Developing Business Applications
with OpenStep™



Springer Science+Business Media, LLC



Nik Gervae Peter Clark

Developing
Business Applications
with OpenStep™

With 37 Illustrations

Springer



Library of Congress Cataloging-in-Publication Data
Gervae, Nik.
Developing business applications with OpenStep / Nik Gervae, Peter
Clark.

. om.
Includes bibliographical references and index.
ISBN 978-0-387-94852-2 ISBN 978-1-4612-1852-4 (eBook)

DOI 10.1007/978-1-4612-1852-4

1. Application software—Development. 2. OpenStep 3. Business—
Data processing. 1. Clark, Peter. II. Title.
QA76.76.A65G46 1996
005.2—dc20 96-32683

Printed on acid-free paper.

© 1997 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. 1997

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by
anyone.

Production managed by Frank Ganz; manufacturing supervised by Johanna Tschebull.
Photocomposed pages from the authors’ FrameMaker files.

Printed and bound by R.R. Donnelley & Sons, Harrisonburg, VA.

Printed in the United States of America.

987654321



Contents

Foreword . . ... ... ... ... . i xi
Preface. . . . ...... ... i i i xiii
Acknowledgments and Disclaimers . . . . ... ... ... xvii

Part One: OpenStep

Chapter 1: What Is OpenStep? . . . ... ... ....... 3
The OpenStep Specification . . . . . ... ... .. ... ... 4
Components of the OpenStep Specification . . . . . . . .. 6
User and Development Environments . . . . . ... ... ... 12
NeXT’s OPENSTEP Release 4 for Windows NT . . . . . . 12
SunSoft’s OpenStep 1.0 for Solaris . . . . . . ... .. ... 13
NeXT’s OPENSTEP Release 4 for Mach. . . . .. ... .. 14
Chapter 2: The ObjectModel . . . . . .. ... ... .... 15
Principles of Object-Oriented Programming . . . . . . . .. .. 15
Encapsulation. . . . . .. ... ... o oo L 16
Inheritance . . . . . .. ... ..o L 17
Polymorphism . . . . ... ... .. . oL 18
Dynamism . . ... ... ... ... ..o oL, 18
Basics of the Objective-C Language. . . . . . .. ... ... .. 20
Objectsand Messages. . . . . ... .. ... ........ 21
Implementing Objects: Classes and Protocols . . . . . . . . 22
Run-Time Features. . . . . . .. ... . ... .. ....... 27
Class Objects . . . . . ... ... ... . ... . ..., 27



vi

Developing Business Applications with OpenStep

TheRootClass. . . .. ... ... ... . .. ... .... 28
Object Lifetime. . . . . . ... ... . ... ... ... 28
Archiving. . . . ... L Lo 30
Objective-Cand C++. . . . . .. .. .. o o .. 31
Mixing Objective-Cand C++. . . . . . .. ... ... ... 33
Chapter 3: The Foundation Framework. . . . . . ... ... 35
TheClasses. . . . . . . . . o 0 v i e e 37
Core Run-TimeClasses. . . . . ... .. ... .. ..... 37
Value and CollectionClasses . . . . . . ... ... ..... 44
Classes for Distributed Objects and Concurrency . . . . . . 48
Process Environment Classes . . . . . .. ... ....... 50
Chapter 4: The ApplicationKit . . . ... .......... 53
Preliminaries . . . . . . . . . . ... 54
Core Application Functionality. . . . . ... ... ... .. .. 55
Graphical Structure. . . . ... o oL 56
Driving the Application . . . ... ... .......... 60
Standard User Interface Controls. . . . . . . ... ... .. 64
Other Functional Areas. . . . ... ... ... .. ....... 65
TextandFonts . . . . . .. ... ... ... ........ 65
Drawing Aids. . . . . ... . ... ... ... ... 67
Printing. . . . . ... ... 68
System Services. . . . . . ... Lo L. 69
Chapter 5: NeXT’s OPENSTEP for Windows NT . ... .. 73
The UserInterface . . . . . ... ... ... .. ........ 74
User System Programs . . . . . ... .............. 75
Background Programs . . . .. ... ... .. L. 75
Demo Applications. . . . .. ... .. ... .. ... ... 76
The Development Environment . . . . .. ... ... .. ... 76
ProjectBuilder . . . . .. ... ... L o 77
Interface Builder . . . . . .. ... ... ... ... .. .. 81
OtherTools . . . . ... ... . . .. .. 82
Chapter 6: SunSoft’s Solaris OpenStep . . . . . .. ... .. 85
TheUserInterface . . . . . . .. .. . . ... 85
User System Programs . . . . . . ... .. ........... 88



Contents Vil

Workspace Manager . . . . ... ... .. ... . ..... 88
Mail ... 89
Edit. . . ... . 89
Terminal . . . . . ... 90
Preview. . . . . . . .. 91
Preferences . . . . . . . . ... ... 91
The Development Environment . . . . . . .. ... ... ... 91
ProjectBuilder . . . . . . . ... ... Lo 92
Interface Builder . . . . . . ... .. .. L L 96
Header Viewer . . . . . . ... ... .. ... .. ... .. 96
Chapter 7: Building an Application. . . . . ... ... ... 99
PayPerView: The Design . . . . . ... ... ... ... ... 100
Creating the Project . . . . . ... ... ... ... ... ... 101
Building the Interface. . . . . . ... ... ... .. ... .. 103
Laying Outthe Window . . . . .. ... ... ...... 104
Creating the Controller Objects . . . . . ... ... ... 107
Connecting Interface Objects. . . . . . . ... ... ... 109
Fleshing Outthe Classes . . . . .. ... ... ........ 110
The ProgramController Class. . . . . .. ... ... ... 111
The ProgramClass . . . . . ... .. ... ........ 114
The OrderController Class . . . . . . ... ... ..... 115
Building and Debugging . . . . . .. .. ... ... ... .. 118
NeXT'sWay . . . ... . .. . ... 118
SunSoft'sWay . . . . . ... ... ... ... ... 120

Part Two: Business Applications

Chapter 8: The Character of a Business Application . . . .125

The Business Environment . . . . . . ... ... ....... 125
Data, Process, and Policy . . . . ... ... ........ 126
The Elements of a Business Application . . . . ... ... .. 127
Databases. . . . . . .. ... ... ... 127
Business Components . . . . .. ... ... ... 128
Business Entities . . . . . . . .. .. ... .. ... ... 128
Presentation of Information . . . . ... ... ...... 129

Elementsas Objects . . . . .. ... ... .. ........ 129



vili  Developing Business Applications with OpenStep

Component Objects . . . . ... ............. 129
Business Objects . . . . . .. ... ... ... .. ... 130
Presentation Objects . . . . . . . ... ... ....... 130
A Unified Approach to Business Applications . . . . . .. .. 131
Chapter 9: Distributed Applications . . . . ........ 133
What Distributed Objects Does . . . . . . ... .. ..... 133
PayPerView with Distributed Objects . . . . . ... ... .. 134
HowlIteWorks . . . . .. ... .o o oo 137
Advertisingan Object. . . . .. ... .. ... ... ... 137
Contacting the Server. . . . . .. ... ... .. .. ... 139
Remote Message Processing . . . . .. ... ....... 142
Transferring Data and Objects . . . . . .. ... ... .. 145
Handling Failures. . . . . ... .............. 143
Other Distribution Models. . . . . . ... ... ... ..., 149
Microsoft OLE Automation . . . . .. ... ....... 149
OMGsCORBA . . . .. ... ... ... ... ..... 152
Where Distributed Objects Falls Short . . . . . . . ... ... 153
Limitations in the Distribution Mechanism . . . . . . .. 154
Absent and Incomplete Services . . . . .. .. ... ... 154
MissingTools. . . . ... .. ... ... . .. ... 155
Design with Distributed Objects . . . . . . . ... ... ... 156
Performance . . .. ... ... .. ... . ... 157
Reliability. . . . . ... ... . . .. . ., 15¢
Concurrency . . . . . v v i 159
Interoperability . . . . . ... ... .. L L L, 160
Perspective . . . . . . . ... 161
Chapter 10: Database Applications . . . . ... ...... 163
What the Enterprise Objects Framework Does . . . . . . . .. 164
What's an Enterprise Object?. . . . . . . ... ... ... 165
Model-View—Controller Revisited . . . . . ... ... .. 166
Specific Features . . . . . .. ... ... L. 167
PayPerView with Enterprise Objects . . . . . ... ... ... 168
Defining the Relational-to-Object Mapping . . . . . . . . 169
Revising the User Interfaceand Code. . . . . . . ... .. 174
Changes to ExistingCode . . . . .. ... ... ..... 180

HowlItWorks . . . . . . . . . . . o e 181



Contents  Ix

The AccessLayer . . . . .. ... ... ... ... . ... 182
The Control Layer . . . . ... ... ... ... ... .. 188
The Interface Layer. . . . . .. .. ... ... ... .. 194
Perspective . . . . .. ... .. L 196
Chapter 11: World Wide Web Applications. . . . . . . .. 197
What WebObjects Does . . . . . ... ... ... ... ... 199
ThePartsofaPage. . . . ... ... ... .. ... ... 199
Reusable Components . . . . .. ... ... ... ..., 200
Session State Management . . . . .. ... .. ... 201
A Sample Page Definition . . . . ... ... ... ..... 202
HowlItWorks . . . . .. ... .. .. .. ... ..., 204
The Request—Response Loop. . . . . ... ... .. ... 205
Following Hello World. . . . . .. ... ... ...... 206
Perspective . . . . . . . ... 207

Part Three: Development Topics

Chapter 12: Development Topics . . . . . ... .. .. .. 211
Chapter 13: Project Management
and the Development Life Cycle. . . . . ... ... .. 213
Building Business Models. . . . . ... ... ... .. ... 216
Constructingthe Model . . . . . . ... ... ... .. 216
VerifyingtheModel . . . . . ... ... . .. 218
Choosing a Methodology. . . . .. ... ... ... .. 219
Rapid Prototyping . . . . . . .. ... ... ... ... 220
Iterative Development . . . . . . .. ... L. 222
Scheduling and Milestones . . . . . .. ... ... ... ... 224
Defining Milestones . . . . .. .. ... ... ... ... 225
Revising the Schedule. . . . . ... ... ... ... .. 227
The Benefitsof Reuse. . . . . ... ... ... ...... 228
Chapter 14: Portability . . . . ... ............ 231
Guaranteed Portable . . . . . .. ... L. 232
Guaranteed Nonportable . . . . . ... ... ... ... .... 232

GrayAreas . . . . . . .. .. 233



X

Developing Business Applications with OpenStep

System-Neutral Libraries and Tools . . . . .. ... ... 234
Additionsto OpenStep . . . . . . ... .......... 234
Noncode Resources. . . . . ... ... ... ....... 235
Chapter 15: Testing and Debugging . . ... ... .. .. 237
DebugginginOpenStep . . . . . .. ... ... ... .. ... 238
Common Problem Areas . . . . . ... ... ......... 239
ReferenceCounts. . . . . . . . . . .. .. v v ... 239
Run-Loop Asynchrony . . . . .. ... .. .. ... ... 240
Noncode Logic: Nib Filesand Models . . . . . . ... .. 240
Exceptions . . . . ...... ... ... .. .. .. ... 24]
Weak Typing. . . . ... ... ... .. .. ... 242
Distributed Objects. . . . . . ... ... ... ...... 243
Chapter 16: Performance . . . . . ... ... ... .... 245
Measuring Performance . . . . ... ... . L L 245
Improving Performance . . . . . ... ... ... ... ... 246
Tuning Algorithms . . . . . . .. ... ........ 247
Reducing Memory and Disk Usage. . . . . ... ... .. 247
Managing Autoreleased Objects . . . . . . ... ... .. 248
Loading Resources on Demand. . . . .. ... ...... 248
Using C++and Standard C. . . . . . .. ... ... ... 249
Using Threads and Distribution . . . . . . ... ... .. 249
Overriding Reference-Count Methods . . . . . . .. ... 250
Overriding Objective-C Dynamism . . . ... ... ... 250

Appendices

Appendix A: PayPerViewSource . . . ........... 255
Appendix B: PayPerView with Distributed Objects. . . . . 265
Appendix C: PayPerView with Enterprise Objects . . . . . 271
Suggested Reading. . . . . .. ............... 281



Foreword

OpenStep™ is a landmark development. It brings together many of the
features we have all been striving for in a software development environ-
ment: true object orientation, the drive for open systems, interopera-
bility, robust class libraries, and the ability to separate the user interface
from business logic in a way that allows applications to be deployed on

the World Wide Web.

This book is also a landmark. It is one of the first books that give the rest
of the world an unbiased perspective of what OpenStep really has to
offer. It does this without the hype surrounding objects and from the
perspective of mature and seasoned programmers who have already used
these technologies in a business setting. Because the authors also have
experience with mainstream languages such as C and C++, they give a
fresh perspective of OpenStep that many of us will appreciate.

This book is honest to its readers. It explains the strengths of OpenStep
but doesn’t try to hide its few warts. Having a balanced view of any
innovative technology helps us understand the business reasons for why
we need to take a close look at the technology. We should never rush
blindly into something because a consultant told us it was the “hottest
new thing.”

You will also find this book unique in its focus on the true business
benefits of the object-oriented software development environment.
There have been and will continue to be books written by academics
that give fine introductions to other aspects of object-oriented systems
like drawing, graphics, and mathematical visualization. But this book
really focuses on the business reasons to invest in object-oriented tech-

xi



xit

Developing Business Applications with OpenStep

nologies: They help you get your software developed faster, and the
results are easily adapted to the changing business environments in
which we work. The authors have an intimate knowledge of the differ-
ences between systems programming, where performance is the first
priority, and applications programming, where time to market and
adaptability are the benefits for which business managers strive.

This book is well-rounded. It looks at a bigger picture than just the tech-
nology—it also looks at the human side of managing object-oriented
projects. This is critical since people who have been through the process
of helping an organization transition from a traditional procedural
programming culture to a truly object-oriented culture know that many
times companies fail because they don't take into account the human
side of the equation. The authors also know that understanding the
process of object-oriented development is sometimes just as important
as understanding the technology of object-oriented development.

For those of you who have experience with the older NextStep® or
Smalltalk systems, I think this book is essential. Much has changed, and
the perspective that OpenStep takes will help anyone who is moving
forward in any true object-oriented technology.

For those of you who are just cutious about leading-edge object-oriented
technologies, this book will let you know why customers are migrating
to OpenStep: It allows applications to be created faster and with more
flexibility. With the increased rate of change confronting business
managers and the incredible time-to-market pressures facing informa-
tion systems managers, this book should be a starting point for your
competitive advantage.

Dan McCreary

President, Integrity Solutions, Inc.
St. Paul, Minnesota

July 1996



Preface

The nature of business is changing rapidly. What was good enough five
years ago, or even five months ago, may not be good enough now.
Almost every business is seeing competition growing fiercer and
customers more demanding, while also finding opportunities in new
channels of marketing, sales, and distribution. Successfully meeting the
competition and utilizing these new channels requires having accurate,
dependable, up-to-date information at your command.

It’s the job of business applications to take in, process, and deliver this
information. As the environment of business changes, the information
you need to make good decisions changes along with it. Business
applications that can cope with both change itself and the pace of
change—applications that can be adapted to new conditions quickly—
are proving to be strategic advantages for the companies that have them.
On the other hand, software systems that are inflexible in the face of
change or that take too long to modify soon become liabilities.

Speed and flexibility are today’s hot buttons. For some financial firms,
software needs to be crafted and deployed in a matter of days to take
advantage of new market opportunities. Miss the deadline, and you've
missed the market. Other enterprises may need to build a new applica-
tion every time they prepare a new product, service, or promotion, and
building the application is a key part of getting into the marketplace.
OpenStep and its predecessor, NextStep, have won accolades as software
environments built to address exactly these needs.

Business applications are addressing more issues, becoming bigger and
more complex, and hence they take longer to write. This reality drives

xiit



xiv  Developing Business Applications with OpenStep

the need for faster and more flexible applications. However, building
GUI-based applications is difficult; building applications that also talk
to a database is more complex; and building applications that use both
databases and the World Wide Web can be harder still. The only way to
make building complex things easier is to package the complexity some-
place where you don't have to deal with it. OpenStep does this by taking
the complex but well-understood parts of applications and placing them
into frameworks. The OpenStep frameworks hide complex issues
behind a set of consistent, powerful, easy-to-understand interfaces,
letting the development team focus on writing just those parts of the
application that are specific to the business problem they’re trying to
address. Just as important, the frameworks know about and leverage
each other. This means that developers often don't need to write much
code, if any, to add new capabilities to an existing application when
there’s a framework available that provides that capability.

OpenStep’s frameworks support the rapid construction and evolution of
applications. In fact, the term “extemporaneous prototyping” has been
used to describe just how fast development takes place in this environ-
ment. Building working prototypes in a matter of hours is common,
and extending the prototypes into production applications can happen
in days or weeks instead of months. The more work the supportirg
environment does for you, automatically and behind the scenes, the
easier and quicker it becomes to build applications. You can then focus
on your business problem instead of worrying about your tools. Tha-’s

really the primary impetus behind OpenStep.

OpenStep itself consists of five basic pieces of technology: the Founda-
tion Framework™, the Application Kit™, the Distributed Objects
system, the Enterprise Objects Framework™, and the WebObjects™
framework. Systems compliant with the OpenStep specification include
at least the Foundation Framework and Application Kit, which include
the Distributed Objects system. The Distributed Objects system is also
available on several platforms independent from the rest of OpenStep,
allowing you to put some of your object-oriented computing on mcre
powerful servers while still gaining the development benefits of
OpenStep on the client platform. The Enterprise Objects Framework
supports business objects by handling all the details of storing their state



Preface  xv

in relational databases and of displaying and editing their values in
OpenStep applications. WebObjects makes data available over the
World Wide Web, whether on the Internet or inside a corporate
intranet, using HTML as a display medium.

These pieces of technology contain over a decade’s worth of experience
in building object-oriented applications to address business needs.
Together they encapsulate much of the complexity of building applica-
tions. In this book, we explore what each of them offers and discuss how
these technologies apply specifically to designing, building, and
adapting applications in the business environment.

Thank you for considering our book. Its the product of two years
work—not only of writing, but of actually taking part in the develop-
ment of OpenStep itself and applications that use it. We believe that the
OpenStep technology and product suites are among the most flexible
and powerful applications of object-oriented technology on the market
today. However, that technology isn't interesting unless it’s useful in the
real world. This book explores what OpenStep is, how it fits into the
business environment, and the ways it changes the rules of application
development. We've found that OpenStep is indeed useful and that it
represents a compelling new way of building software; we believe that
you will find the same results.



Acknowledgments
and Disclaimers

To my parents, Steven and Paulette, who brought me into this world and
have taught me much about life, and to all my other teachers.

—Nik Gervae

To my wife, Molly, who’s supported me through some long nights. Also to my
parents, Terrence and Kathleen, who hoped for a child blessed with curiosity.

—Peter Clark

We Thank...

We couldn’t begin to count or name all the people who made this book
possible. From the engineers who developed the software, to the writers
who documented it, to the quality assurance folks who banged on it,
and everybody else, a ton of work has gone into the OpenStep systems
from NeXT and SunSoft. However, we both have a few particular
groups and individuals to single out for their assistance. Many of them
provided particular help in explaining specific parts of OpenStep to us.
Despite this, any errors in the retelling are ours alone.

Nik Thanks...

I've bothered my share of people at NeXT, SunSoft, and elsewhere with
my incessant questions, often about the most trivial details, and with my

Xvii



xviii Developing Business Applications with OpenStep

requests for them to read a bit of the book here or there or to explain
something to me a bit more. The people I bothered most deserve some
small acknowledgment, if not cash prizes. Here they are, in alphabetic
order so as not to bruise any egos:

Bruce Arthur Craig Federighi Ian O’Donnell

Grant Baillie John Graziano Bruce Ong

Brian Bias Ron Hayden Toby Paterson

Fréderic Bonnard Lennart Lévstrand ~ Karin Stroud

Thomas Burkholder Wendy Mattson Ken Taylor

Jim DiPalma Katie McCormick ~ Kelly Toshach
Matt Morse

I'd also like to thank my co-author, Peter Clark, and my editor at
Springer-Verlag, Martin Gilchrist, for the seemingly endless delays they
put up with. In addition to these people, I'm sure I've forgotten some-
body or other. If you think your name should be on this list, just bring
your purchased copy to me and I'll be happy to write your name in. ;-)

Peter Thanks...

Credit needs to be given to the OpenStep and NEO development teams
at SunSoft, who are some of the most talented engineers I've ever had
the pleasure to work alongside. Thanks also go to everyone at Integrity
Solutions, who gave me the opportunity to develop NextStep and
OpenStep applications and to work with their customers to understand
how these technologies apply to day-to-day business operations. Lastly,
to my co-author, Nik Gervae, who not only dealt with all the hard issues
of writing a book, but also refined my pootly explicated concepts, gave
my words cogency, and taught me much about writing.

Disclaimers

Here’s the grain of salt you're supposed to take while reading this book.
In this section, we admit to the shocking truth of actually being in the



Acknowledgments and Disclaimers  xix

employ of our subject’s makers, and reveal our utter lack of clairvoyance
or other psychic gifts (but especially precognition).

We Worked for These People

We'll be right up front about it: We worked for NeXT and SunSoft
while writing this book. After starting the book as an independent
contractor, Nik decided to take on a job at NeXT writing documenta-
tion for the Enterprise Objects Framework. Balancing a full-time job
with this project was interesting, to say the least. He had also worked at
NeXT for a few years before. Nik’s working at the moment for Pacific
Data Images, a computer animation company.

Peter was working at SunSoft when he started on this book. He has since
moved on (returned, actually) to Integrity Solutions, a NextStep and
OpenStep consulting firm.

In short, we're biased. We've been using NextStep and OpenStep for
years, and we like them. Nonetheless, we've done our best to balance our
praise with a little criticism where it’s deserved. Also, despite our past
and present day jobs, the views we express in this book are ours alone
and should be attributed neither to NeXT nor to SunSoft, nor to any
other employee of those companies.

Caution: Construction Behind

We've done our best to ensure that this book is an accurate description
of OpenStep and related technologies. However, both NeXT’s and
SunSoft’s versions of OpenStep are in beta as we finish. We're certain
that something will have changed between now and when they ship. We
can only plead ignorance of the future, and beg your forgiveness.



xx  Developing Business Applications with OpenStep

Legal Stuff

This section’s just for the lawyers. You regular folks can skip it, honest
(unless you're like us and want to know who got mentioned in the
book). Following is a list of the trademarks we’ve knowingly used in this
book. All other trademarks mentioned belong to their respective owners.

NeXT, NextStep, Objective-C, NetInfo, OpenStep, Foundation Frame-
work, Application Kit, Project Builder, Interface Builder, Enterprise
Objects Framework, WebObjects, WebScript, D’OLE, Portable Distrit-

uted Objects, PDO, Workspace Manager, Header Viewer, and NeXT-
mail are trademarks or registered trademarks of NeXT Software, Inc.

Sun, SunSoft, Solaris, SunSoft Workshop, NEO, OpenWindows, Java,
and JavaScript are trademarks or registered trademarks of Sun Microsys-
tems, Inc. SPARC, SPARCompiler, and SPARCworks are trademarks cr
registered trademarks of SPARC International, Inc. UNIX is a registered
trademark in the United States and other countries, exclusively licensed
through X/Open Company, Ltd. OpenLook is a registered trademark of
UNIX Systems Laboratories.

PostScript, Display PostScript, and TIFF are trademarks or registered
trademarks of Adobe Systems Incorporated. Apple and Macintosh are
registered trademarks of Apple Computer, Inc. VT'100 is a trademark of
Digital Equipment Corporation. Informix is a registered trademark of
Informix Software, Inc. Intel is a registered trademark of Intel Corpora-
tion. PowerPC is a registered trademark of International Business
Machines Corporation. Microsoft, Windows, Windows 95, Windows
NT, and Visual Basic are trademarks or registered trademarks of
Microsoft Corporation. Netscape and Netscape Navigator are trade-
marks of Netscape Communications Corporation. Novell and NetWare
are registered trademarks of Novell, Inc. Oracle is a registered trademark
of Oracle Corporation. Sybase is a registered trademark of Sybase, Inc.
Unicode is a registered trademark of Unicode, Inc. X Window System is
a trademark of the X Consortium.



Part One: Opendtep



1 What Is OpenStep?

OpenStep is actually three things in one, a characteristic it inherited
from its parent, NextStep. Originally, NextStep came as an integral part
of a hardware—software system, so there wasnt much need to define its
precise nature. It could be regarded on one hand as the user interface, on
another hand as the classes used by application programs, and on a third
hand as the development tools, such as Interface Builder™, that devel-
opers used to create their applications. The name “NextStep” applied
equally well to all three.

OpenStep shares the same triune nature, though perhaps better differen-
tiated by virtue of being a multiplatform standard. We have, then, three
ways of viewing this thing called “OpenStep”:

As a run-time, or user, system. An OpenStep run-time system,
consisting of libraries and background programs, enables applica-
tions based on the OpenStep specification to run on a particular
operating system. This system may define its own user interface, as

do NeXT’s OPENSTEP™ for Mach and SunSoft’s Solaris®

OpenStep, or it may conform to its host system’s standard, as does
NeXT’s OPENSTEP for Windows NT™,

As a programming interface specification. The OpenStep specifi-
cation is an operating-system—independent, object-oriented
programming interface for creating applications. It includes two
rich object frameworks and a number of other programming
interfaces.

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



4

Developing Business Applications with OpenStep

As a development environment. An OpenStep development envi-
ronment is a set of tools for developing applications that conform
to the OpenStep specification, for managing projects, and for
defining user interfaces.

The run-time system is largely uninteresting, being simply a set of
libraries and background programs that sit around until needed by an
application created according to the OpenStep specification. We'll have
more to say about it when we examine the major implementations in
detail. The specification, on the other hand, is a major topic of interest,
defining the structure of the applications themselves. It's the ore
“OpenStep” that remains the same regardless of the operating systen.
For this reason we cover the specification first.

A great deal of OpenStep’s power, however, lies in the development
tools, which eliminate the need for most of the code you typically write
in developing a graphical application. To show how they work, we've
devoted an entire chapter to them at the end of Part One, illustrating
their use by developing a simple custom application. We introduce the
development tools after the specification, partly to ensure that you
understand the concepts behind them, and partly because NeXT ard
SunSoft have implemented the tools in slightly different ways. All of this
will become evident in the following chapters.

With this prologue out of the way, let’s examine the more interesting
parts of OpenStep.

The OpenStep Specification

The OpenStep specification defines the programming interface you use
to create applications that work with a run-time system. It’s a big inter-
face, containing over 100 object classes and 2,000 methods (proce-
dures). Fortunately, application developers seldom need to use much of
this interface directly, since the development tools described later take
care of most of the work. Further, the packaging of elements as object
classes allows developers to study particular subsystems as needed.



Chapter 1: What Is OpenStep? 5

Before reviewing the specification’s components, let’s examine the defini-
tion of OpenStep given earlier:

The OpenStep specification is an operating-system—independent,
object-oriented programming interface for creating applications.

Each element in this definition summarizes a number of important facts
that aren’t immediately obvious. They determine OpenStep’s applica-
bility to your needs and its relation to other products. The following
paragraphs reveal the hidden particulars of each element:

Operating-system—independent. OpenStep programs are fully
insulated from the host operating system (and hardware, for that
matter). All of a program’s essential needs can be met by using the
OpenStep API, though programs are free to use host-specific
libraries as well. An OpenStep run-time system must be available
on the host platform, of course, and this is limited by the features
that the host platform provides. OpenStep requires functionality
along the lines of the POSIX interface: robust interprocess
communication, support for threads, and so on. Given these, an

OpenStep program can be ported between systems as different as
UNIX® and Microsoft® Windows " with little effort.

Object-oriented. The bulk of the OpenStep interface is defined
in terms of object classes in the Objective-C® language. Casting
programmatic elements such as strings, buttons, and windows as
objects gives the programmer a uniform, natural model for
working with them. Many common paradigms are reused among
the classes, making them even easier to learn and use. Though you
do have to learn a new programming language, it’s actually quite
simple.

Programming interface. The OpenStep specification defines only
the programmatic interface for applications. It says nothing about
what an application’s user interface should look or behave like,
although it does define many classes that implement common
graphical user interface elements, such as buttons and scrollers. It
also says nothing about the tools required to create programs.
OpenStep development tools are currently not formalized art all,



6

Developing Business Applications with OpenStep

though NeXT’s and SunSoft’s implementations form a de facto
standard. See “User and Development Environments” on page 12
for descriptions of these two implementations.

For creating applications. The primary focus of the OpenStep
specification is the development of user applications that display a
graphical interface. OpenStep programs—especially business
applications—are often clients to a server process running else-
where. The largest component of the OpenStep specification, the
Application Kit, is all about defining functionality for user (client)
applications. Depending on how the libraries are packaged, you
can use parts of the OpenStep specification to create server
programs on non-OpenStep systems; NeXT’s WebObjects frame-
work, for example, includes an implementation of the OpenStep
Foundation Framework to handle low-level object programming
needs. See Part Two: Business Applications for more on this topic.

The next section surveys the components of the OpenStep specificatior..
The remaining chapters in Part One delve into the major components
in some detail.

Components of the OpenStep
Specification

The OpenStep specification includes four major components (Figure 1):

s the Display PostScript® system, which performs all drawing for
OpenStep applications;

* the Objective-C programming language, which defines the
OpenStep object model;

* the Foundation Framework, which defines low-level object classes;

* the Application Kit, an object framework defining classes that
provide standard application behavior.

The two object frameworks are sometimes called “kits,” especially by
veteran NextStep programmers. The commonly accepted distinction is
that a kit defines classes that your application can use (the classical



Chapter 1: What Is OpenStep? 7

Figure 1. OpenStep Architecture

concept of a library), whereas a framework defines an already functional
object system that uses your objects, allowing you to plug in new classes
quite easily. In this sense, the Foundation Framework really is just a kit,
but the Application Kit is more of a framework, sending messages to
your custom objects and running all the logic of display, event handling,
and standard services. The term “framework” wasn’t in wide use when
NeXT named the Application Kit, however, and the name has stuck.

The Display PostScript System

Though perhaps the least important component for many business
application developers, the Display PostScript system was a revolu-
tionary feature of the original NextStep system. By unifying the imaging
models for screen display and for printing, it simplified the program-
mer’s job and guaranteed true WYSIWYG (what you see is what you
get) display for applications. Display PostScript remains integral to
OpenStep. Its particular display model does have some impact on
OpenStep applications, but it’s all at a rather high level, so we don’t
discuss the subject much beyond this section.



8  Developing Business Applications with OpenStep

Chapter 2: The
Object Model
presents much of the
Objective-C
language.

On the up side, the Display PostScript system offers a unified displav
model for all applications, wherever they may need to draw and on
whatever operating system. This can be the computer screen, a
PostScript® printer, or a fax machine. Though not really part of the
PostScript language, TIFF™ images enjoy a great degree of support from
the Application Kit. When you do need it, this level of display integra-
tion makes it very easy to get the visual results you want, whatever the
final output device may be.

On the down side, OpenStep applications can use only PostScript fonts,
and some implementations of OpenStep may be able to print only to
PostScript printers. This can be a significant deficiency for sites with a
heavy investment in non-PostScript fonts or printers. Fonts can be
converted to PostScript format, but they then take up extra disk space.
Also, for companies using the X Window System™, the PostScript
extensions required by OpenStep aren't always available on X terminals,
potentially limiting the use of OpenStep to workstations.

The Objective-C Language and Object Model

The OpenStep object model is firmly grounded in the Objective-C
programming language, a straightforward superset of the ANSI C
language that supports a true run-time object system, following the
Smalltalk model. Objective-C objects partake of the three classic
features of object-oriented programming—encapsulation, inheritance,
and polymorphism—and add the feature of dynamism, whereby a
number of decisions are deferred from compile time to run time. Classes
aren’t merely templates for instances; they’re true objects and can be sent
messages just as instances can. Further, all Objective-C messages are
bound to method implementations at run time only, in contrast to C++
messages, which by default are bound at compile time. Dynamism gives
Objective-C a huge advantage over C++ for developing flexible high-

level systems.

The Objective-C language extensions are simple. A programmer
familiar with C programming can learn the basics of using existing
classes and objects in just half a day and can be well grounded in the
particulars of implementing classes in less than a week. Learning good



See Chapter 3: The
Foundation
Framework for a
thorough review of
Foundation classes.

Chapter 1: What Is OpenStep? 9

object design takes a bit longer, of course, but that’s true of object-
oriented programming in general.

The object model underlying the language closely resembles those of
Smalltalk and Java™, as the sidebar indicates. In fact, just as Objective-C
is derived from Smalltalk, many aspects of the Java language were
derived from both of these languages. All three have true class objects,
dynamic messaging by default, and flexible typing.

The Foundation Framework

The Foundation Framework defines classes for the basic features that
any program needs, whether a server with no user interface or a client



10 Developing Business Applications with OpenStep

Distributed Objects
is a big topic; see
Chapter 9:
Distributed
Applicationsfor a full

discussion.

application with a rich graphical interface. These features fall into four
broad groups:

* core run-time and object functionality;
* data storage: values and collections;

* Distributed Objects, including classes for managing concurrent
programming;

¢ environment information.

The Foundation Framework defines the Objective-C root class,
NSObject. Nearly all other classes inherit from this class. NSObject’s
main purpose is to provide the functionality that every other object
needs. The root class provides the means for class inheritance and
defines methods for object creation and disposal, run-time type inquir,
object identification and comparison, and so on. Other core classes
define the features of object archiving, exception handling, message
broadcast, and thread handling. One more class, NSRunLoop, automat-
ically establishes a processing loop in which input is read from any of
several sources (files, distributed objects, and so on) and dispatched to
the appropriate input handler objects.

A number of classes allow you to store simple data values as objects and
collect them in various ways. Some classes store numbers and other
binary values, some store dates, and others store text strings and raw
binary data. Collection classes group objects of any class together in
different ways while sharing a common means of enumerating all
members of the collection. The Foundation collection classes include
array, dictionary, and set. The string, data, array, and dictionary classes
also participate in an informal scheme known as property lists, which
establishes a convenient model for organizing hierarchical data in
resource files.

The classes that define the OpenStep Distributed Objects facility also
reside in the Foundation Framework. With these classes, a process can
connect to another at any time and receive a proxy that represents an
object in the other process. This proxy then behaves exactly like a local
object as far as the client process is concerned, giving OpenStep
programs one of the most elegant distribution models available. We



NeXT has added a
number of extra
Foundation classes.
See the sidebar on
page 51 for details.

Chapter 4: The
Application Kit
describes the
individual classes
and other elements
of the Application
Kit.

Interface Builder is
formally introduced
in Chapter 5: NeXT's
OPENSTEP for
Windows NT and
Chapter 6: SunSofts
Solaris OpenStep.

Chapter 1: What Is OpenStep? 11

include with Distributed Objects the classes that manage threads and
mutexes, as they’re often used in the context of distribution.

Finally, the Foundation Framework includes classes that allow your
program to determine the arguments it was launched with, to consult
the preferences of the user that launched the program, and to retrieve
resources stored in the file system such as images and loadable code.

The Application Kit

The Application Kit builds on the Foundation classes to define the
features that any user application must provide. Among these are:

e core application behavior, including event handling and display;
e user interface controls, such as buttons and text fields;

* text and fonts;

* drawing support: image and color management classes;

* printing;

* dynamic data links (resembling Microsoft’s Object Linking and
Embedding or the Macintosh® Publish & Subscribe feature);

* other system services, such as the pasteboard and spell checking.

The best thing about the Application Kit is that you barely have to use it
on the programmatic level, especially for business applications that don’t
need to do much custom event processing and drawing. The OpenStep
Interface Builder application, included in the development environ-
ment, allows you to graphically build your application’s user interface
from a palette of standard objects. This allows you to focus on the
purpose of your application, not on standard functionality.

The Application Kit is conceptually very rich. Although most of its
classes are fairly straightforward, they interact according to powerful
models of cooperation and delegation of authority. Again, with the help
of Interface Builder, business application developers don't need to worry
as much about this as productivity application developers do. However,
for those occasions when you do need to understand these models, we
survey them in Chapter 4: The Application Kit.



12 Developing Business Applications with OpenStep

Chapter 5: NeXT's
OPENSTEP for
Windows NT
describes this
system in detail.

User and Development
Environments

As essential as a programming interface specification is, it’s of no use
without concrete implementations and without the tools to build appli-
cations. Here there’s no specification, but the current development envi-
ronments from NeXT and SunSoft have a lot in common.

NeXT’s OPENSTEP Release 4
for Windows NT

OpenStep’s origins are firmly rooted in the UNIX world, so when NeXT
decided to port it to Windows, it took on a big job. With its original
UNIX system, NeXT could modify and enhance the operating systera
and the windowing system to suit its needs. With Windows, it had to
make do with what the operating system supported and had to cleanly
graft the Display PostScript system onto Microsoft’s windowing system..
In addition, NeXT decided to modify the user interface presentation of
the Application Kit to match the Windows 95® user interface as much
as possible. Like we said, a big job.

They've pulled it off fairly well, for what is in many ways a 1.0 release,
and are serious about integrating into the Windows environment.
OpenStep applications look and largely behave as Windows-native
applications, though certain features of Windows, such as combo boxes,
multiple-document architecture, and in-place editing of embedded or
linked documents, aren’t yet supported. Some of these are likely to ke
added soon, depending on what customers consider most important.

The development environment itself is centered around the Project
Builder™ application, which integrates project and file management,
code editing, building, and debugging. The Interface Builder applica-
tion enables rapid development of an application’s user interface and ties
interface objects into custom objects and other back-end parts of an
application. Chapter 5: NeXT’s OPENSTEP for Windows NT describes
these and other development tools.



Chapter 6: SunSoft's
Solaris OpenStep
describes this
system in detail.

Chapter 1: What Is OpenStep? 13

SunSoft’s OpenStep 1.0 for Solaris

SunSoft’s Solaris operating system, now in release 2.5.1, is the planet’s
most widely deployed commercial UNIX environment. It runs on
SPARC®, Intel®, and PowerPC® platforms, scaling from 486-based
notebooks to 64-way multiprocessing database servers. Solaris is known
for its networking support and was instrumental in building the
Internet. Solaris also includes the OpenWindows™ windowing system,
which is based on X11R5 with Adobe’s Display PostScript extensions
and supports both CDE and Sun’s OpenLook user interfaces. Several
suites of industrial-strength application development and system admin-
istration tools are available for Solaris: The system supports over 10,000
applications and can also run Macintosh and Microsoft Windows appli-
cations through emulation packages.

Solaris OpenStep builds on these strengths. It’s entirely compatible with
all existing Solaris and X11-based applications. It supports the same user
interface and many of the same applications as NeXT’s OPENSTEP for
Mach. Third-party applications based on Solaris OpenStep have already
been announced, including the productivity suite from Lighthouse
Design and the Enterprise Objects Framework from NeXT.

The Solaris OpenStep user environment includes a suite of applications
that provide file management, multimedia mail, PostScript previewing,
and text editing functions. For the most part, these applications are
more useful than the equivalent CDE applications, but youre not
required to use them. The CDE and OpenLook applications work
within OpenStep as well.

The SunSoft WorkShop® OpenStep development environment includes
a suite of application development tools, based both on NeXT’s tools
and on the award-winning Workshop for SPARC development environ-
ment. The OpenStep-specific applications include Project Builder,
Interface Builder, and Header Viewer™. However, WorkShop OpenStep
also includes SunSoft’s C++ compiler, extended to support Objective-C,
and a set of tools to support debugging, performance tuning, and multi-
threading your applications. If you want to do joint Objective-C and
C++ development, the compiler also includes the Rogue Wave Tools++



14 Developing Business Applications with OpenStep

libraries. Chapter 6: SunSofts Solaris OpenStep discusses both the user

and development environments in more detail.

NeXT’s OPENSTEP Release 4 for Mach

See the sidebaron  NeXT’s original Mach/UNIX-based system is still available, now truly
page 83 formore  ip release 4. It includes all the features of OPENSTEP for Windows NT,

infc ti th .
trormaton on ™ie 2 nd then some. Notable features include:
extra gOOdlCS yOu

ger with Mach. * the robust TCP/IP networking and other services offered by Mach

and the 4.3BSD UNIX operating system;

* a scalable administrative system, called Netlnfo®, that integrates
well with NIS (Yellow Pages) networks;

* one of the richest user interfaces available, including nearly
photographic-quality icons, true color PostScript support, and full
drag-and-drop interaction between all applications;

* the Workspace Manager™ application, which combines file and
application management in one very clean interface;

* Mail, the first powerful multimedia electronic mail application,
which supports both MIME and the original NeXTmail™ format;

* debugging and performance tools not available on Windows N'T;

* an impressive suite of third-party applications that havent yet
been ported to either Windows or Solaris.

NeXT’s Mach-based system has been around for a while and is the
progenitor of both the Windows and Solaris versions. For these reasons,
we haven’t bothered with a whole chapter about it, which would repeat
what it has in common with its offspring. To see what’s unique about

OPENSTEDP for Mach, see the sidebar on page 83.



2 The Object Model

The bulk of the OpenStep specification is an object-oriented program-
ming interface, defined in terms of the Objective-C language and object
model. If you're not at all familiar with object-oriented programming,
this chapter is required reading. If youre familiar with other object-
oriented languages, you should at least skim this chapter to see how
Objective-C might differ from the ones you know. You might also want
to read the final section of this chapter, which compares Objective-C
with the more established C++ language.

This chapter only introduces Objective-C programming, covering the
basic principles of object-oriented programming, most of the syntax,
which is quite simple, and some of the conventions, where the subtleties
of Objective-C lie. It doesnt cover more advanced topics, such as object
design, robust class implementation, or taking advantage of run-time
features. For those topics, see any general text on object-oriented
programming or one on the Objective-C language.

Principles of Object-Oriented
Programming

Object-oriented programming arose as a means to simplify the processes
of abstraction and modeling. Like procedural programming, which
preceded it, object-oriented programming collects lower-level concepts
into broader ones, easing the process of mapping real-world entities to
programmatic ones. Object-oriented programming does this by intro-

15

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



16 Developing Business Applications with OpenStep

ducing the concept of the object, which joins data and behavior in a self-
contained unit. The abstraction mechanisms resulting from this
arrangement are encapsulation, inheritance, polymorphism, and dyna-
mism. The following subsections explore each of these mechanisms. Of
course, you probably know most of the basics; if so, skip ahead to the
subsection titled “Dynamism,” which may nonetheless contain informa-
tion new to you.

Encapsulation

Encapsulation is containment, or hiding. An object hides the specifics of
its implementation behind a general interface, defining itself in terms of
what it does rather than what data it contains. This allows the object’s
implementation to be changed at any time without affecting those using
it. For example, an analog clock, whose purpose is to record and tell
time, hides the details of its gears and winding mechanism behind a
standard dial with hour and minute indicators. The internals can be
changed—for example, the gears can be replaced by circuits or the
winding mechanism by batteries or a power cord—but the time remains
presented by the dial.

An object’s interface, then, is defined as a property of the object itsel,
not as a loose collection of routines to call. Any action must be charac-
terized by both the object performing the action and a specific message
indicating what to do. This turns around the procedural paradigm, in
which the caller of a routine must know the proper arguments, to one in
which the user of an object must know what messages it responds to. A
clock object, for example, may respond to the messages hour, minute,
and tick. A well-designed interface hides the details of an object’s imple-
mentation, presenting a natural means for using the object according to
its purpose.

In programming, the hidden implementation of an object takes the
form of private data items, called instance variables, and routines tied by
the object to the messages it responds to, called methods. A clock object
might store its time in a single number giving the seconds since
midnight, or it might store the time as two numbers, the hour of day



Chapter 2: The Object Model 17

and the minutes in the hour. Regardless of this, the interface must
remain the same: The hour method must return the hour of day;
minute must return the minutes into the current hour; and tick must
increment the recorded time by one minute.

