

Internationalization
and Localization Using

Microsoft .NET
NICHOLAS SYMMONDS

APress Media, LLC

Internationalization and Localization Using Microsoft .NET

Copyright ©2002 by Nicholas Symmonds

Originally published by Apress in 2002

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN 978-1-59059-002-7 ISBN 978-1-4302-0827-3 (eBook)
DOI 10.1007/978-1-4302-0827-3

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Brian Jones

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson

Managing and Production Editor: Grace Wong

Project Manager: Tracy Brown Collins

Copy Editor: Anne Friedman

Compositor: Impressions Book and Journal Services, Inc.

Indexer: Rebecca Plunkett

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

In the United States, phone 1-800-SPRINGER, email orders@springer-ny. com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221345229, email orders@springer. de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 901 Grayson Street, Suite 204,
Berkeley, CA 94710.

Phone 510-549-5938, fax: 510-549-5939, email info@apress. com, or visit http: I /www.apress. com.

The information in this book is distributed on an "as is" basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the infer-mation contained in this work.

This book is dedicated to my wife, Celeste. Her unwavering faith in me has brought
me further in life than I ever dreamed I could go.

Contents at a Glance

About the Author xi

About the Tech Reviewer .. . xii

Preface .. . xiii

Acknowledgments xix

Chapter 1: General Localization Concepts 1

Chapter 2: Aspects of Localization 13

Chapter 3: Using Multiple Resource

Files in VB 6 .. . 35

Chapter 4: The Globalization Namespace 63

Chapter s: System.Resources and System.Threading

Namespaces 105

Chapter 6: Resource File Tools 135

Chapter 7: Resource Editor Example 159

Chapter 8: Let's Localize243

Chapter 9: Localization in ASP. NET 277

Chapter 10: Versioning Resource Files in .NET 305

Chapter 11: Localization Wrap- up 323

Appendix: Resources for Internationalization and

Localization Projects 333

Index 337

v

Contents

About the Author xi

About the Tech Reviewer .. . xii

Preface .. . xiii

Acknowledgments xix

Chapter 1: General Localization Concepts 1

Multilanguage Support .. . 1

Choosing Graphics 2

A Word About Color .. . 3

Resource File Concepts 5

Summary .. . 11

Chapter 2: Aspects of Localization 13

GUI Design for Muli tinational Programs 13

Introducing Unicode and Character Sets 29

Summary .. . 33

Chapter 3: Using Multiple Resource
Files in VB 6 35

VB 6 Resource File Overview 35

What VB 6 Resource Files Lack 36

External Resource Compiler 36

A More Readable Resource File 38

Making an External Resource File 39

Loading Resources at Runtime40

Summary .. . 62

vii

Contents

Chapter 4: The Globalization Names pace 63

Interfaces and Classes .. . 63

System.Globalization Namespace 64
Calendar Class 65
Cul tureinfo Class .. . 69
DateTimeFormatinfo Class .. . 85
NumberFormatinfo Class .. . 89

Regioninfo Class 91

Stringinfo Class .. . 100

Summary 104

Chapter s: System.Resources and System.Threading
Names paces 105

System. Resources Namespace 105

Using Reflection to Find Missing Classes 118

System. Threading Namespace 121

Resource File Types .. . 123

Enter XML .. . 127

Summary 134

Chapter 6: Resource File Tools 135

Resource Tools .. . 135
IDE Forms Designer .. . 140

Win Res. exe 152

Summary 157

Chapter 7: Resource Editor Example 159

Starting the Project 161

Where Is the Localization? 168
Here Comes the Code .. . 168
Generating the Resource Handler Class 174

viii

Contents

The ResUtil Class Completed 188
Back to the Main Code .. . 199
The Import Functions at Work 203
Saving the Data 209
The VB Resource Editor Project in Summary 213
Making the C# Version of the Resource Editor 213
Making a Custom Collection Class 226
Finishing Off the Code 230
Handling Events in C# .. . 241
Summary 242

Chapter 8: Let's Localize 243

Laying Out the Task 243
Revisiting the GUI .. . 244
Initializing the Controls with Strings 244
Enhancing the Resimage Class 247
Manually Adding an Icon to the Resource Editor 255
Finishing the Internationalization Portion 259
Making a New Resource File 262
Finalizing the Code .. . 267
Testing the Program , 274
Summary 275

Chapter 9: Localization in ASP. NET 277

The Coldest Hotel Application 277
Writing the Code .. . 280
Summary 302

Chapter 10: Versioning Resource Files in . NET 305

Implicit Security 306
Versioning in . NET .. . 314
Summary 321

ix

Contents

Chapter 11: Localization Wrap-up 323

Help Files 323
Getting It Translated .. . 324
Testing Your Localized Code 328
Don't Forget the Install .. . 330
Final Comments .. . 330

Appendix: Resources for Internationalization and
Localization Projects 333

General Globalization Web Sites 333
Machine Translation Services 334
Places to Get Fonts .. . 334
Standards .. . 334
Editors 335

Index 337

X

About the Author

Nicholas Symmonds is a degreed electrical engineer who found an affinity for

computers during that first college course so long ago. The 6502 processor was

his first foray into machine code and still brings back fond memories. Nick has

been programming since 1985 and still knows-and uses-most of the DOS

batch file commands. He has worked in varying capacities in both the electronic

engineering and software fields, often combining both areas of expertise. He cur

rently works for the Security and Safety Solutions division of Ingersoll-Rand. He

writes access control software in Visual Basic, C++, and now .NET. Nick lives with

his wife and three children in the northeast hills of Connecticut. When not pro

gramming, Nick can often be found with his wife on their motorcycle traveling

the wine trails of southern New England. He can be reached at

nicksymmonds@attbi.com.

xi

About the Tech
Reviewer

Brian Jones fell in love with programming computers 36 years ago in a Thcson,
AZ, high school IBM 1440 AutoCoder class. A degree in systems engineering led
him to Silicon Valley where he developed software and systems solutions in
assembly, C, C++, and bitslice microcode for CDC, Versatec, and Xerox
Engineering Systems. In 1988 he gave up his 70 mile round trip commute and
moved with his wife and two sons to a home on a hill near Burlington, VT, where
he has been a telecommuting programmer for the past 13 years. He is currently
working with Recognition Systems, Inc. providing access control security
solutions in C++/MFC/, and.NET. Brian is the owner ofVerdack Software, LLC.,
a provider of custom programming services. He can be reached at
BrianJones@admont.com.

Preface

If you have picked up this book, you must want to learn about localization.
Perhaps you have already done localization projects in another programming
language such as Visual Basic 6 (VB 6) but now your company is moving to .NET.
Well, this book is for you. Whether you are new to localization techniques or they
are old hat to you, this book shows you not only how to localize from the start but
also how to take what you know and apply it to .NET.

I am an old hand myself at localization techniques in both the PC arena and
in the embedded world so let me start out by saying how impressed I am with the
.NET environment. The more I use it, the more neat stuff I find that it can do. It is
logically put together and I have found that I can do quite a few things I could
never do with VB and C++.

As the title of this book implies, this book covers the new Visual Studio .NET
from Microsoft. As I am sure you know by now, programming in .NET is a whole
new paradigm. Perhaps you come from a Visual Basic or from a C++ background.
Either way the rules have changed. It does not matter what programming Ian
guage you have used now that you are now writing in .NET.

One of the changes brought about by VS .NET is the way resource files are
handled. Visual Basic had resource file capability but it was limited at best and
kind of awkward. C++ was better, but only slightly. The .NET version ofVisual
Studio was designed to allow localization to be done properly, and with relative
ease. As you will see in later chapters, the resource file capability of .NET is very
powerful indeed.

One of the things that most impresses me is the new multinational capability
built right into .NET. Writing multinational programs with VB and C++ the right
way has always involved quite a bit of work to get around the limitations of the
languages. It seems, however, that all the work-arounds I came up with have
been anticipated and eliminated in .NET. The level of integration of the Inter
nationalization features inside .NET is very nice to see. Some of the features that
I find most impressive are:

• The types of resource files. These files are used to hold text, pictures, fonts,
and so on, that have to do with what the user sees in your program.

• Windows Forms are externalized to an XML resource file.

• Tools are available for the localizer to visually alter and localize forms with
out having access to source code.

• A fallback scheme for finding resources.

xiii

Preface

xiv

NOTE I cover these tools and features of.NET Interna
tionalization in Chapter 7.

Between these covers I hope to show you what can be done to make your
programs work well in any location. I also hope to tell you a bit about localization
in general, why you need a book on the topic, and how this book is organized.

What Is Localization?

There are several terms relating to internationalizing software. Often these terms
are used interchangeably but they do have slightly different meanings.

Multilingual

Multilingual means that your software has been translated into more than one
language. Usually this refers to the strings and not much else. I have seen quite
a few programs in the embedded world, as well as in the PC world, that only had
their strings translated before being sold overseas. The numbers, and time, and
so on were still represented as they are in the United States such as using a period
for a decimal point and using AM/PM for time.

Internationalize

Internationalization is a more encompassing and more specific term for your
software. This means that not only the code strings are multilingual but that the
rest of the elements-time, numbers, formatting, and so on-have also been
adapted to work properly in international markets.

Internationalizing software however, does not necessarily take into account
dialects or cultural differences between countries that may even speak the same
language. Translating a program to work in Spain may mean that it would work in
other Spanish-speaking countries, but it does not take into account the cultural
differences of those other countries. To make your program multinational you
also need to localize.

Why Localize?

The marketplace is global. Companies realize that there may be a market for their
products beyond their home base. The ease of sharing information electronically
simplifies worldwide distribution. With electronic information being so fast and
prevalent in most of the world it is not hard to find a market for your goods and ser
vices. If there is a need for your product over here you can bet there is a need for
it somewhere else as well. Trade agreements are also making it easier to sell prod
ucts across international lines.

I have worked in a scientific and technology-based industry most of my
career. Quite a few of the software products I designed are intended as an adjunct
to some other hardware. Increasingly this hardware needs user interface and
management software. Some of this software is quite complex. Companies that
sell hardware-based products overseas also need to send your software with it.
Enter localization.

Mail services, rental cars, airlines, and so on are multinational. Look at
FedEx. It sends packages everywhere in the world. The company needs a single
software package with a user interface that can be used by anyone, anywhere.
When you go the FedEx web site, the very first thing it asks you is to choose your
country. This is localization at work.

Suppose you rent a car in Aachen, Germany and want to drive it to Paris,
France. You can bet the rental software is the same in both places. You can also be
sure that the software is in French in France and in German in Germany.

The United States prides itself on its cultural diversity. Let's say you wrote
software that is to be used in a U.S. convenience store chain. Although you could
write it only in English, you would probably increase your business by being
multilingual. What if your convenience store chain wants to open stores in
Miami, Florida? Southern Florida has a huge population of Cubans. Think of the
market advantage of having your software run in Spanish, as well.

If you are building a new product, plan for localization features at the start of
the process. Even if you don't use the localization features initially, when the need
arises you will be ready with your internationally aware software. Fixing a pro
gram after it has been released is much harder and far more perilous than doing
it right the first time.

Once completed, the actual localization usually requires no code changes.
The effort of retrofitting a program for multilanguage capability is very costly in
terms of the time it takes and the testing and bug fixing that inevitably goes on
when code is changed.

Preface

XV

Preface

xvi

Why a Book on Localization?

I have written this book to help guide you along the correct path to making your
applications ready for the international marketplace. I have localized software
after the fact and have also designed it in to new software. Designing in locali
zation is so much easier. Both approaches are demonstrated in this book.

Perhaps many of you have had to write programs and have then been asked
to translate them into another language. It is just some strings, you say ... how
hard can it be? You look in the MSDN for some help and start to discover that
there is far more to localization than just translating a few strings.

Writing international software is far more than just translating some strings
or learning how to work with resource files. You need to ask yourself questions
such as:

• What do I know about the culture for which I am writing?

• What icons or graphics are acceptable ... or not?

• How should I present time, numbers, and calendars?

• What is the intended platform?

• Should I make use of code pages or Unicode?

• Do I have online help? How can it be localized?

• Will the program be able to switch languages at runtime, or will the Ian
guage be chosen during installation?

How This Book Is Organized

The first half of this book is intended to be a brief guide to what you need to do to
properly localize your applications. A complete reference on localization in gen
eral would be beyond the scope of this book.

The first two chapters deal with design and pertinent issues that go into mak
ing a successful and extendible multinational program. It is not my intention to be
a complete reference or to add weight to this book with tables and in-depth expla
nations that can easily be found elsewhere. But I do mention the resources I use to
help me with projects as well as let you know where you can find more details.

The second half of this book deals with applying localization to your VS .NET
code. This is where you get into the nitty-gritty of programming details.

NOTE I do not consider you, the reader, to be a dummy or an
idiot. I assume you are a professional programmer who
needs to expand his or her company's market for its software.

I spend some time explaining how to localize a program. I hope I convey that
doing it correctly takes some thinking-in particular about design-up-front.
When I get into the real code sections of this book, you can actually use the
examples. You can then apply these the techniques to your next project in .NET.

Who Should Read This Book?

I assume that you are familiar with the basics of .NET, and such features as:

• Namespaces

• Structured error handling

• File 110

• BasicXML

• Windows Forms and basic use of the IDE

• Console applications

Visual Basic and C++ Programmers

Notice that the title of the book does not say anything about being specific to VB
or to C#. The beauty of the CLR (Common Language Runtime) makes the tech
niques shown in this book easily applicable to either language. The examples
I show are in both Visual Basic and inC#. In fact, there are as many as 25 other
.NET languages in the works. The use of resource files, names paces, and tools
used in one .NET language will apply to all of them. This is way cool!

I also use features of .NET that you may not have seen or are just getting to
know. Not only will you write programs that are Windows Forms-based but you
spend quite a bit of time in console mode. Those of you from the C and C++
world will be very familiar with console programs but to the VB crowd this is very

Preface

xvii

Preface

xviii

new. You also spend as much time outside of the IDE as in it. There are quite
a few tools for localization and .NET in general that require you to run them from
the command line.

Although my programs are not difficult, I suggest that if you have never
played with VB .NET or C# then perhaps you should also pick up one of the
Apress books that goes into the basics ofVisual Studio .NET.

Let's get started!

Acknowledgments

Well, the book is finally done and this is where I get to say thank you to everyone
who provided support and guidance throughout the last few months.

While the content and style is mine, I cannot say that this book is a solo
effort. Not by any means. First of all this book would not have been possible with
out the editorial staff at Apress being willing to take a chance on a new author.
For this I will always be grateful.

Like most of you I took English in high school and college, but the elements
of style in regards to computer books was never taught to me. I have learned
more in the last few months from my editor Tracy Brown Collins and copy editor
Anne Friedman than I ever did in those courses so long ago. Thank you both for
your patience and words of wisdom. If nothing else, I have learned a great deal
from you both.

I develop software for a living and I am a big advocate for code reads and
quality testing. I cannot imagine letting out a program without another set of
eyes looking it over. For this project, my other set of eyes was Brian Jones. He is as
enthusiastic about .NET as I am and his technical review was first class. Brian's
thoughtful comments are woven throughout this book.

When I started this book my whole family was quite enthusiastic and proud.
They are even more so now. I owe them much for their support and guidance.
I hope to make up for those long nights and missed weekends writing.

I hope that you, the reader, get as much out of this book as I got writing it. It's
been fun. Cheers.

xix

CHAPTER 1

General Localization
Concepts

SoF1WARE LOCAUZATION REQUIREs more than just good programming. Translating
some strings into another language and then selling the product is nowhere near
good enough. Your users expect to be able to use and understand your program
as they would one written originally in their country. Achieving this requires that
you, the programmer, develop an awareness of other cultures and their mores
what is commonplace in the United States may not make sense or may be
offensive in other nations.

For example, if you have ever traveled to Europe you know that for the most
part time is related as 24-hour military time (6:00PM is 18:00 hours). Almost
nowhere in Europe do people use AM/PM when speaking of time. In math in
Europe, the period is used to separate thousands (10.000) and the comma is used
to separate units from fractions (1,4). You need to adapt your code to the changes
in these formats.

To further support my claim that localization is beyond mere translation,
consider localizing a product from United States to the English market in
England. Citizens of both countries speak the same language, right? (Just a bit
more proper-that's all.) But although you may not need to translate any strings,
quite a bit of work still needs to be done. In England, as in much of the world,
dates are given Day/Month/Year. In the United States, dates are given in
Month/Day /Year. Time in England is represented in military time, and currency
has the decimal for thousands separators. You get the picture. Localization is
about more than language. This chapter gives you some tips on the types of
things to avoid when localizing software.

Multilanguage Support

Multilanguage support is the ability to change your program from one language
to another. How do you achieve this? Never hard code any strings. This is the
localization mantra and it bears repeating: no hard-coded strings. All strings
should be external to the program and only referenced when needed. Why do
this? When you have a constant, such as the number pi (3.1428) or the maximum

1

Chapter 1

2

people that can fit in a bus (60), you use these numbers as constants. What hap
pens when you refer to pi or the maximum number of people in a bus
throughout your program? If your bus expands capacity, you have to change the
number you use (60) to a larger number at every instance in your program. This
is a tedious process that opens the chance for error. It also makes the program
less readable. If you refer to the constants, you only need to change the number
once, and then recompile. The change would be reflected throughout the pro
gram. The same goes for strings. Although you may not ever exchange text that
says "No" for anything else, you can at some point have it translated to "Nein."
Imagine having to make this change in a program that uses it 500 times? You
would be bound to miss something.

Constants can be defined in a separate file that is referenced by other files in
your program. In the same way, strings can be kept in a separate file. Visual Basic
(VB) and C++ use resource files to help with this. Visual Studio .NET uses
resource files as well, but as you will see, the .NET resource files have quite a bit
more functionality to them.

Any good programming language has some kind of error-handling mecha
nism. VB has the On Error Go to error mechanism and C++ has structured error
handling, as does the .NET Common Language Runtime (CLR).

Make sure that you take the error strings out and include them in your
resource file. My point here is that all well-written programs have error strings to
help the user define what goes wrong. Why should the user have a nice interface
to work with, but when an error occurs why should the user see an incomprehen
sible error message?

NOTE You are flagging errors aren't you? Let me see by
a show of hands how many of you go back and put in error
handling after your program is done. I don't mean to harp
but error checking and error messages are just as important
to your program as the actual code. It is all a matter of per-

ception by the user. Bad or nonexistent error messages give your program
and your company a bad rep. Include error handling in the design.

Choosing Graphics

What should you do about icons that represent elements of a program that
are not so common? Some examples are icons that represent a modem for
communication, a lawn mover for a rental company, or perhaps a lock to repre
sent security.

If your program is for patients of a specific hospital, you might include
a small graphic of a restaurant menu on a toolbar where patients could choose

General Localization Concepts

their meals. The patients could choose between the red and the green Jell-0. This
graphic, or icon, could take the place of a string that says, "Choose today's lunch."
The icon in this case is probably universal enough not to require different
versions for different countries.

There are quite a few standard sets of international pictograms. There is an
ISO standard detailing international pictograms that are broken down by classifi
cations such as transportation, safety, communications, and so on.

Here are some tips for choosing graphics for your program.

• Choose graphics that do not offend. For example, the Japanese find dis
embodied body parts such as eyes and mouths unappealing.

• Avoid using text elements in your icons and pictures. Text only serves to
tie your icon to a particular location. This minimizes the need for different
versions to account for varying languages.

• Research how common items are represented. A mailbox in the United
States looks completely different than one in the U.K. The same goes
for a phone booth. (Superman uses the U.S. version and Dr. Who uses
the U.K.'s.)

• Make sure your icons convey the intended task. The more basic the icon,
the more widespread its acceptance.

• Make sure that the universal signs you see all the time are not copy
righted. For example, the smiley face that is so ingrained in American
society is free for use in the United States but copyrighted overseas.

The point is to choose your graphics with care. Do not gloss over this, or
"give it the short shrift," as my mom would say, as using the appropriate icon
can greatly reduce the amount of text you need to write and translate.

A Word About Color

Although it may not be obvious, different colors have different meanings in dif
ferent cultures. Early Celtic peoples ascribed different colors to different
elements, as do Native Americans. Early Christianity banned green as a pagan
color. Colors are rich in hidden meaning and symbolism.

Suppose in the United States your bride wore red? It might be shocking at
a wedding in Alabama. However in China it is expected. Language also can be
a barrier to the perception of color. The Shona language in Zimbabwe and the
Boas language in Liberia have no words that distinguish red from orange.

3

Chapter 1

Therefore, these people do not perceive different colors because of the limi
tations of their languages.

Practically every race and culture uses color symbolically, assigning qualities
and objects to certain colors. Color conveys moods that transfer quite easily to
human feeling.

A truly rich program would take advantage of color to convey messages and
intent that go beyond the written word. A sample of colors in some religions is
shown in Table 1-l.

Table 1-1. Sacred Colors in Various Cultures

COLOR{S)
Blue, White, Gold

Green, Lt Blue

Saffron Yellow

REGION
European

Middle Eastern

Asian

RELIGION
Judea-Christian

Islam

Buddhism

Table l-2lists some colors and their meaning on a regional basis.

Table 1-2. Colors and Their Regional Meanings

COLOR
Red

Yellow

Green

White

Blue

Black

4

WEST EUROPE a USA CHINA JAPAN MIDDLE EAST
Danger, anger, stop Joy Anger, danger Evil

Caution, cowardice Honor, royalty Grace, nobility Happiness

Sexual, nature, go Youth, growth Future, energy Fertility, strength

Purity, cleanliness Mourning Death, mourning Purity, mourning

Authority, purity Strength, power Villainy

Death, evil Evil Evil Evil

There was a study done by the Pantone Color Institute. They polled many
Americans to learn what people thought about different colors. The results are
very telling and can be used to your advantage. Blue is the favorite color of both
men and women. Green is second, but first among "influential" people and
trendsetters. Purple came in third because many people consider it a bridge
between the warm and cooler colors. Red came in close behind purple and is
thought to be an exciting color. Interestingly black is considered the most myste
rious and powerful color for wealthy women. Most middle-aged men and women
still consider black the color of death and mourning.

Choose strong deep colors to emphasize stability. Use bright colors to
grab people's attention. Try using some of the softer shades to invoke warmth
and cheer.

General Localization Concepts

Resource File Concepts

I explain resource files in relation to VS .NET later. Here I discuss resource files
in general.

Resource files are external files that contain program resources. But you knew
that! Okay, so what are these resources? Most programmers think of resource files
as a place to store strings that need translation. Although strings are certainly the
lion's share of what make up a resource file, they are by no means the only things.
As I mentioned earlier, you also need to store icons and bitmaps in your resource
file. I do this all the time in VB 6, and in VS .NET it is just as easy. You can even
store .wav files as resource files.

Resource files can be external to an application or they can be linked. VB 6
forced you to link your resource file but .NET allows either method.

Most program languages have some sort of resource file editor in their IDEs.
VB 6 allowed you to create a resource file using the resource editor or create one
using a normal text editor.

VS .NET also has a resource file editor. It is automatically invoked in the case
of an XML-based resource file. This kind of resource file has the extension .resx.
I cover kinds of resource files in detail later. VS. NET also has classes that allow
you to write resource files in any of the formats that VS .NET expects.

NOTE I will say this now about the built-in resource editor
for .NET: I find it no more helpful than the built-in resource
editor in VB 6. It has many of the same drawbacks, as
I explain in Chapter 4.

String Resources

What should be in a string resource file? Perhaps it would be better to talk about
how strings should be put in a resource file. Here is where you can add clarity or
confusion to your translated program.

Translating Simple Strings

I define simple strings as single words, or short phrases or sentences. Simple
strings are usually fairly easy to translate, as they often are self-explanatory.
Translating the words "Help" or "OK" or "Cancel" usually needs no explanation.
For the majority of single-word strings, this is true. However, single-word strings
need a context in order to be translated properly.

5

Chapter 1

6

If you are a programmer who has worked for a while in a particular industry,
you know that you tend to use some words that describe an item or action that is
specific to your company. Suppose you had the string probe. How would this be
translated? Perhaps you use the word probe as a verb, meaning to explore some
thing. However, it is unlikely that you will use a single verb as a string, so perhaps
you mean it as a noun. Is a probe some kind of an instrument?

Another example would be the word set. Do you mean a collection of items
or something that has hardened, such as glue, or do you mean to put an item in
a particular place? You get my drift. You sometimes need a context for your
words, and that context is in the form of comments.

As a good programmer, you comment your code, right? Well, do the same for
your string resource files. You could comment your strings as you write them. If
you think a string can be interpreted differently, then write a comment describ
ing what you mean. The .NET resource files you write have the capability to
include comments.

You should also write a glossary in which you keep a list of industry-specific
terms and their meanings. Always keep this file updated and send it along with
your strings to be translated. This kind of preventive medicine gets rid of quite
a bit of potential embarrassment later. It also helps keep your writing consistent.
Get in the habit of using the glossary whenever you write software for your com
pany. Not only is consistency within a program good, but consistency among
your programs is also something to strive for.

Complex Strings

Complex strings are long sentences or entire paragraphs that need translation.
Your program may have a set of Help tips for each window or tab the user can go
to. These tips would not be in the Help system but rather in the string resource
file. Some complex strings could also be error strings. It is nice to have informa
tive error strings that not only tell you what is wrong but also give you a possible
remedy. Such a string could be long indeed. Consider the following strings:

• "This screen is where you enter users. Click the users you want entered."

• "This screen is where you enter user data. Fill in all the fields."

• "This screen is where you delete a user. Click the user you want deleted."

You could conceivably have dozens of these. The temptation is great to break up
the strings into substrings inside the resource file, as shown here:

General Localization Concepts

SCREENENTER = This is where you
USERENTER = enter users. Click the users you want entered
DATAENTER = enter user data. Fill in all the fields
USERDELETE = delete a user. Click the user you want deleted.

Your code would look like this:

Message = LoadResString(SCREENENTER) + LoadResString(USERENTER)

Concatenating strings from a resource file is bad practice. Do not do this.
Yes, I know it is less work to enter in strings in the resource files this way but

the strings will not be translated properly later. Different languages have different
placements of verbs and nouns. If you concatenate strings that are meant to be
whole sentences you end up with a very poor translation indeed. The reputation
of your product will suffer with a badly translated user interface. It may even be
an object of humor. If you feel that you need to break strings up, then keep them
in a block within your resource file. Comment them at the beginning of the block.
Use a comment such as "The following 82 strings are intended to be linked
together in the following manner "

Avoid Slang

Most Americans are familiar with the beer commercial in which groups of people
call each other and yell "WASSUUUP!" What does this mean? Another American
commercial is a parody of this one where the actors say, "How are you doing?"
The second phrase is easily translated. The first phrase is slang.

The point is we all use slang and tend toward the vernacular in our speech. It
is only natural to use the same in our code. Avoid this like the plague. There is no
need to sublocalize your original program with terms that identify you as being
from the Bronx. Quite often we use one word in place of another in our daily talk.
More than this, we often omit some words in our common spoken language
because we expect the words to be understood. This is dangerous for the transla
tor, as he or she may not know the vernacular. Try to use literary language.

For example, "Buffer size is maxed out," is a slang phrase. The resource file
should contain the phrase "The maximum size of the buffer has been exceeded."

Abbreviations

Abbreviations are as precarious to include as slang. Most standard abbreviations
are acceptable, such as Mr, Ms, and so on. Just make sure you leave enough space
for a foreign translation.

7

Chapter 1

8

However, making your own abbreviation by arbitrarily shortening a word or
phrase to fit in a certain space is dangerous. Some abbreviations do not translate
at all, and you may end up with a translation that is far longer than your abbrevi
ated sentence. You have now defeated the whole purpose of abbreviating your
sentence. If you must abbreviate, use abbreviations you find in the dictionary. Do
not make up your own unless they are well commented. Even then don't do it.

One last thing about resource files in general concerns the length of your
string. At times you will find it necessary to have a label of a maximum length. If
this is the case, you must make sure that the string in the resource file is com
mented with that fact. Let the translator know what he or she is dealing with.

Resource Files Before .NET

My first brush with internationalization involved writing a DOS-based program
in C that could be translated into Spanish. Back then the version of C that I was
using had no native provision for managing external strings. I had originally writ
ten the program with embedded English strings and proceeded to do the same
for the Spanish strings. I ended up with two different sets of source code for the
same program. Later, when I had the time, I took all the strings out and put them
in a simple text file and used compiler directives to generate separate executables
depending on the language.

Things have come a long way since then. Over the years, while working with
Visual Basic and C++ I made effective use of resource files. Although using the
resource file capability ofVB greatly simplified internationalization, there was
a lack of elegance. To do what I truly wanted to do, I still had to use a little brute
force by resorting to some WIN32 calls .

. NET to the Rescue

Along comes Visual Studio 7 in the form of .NET. I must admit that when I first
started playing with VS .NET back in Beta, I was not really looking for any added
localization capability. In the process of trying different things and delving into
the documentation, I kept coming across ways to localize code. When I started
digging into the resource file capability I was amazed. The folks at Microsoft had
obviously spent quite a bit of time designing the CLR to be used anywhere.1

Quite a few of you have probably used VB 6 resource files in its basic form to
externalize strings. Let's compare resource files in Visual Basic 6 to resource files
in.NET.

1 The documentation by the way is very good. It is several levels above what we are accus
tomed to from Microsoft.

General Localization Concepts

VB 6 has the ability to have only one resource file. Although much was said
about not having to change code to change languages, you did need to recompile
your code to change resource files. You may not have introduced bugs into your
code, but distribution involved a new executable for each language .. NET allows
any number of resource files to be used in your program. Also these resource files
are compiled as resources external to the program. (You can link them directly in
to your assembly but more about that later.) There is no need to recompile your
executable to get another language.

VB 6 had a resource editor built into the IDE. OK, so it wasn't built in but was
an Add-in-essentially the same thing. The VB 6 resource editor was not a very
useful tool mainly because the result was a compiled resource file. This tool had
no provision to spit out a text file that you could send to your translator. Although
it did allow multiple languages in the same resource file it did not allow multilan
guage support within a single instance .. NET does have a native resource editor
but it only deals with XML files. It also makes a .resources file directly instead of
an intermediate .resx file. So far VB 6 and .NET seem like they have the same
drawbacks. However, .NET is far more versatile. You create a multitalented
resource file generator in Chapter 5. The most basic .NET resource file starts out
as a text file. This can be formatted to your liking (within reason) and sent to
a translator.

VB 6 does have a separate resource compiler that takes a text-based
resource file and churns out a .res binary resource file. This is a good thing, and
I encourage those of you who still need to use VB 6 to generate resource files this
way. I explain a way to handle multiple resource files in VB 6 in Chapter 3 .. NET
has the ResGen.exe program that does essentially the same thing as the VB 6
RC.exe compiler.

The resource files in VB 6 are number-based. By this I mean that there is no
provision to call any resource; string, icon, or otherwise in VB 6 without using
a numerical argument. I consider this to be a major flaw in the way resource files
are handled in VB 6.

Consider this piece ofVB 6 code.

DIM s as string
s = LoadRes5tring(1542)

Wouldn't this be better?

s = LoadResString(STR_FILENOTFOUND)

Write your code the first way and come back in three months and tell me
what string you meant to load. Reading your code after writing it the second way

9

Chapter 1

10

allows anyone to see just what is supposed to happen.2 Using named constants
for strings takes a little effort but it is advisable and is something you should do.
I have yet to read any MSDN documentation on calling up strings this way. My
short VB 6 resource file program demonstrates this method.

Okay, now what about .NET? There are several ways to write a resource file in
.NET, but as far as using named constants is concerned Microsoft hit the nail
right on the head. Here is a single line from a hypothetical string resource file.
(You can write a text-based resource file using any editor.) The setup for string
resources is a key, value pair.

STR FILENOTFOUND = Error: File Not Found

To retrieve this string from the resource file you use the following piece of
code in VB .NET:

DIM ExtStr as ResourceManager = ResourceManager.
CreateFileBasedResoureceManager ("MyResourceFile", ".", Nothing

Console.Writeline(ExtStr.GetString("STR_FILENOTFOUND"))

There are four overloaded constructors to the ResourceManager. This
Resource Manager constructor takes three arguments; the name of the resource
file, the location, and whether a record set is to be used. Once the
ResourceManager is set up you can retrieve strings from the resource file using
the GetString method. All you need is the key. This is simplicity itself. It also has
some of the elegance I feel is missing from the VB 6 resource file management
scheme. The resource manager is explained fully in Chapter 3.

Resources on the Loose

In this two-line example of getting a resource file string I used a feature of the
resource file manager called "Loose resources." There are two ways to call up
resources in .NET; the "managed" method and the "nonmanaged" method. The
managed method entails a proper directory order and fallback scheme. The
nonmanaged method is also referred to as using loose resources. This means that
you can specify the resource file and directory where the assembly should look
for the resource file. There is no fallback mechanism involved here.

So what other things can you do with VS .NET resource files in your program?
Well you can have as many of them as you want. Resource files in VS .NET are

2 Job security is a wonderful thing, but obfuscated code is not the way to achieve it. Well
written and documented code encourages management to appreciate you more ... really.

General Localization Concepts

intended to be single language (a different resource file for each language such as
Spanish, French, and so on). This allows you to update your assembly with a new
language without having to touch the existing resource files. Since you can have
many resource files there is a naming scheme that Microsoft uses in VS .NET that
is based on the ISO 2 letter abbreviations for regions and cultures.

Summary

This chapter has given you some insight into what localization is, in general
terms, and I discussed some things to look out for when thinking about localizing
your programs. Here are some points to remember:

• Always externalize your programs' text to resource files

• Choose graphics that have no associated text

• Choose graphics that do not offend

• Keep color symbolism in mind when presenting ideas in programs

• Try to keep your external strings complete and simple

• Do not concatenate strings from a resource file

• Avoid slang and abbreviations

Last I discussed the differences between .NET resource files and VB 6
resource files. The chapters that follow go into these subjects in greater depth.

11

CHAPTER 2

Aspects of
Localization

THIS CHAPTER INTRooucEs some of the more common aspects of designing a multi
lingual program. You need to be aware of how dates, time, numbers, and
calendars are affected by region. Of course, the one part of the program that may
be as big as the program itself is the Help system. These elements are quite often
left out of an internationalization project and if so could cause quite a bit of ani
mosity to your program. The code for the programs in this chapter, as in the whole
book, can be downloaded from the Apress web site at http: I /www. a press. com. The
final section of this chapter introduces you to the Unicode standard, what it is,
and how you may already be using it.

The most important part of any program is probably the design of the
GUI itself, which I discuss next.

GUI Design for Mulitinational Programs

I would like to talk about basic GUI (Graphic User Interface) design strategy.
There are tons of books available on how to design GUis that contain rules for
what you should and should not do. What I want to touch on here is GUI design
specifically in relation to multilanguage programming.

I am sure most of you have experience coming up with screens, at the
request of the marketing department, for those incredible programs you
are developing.

Many demo screens, however, also tend to be the basis for the finished prod
uct. How many times have you shown a demo screen to your boss to explore
a concept and then gone back and built the code around these same screens?

What is wrong with this approach? Most likely you have laid out the screens
to be just the right size for the English words and phrases you use. The design
needed for localization gets left out.

Keep in mind the lengths of the strings you use. It is common in GUI design
to use short sentences or single words to label fields. Translated text can be con
siderably longer than the original English text. It is actually an inverse relation

13

Chapter2

14

depending on how long the original text string is. Table 2-1 shows how much the
string length will grow when translated.

Table 2-1. Buffer Size Growth Based on Original String Length

ENGLISH

1 to 5

6to20

20 to 50

>50

OTHER
100%

70%

30%

15%

As you can see, the shorter the string length the more space in relation to the

original string you need.
As you research some of the languages into which you will convert your pro

gram, you will find that some languages need entire phrases to literally translate

one English word. The reverse is also true. You need to plan a little in the design

of your GUI to allow for this kind of situation.
Here are some examples of single English words translated into German.

While these words may not be typical of words you would use in a program, they

give you an idea of the difference between languages.

Table 2-2. Some English Words and German Translations

ENGLISH GERMAN BUFFER GROWTH

Watch Bewachung 80%

Obsolete nicht mehr gebrauchlich 287%

Textiles bekleidungsindustrie 250%

What about phone numbers and addresses? The ISO standard for the length

of a phone number is 15 digits. Be sure to allow some extra room for things such

as Private Branch Exchange (PBX) codes and country codes. Appendix A lists

phone country codes.
Do not assume that the dash is the only number separator in a phone num

ber. You need to allow spaces, dashes, commas, and periods.

An address in the United States includes some information that makes no

sense elsewhere. Take for instance a state. This means nothing in Taiwan. It just

adds a level of confusion. Be flexible with your address format and allow enough

fields to locate an address anywhere.

In the United States a ZIP code is a 5+4 digit number with the extra 4 digits

being optional. Be careful not to validate a ZIP code based just on this pattern.

Aspects of Localization

Quite a few other countries use letters in their postal code and they may also be
of differing lengths.

Here is the current address for Oxford University in England. Notice the U.K.
equivalent of the ZIP code. If you do not allow for alpha characters your corre
spondence might never get there.

University of Oxford

University Offices

Wellington Square

Oxford. OXl 2JD. UK.

Message Boxes, Dialog Boxes, Maps, and Menus

Message boxes are used extensively in many programs and quite often the text
they display is long. Message boxes also resize depending on the amount of text
shown. A small message box in English could be quite large in German.

Dialog boxes may also grow, especially some of the common dialog boxes. If
you can, try to make your dialog boxes large enough to prevent resizing controls.
Plan for a text box that can wrap the text to another line. You are better off if you
can avoid having to resize the dialog box.

Dialog boxes as well as forms are much easier to understand when they are
not cluttered. Spread your fields out among logically constructed screens. You
may find that a screen with many fields needs extra space to allow for text ex
pansion when translated. If you do not leave extra space you may find that your
translated text wraps and makes a messy screen. If you have space limitations in
your text fields make a comment in your resource file noting this fact. Let the
translator find the best word or phrase that fits.

Try to make sure that phrases are not split between labels or text fields. Quite
often a sentence or phrase in English swaps words around when translated. If
you have one part of a phrase separate from another part in the resource file, the
translator will not be able to make the correct translated phrase out of the two
separate pieces. For example, German sentences often have verbs at the ends of
sentences, while English and French place them in the middle.

I once took over the task oflocalizing a program that used a series of dialog
boxes of the same size. The author ran his program by placing these dialog boxes
on top of each other in a modal fashion thus hiding the screen behind it. When
I localized the program some of the new strings were much longer then the origi
nal English versions and the resize control allowed for this by resizing the dialog

15

Chapter2

16

boxes. It ended up that he could no longer hide some dialog boxes behind others
because they peeked through at the sides. His attempt to hide what he was doing
failed once his program was translated into another language. This was poor
design indeed.

The dialog boxes in question were actually different executables. The pro
grammer was trying to simulate multithreading in VB. I disagreed with this
approach, but I was not the one making the decisions.

A menu system is one where you can really get into trouble with localization.
The topmost menu items in a menu list are always meant to be displayed on the
screen. If you have quite a few menu items you probably have tried to make them
all fit on just one line. If you have so many choices that you needed to "make
them all fit" then you need to rethink your design. The menu will most probably
grow quite a bit in size when localized and you will end up wrapping your menu.
This is something you definitely need to take into account.

This century has seen boundary lines on maps redrawn countless times. We
have seen new countries spring up and several countries combine into one. Even
today many parts of the world are in flux and border disputes abound. If you
need to display a map make sure you have the latest version for that region. You
do not want your program to offend anyone who may take exception to the map
you show.

Fonts and Keyboards

These days Windows has a large number of fonts natively available depending on
the language version ofWindows you have.

You may find that some of your characters are coming out with question
marks and other characters that are not what you expect. If this is the case you
most likely need a new font for your program.

If you find that you are translating to languages that are not supported by the
built-in fonts you may need to include them with your program. Consider local

izing the fonts you need in a resource file. You can then load the font you need at
runtime without cluttering up the destination PC.

Keyboard layouts change according to locale. In some countries certain charac
ter do not appear on the keyboard at all. In such cases there are shortcut key
combinations that are used to get the right character. If you need to set up shortcut
keys, remember to use only keys that you are sure are on the keyboard at that locale.
If you want to be independent of locale then use the function keys to do this.

To summarize; here are some pointers to keep in mind when designing
user screens.

Aspects of Localization

• Do not split phrases between label or text controls on your screen.

• Don't try to jam all your fields on one screen. Nothing is worse than a busy
screen in English that when translated to another language has all kinds of
word wrapping.

• Leave room for word expansion in your text fields.

• Truncate strings to the maximum length of a text field. This prevents
unwanted word wrapping.

• Do not concatenate translated words or phrases to make sentences. Word
order will invariably trip you up.

• Use proper English wherever possible. Slang translates poorly.

• Be careful of abbreviations or industry specific terms. Build up a glossary
as you go along.

• Do not depend too much on the size of message boxes. They change in
relation to the number of characters displayed.

• Make your dialog box large enough to handle translated text. Resizing
a dialog box could lead to unexpected results.

• If you have quite a few first -level menu choices be prepared for them to
wrap after being translated.

• Consider keeping nonstandard fonts in a resource file.

• Try to keep pictures of international maps to a minimum. Map divisions
can be a hot point with quite a few people.

Formatting International Time

Remember when mom taught you to tell time on an analog clock? Pretty confus
ing when you consider that it can be 11 o'clock twice a day. Of course when you
are 5 or 6-years-old you say "in the morning" or "in the afternoon." Only later did
you learn the AM/PM part.

17

Chapter2

18

NOTE AM and PM stand for ante meridian/post meridian.

That was okay for us in the United States. What about overseas? Most nations
have standardized on military time. Most of us here in the United States only
know it through John Wayne war movies where he asked people to synchronize
watches at 0600 hours. Go to Europe and 9 PM is most always 21:00 when writ
ten. When you think of this in terms of programming, military time is definitely
easier to work with (sort, add, subtract).

Try to make an algorithm to take the difference between 10 AM and 3:45PM.
It takes a little doing in analog time but military time is trivial.

Okay, I know what you are thinking. What happens at midnight? Well both
00:00:00 and 24:00:00 mean the same thing. However to remove ambiguity you
should refer to midnight as 00:00:00. Digital clocks do not display 24:00:00.

In general the world standard for time is hh:mm:ss. Where hh is the number
of complete hours that have passed since midnight (00-24), mm is the number of
complete minutes that have passed since the start of the hour (00-59), and ss is
the number of complete seconds since the start of the minute (00-60). If the hour
value is 24, then the minute and second values must be zero.

Formatting Dates

Want a date? How about "3/4/05"?What date is this? Is it March 4, 2005 or March
4, 1905 or April3, 2005 or April3, 1905. Any of these interpretations is feasible
depending on your location and your age.

Time is basic and you can pretty much tell what someone means when it is
displayed. As you can see, dates are a different story.

You might see dates in the following formats. 8/7/99, 7/8/99, 99/7/8,
8.7.1999, 07-0CT-1999, 7-0ctober-1999. And there are quite a few more. It can be

quite confusing.
The international date standard notation is YYYY-MM-DD. This based on the

Gregorian calendar where YYYY is the year. MM is the month between 01 and 12.
DD is the day between 01 and 31.

The ISO has passed a language-independent international time and date
standard called the International Standard ISO 8601. Aside from solving con
fusion over what date notation to use, the advantages of this standard are many.

Aspects of Localization

• The standard is easily readable and writeable by software (no 'JAN', 'FEB',
... table necessary.)

• It is comparable and sortable with a trivial string comparison.

• Provides consistency with the common 24h time notation system.

• Strings containing a date followed by a time are easily comparable
and sortable.

• The notation is short and has constant length, which makes both keyboard
data entry and table layout easier.

• This date notation is already used in much of the world.

ISO date and time standards are very helpful to both the programmer and to
the end user. Why the programmer? How many times have you had to add and
subtract time or dates based on a 12-hour clock? Perhaps you have tried to find
the day of the year and the number of days left in the year for a scheduling pro
gram you are writing. The algorithm for using a 12-hour clock and day and
month names is very difficult. The ISO standard formats dates in the slowest
moving time to the fastest. This makes date and time very easy to sort and calcu
lations very easy to compute.

What about the end user? Quite a few countries, such as Japan, Korea,
Hungary, Sweden, Finland, Denmark, and others, as well as people in the United
States, are already used to at least the "month, day" order. This format is already
used in much of the world. The end user also benefits from easier and more con
stant keyboard entry. Entering in May 24 (04-24) is the same as entering in
September 24 (09-24).

Both time and dates are stored in different formats programmatically.
Whatever the format, you should use some kind of formatting command to dis
play the time based on a setting the user chooses or based on the regional
settings of your computer. Both Visual Basic and Visual Studio .NET have such
format commands.

Formatting Dates in Visual Basic 6

Visual Basic had some basic date formatting parameters that converted a date
value to text based on the regional settings of your computer. An example of this is:

format (now(), "General Date")

19

Chapter2

20

This returns a string representation of the date and time according to your system
settings. Other date formats that are displayed according to system settings are:

• "Long Date"

• "Medium Date"

• "Short Date"

• "Long Time"

Formatting Dates the .NET Way

The .NET way of doing this is somewhat different .. NET does not need a separate
function to handle transformation of basic data types.

Now for a little review on .NET architecture. The most basic lesson of .NET is
this: Everything inherits from the object class .. . everything. This means that all
basic data types you are familiar with are actually objects. This includes integers,
strings, longs, and dates.

As you study the basic data types in .NET you will find there are two kinds:
value and reference types. The short explanation is that they can be treated the
same ways. If you declare an integer and use it only for simple math operations it
stays a value type. If you want a little more outofitsuch as determining what
type it is then through the magic of"boxing" it becomes a reference type. It is
now an object. I encourage you to review the documentation on boxing and play
with boxing until you understand it. Knowing when a type is boxed and unboxed
can make a difference in how you program a particular algorithm.

In VB a date is essentially a double. This stems from the fact that VB 6 is
COM-based, and a date in the COM world is an OLE automation date, which is
a double. All types in .NET inherit from the base object class. Because of this, the
date type is also an object. All well-written objects (.NET has only well-written
objects) have a certain amount of what I call "programmed instinct." They know

what they are and what they are capable of doing. Most good objects can also
transform their data to another form if appropriate.

This is all true for the date type (object). If you want to print out a date in one
of several formats you would use the following piece of code.

