of pages for the chunking
of broadcast data. Figure 12.8 illustrates the process of chunking and depicts that
8 empty pages appear in broadcast cycle on a single major cycle consisting of 24
pages. It leads to a wastage of 33% of the broadcast bandwidth.

12.7.9 Eliminating Unused Slot

Unused slots in the chunks in a broadcast schedule are like holes in disk fragmenta-
tion. A broadcast schedule consists of three types of chunks:

1. Fully used chunks: every slots in such a chunk have useful data.
2. Partially wasted chunks: some slots in such chunks have data and the other slots

are free.
3. Fully wasted chunks: all slots in such a chunk are free.

The simple strategy to eliminate unused slots is to compact the holes in the broadcast
schedule. However, the compacting technique applies only under some stringent
assumptions [5]. These assumptions are:

1. The client population do not change,
2. No update is allowed,
3. The clients do not employ pre-fetching or caching,
4. The clients do not use the uplink channel,

12.7 Broadcast Disk 393

5. When a client switches to a public channel, it can retrieve data pages without
wait,

6. Each query result is represented by one page, and the length of each page is the
same.

7. A server uses only one channel for broadcast, and broadcast is reliable.

These assumptions essentially imply that access patterns of the mobile clients remain
unchanged over time.

The compaction algorithm first needs to compute the indices of unused slots in
each wasted chunk of a disk. The computation of the indices turns out to be simple
due to the assumptions presented above. But to concretize the computation formula
a few notations become handy.

NPi : number of pages in disk Di.
NCi : number of chunks in disk Di.
NSi : number of slots in a chunk in disk Di.

The basic idea behind the algorithm is to first determine the schedule by Algorithm 26
of Sect. 12.7.5. According to this algorithm, the number of slots are:

NSi =
⌈
NPi

NCi

⌉
=

⌈
NPi

Tmax/fi

⌉
=

⌈
NPi × fi
Tmax

⌉
,

where Tmax is LCM of the chosen frequencies for the disks.
Consider the example shown in Fig. 12.8. The number of slots in a chunk in three

different disks as determined by the algorithm are:

NS1 =
⌈

1 × 3

6

⌉
= 1,NS2 =

⌈
2 × 2

6

⌉
= 1, and NS3 =

⌈
9 × 1

6

⌉
= 2.

The execution of the original algorithm organizes the broadcast schedule (major
cycle) into chunks consisting of 24 slots. Out of these 8 slots are empty, which implies
only 24 − 8 = 16 slots have useful data. Modified algorithm places a logical cut line
at the end of the slot 16. To the right of this cut line there are 8 slots, out of which only
3 have useful data. Furthermore, there are exactly 3 wasted (empty) slots to the left
the cut line. The modified algorithm moves the data from the right to the left of the
cut line to empty slots preserving their relative order of occurrences. The movement
of data is illustrated by Fig. 12.9. So the strategy of the algorithm is compact the
holes present in partially wasted chunks by moving data appearing to the right of the
cut-line. This action pushes all empty slots to the right of the cut-line

Before formally presenting the modified algorithm, we observe that empty slots
are located either in a fully wasted chunk (all free slots) or a partially wasted chunk
(with some free slots). The indices of fully wasted chunks in Di is given by

FWi = NCi −
⌈
NPi

NSi

⌉

394 12 Data Dissemination and Broadcast Disks

Fig. 12.9 Eliminating
unused slots

C

12 34 5 6 7 8 9

2

C

3
C CC

4 5
C

6 7
C

8 9
C

11
C C C

10 121

1
disk 1

2 3
disk 2

4 5 6 7 8 9 1011
disk 3

12

2131110121

EE EE

E E E E E E EE

Hot Cold
4 5 6 7 8 9 10111 2 3 12

11 12 21 22 23 31 32 33 34 35 36

cut−line

E

Therefore, fully wasted chunks in diskDi areCij where,NCi−FWi+1 ≤ j ≤ NCi.
So, the number of fully wasted chunks in D3 of our running example is:

FW1 = NC1 −
⌈
NP1
NS1

⌉
= 2 − ⌈

1
1

⌉ = 1

FW2 = NC2 −
⌈
NP2
NS2

⌉
= 3 − ⌈

1
1

⌉ = 2

FW3 = NC3 −
⌈
NP3
NS3

⌉
= 6 − ⌈

9
2

⌉ = 1,

Let w be the number of wasted slots in a partially wasted chunk in Di. The value
of w can vary between 1 and NSi − 1, i.e., 1 ≤ w ≤ NSi − 1. There can be only
one partially wasted chunk and it occurs only when NPi �= NCi × NSi, where all
the quantities have integral values. Therefore, the condition for checking partially
wasted chunk is simply: ⌈

NPi

NSi

⌉
−

⌊
NPi

NSi

⌋
= 1.

The index of the partially wasted chunk Cij is j = NCi−FWi. The total number of
wasted slots is NSi −NPi, and the number of fully wasted chunks is FWi. Therefore,
the number of wasted slots in a partially wasted chunk is given by

w = NSi × (NCi − NPi) − FWi × NSi.

So, in chunk Cij, the empty slots are Eijk , where NSi − w ≤ k ≤ NSi.
Once we have identified the indices of empty slots, the compaction algorithm

becomes straightforward. The algorithm creates an array Broadcast[.] which
records the pages to be selected in sequence to appear on the broadcast channel. The
modified algorithm [5] consists of two phases.

12.7 Broadcast Disk 395

1. In the first phase, the required number of empty pages are added to the disk chunks
as needed for the allocation of same integral number of slots in a minor cycle. So
this phase is identical to Algorithm 26.

2. In the second phase, the cut-line is determined and the contents of the occupied
slots after the cut-line are swapped with the corresponding empty slots before
the cut-line. So, the basic compaction step is to find the corresponding sequence
numbers of slots which need to be swapped.

Phase 2 of the algorithm is essentially a compaction step. It does not really make any
additional contribution to the original algorithm for creating a broadcast cycle. Algo-
rithm 27 gives the details of this phase and included here for the sake of completeness.

Algorithm 27: Using empty slots.

begin
// Broadcast cycle created by Algorithm 26
calculate total slots TS in a major cycle;
calculated total wasted slots TWS in a major cycle;
determine cut-line CL = TS − TWS;
find the nonempty slots after the CL;
record these slots in the array Moved.
// Use a sequence number SN to sequence of empty slots in a

major cycle as 1,2,…, TS
find out SN of an Eijk before the cut-line and replace it with a record in Moved array in
sequence.
// Broadcast the contents of the Broadcast array in

sequence.
for (i = 1; i ≤ CL; i + +) do

broadcast Broadcast[i];
end

end

The first step of algorithm computes total number of slots (TS) which is equal to

TS = Tmax ×
S∑

i=1

NSi = Tmax ×
S∑

i=1

⌈
NPi × fi
Tmax

⌉

The next step determines the total number of wasted slots (TWS) in one major
cycle. Then the cut-line is identified. The computation performed is as follows.

396 12 Data Dissemination and Broadcast Disks

TWS =
S∑

i=1

((NSi × NCi − NPi) × fi)

=
S∑

i=1

((
NSi × Tmax

fi
− NPi

)
× fi

)

=
S∑

i=1

(NSi × Tmax − NPi × fi)

The core of the compaction of data which is performed next. The data slots to right
of cut-line are moved into a separate array Moved. The slots from which data have
been placed in Moved array can now be declared as empty. Then data is moved
from Moved array to the empty slots just before the cut-line. Although compaction
algorithm does not disturb chunk orders from disks in minor cycle, it re-orders the
pages that make up a chunk. Hence, using compaction requires the client to change
the order of servicing queries.

12.8 Probabilistic Model of Broadcast

Wong [14] proposed a probabilistic approach for generating cyclic broadcast sched-
ule. The approach appears impractical though it improves the performance of skewed
data access by selecting data items according to their relative access frequencies.
Wong’s result tells that for fixed-sized data objects, access time is minimized if
pi
pj

=
√
qi√
qj

for all i, j. We can simplify the result by summing the denominator over all

j, and get pi = qi∑
j
√
qj

.

The difficulty with the method is that it generates an acyclic broadcast schedule.
The access time of a data item could also be arbitrarily large. It performs poorly com-
pared to other skewed broadcast methods discussed later in the text. But Wong [14]
proposed a heuristic to work around. The heuristic assumes that items are of equal
size. The underlying idea is to convert acyclic broadcast to cyclic one which can give
near optimal results. This method is further refined for variable sized data items and
presented in a neat understandable format in [9, 15]. A few important parameters of
the algorithm are:

1. N items to be broadcast.
2. The length of item i is li.
3. Page access probabilities are qi, for i = 1, 2, . . . ,N .

The algorithm states that optimal latency is achieved when following two conditions
are met.

C1: Copies of each data item are equally spaced, i.e., inter appearance gap between
two copies of same item is constant.

12.8 Probabilistic Model of Broadcast 397

C2: The spacing si of two successive copies of same item is proportional to square
root of its length li, i.e., satisfying Eq. 12.1.

si ∝
√

li
qi

, or s2
i

qi
li

= c, where c is a constant (12.1)

Both conditions cannot be met simultaneously. So, the heuristic only approxi-
mates the optimal results obtained from theoretical analysis. Hameed and Vaidya [9]
introduced a pair of additional variables Bi and Ci for each item i:

1. Bi: is the earliest time when next instance of item i should be transmitted, and
2. Ci = Bi + si.

This essentially means Ci is the worst case completion time of the next instance of
item i. Using the above idea, Hameed and Viadya proposed a technique for generating
cyclic broadcast as provided by Algorithm 28 [9]. The simulation results presented
in [9] shows that this method of broadcast performs close to the analytically obtained
optimal result. For more details on this algorithm the reader can refer to the original
paper.

Algorithm 28: Generating broadcast program.

begin
// Initializations begin.
T = 0; // Represents time parameter.
foreach (i ∈ N) do

Bi = 0; // Earliest time for next instance of item i
Ci = si. // Spacing between two successive copies of i

end
// Initialiations end.
for (i = 1, i < N, i = i + 1) do

compute the optimal spacing si using Eq. 12.1;
end
repeat

determine a set of items S = {i|Bi ≤ T , 1 ≤ i ≤ N};
choose imin such that Cimin = min{Ci|1 ≤ i ≤ N}.
set Bimin = Cimin ;
Cimin = Bimin + simin ;
wait for transmission of item imin to complete;
T = T + limin ; // li is length of item i

until (system is live);
end

398 12 Data Dissemination and Broadcast Disks

12.9 Memory Hierarchy

In a typical client server model, the memory hierarchy consists of

• Client side cache and disk
• Server side cache and disk.

In a push based dissemination system, broadcast introduces an intermediate level of
memory hierarchy between the client and the server [1]. If the client’s cache or disk
does not have an item then broadcast is used to satisfy the request. Otherwise, if a
back-channel is provided then the client puts an explicit request for the item. In such
a case, the client waits for the item and tunes in at the exact time to access it.

Multilevel broadcast disk places a sub-hierarchy within the broadcast.

• The fastest disk is at the top level and the slowest disk is at the bottom level.
• We can view this combination hierarchy in broadcast system as shown in the

Fig. 12.10.

As opposed to traditional memory hierarchy, the sub-hierarchy introduced by
broadcast disks has some distinctive features, namely:

• Tunable access latency: By choosing number of disks it is possible to control
access latency of data items. In fact, it is possible to create arbitrary fine-grained

Fig. 12.10 Memory
hierarchy of broadcast
disks [1]

Application

Client’s cache

Client’s disk

Slowest disk

Fastest disk

...

Server’s cache

Server’s disk

B
ro
ad

ca
st

di
sk
s

12.9 Memory Hierarchy 399

memory hierarchy with more number of disks. The biggest advantage is that the
increasing the number of disks in air does not involve any extra h/w cost.

• Cost variation: Normally the access cost is proportional to the level of the memory
hierarchy. In broadcast system this is true only for the average cost. The instanta-
neous cost can vary from zero to the broadcast period. It may be cheaper to use a
back-channel for fetching the required data than to wait.

12.10 Client Cache Management

In a push based data dissemination, the server uses its best knowledge and the require-
ments of the clients. However, in a mobile environment, the number of clients which
a server may have to serve is very large. So, it is difficult for a server either to gather
knowledge or collate the data requirements of all the clients. Many clients may even
be unidentified. Furthermore, back channels may not available to the clients to upload
their profiles. Thus, the server can possibly determine an expected requirement pat-
tern of an average client which serves a large cross section of clients. Consequently,
many clients may have to wait long time for some data which they want quickly, while
a few others may observer data flowing into the broadcast channel much before they
may actually need it.

In the extreme cases, the average requirement pattern may completely mismatch
the requirements of some clients while it may perfectly match the requirements of
the other clients. In order to optimize an application’s performance, it is important to
filter out mismatches of a client’s profile from that of the average client. The technique
is to employ a client side cache management and use a pre-fetching strategy to store
anticipated requirements of data in the client’s cache.

In general there are two cache management techniques.

1. Demand-driven.
2. Pre-fetching.

In demand driven caching, a cache miss occurs when the data is accessed for the
first time. The data is brought into cache when it is accessed for the first time. On
the other hand, pre-fetching represents an opportunistic use of cache resources. The
data is stored in the cache in anticipation of future use. Therefore, there is no delay
even when the data accessed for the first time. But pre-fetching leads to the wastage
of cache resources if the data is not eventually accessed.

The major issue that needs to be addressed before employing any caching strategy
is victim selection. Replacing a cached page by a new page is the primary concern in a
caching strategy. It is critical to performance. For example, sometimes an immediate
references to the victim page may occur after it has been replaced, while there is
a possibility that no reference is made to a new page which has just been brought
into the cache. This situation may occur due to the locality associated with address
references. So, the replacement policy should be such that a page having the lowest
utility at that moment gets evicted.

400 12 Data Dissemination and Broadcast Disks

In case of a dissemination based information system, the burden of data trans-
fer rests on the server. It introduces certain differences that change the trade-offs
associated with traditional caching. So for the sake of completeness, and for a better
appraisal of the issues involved, a close examination of the problems associated with
of client side caching with relative to push based system is needed.

In a pull-based system, when client faults on a page it can explicitly issue a
request for the required page. In contrast, the absence of back channel in a push-
based system forces a client experiencing a page fault to keep listening until the
required page arrives on the broadcast channel. It essentially represents the fact that
the nature of the communication medium (air) in a wireless communication system
is sequential. Therefore, no random access is possible. Consequently, a client must
wait to access the data in the order it is sent by the server. The access cost, therefore,
is non-uniform. The data is not equidistant from the client’s cache. It happens due
to the multi-disk framework. This is in contrast with a traditional system where the
cost is uniform.

12.10.1 Role of Client Side Caching

The role of any caching strategy is to choose an appropriate cache size that gives
the best response to a client’s applications. A large cache size can provide the best
performance, as it is possible to cache most of the data requirements of the applica-
tions running at the client by liberally caching data from the broadcast channel. But
normally the size of a client’s cache is significantly smaller than the size of database
at the server. The reasons are two-fold: (i) the cost of installing a large cache is
very high, and (ii) a large cache makes the client heavy and thus non-portable. The
smallness of cache size puts constraint on the decision as to what should be cached
and what data should be evicted from the cache.

In a pull-based system, the performance of caching is optimal if it based on access
probabilities. The access time remains uniform for pulling out different items from a
server’s database. It implies that all the cache misses have same performance penalty.
However, this not true in a broadcast system. The server generates a schedule for
the broadcast taking into account the access needs of all clients. This way unlimited
scalability can be achieved by broadcast for data services. However, the attempt to
improve performance for one of the access probability distributions lead to degrada-
tion of performance for another access probability distribution.

12.10.2 An Abstract Formulation

Let us consider an abstract formulation of the problem of client side caching. Sup-
pose, a server S disseminating D pages for n clients C1,C2, . . . ,Cn. Let Ai be the
access profile (data requirement for applications) of Ci. The first step is to gener-

12.10 Client Cache Management 401

ate a global access profile by aggregation of the access requirements of the clients.
Let As = σ(A1, . . . ,An), where σ is an appropriately chosen aggregation function.
Assume that the server has the ability to generate an optimal broadcast schedule for a
given access profile. Let β(As) be the generated broadcast program. Note that β(As)

is optimal iff As ≡ A1. The factors causing broadcast to be sub-optimal are:

• The server averages the broadcast over a large population of clients.
• The access distributions that the clients provide are wrong.
• The access distributions of the clients change over time.
• The server gives higher priority (biased) to the needs of clients with different

access distributions.

From the point of view of an individual client the cache acts as a filter as depicted in
the picture of Fig. 12.11. The client side cache filters accesses by storing certain pages
(not necessarily hot pages) such that filtered access distribution, namely Fi = Ai −ci
matches As, where ci ⊆ D is the set of cached pages. If ci = φ then Fi = Ai. If the
server pattern As is different from client’s access pattern β(As) will be different from
β(Ai). In other words, for the cache-less clients the performance is sensitive to how
close is the access pattern to the average client’s access profile. In general, client
cache should filter accesses to close the gap between As and Fi.

Fig. 12.11 A view of client
side cache

A

B
C D

E

A

B
CD

E

β(As)

Server

A1

An

...

Client 1

Cache

As

As

F1

A1

402 12 Data Dissemination and Broadcast Disks

Fig. 12.12 Cost of
prefetching

Hot Cold

C
old

H
ot 2 1

3 2
Client

Server

12.10.3 Consideration for Caching Cost

The traditional probability based caching at the client is not suitable due to the
sequential nature of the retrieval from the broadcast channel. The cache should act as a
filter selectively permitting those requirements for which the local access probability
and the global access probability are the same. The server allocates bandwidth to
each page based on its global likelihood of access. A client should cache only those
pages which have significantly higher local probability of access. It is possible that
either these probabilities match or they mismatch. So the cost consideration should
take into account the hot and cold categorization of the pages both with respect to
the server and the with respect to the client. What is cold at server may be hot at
client and vice versa. Therefore, from prospective of a client caching those pages for
which the cost of acquisition is significantly higher is an automatic choice. The table
in Fig. 12.12 shows the priority for caching. However, in general, it is not possible to
have a binary categorization of the priorities as suggested in the figure. In a broadcast
disk environment, a client faulting on a page has to wait for the data to appear on
broadcast channel. Therefore, in a broadcast disk environment, an appropriate cost
based caching should be developed.

12.10.4 Cost-Based Caching Scheme: PIX and LIX

The idea of a cost-based caching scheme for broadcast disk is to increase cache hits of
the pages for which the client has high access probabilities. Suppose pi is the access
probability of a page that is broadcast at a frequency xi. Then the ratio pi/xi known as
PIX (Probability Inverse frequency X) can be used for selecting victim for eviction
of items from a client’s cache. If pi is high but xi is low, then the item is hot for client
but not so hot for server, then PIX will be high. On the other hand if pi is low but xi
high, then the item is not hot for client but it is hot for server. So, by using least PIX
as the criterion for the selection of victim (for cache eviction), we can ensure that a
less frequently accessed page which occurs more frequently in broadcast schedule
will be evicted from client cache. For example, consider two page a and b with
access probabilities 0.01 and 0.05 respectively. Suppose the respective frequencies
of occurrence of a and b on broadcast cycle are 2 and 100. Then PIX(a) = 0.005 and
PIX(b) = 0.0005. On the basis of PIX values, b will be the victim page. Although
the probability of access for b at the client is more than that of a, from the server

12.10 Client Cache Management 403

prospective b is hotter than a. The server broadcasts page b more frequently than it
does the page a. Therefore, a is preferred over b for caching. Unfortunately PIX is not
an implementable policy, as it requires advance knowledge of access probabilities.
So, we need to invent a policy which is an implementable approximation to PIX.

Though access probabilities of a page cannot be measured or known beforehand,
we may find an approximate measure of the same. The idea is to find a running
average of the number of times each page is accessed. The running average assigns
importance to the client’s recent access pattern. LIX, as it is known, is an adaptation
of LRU and PIX.

It maintains the cache as a singly linked list. For each broadcast disk a separate
linked list is maintained at the client. When a page is accessed it is moved to the
top of the list. This ensure that the pages accessed recently are not the candidates
for eviction. When a new page enters the cache, LIX evaluates the lix value for the
bottom of each chain. The page with smallest lix value is evicted to allow the new
page to be stored. Although page is evicted with lowest lix value the new page joins
the linked list corresponding to broadcast disk it belongs. The lix value is evaluated by
the ratio of the estimated running average of the access probability and the frequency
of broadcast for the page. For estimating of the running probability of access pi each
page i, client maintains 2 data items, namely, pi value and the time ti of the recent
most access of the pages. It re-estimates pi, when the page i is accessed again. The
probability estimate is carried out according to the following rules.

1. Initialize pi = 0 when page i enters the cache.
2. The new probability estimate of pi is done when page is accessed next using the

following formula

pnewi = λ

currTime − ti
+ (1 − λ)pi,

where λ, 0 < λ < 1, is an adjustable parameter.
3. Set ti = currTime and pi = pnewi .

As pi is known for each page and so are their frequencies, lix values can be calculated
easily. Essentially LIX is a simple approximation of PIX, but it was found to work
well [1].

12.10.5 Pre-fetching Cost

The goal of pre-fetching is to improve the response time for a client application. Pre-
fetching is an optimistic caching strategy, where the pages are brought in anticipation
of future use. The dissemination oriented nature of broadcast system is ideal for pre-
fetching, but it is slightly different in approach compared to a traditional pre-fetching
scheme. In a traditional system, the client makes an explicit request for pre-fetching.
Therefore, it is anadditional burden on resources. But in a broadcast environment

404 12 Data Dissemination and Broadcast Disks

Fig. 12.13 Illustrating
pre-fetch cost

y

x

p =0.5

p =0.5

x
Cache

y

x

the pages anyway flow past. Therefore, the client can pre-cache the selected pages if
these are important. On the flop side, an eager pre-caching results in wastage of cache
slots in respect of pages cached too early. In a traditional system, an improvement
response time at a client can be achieved by

• minimizing the cache miss rate, and
• reducing the cost of a cache miss.

Though the improvement in broadcast environment also depend on the same para-
meters, here the considerable gains can be achieved by reducing the latency when a
cache miss occurs.

Example
Suppose a client is interested in two pages x, y. The server broadcast them on a flat
disk with 180◦ apart. There is a single cache slot at the client. Figure 12.13, illustrates
the scenario. Under a demand-driven strategy, the client caches a page, say x, as a
result of the requirement for the page. In this case, all the subsequent requests for x
can be satisfied without delay, but if there is a requirement for y, then it has to wait till
the page comes by on the broadcast. Then x is replaced y, and it remains resident till
a request for x results in a cache miss when x again is brought into the cache. In this
strategy the expected delay on a cache miss could be one half of the disk rotation.
The cost for accessing a page is given by

Ci = pi ∗ mi ∗ di

where pi is probability of access, mi expected probability of a cache miss, di is the
expected delay before the page i arrives on broadcast. The total expected cost for
access over all pages in demand-driven strategy is:

∑

i∈{x,y}
Ci = 0.5 ∗ 0.5 ∗ 0.5 + 0.5 ∗ 0.5 ∗ 0.5 = 0.25

one quarter of a disk spin time.
Suppose we cache the page x when it arrives on broadcast and replace it with y

when the latter arrives, the strategy is called tag team. The cost will be

12.10 Client Cache Management 405

∑

i∈{x,y}
Ci = 0.5 ∗ 0.5 ∗ 0.25 + 0.5 ∗ 0.5 ∗ 0.25 = 0.125

Therefore, tag team caching can double the performance over demand-driven
caching. The improvement comes from the fact that a miss in tag team strategy
can only be due to some requirement in half the broadcast cycle. In contrast the
cache miss in demand-driven strategy can occur at any time.

12.11 Update Dissemination

In a client-server system update dissemination is a key issue concerning the perfor-
mance versus the correctness tradeoff. A client accesses from its local cache, whereas
the updates are collected at the server. Therefore, keeping the consistency of client’s
cache with the updates is a big problem. Any consistency preserving—by notification
or invalidation—mechanism must be initiated by the server. However, it is possible
that different applications require varying degree of consistency in data. Some can
tolerate some degree of inconsistency. In general, the environment must guarantee
consistency requirement that is no weaker than an application’s requirement. Obvi-
ously, the stronger is the consistency guarantee the better it is for the application.
However, the requirement for a stronger consistency hurts the performance as the
communication and the processing overheads are more.

12.11.1 Advantages of Broadcast Updates

Specially, if there is no back channel, maintaining the consistency client’s cache
becomes entirely the responsibility of the server. On the other hand, there are some
added advantages of a broadcast system, namely,

• The communication overheads are significantly cut-down as the notification of the
updates are initiated by the server. However, in absence of any notification the
client has to poll. Polling is not possible unless there is a back channel.

• A single notification will do, as it is available on broadcast to all the clients.
• The client’s cache is automatically refreshed at least once in each broadcast period.

12.11.2 Data Consistency Models

The notion of data consistency depends on applications. For example, in a database
application, the consistency of data normally tied with transaction serializability.
But many applications may not require full serializability. So we need to arrive at

406 12 Data Dissemination and Broadcast Disks

some weaker forms of the correctness. In a dissemination based system the notion of
consistency is not fully understood till date. Therefore, the focus of our discussion is
on a broadcast disk environment where all updates are performed at the server. The
type access is allowed to the clients is read-only. The examples of such applications
could be stock notification, weather report, etc. The models of data consistency
normally employed are:

• Latest value: The client is interested for accessing the recent most value. The
clients perform no caching and the server always broadcast the updated value.
There is no serializability, i.e., mutual consistency among data items is not impor-
tant.

• Quasi-caching: Defined per-client basis using a constraint specifying the tolerance
of slackness with respect to the Latest value. A client can use cached data items
and the server may disseminate updates more lazily.

• Periodic: Data values change only at some pre-specified intervals. In a broadcast
environment, such intervals can be either be a minor or a major cycle of a broadcast.
If a client caches the values of the broadcast data, then the validity of this data is
guaranteed for the remainder of the period in which the data is read.

• Serializability: The notion serialiability is important for the context of transaction
processing. But serializability can be implemented in the broadcast dissemination
model, using optimistic concurrency control at the clients and having the server
broadcast the update logs.

• Opportunistic: For some applications, it may be acceptable to use any version of
data. Such a notion of consistency allows a client to use any cached value. It is
also quite advantageous for long disconnection.

InLatest valuemodel a client has to monitor broadcast continually to either invalidate
or update the cached data. In contrast Periodic model fits well with the behaviour of
a broadcast disk model. It does not require the client to monitor broadcast, since data
changes only in certain intervals. Quasi-caching and Opportunistic models depend
heavily on data access semantics of specific applications. Serializability model is
applicable in transaction scenarios.

References

1. S. Acharya, M. Franklin, S. Zdonik, Dissemination-based data delivery using broadcast disks.
IEEE Pers. Commun. 2(6), 50–60 (2001)

2. S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast disks: data management for asym-
metric communication environments. ACM SIGMOD Rec. 24(2), 199–210 (1995)

3. D. Aksoy, M.S.F. Leung, Pull versus push: a quantitative comparison for data broadcast,Global
Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, vol. 3 (2004), pp. 1464–1468

4. M. Ammar, J. Wong, The design of teletext broadcast cycles. Perform. Eval. 5(4), 235–242
(1985)

5. Y.I. Chang, C.N. Yang, A complementary approach to data broadcasting in mobile information
systems. Data Knowl. Eng. 40(2), 181–194 (2002)

References 407

6. M. Franklin, S. Zdonik, Dissemination-based information systems. Data Eng. 19(3), 19–28
(1996)

7. M. Franklin, S. Zdonik, Data in your face: Push technology in perspective. ACM SIGMOD
Rec. 27(2), 516–519 (1998)

8. D.K. Gifford, R.W. Baldwin, S.T. Berlin, J.M. Lucassen, An architecture for large scale infor-
mation systems. SIGOPS Oper. Syst. Rev. 19(5), 161–170 (1985)

9. S. Hameed, N.H. Vaidya, Efficient algorithms for scheduling broadcast. ACM/Baltzer J. Wire-
less Netw. 5(3), 183–193 (1999)

10. G. Herman, K.C. Lee, A. Weinrib, The datacycle architecture for very high throughput database
systems. SIGMOD Rec. 16(3), 97–103 (1987)

11. C.-L. Hu, M.-S. Chen, Adaptive balanced hybrid data delivery for multi-channel data broadcast,
IEEE International Conference on Communications, 2002. ICC 2002, vol. 2 (IEEE, 2002), pp.
960–964

12. Q. Hu, D.L. Lee, W.-C. Lee, Performance evaluation of a wireless hierarchical data dissemi-
nation system, Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (ACM, 1999), pp. 163–173

13. Y. Huang, H. Garcia-Molina, Publish/subscribe tree construction in wireless ad-hoc networks,
Mobile Data Management (MDM’03) (2003), pp. 122–140

14. J.W. Wong, Broadcast delivery. Proc. IEEE 76(12), 1566–1577 (1988)
15. J. Xu, J. Liu, Broadcast Scheduling Algorithms for Wireless Data Dissemination, ed. by Y. Pan,

Y. Xiao. Design and Analysis of Wireless Networks: Wireless Network and Mobile Computing,
vol. 1 (Nova Science Publisher, 2005)

Chapter 13
Indexing in Air

13.1 Introduction

Push based data delivery [1, 12, 14, 15] addresses the problem of data dissemination
on inherently asymmetric low bandwidth wireless channel. The role of uplink chan-
nel is restricted to gathering users’ profiles in order to determine the composition of
broadcast data according to the requirements of mobile users. With simple adapta-
tions of conventional caching mechanisms at the client end, it is possible to improve
response times when a client’s applications need data. However, the issue of energy
efficiency in accessing data over broadcast channel is not addressed. Since a mobile
end host operates with a limited power of a small battery, energy efficiency [13]
is critical. In this chapter, our aim is to study some of the well known indexing
schemes which have been successfully adopted for energy efficient access of data
from broadcast channels by portable mobile clients.

At the hardware level, a number of energy efficient chips have been designed
specially for mobile devices. Two such examples are, Transmeta group’s Crusoe
and AT & T’s Hobbit chips. For example, Crusoe [9] implementers claim that the
processor can prolong the life of battery for mobile devices up to four fold. Typically,
AT & T’s Hobbit in full active mode requires about 250 mW of power, but in doze
mode it consumes about 50 µW of power [2]. So, the ratio of power consumptions
between active and doze modes of a mobile device could be as high as 5000:1.
Another important point is that if a battery drains out too often it will also require
frequent recharging. Although, the new generation of mobile batteries do not care
how frequently they are recharged, a battery depending on its type, can last between
500–800 charge cycles [11]. So, an important reason for prolonging the life of a
battery is that disposal of used batteries is environmentally hazardous [3, 10].

The requirements for energy efficient operations comes from following two fun-
damental limitations of mobile end hosts.

1. Need to conserve battery.
2. Need to utilize bandwidth.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_13

409

410 13 Indexing in Air

By conserving battery, a mobile computer can prolong its battery life. By evolving
clever techniques for utilization of bandwidth, it should be possible to serve thousands
of mobile clients running different applications. However, in order to server the data
requirements of diverse applications we need clever indexing techniques.

In wired network, an indexing mechanism primarily reduces the access time of
disk based files [5]. The client is always online with an active network connection
and waits until the relevant data is retrieved from a local or a network storage. If
the data available in the local disk, then the cost of retrieval is significantly low. A
wired connection provides high bandwidth, low latency link between the server and
the clients. So, even if data is on a server disk, the distance of data from the client’s
memory is not significantly high.

In a wireless communication environment, indexing schemes have multi-fold
requirements, important among these are:

1. Energy efficiency,
2. Scalability, and
3. Fast response.

As explained in the previous chapter, in a wireless environment, broadcast based
communication is far more effective than unicast communication. Broadcast allows
the communication to scale up gracefully. So, push based data delivery primarily
addresses the scalability issues in a mobile distributed system. However, a trade-
off exists between energy efficiency and fast response. All mobile devices can tune
to a broadcast channel and retrieve the data as per their requirements. In contrast,
unicast communication requires a separate channel of communication to be available
each time when the need arises. Simultaneous use of many separate channels in the
same cell partitions the bandwidth. Therefore, it considerably reduces the utilization
of bandwidth. In a broadcast oriented communication, the distance of data from
a mobile client’s memory is determined by the broadcast schedule of the relevant
server. For example, if a client’s request coincides with the appearance of a data item
in the broadcast channel, then the data is available instantaneously. However, if the
request is made after the data has flown past on the broadcast channel, then the client
will be forced to wait for the data until a full broadcast cycle has elapsed.

Obviously, a mobile client cannot remain in the active mode for a long time as
it depends on the limited power of a battery. Therefore, push based data delivery
should incorporate methods to organize the data that would enable a mobile client
to anticipate the exact time when its data requirements can be met by the broadcast
channel. Unfortunately, the broadcast channel is a strictly sequential medium. It
forces a mobile client to turn into active mode from time to time to check and
retrieve the requested data from the broadcast disks.

13.1 Introduction 411

Listening to the downlink channel in order to check whether the required data has
arrived or not is referred to as a probe. Tuning time refers to the time that a mobile
host spends in probing the downlink channel until it is able to download data from
a server. Therefore, an efficient indexing scheme should minimize both the probe
and the access times. The access time refers to the difference between the time the
request is made to the time when the data gets fully downloaded. So, the access time
includes the probes and the download time.

13.2 Address Matching and the Directory

A mobile device operates in two modes, namely, active and sleep. The sleep mode
allows a mobile device to shut down its power hungry components including CPU,
display, and communication interface. Fortunately, the power requirement of the
paging hardware is very little and it remains on. So, a mobile in sleep mode can
switch into active mode when needed. Ideally, a mobile client should switch on into
active mode only when the required data appears on the broadcast channel. So, the
broadcast should be organized in such a way that the pager can apply an address
matching scheme to determine whether the data arriving on the downlink channel is
relevant to the application running on the mobile terminal or not.

The other way to switch from sleep to active mode of operation is on the detection
of event triggers. Events triggers typically require tight synchronization, and are
handled by system clocks. A system clock is a low energy circuit. It wakes up the
CPU and turns a mobile terminal into active mode at pre-determined timings. Thus
a mobile terminal can turn into active mode and download the desired data when it
becomes available on the downlink channel.

The technique of temporal address matching requires perfect or near perfect syn-
chronization. The client probes the downlink channel from time to time and deter-
mines the exact time when the relevant data is published on the broadcast channel. It
switches itself to sleep mode for the estimate duration until the required data arrives
on broadcast channel.

However, the basic problem in using any of the above methods is that a client
must have the advanced knowledge about mappings between the data keys (pri-
mary/secondary) with addresses (multicast group/temporal). The mapping, known
as a directory, must be either pre-cached by the clients or published by the server
mulitplexing it along with the actual data on broadcast channel. The second approach
is more appropriate to a broadcast environment, because it is oblivious to the dynam-
icity of data and the churn rate of clients in a mobile system. So, our goal in this
chapter is to study this second approach for energy efficient indexing in mobile
environment.

412 13 Indexing in Air

13.3 Preliminary Notions

We introduce some preliminary notions required for the analysis of directory orga-
nization of broadcast or published data.

Definition 13.1 (Bucket) A bucket, also known as a page, is the smallest logical
unit of the broadcast. For the simplicity, we assume that exactly one packet fits into
a bucket.

The data in each bucket is identified by an attribute value or the search key. A
client can retrieve the required data identified by search key by simple pattern
matching.

Definition 13.2 (Bcast) The broadcast data is divided into local segments called
Bcast. Each Bcast consists of data interleaved with directory information or
index.

The directory information may include some replications. Replication makes the
search efficient when the directory information intermixed with data is pushed into
broadcast channel. Each Bcast consists of only one instance of data.

13.4 Temporal Address Matching Technique

The temporal address matching scheme requires that the directory of data files to
be published along with the data. Alternatively, directory information can be cached
by the clients. However, caching directory at the clients is impractical due to the
following reasons.

• Firstly, the directory information across cells may not match. Therefore, cached
directory information for one cell is unusable when a client moves to a new cell.

• Secondly, a client entering into system for the first time will not have any directory
information for the data broadcast in its home cell.

• Thirdly the data and the associated directory information may change over time.
It will require every client to recharge the cache with new directory information.

• Lastly, storing directory at a client may require substantial local storage. So, pre-
caching can only be applied to relatively less portable mobile clients.

Therefore, a simpler approach is to have the directory information published along
with data on the broadcast channel.

13.5 Tuning Time and Access Latency

The parameters used for the measurement of energy efficiency and the access latency
of the of the broadcast data [8] are:

13.5 Tuning Time and Access Latency 413

Fig. 13.1 Illustrating timing
parameters

Access time

Data downloaded

Initial probe Final probe

Tuning time (4 probes)

• Tuning time: The time spent by a client listening to the broadcast channel, in order
to retrieve the required data. It provides a measure of the energy consumption at
the client, because the energy spent will be proportional to the time client operates
in active mode.

• Access latency: The time elapsed (on an average) from the moment a client
requests for data to the point when the data actually downloaded by the client.
Access latency affects the response time of the application running at the client.
The request is deemed to have been issued when the client makes the initial probe.

Both the timing parameters are measured in units of bucket numbers. The tuning time
is proportional to access latency. The access latency depends not only on the index
but on how the data is organized in the schedule. The number of probes depends on
the depth of the index tree to the appropriate leaf where data is located. A mobile
client may have to probe a number times to climb down the index tree and determine
the exact position of the requested data in broadcast schedule. Figure 13.1 illustrates
dependency between the tuning time and the access latency.

13.6 Indexing in Air

The key idea is to come up with an allocation method that multiplexes index with
data in an efficient manner [8], such that

• It enables the clients to conserving energy, and
• It enables the server to utilize the broadcast bandwidth efficiently.

First of all, buckets should be self identifying, i.e., whether a bucket represents
an index or a data bucket. By inclusion of certain header information, a bucket
can provide the identification and allow the clients to determine the position of the
bucket in the broadcast schedule. The relevant header information stored in a bucket
are described below:

414 13 Indexing in Air

• bucket_id: stores offset of the bucket from beginning of the current Bcast.
• bucket_type: provides the type of the bucket, i.e., whether it stores index or data.
• bcast_pointer: stores the offset of the current bucket from the beginning of the

next Bcast.
• index_pointer: stores the offset to the beginning of the next index segment.

A pointer to a bucket can be found by bucket_id B. The offset to B from the current
bucket Bcurr is the difference

diff_offset = bucket_id(B) − bucket_id(Bcurr).