Inheritance

Now, in the real world, analog clocks arent the only kind of time-telling
device: There are digital clocks, hourglasses, sundials, and so on.
Object-oriented programming accounts for this variety by borrowing a
useful technique from taxonomy. Called classification, this technique
groups similar entities into classes according to their similarities. Actual
objects—the members of a class—are then referred to as instances of that
class. In object-oriented programming, object classes that share an inter-
face may be grouped under a parent, creating a more abstract class that
describes all the member objects to some useful degree. In some cases,
the abstract class can’t actually be used to create instances; it just
describes the similarities of the subclasses in a formalized way. For
instance, clocks of all types—analog clocks, digital clocks, even hour-
glasses—can be grouped under the single abstract class “Clock,” with
the messages hour, minute, and tick, even if they individually define
their own methods (such as wind and turnOver for analog clocks and
hourglasses).

Turning this bottom-up abstraction over reveals the principle of inberit-
ance: Subclasses respond at least to the messages of their superclass. This
type of inheritance deals with a classs interface only. Another type of
inheritance, that of implementation, applies once we enter into
programming. If all types of clocks must be able to report the time of
day, we can move the relevant instance variables and methods together
into the abstract class, allowing each subclass to use that implementation
by default. Subclasses need only define the part of their implementation
that makes them different from their superclass: The analog clock can
define its wind method and hourglass its turnOver method, for
example. The subclasses can also redefine the behavior of the superclass
where that’s required, as explored in “Polymorphism.”



18  Developing Business Applications with OpenStep

Polymorphism

Despite their similarities, our three clocks differ in one significant way—-
the appearance of each type is unique. Analog clocks display hands on a
numbered dial, digital clocks present a numeric representation, and
hourglasses show varying amounts of sand in their upper and lower
chambers. An application simulating these visual features of clocks
shouldn’t have to know this, of course; it just wants each clock drawn
properly. The means for achieving this is called polymorphism.

Polymorphism arises from the principle of encapsulation and the
messaging metaphor described earlier. A message by itself doesn't define
the action that results—the message and the receiver do. Objects thar
share the same message interface may have completely different method
implementations. Polymorphism also takes advantage of inheritance, in
which a subclass’s implementation of a method can differ from that o
its superclass. In our example, the abstract Clock class might define a
draw method that by default simply shows the numeric time. Each
subclass then implements its own version to draw the appropriate image.
In this case, each subclass inherits the draw method but overrides the
parent class’s implementation to do its own thing. AnalogClock draws a
dial with hands and Hourglass draws its characteristic figure, while
DigitalClock draws a box and then conveniently invokes Clock’s imple-
mentation to display the numeric representation. The application
remains ignorant of this fact; it simply sends a draw message to each
clock object, and the clock objects execute their own code for drawing.

Dynamism

The final principle of object-oriented programming, though not univer-
sally applied, relates to when the application determines the identity, or
class membership, of an object. At one extreme, you must know the
class membership in advance to send a message, and you may send only
messages in the object’s interface. At the other, you can send any
message you want, even messages that the object might not respond to.
These extremes reflect different approaches to the degree of flexibility



Chapter 2: The Object Model 19

allowed in dealing with objects. The first approach is called static typing,
the second dynamic typing. Most object-oriented languages fall some-
where between these two.

Another form of dynamism relates to the execution of objects’ code. In a
static binding system, the method implementation for a particular
message to a particular object is determined at compile time. Static
binding requires some level of static typing, as the language compiler
does most of the work. Dynamic binding, on the other hand, defers
lookup of the implementation to run time—specifically, to the time that
the message is actually sent. This requires some support code to be
present when the program is running, called a run-time system. Dynamic
binding is what makes dynamic typing possible, as the run-time system
stores the information needed to find the proper implementation for a
particular message to a particular object.

Dynamic binding also comes in handy when loading or constructing
new classes at run time, as well as when sending messages to objects
running in another process. Since the object types dont need to be
determined until the time a message is actually sent, messages can be
sent to objects that are written by someone else and that exist anywhere
in the inheritance hierarchy. As long as the objects respond to the
messages you send, you can use any object at all. Later sections and
chapters explore these possibilities further.

We've used the terms message and method somewhat interchangeably up
to this point, but there’s an important distinction that dynamism intro-
duces. In a procedural language like C, calling a function is a one-step
process, involving a simple jump to an address. In a dynamic language
like Smalltalk or Objective-C, it’s a two-step process, involving the
lookup of a method address for a particular message name, and then a
jump to that address. The code that wishes an object to do something
sends that object a message. The run-time system interprets this message
and determines what the proper method is—the method can be defined
by the object’s own class or by one of the object’s superclasses. On
finding it, the run-time system then invokes the method. The run-time
system can also deal with certain special cases—for example, when the



20  Developing Business Applications with OpenStep

receiver is a null object or a proxy to a remote object accessed through
the Distributed Objects machinery.

As a concrete example of dynamism, the OpenStep Foundation Frame-
work defines a number of container classes (such as NSArray) that store
other objects—any kind of objects, of the same class or different ones.
The single array class, already defined, can store instances of any class in
the Foundation and Application frameworks, as well as any class that
you define in your application. This is made possible both by dynamic
typing, which leaves open the class of object being put in an array, and
by dynamic binding, which defers lookup of the messages that the array
sends to objects stored in it. All the container knows is that the objects it
stores can do the things that all objects do. Nonetheless, because of
dynamic typing and binding, the container class can be used to store,
retrieve, and send messages to objects of any type.

Without dynamic typing and binding, it would be necessary to define a
container class for storing Clocks, one for storing Windows, another for
storing Buttons, and so on. With dynamic typing and binding, you
need only one kind of container.

Basics of the Objective-C
Language

Now that we've covered the principles of object-oriented programming,
let’s explore how the Objective-C language practices them. As indicated
by the name, Objective-C builds on the C language by adding a few
simple syntactic elements to define objects and messages, as well as a lot
of behind-the-scenes support for dynamic typing and binding.
Objective-C is patterned after Smalltalk in many ways, both in terms of
the language’s syntax and in terms of its behavior. The major goal in the
design of the Objective-C language was to extend C to support dyna-
mism as richly as possible.



This is just like a
C++ virtual
member function.
In Objective-C, all
methods are
effectively virtual.

Chapter 2: The Object Model 21

Objects and Messages

Objective-C objects can be typed either loosely or strictly. They're most
simply declared as type id, no matter what their actual class membership
is. This allows you to write code in which any object can be sent any
message, with no complaints from the compiler. You can also declare an
object as a pointer to its class type, such as Clock *, which brings all the
benefits of compile-time type checking for variable assignment and
messages.

id myClock;
Clock *yourClock;

Based on the declarations, myClock here could be any kind of object,
but yourClock must be an instance of Clock or of one of its subclasses
(AnalogClock, DigitalClock, and so on). The typical practice in
Objective-C programming is to type objects as far down the inheritance
hierarchy as needed, but no further.

You construct messages by specifying the receiver and the method name,
along with any arguments, all enclosed in square brackets:

unsigned int hour = [myClock hour];

A method name introduces arguments with a colon, much like Small-
talk. For example, to set the time on myClock, you send it a
setHour:minute: message:

[myClock setHour:4 minute:15];

Also, because messages are expressions, you can place them anywhere
you would place a function call:

[yourClock setHour: [myClock hour] minute: [myClock minute]];

Note that because the class of myClock isnt even known at compile
time, the message expressions can’t be bound to implementations until
run time. Similarly, even though yourClock is statically typed as a
Clock, the setHour:minute: message isn't bound until run time. It’s
possible for both myClock and yourClock to be an instance of Clock
or of any subclass of Clock—or of different subclasses. At run time, the



22 Developing Business Applications with OpenStep

appropriate classs implementation for each message is dynamically
determined and executed.

Implementing Objects: Classes
and Protocols

Every Objective-C object is an instance of some class. The class defines
instance variables and methods for all of its instances and ties the
instances to inherited variables and methods through its superclass. An
Objective-C class definition consists of two components: the interface
declaration and the implementation. An additional mechanism, called
the protocol, allows you to bundle interfaces into meaningful groups
distinct from class membership.

Class Interface Declaration

An Objective-C class interface describes the class in terms of its supet-
class and the methods it adds to or overrides from its superclass. This
template shows the basic syntax for a class interface:

@interface Class : Superclass
{

instance variable declarations

}

method prototypes

@end

@interface is an Objective-C directive that announces a new class (all
Objective-C directives begin with an @-sign). Class is the name of the
class being defined, and Superclass is that of the class it inherits from.
The class’s instance variables are listed between a pair of braces and
declared as in any other block of C code. Finally, the prototypes for the
class’s methods are listed, followed by @end to wrap up the interface
declaration.

A method prototype serves the same purpose as a function prototype,
but its form is somewhat different. Class and instance methods are



Chapter 2: The Object Model 23

distinguished by a tag character: + for class methods; — for instance
methods (class methods are described later). Also, because the syntax for
messages indicates arguments with colons rather than parentheses, the
data type for each method parameter and for the return value must be
enclosed in parentheses, as for a type cast. So, a generic method proto-

type looks like this:
- (returnType)methodName: (argType)argument;

This class interface shows how we might present the Clock class to the
world:

@interface Clock : NSObject
{

unsigned long minutes;

- (id)initWithHour: (unsigned short)hour
minute: (unsigned short)minute;

(unsigned short)hour; /* military time (0-23) */

(unsigned short)minute; /* 0-59 */

(void) tick; /* increments minutes & wraps */

(void) setHour: (unsigned short)hour

minute: (unsigned short)minute;

@end /* Clock */



24 Developing Business Applications with OpenStep

Class Implementation

To distinguish them A class’s implementation looks much like the interface declaration:
from C code, class

implementation @implementation Class

files use a .m
extension (for

method).

method definitions

@end

All that’s needed here, though, are the name of the class and its method
definitions. Here’s the implementation for the Clock class:

@implementation Clock

- (id)initWithHour: (unsigned short)hour
minute: (unsigned short)minute

self = [super init];
[self setHour:hour minute:minute];
return self;

- (unsigned short)hour { return minutes / 60; }
- (unsigned short)minute { return minutes % 60; }
- (void)tick

minutes++;
minutes = minutes % (24 * 60);
return;

- (void)setHour: (unsigned short)hour
minute: (unsigned short)minute

/* Check for bounds error omitted. */
minutes = (60 * hour) + minute;
return;

@end /* Clock */

Method definitions are essentially function definitions, with only a few
differences. First is the format for the method name and arguments,
which is the same as for method prototypes. Second, within the body o
a method implementation, a number of names are predefined for the
object’s use: all of its instance variables, including those inherited (bur



super simply
pushes method
lookup outside of
the object’s class.
Unlike in C++, you
can’t invoke a
specific superclass’s
implementation of
a method.

Chapter 2: The Object Model 25

not those declared @private by superclasses), and the special names self
and super.

Self and Super

self is like the C++ this keyword: It refers to the instance currently
executing the method. Objects often use it to send messages to them-
selves. Here’s a Clock method that uses self to invoke another of its own
methods:

- (void)synchronizeWith: (Clock *)otherClock
{
[self setHour: [otherClock hour]
minute: [otherClock minute]];
return;

}

super allows an object to skip its own classs implementation of a
method, instead invoking that of an ancestor. This allows overridden
methods to be invoked. An AlarmClock subclass of Clock provides a
good example of using super. Each time the AlarmClock is told to tick,
it must check whether it should start its alarm. So AlarmClock has to
override Clock’s tick method but still advance the minutes. It could do
so explicitly by incrementing the minutes instance variable defined by
Clock, but Clock’s implementation also wraps the time from 23:59 to
00:00, so this would be an error. AlarmClock could duplicate that bit of
code too, but if Clock’s implementation then changes, AlarmClock
won't exhibit the new behavior. Rather than having to duplicate code
from Clock and track changes to Clock’s implementation, AlarmClock
can simply invoke the superclass’s implementation:

- (void)tick

{
[super tickl];
if (minutes > alarmTime) [self startAlarm];
return;

Protocols

Classes provide a useful mechanism for inheritance of both interface and
implementation, but they inherently package both together. If you



26 Developing Business Applications with OpenStep

For readers familiar
with Java, this is the
same as the Java
notion of an
interface. In fact,
Java borrowed this
concept from
Objective-C.

simply want inheritance of interface, you use Objective-C prozocols. A
protocol is a named collection of method prototypes, unattached to any
class and without implementations. A class can adopt a protocol by
including the protocol in its interface declaration, and the compiler can
perform type checking based on that declaration. Protocols are defined
according to this template:

@protocol ProtocolName
method prototypes

@end

A class adopts protocols by including their names after its superclass,
enclosed in angle brackets. Suppose you wish to create a number of
classes for drawing various shapes, but don’t want to restrict them to a
single parent class. You can define protocols for different graphical
attributes, such as one named ColorSetting (with methods setColor:
and color), another named BordersAndShadows (setBorderThickness:.

borderThickness, setDropShadowDepth:, dropShadowDepth), and
so on. A Polygon class then adopts these protocols like this:

@interface Polygon : Graphic <ColorSetting, BordersAndShadows>
{

unsigned int numberOfSides;
}

- (void) setNumberOfSides: (unsigned int)anInt;
- (unsigned int)numberOfSides;

other methods
@end
You can declare objects of anonymous classes, but specify their protocols

so that the compiler can perform type checking based strictly on formal
interface:

id <ColorSetting> myColoredObject;

Classes can adopt any number of protocols, and protocols themselves
can incorporate other protocols by naming them in their declarations:



Chapter 2: The Object Model 27

@protocol GraphicObject <ColorSetting, BordersAndShadows>
method prototypes common to graphic objects

@end

Objective-C supports only single inheritance of implementation (class),
but by allowing classes to adopt any number of protocols, and protocols
to incorporate any number of other protocols, it does support multiple
inheritance of interface. This brings Objective-C the benefits of
multiple inheritance without the problems that multiple implementa-
tion inheritance can cause.

Run-Time Features

Essential though the syntax is, the real action in Objective-C program-
ming happens when the program runs. The Objective-C object model
pushes as many decisions as possible from compile time to run time,
which  requires a fair amount of extra information
(interface-to-implementation binding, argument types, class member-
ship, and so on), but pays back in power and flexibility. In addition to
the run-time system itself, programs rely on the conventions established
by the root object class. This section covers interesting aspects of the
run-time system and conventions you need to know when programming
with Objective-C. Chapter 3: The Foundation Framework reviews the
actual classes that implement these features.

Class Obijects

Objective-C’s dynamism is supported largely by the existence of special
objects that represent classes at run time. These class objects maintain
the method dispatch tables linking interface to implementation and
provide a central point for run-time management of their instances.
Every Objective-C object has an instance variable called isa, which iden-
tifies the class that the object is a member of. The run-time system uses



28  Developing Business Applications with OpenStep

this variable to access the method dispatch tables for every message sent
to the object.

In its role as a manager of its instances, a class object can itself respond
to messages. The messaging system treats any message to a defined class
name as a message to the class object. Class methods can perform any
kind of operation, but they’re typically used for creation of instances,
inquiries about the capabilities of instances and about the class inherit-
ance hierarchy, and so on. Class methods differ from instance methods
in only one respect—because a class method isnt executed by an
instance, it can't refer to any instance variables.

The Root Class

The Objective-C class hierarchy has a single root class, NSObject, from
which all others inherit (there are exceptions to this rule, for reasons
presented later). The root class defines the functionality needed by all
object classes, such as lifetime management, run-time inquiry of an
object’s interface (including individual methods, protocols, and super-
class), and dynamic construction of messages at run time (as opposed to
writing them in code).

The methods of the root class are outside the definition of the
Objective-C language, in the same way that the standard C library func-
tions aren't strictly a part of the C language. Nonetheless, they play an
essential role in Objective-C programming. In a very real way,
Objective-C programming is more about learning to use specific classes
than it is about the language itself. The root class is the programmer’s
starting point in this task.

Obiject Lifetime

Objective-C objects are always created dynamically, most often with the
alloc class method and some variant of the init instance method defined

by NSObject:



Chapter 2: The Object Model 29

Clock *myClock = [[Clock alloc] initWithHour:3 minute:15];

alloc returns a new, blank instance of the class. This instance must
immediately be sent an initialization message to establish a valid state,
after which it’s a usable object. (Allocation and initialization are sepa-
rated to allow for different allocation mechanisms.) When the object is
no longer needed, a release message disposes of it.

Objects are often shared or passed among other objects, of course, so
just who is responsible for sending that release message isn’t always clear.
When objects are shared, there must be a convention for deciding who is
responsible for disposing of them, so that they aren’t freed more than
once and so that they’re not leaked. In Objective-C programming the
convention is simple: If you own an object, you alone are responsible for
releasing it. If you dont own it, you shouldnt release it. Owning an
object means one of three things:

* You allocated the object using the alloc method.
* The object is a copy you made with a variant of the copy method.
* You added a reference to the object using the retain method.

As indicated by the last point, what makes the releasing convention
possible is that Objective-C objects are reference-counted. New objects
and copies have an implicit reference count of 1, and retain increments
the reference count. release, then, simply decrements the reference
count; when the count reaches zero, the object sends itself a dealloc
message, which each class must override to free any allocated memory
and to send release messages to any objects it owns (you never send
dealloc directly to an object).

Reference counting allows objects to be kept valid for as long as any
other object needs them. The original creator can release its reference
according to the rule without invalidating others’ references. The only
context where this doesn’t work is when a method must return a created
object. After all, the method can’t release the object before passing it to
the invoker, since then the object is immediately deallocated.
Objective-C  sidesteps this problem by defining a delayed-release
method, called autorelease.



30  Developing Business Applications with OpenStep

autorelease marks the receiver to be sent an actual release message
“sometime later.” This allows the object to be returned from a method
and used by the invoker without requiring the invoker to explicitly
retain and release the returned object—though it can still do so if it
needs to keep the object around for a while. The “sometime later” when
the object is actually released depends on how you structure your
program. By default, all autoreleased objects are released at the top of a
programs run loop (defined by the Foundation Framework's
NSRunLoop class). This means that you can continue returning objects
that you don’t own right up the call stack to the run loop object itself. If
you need to keep an object beyond that, you must retain it. You can also
define tighter contexts for autoreleasing using the NSAutoreleasePool
class, as described in Chapter 3: The Foundation Framework and Chapter
16: Performance.

The Objective-C reference-counting mechanism makes it possible to:

¢ share values without copying, which saves memory usage;

* share objects with assurance that the objects will remain as long as
needed (especially important in distributed applications);

* use objects simply and naturally—the recipient of an object never
needs to worry about disposing of it, but explicitly retains it to
hang on to it.

It also has its costs, of course. Although the ownership convention
makes less likely the possibility of an object being destroyed early or
leaked, it is still possible—and when this happens, it can be difficult to
track down. Chapter 15: Testing and Debugging discusses this problem in
more detail. Also, the reference counts and autorelease pools do take up
a small amount of extra memory, which can affect performance. Prope:
use of the autorelease feature and pool management are covered in
Chapter 16: Performance.

Archiving

A critically important feature of Objective-C for OpenStep is that o7
archiving, whereby objects can write their state out to a data stream and



Chapter 2: The Object Model 31

reconstitute themselves from it later. Archiving is the basis for the
Interface Builder application, which allows you to edit live objects and
save them as an archive that’s loaded into an application when it runs.
The OpenStep Foundation Framework defines a handful of classes to
direct the archiving process and to archive individual data items. This
allows entire object graphs to be archived, collapsing multiple references,
properly recording mutual references between objects, and even option-
ally including nonessential objects, so that references to them are made
only if another object actually archives them.

Objective-C and C++

At the time OpenStep’s predecessor, NextStep, was being designed, C++
and Objective-C had fairly equal market acceptance. NeXT chose
Objective-C because it was clearly more suited to high-level, rapid appli-
cation development. Despite C++ having overtaken Objective-C in the
market, Objective-C remains a better language for application develop-
ment.

Although both Objective-C and C++ derive from C, C++ is a systems-
level language, whereas Objective-C is an applications-level language.
The distinction can be summarized by saying that C++ was designed
with program efficiency in mind, while Objective-C is geared more
toward programmer efficiency. The difference is substantial—C++ is
driven by a philosophy of efficiency and compatibility with existing C
which, while necessary for a low-level language, proves quite restrictive
in other contexts.

The most important features of C++ in this arena are strong typing and
static method binding. Object methods can’t be overridden unless the
parent class explicitly allows it by using the virtual keyword, and such
use still carries strict compile-time typing constraints. The compiler
does a great deal of checking at compile time, postponing as few deci-
sions as possible. If a method invocation can be resolved to a specific
piece of code at compile time, even one declared to be virtual, the
compiler resolves it. This forces detailed decisions by engineers early in



32 Developing Business Applications with OpenStep

the design cycle and makes C++ programs brittle—minor changes in
one area, or even extensions and subclassing, can cause the program to
break or behave in unintended ways. It also makes software develop-
ment slow; changing part of an object’s private data structure requires
the recompilation of every bit of code that uses that object. Memorv
usage must be carefully and manually tracked by the developer, and
different toolkits often have different memory management rules. When
building low-level software such as an operating system or device
drivers, this is all arguably the proper behavior. However, when building
applications, where time-to-market and flexibility are crucial issues,
these qualities of C++ become damning flaws.

Objective-C takes exactly the opposite tack, being driven by a philos-
ophy of simplicity, reuse, and support for “interchangeable parts” with
well-defined interfaces. The Objective-C model postpones as many
decisions as possible until run time—both its strengths and its weak-
nesses as a language derive from this heritage of flexible typing and
dynamic binding. In essence, Objective-C is C with as much Smalltall:
thrown in as could reasonably be fit, given the constraints of C as a base
language.

As discussed previously, most of the utility of the Objective-C model is
in the run-time system, not in the compiler. Any method can be over-
ridden—in fact, it’s impossible to disallow overriding of methods

Because of run-time binding, though, changes to class data structures
and implementations have no impact on clients, which need not even be
recompiled to make use of the changes. Objective-C has simple memory
management rules, and OpenStep extends these rules to provide a
consistent policy throughout its frameworks. Dynamic binding makes
Objective-C messages a bit slower than C++ messages, but the tradeoft
in flexibility, speed of development, and maintainability more than
makes up for this small penalty. Again, the language is designed to facil-
itate programmer efficiency rather than program efficiency; raw speed is
usually less important for applications than it is for system code. In any
case, where raw speed is needed, it can be obtained (as Chapter 16:
Performance describes).



Chapter 2: The Object Model 33

The experiences of companies like Taligent point to the difficulty of
building flexible application-level systems in C++. Its telling that C++
started out with no dynamic binding at all; C++ proponents argued that
it was dangerous and inefficient. Dynamic binding was then added in
special cases, with the virtual keyword. The latest attempt to add a form
of dynamic binding takes the form of the Run-Time Type Information
proposal (RTTI), which is usable only for C++ objects that define
virtual functions. While C++ has been undergoing various retrofitting
efforts to remedy the lack of dynamic typing and binding, and not all
compilers support all the different techniques, Objective-C has had it
available, in a well-supported and predictable way, from the very begin-
ning. And, since Objective-C and C++ can be fairly easily integrated, it
makes sense to write the parts of the application in C++ that need to
integrate with C++ libraries, or that need to be particularly efficient, and
write the bulk of the application in Objective-C.

Mixing Objective-C and C++

As the C++ language is essentially an expansion of C, it makes sense to
add the Objective-C run-time system and language extensions to C++,
allowing the use of both object models from within the same program.
The programmer gains the use of C++-style comments, stronger type
checking, and the use of both kinds of objects in a single source file.
Since the object models are quite different, the models retain their indi-
vidual characteristics, features, and problems, but they do coexist and
interoperate quite well. However, the languages exist in separate name
and type spaces. You typically cant interchange the different kinds of
objects—Objective-C objects are always Objective-C objects and cant
be passed to things that expect C++ data types, and vice versa. There are
some tricks that clever programmers can play to cause C++ objects to
look like Objective-C objects, but these tricks can cause problems as
well.

Most implementations of OpenStep support mixing Objective-C and
C++ (this mixed language is often referred to as Objective-C++). As of



34  Developing Business Applications with OpenStep

this writing, both NeXT’s GNU-based compiler and SunSoft’s
WorkShop compiler support Objective-C++.

Although use of the mixed language is supported in both of the
above-mentioned environments, the level of support varies. C++ is a
second-class citizen in the OpenStep world. NeXT’s OpenStep develop-
ment tools have either limited or no support for manipulating C++
objects. NeXT’s implementation of Objective-C, based on the GNU
compiler, requires the use of the extern linkage directive when mixing
languages. For mixed C++/Objective-C source code, any references to
external Objective-C symbols must be bracketed by this directive. Fo:
example:

extern "Objective-C" {
#import <Foundation/NSObject.h>
}

As SunSoft’s compiler is based on the C++ compiler, there’s no need for
linkage specification when mixing Objective-C and C++ code in the
Solaris environment.

Another pitfall is that statically declared C++ objects are initializec
before the Objective-C language run-time system. Referring to
Objective-C objects or even calling Objective-C run-time functions fails
if performed in the constructors of static C++ objects, and the program
typically crashes on being launched. These problems are often difficult
to debug, as the order of instantiation of static C++ objects is implemen-
tation-dependent but always happens before the program’s main() func-
tion is invoked.



3 The Foundation

Framework

OpenStep’s object classes are divided into two frameworks. The
higher-level framework, the Application Kit, contains classes specifically
for running an application with a graphical user interface. It builds on
the classes of the Foundation Framework, a more general framework
that defines core object functionality, basic data and collection types, a
distributed object system, and other general program functionality.

The goals of the Foundation Framework are straightforward:

* provide a small set of basic utility classes;

* make software development easier by introducing consistent
conventions for things such as memory management and collec-
tions of objects;

* support transparent object distribution;

* support internationalization through the Unicode® character
encoding;

* support object persistence through archiving;

provide a level of platform independence to enhance portability.

Although the Foundation Framework has a few dozen classes, many of
them operate behind the scenes. Several groups of classes also share
similar interfaces, making them quite easy to learn and use. In this, the
design meets the goal of utility fairly well.

The second goal, of consistent conventions, is also realized to a fair
degree. Foundation classes that do similar things do them in similar
ways, with a similar interface. Also, where they can hide the details of
operations, they do so (Distributed Objects is a prime example of this).

35

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



36  Developing Business Applications with OpenStep

These means of easing development cover the 80 percent or more of the
things you want to do as a developer, making that part of your job much
simpler. The remaining things, where youre pushing the bounds of
what the classes can do or squeezing out that last bit of performance, do
reintroduce some complexity and pitfalls, but this is true of program-
ming in general. Coding in assembly language to boost performance, for
example, is inherently more difficult, error-prone, and limiting than
coding in higher-level languages.

Transparent object distribution is one of the hallmarks of the Founda-
tion Framework and of OpenStep in general. In fact, its Distributed
Objects facility works so well in many ways that it can lull developers
into application designs that dont work well due to unanticipated
bottlenecks and networking problems. Chapter 9: Distributed Applica-
tions goes into great detail about distributed objects and their pitfalls, so
this chapter only briefly surveys the topic.

The Foundation Framework meets the remaining goals—international-
ization, object archiving, and platform independence—only partially.
Additional facilities for implementing these features weren't solidly
designed at the time NeXT and SunSoft put the OpenStep specification
together. The Foundation Framework’s string classes fully support
Unicode internally, for example, but they provide only basic means of
manipulating the characters themselves. Further, the Application Kit's
text object doesn’t support the full range of Unicode characters. NeXT
includes a suite of Unicode-ready text classes in its implementation, but
this system wasn’t ready in time for the OpenStep specification. Object
archiving is currently hampered by an unpublished format for the
archives, leaving open the possibility of incompatibilities between
implementations. NeXT and SunSoft have worked together to make
sure this doesnt happen between the classes in their implementations,
but it’s still a formal gap to be aware of. Finally, the degree of support for
platform independence in the Foundation Framework has turned out to
be not quite enough in some respects. NeXT has added a few classes to
its implementation to address this problem, mostly in the realm of file
management. This isn’t a big gap, but again it may be an area where you
have to write different code for different platforms.



Chapter 3: The Foundation Framework 37

NeXT and SunSoft are well aware of these limitations of the OpenStep
specification and are working to resolve them. Expect a revised version
of the specification that includes some new classes to fill in the gaps—
eventually. For now, you'll have to accept the fact that if you want to do
certain things, you must resort to platform-dependent or incompatible
coding strategies for certain parts of your application.

Keeping in mind the purposes of the Foundation Framework, let’s
quickly examine the classes it comprises. We'll do this in functional
groups, describing each class quite briefly and telling where it fits in with
other classes.

The Classes

Figure 1 shows the inheritance hierarchy of the Foundation Framework.
At the root is NSObject; nearly all other classes in both the Foundation
Framework and the Application Kit inherit from it. The other classes
fall into about four functional groups, described in the following
sections:

* core run-time and object functionality;

* data storage: values and collections;

* Distributed Objects, including classes for managing concurrent
programming;

* environment information.

Core Run-Time Classes

Much of the run-time functionality described in the previous chapter is
defined by Foundation classes. The root class, NSObject, defines basic
functionality needed by all Objective-C objects. Other classes help
objects to coordinate their actions, handle assertions and exceptions,
and manage the archiving of objects. The following sections describe



38  Developing Business Applications with OpenStep

NSObject —— NSAssertionHandler

- NSException

- NSAutoreleasePool

- NSCoder —E NSArchiver
|- NSSerializer NSUnarchiver
- NSDeserializer

[~ NSNotification

- NSNotificationCenter

- NSNotificationQueue

I~ NSRunLoop

|- NSTimer

|- NSValue NSNumber NSDecimalNumber
|- NSDecimalNumberHandler

- NSData ==———————————— NSMutableData

- NSString ———————————-— NSMutableString

- NSCharacterSet ——————— NSMutableCharacterSet

- NSScanner

- NSDate =———————— NSCalendarDate

- NSTimeZone —————— NSTimeZoneDetail

- NSFormatter __I: NSDateFormatter
NSNumberFormatter

- NSArray =————————— NSMutableArray

- NSDictionary =———————— NSMutableDictionary

|- NSSet =———————NSMutableSet ————— NSCountedSet
|- NSEnumerator

- NSConnection

- NSInvocation

- NSMethodSignature
- NSThread

- NSLock

- NSConditionLock

I~ NSRecursiveLock

- NSBundle Classes in italics are available

- NSProcessinfo on both NeXT’s and SunSoft’s

L NSUserDefaults implementations, though not
seretau formally in the OpenStep

NSDistantObject specification.

NSProxy
Figure 1. The Foundation Framework Class Inheritance Hierarchy

such areas as the coordination of multiple objects, object lifetime, and
error handling.

Object Coordination

Programs and objects alike are driven by input. Without incoming
requests and data, most programs, and most objects, are inert pieces of
code. Client applications are typically structured around an event loop,
which queues keyboard and mouse events for input to the application



Chapter 3: The Foundation Framework 39

components that handle the events. Programs can also generate their
own input, triggering other components to perform certain actions.

The basic processing loop of an OpenStep program is defined by the
NSRunLoop class. Client objects can ask it to monitor input sources
and provide input data as it becomes available. Its interface is quite
small, consisting mostly of a few variants on the run message with time-
outs and special modes. The Application Kit uses NSRunLoop to gather
keyboard and mouse events, and the Foundation Framework’s
NSConnection class (described in Chapter 9: Distributed Applications)
uses it to coordinate Distributed Objects messages between different
processes or threads. Specific implementations add special input sources,
such as NeXT’s NSFileHandle and SunSoft’s NSPosixFileDescriptor

objects, which allow programs to monitor data availability from a file.

NSRunLoop defines the basic input channel for OpenStep programs
but hides most of the details of external input sources. Programs can
generate their own input through two major mechanisms: timers and
notifications. NSTimer works intimately with NSRunLoop itself to
define a delayed message to a single object. You create an NSTimer with
a target object, a method to invoke, information to present on invoking
the method, and a time to invoke (or “fire”) the method. NSTimers can
also be configured to repeat with a delay between each firing. This code,
for example, sets up a timer to send a noteAppointment: message to

myCalendar after a delay of one hour:

[NSTimer scheduledTimerWithTimeInterval: (60 * 60)
target :myCalendar
selector:@selector (noteAppointment:)
userInfo:theAppointment
repeats:NOJ ;

When the timer fires, the argument to the noteAppointment: message
is the NSTimer itself, from which myCalendar can receive the appoint-
ment object using NSTimer’s userInfo method:

- (void)noteAppointment: (NSTimer *)theTimer

{
Appointment *theAppointment = [theTimer userInfo];
[appointments addObject:theAppointment];
return;



40  Developing Business Applications with OpenStep

This implementation simply gets the Appointment object and adds it to
an existing array of Appointments using the NSMutableArray method
addObject: (arrays are described ahead under “Collection Classes”).
The timer created above doesn’t repeat, but if it did, the message would
be sent every hour until the appointment object (or some other object)
sent the timer an invalidate message.

NSNotifications are broadcast notices, receivable by any object that
registers its interest. NSNotification defines the broadcast notice, which
includes the object posting it, the name of the notification, and any
additional data included with it. NSNotificationCenter is the coordi-
nator of activity. Objects that want to listen to notifications register
themselves with the notification center, specifying the notification name



The @"..." compiler
directive creates a
string object.

Chapter 3: The Foundation Framework 41

they’re interested in, and objects that post notifications do so through
the notification center. The NSNotificationQueue class provides finer-
grain control for posting a notification, allowing the poster to specify
the urgency of the notification (such as posting immediately or on the
next cycle of the run loop), as well as whether it can be combined with
similar pending notifications.

The following code fragments show how to set up an object that
watches a document’s size, possibly to display it in a status bar.
sizeMonitor is the object that observes theDocument; it’s registered
with a notification center like this:

#define DocumentDidChangeNotification @"Document changed"

[[NSNotificationCenter defaultCenter] addObserver:sizeMonitor
selector:@selector (sizeChanged:)
name: DocumentDidChangeNotification
object:theDocument] ;

The defaultCenter message returns the NSNotificationCenter used by
most objects; you can create your own, but you should rarely need to.
addObserver:selector:name:object: registers sizeMonitor so that it
receives a sizeChanged: message when theDocument posts a notifica-
tion named DocumentDidChangeNotification. When theDocument
changes, it posts the notification like this:

[ [NSNotificationCenter defaultCenter]
postNotificationName:DocumentDidChangeNotification
object:self];

And every object observing it gets sent the message it registered, in this
case, sizeChanged:.

Object Lifetime

The last chapter described how the autorelease method causes an object
to release itself after a delay. This behavior is made possible by the
NSAutoreleasePool class, which is a simple container that, when deallo-
cated, releases all of its objects. NSRunLoop automatically creates and
destroys autorelease pools on each pass through the loop. You can also
use them explicitly to bracket loops that create many temporary objects.
Here’s a typical example:



42 Developing Business Applications with OpenStep

BOOL keepGoing = YES;

while (keepGoing) ({
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc]
init];

keepGoing = [myObject doSomethingReallyExpensive];

[pool releasel;

In this loop, myObject is sent a message that causes it to autorelease
many objects, which would normally accumulate in the default pool
until the loop was broken and control returned to the top-level loop.
This would have a disastrous effect on memory usage, so the loop
brackets the expensive message with its own autorelease pool. Any object
sent an autorelease message during doSomethingReallyExpensive is
released at the end of the loop, cleaning things up on each pass.

Error Handling

Neither the C nor the Objective-C language provides much in the way
of error handling. The Foundation Framework fills in some of the gaps
by defining error-handling classes and macros for using them. The first
class, NSException, represents various exceptional conditions, such as
an invalid argument to a method, a timeout on a remote method invo-
cation, or an internal error of some sort. Each exception object has a
name that identifies it, a reason that can be logged, and a user dictionary
of key-value pairs that allows the code raising an exception to provide
additional information about the nature of the exception. Companion
to NSException are three macros for defining an exception-handling
context. NS_DURING begins a section of code where an exception can
be caught. NS_HANDLER begins the code that’s invoked if any excep-
tion is raised. This code can examine the exception and take appropriats

action. NS_ENDHANDLER closes the exception-handling code. -

The riskyAction method below, for example, sends a message to an
object that sometimes raises an exception when poked. If the object
raises an exception named “Don’t touch me!”, this method catches it
and returns NO. If the object raises some other exception, this method



Chapter 3: The Foundation Framework 43

throws it back up, not knowing how to handle it at this level. If no
exception occurs, this method returns YES.

- (BOOL)riskyAction
{

NS_DURING
[myFragileObject poke];

NS_HANDLER

if ([[localException name]
isEqualToString:@"Don't touch me!"]) {

/* Handle error. */
return NO;
} else {
/* Unrecognized exception. */
[localException raise];

}

NS_ENDHANDLER
return YES;

}

The second error-handling class, NSAssertionHandler, provides macros
for testing conditions during program execution. If a macro condition
evaluates false, the NSAssertionHandler object is called upon to handle
the failure. The default behavior is to log a message and raise an excep-
tion. NSAssertionHandler offers a richer assertion-handling mechanism
than the standard C library’s assert() macro, being able to handle both
functions and methods and being customizable by the standard object-
oriented technique of creating subclasses.

Archiving and Serialization

To support storing objects in files and transmitting them between
processes, the Foundation Framework defines the NSCoding protocol,
consisting of two methods, encodeWithCoder: and initWithCoder:.
Objects that adopt this protocol use these methods to store and retrieve
their state, along with the coder classes, NSCoder, NSArchiver, and
NSUnarchiver. NSCoder defines the abstract interface for coding, with
general archiving methods such as encodeValueOfObjCType:at: and



44 Developing Business Applications with OpenStep

decodeValueOfObjCType:at:, along with others for managing

networks of objects that contain obligatory and optional members.

An additional archival mechanism—serialization—is based on the value
and collection classes described in the next section. The NSSerializer
and NSDeserializer classes write data to and read it from structures
called property lists, which are nested groupings of information created
from the array, dictionary, string, and data classes as described in the
“Property Lists” subsection ahead.

Value and Collection Classes

Among the Foundation classes used most often by application programs
are those that represent simple values and those that handle collections
of other objects. Because these classes are used so much, they define a
rich set of methods for many operations, including numerous different
methods for constructing values or collections of one class from those of
another. Value and collection objects also cooperate with the Distrib-
uted Objects system to prevent unnecessary network traffic; this topic is
discussed in “Transferring Data and Objects” in Chapter 9: Distributed
Applications.

Most of the value and collection classes distinguish themselves into
immutable versions, which can’t be changed, and mutable subclasses,
which can be changed. Immutable classes offer protection in type decla-
rations, which allows errors to be detected at compile time, and in actual
behavior, which prevents illegal modifications at run time. Immutabl:
objects can also be copied very cheaply, simply by retaining themselves,
and cheap subsets can be taken by referencing the contents of the immu-
table collection. Mutable objects must of course produce actual copies.
The copy and mutableCopy methods allow you to create immutable ot
mutable copies of either type of object.

Value Classes

The various value classes represent character strings, dates and times,
raw binary data, and atomic and structured C data types. NSString and



Chapter 3: The Foundation Framework 45

NSMutableString store series of Unicode characters, can convert their
values to and from a number of other character encodings, and provide a
raft of methods for searching, extracting, and combining strings. An
auxiliary class, NSScanner, allows you to search for and extract numeric
and substring values from a string. Both the string classes and
NSScanner use the NSCharacterSet and NSMutableCharacterSet classes
to group characters together for search operations.

Dates (including time of day) are represented by the NSDate and
NSCalendarDate classes. NSDate defines the basic storage and calcula-
tion of dates, while NSCalendarDate adds methods to access calendar
components such as year, day of week, and so on. The date classes also
make use of the NSTimeZone and NSTimeZoneDetail classes, which
allow them to represent their times in local terms and to adjust their
values for daylight savings time.

NSData and NSMutableData store arbitrary binary data, from any
source. NSMutableData in particular can be used as an open-ended
memory stream, which can be written to in order to build an archive of



46 Developing Business Applications with OpenStep

data as its constructed. The archiving classes described earlier use
exactly this technique.

The remaining value classes, NSValue and NSNumber, store atomic and
structured C data types—char, unsigned int, program-defined structs,
and so on. Both classes are immutable; since their contents are so
simple, it’s easier to simply create a new object with the changed value
than to spend the code required for all possible changes. NSValue is
essentially a byte bucket that also stores type information. NSNumber, a
subclass of NSValue, restricts its possible values to the C numeric types
and adds a number of methods, such as intValue, unsignedIntValue,
and floatValue, for accessing the numeric value as any of these types.
NSDecimalNumber, an additional class not formally in the OpenStep
specification, handles extra-high-precision fractional values, with up to
38 significant digits.

Collection Classes

The Foundation Framework defines three basic kinds of collection:
array, dictionary, and set. The collection classes are NSArray and
NSMutableArray; NSDictionary and NSMutableDictionary; and
NSSet, NSMutableSet, and NSCountedSet. NSCountedSet represents
what is commonly called a bag; it allows objects to be entered more than
once.

A collection object contains other objects, and only other objects; to put
an integer value into an NSArray, for example, you must encapsulate it
in an NSNumber object. An array object offers access to its contents by
index, a dictionary by arbitrary object key (usually strings), and a set by
identity of object id pointer or equality via the standard isEqual:
method. The different collection classes support a common means for
enumerating their contents with the objectEnumerator method. The
dictionary classes also provide the keyEnumerator method to iterat:
over keys.

An important feature of the collection classes, stemming directly from
Objective-C dynamism, is that a collection can accommodate objects of
any type. There’s no need to define a template and generate a collection



Chapter 3: The Foundation Framework 47

class dedicated to one particular type of contents. An NSArray can
contain NSStrings, or NSTimers, or other NSArrays; it can even
contain a mixture of object types. This may seem dangerous to those
used to strong type checking, but in practice it turns out to be more
convenient, more compact, and more powerful. In this limited domain,
type checking can be handled by means other than the compiler.

Property Lists

As mentioned earlier, some value and collection classes participate in an
informal arrangement called the property list. A property list is any object
composed only of string, data, array, and dictionary objects. A string
object alone is a valid property list; as is an NSArray of string objects; an
NSDictionary whose values are data, string, and array objects is also a
valid property list. Property lists are useful for grouping related data in a
well-known and easily readable format, especially complex structures of
key-value pairs (dictionaries) and simple value lists (arrays).

Property lists can be stored to ASCII or more compact binary files using
NSArchiver and NSUnarchiver objects and can be used to store applica-
tion resources such as localizable strings and user preferences. The
ASCII files can even be edited by hand, making both debugging and

customization by expert users more convenient.

This code fragment builds a small dictionary as a property list
containing a string, a chunk of data, and an array of strings:

NSMutableDictionary *myPropertyList;

NSData *scratchData;
NSArray *scratchArray;

myPropertyList = [[NSMutableDictionary alloc] init];
[myPropertyList setObject:@"Nik Gervae" forKey:@"name"];

scratchData = [NSData dataWithContentsOfFile:@"MyFace.tiff"];
[myPropertyList setObject:scratchData forKey:@"picture"];

scratchArray = [NSArray arrayWithObjects:@"reading",
@"science fiction", @"surfing the net", @"snowboarding",
nil};

[myPropertyList setObject:scratchArray forKey:@"hobbies"];



48  Developing Business Applications with OpenStep

Chapter 9:
Distributed
Applications delves
much further into
the various
distributed object
models that
OpenStep programs
can work with.

There are several things to note in this example. First, note that you can
pass any kind of object as the argument to NSMutableDictionary’s
setObject:forKey: method. Also, note that the NSData and NSArray
objects are created with special methods—not alloc—so they don’t have:
to be released explicitly.