C# Example:

DateTime MyDate = new DateTime(2001, 8, 2);
MyString = MyDate.ToString("F");

Aspects of Localization

VB .NET Example:

Dim MyDate = new DateTime(2001, 8, 2)
MyString = MyDate.ToString("F")

The result of this code would be "8/2/2001" if the current culture was U.S. English.
The DateTime structure has seven overloaded constructors. You can initialize

it with just about any kind of date or time you can think of. As you can see, the
Date Time object can return a string according to the current culture settings.
A partial listing of output formats with default patterns are:

• "d" M/D/YYYY

• "D" dddd, MMMM dd, yyyy

yyyy-MM -dd HH:mm:ss

The last one conforms to the ISO standard 8601. There are quite a few others, and
I encourage you to visit the VS .NET Help files to familiarize yourself with them.

Whatever you do in regard to displaying dates and times, make sure you are
consistent throughout your program.

The Calendar

There are several calendars still in use around the world. The most popular is the
Gregorian calendar. The Gregorian calendar was devised as a way to fix the prob
lems with the Julian calendar. These problems had to do with the way Easter was
calculated and the length of the tropical year. The Julian calendar lost one day
every 128 years. Although the Julian calendar was dropped by most of the world
in the 1500s, it is still used today by the Russian Orthodox Church and other
orthodox churches.

The main calendars in use today are:

• Hebrew

• Chinese

• Japanese

• Julian

21

Chapter2

22

• Gregorian

• Islamic

• Balinese

• Baha'i

• Ethiopian

While the details of each calendar are out of the scope of this book I will say
that most of the time the Gregorian calendar is the predominant one. Visual
Studio .NET does allow date calculations in other calendars. If you find that you
are making a date-centric application such as an HR program, it would behoove
you to make use of these functions.

The System. Globalization namespace in VS .NET has the following calen
dar implementations.

• Gregorian Calendar class

• HebrewCalendar class

• HijriCalndar class

• JapaneseCalendar class

• Julian Calendar class

• Korean Calendar class

• Taiwan Calendar class

• ThaiBuddhistCalendar class

Each of these classes allows manipulation of dates within the particular cal

endar you are working with. This is not only way cool but allows easy
implementation of different calendar types within your program. The good folks
at Microsoft have done all the complicated calculations for you.

Aspects of Localization

Numbers and Currency

This can be quite a confusing subject. In VB 6 formatting a number according to
local depends on your computer's setting. You cannot define programmatically
that a group separator is a comma or a period. The same goes for the decimal
separator. If you used the piece of code

X=123,456 .78
S=Format (x, "###,###.###")

you get the string 123,456.78 in the United States, but if your computer is set for
Germany you get 123.456,78. The comma and period are swapped.

TIP Suppose you use a text box for real number input
below 1000. The standard method is to catch each keystroke
and verify that it is a digit or a decimal point. Wrong! This
works in the United States, but it will not let someone in

England input any number other than an integer. You must also allow
a comma.

VS .NET has string-formatting commands built into the numerical
data types. Just like the date and time issue, there is no separate function needed
in VS .NET to convert a number to a string. Again this is done using the ToString
method associated with these objects. By the way, the ToString() method is
Unicode-aware.

Let's look at some code to see how the ToString() function works. The first
sample shows this function in VB .NET:

Dim This!nt as integer = 12345
Dim MyString as string = Thisint.ToString("c")
MyString = Thisint.ToString("d7")
MyString = Thisint.ToString("g")

Here is the C# example:

int My!nt = 12345;
String MyString = Myint .ToString("c");
MyString = Myint. ToString("d7'');
MyString = Myint .ToString("g");

23

Chapter2

24

The first MyString would be "$12,345.00".
The second MyString would be "0012345".
The third MyStringwould be "12345".

As you can see, the format specifier allows you to represent the number in
any of several ways. How do you make this internationally aware? The answer is
in the System.Globalization.Culturelnfo namespace. You can initialize the con
structor with a code for a country, and the Mylnt.ToString() member swaps the
comma and decimal point if appropriate.

The ToString() conversion function for all basic data types is culture-aware.
However, if you use a format specifier without a corresponding argument for the
culture, the resulting string is formatted according to the culture that your system
is set to in the regional settings of the control panel. If you are making a program
that will be able to swap languages at runtime then you need to add this
extra argument to all your ToStringO commands. The following code takes the
previous number and currency example and makes it internationally aware. It
also allows you to change culture via code, which essentially gives you runtime
control over changing languages.

This example is shown here in VB, but it is available for download in C# if
you wish.

VB .NET Example:

Imports System.Globalization

Dim mystring As String
Dim MyCulture As Cultureinfo
Dim thisdate As DateTime = #8/2/2001#
Dim Thisint As Integer = 12345

'The current culture of the computer
MyCulture = Culturelnfo.CurrentCulture
mystring = thisdate.ToString("d", MyCulture)
mystring = Thisint.ToString("c", MyCulture)
mystring = Thisint.ToString("d7", MyCulture)
mystring = Thisint.ToString("g", MyCulture)

'The German culture
MyCulture = New Cultureinfo("de-DE")
mystring = thisdate.ToString("d", MyCulture)
mystring = Thisint.ToString("c", MyCulture)
mystring = Thisint.ToString("d7", MyCulture)
mystring = Thisint.ToString("g", MyCulture)

Aspects of Localization

'The US culture
MyCulture = New Cultureinfo("en-US")
mystring = thisdate.ToString("d", MyCulture)
mystring = Thisint.ToString("c", MyCulture)
mystring = Thisint.ToString("d7", MyCulture)
mystring = Thisint.ToString("g", MyCulture)

Let's describe a little about what is going on here.
The first thing I do is import the System. Globalization namespace. This gives

me access to the classes under this namespace without having to resort to using
the full name. I could have made a reference to another assembly that imported
this namespace and achieved the same thing. After this I set up a variable that
will hold the current culture as well as some data variables to work with.

Let's look at this first block of code.

'The current culture of the computer
MyCulture = Cultureinfo.CurrentCulture
mystring = thisdate.ToString("d", MyCulture)
mystring = Thisint.ToString("c", MyCulture)
mystring = Thisint. ToString("d7'', MyCulture)
mystring = Thisint.ToString("g", MyCulture)

The current culture is set to U.S. English. For the first block of code the vari
able mystring will have the following values:

l. "8/2/2001"

2. "$12,345.00"

3. "0012345"

4. "12345"

The next block of code changes the MyCulture object to be German.

'The German culture
MyCulture = New Culture!nfo("de-DE")
mystring = thisdate.ToString("d", MyCulture)
mystring = Thisint.ToString("c", MyCulture)
mystring = Thisint.ToString("d7'', MyCulture)
mystring = Thisint.ToString("g", MyCulture)

25

Chapter2

26

For this block of code the variable mystring has the following values:

1. "02.08.2001"

2. "12.345,00"

3. "0012345"

4. "12345"

Notice that my code is the same except for changing the culture. The date
and currency format changed according to the culture I set.

Notice something interesting about the currency? As of the time I am writing
this book the German currency is German Marks. However .NET is anticipating
the changeover in 2002 from Marks to Euros.

So what do I do ifl want to express money in German Marks? Well as it so
happens there is a way to do this by making your own number format class and
passing it to the Cultureinfo class. Consider this piece of code.

'Here is how to represent the old German currency forma~
Dim OldGermanFormat As New NumberFormatinfo()
OldGermanFormat.CurrencySymbol = " DM"
OldGermanFormat.CurrencyDecimalSeparator = ","
OldGermanFormat.CurrencyGroupSeparator = "."

OldGermanFormat.CurrencyPositivePattern = 1
OldGermanFormat.CurrencyNegativePattern = 1

'The current German culture
MyCulture = New Cultureinfo("de-DE")
MyCulture.NumberFormat = OldGermanFormat

mystring = Thisint.ToString("c", MyCulture)

The resulting value of mystring is "12.345,00 DM". Just what I wanted.
Let's look at what I did here:

1. I set up an object as a NumberFormatinfo class.

2. I set the decimal separator and group separator to be the same as is used
in Germany.

3. I made the CurrencySymbol something that represents the old German
Mark. The default for this is the"$."

Aspects of Localization

4. I set the positive and negative pattern for the currency so that the num
ber precedes the symbol.

5. I set the current culture to German. (More than numbers are involved
here in a language.)

6. I set the current culture to German. (More than numbers are involved
here in a language.)

7. I set the internal number format of the current culture to be
OldGermanFormat.

The flexibility included here allows you to pretty much do what you want.
Microsoft included just about every known modern culture in the world, but
even they can't predict the instability in different regions. By the time this book is
published there may be a new country or two to deal with.

How Sort Order Is Affected by Language

There are two basic types of sort orders for strings. The first is ASCII sort order.
This is where the strings are sorted according to their letter placement in the
ASCII table. Letters are placed in the ASCII table capital letters first. In this case,
words that begin with A, b, C would be sorted as A, C, b.

The International sort order is defined as being case-insensitive. So the true
sort in the above example would be A, b, C.

There are quite a few other types of sort orders within the international
arena. These are all language-based. Some of these are the Czech, Swedish,
Danish, Polish, Spanish, French, and so on. Most of these sort orders have differ
ent rules for the diacritical marks. Some define a character with a diacritical to
come before the same character without, and some are the reverse. Also because
some European languages have more letters than English, there are cases where
what would seem normal sort order to someone in the United States is totally dif
ferent to someone in Russia.

Suppose you had the following words sorted in normal International
sort order:

• Victory

• Wake

• Woman

• Yak

27

Chapter2

28

If you sort them in Finnish sort order they would be arranged like so:

• Wake

• Victory

• Woman

•Yak

In Finland the Vis considered the same level as theW. This could really play
havoc with your database indexes. Watch out for this.

You can get the sort key string that defines sort order from .NET. It is under
the System. Globalization namespace. Look in the SortKey class under
OriginalString. The KeyData and OriginalString members can both be overridden
to make your own sort order.

Creating International Help Files

Back in the days of DOS, most programmers did not write Help files for their pro
grams. Not much of an issue here. When Windows came along all of a sudden we
got context-sensitive Help. Pushing the Fl key while on a field, screen, or even
a word would bring up Help that was what you wanted. No more of this pulling
up the Help file as a whole and trying to find a topic that addressed your needs.

NOTE Full coverage of Help files and how to create them is

beyond the scope of this book. Instead I wish to convey some
more philosophical aspects of Help file creation.

Unless your program is the most intuitive in the world, you need a compre
hensive Help system. Believe me when I say that the Help file can make or break
a good program.

It can also greatly reduce those pesky tech support calls. (But then what is the
point because no matter how good the Help is no one ever reads the manual any
way ... but I digress.)

Make sure to use the same translator, or at least the same translating project
manager, for your program strings as well as your Help files. Many English words
and phrases can have several meanings in different languages. If you translate
a sentence from English to Chinese in your program, make sure that the same

Aspects of Localization

sentence in your Help file is translated the same way. If not you run the risk of the
Help file adding confusion instead of clarity.

By the same token, have the program and the Help file translated at the same

time. Always keep them current with each other. The thought process necessary
in converting your text files should be the same one used in converting your Help

files. If you decide to translate the Help files six months after the strings then the

translator will have probably forgotten some of the nuances involved at the time

he or she translated your strings.
As a programmer you probably should not be doing your own Help file. You

will instead need to work closely with a tech writer to accomplish this. To sum

marize, here are a few hints to follow as you work with the designer of your

Help system.

• Keep the explanations as free of jargon as you can.

• Make sure that any screen shots can be easily replaced. It is no good trans
lating the Help file while showing screen shots in English.

• Be sure to use the same translating project manager for your program
strings as well as your Help files.

• Have the program and the Help file translated at the same time.

Introducing Unicode and Character Sets

What is Unicode? Perhaps you think it is one of those persistent buzzwords that
just won't go away. Believe me when I say it is not a buzzword. As far as multilin

gual computing goes, Unicode is the most important thing to ever come along in
the computer business. Unicode is one of those things in the computer industry
that is slowly being adopted with hardly any fanfare. In fact, for quite a few pro
grammers, Unicode is largely unseen and unnoticed.

So what is Unicode? Unicode is a way to provide a unique number that iden

tifies every single character in every human language. There is even room left
over for Klingon!

Let's back up a step. You have certainly worked with the ASCII table. Consider

the following piece ofVB code:

Dim letter As String
Dim number As Integer

letter = Chr(65)
number = Asc("A")

29

Chapter2

30

This code converts an ASCII number to its character representation and back

again. In ASCII the capital letter A is 65. If you have ever intercepted a key press

event from one of the VB controls you have had to use the ASCII conversion rou

tines to see what letter was pressed.
While the ASCII table has 256 character representations, most of us only pro

gram with the lower 128. This is mainly because it is enough to write most

anything in the English language. If you look at the ASCII table you see that the

upper 128 characters are a collection of some foreign characters, punctuation,

lines, and blocks.

NOTE It was very common in the DOS days to draw menus

and graphics on the screen using the upper 128 characters of

the ASCII table. In fact quite a few programmers, myself

included, could recite most of the ASCII table by heart.

Code Page Usage

In the days before Unicode Version 1 was fully adopted, programmers used code

pages to display characters from different languages. Code pages are still sup

ported in Windows but are only really used for older programs. A code page is

a different interpretation of the ASCII character set. Code pages keep the same
lower 128 characters intact (mostly) but the upper 128 characters are tailored to
a particular language. There are many Windows code pages as well as DOS code

pages. This means that the ASCII character for# 180 is different for almost every
code page. In fact the Cyrillic code page for DOS is different than the Cyrillic code

page for Windows. They have all the same characters but the ASCII number is dif
ferent for both. This was quite a problem for the multilingual programmer always

having to keep track of what code page you might be working from. Imagine try

ing to send a text file that was rendered using a certain code page to someone.

Chaos could easily ensue if the person you sent it to was not up on code pages.

I once had to send out English text to be translated into Cyrillic to be used on

an embedded system. There were constant phone calls and emails about which

code page was being used and how to represent it. The embedded target system

used a DOS Cyrillic code page 866 and I got the translations back in a Word doc

that used the Windows Cyrillic code page 1251. Do this just once and you under

stand the need for Unicode.
In Windows 9x/2000, code pages could be switched on the fly without having

to change language. In DOS you had to change the code page with some DOS

commands. Needless to say, using code pages was not the most elegant way of

enabling different character sets to be displayed on your screen.

Aspects of Localization

I could go on and make this book quite a bit heavier with code page infor
mation. However the preferred method is definitely to use Unicode. Because .NET
is totally new and Unicode-based I will not go into any more depth on code pages.

Relating Double Byte Character Sets to Unicode

What about Eastern languages where Chinese for instance has over 5000 charac
ters? A different scheme was invented for this based on the concept of code pages
that contain 256 code points. The result is called the Double-Byte Character
Set (DBCS).

In DBCS, a pair of code points (a double-byte) represents each character. The
first byte of a double-byte set was not considered valid unless it was followed by
a second byte defined in the DBCS set. DBCS required code that would treat
these pairs of code points as one character. This still disallowed the combination
of two languages, for example, Japanese and Chinese, in the same data stream
because the same double-byte code points represent different characters
depending on the code page. DBCS was used for some time but is now going out
of style.

Along comes our saving grace Unicode. Unicode is based on the ASCII table
for compatibility but greatly extends it. Instead of being one byte in length
Unicode represents characters with 2 bytes. This 16-bit encoding scheme means
that codes are available for 64k characters. While this number is sufficient for
coding the characters used in the major languages of the world, the Unicode
Standard provides the UTF -16 extension mechanism (called surrogates in the
Unicode Standard), which allows for the encoding of as many as 1 million addi
tional characters. This is sufficient for all known character encoding
requirements, including full representation of all historic scripts of the world.
This brings order to the chaotic world of character representation.

The first 128 characters of Unicode are the normal Latin ASCII character set.
These characters go from 0000 to 007F hex. In Unicode the word "dog" would be
represented by 0064006F0067. This plays havoc with C code because in C a string
is terminated with a NULL character, which is 00. As you can see Unicode is not
compatible with normal C strings.

To reiterate, Unicode assigns a unique letter for every character without
regard to:

• Language

• Computing platform

• Program

This is quite an accomplishment considering all the disparate computing sys
tems in the world.

31

Chapter2

32

Programming with Unicode

NOTE This is just a scant introduction to Unicode. Many pounds of books have
been written about Unicode. I suggest you get the Unicode 3.0 book put out by
the Unicode consortium. It is a valuable reference.

If you are a VB programmer you have been using Unicode
since Version 5. All Visual Basic strings are represented inter
nally in Unicode. VB has been ready, willing, and able to help

in localization for years .. How can you tell that your string is represented in
Unicode? Try the following VB example.

x = Len("Unicode")
x = LenB("Unicode")

The first line sets x to 7, the number of letters in the word Unicode. The sec
ond line sets x to 14. This is the number of bytes needed to store the word
Unicode. In ASCII 7 bytes would be enough. For you C lovers, an 81h byte would
be needed to store the null terminator.

Visual Basic always did the Unicode to ANSI translation for you transpar
ently. Windows NT and higher operating systems from Microsoft are fully
Unicode compliant. Visual Studio .NET is fully Unicode compliant. You now have
a great basis for writing programs in .NET that will work anywhere in the world.

So how can you see the power of Unicode? There is a great Unicode
editor called UniEdit. This program was developed in conjunction with Duke
University. There is currently a free trial version of UniEdit available at
http: I /www.humancomp.org/uniintro. htm. The cost for buying it is minimal
and its usefulness is infinite.

NOTE I have occasional need to reference the official
Unicode book. I often find it fascinating to flip though and
look at other writing systems. A 2-minute lookup may take
me~ hour. I am the same way with the dictionary.

How do you know that .NET is Unicode just by glancing at the documen
tation? Look at the documentation concerning data types. A Char is now two
bytes. It is big enough to hold a UTF-16 Unicode character. Traditionally it had
always been one byte.

Aspects of Localization

Summary

NOTE I can't tell you how many programs I have written
(embedded and DOS) that counted on the fact that a char
was one byte. So many algorithms that involved counting
were based on this fact.

This chapter dealt with some of the more prevalent concepts surrounding local
ization. I talked about what is necessary to properly format and display your
information to the user. Data presentation is arguably the most important aspect
of a program.

I ended up this chapter with a short discussion of Unicode and how preva
lent it is in both programming languages and in the operating system itself.

Some things to remember are:

• Make sure your text boxes are able to handle translated strings that can be
anywhere from 20 to 100 percent of the original English size.

• Make sure that numeric input allows the interchange of a comma with
a period as demarcation identifiers.

• Allow for growth in the size of dialog boxes, message boxes, and menus.

• .NET is Unicode aware. Learn what Unicode is and use it to your advantage.

• Be aware of different time, date, and numeric formats for different cultures.

• Do not depend on the U.S.'s standard sort order. Some cultures sort strings
in a different order. Make sure your program takes this into account.

• Do not forget the Help files. Translating them in synch with the pro
gram strings can avoid confusion between different translations of the
same phrases.

There are many of you who will spend some time in between programming
languages as you slowly migrate to .NET. In Chapter 3 I cover how to use multiple
resource files in VB 6. I also show you how to manage these resource files in
a manner similar to .NET.

33

CHAPTER 3

Using Multiple
Resource Files in VB 6

BEFORE WE GET rNTo the nitty-gritty of localizing code written in VS .NET I want to
take a bit of time to explain how to simulate some of the .NET resource file fea
tures from within VB 6. (I used this method about a year before I knew what .NET
was.) After all, there is quite a bit ofVB 6 code that works, and you will not want
to port it all. VB 6 will be around for some time to come.

In this chapter, I cover resource files in depth from the perspective ofVB 6. By
the end of this chapter you should know quite a lot about VB 6 resource files,
their faults, and how to overcome them.

• I show you how to set up and write resource files for easy maintenance.

• I show you how to use the WIN32 API to load resource DLLs at runtime.

• I show you how to load another languages on the fly without the program
having any prior knowledge of it.

• Finally, I show you a fallback method of loading resources similar to .NET.

All the code for this chapter can be downloaded from the Apress web site at
http: I /www. a press. com. Often when I read a programming book I prefer to enter
code myself. It is like riding a bicycle to work instead of driving. You tend to
notice so much more. If you are not doing any VB coding then perhaps you might
want to "take the car" and just download the code to see how it works. However, if
you are still programming in VB 6 I encourage you to "ride your bike" a little. By
the way, the methods used in this chapter appeared in an article I wrote for
Multilingual Magazine last year.

VB 6 Resource File Overview

The reason I developed this method of using resource files in VB is that I found
the resource files lacking in many ways. Resource files were a great boon to me as
an international programmer but after working with them for some time I wished
they had more functionality.

35

Chapter3

36

VB 6 allows only one resource file per project, and it cannot be external to the
program. This forces you to recompile an entire project whenever you make
a change to your resource file. VB links the resource file during compilation.
Internalizing the resource file makes for quicker loads and fewer files to deploy,
but the loss of flexibility is not worth it.

One of the samples that VB 6 comes with is an ATM example that is supposed
to illustrate how to use a resource file. It is very basic at best. This example makes
use of a resource file that has several translations of strings used in a hypothetical
ATM. The user is given the opportunity to press a button to instantly change the
display to one of several languages. This code uses the resource editor add-in for
VB to create the resource file. There are several problems with this method of
using resource files in VB, which I detail in the following section.

What VB 6 Resource Files Lack

First, the resource editor makes a compiled binary resource file directly. There is no
intermediate text file generated. How do you get a few thousand strings translated
using this method? This would be very difficult, user-intensive, and prone to error.

The next problem is one of syntax. The resource file mechanism in VB is
number-driven. This means that you can only refer to a string resource by its num
ber. As I have said in Chapter 2, it is much better and more maintainable to refer
to a resource by a literal constant. As all good programmers know (and I know
you are all good programmers), using hard-coded numbers as references is not
good programming practice. If the ATM example is followed for a large program,
it would soon be impossible to maintain.

The third problem is one of quantity. Since the resource file must be linked to
your program during compile, there can only be one. If you want multiple languages
then you need to put them all into the same resource file. This is a maintenance
nightmare. To add a language you would need to touch the original debugged
resource file. I have said it before, and it bears saying again, whenever you touch
code you greatly increase the chance of introducing bugs. The more compartmen
talized and modularized your code is (include external files) the better off you are.

These problems can be overcome with a little work and know-how. First of all
there is the problem of the included resource editor. You need a file that you can
send to a translator, then get back the same file but with strings translated.
Fortunately VB comes with a resource compiler called RC.exe to help with this.

External Resource Compiler

This external resource compiler allows you to make a resource file with a simple
text editor like NotePad. If the resource file you make is in the correct format you
can pass it through the resource compiler and get a binary .res file.

Using Multiple Resource Files in VB 6

The resource compiler directory on the disk has several files associated with
it. They are: Resource. txt, Rcdll.dll, Rc.exe, Rc.hlp. The rc.exe file is the actual
resource compiler executable. It is best to put these files in your path somewhere.
The resource compiler has quite a few options available to the programmer.
Consult the rc.hlp file and the resource. txt file for an explanation of all the things
you can do inside a resource file.

Here are the steps necessary to make an external resource file.

1. Open a text file called myresource.rc.

2. Edit the file and put in the following code:

#define STR OK 100

STRINGTABLE
BEGIN

STR_OK, "&OK"
END

3. Save this file and run rc. exe /r myresource. rc.

The result of these three steps is a compiled resource file called myResource. res.
The external resource compiler solves several of the problems I detailed in

the previous section. It allows you to make many resource files that can all con
tain the translated strings for just one language each. Also when you send out
a copy of the original file to be translated you get back only the translated copy.
You do not need to touch or recompile the original resource file. You have now
compartmentalized the external files.

There are several other things we would like to do as well to make the
method complete.

• Use literal constants as keys for string retrieval.

• Keep the resource files external to the program so you can have multiple
resource files. You need to be able to access the resources in external files.

• Have a fallback mechanism for strings that are not found in the trans
lated files.

• Load a new unknown language at runtime.

All this is achievable and is shown in the example in the following section.

37

Chapter3

38

A More Readable Resource File

First, let me explain a method to replace the numerical key with a constant. I use
a module called strdef.bas, which contains constants that resolve to keys in the
resource file. In this module I put all my string definitions such as: canst STR_LANG
= 1000. It is much easier to read code that uses LoadResString(STR_LANG) rather
than LoadResString(lOOO). I immediately know what the programmer (usually
myself) meant to do.

What about the resource file? Now that I have some constants in my code
that refers to resources can I do the same in the resource file itself? The resource
file structure for VB looks like this.

STRINGTABLE
BEGIN

1000 "French"

END

You could leave the resource file like this, and the line
LoadResString(STR_LANG) would work. However you also want your resource
file to be readable and maintainable. To achieve this you need to duplicate the
constants defined in the program, in the resource file as well. Your resource file
will look like this.

#define STR LANG 1000

STRINGTABLE
BEGIN

STR LANG

END

"French"

This takes some discipline but it will be worth it to the next programmer who
comes along and needs to read your code. I know I am duplicating the definitions
in two places, but being the smart programmer you will probably want to make
a small VB add-in that takes your strdef.bas module and writes out the definitions
to your external resource file. This is not rocket science, but making a VB 6 add-in
is out of the scope of this book.

Using Multiple Resource Files in VB 6

Making an External Resource File

Okay, now you know how to make an external resource file. You now need to
tackle the problem of keeping the files external so you can use as many resource
files as necessary in the program. This is a three-step process. It involves making
a resource file with a text editor, compiling it into a .res file, and making a DLL
out of the resource file. I have shown you how to use a text editor to make
a resource file and also how to use the RC program to compile the text file
into a binary resource file. The final step as far as the resource file is concerned
is to make the DLL necessary to contain the resource file.

There are several ways to make a DLL to contain your resource file. You will
concentrate on using VB to generate the necessary file. Why a DLL?You need to
use the Win32API command LoadLibrary() . This API command takes for an argu
ment either a DLL or an EXE. I chose a DLL over an EXE because the code is
smaller and I do not want anyone to think they can just click on the EXE name
and have something happen.

NOTE I also use a DLL for another reason. If you follow and
understand all the steps in this VB project you will realize
that I am doing by hand what .NET appears to be doing
behind the scenes. When I go through the .net example for
satellite resource files it will become clear.

The first thing you need is a compiled resource file. Let's say the resource file
contains Spanish translations of an original English resource file. The resource
file should be called es-ES.res. This convention is based on the two-letter ISO
abbreviation for a country.

Put this resource file in a directory where you will make your new DLL. Open
up VB and chose a new ActiveX DLL project. VB does not let you make a plain
DLL where you can export functions. Rename the project to es-ES and rename
the class to NoShow. On the VB menu click on Project-Add File. Choose the
resource file and add it to the project. You are now done. It is that easy. The empty
class is a requirement of VB when making an ActiveX D LL. The only thing you use
in this DLL is the resource file.

Save and compile the project. The file produced will be es-ES.dll. It will contain
essentially nothing but the resource file. It is interesting to note that this is a COM
object. However, you will not use it as such so there is no need to register it.

One of the keys to making the most out of resource files is being able to
make, edit, and compile the resource file external to the VB IDE as I have already
shown you. By being able to create an external resource file you will then be able
to make a resource DLL. Making a resource DLL is crucial to being able to use

39

Chapter3

40

external resources. It is the resource DLL that your new project will load. When
the resource DLL is loaded you can then access any of the strings with the new
function I am about to describe. It is important to note here that any resource
DLL you make for a particular project should have the same constants associated
with the particular strings. For example, in English I would have:

#define str fr 500

STRINGTABLE
BEGIN

Str fr. "French"
END

If translated to French this would be inside the French resource file.

#define str fr 500

STRINGTABLE
BEGIN

Str fr "Francais"
END

If done this way then any translated string resource file could replace the
original resource file with no code changes. I could have LoadResString(Str_fr) in
my code, and I would get the correct string no matter what language I use.

There are several Windows API functions associated with localization of
applications. I examine two of them. I also describe a way to wrap these API calls
inside some VB functions. One of these functions replaces the LoadResString()
function. The LoadResStringO function that VB provides returns a string from the
embedded resource file if you provide it with a numerical argument that identi
fies the string.

Loading Resources at Runtime

This is all fine for making and using resource files. How do you put this all
together so you can change resource files, and therefore languages, at runtime?
The answer lies in using the Windows API. The API functions you use are
LoadLibraryO and LoadString().

In order to use these functions you need to load the API viewer add-in.
Choose Add-ins from the VB IDE menu and then click API Viewer. To use the
API viewer, first you need to load the Windows API text file. While in the Viewer
click File then Load Text File to bring up the list of API text files available to you.

Using Multiple Resource Files in VB 6

Choose Win32API. txt. The "Available Items" box is populated by windows
API functions.

Add the LoadLibrary and LoadString functions to the Selected Items box;
then click the Insert button. The API declarations are automatically copied to the
current open form. This is all the preparation needed to use these two Windows
API functions.

The GetStrings.bas Module

Let's make a module that has three functions in it that allow us to change lan
guages between English and, for simplicity's sake, one other language. However the
idea can be expanded to include any number oflanguages. For this example
the DLL filename will be es-ES.dll. Included in this module are the Windows
API function declarations LoadLibrary and LoadString. You use this module in
your example project. This module is self-contained in that it can be used in any
project with no code change. It is called GetStrings.bas. The code for this module
in its entirety is in Listing 3-1.

Listing 3-1. The GetString.bas example

Option Explicit

Public Declare Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" _
(ByVal lpLibFileName As String) As Long
Public Declare Function LoadString Lib "user32" Alias "LoadStringA" _
(ByVal hinstance As Long, ByVal wiD As Long, ByVal lpBuffer As String, _
ByVal nBufferMax As Long) As Long

Private STRING_RESOURCE As Long
Private UseEnglish As Boolean

Public Function LoadStringRes(wiD As Long) As String
Dim Buff As String * 80
Dim BytesCopied As Long

BytesCopied = o
If Not UseEnglish Then

BytesCopied = LoadString(STRING_RESOURCE, wiD, Buff, Len(Buff))
End If

If BytesCopied Then
LoadStringRes = Buff

41

Chapter3

42

Else
LoadStringRes = LoadResString(wiD)

End If

End Function

Public Function LoadAltlanguage() As Boolean

On Error GoTo BadDLL
If STRING RESOURCE = 0 Then

STRING RESOURCE = Loadlibrary(InstallDirectory & "\es-ES.dll")
End If

If STRING RESOURCE Then
LoadAltlanguage = True
UseEnglish = False

Else
LoadAltlanguage = False

End If

Exit Function

BadDLL:
Dim s As String
s = "Error loading DLL." & vbCrL f
s = s & "InstallDirectory not defined" & vbCrlf
s = s & "Or missing es-ES.dll"

MsgBox s, vbCritical

End Function

Public Sub UseEnglishlanguage()
UseEnglish = True

End Sub

Listing 3-2 is an excerpt from the code in Listing 3-l. It is a replacement for
the VB function LoadResString(). It is called LoadStringRes().

Using Multiple Resource Files in VB 6

Listing 3-2. Replacing LoadResString() with LoadStringRes()

Public Function LoadStringRes(wiD As Long) As String
Dim Buff As String * 80
Dim BytesCopied As Long

BytesCopied = 0

If Not UseEnglish Then
BytesCopied = LoadString(STRING_RESOURCE, wiD, Buff,

Len(Buff))
End If

If BytesCopied Then
LoadStringRes Buff

Else
LoadStringRes LoadResString(wiD)

End If

End Function

Notice that this function returns a string from either the embedded resource
file or from the resource DLL you previously loaded. This is important to note
because it provides your fallback mechanism. If you do not find the requested
string in the external resource file then you will find it in the embedded resource
file. The nature of the LoadString API is that it will return a zero if the file is not
found (essentially when STRING_RESOURCE = 0). This is another type of fall
back. When you get to the .NET examples you will see that this is a major part of
the .NET method of handling resource files.

The LoadString() Call

Let's take a minute to explain the arguments to the LoadString() call. The first
argument STRING_RESOURCE, is a handle to the loaded DLL. If the DLL is not
loaded, this handle is zero and the call fails to return zero bytes copied into the
buffer. The second argument is the string identifier. The third argument is a fixed
length buffer where the string is copied. The last argument is the maximum
number of characters to be copied. Note that I set this for 80 characters.

Before you ask, I can say that, yes, it does work for Unicode resource strings.
This means that you can have a resource file with Korean strings and all works
well. Remember that VB stores strings internally in two-byte Unicode fashion.
Setting the string length for 80 characters actually uses 160 bytes. Also I use the
len() function to determine string length. This function is Unicode-aware.

43

Chapter3

44

If the LoadString() call fails, or English is chosen as a language, then the nor
mal VB LoadResString() function is called to return the string to the user. This
wrapper works with or without an external resource file loaded. It can be used as
a drop-in replacement for the normal LoadResString() function that VB provides.

There is a function in the GetStrings.bas module called LoadAltLanguage().
This function loads the DLL into memory and assigns the handle to the
STRING_RESOURCE variable. The code for this subroutine is shown in Listing 3-3.

Listing 3-3. Loading an alternate language

Public Function LoadAltLanguage() As Boolean

' If not o then you have already loaded it.
If STRING RESOURCE = 0 Then

STRING_RESOURCE = Loadlibrary(App.Path & "\es-ES.dll")
End If

If STRING RESOURCE Then
LoadAltlanguage = True
UseEnglish = False

Else
LoadAltlanguage = False

End If
End Function

This function uses the LoadLibraryO API function to load your language DLL
into memory. The return value from this call is the handle to the DLL. Notice that
successful loading of the DLL automatically puts the program in the alternate
language mode.

Last, a small but necessary subroutine is also included. You need to somehow
change from your alternate language to English. Here it is:

Public Sub UseEnglishlanguage()
UseEnglish = True

End Sub

Other than declaring the API functions, this is all there is to changing languages
in VB.

The Full Example

The example project is a simple one that has several controls on the screen. These
controls all have text associated with them. There are also three buttons. One
changes text to English, one changes text to Spanish, and the last is a quit button

Using Multiple Resource Files in VB 6

to exit the application. This project has one form, two BAS modules, and an
embedded resource file. The screen shot of the GUI form is shown in Figure 3-1.

Listing 3-4 shows the complete code for the sample. Not much here, is there?

Listing 3-4. Calling the code

Option Explicit

Private Sub cmdEnglish_Click()
Call UseEnglishLanguage
Call LoadStrings

End Sub

Private Sub cmdQuit_Click()
End

End Sub

Private Sub cmdSpanish_Click()
Call LoadAltLanguage
Call LoadStrings

End Sub

Private Sub Form_Load()
Call LoadStrings

End Sub

Private Sub LoadStrings()
Caption = LoadStringRes(STR_DYNAMICRESOURCE)
lblHeader.Caption = LoadStringRes(STR_LANGUAGE)
lblLabel.Caption = LoadStringRes(STR_BORDERLABEL)
cmdEnglish.Caption = LoadStringRes(STR_ENGLISH)
cmdSpanish.Caption = LoadStringRes(STR_SPANISH)
cmdQuit.Caption = LoadStringRes(STR_QUIT)
txtText.Text = LoadStringRes(STR_NORMALTEXTBOX)
chkCheck.Caption = LoadStringRes(STR_CHECKBOX)

End Sub

Making the String Definition File

The first thing you need to do is start a new project and then make a string defi
nition file. This module file will hold named constants that resolve to integers.
Integer keys are the formats necessary for identifying resources in VB 6.

45

Chapter3

46

1. Make a new standard project in the same directory as the DLL project.
Call it MultiResource.

2. Name the first form "GUI".

3. Add a module called strings. bas. This module contains all the string
definitions used in this project.

4. Add the code shown in Listing 3-5 to the strings. bas module.

Listing 3-5. Adding constants that refer to the resource file

Public Const STR LANGUAGE = 1000
Public Const STR ENGLISH = 1001
Public Const STR SPANISH = 1002
Public Const STR_BORDERLABEL = 1003
Public Const STR_NORMALTEXTBOX = 1004
Public Const STR_CHECKBOX = 1005
Public Const STR_QUIT = 1006
Public Const STR DYNAMICRESOURCE = 1007

Next, add the module called GetStrings.bas. This module is where you add all the
code I described previously to load and retrieve strings.

Make the Form

The next thing to do is populate the form with the controls shown in Figure 3-1.

Oii Dynam1c Resource File loading _,JQJ~ - .
The Cunent Language is EngrJSh

: : I : : !This 1s a n01mal te~t bo~
. Span1sh

: : : . : : r This is a Check box

Quit 1: ;;:
..........

Figure 3-1. Resource file test form

Using Multiple Resource Files in VB 6

Open this form and in the load procedure add the code in Listing 3-6.

Listing 3-6. Loading the strings

Private Sub Form_Load()
Call LoadStrings

End Sub

Private Sub LoadStrings()
Caption = LoadStringRes(STR_DYNAMICRESOURCE)
lblHeader.Caption = LoadStringRes(STR_LANGUAGE)
lbllabel.Caption = LoadStringRes(STR_BORDERLABEL)
cmdEnglish.Caption = LoadStringRes(STR_ENGLISH)
cmdSpanish.Caption = LoadStringRes(STR_SPANISH)
cmdQuit.Caption = LoadStringRes(STR_QUIT)
txtText.Text = LoadStringRes(STR_NORMALTEXTBOX)
chkCheck.Caption = LoadStringRes(STR_CHECKBOX)

End Sub

This code populates the text fields of all the controls with the correct strings.
Note that you use your new string function. Add some code to the buttons to
change languages and to exit the program when done. The code for this is shown
in Listing 3-7.

Listing 3-7. Switching languages

Private Sub cmdEnglish_Click()
Call UseEnglishLanguage
Call LoadStrings

End Sub

Private Sub cmdSpanish_Click()
Call LoadAltlanguage
Call LoadStrings

End Sub

Private Sub cmdQuit_Click()
End

End Sub

47

Chapter3

48

Creating Multilingual Resource Files

The last thing you do is to create two resource files. One contains the English
strings and the other contains the Spanish strings. Call the one with the
English strings "strings.res." Once the resource files are compiled you need to
make a DLL out ofthe Spanish resource file. Remember to call the DLL es-ES.dll.

Put the code shown in Listings 3-8 and 3-9 in your two resource files.

Listing 3-8. English resource file called strings.rc

#define STR LANGUAGE 1000
#define STR ENGLISH 1001
#define STR SPANISH 1002
#define STR BORDERLABEL 1003
#define STR NORMALTEXTBOX 1004
#define STR CHECKBOX 1005
#define STR _QUIT 1006
#define STR DYNAMICRESOURCE 1007

STRINGTABLE
BEGIN

END

STR LANGUAGE
STR ENGLISH
STR_SPANISH
STR BORDERLABEL
STR NORMALTEXTBOX
STR CHECKBOX
STR_QUIT
STR DYNAMICRESOURCE

"The Current Language is English"
"English"
"Spanish"
"Label: embedded resoure file"
"Text: embedded resoure file"
"Check box: embedded resoure file"
"Quit: embedded"
"Dynamic Resource File Loading"

Listing 3-9. Spanish resource file called es-ES.rc

#define STR LANGUAGE 1000
#define STR ENGLISH 1001
#define STR SPANISH 1002
#define STR BORDERLABEL 1003
#define STR NORMALTEXTBOX 1004
#define STR CHECKBOX 1005
#define STR_QUIT 1006
#define STR DYNAMICRESOURCE 1007

Using Multiple Resource Files in VB 6

STRINGTABLE
BEGIN

END

STR LANGUAGE
STR ENGLISH
STR SPANISH
STR_BORDERLABEL
STR NORMALTEXTBOX
STR CHECKBOX
STR_QUIT
STR DYNAMICRESOURCE

Finish It Off

"The Current Language is Spanish"
"English"
"Spanish"
"Label: Satellite resource file"
"Text: Satellite resource file"
"Check box: Satellite resource file"
"Quit : Satellite"
"Dynamic Resource File Loading"

Jump back into your VB project and add the English resource file to the project. To
do this click on Project-Add File, and then choose the resource file. You should
now have a project with one form, two .bas modules, and one resource file. At this
point you can run the program. Figure 3-2 shows how your project should look.

lio Dynamic Resource File loading I!!I~EJ

; J : . IT his is a normaltext box
Span1sh . .

. : : . : : n This IS a Check box

Figure 3-2. All your project files

Click the English button to see the text in English, and click on the Spanish
button to see the text in Spanish.

Adding a New Language

Now you modify the program a little to allow adding a new language at runtime
without chapging any code on the target machine. What do I mean by this?

49

Chapter3

50

Suppose you had a program that needed to run 24x7 and you needed another
language that was not included with your installation. I show you how to handle
this. I am going to change the example somewhat to allow the program to keep
running. I provide a new combo box that detects any new language that has been
put on the system. When you choose the new language all the strings are
replaced. You (the user) never had to do a thing. Keep in mind that this is a some
what simplistic model and lacks some robustness for the sake of clarity. Listing
3-10 is the new GetStrings. bas module.

NOTE Some countries that speak the same language have
major regional differences in words or phrases. Be safe and
put everything in a resource file and get it translated.

Listing 3-10. New GetStrings() module

Option Explicit

Public Declare Function LoadLibrary Lib "kernel32" Alias "LoadlibraryA"
(ByVal lpLibFileName As String) As Long
Public Declare Function LoadString Lib "user32" Alias "LoadStringA" _

(ByVal hinstance As Long, ByVal wiD As Long, ByVal lpBuffer As String, _
ByVal nBufferMax As Long) As Long
Public Declare Function FreeLibrary Lib "kernel32"

(ByVal hLibModule As Long) As Long

Public Type ResourceFiles
fname As String
lang As LANGUAGES_ tag

End Type
'This tag is used to index into the embedded resource file
Enum LANGUAGES_tag

ln FIRSTLANG = 500
ln AUSTRALIAN
ln NEWZEALAND
ln ENGLAND
ln USA
ln SPAIN
ln MEXICO
ln FRENCHCANADIAN
ln FRENCH
ln LASTLANG

End Enum
Public ResFileName(ln_LASTLANG - ln FIRSTLANG - 1) As ResourceFiles
Public LangDLL As String

Private STRING RESOURCE As Long

Public Function LoadStringRes(wiD As Long) As String
Dim Buff As String * 80
Dim BytesCopied As Long

BytesCopied = LoadString(STRING_RESOURCE, wiD, Buff, Len(Buff))

If BytesCopied Then
LoadStringRes Buff

Else
LoadStringRes LoadResString(wiD)

End If

End Function

Public Sub FreeResources()
If STRING RESOURCE Then FreeLibrary (STRING_RESOURCE)

End Sub

Public Function LoadAltLanguage() As Boolean

Call FreeResources
STRING_RESOURCE = LoadLibrary(LangDLL)
If STRING RESOURCE Then

LoadAltLanguage True
Else

LoadAltLanguage False
End If

End Function

Public Sub InitResArray()
Dim rf As ResourceFiles

rf.fname = "en-US"
rf.lang = ln_USA
ResFileName(o) = rf

Using Multiple Resource Files in VB 6

51

Chapter3

52

rf.fname = "es-ES"
rf.lang = ln_SPAIN
ResFileName(l) = rf

rf.fname = "en-GB"
rf.lang = ln_ENGLAND
ResFileName(2) = rf

rf.fname = "en-AU"
rf.lang = ln_AUSTRALIAN
ResFileName(3) = rf

rf.fname = "en-NZ"
rf.lang = ln_NEWZEALAND
ResFileName(4) = rf

rf.fname = "es-MX"
rf.lang = ln_MEXICO
ResFileName(S) = rf

rf.fname = "fr-CA"
rf.lang = ln_FRENCHCANADIAN
ResFileName(6) = rf

rf.fname = "fr-FR"
rf.lang = ln_FRENCH
ResFileName(7) = rf

End Sub

I have added a type, an enum, and an array at the top. I also added a type
variable that defines the DLL to load.

Public Type ResourceFiles
fname As String
lang As LANGUAGES_tag

End Type

This new type is used to hold the file name of the resource file and a number
that will resolve to a string in the embedded resource file. The enum is defined in
Listing 3-11.

Using Multiple Resource Files in VB 6

Listing 3-11. Language enumeration

Enum LANGUAGES_tag
ln_FIRSTLANG = 500
ln AUSTRALIAN
ln NEWZEALAND
ln ENGLAND
ln USA
ln SPAIN
ln MEXICO
ln FRENCHCANADIAN
ln FRENCH
ln LASTLANG

End Enum
Public ResFileName(ln_LASTLANG - ln_FIRSTLANG - 1) As ResourceFiles

The enum defines the languages I consider possible in my program. For pro

duction purposes I would include all the ISO languages. Note that I have added

a sentinel to the end of the enum. Keep it there. If you want to add languages then

add them before the ln_IASTIANG sentinel The ResFileName array is sized to fit

the number of languages and will hold variables of the new type you just made.
The InitResArray() function in this module fills the ResFileName array with

all the necessary information to use any of these languages. See Listing 3-12.

Listing 3-12. Loading a new language

Public Sub FreeResources()

If STRING RESOURCE Then FreeLibrary (STRING_RESOURCE)

End Sub

Public Function LoadAltLanguage() As Boolean

Call FreeResources

STRING_RESOURCE = LoadLibrary(LangDLL)

If STRING RESOURCE Then
LoadAltLanguage = True

Else
LoadAltLanguage = False

End If

End Function
53

Chapter3

54

In Listing 3-12 I have added the FreeResources routine in the hope that it will

actually unload the DLL when I'm finished with it. The LoadAltLanguage() rou

tine now has no error message if it cannot load a resource DLL. This was taken

out because no errors should be thrown unless all avenues of resource searching

are completed. This means that an error is raised only if after searching for the

proper resource the program does not find it in the embedded resource file.

NOTE There is no such thing as UseEnglish anymore and
there is no UseEnglishO routine either. You should not count
on English as being in the embedded resource file. You are,
after all, global. If you want English as a language you need
to supply it as a satellite resource like all the rest.

I have made some changes in the GUI portion of this project as well. The

screen now looks like Figure 3-3.

X

The Cutten!~ 11 Engi;h

I usA
Jlabel E ngUh Sat~e resoure tile

IT e><t English Satellrle re•o .. e file

r:: Check booc Englt;h Satellite resou/e fie

Figure 3-3. New resource CUI screen

I have added a combo box and taken away the Spanish and English buttons.