Therefore, the time to get B from Bcurr is equal to (diff_offset-1)×tB, where tB is
the time to broadcast a single bucket. An index bucket consists of pairs of values
(attribute_value, offset), where offset gives the bucket_id of the bucket that contains
the data identified by the attribute_value. In general an index tree may have multiple
levels.

13.6.1 (1, m) Indexing Scheme

A simple minded approach is to uniformly mix index several times within broadcast
data. This method is called (1, m) indexing, where every 1/m fraction of data buckets
is preceded by one full index. The degenerate case of (1, m) indexing occurs when
m = 1, index broadcast exactly once with data. So, the length of a Bcast is equals
length of Data plus the length of Index, i.e., Bcast = Data + Index. The access
algorithm using this (1, 1) indexing scheme is as follows.

Algorithm 29: Access algorithm for (1, 1) indexing

// Bcurr ID of current bucket
// Bidx ID of next index bucket
tunes to Bcurr , and set offset = Bidx − Bcurr ;
set wakeup_time = offset ×tB, and enter into doze mode;
wakes up after doze mode expires;
// Bdata is ID of data bucket
obtain the pointer to Bdata;
// Bcurr now refers to current bucket in the index part
set wakeup_time = Bdata − Bcurr
wake up again after doze mode expires;
download the relevant data;

13.6 Indexing in Air 415

13.6.1.1 Analysis of (1, 1) Indexing

A Bcast consists of Data interleaved with directory information. The access time
has two parts: (i) probe wait, and (ii) Bcast wait.

Definition 13.3 (Probe wait) It refers to the average delay to get to the next nearest
index from the time of initial probe for accessing index is made.

Definition 13.4 (Bcast wait) It refers to the average delay to download the actual
data from the time the index to the required data is known.

In (1, 1) indexing, the index is broadcast once. Thus, the expected delay due to probe
wait is equal to half the Bcast time. Also the expected delay for downloading data
or the Bcast wait is half the Bcast time. It means the access time = (Data+Index).

13.6.1.2 Tuning Time for (1, 1) Indexing

Tuning time, the time spent on listening, depends on number of probes. It consists
of (i) an initial probe, (ii) a number of probes to get the correct index pointer for the
required data, and (iii) a final probe to download the data.

The size of a fully balanced index tree Tidx is Index=
∑k−1

i=0 ni, where Tidx has k lev-
els. Suppose, each bucket has the space to accommodate n pairs of (search_key,
data_ptr). Then, k = �logn Data�. Therefore, the tuning time = 2 + �logn Data�.

13.6.1.3 Analysis of (1, m) Indexing

The distance between two consecutive occurrences of index segments in a broadcast
schedule is

Data

m
+ Index.

Therefore, the probe wait is:

1

2

(
Data

m
+ Index

)

.

The Bcast wait is
1

2
(Data + m ∗ Index) .

Therefore, the access time is equal to:

m + 1

2m
(Data + m ∗ Index)

416 13 Indexing in Air

As explained earlier, the tuning time is dependent on the number of probes. Thus
the total tuning time is equal to

2 + �logn Data�.

However, optimization of the access time depends on the number of times index
is replicated in a broadcast cycle. The optimal value of m is determined by differen-
tiating the expression for the access time. It gives the value of m as:

m =
√

Data

Index
.

13.7 Distributed Indexing Scheme

Distributed indexing improves both access time and tuning time compared to (1, m)
indexing by cutting down the replications on indexes. In (1,m) indexing, every 1/mth
fraction of data is preceded by a copy of the index. In distributed index, replication
of the index is restricted. We describe three distributed index methods which differ
in degree of replications.

• Non replicated distributed indexing.
• Fully replicated distributed indexing.
• Partially replicated distributed indexing.

In non-replicated distribution, one copy of index is distributed over one copy of
the data. Basically the index is interspersed with the data. Different index segments
are disjoint. Each index segment is followed by the corresponding data segment.
Figure 13.2a illustrates an example for this scheme. The first level index refers to a
classification based on disciplines such as literature, science and engineering. The
second level indexes precede a data segment, only the index relevant to the data seg-
ment appears before it. For example, the index segment associated with Engineering
data segment appears before it. The top level indexes associated with either literature
or science are not replicated.

In a fully-replicated distribution, the entire path starting from the root to a data
segment is replicated just before the occurrence of the data bucket. For example,
as Fig. 13.2b shows, the full index tree path from the root down to the subtree of
Computer Science (CS) is replicated just before the occurrence of CS data segment.
It helps to quickly fetch the pointer to the required data. However, as the index is
replicated several times, the access time becomes longer.

In the case of partial replication, the upper part of the index tree gets replicated.
Suppose B and B′ represent two adjacent buckets belonging to the non replicated
index at the lowest level. Then index buckets representing the Least Common Ances-
tor (LCA) of B and B′ is placed before the occurrence of the index bucket B′. This
is illustrated by Fig. 13.2c. The replicated part of the index prior to the occurrence

13.7 Distributed Indexing Scheme 417

Lit.
Sc.

Engg.
Literature data Science data

CS
EE
ME

Engineering data

CS
EE
ME

CS data EE data ME data

(a) Non replicated

Lit.
Sc.

Engg.
Literature data Science data

CS
EE
ME

Engineering data

Lit.
Sc.

Engg.

CS
EE
ME

CS data
Lit.
Sc.

Engg.

CS
EE
ME

EE data
Lit.
Sc.

Engg.

CS
EE
ME

ME data

(b) Fully replicated

Lit.
Sc.

Engg.
Literature data Science data

CS
EE
ME

Engineering data

Lit.
Sc.

Engg.

CS
EE
ME

CS data
CS
EE
ME

EE data
CS
EE
ME

ME data

(c) Partially replicated

Fig. 13.2 Distributed indexing

of CS data segment refers only to the root of the index subtree containing CS data
segment. Incidentally, the root also the LCA of the index tree path from the root
to the CS data segments. On the other hand, only the index segment (CS, EE, ME)
appears before Electrical Engineering (EE) data segment. This is because, the LCA
of:

1. Tree path from the root to EE data segment, and
2. Tree path from the root to CS data segment.

is represented by the index segment CS, EE, ME. In other words, partial replication
of index is restricted to the upper part of the index tree. The idea behind this kind of
replication is to ensure that pointer to non replicated part of index relevant to data
can be found quickly. Therefore, it helps to reduce the tuning time.

418 13 Indexing in Air

c c

b b b b b b b b b

a a a

0 3 787563 66 6954 57 6033 36 39 42 45 48 513024 2718 2112 1596 72

IN
D

EX
 T

R
EE

no
n

re
pl

ic
at

ed
 p

ar
t

R

re
pl

ic
at

ed
 p

ar
t

DATA

32 42 52 62 722221201918171631 41 511201 119754321

3 91 2 5 6 7 8 10

321

86

Fig. 13.3 A three level index tree [1]

13.7.1 Distributed Indexing with No Replication

Every data bucket maintains a pointer to the next nearest Bcast. The index is
distributed with the root of the index tree at the beginning of a Bcast, and the index
buckets are interleaved with the data buckets. The index segments are mutually
disjoint. So, the index information is non replicated. The data is organized level-
wise. For example, an index tree consisting of four levels and data consisting of
81 buckets is illustrated by Fig. 13.3 [1]. It indicates that the top two levels of the
index tree are replicated and the bottom two levels are non-replicated. Each group
of the three bottom level branches leading to data buckets are merged into a single
link. A general multi-level index tree having k + 1 levels can now be described by a
straightforward extension of the four level index tree in the following manner. The
tree can be viewed as logically partitioned at a level r from the top, where 0 ≤ r ≤ k.
The top part of the tree including the root and up to level r constitutes the replicated
part. The bottom part of the tree from level r + 1 up to and including level k defines
non replicated part. It consists of a collection of subtrees each rooted at an index
node belonging to the level r + 1.

The non replicated part of the index appears only once in a Bcast, whereas
every node of the replicated part of the index appears as many number of times as
the number of children it has in the index tree. For example, consider the tree Tidx in
Fig. 13.3. Tidx is a complete 3-ary tree, in which every node including the root R has
exactly three children. The replicated part of Tidx defined by the top two levels. It
consists of four nodesR, a1, a2 and a3. Each of these four nodes are replicated number
of times equal to the number of children they have. So, each of the nodes R, a1, a2, a3

are replicated three times in a Bcast in distributed indexing with replication. The
two extreme cases of distributed indexing (i) non replicated indexing, and (ii) fully
replicated indexing, occur respectively when r = 0 and r = k.

13.7 Distributed Indexing Scheme 419

R a1 b1 c1 c2 c3 0 8··· b2 c4 c5 c6 9 17··· b3 c7 c8 c9 18 26···

a2 b4 c10 c11 c12 27 35··· b5 c13 c14 c15 36 44··· b6 c16 c17c18 45 53···

a3 b7 c19 c20 c21 54 62··· b8 c22 c23 c24 63 71··· b9 c25 c26 c27 72 80···

Fig. 13.4 Distributed indexing with no replication

Let us examine the organization of the four-level Tidx, shown in Fig. 13.3, a bit
more closely. Suppose, nine data buckets reachable from an index node at level 2
from the top are merged together in a single data segment on a broadcast schedule.
When using distributed indexing with no replication a Bcast for dissemination of
81 data buckets appears as the one shown by Fig. 13.4 [1]. There is no replication of
the index path in any part of the index segment. An index segments consists of either
4 or 6 buckets. Suppose, a mobile host MH wants to access the data bucket 58, and
MH makes its initial probe at bucket 2. Then after a sequence for probes, downloads
data bucket 58, as follows.

• From bucket 2, MH gets the offset to the beginning of the next nearest Bcast.
The root R of Tidx is located there.

• From R, the search is successively guided by through index stored at buckets a3,
b7, c19.

• MH then obtains pointer to data bucket 58 from index stored in c19, and downloads
the data.

This means that, starting fromR, MH requires four probes to determine the position of
the data bucket 58. So, including the initial probe, five probes are needed to download
data of bucket 58.

13.7.2 Replication Based Distributed Indexing

The other two distributed indexing based on replications increase the size of the
Bcast. But the amount of replication is not as much as (1, m) indexing scheme.
Therefore, the access time which is dependent on the size ofBcast, is less compared
to that of (1, m) indexing scheme. But compared to the indexing with no replication,
the bandwidth utilization is poor. This is due to the fact that the replicated indexes
eat away some amount of bandwidth. However, if the index tree is not very big and

420 13 Indexing in Air

the replication is not very high, then it helps a mobile client to retrieve data in an
energy efficient manner. Furthermore, the tuning time can be reduced by optimizing
the replication. An optimum value for r, the level up to which index tree should be
replicated to minimize tuning time can be determined by a simple analysis provided
later in the next section.

13.7.3 Full Path Replication Scheme

Let us examine the distributed index replication policies along with data organization
for broadcast. For the sake of simplicity in discussion, let us assume the index tree
Tidx has four levels as shown by the picture in the earlier figure. The full index path
replication scheme is illustrated in Fig. 13.5. Each index segment represents the entire
tree path for the data segment that occurs after it. Suppose a MH wishes to access
data bucket with key 73, and the initial probe is made at any data bucket Bx. MH can
retrieve the pointer to the next nearest occurrence of the root of Tidx from Bx. MH
then begins search on Tidx along the path from R to the required leaf storing a pointer
to the record with the primary key 73. For the sake of concreteness, let us assume
that x = 15. Then the index path traversed to reach the record with key = 73 is given
by the sequence of index buckets:

{R, first_a3, b9, c25},

where first_a3 denotes the first copy of a3 in the replicated part of Tidx. Since, R has
the information about the child through which the search can be guided, the search
takes us directly to first_a3. Then from there to b9, and c25 along the index tree path.

R a1 b1 c1 c2 c30 8··· R1 a1 b2 c4 c5 c6 9 17··· R a1 b1 c7 c8 c9 18 26···

R a2 b4 c10 c11 c1227 35··· R a2 b5 c13 c14 c15 36 44··· R a2 b6 c16 c17 c18 45 53···

R a3 b7 c19 c20 c2154 62··· R a3 b8 c22 c23 c24 63 71··· R a3 b9 c25 c26 c27 72 80···

Fig. 13.5 Distributed indexing with full path replication

13.7 Distributed Indexing Scheme 421

13.7.4 Partial Path Replication

The partial path replication improves on the full path replication by restricting amount
of replications. The basic idea, as explained earlier, is to partition the index tree into
two parts, namely,

• Replicated part, and
• Non replicated part.

In our discussion, we assume without loss of generality that the index buckets for
Non Replicated Roots (NRRs) are ordered from left to right in consistent with the
order they appear in the tree at level r + 1. The data buckets or the index buckets
which are descendants of NRRs appear only once on each broadcast cycle. Before,
we examine the organization further, it is convenient to introduce some notations.

1. R: the root of index tree.
2. NRR: denotes the set of index buckets at r + 1 level. These are the roots of the

index subtrees in non-replicated part of the index tree.
3. Bi: Bi, for 1 ≤ i ≤ |NRR|, is the ith index bucket in NRR.
4. Path(C,Bi): Represents the sequence of buckets on the path in index tree from

bucket C to Bi including C but excluding Bi.
5. Data(Bi): The set of data buckets indexed by Bi.
6. Ind(Bi): The part of index tree below Bi including Bi.
7. LCA(Bi,Bk): The least common ancestor of Bi and Bk in the index tree.
8. Rep(Bi): For a Bi ∈ NRR, Rep(Bi) represents a path in replicated part of index

tree as defined below:

Rep(Bi) =
{
Path(R,Bi) for i = 1,

Path(LCA(Bi−1,Bi),Bi) for i = 2, . . . , |NRR|

9. Ind(Bi): Denotes the non-replicated part of the path from R to Bi.

For the running example, NRR = {b1, b2, b3, b4, b5, b6, b7, b8, b9}.
Each broadcast schedule is made up of a sequence of |NRR| tuples the form:

< Rep(B), Ind(B),Data(B) >, ∀B ∈ NRR.

Table 13.1 provides the tuple sequence corresponding to three non replicated roots
b1, b2 and b3. Figure 13.6 illustrates the organization of the same 81 data buckets
for the running example on a Bcast using partial path replication. Notice that there
are exactly nine broadcast segments in the schedule one corresponding to each non
replicated root.

Suppose the client wants to retrieve data bucket 66 and it makes the first probe
at data bucket 3. The probe directs the client to second_a1 (second replica of a1).
But as the entire tree is not replicated, the root cannot be accessed. Although the

422 13 Indexing in Air

Table 13.1 Tuples corresponding to non-replicated roots

b1 b2 b3

Rep(B) {R, a1} {a1} {a1}
Ind(b) {b1, c1, c2, c3} {b2, c4, c5, c6} {b3, c7, c8, c9}
Data(B) {0, . . . , 8} {9, . . . , 17} {18, . . . , 26}

R a1 b1 c1 c2 c3

r1
first a1

0 8··· a1 b2 c4 c5 c6

second a1

9 17··· a1 b3 c7 c8 c9

third a1

18 26···

R a2 b4 c10c11c12

r2
first a2

27 35··· a2 b5 c13 c14 c15

second a2

36 44··· a2 b6 c16c17 c18

third a2

45 53···

R a3 b7 c19 c20 c21

r2
first a3

54 62··· a3 b8 c22 c23 c24

second a3

63 71··· a3 b9 c25 c26 c27

third a3

72 80···

Fig. 13.6 Partial path replication

data bucket is yet appear in the broadcast schedule, the local index does not have a
pointer to access the data bucket 66. It necessitates that there should be some special
provision to climb up index tree in order to guide the client to data bucket 66.

The simple trick that provides the client enough information about climbing up
the index tree is to have each replicated node store a small set of local control indexes.
For example, the local control index at second_a1 should be able to direct the client
to r2 where the next replica of the root in the index tree can be found. Once root is
located, the client makes the sequence of probes: first_a3, b8, c23 and retrieves the
data bucket 66. However, if instead of 66 the client want to find bucket 11, then the
index second_a2 should direct the client to probe b2, c4 and then 11. Thus, having
a copy of the root before second_a2 in the index tree would have been a waste of
space.

The role of the control index is two-fold, namely,

1. Climbing up the tree path to the occurrence of the first replica of the root in the
next broadcast cycle if the data bucket corresponding to the search key has flowed
past on the current Bcast.

13.7 Distributed Indexing Scheme 423

Fig. 13.7 Control index Nan, NaN

26, r2

8, Rnext

26, r2

17, Rnext

26, r2

26, Rnext

53, Rnext

first a1

second a1

third a1

r2

r3

26, Rnext

53, r3

35, Rnext

53, r3

44, Rnext

53, r3

first a2

second a2

third a2

53, Rnext

80, Rnext

62, Rnext

80, Rnext

71, Rnext

80, Rnext

first a3

second a3

third a3

Rnext denotes the root of index tree at
the start of the next nearest edition

2. Climbing up the tree to appropriate higher level index bucket if the data has not
flowed past in the current broadcast, but not accessible from the current index
bucket.

So, the correctness of control indexes at each index bucket is critical to search. The
control indexes for the example under discussion is provided in Fig. 13.7.

Every index bucket should have provision to store control index, which is essen-
tially a part of replicated portion of the index tree. For understanding how control
indexes are formulated, let us consider a path Path(R,B) = {BK1,BK2, . . . ,BKs}
where B ∈ NRR. By definition, each bucket BKi in the above path belongs to the
replicated part of the index tree. Let Last(BKi) represent the primary key value in
the last record indexed by index bucket BKi, and NextBK(i) denote the offset to the
next-nearest occurrence of BKi. The control index of a bucket BKi consist of i tuples
of the form: [

v, begin
]

[Last(BK2),NextBK(1)]
...

[Last(BKi),NextBK (i − 1)]

where v is the primary key value of the last record in the broadcast segment prior to
BK1. It implies that the records associated with key values less or equal to v have flown
past in the current broadcast cycle. The symbol begin is a pointer to the beginning of
index segment of these record keys reachable in the next broadcast cycle. NextBK(1)
points to the next nearest occurrence of BK1. For example, if BK1 = R, then the next
nearest occurrence of R is the beginning of next broadcast cycle.

The number of control tuples in a replicated index bucket x depends on the level
of x in the index tree. If the level of x is l, then x should have exactly l + 1 control
tuples. This is because, x must have a control index entry for each higher level
(ancestor) index node (including itself) in the index tree. For instance, the level of
a2 in the index tree is 1. So a2 must have 2 control tuples for itscontrol index. As

424 13 Indexing in Air

an illustrative example, let us consider the replicated index path Rep(b4)={R, a2}.
In order to avoid the confusion about which instances of R and a being considered,
let the replicated instances be referred to as r2 and first_a2 respectively. The value
of the primary key in the last data record broadcast prior to b4 is same as the last
data record accessible from b3, which is 26. So, the tuple defining control index in
r2 should have v = 26. It indicates that any record having a key value between 0
and 26 can no longer be accessed in the present broadcast. In order to retrieve the
pointer to a record having key value in the range [0, 26], we must to wait until the
next broadcast cycle. The next nearest occurrence of R is the beginning of a new
broadcast, which is denoted here as Rnext . So, putting the components of the tuple
together, the control index of r2 is [26,Rnext].

Next, let us see how the control tuples for first_a2 are determined. Since
level(a2) = 1, it must have two tuples. The first tuple should be [26, Rnext] because
the last record accessible before r2 is 26. The second control tuple can be found
by obtaining the key of the last record accessible from the current index (which is
first_a2) is Last(a2) = 53. The next nearest occurrence of a2 can be found only in
the next instance of the index bucket R, which is r3 in Fig. 13.6. This implies that the
second control tuple of first_a2 is [53, r3]. Thus, the control tuples in the replicated
bucket first_a2 are: ([26, begin], [53, r3]) as indicated by Fig. 13.7. In fact, during
the current broadcast cycle starting from first_a2, it is possible to get any record
whose key belongs to the range (26, 53].

As one more example, let us find the control index for second_a2. The value of
the last primary key broadcast before b5 is the last key accessible from b4 is 35. So,
the record with the primary key 35 cannot be retrieved during the current broadcast.
Consequently, the first tuple for the control index in second_a2 should be [35,Rnext].
The primary key of the last record reachable from second_a2 is 53 and if any data
with primary key value greater than 53 is to be retrieved then the search must be
made again from R. Since, the next instance of occurrence of R is r3, the second
tuple in second_a2 must be [53, r3]. Hence, the pair of tuples ([35, begin], [53, r3])
constitute the control index for second_a2. From this control index, we conclude
that any data bucket with primary key value in the range (35, 53] can be found in the
current broadcast.

The case of first_a1 is bit different because none of data buckets has appeared yet
in the current broadcast. All records have key in range [0, 26] are accessible from
a1. So the first control tuple should be [NaN,NaN] where NaN indicate both values
(key and offset) are meaningless or invalid. Whereas the offsets in the control tuples
for any replica of a3 can only lead to the beginning of next broadcast cycle. Possibly,
the second control tuples in each may be replaced by NaN to indicate that there is no
record having a key greater than 80.

13.7 Distributed Indexing Scheme 425

13.7.5 Access Protocol

The access protocol given in Algorithm 30 summarizes the process for downloads
record with the primary key K . The actual downloading of the desired record is
accomplished by executing Algorithm 31.

Algorithm 30: Access protocol for fetching record with key K

begin
read the current bucket to retrieve the offset to an index bucket;
sleep to doze mode waiting for the designated bucket;
read the bucket and retrieve the first control the index Ictrl;
if (K ≤ Ictrl) then

// Record key has flown past in the current broadcast
get offset for the next new Bcast;
sleep to doze mode until arrival of next new Bcast;
wakeup and execute Algorithm 31;

end
else

get the offset to appropriate higher level index bucket;
sleep to doze mode until arrival of designated bucket;
wakeup and execute Algorithm 31;

end
end

Algorithm 31: Downloading data

begin
repeat

read the designated index bucket;
retrieve offset to next index;
sleeping into doze mode waiting for next index;

until (index to record with key K is found);
get offset to data bucket having record with key K ;
sleep to doze mode waiting for data bucket;
read the bucket and download the record with key K ;

end

13.7.5.1 Access Latency

The access latency depends on probe wait and Bcast wait. Let r top levels of the
index tree represent the replicated part andthe tree is fully balance consisting of k

426 13 Indexing in Air

levels. The replicated index buckets occur before Ind(B) for each B ∈ NRR. The
set of data buckets Data(B) indexed by each B ∈ NRR appear immediately after
Ind(B). Therefore, the maximum distance separating two consecutive occurrences
of the replicated index buckets is Ind(B) + Data(B).

Since the control index is present in each replicated index bucket, the probe wait
is determined by the average number of buckets in the segment consisting of Ind(B)
and Data(B). The size of Ind(B) is same as the number of nodes in a fully balanced
tree of height k − r − 1. This follows from the fact that Ind(B) for a B ∈ NRR,
represents a subtree of the index tree rooted at B. Therefore, the number of nodes in
Ind(B) is given by the expression

1 + n + . . . + nk−r−1 = nk−r − 1

n − 1

The average size of Data(B) is Data
nr as |NRR| = nr , and Data is the size of entire

data. Hence, the probe wait is

1

2

(
nk−r − 1

n − 1
+ Data

nr

)

.

The Bcast wait is the half of the total length of a Bcast. This is equal to Index +
Data + Overhead. The Overhead is introduced due to replication of the nodes in the
top r levels of the index tree. We know that each bucket is replicated as many times
as it has children. As illustrated in Fig. 13.8, all the replications put together can be
viewed as a fully balanced tree of height r + 1 having a single dummy node serving
as the root. Excluding the dummy root, the total number of nodes in the tree shown
above is

r∑

0

ni = nr+1 − 1

n − 1
− 1.

R R’ R"

a1 a2 a3 a1’ a2’ a3’ a1" a2" a3"

dummy

of
 to

p
r

le
ve

ls

al
l r

ep
lic

at
io

ns

Fig. 13.8 Number of index nodes for the replicated part

13.7 Distributed Indexing Scheme 427

The above expression gives the total number of replication of each node in the
replicated part of the index tree. However, the total number of index buckets in top
r levels without replication is equal to

r−1∑

0

ni = nr − 1

n − 1
.

So, the index overhead due to replication is

nr+1 − 1

n − 1
− nr − 1

n − 1
− 1 = nr − 1

Adding probe wait and bcast wait, we get the access time as

1

2

(
nk−r − 1

n − 1
+ Data

nr
+ (nr − 1) + Index + Data

)

13.7.5.2 Tuning Time

The initial probe is for determining the occurrence of a control index. The second
probe is for accessing the control index. The control index may direct the client to
the required higher level index bucket. In the worst case, the client may make up to
k = number of levels in index tree. Finally, the client downloads the data. Therefore,
tuning time is �logn Data� + 3.

13.7.5.3 Optimizing Number of Replicated Levels

The probe wait is a monotonically decreasing function which reaches the maximum
value at r = 0 and the minimum value at r = k. The Bcast wait is a monotonically
increasing function reaching the minimum at r = 0 and the maximum at r = k.

When r increases from 0 to 1, probe wait decreases by 1
2

(
Data∗(n−1)

n + nk−1
)

and the

Bcast wait increases by n0∗(n−1)
2 . In general as r increase to r + 1

1. Probe wait decreases by 1
2

(
Data∗(n−1)

nr+1 + nk−r−1
)

.

2. Bcast wait increases by nr∗(n−1)
2 .

So increase r as long as

1
2

(
Data∗(n−1)

nr+1 + nk−r−1
)
> nr∗(n−1)

2 , or

Data ∗ (n − 1) + nk > n2r+1 ∗ (n − 1), or
1
2

(
logn

(
Data∗(n−1)+nk

n−1

)
− 1

)
> r

428 13 Indexing in Air

Therefore the optimum value of r is

⌊
1

2

(

logn

(
Data ∗ (n − 1) + nk

n − 1

)

− 1

)⌋

+ 1

13.8 Exponential Indexing

Exponential indexing [14] is a non-tree based parameterized indexing scheme. Every
index link stores the maximum primary key value of the buckets within a distance
range from the current index bucket. It employs the idea of exponential increase in
the range of distances addressable by the consecutive index pointers.

We begin with a description of the basic scheme. The data is assumed to have been
sorted beforehand, then placed on broadcast channel. Each bucket in the broadcast
channel consists of two parts, namely, (i) data, and (ii) index table. The index table
entries are tuples of the form {distInt,maxKey}, where

• distInt: the distance interval or the range from the current bucket within which
other buckets are reachable.

• maxKey: the maximum value of the primary key of the buckets within the specified
distance range.

Assuming r = 2, the distance interval distInt takes values 1, 2, 4, If N is total
number of buckets then ith entry, 0 ≤ i ≤ logN , of an index table describes the
buckets within distance interval of [2i−1, 2i − 1] from the current bucket. There is
no need to explicitly use distInt, as it can be inferred from the order of occurrence
of the entry in the index table.

Figure 13.9 provides an example to illustrate how it works. Suppose a client is
interested to query from a data item with primary key 12 before the first bucket is
broadcast. From the index table of bucket 0, it finds that 12 falls between maxKey
values of third and fourth entries. This implies the required bucket must be found at
a distance between 24−1 = 8 and to 24 −1 = 15 buckets away from the bucket 0. So,
the client goes into doze mode until bucket No. 8 appears on broadcast cycle. Probing
the index table of 8th bucket, the client determines that the bucket required to resolve

Index

Data

4

1

maxKey[i]i

2
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3
4

1

maxKey[i]i

2
1
3
7

15

9
11
15
7

Fig. 13.9 Exponential indexing

13.8 Exponential Indexing 429

query lies between maxKey values of second and third entries. So, the bucket having
data to resolve the query must 4–7 buckets away from bucket No. 8. The client turns
into doze mode yet again, until bucket No. 12 appears on the broadcast cycle. Since,
key of this bucket matches the search, the data part is downloaded by the client. In
general, the worst case tunning time is �log(N − 1) + 1� assuming the broadcast to
be error free. For N = 16, the client can download data by 5 probes.

Since, wireless channel is unreliable, some buckets may be corrupted during
transmission. Errors can be handled easily in exponential indexing. Whenever a
probe determines that the bucket being probed is corrupted, a fresh probe can be
initiated from the next bucket. For example, if bucket 0 is found to be corrupted in
the search instance stated above, then search starts from bucket 1. Assuming both 0
and 1 are corrupted search begins from bucket 2. In other words, every error results
only in a small performance penalty.

Some of interesting properties of exponential indexing scheme are:

1. It embeds distributiveness within a linear structure, enabling search to proceed
directly from the sequentially next bucket. Therefore, it saves on access latency.

2. Although each search traverses a different logical index tree all searches share
index links. So it naturally defines a replicated indexing scheme.

3. The worst case running time for search is logarithm of bcast length when
broadcast is error free.

4. Index search can recover quickly from the errors due to distributiveness of the
index structure.

13.8.1 Generalized Exponential Indexing

The exponential indexing need not only be based on doubling of distance intervals
for index segments. The distance intervals can grow by a factor of any other exponent
r ≥ 1. For example, ith entry in an index table refer to index segment between buckets
[a, b], where

a =
⌊∑i−2

j=1 r
j + 1

⌋
=

⌊
ri−1−1
r−1 + 1

⌋

b =
⌊∑i−1

j=1 r
j
⌋

=
⌊

ri−1

r−1

⌋

In exponential indexing, the additional overhead due to presence of index table
is substantial. It reduces a bucket’s capacity to hold data. The cumulative effect of
additional space for index in each bucket increases the length of the broadcast cycle
and also affects the access latency. Indexing overhead can be reduced by grouping
several buckets together, and associating only one index table for each group. Group-
ing, however, has a trade-off as it increases search time. For example, if I buckets
are grouped together, then in an average I−1

2 buckets should be searched within a
group to extract the right bucket. It is possible to reduce intra-group probe wait by

430 13 Indexing in Air

making a provision for a intra-group index table. This means every index bucket has
two types of indexes, viz., local index, and global index. Having a local index, helps
to reduce the tuning time within a group of buckets to 1 or 2 probes:

• 1 probe if the searched data item happens to be among data items stored in the
index bucket of the group, or

• 2 probes, if searched bucket occurs in one of the data buckets belonging the group.

It puts an extra overhead in index bucket in terms of having a local index table with
I − 1 entries. I is an adjustable parameter. However, if I is too small, the purpose
of grouping is defeated. On the other hand, if I is too large then the overhead due to
local index table dominates overhead of global indexing without grouping.

The access protocol [14] described below has three distinct phases:

1. Initial probe: Initially, the client tunes to the broadcast channel and receives an
error free bucket b to estimate the time for broadcast for the next index bucket. It
then goes into doze mode for the estimated time, and tunes in again.

2. Index search: The client tunes into the broadcast channel just before the first
index bucket flows into the channel. It then accesses the index buckets which are
progressively closer to the desired data bucket. The distance is reduced by the
factor of chosen exponent after each access of an index bucket. The client inter-
mittently slips into doze mode every time while waiting between two successive
arrivals of error free index buckets.

3. Data retrieval: When desired data bucket arrives, the client downloads the data.

The client executes Algorithm 32 to perform initial probe phase and retrieve the first
error free index bucket. After this step is over, Algorithm 33 is executed. It performs
index search. In case the local index search becomes successful, the data is retrieved.
Otherwise global index search is performed by executing Algorithm 34. After index
to desired data has been successfully retrieved, the next job is to download the data,
which is accomplished by executing Algorithm 35.

Algorithm 32: Initial probe

begin
repeat

read a bucket;
until (!corrupted(bucket));
// First error free bucket found
if (data(bucket)) then

retrieve offset to index bucket;
slip into doze mode waiting for first index bucket;
read first index Bucket;
while (corrupted(bucket)) do

slip into doze for I − 1 buckets to pass by;
read new index bucket;

end
end

end

13.8 Exponential Indexing 431

Algorithm 33: Index search

begin
foreach (data item ∈ index bucket) do

if (key(data) == K)) then
return (data);

end
end
// Search for local index in index table.
if (data item in range of ith local entry) then

sleep into doze mode for i − 1 buckets to passby;
execute Algorithm 35;

end
// Search for global index in index table.
execute Algorithm 34

end

Algorithm 34: Global index search

begin
if (key(data) in range of ith global entry) then

slip into doze mode for
 ri−1
r−1 + 1�.I − 1) buckets to passby;

read the index bucket;
while (corrupt(bucket)) do

sleep into doze mode for (I − 1) buckets;
read the new index bucket;

end
execute Algoritm 33;

end
end

Algorithm 35: Retrieval of data

begin
while (corrupt(bucket)) do

sleep into doze mode for (IC − 1) buckets to passby;
read same bucket in the next broadcast cycle;

end
retrieve data;
return (data);

end

To understand how the protocol works, let us consider an example. Let the broad-
cast cycle be as shown in Fig. 13.10. It uses the exponent 2, and the data grouping
consisting of two buckets. Each bucket has the space for six items. We assume that
a data item and an index entry are of the same size. An index bucket uses three slots
for the index entries, and the remaining three slots are used for storing the indexes. A

432 13 Indexing in Air

distInt maxK

352−3

1−1 17

distInt maxK

352−3

1−1 17

3,4,5
index index index

0,1,2
index 6,7,8

9,10,11 12,13,14
15,16,17

18,19,20 21,22,23
24,25,26

27,28,29 30,31,32
33,34,35

3,4,5
index index index

0,1,2
index 6,7,8

9,10,11 12,13,14
15,16,17

18,19,20 21,22,23
24,25,26

27,28,29 30,31,32
33,34,35

b0 b1 b2 b3 b4 b5 b6 b7

b8 b9 b10 b11 b12 b13 b14 b15

distInt maxK

2−3

1−1 35

17

bkt no maxK bkt no bkt no maxK maxK

b15 35b9 b13 268
local index entries

global index entries

Fig. 13.10 Exponential indexing using data segment grouping

data bucket uses all six slots for storing data items. There are four data segments. So,
the global index table requires two entries to find the buckets one group away and
2–3 groups away. The local index for a group requires just one entry for accessing
the second data bucket of its own group. Suppose, a search initiated by a client for
the data item with the primary key 23 in group four at bucket b7. Then the client is
directed to first index bucket b8. Since, the data item with key 23 does not appear
either in local data stored at the index bucket or in the local index, global index
is checked which directs the client to bucket b12. From b12’s local index, bucket
number b13 is obtained which has the item with primary key value 23.

13.8.2 Analysis

The index buckets should have sufficient space for the index entries. Therefore, a
data bucket stores more data items compared to the data items stored in an index
bucket. Before, presenting the performance analysis, certain notations are introduced
in Table 13.2 for our convenience [14]. Using these notations let us understand rela-
tionships involving ngi, nli and ni. These relationships can be derived directly from
the organization of the indexing scheme described above. Each group of I buckets
has one associated index bucket. This implies that the local index table should have
nli = I − 1 entries. The total number of index entries is

ni ≤ (B − B′).sd
si

.

13.8 Exponential Indexing 433

Table 13.2 Notations for analysis of exponential indexing

Notation Meaning

N Total number of data items

B Data capacity of a data bucket

B′ Data capacity of an index bucket

sd Size of a data item

si Size of an index entry

ni Total number of entries in an index table

ngi Number of global index entries in an index table

nli Number of local index entries in an index table

I Number buckets in a data segment

D Number of data segments

Since, ni = ngi + nli, we also have

ngi = ni − nli ≤ (B − B′).sd
si

− (I − 1).

In a group of I of buckets there is one index bucket, so each group has a capacity to
hold up to B × (I − 1) + B′ data items. It implies that the total number D of data
segments in a broadcast cycle is:

D =
⌈

N

B(I − 1) + B′

⌉

.

Any group of data segment should be reachable from a global index table of any
group. In addition, the distance range for groups increases by a multiple of exponent
r between two successive index entries. Hence, an alternative expression for D is as
follows.

ngi∑

1

ri−1 = rngi − 1

r − 1
≥ D − 1. (13.1)

Furthermore, given B′ and I , we may also find the minimum value of r as follows:

1. Obtain the first order differentiation of the expression in RHS of Eq. 13.1, and
2. Numerically solve the following inequality.

rng + (1 − D)r + D − 2 ≥ 0.

The average latency and the tuning time depend on B′ and I . In order to access
the bucket b where the required data item is located, at first we need to determine

434 13 Indexing in Air

the group of buckets to which b belongs. In absence errors, the average number of
buckets that would be accessed before accessing this desired group is:

I

2
+ I.(D − 1)

2
+ 1 = I.D

2
+ 1.

But if the index bucket of target group is corrupted, it accessing data is delayed
until next bcast. This implies that I.D number of more buckets have to be skipped
over. Let the probability of this error be p. This implies the probability of repeating
the error k times is pk .(1 − p). When k repeated errors occur, the accessing target
group (having data item) could be delayed additionally by k.I.D. Hence, the average
access latency from initial probe to index search is given by:

Ta(is) = I.D

2
+ 1 +

∞∑

0

pk(1 − p).k.I.D = I.D

2
+ 1 + I.D.p

1 − p

In data retrieval phase, if the search key is found in the first index bucket itself, then
data can be retrieved immediately. The probability for this is: B′

B′+(I−1)B . Otherwise,
the searched item is located in a separate data bucket. The probability of this event
is B(I−1)

B′+B(I−1) . The average latency for data retrieval is I/2 when there is no error.
Assuming error in data bucket occurs k times, there will also be an additional delay
of k.I.D. Therefore, the average latency in data retrieval phase is:

Ta(d) = 0.
B′

B′ + B(I − 1)
+

(
I

2
+

∞∑

i=0

pk(1 − p).k.I.D

)
B.(I − 1)

B′ + B(I − 1)

=
(
I

2
+ I.D.p

1 − p

)

.
B(I − 1)

B(I − 1) + B′

Adding index search time to data retrieval time we get overall access latency Ta as:

Ta = Ta(is) + Ta(d).

Total tuning time will be the sum of three tuning times, i.e.,

1. Tuning time for initial probe to become successful.
2. Tuning time for index search to become successful.
3. Tuning time for data retrieval to become successful.