The ASCII representation of this property list can be retrieved with a
description message. It looks like this:

{

name = "Nik Gervae";

hobbies = (reading, "science fiction", "surfing the net",
snowboarding) ;

picture = <4d4d002a 000025a4 803fd2e9 repeats... fc800000
2710>;

}

This is the standard format for ASCII property lists. Dictionaries are
enclosed in braces, with each key-value pair terminated by a semicolon.
Strings with whitespace are enclosed in quotation marks. Arrays are
enclosed within parentheses, and their items are separated by commas.
Data blocks are enclosed with angle brackets, and their contents are
rendered as hexadecimal text in eight-digit sets. This clear representatiorn
makes debugging output easier to read.

Due to their convenient recursive structure, OpenStep uses property
lists extensively in many areas. Since there’s just one paradigm—and one
set of classes for accessing them—storing and retrieving information is a
simple task, performed the same throughout OpenStep.

Classes for Distributed Objects
and Concurrency

As mentioned before, the Foundation Framework includes an object
distribution facility that operates transparently at the level of the
language. This facility makes the syntax for messaging a remote object
look exactly the same as that for messaging a local one. The Foundatior
classes that make this possible do so by exploiting some fairly esoteric
(but fundamental) features of the Objective-C object model, especially



Chapter 3: The Foundation Framework 49

message forwarding. The OpenStep Distributed Objects facility works
by defining a proxy object class, which stands in for a real object in
another process (or in another thread within the same process). Proxies
implement almost no methods of their own, so any time a proxy receives
a message the forwarding mechanism traps it, sends it to the real object,
and returns the result.

The Foundation Framework actually defines an abstract proxy class,
NSProxy, which allows other kinds of proxies to be created under a
common parent. Note that NSProxy is not a subclass of NSObject. It’s a
root class in its own right, but it defines only enough functionality to
fulfill its role as a proxy. Subclasses must implement functionality that
characterizes the particular proxy mechanism needed. The proxy
subclass used for distributed objects is called NSDistantObject. Most
messages sent to it are forwarded to its real counterpart, a descendant of
NSObject in another process or thread.

Although an NSDistantObject represents its real counterpart, it does
very little work itself. Most of the processing for remote messages is
performed by NSConnection objects. Each NSDistantObject belongs
to exactly one NSConnection, which communicates with a peer connec-
tion object in a remote process. The NSConnection makes objects avail-
able remotely by vending proxies to them, and it also keeps track of
which ones have been vended where. When an NSDistantObject
forwards a message, it does so by passing the message to its connection
object, which does the work of packaging up the arguments and such for
transmission. A pair of auxiliary classes called NSMethodSignature and
NSlInvocation represent method argument and return types, and an
actual message with arguments, respectively.

Distributed objects run concurrently in separate processes or threads, so
the Foundation Framework defines a few classes for managing concur-
rent access to shared resources. NSThread represents a running thread
within a process. NSConnection objects coordinate their handling of
messages within threads to avoid deadlock conditions. Three mutex or
lock classes allow you to protect your own data explicitly. NSLock
defines a simple lock—unlock mechanism. NSConditionLock allows you
to set a state attribute upon unlocking it, which another client can use as



50  Developing Business Applications with OpenStep

a condition for attempting to acquire the lock. NSRecursiveLock allows
the same thread to be acquired multiple times by the same thread, so
that it needn’t keep track of this fact to prevent deadlock.

Process Environment Classes

The last group of classes in the Foundation Framework provides infor-
mation about a process’s run-time environment. NSProcessInfo contains
the arguments used to start the process, including the executable file’s
name; environment variables defining system parameters; and the hos:
name and application name for the process.

NSUserDefaults gives applications access to user preferences, storing
this information on disk so that the preferences are read each time the
application starts and are saved when it exits. The defaults are stored as «
big nested property list, so applications can examine the values using
string, data, array, and dictionary objects.

The NSBundle class allows applications to load disk-based resources.
such as images, sounds, and interface files, in a uniform manner. It alsc
handles dynamic loading of new classes, making it possible to update or
extend an application piecemeal. Bundles organize their on-disk
resources into localizable and custom subdirectories and determine the
user’s language through the user defaults system, automatically
retrieving the proper resource for that language.



Chapter 3: The Foundation Framework 51



4 The Application Kit

The Foundation Framework is quite low-level and general purpose,
defining classes that any program can use, from server programs with
little or no interface to user applications with highly graphical interfaces.
For the latter type of program, the OpenStep specification also offers the
Application Kit, a rich, sophisticated framework of object classes that
implement nearly all of the common functionality of event handling,
display management, and standard panels and controls, into which you
graft your custom objects for application-specific behavior. Additional
Application Kit classes provide such amenities as spell checking, data
linking between documents, and offering of application functionality to
other applications.

Rich as the Application Kit is, as a business application developer you
may well find you don't have to program much with its classes at all. The
Interface Builder application, a development tool described in following
chapters, allows you to construct your application’s interface in the
manner of a drawing or diagramming program. With it, you drag user
interface elements such as windows, buttons, and text fields onto the
screen from palettes, arrange and connect them as needed, and declare
the interfaces for whatever custom classes you define that must interact
with the user interface objects. If you're simply using the predefined
graphical objects and not creating classes that handle events and perform
drawing, constructing the interface itself can be as simple as dragging

and dropping.

That said, the fact remains that even applications constructed through
drag and drop in Interface Builder require some programming to
achieve any level of sophistication and unique behavior. The purpose of

53

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



54  Developing Business Applications with OpenStep

NeXT’s Enterprise
Objects Framework
handles even more
interface coding for
you. See Chapter
10: Database
Applications.

See “Driving the
Application” on
page 60 for a more
thorough
description of the
responder chain
and target—action
paradigm.

the Application Kit is to minimize this burden with regard to the appli-
cation’s interface, allowing you to concentrate on the logic unique to
your application. This chapter, then, describes what the Application Kit
does for you, thereby showing some of what you don’ need to do when
creating an OpenStep application. Unlike the description of the
Foundation Framework in the last chapter, this description reviews
functional areas of the Application Kit and doesn’t describe every indi-
vidual class.

Preliminaries

The Application Kit works by a model of guided cooperation. The usher
and traffic cop is the NSApplication object, which connects the applica-
tion to the windowing system and coordinates the efforts of the mosr
basic user interface elements: windows and views. The remaining
Application Kit classes work in concert to handle the events brought in
through the basic elements, recast the events as meaningful input to
your custom objects, and display the results that your objects produce
from those inputs.

The Application Kit uses a few basic cooperation strategies that color its
entire design. An early acquaintance with these strategies will help you
better appreciate that design, as well as simply make things clearer when
we describe the details later. Some of these strategies are quite simple;
some require additional explanation later on, after relevant classes have
been formally introduced.

The responder chain characterizes the Application Kit’s event-handling
system. In an application with many windows, each of which contains
many objects that can receive an event, this mechanism determines
which of those objects actually gets the event. The responder chain
begins with the “active” object in a window, which gets first crack at all
events. If it doesn’t handle a particular event, its containing objects are
given a chance, right up to the window containing them, through a few
other objects, and ultimately to the NSApplication object itself.



Chapter 4: The Application Kit 55

The targer—action paradigm, used by control objects and a few others,
translates raw events, especially mouse events, into more meaningful
requests to perform specific actions. The target—action system uses the
responder chain but passes special action messages up the chain instead of
events.

The more complicated Application Kit objects, which don’t accommo-
date subclasses easily, allow you to customize their behavior by
appointing a custom object as a delegate. A delegate is informed of
certain operations that the object is about to perform or has performed;
can approve or refuse a pending operation; can modify the parameters
used for the operation; and receives a message telling it the operation has
been performed. (Delegation is actually a generic strategy of object-
oriented programming, but since it doesn’t play a visible role in the
Foundation Framework, we put it off until this chapter.)

Another type of customization-by-appointee is handled by objects that
serve as data sources to others. In this strategy, an object that displays a
large amount of variable data asks another object for what to display as
it’s needed. This allows you to hook the display object up to any under-
lying data set without having to actually create a subclass. A data source
is sometimes the same object as the delegate in the Application Kit, but
this need not always be true.

The final strategy is that of an owner, or an object responsible for
managing or providing data in a looser way than a data source. A data
source continually interacts with, and is more or less a permanent
partner of, its client. An owner, on the other hand, can change quite
frequently, or isn’t linked directly to the object using its services, or is
asked to perform only occasionally. This is the least formalized strategy,
with little API referring explicitly to the role; we'll highlight it as needed.

Core Application Functionality

The OpenStep application architecture (Figure 1) is defined by a

number of core classes and by the interactions among them. The



56  Developing Business Applications with OpenStep

Figure 1. The Application Kit Inheritance Hierarchy

NSWindow and NSView classes define the fundamental graphical struc-
ture of the application, while the NSApplication object coordinates
event handling and display. These three classes also participate in the
responder chain, by which events and dynamic messages are distributed
through the application.

Graphical Structure

An OpenStep application presents itself as a number of independent
windows, each containing a nested hierarchy of view objects that define
visual items such as buttons, scrollers, and text fields. Views can contain



Chapter 4: The Application Kir 57

other views, allowing applications to display highly structured inter-
faces. All display and drawing is performed automatically by views,
which handle the problems of display order, clipping, and coordinate
transformation. Each view subclass implements just one drawing
method to perform its own unique kind of drawing, and the display
machinery invokes it at the right time.

Windows and Panels

The NSWindow class defines the basic behavior for all standard
windows: placement on the screen and ordering back-to-front, distribu-
tion and handling of events sent to them, and coordination with other
parts of the application. A standard window is one that presents signifi-
cant content: a document of some sort, or the primary interface to the
application. Other types of windows are represented by NSWindow’s
one subclass, NSPanel. Panels typically present auxiliary information,
such as user preferences, a palette of options (such as colors), attributes
of a selected object, error messages, and so on.

In an OpenStep application all windows are free-standing; there is no
nesting of windows in the manner of Microsoft Windows. A window
object allows for several border elements: a title bar, a close button, a
miniaturize (minimize) button, and a resize bar or border. Within the
frame defined by these elements, the window places its content view, an
NSView object representing the canvas on which the window’s contents
are drawn.

A window object can be assigned a delegate, which is informed of such
things as the window moving, closing, resizing, and so on. The delegate
can modify the parameters of some of these operations or prohibit them
altogether. Window objects also broadcast the same notifications to any
interested object using NSNotification objects.

NSPanel alters some of the default behaviors of NSWindow and adds a
few convenience methods for commonly altered attributes. Panels disap-
pear from the screen when their application isn’t active, unlike windows,
which typically remain visible unless the user explicitly closes or minia-
turizes them. Some panels also float above standard windows so that



58  Developing Business Applications with OpenStep

Event handling is
described in detail
under “Message
Routing in the

Responder Chain”

on page 60.

they’re never obscured. They can also be brought on screen in a modal
manner, blocking other windows and panels in the application from
receiving events until theyre dismissed.

Views

When it comes to drawing, a window simply represents the virtual
device in which drawing instructions are interpreted. The objects that
actually perform drawing and display in an OpenStep application are
NSViews. An NSView stakes out a rectangular area in its window and
maintains the graphic state for its image, handling coordinate transfor-
mation from other views, clipping, and other such things. A few other
Application Kit classes draw, but always within a host view. See “Display
and Drawing” just ahead for details on drawing,

An NSView’s other major responsibility is the handling of events. While
NSApplication and NSWindow primarily act as distributors of events,
view objects are the typical recipients and interpreters of events. Mouse
events are always targeted at a view, for example, as are most key events,
The Application Kit defines abstract methods for events, such as
mouseDown:, mouseUp:, and keyDown:, which subclasses of NSView
can override to catch the events and interpret them as needed. Subclasses
don’t need to worry about retrieving most events; they simply imple-
ment the appropriate event-handling methods, which are automatically
invoked by the Application Kit.

NSViews also offer the features of image dragging, whereby the user can
drag an icon or other graphic element from one view to another; cursor-
update rectangles, which change the cursor automatically as the user
moves the mouse in and out of them; scrolling primitives, which are
used by the Application Kit’s scrolling classes; and support for custom
pagination and PostScript output when printing.

The View Hierarchy

All view objects in an NSWindow are arranged in a hierarchy whereby
every view, except for the window’s top-level view, is contained in
another view, called its superview. A view’s contained views are called its
subviews. The top-level view is the NSWindow’s content view. The view



Chapter 4: The Application Kit 59

hierarchy plays a fundamental role in the display of a window and the
distribution of events, as described in various sections of this chapter.

Views are often arranged so that a larger view contains a number of
smaller subviews to group them together; the content view is a ubiqui-
tous example of this. The NSBox class groups its subviews visually as
well as programmatically, by drawing a border and title around its
subviews. Another arrangement involves placing a very large view inside
a smaller superview. This arrangement is used for scrolling large docu-

ment views by the Application Kit’s scrolling classes, NSScrollView,
NSClipView, and NSScroller.

Display and Drawing

NSViews use a highly structured display mechanism, whose machinery
operates automatically to draw all NSViews in a window. The drawing
act itself is all that an NSView subclass need handle; the Application Kit
takes care of the rest. Every time the event loop completes, all NSViews
are told to redisplay themselves if necessary using a method called
displaylfNeeded. You can mark a view as needing display in its entirety
or in a particular region with methods like setNeedsDisplay:. You can
also simply display a view unconditionally using the display method or

one of its variants, or turn off automatic display altogether in a partic-
ular NSWindow.

The display methods all set up the proper coordinate transformations
for the view and invoke the drawRect: method. NSView’s implementa-
tion of drawRect: does nothing. Subclasses override this method to send
PostScript instructions to the Window Server for interpretation. In
drawRect: the view subclass can call just about any PostScript operator,
invoke other Objective-C methods that in turn produce PostScript

instructions, and even send messages to objects that draw within views,
such as NSImages, NSStrings, and NSCells.

After a view draws itself, the display mechanism goes on to display all of
its subviews in the rectangle drawn. In this manner a group of views
always displays itself properly, from back to front, relieving the
programmer of nearly the entire burden of managing display.



60  Developing Business Applications with OpenStep

Driving the Application

The motor of an OpenStep application is the NSApplication object
itself. This object’s job is to run the event loop and other periodic mech-
anisms and to send incoming events and internally generated action
messages to their appropriate destinations. Any operation involving
events that affects the entire application is typically defined by
NSApplication. The application object also maintains the application’s
connection to the Window Server and to other system services such as
the pasteboard server.

Message Routing in the Responder Chain

The application object distributes events and action messages through a
series of objects called the responder chain, which was introduced briefl
earlier. The responder chain comprises objects that descend from the
abstract class NSResponder. NSApplication, NSWindow, and NSVievws
all inherit directly from NSResponder, and all of their subclasses there-
fore participate in the responder chain. NSResponder defines the event-
handling methods mentioned eatlier, such as mouseDown: and
keyDown:, to do nothing but pass the event to another object, called



Chapter 4: The Application Kit 61

the next responder. In this way an event is passed along until some object
handles it.

At any time, exactly one object in a window is its first responder, the
object that defines the beginning of the responder chain. This object
may be a text field that the user is typing in, a drawing program’s canvas,
or the window itself. The first responder is typically established by the
user clicking on the object with the mouse, but it can be established
programmatically by sending the window a makeFirstResponder:
message.

The responder chain varies from moment to moment. It always begins
with the currently selected responder in the foremost window, called the
application’s key window. Every window has its own tree of responders
defined by its views, whereby each view’s next responder is its superview.
The sole exception is the window’s content view, whose next responder
is the window itself. A window also passes all of its responder chain

messages to its delegate, though the delegate needn’t descend from
NSResponder.

The active responder chain, then, is defined by the key window’s first
responder and successors, up to the window and its delegate. An appli-
cation may also have a secondary window, called the main window,
which is included in the responder chain for action messages (when
there’s no separate main window, the key window plays both roles). The
main/key window distinction usually arises between a document
window and an auxiliary panel such as a Find panel. When the Find
panel isn’t being used, it isn’t in the responder chain art all and the docu-
ment window is both the key and the main window; when the Find
panel is being used, it becomes the key window and the document
window gets demoted to main window status. In this case, the Find
panel receives action messages before the document window, but since
the Find panel is searching the document, the window is offered a
chance at action methods after the Find panel.

At the end of the responder chain is the application object itself, which
forwards responder chain messages to its delegate in the same way that a
window does. The full responder chain in an application thus consists of
the key window’s first responder and successors, up to the key window



62 Developing Business Applications with OpenStep

and its delegate, the main window’s first responder and successors, and
the application object and its delegate. Various kinds of messages are
passed up and down different parts of the responder chain, depending
on the dispatch method used and the type of message being sent.

Event Messages

Events are user inputs such as keystrokes and mouse actions, as well as
automatically generated occurrences like periodic events and mouse-
tracking notifications. Events arrive in an application from the
windowing system and are distributed by the application object’s
sendEvent: method. sendEvent: handles a few special events, such as
key equivalents, and passes others along to the key window using
NSWindow’s sendEvent: method. Event messages are distributed onlv
to responders in the key window (or the window clicked on for mouse-
down and mouse-up events). NSWindows implementation of
sendEvent: directs key events to the first responder and mouse events to
the NSView containing the cursor (which may change the first
responder). A few other kinds of events are handled specially.

As described earlier, an NSView need only implement an event message
to receive it and handle a particular event. If the first responder imple-
ments keyDown:, then as the user types, it receives keyDown: messages
for each keystroke. The receiver of the keyDown: messages can then
interpret the characters of each key event as appropriate, inserting text
or deleting it, moving the insertion point, and so on. When the user
clicks in a view, it’s sent 2 mouseDown: message. The view clicked on
can then track the movements of the mouse until the user releases it,
send a message to another object letting it know the view was clicked
on, or do whatever else it needs to handle the mouse event.

If no view wants a particular event, the event proceeds up the window’s
responder chain to the window object itself. NSWindow ignores mouse
events that come back its way. It does handle some kinds of key events,
such as those for handling keyboard accelerators and for navigating
among controls with the Tab and other keys. For other key events, the
window simply beeps.



Chapter 4: The Application Kir 63

Action Messages

A number of the standard OpenStep user interface objects handle
mouse events merely by sending a message to another object, thus acting
as simple triggers. This is the essence of what an NSButton does, for
example. The messages sent by these and other objects are called action
messages. An action message names only the action to be taken and has a
single argument, the sender of the message. An action message can be
sent directly to an object that’s known in advance, but for targets that
can vary, such as “the selected item” or “the current document,”
NSApplication offers a mechanism to dispatch an action message to
whatever object in the full responder chain cares to handle it.

NSApplication’s sendAction:to:from: takes an identifier for the action
method to invoke, the intended receiver of the action message (called
the targer), and the sender, and finds an appropriate receiver for the
message. If the target is an actual object, sendAction:to:from: simply
invokes the action method. If the target is nil, however, the
NSApplication object searches the full responder chain for an object
that responds to the action method, only sending the message if it finds

one. If no responder wants the action, it simply falls off the top of the
responder chain.

Using the responder chain to distribute untargeted actions allows for
very simple structuring of code based on variable targets, such as the
selected object, the active document, and so on. A delete: action
message, for example, can cause a text field to delete the character before
its insertion point, or a drawing canvas object to delete the selected
graphic, while a close: action message (if not intercepted earlier) causes
the key window or the main window to close. Both messages are
distributed via the same mechanism, and none of the target objects
needs to be aware of this. The messages simply arrive at the appropriate
objects in the chain, based on which object is interested in each action
message.



64  Developing Business Applications with OpenStep

Standard User Interface Controls

The Application Kit includes a number of classes that define common
controls such as buttons, sliders, scroll bars, and so on. These classes all
use the responder chain’s target—action paradigm to interact with other
objects in the application. The abstract superclass, NSControl, defines
the interface and general mechanism used by the concrete subclasses.
Among these are methods for accessing the target and action, for
accessing a stored value as a number of data types (int, float, NSString,
and so on), and for transferring the stored value from one object to
another.

Among the Application Kit’s control subclasses are:

o NSButton, which can behave in a number of different manners. It
can be a simple push button that sends its action on a mouse-up
event or a toggle button that changes its image or title on a mouse
click, in either mode highlighting itself in a number of ways.

o NSSlider, which displays a knob that the user can drag within a
bar to set its value. It sends its action as the user drags the knob
and when the user releases the mouse.

 NSTextField, which displays its value as a formatted string and
which sends its action when the user presses the Enter (or Return)
key.



Chapter 4: The Application Kit 65

» NSBrowser, which gets hierarchically arranged data from a data
source object and displays it in a multicolumn view. Each item in
a column is either a leaf or a branch; branches display small arrows
and, when selected, cause the column to the right to be filled with
their subnodes. Browsers can send different action messages on
single-click and double-click events.

* NSTableView, an unofficial member of the OpenStep Application
Kit, which displays tabular data from a data source object in a
series of labeled columns.

Other control subclasses include NSColorWell, a color selection object,
NSPopUpButton, which implements pull-down and pop-up menus,
and NSScroller, used to control an NSScrollView.

Most controls handle an initial mouse-down event but pass further
event processing to an associated object, called its cell. Each NSControl
subclass that uses a cell uses a subclass of NSCell designed specifically for
it. NSButton, for example, has NSButtonCell, while NSTextField has
NSTextFieldCell. A cell performs most of the actual drawing of its
control, allowing controls to be customized in some ways by making a
subclass of the cell only. In addition, the NSMatrix control class can
arrange nearly any kind of cell in a row, column, or matrix and can track
the entire group as a unit.

Other Functional Areas

Outside of the general functionality defined by the core classes, the
Application Kit supplies a number of other features in more specialized
areas.

Text and Fonts

The OpenStep text classes provide for editing of either plain or rich text
and can display images within the text as well. Nearly all the text drawn



66 Developing Business Applications with OpenStep

in an OpenStep application, in fact, is drawn by an NSText object: the
titles of buttons, the text in text fields, menu items, and of course larger
text documents. NSText is the abstract superclass defining the general
text-handling interface; the NSCStringText subclass offers a concrete
implementation. The text classes are unique among Application Kit
classes in the breadth of features they offer and in their complexity.
Besides supporting multiple fonts and text color, each cooperates wita
the font system (described ahead), participates in interapplication
services, uses the Application Kit’s spell checker, and can copy and paste
font and ruler information as well as the text itself.

Unfortunately, although NSText’s interface is defined in terms of
NSString objects, the OpenStep implementation currently doesn't
support the Unicode character encoding. NeXT was still working on its
implementation of such a text system when the specification was devel-
oped, and SunSoft and NeXT agreed to support the existing text class,
which was based on an 8-bit extended ASCII encoding. International
support is a major goal of the OpenStep specification, however, so wz
can expect that NeXT’s text system, or one as capable, will be adopted
into the OpenStep specification in the future.

In addition to the classes that handle text, three classes manage fonts and
font conversion: NSFont, NSFontPanel, and NSFontManager. The font
class simply provides an object-oriented wrapper for a PostScript font. It
can find PostScript font resources by name and allows you to retriev:
various attributes of the font through method invocations. The Font
panel is OpenStep’s standard mechanism for displaying the font of the
selection, for previewing fonts, and for changing the font of the selec-
tion. The font manager works with the font panel and the text-drawing
object to convert fonts, adding and removing traits such as weight
(plain, light, bold), angle (normal, italic, oblique), size, and so on. The
font classes are tightly integrated into the Application Kits text-
handling classes and are quite reusable by any such classes you might
create.



Chapter 4: The Application Kit 67

Drawing Aids

As suggested in the description of NSViews, objects other than views
can invoke PostScript operators, so long as they do so under the aegis of
a view. Cells and fonts, described earlier, are examples of such classes.
The two others in the Application Kit are NSImage and NSColor.
Image objects are more analogous to cells, in that they produce marks in
the view using them, while colors behave more like fonts, merely
affecting the results of further drawing.



68  Developing Business Applications with OpenStep

The NSImage class is based on a multirepresentation architecture. A
single NSImage object can hold any number of image representations as
instances of the NSImageRep classes. An image representation can be an
Encapsulated PostScript image, which is device-independent, or a
bitmap of any resolution and depth. For example, an NSImage can
contain a 2-bit image thats used on grayscale screens, a 12-bit color
image used when the screen supports that depth, and a 24-bit true color
image used on high-end screens. The Application Kit’s standard bitmap
format is TIFE but you can create a subclass of NSImageRep that
handles other formats (or you can use the Services facility to filter other
types to TIFFE, as described later in this chapter under “Interapplication
Services”).

Color is handled in the Application Kit by the NSColor class, with its
associated management classes NSColorWell and NSColorPanel. An
NSColor object represents a single color value, expressed in any of a
number of models: red-green-blue, hue-saturation-brightness, gray level,
and so on. NSColorWell objects display color selections made by the
user in the color panel; both allow the user to drag colors around as
small swatches and drop them into other color wells, palettes, and even
directly onto graphical objects. Dragging a color onto selected text, for
example, changes the color of the text, as long as it allows that opera-
tion.

Printing

Because OpenStep uses the PostScript language for all drawing, most of
the work involved in printing is done for you. Other aspects of
printing—pagination, page layout, generation of PostScript documert
structuring comments, and coordination of the components of the
printing machinery—all work according to a default scheme that you
can customize to suit your needs. NSView objects handle their own
pagination and the generation of PostScript document structuring
comments when printed. You can override a number of methocs
defined by NSView to alter the default pagination or add PostScript
comments. Page layout information, such as paper size and orientatior,



Chapter 4: The Application Kir 69

margins, and pagination method, is recorded in an NSPrintInfo object,
which the user accesses through an NSPageLayout panel. When the
time comes to print, the whole process is managed by an
NSPrintOperation object, which displays the print panel and instructs
the views being printed to draw their images. An NSView can modify its
output based on whether it’s drawing to the screen or to a printer by
checking with its NSDPSContext object; for example, it can omit the
highlighting of selected text when drawing to a printer.

System Services

The remaining functional areas involve sharing of data and services
among applications. NSPasteboard defines the medium by which the
Cut, Copy, and Paste commands, among several other data-transfer
mechanisms, work. Object Links allow objects that can be transferred
over the pasteboard to be pasted as links instead of static data and to be
updated automatically according to the user’s preferences. Finally, a
variety of interapplication services allow any application to export its
functionality to others through the pasteboard. Interapplication services
form the basis for cooperating tools, automatic filtering of imported or
pasted data, spell checking, and print output filtering.

Data Transfer: Pasteboards

The Application Kit’s general data-transfer mechanism, for use both
within and between applications, is called the pasteboard. Pasteboards
are used both to store data temporarily, as in the standard Cut, Copy,
and Paste commands, and to transfer data between applications, as in
image dragging and interapplication services (described ahead). An
application can create and use any number of pasteboard objects, giving
each a unique name. Predefined pasteboards include the general paste-
board, used for Cut, Copy, and Paste; the font and ruler pasteboards,
used for text settings; the find pasteboard, used to share search strings
among applications; and the drag pasteboard, used to pass dragged data
between the source and destination applications.



70 Developing Business Applications with OpenStep

Pasteboards allow you to provide your data lazily, so that you only have
to export the data if another object or application requests it. This
avoids delays in transferring large amounts of data unnecessarily. You
indicate that you have data to provide by declaring to the pasteboard
what types you have and which object is responsible for providing the
data (called the owner). Types are data formats such as ASCII, RTE
TIFF image data, and so on, as well as any custom formats defined by
your application. After you've declared the data types, another object
can ask the pasteboard what types it has available and request data for a
given type. At this point the pasteboard asks the owner for the data of
that type, and the data transfer is actually performed.

Dynamic Data Links

The Application Kit’s data link classes allow the user to copy items from
one document and paste them “live” into any cooperating application.
Then, when the originally copied item changes, the linked copy can be
updated automatically or manually. This feature compares in some ways
with Microsoft’s Object Linking and Embedding (OLE) and Apple’s
Publish and Subscribe facilities. Both the source and destination appli-
cations for linking must support links in general and the specific data
formats of linked items in particular.

Objects that support being linked must work with the link management
classes: NSSelection, NSDataLink, NSDataLinkManager, and
NSDataLinkPanel. When a linkable object is copied to the pasteboard,
it must create an NSSelection to describe just what is being copied and
also create an NSDataLink to implement the link. The NSSelection
object allows the pasted link to find its source material when it updates
later. The user can paste the copied data as normal, or choose the special
menu command Paste and Link to paste the link instead. The source
and destination applications use NSDataLinkManager objects to
monitor changes to links, updating them according to the user’s prefer-
ences. Links can be set to update continually, only when the source is
saved, manually, or never. The NSDataLinkPanel class allows the user to
examine the selected link, set its update frequency, open its source docu-
ment, and break the link, rendering it into static data.



Chapter 4: The Application Kit 71

Interapplication Services

Every OpenStep application has the potential to export its functionality
to other applications and to take advantage of functionality exported by
others, through the Application Kit’s Services facility. A special Services
menu in the application lists all services exported by other applications.
When the user chooses a command from the Services menu, the selec-
tion is placed on a special pasteboard object, if necessary, and the other
application is sent a message to perform the service, being launched if it
isn’t already running. The service provider operates on the data sent and
returns the result (if any) to the application that requested the service
using the same pasteboard. Many Application Kit objects support
sending and returning data for service requests; all you need to do is add
the Services menu to your application for it to be a consumer of other
applications” services. You can also export services from your applica-
tion, or enable a custom object class to use services, by implementing a
few standard methods.

The Application Kit uses the Services facility architecture for three other
kinds of services: filter services, which simply transform data from one
format to another; print filter services, which transform the PostScript
output of printing operations; and spell-checking services, which allow
an application to connect to different spell-checking server programs.
You request filter services programmatically through the pasteboard,
which automatically contacts the filter service provider to transform the
data you provide—a GIF image, for example—into a type that your
application can use, such as TIFE Print filter services typically modify
PostScript output to take advantage of special features of the selected
printer, to include extra data in the PostScript code such as special fonts
or images, and so on. Spell-checking services handle searching a stream
of text for misspellings, as well as suggesting corrections and storing new
words in user dictionaries.



5 NeXT5s OPENSTEP
for Windows NT

Microsoft’s Windows operating systems are the undisputed standard on
the PC platform. When NeXT started work on the OpenStep specifica-
tion, it was clear that porting their existing frameworks and tools from
NeXT’s native Mach operating system to Windows would make it avail-
able to a huge number of customers. Essential differences between the
two operating systems and user interfaces made this a hefty challenge,
but NeXT has risen to the occasion, producing an OpenStep system
that looks and feels very much like Windows itself. The most noticeable
differences are cosmetic, such as a lack of certain interface controls, and
the fact that every window in an OPENSTEP application is free-
standing. Beyond that, however, everything behaves pretty much like
you would expect.

This chapter reviews the salient features of OPENSTEP for Windows
NT, including how the user interface departs from the Windows 95
standard and which programs and development tools are included with
the user and developer versions. Chapter 7, immediately following the
next chapter, shows how you use the developer tools to create a simple
OpenStep application on either Windows or Solaris.

73

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



74 Developing Business Applications with OpenStep

Figure 1. The Draw Demo Application

The User Interface

The user interface of an OpenStep application running on Windows has
two notable features. It looks and behaves almost exactly like any other
Windows application, rendering its controls and other graphical
elements in the Windows 95 style. However, it adds some controls of it
own, such as table views, color wells, and the Colors and Font Panels,
while lacking several controls available to native Windows applications,
notably combo boxes, multiple-document architecture, and OLE
containers.

Figure 1 shows a demo included with the OPENSTEP user package, a
simple drawing application. Note the Colors and Font Panels, which are
standard objects available to any OpenStep application. You can select
colors using a color wheel (shown in the figure), a grayscale slider, and
RGB, HSB, and CMYK sliders. When you find a color you like, you
can simply drag it into a color well (visible at the top of the Inspector
panel) or in some cases right onto an object that supports color. The



Chapter 5: NeXT'’s OPENSTEP for Windows NT 75

Font Panel displays the general font families available, along with their
specific typefaces. You can select any size, since PostScript fonts are
inherently scalable, and preview your selection in the area at the top of
the panel.

As for interaction with native Windows applications, you can cut and
paste most things between OPENSTEP and Windows, as long as the
receiving application understands the format, of course. You can also
drag and drop files between the two. One notable incompatibility is
OPENSTEP’s current lack of support for OLE linking and embedding.
Except for this, things pretty much just work.

User System Programs

More interesting than the look and feel of OPENSTEP applications on
Windows NT are the actual application programs that come with the
system. The user system consists basically of the run-time libraries and
background programs needed by OpenStep applications. Windows
already has its standard applications for such things as file management,
electronic mail, and word processing, but OPENSTEP includes several
demos. The really cool applications are in the developer package,
described right after this section.

Background Programs

OPENSTEP includes four programs that run in the background and
provide various interapplication services. These programs must exist in

your Startup group or be launched manually before you can run any
OPENSTEDP application:

* The Mach interprocess communication server, machd. The
Distributed Objects system uses this for messaging between
processes on the same machine.



76 Developing Business Applications with OpenStep

* The network message server, nmserver. The Distributed Objects
system uses this for messaging across the network.

* The Window Server, which runs the Display PostScript system.

* The pasteboard server, pbs, which holds data copied or cut and
performs other resource management tasks.

An additional background program, the NeXT ORB, allows Objective-
C objects to communicate with OLE Automation objects, as described
on page 149 in Chapter 9: Distributed Applications. The ORB needn't be
launched at startup time, but must be running in order for Objective-C
objects to interact with OLE Automation objects.

Demo Applications

Although the OPENSTEP user system is essentially just the run-time
libraries, it includes a few demos to show off the system. Among them
are:

* Preview, a PostScript document and TIFF image viewer.
* Draw, a simple drawing program (shown in Figure 1).

o TextEdit, a text-editing application that supports multiple fonts
and images in documents.

Preview is perhaps the neatest demo to have, as it allows you to view just
about any PostScript or EPS file right on your computer, without having
to print it to a PostScript printer. If you don’t have Adobe Acrobat, or if
you need to proof PostScript output, this is quite handy.

The Development Environment

Rapid development of custom applications is OpenStep’s main purpose,
and for this you need more than class libraries or frameworks—you neec.
good tools. The primary tools in OPENSTEP Developer are the Project



Chapter 5: NeXT's OPENSTEP for Windows NT 77

Figure 2. The Project Builder Application

Builder and Interface Builder applications. Project Builder manages
source files and edits code, while Interface Builder handles the creation
of an application’s user interface in the manner of a drawing or diagram-
ming package.

This section summarizes the tools, describing what they do without
going into much detail of how they do it. Chapter 7: Building an Appli-
cation leads you through many features of Project Builder and Interface
Builder, showing how you use these tools to build a simple OpenStep
application.

Project Builder

Project Builder (Figure 2) is the hub of OPENSTEP application devel-
opment. With it you create applications, command-line programs,
libraries, and other types of code packages; manage the source files and
other resources in the project; edit source code; and build and debug



78  Developing Business Applications with OpenStep

your programs. Project Builder packages reusable class libraries into
frameworks, which contain the compiled code, header files, resources,
and documentation in one directory, thus giving concrete form to the
abstract notion of a framework.

Project and File Management

A project’s main window (the large window in Figure 2) contains a
browser that categorizes header files, class implementation files, other
source files, and general resources. It also displays the individual classes
and methods defined in the files. The Inspector panel on the right allows
you to set attributes for the whole project, such as its name, default
language, and document icons; for building, such as where to look fo-
header files and where to install the compiled project; and for individual
files selected in the browser, such as the file’s name and whether it’s a
localizable resource.

Project Builder can manage several different kinds of development:
efforts, from graphical applications to command-line programs, to
libraries, to frameworks. It can even group them together as subprojects
under a more general project, maintaining the dependencies between
them so that subprojects are updated as needed to rebuild the main
project.

Code Editing

Project Builder’s built-in code editor has all the standard functionality or
any text editor but adds a raft of power-user features:

* auto-indent of code;

* block selection by double-clicking delimiters (braces, parentheses,
and so on);

* name completion, which finishes a partially typed word when you.
press the Escape key (really handy with some of OpenStep’s longer
class and method names);

* split views of code, allowing you to view two distant parts of a file
simultaneously;

* the ability to edit rich text, with graphics.



Chapter 5: NeXT'’s OPENSTEP for Windows NT 79

The editor is also integrated with Project Builder’s Build panel and
debugger. When a build error occurs, you can click the error message in
the Build panel, and the code editor opens the file and selects the
offending line. Similarly, when debugging the project, the code editor
displays breakpoints and highlights the code being executed.

Frameworks

A Project Builder framework packages a library of classes together with
their header files, supporting resources, and documentation. For
example, the OpenStep frameworks exist on the system in these directo-
ries:

C:\NeXT\NextLibrary\Frameworks\Foundation.framework
C:\NeXT\NextLibrary\Frameworks\AppKit.framework

Each of these directories contains the library for the framework, header
files, reference documentation for every class, and resources used by the
framework such as images and user interface definitions (nib files, which
you'll learn about soon). Project Builder knows how to navigate the
structure of a framework directory, making the header files available in
its browser, and presenting the documentation in its Project Find panel

(described ahead).

Indexing and Searching

Many of Project Builder’s powerful editing abilities come through its
indexing facility, which examines a project when it’s opened and records
the symbols in each source file. The indexing facility is aware of
Objective-C syntax, so it does the right thing when faced with complex
expressions.

The Project Find panel uses the index to provide project-wide searching
for tokens based on where they’re defined and where they’re used or
referenced. It also allows for plain text or regular expression search.
Looking for a particular item results in a list of all occurrences of that
item in the project’s source code, in the framework header files, and in
the framework documentation. Clicking any list entry opens the source
file in the code-editing area of the project window. There are also a



80  Developing Business Applications with OpenStep

number of shortcuts and accelerators for performing different kinds cf
searches.

In addition to this, the Project Find panel allows you to perform globzl
replacement throughout your project source files. After finding a list cf
matches, you can select one or more of the items and click the replace
button, and they’re all changed to the text you specify.

Building and Debugging

Chapter 7: Building ~ Apart from editing code, most development time is spent compiling the

an Application shows
the Build and
Launch panels in
action.

project and debugging it. Project Builder includes an integrated Build
panel, which allows you to specify how the project should be built,
which computer architecture and operating system (Windows NT or
Mach) it should be built for, and even which host to perform the compi-
lation on—a handy feature when you have a powerful server. When
errors and warnings occur during compilation, they’re listed on the
build panel, where a simple click brings up the code editor with the
erroneous line selected.

Debugging is similarly integrated with Project Builder through the
Launch panel, which allows you to simply launch the application
without having to fish for it on the disk, or to start the debugger, gdb.
This is a command-line debugger originally developed on UNIX
systems, but the Launch panel and code editor add a number of graph-
ical controls for managing the debugging process. When you start the
debugger, a column appears to the left of the code editor, where you can
double-click to set breakpoints, and move, enable, disable, or delete
them by manipulating the markers. The build panel itself contains
buttons for starting and suspending the application being debugged, for
single-stepping across and into functions and methods, and for printing
the values of expressions (variables, function calls, and messages)
selected in the code editor. When the application is suspended, a
program counter indicator appears in the breakpoint area, which you
can drag down to skip past ranges of code visually.



Chapter 5: NeXT'’s OPENSTEP for Windows NT 81

Figure 3. The Interface Builder Application

Interface Builder

Chapter 7: Building ~ Although Project Builder does much to ease the task of writing code, it’s

an Application shows
Interface Builder at
work.

far better not to have to write code at all. This is where Interface Builder
(Figure 3) comes in. This application allows you to define the user inter-
face of your application, along with parts of the engine, as an archive of
objects. Using Interface Builder, you drag live interface objects from
palettes into a resource file, arrange and configure them by direct manip-
ulation, and save the lot into a resource file that your application loads at
run time.

Interface Builder is a real object editor, not just a screen-painter. The
objects you set up are real. You can examine their behavior by entering a
special test mode, where sliders slide and text fields edit their text. This
allows you to prototype your application’s user interface and see how it
might work, before even writing any code. And when you do write code,
you write less.



82  Developing Business Applications with OpenStep

Figure 4. The File Merge Application

Interface Builder is also an object archiver, rather than a code generator.
It does generate files for custom classes that you define, but the interface
objects that you wire together are archived in their entirety into the nib
file. There’s no generated C or Objective-C code to tweak, which there-
after can’t be read back into Interface Builder. In fact, you can alter the
custom class header files and read them back into Interface Builder to
update their definitions.

Other Tools

OPENSTEP Developer comes with several other tools, the most inter-
esting of which are Yap, an interactive PostScript previewer, the Bourne
shell, a command shell used by Project Builder, and File Merge, a file
comparison and merging utility. With Yap, you can type PostScript
commands into an editor and execute them in a preview window to see



Chapter 5: NeXT’s OPENSTEP for Windows NT ~ 83

the effect they have. This comes in handy when writing drawing code
for the Application Kit. The Bourne shell is used mostly by Project
Builder for running its various internal utilities, but you can also use it
to run some command-line tools, such as the user defaults editor or the
ORB registration tool.

File Merge, though, is the most useful of the remaining development
tools. Using this application, you can take two versions of a file or an
entire directory of files and compare them for changes. The results of a
file comparison are shown in a side-by-side view (Figure 4), with differ-
ences highlighted and correlated. You can use this comparison to merge
the files into a new version, taking specific differences from the left or
the right file, as shown in the figure. This application is a big help in
projects that get copied and modified by several different programmers,
as it allows you to quickly coordinate the divergent copies into a single
new master copy.



84  Developing Business Applications with OpenStep



6 SunSofts Solaris
OpenStep

Solaris OpenStep is the result of two years of joint effort by SunSoft and
NeXT. It’s implemented as a set of standard Solaris libraries and applica-
tions that work within the Solaris operating system and the X Window
system to present the classic NextStep look and feel. The Application
Kit uses the Display PostScript system for drawing within windows and
uses X11 for window management and event handling. Solaris Open-
Step is tightly integrated with the native windowing system; to other
applications running on the system, an OpenStep application appears as
a normal XllI-based application. The development environment,
WorkShop OpenStep, also includes parts of SunSofts Workshop
SPARCompiler™ language system, which arent available in other
vendors’ OpenStep offerings.

This chapter reviews the interface and applications of Solaris OpenStep,
including how they behave with different X Window managers. It also
covers a few issues particular to OpenStep applications running on
Solaris. Chapter 7: Building an Application shows how you use the devel-
opment tools to create a simple OpenStep application on either
Windows or Solaris.

The User Interface

With OpenStep Solaris running (Figure 1), the user’s workspace is
defined by an application dock on the right side of the screen, which

85

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



86 Developing Business Applications with OpenStep

Figure 1. Solaris OpenStep with the OpenStep Window Manager

puts both OpenStep and other executables in prominent view for the
user to launch or activate. Elsewhere, applications run in freestanding
windows. Menus typically sit at the upper left corner as floating panels
of command items.

In the X11 environment, the look and feel of an application is deter-
mined partly by the toolkit used to develop the application and partly
by the window manager. The window manager determines how the
outside frame of a window looks, where its close and miniaturize
buttons are, where the resize handles are, and several other traits.
OpenStep includes an ICCCM-compliant window manager, called
oswm, that gives all windows on the system the original NextStep look
and feel. However, other window managers can be used, such as the
CDE window manager dtwm, which gives all applications running on
the system, including OpenStep applications, the CDE look and feel
(Figure 2). Although the oswm window manager is the preferred



Chapter 6: SunSoft’s Solaris OpenStep 87

Figure 2. Solaris OpenStep with the CDE Window Manager

window manager for OpenStep applications, other window managers
work just fine with them.

The Solaris OpenStep pasteboard interacts with X11 selections, so users
can cut and paste between OpenStep and X11 applications. Drag and
drop between OpenStep applications and non-OpenStep applications
isn’t currently supported, but is planned for a future release.

Because Solaris OpenStep is based on the X11 Window system, applica-
tions can be displayed remotely on X terminals, provided they include
the Display PostScript extensions required by OpenStep. As we write
this book, only Sun’s X terminals have these extensions, so OpenStep
applications can’t be displayed yet on other vendor’s terminals. As other
vendors of X11-based display systems include Display PostScript with
the OpenStep extensions, though, you should be able to display
OpenStep applications remotely on their X terminals as well.