Listing 3-13 is the code for the new screen.

Listing 3-13. New CUI code to change languages

Option Explicit

Private Sub cmblanguage_C1ick()
Dim k As Integer

For k = LBound(ResFi1eName) To UBound(ResFi1eName)

Using Multiple Resource Files in VB 6

If ResFileName(k).lang = cmbLanguage.ItemData(cmbLanguage.Listindex) Then

LangDLL = App.Path & "\" & ResFileName(k).fname & _

End If
Next

Call LoadAltlanguage
Call LoadStrings

End Sub

"\" & ResFileName(k).fname & ".dll"

Private Sub cmbLanguage_GotFocus()

Call Findlanguages

End Sub

Private Sub cmdQuit_Click()

Unload Me

End Sub

Private Sub Form_Load()

Call InitResArray
Call LoadStrings
Call Findlanguages

End Sub

Private Sub Form_Unload(Cancel As Integer)

Call FreeResources

End Sub

Private Sub LoadStrings()
Caption = LoadStringRes(STR_DYNAMICRESOURCE)

lblHeader.Caption = LoadStringRes(STR_LANGUAGE)

lbllabel.Caption = LoadStringRes(STR_BORDERLABEL)

cmdQuit.Caption = LoadStringRes(STR_QUIT)

55

Chapter3

56

txtText.Text = LoadStringRes(STR_NORMALTEXTBOX)
chkCheck.Caption = LoadStringRes(STR_CHECKBOX)

End Sub

Private Sub Findlanguages()
Dim LangFile As String
Dim k As Integer

cmblanguage.Clear
For k = LBound(ResFileName) To UBound(ResFileName)

'form subdirectories with the array names

Next

LangFile = App.Path & "\" & ResFileName(k).fname & _
"\" & ResFileName(k).fname & ".dll"

If Dir(LangFile) <> "" Then
cmblanguage.Additem LoadStringRes(ResFileName(k).lang)
cmblanguage.ItemData(cmblanguage.Newindex) = ResFileName(k).lang

End If

If cmbLanguage.ListCount Then cmblanguage.Listindex = o

End Sub

When the program starts I call a function called FindLanguages(). As can be
seen in Listing 3-13, this function searches a particular path for any resource file
that matches the list I created in the ResFileName array. This path corresponds
with the search path, directory name, and filename conventions in .NET. As you
can see, you are getting closer to what .NET does for you without all this hassle.
Figure 3-4 shows the directory structure necessary for this to work. The
GUI directory is the executable directory.

Using Multiple Resource Files in VB 6

El·~ GUI
en-US

es-ES~
fr-FR

Figure 3-4. Directory tree showing language subdirectories

Notice that all my subdirectories are named according to the ISO culture
specification.

Here is how I set up the program.

Private Sub Form_Load()

Call InitResArray
Call LoadStrings
Call Findlanguages

End Sub

The form_load needs to first set up the resource array, and then load what
ever strings are in the embedded resource file, and find all the available
languages. The program is now running.

Start the Program

Choose a language from the combo box, and the strings will change in the con
trols. This is done with the code in Listing 3-14.

Listing 3-14. Choosing a new language

Private Sub cmblanguage_Click()
Dim k As Integer

For k = LBound(ResFileName) To UBound(ResFileName)

If ResFileName(k).lang = cmbLanguage.ItemData(cmblanguage.Listindex) Then
LangDLL = App.Path & "\" & ResFileName(k).fname & _

"\" & ResFileName(k).fname & ".dll"

57

Chapter3

58

End If

Next

Call LoadAltLanguage
Call LoadStrings

End Sub

I have previously assigned the language to each item in the combo box. In

this routine I search through the resource-file-name-array to get the file name

that is associated with that language. I then load the LangDLL variable with the

path and filename of the resource DLL. Finally I load the DLL and then load

the strings.

Detecting a New Language

The following code snippet shows how to detect a new language. All I need to do

is capture the got-focus event of the language combo box.

Private Sub cmbLanguage_GotFocus()

Call FindLanguages

End Sub

One line in the GotFocus event for the combo box is all that is necessary.

I call the FindLanguage routine, which goes out and fills the combo box with any

new languages.
Before compiling and running this program you need to change all the

resource files. See Listings 3-15 through 3-18. They are the resource files for all

the languages we are using in this example.

Listing 3-15. New resource file Strings. rc

#define STR LANGUAGE 1000

#define STR ENGLISH 1001

#define STR SPANISH 1002

#define STR BORDERLABEL 1003

#define STR NORMALTEXTBOX 1004

#define STR CHECKBOX 1005

#define STR_QUIT 1006

#define STR DYNAMICRESOURCE 1007

STRINGTABLE
BEGIN

END

501

502

503

504

505

506

507

508

STRINGTABLE
BEGIN

END

STR LANGUAGE
STR ENGLISH
STR SPANISH
STR BORDERLABEL
STR NORMALTEXTBOX
STR CHECKBOX
STR_QUIT
STR DYNAMICRESOURCE

"Australian"
"New Zealand"
"England"
"USA"
"Spain"
"Mexico"
"French Canadian"
"French"

"The Current Language is English"
"English"
"Spanish"
"Label: embedded resource file"
"Text: embedded resource file"
"Check box: embedded resource file"
"Quit: embedded"
"Dynamic Resource File Loading"

Using Multiple Resource Files in VB 6

Listing 3-16. Spanish resource file es-ES.rc

#define STR LANGUAGE
#define STR ENGLISH
#define STR SPANISH
#define STR BORDERLABEL
#define STR NORMALTEXTBOX
#define STR CHECKBOX
#define STR_QUIT
#define STR DYNAMICRESOURCE

STRINGTABLE
BEGIN

STR LANGUAGE
STR ENGLISH
STR SPANISH
STR BORDERLABEL
STR NORMALTEXTBOX
STR CHECKBOX

1000

1001

1002

1003

1004

1005

1006

1007

"The Current Language is Spanish"
"English"
"Spanish"
"Label: Spanish Satellite resource file"
"Text: Spanish Satellite resource file"
"Check box: Spanish Satellite resource file"

59

Chapter3

60

STR_QUIT "Quit: Satellite"
STR DYNAMICRESOURCE "Dynamic Resource File Loading"

END

Listing 3-17. USA resource file en- US. rc

#define STR LANGUAGE 1000
#define STR ENGLISH 1001
#define STR SPANISH 1002
#define STR BORDERLABEL 1003
#define STR NORMALTEXTBOX 1004
#define STR CHECKBOX 1005
#define STR_QUIT 1006
#define STR DYNAMICRESOURCE 1007
STRINGTABLE
BEGIN

END

STR LANGUAGE
STR ENGLISH
STR SPANISH
STR BORDERLABEL
STR NORMALTEXTBOX
STR CHECKBOX
STR_QUIT
STR DYNAMICRESOURCE

"The Current Language is English"
"English"
"Spanish"
"Label: English Satellite resource file"
"Text: English Satellite resource file"
"Check box: English Satellite resource file"
"Quit: Satellite"
"Dynamic Resource File Loading"

Listing 3-18. French resource file fr-FR. rc

#define STR LANGUAGE 1000
#define STR ENGLISH 1001
#define STR SPANISH 1002

#define STR BORDERLABEL 1003
#define STR NORMALTEXTBOX 1004
#define STR CHECKBOX 1005
#define STR_QUIT 1006
#define STR DYNAMICRESOURCE 1007
STRINGTABLE
BEGIN

STR LANGUAGE
STR ENGLISH
STR SPANISH
STR BORDERLABEL
STR NORMALTEXTBOX

"The Current Language is French"
"English"
"French"
"Label: FrenchSatellite resource file"
"Text: FrenchSatellite resource file"

Using Multiple Resource Files in VB 6

END

STR CHECKBOX
STR_QUIT
STR DYNAMICRESOURCE

"Check box: FrenchSatellite resource file"
"Quit: Satellite"
"Dynamic Resource File Loading"

Compile all these resource files in their proper directories and make them
into DLLs. Once you do this, you can see if you can make this program work. Try
these steps.

l. Make the directory structure as I have done with English, Spanish, and
French resource subdirectories under the executable directory.

2. Make each of the resource file DLLs properly in each of these directories.
Use the correct naming convention and so on.

3. Rename the French DLL to something else.

4. Run the program. You should see only USA and Spain in the combo
box, and you should be able to see the new strings as you switch
between them.

5. While the program is running, rename the French DLL to its
proper name.

6. Click on the combo box again and, voila, you will see French as a choice.
Choose French and you will see the strings from the French resource
file appear.

You have managed to add the French language at runtime.
In case you did not catch it you should notice that I have more strings in the

embedded strings.rc resource file than in the others. In the FindLanguage() rou
tine I have this piece of code.

If Dir(LangFile) <> "" Then
cmblanguage.Add!tem LoadStringRes(ResFileName(k).lang)
cmblanguage.ItemData(cmblanguage.Newindex) = ResFileName(k).lang

Note that I am getting the names of the languages from a resource file and
filling the combo box with them. I am forcing a fallback to the embedded
resource file to get these strings. At start-up the embedded resource file is all
there is, so this is the logical place for them. Once I have loaded an external string
resource DLL this line of code tries to get the string from that other resource file.
It will fail and fallback to the embedded resource file.

The fallback mechanism works!

61

Chapter3

62

NOTE You may get an error making a DLL after you

have run the main program. The error will say, "Permission

denied." If this happens you find that you need to exit VB

completely between editing and running the main program

and compiling any of the DLLs. The reason for this is that

once you run the main program and load a DLL VB keeps hold of it. If you

then swap projects in VB without exiting and reentering VB you get an

error when you try to compile the DLL. The program does use the

FreeLibrary() API but sometimes this does not work.

Summary

What I have shown you with this example is a way to make VB use external

resource files with a fallback mechanism. Let's review the steps in doing this.

l. Make a generic bas module that contains the code necessary to pull in
resource files from external resource DLLs. This code also has a fallback

mechanism to load a string from the embedded resource file if it is not

found in the external one.

2. Generate a resource file to include in the project. This resource file will
be embedded in the executable during linking. This resource file
should be the native language.

3. Generate external resource files for as many languages as needed. Name
these resource files according to the ISO specification.

4. Compile the external resource files and make them into DLLs. Put the

resource DLLs into a searchable directory.

5. Make a program that uses the methods in the bas module to

retrieve string.

You now have a resource file mechanism similar to that in .NET. A lot of work

isn't it? Well your program is now very flexible. It also allows you to add or delete

a language at runtime. As you move on you will see that all that I have done here

is internal to .NET.
The next chapter gets into the heart of the .NET localization capability. I dis

cuss the System. Globalization namespace. You also see many examples in both

VB .NET and C#

CHAPTER 4

The Globalization
Names pace

THis CHAPTER INTRODUCES you to the .NET way of doing things and explains all the
classes, interfaces, and important methods involved in localizing a .NET appli
cation using the System. Globalization names pace. There is quite a lot to learn in
this chapter. The globalization features of .NET are very comprehensive indeed .

. NET is fully object-oriented and as such takes advantage of polymorphism
whenever possible. The globalization features are no different. Before you delve
too deeply into this and the next two chapters, let's do a little review on interfaces
and classes.

Interfaces and Classes

An interface can be described as a class with no implementation details. Like
classes, interfaces define a set of methods, properties, and events. Interfaces do
not define any data. In some ways, an interface can be thought of as a class with
pure virtual functions.

Other classes can inherit from a base class with pure virtual functions. One
of the differences between a virtual base class and an interface is that when
you inherit from an interface you are required to implement all the interface's
functionality. A derived class is not required to override a base class' methods.
(You can force this, but it is an option and not inherent in the definition of
a class.)

Class inheritance is often used in place of interface inheritance. It is, how
ever, often used incorrectly. A class should inherit from another class only if it
needs to extend the functionality of that class. A class should inherit an interface
if that class has only a loose relationship with that interface. Let's take a small
example-a dog.

You could have a base class called Dog that has methods that are common to
all dogs. You could have an interface called mouth that has methods and proper
ties that are common to all mouths. You now want to create a beagle. Your beagle
would inherit from the base class of Dog because it is a dog. You want all the
functionality of a dog except that you want to extend this functionality with

63

Chapter4

64

something particular to a beagle such as baying all night and keeping the neigh
bors awake. Your beagle also needs a mouth. You would implement the mouth
interface. Your beagle is a dog, but it is not a mouth. It has a mouth. See the dif
ference? Your little sister would not inherit from a dog (hopefully), but she would
implement the mouth interface.

Don't you hate it when books talk about polymorphism in terms of animals?
How are you supposed to transfer that to a program?

Well, here's a more practical example of a class vs. an interface. Your company
makes printers. Your job is to write printer drivers. You make a base class called
Printer, which includes software that takes care of functions that are common to
all printers whether they are LaserJet printers or inkjet printers. Such functions
include communications methods, paper-sensing, power-on sequence, and so
forth. Now you derive classes from this base class that extends the functionality to
be specific to LaserJet printers and specific to inkjet printers. An inkjet printer is
a printer. A LaserJet printer is a printer. You would add a function to the LaserJet
printer such as LowTonerDetect(). You would add a function to the inkjet printer
such as CarriagePosition(). You have extended the base class.

Some of your high-end printers have an envelope feature. What you do is
make an interface called HandleEnvelope. Here you would have methods called
DetectEnvelope(), ThrnOffpaperBin(), WriteSideways(), and so on. All these
methods are necessary for any printer you make that handles envelopes. It is just
that each printer needs a slightly different implementation. In one of your
derived LaserJet printer classes you inherit this interface. A LaserJet printer is
a printer, but it has a feature to handle envelopes.

You could have made the envelope features virtual functions in the base class
and override them when necessary, but you would not be forced to do so. An
interface forces you to implement all its functionality. You would also start to drift
from the true meaning of class vs. interface .

. NET has several classes and interfaces that have to do with globalization.
Keep this very brief review of the differences between classes and interfaces in
mind when I go over the globalization classes and interfaces. It will make it easier
to understand why they exist and when to use one or the other.

All the examples in this chapter are provided in both VB .NET and inC#.
While they are much the same, there are some differences. Since there is an
opportunity in .NET to make a program that has a mix of programming lan
guages, it only seems right.

System.Globalization Namespace

System. Globalization namespace is the mother of all namespaces that has to do
with globalization in .NET; hence the name. This namespace includes all the

The Globalization Namespace

classes necessary to distinguish one culture from another and to describe each
culture in detail. It also has classes that let you make a new culture from scratch.

As a namespace, it does not do anything. It just allows you to refer to any of
the classes within it by direct name instead of by the fully qualified name. The
classes and enumerations this namespace contains are what do the real work.

Calendar Class

Calendar class has implementations for several of the most popular calendars in
use today. Table 4-llists these calendar implementations.

Table 4-1. Calendar Implementations

CALENDAR

Gregorian

Julian

Hebrew

Japanese

Hijri

Korean

Taiwan

ThaiBuddhist

USE

World standard since 1500s.

Rarely used. Was replaced by Gregorian. Still used by
some monks.

Official calendar of Israel. Used for religious purposes.

Lunar calendar still used to plan some events.

Official calendar of some Islamic countries. Used for
religious purposes.

Lunar calendar still used for festivities.

Same as Gregorian except year and era are different.

Same as Gregorian except year and era are different.

To use these calendars properly you need to be able to manipulate time
within them. There is a rich set of functions to do just this. For instance, it is pos
sible to add any time frame to a particular date from milliseconds to years. Let's
look at a small console project that defines a calendar and manipulates dates
(see Listing 4-1).

Listing 4-1. Calendar output

VB .NET

Imports System
Imports System.Globalization

Module Modulel

65

Chapter4

66

Sub Main()
Dim MyCalendar As Calendar = New GregorianCalendar()
Dim MyDate As New DateTime(2001, 8, 22, 15, 30, o, 0)
'Dim MyCalendar As Calendar = New HebrewCalendar()
Dim MyCulture As Culturelnfo = New Culturelnfo("es-ES")

'ToDateTime is not culture aware
Console.Writeline(MyCalendar.ToDateTime(MyDate.Year, _

MyDate.Month, MyDate.Day, MyDate.Hour, _
MyDate.Minute, o, o))

'Remeber these are objects so use the ToString() method
'to make it culture aware
Console.Writeline(MyCalendar.AddMinutes(MyDate, _

15).ToString("G", MyCulture))

'See what the last 2 digit year is you can use to represent
. 'this century
Console.Writeline(MyCalendar.TwoDigitYearMax)
'This should be 1932 in Gregorian
Console.Writeline(MyCalendar.ToFourDigitYear(32))
'This should be 2028 in Gregorian
Console.Writeline(MyCalendar.ToFourDigitYear(28))

Console.Readline()
End Sub

End Module

C# .NET

using System;
using System.Globalization;

namespace Calendar_Console_in_C_Sharp
{

Ill <summary>
Ill Summary description for Class1.
Ill </summary>
class Class1
{

static void Main(string[] args)
{

The Globalization Namespace

Calendar MyCalendar = new GregorianCalendar();
Culturelnfo MyCulture = new Culturelnfo("es-ES");
DateTime MyDate = new DateTime(2001,8,22,15,30,o,o);

//ToDateTime is not culture aware
Console.WriteLine(MyCalendar.ToDateTime(MyDate.Year,

MyDate.Month,
MyDate.Day,
MyDate.Hour,
MyDate.Minute,

o, o));

}

}

}

//Remember these are objects, so use the ToString()
//method to make it culture aware
Console.Writeline(MyCalendar.AddMinutes(MyDate, 15).

ToString("G",
MyCulture));

//See what the last 2 digit year is you can use to
//represent this century
Console.WriteLine(MyCalendar.TwoDigitYearMax);
//This should be 1932 in Gregorian
Console.Writeline(MyCalendar .ToFourDigitYear(32));
//'This should be 2028 in Gregorian
Console.Writeline(MyCalendar.ToFourDigitYear(28));

Console.ReadLine();

The output of this code is:

8/22/2001 15:30:00
22/08/2001 15:45:00
2029
1932
2028

NOTE My development machine is set for military time. If
your machine is set to display time in a 12 hr clock you
would get 3:30:00 PM instead of 15:30:00.

67

Chapter4

68

NOTE I have been using a program from a company in
Germany that is only half localized. There are strings
in English and in German. There are date fields that only
show dates in 24 hr format. My machine was set up to dis
play dates in AM/PM format. The program blows up if I do

not have the machine date settings set for 24 hr time. This is a perfect
example of how NOT to localize your software.

First I define a new calendar as a Gregorian calendar. I then define a new cul
ture as Spanish. The first line of console output comes from stringing together all
the integers that make up a date. The second line of console output takes advan
tage of the new Spanish culture I defined and formats the output correctly using
this culture. For any kind of conversion output the ToString() member of any
object is a powerful tool. Notice that I am also adding 15 minutes to the current
time using the overridden AddMinutes() member of this derived calendar class.

The third line is where you can see what happens with the Y2K bug if it is still
around. All the derived calendars have defined a 2-digit year that represents the
last 2-digit year you can use in the current century. For the Gregorian calendar it
is 29. You can see that when I subtract 4 years from the 2-digit year I advance 96
years in the future. The TwoDigitYearMax() member can be very handy when you
are getting prepared to read in dates from a file. If you happen to have a file that
contains birth dates in mm/dd/yy format then anyone born in 1927 have a birth
date in 2027. The TwoDigitYearMax() number is different for different calendars,
as it should be.

Change the program a little, and instead of defining a Gregorian calendar
define a Hebrew calendar. This causes an unhandled exception error when you
run it. This is okay, as you will see.

Change this:

Dim MyCalendar As Calendar = New GregorianCalendar()

to this:

Dim MyCalendar As Calendar = New HebrewCalendar()

Now run the program again. You get an error on the first console.writeline()
function. This is because the Hebrew calendar in .NET only recognizes dates
between 5343 and 6000.

The Globalization Namespace

Comment this line out and you get the following output.

22/08/2001 15:45:00
5790
5732
5728

Notice the Two Year Max() is now 90 and the last two lines show what the casual
observer would expect.

Cultureinfo Class

Culturelnfo class is the class that makes the necessary adjustments as you go
from one culture to another. It includes information about any culture such as
language, number format, and date format, how to sort strings, what calendar is
used, and so forth. This is a very important class and is probably the most used
class in this namespace. It is crucial that you understand this class and how to
use it.

Before you get deep into this class you need to go behind the scenes a bit and
look at the basis for the culture identification convention. There are two ways
that .NET identifies a culture.

This first is called the LCID. This value corresponds to the National Language
Support (NLS) locale identifier. The LCID is composed of three parts: a primary
language identifier, a sublanguage identifier, and a sort ID.

The second and more descriptive way to identify a culture is via a string. The
string used is made up of two parts. The first part is the two-letter language code
derived from the ISO 639-1 standard. The second part is a two-letter
country/region code derived from the ISO 3166 standard. The string looks like
"es-ES" or "en-US," and so on.

The <language>- <country/region> string method is the method used by
Microsoft to determine the directory search path for resource files. I showed you
this method in the VB 6 sample, and it will pop up again when you do resource
files under .NET. Table 4-2lists the LCIDs and string representations of all the
cultures that Windows knows about.

69

Chapter4

Table 4-2. Culture Identifiers

ISO COUNTRY - LCID HEX LCID DECIMAL
LOCALE REGION STRING VALUE VALUE VALUE
Afrikaans af Ox0436 1078

Albanian sq Ox041C 1052

Arabic - U .A. E. ar-ae Ox3801 14337

Arabic - Bahrain ar-bh Ox3C01 15361

Arabic - Algeria ar-dz Ox1401 5121

Arabic - Egypt ar-eg OxOCOl 3073

Arabic - Iraq ar-iq Ox0801 2049

Arabic - Jordan ar-jo Ox2C01 11265

Arabic - Kuwait ar-kw Ox3401 13313

Arabic - Lebanon ar-lb Ox3001 12289

Arabic - Libya ar-ly Ox1001 4097

Arabic - Morocco ar-ma Ox1801 6145

Arabic - Oman ar-om Ox2001 8193

Arabic - Qatar ar-qa Ox4001 16385

Arabic - Saudi Arabia ar-sa Ox0401 1025

Arabic - Syria ar-sy Ox2801 10241

Arabic - Thnisia ar-tn OxlCOl 7169

Arabic -Yemen ar-ye Ox2401 9217

Basque eu Ox042D 1069

Belarus ian be Ox0423 1059

Bulgarian bg Ox0402 1026

Catalan ca Ox0403 1027

Chinese - PRC zh-cn Ox0804 2052

Chinese - Hong Kong S.A.R. zh-hk OxOC04 3076

Chinese - Singapore zh-sg Ox1004 4100

Chinese - Taiwan zh-tw Ox0404 1028

Croatian hr Ox041A 1050

Czech cs Ox0405 1029

Danish da Ox0406 1030

Dutch nl Ox0413 1043

Dutch - Belgium nl-be Ox0813 2067

English - Australia en-au OxOC09 3081

70

The Globalization Namespace

Table 4-2. Culture Identifiers (continued)

ISO COUNTRY - LCID HEX LCID DECIMAL

LOCALE REGION STRING VALUE VALUE VALUE

English - Belize en-bz Ox2809 10249

English - Canada en-ca Oxl009 4105

English - Ireland en-ie Ox1809 6153

English- Jamaica en-jm Ox2009 8201

English - New Zealand en-nz Ox1409 5129

English - South Africa en-za Ox1C09 7177

English - Trinidad en-tt Ox2C09 11273

English - United Kingdom en-gb Ox0809 2057

English - United States en-us Ox0409 1033

Estonian et Ox0425 1061

Farsi fa Ox0429 1065

Finnish fi Ox040B 1035

Faeroese fo Ox0438 1080

French - Standard fr Ox040C 1036

French - Belgium fr-be Ox080C 2060

French - Canada fr-ca OxOCOC 3084

French - Luxembourg fr-lu Ox140C 5132

French - Switzerland fr-ch Ox100C 4108

Gaelic - Scotland gd Ox043C 1084

German - Standard de Ox0407 1031

German - Austrian de-at OxOC07 3079

German - Lichtenstein de-li Ox1407 5127

German - Luxembourg de-lu Ox1007 4103

German - Switzerland de-ch Ox0807 2055

Greek el Ox0408 1032

Hebrew he Ox040D 1037

Hindi hi Ox0439 1081

Hungarian hu Ox040E 1038

Icelandic is Ox040F 1039

Indonesian in Ox0421 1057

Italian - Standard it Ox0410 1040

Italian - Switzerland it-ch Ox0810 2064

71

Chapter4

Table 4-2. Culture Identifiers (continued)

ISO COUNTRY - LCID HEX LCID DECIMAL

LOCALE REGION STRING VALUE VALUE VALUE

Japanese ja Ox0411 1041

Korean ko Ox0412 1042

Latvian lv Ox0426 1062

Lithuanian lt Ox0427 1063

Macedonian mk Ox042F 1071

Malay - Malaysia ms Ox043E 1086

Maltese mt Ox043A 1082

Norwegian - Bokma.l no Ox0414 1044

Polish pl Ox0415 1045

Portuguese - Standard pt Ox0816 2070

Portuguese - Brazil pt-br Ox0416 1046

Raeto-Romance rm Ox0417 1047

Romanian ro Ox0418 1048

Romanian - Moldova ro-mo Ox0818 2072

Russian ru Ox0419 1049

Russian - Moldova ru-mo Ox0819 2073

Serbian - Cyrillic sr OxOClA 3098

Setsuana tn Ox0432 1074

Slovenian sl Ox0424 1060

Slovak sk Ox041B 1051

Serbian sb Ox042E 1070

Spanish - Standard es Ox040A 1034

Spanish - Argentina es-ar Ox2COA 11274

Spanish - Bolivia es-bo Ox400A 16394

Spanish - Chile es-cl Ox340A 13322

Spanish - Colombia es-co Ox240A 9226

Spanish - Costa Rica es-cr Ox140A 5130

Spanish- es-do Ox1COA 7178

Dominican Republic

Spanish - Ecuador es-ec Ox300A 12298

Spanish - El Salvador es-sv Ox440A 17418

Spanish - Guatemala es-gt Ox100A 4106

72

The Globalization Namespace

Table 4-2. Culture Identifiers (continued)

ISO COUNTRY - LCID HEX LCID DECIMAL
LOCALE REGION STRING VALUE VALUE VALUE
Spanish - Honduras es-hn Ox480A 18442

Spanish - Mexico es-rnx Ox080A 2058

Spanish - Nicaragua es-ni Ox4COA 19466

Spanish - Panama es-pa Ox180A 6154

Spanish - Paraguay es-py Ox3COA 15370

Spanish - Peru es-pe Ox280A 10250

Spanish - Puerto Rico es-pr Ox500A 20490

Spanish - Uruguay es-uy Ox380A 14346

Spanish - Venezuela es-ve Ox200A 8202

Sutu sx Ox0430 1072

Swedish SV Ox041D 1053

Swedish - Finland sv-fi Ox081D 2077

Thai th Ox041E 1054

Turkish tr Ox041F 1055

Tsonga ts Ox0431 1073

Ukranian uk Ox0422 1058

Urdu - Pakistan ur Ox0420 1056

Vietnamese vi Ox042A 1066

Xhosa xh Ox0434 1076

Yiddish ji Ox043D 1085

Zulu zu Ox0435 1077

Cultureinfo Class Members

The Culturelnfo class is at the crux of any localization effort in .NET. This class has

members that allow you to manipulate the culture you are using and any aspect of

that culture. Such aspects would be how the date and time are displayed, and how

numbers and currency are displayed. You can also get and control aspects of the

region that are associated with the culture. The following members serve impor

tant functions in this class.

73

Chapter4

74

CurrentCulture, CurrentUICulture, InstalledUICulture,
InvariantCulture

What are all these? Why so many of them? They are basically a way of getting
information from the culture you have created. All of them give you the same
type of information but from a slightly different source. Suppose you create an
object of a culture that defines Spain.

In VB you would define it as such:

Dim MyCulture as new Culture!nfo("es-ES")

In C# it would be:

Culture!nfo MyCulture = new Culture!nfo("es-ES")

If this is the culture you work with throughout your program you may want
to find information as to how the resource manager will look up strings. Perhaps
you want to find out what operating system language was installed on the current
machine? You could also find out what language is supposed to be used by your
program at startup.

Cultureinfo.CurrentCulture

CurrentCulture refers to the culture being used by the current thread. In essence
this is the culture that your program thinks it is running. To see what this culture
is you could use the following line of code:

VB

MyCulture.CurrentCulture.EnglishName

C#

(What VB said but with a semicolon at the end.)

This code would display the English name of the current threads culture.
The CurrentCulture instance is rather redundant. If you want to know the
CurrentCulture of the current thread, just ask it. These two lines of code give you
the same result.

The Globalization Namespace

VB

C#

MyCulture.CurrentCulture.EnglishName
Thread.CurrentThread.CurrentCulture.EnglishName

Ditto with an ending semi.

Of course, in order to get at the thread class you need to import the
System. Threading namespace. More on that later.

Cultureinfo.CurrentUICulture

CurrentUICulture refers to the culture that the resource manager uses to get
resources from a resource file. This one is very important.

If your resource has not been localized to a specific culture then the resource
returned is the best match. The resource manager accomplishes this by looking
at this class.

The resource manager has quite a few methods to retrieve resources.
Consider the GetString() method of the resource manager. If the
CurrentUICulture.Name was "es-mx" the resource manager would look in the
es-mx directory for an es-mx.dll resource file from which to get its resources. This
is where it looks first by default.

The GetString() method also has an overloaded version that allows you to
force it to get strings from the culture of your choice. You can tell it which culture
to use when looking for resources. More on that later as well.

Cultureinfo.InstalledUICulture

InstalledUICulture is the culture that your whole computer is operating under.
If you installed Windows 2000 for German on your machine, this is your installed
UI culture. So what? What can you use it for? Well this culture is what the resource
manager looks to as a final default when it tries to get resources. Consider
this scenario:

• Your machine is Ukrainian.

• Your Current Thread is in German.

75

Chapter4

76

• You have the subdirectories "de-DE" and "uk".

• You put a string in the "uk" directory resource file that is not in the "de-DE"
directory resource file.

If you use the GetStringO method to get this string, the resource manager
searches the culture defined by CurrentUICulture. It looks in the "de-DE"
resource file first. Not being able to find it the resource manager then searches
the culture defined by InstalledUICulture. In this case it looks in the "uk" resource
file. The InstalledUICulture is used by the resource manager in its fallback
scheme. It must be noted that this is only true if you did not specify a culture
when looking for the resource.

Cultureinfo.InvariantCulture

The InvariantCulture is used by the resource manager to determine the fallback
scheme for obtaining resources. It represents the neutral culture. For instance
you could have a culture called "de-DE" to represent Germany. The parent of
this culture is "de" which is language-specific but not culture-specific. The par
ent culture of"de" is the InvariantCulture, which in my case is "en-US." The
resources for the invariant culture are usually bound in the assembly as the last
fallback culture.

The InvariantCulture is also the culture you use when you want to perform
a function that is culture-independent. There are some methods in the System
namespace that require a culture. If you want to invoke one of these methods but
did not want a localized result you would pass this culture to it.

Can't think of a method you would use this for? How about using event log
ging? Suppose you have a very flexible internationalized program where you
allowed the culture to be changed at will. As a flexible programmer, you also have
some code in several places to log various error events. All the entries in the error
log should look the same to the person who reads it. It would not do to have
entries in your log that are formatted according to the language the user was
using at the time. You would end up with a confusing muddle of entries. To write
all the events in a consistent manner, use something like this:

Mylog.WriteEntry(MyDate.ToString("d", MyCulture.InvariantCulture))

This way no matter what language or culture your program was in at the time,
you would write the date in the same format.

The Globalization Namespace

The DateTimeFormatlnfo class and the NumberFormatlnfo class when con
structed are culture-independent. You get into these classes next.

Cultureinfo.DateTimeFormat

The Culturelnfo.DateTimeFormat read/write property is used to determine how
dates and times are output. It actually gets or sets a class of DateTimeFormatlnfo.
It is possible using this property to not only see how dates and times are format
ted in your culture, but you can also use this property to change the format of
the dates and times of another culture. The data type that is affected by this is the
DateTime type.

If you have a Date Time variable, you can display the value in several ways.
Each of the following methods gets the formatting information from the
DateTimeFormatlnfo class returned by the DateTimeFormat member in
the Culturelnfo class:

DateTime.ToLongDateString(). Uses the "D" specifier

DateTime. ToLongTimeString(). Uses the "T" specifier

DateTime. ToShortDateString(). Uses the "d" specifier

DateTime.ToShortTimeString(). Uses the "t" specifier

It is the specifiers that are changed by the DateTimeFormatlnfo class.
Normally you leave this class alone unless you want to actually change the for
mat of a particular culture. By the way, it is entirely possible to make your own
culture at which point you would want to change the DateTimeFormat specifiers
to whatever is appropriate.

As with most things, there are other ways to get the same formatted answer
in .NET to a formatted Date Time variable. The following two lines of code
are identical.

Console.WriteLine(DateTime.LongDateString())
Console.Writeline(DateTime.ToString("D")

Which one is easier to read? I used to pride myself on my knowledge of all the
arcane printf() specifiers in the languageC ; however, for readability, the first one
is more intuitive. Table 4-3 shows the date and time format specifiers.

77

Chapter4

Table 4-3. The Date and Time Format Specifiers

CHARACTER
d

D

f

F

FORMAT PATTERN
MM/dd/yyyy

dddd, dd MMMM yyyy

dddd, dd MMMM yyyy HH:rnm

dddd, dd MMMM yyyy HH:mm:ss

ASSOCIATED PROPERTY/DESCRIPTION
ShortDate Pattern

LongDatePattern

Full date and time (long date and short time)

FullDateTimePattern(long date and long time)

g MM/dd/yyyy HH:mm General (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

m, M MMMM dd MonthDayPattern

r, R ddd, dd MMM yyyy HH':'rnm':'ss 'GMT' RFP1123Pattern

s

t

T

u

u

y,Y

78

yyyy' -'MM' -'dd'T'HH':'mm':'ss

HH:rnm

HH:rnm:ss

yyyy' -'MM' -'dd HH':'mm':'ss'Z'

dddd, dd MMMM yyyy HH:mm:ss

yyyyMMMM

SortableDateTimePattern (based on ISO 8601)
using local time

ShortTimePattern

LongTimePattern

UniversalSortableDateTimePattern (based on
ISO 8601) using universal time

Sortable date and time (long date and long time)
using universal time

YearMonthPattern

I go over the DateTimeFormatlnfo class later in this chapter.

Listing 4-2. Code showing ToLongDate functions

VB

Imports System
Imports System.Globalization
Imports System.Threading
Module Module1

Sub Main()

Dim MyCulture As Cultureinfo = New Cultureinfo("fr-FR")
Dim MyDate As DateTime = Now()
Dim dtf As DateTimeFormatinfo

Thread.CurrentThread.CurrentCulture = MyCulture

Console.Writeline(MyDate.TolongDateString())
Console.Writeline(MyDate.TolongTimeString())
Console.Writeline(MyDate.ToShortDateString())
Console.Writeline(MyDate.ToShortTimeString())

dtf = MyCulture.DateTimeFormat
'Change date and time separator
dtf.DateSeparator = "\"
dtf.TimeSeparator = "&"

Console.Writeline()
Console.WriteLine(MyDate.ToLongDateString())
Console.WriteLine(MyDate.ToLongTimeString())
Console.WriteLine(MyDate.ToShortDateString())
Console.WriteLine(MyDate.ToShortTimeString())

Console.ReadLine()
End Sub

End Module

(#

using System;
using System.Globalization;
using System.Threading;
namespace CH7DateTimeFormatFrench_C
{

Ill <summary>
Ill Summary description for Classl.
Ill </summary>
class Classl
{

static void Main(string[] args)
{

Cultureinfo MyCulture = new Cultureinfo("fr-FR");
DateTime MyDate = System.DateTime.Now;
DateTimeFormatinfo dtf;

Thread.CurrentThread.CurrentCulture = MyCulture;

Console.WriteLine(MyDate.ToLongDateString());
Console.WriteLine(MyDate.ToLongTimeString());

The Globalization Namespace

79

Chapter4

80

}

}

Console.Writeline(MyDate.ToShortDateString());
Console.Writeline(MyDate.ToShortTimeString());

dtf = MyCulture.DateTimeFormat;
//Change date and time separator
dtf. Date Separator = "\\";
dtf. Time Separator = "&";

Console.Writeline();
Console.Writeline(MyDate.TolongDateString());
Console.Writeline(MyDate.TolongTimeString());
Console.Writeline(MyDate.ToShortDateString());
Console.Writeline(MyDate.ToShortTimeString());

Console.Readline();

}

The output of this program is:

mercredi 26 septembre 2001
19:33:19
26/09/2001
19:33
mercredi 26 septembre 2001
19&33&19
26\09\2001
19:33

As you can see it is an easy task to change some of the date separators to any
thing that you want.

Cultureinfo.NumberFormat

The Culturelnfo.NumberFormat read/write property is used to determine how
numbers are output. By numbers I mean things such as integers, decimals, cur
rency, and negative numbers. Any time you want to print a number that is
culturally-aware this member is involved.

The Globalization Namespace

This property actually gets or sets a class of NumberFormatinfo. It is possible
using this property to not only see how numbers are formatted in your culture
but you can also use this property to change the format of the numbers of
another culture. The data type that is affected is any numeric type.

As with the Date Time type you can print out a number using the
ToString() member.

Console.Writeline(123456.ToString("D"));

Does this seem strange to you? It does to me. Numbers derive from objects,
and objects have a ToString() method. So, 123456.ToString() is valid within
.NET. It takes some getting used to, but you will find that all basic types are much
more versatile than they were. The output of the preceding code line would
be 123,456.0.

Table 4-4 shows the number format specifiers used in .NET.

Table 4-4 .. NET Number Format Specifiers

FORMAT CHARACTER DESCRIPTION
C,c Currency

E,e Scientific

D,d Decimal

F,f Fixed point

G,g General

N,n Number format

R,r Round Trip format

X,x Hex

I go over the NumberFormatinfo class later in this chapter.

Cultureinfo.Calendar

The Cultureinfo.Calendar read-only property gets the calendar used by the cur
rent culture. This property is read-only and as such you cannot change the
current culture's calendar. The calendars available for use by a .NET culture were
defined earlier in this chapter.

81

Chapter4

82

Cultureinfo.DisplayName

The Culturelnfo.DisplayName read-only property gets the name of the culture
in the format <Language> (country). The language used is the language to which
the computer was set. If your computer was set to display Spanish and your cul
ture is "en-US" this property returns "Ingles (Estados Unidos)."

Cultureinfo.EnglishName

The Culturelnfo.EnglishName read-only property is the same as the
DisplayName except that the name returned is always displayed in English.
The preceding example would return "English (United States)" no matter what
the computer was set to.

Cultureinfo.LCID

The Culturelnfo.LCID property returns the NLS identifier. The NLS identifier is
a number that identifies a language/country. What is the point ofthis?Well there
are many overloaded constructors in the System. Globalization namespace that
take either a string or the LCID. The following two lines of code are the same:

VB

C#

Dim ThisCulture As New Cultureinfo(1078) 'LCID
Dim ThisCulture As New Cultureinfo("af-ZA") 'Name

Cultureinfo ThisCulture = new Culturelnfo(1078); //LCID
Cultureinfo ThisCulture = new Cultureinfo("af-ZA"); //Name

The EnglishName result of this would be ''Afrikaans (South Africa)." To my
mind using the LCID is neither here nor there. The only reason I can see for using
the LCID instead of the name is that a number takes less memory and is thus
quicker to marshal between processes. It is certainly not intuitive as to which
country is referenced.

The Globalization Namespace

Cultureinfo.Name

The Cultureinfo.Name property is the same as the LCID in that it returns the cul
ture identifier. However, instead of returning the LCID it returns the string. The
name in the preceding example is "af-ZA." This is a better argument for a con
structor than the LCID. It makes your code much more readable.

Cultureinfo.Textinfo

The Cultureinfo.Textinfo property gets or sets the Textinfo object that is associ
ated with the Culture. The Textinfo object contains information about the
following items:

• The ANSI Code page used.

• The EBCDIC code page used.

• The MacCodePage used for Apple Macintosh computers.

• The OEM code page used.

• The List separator that is the delimiter used in lists of items. The default is
the comma.

This object also has the following text-conversion routines:

• ToUpper.

• ToLower.

• ToString.

• ToTitleCase. In English, title case refers to capitalizing the first letter of
each word in a string. This may be different for different cultures.

The text conversion routines are very handy. If you have a string resource
that is lowercase Cyrillic, you may want at some time to capitalize it. There are
quite a few languages, including English that do not have capital letters that look
like their lowercase counterparts. Instead of going out and translating each string
or word into its uppercase (capital) and lowercase versions you can just use the
ToUpper() method.

83

Chapter4

84

TIP Do not be tempted to just add or subtract 32 from each
character to go between lowercase and uppercase letters.
This only works in the basic ASCII table. You could end up
with some strange strings if you did this.

NOTE How I long for the good old days of manipulating
strings as arrays and depending on the ASCII table format to
speed up my code. <Sigh>.

ThreeLetteriSOLanguageName, TwoLetteriSOLanguageName,
ThreeLetterWindowsLanguageName

What is all this? There are several standards that refer to the language of the cul
ture you are in.

Table 4-5. Language Standards

STANDARD
ISO 639-2

ISO 639-1

Windows

MEMBER NAME
ThreeLetteriSOLanguageName

TwoLetteriSOLanguageName

ThreeLetterWindowsLanguageName

Cultureinfo.GetFormat, Cultureinfo.GetType

EXAMPLE
English = "eng"

English = "en"

English = "enu"

The GetFormat method returns an instance of the Number Format or
DateTimeFormat type. Yes, I know you can get the NumberFormatlnfo
and DateTimeFormatlnfo directly. You must be wondering why you need the
GetFormat() method. Well, it is used for reflection. It allows you to use one
method to return either a NumberFormatlnfo or a DateTimeFormatlnfo instance
depending on the type argument.

A long explanation of reflection is a little out of the scope of this book but
I thought I would let you know why you would want to do this.

Reflection is a way a program finds out everything about itself. It is also used
to enable one program to query another .NET program for its metadata. It is
a sort of decompiler. Reflection exposes metadata associated with an object. It is
possible to walk the list of objects in an assembly and make a tree showing

The Globalization Namespace

exactly what is going on in a program at any time. The GetFormat method uses
reflection to obtain information about the NumberFormatlnfo or
DateTimeFormatlnfo objects in the culture.

To use the GetFormat method you need to know the type of the object. The
only types supported by this GetFormat method are the Number Format and
DateTimeFormat types. If you want to get the type of an object you can use the
GetType method. The GetType method is used extensively in reflection.

Consider this code fragment.

VB .NET

(#

Dim MyObj As Object
Dim fmt As New NumberFormatinfo()
MyObj = MyCulture.GetFormat(fmt.GetType)
mystring = MyObj.ToString()

Object MyObj;
Cultureinfo MyCulture = new Culture!nfo("es-ES");
NumerFormatinfo fmt = new NumberFormatinfo();
MyObj = MyCulture.GetFormat(fmt.GetType());
Console.Writeline(MyObj.ToString());

Here I use the GetFormat method to get an instance of the object referred to
by the GetType method. This is reflection at work.

The mystring variable will be set to:
"System.Globalization.NumberFormatlnfo."

DateTimeFormatinfo Class

The DateTimeFormatlnfo class is used to define the date and time formats that
are used during a DateTime.ToString() call. It is possible to get and set various fla
vors of date and time formats through properties of this class.

You have already gone over some of the uses of the DateTimeFormatlnfo
class while looking at the Culturelnfo class. As you can see, most of these classes
are intertwined. Here are some of the more important properties of this class.

85

Chapter4

86

DateTimeFormatinfo.Currentinfo

I know you thought you just read Cultureinfo so read it again. It is Currentlnfo.
This property gets an instance of the DateTimeFormatlnfo class that is being
used by the Cultureinfo instance defined by the current thread.

VB .NET

C#

Dim MyCulture As New Culture!nfo("es-ES")
Dim Myfmt As DateTimeFormatinfo
Dim fmtl As DateTimeFormatinfo

Myfmt = MyCulture.DateTimeFormat
fmtl = DateTimeFormatinfo.Currentinfo

Console.Writeline(Myfmt.GetMonthName(12))
Console.Writeline(fmtl.GetMonthName(12))
Console.Writeline(Thread.CurrentThread.
CurrentCulture.
DateTimeFormat.
GetMonthName(12))

Cultureinfo MyCulture = new Cultureinfo("es-ES");
DateTimeFormatinfo Myfmt;
DateTimeFormatinfo fmtl;

Myfmt = MyCulture.DateTimeFormat;
fmtl = DateTimeFormatinfo.Currentinfo;

Console.Writeline(Myfmt.GetMonthName(12));
Console.Writeline(fmt1.GetMonthName(12));
Console.Writeline(Thread.CurrentThread.

CurrentCulture.
DateTimeFormat.
GetMonthName(12));

The output is as follows:

diciembre
December
December

The Globalization Namespace

The GetMonthName() property gets the month's name according to the cur
rent threads culture. The last console line shows this.

What is nice about the Currentlnfo property is that you can get it directly
from the data type itself without needing to create an instance. Consider the C#
program, which has the following two lines of code:

fmtl = DateTimeFormatlnfo.Currentlnfo;
Console.Writeline(fmt1.GetMonthName(12));

I created an instance of the DateTimeFormatlnfo class and then obtained the
Currentlnfo from it. This is not strictly necessary as you can do the following:

Console.Writeline(DateTimeFormatlnfo.
Currentlnfo.
GetMonthName(12));

No instance of the DateTimeFormatlnfo class was explicitly created. No
classes were harmed during the testing of this code.

DateTimeFormatinfo.Invariantinfo

The DateTimeFormatlnfo.lnvariantlnfo property is identical in use to the
Currentinfo property with the following exception: It gets an instance of
the DateTimeFormat for the Invariant culture, which is based on English.

If you want to see this in action just take the Currentlnfo example and
replace Currentlnfo with Invariantlnfo then run it. See what you get.

Patterns

The following is a list of format patterns supported by this DateTimeinfo class.