Tuning for the initial probe depends on an error free index bucket being accessed.
The client tunes into a bucket belonging to a group. Let this happen just before jth
(1 ≤ j ≤ I) bucket in a group. The average time before an error-free bucket appears
on broadcast channel is: ∞∑

i=0

pk(1 − p)xkj,

13.8 Exponential Indexing 435

where xkj is the tuning time if all k buckets are corrupted. If k + 1st bucket is an
index bucket initial tuning becomes successful. Otherwise, if k + 1 is a data bucket
then the client must wait until the beginning of the next group to get the next index
bucket. This requires an average tuning time of 1

1−p . Thus we have

xij =
{
k + 1, if k = 1 − j, I + 1 − j, 2I + 1 − j, . . .

k + 1 + 1
1−p , otherwise

Averaging over all the possible values of j, the average tunning time for the initial
probe phase is:

Tt(ip) =
∞∑

i=0

pk(1 − p).(k + 1) + I − 1

I

∞∑

i=0

pi(1 − p)
1

1 − p
= 2I − 1

I(1 − p)

Now let us analyze the average tuning time for the index search. Consider the
case when no bucket is in error. Since, the total number of data segment groups is
(rngi − 1)/(r − 1), the size of the search space is also the same. On each step
search space is reduced by r/(r − 1). This implies, the worst case tuning time is
�logr/(r−1)(D− 1)� + 1. If I > 1, one more probe will be necessary if the data is not
available in a data bucket. Thus worst case tuning time in absence of errors is

Tt =
{

�logr/(r−1)(D − 1)� + 1, if data available in the index bucket

�logr/(r−1)(D − 1)� + 2, otherwise

Now let us analyze the tuning time when broadcast is not error free. Let t(l) be
tuning time when target index bucket that is l groups away is received. In order to
compute t(l) we observe that there are two possibilities:

1. An error free target index bucket is received before l index segments fly past on
broadcast. The probability of an error free bucket being received is (1 − p). So
for this event tuning time should be t(l − x).(1 − p).

2. The error free target index bucket is found exactly in lth index segment. This
implies that the target index buckets received in l − 1 groups were found to be
corrupted. The error free target index bucket obtained when l group is received
on broadcast. So, the tuning time spent when this event occurs is t(l − 1).p + 1.

Adding the above two expression gives t(l). Therefore,

t(l) =
{

0, if l = 0

t(l − x).(1 − p) + t(l − 1).p + 1, if l > 0,

where the maximum value of x is less than or equal to l in the set of {1, 2,
r +
2�,
 rng−1

r−1 � + 1}.

436 13 Indexing in Air

If l > 0, it is possible that a new round of search may have to be started with
D − 1 groups away from the next target index bucket. The target index bucket may
be repeatedly found to be corrupted for i times. This means overall tuning time is

t(l) +
∞∑

i=1

pi(1 − p).i.t(D − 1) = t(l) + t(D − 1).p

1 − p

Therefore, the average tuning time for an index search is

Tt(is) = 1

D

(

t(0) + t(l) + t(D − 1).p

1 − p

)

Now we only need to find the tuning time for the data retrieval phase. If the data
item is inside an index bucket, no extra probe is necessary. However, if the data item is
in a separate data bucket then 1 more unit of tuning time is necessary. It possible that
the data bucket is found to be repeatedly corrupted for k times, then k + 1 additional
tuning time is needed.

Tt(d) = 0.
B′

B(I − 1) + B′ +
(∞∑

i=0

pk(1 − p)(k + 1))

)
B(I − 1)

B′ + B(I − 1)

= B(I − 1)

(B′ + B(I − 1))(1 − p)

Total average tuning time Tt is, therefore,

Tt = Tt(ip) + Tt(is) + Tt(d).

13.9 Hash A

Hashing scheme [6] is a direct adaptation of hashing with chaining [4]. It does not
require broadcast of directory information with data as the information is embedded
with data (contents). Each bucket has two parts, viz., control part, and data part.
The search for data bucket is guided by the information available in control part. The
control part of every bucket has following four pieces of information

1. bucket_ID: offset to the bucket from the beginning of the current Bcast.
2. Offset: offset of the bucket from the beginning of the next Bcast.
3. Hash function: h.
4. Shift value: The pointer to a bucket B that contains the keys K such that h(K) =

address(B).

A client wishing to retrieve a record corresponding to a key K , starts listening until
it is able to read a full bucket b. From the control part of b, the client retrieves the

13.9 Hash A 437

hash function h. Then it computes h(K) to determine if its initial probe has missed
the index or not. Next it tunes into the physical bucket which matches with the hash
value h(K). From the physical bucket it retrieves the shift value. The shift value
handles the overflow. If there is no overflow then data record with primary key K
should be in physical bucket h(K) provided the record exists in the file. The shift
value s is the offset to the logical bucket that should have hash value h(K). This
bucket will be s × tb units away from the current time, where tb is the duration of a
bucket. So, the client goes into doze mode for s × tb time. After the expiry of doze
mode, the client starts listening to the broadcast channel to download the data or
retrieves another shift value. The search should be done for all the overflow buckets
of h(K) before concluding that the record is absent. So, either the search is successful
in fetching required data is with key K from the broadcast or it encounters a record
with key L such that h(K) = h(L). In the latter case, a failure is reported to the
client’s application.

Algorithm 36 summarizes the process of search described above.

Algorithm 36: Access protocol using hashing

begin
Probe the current bucket and read the control data;
Compute hash h;
if (bucket_ID < h(K)) then

slip into doze mode for the time to pass h(K) − bucket_ID buckets;
end
else

slip into doze mode till the next Bcast;
repeat the protocol;

end
read slot h(K) and retrieve shift value s;
slip doze mode for the time to pass s buckets;
while (exist(overflow buckets)) do

read the record;
if (record.key == K) then

return (found record with key K);
end
if (record.key = K) then

return (record not found);
end

end
end

Figure 13.11 provides an example illustrating how the access protocol works. The
physical bucket IDs which represent overflow buckets do not carry any logical ID.
Suppose we are interested in retrieving record with key K = 15, and the initial
probe is made at physical bucket 2. From bucket 2, the hash function is retrieved and
h(15) = 4 is computed. Let the hash function be

h(x) = x mod 4 + 1

438 13 Indexing in Air

Fig. 13.11 Retrieving data
bucket with record key 15

+0 +2 +4 +5

3 4 5 61 2 7 8 9 10

1 2 3 4logical
bucket

physical
bucket

initial first
probe probe

final
probe

shift value get databuckets
shift 5

Fig. 13.12 Scenarios
depicting data miss and
index miss

+0 +2 +4 +5

3 4 5 61 2 7 8 9 10

1 2 3 4

initial probe

(a) Index miss scenario

+0 +2 +4 +5

3 4 5 61 2 7 8 9 10

1 2 3 4

initial probe

(b) Data miss scenario

Since hash value does not match physical bucket b = 2, it gets offset h(K) − b and
sets expiry time for arrival of physical bucket 4. From physical bucket 4, shift value
s = 5 is retrieved. Since this is an overflow (data with some other key is found here) a
shift value here tells us where the logical bucket 4 can be found. Again the client goes
into doze mode till 5 physical buckets pass by. The client wakes up and starts listening
for data sequentially from there onwards. Assuming logical bucket 4 has the data, the
record with key K gets downloaded. There are two scenarios [6] where the client
has to wait till next broadcast cycle to retrieve data. The first scenario is illustrated by
Fig. 13.12a. Here the initial probe is made only after the physical bucket containing
the record has passed by in the current broadcast cycle. So, the initial probe missed
the index. The second scenario is illustrated in Fig. 13.12b. In this case, the initial
probe is made at bucket 10. Whereas, the data record with primary key 15 occurs in
bucket 9. Therefore, data miss occurs here.

When a perfect hashing function is employed, the access time is minimized for
conventional disk based files. In a broadcast based dissemination, access latency
depends directly on the total number of buckets in the broadcast cycle. Therefore,
there is need to understand the advantages or the disadvantages.

13.9 Hash A 439

• Perfect hash function cannot minimize the number of physical buckets required
for a file.

• In contrast, if more overflow buckets are used then it reduces the number of
half empty buckets and the bucket is better utilized. With less number of half
empty buckets, the broadcast cycle becomes shorter. Since the broadcast medium
is sequential, a shorter broadcast cycle reduces the waiting time for the next version
of the file.

• However, with perfect hashing, the overflow area is smaller. So the tuning time
becomes minimum with perfect hash function.

In summary, hashing based broadcast files exhibits

1. Random access behavior for tuning time (hash values and shifts act as control
parameters), and

2. Sequential behavior for the access time (the number of buckets matters).

13.10 Hash B

The initial hash function can be improved by modifying the hash function [6]. It
works provided an estimate of minimum overflow chain d can be made. The revised
hash function is defined as follows:

h′(K) =
{
h(K), if h(K) = 1

(h(K) − 1)(1 + minimum-overflow) + 1 if h(K) > 1

The access protocol itself remains unchanged. The suggested change in hash
reduces the number of overflows. In fact, if the overflow chain for each bucket is
of the same size, say d, then the hash becomes a perfect hash wherein bucket size
increased by (1+d) times. For example, if d = 1, then 1, 3, 5, 7, etc., are the physical
buckets to which the records are hashed for transmission of useful data. The space
of one bucket is left out for overflow. So, the shift values should be computed for
the physical buckets 1, 3, 5, 7, etc. All the shift values incidently is one for all these
buckets.

To calculate the access time, a displacement value DISP(h,K) is introduced. It
refers to the displacement needed to reach the physical bucket b(K) containing the
record with key K from the bucket at h′(K), i.e., b(K)− h′(K). The expected access
time can be computed by finding the per key access time and then averaging it out. The
worst case per key expected access time computation becomes different depending
on whether an index miss occurs or not during the initial probe.

Figure 13.13 depicts the two possible scenarios depending on whether initial probe
occurs either inside or outside the interval between [h′(k), b(k)]. In the figure h′(K)

denotes the physical bucket h′(K) and b(K) represents is the physical bucket where
the record corresponding key K is found.

The first case is illustrated by Fig. 13.13a. In this case the waiting time covers
between the two consecutive occurrences of the physical bucket b(K) that constitute

440 13 Indexing in Air

a full broadcast cycle. Since, the initial probe may occur any where between h′(K)

to b(K), it adds in an average DISP(h,K)/2 before search can begin. So, the total
waiting time is: (

Data(h) + DISP(h,K)

2

)

,

where Data(h) denotes the size of the bcast. The probability of initial probe itself
to be located inside the interval [h′(K), b(K)] is DISP(h,K)

Data(h) . Hence, the average per
key access time in this case is given by:

DISP(h,K)

Data(h)
×

(

Data(h) + DISP(h,K)

2

)

,

The scenario depicting the second case is analyzed under two sub-cases:

(i) When the initial probe is made before the physical bucket h′(K), and
(ii) When the initial probe is made after the physical bucket b(K).

These two sub-cases have been illustrated in Fig. 13.13b. Examining both the sub-
cases in conjunction, we find that the initial probe can be made any where between
the physical buckets in ranges [1, h′(K)− 1] and [b(K)+ 1, end]. Thus, the waiting
time in an average is (Data(h)+DISP(h,K))/2. The probability that the initial probe
satisfies this second case is 1 − DISP(h,K)

Data(h) . Hence, the average per key access time in
this case is given by:

probe
initial

h’(K) B(K) h’(K) B(K)

first
probe

final
probe

next Bcastcurrent Bcast

(a) Case 1

h’(K) B(K)h’(K) B(K)

initial
probe

current Bcast next Bcast

probe probe
finalfirst

probe
initial

B(K)h’(K)

final
probe

first
probe

sub−case (i) sub−case (ii)

(b) Case 2

Fig. 13.13 Access time using modified hashing function

13.10 Hash B 441

Fig. 13.14 Comparison of
displacements [6]

0 4 7 9

DISP(h,10) = 10

(a) Missing index with Hash A.

0 2 3 3

DISP(h,10) = 3

(b) Missing index with Hash B.

(

1 − DISP(K)

Data(h)

)

×
(
Data(h) + DISP(h, k)

2

)

Once the per key access time is known, the average access time can be determined
by summing it over all the keys and dividing by the number of records in the broadcast
channel. A good hash function is expected to keep the overflow under a finite small
bound.

Figure 13.14 illustrates the waiting time for key K = 10 when hash A and hash
B are used. The hash function for hash A is h(K) = K mod 4 + 1, i.e., h(10) = 3.
In the first case, hash A is used and in the second case hash B is used. The overflow
bucket (shaded blocks) corresponding to each bucket (unshaded block) is shown next
to it.

In the first case (with hash A) physical buckets 1, 2, 3, 4 should have shift values.
These are values are 0, 4, 7 and 9 respectively. This implies that any key value mapping
to bucket 1 can be found in the bucket interval [1, 5] if it exists in the broadcast file.
Likewise, the bucket interval [6, 9] contains all the records with key values hashing
into the value 2, and so on. The shift values should be computed for buckets 1, 2, 3,
and 4, because these are the physical bucket where the respective hash values map.
Note that the shift values are 0, 4, 7, and 9 respectively. The displacement value for
searching record with K = 10 is 10 as depicted in Fig. 13.14a.

In the second case (with hash B), the length of minimum overflow chain is 2.
Therefore, the shift values are computed for buckets 4, 7, 10, 13. For key K = 10,
h′(K) = 7. However, bucket 7 is an overflow bucket. So the shift value 3 from this
bucket is extracted and the search restarts from bucket 10. Since, bucket 10 also
an overflow bucket, its shift value is obtained. This shift value then leads to logical
bucket 4 which contains this key, if it exists in the file. Notice that the displacement
for this case is only 3 as shown in Fig. 13.14b.

442 13 Indexing in Air

References

1. S. Acharya, M. Franklin, S. Zdonik, Dissemination-based data delivery using broadcast disks.
IEEE Pers. Commun. 2(6), 50–60 (2001)

2. P.V. Argade, S. Aymeloglu, A.D. Berenbaum, M.V. dePaolis, R.T. Franzo, R.D. Freeman, D.A.
Inglis, G. Komoriya, H. Lee, T.R. Little, G.A. MacDonald, H.R. McLellan, E.C. Morgan, H.Q.
Pham, G.D. Ronkin, R.J. Scavuzzo, T.J. Woch, Hobbit: A High-Performance, Low-Power
Microprocessor, Compcon Spring ’93, Digest of Papers (1993), pp. 88–95

3. A.M. Bernardes, D. Crocce Romano Espinosa, J.A. Soares Tenório, Recycling of batteries: a
review of current processes and technologies. J. Power Sour. 130(12), 291–298 (2004)

4. T. Corman, C. Leiserson, R. Rivest, C. Stein, Introduction toAlgorithms (MIT Press, Cambridge
MA, USA, 2001)

5. H. Gracia-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book, 2 edn.
(Pearson-Prentice Hall, Upper Saddle River, NJ, USA, 2009)

6. T. Imielinski, S. Viswanathan, B. Badrinath, Power efficient filtering of data on air, The 4th
International Conference on Extended Database Technology, (EDBT ’94), vol. LNCS 779
(1994), pp. 245–258

7. T. Imielinski, S. Viswanthan, Wireless Publishing: Issues and Solutions, ed. by T. Imielinski,
H.F. Korth. Mobile Computing, Chap. 11 (Kluwer Academic Publishers, Norwell, MA, USA,
1996), pp. 300–329

8. T. Imielinski, S. Viswanathan, B.R. Badrinath, Energy efficient indexing on air. SIGMOD Rec.
23(2), 25–36 (1994)

9. A. Klaiber, The Technology Behind Crusoe Processors, Transmeta Technical Brief (2000)
10. R.A. Powers, Batteries for low power electronics. Proc. IEEE 83(4), 687–693 (1995)
11. P. Ramadass, B. Haran, R. White, B.N. Popov, Capacity fade of sony 18650 cells cycled at

elevated temperatures: Part i. Cycling performance. J. Power Sour. 112(2), 606–613 (2002)
12. N.H. Vaidya, S. Hameed, Scheduling data broadcast in asymmetric communication environ-

ments. Wireless Netw. 5(3), 171–182 (1999)
13. K.-L. Wu, P.S. Yu, M.-S. Chen, Energy-Efficient Caching for Wireless Mobile Computing,

Proceedings of the Twelfth International Conference on Data Engineering, 1996 (IEEE, 1996),
pp. 336–343

14. J. Xu, W.C. Lee, X. Tang, Q. Gao, S. Li, An error-resilient and tunable distributed indexing
scheme for wireless data broadcast. IEEE Trans. Knowled. Data Eng. 18(3), 392–404 (2006)

15. Y. Yao, X. Tang, E.-P. Lim, A. Sun, An energy-efficient and access latency optimized indexing
scheme for wireless data broadcast. IEEE Trans. Knowled. Data Eng. 18(8), 1111–1124 (2006)

Chapter 14
Caching and Data Replication in Mobile
Environment

14.1 Introduction

The combined implication of poor link quality, low bandwidth, network higher
latency forces a mobile client to operate in disconnected mode either voluntarily or
involuntarily. In the disconnected mode of operation, a mobile user relies on locally
cached copy of data. The classical techniques like caching and replications have been
extensively exploited to address the issues arising out of information processing and
retrieval in mobile environments. In summary, caching and replication ensure that
most of the data requests are met from one of the following sources:

• Data available in the memory, or
• Data stored in the local storage, or
• Data available from a remote replica available close by.

By using clever caching and replication strategies, it may be possible to avoid retrieval
of data from a distant replica.

Caching in traditional system is employed for fast access of frequently used data
items. In mobile environment caching serves following three purposes, namely,

1. Reducing the access latency of frequently used data items,
2. Supporting disconnected mode of operation of mobile devices, and
3. Reducing the network traffic as mobile devices work with cached data.

However, in order to support disconnected mode of operation for longer periods,
the granularity of caching should be large. In other words, in anticipation of future
use [18], a mobile client needs to cache a large amount of data before turning into
disconnected mode. Caching large amount of data known as hoarding. It requires
new set of techniques, and also changes the cost model.

The existing replication techniques are designed for fixed networks. In a mobile
environment, the last mile connectivity is provided by wireless channels. The network
connectivity of an end device is transient in nature. The infrastructure supporting the
last mile connectivity consist of stationary nodes and wired networks. Mobile data

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_14

443

444 14 Caching and Data Replication in Mobile Environment

services are organized over the stationary nodes. This implies that the replicas may
be placed at the stationary nodes. Therefore, the locations of the replica cohorts are
mostly known a priori. The handling scalability is a major challenge in replication [9],
as the convergence over wide area network is difficult achieve.

The aim of this chapter is to study techniques of both replication and caching. It
identifies components in replication algorithms that may either require re-engineering
or re-designing for the mobile environment.

14.2 Caching, Prefetching and Hoarding

A cache is a low latency computer memory. Due to high cost, normally, a small
cache is installed on a computer. For portability reasons, a mobile computer has a
smaller cache compared to a stationary computer. The aim of caching is to store a
few frequently accessed temporary data objects for fast execution of programs. A
cache memory essentially functions as a filter. It eliminates the repeated accesses to
disk or remote computer for data objects. It helps to reduce both latency and network
traffic. There are three distinct form of populating cache, namely,

• On demand caching,
• Prefetching, and
• Hoarding.

In demand driven caching, a data object is cached only after it has been accessed
once. On the other hand, prefetching is the process of caching data in anticipated
future use. Prefetching is done during execution of programs, and generally used
in conjunction with caching in order to hide access latencies. Both caching and
pre-fetching have been used in file systems to enhance performance [6].

Hoarding means to pre-load copies of data objects so that a mobile computer can
work in disconnected mode. In abstraction, hoarding is not different from prefetch-
ing. However, it is more appropriate to view hoarding as over-fetching. Hoarding is
usually assisted by user defined hoarding scripts which gets executed periodically.
The execution of hoarding script is referred to as a hoard walk. A cache miss in the
prefetched data is not catastrophic, because during prefetching, a computer operates
in connected mode. However, when a mobile computer relies on hoarded data then it
operates in disconnected mode. Therefore, a cache miss during disconnected mode
of operation leads to a failure.

The advantages of caching in mobile computing environment are as follows:

1. It reduces access latency specially over low bandwidth wireless links.
2. It helps to conserve power in a mobile computer, as it can switch off the network

interfaces.
3. It allows mobile applications to execute even when a mobile device operates in

disconnected mode.
4. It also helps to conserve back channel bandwidth.

14.2 Caching, Prefetching and Hoarding 445

Maintaining cache consistency in a mobile environment is a challenge. Wireless
connection is fragile, connectivity is not only intermittent, but bandwidth is also
low. It forces mobile computers to operate in disconnected mode from time to time.
Resource constraints adds further complication, as only limited number of cache
slots are available on a mobile device. So, classical solutions to caching cannot be
ported directly to mobile computers. Apart from the known issues concerning cache
constraints, a number of other issues also arise which are primarily related to the
mobility of end hosts. Some of the challenges, encountered in design of an efficient
caching scheme for mobile environments are listed below:

• Predicting the data access pattern and estimating the update rate.
• Minimizing the cost of communication and access.
• Knowing the mobility patterns of the mobile clients.
• Finding the connectivity characteristics.
• Knowing the location dependent information.
• Deciding about the data currency requirement.
• Sending cache invalidation notifications.
• Determining the cache size.
• Computing the latency in resolving the queries.

Let us understand the implications of these challenges. Guessing the data access
pattern of a mobile client is hazardous. Many users may have drastically different
access patterns. Though in an average, the update rate is expected to be low, the
updates may occur in bursts. The cost of data access on a mobile computer depends
primarily on two factors, namely, tariff and bandwidth. Bandwidth is usually low, and
the tariff is inversely proportional to the bandwidth. Knowing mobility patterns of a
mobile client could help in estimating, the time and the duration of disconnection, and
consequently, the data access requirements. Prior to disconnection, by caching data
according to its predicted access pattern a mobile client can operate in disconnected
mode. However, it is difficult to get a reasonable estimate the frequency as well as
the duration of time for which a mobile user may operate in disconnected mode.
Depending on location, certain data may or may not be available during periodic
hoard walk (the process of executing hoarding). So, the decision about what to cache
and what to leave sometimes becomes difficult unless the user of a mobile host has
specified a profile.

If the latest updated value of a data object important for an application, then
caching is not advantageous. On the other hand, if the application can tolerate certain
amount of staleness in data, then caching data make sense. So knowing currency
requirement (periodicity of update) is an important parameter for caching decision.
When data become invalid, invalidation of data must be known to application running
on a mobile client. The invalid notifications is usually sent by stationary computers
hosting the data objects. But a stationary computer must keep track of the mobile
clients which may be using the modified data objects.

Cache size is small, so it becomes a challenge to determine which data items need
to be cached when there is a requirement for caching many items. The design of
a cache eviction policy is challenging, as it is related to the cost consideration. For

446 14 Caching and Data Replication in Mobile Environment

example, eviction of data objects from cache may adversely affect latencies in resolu-
tions of queries. Therefore, finding an optimal policy for caching in mobile computing
environment is highly involved and more challenging compared to caching in a con-
ventional stationary distributed system. Circumventing asymmetry in resources and
unpredictability in connectivity are the two major challenges in designing caching
policies in mobile computing scenarios.

14.3 Invalidating and Refreshing Cache

In a mobile environment, each mobile client is connected to network through a base
station (BS). The queries from a mobile client is always routed through its current
BS to a server. Data is assumed to be replicated on a set of servers. Each server of
the set is responsible for resolving queries originating from a set of cells. From the
point of view of a mobile client, the base station acts as proxy for a cell area. If a
mobile client has cached some data objects, the main concern will be to refresh these
objects whenever they get updated. Caching becomes meaningless, if the clients
were to check for the freshness of a data object each time an access to the object is
made. A mobile computer operating in disconnected mode may not be able to check
freshness of cached data for a long time. So, there should be strategy to invalidate
cached data when updates are made. The invalidation is viewed as a violation of
a server’s obligations towards its clients [3]. The server’s obligations are known
in advance to the clients. Therefore, the clients have some degree of flexibility in
handling their respective caches. The extent of a server’s obligations determines how
the clients evolve their policies for the cache management. Two common types of
obligations are [3]:

1. The server sends invalidation messages to the clients who have cached a data item
x immediately after an update for x is accepted.

2. Another approach is to let the client verify the validity of their caches. NFS [13]
use this approach. It generates a lot of network traffic.

In the first approach, each client is required to register its presence in a cell and also to
let the server know each and very data item it has cached. Coda [18] and Andrew [1]
files systems use a protocol based on this approach. However, disconnected clients
miss the invalid notifications. These clients need to refresh their caches as soon as
they get reconnected. A client gets a notification message even if it is not interested to
use a cached data item any more. The server is stateful because it has full knowledge
of the objects the clients have cached and the states of the cached objects. The second
approach defeats the purpose of caching in the mobile clients. As every time a client
requires to use cached data it has to verify the validity of the cached objects. In
mobile environment none of the above two approaches is suitable for framing the
server obligations.

Can there be a third approach? Is it possible to use stateless servers? Stateless
servers need not seek any information from clients about the cached data objects.

14.3 Invalidating and Refreshing Cache 447

These servers include a sufficient information in the invalidation messages itself about
the updates to data. There are many possibilities for composing invalidation reports
(IRs). But, we can identify a few basic characteristics of these reports, namely,

• An IR includes all updates and timestamps when these updates were received.
• An IR is broadcast over downlink (server to clients) channel.
• An IR may either be sent out in fixed periodic intervals (synchronous) or as and

when any of the data is updated (asynchronous).

An asynchronous Invalidation Report (IR) enables the clients in connect mode
to invalidate the cached objects included in the IR. However, the clients operating
in disconnected mode lose their cached data. Since, IRs includes timestamps and
recent changes in data items, the disconnected clients after reconnecting back may
have to wait for the next broadcast of invalidation reports and verify the validity of
their respective caches. However, there is no guarantee about the time of sending IR.
Therefore, in theory, IR which a client is waiting for may never be sent.

Synchronous invalidation reports are sent on periodic intervals. A client should
listen to IR notifications to find the validity of its cached data. If the cached data item
is invalid, the client should refresh the cached data before processing a query. The
problem is that if the difference in timestamp of the current IR and the timestamp of
a cached item is larger than a threshold, the client cannot be sure about the freshness
of the cached item, even if, the current IR does not include the data item. So, the
client waits for refreshing cached data. This waiting time gets added to any query
processing time concerning the cached data item. There are other implications of
using synchronous invalidation reports in use of the cached data, namely,

• If two queries are received during an IR interval, both are processed at the same
time in the next interval.

• The answer to a query reflects any updates to the item during the interval in which
the query was made. This will still be the case even if the query predates the
updates to the data item.

14.4 Strategies for Caching with Stateless Servers

To understand the general concept on which stateless servers for cache management
works, let us delve a bit deeper into some of the known strategies [3]. The readers
who are interested about more details may refer to the original work by Barbara and
Imielinski [3].

14.4.1 TS Strategy

The first strategy known as Time Stamp (TS) strategy [3]. The server is assumed to
broadcast invalidation report periodically, say, after every L time units. The server’s

448 14 Caching and Data Replication in Mobile Environment

obligation is to include all the data items that have changed in the last w time units.
L and w are unrelated except that w ≥ L. The invalidation report consists of data
objects from a database D with timestamps of their respective latest update times.
The server keeps a list Ui, where

Ui = {[d, td]|d ∈ D}

where td is the timestamp of the last update to d such that Ti − w ≤ td ≤ Ti.
On receiving an IR, a client checks the validity of its each cached items [d, tcd],

where tcd is the timestamp of the cached object d. The client also keeps a list Qi for all
the queries on the cached data items that has been received in the interval (Ti−1,Ti).
Besides this, the client also has Tlu, the last update interval it has received. On the
basis of these timestamps, it can determine validity as follows:

• If Ti − Tlu > w then, the client has missed an invalidation report which may have
carried an update to a cached data. So the entire cache is now useless.

• If tcd < td , then the cached value of d is invalid. So, it should be thrown out.
• If tcd ≥ td , then the current value of d held in the cache is valid. So, the client

should renew the timestamp of d to time of the invalidation report.

After the cache entries has been updated as above, all the queries received in interval
(Ti−1,Ti) can be processed. However, if the list Qi involved some data items not in
cache, the client should send those queries over the uplink to the server. The outlines
of the algorithm [3] provided in Algorithm 37.

14.4.2 AT Strategy

The next alternative model for cache management is referred to as Amnesic Terminal
(AT). In the AT model, a server’s obligation is to report the identities of items that
have changed after the last IR interval. Timestamps representing the update times
are not included with the data items which appear in the invalidation report. The
client is also not required to maintain timestamp of the cached items. Therefore, not
only the invalidation report is shorter but the pressure on a client’s cache memory is
also less. The algorithm for this model is also simpler than TS model as timestamp
comparisons are not needed. The rest of the cache validation algorithm at the client
is similar to TS [3] and provide by Algorithm 38.

14.4.3 Signature Strategy

The third model is quite different from the two previous models. It is based on
signature comparisons [4, 12, 14]. A signature is essentially a checksum of the values

14.4 Strategies for Caching with Stateless Servers 449

Algorithm 37: TS strategy for caching

begin
if (Ti − Tlu > L) then

// Entire cache is outdated.
drop the entire Cache;

end
else

// Check for validity of each item in cache.
foreach (d ∈ Cache) do

if ([d, td] ∈ IR) then
if (tcd < td) then

// Item d in cache is obsolete.
throw d out of Cache;

end
else

// Item d in cache is still valid.
// Update caching timestamp to current time
tcd = Ti;

end
end

end
end
foreach (d ∈ Qi) do

if (d ∈ Cache) then
// Query is on a item d ∈ Cache.
use cached value of d to answer the query;

end
else

// Query is on item d /∈ Cache.
send query to server over the uplink;

end
// Refresh latest update time.
Tlu = Ti;

end
end

stored in items. The server periodically broadcasts a set of combined signatures of
all the data items of interest. The composition of subset of the signatures in each
combined signature is known before hand to all the clients. The clients cache not
only the data items but all the combined signatures of the subsets that includes its
cached data items.

The signature creation process is as follows. For each item i, a signature sig(i) of
b bits is computed using the value stored in i. So we have,

450 14 Caching and Data Replication in Mobile Environment

Algorithm 38: AT strategy for caching

begin
if (Ti − Tl > L) then

// Entire cache is outdated
drop the entire Cache;

end
else

// Check for validity of each item in cache.
foreach (d ∈ Cache) do

if (d ∈ IR) then
// d is obsolete.
throw d out of Cache;

end
end

end
foreach (d ∈ Qi) do

if (d ∈ Cache) then
// Current cached value of d is valid.
use cache’s value of d to answer the query;

end
else

send query to server over the uplink;
end
Tl = Ti;

end
end

Pr[sig(i1) = sig(i2)] = 1

2b
.

The signatures of a set of items i1, i2, . . . , ik is given by

sig(i1) ⊕ sig(i2) ⊕ . . . ⊕ sig(ik),

where ⊕ denotes exclusive OR. Each individual signature has b bits. Therefore, the
combined a signature also has b bits. It has been proved in [8] that if one or more of
the items involved in a signature has changed, then the probability of two combined
signatures being identical is approximately 2−b. In other words, for a subset of items
{i1, i2, . . . ij}, j ≤ k,

Pr[sigprev(i1, i2, . . . , ij) = sigcurr(i1, i2, . . . , ij)] ≈ 1

2b
,

14.4 Strategies for Caching with Stateless Servers 451

where

1. sigprev denotes the combined signature before the updates, and
2. sigcurr denotes the combined signature after the updates were received for one or

more items i1, i2, . . . , ij.

Though the probability of the combined signatures before an update for the same
set of items being identical is low, it is still non zero. So, the server tries to fulfill
the obligation by aggregating the items into sets. This may cause clients to falsely
conclude some caches are invalid when they may still be valid.

A mobile client is assumed to have cached n∗ items of which a fraction f ∗ may
be invalidated. Let f to be the total items which need to be invalidated for all mobile
clients. Then only a fraction of the total updates may belong to any chosen mobile
client. This implies,

f ∗ = ρf , 0 < ρ < 1.

The server chooses m sets of items S1, S2, . . . , Sm randomly. Each set is chosen
so that the probability that an item i appears in Sj is 1

f+1 . The server then creates m
combined signatures sig1, sig2, . . . sigm, and broadcasts them. Apart from the k items
a mobile client MH has cached, MH also has cached signatures sig′

1, sig
′
2, . . . , sig

′
k

of k respective cached items. MH compares its signature sets with the corresponding
signatures broadcast by the server and sets:

αj =
{

1, if j = i, 1 ≤ i ≤ k and sigj 	= sig′
i

0, otherwise

It means a MH sets αj to 1 when it notices that a signature sigj from the server’s
broadcast is different from the corresponding cached signature sig′

i .
After having computed αjs, a mobile client is ready to execute invalidation algo-

rithm. It uses a threshold

δf = 1

f + 1
×

(
1 − 1

e

)
,

in order to reduce false alarms about cache being invalid. The details of analysis on
how the value threshold has been arrived can be found in [3].

The mobile clients execute Algorithm 39 to invalidate its cache entries. The main
idea behind the algorithm is that if an item belongs to too many unmatched signatures,
then it is most likely invalid. Hence, such an item needs to be evicted from cache.
The problem with the algorithm is that mobile clients must be connected to network
to listen to signature updates.

452 14 Caching and Data Replication in Mobile Environment

Algorithm 39: Cache invalidation
begin

// Initially all cached items are valid.
T = Φ;
for (j = 1; j ≤ m; j++) do

if (αj == 1) then
for (i = 1; i ≤ n; i++) do

if (i ∈ Sj) then
count[i]++;

end
end

end
end
for (i = 1; i ≤ n; i++) do

if (count[i] ≥ mδf) then
// Threshold > δf implies invalid cached items.
T = T ∪ {i};

end
end

end

14.5 Requirements for Replication

To assess the special requirements of replication for mobile environment, following
specific issues related to mobility [2] should be addressed:

1. Does mobility of the end devices introduce new dimensions to the existing data
replication methodology?

2. Is it possible to adapt existing data replication algorithms to mobile environment?

As the updates keep coming, the original copy and its other replicas would diverge.
The task of replication algorithm is to synch the two types of copies, so that the
amount of divergence between the original and any of its replica is tolerable. The
threshold of tolerance is dictated by the semantics of the applications running on the
replicas. By appropriate characterizations of the types of mobile applications, it may
be possible to cope up with varying degrees of staleness in the replicas. However,
as far as the replication algorithms are concerned, the requirement is to ensure that
the copies do not diverge too much from the original. In other words, the replication
algorithms should be divergence aware. So, there is a need to revisit conventional
algorithms in the context of mobile environment.

Achieving one copy serialization is the ultimate goal of any replication algo-
rithm [5]. This gives an illusion to the applications that there is just a single copy,
which is highly available, and contains the latest value of every object in the data-
base [9]. However, a mutual trade-off exists between:

1. A replica containing the latest updates of all objects, and
2. The accessibility of that replica.

14.5 Requirements for Replication 453

For the purpose of one copy serialization, the access to a replica is prohibited till it is
made up-to-date. One of the replica is considered as the original or the primary, and
all updates typically go through two phase commits for reconciliation. Two phase
commit locks all the copies and updates them atomically. Obviously, the synchro-
nization requirement is a bottleneck for the scalability. This algorithm can work well
on a LAN based environment. The replication strategy as stated above is known as
the pessimistic strategy.

Any approach to enhance the performances of replication algorithms inevitably
leads to relaxation of the requirements for having a primary copy. In turn, it allows
the replicas to be accessible even if the updates are being made to other copies. Such
a strategy decouples the update reconciliation from the replica accessibility. The
reconciliation is carried out in the background as the copies being read or written to.
In a sense, this approach tacitly assumes that the conflicts occur but with appropriate
choice of sharing policies, these conflicts can be managed. In other words, when the
conflicts actually arise, these can be resolved by minimal manual interventions. The
above strategy of replication is known as optimistic replication policy. CODA file
system [17] employs optimistic replication policy.

There are many advantages of optimistic replication [16], namely,

• Availability of replicas: Accessibility to data is not blocked. Access latency is
reduced, as a client can access data from the nearest available replica.

• Disconnected operation: A mobile device can hoard data prior to disconnection.
The running of the applications on the disconnected device is not affected, since
all the data requirements are met from the hoarded (pre-cached) data.

• Scalability: Since replica integration does not demand strong coordination among
the replica holders, a large number of replicas can be used to scale up the system.

• Quick visibility of updates. The updates applied initially to a client’s local copy
are marked tentative. They become visible almost immediately.

The update operations are replayed at the replica holders after the final application
order is determined by timestamps. Reordering of operations with a number of opti-
mizations is possible on the basis of commutative, associative and inverse properties
of operations. Such reordering of operations also leads to increase in concurrency in
some cases. Even when a mobile computer is disconnected, reintegration of its cached
data can be performed on reconnection. Similarly, when the network gets partitioned,
and a replica is located in a partition gets isolated from the rest, its accessibility not
affected. After merging, the update logs can be exchanged between the partitions.
This update procedures suits well for a mobile distributed environment.

Mobile storage system such as IBM Notes [7], CODA [18], Roam [15] and
Bayou [20] all use optimistic replication. The high level goals of an optimistic repli-
cation algorithm are as follows:

1. Provides access to data all the times,
2. Guarantees that the fetched value provides “sufficiently fresh data”, and
3. Minimizes the divergence of values fetched from different replicas.

454 14 Caching and Data Replication in Mobile Environment

The extent to which these three goals can be achieved depends on various levels of
data consistency guarantees supported by the application environment.

Optimistic replication strategy essentially guarantees the most loose form of con-
sistency known as eventual consistency [20, 21]. Eventual consistency provides the
guarantee that all the replicas eventually converge regardless of when and where
the updates are applied to them. However, such a consistency guarantee is mean-
ingless unless the reconciliation process is reasonably quick. In other words, the
amount of divergence is not much. Typically, eventual consistency is associated with
a consistency service that makes the best effort to disseminate updates quickly among
the replica holders. This constraint demands for a specification of a well defined
process of update reconciliation. The reconciliation process involves following four
steps [16]:

1. Update propagation,
2. Update sequence ordering,
3. Conflict detection and resolution, and
4. Update commitment.

The propagation of update is concerned with the accumulation of the updates that
were made when a site is isolated from the others. During this step, a site finds the
earliest time when it can communicate with another site in order to exchange their
updates. An exchange session is known as an anti-entropy session. This protocol of
exchanging the updates leads to eventual convergences of replicas.

The sequencing of the updates determines a schedule in which the updates received
by different sites should be applied on the replicas. The goals of this step are [16]:

1. The updates should be applied quickly to reduce the latency and to increase
the concurrency.

2. The updates should be applied in a way that the users’ intent in those updates is
preserved.

These two goals can be realized by determining a serialization order for the updates
that increases both concurrency and accessibility of the replicas. Among several
feasible serialization orders, one should be a chosen. The question is which one to
choose. Typically, the easiest way to preserve the intent of updates is to use timestamp
ordering. However, this may affect concurrency. Possibly, certain pairs of operations
may be mutually commutative, while certain other pairs of operations may be inverse
of each other. So, the dependency rules can be exploited for opportunistic reordering
of the updates and to increase concurrency.