88

Developing Business Applications with OpenStep

User System Programs

Like the Windows version, Solaris OpenStep has a few background
programs that provide services to user applications. They’re basically the
same as those listed in the previous chapter, and since every UNIX
system has dozens of these things nibbling at the CPU anyway, we won'
bother to list them here. Unlike the Windows version, though, Solaris
OpenStep includes a number of handy user applications ported from
NextStep’s original suite, including a powerful file manager and a muldi-
media electronic mail application.

Workspace Manager

Workspace Manager is most users’ first look at Solaris OpenStep. This
application is a file manager unparallelled in its ability to handle huge
directory trees, making navigation across an entire networked file system
seem trivial. It displays multiple file viewer windows, each containing an
independent view of the file system. You can choose between a hierar-
chical browser for quick navigation (as shown in the back of Figures 1
and 2), a flat list view to see file attributes and permissions, or an icon
view to see the pretty pictures. Each view is accompanied by an icon pati
that shows the path to the directory displayed in the main file view.
Above the icon path is a shelf, where you can drop icons for frequently

used files.

Many operations in Workspace Manager are based on the drag-and-
drop metaphor. You can move, copy, and delete files by dragging icons
from one window to another, differentiating the operations by holding
down a modifier key while dragging. You can also drag files between a
file viewer and any OpenStep application that accepts files, especially
Mail (described next). Workspace Manager allows you to format storage
devices, view the applications registered for file extensions and choose
which application opens a given extension, set permissions, and perform
all the other tasks that file managers in general facilitate.



Chapter 6: SunSoft’s Solaris OpenStep 89

Mail

OpenStep Mail (in the foreground of Figures 1 and 2) is a MIME-
compliant electronic mail agent that supports formatted multifont text,
attached files, and voice clips. It’s fully integrated with both OpenStep
and the rest of Solaris and can read mail and attachments sent using
CDE or OpenLook® mail. OpenStep Mail checks for new mail auto-
matically and stores messages in multiple mailboxes, including an Active
box for incoming mail and an Outgoing box for mail you send. There’s
also a Drafts box where you can save messages you haven’t finished
composing.

OpenStep Mail sports a hierarchical address book that automatically
reads in system mail aliases for individuals and groups and allows you to
define your own private aliases. Pressing the Escape key while typing an
address in a compose window completes the address based on the aliases.
Most of the basic emacs key bindings work in every text area in Mail,
making life easy for those not stuck on vi.

Lastly, OpenStep Mail also supports receiving, but not sending,
NeXTmail-formatted messages for backward compatibility with
NextStep.

Edit

Edit is a multidocument text editor that supports plain ASCII and rich
(RTF) text, as well as graphic and other file attachments. Like Mail, it
supports emacs key bindings, though only inside document windows.
One of Edit’s most interesting features is “contracted” editing (Figure
3)—similar to an outline mode, it allows you to hide all the text
indented more than a given number of tab stops, which makes it easy to
work with and reorganize a document at a higher level.

Edit can also apply shell commands and filters to its document or to the
selection. You define the command to apply, such as we or grep, with an
argument variable of $file for the file’s name or $selection for the selec-
tion, and Edit forks off the command with the appropriate arguments.



90  Developing Business Applications with OpenStep

Figure 3. Contracted Editing

The output is presented in a new window. Filters, also called pipes, autc-
matically apply to the selected text, replacing it with the filter’s standard
output (and error) streams. You can use standard commands such s
sort to sort the selected lines and date to insert a timestamp.

On top of all this, Edit is integrated with the OpenStep Project Builder
and debugger, as we describe ahead in the “The Development Environ-
ment.”

Terminal

Terminal is 2 VT100™ terminal emulator similar to xterm, shelltool,
and other terminal emulators available on most UNIX platforms. It lets
you access the command-line interface to Solaris using one of several
shells (sh, csh, tcsh, zsh, and bash, to name the most popular). You can
open as many terminal windows as you want and use the shells to run
other command-line tools as you would on any UNIX platform.
Terminal offers some special features that these other emulators don’,
such as access to Application Kit Services. It also lets you construct
Services out of UNIX programs, similar to Edit’s commands and pipes,
but which Terminal makes available to any application through the
Services menu.



Chapter 6: SunSoft’s Solaris OpenStep 91

One of Terminal’s really nifty features is that it accepts dragged files,
pasting the full path of the file into the shell. Among other things, this
allows you to change to a directory by typing “cd” followed by a space
and then dragging the directory icon from Workspace Manager into the
Terminal window.

Preview

Preview is a viewer application for multipage PostScript documents,
Encapsulated PostScript images, and TIFF images. Like most other
OpenStep applications, it can display any number of separate files, so
you can look at more than one document or image at a time. You can
zoom in and out when viewing both PostScript and TIFF images and
print them to any PostScript printer. Preview also has special logic to
deal with PostScript files that don't conform to the Adobe Document
Structuring conventions, so it can often display files that other viewers
can'.

Preferences

The Preferences application controls the user’s system defaults, such as
mouse acceleration, standard application fonts, date and time, password,
and file permission mask. While running, it also displays the time in its
application icon in one of several styles, making it a handy on-screen
clock.

The Development Environment

Although the user applications are some of the most usable tools on the
Solaris platform, the real action is in the development tools included
with Workshop OpenStep. Like OPENSTEP Developer on Windows,
the primary tools are Project Builder and Interface Builder. The Solaris
version of Project Builder is quite different from NeXT’s, however.



92 Developing Business Applications with OpenStep

Figure 4. A Project’s File Listing

Workshop OpenStep also includes a separate browser for the object
frameworks, called Header Viewer.

This section summarizes the tools, describing what they do without
going into much detail of how they do it. Chapter 7: Building an Appli-
cation leads you through many features of Project Builder and Interface
Builder, showing how you use these tools to build a simple OpenStep
application.

Project Builder

Project Builder is the focal point of most OpenStep development, being
used to construct applications, libraries, command-line tools, and
bundles (dynamically loadable groups of object classes and resources).
Project Builder manages the source files and other resources in the
project, launches appropriate tools to edit source code and other
resources, maintains a makefile for you, and drives the compiler and
debugger. Each of these functions is managed in the same window, by
switching between different views using the buttons at the top of the
window. Project Builder performs some of these functions by itself, but



Chapter 6: SunSoft’s Solaris OpenStep 93

Figure 5. Searching in the Project

it delegates many of them to other tools, such as Edit, Terminal, and
Interface Builder.

Project and File Management

A project's main view (Figure 4) contains a browser that categorizes
header files, class implementation files, other source files, and general
resources. Selecting a file displays an icon on the right side of the
window, which you can double-click to launch an appropriate editor
and which you can drag out of the window to other applications, such as
Interface Builder.

Like NeXT’s version, the Solaris Project Builder can manage several
different kinds of development efforts, from graphical applications to
command-line programs, to libraries. It too supports subprojects for
grouping commonly used sets of code and resources.

Searching

In Project Find mode (Figure 5), Project Builder can recursively search
through all the files in all the directories that make up a project, looking
for specific information. It allows for plain text or regular expression



94 Developing Business Applications with OpenStep

Figure 6. Building a Project

search. Looking for a particular item quickly results in a list of all occut-
rences of that item in any file in the project’s code base. Clicking a list
entry opens the source file in Edit.

Building and Debugging

Project Builder on Solaris drives building and debugging as its cousin on
Windows does, but in a slightly less integrated manner. Its Build view
(Figure 6) is a mode of the same project window that displays files, but it
behaves just like the Build panel in the Windows version. When you
build a project, errors and warnings from the compiler appear in two
forms, as formatted, clear messages in the top pane and as raw compiler
output in the bottom. Clicking a message in the top pane opens the
problem file in Edit with the line that caused the error selected.

The Run and Debug buttons at the top of the window immediately
launch the application or start the debugger if it’s up to date, otherwise
initiating a build first.



Chapter 6: SunSoft's Solaris OpenStep 95

Figure 7. Header Viewer’s Browse Mode

Debugging is likewise driven by Project Builder through the Edit appli-
cation. The Workshop OpenStep debugger is based on dbx, which has
been extended to understand Objective-C constructs and to send
Objective-C messages during debugging. When you start a debugging
session from Project Bulder, a Terminal window appears with dbx
running inside it, and both your source code and a special control panel
appear in Edit. The panel displays a set of buttons for managing break-
points, stopping, starting, and single-stepping through your code, and
evaluating expressions. Most of the debugging work is done by selecting
lines of source code and clicking on a button—to set a breakpoint, for
instance, you select a line of code and click the “stopat” button. To
inspect the contents of a variable, you select it in Edit and click the Print
button.

Edit also contains a stack browser that allows you to inspect, though not
modify, the contents of the entire call stack. The browser displays all the
stack variables and breaks out structures and pointers into their constit-
uent elements so that they can be seen as a group.



96 Developing Business Applications with OpenStep

Figure 8. Header Viewer’s Find Mode

Interface Builder

Interface Builder on Solaris is functionally identical to the Windows
version. See the brief description on page 81, as well as the tour in the
next chapter.

Header Viewer

The OpenStep frameworks contain a lot of interfaces, which can make
it difficult to find the appropriate class or method needed to achieve a
specific goal. Workshop Solaris includes a program called Header
Viewer, which allows you to scan through all the classes in the system,
Header Viewer operates in two modes, browsing and searching. In
either mode you can view both the class’s textual documentation and the

header file in which it’s defined.

In browse mode (Figure 7), Header Viewer displays the class tree in a
browser window. You can organize the class tree by which header file the
class is first defined in, by name, or by other attributes. When you select



Chapter 6: SunSoft’s Solaris OpenStep 97

a class, you can display a list of instance methods, class methods,
instance variables, or all of the above. This mode is most useful when
you want to explore the inheritance relationships in the frameworks or
look at several related classes.

In find mode (Figure 8), HeaderViewer allows you to search the class
tree for any string or regular expression. All the matches for the search
string appear in a listing, with documentation for the selected one in the
lower pane of the window. This mode is most useful when you want to
know which classes define a named method or when you need to find
the specific argument ordering for a given method.



7 Building an Application

This example only
presents highlights
of the application.
See Appendix A:
PayPerView Source
for a full source
listing.

The previous chapters described the OpenStep development frame-
works and tools. This chapter shows how they work by leading you
through the process of developing a simple application, which shows a
list of pay-per-view shows that the user can select, examine, and
purchase with a credit card. The PayPerView application highlights
several major classes of the Foundation Framework and Application Kit,
showing how to write code that:

* creates an NSArray;
* interacts with user interface objects;
* provides data to an NSTableView;

* runs a modal panel.

Perhaps more significant is what you dont have to write code for.
Because Interface Builder makes nearly all interface setup as simple as
dragging windows and controls around, you don’t have to write a single
line of code for creating windows, placing elements in the windows, or
setting up menus. You also establish connections between these graph-
ical elements using Interface Builder, so that your custom code is auto-
matically invoked as needed by interface objects. The Application Kit
handles event dispatch and display for you, as well as pasteboard interac-
tion for standard objects. This all comes for free in OpenStep develop-
ment.

929

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



100 Developing Business Applications with OpenStep

Figure 1. Placing an Order in PayPerView
PayPerView: The Design

The basic idea of the PayPerView application is to show a list of
programs in a window, with their broadcast times and titles (Figure 1,
shown in the Windows 95 interface). When the user selects a program,
its channel and cost appear below the list. There’s also an Order button
on the window, which opens a panel showing the program information
and two fields for the user’s name and credit card.

One of the tenets of object-oriented design is to model the real world.
This application has several real-world entities that the system needs to
deal with, so they should be represented by objects. PayPerView’s design
suggests at least three custom object classes to define the functionality of
this application. First, it needs Program objects to represent the
programs available for purchase. Since there are also a window and a
panel with nontrivial behavior, it should have a class to manage each of
these. Several other classes are necessary for real functionality, such as
one for checking credit cards and one for maintaining a record of orders
placed. This example shows only the first stages of development,
however, so we leave these extra classes as likely future steps and don't
pursue them here.



Chapter 7: Building an Application 101

The Program class can be fairly simple. All it needs to do is record the
program’s title, broadcast date and time, channel, and cost. Since these
attributes should be accessible, the Program class must also define
accessor methods to return their values.

The second class controls the window that lists the programs. Its first job
is obviously to keep a list of programs, so a good name for it is
ProgramController. In addition to keeping the programs, it interacts
with the interface objects in the main window to display values and
respond to user actions.

The third class is in chage of placing an order and so is called
OrderController. It defines methods that open the order panel, verify
the user’s name and credit card, and present a message to the user indi-
cating the status of an order.

Creating the Project

To create the project for the application, launch Project Builder and
choose New... from the Project menu. A panel opens prompting for the



102 Developing Business Applications with OpenStep

Figure 2. The New PayPerView Project (Windows and Solaris)

name of the project. There’s also a pop-up list for the type of project;
Project Builder can manage graphical applications, command-line tools,
libraries, and several other kinds of compiled programs or modules.
You're building an application, so you can leave the pop-up list at the
default setting; type “PayPerView” as the project name, and a project
window appears (Figure 2).

The top of this window contains buttons for various tools, such as
building the project, searching, inspecting file attributes, and debug-
ging. You'll be using most of these in building PayPerView.

Right below the buttons is the resource browser. This series of lists
shows the general resource categories at the left. Selecting one of these in
most cases lists the individual source files, such as the interface file
PayPerView.nib, or class header and implementation files like Project.h
and Project.m (which you'll create later). NeXT’s version of Project
Builder includes a Frameworks category, which allows you to browse the
header files of the Foundation Framework and Application Kit (along
with whatever other frameworks your project uses).

When you select a file, an icon appears on the far right of the window.
You can drag this icon out of the project window for some operations
and double-click it to open the file in another application. NeXT’s
version adds an extra section at the bottom of the project window,



For the sake of
continuity, all of the
illustrations show
the Windows
version of Interface
Builder. The Solaris
version behaves
identically.

Chapter 7: Building an Application 103

Figure 3. PayPerView’s Blank Slate

which is devoted to editing source code and other text files. When you
select a text file in the browser, its contents appear in this area.

For a project as simple as PayPerView, it’s easiest to prototype the user
interface first. To do this, choose the Interfaces category in the resource
browser, select PayPerView.nib, which is the main interface file for the
application, and double-click the icon. This launches Interface Builder.

Building the Interface

When Interface Builder opens the nib file, four windows appear (Figure
3). At the center of the screen is an empty default window, which is
where the main interface will go. At the lower left is the file window,
which shows nongraphical components of the user interface: back-
ground and helper objects, icons for closed windows, and other objects
that don’t draw on the screen. By way of orientation:



104  Developing Business Applications with OpenStep

* The first icon, File's Owner, represents the object that loads the
nib file into the application at run time. File’s Owner is the bridge
through which the application can get at the other objects in the
nib file. In this case, File's Owner will be the NSApplicaticn
object.

* First Responder is used to set up untargeted action messages (as
described in Chapter 4: The Application Kit, “Message Routing in
the Responder Chain”), which make their way up the responder
chain from whatever object happens to be the first responder at
the time.

* MainMenu is, of course, the main menu used by the application.

* MyWindow represents the big, empty window on the screen. [f
you close the window, you can open it again by double-clicking
this icon.

On the right side of the screen reside the Palettes window, which
contains interface items you can drag and drop onto your application’s
interface, and an Inspector panel that displays the attributes of the
selected object (in this case, the default window).

Laying Out the Window

Interface Builder is based on the drag-and-drop technique, whereby you
grab copies of the interface objects you want off the Palettes window and
arrange them on the windows of your application. The Palettes window
contains several palettes: one for menu items; one for controls such as
text fields and buttons; one for new windows and panels; one for a text
editor and image view; and one for tables and browsers.

Adding a Table View

The whole point of PayPerView is to display a list of programs, so a table
seems a good choice for this. To put it on the window, choose the tables



Chapter 7: Building an Application 105

Figure 4. Dragging a Table View from the Palette

palette and drag a table view right onto the empty window, as in Figure
4. After this, resize both it and the window to something reasonable.
The idea is to make this window look like the one in Figure 1 (minus
the programs in the table, of course).

Next, edit each column in the table view by double-clicking and typing
the headings “Broadcast Date” and “Title.” While each column is
selected, the Inspector displays some attributes, among them the
Column Identifier. These will be needed later to distinguish the
columns, so enter values there: “broadcastDate” and “title”, formatting
them as variable names to differentiate them from labels.

Adding Other Controls

The table will show the date and title of every program, with text fields
below showing the channel and cost of the selected program. These
objects live in the controls palette, so choose that and drag four text
fields onto the window. Two will be labels, and two will change to show
the channel and cost. To set the label fields’ titles, simply double-click
them and type the new text.

You should also configure the text fields to be uneditable, since they only
display values to the user. Using the Inspector panel (Figure 5), uncheck
the editable and selectable boxes for each one, and also remove the
border and background colors.



106  Developing Business Applications with OpenStep

Figure 5. The Text Field Inspector Panel

A box around the text fields might be nice, so choose the Group in Box
command from the Arrange menu and change the title to “Program
Details.” The window will also need a button for ordering a program
and one for updating the list of programs, so drag two buttons out and
set them up appropriately.

Finishing Touches

To finish up this window, you need to use the Inspector panel. First,
select the window itself. The Inspector changes to show attributes you.
can set for the window. Among these are the title, and whether the
window has a close button, a resize border, and a miniaturize button.
Edit the title to say “This Week’s Programs,” and uncheck the close
button option—it wouldn't do to allow the user to remove the only
window this application puts up.

Use these same techniques to create the order panel, dragging a blank
panel from the windows palette and populating it with text fields, a



Chapter 7: Building an Application 107

Figure 6. Interface Builder’s Class Listing

Cancel button, and an OK button. You'll soon be hooking all this up to
the controller objects.

Creating the Controller Objects

Now you're ready to create the classes that interact with the user inter-
face. You do this by prototyping the classes in Interface Builder and then
generating source files to edit later. The end result will be placeholders
for the custom objects in the nib file, which are replaced when the appli-
cation runs by real objects created from the compiled source files. This
differs from the standard objects in the nib file, which are “live” objects
that actually work inside Interface Builder as well as when the applica-
tion runs.

Since you're defining new classes, switch views in the Interface Builder
file window by clicking the “Classes” tab (Figure 6). This shows an
indented listing of all the classes Interface Builder knows about, starting
with NSObject at the top. Small dots to the left of each class indicate
whether it has hidden subclasses (solid) or whether its subclasses, if any,
are shown (hollow).

The ProgramController class can inherit directly from NSObject, so
select it and choose Subclass from the Operations pull-down list at the
bottom of the window. This adds a new class named MyNSObject,



108 Developing Business Applications with OpenStep

Figure 7. Defining the ProgramController Class

which you should rename to ProgramController. Now you must define
the class’s outlets and actions. Outlets are instance variables that refer to
other objects, while actions are target—action methods, as described in
Chapter 4: The Application Kit. Defining these allows you to hook up the
ProgramController to other interface objects, as you'll see ahead.

To display the outlets, click the little electrical socket button on the right
side of the window (an outlet, get it?). The ProgramController needs to
send messages to the table view and to the two text fields, to set the
values they display. To create these outlets, press the Enter key to create a
new entry and type the new name for each one (Figure 7). Similarly, the



Chapter 7: Building an Application 109

Figure 8. Connecting the ProgramController to the Interface

ProgramController needs to respond when the table view or Update List
button is clicked, so add the action methods tableClicked: and
updateList: in the same way.

Once you've defined the outlets and actions for the ProgramController
class, choose Create Files from the Operations pull-down list. This
causes Interface Builder to create the header file for ProgramController,
along with an implementation file containing empty method definitions
for the actions. You'll be editing this file shortly.

Connecting Interface Objects

Once the ProgramController class is defined, you can create an instance
by choosing the Instantiate operation from the pull-down list. This
returns you to the Instances view of the file window, where you're imme-
diately ready to hook up the new object to the user interface. You hook
up outlets by holding down the Control key and dragging from the
source object to the intended outlet. When you release the mouse, the
Inspector panel presents its Connections list, which shows all the outlets
of the source object and what they’re connected to. Figure 8 shows the



110  Developing Business Applications with OpenStep

See Appendix A:
PayPerView Source,
page 255, for
diagrams of all the

connections.

table outlet being connected. You connect the channelField and
costField outlets in exactly the same way.

For the action methods, you perform this process in the other direction,
Control-dragging from the object that sends the message, in this case
the table view, to the ProgramController. Action messages are always
sent to the target outlet, so select this and find the ProgramController’s
tableClicked: action method in the Inspector panel. Choose it and
make the connection. Now, when a row in the table view is clicked, it
will send a tableClicked: message to the ProgramController. Do the
same for the Update List button and the updateList: action. Table views
also have a dataSource outlet with no action; hook this up to the
ProgramController in anticipation of its role as the holder of Prograra
objects.

You define the OrderController class and instantiate it in the same way.
It has outlets to the ProgramController, the order panel, and the various
text fields on the panel. Its action methods are prepareOrder:,
okClicked:, and cancelClicked:. Hook up these actions from the Order
button on the main window and the OK and Cancel buttons on the
order panel.

The Program class, not being involved in the user interface at all, must
be created from scratch in Project Builder.

Fleshing Out the Classes

Now it’s time to write code, so return to Project Builder. Here you add
non-outlet instance variables and non-action methods to the class inter-
faces, and you implement all of the classes’ methods. Note that the
changes you make to the header files don’t affect Interface Builder’s

ability to reload them; it simply ignores elements that don’t apply to nib
files.



See Appendix A:
PayPerView Source,
page 256, for
ProgramController’s
source code.

Chapter 7: Building an Application 111

The ProgramController Class

The ProgramController class has outlets to the table view and to two
text fields, as you specified in Interface Builder. It must also store an
array of Program objects. Declare this as an NSMutableArray, since the
ProgramController will need to alter it, and call it programList.

@interface ProgramController : NSObject
{
id table;

id channelField;
id costField;

NSMutableArray *programList;

Creating the Program List

For this simple example, the ProgramController creates its list of
Programs when initialized, in its init method. Custom objects in nib
files automatically get initialized with this method, so it’s a reasonable
place to set up the Programs. In a real-world application, the
ProgramController would gets its list from some external source; we'll
explore some options in Part Two of the book. Here, then, is the init
method:

- (id)init

{

NSCalendarDate *aDate;
Program *aProgram;

self = [super init];

programList = [[NSMutableArray alloc] init];

aDate = [NSCalendarDate dateWithString:@"8/13/1996 23:45"
calendarFormat:@"%m/%d/%Y %H:%M"];

aProgram = [[Program alloc]
initWithTitle:@"Faster, Pussycat, Kill Kill!"
channel:@"Cinerip" broadcastDate:aDate
cost:@"$2.50"];



112 Developing Business Applications with OpenStep

[programList addObject:aProgram] ;
[aProgram release];

/* Make a few other programs the same way. */

return self;
}

Note that it first invokes super’s implementation and reassigns self to
the return value. Any initialization method can return an object
different from the receiver, so this guarantees that the custom class
works appropriately with its superclass. Following this, init creates an

NSMutableArray.

The next few lines create a Program object and add it to the array. The
ProgramController first creates an NSCalendarDate from a string repre-
sentation (there’s a much longer method that takes each date component
as a separate argument). Then it creates the Program object itself, using
a method not yet written: initWithTitle:channel:broadcastDate:cost:.
Once the Program is created, the ProgramController adds it to the array
with an addObject: message, which retains it for safe keeping. The
ProgramController can then release it.

Providing Data to the Table View

The ProgramController works in a reciprocal relationship with the tabls
view in the main window. It provides data to the table view and reacts
when the table is clicked by displaying the channel and cost of the
Program selected in the table view. The first method it uses to provide
data to the table view is numberOfRowsInTableView:. This method
lets the table view know how many rows it needs to display, corre-
sponding directly to the number of items in the data source.
ProgramController’s implementations simply returns the result of a
count message sent to the programList array.

Once the table view knows the number of rows, it sends the data source
a tableView:objectValueForTableColumn:row: message for each cell,
passing an NSTableColumn object and a row index to identify the cell.
This method must return an object that can be formatted for display



Chapter 7: Building an Application 113

such as an NSString or NSNumber. Here’s ProgramController’s imple-
mentation:

- (id)tablevView: (NSTableView *)tableView
objectValueForTableColumn: (NSTableColumn *)tableColumn
row: (int)row

Program *theProgram = [programList objectAtIndex:row];
id colID = [tableColumn identifier];

if (!theProgram) return nil;
if ([colID isEqual:@"title"]) return [theProgram title];
else if ([colID isEqual:@"broadcastDate"!) {
return [theProgram broadcastDate];
}

else return nil;

This method first gets the Program for the row specified and then
retrieves an identifier from the table column. This is the very string you
entered earlier in Interface Builders Inspector panel when setting the
titles of the table columns. After checking for an actual program, this
method compares the identifier with the two labels expected, returning
the appropriate attribute of the Program as the value to display.

You could make the table view editable by also implementing a
setObjectValue:forTableColumn:row: method. If you did, the table
view would allow the user to edit cells and would pass the changes back
to the data source using this method. That’s all there is to putting data
on the screen in a table view.

Handling User Actions in the Table View

The ProgramController’s other responsibility is to update the display
when the user chooses a program. For this, the ProgramController must
act as the target of the table view, which sends an action set up in Inter-
face Builder, in this case, tableClicked:. This straightforward method
figures out which Program is selected, then gets the channel and cost
from it, and displays them in the text fields inside the Program Details
box:



114 Developing Business Applications with OpenStep

See Appendix A:
LPayPerView Source,
page 259, for
Program’s source
code.

{

}

(void)tableClicked: (id) sender

Program *selectedProgram;

selectedProgram = [self selectedProgram];
[channelField setStringValue: [selectedProgram channel]];
[costField setStringValue: [selectedProgram cost]];

return;

We've cheated a bit by assuming a selectedProgram method, which
returns the currently selected program. This information is actually
available from the table view, so to avoid duplication from storing it in
the ProgramController, this method determines the selected program
from the selected row in the table view:

{

}

(Program *)selectedProgram

int row;
Program *theProgram;

row = [table selectedRow];

theProgram = [programList objectAtIndex:row];
return theProgram;

And that’s the most complex code in ProgramController.

The Program Class

After ProgramController, the Program class is quite simple. Create its
files in Project Builder using the New in Project command from the File
menu, and define its instance variables:

@interface Program : NSObject

{

}

NSString *title;

NSString *channel;
NSCalendarDate *broadcastDate;
NSString *cost;

/* Initialization and accessor methods. */

@end



See Appendix A:
PayPerView Source,
page 261, for
OrderController’s
source code.

Chapter 7: Building an Application 115

In addition, declare the initialization method used above in
ProgramController, initWithTitle:channel:broadcastDate:cost:, and
a pair of accessor methods for each instance variable, of the form
setAttribute: and attribute. The set methods autorelease the old value (to
avoid its being deallocated in the local context, where someone might be
using it) and copy the new one provided for storage, as shown here:

- (void)setBroadcastDate: (NSCalendarDate *)value
{

[broadcastDate autorelease];

broadcastDate = [value copy];
[broadcastDate setCalendarFormat:@"%$B %d, %Y %I:%m %p"];
return;

}

This particular method also sets the format used to display the date as a
string. The other methods, taking strings already, dont need this. The
methods that return attribute values simply return the appropriate
instance variable.

The OrderController Class

OrderController’s principal job is to handle the process of placing an
order, whereby a modal panel appears for the user to enter his or her
name and credit card number. A modal panel appears above all other
windows in an application and blocks events to those windows, monop-
olizing all input. The Application Kit accomplishes all the work of
reducing the scope of events with only a handful of methods, making it
easy for applications to create modal panels.

The OrderController object is the target of the Order button in
PayPerView’s main window, with prepareOrder: as the action sent. This
method sets up the order panel, runs it modally, and takes an action
based on the outcome of the modal session:

-~ (void)prepareOrder: (id) sender
{
int result;
Program *selectedProgram = [programController
selectedProgram] ;



116  Developing Business Applications with OpenStep

[orderTitleField setStringValue: [selectedProgram title]];

[orderChannelField setStringValue: [selectedProgram
channell]];

[orderCostField setStringValue: [selectedProgram cost]];

[orderDateField setStringValue: [[selectedProgram
broadcastDate] description]];

[buyerNameField setStringvValue:@""];
[creditCardField setStringValue:@""];

result = [NSApp runModalForWindow:orderPanel];
switch (result) {
case NSRunStoppedResponse:
[self confirmOrder];
break;

case NSRunAbortedResponse:
[self cancelOrder];
break;

return;

The first part of prepareOrder: gets the selected Program and puts its
various attributes into fields on the order panel, to identify the Program
being ordered. It then empties the name and credit card fields and sends
the global NSApplication object, NSApp, a runModalForWindow:
message with the order panel as the argument. The result of the modal
session is saved and compared against the standard modal return values
NSRunStoppedResponse and NSRunAbortedResponse, invoking the
appropriate method in either case.

runModalForWindow: brings the specified window on-screen and
confines event input to that window until the NSApplication object
receives either a stopModal or an abortModal message. The first causes
runModalForWindow: to return a value of NSRunStoppedResponse,
the second a value of NSRunAbortedResponse. In PayPerView, these
methods are invoked as part of action methods triggered by the OK and
Cancel buttons on the panel itself. When the user clicks the OK button,
it sends an okClicked: message to the OrderController:



Chapter 7: Building an Application 117

- (void)okClicked: (id)sender

{
if (![self verifyCreditCard]) return;
[orderPanel orderOut:nil];
[NSApp stopModall;

return;

okClicked: verifies the credit card information, refusing to stop the
modal session if it isn’t valid. In this example, verifyCreditCard merely
checks for nonempty strings in the name and card number fields. A real
application, of course, needs to check with an actual card verification
service. If the information is valid, okClicked: removes the panel from
the screen with an orderOut: message and invokes stopModal.
cancelClicked: behaves similarly.

If ranModalForWindow: returns NSRunStoppedResponse, the Order-
Controller invokes its own confirmOrder method, which simply

presents an alert panel indicating that a Program was ordered:

- (void)confirmOrder
{
NSString *status = [NSString
stringWithFormat:@"%@ ordered %@ using card #%@\n",
[buyerNameField stringValue],
[orderTitleField stringValue],
[creditCardField stringvaluel];

NSRunAlertPanel (@"Order Placed", status, nil, nil, nil);
return;

This method first constructs a message to present using NSString’s
stringWithFormat:, which inserts relevant strings into a template much
the way the standard C function printf() does. NSRunAlertPanel()
presents a predefined panel with a title, a message, and up to three
buttons. The method invoked when the Cancel button is clicked

presents a similar message stating that the order was canceled.



118 Developing Business Applications with OpenStep

Figure 9. Windows Project Builder Build Panel Catching an Error

Building and Debugging

Now that you've defined the interface and written code for the custom
classes, you can build the application and launch or debug it. How you
do this depends on which system you're using. NeXT’s version has sepa-
rate build and launch panels for managing these processes. SunSoft’s
version uses the project window to build the application and starts a
debugger in a terminal window.

NeXT’'s Way

To build PayPerView on Windows or Mach, open the Build panel,
which has three buttons: one for building the application; one for
cleaning up derived files; and one for setting options (Figure 9). The
options you can choose include how to build (for debugging, for instal-
lation, and so on), additional arguments to provide to the gnumake
utility used to perform the build, a host to perform the build on, and
which computer architecture to build for.

As the project builds, the top portion of the status area lists errors and
warnings as they occur, while the bottom portion shows every command



Chapter 7: Building an Application 119

Figure 10. Windows Project Builder Launch Panel with Debugger

line executed by the gnumake utility. If any errors or warnings do occur,
you can click on them, which causes Project Builder to open the source
file in its code viewer and select the offending line. This makes debug-
ging compile-time errors that much faster.

Once the application is built, you can use the launch panel to run or
debug it (Figure 10). The launch panel contains buttons for running the
application, starting the debugger, examining the environment of the
process as it runs (including stack frames), and setting options. It also
contains buttons that control the debugger, starting, pausing or
continuing the program, single-stepping across or into subroutines, and
printing values selected in the code editor.



120 Developing Business Applications with OpenStep

Figure 11. Solaris Project Builder Build Mode

The bottom part of the launch panel is the interactive debugger console.
Project Builder uses the GNU debugger, gdb, which originated as a
UNIX command-line source debugger. You can still run gdb from this
console by typing commands, though the buttons and interactivs
tracking of the program counter in the code editor make things consid-
erably easier. When the debugger is running, a strip appears down the
edge of the code editor, in which you can place breakpoints by double-
clicking and alter them by manipulating the breakpoint markers,
disabling them, moving them, and so on. When the application hits a
breakpoint, a small arrow also appears in this strip, which advances with
the program counter and which you can actually drag down to skip past
some lines of code.

SunSoft’s Way

To build PayPerView on Solaris, click the Builder button, which puts
Project Builder into build mode (Figure 11). The controls are slightly
different from NeXT’s version, but they act in basically the same way.
Note that SunSoft’s version of Project Builder uses make by default, nor
gnumake.



Chapter 7: Building an Application 121

You can also click the Run or Debug button, which builds the applica-
tion if necessary, then starts either it or the debugger. On Solaris, the
debugger runs in a terminal window and communicates with the Edit
application to show the code being examined. While the debugger is
running, the Edit application displays a debug panel with buttons for
starting the application, examining the environment of the process as it
runs (including stack frames), and setting options. It also contains
buttons that control the debugger, starting, pausing or continuing the
program, single-stepping across or into subroutines, and printing values
selected in the window.



Part Two:
Business Applications



8 The Character
of a Business Application

At first blush, OpenStep is the Foundation and Application frameworks
and the tools you use to build graphical applications. The real power
and significance of OpenStep, however, is in its object model, which is
powerful enough to extend across processes and networks, to transform
the static content of databases into live objects with logic built in, and to
support the presentation of data in a variety of media. These abilities
address many of the significant needs of business applications: support
for multitier client/server architectures; access to relational databases;
swift development and straightforward maintenance; and deployment
on heterogeneous networks.

This second part of the book covers the more significant uses of this
broader view of OpenStep in a business environment. These uses are
enabled by the built-in Distributed Objects facility as well as by the add-
on frameworks: the Enterprise Objects Framework and WebObjects.
These two products are both made by NeXT, but they’re available on all
OpenStep platforms. Parts of all three of these systems are also available
on several other UNIX platforms, enabling server development and
deployment on a wider variety of systems.

The Business Environment

Business use of software generally falls into two categories, that of stan-
dard productivity applications and that of custom business applications.
Productivity applications, such as spreadsheets and word processors,

125

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



126  Developing Business Applications with OpenStep

assist individuals in creating documents, reports, and other concrete
things. The generic nature of these tools allows businesses to buy them
off the shelf and use them as they come.

Custom business applications, on the other hand, move the businesss
data through processes unique to the business, embodying its policies in
a system that coordinates the work of its users. As such, business applica-
tions must be developed specifically with the businesss practices in
mind, whether by an outside party or by the business itself. To develop
these applications, businesses require technologies that support their
particular practices.

Data, Process, and Policy

Every business manages its own unique system of processes that create,
modify, and redistribute data among the parts of the business. These
processes are governed by policies that determine what operations are
meaningful and legal for specific kinds of data, such as inventory and
payroll. More importantly, though, both the data and policies must be
shared throughout the business, with the processes based on them being
distributed appropriately and made accessible to every part of the busi-
ness.

Consider a shipping company that must deal with the processes of
receiving inventory, cataloguing and storing it, and then shipping it to
its final destination. The company’s data records the nature of the inven-
tory, the costs to transport and store that inventory, where it came from,
and where its going. This information must be made available in the
proper form to many different people in the company, who all have their
separate tasks to perform with regard to both the inventory and the data
about the inventory. These tasks in turn are governed by the company’s
policies, such as what can be received and processed, payment types
accepted, credit limits, and so on.



Chapter 8: The Character of a Business Application 127

The Elements of a Business
Application

Unlike productivity applications, which handle a single task in a single
program, business applications often handle many separate tasks using
many programs, typically taking the form of client/server systems or
suites of related programs. To support such architectures and to address
business needs with regard to data, process, and policy, a business appli-
cation needs four things:

e access to the businesss data, usually in the form of a database
server that provides a structured set of data to business applica-
tions;

* well-defined business components that implement general
processes and that can take advantage of computing power wher-
ever it may be;

* a programmatic business model that embodies the business’s enti-
ties, giving them the power to enforce the policies defined for
them;

* a means for allowing the people running the business to view and
edit the information contained in the entities.

The first three elements seem well defined as representatives of data,
process, and policy, respectively, but in fact all four combine them to
some extent. The following sections explain how they do this.

Databases

All businesses use and share data among their members. The most
common means of doing this is with a relational database management
system. A database’s schema records what kinds of values may be stored,
along with limits on those values based on business policy. Databases are
thus major representatives of both data and policy, in that order.



128 Developing Business Applications with OpenStep

However, being relatively passive repositories, they dont embod
& Yy P p y y
processes very much. This quality is reserved for the other elements.

Business Components

Business components embody pure processes that consume quantities of
data, such as payroll calculation, recording of transactions, and report
generation. A business component can be a functional module within a
single program or a program in its own right with a dedicated function.
A component often functions as a server in a client/server system,
making its resources available to many other applications. In this way,
cooperating groups of components encompass complex processes
distributed throughout the business.

A business component typically defines no lasting state of its owr.
Instead, it simply operates on the data and entities that come its way;,
examining them and using their values as input to its process. In this
sense, components are the interchangeable parts of a business applica-
tion: When you need a particular service, any component that provides
it will do.

Business Entities

Unlike components, business entities represent the unique, individual
elements of a business. By tightly binding the three aspects of data,
process, and policy, entities have lasting identity based on internal state
as well as consistent behavior. Whereas a component acts on whatever
data it’s presented with, an entity’s role is to cultivate its own private data
and relationships to other entities, interacting with those entities to
execute its processes, and enforcing its own policy in those interactions.

Entities typically represent real assets and resources of the business, such
as inventory, employees, and equipment. Their processes define how
they interact with each other, and their policies limit how they may
interact in specific situations. For example, employees may requisition



Chapter 8: The Character of a Business Application 129

equipment (process), but if the equipment is valued over a certain
amount, the manager must approve the requisition (policy constraint).

Presentation of Information

Data is of no use if it cant be viewed and manipulated by real people. To
this end, the data from business components and in business entities
must be made available for presentation in any number of forms: as
printed reports, as editable forms on interactive screens, and so on.
Ideally, the means of presentation should be handled by special elements
tailored to the task, relieving the entities from dependence on external
data formats and presentation mechanisms.

Elements as Objects

The latter three elements listed above—business components, business
entities, and presentation elements—all combine data and process to
some extent and exhibit behavior independent of other elements. These
are defining qualities of objects, as described in Chapter 2: The Object
Model. Thus, it makes perfect sense to implement them as objects. The
very purpose of OpenStep, as a platform, is to make this easy. The three
business-oriented OpenStep systems apply specifically to business
components, business entities, and interaction with users.

Component Objects

Business components, being shared resources, must have a means of
communicating with each other and with the other elements of the
business application. The natural model suggested by objects is one in
which the elements make requests and transmit information by sending
messages to one another. Because components are often separate
programs distributed across a network, though, basic Objective-C
messaging isn't enough.



130 Developing Business Applications with OpenStep

OpenStep’s Distributed Objects facility addresses this issue by extending
the Objective-C messaging metaphor to the network. This allows
objects on disparate machines to send messages to one another exactly as
if they were running in the same program. The object model remains
the same, allowing application developers to focus on implementing
business process and policy rather than on basic communication.
Distributed Objects is also available apart from OpenStep on several
UNIX platforms, making these systems available for deploying business
components as well.

Business Objects

Because business objects must have lasting identities, their state has to
be managed by a robust data repository such as a relational database.
Relational databases, however, organize data quite differently from how
objects organize it. To enable real business objects, an application must
be able to translate between the rows of a database and the objects that
add behavior to the raw data.

Bridging the gap between raw data and the OpenStep object model,
NeXT’s Enterprise Objects Framework embodies business entities as
true objects while preserving their state in the database. The Enterprise
Objects Framework maps the relational data model into the business
application’s object model, transforming rows into unique instances
within a program, rendering relationships between rows as pointer refer-
ences between objects, and tracking all changes to the state of the live
objects for propagation back to the database. This leaves the business
objects to carry on their processes without concern for the external
storage that gives them their identity.

Presentation Objects

To be of any real use, business objects must have some means for letting
users view and modify their data. OpenStep would seem to have a ready
answer for this in the graphical objects of the Application Kit. These



Chapter 8: The Character of a Business Application 131

objects are simply a mechanism, however—it's up to the data-bearing
objects to know how to make them display and edit values. Not only
does this place an unnecessary burden on business objects, it ties them
down to that mechanism.

To free business objects from having to drive display objects, an addi-
tional element is needed to move data to and from the display objects.
This element can monitor business objects for changes, request data on
their terms, and display it according to whatever presentation mecha-
nism is available. Similarly, when the user changes values, the presenta-
tion element accepts the new data from the display object and passes it
back to the business objects.

OpenStep currently supports two such presentation elements. The first
is part of the Enterprise Objects Framework, a mechanism that binds
business objects to the display mechanism of the Application Kit. The
second is NeXT’s WebObjects framework, which turns business data
from objects into HTML for display in any standard World Wide Web
browser and accepts requests on behalf of the objects. These two presen-
tation elements both display data to users and accept data from them,
passing it back to the business’s objects. In this way, they connect the
business’s data, process, and policy to the world at large.

A Unified Approach
to Business Applications

OpenStep offers tremendous benefit to business applications, and to
business application developers, by providing a single object model for
all of their elements. The encapsulation of all three elements as objects,
and their integration into a single object model, enables them to be
developed rapidly—and further, to evolve as business processes and poli-
cies evolve. When a process or policy changes, only the objects involved
in that process or policy need change. Since these same objects can be
reused throughout the business’s application suite, changes are both
easily made and easily deployed.



132 Developing Business Applications with OpenStep

OpenStep’s Distributed Objects facility and business frameworks make
all this possible. Business components can be implemented as objects
both within programs and across the network. Business entities can be
given life from static data and operate entirely as objects. Data from all
elements can be viewed and edited by users, through the Application Kit
or more widely through the World Wide Web. The following chapters
present OpenSteps business frameworks, showing what they do,
presenting simple examples, and explaining how they work.



9 Distributed Applications

Distribution, though it works largely behind the scenes, is one of the
defining characteristics of many business applications. Large systems
with centralized, expensive, or simply rare resources—whether data or
services—must share those resources, and distribution is the way it’s
done. Any framework for creating business applications must include a
distribution mechanism; OpenSteps is called Distributed Objects
(DO). Distributed Objects is an integral part of the OpenStep Founda-
tion Framework, and is also available as a standalone product called
Portable Distributed Objects™ (PDO®) on several UNIX-based oper-

ating systems.

In this chapter we show Distributed Objects in action, turning the
sample application developed in Part One into a distributed application.
Next, we explain how DO works, in great detail. Our reasons for doing
this are to show you how much DO gives you and to allow you to deter-
mine how appropriate this model is for your needs. The final sections
cover other distribution models and present some design issues that
distribution forces on application development.

What Distributed Objects Does

Distributed object systems in general make objects in a remote process
look like they exist in the local process. OpenStep’s Distributed Objects
facility allows the client of a remote object to use that object exactly as it
does a local one, with the same expressions and methods used for any

133

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



134  Developing Business Applications with OpenStep

See Appendix B:
PayPerView with
Distributed Objects
for the complete
source code.

object. Using a local or remote object is identical, apart from the code
needed to create the id for the object. Beyond this small difference,
clients of a remote object need never know that the object exists in
another process. Of course, robust applications want to know in sorne
circumstances when an object isn’t local; Distributed Objects allows
those that care to find out.

That’s all there is to it. But behind this simplicity lies a host of complex
issues. The latter parts of this chapter describe many of them.