• LongDatePattern

• ShortDatePattern

• LongTimePattern

• ShortTimePattern

• MonthDayPattern

• YearMonthPattern

87

Chapter4

88

All these properties are read/write. They either return a string that indicates
the associated pattern or they are set using a string. How do you know what char
acters to use to set a pattern?You must use the custom pattern specifiers. Table
4-6 shows these custom pattern specifiers.

Table 4-6. DateTimeinfo Pattern Specifiers

PATTERN SPECIFIER
d

dd

ddd

dddd

M

MM

MMM

MMMM

y

yy

yyyy

gg

h

hh,hh*

H

HH,HH*

m

mm,mm*

s

ss, ss*

t

tt, tt*

z

zz

zzz,zzz*

%c

\c

DESCRIPTION
Day of Month. Single-digit days have no leading zero

Day of Month. Single digit days have a leading zero

Abbreviated name for the day of the week

Full name for the day of the week

Numeric month. Single-digit month has no leading zero

Numeric month. Single-digit month has a leading zero

Abbreviated month name

Full month name

Year with no century. Single-digit years have no leading zero

Year of century. Single-digit years have a leading zero

Full year including century

Era. Ignored if not appropriate

Hour in 12-hr clock. Single-digit hours have no leading zero

Hour in a 12-hr clock. Single-digit hours have a leading zero

Hour in 24-hr clock. Single digit hours have no leading zero

Hour in 24-hr clock with leading zero if necessary

Minute with no leading zero

Minute with leading zero if necessary

Second with no leading zero

Second with leading zero if necessary

First character in AP /PM designator

Complete AM/PM designator

Time zone offset with no leading zero

Time zone offset with leading zero

Full time zone offset with minutes

Default Time separator

Default date separator

Substitute a custom format pattern for "c"

Displays any character <C> literally

The Globalization Namespace

There are quite a few other methods to this class including methods to get
names of the current day, month, and era. An era in the Gregorian calendar is
either "BC" or 'W." I encourage you to look at the documentation for the com
plete list. What I have shown you here is mostly all you will need from this class.

NumberFormatinfo Class

What if I told you ditto for the DateFormatlnfo class? Seriously this class is much
the same and has the same functionality. It is used to set and get formatting
parameters for numbers. Perhaps I should say values instead of numbers. It also
encompasses how currency is formatted. Table 4-7 in the Number Format section
of this chapter shows the standard formatting characters for this class.

As you can see from Table 4-7 there are no custom pattern specifiers as in the
DateTimeFormat. Instead you must create custom templates and use the existing
formatting characters. You can create custom templates for the currency format
and the number format. The currency format properties you can change to create
a custom template follow:

• CurrencyNegativePattern

• CurrencyPositivePattern

• CurrencySymbol

• CurrencyGroupSizes

• CurrencyGroupSeparator

• CurrencyDecimalDigits

• CurrencyDecimalSeparator

Here is the list of the number format properties you can change.

• NumberNegativePattern

• NumberGroupSizes

• NumberGroupSeparator

• NumberDecimalDigits

• NumberDecimalSeparator

89

Chapter4

90

Let's say your current culture is U.S. English. You want to make a visiting
accountant from France feel at home when viewing and inputting numbers.
This accountant is fluent in English. You would keep the same culture so you can
read what he is reading, but you change the number and currency formats to
those he is accustomed to. If he had to constantly remember to press the period
instead of the comma as a decimal separator his productivity would go way
down. Typing in a period where a comma should be can turn your profits from
thousands of dollars to tens of dollars. Try this code in Listing 4-3.

Listing 4-3. Changing numeric format for current culture

VB .NET

(#

Dim MyCulture As New Cultureinfo(Thread. _
CurrentThread.
CurrentUICulture.
LCID)

Dim Vnf As NumberFormatinfo

Console.Writeline(123456.ToString("c", MyCulture))

Vnf = MyCulture.NumberFormat
Vnf.CurrencyDecimalSeparator =

Vnf.CurrencyGroupSeparator = "."

Vnf.NumberDecimalSeparator = ","

Vnf.NumberGroupSeparator = "."
MyCulture.NumberFormat = Vnf

Console.Writeline(123456.To5tring("C", MyCulture))

Cultureinfo MyCulture new Cultureinfo(Thread.
CurrentThread.
CurrentUICulture.
LCID);

NumberFormatinfo Vnf = new NumberFormatinfo();

Console.Writeline(123456.ToString("c", MyCulture));

Vnf = MyCulture.NumberFormat;
Vnf.CurrencyDecimalSeparator = II n.

' '
Vnf.CurrencyGroupSeparator = ".";

The Globalization Namespace

Vnf.NumberDecimalSeparator = ",";
Vnf.NumberGroupSeparator = ".";
MyCulture.NumberFormat = Vnf;

Console.Writeline(123456.ToString("C", MyCulture));

As you can see I am changing the cultures separators. The output would be:

$123,456.00
$123.456,00

Here you have American dollars formatted to look like something European.
Very simple. But why not just get the Number Format from the French culture and
install it in MyCulture? Let's see what happens.

Dim FRCulture As New Culture!nfo("fr-FR")
MyCulture.NumberFormat = FRCulture.NumberFormat
Console.Writeline(123456.ToString("c", MyCulture))

Seems much simpler. However, look at the output:

123.456,00 ?

The format is correct but the currency is in French francs. At least it would be if
you had a franc symbol. When you do something like this make sure you change
only those attributes that you are concerned with. A wholesale change such as
this can give undesired results.

Regioninfo Class

Ah, I've been waiting for this one to show up. As you can see almost all the exam
ples have been related to the complete culture. That is the language +
region/ country. You have also done a little on the language aspect and now you
learn about the region.

Regionlnfo is much like Culturelnfo in what it is used for and what it can do
for you. The following table lists all the regions known to .NET.

91

Chapter4

Table 4-7. ISO Codes and LCID Codes

ISO 3166
2-LETTER CODE COUNTRY/REGION LCID

AE UA.E. 14337

AL Albania 1052

AM Armenia 1067

AR Argentina 11274

AT Austria 3079

AU Australia 3081

AZ Azerbaijan 1068

AZ Azerbaijan 2092

BE Belgium 2060

BE Belgium 2067

BG Bulgaria 1026

BH Bahrain 15361

BN Brunei Darussalam 2110

BO Bolivia 16394

BR Brazil 1046

BY Belarus 1059

BZ Belize 10249

CA Canada 4105

CA Canada 3084

CB Caribbean 9225

CH Switzerland 2055

CH Switzerland 4108

CH Switzerland 2064

CL Chile 13322

CN People's Republic of China 2052

co Colombia 9226

CR Costa Rica 5130

cz Czech Republic 1029

DE Germany 1031

DK Denmark 1030

DO Dominican Republic 7178

DZ Algeria 5121

92

The Globalization Namespace

Table 4-7. ISO Codes and LCID Codes (continued)

ISO 3166
2-LETTER CODE COUNTRY/REGION LCID
EC Ecuador 12298

EE Estonia 1061

EG Egypt 3073

ES Spain 1027

ES Spain 3082

ES Spain 1069

ES Spain 1110

FI Finland 1035

FI Finland 2077

FO Faeroe Islands 1080

FR France 1036

GB United Kingdom 2057

GE Georgia 1079

GR Greece 1032

GT Guatemala 4106

HK Hong Kong S.A.R. 3076

HN Honduras 18442

HR Croatia 1050

HU Hungary 1038

ID Indonesia 1057

IE Ireland 6153

IL Israel 1037

IN India 1081

IN India 1094

IN India 1095

IN India 1097

IN India 1098

IN India 1099

IN India 1102

IN India 1103

IN India 1111

IQ Iraq 2049

93

Chapter4

Table 4-7. ISO Codes and LCID Codes (continued)

ISO 3166
2-LETTER CODE COUNTRY/REGION LCID
IR Iran 1065

IS Iceland 1039

IT Italy 1040

JM Jamaica 8201

JO Jordan 11265

JP Japan 1041

KE Kenya 1089

KG Kyrgyzstan 1088

KR Korea 1042

KW Kuwait 13313

KZ Kazakhstan 1087

LB Lebanon 12289

u Liechtenstein 5127

LT Lithuania 1063

LU Luxembourg 4103

LU Luxembourg 5132

LV Latvia 1062

LY Libya 4097

MA Morocco 6145

MC Principality of Monaco 6156

MK Former Yugoslav Republic 1071
of Macedonia

MN Mongolia 1104

MO MacauSA.R. 5124

MV Maldives 1125

MX Mexico 2058

MY Malaysia 1086

NI Nicaragua 19466

NL Netherlands 1043

NO Norway 1044

NO Norway 2068

NZ New Zealand 5129

94

The Globalization Namespace

Table 4-7. ISO Codes and LCID Codes (continued)

ISO 3166
:z-LETTER CODE COUNTRY/REGION LCID
OM Oman 8193

PA Panama 6154

PE Peru 10250

PH Republic of the Philippines 13321

PK Islamic Republic of Pakistan 1056

PL Poland 1045

PR Puerto Rico 20490

PT Portugal 2070

py Paraguay 15370

QA Qatar 16385

RO Romania 1048

RU Russia 1049

SA Saudi Arabia 1025

SE Sweden 1053

SG Singapore 4100

SI Slovenia 1060

SK Slovakia 1051

SP Serbia 2074

SP Serbia 3098

sv El Salvador 17418

SY Syria 10241

SY Syria 1114

TA Tatarstan 1092

TH Thailand 1054

TN Tunisia 7169

TR Turkey 1055

TT Trinidad and Tobago 11273

TW Taiwan 1028

UA Ukraine 1058

us United States 1033

UY Uruguay 14346

uz Uzbekistan 1091

95

Chapter4

96

Table 4-7. ISO Codes and LCID Codes (continued)

ISO 3166
z-LETTER CODE COUNTRY/REGION LCID
uz Uzbekistan 2115

VE Venezuela 8202

VN VietNam 1066

YE Yemen 9217

ZA South Africa 7177

ZA South Africa 1078

zw Zimbabwe 12297

Seeing double entries? How about nine. India has nine cultures associated
with it. Therefore there are nine LCIDs you can use to get the region.

Regioninfo Members

The following section details some ofthe members of the Regioninfo class. The
methods and properties in the Regioninfo class allow you to control and see
aspects of the current region. Such aspects include how currency is treated and
whether the region is metric. For the most part you can think of the region as
the country.

Regioninfo Constructor

There are two overloaded constructors for this class. One takes a string argument
in the form of the two-letter ISO 3166 code. The other constructor takes an inte
ger that corresponds to the LCID of the culture that is associated with the region.

In the case of Switzerland you can use the following LCIDs to get the
same region.

• Ox100C, which is French- Switzerland

• Ox0807, which is German- Switzerland

• Ox0810, which is Italian- Switzerland

Quite a few cultures have multiple languages within the same region. Here
are some lines of code that make an instance of a region for South Africa.

The Globalization Namespace

C#

Regioninfo Rg = new Regionlnfo "za");
Regioninfo Rg = new Regioninfo 7177);
Regioninfo Rg = new Regioninfo 1078);

VB

Dim Rg as Regioninfo = new Regionlnfo ("za")
Dim Rg as Regionlnfo = new Regioninfo (7177)
Dim Rg as Regionlnfo = new Regionlnfo (1078)

By the way, how did I build this table of regions? You know enough about
Cultureinfo, Regioninfo, and ToString() to do this. You should also know enough
.NET code to perform a FOR. .. EACH loop. Listing 4-4 contains the code neces
sary to do this. It is included later in this chapter.

Regioninfo.CurrentRegion

The Regioninfo.CurrentRegion property returns an instance of the region that is
used by the current thread. It is actually the region used by the default culture of
the system. If you change the current threads culture to something totally differ
ent than your default culture, the CurrentRegion is still the default region of
your computer.

Regioninfo.CurrencySymbol

The Regioninfo.CurrencySymbol read only property gets the currency symbol of
the region in question. For the United States it would be "$."For Hong Kong it is
"HK$." Since it is read-only it cannot be changed using this property. How do you
change the currency symbol for a region? Override it in a derived class.

Regioninfo.ISOCurrencySymbol

The Regioninfo.ISOCurrencySymbol read-only property returns the ISO 4217
3-letter currency symbol for the country/region. The US ISO currency symbol is
"USD." For Bolivia it is "BOB."

97

Chapter4

98

Regioninfo.DisplayName~ Regioninfo.EnglishName~ Name

These properties are the same as the analogs in the Culturelnfo.

• Display Name returns the full name of the region in the language of the
installed .NET Framework.

• EnglishName returns the DisplayName but in English no matter what
version of .NET you installed.

• Name returns the two-letter code for the region.

Regioninfo.IsMetric

The Regionlnfo.IsMetric property returns true or false depending on if the coun
try is using the metric system or not. What about the USA? Care to guess? Over
here we went halfway then stopped. We measure fat grams to control our weight
measured in pounds. As you probably guessed, the answer is false. If ever there
was a need for a half-truth this is it. Perhaps we should invent a fuzzy Boolean.

Regioninfo.ThreeLetteriSORegionName~
Regioninfo.TwoLetteriSORegionName~
Regioninfo.ThreeLetterWindowsRegionName

Table 4-7 showed all the regions that had a two-letter code identifier. You can get
this ID code from the TwoLetteriSORegionName property. There is also a three
letter code and a three-letter Windows code for each region. The three-letter
codes are not really used for anything in .NET. Only the two-letter codes are
needed for constructors and to identify a region.

Listing 4-4. Regionlnfo table generator program

VB

Imports System
Imports System.Globalization

Module Modulel

Sub Main()

Dim AllCultures() As Culture!nfo
Dim ACulture As Culture!nfo
Dim Rg As Region!nfo
Dim k As Integer

AllCultures = Culture!nfo.
GetCultures(CultureTypes. _
SpecificCultures)

For Each ACulture In AllCultures
Rg = New Regioninfo(ACulture.LCID)
Console.Writeline

(Rg.TwoletteriSORegionName.ToString(). _
PadRight(s, " ") +

Next

Console.Readline()
End Sub

+ Rg.EnglishName.PadRight(40, " ") +

+ ACulture.LCID.ToString())

End Module

C#

using System;
using System.Globalization;

namespace Ch7RegioninfoTable_C
{

Ill <summary>
Ill Summary description for Classl.
Ill </summary>
class Classl
{

static void Main(string[] args)
{

Culture!nfo[] AllCultures;
Regioninfo Rg;

AllCultures = Cultureinfo.GetCultures
(CultureTypes.SpecificCultures);

foreach (Culture!nfo ACulture in AllCultures)

The Globalization Namespace

99

Chapter4

100

{

}

}

}

Rg = new Regioninfo(ACulture.LCID);
Console.WriteLine

(Rg.TwoLetteriSORegionName.ToString()
.PadRight(s, ' ') +

"," + Rg.EnglishName.PadRight(40, ' ') +

"," + ACulture. LCID. ToString());
}

Console.ReadLine();

Stringlnfo Class

This class allows you to iterate over a string. The string can be Unicode, and each
printable character can consist of up to 4 bytes. The ability to iterate over a string
also implies that you can split a string into its constituent characters.

Okay, so why would you want to do this? Well, how about for parsing a string?
You could have a program that took in characters from a stream such as RS-232
or a text file. This stream of characters could be parsed according to a protocol
you have defined. A parsing class that uses this Stringlnfo class would be
handy indeed.

Some of you are VB programmers and are wondering why not use the MID$,
LEFT$, and RIGHT$ functions I am used to? Why did Microsoft even include this?
.NET is has a common language specification. It is not just the next generation of
VB. There are other languages that do not have the VB functions but still need
powerful string functions. You can call MID$ from C# by including the
Microsoft.VisualBasic namespace.

The Stringlnfo class is fairly simple and straightforward. I go over the more

important members first and then provide an example on how to use this class.

Constructor

The Stringlnfo constructor takes no arguments. Therefore, you always get
a default instance. The Stringlnfo class works on Unicode strings and is therefore
language blind.

The Globalization Namespace

Stringinfo.GetNextTextElement

This property has two overloaded forms. The first one gets the first character in
a Unicode string. The second version takes as an argument an integer indicating
which character you want returned.

Stringinfo.GetTextElementEnumerator

This function returns the TextElementEnumerator for the string in question.
A TextElementEnumerator is only able to get a read-only element from the string.
Also when the enumerator is obtained, a copy of the string is made. It is this copy
that the enumerator iterates over. See a potential problem here? The enumerator
assumes that the string is immutable. That is it assumes that characters will not
be added or deleted from the original string. If the original and copy are (and this
is entirely possible) out of synch then the enumerator throws an exception.

It is entirely plausible that a program can get two enumerators for the same
string at the same time. Since each enumerator gets its own copy of the string,
the enumerators are different. Watch out for this scenario. A table of operations
for the TextElementEnumerator is shown in Table 4-8.

Table 4-8. TextElementEnumerator Functionality

PROPERTY/METHOD DESCRIPTION
Current Returns character at the current position in the string

GetTextElement Same as Current

Elementlndex Returns the position of the index within the string

MoveNext Increments the element index to the next character

Reset Repositions the index to the start of the string -1

Equals Returns true if two strings are equal. False if not.

Stringinfo.ParseCombiningCharacters

This function returns an array of integers whose elements define the start of each
character in a Unicode string. Hmm, Unicode is 2 bytes per character so this
array would contain integers for every other byte in the string right? Wrong. As
I pointed out in Chapter 3 there are only 64k unique characters in the Unicode
set. Each Unicode character is 16 bits so 2A 16 = 65536 or 64k. I also stated that
you could have over a million characters by using surrogate pairs. This means
that there are two Unicode code points per character for some of the languages.

101

Chapter4

102

The length in bytes of a character in a particular string can be determined by
getting the difference between successive elements in this array of indexes.
Listing 4-5 shows how to do this.

Listing 4-5. Parsing strings

C#

using System;
using System.Globalization;
using Microsoft.VisualBasic;

namespace CH7Stringinfo_C
{

Ill <summary>
Ill Stringinfo demonstration
Ill </summary>
class Classl
{

static void Main(string[] args)
{

TextElementEnumerator Iter;
String MyStr, OutBuf;

MyStr = "The Quick programmer ran rings around the lazy manager";

//Let's do the iterator thing
Iter = Stringinfo.GetTextElementEnumerator(MyStr)
while (Iter.MoveNext())

{

}

OutBuf = "Character at position " +
Iter.Elementindex.ToString() +
" = " + Iter. Current;

Console.WriteLine(OutBuf);

//Let's do the manual loop thing
for (int k=O; k<MyStr.Length; k++)

{

}

OutBuf = "Character at position " +
k. ToString() + " = " +
Stringinfo.GetNextTextElement(MyStr, k);

Console.WriteLine(OutBuf);

}

}

VB

//Let's do the Visual Basic MID$ thing.
for (int j=1; j<MyStr.Length; j++)

}

{

}

OutBuf = "Character at position " + j. ToString() +
" = " + Strings.Mid(MyStr, j, 1);

Console.WriteLine(OutBuf);

Console.ReadLine();

Imports System.Globalization
Module Module1

Sub Main()

Dim MyStr, OutBuf As String
Dim Iter As TextElementEnumerator

MyStr = "The quick programmer ran rings around the lazy manager"

'Let's go the iteration route
Iter = Stringinfo.GetTextElementEnumerator(MyStr)
Do While (Iter.MoveNext)

Loop

OutBuf = "Character at position " + _
Iter.Elementindex.ToString() +
" = " + Iter.Current

Console.WriteLine(OutBuf)

'Let's do the manual loop route
Dim k As Int16
For k = 0 To Len(MyStr) - 1

Next

OutBuf = "Character at position " +
k.ToString + " = " + _
Stringinfo.GetNextTextElement(MyStr, k)

Console.WriteLine(OutBuf)

The Globalization Namespace

103

Chapter4

104

'Let's do the mid$ thing
Dim j As Int16
For j = 1 To Len(MyStr)

Next

OutBuf = "Character at position " +

j.ToString + " = " +

Mid(MyStr, j, 1)

Console.Writeline(OutBuf)

Console.Readline()
End Sub

End Module

Before you leave here let's go over one thing in the C# program. I am using
a function from VB within the C# program. It is the MID function. Importing the
Microsoft.VisualBasic namespace allows me to use any of the VB commands.
The string commands such as MID, LEFT, RIGHT, TRIM, and so on are all in the
Strings class.

In addition to using the namespace you must also add a reference to the
Microsoft.VisualBasic.NET runtime. Use the Add references command in
the Project window.

Summary

This chapter went over in depth the classes and methods included in the
System. Globalization namespace. There were quite a few concepts introduced here,
and you got to see first hand how .NET works by typing in some of the examples.

While the examples were not long, I tried to include at least one example for
every class and/ or method I examined. You found out that the
System. Globalization namespace is very comprehensive indeed. However, these
examples and this namespace only relate to setting up your program for running
in a localized setting. They do not explain how to use resources or even what
resources really are in the .NET world.

Chapter 5 delves into another namespace related to localization. That name
space is System.Resources. As you can probably guess this is where you handle
everything having to do with resource files.

CHAPTER 5

System.Resources and
System. Threading

Names paces

THis CHAPTER INTRooucEs vou to the System.Resources namespace. Here I go over
the important classes and methods involved in handling resource files. I also go
over miscellaneous classes from the System. Threading namespace having to do
with localization.

System.Resources Namespace

Where the System. Globalization namespace is used to describe various aspects
of a culture; the System.Resources namespace is used to manipulate resources
within a program.

I have spent quite a bit of space going over defining cultures and how
resources should be defined for those cultures. In this section I move to the all
important aspect of getting and manipulating those resources.

ResourceManager Class

The ResourceManager class provides the functionality necessary to read in
resources in a controlled manner. What do I mean by controlled manner?
I touched on this in previous chapters but I go into a full explanation here.

Resources, whether they are strings or binary elements such as pictures or
fonts, and so forth, should be installed in what are called satellite assemblies .
. NET provides a scheme of naming and saving resource files in certain directo
ries. Part of this scheme also involves saving a last ditch resource file as part of
the program assembly.

BaseName.CultureName.Resources is the naming convention for a resource
file. The BaseName is the name of your program. The CultureName is the two- or
five-letter name for your culture. The two-letter name is the language identifier

105

ChapterS

106

with no country-specific aspects. The five-letter name is the two-letter language
identifier followed by the two-letter country/region identifier separated by
a dash.

The storage convention for a resource file is based on the CultureName of the
resource file. Each resource file gets stored in a subdirectory of the main assem
bly. Table 5-llists some resource file names and locations.

Table 5-l. Resource Files for Myprog.exe

RESOURCE FILE NAME LOCATION
Myprog.de-CH.resources \de-CH

Myprog.de.resources \de

Myprog.en-US.resources \en-US

Myprog.es-ES.resources \es-ES

Myprog.es-MX.resources \es-MX

Myprog.es.resources \es

Myprog.resources NA

DESCRIPTION
German for Switzerland

German for general use

English for USA

Spanish for Spain

Spanish for Mexico

Spanish for general use

Invariant. Embedded in executable

If a resource file name has no language/ culture name associated with it then
this is the invariant culture. You went over the invariant culture in the Culturelnfo
section of Chapter 4. To reiterate, the invariant culture is usually based on English
and the invariant resource file contains resources that the resource manager can
not find anywhere else.

How does the resource manager know where to find resources? Look at
Table 5-1. It lists resource file names and locations. Suppose your program
changed to the culture "es-MX." You also wanted to get a string for the key
"MexicanLanguage." Here is what would happen.

1. The resource manager would look in the directory "\es-MX" for a satel

lite resource file called "es-MX.dll."

2. If the file is not found or the resource within that file is not found, the
resource manager looks in the directory "\es" for a satellite resource file
called "es.dll."

3. If the file is not found, or the resource does not exist in that file, the
resource manager looks in the resource file that was linked in with
the assembly.

4. If there is no linked-in invariant resource file, or the resource does not
exist, the resource manager throws an exception.

System.Resources and System. Threading Namespaces

What is happening in this scenario is the fallback scheme that .NET uses to get
a resource. As you can see, the fallback scheme consists of the following steps.

• Look in the <language>-<country/region> subdirectory.

• Look in the <language> subdirectory.

• Look in the assembly itself.

• Throw an error.

The fallback scheme exhausts all options first before giving up.
Recall the VB 6 program from Chapter 3. It involved all kinds of code to

enable a similar fallback scheme for a VB 6 program. As you can see, .NET gives
you this mechanism for free. Do you have to follow this scheme? In a word, no.
There is a method you can use to create a file-based resource manager that looks
in a specific directory for resources. If the resource is not found there is no fall
back mechanism involved. You get an error right away. Should you follow this
scheme? In another word, yes. The resource file naming convention and fall
back scheme give your program the best chance at always getting whatever
resource it needs. It also allows you, the programmer, to better organize
your resources.

Here are some ways to take advantage of the fallback scheme:

• Put all strings you do not want translated in the invariant resource file.

• Put all generic language strings in a language-only resource file. An
example would be the Spanish string for "yes" which is "si." This string
will not change from culture to culture.

• Put all culture specific strings in the language-country resource file.

If you want to get a string that was invariant, you can rely on the fallback
mechanism of .NET to eventually get it for you. You could also know this ahead of
time and tell .NET to go directly to the invariant culture and get it. Each of the fol
lowing lines of code get a string from the invariant resource file.

GetString("yes");
GetString("yes", MyCulture.InvariantCulture);

The second line of code "knows" where the string is and gets it directly. The
first line relies on the fallback mechanism to get the string. The second approach
is faster.

107

ChapterS

108

ResourceReader Class

The ResourceReader class is used to open a resource file and iterate over all the
resource keys in that file. There are two uses for this class. The first is to dump
the contents of a resource file and the second is to parse the contents of
a resource stream. Why a stream?Well you could be getting a transmission
of a resource file over an RS-232 link. A stream could also be the result of parsing
an XML text file using the .NET XML parser. It is an easy task to make a class that
implements a ResourceReader to parse the data as it comes in.

It is worth mentioning that this class uses a default implementation of
the IResourceReader interface. If you want to read a resource file or resource
stream that was generated in a different format then you would make a different
implementation of this interface. The examples in this book use the
default implementation.

There are three members of this class that are interesting. They are:

• ResourceReader Constructor. Provides an argument of a resource file or
a stream.

• GetEnumerator. This method returns an enumerator of the type
IDictionaryEnumerator.

• Close. This function releases all memory and closes all files or streams
associated with this instance of the ResourceReader.

Listing 5-1 is a simple resource dump program.

Listing 5-1. Resource dumper

VB

Imports System.Resources
Imports System.Collections

Module Modulel

Sub Main()

'Open a resource reader and get an enumerator from it
Dim reader = New ResourceReader("chSRR.resources")
Dim en As IDictionaryEnumerator = reader.GetEnumerator()

System.Resources and System. Threading Namespaces

Do While (en.MoveNext)
Console.Writeline("Name: {o} - Value: {1}",

en.Key. ToString() .PadRight(10, " "),
en.Value)

Loop
reader. Close()

Console.Readline()

End Sub

End Module

(#

using System;
using System.Resources;
using System.Collections;

namespace CHSResourceReader_C
{

}

Ill <summary>
Ill Simple resource dump program
Ill </summary>
class Class1
{ static void Main(string[] args)

{

}

}

//Open a resource reader and get an enumerator from it
IResourceReader reader = new ResourceReader("chSRR.resources");
IDictionaryEnumerator en = reader.GetEnumerator();

while (en.MoveNext())
{

Console.Writeline("Name: {o} - Value: {1}",
en. Key. ToString() . PadRight (10, ' ') ,
en.Value);

reader. Close();

Console.Readline();

109

ChapterS

110

ResourceSet Class

A ResourceSet is a mechanism that lets you load all the resources for a particular
culture all at once. Since you are not calling resources at runtime there is no way
to know if the resource you need is in a particular resource file or not. Because of
this, a ResourceSet ignores all fallback rules.

So how does the ResourceSet get filled? It fills by iterating through a resource
file using the ResourceReader class. It uses the IResourceReader enumerator and

stores each value in a hash table. The hash table makes for speedy look up later.
There are four constructors for this class. Table 5-2 summarizes them.

Table 5-2. ResourceSet Constructor Descriptions

CONSTRUCTOR
ResourceSet ()

ResourceSet (IResourceReader)

ResourceSet (String)

ResourceSet (Stream)

DESCRIPTION
Default properties

Uses specified IResourceReader (roll your own)

Default reader for a specified resource file

Default reader for a specified resource stream

The important members of this class are enumerated in the list that follows:

• GetString(String). This returns a string that matches the key value given as
the argument. The overloaded version is GetString(String, Bool). If the
Boolean argument is true then the key is searched without regard to case.

• GetObject(String), GetObject(String, Bool). This method returns an object
according to the key. An object could be a font or a picture, etc. If the sec
ond version is used and the Bool is true then the key is considered
case-insensitive.

• GetDefaultReader(). This method returns the default type of the
ResourceReader used in this class.

• GetDefaultWriter(). This method returns the default type of the

Resource Writer used with this class.

• Close(). This method closes all resources and frees all memory associated
with an instance of this class. Close calls the Dispose() method.

• Dispose(). Close calls this method. It releases all resources associated with
an instance of this class.

System.Resources and System. Threading Namespaces

What happens if the resource is not found? Nothing. That is, suppose you
wanted a string that did not exist? The GetString() method returns a null string.
No error is thrown.

Why use the GetDefaultReader() and GetDefaultWriter() methods?You use
these for reflection. Remember that by using reflection it is possible to walk
a .NET assembly and get all information on all classes. This information includes
the types of objects. Listing 5-2 shows how to use a resource set.

Listing 5-2. Simple resource set

VB

Imports System
Imports System.Resources

Module Module1

Sub Main()

Dim Rs As New ResourceSet("chsrr.resources")

Console.Writeline(Rs.GetString("first", True))
Console.Writeline(Rs.GetString("second", True))
Console.Writeline(Rs.GetString("third", True))
Console.Writeline(Rs.GetString{"fourth", True))
Console.Writeline(Rs.GetString("not here", True))
Console.Writeline{Rs.GetDefaultReader.ToString())

Rs.Close()
Console.Readline()

End Sub

End Module

(#

using System;
using System.Resources;

namespace CHSResourceSet_C
{

111

ChapterS

112

}

Ill <summary>
Ill Resource set C# example
Ill </summary>
class Classl
{

}

}

static void Main(string[] args)
{

ResourceSet Rs = new ResourceSet("chsrr.resources");

Console.Writeline(Rs.GetString("first", true));
Console.Writeline(Rs.GetString("second", true));
Console.Writeline(Rs.GetString("third", true));
Console.Writeline(Rs.GetString("fourth", true));
Console.Writeline(Rs.GetString("not here", true));
Console.Writeline(Rs.GetDefaultReader().ToString());

Rs.Close();
Console.Readline();

The result of this code is:

first resource
second resource
third resource
fourth resource
System.Resources.ResourceReader

Notice the blank line between the last two outputs? This is the string that was
not found. Notice also that I used the overloaded version of the GetString()
method. I made sure that the key I used was case-insensitive. When you think of
case sensitivity as a programmer, you think that there can be two words spelled
the same but with different case. For reading resources this is true. However
when you read a resource file that was made using the Resource Writer class this
is not true. The ResourceWriter does not allow you to have multiple keys of the
same spelling with different case in the same resource file. Why? How many of
you are from the VB world? You are used to the Intellisense capability ofVB auto
matically converting case for you. If you are like me you are careful with case on

the variable name declaration but careless with the variable because VB corrects
case for you. If you have been typing in the examples you have already found out
this is not true for C#. It is possible inC# to have multiple variables of the same
name but different case. This is a major source of bugs.

System. Resources and System. Threading Namespaces

In an effort to reduce bug count, the Resource Writer class prevents you from
having keys of the same spelling but different case.

ResourceWriter Class

The Resource Writer class is used to create a resource file. The resource file cre
ated is a binary resource file like the one output by the ResGen.exe program. You
can send the resources to a stream or to a resource file depending on the con
structor used. The constructor has only two overloaded forms. The argument is

either a stream or a string. The following list describes the important members of

this class:

• Constructor. Instantiates the class and makes the file if necessary.

• AddResource(String, Byte). This overloaded method adds a resource to the
stream as a key, value pair. The byte is an 8-bit unsigned integer array of
any length.

• AddResource(String, Object). This overloaded method adds a resource to
the stream as a key, value pair. The object can represent a font or a picture,
and soon.

• AddResource(String, String). This overloaded method adds a resource to
the stream as a key, value pair. The second argument is the string resource.

• Generate(). This method is called after you have added all the resources
to your stream. This method writes the resources to the resource file or
the stream.

• Close(). This method closes all resources and releases all memory associ
ated with the current ResourceWriter instance. This method calls Dispose().

Listing 5-3 writes out a resource file using the Resource Writer and then reads

it back and enumerates it using the ResourceReader.

Listing 5-3. Simple resource reader

VB

Imports System
Imports System.Resources
Module Modulel

113

ChapterS

114

Sub Main()
Dim Rw As New ResourceWriter("CHSRrw.resources")
Dim Rr As ResourceReader
Dim RrEn As IDictionaryEnumerator

Rw.AddResource("key 1", "First value")
Rw.AddResource("key 2", "Second value")
Rw.AddResource("key 3", "Third value")
Rw.Generate()
Rw.Close()

Rr = New ResourceReader("CHSRw.resources")
RrEn = Rr.GetEnumerator
Do While (RrEn.MoveNext)

Console.Writeline("Name: {0} - Value: {1}", _
RrEn.Key.ToString().PadRight(10, ""), _
RrEn.Value)

Loop
Rr.Close()

Console.Readline()
End Sub

End Module

C#

using System;
using System.Resources;
using System.Collections;

namespace CHSResourceWriter_C
{

Ill <summary>
Ill ResourceWriter and reader example
Ill </summary>
class Class1
{

static void Main(string[] args)
{

ResourceWriter Rw = new ResourceWriter("CHSRw.resources");

System. Resources and System. Threading Namespaces

}
}

}

Rw.AddResource("key 1", "First value");
Rw.AddResource("key 2", "Second value");
Rw.AddResource("key 3", "Third value");
Rw.Generate();
Rw.Close();

ResourceReader Rr = new ResourceReader("CHSRrw.resources");
IDictionaryEnumerator RrEn = Rr.GetEnumerator();
while (RrEn.MoveNext())

{

}

Console.Writeline("Name: {o} - Value: {1}",
RrEn.Key.ToString().PadRight(10, ' '),
RrEn.Value);

Rr.Close();

Console.Readline();

You should have gotten the same values written to the screen as you put into the
resource file.

ResXResourceReader Class, ResXResourceSet Class,
ResXResourceWriter Class

These classes are almost identical to the ResourceReader, ResourceSet,
Resource Writer classes. The ResXResourceReader class opens a resource file and
allows you to iterate over the file. The ResXResourceSet class loads all the
resources from a resource file at once. It allows you to work with resources as
a set rather than loading them dynamically. The ResXResourceWriter class allows
you to create a resource file and to output resources to this file.

So, what's the difference? Why the "X?" The difference is in the type of file it
works with. There are two types of text-based resources files. The first you have
already seen. It is just a plain, easily readable text file that contains only string
resources. The ResX classes work with an XML-based resource file. An XML
resource file can contain any strings resources but can also contain BLOB data.
You can store a picture in an XML resource file if you like. The extension for an
XML resource file is, you guessed it, .resx.

Remember the Resource Writer class? It also could save BLOB data to
a resource file. The difference between the Resource Writer and

115

ChapterS

116

ResXResourceWriter classes is that the Resource Writer class saves resources
straight to a binary file. It does not create a human readable text file. The
ResXResourceWriter saves data to a human readable XML file. This XML file is an
intermediate file in that it still needs to be compiled into a binary.resources file
before it can be used.

By the way, being an object-oriented programmer you have probably won
dered if ResourceReader and ResXResourceReader are the same base classes.
How about Resource Writer and ResXResourceWriter?Well yes, they are the same.
The difference comes from the implementation of the IResourceReader and
!Resource Writer interfaces. The ResourceReader uses the default implementation
of the IResourceReader and the ResXResourceReader uses a specialized imple
mentation of the IResourceReader. The same goes for the different resource
writers. Code reuse and polymorphism at work.

Listing 5-4 is an example of the ResX reader and writer.

Listing 5-4. ResXReader and writer

VB

Imports System.Resources

Module Module1

Sub Main()
Dim RwX As New ResXResourceWriter("CHSRwx.resx")
Dim RrX As ResXResourceReader
Dim RrXEn As IDictionaryEnumerator

RwX.AddResource("key 1", "First value")
RwX.AddResource("key 2", "Second value")
RwX.AddResource("key 3", "Third value")
RwX. Generate()
RwX.Close()

RrX = New ResXResourceReader("CHSRwx.resx")
RrXEn = RrX.GetEnumerator
Do While (RrXEn.MoveNext)

Console.Writeline("Name: {o} - Value: {1}", _

Loop
RrX.Close()

RrXEn. Key. ToString(). PadRight(10, " "), _
RrXEn.Value)

System.Resources and System. Threading Namespaces

Console.Readline()
End Sub

End Module

C#

using System;
using System.Resources;
using System.Collections;

namespace CH5ResourceWriter_C
{

}

Ill <summary>
Ill ResXResourceWriter and reader example
Ill </summary>
class Class1
{

}

static void Main(string[] args)
{

}

ResXResourceWriter RwX = new
ResXResourceWriter("CH5RwX.resx");

RwX.AddResource("key 1", "First value");
RwX.AddResource("key 2", "Second value");
RwX.AddResource("key 3", "Third value");
RwX.Generate();
RwX. Close();

ResXResourceReader RrX = new ResXResourceReader("CH5RwX.resx");
IDictionaryEnumerator RrEn = RrX.GetEnumerator();
while (RrEn.MoveNext())
{

}

Console.Writeline("Name: {o} - Value: {1}",
RrEn. Key. ToString(). PadRight(10, ' '),
RrEn.Value);

RrX. Close();

Console.Readline();

117

ChapterS

118

Start a new console application in VB. Try typing this program in. It is not too
long. Found the problem yet? You are not able to get past the first line in Main.
The Intellisense drops down and you can find Resource Writer but where is
ResXResourceWriter? For that matter, where is ResX anything? Do this: Add a ref
erence to System.Windows.Forms.DLL. You can do this from the project window
or from the menu system.

Now try the first line again. All of a sudden you can see the ResX stuff.

Using Reflection to Find Missing Classes

Let's take a small side trip. When I first tried using the ResX classes I had the
annoying problem of not being able to find the ResXResourceReader /Writer
classes. I imported the System.Resources Namespace. Where was all my ResX
stuff? The MSDN documentation was very scant on this particular topic but I was
led to believe it was in .NET somewhere. The .NET documentation actually does
say where to find this and I could tell you as well but then I wouldn't have this lit
tle diversion would I?

I had a couple of choices here. I could skip this subject altogether, whine to
my editor that I could not find the classes, or tell Microsoft it had a big bug in its
software. While it is entirely possible that Microsoft left this out I seriously
doubted it.1 I am not the whiny type and this subject is way too important to skip.
What to do? I knew this ResX stuff had to be in here somewhere.

Well I have talked about reflection a little in the context of various class
members. If you remember, I said it was a way to expose metadata for an assem
bly. It is possible to find out anything about any program written using .NET.
Here is what I did to find the ResX classes.

I looked for all the DILs that I thought would contain the System.Resources
namespace. I found them inC:\ WINNT\Microsoft.NET\Framework\vl.0.3328.
There are quite a few .NET DLLs in this directory. Perhaps it was in here somewhere.

Next I wrote a small VB program that loaded in all the DLLs and used re
flection to search through them to find any class in either the System.Resources
or System. Globalization namespaces. Although I had not found this to be the
case, perhaps something was missing from the Globalization names pace that
I had not come across yet. If so let's find that too. Listing 5-5 shows the
code I used to find the missing resources classes.

Listing 5-5. Simple reflection program to find resources namespace

Imports System.Reflection
Module Modulel

Sub Main()

System.Resources and System. Threading Namespaces

Dim Index As Integer
Dim ReflA As System.Reflection.Assembly
Dim ReflA_Types() As Type
Dim fname As String

' MSCORLIB.DLL may reside In a different directory depending on
the .NET release version you have

fname = "C: \WINNT\Microsoft. NET\ Framework\ vl. o. 3328\mscor lib. dll"
ReflA = ReflA.LoadFrom(fname)
ReflA_Types = ReflA.GetTypes()
Console.Writeline(fname)
For Index = 0 To UBound(ReflA_Types)

If ReflA_Types(Index).Namespace = "System.Resources" Or_
ReflA_Types(Index).Namespace = "System.Globalization" Then
Console.Writeline(" Found -> " +

ReflA_Types(Index).FullName)
System.Threading.Thread.Sleep(lOO)

End If

Next
Console.Writeline("End")
Console.Readline()

End Sub

End Module

The program that I used enumerated all DLL files in the directory automati
cally. I left this part out for clarity. I added a sleep function so I could see the
classes as they came up on the screen. If you're a speed demon leave this line out.

Anyway, here is what I found.

C:\WINNT\Microsoft.NET\Framework\v1.0.2914\System.Windows.Forms.dll
Found -> System.Resources.ResXResourceReader
Found -> System.Resources.ResXResourceReader+ResXResourceEnumerator
Found -> System.Resources.ResXResourceWriter
Found -> System.Resources.ResXResourceSet
Found -> System.Resources.ResXFileRef
Found -> System.Resources.ResXFileRef+Converter
Found -> System.Resources.ResXNullRef

C:\WINNT\Microsoft.NET\Framework\v1.0.3328\mscorlib.dll
Found -> System.Resources.NeutralResourceslanguageAttribute
Found -> System.Resources.ResourceSet
Found -> System.Resources.ResourceManager
Found -> System.Resources.RuntimeResourceSet

119

ChapterS

Found -> System.Resources.FastResourceComparer
Found -> System.Resources.IResourceWriter
Found -> System.Resources.ResourceWriter
Found -> System.Resources.IResourceReader
Found -> System.Resources.ResourceReader
Found -> System.Resources.ResourceReader+ResourceEnumerator
Found -> System.Resources.SatelliteContractVersionAttribute
Found -> System.Resources.MissingManifestResourceException

Found -> System.Globalization.Regioninfo
Found -> System.Globalization.NameLCIDinfo
Found -> System.Globalization.Calendar
Found -> System.Globalization.HebrewCalendar
Found -> System.Globalization.HebrewCalendar+ __ DateBuffer
Found -> System.Globalization.CultureTypes
Found -> System.Globalization.Characterinfo
Found -> System.Globalization.JulianCalendar
Found -> System.Globalization.DateTimeStyles
Found -> System.Globalization.SortKey
Found -> System.Globalization.GlobalizationAssembly
Found -> System.Globalization.GregorianCalendarTypes
Found -> System.Globalization.GregorianCalendar
Found -> System.Globalization.EncodingTable
Found -> System.Globalization.InternalEncodingDataitem
Found -> System.Globalization.InternalCodePageDataitem
Found -> System.Globalization.CalendarTable
Found -> System.Globalization.TextElementEnumerator
Found -> System.Globalization.RegionTable
Found -> System.Globalization.DefaultLCIDMap
Found -> System.Globalization.NumberFormatinfo
Found -> System.Globalization.UnicodeCategory
Found -> System.Globalization.KoreanCalendar
Found -> System.Globalization.Erainfo
Found -> System.Globalization.GregorianCalendarHelper
Found -> System.Globalization.TaiwanCalendar
Found -> System.Globalization.NumberStyles
Found -> System.Globalization.DaylightTime

Found -> System.Globalization.JapaneseCalendar
Found -> System.Globalization.Cultureinfo
Found -> System.Globalization.CultureTable
Found -> System.Globalization.IDOffset
Found -> System.Globalization.NameOffsetitem
Found -> System.Globalization.CultureinfoHeader

120

System. Resources and System. Threading Namespaces

Found -> System.Globalization.Textinfo
Found -> System.Globalization.CalendarWeekRule
Found -> System.Globalization.ThaiBuddhistCalendar
Found -> System.Globalization.CodePageDataitem
Found -> System.Globalization.DateTimeFormatinfo
Found -> System.Globalization.String!nfo
Found -> System.Globalization.CompareOptions
Found -> System.Globalization.Compareinfo
Found -> System.Globalization.HijriCalendar

End

All of the System.Globalization and most of the System.Resources classes are in
the mscorlib.dll file. This file is referenced as a matter of course in any .NET project.
However I also found that all the ResX stuff was in the System.Wmdows.Forms.dll
file. Interesting. All I needed to do to get access to these classes was to add a refer
ence to this file in my project. Sure enough it worked.

Why was the ResX stuff in a different DLL than the rest of the
System.Resources namespace? Why this particular file? This is pure speculation
on my part but here is an explanation. XML file resources are used by the built in
resource editor. Most of the time you would have a resource file when building
a forms application. Why put it in the basic DLL if in most cases you will never
use it? This makes some sense to me. By the same token, if you were building
a windows forms program you would most likely use the built-in resource editor.

Be tenacious. If you cannot find something or want to know something in
depth, start digging. You have all the tools necessary to find what you want. You
want to be known as the house guru right? .NET puts everyone back on the same
starting block. Do not count on getting to be the guru by long-term experience.
You have too much competition. Now is your chance to dig in and discover!

System.Threading Namespace

Most of the classes in this namespace are out of the scope of this book. Explaining
threading is a book in itself. Look for one coming to a bookstore near you!

True threading, as in free threading, has long been the Holy Grail ofVB pro
grammers. As someone who has written multithreaded code in C++, let me tell
you it is definitely a two-edged sword. This is a case of"be careful what you wish
for" because now you've got it. But I digress.

This section deals only with the threading classes that have to do with local
ization. These classes are:

• Thread.CurrentThread.CurrentCulture

• Thread.CurrentThread.CurrentUICulture

121

ChapterS

122

You will find that the documentation alludes to being able to get at the cul
ture for the Thread class. However, you need to go down a level to the current
thread before you can get a culture reference.

I have been using, setting, and displaying the current threads culture in quite
a few ofthe examples I have written. Just to reiterate, I will go over what it means
to get the culture from the thread.

Thread.CurrentThread.CurrentCulture

Thread.CurrentThread.CurrentCulture is an instance of the current threads cul
ture. Duh! What this means is that in a multithreaded program you can have
many cultures that are enabled, one for each thread. The CurrentCulture refers to
the culture in which the thread performs.