In a distributed scenario, the users are aware of the conflicts. If the feedback on
conflicts get disseminated early enough, the users voluntarily offer to resolve them.
In most cases, hardly ever any attempt is made to write files concurrently [18]. Also
sharing can be regulated to reduce the scope of conflicts [18]. For example, the
UNIX semantics of file sharing seldom leads to update conflicts. However, conflicts
in updates occur as the users do not know about the preferences of one another
while accessing replicas in isolation. For instance, the application involving calendar
reservation for a meeting slot may often lead to conflicts when several users put

14.5 Requirements for Replication 455

reservations for the same slot by accessing different replicas. In the booking of
meeting slots, the users may be satisfied with a timestamp based automated resolution
of conflicts. In fact, in many use-case scenarios, automated resolution of conflicts
may improve the experience of the users if the system uniformly accepts one update
and ignores the rest. In any case, non-conflicting updates should be accepted. To
resolve conflicting updates, sometimes all older updates are discarded in favor of the
latest update. The idea behind retaining the latest updates is that the older updates
could be temporary modifications. However, a more acceptable reconciliation policy
could be a semantic union of the older updates and the latest update. For instance,
if two users create the same file with different names, then creation of both may be
allowed. By attaching a version number all the updates may be retained. Conflict
resolution in any way is a complex procedure, so many approaches are possible.

Committing the updates is a procedure for replica holding sites to agree on the
sequence of updates that can be replayed at the sites. Once the commitment process
is over the auxiliary data structure related to the execution of conflict resolution can
be purged.

14.5.1 Pitfalls of Replication

Gray et al. [9] has pointed out that scaling up contributes to multi-fold increase in the
complication of maintaining the consistency of replicas. There may be long waits and
deadlocks. The reconciliation of updates poses a difficult problem specially when
they are applied at any time, any where, and any way.

A replication algorithm that can manage a large number of copies is preferable in a
mobile distributed environment. However, the possibilities of disconnected operation
in such an environment lead to frequent execution of reconciliation process. As
explained in Sect. 14.5 one copy serializability, i.e., globally consistent replication
does not scale well [10].

There are two ways for synchronizing replicas, namely, (i) Eager, and (ii) Lazy.
In an eager scheme, updates are applied at every replica as a part of the transactional
process while in a lazy scheme updates are applied to one replica and then propagated
to other asynchronously.

Apart from method of synchronization, regulating the updates also has an impor-
tant bearing on the stability of replicas. There are also two ways in which updates can
be regulated. One way is to designate only a single node (server) as the owner of the
replicas and the copy held by it is the primary copy where the updates are applied. All
other servers hold their respective replicas in read-only mode. If a server requires the
updates it has to request them from the holder of the primary copy. Another way is,
where the updates can come from any of the group of servers which hold the replica
of database. In this mode of update, the probability of having conflicting updates is
high. A summary of replica update strategies is provided in Table 14.1 [9].

The problem of replication is that every transaction carried out by a node as a
part of its execution requires a transactional update at every remote node hosting a

456 14 Caching and Data Replication in Mobile Environment

Table 14.1 Summary of replica update strategies

Strategies for replication and propagation of updates

Ownership Propagation

Eager Lazy

Master N transaction One owner One transaction One owner

Group N transactions N owners One transaction N owners

Two tier N + 1 transaction, one owner tentative local updates, eager
base updates

Write A

Write A
Write A

Write B
Write B

Write B

Write A
Write B
Write C
Commit

Write C
Write C

Write C

Commit
Commit

transaction
Single node

applied
on node 2

on node 3

transaction

transaction

applied
transaction

on node 1

transaction
A three node Lazy

Sends more connection requests

A three node Eager transaction

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Write A
Write B
Write C
Commit

Commit

applied

Fig. 14.1 A transaction performs N times as much job with N replicas [9]

replica. So if there are N replicas, a transaction performs its job N times over. Eager
replication method requests more connections per transaction, as each update has to
be transmitted immediately to all the nodes hosting the replica.

Lazy replication method performs the same amount of job as eager replication,
but it performs transaction as a whole on a remote node during an anti-entropy
session. Figure 14.1 sourced from Gray et al. [9] neatly illustrates the difference.
Lazy replication method leads to large delays in reconciliation process, and defeats
the very purpose of replication. A detailed analysis is available in [9]. It concludes
some important scaling laws for both eager and lazy replication methods.

Rule 1 (Group deadlocks rate) In eager group replication, the deadlocks grow at the
rate of cubic power of number of replicas and fifth power of the number number of
operations per transaction.

Rule 2 (Group reconciliation rate) In lazy group replication, the reconciliation grows
at the rate cubic powers of the number of replicas and the number of operations per
transaction.

14.5 Requirements for Replication 457

Rule 3 (Master deadlock rate) In lazy group replication, the deadlocks grow at the
rate square of the number of replicas and fifth power of the number of operations
per transaction.

The analysis made by Gray et al. [9] paints a very pessimistic picture about the
effectiveness of replication. If system is kept small, “the curse of scaling” does not
show up. But then in a small system, replication is not be needed at all. All requests for
data can be met by a single server which hosts and owns the data. However, without
replication no useful work can be done in a mobile environment. Disconnected mode
of operation becomes impossible and mobility becomes too restrictive.

Ideally, following four properties are needed for replication to be effective.

• Scalability and Availability,
• Mobility,
• One copy serializability, and
• Convergence or stability.

Scalability and availability are inter-related. But the problem that needs to be
addressed is the stability of replicas. With increase in scalability the replicas tend
to diverge quickly. The problem gets aggravated with distribution of the replicas as
the network latency starts to affect the reconciliation, and the deadlock rates also
increase. So, avoiding instability is a major concern.

14.6 Replication Techniques

Replication techniques were developed for enhancing the performance of operations
on databases. These techniques do not apply directly to mobile distributed computing
scenarios. A few of these techniques are discussed in some details here in this section.

Replication techniques are used for increasing availability, fault-tolerance and
enhanced performance in a distributed system. Several copies provide redundancy.
If a copy is not available or corrupted, then the information can be extracted from
any of the several other copies maintained by the system. Computation can resume
by switching over to an available updated replica. Additionally, redundancy gives
protections against data corruption and failures. When replicas are distributed, it
provides enhanced performance and scalability. Though the replication techniques
have a lot of merits, there are problems too. The primary issue is that of maintaining
data consistency. Specially, in a distributed system, different copies are modified
asynchronously. So, the replicas quickly diverge in unpredictable manner if client
applications are allowed to update the copies indiscriminately. The responsibility of
preserving consistency can either be handled by an applications or by the middleware
(a replica management system). The consistency is maintained through well-defined
software contracts between the processes that update/access the data and the storage
where the replicas are physically stored. If the processes obey certain specified rules
(contract) then consistency model guarantees that data store works correctly.

458 14 Caching and Data Replication in Mobile Environment

There are two extremities to approaches for the resolution of update conflicts
in replicas. One extreme is a strictly rule based approach, wherein the conflicts
automatically get resolved by the application of the rules. A rule based approach
may either be application independent or application dependent. In first case, the
conflicts are resolved always in favor of the update which bear the latest timestamp.
In the second case, a set of conflict resolution rules are defined whereby depending on
applications, the incoming updates from a certain set of processes/users have priority
over others. The priority rules can be modeled in a way to create a level of hierarchy
among the users/processes and the update tagged with a highest priority wins. The
other extreme is to allow manual intervention wherein the conflicting updates are
not directly updated, but logged separately for a human expert to examine them and
resolve. CODA system [18] uses this approach.

There is a set of rule based approaches which depends neither on timestamp
nor on process/user priorities. These approaches are based on the notion of relaxed
data consistencies. The conflicts are resolved by application of the rules defined on
contracts between the application and the data store. Bayou [20] uses this approach.
The idea is that from one application to another an users may have a different view
of resolving update conflicts. For example, if a user has updated a personal web-
page accessing one replica, then these updates must be available when the same user
accesses another replica at different point of time. From the point of view of an
individual client and the nature of application the conflicts should be resolvable in a
specific way.

14.7 Rule Based Reconciliation Approach

In a rule based replication techniques, since reconciliation is rule based, performance
primarily depends on the implementation of synchronization according to the rules.
One of the most natural approach to replication is two-tier replication where primary
copy is held by only one computer which may either be a mobile or a stationary
computer.

14.7.1 Two-Tier Replication

There are two types of computers: (i) mobile computers, and (ii) stationary computers.
A mobile computer may be disconnected, it may store a replica of database, and
may initiate a tentative transaction on some data item. Some mobile computers may
perform the role of masters for a few data items. Stationary computers are always
connected and they perform the role of masters for the most of the data items.

14.7 Rule Based Reconciliation Approach 459

The replicated data items have two versions:

1. Master version: It is the most recent value of the data item received from the
master node. It may be stale.

2. Tentative version: Local data items may be updated by a tentative transaction.
Tentative value is defined as the recent most value due to a local update.

Two types of transactions are possible on a replica:

1. Base transaction: Applied only on the master. It produces new master data. At
least one connected mobile computer and several stationary computer may be
involved in a base transaction.

2. Tentative transaction: A tentative transaction is applied on local data available at
a mobile computer. It produces a base transaction which should be executed at a
time in future on a stationary computer.

Tentative transaction must involve the data items mastered either

• At the mobile computer originating the transaction, or
• At a stationary computer.

Tentative transactions should not be confused with local transaction. Local trans-
actions cannot read or write tentative data which corresponds to shared data. Local
transaction may be designed only to read/write local data. In other words, tentative
transaction must satisfy the following scope rule:

Rule 4 (Scope rule) A tentative transaction must either involve stationary comput-
ers, or a mobile computer which originated the tentative transaction.

The base transactions generated by tentative transactions must pass an acceptance
test as indicated below:

Rule 5 (Acceptance test)Theoutputmust pass for a slightly different base transaction
results.

The rule for the acceptance test needs a little elaboration. Consider, for exam-
ple, the booking of a slot in a meeting room needs to be finalized when booking
requests are made from many mobile computers without explicit synchronization.
The requests for the meeting slots remain tentative until base transactions generated
by the tentative transactions have been performed. In this application, multiple book-
ings for the same time slot cannot be accepted. This implies only one of the tentative
transactions requesting for the same time slot can commit is based on the acceptance
test. Usually, the tentative transaction which reaches first gets committed.

In the two tier model, a transaction updating an object must lock the master. Once
the master transaction has committed, the updates are disseminated to the replica
holders. Usually, the updates are timestamped by the master to avoid stale updates.
Thus, the key properties of two-tier replication system are:

• Mobile computers can perform tentative transactions.
• Base transactions are executed with one copy serializability.

460 14 Caching and Data Replication in Mobile Environment

• A transaction becomes persistence when the base transaction commits.
• Replicas at all the computers converge to the system state of the stationary com-

puters.
• No reconciliation necessary, if all transactions commute.

14.7.2 Performance Analysis

The performance issue related to the cost in a mobile environment is the number of
connection requests made by the mobile devices to the servers holding the replicas.
So, the number of connection requests issued by a mobile computer is the key para-
meter for determining the cost of data accesses. If a data item x is accessed frequently
but modified infrequently, placing a copy of x at the mobile computer becomes cost
effective. On the other hand, if x is modified frequently but accessed infrequently,
then keeping a copy locally at a mobile computer is expensive as local copy of x is
most likely be stale. In order to keep the access cost down, the basic problem that
needs to be addressed is to minimize the number of requests for connection by a
mobile computer.

Possible allocation schemes for a copy of data item could be one copy or two
copies. The allocation of a copy just to a mobile computer is impractical. If the
mobile device is lost, stolen or damaged, the copy can never be recovered. So, in one
copy allocation scheme, only copy of data item is allocated to a stationary computer.
In the second scheme, both mobile and the stationary computers hold a copy each of
the data item. In both the static allocation schemes, allocation method is unchanged
over time. Whereas, in a dynamic allocation scheme, the allocation method changes
with time. The three distinct methods of copy allocations [11] are:

1. One copy static allocation,
2. Two copy static allocation, and
3. A family of dynamic copy allocations based on sliding window.

One copy static allocation scheme is referred to as ST-1. Only copy of data item
is allocated to a stationary computer. Whenever data is required to be accessed by
a mobile computer then a connection request is made. Actual writes can only be
executed at the stationary computer which holds the needed copy. Since the stationary
computer holds the copy of a data item, no connection request is needed when the
operation is a write. Assume that read and write requests are distributed according
to Poisson distribution with mean λr and λw respectively. This means in each time
unit, the expected number of read requests is λr . Similarly, the expected number of
writes per time unit is λw. Let θ represent the value λw

λw+λr
.

In ST-1 algorithm, in order to perform a read, a mobile computer has to request
for connection. The number of connections per request is 1 − θ . But no connection
is needed for performing a write, because a stationary computer holds data.

Two copy static allocation algorithm is referred to as ST-2. It allocates a copy at
a mobile computer and another copy at a stationary computer. When operation is
read, no connection request is necessary, as the mobile computer holds a copy. But

14.7 Rule Based Reconciliation Approach 461

when the mobile computer issues a write operation, the stationary computer should
request a connection to the mobile computer in order to update the copy it holds. So,
the expected number of connections per request is θ . The average expected cost (in
terms of connection requests) of ST-1 and ST-2 algorithms are given in following
expressions.

AVGST−1 = ∫ 1
0 (1 − θ)dθ = 1

2 , and
AVGST−2 = ∫ 1

0 θdθ = 1
2

Sliding window based allocation algorithm is referred to as SW-k. It operates as
follows. A bit vector V of size k = 2n+ 1 is maintained for the current sequence of
k read and write operations, where

V [i] =
{

1, if the ith operation is a write,

0, otherwise.

One of the computers, either the stationary or the mobile is in charge of maintaining
V at any point of time. When the next operation is issued, the leftmost bit of V is
dropped off. The vector is shifted by one position to the left, and a bit corresponding
to the latest operation is appended to the right. We still have to answer the question:
how is it decided which computer should be in charge for maintaining V ? The
responsibility switches between the mobile and the stationary computers depending
on the difference in the number of reads and the number writes. If the reads have
the majority over the writes then the responsibility of maintaining the bit vector V
rests on the mobile computer. On the other hand, if the writes acquire majority over
the reads, then the responsibility switches to the stationary computer. The switching
of responsibility occurs when the majority is established. The rules governing this
switching are summarized as follows.

1. If the number of reads is higher than the number of writes, and the mobile computer
holds a copy then it just waits for the next operation.

2. If the number of reads is higher than the number of writes, and the mobile computer
does not have the copy, then a copy is allocated to it.

3. If the number of writes is higher than the number of reads, and the stationary
computer holds a copy then it just waits for the next operation.

4. If the number of writes is higher than the number of reads, and the stationary
computer does not have the copy, then a copy is allocated to it.

Cases 1 and 3 are straightforward and need no explanation. So let us examine the
two other cases.

In case 2, the last operation must be a read. This can be explained as follows.
Until the last operation, stationary computer was holding the copy. This means that
the shares of the reads and the writes operations before the last operation were equal.
Due the to the last operation the majority tilts in favor of the number of reads.
The stationary computer then responds to this read, and piggy backs a request to
the mobile computer to save a local copy. This also serves as an indication for the

462 14 Caching and Data Replication in Mobile Environment

delegation of the responsibility of maintaining V to the mobile computer. From
this point onwards, the stationary computer propagates the write requests to mobile
computer. Likewise, in case 4, the last operation must be a write. So, the mobile
computer when responding to the request also piggy backs a request to the stationary
computer to save a copy. This request then also serves as shifting of responsibility
for maintaining V at the stationary computer.

Assuming αk as the probability that the majority of k consecutive requests are
reads, the number of connection per requests is given by:

θαk + (1 − θ)(1 − αk)

The above expression, for any fixed k, has a value which is greater than
min{θ, 1 − θ}. Since k = 2n + 1, the value of αk is equal to the number of writes in
the sequence of k operations, and is less than or equal to n. Hence,

αk =
n∑

j=0

(
k

j

)
θ j(1 − θ)k−j

Plugging-in value of αk in the previous expression for the connection requests, and
integrating it over all values of θ between [0, 1], we get the average expected value as
1
4 + 1

4(k+2)
. In summary, Huang et al. [11] concluded the following results concerning

the average expected access cost comparisons of three algorithms:

1. The average expected cost of SW-k algorithm is lower than both the static algo-
rithms ST-1 and ST-2.

2. The average expected cost of SW-k decreases as k increase and increases as k
decreases.

14.7.3 Caching and Replication in CODA

CODA file system presents a practical example of rule based replica reconciliation
method in file sharing. It has similarities with sharing of files over NFS. When a
mobile user opens a file, a copy of whole file is cached locally in the client machine.
If a mobile client’s application has opened the file in write mode, then the server
does not allow another mobile client to open the same file in write mode. However,
if the first client opened the file in read mode then the second client’s request can be
honored irrespective of the fact whether the file open request is for read or write mode.
This protocol reduces the chance for conflicts. The details of replication strategy have
been discussed in Chap. 15. The discussion in this section is limited to the rules used
in replica reconciliation process based on versioning.

If one of the clients, who holds the file in write mode, updates the file and then
closes it. The file is subsequently transmitted back to the server. Since, CODA treats
each session as a transaction, the other clients, each of which have the old copy of

http://dx.doi.org/10.1007/978-981-10-3941-6_15

14.7 Rule Based Reconciliation Approach 463

the file, continue with the stale copy. A client can specifically request for update
notifications by registering a callback break promise with the server. The server
transmits invalid notifications to those clients when updates are applied.

The sharing works fine when no partitioning in network occurs. It works even
if some user u1 has opened a file f in read mode ahead of another user u2 who
opened f in write mode. Since u1’s session is scheduled before u2’s session, there
is no violation in transactional order. However, network partitions introduce a bit of
complication in transactional semantics. Suppose two processes P1 and P2 before
partitioning hold identical replicas of certain data objects. The file sharing following
transactional semantics should implement one copy serializability. In other words,
the result of independent executions of processes P1 and P2 should be same as that
of their joint serial executions on the shared non-replicated data.

Let us first understand how CODA ensures serializability in a single partition. It
associates different sessions to each file system call. A typical session is started with
an open system call. Read and writes follow there after, and a session is terminated by
a close system call. Certain meta data, namely, fid, access right, last modification time,
file size, etc., are associated with each file. These meta data can be typically extracted
from I-node of file and the data blocks. CODA explicitly identifies which meta data
can be read or modified in each session type. There is a client side cache manager
called Venus which fetches the data from an available server and acquires necessary
locks at the start of a session. So, effectively, the sharing semantics follows the two
phase locking protocol in fetching data. In other words the resulting schedule for read
and writes in concurrent session in a single network partition becomes serializable.

When network partitions occur, CODA has to resolve conflicts across partitions.
The conflict resolution is based on the version number. Each file is associated with
a version number that indicates how many times the file has been updated since its
creation. Along with relevant data, version number is also supplied to Venus when it
fetches a file. When a file is transmitted back to a server by a client, it is tentatively
accepted if no other process has the same file when the client and the server were
disconnected. This type of conflict can determined by comparing the version number
of the client and the server as follows. Let Vc denote the version numbers of file at
the time it was fetched by the client. Let current version held by the server is Vs. Let
Nu be number of updates made by the client. Then next update of the file from client
can be accept if and only if

Vs + 1 = Vc + Nu.

The above equation implies that update from a client can be accepted if the updates
lead to the next version of the file. Only a single client will be able achieve this.

Client side caching

Client side caching enables a mobile client to operate in disconnected mode. Cache
coherency is maintained by the clients recording callback promise with the server.
When a client updates its local cache and transmits to the server for the first time, then
all the connected clients who have registered callback promise get an invalidation
message callback break. As long as a connected client has an outstanding callback

464 14 Caching and Data Replication in Mobile Environment

promise, then it can safely access locally cached file. Once callback break message
for a file is received by a client, it can fetch updated copy of the file.

However, disconnected clients do not get this invalidation message. The situation
arising out of lost callback can be handled by Venus probing the members of Available
Volume Server Group (AVSG) periodically. However, there is still a problem if the
preferred server (where Venus registered callback promise) itself is partitioned or
unavailable. So, while probing AVSG members, the client also seeks CVV (CODA
Version Vector). From CVV, the lost callbacks can be retrieved.

Server side replication

Replication is allowed on the server side. A unit of replication is called a volume. The
servers which have copy of a volume called volume server group (VSG). Failures
may lead to certain servers being unavailable. Furthermore, a client may not have
access to all the servers. The Available Volume Server Group (AVSG) consists of
those servers which a client can contact. For a disconnected client AVSG should be
empty.

To maintain consistency, an update from a client is transmitted to all the members
of AVSG through multiRPC. However, for reading a file, a client contacts only one
server in AVSG. The protocol is essentially a variant of ROWA (Read One Write All).
However this strategy based on ROWA may create problem when network partitions
occur. This problem is handle using the version vector of a file. For example, if a file
f is replicated on n servers, then each server Si stores

CVVi(f) = [v1, v2, . . . , vn],

where vj denotes that server Sj is aware of version vj. CVV can be viewed as a kind
of a logical vector clock for the updates applied to a file. In the case when a partition
occurs, AVSG for the clients become different. But, the version vectors provide
information about which updates have been missed by which server. Therefore, the
missed updates can be applied. Though comparison of CVVs can reveal conflicts,
it cannot resolve conflicts in updates. This can happen when multiple clients update
to the same file having acquired write locks from different partitions around the
same time. It may happen only in the case, two or more clients simultaneously hold
write access to a single file. CODA’s policy of allowing conflicting updates relies on
the fact that as file sharing uses UNIX like semantics. Therefore, update conflicts
rarely occur in CODA. However, if conflicts in updates do occur then the would need
manual intervention.

14.8 Relaxed Data Consistency Models

Many applications may not demand strict data consistency. Different data consistency
models have been proposed and evaluated in the context of distributed systems. These

14.8 Relaxed Data Consistency Models 465

models differ on the way the latest write is defined or determined. Consistency
models can be classified into two broad classes, namely,

1. Data centric, and
2. Client centric.

Data centric models preserve system wide consistency guarantees. Every entity
ensured of uniform data consistency across the system. In contrast, the focus of
the client centric consistency model is to give consistent view of data to a specific
client. It is appropriate for the mobile clients accessing data items over the network.
For example, if a read issued by a mobile user fetches some value v at time t for a
data item d, then any subsequent read issued for d by the same user must fetch v

or a more recent value for d.
Figure 14.2 illustrates that the client centric consistency model focuses on preserv-

ing data access semantics for each individual client process. In other words, a client
centric data consistency model ensures that the user of a client device get a consistent
view from data store though the replicas may have some degree of inconsistencies.
Since a mobile client may access different replicas of same data items as it moves, a
client centric consistency model is most appropriate for a mobile environment. The
origin of client centric consistency models can be traced to Bayou [20]. Bayou is a
weakly consistent storage system designed and built at Xerox-PARC. It was intended
for development of collaborative applications on a mobile distributed environment.

replica 1

replica 2

replica 3

updates/reads

updates/reads

updates/reads

Fig. 14.2 Client centric consistency models

466 14 Caching and Data Replication in Mobile Environment

The Bayou designers came up client centric weakly consistent data model being
motivated by two particular collaborative applications in mobile distributed environ-
ment. The first application is a simple meeting scheduler. It allows only one user to
reserve a meeting room for a time slot on behalf of a group of people. The scheduler is
not expected to allow the group to decided about a mutually agreeable meeting time
as a full-fledged meeting scheduler would do. But like a calender manager, it only
displays whether the room is free or reserved in some time slots of a day. It re-reads
room schedule and refreshes the user’s display in periodic intervals. Suppose the user,
who have taken responsibilities of reserving the meeting room, is using a laptop that
is partitioned from network. Then the replica R being used by the user cannot be
synchronized with other replicas at the moment. If a reservation is confirmed based
on the information available in replica R, then there is a chance that the schedule
of the meeting may conflict with other reservation requests using different repli-
cas. To account for the situation arising out possibility of using network partitioned
replica, the user is asked to provide preferences from several possible time slots.
The user’s reservation is deemed tentative until the time network partition problem
gets resolved. One of the tentative reservation is eventually confirmed. However, the
group members using same replica can see tentative reservations immediately from
replica R.

The second application that the Bayou designers considered is operating on a com-
mon bibliographic database. The users cooperatively manage the database adding
entries to it. The users can access any of the several replicas. The operation per-
formed is mainly appending to the database, though occasionally fixing of mistakes
in earlier entries is also permissible. In this application, a user may be access a replica
which cannot be synchronized on real-time. Entry keys are assigned tentatively when
the entries are added to replicas. Since the users may independently assign different
tentative keys to same entry, the system should detect duplicates and merges those
content into single entry with a single key. In this application the users can even work
in completely disconnected manner, a cached copy of the replica can be merged on
reconnection in similar manner as suggested above.

While the above examples motivate collaborative applications in a mobile dis-
tributed environment, there is an important book keeping angle when replicas are
updated by the mobile users. The mobile users are not expected to be careful to
acquire locks when they get disconnected either voluntarily or involuntarily. In the
case of involuntary disconnection, the locks cannot even be acquired. Furthermore,
over slow and expensive communication links (e.g., GSM), keeping synchronized
copies is not only costly but difficult as well. However, under the given scenarios, a
mobile user may at least want a guarantee that if at time told , the value v is returned
for a data item d, then at a future time tnew the value returned for d should either be
equal to v or a newer value vnew. It is possible that a mobile user updates d from a
replica at time t, and then goes reads it from another replica at a future point of time,
say tnew. If the servers holding two replicas have not synchronized, then the server
which is accessed at time tnew may provide an older value for d.

14.8 Relaxed Data Consistency Models 467

14.8.1 Requirements for Session Guarantees

Terry et al. [19] introduced session guarantees for the type of read and write
operations mobile users are expected to perform on a weakly consistent replicated
system as discussed above. A session is defined as an abstraction for the sequence
of reads/writes issued by a mobile user. Since the session guarantees are to
be provided per user basis, the consistency models are referred to as client centric
consistency models. From a client’s prospective, the needed guarantees are:

• Read Your Writes. A read operation on a data item always includes the results
of the client’s own writes which precede the read.

• Monotonic Reads. Successive reads return the results of a temporally non
decreasing sequence of writes.

• Writes Follow Reads. Writes are propagated after the reads on which they
depend. It means if a write depends on some read (e.g., an older value being
updated), then the causal ordering of such reads and writes should be main-
tained. This is needed to preserve the traditional read and write orderings.

• Monotonic Writes. Writes should be propagated after propagation of logically
preceding writes.

For convenience in description and illustration of consistency models, we use
some notations described in Table 14.2.

Using the above notations, let us illustrate the meaning of the four client centric
consistency models introduced above. In all illustrative figures below, the top half
of a figure depicts a correct consistency preserving scenario, while the bottom half
depicts the violation of the same consistency guarantee.

We begin with RYW guarantee. It is illustrated by Fig. 14.3. A mobile client
performs a write on x on the replica R1, and then it performs a read on x

Table 14.2 Notations used in description of consistency models

Notation Description

xi[t] Denotes the version of data item x at time t at
the local replica Ri. Whenever the context is
clear, reference to time is omitted.

W(xi) Denotes writing into x by a client on a replica
Ri.

R(xi) Denotes reading x by a client from a replica Ri.

WS(xi) Denotes the value of x held at the replica Ri
resulting from a sequence of writes
performed on x at Ri till the time as indicated
on the time axis.

WS(xi;xj) Denotes that the operation WS(xi) was
performed at Ri at a time t1 is also performed
on x at another replica Rj at a later point of
time t2.

468 14 Caching and Data Replication in Mobile Environment

Fig. 14.3 RYW guarantee

R1: W(x1)

WS(x1;x2) R(x2)R2:

RYW guarantee

R1: W(x1)

WS(x2) R(x2)R2:

No RYW guarantee

Fig. 14.4 MR guarantee

R1:

MR guarantee

WS(x1)

WS(x1;x2)

R(x1)

R(x2)R2:

R1:

No MR guarantee

R(x1)WS(x1)

WS(x2) R(x2) WS(x1;x2)R2:

at another replica R2 afterwards. According to RYW guarantee, the effects of the
writing at R1 should get propagated to replica R2 by the time the client migrates
and reconnects to replica R2. So, when the mobile user performs a read on x the
effects of earlier writing at replica R1 is visible, and thus the session guarantee is
ensured as indicated in the top half of Fig. 14.3. However, the bottom half of figure
shows that write(x) performed at replica R1 is not propagated to R2 even after
sometime. Consequently, the version of x stored by replica R2 does not include the
effects earlier write to x on the replica R1 by the mobile client. Email is an example
where RYW guarantee is useful. A user may read and delete mails from the Inbox
folder from time to time. Suppose, the user takes a break from reading the mails, and
logins to read mails after sometime, then old deleted mails should not reappear in
Inbox. However, the deleted mails still may be displayed if the display is refreshed
from a replica that is not synchronized with the previous replica from where the user
accessed the mails earlier.

Monotonic Reads (MR) guarantee is needed for answering queries on databases. It
ensures that read operations are performed over the copies that contain all writes
whose effects were seen by previousreads within the same session. MR guarantee is
illustrated by Fig. 14.4. The top half of the figure shows, a mobile user has performed
a write(x) on replica R1, and subsequently performs a read(x) on replica R2.
Following write(x), the update gets transmitted to R2. MR guarantee implies
that the update made at R1 becomes visible when the user performs read(x) on

14.8 Relaxed Data Consistency Models 469

Fig. 14.5 WFR guarantee

R1:

WFR guarantee

WS(x1) R(x1)

WS(x1;x2) W(x2)R2:

R1:

No WFR guarantee

WS(x1) R(x1)

WS(x2) W(x2)R2:

R2. The bottom half of the figure shows that MR guarantee is violated if the earlier
updates at R1 are not transmitted to R2 by the time the user performs read(x). The
user gets only the local updates made to x. Once again consider the replicated email
system. When a mail reader issues command to retrieve all new mails, it display a
summary of all new mails. Following this if the user wants to get the contents of one
of the mails, then another read command should be issued to retrieve the contents.
The content may be held at a different server. With MR guarantee, it ensures that
the message contents are retrieved from the server that holds the message contents.
Without MR guarantee the read may be issued to a server that does not hold the
contents and the user gets an incorrect notification that the mail does not exist.

Writes Follow Reads (WFR) guarantee respects the traditional write and read
dependencies. It implies that the writes made during a session on each replica of a
database are ordered after any write whose effects have been visible to all previous
reads in the session. Figure 14.5 illustrates the meaning of WFR guarantee.

Suppose a mobile client performs a write(x) on a replica R2 after performing
read(x) on replica R1. The value written on x will be either on the version of x
which the user has read earlier or on a more recent version of x. As we can find in the
bottom half of Fig. 14.5 when the mobile user performs a write, the version that
gets updated is the local copy of x held on R2. The updates made at R1 has not been
transmitted to R2. So the mobile user being earlier connected to R1 does not have
WFR guarantee. The mobile user only sees the effect of local writes performed on
a replica. WFR guarantee is required for the correct execution is updates on shared
bibliographic database. The users contribute entries to build the database. A user may
also fix the mistakes in the earlier entries. A natural order fixing of the mistakes is as
follows. A user would first issue a read for an entry. If a mistake is discovered in the
displayed entry, then the user may perform a write for updating appropriate fields
of the entry. WFR guarantee ensures that the update in a replica by a user transmitted
to all the replicas having the same entry. It essentially implies that WFR guarantee
satisfies two constraints on a write operation, namely,

1. The first constraint ensures that a write properly follows another relevant
write in global order.

470 14 Caching and Data Replication in Mobile Environment

2. The second constraint is on the propagation of the updates, it ensures that all the
servers see a write after they have seen all the previous writes on which the
former write depends.

The operations on a bibliographic database requires both the constraints to be sat-
isfied. However, there may be applications which require relaxed forms of WFR
guarantee. The two relaxed variants of WFR have been defined [19].

1. WFRO guarantee: In a session, if a read r1 precedes a write w2 and
r1 is performed at a server S1 at time t1 then for a write w1 belonging to
RelevantWrites(S1, t1, r1), w1 must precede w2, where
RelevantWrites set refers to those writes whose effects were seen by
performing r1.

2. WFRP guarantee: If r1 precedesw2 in a session, and r1 be performed at a server
S1 at time t1 then for any server S2, if w2 has been performed on the replica at
S2 then for any w1 belonging to RelevantWrites(S1, t1, r1), the effects of
w1 will also be in the replica at S2.

WFRO guarantee may suffice for update of shared bibliographic database in place of
WFR. Suppose, a user finds some fields of a bibliographic entry are incorrect. The
user may modify all the incorrect fields of the entry and executes a write for the full
entry. Then, it is acceptable for the user to see only the effects of the newest write.
The writes preceding the newest write are not important. WFRP guarantee can
be used in the case of blog postings and the posting of comments on blogs in a weakly
consistent replicated bulletin board. It ensures that the users see the comments on a
blog only after the blog post itself has completed. In this case, the relevant writes
are the blog description. However, if the readers are only interested reading blogs,
then WFRP guarantee is not needed.

Monotonic Write guarantee implies that a write in a session must follow the
previous writes. More precisely, ifw1 precedesw2 in a session, then ifw2 has been
already performed on a replica at any server, then w1 would also be in the replica
and the order of writes is w1 < w2. Figure 14.6 illustrates the monotonic write
guarantee. The figure is self explanatory. MW guarantee is relevant for the operations
of a text editor on replica files. It ensures that if a user saves a version of a file and

Fig. 14.6 MW guarantee

R1:

MW guarantee

W(x1)

W(x1) W(x2)R2:

R1:

No MW guarantee

W(x1)

W(x2)R2:

14.8 Relaxed Data Consistency Models 471

subsequently save another version of the same file, then the latest version replaces
the previous version at all replicas. It ensures that edits related to the previous version
is not wrongly applied over the edits of the later version.

14.8.2 Implementation Related Issues

Bayou [19] while implementing weakly consistent replicated storage system identi-
fied three major problems for ensuring session guarantees, namely,

1. Bandwidth between the clients and the servers.
2. Storage space available at the clients and the servers.
3. The cost of computation.

From the server side, the implementation requires that every write is assigned
a write identifier WID by the server. The server must be willing to share

• WID of a new write,
• WIDs of relevant writes for a read, as well as
• WIDs of all writes performed on its replica.

Ensuring session guarantees is the responsibility of the session manager which is a
part of the client stub communicating with the servers. The session manager seri-
alizes the reads and writes in the appropriate order, and provides the required
guarantees. It keeps track of two different set of WIDs.

1. ReadSet: WIDs for the writes that are relevant to the session reads.
2. WriteSet: WIDs for the writes performed in a session.

Following steps are performed in order to provide RYW guarantee.

• Whenever a write is accepted at the server replica, the WID assigned to the
write is added to WriteSet.

• Before performing aread at the server, the session manager checks if its WriteSet
is a subset of all updates made to the replica until that time.

The check stated above can be performed either at the client or at the server. In case
the check is performed at the client, the server should be pass on the WIDs for all
the writes. Conversely, the session manager can pass on the WriteSet to the server
for carrying out the check.

For Monotonic Read (MR) guarantee, the client’s session manager checks that
ReadSet is a subset of the replica held at the server being contacted for perform-
ing the read. Furthermore, after performing a read r at the server S at time
t, WIDs of each write belonging to RelevantWrites(S, t, r) are added to
the session’s ReadSet. That apart, whatever updates the client has seen earlier, the
current read r may get the latest updates of the replica maintained at S. These
latest updates are results of some writes not known to the client. So, including

472 14 Caching and Data Replication in Mobile Environment

RelevantWrites to the client ReadSet is necessary to maintaining MR guaran-
tee in subsequent time domain. However, the client has to rely on the server for the
computation of RelevantWrites set.

The implementation of Writes Follow Reads and Monotonic Writes session guar-
antees require additional support from the server side. It requires servers to obey the
following two additional constraints [19].

1. When server accepts a new write w2 at time t, it should ensure that the write
order w1 < w2 is true for any write w1 whose effects are already stored before
time t.

2. Anti-entropy or synchronization of replicas is performed with the constraint that
if w2 is propagated from a server S1 to another server S2, then for any w1 already
in replica of S1 with write order w1 < w2 is also propagated to S2.

The above constraints are restrictive, but implementable. By enforcing the above con-
straints at the server side, the responsibility of maintaining session guarantee could
be easily transferred to the client side session manager. Without these constraints,
providing session guarantee would require the servers to keep track of each client’s
ReadSet and WriteSet. This goes against the principle of scaling which is extremely
important in a mobile environment. In practice, to respect the write order constraint,
it suffices either to simply transfer the whole replica from one server to other, or to
compute write order by comparing the timestamps of the writes.

With the underlying assumptions of server support for respecting write orders,
the WFR guarantee is provided as follows. As with monotonic read guarantee, the
ReadSet is expanded by including the RelevantWrites each time a read is
performed by a mobile client. Then before a write on the server S at time t, the
session manager at the client checks if the ReadSet is a subset of S’s replica at time t.

Two additional steps are needed for providing Monotonic Writes (MW) guarantee,
namely,

1. For accepting any write at time t, the server must include session’s WriteSet.
2. Whenever a write is accepted by the server, its assigned WID is added to

session’s WriteSet.

The summary of fundamental operations required in order to provide the four
guarantees is provided in Table 14.3.

Table 14.3 Summary of operations for consistency guarantees

Guarantees Session state updated on Session state checked on

Read your writes Write Read

Monotonic reads Read Read

Writes follow reads Read Write

Monotonic writes Write Write

14.8 Relaxed Data Consistency Models 473

The servers holding the replicas can synchronize via anti-entropy process for
writes pairwise. However, no guarantee on the time bound for the update prop-
agation delay can be given, since network connectivity and latency dominate the
propagation delays. Yet, as the motivating applications indicate, the merge proce-
dures are deterministic and the writes are performed in some well defined order.
The ordering of writes maintained by logical clocks of the servers which are more
or less synchronized by the real-time clock. However, to preserve causal ordering, a
server’s clock is advanced when it receives writes during anti-entropy session. So,
a server will be able to totally order the writes using <timestamp, server ID> pair.
Consequently, the server will always be able to resolve same conflict in the same
manner. Although the execution history of individual replica server could vary, their
combined execution would be equivalent to some global write order. For example,
the variation may happen if it is known that writes are commutative when they are
performed in some order.