PayPerView with Distributed
Objects

Before exploring the inner workings of DO, let’s show how you use it in
a client/server application, by putting PayPerView’s program list on a
server. To do this, you change only two methods in ProgramController,
init and updateList:, to contact a server object and retrieve the program
list from it. You also add a new instance variable of type id called
programServer and implement init like this:

- (id)init
{
NSConnection *serverConn;

self = [super init];

serverConn = [NSConnection
connectionWithRegisteredName:@"ProgramServer"
host:@"*"];

programServer = [[serverConn rootProxyl] retain];

if (!programServer) {
NSRunAlertPanel (@"No server",
@"Can't connect to the program server.",
@"Quit", nil, nil);
[NSApp terminate:nil];



Chapter 9: Distributed Applications 135

[ (NSDistantObject *)programServer
setProtocolForProxy:@protocol (ProgramServer) ] ;

programList = [([programServer programs] retain];
return self;
}

Instead of creating the Programs here, the ProgramController relies on a
central server to provide them. The messages to the NSConnection
create a proxy to a remote object and assign its id to programServer.
The server object runs in a different process, but its proxy looks just like
any other Objective-C object here in the client. After checking for an
error, init invokes setProtocolForProxy: to define the methods that the
server is known to respond to and gets the list of programs using a
method in the ProgramServer protocol:

@protocol ProgramServer
- (bycopy NSArray *)programs;
@end

This protocol has only one method, programs, that returns a copy of
the server object’s program list (without the bycopy specifier, it would
return a proxy to the program list). The reasons for defining and using a
protocol are explained later, under “The Role of Protocols.”

updateList: can now be implemented to actually get new information,
by releasing the old program list and getting a new, possibly altered one,
from the server:

- (void)updateList: (id)sender
{
[programList release];

programList = [[programServer programs] retain];
[table reloadDatal;
return;

}

Note that although this is an extremely trivial example, we've made a
design decision—using bycopy for the program list—that reflects the
distributed nature of this application. The programs method returns a
copy of the server’s program list instead of a proxy. The reason for this is
obvious. If you're going to be interacting a lot with a basically static
object, you dont want every message going across the network. Far



136 Developing Business Applications with OpenStep

better to get a local copy of it, which you can replace, than to congest
the network unnecessarily.

The server class defines an init method that creates the list of Programs
using the same code that ProgramController did in the original
PayPerView—it’s just moved to this class. The protocol method,
programs, simply returns an immutable copy of the list:

- (NSArray *)programs

{
// Guarantee bycopy transmission by making immutable.
return [[programList copy] autorelease];

}

Now, because the server is a separate program that doesn’t use the Appli-
cation Kit, it has to have a main() routine that creates the server object
and makes it available to clients:

#import <Foundation/Foundation.h>
#import "ProgramServer.h"

int main (int argc, const char *argv([])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

ProgramServer *server;

NSConnection *defaultConn = [NSConnection
defaultConnectionl];

server = [[ProgramServer alloc] init];

[defaultConn setRootObject:server];

if ([defaultConn registerName:@"ProgramServer"] == NO) {

NSLog (@"Failed to register server. Exiting.\n");
exit (EXIT_FAILURE);

NSLog (@"Server successfully launched.\n");
[ [NSRunLoop currentRunLoop] run];

[pool releasel;
exit (0);

}

This function uses the standard autorelease pool class to handle auto-
released objects outside of the run loop and sets up a ProgramServer
object within the pool’s scope. To make the ProgramServer available, it
gets an NSConnection object, makes the ProgramServer the root object



Chapter 9: Distributed Applications 137

with a setRootObject: message, and registers the NSConnection with a
registerName: message.

This might seem like a fair amount of code, but in a large project this is
small indeed. Converting a simple OpenStep application to a
client/server architecture is this simple, as far as the code itself is
concerned. More complex applications require substantially more work,
of course.

How It Works

As simple as it is to use Distributed Objects, a lot goes on behind the
scenes. Understanding this can help you to decide whether DO will
work for your projects. If you decide it will, your understanding will
help you take full advantage of DO and diagnose any problems you
encounter in your applications.

This part of the chapter examines the setup of a client/server application
in chronological order, starting with the server and proceeding to the
client. The first sections, “Advertising an Object” and “Contacting the
Server,” explain just what happens when a server advertises an object
and when a client connects to it. The following section, “Remote
Message Processing,” describes the steps involved in trapping a message
to a proxy and forwarding the message across the connection. “Transfer-
ring Data and Objects” explains how DO handles argument and return
values and shows how you can bypass the normal proxy creation mecha-
nism to have an object duplicated across a connection. The last section,
“Handling Failures,” explains how to correct problems that can occur in
distributed messaging.

Advertising an Object

As weve already shown, a Distributed Objects session involves
NSConnection and proxy objects. The example made two
NSConnections and one proxy visible in the code; in fact, each adver-



138 Developing Business Applications with OpenStep

Figure 1. Server Process Advertising an Object

tised server object is managed by a roor connection, and each process that
contacts the advertised object creates another pair of NSConnections
and proxies. The new PayPerView, then, actually creates three
NSConnections. Here’s how that all gets built up.

First, the server program creates the object that handles messages from
clients. Then it creates an NSConnection, assigns the server object as
the NSConnection’s root object, and gives it a name. Recall the code
from the previous section:

ProgramServer *server;
NSConnection *defaultConn = [NSConnection defaultConnection];

server = [[ProgramServer alloc] init];
[defaultConn setRootObject:server];

if ([defaultConn registerName:@"ProgramServer"] == NO) {
/* Handle error. */

}

This code takes advantage of the fact that every thread has a default
NSConnection object, which can be set up as a server. An
NSConnection can advertise only one root object, however, so the
default NSConnection might not be available. If you want to advertise
several objects, you can create additional NSConnections with the usual
alloc and init methods.

The result looks something like Figure 1, where a lone NSConnection
(the square labeled s) advertises the name “server” to other processes.
This NSConnection object acts as the matchmaker for other processes
requesting the services of the object. It’s worth noticing that the name is
bound to the NSConnection, not to the server object. You can assign a



Chapter 9: Distributed Applications 139

Figure 2. Client Process Connecting to the Advertised Object

new root object to an NSConnection at any time, changing the object
that new clients connect to. You can change the name as well, perhaps to
make one server unavailable when an upgraded one is brought on line.

While setting up the root connection, the server can also configure its
behavior with regard to timeouts, concurrent message handling, and so
on. Servers that use the Application Kit are finished setting up at this
point. Most servers, however, don’t present graphical user interfaces,
using only the facilities of the Foundation Framework. Such servers
must start the run loop explicitly in order to receive incoming messages:

[ [NSRunLoop currentRunLoop] runij;

The role of the run loop is explained in “Remote Message Processing.”

Contacting the Server

When a client starts up, it seeks out the server's NSConnection using
connectionWithRegisteredName:host:. The name used is whatever
the server advertised. The host can be a specific machine’s name, or “*”
to connect to the first machine on the local network that responds to the
request.

NSConnection *serverConn;

serverConn = [NSConnection
connectionWithRegisteredName:@"ProgramServer"
host:@"*"];



140 Developing Business Applications with OpenStep

Figure 3. One Client Connected

This method causes the servers root NSConnection to create a child
NSConnection associated with the client process and creates an
NSConnection in the client that talks to it. The client can accept the
new NSConnection as it is or set various configuration options befcre
sending any remote messages. Figure 2 shows the state of things at this
point. The letters in each box indicate each NSConnection’s receive and
send ports, which play reciprocal roles in the two processes and together
identify the connection between them. Ports are an abstract notion with
regard to the OpenStep specification, but NeXT’s implementation real-
izes these as actual objects of the NSPort class. “Remote Message
Processing” describes the role ports play in sending remote messages.

After setting up the connection, the client gets the proxy to the server
object:

id <ProgramServer> programServer;

programServer = [[serverConn rootProxy] retain];

[ (NSDistantObject *)programServer
setProtocolForProxy:@protocol (ProgramServer) ] ;

When a DO program returns a proxy to one of its objects, it’s said to be
vending that object. As a result of the rootProxy message, both the
server connection s/a and the client connection a/s create proxy objects,
as shown in Figure 3. The server creates a local proxy (the hollow object
under the square s/a), so called because its real counterpart, sometimes
called the target object, exists in the same process and thread. In its turn
the client creates a remote proxy which communicates with the target
through the NSConnection objects. “Remote Message Processir.g”



Chapter 9: Distributed Applications 141

Figure 4. Two Clients Connected

describes the responsibilities of each of these objects, as well as the
purpose of the setProtocolForProxy: message.

This is the basic scenario. By way of elaboration, Figure 4 shows what
things look like when a second client connects to the server. It gets its
own NSConnection pair, s/b and b/s, and another pair of proxy objects.
Both Client A and Client B are communicating with the same object in
the server, however. In similar fashion, if a client connects to two
different servers, there will be two connections in the client and two
proxies, representing the two different server objects.

In another common situation, suppose the server object returns a new
object in response to a remote message. Here the client receives a new
proxy, shown in Figure 5, which shares the child NSConnection a/s.
Messages to or from either object in the server pass through this pair of
NSConnection objects.

These are the most typical arrangements that develop among the
components of a Distributed Objects application. Others are possible. A
client might send one of its objects to the server, for example, which
then ends up getting sent to a different client, resulting in a new connec-
tion between the two clients. Or, a program might be designed to run in
multiple threads, using DO internally to preserve each thread’s flow of
control. In all cases, the NSConnections perform the necessary coordi-
nation and optimization of proxy relationships among vended objects.



142 Developing Business Applications with OpenStep

You might want to
refer back to Figure
3 as you read this
process.

Figure 5. Two Objects Vended over One NSConnection

Remote Message Processing

On establishing the state in Figure 3, the client process is ready to send
messages to the remote object and to receive replies. As mentioned
before, the client can send any message to the remote object, passing and
receiving just about any type of data except for unstructured or open-
ended types such as unions, pointers to void, and pointers embedded in
structures other than char* and objects. The Distributed Objects
system itself allocates temporary buffers as needed for received data,
allowing the recipient to use or cache the data without having to deallo-
cate it. All received objects and data are temporary; you must retain or
copy them if you intend to keep them.

With that out of the way, let’s consider what actually happens when a
message is sent to a remote proxy. Because proxies implement very few
methods of their own, the odds are that the remote proxy doesn’t
respond to the message. An unrecognized message causes the standa-d
Objective-C method forwardInvocation: to be invoked, with an
NSlnvocation object representing the message and its arguments. n
NSObject this method raises an exception to indicate a run-time error,
but in the remote proxy class, NSDistantObject, it sends the invocation
across its connection along with the id of its real counterpart.

The client’s NSConnection takes the invocation, encodes it for network
transmission, and sends it out on the local send port (which is
connected to the server’s receive port). The client port transmits the
encoded message onto the network, where the server’s receive port picks



The server might
also crash or hang
while executing a
remote message.
These cases are
covered under
“Handling Failures.”

Chapter 9: Distributed Applications 143

it up and the run loop is notified of pending input. The run loop sees
that the message gets read and hands it to the server NSConnection,
which decodes the invocation from the message, assigns its target to be
the real object, and invokes it. (Local proxies are used only for book-
keeping purposes.)

The NSInvocation sends its message to the target object with the proper
arguments, and if all goes well it squirrels away the return value, which
the server NSConnection then packages up again and sends back to the
client. There the client NSConnection passes the return value back to
the remote proxy, where the Objective-C run-time system recovers it
and hands it to the sender of the remote message.

If all doesn’t go well, meaning that the method invoked raises an excep-
tion, the NSConnection object traps the exception and sends it back to
the client instead of a return value. The client NSConnection, on
decoding an exception, immediately raises it in the client, duplicating
what would happen if the remote message were in fact a local one.

The Role of Protocols

The sequence of events recounted above left out a small detail. It turns
out that, in order to forward a message properly, the Objective-C run-
time system needs information about the size and order of a method’s
arguments and return value. Within a single process, this can be handled
by examining the run-time method tables, but in a distributed applica-
tion, where the receiver of a message—and therefore its methods—aren’t
present, this information must be looked up before the remote invoca-
tion, resulting in an extra round-trip to the server.

Because network transmission is orders of magnitude slower than
in-process lookup of messages, it makes a lot of sense to do away with
this lookup if possible. To this end, the remote proxy class allows you to
set a protocol of methods that the remote object is known to respond to.
This is why the setProtocolForProxy: message is used in the code
example above. It immediately records the method signatures for the
methods in that protocol so that they don't have to be looked up when
they're invoked later. You can still send any message to the remote proxy;



144  Developing Business Applications with OpenStep

those not in the protocol simply cause remote lookup to occur.
However, for most efficient use of the network, it makes sense to bundle
the server object’s remote methods in a protocol and advertise that to
client programs via a header file. (If youre concerned about using
multiple protocols with a proxy, remember that it’s a simple matter to
incorporate any number of protocols into another.)

Configuring an NSConnection

NSConnection defines reasonable default behavior for handling remote
messages, but also allows you to adjust some of the parameters of this
behavior. An NSConnection uses two different timeouts: one for
messages waiting to be transmitted, called reguests, and one for replies
yet to be received. If either timeout is exceeded, the NSConnection
raises an exception. You can set either to adjust the tolerance of an
NSConnection for the vagaries of network performance.

When an NSConnection is awaiting a reply to a remote message, it puts
its thread’s run loop into a special mode, which preempts other run-loop
modes and can block other sources of input from arriving. This mode is
public, however, so you can base high-priority input sources on this
mode, or add other modes to the one NSConnection uses, in order to
have the input sources for those modes checked along with remote
message replies.

Finally, you can set how an NSConnection handles multiple incoming
remote messages. By default, an NSConnection handles them as they
come in through the run loop. If your application returns to the run
loop while handling a remote message—by invoking another remote
message, for example—that remote message can be preempted by
another one coming in. Normally, this is fine behavior; it allows for arbi-
trary levels of callbacks between the client and server to negotiate a
transaction. However, for remote methods that must complete to assure
consistent state, or that simply put application state into a temporarily
inconsistent state, it can cause problems. The incoming messages then
either return incorrect results to the sender or corrupt the server’s state
altogether. To address this issue, NSConnections can be configured to
accept and handle only one incoming remote message at a time, through



Chapter 9: Distributed Applications 145

the setindependentConversationQueuing: method. This limits the
available server resources, of course, and can cause deadlock if the server
attempts to send a message back to the client, so it must be used with
care. Used appropriately, however, it solves several classes of problems,
such as a secure login session that requires a single challenge-response
cycle.

NSConnection’s Delegate

An NSConnection can be assigned a delegate, which is given the oppor-
tunity to intercede in two operations: the creation of a root connection’s
child when a client makes contact, and the authentication of remote
messages. This allows it to refuse new connections and to perform secu-
rity checks on existing connections.

When a connection request arrives at a root connection, it checks with
its delegate before actually creating a child connection, using the
connection:shouldMakeNewConnection: method. The delegate can
return YES to approve or NO to reject the new connection. This tech-
nique is useful for limiting the load on a server, for example.

The delegate’s other responsibility, message authentication, isn’t offi-
cially part of the OpenStep specification, but both NeXT’s and
SunSoft’s implementations include it. When an NSConnection is
preparing a remote message, it checks the delegate for data that the peer
NSConnection can use to authenticate the message by sending it an
authenticationDataForComponents: message. The delegate typically
hashes the array of message components into a value that the peer can
verify. When the message arrives at its destination, the NSConnection
there checks for authentication data; if it's present, the destination
NSConnection asks its own delegate to confirm the data with an
authenticateComponents:withData: message. The delegate in the
receiving process can hash the components and compare the result to
the data provided by the sending process, returning YES or NO as
appropriate. This feature allows you to capture illegal messages.



146  Developing Business Applications with OpenStep

Transferring Data and Objects

The kinds of data that can be sent as arguments and received as return
values and filled-in arguments have been hinted at so far. Here’s the
scoop on what exactly works and what doesn’t. Naturally, all scalar C
types and Objective-C objects can be passed back and forth in a remote
message. Complex structures are allowed as long as they contain no
pointers other than char * and objects. The Distributed Objects systera
assumes that any item declared as char * is a null-terminated C string,
so plan your method parameter types appropriately. Pointers to other
data types are allowed outside of structures and are assumed to point to
a single element of the pointer type. Pointers must have valid values cr
be NULL at the time they’re passed to a remote message, because the
Distributed Objects system must access and send those values to recreate
valid pointers in the receiving process.

Explicitly disallowed are unions, which are highly architecture-depen-
dent, pointers to void, and structures as return values. You can pass
structures or pointers to structures as arguments, but structures must
always be returned by pointer reference, since returning structures by
value requires significant manipulation of the stack. To avoid potential
problems with this, the Distributed Objects system allocates memory
for a returned structure on the heap, and you accept a pointer to th:s
returned structure. This memory is reserved only temporarily though, so
the receiver must copy it to hold on to it.

Passing or returning an object normally results in a new proxy being
created if necessary. In this way programs can naturally share references
to multiple objects, which makes their code look quite transparent to
distribution, but can of course cause all sorts of performance and debug-
ging problems. These problems are explored later under “Design with
Distributed Objects.” You can also set up particular object classes to
support actual transfer over a connection, whether upon request or——
overriding the normal behavior—by default. This is explained below.

“The Role of Protocols” mentioned an optimization that can be made at
run time by specifying which methods a remote object is known to
handle, thus saving two extra network trips per message. In declaring



Chapter 9: Distributed Applications 147

this protocol, you can also specify which method arguments and return
types are actually transmitted over the network, saving on packet size
and round-trip time. This is done with several special Objective-C
keywords, used only in protocol declarations and only in forwarding
remote messages:

Keyword Effect

inout Method parameter is sent to the receiver and
returned (if a pointer value). Default behavior for all
parameters except those declared const.

in Method parameter is sent to receiver but not
returned. Default behavior for parameters declared
const.

out Method parameter isn't sent to receiver but is
returned to sender. Valid only for pointer values.

oneway Causes a message with a void return value to return
as soon as it's queued, and not block waiting for a
reply.

bycopy Causes objects to be replicated across the connec-

tion instead of having proxies created. Requires
support from the class (see below).

byref Explictly causes proxies to be created, overriding any
objects that might normally copy themselves across
the connection.

These keywords should be fairly straightforward, except for bycopy and
byref. The effect of bycopy is simple in nature but requires the coopera-
tion of the object being passed to actually work. In transmitting an
object value, the Distributed Objects system invokes a special method,
replacementObjectForPortCoder:, which normally causes a proxy to
be created.

Classes that support bycopy transmission must override this method to
return self when a copy should be provided instead of a proxy (which
NSObject’s implementation does by default). The receiver can check for
this by sending isBycopy to the NSCoder provided in the message. The
class must also adopt the NSCoding protocol, which allows it to be
encoded into the remote message and reconstructed as a new, indepen-
dent instance by the receiving process.



148 Developing Business Applications with OpenStep

Some object classes, typically those representing simple, constant values,
might override replacementObjectForPortCoder: to always return self,
thus causing a copy to be transmitted any time an instance is passed in a
remote message. NSString and NSData do just this, for example. [t
makes little sense to require the overhead of network traffic in order to
repeatedly access the same value, so this is perfectly appropriare
behavior. NSMutableString and NSMutableData, of course, are trans-
mitted as proxies, just like most other objects with variable state. A
similar mechanism allows objects to change their class when trans-
mitted, which is useful for hiding a private subclass implementation by
transmitting the object as an instance of the public superclass.

To make sure you get a proxy instead of a copy, you can use the byref
keyword, which causes even objects that copy themselves by default to
be sent across connections as proxies instead. Unlike with bycopy,
though, the object itself need do no special work to be sent as a proxv.
NSConnections already know how to create proxies for any object class.

Handling Failures

Distributed applications make use of network resources that can become
unavailable at any time. Server processes can crash, machines can lose
power or network connections, the network can become bogged down
with traffic, and so on. The result is that a connection can vanish at any
time, and remote messages can occasionally fail, unlike local messages,
which are always delivered (unless the process itself crashes, of course).

NSConnections handle the death of a peer process by posting an
NSNotification and invalidating themselves. This allows programs to
notice when resources have become unavailable and shut down grace-
fully or look for new resources. Clients, for example, can try to restart
the server or contact another; can tell the user to contact the systern
administrator; or perhaps they can quit and try later. Servers can clean
up state associated with the failed client process and continue handling
other requests.



DO support for
OLE is limited to
OLE Automation.
It doesn’t support
linking, embedding,

and in-place editing.

Chapter 9: Distributed Applications 149

When a remote message times out, an NSConnection raises an excep-
tion that the program can catch. Because a single message failure may
result from temporary conditions, the program can try sending the
message again a few times, check in some other way that the server is
indeed still available, or take whatever action is needed.

Other Distribution Models

The Distributed Objects facility is the one distribution mechanism
guaranteed to an OpenStep application and is of course the one best
integrated with OpenStep. Still, applications are free to use whatever
means necessary to share data and resources. DO doesn’t prohibit these
other mechanisms; OpenStep applications can still use database client
libraries, TCP/IP routines, or whatever else is available on the host
system. DO running on Windows NT also interoperates with
Microsofts OLE Automation facility, allowing OpenStep and
Windows-native applications to invoke each other’s functionality. As an
added bonus, DO’s network capability allows OLE to work across
machines, something it can’t do by itself (as we write this book, at least).

Microsoft OLE Automation

With OpenStep DO or the standalone PDO for Windows (sold as
D’OLE™ or Distributed OLE), Objective-C objects and OLE Automa-
tion objects can communicate with each other in their native languages
and object models. The Objective-C objects can reside on the same
machine as the OLE Automation objects, on a different Windows N'T
computer, or on any computer with a DO or PDO system installed.
This cross-communication allows non-OpenStep Windows applications
such as Microsoft Excel to retrieve data and invoke operations from an
OpenStep server or application; allows OpenStep applications to access
the OLE services of Windows applications; and permits Windows appli-
cations on different machines to communicate through OLE.



150 Developing Business Applications with OpenStep

This is made possible through an object request broker (ORB), a server
that understands both OLE and Objective-C and translates requests
between the two object models. The current DO-OLE ORB works only
with these two object models; it isn’t a generic ORB—more specifically,
it isnt CORBA-compliant. Still, it’s a highly useful addition to Distrib-
uted Objects and OLE.

Contacting DO Objects with OLE

The DO-OLE ORB is available to Windows applications as the OLE
Automation server NEXTORB.OLE. Through it, you can access adver-
tised DO objects as well as OLE Automation objects on other
computers. For example, if there’s a DO server object named “server”, a
Windows Visual Basic® application can contact it in these two steps:

Set orb = CreateObject ("NEXTORRB.OLE")
Set server = orb.connectTo("server", "NSDO", "*")

The call to CreateObject() returns the ORB as an OLE Automation
object, whose connectTo() method retrieves the server object from
another host. The first argument is the advertised name of the server
object. The middle argument, “NSDO?, specifies that the object being
contacted is in fact a DO object. (It’s also possible to connect to OLE
objects on other hosts by specifying “OLE”, as we'll show later.) The last
argument is the host where the server object resides; passing “*” indi-
cates that the first host to respond to the request will be used.

Instead of using this two-step connection process, you can use the
orbreg tool provided with DO on Windows to register the server:

C:\>orbreg add -olename do_server -doname server -protocol NSDD

This command registers the name “do_server” in the OLE namespace
for the DO object named “server”. When the server is registered like
this, programs can contact it in one step, which automatically launchss
the ORB if necessary, contacts it, and gets the registered object:

Set server = CreateObject("do_server")

You can register objects that must exist in running servers to be
contacted, or you can register dynamic link libraries (DLLs) that are



Chapter 9: Distributed Applications 151

automatically loaded when you contact the object. Once you have the
server in hand, you can issue messages to it just like any other OLE
Automation object. The ORB translates message names in a straightfor-
ward manner, handling all possible names where the OLE system
supports named arguments. Here are some examples:

Objective-C Expression OLE Expression

[obj name] obj.name()

[obj setTitle:"Memo"] obj.setTitle("Memo")

[obj setString:@"notes"] obj.setString("notes")

[obj multiply:3 :4] obj.multiply(3, 4)

[obj multiply:3 by:4] obj.multiply(3, by:=4)

[obj multiply:3 by:4] obj.sendMsg("multiply:by:", 3, 4)

Note that Objective-C string objects are automatically converted to and
from C strings. Also, the last example shows how Objective-C method
names with extra keywords can be accessed on OLE systems that don’t
support named arguments. The ORB defines a sendMsg() method that
takes the method name as the first argument, followed by the message
arguments. In this way, OLE clients can invoke any Objective-C
method.

In addition to translating message names, the ORB converts references
to OLE properties into a pair of special Objective-C accessor methods
setOLEPropertyNamed:to: and getOLEPropertyNamed:. The Visual
Basic statement

obj.title
for example, is rendered into a message equivalent to this:
[obj getOLEPropertyNamed:@"title"];

Objective-C classes must implement these two methods to access the
appropriate instance variables.

Contacting OLE Objects with Objective-C

Going in the other direction, Objective-C code can contact an OLE
Automation server, such as Microsoft Excel, through DO messages. In



152 Developing Business Applications with OpenStep

this case, the ORB’s name is NEXTORB.NSDO. This code fragment

connects to Excel and has it run the “countEmployees” macro:

#import <nxorb.h>

id <NEXTORB> theOrb;
id excelApp;
int employeeCount;

theOrb = [NSConnection
rootProxyForConnectionWithRegisteredName:@"NEXTORB.NSDO"
host:@"*"];

[theOrb setProtocolForProxy:@protocol (NEXTORB) ] ;

excelApp = [theOrb
objectWithRegisteredName:@"Excel .Application™”
protocol:@"OLE" host:@"farHost"];

[excelApp retain];

[ [excelApp workbooks] open:@"C:\\EMPS.XLS"];

employeeCount = [excelApp run:@"countEmployees"];

Note, in comparing this example to the next one, that the ORB takes
care of translating the case of method names.

Connecting OLE Objects on Different Hosts

The same thing can be done between OLE Automation objects on
different hosts, using Distributed Objects as a bridge. This Visual Basic
example does the same thing as the Objective-C example:

Set orb = CreateObject ("NEXTORB.OLE")

Set excelApp = orb.connectTo("Excel.Application", "OLE",
"farHost")

excelApp.Workbooks.Open ("C:\EMPS.XLS")

employeeCount = excelApp.Run("countEmployees")

OMG's CORBA

In many businesses, particularly those with UNIX-based workstations
rather than PCs, an alternative to OLE is CORBA. CORBA, now in its
second release, is an industry-standard, language-independent,
operating-system—independent, distributed object specification devel-
oped by the Object Management Group and endorsed by over 300



Chapter 9: Distributed Applications 153

companies, including Sun, HP, IBM, SGI, NeXT, DEC, AT&T, and
others. CORBA-2 includes both an API specification, an inter-ORB
protocol specification, and a specification for APIs for various services
that vendors can implement if they so choose. CORBA compatibility is
planned for a future release of DO.

Because CORBA is language-independent, object interfaces are speci-
fied using a declarative language named Interface Definition Language
(IDL). IDL interfaces look very much like C++ header files and serve
much the same purpose that Objective-C protocols do for DO. When
writing code, the IDL interface files are processed by a compiler to
generate language-specific bindings.

Ifs possible to access CORBA services before DO provides direct
support for CORBA, by using a bridge server—a server that maps
requests in one environment to requests in another. On Windows,
several ORB vendors (such as lona) provide ORBs with an OLE inter-
face; these can provide the same bridge functionality by using OLE to
communicate between DO and the ORB. Using SunSoft’s NEO system
in conjunction with OpenStep Solaris, it’s easy to write a DO to
CORBA bridge server, which maps DO messages to CORBA messages,
and vice versa. This entails writing some custom code but should
provide higher performance than using OLE as an interoperability
protocol.

Where Distributed Objects
Falls Short

Now that we've spent 20 pages explaining how nifty DO is, let’s look at
its limitations and flaws. Some relate to the distribution mechanism
itself, some to services that make using the mechanism easier, and others
to the tools needed to develop distributed applications.



154 Developing Business Applications with OpenStep

Limitations in the Distribution
Mechanism

DO’s communication model is one of point-to-point, nonverifiable
message delivery. You can't send a true broadcast message via DO: An
individual message has exactly one destination. Also, if no timeout
occurs, you can be confident the message was delivered; but if a timeout
does happen, there’s no inherent way to be sure the message actually
wasn't received. This can cause coordination problems between distrib-
uted components of an application. More reliable messaging can be
implemented on top of the basic model by adding services that check for
sequencing of messages. Nonetheless, it’s important to note that DO
today doesn't provide this capability.

Distributed Objects is solidly rooted in the Objective-C object model
and language and currently interoperates only with OLE Automation
objects. Other distributed object standards, notably CORBA, simply
aren't supported yet. DO neither conforms to nor interoperates with
these standards. NeXT is pursuing CORBA support for a future version
of DO or OpenStep, but that support is lacking today.

One thing that isn' so serious is performance. DO used to be pretty
slow, but NeXT has recently sped it up to the point that it’s on a par
with RPC.

Absent and Incomplete Services

About the only service that DO itself provides is simple naming and
lookup of server NSConnections. There’s no generic name registry, hier-
archical or otherwise. Also, you must either know which host the server
resides on or be limited to the local network when looking up the server.
Nothing about Distributed Objects prevents a more elaborate naming
service from being developed; there just isn’t one right now.

The same can be said for the various services defined by CORBA, such
as Life Cycle, Persistence, Events, Transactions, and Properties. DO and



Chapter 9: Distributed Applications 155

Objective-C have informal support for large parts of these services, such
as the reference-counting life cycle management, notification objects for
broadcasting events, and so on. An add-on product, the Enterprise
Objects Framework, offers persistence, transaction management, and
uniform access to properties. However, these various informal services
aren’t codified the way CORBA’s are. When CORBA support comes to
DO, these informal services may be used to implement the formal ones,
but for now DO does its own thing.

DO’s security features are limited to a few delegate hooks on
NSConnection for authentication of incoming messages. There are no
standard services for encryption, authorization, auditing of remote
messages, or licensing.

Finally, in the areas of replication, scalability, and load balancing, DO
offers very little above its raw remote messaging facility. You can build
on this to create a support structure for these features, however. One
way is to create a server of servers, which vends objects from different
machines and performs no other tasks. Another way is to create a multi-
threaded server than can handle multiple requests at once.

Missing Tools

Project Builder is useful for managing the source code of both the client
and the server in a distributed application. However, no tools are avail-
able for quickly repartitioning the components of a distributed applica-
tion, for monitoring the performance of the application’s components as
a whole system, or for monitoring individual objects within a process.
Repartitioning must be done manually, by shuffling code around from
project to project. Administration and performance monitoring are
supported only at the process level.

Also completely lacking in DO is any kind of backup/restore system for
cleanly bringing down a distributed application and restarting it. As
with the services discussed above, you have to develop your own tools
and solutions until NeXT, SunSoft, or another company starts selling
them.



156  Developing Business Applications with OpenStep

Design with Distributed Objects

The key strength of OpenSteps Distributed Objects facility is its
transparency. Remote objects look just like local objects, and it’s very
easy to get remote objects and to pass references around the network.
This ease of use, however, leads directly to DO’s greatest flaw: It’s also
very easy to create a distributed application that scatters objects across
the network, saturates the network with remote messages, and bogs
down the whole system. The default mode of handling messages,
whereby a remote message can be received while another is being
processed, can also cause problems of concurrent access. And of course,
the transparency of Distributed Objects breaks down to varying degrees
when other distribution models must be included. In designing a
distributed application, then, it’s vitally important to address these issues
before committing to a particular architecture.

The key to good distributed design is to know when you have to
disbelieve the illusion of locality and take explicit care to handle prob-
lems caused by the vagaries of interprocess communication. If your
application’s design allows for any number of dropped messages or
connections with no data loss or other serious consequences, you can
happily code away as if every object is local. Another application might
require the server, as the more authoritative component, to take a more
defensive stance with regard to network errors, while allowing the client
to ignore errors or simply repeat its requests until it gets a response. The
most delicate systems, where errors in either the server or the client can
cause problems, must take the most care and necessarily be more

complex.

The complexity of a distributed design is driven by many characteristics,
enough to fill an entire book. The following sections briefly introduce
four such characteristics, examining the sorts of measures that must be
taken to ensure a robust application.



Chapter 9: Distributed Applications 157

Performance

The performance of any distributed application, outside the efficiency
of the network and the distribution mechanism itself, is perhaps most
significantly affected by these factors:

the ratio of client components to server components;

the number and size of individual messages between components;

the time it takes the server to process each message;

the number of distributed components (both objects and
processes).

The most obvious performance factor is likely the ratio of clients to
servers. If there are too many clients, the server becomes overburdened.
At first blush it’s an easily solved problem: Just add more servers (or
perhaps get a faster server). The application’s design, however, must
allow for this, explicitly considering resource contentions among
multiple servers providing the same services, probably with the same
data. Three-tier systems, in which clients deal with a single central server
through a number of intermediate or “buffer” servers, introduce coordi-
nation problems of their own. Clients can remain simple with regard to
this factor, but servers must be designed with these issues in mind.

Beyond the ratio of clients to servers, the balance of message number
and size can have a great effect on network performance. Millions of
tiny messages clog the network just as much as hundreds of huge ones,
causing either incredible traffic noise on the network as each message
vies for its transmission time, or long delays as interminable streams of
data make their way across the net. Some room must be left for messages
to be transmitted, without undue collisions or delays.

This problem is a bit more difficult to solve than that of the client-to-
server ratio. It requires analysis of the interfaces between distributed
components and of the sizes of messages sent, both in the design itself
and in the running system. Once you have measurements, you can tune
the system to achieve acceptable performance. In any case, both the
client and the server are affected by this factor.



158 Developing Business Applications with OpenStep

Closely related to number of messages is how fast the server can process
each one. If it takes a long time to respond to each message, the server is
more easily overwhelmed by many clients with many requests. Like the
first factor, however, it’s a problem that only the server need address, by
working to make every remote method as fast as possible.

The last factor, number of components, is easily exemplified by an appli-
cation in which a large database of items is represented as objects in the
server, which vends each and every one of those objects as needed to
clients. With potentially thousands of proxies in each client, the book-
keeping burden on the server becomes prohibitive, the network becomes
saturated with messages between these varied components, and the
potential for conflict becomes a certainty.

This is the most serious problem for the object-oriented approach, in
which each data item is supposed to carry its own behavior. In order to
achieve reasonable performance, the objects in the server must be dupli-
cated en masse to each client rather than rendered as proxies; a mapping
scheme must be used to relate each client’s copies to its originals in the
server; and a transaction or conflict resolution scheme must be used to
prevent corruption of the server’s state. As with message number and
size, this factor affects both the client and the server, though in a more
dramatic way, since whole systems must be added to both.

Reliability

Though performance is crucial if a system is to be of any benefit, it must
also produce correct results without failure. An application’s reliability is
therefore the other face of its robustness. Applications that can be
affected by failures in remote messaging must take care to check for
those failures and handle them. In this area Distributed Objects offers
concrete help. Objective-C programs can anticipate problems at run
time by asking any object if it's a proxy, using the isProxy method.
NSObject’s implementation, naturally enough, returns NO, while
NSProxy’s returns YES. Application code can use this method to base
certain decisions on the nature of an object.



Chapter 9: Distributed Applications 159

With regard to actual errors, programs can discover both broken
connections and individual messaging errors. In the more drastic case
when a process terminates prematurely, any NSConnection that was
communicating with it notices this occurrence and posts an
NSConnectionDidDieNotification. Both clients and servers can put an
observer in place for this notification and take whatever corrective
measures are necessary upon receiving it.

For failures in delivering individual messages, the Distributed Objects
system raises various exceptions. Some of these, such as
NSlnvalidSendPortException and NSObjectNotAvailableException,
clearly indicate that a message wasn’t delivered. Others, like
NSPortTimeoutException, mean only that a timeout has occurred,
leaving you in the dark about whether the message failed to arrive or
whether the confirmation that the message was received failed to arrive.
Still, you can define handlers to catch these various exceptions to take
action when they occur.

Concurrency

Concurrent access to shared state has the potential to create infinite
snarls of twisted logic. Like distributed design in general, the topic of
concurrent access can fill an entire book. Clients can often remain igno-
rant of the steps necessary to ensure proper concurrent access, but
servers must take care here, whether they handle their state in a single,
well-managed flow of control, through multiple threads running
concurrently in a single task, or through multiple servers running
against a single store of data.

OpenStep provides some help here with NSConnection’s independent
conversation queuing and with the various locking classes, each of which
defines a slightly different style of mutex. The basic NSLock class blocks
the current thread when another holds it and you send it a lock
message, continuing only when the first thread sends an unlock
message. You can also use the tryLock method, which returns NO
instead of blocking when the lock is held by another thread.



160  Developing Business Applications with OpenStep

A variation on this class is the NSRecursiveLock class. NSLock causes a
deadlock if the same thread tries to lock it twice in a row.
NSRecursiveLock, on the other hand, makes a note of which thresd
holds it and allows the same thread to lock it any number of times in a
row. That thread then has to unlock it an equal number of times before
the lock can be acquired by another.

The third lock class is NSConditionLock, which allows its users to
acquire it only when it enters a specific integer state. You can send it an
unconditional lock message; a lockWhenCondition: message, which
blocks until the lock both enters the condition specified and is acquired;
or tryLockWhenCondition:, which immediately returns NO if the
lock cant be acquired. When finished, you send it either an
unlockWithCondition: message to establish a new condition, or an
unlock message to leave the condition as it is. You can also ask for the
current condition with a condition message.

Interoperability

The last aspect of distributed design we survey is interoperability
between distribution mechanisms. This falls more in the realm of imple-
mentation than design, but in fact, the availability of commercial prod-
ucts, which do vary in the distribution mechanisms they use, has a direct
effect on the amount of work you must put into developing your own
system.

The obvious goal of distribution standards like CORBA is to make it
easy for clients to access distributed objects in their different native
languages and object models whenever possible. CORBA, of course,
requires both client and server developers to work with other tools or to
program to a different interface than the native application’s language or
libraries.

Barring its present feeble level of interoperability, the nice thing about
DO is that you can still use the Objective-C language to access distrib-
uted objects of varying types, as exemplified by the OLE ORB. Some



Chapter 9: Distributed Applications 161

incompatibilities between object models may need to be considered, but
in general DO allows for quite natural use of distributed components.

Interoperability requires consideration of many tradeoffs in a system’s
design. DO tends to weigh programmer productivity heavily when
making these tradeoffs. Systems like CORBA, on the other hand, are
highly flexible in terms of environment—objects can be anywhere,
written in nearly any language or object model, and addressed by any of
several protocols. Such generic qualities require several levels of abstrac-
tion and add substantial burden to developers trying to address a specific
problem. DO’s roots are firmly planted in Objective-C, which has an
object model and run-time system that lend themselves well to distribu-
tion. There’s one language for the client and the server, and a developer
who’s familiar with that language will have a good idea of how to use the
system. DO isn’t as flexible or generic as raw CORBA, but development
happens much faster in DO. Preserving the speed of development will
be a guiding factor as NeXT and SunSoft add more support for
CORBA, OLE, and other distribution mechanisms.

Perspective

Distributed Objects is the interprocess communication mechanism of
OpenStep. Its transparent extension of the Objective-C messaging
model across process boundaries makes it incredibly simple to use and
also makes breaking up and redistributing application components a
breeze. By changing a few lines of code here and there, you can have
your business application take advantage of a new compute server or can
split its burden among several replicated components.

Because DO is so easy to use, though, many forget that it’s fundamen-
tally an interprocess (or interthread) communication mechanism, and
only by happenstance is it an interobject communication system. Distri-
bution adds a number of issues to application design that you cant
ignore, even with a largely transparent mechanism. Nonetheless, using a

familiar model for remote messaging does make the programmer’s job a
lot easier in the long run.



10 Database Applications

The most important function of any business application is to support
the practices and data of the business. In order to do this, the
application must provide ready access to business data, enforce business
policies regarding that data, and keep the data up-to-date and internally
consistent. Vast amounts of business data are currently stored in
relational databases, which have proven themselves as robust, powerful
engines for storing data. Modifying the data in relational databases,
however, has been a rather sticky problem in some ways: Though the
database excels at storing and retrieving data, the logic for altering that
data, enforcing policies, and ensuring consistency has never found a sure
place.

Database servers offer a home for business logic in the form of stored
procedures. These have the advantage of centralizing policies, but they
must be implemented in nonportable SQL that varies between database
vendors. Further, the scalability of such a system is limited, since all
business logic must be executed on the database server and can’t be
distributed across the network.

Client development systems such as 4GLs try to address these problems
by putting business logic in the client application’s user interface. This
solves the basic scalability problem but has its own shortcomings. Tying
business logic to the user interface limits both its reusability and main-
tainability. Business logic depends explicitly on the user interface and
can't easily be reused for other interfaces. This leads to client applica-
tions being developed independently, which can produce inconsistencies
in policy and makes revisions to policy difficult to deploy. Even scal-

163

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



164  Developing Business Applications with OpenStep

ability returns as a problem, since client machines dont have the
processing power to handle complex calculations on large data sets.

A few software companies have decided to address these issues with
object-oriented tools, mapping relational models to object models and
placing the business policies in the hands of the objects. NeXT'’s offering
in this area, the Enterprise Objects Framework, does this in terms of the
OpenStep object model. With it, developers focus on modeling the
business in Objective-C classes, and the Enterprise Objects Framework
does all the work of translating between the database and the objects and
of managing the display of data in the user interface. This frees business
logic from dependence on either the database server or the user inter-
face.

What the Enterprise Objects
Framework Does

The goal of the Enterprise Objects Framework is to enable your business
objects to execute business logic purely in terms of the object model.
Business objects that need to know how their data is stored in a database
are limited to use with that database. Similarly, business objects that
must interact directly with the user interface can be used only with that
particular interface. Both are often needless restrictions, and the Enter-
prise Objects Framework aims to remove them altogether.

It does this by making business objects dependent on the Framework
rather than on external components, though in a minimal way. This
allows the business objects to focus on their own behavior. The Enter-
prise Objects Framework then does all the work of translating between
the database and the business objects, monitoring changes, and
updating the user interface.



Chapter 10: Database Applications 165

What's an Enterprise Object?

Objects can be categorized in many ways; for example, by whether they
represent values or complex entities, by whether they draw themselves,
or by how much they interact with other objects. A business object is
characterized by its role as part of a business or other process model and
by having transient local state in its running application that maps to
more persistent state in a shared data repository. This repository can be a
relational database, a flat-file database, or a real-time data feed. An
enterprise object is a business object that plays along with the Enterprise
Objects Framework to enable that mapping.

The Enterprise Objects Framework defines just one method that enter-
prise objects must use and a few optional methods that they can use or
implement for specific functionality. These methods are quite general in
nature, and introduce no unmanageable dependencies on components
external to the enterprise objects.

The principal requirement of an enterprise object, for which you must
explicitly write code, is that it notify the Framework when its state is
about to change. This allows the Framework to examine the object’s
state before and after the change and to update the database accordingly.
The Framework defines the means for doing this by adding a method
called willChange to NSObject, which every other object therefore
inherits. All the enterprise object need do is invoke it before changing
any instance variable:

- (void)setTitle: (NSString *)aString
{

[self willChange];

[title autorelease];

title = [aString copy]:

return;

}

Everything else is optional, and just about as generic. The Enterprise
Objects Framework provides a number of other methods, some of
which it implements for enterprise objects to use and some of which it
uses if enterprise objects implement them. For example, there are special
“awake” methods that enterprise objects can implement to be told



166 Developing Business Applications with OpenStep

they've just been fetched from the database or created anew in the appli-
cation. Enterprise objects can also implement methods for validating
state, which the Framework invokes automatically to check for
constraints. Later parts of this chapter highlight the individual methods
in context.