Thread.CurrentThread.CurrentUICulture

Thread.CurrentThread.CurrentUICulture is an instance of the current threads
UI culture. Duh! Again! This means essentially the same as the CurrentCulture.
The CurrentUICulture, however, is the culture used by the resource manager to
get resources.

These two classes imply that you can have a culture for the resource manager
that is different from the culture that the thread is working under. In fact, this is
true. Consider the following piece of code.

Thread.CurrentThread.CurrentCulture = New Cultureinfo("es-ES")
Console.WriteLine(Thread.CurrentThread.CurrentCulture.DisplayName)
Console.WriteLine(Thread.CurrentThread.CurrentUICulture.DisplayName)

The resulting display would be:

Spanish (Spain)
English (United States)

System. Resources and System. Threading Names paces

Try this piece of code:

Console.Writeline(Thread.
CurrentThread.
CurrentThread.
CurrentThread.
CurrentThread.
CurrentThread.
CurrentThread.
CurrentUICulture.DisplayName());

Why do they allow this? It comes under the heading of Stupid Code Tricks.

Resource File Types

I have been dealing so far with resource files that are text-based and contain
only strings. There are, however, other kinds of resource files and other ways to
make them.

Basic Text Resource File

The basic Text resource file is your plain vanilla resource file. It is also your work
horse. Its only use is to hold localized strings.

The naming convention for a text resource file is <program name>.txt.
Table 5-3 shows what can be included in a text resource file.

Table 5-3. Text Resource File Format

TEXT
[header]

Comment

Key=value

DESCRIPTION
This is optional and must be the same as the name of the
resource file.

Comment. This is filtered out when you compile this file to
a .resources file.

The actual string resource. The key and value strings do not need

to be quoted. They do need to be separated by an = sign.

If you read the table carefully perhaps a question came to mind. It was the
first thing I thought of when I came across this. Why not make the value a quoted
string? And what happens if you do quote it? Well if you have been doing string
based localization for any amount of time you soon find out that it is near
impossible to put quote marks in a resource file. Microsoft has eliminated the

necessity for a quoted string just so you can put quotes in if you need them.

123

ChapterS

124

Suppose you had a resource file with the following strings:

keyl = Non Quoted String
key2 "Quoted String"

Now you have a piece of code like this:

Console.Writeline(ResReader.GetString("Keyl");
Console.Writeline(ResReader.GetString("Key2");

You would see the following on the screen:

Non Quoted String
"Quoted String"

Pretty cool, huh?

ResX Resource File

We went over this a little in the ResXResourceWriter class. A .resX file is an XML
version of a resource file. Where the text-based file was used to handle only
strings, this file can handle strings and objects. The nice thing about this file for
mat, of course, is that it is human readable.

If you want, you can type in a .resX file. I encourage you to try. It is a great
learning experience. However, I have better things to do. Instead .NET has a host
of tools to make the .resX file for you.

For those of you unfamiliar with XML I explain it in the Enter XML section of

this chapter .

. Resources File

The .resources file is the intermediate binary form of a resource file. There are

three stages to a resource file to be included in a satellite assembly.

1. Text -based resource file in basic text format or in XML format

2. Compiled resource file in .resources format

3. A dll containing the .resources binary resource file

System.Resources and System. Threading Namespaces

The .resources file can be created by using the resgen.exe utility or by writing
it directly using the Resource Writer classes. Also the .resources file is the final
stage before being embedded in an assembly.

Remember the fallback scheme? First, the program looks for a satellite
resource file in the <language>-<country> resource file. Failing that, it looks in
the <language> resource file. Failing that, it looks in the assembly itself for the
resource. The resource file that you embed in the assembly is a .resources file.

A .resources file can also be considered a loose resource. A loose resource
file is one that does not necessarily live in a directory that is searched by the
resource manager. Instead, it can be a resource file that you can load explicitly
without any fallback scheme involved. You can retrieve loose resources by using
the CreateFileBasedResourceManager() method in the resource manager.

Listing 5-6 shows a small program that uses loose resources. It is actually an
expansion of the resource dump program.

Listing 5-6. Loose resources

VB

Imports System.Resources
Imports System.Collections

Module Modulel

Sub Main()

'Open a resource reader and get an enumerator from it
Dim reader = New ResourceReader("chSRR.resources")
Dim en As IDictionaryEnumerator = reader.GetEnumerator()

Do While (en.MoveNext)
Console.WriteLine("Name: {o} - Value: {1}",

en.Key.ToString().PadRight(lO, " "),
en.Value)

Loop
reader. Close()

'Loose resource example
Dim rm as ResourceManager.CreateFileBasedResourceManager _

("chsrr", ". ", Nothing)
Console.WriteLine(rm.Get5ting("first"))

125

ChapterS

126

Console.Readline()

End Sub

End Module

C#

using System;
using System.Resources;
using System.Collections;

namespace CHSResourceReader_C
{

}

Ill <summary>
Ill Simple resource dump program
Ill </summary>
class Classl
{

}

static void Main(string[] args)
{

}

//Open a resource reader and get an enumerator from it
IResourceReader reader = new ResourceReader("chSRR.resources");
IDictionaryEnumerator en = reader.GetEnumerator();

while (en.MoveNext())
{

}

Console.Writeline("Name: {o} - Value: {1}",
en. Key. ToString(). PadRight(lO, ' '),
en. Value);

reader. Close();

//Loose resource example
ResourceManager rm as ResourceManager.CreateFileBasedResourceManager

("chsrr", ".", Nothing);
Console.Writeline(rm.GetSting("first"));

Console.Readline();

I have created a resource manager that looks in the current directory for the
resource file. I then get a string from this resource file.

System. Resources and System. Threading Namespaces

Enter XML

I have this really huge book at home on XML. It is over 1000 pages long. How can
I possibly boil down XML to a few paragraphs? XML is so important to .NET. Well
this book is about internationalization using .NET so I will try to keep the expla
nation focused and short.

In the beginning there was SGML, the Standard General Markup Language.
SGML begat HTML and XML. When the web was young people started using
HTML to design web pages. HTML, however, suffers from chronic over use and
violation of the original meaning of the tags.

The definition list for HTML tags show that they are supposed to be used
only for crude page layout and presentation of text. Over the years, artistic pro
grammers subverted the use of the HTML tags in order to paint nice and
captivating pages for the surfing masses. Both Microsoft and Netscape saw this
and with every new version of browser they added new features to handle these
rogue uses of HTML. In the effort to provide newer and better presentation fea
tures, the original intent of HTML got lost in the shuffle.

HTML also suffers from the inherent flaw that it does not describe data in
any way. The HTML tags are defined. There is really no way to extend them by
adding new tags to describe what you want. Instead, different uses are found for
all the existing tags.

Well, enough HTML bashing. What can be done to fix this problem? XML
that's what. XML, like HTML is a subset of SGML. Unlike HTML though, XML can
be used to describe almost anything.

It is possible to make any kind of tags you want. These tags could represent
data peculiar to your situation. Suppose you had a Windows Form that you
wanted to describe using XML. You could invent some tags that were meant just
for describing a Form.

<Vbform>
<content>

<button>
<Button-Name>

cmdQuit
</Button-Name>
<Button-label>

Quit
</Button-label>

</button>

</content>
<IVbform>

127

ChapterS

128

This is a legal XML form. It is very easy to understand and very easy to parse
as well. Keep in mind that all tags must be nested. HTML does not make this
restriction. The tags shown here are made up, but they do not have to be. Tag def
initions can be kept in a DTD file. This Document Type Definition file lets you
share information about your tags with anyone who needs to know. There are
many industry-specific DTDs that describe XML tags. There may already be
a DTD that you can use or extend. An in -depth discussion of DTDs is out of the
scope of this book but if you want I will lend you my 6lb XML book to read,
although it is currently holding up one corner of my house.

Know what else is nice about XML? If you have a firewall that lets through
HTML, then XML will fly right through as well. Try that with COM.

XML is used in .NET resource files. You saw this with the .resX files and the
ResXResourceReader/Writer classes. Listing 5-7 shows the XML output for
the previous ResXResourceWriter example. Remember there are only three
string resources in this file.

Listing 5-7. XML resource file

<?xml version="l.O" encoding="utf-8"?>
<root>

<xsd:schema id="root" targetNamespace="" xmlns=""
xmlns:xsd="http:llwww.w3.org/20011XMLSchema" xmlns:msdata=
"urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="root" msdata:IsDataSet="true">
<xsd:complexType>

<xsd:choice maxOccurs="unbounded">
<xsd:element name="data">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="value" type="xsd:string" minOccurs="O"
msdata:Ordinal="l" I>

<xsd:element name="comment" type="xsd:string" minOccurs="O"
msdata:Ordinal="2" I>

<lxsd:sequence>
<xsd:attribute name="name" type="xsd:string" I>
<xsd:attribute name="type" type="xsd:string" I>
<xsd:attribute name="mimetype" type="xsd:string" I>

<lxsd:complexType>
<lxsd:element>
<xsd:element name="resheader">

System. Resources and System. Threading Namespaces

<xsd:complexType>
<xsd:sequence>

<xsd:element name="value" type="xsd:string" minOccurs="O"
msdata:Ordinal="l" I>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" I>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:schema>
<data name="key 1">

<value>First value</value>
</data>
<data name="key 2">

<value>Second value</value>
</data>
<data name="key 3">

<value>Third value</value>
</data>
<resheader name="ResMimeType">

<value>text/microsoft-resx</value>
</resheader>
<resheader name="Version">

<value>l.O.O.O</value>
</resheader>
<resheader name="Reader">

<value>System.Resources.ResXResourceReader</value>
<lresheader>
<resheader name="Writer">

<value>System.Resources.ResXResourceWriter</value>
</resheaden

</root>

The actual XML resource data is at the end of the file. All the XSD tags refer to
the XML schema data. The XSD schema is the validating code necessary to make
sure that the XML data is proper. This file is heavy on the XSD code but in
a resource file with thousands of strings, the XSD header code would soon get
lost in XML data. XSD is an analog to the XML DTD.

I have said quite a few times that .resx files can contain pictures. Listing 5-8
shows the altered ResXResourceWriter code to reflect adding a JPG file. Be sure to
include a reference to the System.Drawing dll.

129

ChapterS

130

Listing 5-8. Save a picture to a resource file

VB

Imports System
Imports System.Resources
Imports System.Drawing

Module Modulel

Sub Main()
Dim RwX As New ResXResourceWriter("CHSRwx.resx")
Dim RrX As ResXResourceReader
Dim RrXEn As IDictionaryEnumerator

RwX.AddResource("key 1", "First value")
RwX.AddResource("key 2", "Second value")
RwX.AddResource("key 3", "Third value")

'Add a picture to the file
Dim img = Image.FromFile("crane.jpg")
RwX.AddResource("crane", img)

RwX.Generate()
RwX.Close()

RrX = New ResXResourceReader("CHSRwx.resx")
RrXEn = RrX.GetEnumerator
Do While (RrXEn.MoveNext)

Console.Writeline("Name: {o} - Value: {1}", _

RrXEn. Key. ToString(). PadRight(lO, " "),
RrXEn.Value)

Loop
RrX.Close()

Console.Readline()
End Sub

End Module

System.Resources and System. Threading Namespaces

(#

using System;
using System.Resources;
using System.Drawing;
using System.Collections;

namespace CH7ResourceWriter_C
{

}

Ill <summary>
Ill ResXResourceWriter and reader example
Ill </summary>
class Class1
{

}

static void Main(string[] args)
{

}

ResXResourceWriter RwX = new ResXResourceWriter("CH7RwX.resx");

RwX.AddResource("key 1", "First value");
RwX.AddResource("key 2", "Second value");
RwX.AddResource("key 3", "Third value");

II add an image to the resource file
Image img = Image.FromFile("crane.jpg");
RwX.AddResource("crane.jpg", img);

RwX. Generate() ;
RwX. Close();

ResXResourceReader RrX = new ResXResourceReader("CH7RwX.resx");
IDictionaryEnumerator RrEn = RrX.GetEnumerator();
while (RrEn.MoveNext())
{

Console.Writeline("Name: {0} - Value: {1}",
RrEn. Key. ToString(). PadRight(10, ' '),
RrEn.Value);

}

RrX.Close();

Console.Readline();

131

ChapterS

132

I have imported the System.Drawing namespace and instantiated an internal
image of a lock. I then added the lock to the resource file using the AddResource
method. The Screen output is as follows:

Name: key 1 - Value: First value
Name: key 2 - Value: Second value
Name: key 3 - Value: Third value
Name: lock.bmp - Value: System.Drawing.Bitmap

The fourth resource is a bitmap. The actual.resX file is shown in Listing 5-9.

Listing 5-9. XML resource file with bitmap image

<?xml version="l.O" encoding="utf-8"?>
<root>

<xsd:schema id="root" targetNamespace="" xmlns=""
xmlns:xsd="http:llwww.w3.orgi2001IXMLSchema" xmlns:msdata="urn:schemas

microsoft-com:xml-msdata">
<xsd:element name="root" msdata:IsDataSet="true">

<xsd:complexType>
<xsd:choice maxOccurs="unbounded">

<xsd:element name="data">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="O"

msdata:Ordinal="l" I>
<xsd:element name="comment" type="xsd:string" minOccurs="O"

msdata:Ordinal="2" I>
<lxsd:sequence>
<xsd:attribute name="name" type="xsd:string" I>
<xsd:attribute name="type" type="xsd:string" I>
<xsd:attribute name="mimetype" type="xsd:string" I>

<lxsd:complexType>
<lxsd:element>
<xsd:element name="resheader">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="value" type="xsd:string" minOccurs="O"
msdata:Ordinal="l" I>

<lxsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" I>

<lxsd:complexType>

System. Resources and System. Threading Namespaces

<lxsd:element>
<lxsd:choice>

</xsd:complexType>
</xsd:element>

<lxsd:schema>
<data name="key 1">

<value>First value</value>
</data>
<data name="key 2">

<value>Second value</value>
</data>
<data name="key 3">

<value>Third value</value>
</data>
<data name="crane.jpg" mimetype="text/microsoft-urt/binary-serialized/base64">

<value>
AAEAAAD/////AQ~gAAAFRTeXNOZWouRHJhd2luZywgVmVyc2lvbjOxljA

uMjQxMS4wLCBD
dWxOdXJlPWSldXRyYWwsiFB1YmxpVOtleVRva2VuPWiwM2Y1ZjdmMTFkNTBhM2EFA

QAAABVTeXNOZWOu
RHJhd2luZy5CaXRtYXABAAAABERhdGEHAgiAAAAJAwAAAA8DAAAANgMAAAJCTTYDA

AAAAAAANgAAACgA
AAAQAAAAEAAAAAEAGAAAAAAAAAAAAMQOAADEDgAAAAAAAAAAAAD/ I /8AAP8AAP8

AAP8AAP8AAP8AAP8A
AP8AAP8AAP8AAP8AAP8AAP////////////////8AAP/AwMDAwMDAwMDAwMDAwMD

AwMDAwMDAwMDAwMDA
wMAAAP////////////////8AAP/AwMDAwMDAwMDAwMAAAP/AwMDAwMDAwMDAw

MDAwMAAAP///1//////
//////8AAP/AwMDAwMDAwMDAwMAAAP/AwMDAwMDAwMDAwMDAwMAAAP//////

11//I///1/8AAP/AwMDA
wMDAwMAAAP////8AAP/AwMDAwMDAwMDAwMAAAP////////////////8AAP/AwMD

AwMDAwMAAAP8AAP8A
AP/AwMDAwMDAwMDAwMAAAP////////////////8AAP/AwMDAwMDAwMDAwMDAw

MDAwMDAwMDAwMDAwMDA
wMAAAP////////////////8AAP8AAP/AwMDAwMDAwMDAwMDAwMDAwMDAwMDAw

MAAAPSAAP/////////1
/I/////II/8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP8AAP//////////////////

II II II II liSA
AP8AAP////////////////8AAP8AAP////////////////////////////////8AAP8AAP//

11111111
//I///8AAP8AAP////////////////////////////////8AAP8AAP////////////////8A

AP8AAPII
///////I/////I///////////I////8AAP8AAP////////////////8AAP8AAP///////////

II IIIII

133

ChapterS

134

///////////////I//8AAP8AAP////////8AAP8AAP///////////////////////////////

/IIIII/

//////8AAP8AAP8AAP8AAP///

/8AAP8A

AP////////////////////////////////8L

</value>
</data>
<resheader name="ResMimeType">

<value>text/microsoft-resx</value>
</resheader>
<resheader name="Version">

<value>l.O.O.O</value>
</resheader>
<resheader name="Reader">

<value>System.Resources.ResXResourceReader</value>
</resheader>
<resheader name="Writer">

<value>System.Resources.ResXResourceWriter</value>
</resheader>

<!root>

You cannot only see the resource strings but you can now see the binary rep
resentation of a bitmap image. Pretty neat huh?

Summary

In this chapter I went over all the important classes and methods having to do
with the System. Resources namespace. I included quite a bit of code here in the
form of small examples for each class.

Next I went off the track a little and showed you how .NET arranges its name
spaces. I used a reflection example to find some missing classes that should have
appeared when I included the System.Resources namespace. We found out that
.NET puts some classes in one assembly and some in another. This is an impor
tant point to think about. It means that in your designs you can also spread out
classes belonging to a namespace among several assemblies to improve efficiency.

I also touched on the Threading names pace and looked at an XML resource file.
The next chapter goes over XML resource files in depth. It also goes over the dif

ferent tools .NET provides to edit and manipulate resource files without using code.

CHAPTER 6

Resource File Tools

Tms cHAPTER Is DEVOTED to those tools that .NET provides to help edit and manipu

late resource files without using code. Many of these tools are external to the IDE.

They either require you to dig up old "DOS days" memories or to acquire new
ones. It all depends on how old you are!

I also go into quite a bit of depth concerning XML resources. While this is not
a book on XML, it is necessary that you understand the XML files that are gener
ated by .NET and why they are necessary.

Resource Tools

There are a few tools that .NET provides to aid in handling resource files.

XML Designer in Visual Studio

Here is where I think most people will externalize their resource files. It's easy and

the casual programmer never need know the files he or she creates are XML files.
To invoke this tool you need to be editing a resource file from within the VS

IDE. Bring up a new project; either form-based or console-based. Go to the proj
ect window and add a new a new item of type "Assembly Resource File."
Alternately, you can do this from the File/ Add new menu selection. You are
immediately taken into the XML designer in data view. Anytime you want to edit
this file just double-click it and the XML designer will appear.

There are two views for this designer. One is the XML view and the other
is the data view. The XML view includes color-coding, IntelliSense, word com
pletion, and member lists. The data view is simple. Just type in the key, comment
(if any), and value. There you go. Easy as pie.

OK, so there you are, happy as a clam inputting hundreds of strings into this

resource file. It is time to translate the strings. What now? Try sending the .resX
file to a translation service. It is not the best format for translating strings. Not
only that, but what about pictures and sounds, and so on? The XML designer
does not even allow you to input objects.

135

Chapter6

136

The XML designer is okay for simple programs but becomes woefully inade
quate for large ones. You are better off making your own resource file editor. You
do just that in the next chapter.

The XML designer is riot just there for resource files. It is there as an aid in
developing XSD schemas and XML documents. It has a great design and layout
facility for creating schemas and editing data sets. This is where it really shines.
I could go much further into this aspect ofXML in .NET but I promised I would
focus on the resource file aspects.

ResGen.exe

ResGen is a great utility. It allows you to take a resource file in any of its three
forms and translate it to any of the other three forms. You can do the following:

• Convert a .txt resource file into a .resources file

• Convert a . txt file into a .resx file

• Convert a .resx file into a .resources file

• Convert a .resx file into a . txt file

• Convert a .resources file into a .resx file

• Convert a .resources file into a . txt file

ResGen is a must-use utility. To embed a resource file into an assembly or
into a satellite resource file you must first convert it from one of the text forms to
the binary .resources form.

ResGen also takes as a command line argument, the /Compile switch. This
allows ResGen to do batch processing. You can put in any number of* .txt or
* .resx files and it processes each in turn. Table 6-l shows a matrix of ResGen uses.

Resource File Tools

Table 6-1. ResGen Uses

COMMAND LINE
Resgen myres. txt

Resgen myres. txt mybinaryres.resources

Resgen myres.txt myresx.resx

Resgen myxres.resx

Resgen myxres.resx mybinaryres.resources

Resgen myxres.resx myres.txt

Resgen mybinaryres.resources myres.txt

Resgen mybinaryres.resources myxres.resx

Resgen /compile resl.txt res2.txt res3.txt

ResGen Caveats

DESCRIPTION
Compiles myres.txt into myres.resources

Compiles myres.txt into mybinaryres.resources

Converts myres. txt into myresx.resx XM:L file

Compiles myxres.resx into myxres.resources

Compiles myxres.txt into mybinaryres.resources

Converts myxres.resx into myres. txt text file

Converts mybinaryres.resources into myres. txt text file

Converts mybinaryres.resources into myxres.resx

Compiles all res files into separate .resources files

• Compiling from a text file to .resources file loses all your comments. This
means that converting from a .resources file to a text file leaves you with
your data only.

• Converting a text resource file to an XML resource file also loses
the comments.

• Place a comment on its own line. Comments tacked on the end of
a resource line make the ResGen compiler think it is part of the string text.

• Converting a .resources file to a text file gives a text representation of any
objects such as pictures, and so on. This means that you cannot reverse
this process and reconvert to a .resources file. The text file output will
have an entry stating what the picture and its type was. The data will not
be converted.

The following entries illustrate how to write a text-based resource file.

STR ONE = one
STR two = two
Str three = three
;This is a legal comment line
str_4 = four;This comment is taken to be part of the string value
strs = "String five"

137

Chapter6

138

The ResGen compiler happily compiles this file to a .resources file. The only
problem is that it believes everything after the = sign on the str_ 4line is the
actual string.

Al.exe

This is the assembly generation tool. It has only one use as far as resource files go.

• Generate a satellite assembly out of a resource file.

Remember the satellite assembly? This is the binary .resources file compiled
into a separate DLL. The binary resource file should have the following name
convention: <basename>.<culture>.resources. These satellite DLLs should be put
in their proper directories for the resource fallback mechanism to work.

There are quite a few options for the AI tool. I'll go over how to use this tool to
embed resource files into satellite resource files.

The following is a way to make a satellite resource file that can be used in
a resource fallback scheme.

Al /out:Myprog.Resources.DLL /v:1.2.3.4 /c:es-ES /embed:MyStrings.es
ES.resources,MyStrings.es-ES.resources,private

• /out: Specifies the output satellite file

• /v: Specifies the version of this assembly

• /c: This is the internal culture identifier

• I embed: <file>,<name><file> is the name of the file that is getting
embedded. <name> is the internal identifier for the resource

• private This specifies that the resource is not visible to other assemblies.

The following use is also legal. The missing options are all defaulted.

Al /out:MyprogRes.dll /embed:MyprogRes.resources

Note that the AI tool only takes a binary resource file as an argument. It cannot
make a DLL out of a text file or an XML file.

Embedding

What about embedding a resource file directly into the executable?Why should
you use embedding again? It is best practice to embed a culture-invariant
resource file in the program executable. This allows for resource fallback. If you
have a small program that you are not translating, the embedded resource file
could also serve as the only resource file. This makes for a simpler installation. You
can embed a resource file into an executable using the command line compiler.

Here is a sample used to generate a C# program with an embedded
resource file:

esc /target:winexe /out:Myprog.exe /res:MyStrings.resources Myprog.cs

The esc compiler can also be used to generate a VB program with an embedded
resource file.

esc /target:winexe /out:Myprog.exe /res:MyStrings.resources Myprog.vb

Here is a scenario. You have a large program written in VB that also has
a large string resource file. Perhaps it has a few hundred strings. Your boss
has just told you to convert the program to VB.NET. What do you do about the
resource file? Do you chuck it? Do it over? Well it just so happens that the Al.exe
tool will also build a satellite assembly out of a Win32 resource file. This is the file
you create using Visual Studio V 5 or V 6. The Win32 resource text file has the
extension of .rc and the compiled resource file has the extension of .res. Here is
the command to compile a .res file into a .NET satellite DLL.

Al /embed:MyStrings.res /win32res:My5trings.res

Keep in mind what I went through in Chapter 5. To reference these resources
in this file you need to use numbers.

The intricacies of the Al.exe tool and the csc.exe tool are beyond the scope of
this book. What I have explained here is the most basic use. But I want to remind
you of something about compiling .NET code. Perhaps you did not know this.

The Visual Studio .NET IDE compiles only single-file assemblies. In order to
create multifile assemblies you need to resort to DOS and use the command line
Al.exe or csc.exe compilers. The command line csc.exe compiler can be used to
create the individual assemblies and the Al.exe tool can be used to create a mani
fest that contains all references to external modules.

I strongly encourage you to read and understand the documentation con
cerning the command line compilers. If you want to do any kind of sophisticated
compiling and linking you will need to use them.

Resource File Tools

139

Chapter6

140

NOTE It seems to me that we have come full circle here.
I have been programming long enough to remember using
command line compilers and linkers with long lists of.obj
files to be linked in. The past several years have been spent
inside the IDE. It is now necessary to go outside the IDE to

the command line to do any sophisticated compiling and linking. This
after Microsoft has been trying to hide the DOS box from the casual user.

IDE Forms Designer

Here is an interesting way to design a localized program. It is possible using the
IDE in either C# or in VB to create a form for each language you want your pro
gram to run in. The IDE does all the work for you insofar as making resource files
and satellite assemblies and putting them in all in their correct directories.

This process involves changing some of the forms' properties at design time
and typing in your translations. In a complex form with many controls, this can
be quite the time-consuming and error-prone task.

I will say this, however, for the IDE designer approach. It may be the best way
to achieve a form that looks like it was written in the target language. This is
because for each language you are able to move and resize the controls on the
form. No longer do your controls have to be much larger than necessary to
accommodate possibly longer translated strings. They can all be just the right
size for the particular languages needs. This is pretty neat if you ask me.

Start up a Windows Forms project in either C# or VB. and click the form
itself. Look at the properties box. You should see something like what you see in
Figure 6-1.

Properties q. X

I Forml System.Windows.Forn:::::J

:: ill]!~ -J I t
ForeColor • ControiTe

FormBorderSt· Sizable

1±1 GridSize

HelpButton

1±1 Icon
ImeMode

8) 8

False

~ (Icon)
NoControl

IsMdiContaine False

KeyPreview False

Language (Default)

False _.:J
[±) Location 01 0

Locked False

MaximizeBox True

Figure 6-1 . Form properties showing the localizable property

The two properties we are interested in are the localizable and the language
properties.

If we want to start this process we need to change the localizable property
from false to true. The language property is by default; default. What this means
is that the resource file that gets generated is the culture-invariant resource file
for this project. This form resource file is created if you use localization or not.

You may wonder if you can see this resource file. Yes, you can. Go into the
Solution Explorer pane and turn on "Show all files." You should now see what is
shown in Figure 6-2.

Resource File Tools

141

Chapter6

142

Solut1on Explorer - CH6r11ult1For .. , Q. ;x

Solution 'CH6Multiform-C' (I project
EJ @!!! CH6Multiform-C

[±I .o References
bin

.J obj
€!) Assemblylnfo.cs

El
' g ~~~! .resx

~ licenses.licx

Figure 6-2. Click "Show All Files" to see the localized form resource

As you can see, the file generated is Forml.resx. This an XML-based resource
file. You see what is inside in a little while. First, expand the references node in this
pane. See anything interesting? I am talking about the reference to the
System.Windows.Forms dll. Of course you cannot get a form on the screen without
this dll but remember also that it contains the ResXResourceWriter,
ResXResourceReader, and other ResXnnn classes. These are the classes in the
System.Resources namespace that are necessary to write XML based resource files.

Are you starting to understand a little of how .NET was put together?
Back at the ranch ... Drag a control; let's say a label onto the form. Drag

a few more controls on the form. Enter text values for all these controls. Here is
what I placed on my form shown in Figure 6-3.

i: : : I Default label
J • • • ~ • • • • • • • • ~ • • • • • • • • • • • • •

d: : : I default text box
::l' . - . • ' :~1

''· ~ ~ ~:: ~: default button (~. ·:1
..... ··~ ' ::; -

Figure 6-3. Basic form with some controls to show localization

Not much here but there is enough to continue. Click the form again and
change the language property to Azeri (Cyrillic) (Azerbaijan). Look in the Solution
Explorer and you should see two more resource files. They are shown in Figure 6-4.

~on Ex_e!Qr~r - cH6Mliifor... 11- X

:B IE! ~ [jJ r;:,
Solution 'CH6MultiForm-C' (1 project)

EJ QjJ CH6Multiform-C
ffi .o References
1±1 _j bin
1±1 _j obj
~ Assemblylnfo.cs

EJ · g Forml.cs
tu Forml.az.resx

t · 'tJ Forml.Cy-az-AZ.resx
· 'tJ Forml.resx
~ licenses.licx

Figure 6-4. All localized forms shown for this example

Resource File Tools

143

Chapter6

144

See how they are named? They are named according to the culture and
region. Now go ahead and change the text in the controls to some thing else that
identifies the form. Here is what I have in Figure 6-5.

O't'i'l':::':'"''i'l'"H'::::::i:::::::::::::::::o ·:::,;;:,,:;':':':,::::''~''':':'''i<':':''':'::
:;~: ...:..lQJ~

~· •• ! ~""'"bel ••••••••••• ••••
~ ~ : ~ i~y;il;i~ ~~~~ ~~;
k~ :::.: •••• Cy~boUoo • • ~

..........................
m~ :

Figure 6-5. Cyrillic form with text to identify it as such

Now is a good time to save and compile your program. This is so cookie cut
ter that you should have no errors. You have yet to type any code! Okay so now is
the time to go answer that question that has been burning in your mind. Why
were two resources files generated when I changed languages in the form, and
what is in them?

A Look at IDE-Generated Resource Files

Go into the Windows Explorer and find the resource file named
Forml.az-AZ-Cyrl.resx. Open this file with notepad or a similar text editor.
Listing 6-1 is what you should see.

Listing 6-1 . Incremental form resource file

c?xml version="l.O" encoding="utf-8"?>
<root>

cxsd:schema id="root" targetNamespace="" xmlns=""
xmlns:xsd= "http://VMW.w3.org/2001/XMLSchema" xmlns:msdata=
"urn :schemas-microsoft-com:xml-msdata">
cxsd:element name="root" msdata:IsDataSet="true">

cxsd:complexType>
cxsd :choice maxOccurs="unbounded">

<xsd:element name="data">
cxsd:complexType>

<xsd:sequence>
<xsd:element name="value" type="xsd:string" minOccurs="O"

msdata:Ordinal="l" I>
<xsd:element name="comment" type="xsd:string" minOccurs="O"

msdata:Ordinal="2" I>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />

<xsd:attribute name="type" type="xsd:string" I>
<xsd:attribute name="mimetype" type="xsd:string" I>

</xsd:complexType>
</xsd:element>
<xsd:element name="resheader">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="value" type="xsd:string" minOccurs="O"

msdata:Ordinal="l" I>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" I>

</xsd:complexType>
<lxsd:element>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:schema>
<data name="labell.ImeMode" type="System.Windows.Forms.ImeMode,

System.Windows.Forms">
<value>NoControl</value>

</data>
<data name="labell.Text">

<value>Cyrillic label</value>
</data>
<data name="textBoxl.Text">

<value>Cyrillic text box</value>

</data>
<data name="buttonl.ImeMode" type="System.Windows.Forms.ImeMode,

System.Windows.Forms">
<value>NoControl</value>

</data>
<data name="buttonl.Text">

<value>Cyrillic button</value>
</data>

Resource File Tools

145

Chapter6

146

<resheader name="ResMimeType">
<value>text/microsoft-resx</value>

<Ires header>
<resheader name="Version">

<value>l.O.O.O</value>
<Ires header>
<resheader name="Reader">

<value>System.Resources.ResXResourceReader</value>
<Ires header>
<resheader name="Writer">

<value>System.Resources.ResXResourceWriter</value>
</resheader>

<!root>

First, notice that it starts out with XSD schema commands that define the
data that follows. Next notice that some of the properties of all the forms' con
stituent controls are in here. These properties relate to what you have done to
localize this form. So far you see just the text changes you made. Later you will
make some other positional changes and revisit this file.

One important thing to note here is that this resource file is an incremental
change file from the base form. Open up the forml.resx file in another instance
of notepad. See that it is much larger. It contains everything having to do with the
form including a binary representation of the form's icon. Including it here would
add too much weight to the book. And this is a small resource file! The size of this
file and what is-or is not-in it will be important to remember when you get to
the WinRes.exe tool. Stay tuned!

Go back to the project and make the button the same size as the other con
trols on the form. You should still be in the Cyrillic form. Here is what you should
see in Figure 6-6.

,•;
.

:i;, : : : : ~y;il;ic·l~~e; : : : :

Bl~ :
.:i ·•. 0 ••••••••••

a : : : I Cyrillic text box

Figure 6-6. Cyrillic form showing different button size

Save and recompile your code. Here is the cool part. Open up the

Forml.az-AZ-Cyrl.resx file again. Notice any differences? Listing 6-2 is mine.

Listing 6-2. Incremental form resource file with changes

c?xml version="l.O" encoding="utf-8"?>

<root>
cxsd:schema id="root" targetNamespace="" xmlns=""

xmlns:xsd="http:llwww.w3.orgi2001IXMLSchema" xmlns:msdata=

"urn:schemas-microsoft.com:xml-msdata">

cxsd:element name="root" msdata:IsDataSet="true">

<xsd:complexType>
cxsd:choice maxOccurs="unbounded">

cxsd:element name="data">
cxsd:complexType>

cxsd:sequence>
cxsd:element name="value" type="xsd:string" minOccurs="O"

msdata:Ordinal="l" I>

cxsd:element name="comment" type="xsd:string" minOccurs="o"
msdata:Ordinal="2" I>

clxsd:sequence>
cxsd:attribute name="name" type="xsd:string" I>
cxsd:attribute name="type" type="xsd:string" I>
cxsd:attribute name="mimetype" type="xsd:string" I>

clxsd:complexType>
<lxsd:element>
cxsd:element name="resheader">

<xsd:complexType>
cxsd:sequence>

<xsd:element name="value" type="xsd:string" minOccurs="O"
msdata:Ordinal="l" I>

<lxsd:sequence>
cxsd:attribute name="name" type="xsd:string" use="required" I>

<lxsd:complexType>
<lxsd:element>

<lxsd:choice>
<lxsd:complexType>

<lxsd:element>
clxsd:schema>
<data name="labell.ImeMode" type="System.Windows.Forms.ImeMode,

System.Windows.Forms">

cvalue>NoControlclvalue>

<I data>

Resource File Tools

147

Chapter6

148

<data name="labell. Text">
<value>Cyrillic label</value>

</data>
<data name="textBoxl. Text">

<value>Cyrillic text box</value>
</data>
<data name="buttonl.ImeMode" type="System.Windows.Forms.ImeMode,

System.Windows.Forms">
<value>NoControl</value>

</data>
<data name="buttonl.Location" type="System.Drawing.Point, System.Drawing">

<value>24, 112</value>
</data>
<data name=" buttonl. Size" type=" System. Drawing. Size, System. Drawing">

<value>152, 24</value>
</data>
<data name="buttonl. Text">

<value>Cyrillic button</value>
</data>
<resheader name="ResMimeType">

<value>text/microsoft-resx</value>
</resheader>
<resheader name="Version">

<value>1.0.0.0</value>
</resheader>
<resheader name="Reader">

<value>System.Resources.ResXResourceReader</value>
</resheader>
<resheader name="Writer">

<value>System.Resources.ResXResourceWriter</value>
</resheader>

</root>

You see a few more lines this time. Now that you changed the size of the but
ton from that of the original form, you get size and positional information in the
resource file. As you can see, these files are only as big as they need to be.

Click the form and change the language back and forth from the Cyrillic to
the default. See the form change? You now effectively have two forms.

Second Resource File

I told you I would explain both resource files. The second one was made when
you originally changed the form to Cyrillic and is called Forml.az.resx. Open this
form with Notepad. What do you see? It is empty. Why? It has the name of
a language-only resource file. No region is included in the name of the file. This
leads me to believe that it was created as a string resource file for your program.
Being empty however is puzzling. It should at least have the necessary XSD infor
mation so it can be edited with the XML editor. Well, I am using the Beta2 CD for
this book and I can only hope that this file will be properly formed in the release
version. By the way, if you try another nonregionalized language such as German
you will not get the second resx file.

It is time to see your program at work. Press FS and start the program. You
will see the original default form show up. Close the program and open your
code pane.

If you have made this program in C# put the following lines at the top of
your code.

using System.Threading;
using System.Globalization;

Now type the following line of code in the form! section just before the
"InitializeComponent();" line.

Thread.CurrentThread.CurrentUICulture=new Cultureinfo("az-AZ-Cyrl");

If you have made this program in VB put the following lines at the top of
your code.

Imports System.Threading
Imports System.Globalization

Now type the following line of code in the New function just before the
"InitializeComponent" line.

Thread.CurrentThread.CurrentUICulture=new Cultureinfo("az-AZ-Cyrl")

Now run your program again. You should see the Cyrillic version of your form
appear. Comment out this "Thread" line, run the program again and you should
be back to the default form.

Well, this was easy enough. You made a small program that had two different
versions of the same form. You saw that the controls on each form could be
resized and even moved around. If you took a peek in the forms resource file to

Resource File Tools

149

Chapter6

150

see what was going on in there and you saw that .NET makes a base resource file

for the form and subsequent incremental form resource files for each language

you choose.
Let's take a last peek at the program you just made. Go into the forms

code and expand the Windows Form Designer generated code section. Take

a look at the code in the InitializeComponent method. This method makes

a ResourceManager and goes out to the resource file and gets all the information

pertaining to the form. Notice the one thing that does not get saved to the

resource file. The name of each control is hard coded. Go back to the form and

change the forecolor of one of the controls. Rebuild the project and look at this

section of code again. You will see that the color of the control is now also hard

coded. There are obviously some things that you are not allowed to externalize in

a resource file. Listing 6-3 shows some of this code.

Listing 6-3. Windows generated code to retreive resources

C#

#region Windows Form Designer generated code

Ill <summary>
Ill Required method for Designer support - do not modify

Ill the contents of this method with the code editor.

Ill </summary>
private void InitializeComponent()
{

System.Resources.ResourceManager resources = new
System.Resources.ResourceManager(typeof(Forml));
this.labell = new System.Windows.Forms.Label();
this.textBoxl = new System.Windows.Forms.TextBox();
this.buttonl = new System.Windows.Forms.Button();
this.Suspendlayout();
II
I I labell
II
this.labell.AccessibleDescription

((string)(resources.GetObject("labell.AccessibleDescription")));

this.labell.AccessibleName =
((string)(resources.GetObject("labell.AccessibleName")));

this.labell.Anchor =

(System.Windows.Forms.AnchorStyles)(resources.GetObject("labell.Anchor")));

this.labell.AutoSize = ((bool)(resources.GetObject("labell.AutoSize")));

this.labell.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;

this.label1.Cursor =
((System. Windows. Forms. Cursor) (resources. GetObj ect ("label1. Cursor")));

this.label1.Dock =
((System.Windows.Forms.DockStyle)(resources.GetObject("label1.Dock")));

this.label1.Enabled = ((bool)(resources.Get0bject("label1.Enabled")));
this.label1.Font =

((System.Drawing.Font)(resources.Get0bject("label1.Font")));
this.label1.ForeColor = System.Drawing.Color.Red;
this.label1.Image =

((System.Drawing.Image)(resources.Get0bject("label1.Image")));
this.label1.ImageAlign =

((System.Drawing.ContentAlignment)(resources.GetObject("label1.ImageAlign")));
this.label1.Imagelndex =

((int)(resources.Get0bject("label1.Imagelndex")));
this.label1.ImeMode =

((System.Windows.Forms.ImeMode)(resources.GetObject("label1.ImeMode")));
this.label1.Location =

((System.Drawing.Point)(resources.Get0bject("label1.Location")));
this .label1. Name = "label1";
this.label1.RightToleft =

((System.Windows.Forms.RightToleft)(resources.GetObject("label1.RightToleft")));
this.label1.Size =

((System.Drawing.Size)(resources.Get0bject("label1.Size")));
this.label1.Tablndex = ((int)(resources.Get0bject("label1.Tablndex")));
this .label1. Text = resources. Get String ("label1. Text");
this.label1.TextAlign =

((System.Drawing.ContentAlignment)(resources.GetObject("label1.TextAlign")));
this.label1.Visible = ((bool)(resources.GetObject("labell.Visible")));
this.label1.Click += new System.EventHandler(this.label1_Click);
II

This is a very powerful way to localize your program at the design stage.
However, it soon gets unwieldy when you have many forms with many controls
running under many languages. It is virtually impossible to manage and localize
any kind of large program in this manner .. NET does provide a tool to help local
ize the forms themselves. This tool is not much better than using the IDE. The
tool is called WinRes.exe.

A list of some IDE designer caveats follows:

• The same controls must be on all versions of the form.

• Several properties of the constituent controls are global to all versions of
the form.

Resource File Tools

151

Chapter6

152

• All text must be typed by hand into each control on the form

• Incremental form resource files based on language cannot be edited by
WinRes.exe.

WinRes.exe

This program is an adjunct to the IDE forms designer. I stated that using the
forms designer would be tedious and error prone for the developer to use. This
program allows that burden to be put upon the transition service. Is this better?
I revisit this question at the end of the section.

WinRes.exe takes as an argument any .NET resource file except for a .txt file.
The reason it does not take a text file is that this is a form resource editor. As you
recall text-based resource files contain only strings. No objects are allowed.
You can either supply a command argument to WinRes or you can open
a resource file from within WinRes. Your choice.

NOTE WinRes is a program that requires certain environ
ment variables to be set if used from the command line.
When in DOS you must run the Corvars.bat program

located in <drive>:\ProgramFiles\Microsoft.NEI\
FrameworkSDK\Bin. You can also use Windows Explorer to

go to this directory and double-click directly in WinRes.exe to start it.

Let's start with the IDE forms example you just finished. I'll do this the easy way.

1. Find WinRes.exe (in <drive>: \Program Files \Microsoft.NET
\FrameworkSDK\Bin).

2. Drag a shortcut to this program on your desktop.

3. Open the folder that has your last program-the one for the IDE
forms designer.

4. You should now see the forms resource files that pertain to the program.
My folder looks like what you see in Figure 6-7.

q; X £ft I IT!·

Size T e M01

File Folder 10/

File Folder 9/1

3 KB C# Source file 9/1

5 KB C# Project file 10/

- CH6MultiForm-C.csproj.user 2 KB Visual Studio Project User Options 10/

Q CH6MultiForm-C.sln I KB Visual Studio Solution 10/

..), CH61'11ultiform-C. suo 7 KB Visual Studio Solution User Options 10/

{Jl Forml.az.resx 0 KB .NET XML Resource Template 10/

~Forml.cs 11 KB C# Source file 10/

5J Form 1 . C y-az-AZ. resx 0 KB .NET XML Resource Template 10/

5J Form 1 . resx 15 KB .NET XML Resource Template 10/

l!lll licenses.licx 1 KB LICX File 10/

Figure 6-7. Explorer listing showing all resource file forms

Open each of the resx files in turn. First, open the Forml .resx file by dragging
it on top of the shortcut to Winres program. The Winres program contains
a visual designer and a properties window. Figure 6-8 shows what you should see.

Resource File Tools

153

Chapter6

154

~Windows Resour((! Locot1hzat10n Ed1tor ~ [forml] : l: ,

t:l, F~ Edt Fori'Mt Wndow Help ------
~ liil l -

I Form1 System.Windows.Forlll$.F0rm

[]~':[!}~
8 Ace 'b•irv --------.

Accessibi.O..criptior
AccessibleNome

8 Aw "
B.ockgroundlfl\49e
Cursor

1!1 Font
RlghtT olefl
Text Form1

8 Ben vu
Enabled
lmeMode
T ablndeo<
V..,ble

El L .roll
Anchor
AutoScrol

1!1 AutoScroiMorgo>
!II AutoScroiMinSizc
!II ClientSrze

Dock
:1!1 Locatoon
I!Il Max111M11Size
l!l lvhmYWJmSrzc

StartPosition
8 Mr'

True
NoControl
0
F41•e

Top, Left
Folse
0. 0
0. 0
208.165
None
0. 0
0. 0
0. 0
\lfnc!owsOela<Ji.Locatoon

l!l AutoScaleBcscSize 5. 13
8 W• ,-low l
!II Icon e;;J (Icon)

T l'tc ti!O<t con!OII'led n tl'tc control Text J
Rel!Ciy #.

Figure 6-8. WinRes editor screen

What is most noticeable is not what is here but what is missing. Try deleting
any of the components on the form. Try right-clicking any of the components.
Nothing happening? That is the whole point. The WinRes editor is designed as
a tool for the localizer. It is meant as an editing tool only.

The Visual Studio IDE allows you to create any number of forms with any
number of controls and abstract them from your code by externalizing the
parameters in an XML resource file. The WinRes.exe program allows you to edit
these forms by changing certain properties without ever needing access to the
original source code. It does not allow the editor to remove or add any controls.

You can think of this tool as a way to externalize what you did in the IDE
forms designer example. Inside the IDE you were able to move and resize some
of the controls. You were also able to change the displayed text. You are able to do
the same thing with this WinRes tool.

~Wmdows Resource localtzat•on Ed1tor - [Forml] · '

l:l Fie Edil Formllt Window Help ----------------
~ liil l :.

Cjoilhc button

Ready

-=.J.gj~

o·
0 ·
0

l laben Sy:tem Wonclows.Forms label

lt l m1111111-
AccMsibleO=~oor
AcceurbleNome
Anchor
AutoSize
8bekgrour.dlmage
CLISOI

Dock
Enabled

!B Font
Image
lmbQeAiign
lmagelndex
lmeMode

filloeation
RighiT oleft

!BSize
T ablr.dex
Text
Te tAirgn
Visble

Text

Top. left
F!llse
D (none)
Del &.lit
None
True
M~e~osolt Sans Serl. 8 25pt
D (none)
MrddteCenter
D (none)
NoControl
24.24
No
152. 16
0
Cyrillic label
Toplelt
True

T ne text eontl!Oned n the control

l

Figure 6-9. Using the WinResEditor to edit the Cyrillic form

Change the size of the button to match that of the text box and labeL Now
replace the text in these controls with the text we had in the Cyrillic controls from
the last example. You should end up with a screen that looks like Figure 6-9.