References

1. R.H. Arpaci-Dusseau, A.C. Arpaci-Dusseau, The Andrew File System (Arpaci-Dusseau Books,
LLC, 2015)

2. D. Barbara, H. Garcia-Molina, Replicated data management in mobile environment: anything
new under sun, Proceedings of IFIP Conference on Applications in Parallel and Distributed
Computing (Venezuela, April 1994), pp. 237–246

3. D. Barbara, T. Imielinski, Sleepers and workaholics: caching strategies in mobile environments.
ACM Sigmod Rec. 23(2), 1–12 (2000)

4. D. Barbará, R.J. Lipton, A class of randomized strategies for low-cost comparison of file copies.
IEEE Trans. Parallel Distrib. Syst. 2(2), 160–170 (1991)

5. P.A. Bernstein, N. Goodman, Serializability theory for replicated databases. J. Comput. Syst.
Sci. 31(3), 355–374 (1985)

6. P. Cao, E.W. Felten, A.R. Karlin, K. Li, A study of integrated prefetching and caching strategies.
SIGMETRICS Perform. Eval. Rev. 23(1), 188–197 (1995)

7. S. Collin, A Complete Guide to Lotus Notes 4.5 (Digital Equipment Corporation, Acton, MA,
USA, 1997)

8. W. Fuchs, K. Wu, J. Abraham, Low-cost comparison and diagnosis of large remotely located
files, The Fifth Symposium on Reliability of Distributed Systems (1986), pp. 67–73

9. J. Gray, P. Holland, P. Neil, D. Shasha, The dangers of replication and a solution. ACM SIGMOD
Rec. 25(2) (1996)

10. J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques (Morgan Kaufmann, San
Francisco, CA, 1993)

11. Y. Huang, P. Sistla, O. Wolfson, Data replication for mobile computers. SIGMOD Rec. 23(2),
13–24 (1994)

12. T. Madej, An application of group testing to the file comparison problem, 9th International
Conference on Distributed Computing Systems (1989), pp. 237–243

13. B. Pawlowski, D. Noveck, D. Robinson, R. Thurlow, The NFS Version 4 Protocol, The 2nd
International System Administration and Networking Conference (SANE 2000) (2000)

14. S. Rangarajan, D. Fussell, Rectifying corrupted files in distributed file systems, 11th Interna-
tional Conference on Distributed Computing Systems (1991), pp. 446–453

15. D. Ratner, P. Reiher, G.J. Popek, Roam: A Scalable Replication System for Mobile Computing,
The Tenth International Workshop on Database and Expert Systems Applications (September
1999), pp. 96–104

474 14 Caching and Data Replication in Mobile Environment

16. Y. Saito, M. Shapiro, Optimistic replication. ACM Comput. Surv. 37(1), 42–81 (2005)
17. M. Satyanarayan, J.J. Kistler, P. Kumar, E.H.S.M.E. Okasaki, D.C. Steere, Coda: A highly

available file system for a distributed workstation environment. IEEE Trans. Comput. 39(4),
447–459 (1990)

18. M. Satynarayanan, The evolution of CODA. ACM Trans. Comput. Syst. 20(2), 85–124 (2002)
19. D.B. Terry, A.J. Demers, K. Petersen, M. Spreitzer, M. Theimer, B.W. Welch, Session guaran-

tees for weakly consistent replicated data, The Third International Conference on Parallel and
Distributed Information Systems, PDIS ’94 (1994), pp. 140–149

20. D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer, C.H. Hauser, Managing
Update Conflicts in Bayou, A Weakly Connected Replicated Storage System,ACMSymposium
on Operating Systems Principles (SOSP) (1995), pp. 172–182

21. W. Vogels, Eventually consistent. Commun. ACM 52(1), 40–44 (2009)

Chapter 15
Storage Systems for Mobile Environment

15.1 Introduction

Many mobile distributed applications rely on sharing and accessing information from
common data repositories. For example, mobile users may share their appointment
calendars, access bibliographic databases, and exchange emails. Mobile grid appli-
cations [1, 2] have become reality. Though mobile terminals are mainly interfaces
for accessing fixed grid services, possibilities exists where mobile terminals may
also actively become a part of a grid system, and provide aggrigated computational
resources. MPI implementations for android system have been developed [3]. Cluster
computing using smart phone is also a reality [4]. The mobile clients should have
ability to read and write shared data for the execution of these applications.

Different mechanisms have been explored to facilitate sharing data in mobile
environment, namely,

1. Replicated storage system,
2. Distributed objects,
3. File system, and
4. A stacked up filtering layer on the top of VFS.

Each mechanism is implemented at a different level of software stack, and each has
some advantages over the others.

For many of the non-real time collaborative applications, such as calendar, email,
program development, etc., strong consistency is not important. Replicated storage
systems offering different levels of weak data consistency guarantees have been
proposed for building such applications. Bayou [5] built by researchers at Xerox
Park provides sharing through a replicated, weakly consistent storage system. Bayou
storage system has been discussed in Chap. 14.

Distributed object based sharing of data is realized through a tools known as Rover
toolkit [6]. Rover is meant for building mobility aware applications. It relies on two
mutually supporting mechanisms, namely, Relocatable Dynamic Objects (RDOs)
and Queued Remote Procedure Call (QRPC). Sharing of data is in the form of units

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_15

475

http://dx.doi.org/10.1007/978-981-10-3941-6_14

476 15 Storage Systems for Mobile Environment

of RDOs. RDOs define a distributed object abstraction. Each RDO has a well-defined
interface which can hop from one device to another. On the other other hand, QRPC
supports non-blocking RPC, hence, allows disconnected operation.

A file system that can support location-transparent, replication independent oper-
ations on remote data is the most desirable solution for providing full range of data
services to applications running on mobile devices. However, remote access model
based on RPC is not suitable for the applications running on mobile devices. As we
have seen in the previous chapter, resource poor, low power devices communicat-
ing over wireless networks work best with caching and remote synching model. It
requires two basic operations, namely, download and upload. A read would transfer
an entire file to a local device. Once read becomes successful, other operations on
that file can be supported by the local copy. A store operation would cause the file
to be uploaded to its remote location. CODA (COnstant Data Availability) [7] was
specifically designed to support disconnected mode of operation where a client can
access critical data from a cached copy during intermittent remote failures due to
network outages. It is a full-fledged file system based on AFS2 [8–10].

InterMezzo File System (IMFS) [11] is not a full fledged file system. It is designed
as a stacked up filtering layer in between Virtual File System [12] and one of the native
files system such as ext3 [13], ReiserFS [14], JFS [15], or XFS [16]. InterMezzo
simplifies but retains most of the protocols of CODA file system.

15.2 Disconnected Mode of Operation

In a fixed network a disconnection is treated as a failure. However, this assumption is
impractical for a Mobile Distributed System (MDS). Because, hosts in an MDS often
experience disconnection as well as intermittent weak connections. The problem
is compounded further by resource poorness of mobile terminals. So, treating a
disconnection as a failure may mean a computation can never progress.

Disconnections can be handled either by avoidance or by accommodation [17].
For example, a client may avoid disconnection if both the hardware and infrastruc-
ture are 100% reliable and there is no limitations on the resources. However, these
assumptions are not only impractical but also unrealizable. One practical solution for
avoidance of disconnection would be to ensure that a client is always “logically con-
nected” [17] to services through one of the many replicated servers. Unfortunately,
the solution by server replications introduces data consistency problem. Further-
more, replication also relies on the fundamentally unrealizable assumption that the
network connectivity is highly reliable. So, building resilience (accommodation) in
the system seems to be the most ideal solution. The technique is to ensure that a client
continues even when it loses network connectivity. Replication also helps in raising
the level of resilience when a client changes its point of attachment. But, it cannot
provide a solution without an extra level of autonomy in operation of a disconnected
client. The autonomy is possible if the client is able to pre-store its requirements for
data before an anticipated disconnection.

15.2 Disconnected Mode of Operation 477

Mostly, disconnections are elective in nature, because it occurs with the movement
of either the terminal, or the user or the both. Under these situations, a mobile terminal
can be prepared before the disconnection actually takes place. Similarly, when a
mobile enters the state of weak connection from a strong connection or vice versa,
its transitions can be handled by a weak disconnection protocol.

Preserving data consistency is the major hurdle in the management of disconnec-
tion. In disconnected mode, a client application may continue execution in stand-
alone mode. The execution is made possible by prefetching (known as hoarding)
requisite critical data and pre-storing the same locally before an impending discon-
nection. But the quality of data consistency that can be maintained with a strong
connection progressively deteriorates in disconnected mode as modifications and
updates get executed over the cached data. With program control it is possible to
exercise control over the divergence of the cached copy (called a quasi copy) from
the corresponding master copy. However, the degree of allowable divergence depends
on an application’s level of tolerance in data consistency. For example, in a portfolio
management of stocks, it may be perfectly alright to work with a quasi copy dated
by 24 h. The problem of cache consistency and its implications on applications is
best understood by case studies. Although the quality requirements for maintaining
data consistency varies with applications, the issues typical to maintenance of data
consistency are the same across the applications. We, therefore, focus on data con-
sistency issues through operations on the shared objects in a MDS environment. The
motivation of our study is two-fold, namely to understand (i) how data consistency
is handled in disconnected mode, and (ii) how storage of data is handled in MDS
environments.

15.3 Rover Toolkit

Rover toolkit [6] is a collection of software tools for a distributed object development
environment. Unlike Bayou or CODA, it cannot be classified as a storage scheme.
Rover toolkit provides a distributed object system based computing on a client/server
environment for applications. It employs client caching and optimistic concurrency
control strategy for supporting roving application on resource poor mobile clients.

It works on the idea of exporting objects (code + data) between a client and a
server. The roving capability an application is realized through a combination of two
supporting mechanisms: (i) Relocatable Dynamic Objects (RDO), and (ii) Queued
Remote Procedure Calls (QRPC). The interface of an RDO can be dynamically
loaded into a client from a server or vice versa. The approach is aimed at reducing
client-server communication requirements. In a sense RDO is an extreme case of a
mobile agent with just one hop self-shifting capability. QRPC, on the other hand, per-
mits applications running on a disconnected client to continue making non-blocking
RPC, where the requests and the responses get exchanged upon reconnection.

Clients use Rover library interface to import RDOs and export the log of operations
that modify the RDOs. An RDO constitutes a fundamental unit of data and code
shipment between a client and a server. A rover application imports an RDO from the

478 15 Storage Systems for Mobile Environment

server into its address space, invokes methods on the encapsulated data as permitted.
Finally, the application exports the log of RDO operations back to a server. An
RDO may consist of just a single item of data such as a calender data, or it may be
as complex as a module that forms encapsulated part of an application. Therefore,
to immune a client from malicious or unintentional server attacks, RDOs must be
executed in a controlled environment.

A client application operates directly on the cached RDOs, whereas the server-
side application replays the operations on its copy of RDO using the exported log.
Therefore, server-side application has the responsibilities to detect and resolve the
conflicts. The conflict resolution is notified to the clients by the server. All clients
initiated non-blocking RPC requests which cannot be satisfied during disconnected
mode of operation are logged into the stable storage at the client. A network scheduler
at the client side drains out QRPC log containing the RPC requests which must
be performed at the server. The primary task of the network scheduler is to open
and close network connection and also interact with OS to initiate and terminate
connection-based transport links or to power up/down the wireless transmitters.

Like Bayou, a server can either be a static host or a mobile host. But no update
operation can be committed unless accepted by a server. Since the server’s copy of
an object stores the latest value, a client can get the latest value only by connecting
to an appropriate server. It means the servers must reside on well connected hosts or
preferably static hosts.

Rover toolkit expects a mobile-aware application to define a set of RDOs for
data types to be operated on by it and transported between the server and the client.
After defining RDOs, the application must be partitioned into two, one has to run
on the client and the other on the server. All tasks including object updates, conflict
detection, avoidance, and resolution must have to be specified by the application
in its server partition. After the application has been developed as mentioned, it
must be composed with Rover toolkit. Then the application acquires following four
capabilities:

1. It can interact with the runtime system to import objects into the client,
2. It can invoke methods on the imported objects,
3. It can export the log of method invocations to the server, and
4. It can reconcile the client copies objects with those at the server.

15.3.1 Design of Rover Toolkit

The control flow within Rover Toolkit and basic design components are shown in
Fig. 15.1. The Rover design issues discussed here focuses on RDOs, QRPC, com-
munication scheduling and preserving consistency. But other issues like relocation
of computation, object caching and maintenance of consistency are also discussed.

15.3 Rover Toolkit 479

Rover library Rover library

Object Cache

QRPC Log N
et
w
or
k

Sc
he
du

le
r

Server application

Client application Client application

Rover library

Object Conflictsmodify
resolve

Import RDO
Export RDO

Export log
Resolve log

Fig. 15.1 Interaction of application and the components of Rover toolkit

15.3.1.1 RDO and QRPC

A RDO consists of four components

1. Mobile code,
2. Encapsulated data,
3. An interface, and
4. Ability to make outcalls to other RDOs.

A RDO has methods for marshaling and unmarshalling itself. Therefore, it can relo-
cate itself from one machine to another and be stored in the client’s cache. A RDO
can invoke methods of another RDO.

Every RDO is tied to a home server storing the primary copy of the RDO. A
client uses Rover library functions to import secondary copies into its local cache.
After a client finished operating with RDOs in a desired way, it again uses Rover
library functions to export the operation logs for the mutating methods back to the
servers. All data modified by an application are stored within the RDOs. When
Rover modifies a locally cached RDO at a client, the corresponding cached copy is
marked as tentative. Only when the mutating operations are applied to primary copy
an RDO is marked as committed. Pending commit, the clients can continue to use
cached RDOs marked as tentative. Optionally, the clients can either poll or register
a callback to update locally cached copies of RDOs.

Toolkit allows complex RDOs for creating threads of control when they are
imported. For safe execution of RDOs, the toolkit provides authentication and a
controlled execution environment. But it does not rule out the possibilities of mali-
cious RDOs compromising the security or integrity of data and execution. In general
the security and the safety issues have not been emphasized in the implementation
prototype. But it is easy to realize that most of the security and integrity issues are
similar in nature as may be found in case of mobile agent implementations.

480 15 Storage Systems for Mobile Environment

The idea of RDO is also synonymous to code migration in distributed computing
in many ways. It allows application to control the location of the execution of code.
In other words, Rover permits applications to move data and/or computation from
client to server and vice versa by moving appropriate RDOs on the network. The
relocation of computation can be quite useful for shipping code to the source of
data, which can filter out huge data to deliver only a small amount of results to the
consumer. It reduces the pressure on low bandwidth data transmission link that is
typical to wireless communication. But, the success of the approach relys on the
fact that the application developers have semantic knowledge which can be useful
in tightly coupling data with code and relocate the computation to advantage when
network communication is either unreliable or unavailable. For example, RDOs can
include situation-specific or application-tailored compression and decompression
techniques.

A QRPC may refer to a RDO, a request for a RDO, or any application specific
data. QRPC may be used for following tasks:

1. Fetching RDOs in background, and
2. Propagation of updates or resolution between the client and the server.

A QRPC request is logged locally in the persistent storage at the client. The applica-
tion may register a callback, which will be invoked in case a requested QRPC reports
completion. Alternatively, an application can poll the state of the QRPC or block for
arrival of critical data. But blocking is not desirable when the client is operation in
disconnected mode. QRPC supports split-phase communication model, wherein the
uplink and the downlink communication channels may be different. If a client gets
disconnected after submitting a QRPC request, the server periodically attempts to
contact the mobile host for delivering the reply. The reply may be delivered through
a different channel than the channel through which the request was received. Thus,
it is possible for the client to close the communication channel after sending the
request and tune in at appropriate time to receive the response.

15.3.1.2 Communication Scheduling

The network scheduler is responsible for handling of communication between the
client and the server. It allows an application to set priorities in delivery of QRPCs
in non-FIFO order. Reordering according to application-specific priorities may be
needed for satisfying consistency requirements. The user may choose to send critical
update requests superseding certain queued RPCs, specially when the communication
is intermittent or expensive. Multiple QRPCs destined for the same server may be
batched together to amortise the overheads over a number of RPCs. The network
scheduler is responsible for handling the split-phase communication as described
earlier.

15.3 Rover Toolkit 481

15.3.1.3 Object Caching

When a mobile client gets connected to the network, Rover prefetches all the useful
RDOs to its cache. But the decision to prefetch is left to the application. A CODA
like interface for the user specified hoard profiles could have been easily provided for
indicating the objects to be prefetched. But Rover implementers shifted the prefetch
decision to the applications. The reason behind this decision is explained as follows.
By design, a Rover applications is mobile-aware. So, an application, during its execu-
tion, can easily handle the preparation of its prioritized prefetch list. The construction
of the prefetch list can be guided according to a user’s interactions with the applica-
tion. For example, a Rover email browser can generate prefetch operations for user’s
inbox for and all recently received messages, as well as some folders which user
selects regularly. Rover toolkit lets a client to access the cache and permits certain
actions like

1. Flushing RDOs from cache,
2. Verifying whether RDOs are up-to-date or not,
3. Checking consistency information of an RDO.

On the server side following actions are permitted.

1. Automatic validation of RDOs,
2. Checking client cache tags of RDOs for managing consistency of cache.

Cache tags of RDOs at a client are also used for a number of other purposes, such
as,

• Verifying an RDO before application uses it,
• Temporary leasing of RDO to another client,
• Registering callbacks for notification of stale RDOs from the server,
• Indicating read-only type of RDOs.

15.3.1.4 Consistency

Application designers are required to enforce consistency scheme suitable to a spe-
cific application. But considering our discussion on CODA and Bayou it is clear that
only a limited number of schemes are found to be appropriate for mobile applica-
tions. In fact, Bayou and CODA both use optimistic concurrency control schemes.
Rover also provides substantial support for maintenance of primary copy and tenta-
tive update with optimistic concurrency control strategy. As stated earlier, like Bayou
and CODA, Rover also supports

• Logging of operations on RDOs
• Replay of logged operation on the server side
• Roll back on the client side in case of conflicts
• Manipulation of log for optimizing QRPC requests, and
• Maintaining RDO consistency vectors.

482 15 Storage Systems for Mobile Environment

All Rover applications built so far, use only primary-copy optimistic replica control
strategies.

15.4 Mobile Distributed File Systems

A Distributed File System (DFS) allows location-transparent accesses to shared files.
However, in a Mobile Distributed System (MDS), apart from location transparent
access, the file system must also have capabilities to handle:

• A range of network disconnections,
• Scalability,
• Inconsistency of data, and
• Conflicting updates by clients,

For operations on files at a client, handling disconnection is absolutely essential.
There are two known inter-related techniques for disconnected operation on shared
data, namely,

1. Replication of data (cloning, copying and caching), and
2. Pre-storing of data (hoarding/pre-fetching) in anticipation of future use.

Caching enhances performance while replication makes the file system highly avail-
able. However, downside of uncontrolled replication is difficulty in maintaining con-
sistency in data. Much of the work in implementation of mobile transparent access
to shared files, has been in guaranteeing consistencies of the replicas held by the
clients and the servers.

In the following two sections, we discuss about two different approaches for design
of file systems for mobile distributed environment found in literature
[9, 11]. InterMezzo is a lightweight approach that defines a stacked up layer between
VFS a native file system. CODA, on the other hand, is a full AFS2 based file system
designed to handle a range network outages. The implementation of interMezzo is
guided by CODA. It retains most of the file sharing semantics of CODA, but greatly
simplifies the involved protocols.

15.5 CODA

CODA project [7, 9, 18–20] was conceived and implemented by M. Satyanarayanan
and his group at CMU, and the work began around late 80’s. The major motivation
in CODA file system was to build a DFS that is resilient to frequent network outages.
Network technology around 1980s was not as developed as it is today. An initial
prototype was made to carry out experiments in executing reads/writes on a shared
file system at disconnected clients then reintegrating the updates on the file copies
held at the servers. The idea of putting a client-side cache manager combined with

15.5 CODA 483

the concept of hoarding turned out to be extremely well-suited for mobile computing
environment.

15.5.1 Overview of CODA

CODA provides a common name space for all the files that the clients share. Typi-
cally CODA running on a client shows a file system of type coda mounted under
/coda. In contrast NFS file systems are available on per server basis with additional
requirement that the file system should be explicitly exported to a client. However,
for accessing a file under CODA file system, a client simply need to just know the
mount point of coda. CODA system running in a client fetches the required files
from the appropriate servers and make these available to the client. A full path name
for a file in CODA may span over several mount points across many servers. Each
mount point would correspond to a partial subtree of the file system in a CODA
server. Files are grouped into collections known as volumes at CODA server end.
Usually, the files of a volume are associated with a single user. A mount point at a
client’s end is the place holder where a server volume can be mounted. Figure 15.2
shows that a CODA file system at a client is composed of files from two servers. On
the server side, a volume can be viewed as a disk partition in Linux and corresponds
to a partial subtree of the file system. So, the CODA name space at a client can be
constructed by mounting the volumes on the mount points. A leaf node of a volume
may be the root of another volume. Thus, an entire name space may span across
different volumes located in one or different servers.

local

local

bin bin

pgms

pgms

inherited from server name space

client Bclient A server

Fig. 15.2 CODA name space in clients

484 15 Storage Systems for Mobile Environment

Fig. 15.3 Remote access of
shared files system

file
access

remote

client server

(a) RPC based access.

local copy
old file

new fileclient
server

(b) Upload/download access.

There are two ways to operate on files in shared file system by the contend-
ing clients. In the approach followed by NFS, the copy of the file is held at the
server. The clients operate on files through RPC as indicated by Fig. 15.3a. Obvi-
ously, this approach is not suitable for scaling. The alternative approach, illustrated
by Fig. 15.3b, shows that a client downloads a local copy and operates on the local
copy. The old copy is held at the server till the time the client commits the updates
by uploading the new file.

RPC is basically a request-response based mechanism. The latency of response
may depend on several factors including load at the server for processing requests,
network latency or failures. So, the first approach does not scale up. CODA uses
the second approach. The problem with this approach is that many clients which
have copies of the same file may report conflicting updates. The conflicts must be
resolved at the server. Typically, in a Unix file system one user (the owner) has the
write access while those sharing have read accesses. Since, CODA relies on Unix
semantics for operation on files, usually write-write type of conflicts do not arise.
If write access is held by many clients, then the applications using the shared files
should be designed to handle the updates by any client. When a client updates to a
file in CODA file system, the server takes responsibilities to inform its clients.

A file in CODA can be accessed from one of the many file servers which holds a
copy. A file handle consists of two parts: Replication Volume ID (RVID) and a file
handle. The volume replication database indexed by RVID provides the Volume IDs
(VIDs) in which replicas of the required file is available. A query to volume location
database with VIDs provides location of file servers which stores the replicas of
the file. File IDentifier (FID) is constructed by prepending the Server ID to the file
handle. The process of fetching file as described above is illustrated by Fig. 15.4.

The interactions of various CODA components are depicted by Fig. 15.5. The
access to the objects in a shared file system in CODA is allowed in granularity of a
file. Suppose a user wants to display the contents of a file in/coda directory, e.g., by
issuing acat. The user may or may not be connected to network. Thecat command

15.5 CODA 485

RVID file handle

Server 1 file handle

Server 2 file handle

Server
location database

VID1, VID2

Replication
volume database

File 1

File 2
File server 1

File server 2

Fig. 15.4 Fetching file in CODA

Local file
system interface VFS

Mini
cache

User
process

Client m/c

VENUS

RPC
client stub

VICE

RPC
server stub

Network interface

Server m/c

Kernel/OS

User level
programs

Fig. 15.5 Interaction of CODA components

generates a sequence of system calls like open, read and then write on display,
for the required files. All the system calls are executed in kernel mode. The kernel at
a client requires the services of the Virtual File System (VFS) to open a file before it
can service cat. VFS recognizes that the file argument to be a CODA resource and
informs the kernel module for handling CODA file system. CODA module works
basically as an in-kernel mini-cache. It keeps a cache of recently answered requests
for CODA files from VFS. If the file is locally available as a container file under the
cache area within the local CODA file system, then VFS can service the call. If the
file is not available locally, the mini-cache passes the request for the CODA file to
a user level program called Venus running at the client. Venus checks the local disk,
and in the case of a cache miss, contacts the server to locate the file. When the file
has been located it responds to kernel (mini-cache) which in turn services the request
of the client program. If the client is operating in disconnected mode, when cache
miss occurs then Venus generates an error.

486 15 Storage Systems for Mobile Environment

Fig. 15.6 Side effect of
CODA’s RPC2

stub stub

Client

Application

side effectside effect

Server daemon

Server

file transfer
vedio streaming/

15.5.1.1 Communication in CODA

CODA uses RPC2 which is a reliable variant of RPC with side-effects, and supports
multiple RPCs in parallel. Side effects provide hooks for pre and post RPC processing.
The hooks are not part of RPC2 but are active parameters. RPC-2 starts a new thread
for each request. The server periodically keeps a client informed that its request is
being serviced. As side effects, application specific protocols are allowed perform
asynchronous transfer of files between the client and the server or streaming of
video to the client. RPC2 also has multicast support. Figure 15.6 illustrates the RPC2
mechanism and communication between a CODA server and a client.

RPC2 allows the clients to register callbacks with the servers. When a callback
promise is broken, the server multicasts invalidation notifications to all the connected
clients. On getting an invalidation notification, a client becomes aware of updates in
cached files and may choose to fetch the updates which allow the client to maintain
data consistency as needed by the applications. The advantage of RPC2’s multicast
based notification over RPC’s sequential notification protocol is depicted in Fig. 15.7.
In multicast based notification the server does not worry if an acknowledgment from
a client does not arrive. This is in contrast to the case where each invalidation message
is sent in sequence (as in RPC) and the server waits (blocks) for the reply from a
client before processing the next invalidation message.

15.5.2 Scalability

A small set of servers serves as a storage repository for all the shared data. A large
number of untrusted clients access the shared data. The requirement of scalability
in this context is to ensure that the ratio of the clients to the servers should be
as large as possible. This necessitates the transfer of most of the functionalities to
clients. Therefore, adding more number of clients does not increase the load on the
servers. The OS running on each client can filter out all the system calls that do not
need interaction with the servers. Only open and close are forwarded to cache

15.5 CODA 487

(a) Sequential invalidation. (b) Invalidation by broadcast.

Client Server Client

Invalidate

Invalidate

Reply

Reply

Client Server Client

Invalidate
Invalidate

Broadcast

Reply

Reply

Fig. 15.7 Invalidation notification using RPC and RPC2

manager Venus running on the client. After a file has been opened read, write,
seek can bypass Venus. Since the servers are not unduly loaded to support the
clients functionalities, and they are trusted, they can bear all the responsibilities for
preserving the integrity and the security of data.

The most obvious approach to increase scalability in the use of shared data by
large number clients is by employing caching at the clients. But for maintaining the
consistency of the replica cache at clients, any update conflict with corresponding
server replicas has to be resolved cleverly. The updates are usually generated at the
client side. So, the problem is much more complex than just finding a mechanisms to
maintain consistency of client-side cache. Specially, since the clients may also use
same replicas simultaneously and without each other’s knowledge, there is a scope
for potential conflicts in client-generated updates.

Another approach of CODA is to disallow any rapid system-wide change. So,
the additional update overheads like voting, quorum strategies, etc., which involve
interactions of a number of servers and/or clients are eliminated completely. The
approach dispenses efficiency in preference to consensus. In summary, the important
CODA attributes that attempts maximize scalability and yet preserve the data integrity
are as follows:

• The CODA uses the model of untrusted clients and trusted servers.
• The clients cache the data in granularity of entire files.
• Cache coherence is maintained by callback.

Once a file is opened successfully by a client, it is assured to be available in the local
cache. The subsequent operations on the cached files at the client are protected from
network failures. The idea of caching file in whole also compatible with disconnected
mode of operation by the clients. A client is required to register a callback with
the server in order to get notifications of about the updates on the cached files.
This approach prevents system-wide propagation of changes. Another advantage of
callback based cache coherence protocol is that files can be easily moved between

488 15 Storage Systems for Mobile Environment

servers, all that clients are required to know is a map of files to servers and cache
this dynamically changing map.

15.5.3 Disconnection and Failures

The main idea is to make the client as much autonomous as possible. So, the client
becomes resilient to a range network failures. If every client is made completely
autonomous then there is no sharing at all. This is a degenerate case of personal
computers operating in complete isolation from one another. Therefore, the goal in
CODA is two-fold, namely, (i) using shared storage repository, and (ii) continuance
of client operation even in case of network failures.

Caching can provide limited autonomy to clients with sharing. CODA stipulates
caching in granularities of whole files. No partial caching is allowed. This approach
simplifies the failure model and makes disconnected operation transparent to the
applications running in a client. A cache miss can occur only at open. There will be
no cache miss for read, write, seek or close. So, an application running on
a client operating in disconnected mode will be unaware of disconnection when the
required file replicas are locally cached. CODA uses another additional technique
called hoarding to pre-cache the application specific files from the server in antic-
ipation of a future disconnection. Hoarding is essentially a large grain prefetching
and discussed separately.

Server replication is one more strategy employed by CODA to increase availability
of shared data. Copies of same file are stored in multiple servers. It provides greater
level of availability of shared storage repository. When a client is connected to at
least one server, it depends on the server replication. Since many server replications
are permitted the period of disconnection is expected to be minimized. The moment
client gets disconnected it can switch to cached copy of shared data. While replication
strategy improves the availability of data, it introduces the difficulty in preserving
data consistency across network.

As mentioned earlier, CODA is viewed as a single location transparent Unix
like file system by a client. A volume forms a partial subtree of the shared name
space representing is a set of files and directories located at one server. The volume
mappings are cached by Venus at the individual clients. CODA uses replications and
callbacks to maintain high availability and data consistencies. The set of sites where
replicas of a file system volume are placed called Volume Storage Group (VSG). A
subset of a VSG accessible to a client, which is referred to the client’s Accessible
VSG (AVSG).

The overhead for maintaining replications at a client is controlled by callback
based cache coherence protocol. Basically, CODA distinguishes between the replicas
cached at clients as second class and those at the server as first class. If there is any
change in a first class replica then the server sends an invalidation notification to
all the connected clients having a cached copy. The notification is referred to as
a callback break, because it is equivalent to breaking a promise that the file copy

15.5 CODA 489

held by the client is correct. On receiving the notification the client can re-fetch the
updated copy from the server. The updates in CODA are propagated to the servers
to the AVSGs and then on to missing VSGs (those which are not accessible to the
client).

The client operates in disconnected mode when there is no network connection
to any site or server in the fixed network. Equivalently, it implies that the AVSG for
the client is a null set. In order to make the file system highly available, the clients
should be allowed to operate with the cached copies even when the AVSG is empty.
Under this circumstance, Venus services the file system calls by relying solely on its
cache. When a client is operating in disconnected mode and the file being accessed
is not available in cache, a cache miss occurs. Any cache miss cannot be masked
or serviced. They appear as failures to the application program. The updates made
by a client on the cached copies are propagated to the server when the client is re-
connected. After propagation of the updates, Venus re-charges cache with the server
replication.

Figure 15.8 illustrate the transitions between cache and replication at the clients
in a typical CODA environment. Figure 15.8a shows that all the clients including the
mobile client are connected to network. Therefore, the value of some object, say x , is
identical across the copies held by the servers and the clients when all are connected.
The same holds in a network partition though it does not hold across the partitions.
Figure 15.8b indicates that a client operating in disconnected mode can update the
value of the object in its cache, but this update will not be visible to server or to other
clients even inside the same network partition. But when the disconnected client
reconnects, the value of the object in it or at other nodes becomes same.

The high level design goals of CODA file system are:

• To design a highly available and scalable file system,
• To tackle a range of failures from disconnection to weak connection,
• To provide a location-transparent Unix-like single shared name space for the files.

15.5.4 Replica Control Strategy

As stated earlier clients are portable and untrusted. A client has a small storage, data
can be willfully tampered or corrupted. It is unrealistic to assume a user will backup
the data. Thus, the integrity of data in the replication held by a client cannot be trusted.
In contrast the server have big capacities, more secure and carefully monitored by
professional administrative staff. This naturally provides the guarantee of quality of
data at the servers. Therefore, it is appropriate to distinguish between two types of
replications. The replicas at servers represent the first class replication. The client
replicas represent the second class replication. The first class replicas are of higher
quality compared to that of the second class replicas. The utility of second class
replicas is limited to the clients where they are located. Since the correctness of the
execution of a client application depend second class replicas, these replicas must

490 15 Storage Systems for Mobile Environment

x = 10 x = 10 x = 10

x = 10 x = 10

x = 10

x = 10 x = 10 x = 25

x = 10 x = 10

x = 25

Partitioned LAN

(a) Connected client.

x = 10 x = 10 x = 25

x = 10 x = 10

x = 55

Disconnected client

Partitioned LAN

x = 55 x = 55 x = 55

x = 55 x = 55

x = 55

(b) Disconnected client.

Fig. 15.8 Transition between cache and replication at client

15.5 CODA 491

be periodically synchronized with their corresponding first class replicas. The basic
purpose of the second class replicas is to make the shared data highly available to
the clients in presence of frequent, and prolonged network failures.

Figure 15.8b shows that when a client operates in disconnected mode there is
actually a network partition between the second class replication held by the client
and the all the corresponding first class replications.

The replica control strategy may be either

• pessimistic, or
• optimistic.

In pessimistic control strategy update is allowed only by one node of a unique parti-
tion. So, prior to switching into disconnected mode, a client acquires exclusive lock
on the cached object and relinquishes the lock only after reconnection. Acquiring
exclusive lock disallows read or write at any other replica. Such an approach is not
only too restrictive, but also infeasible in context of mobile clients. The reasons can
be summarized as follows.

• A client can negotiate for exclusive lock only in case of a planned disconnection.
• Duration of disconnection is unpredictable.
• Reconnection of a client holding an exclusive lock can not be forced.

In case of a involuntary disconnection there is no opportunity for a client negotiate
an exclusive lock for any shared object. Of course, one possible approach may be
to play safe and allow lock to a client. However, several clients sharing the same set
of files may want to acquire locks and many of these get disconnected at the same
time. In a situation like this the system has to come up with sophisticated arbitration
mechanism for allowing exclusive lock to one of the contending clients. The client
which finally gets the lock will not even know that as it could be disconnected by the
time arbitration process completes. Possibly exclusive lock on some objects only for
a brief period of disconnection is acceptable. But if the period of disconnection is
long then the retention of exclusive lock is detrimental to the availability of shared of
data. It is also not possible to force a re-connection of the client holding the exclusive
lock. Whereabouts of the client may not be known, and quite likely the client may
not even be present in the cell. The whole set of client population may potentially be
under the mercy of single lock holder operating in disconnection mode. A timeout
associated with exclusive lock can partly solve the problem of availability. The lock
expires after a timeout. So other client can take turns to have lock access to the
objects. But once the lease lock expires the disconnected client loses the control of
the lock. Any other pending request lock can be granted. However, the concept of
lease lock contrary to the purpose of exclusive lock and making file system highly
available due to following reasons.

• Disconnected client is in midst of update when it loses the lease of the lock.
• Other client may not interested for the object when lease on lock expires.

492 15 Storage Systems for Mobile Environment

If a disconnected client loses lock control, all updates made by it have to be discarded.
One simple idea that may alleviate the problem is the lazy release locks. A client
continues to hold the locks even after the expiry of the lease unless some other client
explicitly places a request at the server. But then the exact timing of the lock release
can never be synchronized to avoid overlap with the update activity at the client.

Optimistic replica control mechanism does not allows any exclusive lock. The
clients update their cached objects with the hope its update will not conflict with
the updates by other clients. It means several clients operating with same set of
cached objects in disconnected mode can report conflicting updates on reconnection.
Therefore, it requires the system to be sophisticated enough to detect and resolve
the update conflicts. But making the conflict resolution fully automatic is extremely
difficult. However, it is possible to localize the conflicts and preserve evidences for
a manual repair in extreme cases.

The objective of choosing an optimistic strategy is to provide a uniform model
for every client when it operates in disconnected mode. It allows concurrency as a
number of clients can use a replica of the same object simultaneously. The argument
in favour of optimistic replica control also comes from the fact that CODA’s cached
objects are in granularity of files. In an Unix like shared file system, usually the write
access is controlled by only one user while other users typically provided with read
accesses. So, a client having write access can update the cached file without creating
any update conflicts. Only the clients having read access may possibly get slightly
outdated values. But then applications can be tuned to handle such eventualities. In
the case of many applications it will not even matter if the data is bit outdated.

Another approach may be to employ optimistic control strategy for disconnected
mode and pessimistic strategy in connected mode. While such an approach is possi-
ble, it will require the user to be adaptive to the two anomalous situations depending
on whether operating in disconnected or connected mode. While a user would be
able to do updates in disconnected mode s/he would be unable to do so in connected
state as some other client has obtained an exclusive/shared lock prior to the request
of this user. Therefore, a uniform model of replica control is preferred.

15.5.5 Visibility of Updates

The design of CODA was initially geared to provide user a fail-safe, highly available
shared file system like Unix. Under Unix semantics any modification to a file becomes
immediately visible to all users who have access to it. Obviously, preserving this
semantics is not only incompatible for scalability but also impractical when users
are allowed to operate in disconnected mode. So, CODA implementers settled for a
diluted form of the visibility requirement under Unix file operation semantics. The
difference between a cached copy of file available at a disconnected client from its
latest copy depends on the difference of time of the last update of cached copy and the
current time. Hence, a time stamp (store id) on replica may be taken as parameter
for the distance function that measures the difference between cached replica and its

15.5 CODA 493

server state. Since CODA allows data sharing at the granularity of file revalidating
cached file at the time of opening, and propagating updates at the time closing file
should be adequate for most applications. A successful open means the contents of
the file being accessed is the latest replication available at the server from where the
client fetched it. It is possible that the server itself may have a stale copy. Therefore,
the revalidation of cached copy of the client at the time of opening a file actually
means it is synchronized with the latest replica available at the server site. It may
be possible to increase the currency guarantee by querying the replica custodians on
the fixed network when the file opening is attempted at a client. The query can be
initiated by the server on which Venus dockets the open call.

15.5.6 Venus and Its Operations

The main focus of CODA is on the ability of the clients to work in disconnected
mode or in the face of various network failures. So, we first discuss the client side
support needed for CODA. Then we describe the server side support.

Figure 15.5 gives a high-level decomposition of CODA components support at
a client. Venus is implemented as a user-level program. This the approach made it
portable, and easy to debug. The CODA mini-cache which is a part of client’s kernel
supports only for servicing system calls for the file objects in CODA file system if
it is already cached and open has been successful. Kernel uniformly forwards file
system calls – whether it is for a CODA resource or a local resource—to VFS. The
process of servicing file system calls is as follows.

1. If the call is for a CODA file, VFS forwards that call to mini-cache control.
2. Which in turn determines if the file is already cached, and services the request.
3. In case it is not in cache then the call is forwarded to Venus.
4. Venus actions are as follows:

a. Contacts the servers, fetches the required object from one of them.
b. Caches the file in local disk and returns to kernel via mini-cache.
c. Mini-cache can remember some recently serviced calls and caches these.