Model-View-Controller Revisited

The Enterprise Objects Framework bridges databases, enterprise objects,
and the client application’s user interface by acting as a big controller, in
two different ways (Figure 1). The bottom part of the Framework treats
the database as the model and the enterprise objects as an abstract view,
handling the logic required to synchronize the two. You provide a
mapping between the database schema and your object model, and the
Framework translates between database rows and objects.

The top part of the Framework treats the enterprise objects as the model
and the user interface as the view, defining a generic mechanism to move
values between enterprise objects and interface objects. All you have to
do is define the associations between interface objects and the properties
of enterprise objects that they display.

Between these two is the part that manages the enterprise objects them-
selves, monitoring them for changes and propagating those changes up
or down as needed. This part allows you to group enterprise objects into



Chapter 10: Database Applications 167

Figure 1. Model-View-Controller in the Enterprise Objects Framework

separate editing contexts, each of which tracks changes separate from the
others and allows you to save and undo changes as they’re made.

Specific Features

So far we've described what the Enterprise Objects Framework does in
extremely general terms. Here’s a list of the major features that the
Enterprise Objects Framework offers your business application. The last
part of this chapter explores the details behind many of these features.

Flexible object-to-relational mapping. You can map object
classes to tables in the database; map object properties to columns
in multiple tables; and define relationships across databases. You



168  Developing Business Applications with OpenStep

can even map an inheritance hierarchy to the database in several
different ways.

Complete in-memory manipulation of objects. All of your busi-
ness objects’ actions are defined in terms of the in-memory object
model. The Framework automatically tracks primary keys,
resolves relationships between objects to foreign key references in
the database, performs uniquing on fetched objects to avoid dupli-
cation, and creates fault objects that fetch their data on beirg
accessed.

Flexible editing. The Framework tracks changes to enterprise
objects based on a small hook method; allows enterprise objects to
validate changes; provides in-memory transactions, qualifiers, and
sorting; and can undo any change.

Automatic synchronization with user interface. Whenever
enterprise objects change, the Framework automatically updates
all user interface objects displaying properties of the changed
objects.

Efficient use of the database. The Framework avoids fetching
data it doesn't have to by creating fault objects that fetch when
accessed. You can tune this mechanism to prefetch these objects
when you know you’ll need them, or to have them automaticall
fetched in groups, reducing the number of discrete fetch opera-
tions performed.

PayPerView with
Enterprise Objects

Before we examine how the Enterprise Objects Framework realizes all
these features, let’s have a brief look at application development by
converting the PayPerView application to use it. This process will reveal
several aspects of the Framework’s power. The ProgramController class
bows out entirely, being replaced by standard Framework classes that



Chapter 10: Database Applications 169

deal with the database and user interface for you, allowing you to hook
everything up in Interface Builder. These classes also support undo and
editing of values with no code, so we'll show how to add these features
t0o.

Defining the Relational-to-Object
Mapping

Before you create an application, you must define the mapping between
objects and the database. You do this with the Enterprise Objects
Framework’s database-mapping tool, EOModeler. This application
creates model files that define entities for the tables in the database, each
of which contains attributes and relationships based on columns in the
various tables of the database (or even of different databases). Each
entity is assigned to a particular object class, whose instances represent
individual rows from the database tables in the client application.

EOModeler can read in an existing database schema, which you then
tune to match your object model, or it can create a model file from
scratch and use that to build a schema in the database. This example
assumes the schema has already been defined, with one table for
programs, one for channels, and a many-to-one relationship between
programs and channels:

PROGRAM Table Columns CHANNEL Table Columns
PROGRAM_ID (primary key) CHANNEL_ID (primary key)
TITLE NAME

BROADCAST_DATE DIAL_NUMBER

COST

CHANNEL_ID (foreign key)

We've broken channels out from programs because this is how it would
likely be done in a real database, as well as to demonstrate how the
Framework handles relationships.

When you launch EOModeler and create a new model file, youre
prompted to choose a type of database server (Oracle®, Sybase®, and so



170  Developing Business Applications with OpenStep

Figure 2. The New Model

on), asked for login information for the server, and then presented with
the model editor in Figure 2.

Editing Entities

EOModeler automatically reads the database tables and constructs
entities for them. In this case, the CHANNEL and PROGRAM tables
in the database have been rendered as Channel and Program entities.
The first thing to do is define how they map to Channel and Program
objects in the application. To specify the classes themselves, edit the
Class Name column for each entity, changing it from the default
EOGenericRecord to the appropriate value.



Appendix C:
PayPerView with
Enterprise Objects
contains a summary
of the model file

definitions.

Chapter 10: Database Applications 171

Figure 3. Tuning Attributes

For other changes, double-click the edit icon at the left of each row,
which brings up a table of attributes and a table of relationships (as
shown for the Program entity in Figure 3). EOModeler reads these from
the database schema, making a best guess at the names and value classes
to use in the client application. You need to specify which attributes are
primary keys, which should be fetched into the application, and which
should be used for locking during updates. You also need to change the
value classes where EOModeler’s guesses don't fit the object model.

The three columns on the left represent which attributes:

¢ define the entity’s primary key (@);
e are class properties fetched into objects from the database (#);
* are used for locking when making an update ().



172 Developing Business Applications with OpenStep

See Appendix C for the
source code of the
Program and Channel
classes.

The “programID” attribute is the PROGRAM table’s primary key, so set
that by clicking the cell below the @ icon. Also, since EOF manages
primary keys automatically, it doesnt need to be fetched into the
Program objects; turn off the @ so that the primary key isn' stored in
the objects.

The only other change you need to make to the Program entity is to
correct the value class for “programID” and “channelID” (a foreign key
you'll use to set up a relationship to the Channel). EOModeler assigned
NSDecimalNumber, which is normally used for fractional values such as
dollar amounts, but these columns actually store integer values. To
reflect this, use the Attribute Inspector panel to change the data type to
Integer.

That wraps up the Program entity. After making these same adjustments
to the Channel entity, you're ready to define the relationships between
the two. To create a relationship from Program to Channel, select the
Program entity and choose Add Relationship from the Property menu.
This adds a row to the relationships table at the bottom of the model
editor. You establish the nature of this relationship with the Relationship
Inspector (Figure 4), typing “channel” as the name, choosing the
destination entity, and selecting the source and destination attributes
(which correspond to the foreign and primary keys in the database
schema). For the relationship from Program to Channel, specify the
relationship as To One. Next, select the Channel entity and create a rela-
tionship from Channel to Program as well, specifying this relationship
as To Many.

Generating Classes

With the model finished, save it and add it to the project. Now you can
use the Create Template command to generate code for the two classes.
The generated code includes instance variable declarations for the class
properties in the model and actually defines accessor methods for all
these properties, as well as a dealloc method. It doesnt define an
initialization method, of course, because the enterprise objects’ state will
be set automatically by the Framework. Though you already have code



Chapter 10: Database Applications 173

Figure 4. Defining a Relationship

for the original Program class, it’s all related to accessor methods, so it’s
safe to just replace it here (you can compare the code in the appendices
to see the minor differences).

Note: Because the accessor methods are bracketed by an #ifdef prepro-
cessor directive, they’re not used by default. You typically implement
accessor methods only when they have to do more than return or set a
value, since the Framework can read and write instance variables
directly. See “Translation Between Value Dictionaries and Enterprise
Objects” on page 186 on for more information on direct variable access.

That’s all there is to defining the database-to-object mapping. Now you
can move on to redefine the user interface. After that, we'll review the
changes that must be made to the code.



174 Developing Business Applications with OpenStep

Figure 5. Display Groups in the Nib File Window

Revising the User Interface and Code

Opening the PayPerView nib file in Interface Builder, the first thing you
do is delete the ProgramController object. The Enterprise Objects
Framework provides its own interface controller, so the entire
ProgramController class, as well as some code in the OrderController
class, can be removed. To this end, you can delete ProgramController’s
source files from the project entirely and remove from OrderController
its instance variables and message expressions related to displaying
Program information, as shown in Appendix C.

Now, to set up the new interface controller, return to EOModeler, select
the Program entity, and drag its icon into the nib file window. This
creates a display group for that entity (Figure 5), an object that contains
all Program objects fetched from the database and coordinates their
display in the user interface. Do the same for the Channel entity. These
display groups take the place of the old ProgramController object. You'll
be connecting the user interface objects to them.

Binding the Interface to the Display Group

To establish the display group as the controller of the Program window,
you create associations between each user interface object and the display
group. An association watches both its interface object and the display
group for changes. When the user edits the interface object, the associa-
tion tells the display group to change the appropriate property of the
selected enterprise object. When an enterprise object’s property changes



See page 272 in
Appendix C fora
complete diagram
of the associations in

the nib file.

Chaprer 10: Database Applications 175

Figure 6. Making an Association to the User Interface

in the display group, the association updates the display of the interface
object. Thus, associations replace much of the code that was in
ProgramController. They also make it trivial to allow the user to edit
values, so you can add this feature without writing any code.

To create the first association, select the Broadcast Date column in the
table view, then Control-drag to the Program display group, just as
though you were making an outlet connection (Figure 6). When the
Connections Inspector appears, click on the Outlets pop-up list and
choose the item labeled EOColumnAssociation. Associations come in
several varieties, tuned for different types of interface objects and behav-
iors. For a table view’s column, only this one is available.

When you select the association, the browser changes to display aspects
on the left, with property keys on the right that they can be bound to.
Aspects govern different properties of a user interface object, such as the
value it displays, whether it’s enabled, and so on. In this case, you simply
want to bind the value aspect to the broadcast date, so select that aspect
and key, and click the Connect button.



176  Developing Business Applications with OpenStep

Note the use of the
attribute key
“channel.name” in
Appendix C. The
Framework uses
this notation to
traverse
relationships
automatically.

Formatters are
actually in the
Foundation
Framework, but
Interface Builder
doesn’t support
them by default.

You do the same thing for the other interface objects—the Program
Title column and the text field that displays the cost—except that you
use an EOControlAssociation for the text field. You'll be altering the
channel field in a different way soon, so leave that alone. After making
these changes to the Program window, repeat this procedure for the text
labels in the order panel. Leave the customer name and credit card fields
alone, though; the OrderController still has to manage those itself.

Formatting Values

The original version of PayPerView had to explicitly define the format
for dates in code, and used strings for the cost of each show to avoid the
problem of formatting money amounts. The Enterprise Objects Frame-
work adds special formatter objects to Interface Builder, allowing you to
dispense with a bit more code and to use a robust decimal number
object for money values. The Framework provides access to date and
money formatters; you can define others by creating custom subclasses
of NSFormatter.

To add the formatters, drag them from the palette onto the Broadcast
Date table column and onto the text fields in the main window and the
order panel. Once you've done that, the Inspector panel’s pop-up list
includes a Formatter inspector (Figure 7), which you can use to specify
any number of display formats.

The date formatter inspector provides a number of standard date
formats, along with a text field where you can type a custom formar,
using a number of special codes for the various parts of a date expres-
sion. There’s also a check box for natural language parsing, which makes
the formatter try to interpret expressions that don't fit its format.

The number formatter inspector allows you to specify the precision and
decimal places for a number, whether to display negative values with a
minus sign or in red, whether to use a thousands separator, and whether
to switch the comma and period for the decimal point. You can also
include arbitrary currency or other symbols around the digits.



Chapter 10: Database Applications 177

Figure 7. The Date and Number Formatter Inspectors

Making Things Editable

Display groups and associations give you a lot of functionality for free,
the most significant examples of which are editing values, a general undo
mechanism, and saving changes to the database—all with no need to
write code. You can make entities, attributes, and relationships read-
only in EOModeler, but by default they’re automatically editable. In
PayPerView, then, the table view is now editable by virtue of the Frame-
work, and making the Cost text field editable also allows the user to
change the cost of a Program.

For setting a Program’s Channel, however, a text field isn't a good choice,
since there’s a limited set of channels that programs are broadcast on. A
pop-up list is a good replacement, so delete the field and drag one to its
place in the box. To get the Channel names, you need the Channel
entity from the model, so Control-drag from the pop-up list to the
Channel display group to form the association. Choosing
EOPopUpAssociation in the Connections Inspector, you'll see these
aspects: titles, selectedTitle, selectedTag, selectedObject, and
enabled. Bind the titles aspect to the “name” key in the Channel display



178 Developing Business Applications with OpenStep

group, so that the pop-up list will contain all of the Channel names in
the database.

To show the selected Program’s Channel in the pop-up list,
Control-drag from the pop-up list to the Program display group.
Because Channels are objects, bind the selectedObject aspect to the
“channel” key. Now, when the user selects a Program in the table view,
the pop-up list will automatically change to show that Program’s
Channel, and when the user changes the Channel by manipulating the
pop-up list, the corresponding Channel object will be set in the selected
Program.

For creating new Programs and deleting the ones that are there, you can
add buttons to the window and label them New and Delete. By
connecting these buttons to the Program display group’s insert: and
delete: action methods, you get these two functions for free, without
having to write any code. Supporting the creation of new objects does,
however, require the database to provide primary key generation, some-
thing that normally requires no code, but that must be recorded in
EOModeler. (The means for generating primary keys, and recording
this in EOModeler, vary with the database used.)

While you're doing all this, you might as well add Undo and Save
commands to the application. These features are controlled by the
display group’s editing context, which is where all enterprise objects, both
Programs and Channels, live. The editing context is in charge cf
recording all changes to its enterprise objects so that they can be reversed
or saved. To add the Undo and Save commands, drag some buttons
onto the window, and make target-action connections from the Undo
button to the editing context’s undo: method and from the Save button
to the editing context’s saveChanges: method.

Testing the Interface

Now that you've made these changes, you can test the model and inter-
face to see if the basic stuff works. Since all of the Framework objects
exist right in Interface Builder, you can run them directly to see that the
display groups do indeed fetch data from the database and synchronize



Chapter 10: Database Applications 179

Figure 8. Testing the Interface in Interface Builder

the display of values in the table view and fields. To do this, choose Test
Interface from the Document menu. Suddenly, PayPerView appears to
be running, without even compiling the application (Figure 8). This is a
skeletal but live application, which you can use to demonstrate how the
user interface works. Doing so allows you to prototype the interface
with end users, even changing it on the fly to see what might work
better.

In this simulation, the OrderController hasnt been compiled and
linked, so you can' place an order. Similarly, in the absence of the
Program and Channel classes, Interface Builder substitutes instances of
EOGenericRecord. Because these classes dont yet define any custom
functionality, though, everything besides placing an order actually
works, right inside Interface Builder. You can select different programs,
and the pop-up list and text fields all change to reflect the selection. You
can choose a different channel using the pop-up list (Figure 8) and edit
the table view and cost text field. The New button creates a new
program (provided the model file includes primary key generation), and



180 Developing Business Applications with OpenStep

Delete removes the selected program. Undo undoes each change mads;
Save writes changes to the database; and Update List fetches the dara
again.

Now you can build the application and actually run it, gaining the func-
tionality defined by the custom classes. Note, however, that a huge
amount of functionality is available immediately from the Framework.
PayPerView fetches data, displays and formats it properly, and allows the
user to edit it—all with no code.

Changes to Existing Code

Let’s examine the changes made to the Objective-C code:

¢ The ProgramController class is completely gone.

* The code in OrderController that set values in the order panel is
gone.

* EOModeler automatically generated the definitions and code for
the Channel and Program classes.

In all, the amount of code related to managing the data and coordi-
nating the user interface fell dramatically. This allows you to focus on
the custom code: that for placing an order and, of course, that for the
business objects themselves.

If you compare the source code for the Program class between the orig-
inal version of PayPerView and the Enterprise Objects version ir.
Appendix C, you'll notice that apart from the new data types, only one
kind of change was really made. Each method that sets a property begins
by invoking the willChange method:

- (void)setTitle: (NSDecimalNumber *)value
{

[self willChange];

[title autorelease];

title = [value retain];

return;



“Change Tracking”
on page 190
explains this process
in a bit more detail.

Chapter 10: Database Applications 181

The Enterprise Objects Framework implements willChange for you.
This method posts an NSNotification that the object’s editing context
listens for, so that when enterprise objects change, the Framework auto-
matically updates all of the relevant state affected by that change: the
user interface, the undo stack, and any snapshots or other records
needed for synchronizing changes to the database. (Recall that even
these accessor methods arent needed unless they do something more

than just set an instance variable.)

How It Works

Just like Distributed Objects, the Enterprise Objects Framework makes
your job easy by doing the hard work behind the scenes. Distributed
Objects, however, provides a single, straightforward service, while the
Enterprise Objects Framework performs many complex functions to
support your business objects. Despite all the automatic functionality,
you may well need to alter how these functions work in some ways or
extend them to work with new databases and interface objects. The
Framework defines several specific customization points where you can

do this.

Architecturally, the Enterprise Objects Framework comprises three
layers, each with its own responsibility (Figure 9). The core is the
Control layer, which manages enterprise objects in memory, tracks
changes, and forwards them down to the Access layer. The Access layer
defines an object-oriented interface to relational databases and maps
enterprise object state to database state. Above the Control layer is the
Interface layer, which maps individual properties of enterprise objects to
OpenStep user interface objects and coordinates display and editing of
those values. The following sections explore each of these layers, from
the bottom up.



182 Developing Business Applications with OpenStep

Figure 9. The Enterprise Objects Framework Architecture

The Access Layer

The job of the Access layer is to transfer data between a relational data-
base and your enterprise objects. It retrieves raw data from the database.
recasts it in a form usable by enterprise objects, and creates the enter-
prise objects from that data. Then, on the return trip, it transforms the
enterprise objects’ data into database-specific form and writes it back to
the database. The Access layer does this with two distinct layers of
objects and with a database-to-object mapping defined by EOModeler.
The lower layer defines a portable adaptor API for interacting with rela-



Chapter 10: Database Applications 183

tional databases in terms of basic Foundation types such as
NSDictionary, NSString, and NSCalendarDate. Above this, database
objects handle the conversion of this generic data to and from enterprise
objects.

Model Files and the EOModeler Application

Model files map database-specific tables to generic entities and custom
classes, relating table columns to attributes and rendering relationships
as concrete pointer references between objects. The revision of
PayPerView introduced a number of specific features of model files and
of EOModeler, the model editor. Details aside, the significant features of
these two components of the Enterprise Objects Framework are that:

* Models provide an abstraction between application code and a
specific database’s schema, eliminating the need for code to
perform this kind of translation. You can even retarget an applica-
tion to a new database by simply changing the model. (In fact, an
application can switch servers at run time by switching models.)

* Entities can be arranged in an inheritance hierarchy with three
kinds of table reuse (see the sidebar).

* Models can span several databases, bridging the various entities
through relationships defined between them. Entities are stored in
separate files and loaded incrementally at run time as needed.

* EOModeler can both read an existing database schema into a
model and generate a schema from a model built by hand.

* EOModeler can generate basic code for enterprise object classes,
which includes the interface declarations and definitions of
optional accessor methods.

Database Adaptors

A model defines how database-specific types are converted to object
types. The objects that perform that conversion are called adaptors.
There are three cooperating adaptor classes: EOAdaptor, which manages



184  Developing Business Applications with OpenStep

the others; EOAdaptorContext, which manages transactions; and
EOAdaptorChannel, which performs individual operations. The Access
layer’s adaptor classes define a single general interface to any relational
database. Database-specific adaptor subclasses translate this general
interface into that of the database’s client library.

The adaptor interface is defined in terms of NSDictionary objects, each
of which represents a single row of values in the database. The keys of
the dictionary name the model attributes corresponding to columns in
the table. Dictionaries read from the database are used to create enter-
prise objects, and those extracted from enterprise objects are used to



Chapter 10: Database Applications 185

perform inserts and updates. These processes are described later, under

“Object Fetching and Updating.”

The adaptor interface is the Access layer’s main customization point.
Adaptors can be assigned delegates, which are asked to approve or alter
the parameters of many types of operations—such as beginning,
committing, and rolling back transactions, selecting and fetching rows,
and executing stored procedures—and are informed when they've been
executed. You can also create a custom adaptor to work with a new data
repository, whether a relational database or some other kind of storage

system. The Enterprise Objects Framework includes adaptors for
Oracle, Sybase, Informix®, and ODBC databases.

Value Conversion

Adaptor methods that perform database operations, such as inserts,
selects, updates, and deletes, all take an argument that identifies an
entity from the application’s model. The adaptor uses the entity’s
attribute mapping to convert values between the database’s external
types and internal types, which can be Foundation value classes or
custom classes that you define. As you might expect, string types map to
NSString, dates to NSDate, numbers to NSDecimalNumber (a high-
precision variant of NSNumber), and large binary types to NSData.
The Enterprise Objects Framework also defines a special EONull class
to represent NULL values in the database.

Stored Procedures and Evaluation of Raw SQL

The adaptor classes provide “trap-door” methods for invoking
database-specific functionality when you want it, while still generalizing
the interface enough to reduce the amount of nonportable code you
have to write. EOModeler allows you to record the names and argu-
ments for stored procedures in the database server. You can then run
those stored procedcures by using a special adaptor method,
executeStoredProcedure:withValues:, which takes the procedure’s
name and an NSDictionary containing its arguments. Another method,
returnValuesForLastStoredProcedurelnvocation, provides the return
value and output parameters of the last stored procedure invoked. All of



186  Developing Business Applications with OpenStep

the parameter values are converted between the database types and value
classes just like attribute values.

There’s also a method, evaluateExpression:, for sending a raw SQL
expression to the database server. Since this bypasses many checks that
the adaptor objects perform, you have to take special care to handle the
effects of the expression. After evaluating an expression, you can ask the
adaptor if it resulted in a select operation and begin fetching, but in
general you have to know what the result might be.

Object Fetching and Updating

Adaptors manipulate a database in a generic, low-level way, but in most
applications adaptors are handled automatically by higher-level “data-
base” objects, which define a true object-oriented interface to a rela-
tional database (or other repository), using your custom enterprise
objects where the adaptor uses dictionaries. Database objects take value
dictionaries from the adaptor and produce enterprise objects, as well as
extract values from enterprise objects and use the adaptor to write them
back to the database. The three database classes—EODatabase,
EODatabaseContext, and EODatabaseChannel—correspond to the
adaptor classes.

Translation Between Value Dictionaries and
Enterprise Objects

The database objects, and other parts of the Enterprise Objects Frame-
work, translate between value dictionaries and enterprise objects using
mechanism added to the NSObject class, called key-value coding. This
mechanism allows any object’s instance variables to be accessed directly
through the methods takeValue:forKey: and valueForKey:. These
methods use dynamically determined information for the enterprise
object classes, invoking accessor methods for the key provided if they
exist, otherwise directly accessing the instance variable named by the
key.

As an example using the PayPerView application, suppose the adaptor
reads attributes for the Program entity, among them “title” and “cost”.



Chapter 10: Database Applications 187

When setting values in the Program object, takeValue:forKey: invokes a
method of the form setTitle: or setCost: if it exists. If the Program class
doesnt have such a method, it sets the instance variable directly
(releasing the old value and retaining the new). Similarly, valueForKey:
invokes methods named title and cost if they exist, otherwise directly
retrieving the instance variables.

The key-value coding mechanism frees you from having to write basic
accessor methods for your enterprise objects but still allows you to
implement them and have them invoked automatically. When your
enterprise objects need to change property values themselves, you can be
assured that the Framework will honor it.

Updates to the Database

When writing changes back to the database, the database objects essen-
tially reverse the process described so far, extracting values from enter-
prise objects and passing the resulting dictionaries to the adaptor
objects. Because databases typically have many users concurrently
accessing them, however, its possible for an update to fail due to a
conflict. The Access layer’s database objects offer several means of
managing updates.

The first is the strategy that the database objects use for updates. You can
configure them to be pessimistic, locking every row fetched during a
particular transaction so that nobody else can access their values. This
increases the chances of an update succeeding, though at the cost of
blocking other users’ attempts to read the values being changed. You can
configure them to not lock anything and blindly overwrite whatever
values are there, regardless of what other users may have done. This is
useful for read- and insert-only systems. Or, you can leave them with the
default strategy, which compares the last-known state of the enterprise
object being updated with the values in the database to see if a conflict
has occurred. This more optimistic strategy balances the granularity of
locking against the odds of a conflict.

The last-known state of an enterprise object is called its snapshot. When-
ever an enterprise object changes, the database objects record a snapshot



188  Developing Business Applications with OpenStep

The Control layer’s
other customization
point is the
EODataSource

interface.

for comparison with the state in the database. Snapshots are alwavs
taken, but only for changed objects, and they’re cleared when the updare
is written back to the database. This constant presence of snapshots
allows pessimistic updates outside a transaction to fall back to the opti-
mistic locking strategy.

The Control Layer

The Control layer is the core of the Enterprise Objects Framework,
defining the context within which enterprise objects exist and managing
changes to them. Its two primary classes, EOODbjectStore and
EOEditingContext, define the abstract interfaces to external and
internal repositories of objects, respectively. Other classes enable such
features as object uniquing, undo management, multidatabase support,
and in-memory filtering and sorting of objects.

Obiject Stores and Editing Contexts

An object store serves as liaison to an external repository of objects for
an editing context, which does most of the work of managing enterprise
objects. An object store fetches objects from its external repository and
saves changes to those objects back to the repository. It also creates
temporary stand-ins for unfetched objects, called faults, which are used
to make the relationships of fetched objects appear valid without actu-
ally fetching the destination objects for those relationships. The
EODatabaseContext class of the Access layer is a concrete object store
that interacts with a relational database.

The object store interface is one of the Control layer’s two customization
points. You can create a subclass of EOObjectStore to manage any kind
of external repository of data, such as an object database, a real-time
stock feed, or even a file system.



Chapter 10: Database Applications 189

An editing context defines a space that enterprise objects live in, inde-
pendent of any other editing context in the same application. An editing
context maintains a single instance of each of its enterprise objects and
records a global identifier for each one, which it uses with its object store
when accessing the external repository. Editing contexts also monitor
their enterprise objects for changes, recording those changes in an undo
stack and collecting them for saving to the object store.

Uniquing and Relationship Construction

When an object store first fetches an enterprise object for a particular
editing context, it creates a global identifier and records the new object
in that editing context. This establishes a unique instance within that
editing context. All subsequent fetches or requests for that object in the
editing context then return the unique instance.

Global identifiers aid in the construction of relationships based on
external information, such as foreign keys in a database table, since they
prevent duplicate objects from being created for every relationship.
They also enable prebuilding of a relationship when the destination
object or objects haven't been fetched yet, since a fault object can be
created and assigned the global identifier based on the entity and
primary key of the destination object. When the real enterprise object is
fetched (see “Fetch Optimization” immediately ahead), its fault can be



190  Developing Business Applications with OpenStep

located based on the global identifier and overwritten with the object’s
fetched data, keeping all in-memory references to it intact.

Fetch Optimization

As mentioned, when an enterprise object is fetched, objects for its rela-
tionships aren’t immediately fetched; instead, faults are created to hold
places for those objects when they’re eventually fetched. The reasons for
this are obvious: Fetching through relationships would quickly result in
the entire object graph being pulled in on the first access, which is
completely unnecessary and would take up far too much time and
memory.

Faults are an excellent protection against too much fetching, but the
limits they impose can be too strict, resulting in many small fetches
when fewer, larger fetches could be made. Suppose you fetch a group of
Program objects, which creates faults for their Channels, and run
through them accessing the Channels. Each time you do this, a single-
object fetch is performed even though you'll be running through the
whole group of Programs. EOModeler lets you specify a batch fetch
amount for relationships, so that when you access a fault created for a
relationship, a group of faults is resolved all at once, instead of just one
fault at a time.

Batching makes fetches happen in clusters after faults have already been
made. Another kind of fetch optimization involves forcing specific rela-
tionships to be fetched immediately, descending a short way into the
object graph. This is called prefezching, and it allows you to reduce the
number of fetches necessary when you know youlll be traversing a
number of relationships in the process of performing an operation.

Change Tracking

After creating the object graph from fetched objects, an editing context’s
most important job is to track changes to enterprise objects in memory
and relate those changes to operations in its object store. This is where
the willChange method introduced eatlier comes in. The Control layer
defines this method to send out a notification to any interested observers
that the receiver is about to change in some way.



Chapter 10: Database Applications 191

When an editing context first records a new enterprise object, it registers
itself as an observer of that object. Then, whenever that object receives a
willChange message, the editing context hears about it and can examine
the object’s state before and after the change to determine what
happened. The editing context also keeps track of insert and delete
messages sent directly to it.

The editing context caches all of these various changes, typically
through a single pass of the run loop. At the end of the loop, it cleans up
any relationships that may have been affected by deletions, records the
old and new states for undo, and records the changes for saving to the
object store. It also posts a notification that causes the user interface to
be updated based on the changes.

In addition to fixing relationships, an editing context applies delete
propagation rules defined in the model whenever an enterprise object is
deleted. You can specify that deletion be denied if the relationship has
any destination objects; that deletion cascade through the relationship,
deleting all the destination objects; or that deletion simply remove the
object and any references to it through relationships.

Undo Management

As an editing context records changes to its enterprise objects, it also
records the nature of these changes in an undo stack, represented by the
EOUndoManager class. Editing contexts record all operations on enter-
prise objects—such as inserts, changes to attributes and relationships,
and deletes—as single, undoable actions. An undo message reverses the
last change in the undo manager’s editing context, and a redo message
reverses the last undo. EOEditingContext defines action methods that
you can hook up to menu items or controls in Interface Builder,
relieving you of the need to write any code related to basic undo
management.

Multiple Object Stores

Support for multiple databases or other repositories is made possible by
the EOODbjectStoreCoordinator class, which pools together the objects
created from its member object stores (such as EODatabaseContexts). A



192 Developing Business Applications with OpenStep

coordinator acts as the representative of its members, forwarding
messages to the appropriate object stores based on which enterprise
objects they provide.

Suppose the PayPerView application stored Programs in an Oracle data-
base and Channels in a Sybase database. In this case, a fetcch message
sent to the object store coordinator results in a fetcch message to the
Oracle object store for the Programs and another fetch message to the
Sybase object store for the Channel objects. The coordinator then
constructs the relationships between the two. If you have two different
legacy databases and must integrate them, this is a useful feature indeed.

When saving changes to its various data repositories, an object store
coordinator guides its members through the operation in several passes,
in which each member store saves its own changes and then forwards
remaining changes to the other stores that need to perform them. For
example, if the Channel object store deletes a Channel, it might inform
the object store containing Programs to delete all the Programs
belonging to that Channel.

Multiple and Nested Editing Contexts

As object stores can branch below a coordinator, different editing
contexts can use a single object store and can be nested one within the
other, creating in-memory transaction scopes that buffer changes from
peers and parents until they're saved. This allows you to create indepen-
dent document windows in an application or detail views that allow a
number of changes to be grouped together as a single procedure in the
user interface. A later version of PayPerView, for example, might allow
customer account management, which involves many complex tasks.
Using nested editing contexts, you can easily create a drill-down inter-
face in which the user performs a complex task by opening a new
window to enter information. If the user enters incomplete or incorrect
information, it doesnt affect the parent editing context; if the user
aborts the operation, the application need only release the nested editing
context.



Chapter 10: Database Applications 193

Validation

Enterprise objects can validate changes made to them independent of
the database or the user interface by simply implementing methods that
the Framework invokes on performing particular operations. This
allows enterprise objects to enforce business policies in the form of value
limits, interdependencies between objects, and other constraints.

The most general method is validateValue:forKey:, which is used
before the Framework sets a property. This method, like the key-value
coding methods, has a default implementation that checks for a prop-
erty-specific validation method. For example, the Program class can
implement a validateCost method thats invoked whenever the Frame-
work sets the Program’s “cost” attribute.

Other validation methods are invoked before the enterprise object’s
changes are communicated to the database. validateForInsert and
validateForUpdate allow the object to approve values about to be
written to the database. A more general validateForSave method can be
implemented to cover both cases. validateForDelete verifies that the
object can be deleted from the database.

In-Memory Filtering and Sorting

In addition to all the heavy-duty graph management classes, the Control
layer defines classes to filter and sort arrays of enterprise objects.
EOQualifier and its subclasses form a general-purpose filtering mecha-
nism, which can match enterprise object properties to specific values,
relate one property of an enterprise object to that of another, and
combine basic qualifiers using the AND, OR, and NOT logical rela-
tions. EOSortOrdering records a property key to sort by and an object
method to use for sorting,

The Access layer uses qualifier and sort ordering objects to limit and sort
the results of a fetch, but these objects can also be applied in memory to
arrays of enterprise objects. This filters and sorts enterprise objects
directly, without generating a new SQL query and fetching from the
database. The Control layer adds methods to NSArray that apply quali-

fiers and sort orderings to produce a new filtered or sorted array.



194  Developing Business Applications with OpenStep

The Control layer’s
other customization
point is the
EOODbjectStore

interface.

Data Sources

EOEditingContext is a sophisticated class, with a lot of methods for
performing very specific and sometimes esoteric operations. To present a
simpler interface for higher-level objects, the Control layer defines the
EODataSource class. EODataSource is an abstract class that defines a
very simple interface for managing enterprise objects, consisting prima-
rily of the methods createObject, insertObject:, deleteObject:, and
fetchObjects. Concrete subclasses must implement these methods
appropriately. An EODatabaseDataSource, for example, uses an editirg
context that gets objects from a relational database through the Access
layer.

The data source interface is one of the Control layer’s customization
points. Just as you can create custom adaptors to handle new kinds of
relational databases, you can create custom data sources to handle
completely different data repositories, such as flat-file databases, struc-
tured file systems, and real-time stock feeds.

The Interface Layer

The third system within the Enterprise Objects Framework is in charge
of synchronizing the values in enterprise objects with the application’s
user interface. The Interface layer is actually quite simple in design,
comprising two focal classes, EODisplayGroup and EOAssociation.
Display groups collect enterprise objects from an EODataSource and
watch for changes to the objects in the EODataSource. Associations tic
user interface objects to the display group, with different subclasses
handling different kinds of interface objects.

Display Groups

A display group manages the display and updating of values for enter-
prise objects in a single EODataSource. In this capacity, it filters the
EODataSource’s objects using a qualifier, sorts them as needed, and
manages the display of values for those enterprise objects. The display



Chapter 10: Database Applications 195

group maintains a selection of zero, one, or many enterprise objects,
which is reflected in the user interface through association objects.

The primary job of a display group, however, is to wait for changes to its
enterprise objects and to its associations’ interface objects, and to propa-
gate those changes up or down accordingly. A display group registers
itself as an observer of its EODataSource’s editing context, so that when
the editing context posts a notification that its objects have changed, the
display group updates all associations tied to it. It also gets notified by its
associations when their interface objects change, updating the selected
enterprise object with the interface object’s new value.

Associations

Associations play the same role with the user interface that adaptors do
with database servers. The generic association class, EOQAssociation,
defines an abstract and automatic mechanism for synchronizing the user
interface with the state of a display group’s enterprise objects. Subclasses
of EOAssociation handle the different kinds of interface objects, such as
table views, text fields, and pop-up lists. EOAssociation is the Interface
layer’s customization point: You create custom subclasses of EOAssocia-
tion for new kinds of interface objects.

Each kind of association defines a number of aspects that relate to some
characteristic of the interface object it manages, such as the value
displayed, whether the interface object is enabled, the set of possible
values, and so on. Interface Builder displays these aspects in its Connec-
tions Inspector, through which you bind them to keys in the display
group that identify properties of enterprise objects. As a simple example,
in the PayPerView application a table column’s value aspect was bound
to the “broadcastDate” property of the Program display group. A more
complicated association was that from the pop-up list, which had a
titles aspect bound to the “name” property of the Channel display group
and a selectedObject aspect bound to the “channel” property of the
Program display group. This caused the pop-up list to create items for
every Channel and to show the name of the Channel for the Program
selected in the table view.



196  Developing Business Applications with OpenStep

Associations aren’t restricted to actual interface objects. They can be
used to link a display group to any other object that presents values—
even another display group. The Interface layer defines several such asso-
ciations, which provide for different kinds of master-detail views. For
example, to create a table view that shows departments with a detail
table showing all the employees in that department, you just link the
two tables’ display groups with a master-detail association.

Perspective

That covers what the Enterprise Objects Framework does and how it
does it. The biggest take-home point is probably this: Putting business
logic in objects gives you a centralized, reusable, and highly manageable
structure for developing business applications. You can put your
business objects into a library or framework of your own, providing a
consistent view of the business model to all of your engineers and users.

You can also put your business objects on high-end machines for
compute-intensive operations, adding a third tier between the tradi-
tional server and client. Combined with Distributed Objects, this makes
for a flexible system that can be repartitioned across your network as
requirements and hardware change. As noted in Chapter 9, however,
you don’t want to distribute the enterprise objects themselves, as this
will only flood the network with distributed messages.

Finally, using interface controllers, you can present your business objects
to the user with very little coding. You can even put them on the World
Wide Web, as the next chapter shows.



11 World Wide Web
Applications

Unless youve been living under a rock since the mid-1990s, youve
heard of the explosive growth of both the Internet and the World Wide
Web. These technologies represent a revolution in communication,
making information immediately available to millions of people, direct
and on demand. The business advantages of the World Wide Web over
traditional print and broadcast media are obvious: Printing and broad-
cast costs are eliminated, since information doesn’t have to be sent to a
wide potential audience to reach the appropriate targets; content can be
tailored to specific audiences, who can retrieve the information they’re
most interested in; and information can be updated and made available
immediately.

The World Wide Web started out as a simple hypertext system, with
static pages that presented information and contained links that led to
other static pages. As the Web grew, people made it more interactive by
generating pages on the fly, tailoring their content to requests made by
the user. The typical way to do this has been using HTML forms to
send data to the Web server, which is then processed by various
programs and scripts to generate a page based on that data.

Unfortunately, without a coherent architecture for Web scripting, these
solutions are extremely difficult to implement and maintain. Raw
scripting mixes HTML generation with data retrieval and business logic,
offering no encapsulation and hampering reusability. (Sound familiar?)
The end result of all this is a large, brittle set of pages and scripts with
limited functionality and no flexibility.

197

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



198  Developing Business Applications with OpenStep

See the JavaSoft
Web site at
www.javasoft.com
for more on Java.

See NeXT’s Web site
at www.next.com
for the latest news
on WebObjects.

Handmade scripts also fall prey to the basic mode of the Web, which is
based on discrete transactions. Each interaction between the client
browser and the Web server involves a separate request—response pair.
There’s no standard system for maintaining state across transactions, so
each company developing Web sites has to roll its own session manage-
ment scheme from scratch.

Enter Java, from Sun, and WebObjects, from NeXT. These two systems
enhance Web development from either end, namely the client Web
browser and the server. Each separates the presentation of information
from the logic and data behind it, though in somewhat different ways.

Java is a programming language that looks like C++ but has a lot in
common with more dynamic languages like Smalltalk and Objective-C.
Web browsers such as Netscape Navigator™ download Java programs,
called applets, and run them on the user’s computer. This sidesteps the
issue of HTML generation on the server, instead having the client
machine do the work in Java. With Java, you can write programs that
work on any computer or operating system that includes a Java inter-
preter (or virtual machine). There are literally dozens of books available
on Java, so we won't be exploring it much here.

WebObjects is an object-oriented framework for developing Web appli-
cations on the server. With WebObjects an application can be divided
into discrete, reusable components, whether whole pages or individual
design elements such as navigation bars and corporate identification
information. This framework includes a number of classes that encapsu-
late various aspects of HTML generation and defines a coherent session
management system that accumulates each users state separately. It
works with the Enterprise Objects Framework to connect Web applica-
tions to corporate databases. In addition, to support application devel-
opment without requiring compiled code, it provides a simple object-
oriented scripting language. The rest of this chapter is devoted to
describing WebObjects.

Working on opposite sides of the browser—server connection, Java and
WebObjects form a complementary pair of tools that you can use to
build powerful, dynamic Web sites. As of this writing, NeXT is working



Chapter 11: World Wide Web Applications 199

to integrate WebObjects even more with Java, as well as with other
popular Web technologies.

Note: Web and Internet technology is moving fast. As we write this
book, WebObjects is shipping in version 2.0. However, NeXT has
announced plans to include a graphical editor much like Interface
Builder, to support additional scripting languages, and in general to add
many new features that will make using WebObjects easier and easier.
For these reasons, we haven’t shown how to revise PayPerView in this
chapter—by the time you get this book, the process we would have
described would already be obsolete! Instead, we recommend that you
visit NeXT’s Web site at www.next.com for the latest information.

What WebObjects Does

WebObjects applies object-oriented principles to Web page design,
treating pages as components that you build from basic elements. When
a Web application receives a request, it looks for a page definition that
matches the request and constructs an instance of that page using data
in the request. It then sends a message to the page, asking it to generate
an HTML response, and sends the HTML to the Web server for trans-

mission to the browser.

The Parts of a Page

A WebObjects page definition is composed of three parts. The first is an
HTML template that lays out the static structure of the page. The
template includes the basic elements of a page, such as text, lists, images,
links, and forms, as well as special WEBOBJECT tags, which tie the
template to objects that generate dynamic content. You can think of the
template as a window in a nib file that contains text fields, buttons, and
other items—or as the view in the model-view—controller paradigm.

The second part of a page definition is a script file or compiled class for
the page, which contains variable declarations and methods that can be



200 Developing Business Applications with OpenStep

NeXT’s upcoming
page editor neatly
hides this file

structure.

invoked. This part determines the dynamic content of the page, as well
as how it responds to input. You can think of this part as a custom
object or controller that manages the items in the page, just as
PayPerView’s ProgramController in Chapter 7 manages the table and
text fields.

The third part is a list of declarations that link the template to the script
or compiled class. Declarations are like the connections or associations
you create using Interface Builder. All three parts are stored together in a
directory on the Web server under a common name, with the extension
.wo. For example, a page definition named Main.wo contains the files
Main.html, Main.wos (the script), and Main.wod (the declarations).

That accounts for the view and the controller, which leaves the Web
page’s model. Just as PayPerView put the model in three different places
in its three incarnations, a WebObjects application can embed the
model in the script, use Distributed Objects to share them among
multiple Web servers, or use objects derived from a database using the
Enterprise Objects Framework. Because WebObjects applications share
the OpenStep object model, they have access to all of these mechanisms.
More significantly, through WebObjects these mechanisms have access
to the Web, so that you don’t have to limit your application to deploy-
ment on an OpenStep system.

Reusable Components

Page definitions represent the unique components of an application.
Each page, however, may well include standard elements such as a navi-
gation bar with links to the Web site’s home page, a search tool, and
other useful facilities. You might duplicate the HTML and script for
such elements in each page, but this quickly becomes unwieldy as the
number of pages increases. Not only does this consume disk space
unnecessarily, but it makes changes to such elements an onerous task.

With WebObjects, you can define such elements as standard compo-
nents, with template, script, and declarations files appropriate to the
element. A component can be made reusable simply by omitting top-



Chapter 11: World Wide Web Applications 201

level HTML tags such as HTML, HEAD, and BODY, and putting the
files in a globally accessible location. Page definitions can then include
this reusable component with a WEBOBJECT tag, just like any other.
This makes a single definition available to all the pages in your
application, or even your entire Web site, collapsing the storage and
maintenance burden to a single set of files.

Session State Management

Although a WebObjects application can run as a continuous process for
as long as users interact with it, this interaction is still limited to uncon-
nected request—response cycles. The Web’s transfer protocol defines no
inherent management of state across them, so WebObjects does this for
you by allowing you to declare the scope of script variables. In the
simplest cases, variables declared inside a script method last for the dura-
tion of the method’s execution, while those declared outside methods in
a component script last for the duration of a request-response transac-
tion. Global variables that exist as long as the WebObjects application
runs can be declared in a special script for the application itself.

Most useful for tracking the state of multiple users’ interactions with the
application, however, are persistent and session variables. Such variables
retain their values across transactions, for as long as the user interacts
with the application. Persistent variables are declared in a component’s
script using the persistent specifier and are accessible only by that
component. Session variables are declared in the application’s script
using the session specifier and are available to every component in the
application.