Now save the file to a different name but in the same directory as Forml.resx.
Save it as Forml.az.resx. Open this file with notepad and compare it with the
Forml.resx file. You will see that they are identical in content but with some of
the properties changed.

Notice that the new resource file is not an incrementally changed resource
file like the Cyrillic one that was created by the IDE forms designer. You now have
a twin of the original file.

OK, I know you have been dying to do this. Open the incremental form
resource file that you created with the IDE forms designer. It is called
Forml.az-AZ-Cyrl.resx. How does it look to you? That's right you get an error.

Resource File Tools

155

Chapter6

156

There is not enough information in this file to create the whole form. Remember
that this resource file only captures the differences between forms.

Now that we have gone through this WinRes tool you must be wondering
what you can really do with it. It is not really a tool for the developer so much as it
is a tool for the localization service. It allows you to make a form and have the
form itself localized visually without sending out any code. While this is really
neat, and it works well, it still suffers from the same problems I mentioned while
working in the IDE forms designer. The problem is the tediousness of translation

and inputting all the correct strings directly into the form. All you have done is
transfer this problem to the translator. It does have the advantage, however, of
being able to get a form back from the translation service whose controls are all

sized and placed according to the language. You need to weigh the pros and cons
of using this tool as opposed to using a straight string file and a resource manager.

Design Issue

Before we begin a working program I need to tell you a pet peeve of mine-a lack

of good design. I began my software career writing C code for embedded systems,
some that I designed even. (I started out life not as a programmer but as an
electrical engineer). Anyway, I gravitated to the DOS world and have been pro
gramming in Windows since the start. I have done quite a few projects in C++
and have written several controls in ATL.

When I discovered VB at Version 5 I was amazed at how easy it was to write
complex Wmdows code in such a short time. No longer did I need to write lots of
arcane code just to have a window show up. I could concentrate on the code that
actually did the work. Visual Basic was a great time saver for me and other program
mers. However, like they say, what is good for the goose is good for the gander.

Visual Basic became the great enabler. All of a sudden managers found out
that they need not wait for IT to assign a programmer to a task. Visual Basic was

so easy to use they could get a non programmer to write something up "real
quick." "Honest it's just a demo!" "It will never make it to the public!" How often
have we heard that one?

After a while, people who were not trained as programmers found they could

do an OK job at it and they became VB programmers. What was missing was the

thought process behind many of these programs. Design took a back seat to
expediency and therefore maintenance and extendibility suffered. .

I have been involved in many language retrofit projects. Some have been
easy and some have taken months. It is much harder to go back and internation

alize a program that was never designed for that option. Often whole screens

have to be changed around. Quite a bit of code must be touched. No matter how
careful you are you introduce new bugs. A program that was debugged and work
ing perfectly could go through the localization process and wind up not working
as it did before.

Upfront design is the key. As far as multilanguage programs go, do your
homework first and design your program with this in mind. These days I never
write a production program without designing in multilanguage capability. If
Marketing says it will only be sold here it will be back in a year asking how long it
will take to make it so it works in Brazil. If you have designed it correctly you can
whine and say six weeks and then be the hero and do it in two days. If you have
done it right you may not even have to recompile the code!

.NET was designed up front to make localization easy and complete. Make
sure your design takes advantage of this work.

Summary

Here you went over the tools provided by .NET to manage resource files inter
nally and externally to the IDE. These tools do not require writing any code.
These tools are:

• XML Designer in Visual Studio. This tool allows you to generate and edit
a string resource file for your program. The output of this tool is a binary
.resources file. Objects such as pictures are not allowed in this tool.

• ResGen.exe. This tool allows you to convert a resource file between any of
its three forms. The forms are .txt, .resx, and .resources.

• Al.exe. This tool compiles binary resource files into satellite assemblies.

• CSC.exe. This tool compiles .NET code into executables and also embeds
a resource file into that executable.

• IDE forms designer. This tool allows the programmer to edit a program's
form of visual localization and generate new forms for new cultures. This
is a form of visual localization. He or she can then type in new translated
text in the different forms and they will be displayed according to the cur
rent culture.

• WinRes.exe. This is a tool for the localizer. A programmer can create
a Windows Form and send the resulting XML form resource file to a local
izer. The localizer can translate text and rearrange controls on the forms to
conform to the localized text.

Next I take you through an example that uses all the knowledge gained so far
to make a localized resource editor. Chapter 7 is dedicated to making the editor
and Chapter 8 is dedicated to localizing it.

Resource File Tools

157

CHAPTER 7

Resource Editor
Example

THis CHAPTER Is WHERE vou get down to brass tacks and write a resource editor. So

far you have read (hopefully not waded) through quite a bit of explanation of the
classes that make up the .NET globalization features. If you did not know too

much about localizing software in general, perhaps you also learned something
new on that subject.

Now it is time to put all that newfound knowledge to work while you still
remember it. Together we write a Windows Forms resource editor application. As
is the case with the rest of this book, I show you the code in both VB and C#.

When I started out thinking about a good example, a resource editor was the
first one I came up with. At the time I thought it would be both applicable and
useful to have a program like this. Having written the first six chapters of this
book I find it even more so.

VS .NET has a few resource editors. They are reviewed in Table 7-1 and pre
sented along with some of their shortcomings.

Table 7-1. Resource Editors in .NET

PROGRAM
Windows IDE resource editor

Windows Forms designer

Notepad

NOTES
Cannot enter graphics; only outputs XML, which
is not good for translator.

OK for small projects but gets unwieldy fast

Only good for text-based resource files. Text
based resource files contain no graphics.

The resource editor I show you has the following capabilities:

• Tabbed pages to separate text resources and graphics resources.

• Grid control to view/ edit/ enter text resources.

• List view of graphical resources. Both keys and thumbnail pictures

are shown.

159

Chapter7

160

• Input of any graphics file. Supports bmp, gif, jpg, and tif.

• Will read any size resource file in any of the three .NET resource
file formats.

• Will read any number of resource files for single combination later.

• Build a new resource file name from supplied cultures.

• Output resources to any or all three resource file formats.

The ability to output a direct text resource file from input from an XML or
binary resource file is important. This text format is easily handled by third-party
translation services. Once the text resources are translated, you can use this tool
to recombine the separate graphics and text resources back into a binary or XML
resource file.

The program I show you here is quite involved. To make a sophisticated tool
like this you need to use quite a bit of the .NET framework. This example is excel
lent for anyone interested in writing applications for .NET. Even if you have no
interest in localization (although you should) this chapter shows you how to
write a Windows application using most of the controls you are used to. Here is
a list of some of what you see in the code in this chapter.

• Windows Forms

• Dialog boxes, modal dialogs, and dialog result codes

• Picture box controls

• Text and label controls, tabbed dialog controls, menus, frames, list boxes,
check boxes, and buttons

• Class design-overloaded constructors, read/write/read-only properties,
and nested classes

• Enums and constants

• Working with images

• File I/0

• Adding to the wizard-generated code

Resource Editor Example

• Try-Catch exception handling

• User-defined exception class

• Single delegate for multiple events

• Delegate renaming

• Controls placed on forms at run time including: control arrays, and
control positioning

• Grid control including: disconnected data sets in memory, table styles and
collections, column styles and collections, filling in data table rows,
and attaching data table to grid

• Using namespaces and aliases

• Calling VB 6 methods from C# and VB .NET

• Culturelnfo class

• System.Resources namespace including: reading and writing XML, text,
and binary resource files

As you can see, you are in for an in-depth discussion oflocalization and .NET
programming in general. The next chapter takes the program you create here and
globalize it. You use this program to generate resource files for itselfl

Let's get started!

Starting the Project

As I've stated, this project will be written in VB and inC#. Since the VB code is
a little easier to understand and not quite as complex as the C# code, I start out
inVB.NET.

This project is a good illustration of the differences between the two lan
guages. There are some basic differences in how you do things in C# as opposed
to VB. Well, enough said. If you are anxious to see the C# version, hold on a bit;
you'll get there.

Start up Visual Studio .NET and choose a VB Windows Forms project. Call
it ResEditor.

161

Chapter 7

162

You should have a single form on your screen. Before you get into writing
code, the first order of business is to make all the forms and modules necessary
for this project. These steps should help you along the way.

1. Rename the default form to frmResources.vb.

2. Add a new Windows Form called AskKey. vb.

3. Add a module called Consts.vb.

4. Add a class file called ResUtil.vb.

You now have all the files needed for this project. Build the project and
.NET will add a few files of its own for you. If you are typing in the code this may
also be the only time your program will compile the first time without errors.
Figure 7-1 shows what the solution window should look like.

~!Solution E~lorer- CH7ResEdit .•. q.

Ll @] [j] r~=
Solution 'CH7ResEdit-VB' (1 proje

El· !@!! CH7ResEdit-VB

Figure 7-1. Solution with all .files

!±J... .o References

r±l _J bin
l±l ...J obj
1±1 []! As !<Key. vb
' ~ Assemblylnfo.vb
~ Consts.vb

~ 1]1 frmResources.vb
~ licenses.licx
f!j ResUtil. vb

To see all these files in Figure 7-1 click the "Show All Files" button on the
Solution window.

Resource Editor Example

Bring up the frmResources form and resize it to 824x504. Next go over to your
toolbox and put the following controls on this form:

• Tab control. Name it tcResources. Size it to fit in the form. See Figure 7-5.

• Button. Name it cmdQuit.

• Status bar. Name it sbStatus and make sure that the "Show Panels" prop
erty is set to true.

• MainMenu control.

• Open File dialog. Name it OpenResFile.

Click the tab control and open the tab pages collection property. Add three
tab pages. You should see the screen shown in Figure 7-2.

TabPage Collection Editor .: ":"-;'~i~

Members:

Add Remove

Figure 7-2. Tab page collection editor

T abPage1 Properties:

El I

AccessibleDescri1
AccessibleN arne
AccessibleRole Default

El . p li ,,

BackColor 0 Control
8 ackgroundl mag~ 0 (none)
BorderStyle None
Cursor Default

I · · l

13 Font Microsoft Sans Serif.
ForeColor • ControiT ext
RightToleft No
Text

El B
AllowDrop
ContextM enu
lmeMode

OK

Text

False
(none)
NoControl

Cancel Help J
A.

The Text property for these pages should be "Text," "Pictures," and "Final . . . "
respectively. Click OK to accept this. Next change the text property on the button
to "Quit."

163

Chapter 7

164

Click the status bar control and open the panels Collection property. Add
three panels. You should see the screen shown in Figure 7-3.

StatusBarPanel Collection Editor ·. ..', ·g-,.·=~·--.

Members: spFile Properties:
------------------~

Add Remove

El. PP
Alignment
AutoSize
BorderStyle
Icon
Style
Text
T colT ip Text

Left
None
Sunken
D (none)
Text
File:

Width 500
El

MinWidth 10
El L lq
1±1 (D ynamicPropertie
El f

(Name)
Modifiers

spFile
Assembly

Figure 7-3. StatusBarPanel collection editor

Help I
~

The panels should be named spFile, spStatus, and spDate. Their text prop
erties should be set to "File:," "Status:," and "Date:" respectively. Click OK to
accept this.

Next, edit the menu and type the menu items as shown in Figure 7-4.

Figure 7-4. Menu items for the resource editor

Resource Editor Example

Now you need to add a DataGrid control to the first page of the tab control.
Drag this control from the toolbox and place it on the tab control's first page.
This is the tab marked "Text." Set the grid controls Dock property to "Fill." This
stretches the DataGrid control to fit the inside of the tab page. Rename this
control dgStrings. You should now have a form that looks like the one shown
in Figure 7-5.

I

.
Cut

Figure 7-5. Complete ResEditor form showing the first tab

Now that you have the first tab page done, let's put the controls you need on
the other tab pages as well. Click the second tab page (Pictures) and add the fol
lowing controls with their properties changed as indicated:

• List box. Name it lstPictures.

• Button. Name it cmdAddPic. Text is "Add."

• Button. Name it cmdDelPic. Text is "Remove."

• PictureBox. Name it "pic" and change its BorderStyle to Fixed3D. I changed
the back color to something other than gray so I could see it.

• Panel. Name it "PicPanel" and change its BorderStyle to Fixed3D.

165

Chapter 7

166

• Two labels. Change the Text properties to "Key" and "Pictures" respectively.
Center the text in each label.

Rearrange the screen to look like mine, as shown in Figure 7-6.

Figure 7-6. Pictures tab with all controls in place

Now you do the final tab page. There are quite a few controls on this page
and their arrangement is important to the information flow. Place the following
controls on the screen in the following order. Figure 7-7 shows the arrangement
on the screen.

• Listbox. Name it lstCultures.

• Label. Change Text property to "Cultures" and center the text.

• GroupBox. Change Text property to "Basics."

• Label. Place it inside the Basics group box. Clear the Text property and set

border to 3D. Name it lbllnFilename.

• Label. Place it inside the Basics group box. Clear the Text property and set
border to 3D. Name it lblResStringNum.

• Label. Place it inside the Basics group box. Clear the Text property and set
border to 3D. Name it lblNumPics.

• Label. Place it inside the Basics group box. Text property is "Input File
Name." Center the text.

Resource Editor Example

• Label. Place it inside the Basics group box. Text property is "String Count."
Center the text.

• Label. Place it inside the Basics group box. Text property is "Picture Count."
Center the text.

• GroupBox. Place it on the tab. Text property is "Build Output File(s)."

• Button. Place inside "Output" group box. Name it cmdSave. Text is "Save."

• Label. Place inside "Output" group box. Text property is "Base Name."

• TextBox. Place inside "Output" group box. Name it txtBaseName. Text
is cleared.

• CheckBox. Place inside "Output" group box. Name it chkCreateText. Text is
"Create Text file for translator."

• CheckBox. Place inside "Output" group box. Name it chkCreateXML. Text is
"Create XML Resource File."

• CheckBox. Place inside "Output" group box. Name it chkCreateBin. Text is
"Create Binary Resource File."

• Label. Place inside the "Output" group box. Name it lblTxtFname. Text
property is cleared. Set the border to 3D. Place the label below the
chkCreateText check box control.

• Label. Place inside the "Output" group box. Name it lblXMLFname. Text
property is cleared. Set the border to 3D. Place the label below the
chkCreateXML check box control.

• Label. Place inside the "Output" group box. Name it lblBinFname. Text
property is cleared. Set the border to 3D. Place the label below the
chkCreateBin check box control.

Now that you have all the controls on the final tab screen, your screen should
look something like mine (Figure 7-7).

167

Chapter 7

168

Figure 7-7. Arrangement of controls on "Final" tab screen

Where Is the Localization?

OK. Now you have your main form set up complete with all its constituent con

trols. You may be wondering why all the label controls have their default names.
This is because they are not referenced anywhere in the code. Why bother giving

them names? Well, if you have been paying attention to the previous chapters,

this book is about localizing code. Every control should have a descriptive name

and if it has a Text property that property should be set in code with a string

pulled from a resource file.
Why didn't I follow my own rules for this program? Well, I want to show

you what it is like to localize a program "after the fact." That's what I do in the

next chapter. My philosophy is that localization needs to be designed into a pro

gram. However, in the real world you often need to localize an existing program.

Chapter 8 illustrates how to do this. Writing a program that has localization

designed in from the start is shown in Chapter 9.

Here Comes the Code

The first thing to do in any VB code page is to set the Option Strict= ON option.

This eliminates all the "Evil Type Coercion" bugs that plagued VB 6. For all you

VB' ers out there, this is not your usual VB. VB .NET is a powerful object -oriented

language and all object-oriented rules apply. This includes strong type safety.

Resource Editor Example

I recommend that you turn it on by default for every VB project you make so you
will not forget to include it at the top of each file.

NOTE Turn on Option Strict by right-clicking your project
in the solution pane, select Properties, and choose the
Option Strict ON choice. All forms, class files, and modules
for this project will have Option Strict= ON at the top of
the code.

Start out by editing the Consts.vb file. This file includes some constants and
an Enum that will be used to identify the type of resource file we are working
with. It should look like Listing 7-1:

Listing 7-1 . Constants and enumerators

Module Consts

Public Canst KeyCol As String = "Key"
Public Canst TextCol As String = "Text"
Public Canst CommentCol As String = "Comment"
Public Canst MaxKeylen As Integer = 15
Public Canst CommentChar As Char = ";"c

Public Enum ResTypes
TextType = 1

XMLType 2
BinType = 3

End Enum

End Module

Now, on to the frmResources. vb form. To use many of the classes you need
for the program, you must first include some namespaces.

Imports System
Imports System.Globalization
Imports System.Resources
Imports System. Threading
Imports System.IO
Imports MS = Microsoft.visualbasic.Strings

169

Chapter 7

170

The Globalization names pace allows you to access the Culturelnfo class. The
Resources namespace allows you to access the resource Reader and Writer
classes. The threading names pace allows you to change the default culture for the
current thread. The 10 namespace allows you to get file information. Finally,
I have included an alias to the Microsoft.Visualbasic.Strings namespace. I use
this later in the code to disambiguate the VB 6 "left" function.

Now you need to put in constants for use inside this form.

Canst GridlineWidth As Integer = 1 'Pixel width of a grid line
'These names do not need to be in a resource file because they will
'never be seen by the user.
Canst ResourceTableName As String = "Resources"

Canst TEXT_TAB As Integer = 0
Canst GRAPHICS_TAB As Integer = 1
Canst FINAL_TAB As Integer = 2
Canst PICSPACE As Int16 = 10
Canst PICSIZE As Int16 = 64

Private m_StringTable As DataTable
Private m_ResFile As String
Private m_NewFname As String
Private m_ResType As ResTypes
Private m_Pictures As New Collection()

Notice that I use a collection here to hold all my pictures. I think collections
are the greatest thing since sliced bread. The VB Collection class uses a hash table
look up for extremely fast access to members. It is also much more versatile that
the lowly array. You can even have collections of collections. This often comes in
handy. However, I must say that the arrays in .NET are much better than in regu
lar C++ or VB. You can iterate over arrays using the For Each syntax, for example.

NOTE Try using collections to build a hierarchical tree or
data objects. For example, a town has a collection of streets;
a street has a collection of houses; a house has a collection
of residents.

Resource Editor Example

You are at the point where you need to add the code that sets up the grid
control for text strings. Listing 7-2 shows the form_load method and the
supporting methods necessary to do this.

Listing 7-2. Loading the form and setting up the text grid control

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

InitStrings()

SetupStringTable()
dgStrings.DataSource = m_StringTable
SetupStringResourceGrid()
AlignColumns()

End Sub

Private Sub InitStrings()

sbStatus.Panels(2).Text = Now.ToString
sbStatus.Panels(1).Width = 100

End Sub

Private Sub AlignColumns()

dgStrings.TableStyles(o).GridColumnStyles(o).Width = 100
dgStrings.TableStyles(o).GridColumnStyles(1).Width = 300
dgStrings.TableStyles(o).GridColumnStyles(2).Width = _

End Sub

dgStrings.Size.Width - dgStrings.TableStyles(o).GridColumnStyles(o). _
Width - dgStrings.TableStyles(o).GridColumnStyles(1).Width -
dgStrings.RowHeaderWidth - 4 * GridlineWidth

Private Sub SetupStringResourceGrid()
Dim dgS As New DataGridTableStyle()
Dim dgCKey As DataGridTextBoxColumn
Dim dgCText As DataGridTextBoxColumn
Dim dgCComment As DataGridTextBoxColumn

171

Chapter 7

172

'Set up a table style first then add it to the grid
dgS.MappingName = ResourceTableName
dgS.PreferredColumnWidth = 300
dgS.SelectionBackColor = Color.Beige

dgS.SelectionForeColor = Color.Black
dgS.AllowSorting = True

'Make a column style for the first column and add it to the columnstyle

dgCKey = New DataGridTextBoxColumn()

dgCKey.MappingName = KeyCol
dgCKey.HeaderText = "Resource Key"

dgCKey.Width = 100
dgS.GridColumnStyles.Add(dgCKey)

'Make a column style for the second column and add it to the columnstyle

dgCComment = New DataGridTextBoxColumn()

dgCComment.MappingName = TextCol
dgCComment.HeaderText = "Resource Text"

dgCComment.Width = 300
dgS.GridColumnStyles.Add(dgCComment)

'Make a column style for the third column and add it to the columnstyle

dgCText = New DataGridTextBoxColumn()
dgCText.MappingName = CommentCol
dgCText.HeaderText = "Comment"
dgCText.Width = 400
dgS.GridColumnStyles.Add(dgCText)

'First purge all table styles from this grid then add the one that I want

dgStrings.TableStyles.Clear()
dgStrings.TableStyles.Add(dgS)

End Sub

Private Sub SetupStringTable()
Dim dr As DataRow

'Give this table a name so I can synchronize to it with the grid

m_StringTable = New DataTable(ResourceTableName)

'Add three columns to the table

m_StringTable.Columns.Add(New DataColumn(KeyCol, _

Type.GetType("System.String")))

Resource Editor Example

m_StringTable.Columns.Add(New DataColumn(TextCol, _
Type.GetType("System.String")))

m_StringTable.Columns.Add(New DataColumn(CommentCol, _
Type.GetType("System.String")))

End Sub

The first thing done in the load function is to initialize the strings. You are
not localizing this code yet, so there is very little in the InitStrings method.
Chapter 8localizes this program and this method is where all the strings are
pulled in from the resource file and assigned to the controls.

Next, in the SetupStringTable method I instantiate a new data table and give
it the name defined at the top of the program "Resources." It is possible to have
many tables that can be assigned to the same grid control. Then I assign three
columns of type "String" to the data table. Table columns can also be assigned to
Boolean values, which gives you a check box in each cell of that column.

The next step is to assign the new data table as the data source of the grid
control. This effectively binds the table to the grid. Notice that even though I have
bound the table to the grid there is still no direct correlation between the grid
and the data that will show up in it. This is a great form of data abstraction.

Once the table is assigned to the grid, I call the method
SetupStringResourceGrid. The table styles and column styles are set up with this
method. A data grid, by default, has no table or column styles defined. The table
style defines how the table looks as a whole. Each table style needs at least one
column style. The column style defines how each column is shown in the table.
The link between the column style and the table style is its mapping name. The
link between the table style and the table is its mapping name. Just to be sure,
I purge all existing table styles from the table and add the one that I just created.

The data grid and data table are prime examples of collections at work. The
grid can have a collection of data tables, which has a collection of table styles,
which has a collection of column styles.

The last task in the form_load method is to "pretty up" the display of the
table within the grid. I do this by setting the size of the first two columns and
using a little basic math to size the third column according to the width of the
grid. If you use the anchoring capability of the control, this Align Columns proce
dure is called during the resize event.

Build your project, and then press F5 to run it. You should see the table cor
rectly resized in the grid. Figure 7-8 shows this screen.

173

Chapter 7

174

~RHourcr edrtor • .. "'·'~it:oO.: . "
Flo

Dull

Figure 7-8. Table attached to grid

Other than pressing the "X" at the top of the screen, how do you exit the pro
gram gracefully? There are two ways: the Quit button and the File-Exit menu
choice. Note the procedure in Listing 7-3.

Listing 7-3. Exit procedure

Private Sub ProgExit(ByVal sender As System .Object, _

Me. Dispose()
End

End Sub

ByVal e As System.EventArgs) Handles cmdQuit .Click,
mnuExit.Click

The ProgExit sub handles the Quit button and the FileExit menu choice.
Notice that I am calling the dispose method of this class, which is located in the
Windows Forms Designer Generated Code section.

Generating the Resource Handler Class

What about filling the grid with text resources? There are two ways to do this. The
first is to start typing in the cells. The second is to import the text from a resource
file. This is where you go next.

Resource Editor Example

Open the ResUtil.vb code. Change the ResUtil class definition from Public to
Friend. This limits the scope of the class to those classes within this project. Also,
import the following namespaces:

Imports System
Imports System.Globalization
Imports System.Resources
Imports System.IO
Imports System.Drawing
Imports System.Drawing.Imaging

Before you start on the ResUtil class, you need something to store an image
in. Normally an image is its own container, but there are properties that you need
to keep with the image. The main one is a name. This name is what is eventually
displayed in the lstPictures list box. There is actually a property of an Image class
that you can set up to hold any information you want. This is cumbersome so
I prefer a Wrapper class.

Enter the code for the Res Util class shown in listing 7-4.

Listing 7-4. Image Wrapper class

Public Class Resimage

Private img As Image
Private imgName As String
Private imgType As String

Public Sub New(ByVal Key As Object, ByVal Value As Object)
'Value is an object because of the way it is passed in
img = CType(Value, Image)
imgName = Key.ToString
imgType = Value.GetType.ToString

End Sub
Public Sub New(ByVal Key As String, ByVal Value As Object)

'Value is an object because of the way it is passed in
img = CType(Value, Image)
imgName = Key
imgType = Value.GetType.ToString

End Sub

175

Chapter 7

176

Public Property Name() As String
Get

Return imgName
End Get
Set(ByVal Value As String)

imgName = Value
End Set

End Property
Public ReadOnly Property Image() As Image

Get
Return img

End Get
End Property
Public ReadOnly Property Type() As String

Get
Return imgType

End Get
End Property

End Class

This Resimage class holds an image of any type and has a name and a Type
property. The Type property can be used to hold the original type of the image
before any transformations. This information may or may not be useful.

Notice that the Image and Type properties are read-only. How can you get
an image in here if the property is read-only? The answer lies in the constructors.
There are two of them here. They both take a key and an image as arguments.
One takes a key as an object and the other takes a key as a string. The constructor
that takes a key as an object is used for passing the key object from the resource
reader enumerator. The key as a string is used when you import a new image
into the program directly from a disk. The name of the image is defaulted to the
key in each case. The name property is read/write in case you want to change
the name later.

You may be wondering at this time why the image argument to the construc
tors is an object type rather than an Image type. The answer is that the resource
reader passes in the image as an object. Normally a Wrapper class would enforce
type safety by accepting only objects of a particular type. I could have changed
the object type before I used this constructor but I chose not to.

Resource Editor Example

NOTE As you will see, I like to take advantage of overloaded
constructors. It makes for much cleaner and more efficient
code. I really like the idea of defining and assigning a vari
able all at once. This C++ way of doing things is something
I really missed going to VB.

Let's go back to the ResUtil class. This class will have the following attributes:

• An embedded exception class

• Three overloaded constructors

• An internal collection of images

• Four properties and two methods

• Six private methods

Listing 7-5 shows the constructors and public properties of this class. It also
shows the custom Exception class you need.

Listing 7-5. ResUtil constructors and properties

Public Class InvalidTable
Inherits System.Exception

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub

End Class

Private m ResFile As String
Private m_SaveFile As String
Private m_ResType As ResTypes
Private m PicCol As Collection

177

Chapter 7

178

Constructors I Destructors -------
Public Sub New()

'Default to binary file. Default name
m_ResType = Consts.ResTypes.BinType
m ResFile = "BinResource.resources"
m SaveFile = m ResFile - -
m PicCo! = New Collection()

End Sub
Public Sub New(ByVal ResourceFilename As String)

m_ResType = Consts.ResTypes.BinType
m ResFile = ResourceFilename
m SaveFile = m ResFile - -
m_PicCol = New Collection()

End Sub
Public Sub New(ByVal ResourceFilename As String, ByVal RType As ResTypes)

m_ResType = RType
m ResFile = ResourceFilename
m SaveFile = m ResFile - -
m_PicCol = New Collection()

End Sub

Public properties and functions -------
Public Property FileName() As String

Get
Return m ResFile

End Get
Set(ByVal rhs As String)

m ResFile = rhs
End Set

End Property
Public Property ResourceType() As ResTypes

Get
Return m_ResType

End Get
Set(ByVal rhs As ResTypes)

m_ResType = rhs
End Set

End Property

Resource Editor Example

Public ReadOnly Property Pies() As Collection
Get

Return m PicCol
End Get

End Property
Public Property OutputFileName() As String

Get
Return m SaveFile

End Get
Set(ByVal Value As String)

m SaveFile = Value
End Set

End Property

Let's look first at the Exception class it inherits from System.Exception. It has
just one method, which is the constructor. It takes the message passed in and
fires off a new exception with this message.

Public Class InvalidTable
Inherits System.Exception

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub

End Class

The default constructor assumes a file name and file type of binary resource.
The second constructor takes the file name as a string but still assumes the type
is a binary resource file. The third constructor takes both the file name and
resource type as arguments. Next come the properties. These allow you to:

• Get and Set the input file name.

• Get and Set the resource type.

• Get and Set the output file name.

• Get the collection ofReslmage classes. This is read-only.

This ResUtil class is supposed to be a universal class to handle resource files.
To accomplish this it must be able to read and write all resource file types. This
class contains the following private methods:

179

Chapter 7

180

• FillFromBinaryFile

• SaveToBinaryFile

• FillFromTextFile

• SaveToTextFile

• FillFromXMLFile

• SaveToXMLFile

Listing 7-6 shows the code for these functions. As you can see, the binary and
XML resources are handled using the supplied resource file handlers. However,
there are no native resource file handlers for a text resource file. For this, I use the
StreamReader and Stream Write classes.

Listing 7-6. Input/Output resource file methods for the ResUtil class

'----- private internal functions ---------
Private Sub FillFromBinaryFile(ByRef ResData As DataTable)

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim ResReader As New ResourceReader(m_ResFile)
Dim En As IDictionaryEnumerator = ResReader.GetEnumerator()

'Iterate over the resource file
'Add a row for each resource string and put key and value in
'correct(columns)Don't forget! ResX resource files can contain
'pictures. We only want the strings!
While (En.MoveNext)

If En.Value.GetType Is GetType(String) Then
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = En.Key
ResData.Rows(ResData.Rows.Count - l)(TextCol) = En.Value

Elseif En.Value.GetType Is GetType(Bitmap) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Icon) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Image) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

End If

End While

ResReader.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToBinaryFile(ByVal ResData As DataTable)

Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table

'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname File Info.FullName + ".resources"

Try
'This will write over the existing file!
Dim ResWriter As New ResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

Resource Editor Example

181

Chapter7

182

'Iterate over the rows in the table and add to the resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResWriter.AddResource(ResKey, ResVal)

Next

'Save the pictures
For Each Pic In m PicCol

ResWriter.AddResource(Pic.Name, Pic.Image)
Next

'Write out the resource file and close it.
ResWriter.Generate()
ResWriter.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub FillFromTextFile(ByRef ResData As DataTable)

Dim ResKey As String
Dim ResVal As String
Dim ResComment As String
Dim ResRow As DataRow

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim MyStream As New StreamReader(m_ResFile)
Dim MyLine As String
Dim pos As Integer

'Any string with a comment marker is considered a comment.
'Resgen thinks so too.
While (True)

MyLine = MyStream.ReadLine()
If MyLine Is Nothing Then Exit While
If MyLine <> "" Then

pos = InStr(Myline, ";")
If pos < 2 Then ' >=2 is an Ambiguous line

If pos = 1 Then
'This line is a comment so digest it as such
ResComment = Myline.ToString.TrimStart(CommentChar)

End If

If pos = o Then
'This line is a string resource
Dim str() As String = Split(Myline, "=")
ResKey str(o).Trim()
ResVal = str(l).Trim()

'Add this info to the table
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = ResKey
ResData.Rows(ResData.Rows.Count - l)(TextCol) = ResVal
ResData.Rows(ResData.Rows.Count - l)(CommentCol) = ResComment

End If

End If
End If

End While

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToTextFile(ByVal ResData As DataTable)

Dim fname As String
Dim ResKey As String
Dim ResVal As String
Dim ResComment As String
Dim ResRow As DataRow

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Resource Editor Example

183

Chapter 7

184

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
fname = File_Info.FullName +".txt"

Try
'Open up the new text file stream
Dim MyStream As New StreamWriter(fname)

'Iterate over the rows in the table and add to the text resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString.PadRight(MaxKeylen + 1)
ResVal = ResRow(TextCol).ToString
ResComment = ResRow(CommentCol).ToString
If Len(ResComment) > o Then

MyStream.Writeline(";" + ResComment)
End If

MyStream.Writeline(ResKey + " = " + ResVal)
MyStream.Writeline()

Next

MyStream.Flush()
MyStream.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub FillFromXMLFile(ByRef ResData As DataTable)

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim ResXReader As New ResXResourceReader(m_ResFile)
Dim En As IDictionaryEnumerator = ResXReader.GetEnumerator()

'Iterate over the resource file
'Add a row for each resource string and put key and value in correct
'columns Don't forget! ResX resource files can contain pictures.
'We only want the strings!
While (En.MoveNext)

If En.Value.GetType Is GetType(String) Then
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = En.Key
ResData.Rows(ResData.Rows.Count - l)(TextCol) = En.Value

Elseif En.Value.GetType Is GetType(Bitmap) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Icon) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Image) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

End If
End While

ResXReader.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToXMLFile(ByRef ResData As DataTable)

Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Resource Editor Example

185

Chapter?

186

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname = File Info.FullName + ".resx"

Try
'This will write over the existing file!
Dim ResxWriter As New ResXResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

'Iterate over the rows in the table and add to the resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResxWriter.AddResource(ResKey, ResVal)

Next

'Save the pictures
For Each Pic In m PicCol

ResxWriter.AddResource(Pic.Name, Pic.Image)
Next

'Write out the resource file and close it.
ResxWriter.Generate()
ResxWriter.Close()

Catch ex As Exception
Throw ex

End Try

End Sub

Notice that in each method I first test to see if the data table argument has
been initialized. If it hasn't, then I throw my new exception. The error message
that is being sent should be localized. This happens in the next chapter.

The XML and binary reader methods test the resource type and redirect the
resource to either the data table for strings, or add the image to the collection of
images. In all reader methods, I generate a new row and fill the appropriate
columns with the string resource data. The only resource file that can natively
hold comments is the text file. It is possible to include comments in the XML and
binary resource files but they are held as resources. I chose not to extend the
native functionality of the XML and binary resource files.

Resource Editor Example

Also notice that all the work in these methods is done inside a try-catch
block. This is how all error handling should be done. In the interest of readability
I did not include separate catch blocks for specific errors. Production code would
include this finer level of error handling. Whatever error comes up I just re-throw
it up the line.

How are these internal methods accessed? There are two more public
methods to talk about here. They are the GetData and SaveData methods. The
code is shown in Listing 7-7.

Listing 7-7. Getting and saving data

Public Sub GetData(ByRef ResData As DataTable, ByVal append As Boolean)

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Make sure that memory is clear
If Not append Then

ResData. Clear()
While m PicCol.Count > o

m_PicCol.Remove(1)
End While

End If

Select Case m_ResType
Case Consts.ResTypes.TextType

Try
FillFromTextFile(ResData)

Catch ex As Exception
Throw ex

End Try

Case Consts.ResTypes.XMLType
Try

FillFromXMLFile(ResData)
Catch ex As Exception

Throw ex
End Try

Case Consts.ResTypes.BinType
Try

FillFromBinaryFile(ResData)

187

Chapter7

188

Catch ex As Exception
Throw ex

End Try
End Select

End Sub
Public Sub SaveData(ByVal ResData As DataTable, ByVal Pies As Collection,

ByVal ResType As ResTypes)

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

m PicCol = Pies
Select Case ResType

Case Consts.ResTypes.TextType
SaveToTextFile(ResData)

Case Consts.ResTypes.XMLType
SaveToXMLFile(ResData)

Case Consts.ResTypes.BinType
SaveToBinaryFile(ResData)

End Select

End Sub

These two methods contain a select case block that redirects data to the
appropriate resource file handler. Notice that the data table is passed by refer
ence into the GetData method. Once this method is called, the data table is
changed. No need to hand it back.

The ResUtil Class Completed

The complete code for this class module is shown in Listing 7-8. Make sure after
typing in (or copying) this code that your program compiles. Fix any errors before
you goon.

Listing 7-8. Complete ResUtil class module code

Option Strict On

Imports System
Imports System.Globalization

Resource Editor Example

Imports System.Resources
Imports System.IO
Imports System.Drawing
Imports System.Drawing.Imaging

'Make it a friend because we do not want to expose it outside of this assembly.
'Like making a class private in COM
Friend Class ResUtil

Public Class InvalidTable
Inherits System.Exception

Sub New(ByVal Message As String)
MyBase.New(Message)

End Sub

End Class

Private m ResFile As String
Private m_SaveFile As String
Private m_ResType As ResTypes
Private m PicCol As Collection

Constructors I Destructors --------
Public Sub New()

'Default to binary file. Default name
m_ResType = Consts.ResTypes.BinType
m ResFile = "BinResource.resources"
m SaveFile = m ResFile - -
m PicCol = New Collection()

End Sub
Public Sub New(ByVal ResourceFilename As String)

m_ResType = Consts.ResTypes.BinType
m ResFile = ResourceFilename
m SaveFile = m ResFile - -
m PicCol = New Collection()

End Sub
Public Sub New(ByVal ResourceFilename As String, ByVal RType As ResTypes)

189

Chapter 7

190

m_ResType = RType
m ResFile = ResourceFilename
m SaveFile = m ResFile - -
m PicCo! = New Collection()

End Sub

Public properties and functions ---------
Public Property FileName() As String

Get
Return m ResFile

End Get
Set(ByVal rhs As String)

m ResFile = rhs
End Set

End Property
Public Property ResourceType() As ResTypes

Get
Return m_ResType

End Get
Set(ByVal rhs As ResTypes)

m_ResType = rhs
End Set

End Property
Public ReadOnly Property Pies() As Collection

Get
Return m PicCo!

End Get
End Property
Public Property OutputFileName() As String

Get
Return m SaveFile

End Get
Set(ByVal Value As String)

m SaveFile = Value
End Set

End Property

Public Sub GetData(ByRef ResData As DataTable, ByVal append As Boolean)

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Make sure that memory is clear
If Not append Then

Res Data. Clear()
While m PicCol.Count > o

m_PicCol.Remove(l)
End While

End If

Select Case m_ResType
Case Consts.ResTypes.TextType

Try
FillFromTextFile(ResData)

Catch ex As Exception
Throw ex

End Try

Case Consts.ResTypes.XMLType
Try

FillFromXMLFile(ResData)
Catch ex As Exception

Throw ex
End Try

Case Consts.ResTypes.BinType
Try

FillFromBinaryFile(ResData)
Catch ex As Exception

Throw ex
End Try

End Select

End Sub
Public Sub SaveData(ByVal ResData As DataTable, ByVal Pies As Collection,

ByVal ResType As ResTypes)

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

m PicCo! = Pies
Select Case ResType

Case Consts.ResTypes.TextType
SaveToTextFile(ResData)

Resource Editor Example

191

Chapter7

192

Case Consts.ResTypes.XMLType
SaveToXMLFile(ResData)

Case Consts.ResTypes.BinType
SaveToBinaryFile(ResData)

End Select

End Sub

'----- private internal functions ----------
Private Sub FillFromBinaryFile(ByRef ResData As DataTable)

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim ResReader As New ResourceReader(m_ResFile)
Dim En As IDictionaryEnumerator = ResReader.GetEnumerator()

'Iterate over the resource file
'Add a row for each resource string and put key and value in
'correct(columns)Don't forget! ResX resource files can contain
'pictures. We only want the strings!
While (En.MoveNext)

If En.Value.GetType Is GetType(String) Then
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = En.Key
ResData.Rows(ResData.Rows.Count - l)(TextCol) = En.Value

Elseif En.Value.GetType Is GetType(Bitmap) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Icon) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Image) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

End If

End While

ResReader.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToBinaryFile(ByVal ResData As DataTable)

Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname = File Info.FullName + ".resources"

Try
'This will write over the existing file!
Dim ResWriter As New ResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

'Iterate over the rows in the table and add to the resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResWriter.AddResource(ResKey, ResVal)

Next

Resource Editor Example

193

Chapter 7

194

'Save the pictures
For Each Pic In m PicCol

ResWriter.AddResource(Pic.Name, Pic.Image)
Next

'Write out the resource file and close it.
ResWriter.Generate()
ResWriter.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub FillFromTextFile(ByRef ResData As DataTable)

Dim ResKey As String
Dim ResVal As String
Dim ResComment As String
Dim ResRow As DataRow

If ResData Is Nothing Then
Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim MyStream As New StreamReader(m_ResFile)
Dim Myline As String
Dim pes As Integer

'Any string with a comment marker is considered a comment.
'Resgen thinks so too.
While (True)

Myline = MyStream.Readline()
If Myline Is Nothing Then Exit While
If Myline <> "" Then

pos = InStr(Myline, ";")
If pes < 2 Then ' >=2 is an Ambiguous line

If pos = 1 Then
'This line is a comment so digest it as such
ResComment = Myline.ToString.TrimStart(CommentChar)

End If

If pos = o Then
'This line is a string resource
Dim str() As String = Split(Myline, "=")

ResKey = str(o).Trim()
ResVal = str(l).Trim()

'Add this info to the table
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = ResKey
ResData.Rows(ResData.Rows.Count - l)(TextCol) = ResVal
ResData.Rows(ResData.Rows.Count - l)(CommentCol) = ResComment

End If

End If
End If

End While

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToTextFile(ByVal ResData As DataTable)

Dim fname As String
Dim ResKey As String
Dim ResVal As String
Dim ResComment As String
Dim ResRow As DataRow

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
fname File Info. FullName + ".txt"

Try
'Open up the new text file stream
Dim MyStream As New StreamWriter(fname)

Resource Editor Example

195

Chapter7

196

'Iterate over the rows in the table and add to the text resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString.PadRight(MaxKeyLen + 1)
ResVal = ResRow(TextCol).ToString
ResComment = ResRow(CommentCol).ToString
If Len(ResComment) > 0 Then

MyStream.WriteLine(";" + ResComment)
End If

MyStream.WriteLine(ResKey + " = " + ResVal)
MyStream.WriteLine()

Next

MyStream.Flush()
MyStream.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub FillFromXMLFile(ByRef ResData As DataTable)

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

Try
Dim ResXReader As New ResXResourceReader(m_ResFile)
Dim En As IDictionaryEnumerator = ResXReader.GetEnumerator()

'Iterate over the resource file
'Add a row for each resource string and put key and value in correct
'columns Don't forget! ResX resource files can contain pictures.
'We only want the strings!
While (En.MoveNext)

If En.Value.GetType Is GetType(String) Then
ResData.Rows.Add(ResData.NewRow)
ResData.Rows(ResData.Rows.Count - l)(KeyCol) = En.Key
ResData.Rows(ResData.Rows.Count - l)(TextCol) = En.Value

Elseif En.Value.GetType Is GetType(Bitmap) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Elseif En.Value.GetType Is GetType(Icon) Then
Dim rimg As New Resimage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

Else!f En.Value.GetType Is GetType(Image) Then
Dim rimg As New Res!mage(En.Key, En.Value)
m_PicCol.Add(rimg, En.Key.ToString())

End If

End While

ResXReader.Close()

Catch ex As Exception
Throw ex

End Try

End Sub
Private Sub SaveToXMLFile(ByRef ResData As DataTable)

Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname = File Info. FullName + ".resx"

Try
'This will write over the existing file!
Dim ResxWriter As New ResXResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

Resource Editor Example

197

Chapter 7

198

'Iterate over the rows in the table and add to the resource file

For Each ResRow In ResData.Rows
ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResxWriter.AddResource(ResKey, ResVal)

Next

'Save the pictures
For Each Pic In m PicCol

ResxWriter.AddResource(Pic.Name, Pic.Image)
Next

'Write out the resource file and close it.
ResxWriter.Generate()
ResxWriter.Close()

Catch ex As Exception
Throw ex

End Try

End Sub

End Class

============================ NEW CLASS =======================
Public Class Resimage

Private img As Image
Private imgName As String
Private imgType As String

Public Sub New(ByVal Key As Object, ByVal Value As Object)

'Value is an object because of the way it is passed in

img = CType(Value, Image)
imgName = Key.ToString
imgType = Value.GetType.ToString

End Sub
Public Sub New(ByVal Key As String, ByVal Value As Object)

'Value is an object because of the way it is passed in

img = CType(Value, Image)
imgName = Key
imgType = Value.GetType.ToString

End Sub

Resource Editor Example

Public Property Name() As String
Get

Return imgName
End Get
Set(ByVal Value As String)

imgName = Value
End Set

End Property
Public ReadOnly Property Image() As Image

Get
Return img

End Get
End Property
Public ReadOnly Property Type() As String

Get
Return imgType

End Get
End Property

End Class

Back to the Main Code

Now that you have a class that can handle resource files of any type, it's time to
get back to making things happen on the screen.

When we last left our hero ... So far you have code to set up and display
a blank table on the screen. You also have code to kill the program either by the
Quit button or a menu option. All you need to do is connect the open and
append menu choices with the ResUtil class you just made and display the infor
mation on the screen. Easy huh?You'll see.

Enter the code shown in Listing 7-9. This method is an event handler for both
the open and append menu functions. As you can guess the open menu clears
out all resources and fills the form with resources from a particular file. The
append menu choice adds to the existing resources. This choice is useful for
adding a few resource files together into one.

199

Chapter 7

200

Listing 7-9. Get resources for open and append

Private Sub GetResources(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles mnuOpen.Click, mnuAppend.Click

OpenResFile.Reset()
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory()
OpenResFile.RestoreDirectory = True
OpenResFile.Filter ="Text files (*.txt)l*.txtiXML files"+_

"(*.resx)l*.resxiBinary files" +
"(*.resources)l*.resources"

If (OpenResFile.ShowDialog() = DialogResult.OK) Then
m_ResType = CType(OpenResFile.Filterindex, ResTypes)
m_ResFile = OpenResFile.FileName
Dim Res As New ResUtil(m_ResFile, m_ResType)

'clear the pictures
lstPictures.Items.Clear()
While lstPictures.Items.Count > o

lstPictures.Items.Remove(l)
End While
PicPanel.Controls.Clear()

"Fill the string text box
sbStatus.Panels(o).Text = m_ResFile
If sender Is mnuOpen Then

Res.GetData(m_StringTable, False)
m Pictures = Res.Pics

Elseif sender Is mnuAppend Then
Res.GetData(m_StringTable, True)
'Add to the pictures collection
Dim NewPics As New Collection()
Dim p As Resimage
NewPics = Res.Pics
For Each p In NewPics

m_Pictures.Add(p)
Next

End If

FillPiclist()

End If

End Sub

Resource Editor Example

Let's look at this method. I set up an open file dialog box to look for the three
resource file types. The user can choose a file or not. The function detects this
based on the dialog result. If the user chooses OK, the method instantiates a new
ResUtil object feeding it the file name and type. The method finds out who
evoked it by looking at the sender object. Based on this, it either gets data and
appends it to the existing resources in memory or it flushes existing memory
resources and gets new data. The last thing in this method is a call to FillPicList.
The FillPicList method is explained next.