The state of mini-cache changes after Venus reports successful fetching and caching
of objects from the custodian server, occurrences of callback breaks, and revalidation
of client cache afterwards. Since Venus is a user-level program, mini-cache is critical
to good performance.

The major task of Venus is fetching objects from accessible servers holding the
replicas of the requested file objects. But it has to perform another complicated task,
namely, propagating updates to the servers. It operates in three states

1. Emulation
2. Hoarding
3. Reintegration

494 15 Storage Systems for Mobile Environment

Fig. 15.9 Venus state
transitions

Hoarding Emulation Reintegration

The states and transitions between Venus states have been depicted in Fig. 15.9. The
states are represented by labeled circles. The transitions from emulation to reintegra-
tion represents transition from disconnected to connected state, and transition from
hoarding to emulation represents the reverse. So, hoarding and reintegration both are
connected states while emulation is the disconnected state.

15.5.6.1 Hoarding

Hoarding is merely a pre-fetching in large granularity. The success of pre-fetching
depends on the ability to capture locality with respect to the immediate future. In a
mobile client a session of disconnected operation can continue for few minutes to
hours or even for days. Therefore, it impossible to implement a hoarding strategy
which will allow a client to operate in disconnected mode without failures. It has to
take into account following factors:

• Mobile user’s file reference behaviour in near to distant future.
• Involuntary disconnection.
• The cost of cache miss during disconnection.
• The physical limitation of cache.

The decision on hoarding becomes easy if a user specifies a profile of references.
Disconnection and reconnection are purely random in time. Therefore, involuntary
disconnections are hard to handle. However, as a preparatory to voluntary disconnec-
tion, it may be possible to hoard the data needed for disconnected operation. Still it
is hard to estimate the cost of a cache miss. So, the decision to cache certain objects
and not cache certain other objects becomes hard. The combined decision should
have twin objectives:

1. Minimize the cost of not caching certain objects.
2. Maximize the benefit in cost of caching certain objects.

Since, the caching decision depends on the criticality of applications running on the
client, the cost model should be defined appropriately. Based on the cost model,
an object’s importance for caching can be represented by a priority factor. Then a
hoarding algorithm can perform a hoard walk according to the priority of the object.
It is also convenient to define hoarding based on the cache equilibrium. The cache
equilibrium signifies that the mobile user’s data requirements are mostly met from the
cached objects. The cache size limitation disturbs the equilibrium as a result of normal
activities. Some cache objects may have to make way for other objects, also some
objects may be used more often than others at different instances of time. Therefore,

15.5 CODA 495

Venus needs to periodically perform a hoard walk for restoring cache equilibrium.
CODA’s implementation fixes the interval of hoard walk as ten minutes. However,
CODA also allows users to specify the inclusion of a provision for triggering hoard
walk at the time of voluntary disconnection in the hoard profile.

15.5.6.2 Emulation

In emulation state Venus assumes the role of the proxy for a server at the client. It
performs following important functions.

• Checks the access control.
• Generates temporary file identifiers (tfids) for newly created objects.
• Evaluates priorities of mutating objects and applies these to cache these objects.
• Reports or blocks a failures when a cache miss occurs.
• Logs information to let the update activities during disconnected operation to be
replayed on reintegration.

The tfid of newly created object is replaced by a permanent file identifiers (pfid) at
the time of reintegration. The removal of a mutated object incurs more cost compared
to that of a non-mutated object. Therefore, the hoarding priorities of updated objects
should be very high. None of the deleted objects need be cached. So the lowest
priority is assigned to these objects. A cache miss cannot be masked unless the
user has explicitly requested for masking it until reconnection. However, the default
behavior of Venus, on a cache miss, is to report a failure.

The log is kept as a per volume log. A log entry consist of a copy of the cor-
responding system call, its arguments as well as the version state of the all objects
referenced by the system call.

15.5.6.3 Replay Log and Its Optimization

All the operations during emulation state are logged. The objective of logging is that
the operations can be replayed at the server during the reintegration. Only updates are
logged. Therefore, it is also alternatively referred to as Change Modify Log (CML).

Optimizing CML is critical for mobile environment as transfer of log requires both
bandwidth and time. Considering the criticality of cache during emulation state, on
the client end too optimization of CML is important. Some simple optimization
techniques are:

• Any operation which is followed by its inverse can be purged from CML.
• If a sequence of operations can mean a single logical operation then just record

the one equivalent logical operation in the log in place of sequence of a number
of operations.

• Record only the latest store.

496 15 Storage Systems for Mobile Environment

To understand the techniques mentioned above we provide an example of each. If a
mkdir operation is followed by a rmdir with same argument then both operations
need not be logged. Because the second operation is inverse of the first and nullifies
the effect of the first operation. A close following an open installs a completely
new file. So, instead of individually logging an open, the sequence of intervening
writes, and finally, aclose, all these can be effectively represented by logging just
a single store operation for a file. Logically store does not mean entire contents
of the file is logged. It merely points to the cached copy of the file. Therefore, a
store invalidates preceding stores if any. It means we can just record the last
store operation.

15.5.6.4 Recoverable Virtual Memory

In emulation state Venus must provide persistence guarantees for the following:

• A disconnected client to restart after a shutdown and continue from where it left
off.

• In the event of a crash during disconnected state, the amount of data loss should not
be more than the data loss incurred when an identical crash occurs in a connected
state.

To ensure persistence of the kind mentioned above, Venus keeps the cache and other
important data structures in non-volatile storage at the client.

The important data structures or the meta-data used by Venus consists of

• Cached directories and symbolic link contents,
• Status blocks of cached objects of all types,
• Replay logs, and
• Hoard database (hoard profile) for the client.

All the meta data are mapped into the address space of Venus as the Recoverable
Virtual Memory (RVM). But the contents of the cached files are stored as ordinary
Unix files on client’s local disk. Only transactional access is allowed to meta data. The
transactional access ensures that the meta data is always makes a transition from one
consistent state to another. RVM hides the recovery associated complications from
Venus. RVM supports only local non-nested transactions. An application may choose
to reduce commit latency by labelling commits as noflush. But the commits still have
to be flushed periodically for providing bounded persistence guarantee. Venus can
exploit the capabilities of RVM to provide good performance with an assured level of
persistence. For example, during hoarding state (non emulating state), the log flushes
are done infrequently, as a copy is available on the server. However, during emulation
the server is not accessible. Therefore, Venus can resort to frequent flushes to ensure
minimum amount of data loss.

15.5 CODA 497

15.5.6.5 Resource Exhaustion

Since non-volatile storage has a physical limit, Venus may encounter storage problem
during emulation state. Two possible scenarios where the resource exhaustion may
have an impact on performance are:

1. Disk space allocated for file cache is full.
2. Disk space allocated for RVM full.

When Venus encounters file cache overflow problem, possibly storage can be
reclaimed by either truncating or deleting some of the cached files. However, if
Venus runs out of space for RVM nothing much can be done. The only way to alle-
viate this problem will be to block all mutating operations until reintegration takes
place. Non mututaing operations can still be allowed. One uniform alternative to
tackle the problem of space could be to apply compressions on file caches and RVM
contents. A second alternative could be to allow the user to undo updates selectively
and release storage. The third viable approach could be free storage by backing up
the parts of file cache and RVM on a removable disks.

15.5.7 Reintegration

Reintegration is an intermediate state of Venus between the time it switches form
the role of proxy server to cache manager at the client. All the updates made by
clients are propagated to the server during this state. After that, the cache at a client
is synchronized with the server’s state. Reintegration is performed on one volume at
a time in a transactional step. All update activities in the volume remain suspended
until the completion of reintegration. The actual task of reintegration is performed
by replaying the update log stored by Venus.

15.5.7.1 Replay Algorithm

The CODA implementation views the reintegration activity as execution of replay
algorithm at a volume server. The updates made during emulation state is propagated
to the server. Reintegration is done per volume by replaying the logged operations
directly on the server. The execution of replay algorithm consist of four phases:

1. Log parsing, and acquiring locks
2. Validity check and execution,
3. Back-fetching, and
4. Lock release.

In phase 1, the log is parsed and the operations with the required arguments are
identified. Locks are acquired for all the objects referenced in the log. Phase 2 consists

498 15 Storage Systems for Mobile Environment

of various types of checks and validations. These include integrity, protection and
disk space checks. After these checks are over, the conflict detection is carried out.
All the operations in the replay log are performed at the server in a single transaction.
The conflict detection is a bit of complicated process. In order to determine update
conflicts, the store IDs of objects in replay log are compared with store IDs of the
corresponding objects at the server. If store IDs do not match then the actions depend
on the operations being validated. In the case of a file, the transaction for reintegration
is aborted. However, in case of a directory object, conflicts occur

• If the name of newly created object matches with an existing name,
• If the object is updated at the client, but has been deleted at the server or vice versa,
• If directory attributes at the client and the server has been modified.

After determining the conflicts, all operations except store are executed at the
server. For store operation an empty shadow file is created for the actual file, and
meta data is updated to it. However, the actual data transfer is deferred until phase
3. Then in phase 3 backfetching is executed. Backfetching step transfers the updated
files from the client to the server and the fetched files replace the corresponding
shadow files created in phase 2. Finally phase 4 commits the transaction and releases
all the locks.

15.6 InterMezzo

InterMezzo [11] was conceived as a filtering file system layer between VFS and
native file system such as ext3, ReiserFS, JFS or XFS. Therefore, InterMezzo
is not to be viewed as a full scale file system, but as a stacked up file system layer
over a native file system. The implementers of InterMezzo set the design goals with
following ground assumptions [11]:

1. The server side storage of file would depend on a native file system such as ext3,
ReiserFS, JFS or XFS.

2. The kernel level file system at a client should be able to exploit the existing file
system, and also would require services of a persistent cache.

3. File system objects should have meta data that can support disconnected operation
at the clients.

4. Scalability and recovery of distributed state can be implemented by leveraging
the existing mechanisms provided by local file system.

5. The system should perform kernel level write back caching.
6. The system should use TCP and exploit existing rsync for synchronization, and

ssh/ssl for security.
7. The management of the client cache and the server file system may differ in policy

but should use a uniform mechanism.

15.6 InterMezzo 499

However, the design simplicity and flexibilities should not affect the ease in operating
with files. The operational framework of InterMezzo file system is specified by
following characteristics:

1. The objects (files and directories) can be identified by either file identifiers, path
names or the triplets of the form <server, device, Inode>.

2. There is a single name space for all files. This means clients see all files exported
by a cluster of InterMezzo servers in the form of one large tree. The name space
is typically larger than a directory but much smaller than a disk partition.

3. Different file sets can be exported explicitly. It allows flexibility of using a smaller
name space as per the requirements. In other words, a user may choose a set of
files as the root for a mounted instance of an InterMezzo file system.

4. There is a root directory for each file set, it may also contain the mount points of
other file sets.

5. An InterMezzo mount point is conceptually similar, though distinct from a Unix
mount point. If the root of file system does not belong to a file set by default, then
all the ancestors of a file belonging to that file set will not be visible.

A file set is a fundamental component for operating on files. File Set Location
Database (FSLD) is the basic meta-data for file sets. A FSLD is shared by an Inter-
Mezzo cluster of file servers. FSLD is implemented as a sparse tree of directories
and handled as special object in the file system. Each time file set tree gets modified,
an update occurs in FSLD database. A version number is also associated with each
such update. So, FSLD can be updated without downloading the latest version.

15.6.1 Filtering Access to Files

The implementation of InterMezzo is in the form an single filtering layer, though
the roles of the clients and the servers are kept distinct. This is in contrast to CODA
system, where a client is different from a server, and the codes for the two parts
are distinct. InterMezzo mechanism for the implementation of two parts remains the
same, but the servers have following important responsibilities which is distinct from
clients.

1. Maintaining on-disk files as the authoritative states of files,
2. Coordinating the maintenance of state coherence across clients.

A file set mount point on a server is not necessarily a directory. it could be a symbolic
link with the target that is a directory on the server holding the data.

The filtering layer of InterMezzo system is named as Presto for Linux and Vivace
for Windows. The filter accomplishes the following two tasks:

1. Accesses to validate the freshness of the data held in the local file system.
2. Logs the updates made to the file system.

500 15 Storage Systems for Mobile Environment

Fig. 15.10 InterMezzo
system [11]

Data fresh?

Local file system

Kernel update log

P
re
st
o

Lento Cache
Manager & Server

mkdir..
unlink..
link..
rmdir..
create..
close..

Application

No

Upcalls

S
hi
p
w
he

n
fu
ll

Fe
tc
h
fil
es

VFS

Other Lentos

User level

Kernel level

S
ys
te
m

ca
ll

Presto requests are handled by Lento. Lento performs the dual job of a file server
and a cache manager in a client. Figure 15.10 illustrates how InterMezzo system
works [11]. Presto should have knowledge about the native file system type wrapped
over by InterMezzo system. This enable Presto to use all VFS methods of the native
file system. Presto performs the two main tasks, namely,

1. Filtering all accesses, and
2. Storing log of all updates.

Lento’s modification of cache is independent of filtering and logging. When an
accessed file is not available in client’s cache, the file is fetched in whole. Directory
fetching is implemented by creating sparse files and empty subdirectories for each
entries. So, there could be substantial latency in access of directories. However, this
latency is amortised by subsequent accesses which become local. A system call for
directory operations at clients has to be executed either on the local files or fetched
from a server through an upcall to the wrapped file system. The pseudo codes for
open and mkdir are provided in Algorithm 40 as examples.

Before an update can be executed on an object, a permission needs to be acquired.
On the client side, the updates are made to cache and the operation are logged into a
Client Modification Log (CML). During the reintegration process, CML is drained
to the server much like it is done in CODA. The server holding the data replays
the CML, and forwards the same to other clients who may have also registered for
the replica. The forwarding CML to other clients doubles up as update notifications.
Therefore, reintegration and update notification are combined into a single processes.
The modification log includes the details concerning modifications made to the direc-
tory and file attributes, and also the close operation. In the case of a close operation,
the modified file has to be back-fetched by server.

A file updated at a server also needs to undergo an almost similar process. The
updates are logged or journaled and propagated only to the clients who may have
registered callbacks at the server. The clients who do not register callbacks, invalidate
the data when they come to know about the updates. These clients have to re-fetch

15.6 InterMezzo 501

Algorithm 40: Creating and opening a directory
int directoryOpen(INODE *inode, FILE *file)
begin

if (!Data(inode) && !Lento) then
upcall(inode, "get data");

end
return bottom->directoryOpen(inode, file);

end
int mkdir(INODE *inode, char *dirName)
begin

if (!Permit(inode) && !Lento) then
lentoGetPermit(inode);

end
rc = bottom->mkdir(inode, dirName);
if (!rc && !Lento) then

journal("mkdir", inode, dirName); // Log the operation
end

end

the data if they still want to work on the data. There is a symmetry in operation of
both clients and servers. Lento’s task in this context are two fold [11]:

1. File service: on behalf of client it fetches files directories from the servers, while
working for the servers it back-fetches files when close calls are executed on those
objects at the clients.

2. Reintegration service: reintegration is applied on receiving modification logs
(CML) at the servers. For clients invalidation report (update notification) are
sent.

An important distinction of a server from a client is that the server implements secu-
rity. A client, on the other hand, trusts an authenticated server and accepts changes
without checking each object. A client can only modify its cache for the purpose of
freeing space. Such changes are not propagated to the servers.

15.6.2 Protocols

InterMezzo mostly preserves the protocols used in CODA and AFS. The main pro-
tocols are for

• Fetching directory, and files,
• Validating freshness of data,
• Acquiring permission to modify data,
• Breaking callbacks, and
• Reintegration.

502 15 Storage Systems for Mobile Environment

Each cached object (directory or file) contains attribute flags HAS_DATA and
HAS_ATTR. If these flags are set then it implies that the data and attributes are
valid, and callback is enabled in the client. When callback is enabled, the client
uses cached data without placing an upcall to the server. Before storing modified
objects, the server notifies the clients who hold callbacks on those objects. Indepen-
dently, BreakCallback request can be initiated by a server to notify clients about
modification of data. This request is handled as a multi-RPC to all the clients like
in CODA. It avoids handling of multiple timeouts while waiting for replies. When
a client seeks to modify data it acquires permission through GetPermit call. A
successful acquisition of permission sets HAS_PERMIT flag in status field.

Every object has an identifier and version number. Two objects with same identifier
and same version number are identical. The volumes also have a volume version
number. Volume version number allows rapid revalidation of entire volume, if none of
the objects in that volume has changed. Cached objects are validated withValidate
request which can be issued at the level of individual objects or a volume.

Reintegrate request is for propagation of updates. It uses modification log
like in CODA. The client modification log (CML) is transferred to the server. The
server replays the log and changes the directory tree and then backfetches the files
from the client for which client has executed close calls.

Inclusion of version number with the RPCs of the affected files indirectly helps
InterMezzo to avoid race conditions in updates. For example, the version number of
the parent directory present in the client is included while creating a new directory.
It allows the server to ensure that the version held by the client is being modified. If
version numbers are not equal then reintegration causes conflicts which need to be
handled differently.

15.6.3 Functions of Lento

Lento doubles up as a file server and a cache manager by combining the functions of
both Venus and Vice as in CODA. It is implemented as a single threaded event driven
program. A new session is instantiated to handle every request. A session basically
represents a data structure containing state and event handlers. I/O is performed
asynchronously. The kernel signals completion of I/O by raising an appropriate event.
Lento is responsible for activating all event handlers and also responsible for garbage
collecting sessions when no event can reach them. Figure 15.11a and b illustrate
request handling due to an upcall and a network request.

The implementation of Lento is done through Perl Object Environment (POE).
Two extra wheels were added to POE, namely, PacketWheel and UpcallWheel. Pack-
etWheel is responsible for network requests from connection. A connection provides
the destination session for a request. A request can either be for an existing session or
can originate from the request dispatcher. In the latter case, it is either a new session or
a specially created session for handling the request. UpcallWheel unpacks requests
originating from the kernel that reached Lento via a character device /dev/presto.

15.6 InterMezzo 503

Upcall initiator Request dispatcher

Upcall sessions

Server object

Connector(host, port)Connection layer

Packet layer Socket layer

start

start

new

start
start

success/error

re
qu

es
t

re
pl
y

su
cc
es
s/
er
ro
r

co
nn

ec
t

(a) Upcall handling.

Packet layer Socket layer

Connection layer Acceptor(port)

Request
dipatcher

Request session

start

success/error

re
pl
y

re
qu

es
t

request/error

error

(b) N/W request handling.

Fig. 15.11 Upcall and network request handling by Lento [11]

The two wheels are combined with an AcceptorWheel which creates accepted TCP
connections.

15.6.4 Recovery and Cache Validation

The simplest process of recovery is to evict all cached entries. Such a wholesale
eviction process can be avoided by establishing currency or freshness of cached
data. Version stamp is used for the same. The version stamp of equal objects should
be equal, and version change is always monotonically ordered. Let us consider what
happens when a crash occurs while data is being fetched into cache. If the data is not
fully fetched, the system should consider the cached object as fresh. So, the stamping
of version number is deferred until the data is fully fetched. In implementation,
this is achieved by waiting for 30 s before flushing File System Database (FSDB)
buffers. On reconnection to a server, all objects having out of date version stamps
should be evicted from cache. If recovery is followed by disconnection, then partially
fetched object may be used for availability. Note that incompletely fetched objects
can be identified by their creation time, i.e., ctime less than 30 s from last flush
of FSDB. However, incompletely fetched objects which are modified should not be
reintegrated. These objects should be handled as creating conflicts.

A problem arises when a client crashes while modifying existing data. Recovering
from crash, the client will find an old version stamp and also old modification time,
i.e., mtime in Inode. If the object has just been fetched, its version stamp may be
older than that on the server. However, the data on the client’s disk can be newer than
that on the server. So, this creates problem of overwriting the latest update on the
server. One way to handle this is to accept that some data modification for a short
duration may be lost.

504 15 Storage Systems for Mobile Environment

An alternative to this would be, Inode may be modified with a new mtime and
synched to the disk. Assuming that no modification happens within the granularity
of a mtime tick, this allows the recovery mechanism to identify suspect files. The
suspect files are those which have mtime later than the last synch time in FSDB.
These suspected files can be subjected to rsynch style reintegration.

A third solution could be write the FSDB record to the disk before starting mod-
ification. It then indicates that Inode has changed. Of course, it requires a context
switch to Lento. The overhead is not going to be much, as disk traffic is any way
involved. It may be of interest to mention here, that though the initiation of modifi-
cation becomes slow in two of the suggested alternative solutions, it does not affect
newly created objects.

Overall framework of InterMezzo file system can either be considered as a filtering
layer on the top of existing file systems, or viewed as attaching a client side cache
for NFS functionalities. This allows client to work even when network goes down.
On regaining connectivity, server reintegration happens for modifications made by a
client in disconnected mode.

15.7 File System for Connected Clients

Client side caching and replication are the basic design paradigms that ensure avail-
ability of data in both CODA and InterMezzo file systems. The fundamental assump-
tion is that adequate storage space is available at a client to hoard data which it will
ever need in order to operate in disconnected mode. This assumption disregards one
of the major constraints in a mobile system, namely, resource scarcity. How does one
design a file system primarily for mobile clients which cannot cache all the needed
data? Even otherwise, due to unreliable network services, a file server may become
unreachable though mobile client remains connected to the network. The client will
not get the data unless the server reconnects back. Therefore, there is a need to serve
connected clients by an approach that can ensure availability of data even when the
servers get disconnected. The technique obviously calls for a server side caching
mechanism.

Instead of a client side view, we turn around and focus on a server side view
of file operations. A server’s operations can be separated into three phases namely,
connected, disconnected or rejoining. Initially when the servers (where data resides)
are available, the file services are provided by these servers to the respective clients.
This phase is defined as connected phase, the servers answer all file service requests
of the clients via RPC mechanism. If any of the file servers fails to answer a file
service request within a stipulated time, the part of the file system is disconnected.
In this case, the system switches to disconnected phase of operation. During the
disconnected phase the file service requests are handled through server side caching.
The client, however, continues to probe for the disconnected server(s) on a regular
basis. Finally, when the servers and communication channels are back, the file system
switches rejoining phase. In this phase, communication link between file system and

15.7 File System for Connected Clients 505

previously disconnected server is restablished. So, file updates done by the client
have to be reintegrated to the file system.

The role of cache is limited to disconnected and reintegration phases. In phase
1, the client sees a single directory hierarchy for the file system. The server side
caching takes place as the files are accessed via system calls such as read, write,
create, etc. This task is handled by FAM (File Alteration Monitor) library [21].
FAM essentially sends a signal to caching module about file accesses as it monitors
these. Before, doing the actual copying the cach server checks contents to see if
any older copy of the file is cached earlier. The purpose of this checking is to avoid
unnecessary copying of exactly identical copies of the file. It is also possible that
files have similar names but different contents. So, if a name matching is found then
a MD5 check sum is determined for the new file which is compared with one that is
already resident in cache. Identical MD5 checksums means files are identical, and
no caching is required. If the MD5 checksums are different then conflict is resolved
by moving old files to backup partition by attaching a version number. The backup
cache is maintained as a repository which is exported to the users. So, the users
can view the repository and may choose to move files from this area to actual file
system. Furthermore, if a cache miss occurs, the system automatically examines
backup cache area to find if an older version exists. The user is notified accordingly.

15.7.1 Concurrency Control

This file system model uses optimistic concurrency control [22]. As explained
already, it avoids locking of files till the time data is to be updated or deleted. This
way availability of data is maximized and concurrent non-conflicting accesses are
speeded up. Collision can happen when a transaction updates or deletes file between
the time it is read by the concurrent transaction and is updated and deleted. When a
file is to updated or deleted, it first reads to see if there is change in version number
from the time it was read last. MD5sum is used to compare the versions.

15.7.2 Conflict Detection and Resolution

Conflict may occur due to disconnected operation on a cached version of a file.
Before disconnection, the cache server may have cached the current version of the
file. Immediately after the cached copy is stored, the versions of the file at both the file
server and the cache server are equal. Suppose after the file server gets disconnected,
many updates were received at the file server. These updates causes file version
to change at the file server. The cached copy of the file may have also received
many updates and its version also may have changed. Now suppose the file servers
reconnects back, the cache server then tries to synchronize the version of files stored
in its cache with that of the same file at the files server. In this situation, conflict may

506 15 Storage Systems for Mobile Environment

arise as versions of the file becomes different. The system should be able to detect
such conflicts. We need to first arrive at a definition of conflicts to work out strategies
for resolution of conflicts. The definition is as follows:

Definition 15.1 Let t be the last modified time of a file f fetched from a file server
FS when it was stored in cache server CS before disconnection phase. At the end of
disconnection period, a conflict is detected if the mtime of the file at the file server
is not t .

Since mtime is stored in the inode, the system can use this to detect conflicts
by checking that in quality of mtimes of two objects, one stored at the file server
and the other stored at the cache server. Conflict detection and resolution process is
explained in Algorithm 41.

Algorithm 41: Conflict detection & resolution
begin

for each fFS ∈ FS
// Subscripts f s and ch denote corresponding objects from

File System and Cache server respectively.
if mtime(fch) > mtime(f f s) then

// Conflict is detected
Make a new version of fch and copy to backup Cache;
Copy f f s to Cache;

end
else

if mtime(f f s) < mtime(fch) then
// Conflict is detected
Make a new version of f f s and copy to backup Cache;
Copy fch to FS

end
else

Do nothing // No conflict detected
end

end
end

The scheme is pretty simple and elegant. Note that the implicit assumption in this
conflict resolution strategy is that files are completely partitioned among file servers.
There is no replication of file system. Replication introduces consistency problem
among replicas [23]. As explained earlier in conflict resolution scheme in CODA,
this creates excessive network traffic to restore consistency of replicas. Fortunately,
the caching is centralized at cache server. So, traffic due to consistency maintenance
is minimized. There is just one place of versioning, i.e., Cache Server. It implies only
one system request is needed to check the version of replica and update it if needed.

15.7 File System for Connected Clients 507

15.7.3 Cache Replacement

The additional problem which a Cache Server introduces, however, is to deal with
problem cache replacement. Eventually backup cache may become full, so there is a
need to evict old cached files. The solution is to use Frequency Based Replacement
(FBR) algorithm [24]. It is a hybrid of LRU and LFU [25]. FBR divides cache into
three segments, namely, (i) new segment, (ii) middle segment, and (iii) old segment.
The sizes of these segments are pre-determined by two parameters,

1. F-new: a percentage that sets a bound for total number of cache files contained
in new segment. It essentially is a measure for most recently used files.

2. F-old: a percentage that sets a bound for the cache files contained in old segment.
This is a measure for least recently used files.

The middle segment consist of those files that are neither new nor old. When a cache
hit occurs in new segment, its reference count is not incremented. The idea is new
segment of files define a temporal locality. Reference count is incremented when
cache hit occurs for a file contained either in middle or in old segments. When it
is required to reclaim cache, the file with least reference count in old segment is
selected. The files in old segment are ordered in a LRU ordered stack. Ties for cache
files with same reference count is resolved by choosing the least recently used one.

References

1. S.M. Park, Y.B. Ko, and J.H. Kim, Disconnected operation service in mobile grid computing.
In International Conference on Service-Oriented Computing (Springer, 2003) pp. 499–513

2. A. Litke, D. Skoutas, and T. Varvarigou. Mobile grid computing: changes and challenges
of resource management in a mobile grid environment. In 5th International Conference on
Practical Aspects of Knowledge Management (PAKM 2004) (2004)

3. Korsgaard P, Buildroot, Making embedded linux easy. Fecha de consulta: 16 deMayo de 2014.
http://buildroot.uclibc.org (2015)

4. F. Bsching, S. Schildt, and L. Wolf. Droidcluster, Towards smartphone cluster computing–
the streets are paved with potential computer clusters. In 32nd International Conference on
Distributed Computing Systems Workshops (2012) pp. 114–117

5. D.B. Terry, M.M. Theimer, K.Petersen, A.J. Demers, M.J. Spreitzer, and C.H. Hauser. Man-
aging update conflicts in bayou, a weakly connected replicated storage system. In ACM Sym-
posium on Operating Systems Principles (SOSP) (1995) pp. 172–182

6. A.D. Joseph, J.A. Tauber, M.F. Kaashoek, Mobile computing with rover toolkit. IEEE Trans.
Comput. 46(3), 337–352 (1997)

7. J.J. Kistler, M. Satyanarayan, Disconnected operation in CODA file system. ACM Trans.
Comput. Syst. 10(1), 3–25 (1992)

8. J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S.H. Rosenthal, F.D. Smith,
Andrew: A distributed personal computing environment. Commun. ACM 29(3), 184–201
(1986)

9. M. Satyanarayanan, Scalable, secure, and highly available distributed file access. Computer
23(5), 9–18 (1990)

http://buildroot.uclibc.org

508 15 Storage Systems for Mobile Environment

10. M. Satyanarayanan, J.H. Howard, D.A. Nichols, R.N. Sidebotham, A.Z. Spector, and M.J.
West. The ITC distributed file system: principles and design. In Tenth Symposium on Operating
System Principles, (ACM, December 1985) pp. 35–50

11. P. Braam, M. Callahan, and P. Schwan, The intermezzo file system. InO’Reilly Perl Conference
(1999)

12. J.E. Bobbitt, S.A. Doll, M.T. Friedman, P.L.S. Wing, and J.P. Mullally, Virtual file system, US
Patent 7,024,427, April 2006

13. S. Tweedie, Ext3, journaling filesystem. In Ottawa Linux Symposium (2000) pp. 24–29
14. Hans Reiser. Reiserfs (2004)
15. Albert Chang, Mark F. Mergen, Robert K. Rader, Jeffrey A. Roberts, Scott L. Porter, Evolution

of storage facilities in AIX version 3 for RISC system/6000 processors. IBM J. Res. Dev. 34(1),
105–110 (1990)

16. A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, G. Peck, Scalability in the xfs
file system. In USENIX Annual Technical Conference 15 (1996)

17. J.J. Kistler. Disconnected Operation in a Distributed File System. PhD thesis, Computer Sci-
ence, Pittsburg, PA, USA (1993)

18. P. Braam, The coda distributed file system. Linux J. 50, 46–51 (1998)
19. L. Mummert, M. Ebling, and M. Satyanarayan. Exploiting weak connectivity for mobile access.

In The 15th ACM Symposium on Operating Systems (1995) pp. 143–155
20. M. Satyanarayan, J.J. Kistler, P. Kumar, E.H.S.M.E. Okasaki, D.C. Steere, Coda: A highly

available file system for a distributed workstation environment. IEEE Transact. Comput. 39(4),
447–459 (1990)

21. Sillicon Graphics, FAM 2.7.0 release. http://oss.sgi.com/projects/fam/ (2003)
22. M. Satynarayanan, The evolution of CODA. ACM Transact. Comput. Syst. 20(2), 85–124

(2002)
23. J. Gray, P. Holland, P. Neil, D. Shasha, The dangers of replication and a solution. In ACM

SIGMOD Rec. 25(2) (1996)
24. J.T. Robinson, M.V. Devarakonda, Data cache management using frequency-based replace-

ment. SIGMETRICS Perform. Eval. Rev. 18(1), 134–142 (1990)
25. A. Silberschatz, P.B. Galvin, and G. Gagne. Operating Systems Concepts, 7th edn. (Wiley,

2005)

http://oss.sgi.com/projects/fam/

Chapter 16
Context-aware Infrastructures for Smart
Environment

16.1 Introduction

Let us begin by articulating the attributes and the functions of an environment that
can make it smart. Loosely speaking, the smartness of any system lies in its ability to
adapt autonomously and intelligently to its environmental changes. An environment
consists of surroundings or conditions in which inhabitants live. So, by referring to
an environment, we are implicitly interested on adaptations that affect the lives of the
inhabitants. Therefore, in the context of our discussion here, a smart environment is
the one that adapts itself to the changes in environmental conditions in order to offer
qualitative improvements in experiences of its inhabitants. There is an amount of
subjectivity in definition of “improved experience”. Ignoring the subjectivity for the
time being, “improved experience” may be viewed as something that brings comforts
to the inhabitants. However, it should be emphasized that the types of experiences
which bring comfort vary with the inhabitant’s level of expectations or their respec-
tive frame of references. Some inhabitants may draw comfort with the reduction in
cost of a preferred service. For a another set of inhabitants, the ease of availing the
preferred services may bring comfort. For a third set of inhabitants the flexibility in
choice of services may be a measure of comfortness. In summary, comfortness has
multiple dimensions defined by how well the devices and/or the objects create ambi-
ents and capture the contexts to respond to the desires of the inhabitants. Obviously,
the environment should have ability not only to acquire knowledge about the inhab-
itants but also to intelligently apply the acquired knowledge to make environmental
conditions suitable for the inhabitants. So, we can identify three major challenges in
building a smart environment:

1. Understanding of the ambients through fusion of data gathered from various
sources in the environment.

2. Understanding the context of each inhabitant and adapting to it.
3. Understanding the communication requirements among various entities of the

environment and staging these seamlessly.

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6_16

509

510 16 Context-aware Infrastructures for Smart Environment

Most notably, smart environments are custom built for the purpose they serve. For
example, smart homes, smart hospitals or smart healthcare, etc. Each have a different
set of goals and autonomously adapt to the requirements of their respective inhab-
itants. For example, the comfortness is qualitatively different for an in-patient at a
hospital from that of a normal person at home. The healthcare needs of a person hav-
ing history of heart ailments or diabetes is different from an in-patient at a hospital
or a normal person at home. Therefore, the exact nature of challenges will depend on
the environment type and the inhabitant types. However, the base line challenge per-
tains to the extraction of context, and the decisions based on correct interpretations
of the contexts. In other words, context based infrastructure is fundamental to build-
ing of smart environments. Therefore, capturing contexts is critical in enhancing the
experience of the users in the environment. The sensors and the controllers measure
ambient parameters which provide the inputs for creation of a context. However,
the raw data needs to be processed appropriately by reasoning engines to arrive at
a context. Apart from the ambient measurement (which give physical properties), a
context depends on a number of other factors such as location, emotional states of
the users, preferences and historical data about the choices made by the users and so
on. Therefore, the creation of a context involves sophisticated reasoning, inferencing
and machine learning algorithms. On successful creation of context, context-aware
services trigger events which alters users’ experience of physical environment. To
give an analogy, a correct context would provide an insect’s eye view rather than a
bird’s eye view of the user’s ambience [27]. In summary, two distinct set of challenges
can be identified [1].

• Inhabitant centered: It deals with the interfaces for interactions of the inhabitants
within a smart environment.

• Technology centered: It deals with the requirements of a smart environment from
technological prospectives such as hardware, networking infrastructure, program-
ming and system development. More specifically, there is a paradigm shift in
development of systems.

In this chapter, we introduce these challenges from a research prospective. A compre-
hensive final report on the outcomes of an inter-agency workshop on smart environ-
ments sponsored by DARPA, NSF and NIST was summarized succinctly in a paper
by Abowd and Sterbenz [1]. Smart applications and services are domain dependent,
and too vast an area to be dealt in any comprehensive manner in a single chapter.
Therefore, we provide a synopsis of certain research challenges, and focus mainly
on the context management systems.

16.2 Terminology and Historical Prospectives

Before going further into the subject matter of smart environments, it may of interest
to know a bit of terminology of smart environment and the historical prospective
around them. As indicated in Chap. 1, there is a proliferation in terminlogy concerning

http://dx.doi.org/10.1007/978-981-10-3941-6_1

16.2 Terminology and Historical Prospectives 511

smart environment. The definition of ubiquitous computing is hardware centric, it
does not include a reference to “intelligence part” of the system. The intelligence
factor is included in the definition of smart environment proposed in [39]. However,
“improved experience” used in the aforesaid definition is unspecified. Secondly, and
most importantly, it completely ignores the “hardware sophistication part” of the
smart environment. Ambient intelligence is another term which have been used to
refer to smart environment from time to time. It refers to the same “human centric”
aspect of improved experience in an instrumented world. Around 2010 the term
Cyber Physical System (CPS) became more common place. The definition of CPS
appears below:

Definition 16.1 (CPS [22]) Cyber-Physical Systems (CPS) are integrations of com-
putation with physical processes. Embedded computers an networks monitor and
control the physical processes, usally with feedback loops where physical processes
affect computations and vice versa.

There are three aspects in definition of CPS:

1. Integration of physical process and computation,
2. Controlled by embedded computers and network, and
3. Feedback loop (adaptation).

CPS appeared close to expressing the both defining aspects of a smart environment,
namely “intelligence” and “hardware instrumentation”. But as hardware sophisti-
cation became mature, CPS definition also became inadequate, and qualifier like
“smart adaptive” CPS started appearing. To sum up the term “smart environment”
should be seen in the current frame of reference with respect to sophistication in
integrating hardware instrumentation with computational intelligence. In that sense,
the adequacy of terminology is limited to classical problem of capturing contexts
through computational intelligence.

16.3 Designing Context-aware Applications

While the enabling technologies are critical to context-aware smart systems, applica-
tions occupy dominant space. In this section we first define the important components
in planning smart applications.

16.3.1 Representation of Contextual Data

A context in an environment typically pertains to the inhabitants or the objects within
that environment. When we talk about extraction a context, first we need to know
how a context is defined. According to Merriam Webster Dictionary [8]

Definition 16.2 (Context) A set of, possibly, interrelated conditions in which an
entity or thing exists.

512 16 Context-aware Infrastructures for Smart Environment

It means context is non-existent without an entity or a thing. Furthermore, “possibly
interrelated” conditions mean that the context includes constituent pieces of residence
information of the entity. This implies in an environment, a context of an inhabitant
is represented by:

• The location and proximity
• The state of activities, and
• The sate of emotional conditions of the inhabitant.

The location is geolocation such as latitude, longitude, altitude. Location informa-
tion is sometimes desired with relative to the locations other objects or things. So,
proximity information such as close to a building, close to a lake or a river or near the
sea are also included as location information. The change in location or proximity is
noticeable when walking, running, traveling in cars, trains or airplane. Location infor-
mation may also include weather conditions such as humidity, temperature pressure,
rainfall, etc.

The state of activity include people, other animate objects and their states of
activities at different times. Individuals may be watching movie, attending a telephone
call, on a skype meeting, etc. The people in a group may be in conversation or
assembled in a hall attending power point presentation or a music concert, etc.