WebObjects allows applications to keep persistent state on the server or
to place it in the pages sent to the client as special hidden fields in forms.
Each approach has its advantages and disadvantages. State kept in the
server keeps the application simple and is more secure than putting it
within the user’s reach, but it also increases the application’s memory
usage and can be lost if the server crashes. State kept in pages reduces the
storage burden of the application and remains valid even if the applica-
tion terminates and restarts. However, large amounts of state add to the



202 Developing Business Applications with OpenStep

transfer time of both requests and responses; also, since the data exists in
the browser, the user can tamper with it, or the wrong state can be sent
to the application if the user backtracks to an earlier page. The gocd
news is that wherever it’s stored, WebObjects transparently handles the
actual management of the state.

A Sample Page Definition

By way of example, let’s take a look at the WebObjects equivalent of tke
classic Hello World program, available as part of NeXT’s WebObjec:s
documentation. This application displays a form with a message asking
the user for his or her name, a text field to type the name in, and a
submit button to send the information to the server. When the user
types his or her name and clicks the submit button, the Web application
returns a page that greets the user by name. Here’s the template for the
main page, Main.html:

<HTML>

<HEAD>
<TITLE>Hello World!</TITLE>
</HEAD>

<BODY>
<FORM>
What's your name?
<P>
<WEBOBJECT NAME = "NAME_FIELD">
<INPUT TYPE = "TEXT">
</WEBOBJECT>

<WEBOBJECT NAME = "SUBMIT_BUTTON">
<INPUT TYPE = "SUBMIT">
</WEBOBJECT>

</P>
</FORM>
</BODY>

</HTML>

Note the use of the WEBOBJECT tags around the INPUT fields.
These tags identify the text field and the submit button, which are repre-



The scripting
language used here
is based on
Objective-C and is
called WebScript™.
NeXT is also
planning support for
scripting languages
such as Visual Basic
and JavaScript™.

Chapter 11: World Wide Web Applications 203

sented in the application by instances of the built-in WOTextField and
WOSubmitButton classes. The declarations file, Main.wod, makes the
association between the tags and the classes:

NAME_FIELD: WOTextField {value = nameString};
SUBMIT_BUTTON: WOSubmitButton {action = sayHello};

The classes that represent standard HTML tags are called dynamic
elements, as they're primitive classes built into WebObjects. You can also
associate WEBOBJECT tags with scripted components, simply by refer-
ring to the .wo directory name.

The last part of each declaration lists the bindings between aspects of the
dynamic elements and variables and methods in the script. Just like an
association in Interface Builder, each kind of dynamic element or
component manages its own set of attributes or aspects. A
WOTextField, for example, stores a string value in its value attribute,
while a WOSubmitButton triggers a message stored in its action
attribute. In Main.wos below, the script contains a variable called
nameString and a method called sayHello:

id nameString;

- sayHello

{
id nextPage;
nextPage = [WOApp pageWithName:@"Hello"];
[nextPage setNameString:nameString];
return nextPage;

When the user types his or her name in the text field and clicks the
submit button, the value of the text field is stored in nameString and
the sayHello method is invoked. This method has the global applica-
tion object look up and create a page from a definition named “Hello”.
This definition can come either from a Hello.wo directory or from a
compiled class in the application named Hello. Once it has this page,
sayHello hands it the string the user typed in the form and returns the
page as the result to send to the Web browser. The Hello.html template
says “Hello” followed by whatever the user typed:



204  Developing Business Applications with OpenStep

<HTML>
<HEAD>

<TITLE>Hello World!</TITLE>
</HEAD>

<BODY>

Hello <WEBOBJECT NAME = "NAME_STRING"></WEBOBJECT>!
</BODY>
</HTML>

The declarations file, Hello.wod, associates the NAME_STRING tag
with a WOString, which simply holds a string value. The value is bound
to the nameString variable:

NAME_STRING: WOString {value = nameString};

The script file, Hello.wos, contains only the definition of the
nameString variable:

id nameString;

Note the absence of a setNameString: method. Like the Enterprisc
Objects Framework, WebObjects can dynamically set and get attributes
based on their names.

That's about all there is to defining WebObjects pages. The next sectior:
dives inside WebObjects to show how it performs its dynamic magic.

How It Works

All Web applications currently interact with users on a page-by-page
basis. The browser displays an entire page, with links and forms. When
the user clicks one of these, the browser sends a request to the Web
server, which returns a new page that the browser then displays. With
static pages, the request must indicate an existing file on the server
machine. With dynamic pages, the server invokes a program that gener-
ates the page. This program can be a command-line program, a perl
script, or a WebObjects application.

A WebObjects application communicates with a standard Web server
through an adaptor that converts incoming requests into Distributed



WebObjects also
supports the

Netscape Server
API (NSAPI).

These steps apply to
any component,
not just pages.

Chapter 11: World Wide Web Applications 205

Objects messages to the application’s WOApplication object. Just like
the Application Kit’s NSApplication, this object takes incoming events
(requests) and distributes them to the appropriate destination. In this
case, it does so by looking up component and page definitions, creating
objects for them, and sending them messages. The application’s execut-
able can be a custom program with compiled business objects, or it can
be the DefaultApp program, which knows how to handle scripted

components but does nothing else.

An individual WebObjects application stores its page and other compo-
nent definitions in a subdirectory of the Web server’s documents direc-
tory. Users start the application with a URL that names the WebObjects
cgi-bin application with the application directory; for example:

http://wwwsite/cgi-bin/WebObjects/HelloWorld/

When the Web server gets this request, it starts up the WebObjects
application and passes it the URL. The WebObjects application then

enters the request—response 100[).

The Request-Response Loop

For a WebObjects application, an incoming request is always associated
with a page, called naturally enough the request page. (Initial requests are
assigned to the page named “Main.”) The request page is given the task
of handling the incoming request and producing a response page, which
is rendered as HTML to be sent back to the browser. This process takes
place in three steps:

1. The WOApplication object prepares for the request by looking up
the request page and restoring its persistent and session state. If the
request page already exists, the WOApplication uses that; other-
wise it finds the page definition and creates an object with it. It
then restores the persistent and session state and adds any input

that came with the request (such as the users name in Hello
World).



206 Developing Business Applications with OpenStep

Needless to say, this
example glosses
over a lot of detail.
See NeXT’s Web site
for the particulars.

2. The WOApplication has the request page produce a response by
invoking whatever action was specified in the request (such as
sayHello in Hello World). If no action is specified, the request
page itself is used as the response.

3. The response page is told to generate HTML based on its state,
which is then returned to the browser.

At each stage, the WebObjects system checks the request and response
pages for standard methods, invoking them if the pages define them.
When first created from its definition, any page or component can
receive an awake message that allows it to initialize transaction and
persistent variables. The request page or component can define methods
such as willPrepareForRequest:inContext: and the corresponding
didPrepareForRequest:inContext:, substituting a different page in its
own place if needed. Similarly, the response page or component can
define the optional methods willPrepareResponse:inContext: and
didPrepareResponse:inContext:. These methods in particular are
useful for implementing login pages and for cleaning up state after a
request—response transaction completes.

Following Hello World

To clarify the request—response loop, let’s examine what happens when a
user runs Hello World from a Web browser. When the user accesses the
URL http:// wwwsitel cgi-bin/WebObjects/HelloWorld/, the Web
server launches the WebObjects cgi-bin program, which starts the
default application executable. This starts the first pass through the
request—response loop:

1. The application looks in the HTML directory for HelloWorld tc

find a request page. Since this is an initial request, it creates a page
from the Main.wo definition.

2. This initial request doesn’t contain an action, so the Main page is
used as the response page.



Chapter 11: World Wide Web Applications 207

3. Finally, the Main page is made to generate HTML for the form
with the text field and submit button. This HTML is then sent
back to the user.

So far, so good. Now, when the user types a name and clicks the submit
button, the Hello World application receives a request for the Main page
that indicates that the submit button was clicked. This begins the
second pass through the loop:

1. The application looks up the Main page and puts the contents of
the text field into its nameString variable, in accordance with the
binding in the declarations file.

2. Then, since the request came from the submit button, the applica-
tion gets the action bound to the submit button, sayHello, and
invokes it. sayHello creates the response page from the Hello.wo
directory, assigns the nameString variable to the new page, and
returns that page.

3. The Hello page, with the user’s name, is made to generate HTML,
which is sent back to the user.

And that’s all there is to it.

Perspective

WebObjects provides for easy creation of dynamic Web pages, which
you can use to present your business’s object model to the world. With
support for the Foundation and Enterprise Objects Frameworks built
in, it provides your business objects with a wide channel for presenting
your message and interacting with your customers. Not only can your
business objects be used in custom client applications using the Applica-
tion Kit, they can be made available to the world on the World Wide
Web using WebObjects.



Part Three:
Development Topics



12 Development Topics

To conclude this review of OpenStep, we've added a few chapters that
examine specific issues related to developing applications. The goal is to
show how OpenStep fares in such areas as project management, debug-
ging, and performance. This should give you some idea of its particular
strengths and weaknesses in day-to-day development.

Project management is by far the largest topic, since it’s a general subject
open to much discussion. Chapter 13: Project Management and the
Development Life Cycle covers the major aspects of a development
project, from small- to large-scale management of resources to the devel-
opment of a business model. It also reviews specific development styles
particularly well suited to OpenStep—rapid prototyping and iterative
development—and addresses their impact on scheduling.

The other topics, being more particular, merit only short surveys of
specific problem areas and general remedies to those problems. Chapter
14 covers the first topic, portability, which everyone wants to know
about before committing to a particular technology. The short answer,
of course, is that OpenStep applications are as portable as OpenStep.
The long answer depends on whether those applications use resources
outside of OpenStep, some of which will be portable, some of which
won'.

Just after portability is everyone’s favorite activity, debugging. Since
OpenStep defines such a variety of mechanisms and interacting compo-
nents, things can and will go wrong in your application. Chapter 15
highlights the problems most commonly seen in code and suggests some
remedies and preventative measures.

211

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



212 Developing Business Applications with OpenStep

The last development topic is performance, an eternal bugbear of soft-
ware and hardware developers alike. OpenStep, being an advanced
application system, certainly makes its demands on hardware. The
elegance of its object model can also seduce developers into writing
beautiful—but slow—code. Objects have their place, and aren’t appro-
priate for every programming task. Chapter 16 points out both general
techniques for managing and improving performance that apply more
than usual to OpenStep, as well as some techniques unique to

OpenStep.



13 Project Management
and the Development
Life Cycle

In a business environment, the requirements that a software system
must fulfill are always changing, usually right through the development
process and beyond. Software systems must evolve throughout their
useful life to keep up with changing business conditions. Software that
doesn’t keep up quickly becomes a liability and can make the difference
between success and failure for the whole business. Building a software
process that assists in coping with this fact of life helps a lot, but it
doesnt happen by accident.

There are two scales of project management—management in the small
and management in the large. Management in the small refers to version
control, configuration and change management, and other file-oriented
aspects of working in groups. There are few changes that OpenStep
development brings to this aspect of project management; it’s still some-
what tedious, detail-oriented, and absolutely necessary.

Various tools available on UNIX and Windows platforms assist with
these issues. You need a system that, at a minimum, lets you track who
has edited what and what has changed, keeps team members from step-
ping on each other’s toes when editing files, remembers which versions
of files make up a version of the whole system, and provides a repository
or workspace for sharing all the on-line artifacts of the development
effort—code, design documents, review comments, perhaps even elec-
tronic mail messages. As of this writing, for NeXT’s Mach operating
system, RCS/CVS is a good, freely available tool that manages all this
data. On Solaris, SPARCWORKS™/TeamWare, based on SCCS, is a

good one and is well integrated with the rest of the Solaris Workshop
development environment. Decide on one or another of these tools,

213

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



214 Developing Business Applications with OpenStep

Figure 1. The Waterfall Model

train your team to use them effectively, and then use the tools reli-
giously.

Management in the large deals with understanding the problems that the
system must address and with building a team and a process that allow
for changing requirements and that enable reuse. Many of the potential
benefits offered by object-oriented development techniques in general—
and OpenStep development specifically—dont come for free. They
need organizational support to be realized; there’s more to building
applications that help your business than just picking the right tools. If
your organization isn’t already familiar with OO tools and development
processes, then you won't be able to take full advantage of the benefits
OpenStep development offers without changing the way you deal with
the software life cycle and development process in your organization.

Much has been written about the software life cycle, ever since people
first figured out that developing software isnt trivial. Several models of
software development processes have been put forth, starting with the
“waterfall” model (Figure 1). The waterfall model was based on five
consecutive stages of development: analysis, design, implementation,
testing, and then maintenance. The engineering team completed each
stage before moving onto the next. In some cases, each stage was
performed by different groups. This process presumed that it was
possible to learn—and communicate—everything there was to know
about the analysis before proceeding to the design stage, learn and



Chapter 13: Project Management and the Development Life Cycle 215

Figure 2. Rapid Prototyping and Iterative Development

communicate everything there was to know about the design before
proceeding to implementation, and so on. Developers working in the
waterfall model typically spent most of their time documenting each
stage in exhaustive detail, leaving a bulletproof paper trail, rather than
actually creating code. This had to be done, because the model said you
couldn’t easily go back to a prior stage, and because often youd be
handing your material to another group to do the next stage while your
group started up a new project.

As might be expected, the waterfall process is a pretty inefficient way to
develop most forms of software. Each stage in the development process
teaches you something about the other stages, and it’s at best counter-
productive—at worst, impossible—to set any one part in stone before
moving on to the next stage in the cycle. However, those five stages in a
program’s life are very clear, and most life-cycle models incorporate
them, in roughly the same order. The differences are in what happens
when, in the point at which a given phase can be considered complete,
and in how often each stage is entered over the course of development.

Two interesting development models created over the past 15 years work
particularly well for OpenStep development. During the initial develop-
ment efforts, which includes learning the users’ requirements and
designing the program’s interface, the rapid prototyping model (Figure 2)
assists in developing a requirements document and a user interface
layout. Rapid prototyping works well at the beginning of a project,
where the development team is discerning the users’ requirements and
the users themselves are figuring out what those requirements are. Once
the requirements have been uncovered in some detail and the rate of
change slows down, the iterative development model allows for more



216  Developing Business Applications with OpenStep

manageable progress and scales better to more developers, while
retaining the ability to react quickly to changing requirements.

Building Business Models

While building applications is the primary focus of this book, it’s impor-
tant to be able to build the right applications—the applications thar
solve the problems you're facing. Object-oriented languages were origi-
nally developed to build models and simulations; a good software
system is in many ways a simulation of your business. It should be based
on the same basic things that drive your business’s operation. You need a
model that represents the entities that make up your business—whar
they know, how they behave, and how they interact; in short, the data
and the processes of the business. Much of the actual work of a business
reengineering effort should consist of building and verifying this model.

Constructing the Model

Developing a business model primarily involves defining and catego-
rizing the objects that make up the business process. This model is
different for every business, but many aspects are similar for all busi-
nesses. For instance, most models have representations of people, and
the representations of people are often specialized into employees and
customers. Each person probably has an address, perhaps more thar
one. Employees typically have payroll information and job descriptions,
while customers have order histories and pending invoices. The distinc-
tions come in determining the details—is a job description a
characteristic of an employee, or is it a separate object that the employee
object refers to? The answers to questions like these depend on the
history and practices of the business and on which groups in the
company will be accessing the data.

The process of building the model will probably reveal some redun-
dancy in the business practice. For instance, many businesses have



Chapter 13: Project Management and the Development Life Cycle 217

multiple definitions of the word “customer.” The marketing department
may want to track buying patterns and future demand; the sales depart-
ment may want to track individual pending sales and credit limits; the
customer service department is worried about customer satisfaction;
while the product development department wants feedback and
demand projections on new products. All of these things come from
“customers,” but each is a different kind of data that must be tracked.
When building the model and defining a Customer entity, the develop-
ment team must merge these multiple definitions as much as is practical.
Different departments will still see distinctions and want to track
different data, but the common ground between the definitions should
be abstracted out and kept in one place.

It’s also important to consider the life cycle of entities in the model.
What happens when a new Customer entity is entered into the system?
What happens when a Customer is removed? When an Order is
fulfilled, does it create an Invoice object? How long does the Order
remain in the system? Is it recorded forever, is it deleted automatically,
or does a human being need to sweep it out? The Warehouse and Fulfill-
ment divisions may be finished with an Order entity as soon it’s been
shipped and invoiced, but the Customer Service and Legal departments
may need it to remain for some length of time. If the Order is deleted,
does that cause the Invoice to be deleted as well? How are other entities
in the model, and other groups and departments in your company,
affected by these events?

Much of the model’s construction can be facilitated by developing
scenarios or wuse cases—writing down a script of the flow of a business
process and then making sure that the model does in fact model it.
These scenarios provide lots of information about what the objects in
the model should be, what they should do, and what other objects they
need to interact with. The scenarios should script out the execution of
various business processes as they occur now (before a reengineering
effort is implemented), such as taking, fulfilling, and invoicing an order;
responding to a customer complaint; and generating a marketing report.
Different scenarios from different departments in the business will high-
light overlaps between departments and indicate areas where there are
conflicting definitions.



218 Developing Business Applications with OpenStep

Verifying the Model

As the model is developed, it can also be verified by running various trial
scenarios through it. If the model doesn't support the process, then the
model probably needs to be modified to do so. It’s also possible that the
scenario is inefficient or even incorrect, and the model might suggest an
improved way of carrying out the process. It's important to include some
negative cases to check for scenarios that should be prohibited. For
example, with regard to an Employee entity, only certain employees
should have access to payroll information; a good scenario might be to
check that employees who shouldn’t have access to payroll data are
prevented from seeing it.

Another technique for verifying the model is to expand and evolve it.
This is good for identifying things that share common traits. For
example, consider the ways in which an order can be paid. It can be paid
with cash, a purchase order, a credit card, a check, a money order, or by
other means. They're all valid means of payment. They share common
traits, such as how much theyre worth and the date they were received,
but they also have distinctive individual traits, such as how they're
processed, whether they’re prepaid or not, and the cost of processing the
payment. The commonality can be abstracted out into a supertype,
perhaps called Payment. The model needs to support both abstraction
of shared elements into a supertype, such as treating purchase orders,
cash, and credit cards as kinds of Payments, and addition of more
subtypes, such as adding a new type of Payment, say some form of elec-
tronic cash or electronic funds transfer. If the model doesn’t support this
type of extension, then you've identified a potentially major weakness in
the model. Models usually need to evolve in some unanticipated ways,
but you can catch many of the problem areas with some forethought
about what your customers will want.

A final area for verification is that of concepts that don’t have explicit
representation in the model. Occasionally some “real-world” objects are
best represented in the model in abstract ways, especially when the
model is being evolved. Given the existing model, some real-world
concepts may turn out to look like relationships between objects rather
than brand-new objects. This is usually wrong—make a new object to



Chapter 13: Project Management and the Development Life Cycle 219

represent the connection. For instance, an Order contains a set of
Products. Special data about the Products being ordered is specific to an
individual Order—quantity, price charged, date shipped, and others.
These are usually represented as something like an Order Line Item.
Order Line Items can be independent objects, or they can be a kind of
relationship between an Order and a Product. Use the implementation
that makes the most sense, but model the object explicitly. In the
example above, include real Order Line Item entities in the model, not
just Orders and Products. It’s crucial that all the real-world entities used
in the application be modeled as first-class entities.

Building and verifying a business model is an iterative process that can
take months for a complex business. Involvement from all aspects of the
business is required to develop canonical meanings for the elements of
the model and to ensure that the elements in the model actually repre-
sent the things they’re meant to represent. It’s also important to schedule
enough time for several iterations and changes. The basic framework
needs to be in place before development starts. Once the framework is
in place and most of the key entities and their interrelationships are
known, then development can begin. The software development efforts
will uncover areas where the model is inaccurate or incomplete, and this
information should be used to improve the model.

Choosing a Methodology

Equally important as developing the business model is choosing the
methodology you'll use to develop it. Some methodologies specifically
support modeling objects, while some are more geared to modeling rela-
tional data. It’s important to choose one that allows you to model the
whole system—the back-end data store, the middle-tier business logic,
and the front-end representation. Otherwise, you run the risk of
miscommunication and imprecise mappings between different models.
A major reason for building a model in the first place is to have consis-
tent definitions and meanings between users, developers, and analysts—
lack of consistency slows things down and makes the development
process more error-prone.



220 Developing Business Applications with OpenStep

Once you have the model, you can quickly build applications that
manipulate these objects, and changes to the underlying objects in the
model can be reflected across all the applications. Building the applica-
tions then becomes a relatively low-effort task—the applications inspect,
connect, and modify the objects in the model; this is where much of the
reuse benefit of object technology occurs.

One simple modeling development technique worthy of consideration,
especially for development efforts that involve people outside the infor-
mation systems department, is the Class—Responsibility—Collaborator
(CRC) system from Wirfs-Brock and Beck. This system makes it easy
for people unfamiliar with information systems technology and object-
oriented concepts to take an active role in developing the model by
representing each basic entity on a 3 X 5 index card. Each card lists an
individual entity’s data and responsibilities. The relationships between
entities are described by how the cards are arranged. This simple tech-
nique allows modeling teams to experiment with different organizations
of the model by moving the cards around on a whiteboard or table. It
doesn’t provide enough information to lay out the user interface and
fully implement the system, but it can help you settle down very quickly
into a base architecture that describes user-domain objects, like Orders,
Customers, and Invoices, rather than the buttons, windows, and
controllers that your system will need to implement.

As of this writing, object modeling methods continue to be a focus of
much effort and refinement. The CRC system is a good place to start.
More-complex and richer systems from Grady Booch and James
Rumbaugh, Ivar Jacobsen, Peter Coad, and others, are all worthy of
consideration. Don’t forget, however, that the modeling methods are
tools, not religions. Try a few, and see which techniques work best for
your organization.

Rapid Prototyping

One of the most important components of OpenStep is the Interface
Builder application, which allows the rapid construction of user inter-



Chapter 13: Project Management and the Development Life Cycle 221

faces and even some behavior, without writing code. Interface Builder
introduces a distinction between what things are on the screen, where
they are, and what they do. This lets the developer add, remove,
connect, modify, and rearrange the objects that make up the user inter-
face without needing to modify the code behind the user interface and
recompile it. This is perhaps the most significant advance that an
OpenStep development environment offers. Most other user interface
builders and screen painters either tie you to a specific tool with few
hooks to the rest of the system or generate code that you then compile
and link into your system. Interface Builder doesn't need to generate any
code at all—the objects are read in and unarchived at run time by the
Application Kit, so the entire user interface can be updated without
needing to recompile the program, merge code, or even have access to
the source in many cases. Interface Builder also supports the use of
custom-crafted palettes of objects, allowing the partial assembly of
applications from prebuilt components.

Often during the initial stages of analysis, the customers and users of the
software being developed have only a rudimentary idea of what they
want. They have a clear understanding of the problems they want to
solve, but not necessarily a good understanding of how those problems
should best be addressed. In the rapid prototyping model, the developer
lays out a prototype interface, preferably with a user assisting, and then
proceeds to evolve the interface of the application with the user’s input.
It’s easy to try out ideas and throw away the ones that dont work. The
user interface layout usually proceeds very quickly and should be
concerned only with the user interface itself—object design and imple-
mentation issues should be postponed for now. In general, this process
of successive approximation should take less than a team-week (a
person-week for every member of the team) per major component in the
system.

Developers and users should also concern themselves with determining
what output the system needs to provide. The reporting requirements,
and mockups of the reports themselves, are important as a check for the
user interface and as input for the developers implementing a database
schema. If a field appears in the report, it needs to be entered or calcu-
lated somewhere, and if a field appears in the user interface, it should



222 Developing Business Applications with OpenStep

probably appear on a report somewhere as well. If a piece of data appears
in one domain and not the other, there’s probably an inconsistency
somewhere. From a consistency standpoint, the actual layout of the
report isn't as important as the contents, but it’s useful for designing the
user interface—the layouts of the reports are often a good starting poinr
for a layout of the user interface itself.

As this process moves forward, the developer gains an understanding of
the requirements the application needs to fulfill. Many requirements
have nothing to do with the user interface, but the users can describe
how theyd like the application to behave even though there’s no code
there to implement the behavior. You may want to implement prototype
objects, often called “smoke-and-mirrors” objects, that make the user
interface react to user actions using precomputed data and canned
results so that the users can get a feel for different ways of working with
the application. Capturing this information is the primary purpose of
the rapid prototyping model in this stage of the development cycle, and
some added incremental effort spent building smoke-and-mirrors
objects can help you avoid throwing away fully implemented modules
that don't meet the application’s requirements.

At some point, the rate of change in the user interface and reports falls
off. The developers have a pretty good idea of what to build, and the
users have a pretty good idea of what to expect. When this happens, it’s
time to start taking other factors into account. This is when a shift to
the iterative development model makes sense.

Iterative Development

As the rapid prototyping stage in the development process winds down,
the user interface layouts need to have some behavior put behind
them—the business rules and processes that the application supports
need to be implemented.

In the software classic The Mythical Man-Month, Fred Brooks wrote:

“Plan to throw one away; you will anyway.” Given the luxury of time,



Chapter 13: Project Management and the Development Life Cycle 223

it's a great way to build really good software—you learn a tremendous
amount by doing a full-blown dry run, and these lessons feed into the
second pass. However, Brooks later decided that it was bad advice.
There are ways to speed up the process that allow you to get the most
useful information without most of the trouble.

The iterative development model takes the waterfall model and applies
it to smaller pieces of the problem and then repeats itself. The develop-
ment process passes through each stage as often as needed—as Grady
Booch said, “Analyze a little, design a little, code a little, test a little.”
Then go back and do it again.

As the team progresses through each step, the team members will find
that they learn useful information about the other steps. Sometimes this
knowledge is painful; you may discover that youve decomposed a
problem into a design that you might not be able to build efficiently.
The sooner a problem like this is found, the better! When things like
this happen, the reasonable approach is to stop and try to solve the
problem, perhaps by prototyping a few proposed solutions. If the
problem can’t be resolved, go back and reevaluate the analysis and the
design with this new information in mind.

This process plays into one of the fundamental concepts of object-
oriented development—the split between interface and implementa-
tion. The interface of an object defines what it does, but should say very
little about how it does what it does. Once an interface is defined, the
internals of the object can be filled in as needed. This allows the devel-
opers to write interfaces based on what the model says the objects
should do, and then implement a first cut at the behavior. They can
then assemble the objects into a prototype of the application, employing
the user interface prototypes developed eatlier, and actually run and play
with the prototype application. The developers can find out what users
like and dislike about the prototype and feed that input into the next
iteration of the process.

Occasionally the users will ask for a feature change and then decide that
they liked it better the old way. The tools for management in the small,
discussed in the beginning of the chapter, help a lot here. It should be



224 Developing Business Applications with OpenStep

possible to roll back to a previous version of the code without much
effort.

It’s possible for the iterative development model to degenerate into a
state in which everyone is fighting fires and working in different stages,
and there’s no apparent control. Some small amount of this is occasion-
ally unavoidable, but it needs to be very carefully monitored. This is best
managed in the same way as any other project; have a schedule that both
management and developers believe in, and carefully track how the
developers are progressing against the schedule. The next section
presents some useful scheduling techniques.

Scheduling and Milestones

Software development is notoriously hard to schedule. Predictability was
one of the few benefits of the waterfall model discussed previously. It
took forever, but you could usually guess fairly accurately how long that
would be. The iterative model is somewhat less predictable, so it needs
to be more actively managed. The iterative development process needs
to be grounded in reality in terms of both schedule and expectations. A
good rule of thumb, often forgotten in software project management, is
that any schedule event should have as much chance of being early as of
being late, but engineers almost always give best-case dates and then end
up late because they were too optimistic. Scheduling can be a delicate
balancing act, but there are some techniques that help.

Users usually ask for systems in terms of features—Ilists of things they'd
like the system to do. When youre planning how to build the system,
however, having more structure is helpful. Build things in terms of both
modules and features, not just features. After all, you're designing the
system in terms of modules—collections of related objects that work
together—so you should schedule your development effort in these
terms as well. Identify the modules that form the foundation of the
system, and implement them first. Then, implement the modules thar
add more features to the whole system, module by module rather thar
feature by feature, in the order that the users need them. You'll need to



Chapter 13: Project Management and the Development Life Cycle 225

strike a balance between postponing modules whose requirements are
most in flux and building the most important parts of the system first;
often they’re the same chunks.

Thinking in terms of both modules and features makes it easier to
schedule and to decide what to cut if time gets short (or what, if
anything, to add if you're early). If delivery dates change, it’s better to
have several things that work well and some things that don’t work at all,
rather than a bunch of things that partially work. Building modules also
helps with motivation—it’s very satisfying to have a whole, consistent
module ready and working.

Schedule regular milestone builds; take the whole system and make sure
that everything thats ready fits in and works. This provides several
major benefits: It makes sure that everyone is coordinated on one set of
code, class interfaces, and database schemas on a regular basis; it makes
sure that everyone knows where they stand with regard to the
schedule—features and modules that are scheduled to be ready for a
given milestone are either ready or they arent; and it provides a fixed
base of code for testing and demonstrating to users. Milestone builds do
incur some cost. They bring added overhead to the engineers coordi-
nating the build, and it’s a distraction from pressing ahead for every-
body. Nevertheless, this is one of the most powerful ways to make sure
everyone is pointed in the same direction, and it can provide insight on

which parts of the project need help.

Defining Milestones

Ask developers to commit to a prioritized listing of modules and features
and then to develop a mapping of features to milestone builds. This
ensures that developers think in terms of bite-size chunks; it’s much
easier for engineers to predict what they can do in three or four weeks
rather than in three or four months. Having a deadline in the near
future helps to keep motivation and enthusiasm levels high. This plays
into the iteration of the iterative development process—schedule both
getting a part of the system working and then improving it.



226 Developing Business Applications with OpenStep

An important question to consider is whether the milestone builds are
date-driven or feature-driven. In the early stages of the iterative develop-
ment process, it makes more sense to have these builds be feature- and
module-driven. The most basic parts of the system are under construc-
tion, and having a stable milestone release is more important than
making schedules in the early stages of the game. The milestone process
provides information on how realistic the first cuts at schedules are and
on which parts of the system are proving to be hard to implement. Don’t
be afraid to move the dates if things aren’t ready. “Declaring success” by
changing the definition of an early milestone can come back to haurt
you for three reasons. First, you lose information about how long it took
to implement that milestone’s features. Second, you cause problems for
any part of the system that depends on the pieces you're implementing;
Third, you also silently change the definitions and timetables of al
subsequent milestones, since you have to apply effort both to the items
that caused the slip and to the things that were originally slated for the
next milestone. Later in the process, as less-fundamental parts of the
system are being added, be more and more fussy about dates. If features
aren’t ready, postpone them to a later milestone, or consider dropping
them altogether. Features and modules should be added in order of
decreasing importance.

Another important question to consider is how often to do milestone
builds. They should be relatively far apart in the beginning of the
process, perhaps every four to six weeks for a fairly complex project.
This spacing accommodates broad changes such as class redesign, class
interface changes, and user interface changes. As the project progresses,
speed them up to one every week or two. The added overhead of doing
the build should decrease because there should be no drastic changes late
in the game, and having more precise information about the schedule’s
agreement with reality becomes more important as the completion date
approaches. At any rate, you should schedule builds often enough to
keep a sense of urgency in the project; there should be a deadline jus:
around the corner, but not so soon that there’s not enough time to do «
quality job. This often proves to be a delicate balancing act.

Most milestones are specific to the project, but some milestones occur in
nearly every project, and they should be especially significant. These are



Chapter 13: Project Management and the Development Life Cycle 227

the builds that mark such events as the user interface being complete,
the class interfaces being frozen, whole modules being implemented and
tested, the system reaching feature completion, and builds being released
outside your group. These builds should be treated somewhat differ-
ently. The full state of the system—source code, nib files, design docu-
ments, database dumps, and schema files, the whole thing—should be
backed up to tape or some other off-line medium if you're not backing
up all of the builds. These milestones might impose some conditions on
further development which are important to respect—if the user inter-
face is considered frozen, then changing it should be a big deal and not
done lightly, even though it’s easy to make a small change quickly with
Interface Builder. Lastly, these milestones should be cause for some cele-
bration. Buy your team dinner or throw a party when the build is

finished and working.

Revising the Schedule

External constraints often impose nonnegotiable finish dates on the
development process. The milestone build process allows you to track
with some precision how development is going with regard to hard-and-
fast dates and to direct the development process when circumstances
change. You can add or drop features and whole modules in response to
changing requirements, and slating these changes for a specific mile-
stone allows changes to fit in without destroying the schedule’s validity.
On the other hand, external events can cause the finish dates to move
without concern for your convenience. The milestone build process
gives some leverage to deal with this; there’s usually a mostly working
system ready to go. You can redeploy resources to polish up a milestone
build for release if need be, and there should be little confusion about
which parts work and which ones don’t. For these reasons, it’s useful to
keep fairly detailed notes that record the state of the system as of the

build date.

Always remember that schedules should have something to do with
reality. If your developers are working 80-hour weeks to make a 40-
hour-week schedule, then your group isn’t late—the problem is that the



228 Developing Business Applications with OpenStep

schedule is wrong and needs to be revised. Some 80-hour crunches are
tolerable, and they can even be fun, but there are dire consequences if it’s
a matter of policy. In the short run, your developers will check in quick-
and-dirty, untested hacks to make the dates, and in the long run, they'll
burn out and be frustrated that they’re not allowed to do good work.
Revisit the schedule, update your estimates and dates, and decide where
you can push out dates and what things to cut to bring the date back in.
Your developers will be much happier because they'll be able to believe
the schedule; your customers will be happier because you'll be delivering
a higher-quality piece of code; and you'll be richer because you'll be
better than the competition in your ability to guess right at how long
things will take and how much they’ll cost.

The Benefits of Reuse

As you develop more systems with OpenStep, you'll find that certain
modules are needed over and over again. These modules may map
directly onto database entities, such as a Person object, or may be more
generic visual components, such as a specialized table view or check box.
Take some time to flesh these objects out into reusable components so
that they can be more easily used over and over again. It’s been reported
that you need to build the component three times before you know how
to make it reusable and that you then need to use it three times before
you start seeing payback. The combination of Objective-C and Interface
Builder’s target-action paradigm can make reuse somewhat cheaper and
faster than that, but getting reusable code is still hard, and it still isn't
free. Most developers enjoy taking the time to make reusable code (givena
the opportunity), but if you dont allow some time for this in the
schedule, it can’t happen.

As you build or buy a library of objects, you'll find that many simple
applications that manipulate the data model can be constructed out of
components that are already built, from the OpenStep Application Kit
or the WebObjects framework, from your own custom visual compo-
nents, and from the objects that make up your data model. These
component-built applications are usually quite small, many consisting



Chapter 13: Project Management and the Development Life Cycle 229

of well under a thousand lines of code to hook the components together,
and can often be built by one or two engineers in under two weeks. For
these small applications, the full milestone build process is too heavy-
weight and doesnt make much sense. Depending on the complexity of
the application, the process can be simplified to something as simple as a
code review by someone knowledgeable about the system and the data
model.

Even with a library of reusable components, don’t skimp on the front-
end part of the process—developing a prototype with the users. Given a
rich enough component set and a simple enough application, the proto-
type may end up being almost the whole system, but if you don’t build
the prototype, you run the risk of building the wrong application. It’s
seldom feasible to skip the prototyping stage—it’s a powerful validation
of the specification.

All of this is applicable to any iterative development process, not just
OpenStep systems, but it’s especially important for OpenStep applica-
tions because the development tools make it so easy to change things.
Most of the time, this is a great advantage of the OpenStep environ-
ment, but there are times when making it a little harder to change things
provides the advantage of knowing where you stand and how much
farther you have to go.



14 Portabilizy

The basic intent of the OpenStep specification is to guarantee source
portability across platforms by defining a standard programming inter-
face. The reality of application development, however, means that you
need to use libraries and other resources outside of OpenStep. These can
be parts of the system underneath the OpenStep frameworks or prod-
ucts added alongside or on top, such as a third-party library of C or C++
routines and classes, or even NeXT’s Enterprise Objects Framework.

As with many aspects of development, you rarely decide to write
completely portable or completely nonportable code. Rather, you work
toward making your code easier to port by encapsulating the parts of it
that aren’t inherently portable. This makes it easier to locate when
needed and to modify without affecting other parts of the system.

Encapsulation, of course, is one of the basic principles of object-oriented
programming. The most natural way of integrating components into an
OpenStep application is to create an Objective-C class that presents a
stable interface to whatever external service youre using. This is
precisely what the database adaptors do in the Enterprise Objects
Framework, for example. When you need to port your application to a
host system that provides that service in a different way, you can create a
new subclass that implements the interface in terms of the new service.

Using a bridge or adaptor class is a well-known OOP technique, so we
won't bother exploring it here. This chapter simply reviews the porta-
bility level of the various resources you use with OpenStep. First, we
summarize what you can rely on to be transparently portable, followed

231

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



232 Developing Business Applications with OpenStep

by what definitely has to be encapsulated. The final section covers things
that may or may not be portable, which you may or may not want to
take the time to encapsulate.

Guaranteed Portable

By definition, all of the OpenStep specification’s interfaces are transpar-
ently portable across host systems. This includes all of the classes, proto-
cols, functions, and other elements in the Foundation and Application
frameworks, but it also includes the Display Postscript System and addi-
tions. And of course, since the whole package is based on ANSI C, you
can use any of the standard C library functions and definitions. You may
not need to use them, since OpenStep provides higher-level interfaces to
things such as string manipulation and time calculation, but for inte-
grating legacy code it’s a nice incidental benefit.

You may need to take a bit of care even here, though, if the specificatior
recommends not using a particular method or function, whatever the
level. There may be unforeseen interactions between high- and low-leve.
API, and even some high-level API provides access to explicitly nonport-
able things, such as hardware codes that generate keyboard events.
Fortunately, this subset of the specification is small indeed.

Guaranteed Nonportable

Using API outside of the OpenStep specification is sure to be nonport-
able if it would be nonportable anyway. Specifically nonportable are
interfaces that are particular to an operating system or that depend on
hardware information. These include interfaces defined by the operating
system, vendor additions to OpenStep that use or provide access to
system types, and OpenStep methods that provide information about
hardware. For example, on Microsoft Windows, the NSWindow class
has a method that returns the window handle used by the operating



Chapter 14: Portability 233

system, and NSEvent has a method that returns the keyboard code that
generated the event.

One of the Foundation Framework’s design goals is to provide system-
level services, but there are times when you do have to call upon the
operating system for an unusual feature. If you need to use such features,
it’s a good idea to encapsulate them as a portable class, using neutral data
types and other OpenStep classes. The important thing is to always
isolate code that’s known to be nonportable.

Gray Areas

Some kinds of code lie between the poles of portability and nonport-
ability. These are typically based on interfaces that are portable but
whose implementations arent necessarily available on other systems.
Other items of uncertain portability include additions to OpenStep that
happen to be available in all implementations and noncode resources
whose formats might differ across platforms. In this gray area, you have
to decide between the cost of encapsulating a partially portable interface
yourself and the risk that it might not be available in every environment
you develop in.



234 Developing Business Applications with OpenStep

System-Neutral Libraries and Tools

OpenStep’s frameworks and applications can be viewed simply as
libraries and tools that you use to build applications. Many other such
libraries and tools exist, of course, and many of them provide valuable
functionality that OpenStep doesn’t, such as file indexing, numerical
routines, and low-level database access. Libraries are clearly not portable
if their interfaces are defined in terms of a specific operating system, but
many of them use neutral interfaces defined in C, C++, or other stan-
dard programming languages. The portability of these kinds of libraries,
and of development tools, depends simply on their availability.

The portability of a system-neutral library or tool is affected most by
two factors:

* Source code availability. If you can rebuild it yourself on the new
system, it’s about as portable as it can get.

* Without source code, a product’s availability on the market deter-
mines its portability. If you can be assured that the library or tools
exist on your target platforms, you can take the chance of using it
as is, without encapsulating it.

A special class of products that falls under the second point is that of
frameworks built on top of OpenStep, such as NeXT’s own Enterprise
Objects Framework. These products are as portable as the number of
OpenStep implementations they’re available for. Of course, they have
the added bonus of tight integration with OpenStep.

Additions to OpenStep

NeXT’s and SunSofts implementations of OpenStep share several
components that aren’t formally part of the specification. Among these
are formatters and the table view classes. Using these is relatively safe, as

they’re quite likely to be included in a future version of the specification.
The only real problem is that this makes the STRICT_OPENSTEP



Chapter 14: Portability 235

macro described in the sidebar less helpful in checking for compliance to
the specification.

More problematic are additions not shared—or that differ—between
the implementations. NeXT has its dozen or so additions to the Foun-
dation Framework, along with the Application Kit's new text system.
NeXT and SunSoft each has its own file-handling classes, with different
interfaces. The future membership of these classes in the specification is
less likely than that for those common to both systems. In any case, their
presence on only one system or the other makes them nonportable right
now. You might want to implement them yourself if you have the
resources, or wait to see what becomes of them in the next version of the
specification.

Noncode Resources

Portability considerations also arise outside the area of coding. Today’s
applications use resources of many types, from lists of strings to images,
sounds, and video. OpenStep explicitly embraces some resource formats,
such as RTF, PostScript, and TIFE but remains mute with regard to
many others you might use. In addition to the basic resource formats,
though, system-specific transformations must be considered. A notable
example is file compression, for which UNIX and Windows systems use
quite different standards.

Text can also present a problem. OpenStep defines Unicode as its stan-
dard text encoding, but this is still an emerging standard. The encodings
presently used by different systems and by different applications make
this a potential problem. OpenStep’s most significant problem in this
area, however, is that only NeXT’s implementations include text-editing
classes that can handle Unicode characters. OpenStep’s NSText and
NSCStringText really work only with 8-bit encodings based on ASCII.

Some noncode resources are used not by the application but to build the
application. Project Builder, for example, adds a pair of special files to
each project, where you can define build macros and other options.
How you make these definitions differs slightly between NeXT’s and



236 Developing Business Applications with OpenStep

SunSoft’s implementations. You may need to keep separate versions of
these auxiliary makefiles for each platform if they're very complex.



15 Testing and Debugging

Hunting errors in computer programs is both science and art. It requires
a thorough understanding of how the code is structured, along with the
intuition to glean the true cause of a problem from often cryptic clues.
Knowing what's likely to cause an error is a big step toward both
avoiding it in the first place and correcting it when it happens anyway.

Likely causes of errors vary with the programming language, the applica-
tion architecture, and specific systems used in developing an application.
OpenStep, with its Objective-C programming language, Foundation
and Application frameworks, and related add-ons, certainly offers its
own unique brands of errors. The goals of this chapter are to present the
most frequently encountered kinds of errors and to explore how difficult
they are to ferret out.

Although this chapter is devoted to fixing errors in the program code
itself, it's important to remember that you can debug your application
long before writing a single line of code. Examining your business object
model and application architecture before proceeding to implement
them can save hours of time with the debugger. Similarly, incorporating
checkpoints and tests in your application architecture can speed
pinpointing the causes of errors once you've begun testing.

That said, let’s examine the testing and debugging aids that OpenStep
offers and review the kinds of problems that can occur with OpenStep
code.

237

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



238 Developing Business Applications with OpenStep

Debugging in OpenStep

Despite its complexity, OpenStep offers a lot of help in debugging, from
the integrated source debuggers, to the object model, to the pretested
frameworks, to the graphical development tools. NeXT’s and SunSoft’s
development environments both include a semigraphical Objective-C
debugger, which offers push-button control of basic operations such as
running and stopping the program, single-stepping, and examining
objects. NeXT’s debugger runs right within Project Builder, allowing
you to set and manipulate breakpoints directly in the code editor.
SunSoft’s debugger runs from a terminal window and communicates
with the Edit application, which displays the code being debugged ard

presents a panel with controls for stepping and examining data.