The next three methods you enter are FillPicList, AddPic2Panel, and
ArrangePictures. These functions are interesting in that they create new picture
box controls on the fly and place them in the picture panel. The pictures then get
arranged in the panel based on the size of the panel. The ArrangePictures proce
dure makes sure that all pictures fit in the width of the panel. Therefore only
a vertical scroll bar is ever needed. Listing 7-10 shows these three procedures.

Listing 7-10. Showing and arranging pictures in Tab 2

Private Sub FillPiclist()
Dim Resimg As Resimage

PicPanel.AutoScroll = True
pic.Image = Nothing
For Each Resimg In m_Pictures

lstPictures.Items.Add(Resimg.Name)
'Make a new picture box and add it to the
'panels control array
AddPit2Panel(Resimg)

Next
ArrangePictures()

If lstPictures.Items.Count > 0 Then
lstPictures.SetSelected(o, True)
cmdDelPic.Enabled = True

Else
cmdDelPic.Enabled = False

End If

End Sub

Private Sub AddPic2Panel(ByVal Resimg As Resimage)
Dim Pic As PictureBox

Pic = New PictureBox()
Pic.Size = New Size(PICSIZE, PICSIZE)
Pic.Location = New Point(lO, 10)

201

Chapter 7

202

Pic.SizeMode = PictureBoxSizeMode.Stretchimage
Pic.Image = Resimg.Image
Pic.Tag = Resimg.Name
PicPanel.Controls.Add(Pic)

End Sub

Private Sub ArrangePictures()
Dim k As Int32
Dim x As Int32
Dim y As Int32

'Number of pictures in a row.
'DO not show a picture if it means we get a horizontal
'scroll bar
Dim NumPicsinWidth As Int32 = CType(((PicPanel.Size.Width - PICSPACE) I _

(PICSIZE + PICSPACE)) - 1, Int32)
'Control collections are zero based.
'VB type collections are 1 based.
For k = o To PicPanel.Controls.Count - 1

'determine if we are in a new row
If k Mod (NumPicsinWidth) = o Then

x = PICSPACE
Else

x = PicPanel.Controls(k - 1).Location.X + PICSIZE + PICSPACE
End If

If k < NumPicsinWidth Then
y = PICSPACE

Elseif k Mod (NumPicsinWidth) = o Then
y = PicPanel.Controls(k - 1).Location.Y + PICSIZE + PICSPACE

End If

PicPanel.Controls(k).Location New Point(x, y)
Next

End Sub

The first two methods FillPicList and AddPic2Panel make and fill picture
boxes that end up on top of each other. The ArrangePictures method takes all the

picture boxes and lines them up on the screen with a space of 10 pixels between
each box.

Resource Editor Example

The Import Functions at Work

You now have enough code to import resource files into this program and
display the text and the graphics. Notice that I disable the Delete Pictures button
if there are no pictures displayed. I also force a SelectedindexChanged event in
the lstPictures control. You have not done anything with this control yet, but that
is coming.

Build the project and press FS to run it. You should be able to pull in
a resource file and show its resources on the screen.

It is easy enough for you to make a text resource file using NotePad. You
already have made a binary and XML resource file that has a picture in it. You did
this back in Chapter 5 in Listing 5-7. This was the example that added a bmp file
to an XML resource file. Take this XML resource file and run it through
ResGen.exe to create a binary resource file. The Apress web site will also have
some resource files that you can play around with for this chapter.

Figures 7-9 and 7-10 show my screens after I opened a resource file. The file
Imopened is from an example in Chapter 5.

:Re1iowce EWtor ..

T..s

Qui

Figure 7-9. Filled in text grid

203

Chapter 7

204

~=-mm ~==========~~~.~~
Fie

-cobbals
cr..,.
wotch
wllril
lock -

Add R"""""'

Figure 7-10. Graphics resources

PM:luun

Oul

It would be nice to scroll through the pictures and see which pictures belong

to which key. Listing 7-11 shows the event handler for the SelectedlndexChanged

event for the lstPictures list box.

Listing 7-11. Picture list box event handler

Private Sub Piclist(ByVal sender As System.Object,
ByVal e As System.EventArgs) _
Handles lstPictures.SelectedindexChanged

Dim r!mg As Resimage

rimg = CType(m_Pictures.Item(lstPictures.Selecteditem.ToString), Resimage)

pic.Image = rimg.Image

'Highlight the picture in question by
'giving it a border. Don't foget to "unborder" the others.

Dim pb As PictureBox
For Each pb In PicPanel.Controls

If pb.Tag.ToString = rimg.Name Then
pb.BorderStyle System.Windows.Forms.BorderStyle.FixedSingle

Else
pb.BorderStyle System.Windows.Forms.BorderStyle.None

End If

Next

End Sub

Resource Editor Example

This method does several things for display purposes. It detects which key
is highlighted in the list and places the picture that belongs with it in the large
picture box next to the list box. It then highlights the thumbnail in the panel by
placing a border around it.

Removing a Picture

The next thing to do is attach some code to the remove and add buttons. First is
the Remove button. Listing 7-12 shows the code for this button.

Listing 7-12. Remove button event handler

Private Sub RemovePic(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdDelPic.Click

'Remove the picture from the pictures collection
m_Pictures.Remove(lstPictures.Selecteditem.ToString)

'Remove the picture from the panel and rearrange the rest
Dim pb As PictureBox
For Each pb In PicPanel.Controls

If pb.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle Then
PicPanel.Controls.Remove(pb)
ArrangePictures()
Exit For

End If

Next

'Remove the name from the listbox of keys and
'reselect the first one
lstPictures.Items.Remove(lstPictures.Selecteditem)
If lstPictures.Items.Count > 0 Then

lstPictures.SetSelected(o, True)
Else

cmdDelPic.Enabled = False
pic.Image = Nothing

End If

End Sub

This method removes the name from the list box and removes the thumbnail
from the panel. It then calls the ArrangePictures methods and reselects the first

205

Chapter 7

206

entry in the list box. If there are no more pictures the remove button is disabled.
Easy enough. What about the add button?

Adding a Picture

Adding a picture should be fairly easy. All you need is a file open dialog and hook it
up to the FillPic function. You want to do more than this though. You also need to

give the picture a name. This name would be used as the key in the resource file.
The last project file you have left to touch is the AskKey.vb file. This is another

form that you use to preview the picture you want to add and to give it a name.
Size this form to 298 x 178 and add the following controls :

• Label. Text property is "Picture Key."

• Text Box. Name it txtKey. Text property is clear.

• Button. Name is cmdOK. Text is "OK."

• Button. Name is cmdCancel. Text is "Cancel."

• PictureBox. Name is KeyPic.

Arrange your form to look something like mine, as shown in Figure 7-11.

~Assign key to picture

: : Picture Ke_y

··n············· ············ · ~· '
. ' ..
. . '

j: :~j~ j~:: ~
•••••••••••••••• 0 • ••• • ••••••• •• ••• •• •

Figure 7-11. AskKey form with controls

Enter the following code in this class:

Privat e m_Resimg As Resimage

Private Sub AskKey_Load(ByVal sender As Syst em.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Resource Editor Example

If Not m_Resimg Is Nothing Then
KeyPic.Image = m_Resimg.Image
txtKey.Text = m_Resimg.Name
txtKey.SelectAll()

End If

End Sub

Private Sub cmdOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdOK.Click

m_Resimg.Name = txtKey.Text
DialogResult = DialogResult.OK

End Sub

Private Sub cmdCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdCancel.Click

DialogResult = DialogResult.Cancel

End Sub

Nothing exciting here.
When you add a form in the IDE, the Forms wizard adds quite a bit of code

for you. Every time you add, edit, or move a control on the form some of this
code is automatically edited by the Windows Forms wizard. All this code is in the
region called Windows Form Designer Generated Code. If you expand this code
you will see comments to the effect of"Do not touch this code under extreme
penalty because the forms designer will do it for you." - something along those
lines anyway.

With this admonishment in mind, open this region and add the following
code just below the default constructor.

Public Sub New(ByVal Resimg As Resimage)

MyBa se. New()

'This call is required by the Windows Form Designer.
InitializeComponent()

m_Resimg = Resimg

End Sub

207

Chapter 7

208

This is an overloaded form of the constructor that passes in the Image class
to be displayed. Even though the Image class is defined as being passed by value,
it is actually passed by reference. This is because the object being passed is a ref
erence type. I encourage you to look up the nuances of reference type and value
types in the documentation. It is important to know that something like this is
happening behind the scenes.

Now that you have this form built, let's add some code to activate it. Add the
following method in Listing 7-13. It is the event handler for the Add button.

Listing 7-13. Add picture button event handler

Private Sub AddPic(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdAddPic.Click

OpenResFile.Reset()
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory()
OpenResFile.RestoreDirectory = True
OpenResFile. Filter = "Picture files " +

"(*.jpg; *.bmp; *.gif)l*.jpg; *.bmp; *.gif"

If (OpenResFile.ShowDialog() = DialogResult.OK) Then

Dim finfo As New Fileinfo(OpenResFile.FileName)
If finfo.Extension.ToUpper = ".JPG" Or_

finfo.Extension.ToUpper = ".BMP" Or_
finfo.Extension.ToUpper = ".GIF" Then

'Add the picture to the collection
Dim rimg As New Resimage(OpenResFile.FileName, _

Image.FromFile(OpenResFile.FileName))
Dim Keyform As New AskKey(rimg)
If Keyform.ShowDialog(Me) = DialogResult.OK Then

m_Pictures.Add(rimg, rimg.Name)
'Add the picture to the panel and arrange
AddPic2Panel(rimg)
ArrangePictures()
'Add the picture to the list and enable delete and select it
lstPictures.Items.Add(rimg.Name)
lstPictures.SetSelected(lstPictures.Items.Count - 1, True)
cmdDelPic.Enabled = True

End If

Keyform.Dispose()
End If

End If

End Sub

Resource Editor Example

This function opens a dialog box and allows the user to choose a graphics
file. It loads the picture, puts it in the Reslmage class along with the file name as
the image name and passes this class to the AskKey form. The form is called
using the ShowDialog method. This method as used here makes the AskKey form
modal and assigns its parent property to this form. Once the user has assigned
a new key (or not) and accepts the image, it is added to the list and displayed on
the form. Figure 7-12 shows the AskForm in action.

Assign key to picture

Picture Key

mi

Figure 7-12.AskKeyform

Saving the Data

You are now at the point where you need to save the resources in a resource file.
So far you can import/add/remove/edit both text and graphics resources.

The first thing to do is fill the basic information fields on the third tab page.
The basic information is a count of text and graphics resources and the input
file name. While you are doing this, you might as well fill the lstCultures list box
with all the cultures in the .NET world. Listing 7-14 shows the event code for
the tab control.

Listing 7-14. Event code for the tab control

Private Sub tcResource_C1ick(ByVa1 sender As Object , _
ByVal e As System.EventArgs) _
Handles tcResource.Click

If tcResource .Selectedindex = FINAL TAB Then
lblinFilename.Text = m ResFile
lblResStringNum .Text = m_StringTable .Rows.Count.ToString
lblNumPics.Text = m_Pictures .Count.ToString

209

Chapter 7

210

Dim AllCultures() As Cultureinfo
Dim ACulture As Cultureinfo
AllCultures = Cultureinfo.GetCultures(CultureTypes.SpecificCultures)
lstCultures.Items.Clear()
lstCultures.Items.Add(" ".PadRight(lO) +"(None)")
lstCultures.Sorted = True
For Each ACulture In AllCultures

lstCultures.Items.Add(ACulture.Name.PadRight(15) + ACulture.DisplayName)
Next
chkCreateBin.Checked = True

End If

If tcResource.Selectedindex = GRAPHICS TAB Then
If lstPictures.Items.Count < 1 Then

cmdDelPic.Enabled = False
End If

End If

End Sub

You have seen some of this code in Listing 4-4. It is the code to enumerate

through all the cultures in the Culturelnfo class. By the way, it is best to change
the font in the lstCultures list box to a fixed font such as courier. This elimi

nates the jagged display.
Add the following four methods to the code. They are event handlers for the

check boxes, the text field, and the lstCultures list box. This code is found in
Listing 7-15. This is the last code for this project.

Listing 7-15. Final code to handle controls on third tab page

Private Sub BuildCompleteName()

m_NewFname = CStr(IIf(txtBaseName.Text = "", "?", txtBaseName.Text))
If Not lstCultures.Selecteditem Is Nothing Then

If lstCultures.Selectedltem.ToString.Trim <> "(None)" Then
m NewFname += "." + MS.Left(lstCultures.Selectedltem.ToString, 15).Trim

End If
End If

If chkCreateText.Checked = True Then
lblTxtFname. Text = m NewFname + ".txt"

Else
lblTxtFname.Text = ""

End If

If chkCreateXML.Checked = True Then
lblXMLfname.Text = m NewFname + ".resx"

Else
lblXMLfname.Text

End If

If chkCreateBin.Checked = True Then
lblBinFname.Text = m NewFname +".resources"

Else
lblBinFname.Text

End If

End Sub

Private Sub CulturePick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles lstCultures.SelectedindexChanged

BuildCompleteName()
End Sub

Private Sub Create_Checked(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles chkCreateText.CheckedChanged, _
chkCreateXML.CheckedChanged, _
chkCreateBin.CheckedChanged

If chkCreateBin.Checked = False And chkCreateXML.Checked = False And
chkCreateText.Checked = False Then

cmdSave.Enabled = False
Else

cmdSave.Enabled = True
End If
BuildCompleteName()

End Sub

Private Sub txtBaseName_TextChanged_1(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles txtBaseName.TextChanged

BuildCompleteName()
End Sub

Private Sub cmdSave_Click(ByVal sender As System.Object, _

Resource Editor Example

ByVal e As System.EventArgs) Handles cmdSave.Click

211

Chapter 7

212

Dim Res As New ResUtil(m_ResFile)

Res.OutputFileName = m_NewFname

If chkCreateText.Checked Then
Res.SaveData(m_StringTable, m_Pictures, Consts.ResTypes.TextType)

End If
If chkCreateXML.Checked Then

Res.SaveData(m_StringTable, m_Pictures, Consts.ResTypes.XMLType)
End If
If chkCreateBin.Checked Then

Res.SaveData(m_StringTable, m_Pictures, Consts.ResTypes.BinType)
End If

End Sub

The check boxes enable the resource file name to be formed in the label
below each check box as you type in the Base Name text field. The resource file
name is built according to the culture you pick and the base name you type in the
base name text box. Notice that the txtBaseName_TextChanged_l method builds
the resource file names on the fly as each letter is entered in the text box. Clicking
in the lstCultures list box also changes the resource file names accordingly. The
save method calls the ResUtil classes save method according to which check box
is checked. Figure 7-13 shows this screen in action.

TOl<ljf'icUet tnolj

I""'~
0 lf'>ooec:t>ll-nei\CH7-Rer£cii.Wibrllmol.en.f'H ,.,. [

B...,.

Stmg C.... PICIUie CGIII
3 s

d.t•CH
d.e-DI

41-LU
d.1v-HV
d·GD.
en- A.U
•n-82:
en"'c.\
•n-CB
en-ce

C.r•an u.uuuo ... r.;o >
D1vahi Ula.ld.ivu)
Cruk (Cr.,.ct I
lnqluh (Aunnlu)
lngluh (Bdiu)
lnvl:uh (Canacla)
lnglhh (Cari.bbear.)
11\(JlUh (Uh1t.•d K.in940•1

P c. ... eTOIIIfielor"wlolol
R.,Edtoe-1.1 lid

P OeaieXMLR"""""'Fio

Rer£ ell do-ll '""'

P" o e....,A.,.._flo
Re.-Eclldo-llr......,..,.

Figure 7-13. Final screen showing output resource file names

s

Resource Editor Example

The VB Resource Editor Project in Summary

This completes the resource editor written in VB. This is a very useful tool in that it
allows the user to make text resource files that can be sent to the translation ser

vice. It also allows the user to add and delete text as well as graphics resources.
The number of resources that can fit in this editor is unlimited. Once resources are

added, they can be combined into either an XML or binary resource file.

Making the C# Version of the Resource Editor

As I've done elsewhere in the book, now that I've shown the VB resource editor,
this section explains the C# code. The explanation deals mostly with the code
rather than the screens or output. Major differences between the VB code and
C# code are pointed out and explained. I assume you have read the VB code
and associated explanations.

Here we go!

Starting the _Project

The first thing to do is to bring up a new C# Windows Forms project. Name the

project the same as the VB project: Reseditor. Rename your default form to
frmResources. Add a new form called AskKey. Add two class files. Name one
ResUtil and the other Reslmages. Build the project. Your solution editor should
look like mine, as in Figure 7-14.

Solut1on Explorer - CH7ResEdlt-C 11- X

~ ~.1" J] ~~ Solution 'CH7ResEdit-C' (1 project)
El @j CH7ResEdit-C

_jl

l±l References
:;; AskKey.cs
~ Assembly!nfo.cs

:;:: frmResources.cs

'~ llllii'···
~ ResUtil.cs

Figure 7-14. Solution Explorer showing files needed for ResEditor project inC#

213

Chapter?

214

C# has no such thing as a module file. I put all the constants and the enum in
the ResUtil class. The constants are in their own class. Open the ResUtil class file and

type in the following code below the namespace declaration. Listing 7-16 shows the

classes for the constants and the enum.

Listing 7-16. Constants class

public enum ResTypes
{

}

TextType = 1,
XMLType = 2,
BinType = 3

public class ResUtilConsts
{

}

public const string KeyCol = "Key";
public const string TextCol = "Text";
public const string CommentCol = "Comment";
public const int MaxKeyLen = 15;
public const char CommentChar = ';';

The constants defined in the ResUtilConsts class are static by default.
In the identical fashion to the VB code this file contains a ResUtil class and

a Resimage class. It also contains the custom exception class defined in the
VB version of this file. Let's start out with the Resimage class. It is shown in
Listing 7-17. First, however let's import some namespaces.

using System;
using System.Collections;
using System.Globalization;
using System.Resources;
using System. IO;
using System.Data;
using System.Drawing;
using System.Drawing.Imaging;
using System.Text.RegularExpressions;

Resource Editor Example

Listing 7-17. Reslmage class

public class Resimage
{

}

}

private Image img;
private string imgName;
private string imgType;

public Resimage(object key, object val)
{

img = (Image)val;
imgName = key.ToString();
imgType = val.GetType().ToString();

public Resimage(string key, object val)
{

}

img = (Image)val;
imgName = key;
imgType = val.GetType().ToString();

public string Name
{

}

get { return imgName; }
set { imgName = value; }

public Image image
{

get { return img; }
}

public string type
{

get { return imgType; }
}

An important difference to note here is how properties are defined. A read
only property in VB needs the Readonly keyword in the definition. InC#,
a read -only property is implicit by not giving it a set property. Also, note the
implicit value variable for the set property.

215

Chapter7

216

Entering Code for the ResUtil Class

The complete code for the ResUtil class is shown in Listing 7-18. One thing to note

in this class is that it has a data type ofReslmages. This is a custom collection class
that I defined and that replaces the VB collection class. Do not worry if after typing

in this code it will not compile. You get to the Reslmages class after this.

Listing 7-18. ResUtil class code

public class ResUtil
{

private string m_ResFile;
private string m_SaveFile;
private ResTypes m_ResType;
private Res!mages m_PicCol;

public ResUtil()
{

}

//Default to binary file. Default name
m_ResType = ResTypes.BinType;
m_ResFile = "BinResource.resources";
m_SaveFile = m_ResFile;
m_PicCol = new Res!mages();

public ResUtil(string ResourceFilename)
{

}

m_ResType = ResTypes.BinType;
m_ResFile = ResourceFilename;
m_SaveFile = m_ResFile;
m_PicCol = new Res!mages();

public ResUtil(string ResourceFilename, ResTypes ResourceType)
{

}

m_ResType = ResourceType;
m_ResFile = ResourceFilename;
m_SaveFile = m_ResFile;
m_PicCol = new Res!mages();

public string FileName
{

}

get { return m_ResFile; }
set { m_ResFile = value; }

public ResTypes ResourceType
{

}

get { return m_ResType; }
set { m_ResType = value; }

public Resimages Pies
{

get { return m_PicCol; }
}

public string OutputFileName
{

}

get { return m_SaveFile; }
set { m SaveFile = value; }

public void GetData(DataTable ResData, bool append)
{

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

//Make sure that memory is clear
if (! append)
{

}

ResData.Clear();
while (m_PicCol.Count > o)

m_PicCol.Remove(1);

switch (m_ResType)
{

case ResTypes.TextType:
try
{

FillFromTextFile(ResData);
}

catch (Exception ex)
{

throw ex;
}

Resource Editor Example

217

Chapter7

218

}

}

break;
case ResTypes.XMLType:

try
{

FillFromXMLFile(ResData);
}

catch (Exception ex)
{

throw ex;
}

break;
case ResTypes.BinType:

try
{

FillFromBinaryFile(ResData);
}

catch (Exception ex)
{

throw ex;
}

break;

public void SaveData(DataTable ResData, Res!mages Pies, ResTypes ResType)
{

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

m_PicCol = Pies;
switch (ResType
{

case ResTypes.TextType:
SaveToTextFile(ResData);
break;

case ResTypes.XMLType:
SaveToXMLFile(ResData);
break;

case ResTypes.BinType:
SaveToBinaryFile(ResData);
break;

Resource Editor Example

}

}

private void FillFromBinaryFile(DataTable ResData)
{

//Do not try anything if we are handed an invalid table
//This is better than a try catch block. Avoid errors when possible.
//Do not just catch them.
if (ResData == null)
{

throw new InvalidTable("Data table was not defined");
return;

}

try
{

ResourceReader ResReader = new ResourceReader(m_ResFile);
IDictionaryEnumerator En = ResReader.GetEnumerator();

//Iterate over the resource·file
//Add a row for each resource string and put key and value in
II correct columns Don't forget! ResX resource files can contain
//pictures. We only want the strings!
while (En.MoveNext())
{

if (En.Value.GetType() == typeof(string))
{

}

ResData.Rows.Add(ResData.NewRow());
ResData.Rows[ResData.Rows.Count - l][ResUtilConsts.KeyCol] = En.Key;
ResData.Rows[ResData.Rows.Count - l][ResUtilConsts.TextCol] = En.Value;

else if (En.Value.GetType() == typeof(Bitmap))
{

}

Res!mage rimg = new Resimage(En.Key, En.Value);
m_PicCol.Add(rimg, En.Key.ToString());

else if (En.Value.GetType() == typeof(Icon))
{

}

Res!mage rlmg = new Resimage(En.Key, En.Value);
m_PicCol.Add(rimg, En.Key.ToString());

219

Chapter7

220

}

}

}

else if (En.Value.GetType() == typeof(Image))
{

}

Resimage rimg = new Resimage(En.Key, En.Value);
m_PicCol.Add(rimg, En.Key.ToString());

ResReader.Close();

catch (Exception ex)
{

throw ex;
}

private void SaveToBinaryFile(DataTable ResData)
{

string Fname;

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

//Split the filename and make it a text file
Fileinfo File Info = new Fileinfo(m_SaveFile);
Fname File Info. FullName + ".resources";
try
{

//This will write over the existing file!
ResourceWriter ResWriter = new ResourceWriter(Fname);
string ResKey;
string ResVal;

//Iterate over the rows in the table and add to the resource file
foreach (DataRow ResRow in ResData.Rows)
{

}

ResKey = ResRow[ResUtilConsts.KeyCol].ToString();
ResVal = ResRow[ResUtilConsts.TextCol].ToString();
ResWriter.AddResource(ResKey, ResVal);

}

}

//Save the pictures
foreach (Res!mage Pic in m_PicCol)
{

ResWriter.AddResource(Pic.Name, Pic.image);
}

//Write out the resource file and close it.
ResWriter.Generate();
ResWriter.Close();

catch (Exception ex)
{

throw ex;
}

private void FillFromTextFile(DataTable ResData)
{

string ResKey;
string Res Val;
string ResComment;
II Dim ResRow As DataRow

if ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

try
{

StreamReader MyStream new StreamReader(m_ResFile);
string Myline;

//Any string with a comment marker is considered a comment.
//Resgen thinks so too.
while (true)
{

if ((Myline MyStream.ReadLine())
break;

if (Myline != ""
{

null)

II Instantiate a new Regular expression object
Regex r = new Regex(";");

Resource Editor Example

221

Chapter7

222

}

}

}

}

catch
{

II Find a single match in the string.
Match m = r.Match(Myline);
if (m.Index < 2) II >=2 is an Ambiguous line
{

}

ResComment = "";
//This line is a comment so digest it as such
if (m.Index == 1)

ResComment = Myline.ToString().
TrimStart(ResUtilConsts.CommentChar);

if (m.Index == o)
{

}

//This line is a string resource
string[] str = Myline.Split('=');
ResKey = str[o].Trim();
ResVal = str[1].Trim();

//Add this info to the table
ResData.Rows.Add(ResData.NewRow());
ResData.Rows[ResData.Rows.Count - 1]

[ResUtilConsts.KeyCol] = ResKey;
ResData.Rows[ResData.Rows.Count - 1]

[ResUtilConsts.TextCol] = ResVal;
ResData.Rows[ResData.Rows.Count - 1]

[ResUtilConsts.CommentCol] = ResComment;

(Exception ex)

throw ex;
}

private void SaveToTextFile(DataTable ResData)
{

string fname;
string ResKey;
string ResVal;
string ResComment;

}

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

//Split the filename and make it a text file
Fileinfo File_Info = new Filelnfo(m_SaveFile);
fname File Info. FullName + ".txt";

try
{

}

//Open up the new text file stream
StreamWriter MyStream = new StreamWriter(fname);

//Iterate over the rows in the table and add to the text resource file
foreach (DataRow ResRow in ResData.Rows)
{

}

ResKey = ResRow[ResUtilConsts.KeyCol].ToString().
PadRight(ResUtilConsts.MaxKeyLen + 1);

ResVal = ResRow[ResUtilConsts.TextCol].ToString();
ResComment = ResRow[ResUtilConsts.CommentCol].ToString();
if (ResComment.Length > 0)

MyStream.WriteLine(";" + ResComment);

MyStream.WriteLine(ResKey + " = " + ResVal);
MyStream.WriteLine();

MyStream.Flush();
MyStream.Close();

catch (Exception ex)
{

throw ex;
}

private void FillFromXMLFile(DataTable ResData)
{

//Do not try anything if we are handed an invalid table
//This is better than a try catch block. Avoid errors when possible.
//Do not just catch them.
if (ResData == null)
{

Resource Editor Example

223

Chapter7

224

}

throw new InvalidTable("Data table was not defined");
return;

}

try
{

}

ResXResourceReader ResXReader = new ResXResourceReader(m_ResFile);
IDictionaryEnumerator En = ResXReader.GetEnumerator();

while (En.MoveNext())
{

if (En.Value.GetType() == typeof(string))
{

}

ResData.Rows.Add(ResData.NewRow());
ResData.Rows[ResData.Rows.Count - l][ResUtilConsts.KeyCol] = En.Key;
ResData.Rows[ResData.Rows.Count - l][ResUtilConsts.TextCol] = En.Value;

else if (En.Value.GetType() == typeof(Bitmap))
{

}

Resimage r!mg = new Res!mage(En.Key, En.Value);
m_PicCol.Add(rimg, En.Key.ToString());

else if (En.Value.GetType() == typeof(Icon))
{

}

Resimage r!mg = new Resimage(En.Key, En.Value);
m_PicCol.Add{rimg, En.Key.ToString());

else if (En.Value.GetType() == typeof(Image)
{

}

Resimage r!mg = new Res!mage(En.Key, En.Value);
m_PicCol.Add{rimg, En.Key.ToString());

}

ResXReader.Close();

catch (Exception ex)
{

throw ex;
}

private void SaveToXMLFile(DataTable ResData)
{

string Fname;

}

}

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

//Split the filename and make it a resx file

Fileinfo File_Info = new Fileinfo(m_SaveFile);
Fname File Info.FullName + ".resx";

try
{

}

//This will write over the existing file!

ResXResourceWriter ResxWriter = new ResXResourceWriter(Fname);

string Res Key;
string ResVal;

//Iterate over the rows in the table and add to the resource file

foreach (DataRow ResRow in ResData.Rows)
{

}

ResKey = ResRow[ResUtilConsts.KeyCol].ToString();

ResVal = ResRow[ResUtilConsts.TextCol].ToString();

ResxWriter.AddResource(ResKey, ResVal);

//Save the pictures
foreach (Res!mage Pic in m_PicCol)
{

ResxWriter.AddResource(Pic.Name, Pic.image);
}

//Write out the resource file and close it.
ResxWriter.Generate();
ResxWriter.Close();

catch (Exception ex)
{

throw ex;
}

Resource Editor Example

225

Chapter 7

226

This code is functionally similar to the VB ResUtil code. There are minor dif
ferences due to syntactical differences between C# and VB. It is instructive to
compare this code to the VB code and see what those differences really are. As an
example, if you look carefully you see that instead of using the VB Instr function
I use the regular expression object to detect the presence of a substring within
a string. Regular expressions are a very potent way to parse text.

NOTE I used to use regular expressions all the time in my
DOS and Unix days. I have a friend who can still come up
with the most amazing regular expression code I have ever
seen. All by heart!

Making a Custom Collection Class

This section deals with the Reslmages file. The file contains code for a Custom
Collection class that holds all the images.

Visual Basic 6 has a collection object and likewise VB .NET mimics this
functionality with the Collection class. The problem with the VB Collection class
is that it is not type safe. It allows you to put anything in the collection and possi
bly end up with a jumble of objects. There are ways around this by making your
own Collection-class wrapper in VB. I did not do this for the VB code in the
example. Instead I do it in the C# code. Another reason for making your
own Collection class is to control who gets to add and remove objects. The VB
Collection class has the add and remove methods exposed. If you write an
assembly that exposes a VB collection, anyone could connect to that collection
and add or remove objects without your assembly knowing about it. This is
not a good idea.

A normal collection has the following basic functionalities:

• Add. This method adds an item to the collection.

• Remove. This method removes an item from the collection.

• Count. This property retrieves the count of items in the collection.

• Enumerator. This property allows for each iteration of the collection objects.

• Item. This property retrieves an item based on a key or index.

At times you will find a specialized collection that has a Clear method. This
method wipes out all data in the collection. An example of a collection that has
this method is the Nodes collection in a tree view control.

Resource Editor Example

C# does not have a generic collection similar to VB. It has an abstract
CollectionBase class that you can inherit from to provide your own collection. It
also has quite a few specialized collections. For more information look in the
MSDN Help under the !collection interface.

The Collection class in this project uses a sorted list. I use this form of
internal storage because it maintains a list of your objects based on both a key
and an index. This allows retrieval of an object based on either of these two
parameters. This is similar to the VB collection.

One thing to note about collection naming convention. It is common to
name a Collection class based on the object it is supposed to hold. All you do
is add an "s" to the end of the name. The object contained in our collection is
Reslmage. The collection will be called Reslmages.

Listing 7-19 shows the complete code for this class.

Listing 7-19. Reslmages collection class

using System;
using System.Collections;

namespace CH7ResEdit_C
{

Ill <summary>
Ill This is the collection class that handles a collection of
Ill Resimage objects. Traditionally a collection of objects is
Ill named that object with an 's' on the end.
Ill <!summary>
public class Resimages : IEnumerable
{

//Slower than Hash table but more flexible
//Can get item by index number or by key.
//Most like VB type collection
private Sortedlist mCol;

public Resimages()
{

mCol = new Sortedlist();
}

II enables foreach processing
private mEnum GetEnumerator()
{

return new mEnum(this);
}

227

Chapter7

228

//Property count
public int Count
{

get { return mCol.Count; }
}

II ---- overloaded add method
public void Add(Resimage w)
{

mCol.Add(w.Name, w);
}

public void Add(Res!mage w, string key)
{

mCol.Add(key,w);
}

II ---- overloaded remove method
public void Remove(int Index)
{

mCol.RemoveAt(Index);
}

public void Remove(string key)
{

mCol.Remove(key);
}

II ---- overloaded item method ---
public Resimage Item(int index)
{

return (Resimage) mCol.GetByindex(index);
}

public Res!mage Item(string key)
{

return (Res!mage) mCol[key];
}

//--------- Below is where I implement the !Enumerator interface -

II Implement the GetEnumerator() method:
!Enumerator IEnumerable.GetEnumerator()
{

return GetEnumerator();
}

}

}

II Declare the enumerator and implement the !Enumerator interface:
private class mEnum: !Enumerator
{

}

private int nindex;
private Resimages collection;

II constructor. make the collection
public mEnum(Resimages coll)
{

}

collection = coll;
nindex = -1;

II start over
public void Reset()
{

nindex = -1;
}

II bump up the index
public bool MoveNext()
{

nlndex++;
return(nindex < collection.mCol.Count);

}

II get the current object
public Resimage Current
{

get {return (Resimage) collection.mCol.GetByindex(nindex); }
}

II The current property on the !Enumerator interface:
object IEnumerator.Current
{

get { return(Current); }
}

Resource Editor Example

229

Chapter?

230

This class contains all the methods necessary for a collection. Notice that
the item method is overloaded. You can get an item from the collection based on
a string key or an index. I do both in the frmResources code.

This class implements the IEnumerable interface. This interface is what gives
this collection the ability to be iterated with the C# for each construct. The con
cept of an interface is extremely important in .NET

Notice the Add method. This method provides the type safety and type
checking necessary for this class. Only an object of type Reslmage can be added
to this collection.

Finishing Off the Code

So far you have all the support code for this C# version of the ResEditor. Now
it is time to provide the display and resources manipulation code. You will find
that this code is very similar to the VB ResEditor code. The code is provided in
listing 7-20. This code listing does not contain the Windows generated code.

Listing 7-20. Code for the frmResources form

using System;
using System.Globalization;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;
using MS = Microsoft.VisualBasic.Strings;

namespace CH7ResEdit_C
{

Ill <summary>
Ill Summary description for Forml.
Ill </summary>
public class frmResources : System.Windows.Forms.Form
{

. • . Windows code .••
Ill <summary>

Ill Required designer variable.
Ill </summary>
private System.ComponentModel.Container components = null;

II

II Programmer generated code!
const int GridLineWidth=1; //Pixel width of a grid line

const string ResourceTableName = "Resources";

const int TEXT_TAB = o;
const int GRAPHICS TAB = 1j
const int FINAL_TAB = 2;
const int PICSPACE = 10;
const int PICSIZE = 64;

private DataTable m_StringTable;
private String m_ResFile;
private String m_NewFname;

private System.Windows.Forms.Menuitem mnuAppend;

private System.Windows.Forms.Menuitem mnuOpen;
private System.Windows.Forms.Menuitem mnuExit;

private System.Windows.Forms.OpenFileDialog OpenResFile;

private ResTypes m_ResType;
private System.Windows.Forms.TabControl tcResources;

private System.Windows.Forms.CheckBox chkCreateBin;

private System.Windows.Forms.Label lblinFilename;

private System.Windows.Forms.Label lblResStringNum;
private System.Windows.Forms.Label lblNumPics;

private System.Windows.Forms.Button cmdSave;
private System.Windows.Forms.CheckBox chkCreateXML;
private System.Windows.Forms.CheckBox chkCreateText;
private Resimages m_Pictures = new Resimages();

public frmResources()
{

II Required for Windows Form Designer support

II

InitializeComponent();

//Set up the delegates for events here

this.mnuExit.Click +=
new System.EventHandler(this.ProgExit);

this.mnuOpen.Click +=
new System.EventHandler(this.GetResources);

this.mnuAppend.Click +=
new System.EventHandler(this.GetResources);

Resource Editor Example

231

Chaprer7

232

this.lstPictures.SelectedindexChanged +=

new System.EventHandler{this.PicList);
this.tcResources.Click +=

new System.EventHandler{this.TabChange);
this.cmdAddPic.Click +=

new System.EventHandler{this.AddPic);
this.cmdDelPic.Click +=

new System.EventHandler{this.RemovePic);
this.txtBaseName.TextChanged +=

new System.EventHandler{this.NameChanged);
this.lstCultures.SelectedindexChanged +=

new System.EventHandler{this.CulturePick);
this.chkCreateBin.CheckStateChanged +=

new System.EventHandler{this.Create_Checked);
this.chkCreateText.CheckStateChanged +=

new System.EventHandler{this.Create_Checked);
this.chkCreateXML.CheckStateChanged +=

new System.EventHandler{this.Create_Checked);
this.cmdSave.Click +=

new System.EventHandler{this.Saveit);
}

[STAThread]
static void Main()

{

}
Application.Run(new frmResources());

private void Forml_Load{object sender, System.EventArgs e)
{

}

InitStrings();
SetupStringTable();
dgStrings.DataSource = m_StringTable;
SetupStringResourceGrid{);
AlignColumns();

private void InitStrings{)
{

}

sbStatus.Panels[2].Text = DateTime.Now.ToString();
sbStatus.Panels[l].Width = 100;

private void SetupStringTable{)
{

Resource Editor Example

}

//Give this table a name so I can synchronize to it with the grid
m_StringTable = new DataTable(ResourceTableName);

//Add three columns to the table
m_StringTable.Columns.Add(new DataColumn(ResUtilConsts.KeyCol,

Type.GetType("System.String")));
m_StringTable.Columns.Add(new DataColumn(ResUtilConsts.TextCol,

Type.GetType("System.String")));
m_StringTable.Columns.Add(new DataColumn(ResUtilConsts.CommentCol,

Type.GetType("System.String")));

private void SetupStringResourceGrid()
{

DataGridTableStyle dgS = new DataGridTableStyle();
DataGridTextBoxColumn dgCKey;
DataGridTextBoxColumn dgCText;
DataGridTextBoxColumn dgCComment;

//Set up a table style first then add it to the grid
dgS.MappingName = ResourceTableName;
dgS.PreferredColumnWidth = 300;
dgS.SelectionBackColor = Color.Beige;
dgS.SelectionForeColor = Color.Black;
dgS.AllowSorting = true;

//Make a column style for the first column and add it to the columnstyle
dgCKey = new DataGridTextBoxColumn();
dgCKey.MappingName = ResUtilConsts.KeyCol;
dgCKey.HeaderText = "Resource Key";
dgCKey.Width = 100;
dgS.GridColumnStyles.Add(dgCKey);

//Make a column style for the second column and add it to the columnstyle
dgCComment = new DataGridTextBoxColumn();
dgCComment.MappingName = ResUtilConsts.TextCol;
dgCComment.HeaderText = "Resource Text";
dgCComment.Width = 300;
dgS.GridColumnStyles.Add(dgCComment);

//Make a column style for the third column and add it to the columnstyle
dgCText = new DataGridTextBoxColumn();
dgCText.MappingName = ResUtilConsts.CommentCol;

233

Chapter 7

234

}

dgCText.HeaderText = "Comment";
dgCText.Width = 400;
dgS.GridColumnStyles.Add(dgCText);

//First purge all table styles from this grid then add the one that I want
dgStrings.TableStyles.Clear();
dgStrings.TableStyles.Add(dgS);

private void AlignColumns()
{

}

dgStrings.TableStyles[o].GridColumnStyles[o].Width = 100;
dgStrings.TableStyles[o].GridColumnStyles[l].Width = 300;
dgStrings.TableStyles[o].GridColumnStyles[2].Width

dgStrings.Size.Width - dgStrings.TableStyles[o].GridColumnStyles[o].Width
- dgStrings.TableStyles[o].GridColumnStyles[l].Width
- dgStrings.RowHeaderWidth - 4 * GridLineWidth;

private void FillPiclist()
{

}

PicPanel.AutoScroll = true;
pic.Image = null;
foreach(Res!mage Res!mg in m_Pictures)
{

}

lstPictures.Items.Add(Resimg.Name);
//Make a new picture box and add it to the
//panels control array
AddPic2Panel(Resimg);

ArrangePictures();

if (lstPictures.Items.Count > o)
{

}

lstPictures.SetSelected(o, true);
cmdDelPic.Enabled = true;

else
cmdDelPic.Enabled = false;

private void AddPic2Panel(Resimage Res!mg)
{

PictureBox Pic;

Pic = new PictureBox();
Pic.Size = new Size(PICSIZE, PICSIZE);
Pic.Location = new Point(10, 10);
Pic.SizeMode = PictureBoxSizeMode.Stretchimage;
Pic.Image = Res!mg.image;
Pic.Tag = Res!mg.Name;
PicPanel.Controls.Add(Pic);

private void ArrangePictures()
{

int x;
int y = o;

//Number of pictures in a row.
//DO not show a picture if it means we get a horizontal
I /scroll bar
int NumPicsinWidth = (int)((PicPanel.Size.Width - PICSPACE) I

(PICSIZE + PICSPACE)) - 1;
//Control collections are zero based.
//VB type collections are 1 based.
for (int k = o; k<= PicPanel.Controls.Count - 1; k++)
{

}

//determine if we are in a new row
if (k % (NumPicsinWidth) == 0)

x PICSPACE;
else

x PicPanel.Controls[k- 1].Location.X + PICSIZE + PICSPACE;

if (k < NumPicsinWidth)
y = PICSPACE;

else if (k % (NumPicsinWidth) == o)
y = PicPanel.Controls[k- 1].Location.Y + PICSIZE + PICSPACE;

PicPanel.Controls[k].Location = new Point(x, y);

public void BuildCompleteName()
{

m NewFname = txtBaseName.Text ""? "?": txtBaseName.Text;

Resource Editor Example

235

Chapter?

236

}

if (lstCultures.Selecteditem !=null)
{

if (lstCultures. Selected!tem. ToString(). Trim() ! = "(None)")
m NewFname += + MS.Left(lstCultures.Selecteditem.ToString(),15)

.Trim();

}

if (chkCreateText.Checked == true)
lblTxtFname. Text = m NewFname + ".txt";

else
lblTxtFname.Text

'

if (chkCreateXML.Checked == true
lblXML fname. Text = m NewFname + ". resx";

else
lblXMLfname.Text = "";

if (chkCreateBin.Checked == true
lblBinFname.Text = m_NewFname +".resources";

else
lblBinFname.Text urr.

'

private void NameChanged(object sender, System.EventArgs e)
{

BuildCompleteName();
}

private void CulturePick(object sender, System.EventArgs e)
{

BuildCompleteName();
}

private void Create_Checked(object sender, System.EventArgs e)
{

if(chkCreateBin.Checked == false && chkCreateXML.Checked == false &&
chkCreateText.Checked == false)

cmdSave.Enabled = false;
else

cmdSave.Enabled = true;

BuildCompleteName();
}

private void Savelt(object sender, System.EventArgs e)
{

}

ResUtil Res = new ResUtil(m_ResFile);
Res.OutputFileName = m_NewFname;

if (chkCreateText.Checked)
Res~SaveData(m_StringTable, m_Pictures, ResTypes.TextType);

if (chkCreateXML.Checked)
Res.SaveData(m_StringTable, m_Pictures, ResTypes.XMLType);

if (chkCreateBin.Checked)
Res.SaveData(m_StringTable, m_Pictures, ResTypes.BinType);

private void Piclist(object sender, System.EventArgs e)
{

}

Reslmage rlmg;

rlmg = (Reslmage) m_Pictures.Item(lstPictures.Selectedltem.ToString());
pic.Image = rlmg.image;

//Highlight the picture in question by
//giving it a border. Don't foget to "unborder" the others.
foreach(PictureBox pb in PicPanel.Controls)
{

}

if (pb.Tag.ToString() == rlmg.Name)
pb.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

else
pb.BorderStyle = System.Windows.Forms.BorderStyle.None;

private void GetResources(object sender, System.EventArgs e)
{

OpenResFile.Reset();
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory();
OpenResFile.RestoreDirectory = true;
OpenResFile.Filter ="Text files (*.txt)l*.txtiXML files"+

"(*.resx)l*.resxiBinary files (*.resources)!" +
"*.resources";

Resource Editor Example

237

Chapter 7

238

}

if (OpenResFile.ShowDialog() == DialogResult.OK)
{

}

m_ResType = (ResTypes) OpenResFile.Filterlndex;
m_ResFile = OpenResFile.FileName;
ResUtil Res = new ResUtil(m_ResFile, m_ResType);

//clear the pictures
lstPictures.Items.Clear();
while (lstPictures.Items.Count > o)

lstPictures.Items.Remove(l);

PicPanel.Controls.Clear();

//Fill the string text box
sbStatus.Panels[o].Text = m_ResFile;
if (sender == mnuOpen)
{

}

Res.GetData(m_StringTable, false);
m_Pictures = Res.Pics;

else if (sender == mnuAppend
{

Res.GetData(m_StringTable, true);
//Add to the pictures collection

Reslmages NewPics;

NewPics = Res.Pics;
foreach(Reslmage p in NewPics)

m_Pictures.Add(p);
}

FillPicList();

private void TabChange(object sender, System.EventArgs e)
{

if (tcResources.Selectedlndex == FINAL_TAB
{

lbllnFilename.Text = m_ResFile;
lblResStringNum.Text = m_StringTable.Rows.Count.ToString();
lblNumPics.Text = m_Pictures.Count.ToString();

Resource Editor Example

}

}

Cultureinfo[] AllCultures;
AllCultures = Cultureinfo.GetCultures(CultureTypes.SpecificCultures);
lstCultures.Items.Clear();
lstCultures.Items.Add(" ".PadRight(lO) + "(None)");

lstCultures.Sorted = true;
foreach(Cultureinfo ACulture in AllCultures)

lstCultures.Items.Add(ACulture.Name.PadRight(15) +

ACulture.DisplayName);

chkCreateBin.Checked = true;

if (tcResources.Selectedindex == GRAPHICS TAB
{

}

if(lstPictures.Items.Count < 1)
cmdDelPic.Enabled = false;

private void AddPic(object sender, System.EventArgs e)
{

OpenResFile.Reset();
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory();

OpenResFile.RestoreDirectory = true;
OpenResFile.Filter = "Picture files (*.jpg; *.bmp; *.gif) I" +

"*.jpg; *.bmp; *.gif";

if (OpenResFile.ShowDialog() == DialogResult.OK)
{

Fileinfo finfo = new Fileinfo(OpenResFile.FileName);
if ((finfo.Extension.ToUpper() == ".JPG") II

(finfo.Extension.ToUpper() ".BMP") II
(finfo.Extension.ToUpper() == ".GIF"))

//Add the picture to the collection

Resimage r!mg = new Resimage(OpenResFile.FileName,
Image.FromFile(OpenResFile.FileName));

AskKey Keyform = new AskKey(rimg);

if (Keyform.ShowDialog(this) == DialogResult.OK
{

m_Pictures.Add(rimg, rimg.Name);
//Add the picture to the panel and arrange
AddPic2Panel(rimg);

239

Chapter 7

}

}

240

}

}

}

ArrangePictures();
//Add the picture to the list and enable delete and select it
lstPictures.Items.Add(rimg.Name);
lstPictures.SetSelected(lstPictures.Items.Count - 1, true);
cmdDelPic.Enabled = true;

}

Keyform.Dispose();

private void ProgExit(object sender, System.EventArgs e)
{

this.Dispose();
}

private void RemovePic(object sender, System.EventArgs e)
{

}

//Remove the picture from the picture collection
m_Pictures.Remove(lstPictures.Selecteditem.ToString());

//Remove the picture from the panel and rearrange the rest
foreach(PictureBox pb in PicPanel.Controls)
{

}

if (pb.BorderStyle == System.Windows.Forms.BorderStyle.FixedSingle
{

}

PicPanel.Controls.Remove(pb);
ArrangePictures();
break;

//Remove the name from the listbox of keys and
//reselect the first one
lstPictures.Items.Remove(lstPictures.Selecteditem);
if (lstPictures.Items.Count > o)

lstPictures.SetSelected(o, true);
else
{

}

cmdDelPic.Enabled false;
pic.Image = null;

Resource Editor Example

Handling Events in C#

The most notable thing about this code is the difference between how control
events are handled in C# as opposed to VB. In VB .NET you just double-click
a control on your form and a method is generated for you in your code that
handles the event. You know this code is connected to the control because of
the "Handles" keyword at the end of the method definition. You can change the
name of the VB method and you still know that it is tied to this event. Here is
a sample VB event definition.