Emotional state of an individual is difficult to obtain. Certain cues may be found
from the ambient around the person and also from his/her phone sensors. Facial
expressions play a distinctive role in communicating emotions to the outside world.
If an environment is sufficiently sensorized with cameras, or visual sensors then it
can capture the facial expressions. The background noise can provide information
whether a person is weeping or in a happy mood. Gyro sensors found in smart phone
can measure acoustic signal in the vicinity of a phone [25]. By using signal processing
and machine learning techique, it is possible even a determine or identify individuals
apart from the background noise.

16.3.2 Extraction of Contextual Data

The extraction of contextual data means knowing or being able to measure such
information. For example, in a smart healthcare system, the vital parameters of a
patient would constitute a part of the patient’s context. Only when the contextual data
for the patient is correctly extracted, a regimen of treatment can be evolved. In general,
expectations of inhabitants of a smart environment cannot be met in unobtrusive
manner unless the surroundings of the inhabitants can be correctly extracted.

Ambient information is one of the critical input for determining the context. So,
the development of sensor network technology and its integration with other existing
networks are important for the context extractions. Without going into the details
of a system it is difficult to appreciate how the contextual data can be extracted.
However, the process involved can be described as shown in Fig. 16.1 [2]. Sensors

16.3 Designing Context-aware Applications 513

Fig. 16.1 Processing of
sensory data to contextual
information [2] Physical Data

Sensor Sensor Sensor

Sensor fusion

Situations/Events

Contextual data

P
ro

ce
ss

in
g

play a distinctive role in gathering data which can be combined using fusion tech-
niques discussed earlier in Chap. 9. After fusion, aggregators may apply inferencing
techniques to determine situations or events to which contextual data refer to.

Apart from the environmental data, the two other aspects of data related to the
insect eye view of a situation or the events are location data and positioning data.
The location data refers to geographical reference data whereas the positioning data
refers to the exact the positions of the actors (inhabitants, objects, devices).

Being able to capture contextual data, we could gather information about the
context of a person or a system. However, the system should able to interrelate the
contextual data to the conditions in which a thing or an entity lives as it represents
the current state-of-affairs. So, a concept called situation has been introduced [9]:

Definition 16.3 (Situation [9]) A situation is a composite concept whose con-
stituents may be (a combination of) entities and their context conditions.

Situations are thus derived from elementary context conditions. For example, a sit-
uation could be that a person in sitting on the far corner of the room and reading a
book. A situation has temporal properties such as the time interval during which it
holds. The context awareness of a system largely dependent on the ability to correctly
derive a situation.

http://dx.doi.org/10.1007/978-981-10-3941-6_9

514 16 Context-aware Infrastructures for Smart Environment

Fig. 16.2 Levels of
adaptability

low

high

highlow

centralized
(supervised)

(unsupervised)
self−adaptive

adaptability

co
m

pl
ex

ity

decentralized
(supervised)

16.3.3 Adaptability

Flexibility and extensibility are basic requirements of a context aware application.
These features are necessary for accommodating new services. Applications being
context aware means they can adapt themselves to the dynamic nature of their con-
texts. Incorporating adaptability at the design stages ensures re-engineering or retro-
fitting requirements become minimal. Building smart applications has almost infinite
possibilities. Hence, adaptability is a necessity in a context aware system. If a system
is made fully adaptable, then it is possible to provide a situation or a context as an
input and produce control actions or behavior specific to that context. It not only
reduces the development cycle of an application but allows new component services
to be introduced on demand. Apart from control and management of normal execu-
tion, adaptability should include two other aspects, namely, (i) self-healing and (ii)
resilience against failures. Self-healing refers to situation where a system diagnoses
its failures, localizes the failures and recovers from them. Quite clearly adaptability
depends on the ability of the designers to think of the emerging and unseen future
workflows of the system.

Adaptability ordinarily captured by installing a feedback loop in context manage-
ment. Adaptation can be either unsupervised or supervised [10]. Figure 16.2 depicts
the levels of adaptability. Complexity of system increases with increase in the level
of adapatability. If all control actions are performed under a central control, then
everything about system should be known a priori and supervised. In the event of
an unknown situation, the system cannot adapt itself or respond properly. However,
the complexity of such a system is relatively low. On the other hand, if the control
actions are performed in a distributed supervised manner, then the unpredictabil-
ity increases, but the system may be made more adaptable to unknown situations.
The complexity of the system also increases considerably. For example, if a user is
mobile and requires a minimum QoS for a multimedia streaming application, then the

16.3 Designing Context-aware Applications 515

Fig. 16.3 Global
characteristics of adaptable
applications

Application

Adaptation manager

Client

Context information such as mobility, loca-
tion, noice level, luminosity, radiosity etc.

push/pull
information

influences
requirements

QoS required

QoS provided

adaptation

information

system needs to adjust (high/low) buffering for a minimum playout guarantee. Unsu-
pervised distributed control mostly depend on inferencing mechanism and machine
learning. So, an adaptable application must adhere to a global schema as illustrated
by Fig. 16.3.

16.4 Formal Modeling of Contexts

The notion of context has been in existence since early 90s [18]. Efforts were also
made in developing formalization of contexts [24]. The advantage of a formal model
is that it allows us to formulate various rules, prove theorems and evaluate queries.

The simplest modeling of a context is a key-value pair. However, complex inter-
connected systems require more sophisticated modeling. Some known modeling
approaches (in decreasing order of popularity) are:

1. Ontology based techniques [7, 30, 38].
2. Unified Modeling Language (UML) based [3, 14].
3. Object Role Modeling (ORM) [20]
4. Logic based modeling [31, 33]

Ontologies are for explicit formal specification of terms in a specific domain
and relationship among these [16]. Ontologies are found to be ideal for a variety of
reasons including the following:

• Sharing common understanding of the structure of information,
• Reusing the domain knowledge,
• Making the domain assumptions explicit,
• Treating the domain knowledge separately from the operational knowledge,
• Analyzing the domain knowledge.

516 16 Context-aware Infrastructures for Smart Environment

SOUPA (Standard Ontology for Ubiquitous and Pervasive Application) has been pro-
posed for ubiquitous and pervasive applications [7]. It defines two sets of ontologies:
one for common set which is applicable across pervasive applications, the other set
is for extensions. The core ontology defines vocabularies for expressing the concepts
related to entities, events, time, space, actions, belief-and-desire, and policies. The
extension ontologies extend from core and define additional vocabularies for sup-
porting an application specific requirements. SOUPA is expressed using OWL (Web
Ontology Language). OWL is a semantic web language and standard for encoding
and exchanging ontologies. Syntactically it presents a well formed XML document.
The users can ascribe formal meaning to the terms they create in OWL. Therefore,
machines can intelligently process these user defined terms.

Logic based context modeling has not been explored much. But in formal model-
ing, a logic based approach has obvious advantages over the other approaches. Using
a logic based approach not only completeness and soundness can be established but
any complex context can also be created out of a few basic contexts using Boolean
operators and quatifiers. It also possible to prove theorems and formulate all the rules
in a logical manner.

ORM is primarily for modelling and querying information at a conceptual level. It
can express information requirements of any domain or any universe of discourse and
is ideal for validating conceptual data models with domain experts. UML, on the other
hand, is a unified modeling language used in object oriented software engineering.
UML is suitable for object oriented code design, but not ideal for development and
validation of conceptual data models. Furthermore, ORM models can also be used
for developing UML class diagrams [19]. So ORM provides advantages of both. In
context modeling conceptual data validation is important. Therefore, ORM is more
popular compared to UML [9].

Chandy and Misra [5] introduced UNITY as model for expressing distributed com-
putation. The idea is to provide a minimal set of notations derived from a restricted
form of temporal logic which lends itself well for entire range of development of
distributed programs from design to coding and to verification. The program prop-
erties are expressed using a small set of predicate relations whose validity can be
derived either directly from the program or from the properties obtained through
inferencing rules. Roman et al. [33] proposed Context UNITY in order to formalize
context-aware design. In their model, a context-aware program belong to a uni-
verse which populated by a bounded set of interacting agents. The behavior of each
agent is described by a finite set of program types. At an abstract level, each agent is
viewed as a state transition system. A context change induces a spontaneous change in
agent’s state outside its control. But, the operational environment affects agent’s state
explicitly as per the program definition. The applications are encapsulated as mobile
agents. An agent may migrate among connected hosts. Each agent provides its context
information to other reachable agents which may influence actions of the receiving
agents. The readers interested in learning more details about Context UNITY may
refer to [33, 34]. Context UNITY is more about disciplines in organization and
development of context aware programming in mobile distributed environment. A

16.4 Formal Modeling of Contexts 517

reasonable understanding of this framework cannot be met under the scope of this
chapter as it would require some background on UNITY [5] and Mobile UNITY [34].

16.4.1 ConChat Model

A simple tuple-oriented representation of contexts was proposed in [31]. The power
of the model is demonstrated through implementation of a context based chatting. The
model is based on first order predicate calculus and Boolean algebra. Any complex
contexts can be built from base level contexts by conjunct and disjunct operators. In
this model a basic context is defined by

Context (< t,s,r,o >),

where,

• t: Denotes type of a context which the predicate expression represents. It could
be, e.g., location, temperature, stock price, football score, etc.

• s: Denotes the subject to which the context refers to. For example, if the context
is location then subject can be a person, or thing.

• r: Relater may represent either social relationship or comparison operators (<, >,
≤, ≥), verb, or preposition.

• o: Object is the value associated with the subject. For example, if t is of type
temperature, then its value could be in Farenheit or Celsius.

Examples of some of the basic contexts could be as follows:

Context(<Temperature, Outside, Is, 38 C>)
Context(<Stock Price, Reliance, >, 1000>)
Context(<Time, Mumbai, Is, 10:00 01/01/2017>)
Context(<Relationship, Steffi Graf, wife of, Andre Agassi>)
Context(<Train Ticket Status, Mumbai-Delhi, Is, Waiting>)
Context(<Location, Prime Minister, Entering, Parliament>)

The values of <Subject>, <Relater>, <Object> will depend on
<contextType>. The value of <Relater> can be:

1. Comparison operator: >, <, ≤, ≥, etc.
2. Relations such as “brother”, “sister”, “husband”, “wife”, etc.
3. Verbs such “Is”, “has”, or
4. Preposition such as “about”, “after”, “besides”, “entering”, “leaving”, etc.

518 16 Context-aware Infrastructures for Smart Environment

16.4.1.1 Operators and Quantifiers

As indicated the model is based on first order predicates, so it has a richer ontology. It
allows objects, their properties (unary predicates on objects), relations (n-ary predi-
cates on objects) and functions (mapping of objects to other objects). In other words,
it is possible to perform Boolean operations and quantification on these predicates.
For example, consider the following expression:

Context (< Location,Chairman,Entering,Room 344 >)

∧Context (< Activity,Meeting,In,Room 344 >).

The above expression means that Chairman is entering room number 344 where
a meeting is taking place. Here the conjunct operator ∧ is being used to create a
complex context. Consider a different example given below:

Context (< EnvironmentalTemperature,Room 344,Is,Low >)

∨Context (< Airconditioner,Room 344,Is,On >).

We can also use complement operator ¬ to state absence of a context. For example,

¬Context (< Location,Chairman,Is in,Room 344 >),

says Chairman is not present in room no. 344.
To create richer contexts, we may have one or more arguments of a context predi-

cate to become variable, and quantification operators can be defined over these. Both
existential and universal quantifiers can be defined. However, we need to attach a
scope with these quantifiers. So, the operator is denoted as ∃S or ∀S . Essentially,
scope S is a set over which the quantifier would make sense. For example,

∃loc X Context (< Location,Chairman,Is in,X >),

expresses the fact that the Chairman can be found in one of the locations belong-
ing to set loc. Similarly, universal quantifier ∀ can be used if a context ∀S X Context
(< t,s,r,o >) is true all values of X in the scope S. For example, if want to refer
to all persons in a house the expression could be:

∀person X Context (< Location,X,In,White House >).

One may create context expression for application by using the context expression
and quantifiers. For example, a class room controller can provide attendance in a
lecture by using the following context expression.

∃person X Context (< Location,X,Entering,Class room >).

16.4 Formal Modeling of Contexts 519

The model uses many sorted logic. It consists of many universes (“sorts”) U1,U2,

. . . ,Un , For example,

• Persons refers to all names of person in the system,
• Location refers to valid locations, and so on.

Quantification is performed on only over the specific set of values.

16.4.1.2 ConChat Application

ConChat [31] is a chat application which lets users to know about contextual infor-
mation. For example, it can transfer the following information:

1. Party location
2. Number of other persons (excluding the person engaged in chat) present in the

room
3. The identities of other persons.
4. Room temperature, light, and sound.
5. User’s mood (happy, sad, or excited).
6. User’s status (on phone or out for lunch).
7. Activity in the room (meeting, lecture in progress).

Some of the rules that ConChat uses are:

• If there are more than 3 persons in a room and power-point application is running,
then it implies a presentation is in progress.

• If there are more than 3 persons in a room and power-point application is not
running, then it implies a meeting is taking place.

• If there is just a one person is a room and MATLAB application is running, then
it implies that the person is doing some program development.

• If there are more than five persons in the room, sound level is high and an enter-
tainment application is running, then it implies that some party is on.

Corresponding to each of the above contextual information, an appropriate logical
expression can be evolved. For example, in the first case the context information is
represented by

Context (< #persons,Room344,≥ 3 >)∧
Context (< Application,Powerpoint,Is,Running >) =⇒
Context (< Room,Activity,Room344,Is,Presentation >).

The system level view of the ConChat application is shown in Fig. 16.4. Information
about context providers is available with the context engine. Chat application finds
the context providers by interacting with the context engine. Context information
are gathered by the context providers are made available to the main application.
Therefore, one end may query the context of the other end and accordingly adapt to

520 16 Context-aware Infrastructures for Smart Environment

Con-Chat
front end/UI

Con-Chat
front end/UI

Context
engine

Context
engine

Context providers

Temperature
context

Device
context

Sound level
context

Location
context

Application
context

Context providers

Temperature
context

Device
context

Sound level
context

Location
context

Application
context

Central
registration

server

Search for
context providers

Search for
context providers

Flow of
messages/
contexts

Context info

Context info

Con-Chat
system A

Con-Chat
system B

Fig. 16.4 Interactions of ConChat application units

the conversation. For example, if ConChat-A’s user is in a meeting then ConChat-B
can end the conversation. Suppose ConChat-A would like to stop conversation if
some person enters the room. For this to be possible A sends a context query of the
form:

∃person XContext (< Location,X,Entering,Room344 >).

to ConChat-B. Whenever ConChat-B evaluates the expression to be true it sends a
notification to ConChat-A. Then ConChat-A’s user becomes aware of person X ’s
presence in the room. As we can see contextual chatting has following advantages:

16.4 Formal Modeling of Contexts 521

• It offers more privacy. For example, in an on going conversation a user can place
a request for notification when change in situations occurs at the other user’s end.
When notification appears the first user’s end then he/she can stop the conversation
or adapt it according to changed situation.

• The users can proactively specify which context can be notified to other users.
In fact, an access control regime can be placed by specifying who can see which
context.

• Having knowledge of a user’s context automatically resolves ambiguities in con-
versation. For example, context can be sent before the beginning of the conversation
in related topic.

• It allows some of the semantic ambiguities to be resolved by the system. For
example, when humans engage in conversation every one has the notion of a
local context such as time, location, currency units, data format, various units of
measurements, etc. Using context most of these can be resolved automatically.

Our focus is here not in implementation of ConChat, but more on capturing context
through a formal logic based framework. The interested reader can read the paper [31]
for more information and implementation aspect of ConChat system.

16.5 System Requirements

In software engineering, it is a practice to list out user’s expectations from a new
or modified system. The requirements guides an implementor’s execution plan. We
follow the same practice here. The requirements of a smart environment originate
from two different prospectives, namely,

1. From users/inhabitants.
2. From technology.

We discuss these two sets of requirements separately.

16.5.1 Inhabitants Centered Requirements

All requirements centered on inhabitants of an environment can be seen to have roots
at the ways and means in which inhabitants may wish to interact with computing
devices, the objects that make up the environment. Considering this, Abowd and
Sterbenz [1] listed these requirements from the point of view of developing intelligent
HCI. A synopsis of important requirements is as follows:

1. Interfaces for consumption of information consisting of two important aspects,
namely

a. Preserving privacy and security.
b. Efficiency in response.

522 16 Context-aware Infrastructures for Smart Environment

2. Scheduling or executing right task at right time.
3. Context awareness and adaptability.
4. Interruption and resumption.
5. Activity and control of interaction.

The efficacy of information consumption depends entirely on the way the inter-
faces present the information to the inhabitants. The inhabitants may change their
locations, the objects in the environment may change location, or the state of the
environment may change due to space or the objects getting modified. Some of the
agents of change may external, many others could be internal to an environment,
while still others may have intangible existence such as emotions, feelings, etc.,
associated with the individuals. There are two sets of goals for designing Human
Computer Interface (HCI) [1] for a smart environment:

1. Individual goals: Each human inhabitant in an environment has its own set of
priorities. These priorities set goals for person centric services that is expected
from a smart environment. We can view these goals broadly as of three types:
(i) privacy, (ii) efficiency, and (iii) dynamicity.

2. Common goals: Common goals refer to commonality in interactions of the inhab-
itants with the environment. The goals of each individual may differ consider-
ably due, each person’s role, personal preferences, emotions and psychological
demeanor. Still there are considerable commonality among the requirements of
a group of individuals. When the inhabitants share an environment, there is a
natural understanding that the group has a set of common goals. Three things are
important here: (i) task scheduling, (ii) task management and (iii) awareness.

A smart environment will require personal biometrics and the ID related information
of an inhabitant in order to access person centric preferences and adapt itself to bring
comfort to the interacting person. These personal preferences may even include
emotional states, and other confidential details. Since, most environment work over
Internet in connected spaces, preserving privacy and security of an inhabitant is an
important requirement for building smart environment. Efficiency in gathering of
inputs and dissemination of outputs are very important goals in design of intelligent
HCI. It allows the inhabitants to interact at the right time in the right manner requiring
less or no attention. One of the aim of ubiquitous computing is that technology should
disappear in background. Any interface which requires attention makes its presence
dominate may sometimes intimidate the users. The interfaces should be dynamic,
i.e., automatically discoverable, and follow a user as he/she moves about.

The issues related to scheduling refer to determining when a task may begin,
when it may end and when it may be interrupted. How would the environment handle
interruptions? Whether resumption will happen automatically or require interaction
from inhabitants? The task management allows the inhabitants to exercise control
over their executions. The flexibility in level of control and the range of control that
can be exercised on tasks are important determining factors governing smartness of an
environment. Group centric control of tasks can come in direct conflicts with person
centric control. The question may arise as to how such conflicts can be resolved. This

16.5 System Requirements 523

implies generics should be separable, and designed to complement person centric
control.

The next aspect is awareness. Smart spaces must be unobtrusive, and also allow
the inhabitants to perform tasks which were otherwise not possible in a normal
environment. Awareness of both environment and its inhabitants may evolve with
time. Awareness, therefore, is a learning process that smart environment should
possess. It allows more and more tasks to be performed not only successfully but
satisfactorily as well.

Interruption is particularly to annoying. But there may be situations where inter-
ruptions are necessary, but before that two questions need to be settled: (i) how and
when notifications related interruption should be communicated?, and (ii) how the
interrupted task could be resumed? If inhabitants need to be reminded for resumption,
then the reminder should be as unobtrusive as possible.

Finally, the ease in carrying out normal activities is an important issue within
a smart environment. It should not be the case the smart environment would force
the inhabitants to behave in an expected manner or create disruption in their normal
activities, rather it should provide some value added capabilities.

Clearly, the design characteristics an HCI as explained above can be created
without a framework of interdisciplinary research. Inputs from cognitive scientists
and social psychologists may be key design consideration. Apart from individual
preferences, convenience, etc., group centric goals and requirements must co-exist
without conflicts in a smart environment.

16.5.2 Technology Related Issues

Network, nodes (computers) and spaces (logical or physical) make up infrastruc-
tural framework of a smart environment as illustrated in Fig. 16.5 [1]. We describe
technological challenges in each.

space

space

Internet
node
smart

Grouping
Session

Grouping

Fig. 16.5 Infrastructural framework of smart environment [1]

524 16 Context-aware Infrastructures for Smart Environment

Network:

Network creates a physical space in which nodes reside and communicate. Smart
spaces are built on the top of network layer. The scale is important because even a
single inhabitant may require tens of thousands nodes in the surrounding smart space.
A smart space may consist of huge number of embedded bio-sensors, image sensors,
ambient measurement sensors (pressure, temperatures, luminosity), motion sensor
(presence, vibration, acceleration), chemical activity sensor. Apart from embedded
sensors, smart appliances such as toasters, refrigerators, air conditioners, cars, wash-
ing machines, cooking ranges, ovens, water sprinklers, etc., may have many on board
sensors and computers.

Interconnecting these with implicit and explicit HCIs leads to complex networks.
On the top of this, the networked objects should be remotely accessible by smart
gears (watches, smart jacket, goggles, etc.) worn by individuals or their phone. The
framework of such a physical space with smart objects connected over internet is
known as (Internet of Things) IoT. Density of nodes in an IoT could pose serious
challenges in protocol design. The priority setting for each object must be carefully
done, so that task interruption does not create unpleasant feelings for the users.

Most IoTs rely on wireless channels for network connectivity. Low bandwidth
connectivity, promiscuity and interferences makes make these networks vulnerable
to attacks of various type. So, security and privacy related issues should be ade-
quately addressed before wireless channels can used. Some of the new research
issues that has emerged in this space are related to software defined radios [26].
One of the important technical problem in this respect is interoperability of different
communication technologies. The problem of interoperability is not easy to handle,
as frame structures used by different communication technologies are different, and
the network protocols also vary significantly. It creates problems that cost overheads
in terms of assembly and disassembly of frames. Devising single optimized unified
network stack is becomes challenging, if not impossible [37]. Nodes with multiple
network stacks are complex, expensive and have inherent performance handicaps.
Thus following is a summary of important research challenges in network space:

Nodes:

Computations in smart environment are distributive in nature, each node performs
a role according to a context. The challenge comes from the nodes embedded to
wearable devices. Micro-kernels have to be developed for the nodes so that they
can handle specific computation according to a context. For example, bio-sensors
attached to patient wearables may monitor vital parameters of a patient, or a personal
assistant (PDA) could remotely control a variety of IoTs. Such specialized nodes are
referred to as smart nodes. Some smart nodes may perform multiple roles such as
controlling inputs from a number of peripherals such as flat touch panels, wireless
keyboards, cameras, etc. Handling of faults should be an integral part of the node
functionality. For example, connectivity could be lost due to some personal node
acting as the only access point for smart objects or internet. All these functionalities
for reaching from one point of network to another point and to internet should be

16.5 System Requirements 525

possible as many alternative ways as possible. Also some amount of QoS threshold
needed for every path in the network. A wide spectrum of nodes over network com-
plying to different standards need a wide variety of transport protocols which should
interoperate seamlessly.

Softwares:

Perhaps the most difficult challenge comes from software. Any smart environment
will consists some wiring of devices deep inside structures like bridges, or rooms
in buildings such as hospitals, business conventions centers, etc. Similarly, devices
may be embedded in parts of a rail road car, or a cruise boat. Therefore, embedded
devices could become obsolete soon with hardware and software advancements. This
means lot of legacy softwares will have to be maintained or re-engineered from time
to time. As far as functionalities are concerned a software is not just a piece of code,
but it could be a view of the entire workflow that captures many complex engineering
and design processes. For example, civil constructions are not always well designed
so various amenities that provide building blocks of a smart environment have to be
adaptable, and maintainable. A simple instance could be waste water management
of a building or the heating/air conditioner system. This may require software to
incorporate almost complete understanding of building plan, capabilities of various
masonry and plumbing ducts, electrical power supply limitations, etc. Apart from
this the software should try to optimize the solutions according to goals set by the
inhabitants of the building. The challenges are far too many. We may just list out a
few of these.

1. Resource discovery: location and characteristics of nearby resources.
2. Interoperability: devices handling various parts of the workflow to handle con-

nected tasks must interoperate.
3. Location awareness: location of users or devices should be discoverable within

centimeters or according to requirements.
4. Mobility awareness: if devices are shifted, or the user has moved, the software

should adapt itself to provide optimized solution for the new arrangement of
environment.

5. Event management: software should be able to react to emergent situations.
6. Legacy support: already discussed above.
7. Addressing: identity of persons and objects are fundamental to execution of a

solution.
8. Security and privacy: specially in public places, it is important to preserve security

and privacy of interacting individuals.
9. Fault tolerance: any smart system should implement robust fault tolerance, spe-

cially for critical devices. For example, internet connectivity for critical functions
should be available through alternative routes when main router is down.

Clearly, the list brings out the inherent complexities that software has to counter in
implementation of a smart environment.

526 16 Context-aware Infrastructures for Smart Environment

16.6 Middleware Architectures

Data fusion carried by sensor nodes is mostly elementary. Aggregators perform
tasks of combining and generating higher level context abstractions. Aggregators are
generally colocated at context storage so that they may perform some additional tasks
such as converting other meaningful contextual referencing of data. For example,
GPS location (latitude, longitude) can be converted to a reference point with respect
to a room, a building or a football field.

A context management system consists of context storage and centered around the
general model of a producer consumer system. Besides producers and consumers,
it may additionally consists of aggregators. A producer tells availability of context
information to context storage. The job of a producer is to collect raw data from
sources such as sensors, configuration files, other static/dynamic sources. These raw
data are processed into contextual elements by the producers. Context storage send
notifications of events or situations to the consumers who have registered with it. A
number of solutions have been proposed for context management, we review only a
few of them to give a overview of different approaches found in literature. A recent
review of literature in context-aware systems can be found in [9]. A taxonomy of
these architectures is provided in Fig. 16.6 with some examples. There are four basic
types of architectures: layered, service-oriented, agent-oriented, object-oriented.

Fig. 16.6 Architecture for
context management

Agent
oriented

oriented
Object Contextor

Context tool kit

SOCAM

CASS
Service
oriented

architecture
Contex broker

Context stack

Real−world modeling

TEA system

Generic

Layered

management
architecture

Context

16.6 Middleware Architectures 527

16.6.1 Layered Middleware Architecture

Layered architecture is most common. The lowest layer in any layered architecture
is provided by sensors, actuators and other hardware related accessories such as
RFID, camera, GPS, etc. TEA system [35] uses a three layer architecture. Sensor
layer is responsible for gathering sensory data. An abstraction layer sits on the top of
sensor layer. The role of the abstraction layer is to provide cues to the context layer.
In that sense, the abstraction layer is kind of tied to the sensor layer for providing
abstractions to access sensor hardware and software. The abstraction layer may not,
therefore, be considered as a separate layer. The context layer builds contexts using
the cues. A scripting layer provides mechanisms to harnessing the context by the
applications.

Context stack [40] is another layered architecture. It has five layers: acquisition,
representation, aggregation, interpretation and utilization. It uses a context database
for storing knowledge and history. The acquistion layer is the lowest layer and deals
with gathering of raw data from sensor. The representation layer is responsible for
understanding relevance of data such as temperature, pressure, luminosity, location,
etc., and their reporting threshold. In some sense it provides the abstractions of
sensory data. Then third layer aggregates sensor data using aggregation or fusion
and applying virtual context knowledge base. Layer 2 from top interprets the context
using machine learning and inferencing mechanisms. The top layer caters to context
requirement of applications.

Real world modeling [21] is also a layered architecture. Gathering real world data
is performed in phase one from RFID tags, GPS, camera and sensors. In phase two,
a real world model is built by associating the data retrieved after phase one from
sensors, and other data gathering hardware. Phase two achieves this by performing
a sequence of four steps: (i) processing IDs of sensors, (ii) obtaining attributes of
objects to which hardware IDs are associated, (iii) recoginition of situations from
object’s point of view, and (iv) recoginition of semantic and history. Phase three
is for service determination. It has two steps: (i) service detetction and (ii) service
coordination. The final phase is for provisioning service.

A generic layered architecture [36] is defined on the basis of steps that all layered
middleware context-aware architectures perform. Figure 16.7 illustrates the interac-
tions of various components of the proposed architecture. The lowest layer is referred
to as lexical level which abstracts sensor signals into the various events of contexts.
Syntactical level is the next higher layer which is responsible for translating the con-
text events to elementary context information. The elementary context information
are reasoned refined and organized for more processing at a higher level called reason-
ing level and stored in the context repository. The context repository can be accessed
through APIs in the planning level, which is the next higher layer. It applies rules
and performs inferencing to build contexts from the context information. Systems
then react to changes in the context reaction level.

528 16 Context-aware Infrastructures for Smart Environment

Fig. 16.7 Generic
architecture for context
management [36]

Context applications

Context API

Inference Engine

Context capturing interface

h/w sensors s/w sensorsactuators

C
om

m
un

ic
at

io
n

in
te

rf
ac

e

Rules

Context repository

· · ·

interaction level

planning level

reasoning level

syntactical level

lexical level

16.6.2 Service Oriented Middleware

CASS (Context-aware Substructure System) [13] is a centralized server based context
middleware architecture. It consists of a Sensor Listener, a Rule Engine, a Context
Retriever and an Interpreter. Sensor Listener has a communication subclass called
Change Listener. It listens to the updates from the sensors and hands over to the
Sensor Listener for storing them. The Context Retriever retrieves stored contexts. It
requires services of the Change Listener. It provides the context change notifications
to applications. The Rule Engine is the central piece of the CASS. It refers to the
context repository to retrieve context changes and then applies the rules stored in the
knowledge base to determine the actions corresponding to the current context.

SOCAM (Service Oriented Context Middleware) proposed by Gu et al. [17] is an
ontology based context interpreter system that provides the following basic services:

1. Reasoning services.
2. Managing consistency of the contexts, e.g., controls smart appliances and rea-

soning about the activities of the environment inhabitants.
3. Fusing of multiple low level contexts.

As Fig. 16.8 shows, it consists of

• Context providers
• Context interpreters
• Context database
• Service location service
• Context aware mobile service

16.6 Middleware Architectures 529

Context aware applications

Service
locating
service C

on
te

xt
in

te
rp

re
te

r

Context reasoning

Context KB

Context
Database

Weather
service

traffic
situation
service

External context providers

Vehicle
monitoring

service

GPS
location
service

Internal context providers

In-vechicle sensors

camera break light

Fig. 16.8 Architecture of SOCAM [17]

Each context provider is registered with service locating service, which enable it to be
discovered by others. External context providers get contexts from external sources
such as weather information server, or traffic information server, etc. Internal context
provider acquire contexts from directly from internal sensors such as in-vehicle
camera, head light, break pedal, GPS receiver, etc. Context interpreter creates high
level contexts by interpreting low level contexts. It has a inference engine and a
knowledge base. Knowledge base provides APIs for other components to query,
add, delete, or update context knowledge.

Unified Context-aware Application Model (UCAM) has been proposed in [29].
UCAM consists of UCAM sensors and UCAM services. Internal components of
two components interface in a layered manner. Externally, contexts are provided by
different UCAM services. In that sense, it can be classified as a service oriented
middleware. A UCAM sensor defined by an abstraction over a physical sensor. A
UCAM service is a context processing unit. Raw signals collected from physical
sensor are subjected to a signal processing step. UCAM sensor can support all basic
signal processing such as peak extraction and filtering functions. A preliminary con-
text is created by UCAM sensor’s context generation module. This module uses
an XML file where sensory profile information is available. The preliminary con-
texts collected from UCAM sensor is processed further by a communicator which
configures communities and manages heterogeneous entities. Context manager and
interpreter perform behavior of a context-aware service by using unified contex repre-

530 16 Context-aware Infrastructures for Smart Environment

sentation model. Service provider manages a service profile to support applications.
Figure 16.9 [29] illustrates the workflow related to context creation and its use for
providing context-aware services in UCAM architecture.

16.6.3 Agent Oriented Middleware

Dey et al. [12] proposed an agent based architecture called Context Toolkit. It pro-
vides a number of services which includes the following:

1. Encapsulation of sensor.
2. Storage of context.
3. Access control for privacy protection.
4. Sharing of context data over network through well defined APIs.
4. Composition of context to build richer context information.

Context Toolkit defines three main abstractions:

1. Context widgets
2. Context aggregators
3. Context interpreters

The flow of data between these entities are shown in Fig. 16.10. Widgets are mediators
between a user and the environment. A widget encapsulate information about one
context element such as location or activity. Widgets can be accessed by applications
or other components (interpreter, server) through a uniform interface. Aggregators
are meta widgets which have abilities to compose contexts information about real
world entities like objects, users, devices and places. They provide a gateway service
between application and elementary widgets hiding details of sensing mechanism.
Server is responsible for aggregation of contexts. Interpreters abstract high-level
context from low level context by using inferencing logic. For example, identity,
location, noise level can be interpreted as airport ambience. An interpreter can be
accessed by widgets, server, other interpreters.

Context Broker Architecture (CoBrA) [6] in reality a centralized layered architec-
ture, it employs agents as mediators for resource poor mobile devices to communicate
with the context service middleware. CoBra employs OWL for modeling ontology
for context reasoning. It has four components: context knowledge base, context rea-
soning engine, context acquisition, and policy management which interact among
themselves in a layered manner. Knowledge base is a persistent storage for storing
context knowledge. It also provides APIs to access stored knowledge. Reasoning
module is essentially a reactive inference engine that employs ontologies to deter-
mine context knowledge. It may use heuristics to detect and resolve inconsistencies
in context knowledge. The role of context acquisition module is similar to that of
widgets in Context Tookit [12]. Policy management module consists of inference
rules that determines the instructions for enforcing user’s policies for dissemination
of context change notifications.

16.6 Middleware Architectures 531

U
C
A

M
se

rv
ic

e

U
C
A

M
se

ns
or

uc
-c

on
te

xt
:

U
se

r
co

nd
it
io

na
lc

on
te

xt
sc

-c
on

te
xt

:
Se

rv
ic

e
co

nd
it
io

na
lc

on
te

xt
f-
co

nt
ex

t:
Fi

na
lc

on
te

xt
p-

co
nt

ex
t:

P
re

lim
in

ar
y

co
nt

ex
t

i-c
on

te
xt

:
In

te
gr

at
ed

co
nt

ex
t

Se
rv

ic
e

pr
ov

id
er

C
on

te
xt

m
an

ag
er

C
on

te
xt

m
an

ag
er

C
om

m
un

ic
at

or

C
on

te
xt

m
em

or
y

(r
ep

os
it
or

y)

In
te

rp
re

te
r

A
pp

lic
at

io
n

uc
-c

on
te

xt

sc
-c

on
te

xt

i-c
on

te
xt

/f
-c

on
te

xt

p-
co

nt
ex

t/
f-
co

nt
ex

t

f-
co

nt
ex

t

C
om

m
an

d

C
om

m
un

ic
at

or

P
re

lim
in

ar
y

C
on

te
xt

G
en

er
at

or

Fe
at

ur
e

ex
tr

ac
to

r

Si
gn

al
pr

oc
es

si
ng

P
hy

si
ca

ls
en

so
r

p-
co

nt
ex

t

Fe
at

ur
e

Fi
lt
er

ed
si
gn

al

R
aw

si
gn

al

A
pp

lic
at

io
n

U
C
A

M
se

rv
ic

e

A
pp

lic
at

io
n

U
C
A

M
se

rv
ic

e

A
pp

lic
at

io
n

U
C
A

M
se

rv
ic

e

A
pp

lic
at

io
n

U
C
A

M
se

rv
ic

e

U
C
A

M

se
ns

or

U
C
A

M

se
ns

or

U
C
A

M

se
ns

or

..
.

..
.

F
ig
.1
6.
9

Pr
oc

es
si

ng
se

ns
or

da
ta

to
co

nt
ex

t[
29

]

532 16 Context-aware Infrastructures for Smart Environment

Fig. 16.10 Data flow in
context toolkit [12]

Application

ServerInterpreter Interpreter

Widget Widget Widget

Sensor Sensor Sensor

Context Architecture

16.6.4 Object Oriented Middleware

Rey and Coutaz [32] defined contextor as a software abstraction to model relations
among observables. It performs aggregation by returning values for an observable
from the values of a set of observables. Contextor appear to extend beyond the con-
cept of sensor widgets proposed in [11]. A contextor consists of a functional core and
a set of typed communication channels on which observables can be exchanged as
shown in Fig. 16.11. In that sense, a contextor essentially wraps contextual data and
control behaviors into single entity like an object does. Contextors can be linked by
connecting their input and output channels much like an I/O autmaton model [23].
Federations of contextors can be created by linking them together. Linking is per-
mitted provided data-in channel of a contextor is compliant with data-out channel of
another contextor. Linking may not be commutative. A colony of interlinked con-
textors can be encapsulated as compound contextor. So, one can define an arbitrary
composition of contexts so long as linking is possible. A contextor stored as an
XML file (for interoperability) on a node. It contains location of node, name of the
network to which it belongs, control and inspection commands it accepts, data and
meta-data types of output channel, mode for data acquisition, mode of delivery of
information, output channels, maximum number of data sinks it can serve concur-
rently, etc. A contextor supply information on request, or on query-change mode,
or on subscribe-notify mode. It may be delivered periodically or on each time when
computed.

16.7 Smart Applications

Smart environment, in general, consists of devices and objects that are static or
mobile. A few of these devices can be ultramobile. Mostly smart appliances are static

16.7 Smart Applications 533

Fig. 16.11 Schematic
representation of a
contextor [32]

Contextor

Functional core

Received
commands

Commands to
other contextors

Data in

Meta-data in
Meta-data out

Data out

by nature if they are not portable. Though portable appliances may move when carried
in person or autonomously, the movement is slow and discrete. For such objects, the
environment or surrounding space experience only slight or occasional changes.
Creating smart space out of these largely static and infrastructure supported objects
or things is simpler compared to when space consists of ultra mobile devices. Ultra
mobile devices are mostly carried in person. Not only the surroundings these ultra
mobile devices change rapidly and durations of their interactions with applications
are short. For example, consider the environments encountered by a smart phone
carried by a person. It undergoes changes as the person travels in car, walks from
a parking lot to office, or home, or enters airport, etc. Making such ultra mobile
devices to be adaptive is an effective step for creation of smart environments. The
smartness of an environment depends how effectively the smart applications can
make use contextual data from sensors in ultra mobile devices and combine these
with the data/measurements obtained from the other sensors in appliances and things
in the environments.