Objective-C’s run-time dynamism is a great advantage, as it allows ycu
to ask many questions about the state of the application and its objects
that would be difficult or impossible to ask with a static language. If a
message generates an exception because the receiving object doesrt
respond to it, you can verify that it’s of the proper type by asking what



Chapter 15: Testing and Debugging 239

its class is or whether it conforms to a specific protocol. You can also set
breakpoints on standard run-time error-handling methods, such as
NSObject’s doesNotRecognizeSelector:, NSException’s raise, and
NSAssertionHandler’s various handle... methods.

The OpenStep frameworks and graphical development tools represent a
huge base of code that you don't have to write. The easiest code to debug
is the code that someone else has already debugged. By masking
complexity with simpler interfaces, these frameworks reduce the amount
of code you do have to write. Interface Builder and EOModeler even
allow you to test parts of your application before writing that code.

Common Problem Areas

You've probably guessed that most errors particular to OpenStep are
related to its dynamic mechanisms: Objective-C messages, asynchro-
nous notifications, and the like. Far from certain indictment of
dynamism, however, this simply reflects the fact that with any feature
come problems specific to that feature. Run-time errors are the compan-
ions of dynamism, but they’re by no means unmanageable, as the
following survey of error classes shows.

Reference Counts

Though the Foundation Kit’s reference-counting mechanism addresses
many problems in sharing objects, it isnt automatic. You have to know
when to retain objects and when to release or autorelease them, and you
must make sure that you release an object exactly as many times as you
retain it (explicitly or implicitly). If you release an object too many
times, it will be deallocated early and your program will crash when it
tries to use that object. If you retain it too many times, it will never be
deallocated, resulting in a memory leak.

Debugging reference-counting errors can be difficult indeed, since the
disposal of an object is often located nowhere necar where it was first



240 Developing Business Applications with OpenStep

created or retained. NeXT has developed some tools for tracking and
analyzing object lifetimes, including one that provides summary infcr-
mation for a running program and one that generates extremely detailed
statistics of object allocation, retain and release messages, and dealloca-
tion for every class in the program. These tools help you both to find
where objects are leaked and prematurely deallocated and to determine
what caused that to happen. Solaris integrates some of this functionality

right into the debugger.

Run-Loop Asynchrony

The Foundation Framework’s NSNotification and NSTimer classes
allow for messages to be sent to multiple recipients after a delay. Also,
any object can register as an observer of a notification, supplying a
method of its own to be invoked when that notification is posted. This
is a useful and powerful feature, but when an error pops up it can be
quite difficult to pinpoint the origin: Both notifications and timers, after
all, remove the invocation of a method from the context that originated
the message.

Tracking asynchrony errors can be time-consuming. It involves breaking
at the offending method and examining the notification or timer
included as an argument, then examining the code for the likely origina-
tors of the improper asynchronous message. After this, you can set
breakpoints where these notifications and timers originate and examine
the context.

Noncode Logic: Nib Files and Models

One of OpenStep’s greatest strengths—reduction of code through tools
such as Interface Builder and EOModeler—can lead to very frustrating
errors if you forget that nib files and models represent program logic just
as much as code does. Unlike code, though, you can't examine a nib file
or model in the debugger; you must either intuit the source of an error
or examine every connection manually to find the error’s cause.



Chapter 15: Testing and Debugging 241

For nib files, an improperly made connection can cause any number of
unexpected behaviors that appear impossible when you look only at
code. The right message can be sent to the wrong object (or to no
object, since a message to null is legal in Objective-C); the wrong
message can be sent to the right object; or the wrong message can be
sent to the wrong object. In the debugger, where the context of the
interface isn’t obvious, such errors can seem quite mysterious. A
common cause of lost messages is changing a method name in a class’s
header file. You can forestall this error by reimporting the header into
the nib file and checking the outlets whenever you edit it.

With the Enterprise Objects Framework, an entity missing a primary
key, among many other possible model errors, can cause problems
entirely unrelated to code and not obvious in the debugger. EOModeler
is a bit friendlier than Interface Builder in some regards, since it offers a
consistency check for detectable errors in a model file. Even so, there’s a
large number of problems it can’t detect, which you have to intuit from
the behavior of your application.

Exceptions

Exceptions are supposed to aid in debugging, but in fact they can be
extremely unhelpful. The existence of exceptions is often justified in two
ways. One view is that methods should always return meaningful values
or none at all, rather than returning error codes. In this view, errors
cause exceptions that you must catch and handle. The other view is that
exceptions represent errors that should never happen in the first place,
such as accessing an array past the last index, which therefore represent
fundamental errors in program logic. Nonetheless, exceptions are often
used for problems that have nothing to do with program correctness,
such as Distributed Objects timeouts. In either case, you can end up
with code that’s cluttered with exception handlers, which is as bad as
checking every return value for an error code and taking preemptive
action.

To its credit, however, the Foundation Framework’s exception model
offers a wealth of information at run time that classic error codes and



242 Developing Business Applications with OpenStep

exceptions don’t. Objective-C exceptions are objects with names that
reflect the nature of the error. They can also be assigned a more elabo-
rate description stating the likely reason for the exception, along wirh
arbitrary information from the context in which the exception was
raised. This information can be quite helpful in pinpointing ard
correcting the problem.

Weak Typing

Proponents of strong compile-time type checking may decry Objective-
C’s dynamism as dangerous, but the fact is that, like many things, it’s a
very useful feature when used properly. Typing every object as id is
certain to cause errors eventually; like void *, this generic type is meant
to be used sparingly, when the type is understood from context. Ths
most common errors resulting from weak typing are sending a messag:
that the receiver doesn’t respond to, and sending a message that the
receiver does respond to, but in an unexpected manner.

Unrecognized messages are easily avoided by statically typing you:
objects as much as possible, which produces warnings at compile time
rather than errors at run time. Remember that in Objective-C, declaring
an object with a particular class means the object is an instance of thar
class or of any subclass. You get the benefit of compile-time type
checking, but polymorphism and run-time binding still apply.

An unexpected response to a message is typically caused by insufficient
restriction in the definition of a method, most often through ambiguous
naming and typing of arguments. Renaming ambiguous elements makes
it clearer how they’re supposed to be used, which reduces the chance of
unexpected results. Statically typing arguments enables the compiler to
warn of improper invocations. Consider a method named insert:at:,
where the first argument is the thing being inserted, and the second tells
where to insert it. Unfortunately, the name itself gives no clue as to the
type of the thing being inserted or the location. A name like
insertObject:atIndex: or insertText:inRange:, with properly typed
object arguments, is much clearer.



Chapter 15: Testing and Debugging 243

Distributed Objects

Distributed Objects doesnt introduce too many problems that distrib-
uted programming in general doesn’t already have. However, DO makes
distributed programming so easy on the surface that youre more likely
to do it and therefore to encounter these problems. If you plan on
creating a distributed application, however complex, learn about the
issues related to concurrent and distributed programming, resource
contention, and deadlock first.



16 Performance

Performance is the rope in a tug-of-war between hardware and software.
Just when new processors arrive that make software run acceptably fast,
and disk storage doubles for the price, new software comes out that
slows right down again and requires three times the storage. The major
bottleneck, memory, has not shared the gains of mass storage in terms of
megabytes per dollar, keeping the most straightforward way of
improving performance the most expensive.

OpenStep, in any incarnation, is no exception to this trend. Its rich
graphical nature, object model, and the amount of functionality it
provides all require great processing power and memory for acceptable
performance. Also, some of the convenience it provides the programmer
makes it easy to write inefficient code. You have no direct control over
OpenStep itself, but you can tune your application’s use of it for
maximal efficiency.

Measuring Performance

Finding and fixing performance bottlenecks takes time, and develop-
ment speed is often far more costly than application speed. Hence, it
makes sense to fix only the problems that users complain about—to ask
users what they don’t like about performance and to analyze the poten-
tial causes of those problems. Analysis itself can vary in sophistication

from a quick eye review of code up through full profiling of every
routine.

245

N. Gervae et al., Developing Business Applications with OpenStep™
© Springer-Verlag New York, Inc. 1997



246 Developing Business Applications with OpenStep

Code performance can be analyzed in two basic ways. The first is to
measure the time it takes to perform a specific operation, called #iming
or sampling. This means following the user’s perception into the code
and measuring specific methods and functions for the time they take to
execute. Time measurements give you the information to pinpoint
problems with algorithms, memory usage, and other common causes of
poor performance.

The second method, called profiling, involves measuring how often
particular methods and functions are invoked, which offers additional
insight into algorithm performance. Its also useful data for scatter
loading or otherwise arranging compiled modules so that the code that
executes together is grouped in memory. In virtual memory systems,
where code must be paged in and out of memory, this is often a key part
of performance tuning.

OpenStep doesn’t define any standard tools for either sampling or
profiling. These kinds of tools sometimes seem to be the poor cousins or
compilers and debuggers. NeXT has some tools on Mach, such as the
gprof profiler and its own sampler tool, but none yet on Windows, for
example.

Improving Performance

Once you know where the problems lie, you can apply the appropriate
techniques to correct them. The following sections summarize several
techniques, some general, some specific to object-oriented programming
and to OpenStep in particular. They appear in rough order of useful-
ness, with the more effective or commonly useful techniques first. (Also,
see the sidebar “Object Debugging” on page 238 of Chapter 15: Testing
and Debugging.)

In considering any performance technique, remember that maintenance
can be far more costly than hardware or even users’ time. If a perfor-
mance enhancement renders code unintelligible or more prone to error,
it's probably not worth implementing. That said, a great number of



Chapter 16: Performance 247

performance enhancements do no harm to clarity, modularity, or main-
tainability. Simply choosing the right level of abstraction, such as
NSArrays versus C arrays, is a tremendous performance technique, and
all it does is change the context of the problem.

If you decide to try a technique, be sure to measure performance both
before and after applying it and to test the new code thoroughly. These
techniques don’t always produce benefits worth the impaired maintain-
ability, and they may not even work at all in some situations. They may
have no effect; they may make the code being optimized run more
slowly; or they may produce an undesirable side effect elsewhere. Formal
testing can save hours of developer and user time.

Tuning Algorithms

One of the first things to look at when you've isolated a slow routine is
the kinds of algorithms it uses. To increase their own speed in devel-
oping an application, programmers do use slower algorithms that are
easier to code. Often, they intend to replace them later with faster algo-
rithms but forget once they've moved on to new features. They may also
simply be unaware of faster algorithms.

For these reasons and more, it’s a good idea to have people other than
the original author review slow code. They may see or know something
the author didn’t. A fresh perspective can reveal potentials for dramatic
improvement.

Reducing Memory and Disk Usage

Lack of memory was implicated at the beginning of this chapter as a
major culprit in performance problems. Large systems with robust
virtual memory have made it easy to program as though there’s no limit
to storage, but there’s still a heavy price in performance. It pays richly to
revise code so that it uses less memory, even at the cost of performing
more calculations; loading a page of virtual memory from disk is orders



248 Developing Business Applications with OpenStep

of magnitude more expensive than performing even millions of calcula-
tions. This fact also suggests that resources stored on disk be compressed
if possible, so that they can be read into memory more quickly and then
expanded as needed.

Managing Autoreleased Objects

The Foundation Framework’s autorelease feature reduces much of the
burden of tracking object ownership, but it has a potentially huge
impact on performance when many temporary objects are being
processed. Blindly autoreleasing every object you create is not a wise
tactic, as these objects accumulate in memory until the run loop finishes
its current cycle. Always consider the scope of an object’s use, auto-
releasing only those passed outside a method and explicitly releasing all
local objects at the end. Similarly, a class’s dealloc method should
autorelease only instance variables that may have been passed to other
objects and should simply release private instance variables.

Another common cause of autorelease bloat is a loop that creates tempo-
rary objects in each iteration, whether explicitly or implicitly. To remedy
this problem, you can create your own NSAutoreleasePool at the top of
the loop and release it at the bottom, so that all objects autoreleased
inside the loop are cleaned up on each iteration. This technique is
tremendously useful for reducing the space occupied by autoreleased
objects, though you must be careful to retain objects that you want to
survive past the loop.

Loading Resources on Demand

OpenStep provides explicit support for loading compiled code, nib files,
and other resources incrementally, as they’re needed. This is managed by
the Foundation Framework’s NSBundle class, which defines methods
for loading a group of related resources, for finding and dynamically
loading compiled code, and for loading nib files and connecting their



Chapter 16: Performance 249

objects into the application. Loading resources only when they're needed
greatly reduces the time it takes an application to launch, and results in
only slight, one-time delays when the resources are first loaded.

Using C++ and Standard C

Objective-C is well suited to high-level application development, but it
does have its limits when it comes to low-level efficiency. It would be
ludicrous to use NSNumber objects for all calculations, for example.
The purpose of that class is to allow numbers to be transported in collec-
tions, not to replace the native C types int, float, and so on. Similarly,
although NSArray and other collection classes are quite useful, should
performance needs dictate it, you can always bypass them for C arrays,
hash tables, and so on. If your analysis reveals that an object easily
replaced by a more basic data structure is taking too much time, by all
means replace it.

Using Threads and Distribution

You can realize a significant gain in performance through concurrent
programming, by taking advantage of multiprocessor support through
threads, and through redesigning your application with a distributed
architecture. The NSThread class, along with NSLock and its
subclasses, provides a standard OpenStep interface to threads, and
Distributed Objects provides remote method invocations. When using
either technique, keep in mind that some parts of OpenStep aren’t
designed with concurrency in mind. An application’s connection to the
PostScript Window Server, for example, is a shared resource, whose use
you must manage carefully in a multithreaded application (see the
sidebar on page 60 for SunSoft’s solution to this particular problem).



250 Developing Business Applications with OpenStep

Overriding Reference-Count Methods

NSObject’s retain and release methods work by keeping global hash
tables of extra references to each object whose reference count is greater
than one. This eliminates the need for every instance to store its own
reference count, which saves a lot of memory, but isn’t appropriate for
objects that are frequently released and retained. For such objects, the
delay in lookup outweighs the benefit of less storage for objects with no
extra references.

To bypass the default mechanism, a class can override retain and release
to increment and decrement a private instance variable. Doing so speecs
up these methods at the cost of an extra instance variable for all
instances, whether or not their reference counts go above one. You can
determine whether this is appropriate by measuring performance with
and without these overridden methods.

Overriding Objective-C Dynamism

If you need to squeeze the last bit of performance out of an Objective-C
object, you can cache the implementation of a method and invoke it as a
function, bypassing the Objective-C run-time system. This is a useful
technique in tight loops where performance is essential but where you
must still use objects. However, you must take great care to guarantee
that every object treated this way is an instance of the class whose imple-
mentation you cache, and not an instance of an unrelated class or =
subclass. If you don't, you could invoke a method that either doesnt
apply to the object at hand or that applies to it improperly.

The NSObject class method instanceMethodForSelector: returns a
pointer to the underlying C function that implements the specified
method (a selector is a hashed method name). If you know the argu-
ments it takes, you can invoke this directly with any instance of the class
you got the implementation from. These kinds of invocations, being
function calls, are as fast as C++ nonvirtual functions.



Chapter 16: Performance 251

This particular trick shows the depth you can go to speed up an Open-
Step application. In general, though, you should rarely need to do this.
By using the appropriate technique for your performance requirements
from the beginning, you can avoid having to use such hacks to nudge
out performance gains.



Appendices



Appendix A: PayPerView

Source

Heres the source code for the PayPerView application developed in
Chapter 7: Building an Application. Code generated and maintained by
Project Builder, such as the file defining the main() function, isn’t

included here.

PayPerView.nib

Figure 1. Connections from Custom Objects (Outlets)

255



256  Developing Business Applications with OpenStep

Figure 2. Connections to Custom Objects

ProgramController.h

#import <AppKit/AppKit.h>
@class Program;

@interface ProgramController : NSObject

{
id table;

id channelField;
id costField;

NSMutableArray *programList;

(id)init;
(void)tableClicked: (id) sender;
(void)updateList: (id)sender;
(Program *)selectedProgram;

@end



Appendix A: PayPerView Source 257

ProgramController.m

#import "ProgramController.h"
#import "Program.h"

@implementation ProgramController

- (id)init

{
NSCalendarDate *aDate;
Program *aProgram;

self = [super init];

programList = [[NSMutableArray alloc] init];

aDate = [NSCalendarDate dateWithString:@"8/13/1996 23:45"
calendarFormat:@"%m/%d/%Y %H:%M"];

aProgram = [[Program alloc]
initWithTitle:@"Faster, Pussycat, Kill Kill!"
channel:@"Cinerip" broadcastDate:aDate
cost:@"$2.50"];

[programList addObject:aProgram];

[aProgram release];

aDate = [NSCalendarDate dateWithString:@"8/14/1996 21:00"
calendarFormat:@"%$m/%d/%Y %H:%M"];

aProgram = [[Program alloc] initWithTitle:@"JFK"
channel:@"The Conspiracy Channel"
broadcastDate:aDate
cost:@"$1.50"];

[programList addObject:aProgram] ;

[aProgram release];

aDate = [NSCalendarDate
dateWithString:@"8/15/1996 19:00"
calendarFormat:@"%m/%d/%Y %H:%M"];

aProgram = [[Program alloc]
initWithTitle:@"It's a Wonderful Life"
channel:@"Movie Classics"
broadcastDate:aDate
cost:@"$1.99"];

[programList addObject:aProgram] ;

[aProgram release];

return self;



258 Developing Business Applica

tions with OpenStep

- (void)updateList: (id)sender

{

[table reloadDatal;
return;

- (void)tableClicked: (id) sender

- (P

- 1

1

(i

@end

Program *selectedProgram;

selectedProgram = [self selectedProgram];
[channelField setStringValue: [selectedProgram channel]];
[costField setStringValue: [selectedProgram cost]];

return;

rogram *)selectedProgram

int row;
Program *theProgram;

row = [table selectedRow];
theProgram = [programList objectAtIndex:row];
return theProgram;

nt)numberOfRowsInTableView: (NSTableView *)tableView

return [programList count];

d)tableView: (NSTableView *)tableView
objectValueForTableColumn: (NSTableColumn *)tableColumn
row: (int) row

Program *theProgram = [programList objectAtIndex:row];
id colID = [tableColumn identifier];

if (!theProgram) return nil;
if ([colID isEqual:@"title"]) return [theProgram title];
else if ([colID isEqual:@"broadcastDate"]) {
return [theProgram broadcastDate];
}
else return nil;



Appendix A: PayPerView Source

Program.h

#import <Foundation/Foundation.h>

@interface Program : NSObject

{
NSString *title;
NSString *channel;
NSCalendarDate *broadcastDate;
NSString *cost;

- (id)initWithTitle: (NSString *)aTitle
channel: (NSString *)aChannel
broadcastDate: (NSCalendarDate *)aBroadcast
cost: (NSString *)aCost;

- (void)setTitle: (NSString *)value;
- (NSString *)title;

- (void)setChannel: (NSString *)value;
- (NSString *)channel;

- (void)setBroadcastDate: (NSCalendarDate *)value;
- (NSCalendarDate *)broadcastDate;

- (void)setCost: (NSString *)value;
- (NSString *)cost;

@end

259



260  Developing Business Applications with OpenStep

Program.m

#import "Program.h"
@implementation Program

- (id)initWithTitle: (NSString *)aTitle
channel: (NSString *)aChannel
broadcastDate: (NSCalendarDate *)aDate
cost: (NSString *)aCost;

self = [super init];

if (!self) return nil;

[self setTitle:aTitle];

[self setChannel:aChannell];
[self setBroadcastDate:aDate];
[self setCost:aCost];

return self;

- (void)setTitle: (NSString *)value
[title autorelease];
title = [value copy]l;
return;

- (NSString *)title

return title;

- (void)setChannel: (NSString *)value
[channel autorelease];

channel = [value copyl;
return;

- (NSString *)channel

return channel;

- (void)setBroadcastDate: (NSCalendarDate *)value

[broadcastDate autorelease];

broadcastDate = [value copyl;

[broadcastDate setCalendarFormat:@"$B %d, %Y %I:%m %p"];
return;



Appendix A: PayPerView Source

- (NSCalendarDate *)broadcastDate

return broadcastDate;

- (void)setCost: (NSString *)value

[cost autorelease];
cost = [value copy];
return;

- (NSString *)cost

return cost;

- (void)dealloc

[broadcastDate autorelease];
[channel autorelease];

[cost autorelease];

[title autorelease];

[super dealloc];

return;

@end

OrderController.h

#import <AppKit/AppKit.h>
@class ProgramController;

@interface OrderController : NSObject
{

id programController;

id orderPanel;

id orderTitleField;
id orderChannelField;
id orderDateField;
id orderCostField;

id buyerNameField;
id creditCardField;

261



262 Developing Business Applications with OpenStep

- (void)prepareOrder: (id)sender;
- (void)cancelClicked: (id) sender;
- (void)okClicked: (id) sender;

- (void)cancelOrder;
-~ (void)confirmOrder;
- (BOOL)verifyCreditCard;

@end

OrderController.m

#import "OrderController.h"
#import "ProgramController.h"
#import "Program.h"

@implementation OrderController
- (void)prepareOrder: (id) sender

{

int result;

Program *selectedProgram = [programController

selectedProgram] ;

[orderTitleField setStringValue: [selectedProgram title]];

[orderChannelField setStringValue: [selectedProgram
channell];

[orderCostField setStringValue: [selectedProgram cost]];

[orderDateField setStringValue: [[selectedProgram
broadcastDate] descriptionl]];

[buyerNameField setStringValue:@""];
[creditCardField setStringValue:@""];

result = [NSApp runModalForWindow:orderPanel];
switch (result) ({
case NSRunStoppedResponse:
[self confirmOrder];
break;
case NSRunAbortedResponse:
[self cancelOrderj;
break;
}

return;



Appendix A: PayPerView Source 263

- (void)cancelClicked: (id) sender

[orderPanel orderOut:nil];
[NSapp abortModall;
return;

- (void)okClicked: (id) sender

if (![self verifyCreditCard]) return;
[orderPanel orderOut:nil];

[NSApp stopModall];

return;

- (void)cancelOrder

NSString *status = [NSString
stringWithFormat:@"Order for %@ was cancelled\n",
[orderTitleField stringValue]];

NSRunAlertPanel (@"Order Canceled", status, nil, nil, nil);
return;

- (void)confirmOrder
{
NSString *status = [NSString
stringWithFormat:@"%@ ordered %@ using card #%@\n",
[buyerNameField stringValue],
[orderTitleField stringValue],
[creditCardField stringValue]];

NSRunAlertPanel (@"Order Placed", status, nil, nil, nil);
return;

- (BOOL)verifyCreditCard
{
if ([({buyerNameField stringValue] isEqual:@""]) {
NSRunAlertPanel (@"No Customer Name",
@"You must enter a customer's name.",
nil, nil, nil);
return NO;



264 Developing Business Applications with OpenStep

if ([[creditCardField stringValue] isEqual:@""]) {
NSRunAlertPanel (@"Invalid Card",
@"Invalid credit card number for %@.",
nil, nil, nil, [buyerNameField stringValuel]);
return NO;
}
return YES;

@end



Appendix B: PayPerView
with Distributed Objects

The Distributed Objects version of PayPerView has two projects, one a
command-line server program, the other the graphical client applica-
tion.

The Server Project

The server project, being a command-line program, has no nib file. Also
note that it defines its own main() function, in PPVServer_main.m.

ProgramServer.h

This file declares the public protocol used by client applications as well
as the interface to the class itself. Note the use of bycopy to indicate that
the array of programs is returned by making a copy over the network,
not by passing a proxy. In this example, the ProgramServer is distributed
by reference. Client applications need only the protocol declaration, but
this example doesn't bother to separate the two.

#import <Foundation/Foundation.h>
@protocol ProgramServer
- (bycopy NSArray *)programs;

@end

265



266  Developing Business Applications with OpenStep

@interface ProgramServer : NSObject <ProgramServer>

{
NSMutableArray *programList;
}
- (id)init;
@end

ProgramServer.m

#import "ProgramServer.h"

#import "Program.h"

@implementation ProgramServer

{

(id) init

NSCalendarDate *aDate;
Program *aProgram;

self = [super init];

programList = [[NSMutableArray alloc] init];

aDate = [NSCalendarDate datewithString:@"8/13/1996 23:45"
calendarFormat:@"3%m/%d/%Y %H:%M"];

aProgram = [[Program alloc]
initWithTitle:@"Faster, Pussycat, Kill Killt!"
channel:@"Cinerip" broadcastDate:aDate cost:@"$2.50"];

[programList addObject:aProgram];

[aProgram release];

aDate = [NSCalendarDate dateWithString:@"8/14/1996 21:00"
calendarFormat:@"%m/%d/%Y %H:%M"];

aProgram = [[Program alloc] initWithTitle:@"JFK"
channel:@"The Conspiracy Channel" broadcastDate:aDate
cost:@"$1.50"];

[programList addObject:aProgram];

[aProgram releasel];



Appendix B: PayPerView with Distributed Objects 267

aDate = [NSCalendarDate dateWithString:@"8/15/1996 19:00"
calendarFormat:@"%m/%d/%Y %H:3¥M"];

aProgram = [[Program alloc]
initWithTitle:@"It's a Wonderful Life"
channel:@"Movie Classics" broadcastDate:aDate
cost:@"$1.99"];

[programList addObject:aProgram];

[aProgram release];

return self;

- (void)dealloc

{
[programList autorelease];
[super dealloc];

return;

- (NSArray *)programs
{
// Guarantee bycopy transmission by making immutable.

return [[programList copy] autorelease;];

@end

Program.h/Program.m

The Distributed Objects version of the Program class adds one method
to support copying instances across the network:

- (id)copyWithZone: (NSZone *)zone
{
Program *newProgram;
newProgram = [[[self class] allocWithZone:zone]
initWithTitle:title channel:channel
broadcastDate:broadcastDate cost:cost];
return newProgram;



268 Developing Business Applications with OpenStep

PPVServer_main.m

#import <Foundation/Foundation.h>
#import "ProgramServer.h"

int main (int argc, const char *argv(])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]
init];

ProgramServer *server;

NSConnection *defaultConn = [NSConnection
defaultConnection];

server = [[ProgramServer alloc] init];

[defaultConn setRootObject:server];

if ([defaultConn registerName:@"ProgramServer"] == NO) {

NSLog (@"Failed to register server as ProgramServer.
Exiting.\n");
exit (EXIT_FAILURE) ;

NSLog (@"Server successfully launched.\n");
[ [NSRunLoop currentRunLoop] run];

[pool release];
exit (0);

The Client Project

The nib files for the Distributed Objects client are identical to those in
Appendix A.

ProgramController.h

The Distributed Objects version of the ProgramController class differs
only by importing the interface for the ProgramServer class and
changing the instance variables to reflect the use of the server. The array
of programs is retrieved by copy, not as a proxy. In this example, the
ProgramServer is the proxy.



Appendix B: PayPerView with Distributed Objects 269

ProgramContoller.h
import <AppKit/AppKit.h>
#import "ProgramServer.h"

@class Program;

@interface ProgramController:NSObject
{

id table;

id channelField;

id costField;

id <ProgramServer> programServer;
NSArray *programList;

(id) init;

- (void)tableClicked: (id)sender;
(void)updateList: (id)sender;
(Program *)selectedProgram;

@end

ProgramController.m

The Distributed Objects version of the ProgramController class differs
in only two methods, init and updateList:. init establishes a connection
to the server rather than building a list of Programs itself, while
updateList: disposes of the current list of Programs and asks the server
for another.

- (id)init
{

NSConnection *serverConn;
self = [super init];

serverConn = [NSConnection
connectionWithRegisteredName:@"ProgramServer"
host:@"*"];

programServer = [[serverConn rootProxy] retainl];



270 Developing Business Applications with OpenStep

if (!programServer) {
NSRunAlertPanel (@"No server",
@"Can't connect to the program server.",
@"Quit", nil, nil);
[NSApp terminate:nil];
}

[ (NSDistantObject *)programServer
setProtocolForProxy:@protocol (ProgramServer) ] ;

programList = [[programServer programs] retain];
return self;

- (void)updateList: (id)sender

[programList release];

programList = [[programServer programs] retain];
[table reloadDatal;

return;

Program.h/Program.m

See the listing under “The Server Project” eatlier in this appendix.

OrderController.h/OrderController.m

The Distributed Objects version of the OrderController class is identical
to that in Appendix A.



Appendix C: PayPerView
with Enterprise Objects

In the Enterprise Objects version of PayPerView, note how much code is
replaced by the more generalized model and nib files. The
ProgramController class is gone, and changes have been shown here
struck through or made bold.

PayPerView.eomodeld

This model uses an Oracle database for external types. Column names

for attributes are made by capitalizing the name and adding underscores;
for example, “broadcastDate” becomes BROADCAST_DATE.

Program Entity

Class: Program Table: PROGRAM
Attributes:
Name Value Class External Type

o~ @& programiD NSNumber NUMBER

& & title NSString VARCHAR2

€ A& broadcastDate  NSDate DATE

® & cost NSDecimalNumber NUMBER

& & channellD NSNumber NUMBER
Relationships:
Name Destination Join Key Join Semantic  Cardinality
channel Channel channellD Inner To One

271



272 Developing Business Applications with OpenStep

Channel Entity

Class: Channel Table: CHANNEL
Attributes:
Name Value Class External Type

@~ @ channellD NSNumber NUMBER

¢ & name NSString VARCHAR2

4 & dialNumber NSNumber NUMBER
Relationships:
Name Destination Join Key Join Semantic  Cardinality
programs Program channellD Inner To Many

PayPerView.nib

Figure 1. Associations with Aspects and Key Bindings



Appendix C: PayPerView with Enterprise Objects 273

Figure 2. Connections from Custom Objects (Outlets)

Figure 3. Connections to Custom Objects



274 Developing Business Applications with OpenStep

OrderController.h

#import <AppKit/AppKit.h>

JE=RIET=T IR ssTToY= S2F T al-t =TT -t

@interface OrderController : NSObject
{
A T

id orderPanel;

id orderTitleField;

13 rderlhanieliicld
4

13 rderDatohicold.:
¥

14 rderCoctiaold.
4

1d buyerNameField;
id creditCardField;

- (void)prepareOrder: (id)sender;
- (void)cancelClicked: (id) sender;
- (void)okClicked: (id)sender;

- (void)cancelOrder;
- (void)confirmOrder;
- (BOOL)verifyCreditCard;

@end

OrderController.m

#import "OrderController.h"

@implementation OrderController
- (void)prepareOrder: (id) sender
int result;

RO Gt e oo o AR TR P LS TR OR L EOI-la
S B BRIt



Appendix C: PayPerView with Enterprise Objects 275

LorderTitlomiold eringValuoiteo] (1ol
Lordercl LFiold . e :

channeldt;

rderlostiield—sobtStrina ool loctodbiotiaiemcoatdl
> * < e

>

[
3

[ orderbat-oiield—eat-Sbrine ot tttotoc o Rieocnar
2 = *

T
broadcastbatal—desciriabionll:
+ ;g ™t

7

[buyerNameField setStringValue:@""];
[creditCardField setStringValue:@""];

result = [NSApp runModalForWindow:orderPanel];

switch (result)

case NSRunStoppedResponse:
[self confirmOrder];

break;

case NSRunAbortedResponse:
[self cancelOrder];

break;
}

return;

Program.h

// Program.h
//

// Created on Fri Jun 07 19:11:35 PDT 1996 by NeXT EOModeler

// Version

#import <EOControl/EOControl.h>

@interface Program

{
int programlId;
NSString *title;

NSObject

NSCalendarDate *broadcastDate;
NSDecimalNumber *cost;

id channel;

#ifdef ACCESSOR_METHODS

- (void)setProgramId: (int)value;

- (int)programId;

- (void)setTitle: (NSString *)value;

- (NSString *)title;



276  Developing Business Applications with OpenStep

- (void) setBroadcastDate: (NSCalendarDate *)value;
(NSCalendarDate *)broadcastDate;

1

- (void)setCost: (NSDecimalNumber *)value;
- (NSDecimalNumber *)cost;

(void) setChannel :value;

channel;
#endif

@end

Program.m

// Program.m

//

// Created on Fri Jun 07 19:11:35 PDT 1996 by NeXT
// EOModeler.app Version

#import "Program.h"

@implementation Program

#ifdef ACCESSOR_METHODS

- (void)setProgramId: (int)value

{
[self willChange];
programId = value;
}
- (int)programld { return programId; }
- (void)setTitle: (NSString *)value
{

[self willChangel];
[title autorelease];
title = [value retain];

- (NSString *)title { return title; }



Appendix C: PayPerView with Enterprise Objects 277

- (void)setBroadcastDate: (NSCalendarDate *)value
[self willChange];

[broadcastDate autorelease];
broadcastDate = [value retain];

- (NSCalendarDate *)broadcastDate { return broadcastDate; }
- (void)setCost: (NSDecimalNumber *)value
[self willChange];

[cost autorelease];
cost = [value retain];

-~ (NSDecimalNumber *)cost { return cost; }
- (void)setChannel:value

// A TO-ONE relationship.
[self willChange];
[channel autorelease];
channel = [value retain];

channel { return channel; }
#endif

- (void)dealloc

{
[title autorelease];
[broadcastDate autorelease];
[cost autorelease];
[channel autorelease];
{super dealloc];

@end



278 Developing Business Applications with OpenStep

Channel.h

// Channel.h
//
// Created on Fri Jun 07 19:12:03 PDT 1996 by NeXT EOModeler
// Version
#import <EOControl/EOControl.h>
@interface Channel : NSObject
{
int dialNumber;

NSString *name;
NSArray *programs;

#ifdef ACCESSOR_METHODS

- (void)setDialNumber: (int)value;
- (int)dialNumber;

- (void)setName: (NSString *)value;
- (NSString *)name;

- (void)setPrograms: (NSArray *)value;
- (NSArray *)programs;

#endif

@end

Channel.m

// Channel.m

//

// Created on Fri Jun 07 19:12:03 PDT 1996 by NeXT
// EOModeler.app Version

#import "Channel.h"

@implementation Channel

#ifdef ACCESSOR_METHODS



Appendix C: PayPerView with Enterprise Objects 279

- (void)setDialNumber: (int)value

[self willChange];
dialNumber = value;

- (int)dialNumber { return dialNumber; }
- (void)setName: (NSString *)value

[self willChange];
[name autorelease];
name = [value retain];

-~ (NSString *)name { return name; }
- (void) setPrograms: (NSArray *)value

// A TO-MANY relationship.
[self willChange];
[programs autorelease];
programs = [value retain];

- (NSArray *)programs { return programs; }
#endif

- (void)dealloc

{
[name autorelease];
[programs autorelease];
[super dealloc];

@end



Suggested Reading

This list names the books we've found most helpful in learning what we
know of object-oriented programming and of software development in
general. We highly recommend each of these titles.

Business Engineering with Object Technology

David Taylor
John Wiley and Sons, 1995

A good introduction, with concrete examples, to the use of object
modeling as the first step in building a suite of business applications.

Debugging the Development Process

Steve Maguire
Microsoft Press, 1994

A great, practical discussion of how to build and manage successful
development teams. The author focuses more on shrink-wrap appli-
cation issues, but most of what he says is applicable to any software
development team.

Design Patterns

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
Addison-Wesley, 1995

If you've ever wished for a catalog of good object designs, this is it.
Novices and experts alike will benefit greatly from having this book.

281



282  Developing Business Applications with OpenStep

The Mythical Man Month, Anniversary Edition

Frederick P. Brooks, Jr.
Addison-Wesley, 1995

This book belongs on the bookshelf of every software engineer and
manager. If you don’t have it, put down this book and run, dor’t
walk, to the nearest bookstore, buy it, and read it twice.

The Object Advantage

Ivar Jacobson, Maria Ericsson, and Agneta Jacobson

Addison-Wesley, 1995

A solid book discussing how business process reengineering and
object technology fit together. This book makes a forceful case for
modeling,

Pitfalls of Object-Oriented Development

Bruce Webster
M & T Books, 1995

A useful sourcebook of snags and problems you might run into and
some potential solutions. Although a little rough in places, Webster
has spent more time than most managing NextStep and OpenStep
developers, and he knows what he’s talking about.

There’s also another book about OpenStep coming out soon. Although
we've only had time to skim through it, were sure you'll want to take a

look:

OpenStep for Enterprises

Nancy Craighill
John Wiley & Sons (forthcoming in 1996)



Index

4GL 163

A

abstraction 15

Access layer 182

accessor method 101, 173
action message 63, 108
adaptor (bridge) 231
adaptor, database 183
adopt a protocol 26
alloc method 29

applet 198

archiving 30, 43

aspect, of association 175
assertion handler 43
association 174

AT&T 153

attribute 171
autorelease method 29
autorelease pool 41

B

bash 90

batch fetching 190

Beck, Wirfs-Brock and 220
binding, static/dynamic 19

blind update 187
Booch, Grady 220, 223
Bourne shell 82

bridge 231

Brooks, Fred 222
business application 126
business component 127
business entity 127
business process 126, 216
business simulation 216
bycopy keyword 147
byref keyword 147

C
C8, 19,22, 32, 42, 234, 249
C library functions 28
C++9, 13, 15, 234, 250
compared to Objective-C 31
integrating with Objective-C
33
performance 249
cell 65
change management 213
change tracking 190
class 17
anonymous 26
root 28

283



284 Developing Business Applications with OpenStep

class object 27
class property 171
classification 17
Class-Responsibility-
Collaborator 220
Coad, Peter 220
collection class 10, 46
color 68
Colors Panel 74
component
business 127
WebObjects 199
concurrency 156, 159, 249
debugging 243
configuration management 213
connection death 148
content view 57, 58
control 64
conversation queuing 145
copy method 29
CORBA 152
services 154
CRC 220
csh 90
customization point 185, 188,
194, 195
cut and paste 75, 87

D

data link 70

data source 55, 194

data, process, and policy 126
dbx 95

dealloc method 29
debugging 211

DEC 153

delegate 55

application 61
database adaptor 185
Distributed Objects 145
window 57, 61
delete propagation rule 191
development model 215
display 59
display group 174, 177, 194
Display PostScript 6, 7, 76, 85,
87
Distributed Objects 10, 48, 133
concurrency 159
debugging 243
interoperability 154, 160
load balancing 155
naming service 154
performance 157
reliability 158
scalability 155
security 155
transparency 156
distribution 36, 48, 133
drag and drop 75, 87, 104
Draw 76
drawing 58, 59
dynamic binding 19
dynamic typing 19
dynamism 18
debugging 238, 242

E
Edit 89
editing context 174, 178, 188,
189
nested/multiple 192
Encapsulated PostScript 68, 76,
91



encapsulation 16, 231
@end 22
enterprise object, definition 165
enterprise object, generic 170
entity 15, 170, 220
business 127, 216
inheritance mapping 184
EOGenericRecord 170
EOModeler 169, 183
EPS 68, 76, 91
error handling 42
event handling 58
event message 62
exception 42

F
fault 168, 188, 190
fetching
batch 190
pre- 190
File Merge 82
filtering 193
in-memory 193
first responder 61
font 8, 66, 75
Font Panel 66, 74
formatter 45, 176
date 176
number 176
framework 78

vs. kit 6

G

gdb 80

global identifier 189
gprof 246

Index 285

H

Header Viewer 96

Hewlett-Packard 153

horizontal inheritance mapping
184

HTML generation 197

hypertext system 197

|

IBM 153

id 21

IDL 153

image class 68

@implementation 24

in keyword 147

independent conversation
queueing 145

Informix 185

inheritance 17

inheritance mapping 184

in-memory filtering 193

in-memory qualifier 193

in-memory sorting 193

in-memory transaction 168, 192

inout keyword 147

instance 17

instance variable 16

@interface 22

interface (Java) 26

Interface Builder 11, 53, 77, 81,
96

Interface Definition Language
153

Interface layer 194

Internet 197

invocation 142

Iona 153



286 Developing Business Applications with OpenStep

iterative development 211, 215,
222

J

Jacobsen, Ivar 220
Java 9
JavaScript 203

K

key window 61
key-value coding 186
kit vs. framework 6

L

lifetime, object 28
lock 159

locking 171

M
Mach 51, 73, 75, 80, 83, 213,
246
machd 75
Mail 14, 84, 89
main window 61
mapping
entity inheritance 184
relational-to-object 167
message 16, 21
C++8
unrecognized 142
method 16
MIME 84, 89
model 166
business 216

development 215
object 164

relational 164
WebObjects 200
model file 169, 183
modeling 15
Model-View-Controller 101,
166, 199

N

Netlnfo 14, 83

Netscape Navigator 198

NetWare 83

next responder 61

NeXTmail 14, 84, 89

nib file 103

NIS 14, 83

nmserver 76

nonportable API 232

notification 39

Novell NetWare 83

NSConnection 39, 49, 135, 137,
142, 144

NSObject 28

O

object, definition 16

Object Linking & Embedding

149, 154

Object Management Group 152

object request broker 150

object store 188
multiple 191

Objective-C 5, 8, 9, 15
compared with C++ 31
debugging 238
integrating with C++ 33
performance 32, 249

object-oriented programming 15



ODBC 185

OLE 149, 154

OMG 152

one-table inheritance mapping
184

oneway keyword 147

OpenStep specification,
definition 3

optimistic update 187

Oracle 185

ORB 76, 150

orbreg tool 150

out keyword 147

outlet 108

owner 55

P

panel 57

pasteboard 69

pbs 76

performance 9, 212, 245
Distributed Objects 157
Objective-C 32

perl 204

persistent variable 201

pessimistic update 187

policy 126

polymorphism 18

port 142
receive/send 140

portability 5, 211, 231

portable API 232

POSIX 5

PostScript 6, 7, 58, 59, 68, 76,

82, 85, 87,91
Preferences 91
prefetching 190

Index 287

Preview 76, 91
primary key 168, 171
printing 68
@private 23
procedural programming 15
process 126
business 216
development 214
iterative development 225
waterfall development 214
profiling 246
Project Builder 76, 77, 92
project management 211, 213
property key 175
property list 44, 47
@protected 23
@protocol 26
protocol 22, 26
Distributed Objects 143
proxy 137
local/remote 140

@public 23

Q

qualifier
in-memory 193

R

rapid prototyping 211, 215

reference counting 29
debugging 239

relational database 163, 165, 181

relationship 168, 171
construction 189

release method 29

requests, in Distributed Objects
144



288 Developing Business Applications with OpenStep

responder chain 54, 60

retain method 29

reusable component 200

root class 28

root connection 138

ruler 64

Rumbaugh, James 220

run loop 39, 40, 41, 139
Distributed Objects 144

S

sampler 246
sampling 246
script, Web 199
self 25
serialization 43
Services facility 71
session management 198, 201
session variable 201
SGI 153
sh 90
shelltool 90
simulation, business 216
Smalltalk 9, 19, 20, 101
snapshot 187
software development process
214
sorting 193
in-memory 193
SQL 163, 185
static binding 19
static typing 19
stored procedure 163, 185
STRICT_OPENSTEP 233, 234
strong typing 242
subview 58
super 25

superview 58
Sybase 185

T

target 63

target—action paradigm 55

tcsh 90

Terminal 84, 90

text classes 65

TextEdit 76

this 25

TIFF 76, 91

timeout 149

timers 39

timing 246

transaction 184
in-memory 192

typing
static/dynamic 19
weak 242

U

undo 178, 191

Unicode character encoding 35,
67

Unicode text system 67

uniquing 168, 189

unrecognized messages 242

update strategy 187

use case 217

\'

validation 168, 193
value class 10, 44
value conversion 185
vending an object 140
version control 213



vertical inheritance mapping 184
vi 89

view 58

view hierarchy 58

virtual machine 198

VT100 90

W
waterfall model 214
weak typing 242
Web page
dynamic 197
static 197
WEBOBJECT HTML tag 199,
201, 202
WebObjects 198
willChange method 165

window 57

Index 289

window manager 86

Window Server 59, 60, 76
Wirfs-Brock and Beck 220
WorkShop OpenStep 13, 85
Workspace Manager 14, 84, 88
World-Wide Web 197

X

X terminal 8, 87

X Window system 85
xterm 90

Y
Yap 82
Yellow Pages 14, 83

YA
zsh 90