The requirements of adaptivity is different from one user to another. Typically,
background noise level, intensity of light, presence of other persons in the neighbor-
hood are some of the factors that influence adaptivity. Generally, a mid-range smart
phone comes with 10 or more different embedded sensors. Figure 16.12 illustrates
the embedded sensors in a smart phone. Since a smart phone is almost always carried
in person, the embedded sensors in a phone can provide contextual data related to the
carrier and most importantly the immediate neighborhood of the carrier. For exam-
ple, measurements received from phone sensors not only tell whether the person is
in motion but also which mode of transport the person is possibly using. Even the
direction of motion can be found in 3D by combining magnetometer, gyroscope and
acelerometer measurements. Using these data, the application designers can develop
applications that are context aware.

534 16 Context-aware Infrastructures for Smart Environment

Context

Time of the day
Presence of others
Preference of user
Historical choice

...

GPS
Camera
Microphone
Number keys
Touch screen
Accelerometers
Gyroscope
Magnetometer
Proximity sensor
Luminosity sensor

...

Navigation app
Motion detector app
Fitness app
Diary & enggagement app
Health & wellness app
Voice analysis app
Remote control apps

...

Applications

Sensors

Fig. 16.12 Adaptivity scenario using smart phone sensors

16.7.1 Context-aware Applications Using Smart Phones

Some of the interesting context aware applications that have been developed by using
smart phones as communication gateways are:

• GPS assisted transportation and navigation applications.
• Smart phone assisted indoor navigation of visually impaired persons.
• Application for monitoring health and well being.
• Transient social networking using sensing of presence.

16.7 Smart Applications 535

Fig. 16.13 Flow of
displacement data from
wheel to smart phone Optical mouse sensor

Aurduino microprocessor

Bluetooth module

Android smartphone

16.7.1.1 GPS Assisted Transportation and Navigation

In GPS assisted transportation and navigation systems are largely developed around
GPS data from phones of the users. Simple navigation application like finding route
from a source to a destination leverages city route maps to guide the user to destina-
tion from the current location. This application are adaptive to the transport modes
that a user may be use. The context related transport mode can be derived from
accelerometer, magnetometer, and magnetometer sensors. The application can be
integrated with bus schedule and the arrivals of buses at a stop or terminus. There
are applications such as cab service which enables the commuters to hail cab service
through GPS assisted apps. Overall traffic situations of a road network are crowd
sourced from phone data and navigation data can be made adaptive to congestion in
route, and dynamically reroute path to a destination.

16.7.1.2 Smart Walking Stick

An indoor navigation application and a prototype design for a smart walking stick (for
visually impaired persons) have been presented in [15]. It uses two types of embedded
sensors: (i) on phone sensors, and (ii) sensors to capture actual displacement through
walking stick. The hardware assembly for this prototype consists of:

• A walking stick is modified by putting a trolley like assembly at the end which
touches the ground.

• An optical sensor of type ADNS-2610 (used in PS/2 computer mice) is placed
about 2–3 mm away from the surface of the trolley wheels.

536 16 Context-aware Infrastructures for Smart Environment

Fig. 16.14 Orientation axes
of smart phone

• An Arduino Uno processor board with Bluetooth interface is fitted to the trolley
assembly.

The optical sensor record can displacement provided it is either in contact with
surface or less than 2–3 mm away from the surface. Therefore, the sensors are placed
with a separation of 2 mm from the wheels of trolley. The optical sensor records
angular displacements as the wheels roll. The angular displacement is passed on
to the smart phone of the user through the sensor board via Bluetooth interface.
Figure 16.13 illustrates the flow of displacement data. The smart phone then combines
the displacement data with inbuilt magnetometer’s rotation data and updates user’s
position as the user moves on, by dragging the modified walking stick. The orientation
axes of an Android smartphone is depicted in Fig. 16.14. The phone uses the route
map of the building and guides the user by voice communication over a Bluetooth
receiver. The route map can be obtained at the entrance of the building using NFC or
RFID tags. For a detailed description of the prototype the reader may refer to [15].
There is enough scope for improving the prototype, and creating a smart walking
stick without extensive instrumentation of the indoor environment.

16.7.1.3 MHealthcare

A general framework of mHealthcare was described earlier in Chap. 1. The major
thrust in smart personal health care has been to cut down visits to the doctors. The
approach is to rely largely on self-monitored report surveys on the status of personal
health. Wearable wireless body area network (WWBAN) consists of inexpensive sen-
sors which can be used for long term ambulatory monitoring of the health parameters.
The smart phone carried by a person acts as a gateway to communicate data gathered
by WWBAN to update the medical data to cloud. The phone can also send prior-
ity messages through specially installed context aware Apps for urgent assistances.
Figure 16.15 illustrates the architecture of an integrated system for health monitoring.
WWBAN connects through smart phone held in person by the user to various health
related services over internet. It has options to route data through different network

http://dx.doi.org/10.1007/978-981-10-3941-6_1

16.7 Smart Applications 537

Vision

EEG

Hearing

Temperature

Motion

Blood
pressure

Respiration

ECG

Glucose

MotionBase station

Fig. 16.15 Integrated health monitoring system

connection protocols as indicated by the figure. For example, priority messages in
form of SMSes can be sent over 3G/4G network to emergency/ambulance service, to
relatives or friends and the specialist physicians. While this is being done the medical
report can be sent patient’s laptop over WLAN or Bluetooth. Then the report is sent
from there to a central medical server using Internet broadband connection.

16.7.1.4 Emergency Alert and Response System

Sometimes organizing immediate professional help in a disaster situation becomes a
problem due to several reasons including the strict protocols under which the formal
organizations function. For example, a relief train may take several hours before it
reaches a rail accident site at a remote location. Under such situations, immediate
help is rushed to victims usually by the community volunteers of the neighborhood
of the disaster location. The volunteers largely operate in isolation and much of the
efforts are, therefore, uncoordinated.

Transient Social Networking (TSN) is a spontaneous social networking based on
presence of persons in an geographical region at a specific time or at occurrences of
specific events. Following are important features of TSN

• A TSN supports on-demand encounter based formation unlike traditional internet
based social networks (Facebook, Google circles, Foursquare, etc.).

• In a TSN, people may or may not know each other but willing to collaborate
(people’s interests are aligned) for limited time when they happen to encounter
one another.

• TSN formation is dependent on both spatial and temporal locality.
• Furthermore, TSN can support latency sensitive communication by exploiting

local wireless communication infrastructure, and reduced traffic on internet.

An emergency alert and response service system based on TSN framework has
been proposed in [4]. This system dynamically organizes a peer to peer network of

538 16 Context-aware Infrastructures for Smart Environment

smart phones carried by the volunteers present in the neighborhood of a geographhical
region. Through a TSN of smart phones, the community volunteers can coordinate
their rescue activities and provide emergency assistances to disaster hit victims more
effectively than working in isolation.

The formation of TSN is illustrated in Fig. 16.16. The details of the process is
described below:

• A distress situation is triggered by a user injecting a Distress Message (DM)
into the network. The creation of TSN for handling distress situation happens
automatically in response to this initial message.

• The spreading of a DM occurs in controlled manner through a central tracker
over internet via cloud messaging to special nodes called Data Carts (DCs) in the
neighborhood of the originator of DM.

• DC then spreads the message to a set of community volunteers in the neighborhood
forming the TSN.

• Once TSN is formed the volunteers coordinate their activities via cloud messag-
ing for which a special ontology oriented emoji based messaging framework is
used. The ontology depends on the disaster type. Alternatively formal logic based
modeling can also be used for each disaster type.

• Using a formal modeling framework, complex contexts are determined for a clear
understanding of the disaster situation. This will help the untrained community
based rescue volunteers not only to find out specific requirements (resources) for
handling the disaster but also to coordinate more effectively.

• A volunteer can be part of multiple TSNs depending on the role he/she plays. The
privacy requirements are met by access control mechanism based on message flow
labeling [28].

The suggested framework is not only realizable [4], but can also be used as a dis-
tributed message dissemination service for a variety of interesting purposes. For
example, the advertisers can use mobile phone based TSN for targeted promotion
of products in a specific area. In a shopping arcade a retailer may promote a new

Victim Tracker Data cart
Volunteers

TSN formed
Broadcast
TSN info

Inject DM Send DM
to ZoneDC Broadcast DM

Fig. 16.16 Formation of a TSN for handling a distress situation

16.7 Smart Applications 539

product by announcing special discounts to patrons. The patrons may view hot deals
and see instant reviews from other patrons about the product.

References

1. G.D. Abowd, J.P.G. Sterbenz, Final report on the inter-agency workshop on research issues for
smart environment. IEEE Personal Commun. Mag. 7(5), 36–45 (2000)

2. S. Bartolini, Smart Sensor for Interoperable Smart Environment. PhD thesis, Dept of Computer
Science, 2009

3. J. Bauer, Identification and modeling of contexts for different information scenarios in air
traffic. Technical report, Technische Universität Berlin, Diplomarbeit, March 2003

4. A. Bhatnagar, A. Kumar, R.K. Ghosh, R.K. Shyamasundar, A framework of community
inspired distributed message dissemination and emergency alert response system over smart
phones, in Eigth International Conference on Communication Systems and Networks (COM-
SNETS) (IEEE Press, 2016), pp. 1–8

5. K.M. Chandy, J. Misra, Parallel Program Design: A Foundation (Addison-Wesley, 1988)
6. H. Chen, T. Finin, A. Joshi, Semantic web in the context broker architecture, in The Second IEEE

Annual Conference on Pervasive Computing and Communications (PerCom 2004) (March
2004), pp. 277–286

7. H. Chen, T. Finin, A. Joshi, The SOUPA ontology for pervasive computing, in Ontologies
for Agents: Theory and Experiences, ed. by V. Tamma, S. Cranefield, T.W. Finin, S. Willmott
(Springer, 2005), pp. 233–258

8. Context (n.d.), Merriam-Websters collegiate dictionary. Merriam Webster
9. P.D. Costa, in Architectural Support for Context-Aware Applications: From Context Models to

Service Platforms. PhD thesis, Center for Telematics and Information Technology, Enschede,
The Netherlands, 2007

10. M. Dalmau, P. Roose, S. Laplace, Context aware adaptable applications: a global approach.
Int. J. Comput. Sci. Issues 1, 13–25 (2009)

11. A.K. Dey, G.D. Abowd, A conceptual framework and a toolkit for supporting rapid prototyping
of context-aware applications. Human-Comput. Interact. J. 16(2–4), 97–166 (2001)

12. A.K. Dey, G.D. Abowd, D. Salber, Designing and building context-aware applications Tech-
nical report (Gorgia Institute of Technology, 2001)

13. P. Fahy, S. Clarke, CASS—middleware for mobile context-aware applications, in Workshop
on Context Awareness (MobiSys, 2004)

14. F. Fuchs, I. Hochstatter, M. Krause, M. Berger, A meta model approach to context information,
in The Second IEEE PerCom Workshop on Context Modeling and Reasoning (CoMoRea)
(Hawaii, USA, March 2005)

15. R.K. Ghosh, V. Kataria, V. Mishra, Indoor navigation using optical mouse sensor and smart
phone, in 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN
2014), 27–30th October 2014

16. T.R. Gruber, A translation approach to portable ontology specification. Knowl. Acquisition 5,
199–220 (1993)

17. T. Gu, H.K. Pung, D. Zhang, A service-oriented middleware for building context-aware ser-
vices. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

18. R. Guha, Contexts: a formalization and some applications. Technical report, Stanford Univer-
sity, 1992

19. T. Halpin, A. Bloesch, Data modeling in UML and ORM: a comparison. J. Database Manage.
10(4), 4–13 (1999)

20. K. Henricksen, J. Indulska, A software engineering framework for context-aware pervasive
computing, in The 2nd IEEE Conference on Pervasive Computing and Communications (Per-
com 2004), 2004

540 16 Context-aware Infrastructures for Smart Environment

21. G. Kunito, K. Sakamoto, N. Yamada, T. Takakashi, S. Tanaka, Architecture for providing
services in the ubiquitous computing environment, in The 26th IEEE International Conference
on Distributed Computing Systems Workshops (ICDCSW’06), July 2006, pp. 60–60

22. E.A. Lee, Cyber physical systems: design challenges (invited paper), in International Sympo-
sium on Object/Component/Service Oriented Real-Time Distributed Computing (ISORC) (FL,
USA, May 6 2008)

23. N. Lynch, M. Tuttle, An introduction to input/output automate. CWI Quart. 2(3), 219–246
(1989)

24. J. McCarthy, Notes on formalizing context, in The Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI-93) (Mountain View, CA, 1993). Morgan Kaufmann. http://
www-formal.stanford.edu/jmc/home.html

25. Y.D.B. Michalevsky, N. Gabi, Gyrophone: recognizing speech from gyroscope signals, in 23rd
USENIX Security Symposium (USENIX Security 14), 2014

26. J. Mitola, Congnitive Radio: An Integrated Agent Architecture for Software Defined Radio.
PhD thesis, Royal Institute of Technology (KTH), Sweden, 2000

27. H. Nakashima, H. Aghajan, J.C. Augusto, Handbook of Ambient Intelligence and Smart Envi-
ronments (Springer, 2009)

28. N.V. Narendra, R.K. Shyamasundar, Realizing purpose-based privacy policies succinctly via
information-flow labels. BDCloud 753–760 (2014)

29. Y. Oh, J. Han, W. Woo, A context management architecture for large-scale smart environment.
IEEE Commun. Mag. 118–126, (2010)

30. D. Preuveneers et al., Towards an extensible context ontology for ambient intelligence, in
Second European Symposium on Ambient Intelligence (EUSAI 2004) (Eindhoven, The Nether-
lands, 2004)

31. A. Ranganathan, R.H. Campbell, A. Ravi, A. Mahajan, Conchat: a context-aware chat program.
IEEE Pervasive Comput. 1(3), 51–57 (2002)

32. G. Rey, J. Coutaz, The contextor infrastructure for context-aware computing. in Component-
Oriented Approaches to Context-Aware Computing, Held in Conjunction with ECOOP’04
(Oslo, Norway, 2004)

33. G.C. Roman, C. Julien, J. Payton, Modeling adaptive behaviors in contex unity. Theor. Comput.
Sci. 376(3), 185–204 (2007)

34. G.C. Roman, P.J. McCann, An Introduction to Mobile UNITY (Springer, Berlin, Heidelberg,
1998), pp. 871–880

35. A. Schmidt, There is more to context than location. Comput. Graph. J. 33(6), 893–902 (1999)
36. R. Schmohl, U. Baumgarten, Context-aware computing: a survey preparing a generalized

approach, in The International Multi-Conference of Engineers and Computer Scientists, IMECS
2008, Hong Kong, vol. 1 (March 2008), pp. 19–21

37. A. Singh, G. Ormazábal, H. Schulzrinne, Heterogeneous networking. Datenschutz Datensicher-
heit 38(1), 25–30 (2014)

38. T. Strang, C. Linnhoff-Popien, A context modeling survey, in Workshop Proceedings, 2004
39. G.M. Youngblood, D.J. Cook, L.B. Holder, E.O. Heierman, Automation intelligence for the

smart environment, in The International Joint Conference on Artificial Intelligence, 2005, pp.
1513–1514

40. D. Zhang, T. Gu, X. Wang, Enabling context-aware smart home with semantic web technolo-
gies. Int. J. Human-friendly Welfare Robot. Syst. 12–20 (2005)

http://www-formal.stanford.edu/jmc/home.html
http://www-formal.stanford.edu/jmc/home.html

Index

C
Caching & replication

caching
AT strategy, 448
invalidation, 446
invalidation report, 447
server’s obligations, 446
signature strategy, 448
stateless server, 447
TS strategy, 447

caching types, 444
hoarding, 444
on demand, prefetching, 444

CODA, 462
client side caching, 463

optimistic replication, 453
relaxed consistency models, 464

client centric, 465
MR, 468
MW, 470
RYW, 467
session guarantees, 467
WFR, 469
WFRO, 470
WFRP, 470
WID, 471

replication
performance, 460
pitfalls, 455
reconciliation, 458
techniques, 457

replication requirements, 452
CODA, 482

accessing objects, 484
callback, 486
callback break, 488
coherence protocol, 488
disconnection, 488
name space, 483

optimistic replica control, 491, 492
overview, 483
pessimistic replica control, 491
reintegration, 497
replay algorithm, 497

back fetching, 497
parsing, 497
validity check, 497

replica control, 489
RPC based file access, 484
RPC2, 486

side effects, 486
scalability, 486
system components, 484
update visibility, 492
venus, 493

emulation, 495
hoarding, 494
replay log, 495
replay log optimization, 495
resource problem, 497
RVM, 496
state transitions, 493

Context
adaptability, 514
ConChat, 517

operators, quantifiers, 518
modeling, 515

Context aware applications, 511
Context middlewares, 526

agent oriented architecture, 530
layered architecture, 527

context stack, 527
generic, 527
RWM, 527
TEA, 527

object oriented architecture, 532
service oriented architecture

CASS, 528

© Springer Nature Singapore Pte Ltd. 2017
R.K. Ghosh, Wireless Networking and Mobile Data Management,
DOI 10.1007/978-981-10-3941-6

541

542 Index

SOCAM, 528
UCAM, 529

Contextual data, 511
Contextual data extraction, 512

D
Data dissemination, 376

advantages of push model, 382
algorithm for broadcast program, 388

example, 388
broadcast disk, 384

flat disk model, 384
skewed disk model, 385

broadcast program, 380
cache management, 399
caching techniques, 399
client side caching, 400

cost , 402
data consistency models, 405
LIX, 403
PIX, 402
pre-fetching cost, 403
problem formulation, 400

comparison of pull and push, 380
data access in mobile environment, 376
data delivery models, 377
delivery methods, 379
dynamic broadcast program, 390
elimination of unused slots, 392
memory hierarchy, 398
multi-disk program, 388
probabilistic broadcast, 396
properties of broadcast program, 385
selective tuning, 380
transfer models, 383
tuning parameters, 390
types of client requirement, 379
unused slots in broadcast schedule, 391
victim selection, 399

Distributed algorithms, 338
Distributed file System, 482

F
File system

cache server, 505
connected clients, 504

cache servers, 507
concurrency control, 505
conflict resolution, 505

G
GSM architecture, 56

base station subsystem, 58
BSC, 58
BTS, 58
TRAU, 58

control channels, 61
FDMA, 60
frame strucure, 63
logical channels, 60
mobile originated call, 70
mobile terminated call, 67
mobility management, 70
network subsystem, 59

GMSC, 59
home location register, 59
visitors location register, 59

signaling protocols, 64
subscriber identity module (SIM), 57
TDMA, 60

I
Indexing schemes, 409

address matching, directory, 411
analysis of (1, m) indexing, 415
distributed indexing, 416

access latency, 425
access protocol, 425
control index, 422
full replication, 420
no replication, 418
optimizing replication, 427
partial replication, 421
tuning time, 427
with replication, 419

exponential indexing, 428
access protocol, 430
analysis, 432
average tuning time, 436

hash B, 439
analysis, 439

hashing A, 436
access protocol, 437
control part of a bucket, 436

indexing in air, 413
notations, 412
(1, m) indexing, 414
temporal address matching, 412
tuning time, access latency, 412

InterMezzo, 498
filtering layer, 499
FSDB, 503

Index 543

lento, 500
functions, 502

protocols, 501

L
Location management

distributed location management, 327
call setup, 329
cost model, 333
data structures, 330
update, 329

global call to mobility ratio, 303
hierarchical scheme, 302
incremental parsing

trie, 323
Lempel-Ziv text compression, 320

decoding, 322
encoding, 320

LeZi update
incremental parsing, 323
probability assignment, 326

local call to mobility ratio, 303
paging, 301
personal mobility, 301, 311

entropy, unpredictability, 311
IID model, 318
LeZi update, 320
location update, 315
markov model, 318
mobility pattern, 315
modeling movement history, 317
movement history, 316
randomness, 311
surprisal, 311

registration, 301
search, 304
terminal mobility, 301
update, 303

M
Metropolitan area network, 95
Mobile ad hoc network

AODV, 196
control messages, 196
design decisions, 196
link error, 202
multicast routes, 203
route maintenance, 202
routing tables, 197
RREQ, 198

DSDV, 183

example, 188
forwarding table, 187
link break, 185
loop free paths, 186
route advertisement, 184

DSR, 190
creation of loops, 194
overview, 191
piggybacking RREP, 193
promiscuous mode, 195
route discovery, 191
route maintenance, 192
route replies, 194

routing protocols, 181
count to infinity, 183
DSDV, 183

ZRP, 208
bordercast tree, 211
interzone routing, 209
query processing, 213
route caching, 214
routing zones, 208

Mobile applications, 10
logistic & transport management, 12
mhealthcare, 11

Mobile cloud computing, 7
architecture, 9

Mobile distributed algorithms, 339
coordinator based systems, 349

fixed coordinator, 349
moving coordinator, 350

cost model, 341
locating remote mobile host, 340
mutual exclusion, 341

comparison, 358
fairness, 360
inform strategy, 354
proxy strategy, 356
search strategy, 352

non-coordinator systems, 344
equivalent machines, 345
exception machines, 347

restructuring distributed algorithms, 344
synchronization, 340
termination detection, 361

dangling messages, 370
diffusion, 362
disconnection, 370
handoff, 368
hybrid approach, 362
message types, 363
rejoining, 370
termination types, 363

544 Index

weight throwing, 362
two-tier model, 351

Mobile distributed system, 4
architectural taxonomy, 5

Mobile IP, 236
agent discovery, 239
care-of address, 239
DHCP, 236
foreign agent, 238
home agent, 239
IP-in-IP, 242, 244
overview, 238
registration, 240
reverse tunneling, 243
tunneling, 242

Mobile OS, 10, 219
android, 230

memory killers, 231
comparisons, 234
cross platform tools, 235
features, 222
iOS, 232
J2ME, 225

configuration, 226
midlet, 228
profiles, 227

platforms, 224
smartphone, 219

usage diversity, 221
usage statistics, 219

SoC, 220
symbian, 228
XIP, 223

Mobile pervasive computing, 4
Moblie ad hoc network, 179

AODV
RREP, 200

Mosh, 244
evaluation, 250
overview, 245
speculative local echo, 249
SSH protocol, 246
SSP protocol, 247

P
Personal area network

bluetooth, 126
maximum bandwidth, 130
packet format, 130
physical links, 129
piconet, 128
protocol, 132

scatternet, 128
topology, 128

infrared, 137
protocol, 138
topology, 140
transport protocol, 142

summary, 143

S
Smart applications, 532

E-Alert and response, 537
mhealthcare, 536
navigation, 535
smart walking stick, 536
TSN, 537

Smart environment, 13, 509
context aware computing, 15
driverless cars, 15

vehicle to vehicle communication,
16

system requirements, 521
technological issues, 523
terminology, 510

Storage system, 475
disconnected operation, 476
QRPC

scheduling, 480
RDO

caching, 481
consistency, 481

rover, 477
design, 478
QRPC, 477, 479
RDO, 477, 479

U
Ubiquitous computing, 4

W
WAP, 251

components, 253
protocol stack, 254
WDP, 259
WML, 255
WMLScript, 256
WSP, 258
WTLS, 259
WTP, 258

Wireless cellular communication
cellular architecture

cell geometry, 24

Index 545

cell sectoring, 31
cell splitting, 31
Erlang, 34
Erlang B formula, 37
frequency planning, 23
frequency reuse, 21
grade of service, 34
signal to interference ratio, 28
spatial multiplexing, 32
traffic intensity, 34

channel assignment, 39
ACO matrix, 46
distributed channel assignment, 46
dynamic channel assignment, 45
fixed channel assignment, 41

co-channel interference, 27
bel, decibel, 27

handoff, 48
hystersis, 49
mobile assist handoff, 52
mobile controlled handoff, 52
network controlled handoff, 52
policies, 50
received signal strength, 52

Wireless LAN
ALOHA, 113
CSMA/CA, 115
distributed coordination function, 116

DIFS, 118
RTS/CTS, 118
SIFS, 118

MAC and PHY standards, 104
MAC sublayer, 111
mobility support, 96
multiple access protocols, 112
network topology, 102
point coordination function, 122

CAP, 122
CF-ACK frame, 123
CF-poll frame, 123
CFP, 122
PIFS, 122

protocol, 110
radio access technologies, 111
spread spectrum, 105

DSSS, 106
FHSS, 106

standards, 98
summary of standards, 101
technologies, 98

Wireless sensor network
6LoWPAN, 161

header compression, 165

IP over IEEE 802.15.4, 164
IPv6, 162
protocol stack, 165
routing, 170

architecture, 268
characteristics, 266
data aggregation, 287
data fusion, 287

abstract sensor, 294
algorithms, 291
Bayesian, 292
challenges, 291
definitions, 288
Dempsted-Shafer, 292
DSC, 295
inference based, 292
interest dissemination, 290
key design issues, 289
purpose, 292

IEEE 802.15.4
CFP, CAP, 153
CSMA-CA, 154
FFD, 149
MAC frames, 152
RFD, 149

IP integration
downstream routing, 286
non IP solution, 285
proxy gateway, 285

location based routing, 276
energy consumption, 277

multipath based routing, 280
negotiation based routing, 280

QoS, 282
SAR, 283

network organization, 270
operating systems

contiki, 269
RETOS, 267
tiny OS, 269

query based routing, 280
routing, 271

flat network, 273
hierarchical network, 275
LEACH, 275
multipath based routing, 281
negotiation based routing, 282
protocol classification, 272
query based routing, 282

RPL
DODAG, 174

technologies, 148
WSN versus MANET, 267

546 Index

ZigBee
coordinator, 158
device object, 158
FFD, 150
IEEE 802.15.4, 149
protocol, 149

RFD, 150
router, 158

ZigBee IP, 175
CoAP, 172
REST, 172
RPL,RoLL, 173

	Preface
	Acknowledgements
	Contents
	About the Author
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Part I Wireless Networking
	1 Mobile Distributed Systems: Networking and Data Management
	1.1 Introduction
	1.2 Mobile Pervasive and Ubiquitous Computing
	1.3 Characterizing Mobile Distributed System
	1.4 Mobile Cloud Computing
	1.5 OS for Mobile Devices
	1.6 Mobile Applications
	1.6.1 mHealthcare
	1.6.2 Logistic and Transport Management

	1.7 Smart Environments
	1.7.1 Context Aware Computing
	1.7.2 Driverless Cars

	1.8 Organization of Book
	References

	2 Cellular Wireless Communication
	2.1 Introduction
	2.2 Frequency Planning
	2.2.1 Co-channel Interference
	2.2.2 Cell Splitting and Sectoring

	2.3 Traffic Intensity
	2.4 Channel Assignment
	2.4.1 Fixed Channel Assignment
	2.4.2 Dynamic Channel Assignment Policies

	2.5 Handoff
	2.5.1 Handoff Policies
	2.5.2 Handoff Protocols

	References

	3 GSM, GPRS and UMTS
	3.1 Introduction
	3.2 GSM Architecture
	3.2.1 Mobile Station
	3.2.2 Base Station Subsystem
	3.2.3 Network Subsystem
	3.2.4 GSM Radio Resources
	3.2.5 Channel Types
	3.2.6 Frame Structure

	3.3 GSM Signaling Protocols
	3.4 Call Setup
	3.4.1 Mobile Terminated Calls
	3.4.2 Mobile Originated Calls
	3.4.3 Mobility Management

	3.5 GPRS Network
	3.6 UMTS
	3.6.1 UTRAN
	3.6.2 WCDMA
	3.6.3 Handoffs in UMTS
	3.6.4 UMTS Interface Protocol Model
	3.6.5 Radio Network Layer

	References

	4 Wireless Local Area Network
	4.1 Introduction
	4.2 Mobility Support and Wireless Networks
	4.3 WLAN Standards
	4.3.1 IEEE Standards

	4.4 Network Topology
	4.5 Physical Layer and Spread Spectrum
	4.5.1 Standard for PHY and MAC Layers
	4.5.2 Spread Spectrum
	4.5.3 Protocol Stack

	4.6 MAC Sublayer
	4.6.1 Radio Access Technologies
	4.6.2 Multiple Access Protocols
	4.6.3 ALOHA
	4.6.4 CSMA/CA
	4.6.5 Distributed Coordination Function
	4.6.6 Point Coordination Function

	References

	5 Short Range Radio Protocols: Bluetooth and IR
	5.1 Introduction
	5.2 Bluetooth
	5.2.1 Packet Format
	5.2.2 Protocol Stack
	5.2.3 Bluetooth-Enabled Applications

	5.3 Infra Red
	5.3.1 IR Protocol Stack

	5.4 Comparison of Bluetooth and Infrared
	References

	6 Low Power Communication Protocols: ZigBee, 6LoWPAN and ZigBee IP
	6.1 Introduction
	6.2 IEEE 802.15.4
	6.3 ZigBee Protocol Stack
	6.4 6LoWPAN
	6.4.1 IPV6
	6.4.2 IP Over IEEE 802.15.4
	6.4.3 Compression, Fragmentation and Reassembly
	6.4.4 Routing
	6.4.5 CoAP Protocol
	6.4.6 RPL Routing Protocol

	6.5 ZigBee IP
	6.5.1 Protocol Stack

	References

	7 Routing Protocols for Mobile Ad Hoc Network
	7.1 Introduction
	7.2 Classification of Routing Protocols
	7.2.1 Distance Vector Routing

	7.3 Destination-Sequenced Distance Vector Routing
	7.3.1 Advertisement of Routes
	7.3.2 Propagation of Link Break Information
	7.3.3 Stability of Requirements
	7.3.4 Guarantee for Loop Free Paths
	7.3.5 Forwarding Table and Update Propagation
	7.3.6 Example

	7.4 Dynamic Source Routing
	7.4.1 Overview of the Algorithm
	7.4.2 Route Discovery
	7.4.3 Route Maintenance
	7.4.4 Piggybacking on Route Discovery
	7.4.5 Handling Route Replies
	7.4.6 Operating in Promiscuous Mode

	7.5 Ad hoc On-demand Distance Vector Routing
	7.5.1 Design Decisions
	7.5.2 Route Tables
	7.5.3 Unicast Route Discovery and Maintenance
	7.5.4 Multicast Route Discovery and Maintenance

	7.6 Zonal Routing Protocol
	7.6.1 Routing Zones
	7.6.2 Interzone Routing
	7.6.3 Bordercast Tree and Query Control
	7.6.4 Random Delay in Query Processing
	7.6.5 Route Caching

	References

	8 Mobile OS and Application Protocols
	8.1 Introduction
	8.2 Mobile OS
	8.2.1 Smartphones
	8.2.2 Difficulties in Adopting Desktop OS
	8.2.3 Mobile OS Features
	8.2.4 Mobile OS Platforms
	8.2.5 J2ME
	8.2.6 Symbian OS
	8.2.7 Android OS
	8.2.8 Iphone OS (iOS)
	8.2.9 Comparison of iOS and Android
	8.2.10 Cross Platform Development Tools

	8.3 Mobile IP
	8.3.1 Overview
	8.3.2 Agent Discovery
	8.3.3 Registration
	8.3.4 Routing and Tunneling

	8.4 Mobile Shell (Mosh)
	8.4.1 Overview of Mosh
	8.4.2 State Synchronization Protocol
	8.4.3 Design Considerations of Terminal Emulator
	8.4.4 Evaluation of Mosh

	8.5 Wireless Application Protocol
	8.5.1 Performance Bottleneck Faced by HTTP
	8.5.2 WAP Protocol Stack

	References

	Part II Mobile Data Management
	9 Data Centric Routing, Interoperability and Fusion in WSN
	9.1 Introduction
	9.2 Characteristics of WSN
	9.2.1 WSN Versus MANET

	9.3 Architecture of WSN
	9.3.1 Communication Architecture
	9.3.2 Network Organization

	9.4 Routing in Sensor Network
	9.4.1 Classification of Routing Protocols

	9.5 Flat Network Based Routing
	9.5.1 Hierarchical Routing Protocols
	9.5.2 Location Based Routing Protocols
	9.5.3 Selection of Forwarding Neighbor

	9.6 Routing Based on Protocol Operation
	9.6.1 Multipath Routing Protocols
	9.6.2 Query Based Routing Protocols
	9.6.3 Negotiation Based Routing Protocols

	9.7 Interconnection of WSNs to the Internet
	9.7.1 NAT Based IP-WSN Interconnection

	9.8 Data Fusion in WSN
	9.8.1 Definitions
	9.8.2 Data Collection Model
	9.8.3 Challenges in Data Fusion
	9.8.4 Data Fusion Algorithms

	References

	10 Location Management
	10.1 Introduction
	10.1.1 Registration and Paging

	10.2 Two Tier Structure
	10.2.1 Drawbacks of Fixed Home Addresses

	10.3 Hierarchical Scheme
	10.3.1 Update Requirements
	10.3.2 Lookup in Hierarchical Scheme
	10.3.3 Advantages and Drawbacks

	10.4 Caching
	10.4.1 Caching in Hierarchical Scheme

	10.5 Forwarding Pointers
	10.6 Replication
	10.7 Personal Mobility
	10.7.1 Random Process, Information and Entropy
	10.7.2 Mobility Pattern as a Stochastic Process
	10.7.3 Lempel-Ziv Algorithm
	10.7.4 Incremental Parsing
	10.7.5 Probability Assignment

	10.8 Distributed Location Management
	10.8.1 The Call Setup Protocol
	10.8.2 Update
	10.8.3 Data Structures and System Specification
	10.8.4 The Cost Model

	References

	11 Distributed Algorithms for Mobile Environment
	11.1 Introduction
	11.2 Distributed Systems and Algorithms
	11.3 Mobile Systems and Algorithms
	11.3.1 Placing Computation
	11.3.2 Synchronization and Contention
	11.3.3 Messaging Cost

	11.4 Structuring Distributed Algorithms
	11.5 Non-coordinator Systems
	11.5.1 All Machines are Equivalent
	11.5.2 With Exception Machines
	11.5.3 Coordinator Based Systems

	11.6 Exploiting Asymmetry of Two-Tier Model
	11.6.1 Search Strategy
	11.6.2 Inform Strategy
	11.6.3 Proxy Strategy

	11.7 Termination Detection
	11.7.1 Two Known Approaches
	11.7.2 Approach for Mobile Distributed Systems
	11.7.3 Message Types
	11.7.4 Entities and Overview of Their Actions
	11.7.5 Mobile Process
	11.7.6 Base Stations
	11.7.7 Handoff
	11.7.8 Disconnection and Rejoining
	11.7.9 Dangling Messages
	11.7.10 Announcing Termination

	References

	12 Data Dissemination and Broadcast Disks
	12.1 Introduction
	12.2 Data Access Issues in Mobile Environment
	12.3 Pull and Push Based Data Delivery
	12.4 Dissemination in Mobile Environment
	12.5 Comparison of Pull and Push Models
	12.6 Classification of Data Delivery Models
	12.7 Broadcast Disk
	12.7.1 Flat Periodic Broadcast Model
	12.7.2 Skewed Periodic Broadcast
	12.7.3 Properties of Broadcast Programs
	12.7.4 Advantages of Multi-Disk Program
	12.7.5 Algorithm for Broadcast Program
	12.7.6 Parameters for Tuning Disk Model
	12.7.7 Dynamic Broadcast Program
	12.7.8 Unused or Empty Slots in Broadcast Disk
	12.7.9 Eliminating Unused Slot

	12.8 Probabilistic Model of Broadcast
	12.9 Memory Hierarchy
	12.10 Client Cache Management
	12.10.1 Role of Client Side Caching
	12.10.2 An Abstract Formulation
	12.10.3 Consideration for Caching Cost
	12.10.4 Cost-Based Caching Scheme: PIX and LIX
	12.10.5 Pre-fetching Cost

	12.11 Update Dissemination
	12.11.1 Advantages of Broadcast Updates
	12.11.2 Data Consistency Models

	References

	13 Indexing in Air
	13.1 Introduction
	13.2 Address Matching and the Directory
	13.3 Preliminary Notions
	13.4 Temporal Address Matching Technique
	13.5 Tuning Time and Access Latency
	13.6 Indexing in Air
	13.6.1 (1, m) Indexing Scheme

	13.7 Distributed Indexing Scheme
	13.7.1 Distributed Indexing with No Replication
	13.7.2 Replication Based Distributed Indexing
	13.7.3 Full Path Replication Scheme
	13.7.4 Partial Path Replication
	13.7.5 Access Protocol

	13.8 Exponential Indexing
	13.8.1 Generalized Exponential Indexing
	13.8.2 Analysis

	13.9 Hash A
	13.10 Hash B
	References

	14 Caching and Data Replication in Mobile Environment
	14.1 Introduction
	14.2 Caching, Prefetching and Hoarding
	14.3 Invalidating and Refreshing Cache
	14.4 Strategies for Caching with Stateless Servers
	14.4.1 TS Strategy
	14.4.2 AT Strategy
	14.4.3 Signature Strategy

	14.5 Requirements for Replication
	14.5.1 Pitfalls of Replication

	14.6 Replication Techniques
	14.7 Rule Based Reconciliation Approach
	14.7.1 Two-Tier Replication
	14.7.2 Performance Analysis
	14.7.3 Caching and Replication in CODA

	14.8 Relaxed Data Consistency Models
	14.8.1 Requirements for Session Guarantees
	14.8.2 Implementation Related Issues

	References

	15 Storage Systems for Mobile Environment
	15.1 Introduction
	15.2 Disconnected Mode of Operation
	15.3 Rover Toolkit
	15.3.1 Design of Rover Toolkit

	15.4 Mobile Distributed File Systems
	15.5 CODA
	15.5.1 Overview of CODA
	15.5.2 Scalability
	15.5.3 Disconnection and Failures
	15.5.4 Replica Control Strategy
	15.5.5 Visibility of Updates
	15.5.6 Venus and Its Operations
	15.5.7 Reintegration

	15.6 InterMezzo
	15.6.1 Filtering Access to Files
	15.6.2 Protocols
	15.6.3 Functions of Lento
	15.6.4 Recovery and Cache Validation

	15.7 File System for Connected Clients
	15.7.1 Concurrency Control
	15.7.2 Conflict Detection and Resolution
	15.7.3 Cache Replacement

	References

	16 Context-aware Infrastructures for Smart Environment
	16.1 Introduction
	16.2 Terminology and Historical Prospectives
	16.3 Designing Context-aware Applications
	16.3.1 Representation of Contextual Data
	16.3.2 Extraction of Contextual Data
	16.3.3 Adaptability

	16.4 Formal Modeling of Contexts
	16.4.1 ConChat Model

	16.5 System Requirements
	16.5.1 Inhabitants Centered Requirements
	16.5.2 Technology Related Issues

	16.6 Middleware Architectures
	16.6.1 Layered Middleware Architecture
	16.6.2 Service Oriented Middleware
	16.6.3 Agent Oriented Middleware
	16.6.4 Object Oriented Middleware

	16.7 Smart Applications
	16.7.1 Context-aware Applications Using Smart Phones

	References

	Index