Private Sub CulturePick(ByVal sender As System.Object,
ByVal e As System.EventArgs) _

Handles lstCultures.SelectedindexChanged

As you can see, this method handles the SelectedlndexChanged event of
the lstCultures list box. The name of the method has been changed from its origi
nalname.

The same thing is true for C# but with a caveat. If you double-click a control
in a C# form, you are taken to an event handler that was generated for you. Same
as VB. However, there is no way to know by inspecting this event code that it is
tied to your control. There is no "Handles <event>" code. The only guess you can
make is by the name of the method. As you know, you can change the name of an
event handler. If this is true, there must be something in the code somewhere
that connects this event handler to the control. Well there is. It is way up in the
Windows Generated code.

My advice to you is to never double-click a control to get an event unless you
want the default event. You will end up having to go into the Windows Generated
code and deleting the delegate definition. It is better to hand-code the event del
egate yourself. You will also be able to program one method that handles
multiple events. Following is the delegate method definition and method code
that handles the check boxes. Listing 7-21 shows how to create a single delegate
for many events. This code is extracted from Listing 7-20.

Lisitng 7-21. Single delegate for all check box events

this.chkCreateBin.CheckStateChanged +=

new System.EventHandler(this.Create_Checked);
this.chkCreateText.CheckStateChanged +=

new System.EventHandler(this.Create_Checked);
this.chkCreateXML.CheckStateChanged +=

new System.EventHandler(this.Create_Checked);

241

Chapter 7

242

private void Create_Checked(object sender, System.EventArgs e)
{

}

if(chkCreateBin.Checked == false && chkCreateXML.Checked == false &&
chkCreateText.Checked == false)

cmdSave.Enabled = false;
else

cmdSave.Enabled = true;

BuildCompleteName();

Summary

This has been an interesting chapter in that you made a full-featured resource
editor in both VB and C#. You saw how to generate a windows forms project and
add code to read and write resources to any of the standard resource formats. You
also saw how to add picture box controls to a panel control at runtime. This gave
the ability to show an unlimited number of graphic resources in the panel.

As a contrast to the VB version of this project you saw the exact same
functionality written inC#. This gives you a good idea of the advantages and
disadvantages of both languages.

Next, you use this resource editor to r.reate a resource file for itself. You then
use this resource file to help localize this project.

CHAPTER 8

Let's Localize

CHAPTER 7 INCLUDED AN example of a full-fledged resource editor. This chapter uses
the resource editor to localize itself. If you remember, when you built the screens
and the code, you did not pay any attention to localization. There are unnamed
controls and default text in all the labels. Error messages are hard-coded as is any
output to text boxes.

As you go through this chapter and correct the lack of localization, you may
wonder "Why didn't I do this from the start?" You will experience first-hand that it
is easier to design with localization in mind.

Laying Out the Task

The localization task has several steps. No particular order is required for some
of the steps. They just happen to be ordered in the way I usually attack a "fix it
so it can be sold overseas" project. The gross steps to take for this project are
listed next.

• Rearrange the GUI controls so translated text fits in the allotted space.

• Internalize the assignment of static strings from the controls into
one method.

• Make sure that all images are displayed by code settings rather than
through the design mode.

• Make sure all dates and times are displayed using internationally
aware functions.

• Make sure that currency and numbers are displayed using internationally
aware functions.

• Use the resource editor to make a resource file with all strings and images
needed for this example.

243

ChapterB

244

• Use the .NET resource manager classes to get all strings from the appropri
ate resource file.

The languages you'll use for this example are English (default) and German.
Now that you know what to do, let's start.

Revisiting the GUI

Open the ResEdit project from Chapter 7. I'll go over both VB and C# at the same
time, so open either project. The first thing you are going to do is give names to
all the controls that still have their default names. There are a few of them.
Typically in a project such as this, most of the controls that have default names
are the label controls. This is the case here as well. Rename the controls listed in
Table 8-1 as described.

Table 8-1. Renaming Controls in ResEdit

LOCATION CONTROL DESCRIPTION NEW NAME
Pictures Tab Label that says "Key" lblPicKey

Pictures Tab Label that says "Pictures" lblPictures

Final Tab Basics frame fraBasics

Final Tab Output frame fraOutput

Final Tab Label "Input Filename" lbllnputFname

Final Tab Label "Base Name" lblBaseName

Final Tab Label "String Count" lblStrCnt

Final Tab Label "Picture Count" lblPicCnt

Final Tab Label "Choose Culture" lblCulture

Once you have done this, the controls in this project should have a name.
The only ones that don't are the tab pages themselves. This is OK because I refer
to them by index rather than by name.

Initializing the Controls with Strings

OK, now you have names for all the controls. Big deal. The thing to do now is to
make a method that initializes the text in all static controls. You already have that
method-InitStrings(). This method should be one of the first methods called in
any program. Listing 8-1 shows the new InitStrings() method for both the VB and
C# ResEditor.

Listing 8-1. New InitString method

VB

Private Sub InitStrings()

'Status Panel
sbStatus.Panels(2).Text = Now.ToString

sbStatus.Panels(1).Width = 100

'Tab Pages
tcResource.TabPages(TEXT_TAB).Text = "Text"

tcResource.TabPages(GRAPHICS_TAB).Text = "Pictures"

tcResource. TabPages(FINAL_TAB). Text = "Final. .. "

'Form Controls
cmdQuit. Text "Quit"
mnuFile. Text = "File"

mnuOpen.Text = "Open"
mnuAppend.Text = "Append"

mnuExit.Text = "Exit"

'do picture tab
lblPicKey.Text = "Key"
lblPictures.Text = "Pictures"

cmdAddPic.Text "Add"

cmdDelPic. Text = "Remove"

'Do Final tab
fraBasics.Text = "Basics"

lblinputFname.Text = "Input Filename"

lblStrCnt. Text = "String Count"

lblPicCnt.Text = "Picture Count"

lblCulture. Text = "Choose Culture"

fraOutput. Text = "Build Output File(s)"

lblBaseName.Text = "Base Name"

cmdSave.Text = "Save"
chkCreateText. Text = "Create Text file for translator"

chkCreateXML. Text "Create XMl File"

chkCreateBin.Text = "Create Binary File"

End Sub

Let's Localize

245

ChapterS

(#

246

}

private void InitStrings()
{

sbStatus.Panels[2].Text = DateTime.Now.ToString();
sbStatus.Panels[l].Width = 100;

//Tab Pages
tcResources.TabPages[TEXT_TAB].Text = "Text";
tcResources.TabPages[GRAPHICS_TAB].Text = "Pictures";
tcResources. TabPages[FINAL_TAB]. Text = "Final. .. ";

//Form Controls
cmdQuit.Text "Quit";
mnuFile. Text = "File";
mnuOpen. Text = "Open";
mnuAppend.Text = "Append";
mnuExit.Text = "Exit";

//do picture tab
lblPicKey. Text = "Key";
lblPictures.Text = "Pictures";
cmdAddPic.Text "Add";
cmdDelPic.Text = "Remove";

//Do Final tab
fraBasics.Text = "Basics";
lblinputFname. Text = "Input Filename";
lblStrCnt.Text = "String Count";
lblPicCnt.Text = "Picture Count";
lblCulture.Text = "Choose Culture";
fraOutput.Text = "Build Output File(s)";
lblBaseName.Text = "Base Name";
cmdSave. Text = "Save";
chkCreateText.Text = "Create Text file for translator";
chkCreateXML. Text "Create XMl File";
chkCreateBin.Text = "Create Binary File";

A little later you bring in all these strings from a resource file.

Enhancing the Resimage Class

Most programs have at least one icon. This program is supposed to save graphics
in a resource file for later use in a real program. If you have been paying
attention, you should have noticed that this program only saves graphics of the
bitmap type. You cannot load a bitmap as an icon in a .NET program. Therefore,
you need to make a little side trip and add some functionality to the Reslmage
class to be able to hold an icon.

What is an icon?You can think of an icon as a small transparent bitmap. The
machine displaying it usually sets the size of an icon. A regular bitmap image has
a defined size.

Loading and saving icons in resource files is not difficult. 'rhe dilemma is
how to display it. I display images in a picture box, which does not display an
icon. I could have a separate control that shows just an icon when necessary but
I like generality and it would be nice to display an icon and any other kind of
image in the same control. The method I came up with converts an icon to
a bitmap for display purposes, but stores it as an icon internally. This method
allows me to read and save icons but display them as bitmaps.

Remember the Type property in the Reslmage class? I said in Chapter 7 that
this might come in handy. Although I did not use this property in Chapter 7,
I use it here. An image type in .NET does not hold an icon and does not convert
between the two. It is, however, possible to convert an icon to a bitmap. I take
advantage of this fact as I modify the Res Image class to hold an icon. Let's go
ahead and change the Reslmage class. You find this class in the ResUtil.vb file for
the VB project and in the ResUtil.cs file for C#.

Within this class you need to add a private member of type Icon. You also
need to change the constructors to store the image as an icon if necessary. Finally
you need to change the Type property.

Presently the Type property is a string. This is rather inconvenient for com
parisons so I changed it to return a type of Type. Listing 8-2 shows the new
Reslmage class in both C# and VB.

Listing 8-2. New Res/mage class that now holds an icon

VB

Public Class Resimage

Private img As Image
Private m Icon As Icon
Private imgName As String
Private imgType As Type

Let's Localize

247

ChapterB

248

Public Sub New(ByVal Key As Object, ByVal Value As Object)
'Value is an object because of the way it is passed in
If Value.GetType Is GetType(Icon) Then

m_Icon = CType(Value, Icon)
img = m_Icon.ToBitmap()

Else
img = CType(Value, Image)

End If

imgName = Key.ToString
imgType = Value.GetType

End Sub
Public Sub New(ByVal Key As String, ByVal Value As Object)

'Value is an object because of the way it is passed in
If Value.GetType Is GetType(Icon) Then

m_Icon = CType(Value, Icon)
img = m_Icon.ToBitmap()

Else
img = CType(Value, Image)

End If

imgName = Key
imgType = Value.GetType

End Sub

Public Property Name() As String
Get

Return imgName
End Get
Set(ByVal Value As String)

imgName = Value
End Set

End Property
Public ReadOnly Property Image() As Image

Get
Return img

End Get
End Property
Public ReadOnly Property Icon() As Icon

Get
Return m Icon

End Get
End Property

Public ReadOnly Property Type() As Type
Get

Return imgType
End Get

End Property
End Class

C#

public class Resimage
{

private Image img;
private Icon m_Icon;
private string imgName;
private Type imgType;

public Resimage(object key, object val)
{

}

if (val.GetType() == typeof(Icon)
{

m_Icon = (Icon)val;
img = m_Icon.ToBitmap();

}

else
img = (Image)val;

imgName key.ToString();
imgType = val.GetType();

public Resimage(string key, object val)
{

}

if (val.GetType() == typeof(Icon)
{

m_Icon = (Icon)val;
img = m_Icon.ToBitmap();

}

else
img = (Image)val;

imgName = key;
imgType = val.GetType();

Let's Localize

249

ChapterS

250

public string Name
{

}

get { return imgName; }
set { imgName = value; }

public Image image
{

get { return img; }
}

public Icon Icon
{

get { return m_Icon; }
}

public Type type
{

get { return imgType; }
}

This class is now able to hold virtually any type of image you would want in

a resource file. If the image is an icon, the class holds this information internally

but allows access to it as if it were a bitmap. This makes it easy to display the
image on the resource editor screen. In order to get the icon back out, I have
added a new property called Icon. Any method can query the Resimage object for
its type and retrieve the image if it is an icon.

Try compiling and running the program now. You should not get any errors

and you should be able to load the resource editor with pictures as before. So far
nothing seems to have changed as far as the editor itself goes.

The loading of graphical resources does not need to change. The two

methods FillFromXMLFile and FillFromBinaryFile send images to Resimage con

structors, which take care of deciding if the image is a bitmap or an icon. That is

the point of a class like this. Do as much as possible internally and hide the

implementation details from the outside.
Let's make one more change to the ResUtil file before you move on to the

main code. This change involves saving the files. If the save methods were not

changed, everything would still work except that the icons would be saved as

bitmaps. Once the images are in the resource file you lose the original type infor

mation. Fortunately, icons can be saved in a resource file.
All you need to add to the save methods is a test to see if the image being

saved is an icon or a bitmap. If it is an icon then save the icon, otherwise save the

bitmap. Listing 8-3 shows the new SaveToXMLFile and SaveToBinaryFile meth
ods for both the VB and C# projects.

Listing 8-3. The new save methods for both VB and C# projects

VB

Private Sub SaveToXMLFile(ByRef ResData As DataTable)
Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname =File Info.FullName + ".resx"

Try
'This will write over the existing file!
Dim ResxWriter As New ResXResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

'Iterate over the rows in the table and add to the resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResxWriter.AddResource(ResKey, ResVal)

Next

'Save the pictures
For Each Pic In m PicCo!

If Pic.Type Is GetType(Icon) Then
ResxWriter.AddResource(Pic.Name, Pic.Icon)

Else
ResxWriter.AddResource(Pic.Name, Pic.Image)

Let's Localize

251

ChapterS

252

End If

Next

'Write out the resource file and close it.
ResxWriter.Generate()
ResxWriter.Close()

Catch ex As Exception
Throw ex

End Try
End Sub

Private Sub SaveToBinaryFile(ByVal ResData As DataTable)
Dim Fname As String
Dim Pic As Resimage

'Do not try anything if we are handed an invalid table
'This is better than a try catch block. Avoid errors when possible.
'Do not just catch them.
If ResData Is Nothing Then

Throw New InvalidTable("Data table was not defined")
Exit Sub

End If

'Split the filename and make it a text file
Dim File_Info As New Fileinfo(m_SaveFile)
Fname =File Info.FullName +".resources"

Try
'This will write over the existing file!
Dim ResWriter As New ResourceWriter(Fname)
Dim ResKey As String
Dim ResVal As String
Dim ResRow As DataRow

'Iterate over the rows in the table and add to the resource file
For Each ResRow In ResData.Rows

ResKey = ResRow(KeyCol).ToString
ResVal = ResRow(TextCol).ToString
ResWriter.AddResource(ResKey, ResVal)

Next

'Save the pictures
For Each Pic In m_PicCol

If Pic.Type Is GetType(Icon) Then
ResWriter.AddResource(Pic.Name, Pic.Icon)

Else
ResWriter.AddResource(Pic.Name, Pic.Image)

End If
Next

'Write out the resource file and close it.
ResWriter.Generate()
ResWriter.Close()

Catch ex As Exception
Throw ex

End Try
End Sub

(#

private void SaveToXMLFile(DataTable ResData)
{

string Fname;

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");
return;

//Split the filename and make it a resx file
Fileinfo File_Info = new Fileinfo(m_SaveFile);
Fname File Info. FullName + ". resx";

try
{

//This will write over the existing file!
ResXResourceWriter ResxWriter = new ResXResourceWriter(Fname);
string Res Key;
string ResVal;

Let's Localize

253

ChapterS

254

}

}

//Iterate over the rows in the table and add to the resource file
foreach (DataRow ResRow in ResData.Rows)
{

}

ResKey = ResRow[ResUtilConsts.KeyCol].ToString();

ResVal = ResRow[ResUtilConsts.TextCol].ToString();
ResxWriter.AddResource(ResKey, ResVal);

//Save the pictures
foreach (Resimage Pic in m PicCol
{

}

if (Pic.type == typeof(Icon))
ResxWriter.AddResource(Pic.Name, Pic.Icon);

else
ResxWriter.AddResource(Pic.Name, Pic.image);

//Write out the resource file and close it.

ResxWriter.Generate();
ResxWriter.Close();

catch (Exception ex)
{

throw ex;
}

private void SaveToBinaryFile(DataTable ResData)
{

string Fname;

if (ResData == null)
{

}

throw new InvalidTable("Data table was not defined");

return;

//Split the filename and make it a text file

Fileinfo File_Info = new Fileinfo(m_SaveFile);

Fname File Info. Full Name + ".resources";

try
{

}

}

//This will write over the existing file!
ResourceWriter ResWriter = new ResourceWriter(Fname);
string Res Key;
string ResVal;

//Iterate over the rows in the table and add to the resource file
foreach (DataRow ResRow in ResData.Rows)
{

}

ResKey = ResRow[ResUtilConsts.KeyCol].ToString();
ResVal = ResRow[ResUtilConsts.TextCol].ToString();
ResWriter.AddResource(ResKey, ResVal);

//Save the pictures
foreach (Reslmage Pic in m PicCol
{

}

if (Pic.type == typeof(Icon))
ResWriter.AddResource(Pic.Name, Pic.Icon);

else
ResWriter.AddResource(Pic.Name, Pic.image);

//Write out the resource file and close it.
ResWriter.Generate();
ResWriter.Close();

catch (Exception ex)
{

throw ex;
}

Notice that as I iterate through the image collection I test for the image type and
save the image resource correctly.

Manually Adding an Icon to the Resource Editor

There is one last change you need to make to properly handle icons. That change
involves adding an icon manually. So far I have altered the ResUtil and Resimage
classes to load, display, and save icons correctly. The last thing that needs to be
done is to change the AddPic method in the main code. This is the method that

Let's Localize

255

ChapterS

256

allows the user to click the Add button in the "Pictures" tab and add a graphic

image to the resource set.
The change involves allowing the user to choose a file with the extension of

ICO and reading the file from disk as either an image or an icon. Listing 8-4

shows the new AddPic method for both the VB and C# projects.

Listing 8-4. New AddPic method to allow manual entry of icon graphics

VB

Private Sub AddPic(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cmdAddPic.Click

Dim rlmg As Reslmage

OpenResFile.Reset()
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory()

OpenResFile.RestoreDirectory = True
OpenResFile.Filter = "Picture files " + _

"(*.jpg; *.bmp; *.gif; *.ico)l*.jpg; *.bmp; *.gif; *.ico"

If (OpenResFile.ShowDialog() = DialogResult.OK) Then

Dim flnfo As New Filelnfo(OpenResFile.FileName)

If flnfo.Extension.ToUpper = ".JPG" Or_
flnfo.Extension.ToUpper ".BMP" Or
flnfo.Extension.ToUpper = ".!CO" Or_
flnfo.Extension.ToUpper = ".GIF" Then

'Add the picture to the collection
If flnfo. Extension. ToUpper = ".!CO" Then

rlmg New Reslmage(OpenResFile.FileName,
New Icon(OpenResFile.FileName))

Else
rlmg New Reslmage(OpenResFile.FileName, _

Image.FromFile(OpenResFile.FileName))

End If

Dim Keyform As New AskKey(rlmg)
If Keyform.ShowDialog(Me) = DialogResult.OK Then

m_Pictures.Add(rlmg, rlmg.Name)
'Add the picture to the panel and arrange

AddPic2Panel(rlmg)
ArrangePictures()
'Add the picture to the list and enable delete and select it

lstPictures.Items.Add(rimg.Name)
lstPictures.SetSelected(lstPictures.Items.Count - 1, True)

(#

cmdDelPic.Enabled = True
End If

Keyform.Dispose()
End If
End If

End Sub

private void AddPic(object sender, System.EventArgs e)

{

OpenResFile.Reset();
OpenResFile.InitialDirectory = Directory.GetCurrentDirectory();

OpenResFile.RestoreDirectory = true;
OpenResFile.Filter = "Picture files " +

"(*.jpg; *.bmp; *.gif; *.ico)l*.jpg; *.bmp; *.gif; *.ico";

if (OpenResFile.ShowDialog() == DialogResult.OK)
{

Fileinfo finfo = new Fileinfo(OpenResFile.FileName);
if ((finfo.Extension.ToUpper() == ".JPG") II

{

(finfo.Extension.ToUpper() ".BMP") II
(finfo.Extension.ToUpper() ".!CO") I I
(finfo.Extension.ToUpper() ".GIF"))

Res!mage rimg;

if (finfo.Extension. ToUpper() == ".!CO")
{

}

rimg = new Resimage(OpenResFile.FileName,
new Icon(OpenResFile.FileName));

else
{

r!mg = new Resimage(OpenResFile.FileName,
Image.FromFile(OpenResFile.FileName));

AskKey Keyform = new AskKey(rimg);
if (Keyform.ShowDialog(this) == DialogResult.OK

Let's Localize

257

Chapter a

258

}

}
}

{

}

m_Pictures.Add(rimg, r!mg.Name);
//Add the picture to the panel and arrange
AddPic2Panel(rimg);
ArrangePictures();
//Add the picture to the list and enable delete and select it
lstPictures.Items.Add(rimg.Name);
lstPictures.SetSelected(lstPictures.Items.Count - 1, true);
cmdDelPic.Enabled = true;

Keyform.Dispose();

This last change allowed the program to accept icons manually if the user
chooses. Now that you have this capability, let's use it for this program.

Most Windows programs have an icon that represents that program in a min
imized state. You can also see the icon in Windows Explorer and on the upper-left
corner of the program's screen. The icon you have for this program is the default
one given by .NET. Go into the InitStrings method and add the following line of
code. Substitute any icon you wish for the argument.

VB

Me.Icon = New Icon("usa.ico")

C#

this. Icon=new Icon("USA. ico");

At this point all the static GUI strings and graphics for the program are ini
tialized in this function. Later you add a resource manager to get all these
resources from a resource file.

Finishing the Internationalization Portion

You need to do a few things to make sure the program will work correctly in other
Western languages.

• Make sure that numbers are displayed correctly.

• Make sure that currency is displayed correctly.

• Make sure that dates and times are displayed correctly.

The best way to test this capability is to change the current culture in the
thread you are working in. If you do this, you can start the program and go
through all the screens to see if the dates, times, numbers, and so forth are dis
played correctly for that culture. While you are doing this if you have any date
and numeric entry fields, check to see that these fields accept input in the
correct format.

Open the frmResources file and enter the following code in the constructor
before the InitializeComponent call. Make sure that you are importing the
System. Threading namespace.

VB

Thread.CurrentThread.CurrentCulture = New Cultureinfo("de-DE")

C#

Thread.CurrentThread.CurrentCulture = New Cultureinfo("de-DE");

Run the program and you should see the European date and time format
on the status bar. Figure 8-l shows my screen after I changed the current
threads culture.

Let's Localize

259

Chapter8

260

~----------------------~~E

a... I

Figure 8-1. Screen showing European date and time

As far as this small program goes, that is pretty much it for testing the dates
and times, and so on. There are no currency, number, or input fields to test.

Comment out the test code you added and open the tcResource_Click
method. It would be nice to be able to display the culture name in the native lan
guage of that culture. The Culturelnfo class allows you to do that. The code in this
method iterates over the cultures and displays the name of the culture in the list
box using the DisplayName method. The Culturelnfo class allows you to use
a method called NativeName instead. This method displays the name of the cul
ture in that culture's language. It also displays that culture's name in the font
necessary to display the correct characters.

There is one problem with doing this. The GetCultures method gets all the
cultures that .NET knows about. There are not enough fonts natively available to
Windows for it to display all the characters. The easy way around this (and you
will take the easy way for this project) is to get only the cultures that Windows
knows about. This pretty much guarantees that you will have the fonts necessary
for display.

To do this you change the GetCultures argument from
CultureTypes.SpecificCultures to CultureTypes.lnstalledWin32Cultures.
Listing 8-5 shows the new tc_Resource_Click method.

Listing 8-5. Change tcResource_ Click to display cultures in native language

VB

C#

Private Sub tcResource_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles tcResource.Click, _
tcResource.SelectedindexChanged, _
tcResource.DoubleClick

If tcResource.Selectedindex = FINAL TAB Then
lblinFilename.Text = m ResFile
lblResStringNum.Text = m_StringTable.Rows.Count.ToString
lblNumPics.Text = m_Pictures.Count.ToString

Dim AllCultures() As Cultureinfo
Dim ACulture As Cultureinfo
AllCultures = Cultureinfo.GetCultures(CultureTypes.InstalledWin32Cultures)
lstCultures.Items.Clear()
lstCultures.Items.Add(" ".PadRight(lO) + "(None)")
lstCultures.Sorted = True
For Each ACulture In AllCultures

lstCultures.Items.Add(ACulture.Name.PadRight(15) + ACulture.NativeName)
Next
chkCreateBin.Checked = True

End If

If tcResource.Selectedindex = GRAPHICS TAB Then
If lstPictures.Items.Count < 1 Then

cmdDelPic.Enabled = False
End If

End If

End Sub

private void TabChange(object sender, System.EventArgs e)
{

if (tcResources.Selectedindex == FINAL_TAB
{

lblinFilename.Text = m_ResFile;
lblResStringNum.Text = m_StringTable.Rows.Count.ToString();
lblNumPics.Text = m_Pictures.Count.ToString();

Let's Localize

261

ChapterB

262

}

}

Culturelnfo[] AllCultures;
AllCultures =

Culturelnfo.GetCultures(CultureTypes.InstalledWin32Cultures);
lstCultures.Items.Clear();
lstCultures.Items.Add(" ".PadRight(10) +"(None)");
lstCultures.Sorted = true;
foreach(Culturelnfo ACulture in AllCultures)

lstCultures.Items.Add(ACulture.Name.PadRight(15) +
ACulture.NativeName);

chkCreateBin.Checked = true;

if (tcResources.Selectedlndex == GRAPHICS_TAB
{

}

if(lstPictures.Items.Count < 1)
cmdDelPic.Enabled = false;

Compile and start the program. Go to the third tab and scroll through the
cultures. You should see fewer cultures than before but the ones you see are dis
played in their native languages.

Making a New Resource File

Now that our program is internationalized, it is time to localize it by allowing for
multiple languages. It is time to put your resource editor to use. Start it and enter
in the strings necessary for this program. Table 8-2 shows all the text resources
you need.

Table 8-2. Text Resources Needed for the ResEditor Program

KEY TEXT

QUIT Quit

FILE File

OPEN Open

APPEND Append

EXIT Exit

KEY Key

PICTURES Pictures

ADD Add

REMOVE Remove

BASICS Basics

INPUTFNAME Input Filename

STRING COUNT String Count

PIC COUNT Picture Count

CULTURE Choose Culture

OUTPUT Build Output File(s)

BASE NAME Base Name

RESOURCE KEY Resource Key

RESOURCE TEXT Resource Text

COMMENT Comment

DATA ERR Data table was not defined

CREATE TEXT Create Text File for Translator

CREATEXML Create XML File

CREATE BIN Create Binary file

SAVE Save

Figure 8-2 shows my screen after I input this information. Remember that

comments are not saved in XML or binary resource files. They are only saved in

the .txt resource file format. When you make the .resources file and bring it back

in to the ResEditor the comment field is (null).

Let's Localize

263

ChapterB

264

Flo
~

TO>! IF'Ict"' .. l Fonol I

- A,_"-"'' I Ro""""'l<"

! ·~· c.a ~==~~~--------------~~~~-----------------------~ OIO!Ihol)logo•m

OPEN
APPEND
EXIT
KEY - I'ICTUAES ..
ADO
REMIM
BASICS
INPUT FNAME
STRING COUNT
I'ICCOUNT

_ CULTURE
_ OUTPUT
-,- BASE NAME

•T

Flo
Open
Aopond

Ed
~0)1

PlctC<ot
Ad:l

A en~<>'~&
8...ct
irpul FlMomo
S~mg Co.rl
l'lcturoCo.rl

a-.. c.Au.
B<ild O.tpU Fio(a]
Ba!&N,wne

M.,...H...,.,
Open .t tie arw:f oYetWttte resoucea:
ooon a ~ to oppend rt'f(l..tCet

.,j 1)1011< ...
eollhe l)logl ...
......... ogo ...
oddopec:Me
deiete•I)ICbA•
group boo !hat hddt bo1C
r"Cl<(llonome
COI.riollei'(WUCf:.s:tf:r'IO$

CCU"'t ol ft:WI.MC4!1 pldV:et

ch)ore•ct.ltn
!lf"'P boK IM! hc*j1 outP<A 1Jo rolo
bMe name olt~ lie

Figure 8-2. Text strings for ResEditor Resource file

-

Next are the pictures you need for this program. Since the only pictures are
icons, this is what you will enter. Switch over to the second tab and click on the
Add button. Search for icons you want to represent your program in English and
in German. I used some icon flags I found in the .NET samples directory. Figure
8-3 shows this screen with the default icon for my program.

T..o l'lcturot lriNl. I

PICtures

Figure 8-3. Icons used to represent the default language of the ResEditor program

Switch to the third tab (Final . . .) and save the resource file. Choose "None"
for the culture because the resource file you are saving is the default resource file.
You can choose to save the XML resource file. We do not make use of it here.
Figure 8-4 shows my screen before saving the file.

Flo

TOld I P"""e: F~ I
9..a
I~Fioflomo

0 \Piojecttll.eomdaltld\Ch8AnEdlt·\/Bibin\Ae:E<it« bel

•t-U.
.:a-U
da-I:IM
d•·AT
de-C'H
de-DI
de-l.l
d•-LU
•n·AU
en.-BZ

AtrUca.ns (Su1d Atn.Jca)
c:at.ah (h:panyal
dansJc (Dan.arlc)
O•u.uc-h tOtturueh)
Deu.'t • c:h t 3c:hw41 i ~)
Deu.-.:.•~ (D•ut.•~hland)

De,u: .• eh (L1•eh,.•n•~~;o•tn)

Deu.~•c:h (J.uxe~\lrv)

JrtqUsh CAu.-erali&)
lnqlh-h (Bdi.:•l

Figure 8-4. Saving the default resource file

~-----------------------~~

9uld 0"""' Folo(t)

The secondary language is German for this example.
Normally you would send the text resource file out to be translated into

German. You would then import the text file into this program and combine it with
a graphics resource file to make a single resource file for the German language.

This project does not have translated strings. Instead, your translation con
sists of preceding each text string with a "G-." Now is the time to make the
German resource file. Go back to the Text tab on the screen and precede each
string with a "G-." Figure 8-5 shows my German text input screen. You may get
a different order of text if you pull up my screen. This is because I have the sort
order of my first column set to ascending.

Let's Localize

265

ChapterB

;;fRc ... ourU! Ed1lOt , .l
Fie

Te>l ll'och..,lrnot.l

AosouceKOjl AOIOU«<TO><t ecr- A

- QUIT G.O.- (~

nu G.fle (~ - OPEN ~ G.Qoe<~ (~ - APPEND - G-A<>Pe<ld (~
£XII G.£101 ~~ -

,......~
KEY G-~ey ~~
PICTURES Ghtues: ~~ ·-· ADO G-Acld (~
REM(JVE G.fl.,....... ~~

~

BASICS G·B lie> ~~
- INPUT FNAME G4~r- (~

STRING COUNT G·Sbngeo....t ~~
_ PIC COUNT G.f'lo:t .. •eo....t l...tl

I- CULTURE G-o-.Culu• (...tl ;_

r--- OUTPUT G·Buld OIAI>J(fi •J (...tJ
f-:-- BASE NAME G·Ba .. Name 1""1 £ •I -- ·I

Qui

Figure 8-5. German text for ResEditor program

Next go to the Pictures screen and find another icon to represent Germany.
Figure 8-6 shows my screen with a German flag.

~Rt•-sourcr rrt.ror · ·!'-

Flo

Pic.h• e•

10/1412001 07.22:15 PM

Figure 8-6. German flag for ResEditor program

266

Now go to the third screen (Final . ..) and save these resources as a German
resource file. Figure 8-7 shows my "Final" screen.

~mm~ -=~==========~---- ~~
Flo

Batics:
l~f
D.~tlleoondolnoi.IO'II!Ae<fdi..VB\bn\R .. .E<IIOI ,.,.

~~~of-Z.A. 

r:•-IS 
d•-DM 
de-AT 
d•-CH 

d4•LI 
.t.·LD 
•n-.AJJ 
•n-I!Z 

Ahtkaan• (IYid .A.hll!:a) 
cat.al j hpanya) 
d~~Z~o•k IDana.ark) 
Dllu~.rch (0:fe•rra1~) 

De'U"t.•ch (!<:hw•h) 

Deuc..•ch (1.1echt.an.t~t.•:ln) 

Daut:-•eh CLu.c•~\n'Q) 

ln'iJlUh U,\Aft.rUl•) 
lnijJluh Utel :u:e) 

Figure 8-7. Saving the German resource file 

Finalizing the Code 

I Suid 0Up..C F'ie(t) 

I B""'Nome 

c_p ... oXMlfole::..._ . ______ _ 

Stotw 1 0/Wl001 00'21 ''AM 

Qui 

You are now at the last point in this example. You will add a resource manager to 
the program so it can get all strings and icons from the proper resource file. 

You will not be using "loose" resources or a resource set. Instead, you use the 
capability of the resource manager to find the correct resource file in the correct 
directory, and to use fallback if necessary. This is the method most of your proj
ects will use. 

Before you change the code to use a resource manager, you need to do 
the following: 

• Make sure that the executable you are making is called ResEditor. 

• Make two directories under the root of the executable called "en-US" 
and "de-DE." 

• Make a satellite file for each resource file in the proper directory. 

Let's Localize 

267 



ChapterB 

268 

Make Sure the Names Are Correct 

Right-click the project name in the Solutions window. Bring up the Properties 
window. The assembly name should be ResEditor. Why is this important, you ask? 
The resource manager gets its name information from the assembly manifest. If 
you have a different name for your resource file than the name contained in 
the assembly manifest, you get an error. The error you get makes it seem as if the 
resource file is there but the resource is not. 

If you use C# the root your project runs from is .\bin\debug_. If you use VB 
then the root your project runs from is. \bin without the debug directory. The 
resource files belong in a directory placed under the root of where your program 
runs from. 

Create the directory called "en-US" and "de-DE." The default culture for my 
machine is US English. Figure 8-8 shows my directory structure for both projects. 

! 

i 

' 

El·· 

i 

. 

. 
l±l·· 

El·· 
Ch8 ResEdit-VB 

bin 

[±]·· 

l±l·· 
obj 

de-DE 

en-US 

Figure 8-8. Directory structure needed for the resource manager to find 
resource files 

Generate the Satellite Files 

You need to put the resource satellite files in these subdirectories. The ResEditor 
program does not generate the satellite DLLs necessary for this, so you have to do 
it by hand. Here's my suggestion of the steps you can follow to accomplish this. 



1. Put the ResEditor.de-DE.resources resource file in the de-DE directory. 

2. Put the ResEditor.resources resource file in the en-US directory and 
rename it to ResEditor.en-US.resources. 

3. Generate a build. bat file in each of the directories that will make the 
satellite DLL file. 

4. Run the build. bat file in each directory. 

What the build. bat file should look like for each directory follows: 

de-DE 

al /out:reseditor.Resources.Dll /v:1.0.0.0 /c:de-DE /embed:ResEditor.de
DE.resources,ResEditor.de-DE.resources,Private 

En-US 

al /out:ResEditor.Resources.Dll /v:1.0.0.0 /c:en-US /embed:ResEditor.en
US.resources,ResEditor.en-US.resources,private 

As you can see, this invokes the AL.exe program and generates a satellite DLL 
with the resource file embedded in it. 

Before you can run the build. bat file, you need to run the corvars.bat file that 
comes with .NET. This file is found in C:\Program Files\Microsoft.NET\ 
FrameworkSDK\Bin. 

You should now have ResEditor.en-US.dll and ResEditor.de-DE.dll files in 
their respective directories. Everything is now set up to run properly. 

Last Changes to the Code 

Since the resource manager is used in several files, it needs to be global to this 
project. The resource manager is put in the Consts.vb file for the VB project, and 
in the ResUtilConsts class in the ResUtil.cs file for the C# project. Listing 8-6 
shows the code to make resource managers in VB and in C#. 

Let's Localize 

269 



ChapterB 

270 

Listing 8-6. Making a resource manager 

VB. Resource Manager in Consts.vb File 

Option Strict On 

Imports System.Resources 

Module Consts 

Public Canst KeyCol As String = "Key" 
Public Canst TextCol As String = "Text" 
Public Canst CommentCol As String = "Comment" 
Public Canst MaxKeylen As Integer = 15 
Public Canst CommentChar As Char = ";"c 

Public Enum ResTypes 
TextType = 1 
XMLType = 2 
BinType = 3 

End Enum 

Public rm As ResourceManager 

End Module 

C#. Resource Manager in ResutilConsts Class 

public class ResUtilConsts 
{ 

public canst string KeyCol = "Key"; 
public canst string TextCol = "Text"; 
public canst string CommentCol = "Comment"; 
public canst int MaxKeylen = 15; 
public canst char CommentChar = .... 

' ' 

public static ResourceManager rm; 
} 

Now you need to instantiate it. You do this in the InitStrings method. This is the 
same for each project. The reason you do it here is so this method can be called 
when the language is changed either by computer setting or programmatically. 



VB 

rm = New ResourceManager("ResEditor", Me.GetType() .Assembly) 

C# 

ResUtilConsts. rm = new ResourceManager( "ResEdi tor", this. GetType(). Assembly); 

Once you have done this it is time to alter the rest of the code in the 

InitStrings method to get all its strings and the icon from the resource file. Use 

the ResourceManager.GetString and ResourceManager.GetObject methods to 

do this. 
Listing 8-7 shows the InitStrings methods for both the C# and VB projects. 

Listing 8-7. New InitStrings method to get strings and icon from the resource file 

VB 

Private Sub InitStrings() 

rm = New ResourceManager( "Res Editor", Me. GetType(). Assembly) 

'Status Panel 

sbStatus.Panels(2).Text = Now.ToString 

sbStatus.Panels(l).Width = 100 

'Tab Pages 

tcResource. TabPages(TEXT_TAB). Text = rm.GetString("TEXT") 

tcResource.TabPages(GRAPHICS_TAB).Text = rm.GetString("PICTURES") 

tcResource.TabPages(FINAL_TAB).Text = rm.GetString("FINAL") 

'Form Controls 

cmdQuit. Text = rm.GetString("QUIT") 

mnuFile. Text = rm.GetString("FILE") 

mnuOpen.Text = rm.GetString("OPEN") 

mnuAppend.Text = rm.GetString("APPEND") 

mnuExit. Text = rm.GetString("EXIT") 

'do picture tab 

lblPicKey. Text = rm. GetString( "KEY") 

lblPictures.Text = rm.GetString("PICTURES") 

cmdAddPic.Text = rm.GetString("ADD") 

cmdDelPic. Text = rm.GetString("REMOVE") 

Let's Localize 

271 



ChapterB 

C# 

272 

'Do Final tab 
fraBasics.Text = rm.GetString("BASICS") 
lblinputFname. Text = rm.GetString("INPUT FNAME") 
lblStrCnt. Text = rm.GetString("STRING COUNT") 
lblPicCnt.Text = rm.GetString("PIC COUNT") 
lblCulture.Text = rm.GetString("CULTURE") 
fraOutput.Text = rm.GetString("OUTPUT") 
lblBaseName.Text = rm.GetString("BASE NAME") 
cmdSave.Text = rm.GetString("SAVE") 
chkCreateText. Text = rm.GetString("CREATE TEXT") 
chkCreateXML. Text = rm.GetString("CREATE XML") 
chkCreateBin.Text = rm.GetString("CREATE BIN") 

Me.Icon = CType(rm.GetObject("Flag"), Icon) 

End Sub 

private void InitStrings() 
{ 

ResUtilConsts.rm = new ResourceManager("ResEditor", this.GetType().Assembly); 

sb5tatus.Panels[2].Text = DateTime.Now.ToString(); 
sbStatus.Panels[l].Width = 100; 

//Tab Pages 
tcResources.TabPages[TEXT_TAB].Text = ResUtilConsts.rm.GetString("TEXT"); 
tcResources.TabPages[GRAPHICS_TAB].Text = 

ResUtilConsts.rm.GetString("PICTURES"); 
tcResources.TabPages[FINAL_TAB].Text = ResUtilConsts.rm.GetString("FINAL"); 

//Form Controls 
cmdQuit.Text = ResUtilConsts.rm.GetString("QUIT"); 
mnuFile.Text = ResUtilConsts.rm.GetString("FILE"); 
mnuOpen.Text = ResUtilConsts.rm.GetString("OPEN"); 
mnuAppend. Text = ResUtilConsts.rm.GetString("APPEND"); 
mnuExit.Text = ResUtilConsts.rm.GetString("EXIT"); 



} 

//do picture tab 
lblPicKey. Text = ResUtilConsts. rm.GetString("KEV"); 
lblPictures.Text = ResUtilConsts.rm.GetString("PICTURES"); 

cmdAddPic. Text = ResUtilConsts.rm.GetString("ADD"); 
cmdDelPic. Text = ResUtilConsts. rm.GetString( "REMOVE"); 

//Do Final tab 

fraBasics.Text = ResUtilConsts.rm.GetString("BASICS"); 

lblinputFname. Text = ResUtilConsts. rm. GetString( "INPUT FNAME"); 

lblStrCnt. Text = ResUtilConsts. rm. Get String( "STRING COUNT"); 

lblPicCnt.Text = ResUtilConsts.rm.GetString("PIC COUNT"); 

lblCulture.Text = ResUtilConsts.rm.GetString("CULTURE"); 
fraOutput. Text = ResUtilConsts. rm. Get String( "OUTPUT"); 

lblBaseName.Text = ResUtilConsts.rm.GetString("BASE NAME"); 

cmdSave. Text = ResUtilConsts.rm.GetString("SAVE"); 

chkCreateText.Text = ResUtilConsts.rm.GetString("CREATE TEXT"); 

chkCreateXML.Text = ResUtilConsts.rm.GetString("CREATE XML"); 

chkCreateBin.Text = ResUtilConsts.rm.GetString("CREATE BIN"); 

this.Icon = (Icon)ResUtilConsts.rm.GetObject("Flag"); 

The last thing to do before you test this localization is to change the hard
coded error strings in the following methods in the ResUtil code. 

• GetData 

• SaveData 

• FillFromBinaryFile 

• SaveToBinaryFile 

• FillFromTextFile 

• SaveToTextFile 

• FillFromXMLFile 

• SaveToXMLFile 

Let's Localize 

273 



ChapterB 

274 

Listing 8-8 shows how this should be done. 

Listing 8-8. Loading error text from the resource file 

VB 

C# 

If ResData Is Nothing Then 
Throw New InvalidTable(rm.GetString("DATA ERR")) 
Exit Sub 

End If 

if ( ResData == null ) 
{ 

} 

throw new InvalidTable(ResUtilConsts.rm.GetString("DATA ERR")); 
return; 

Testing the Program 

Here you are at the end of your localization project. It is time to test the code and 

see how it works. Before you do that, let's recap how this will work. 
A resource manager is instantiated when the program starts. The resource 

file obtained by the resource manager is based on the current culture set by the 
machine. This allows the program to auto-sense the culture and display the cor
rect strings and graphics. 

To test this program press F5 and you should see all the English strings 
and the U.S. flag icon. Now add the following code to the form load event in 
both projects. 

VB 

C# 

Thread.CurrentThread.CurrentCulture = New Culturelnfo("de-DE") 
Thread.CurrentThread.CurrentUICulture = New Culturelnfo("de-DE") 

Thread.CurrentThread.CurrentCulture = new Culturelnfo("de-DE"); 
Thread.CurrentThread.CurrentUICulture = new Cultureinfo("de-DE"); 



Run the program again and you should see the same screen as mine, shown 
in Figure 8-9. 

Bm.aDB ................ ~==========~~.~~ 
~ 

Figure 8-9. German language screen 

Summary 

What you did in this chapter was to use the resource editor you made in 
Chapter 7 to generate a resource file to help in localizing itself! Pretty neat, huh? 

You started out with a program that was designed without the intention of 
having it localized, with the exception of longer than necessary fields. You then 
needed to make this program work in Germany. Here is what you did to make 
it work. 

• You added icon capability to the program. This lets the user know it is 
intended for his or her country. 

• You added the ResEditor program to generate text strings and an icon for 
itself. You made one resource file for U.S. use, and one for Germany. 

• You changed the code to eliminate all hard-coded strings. All string assign
ments were put in one method that can be easily called. 

• You made satellite resource files and installed them in the proper directories. 

Let's Localize 

275 



ChapterS 

276 

• You added a resource manager to get strings from the proper resource file 
depending on the culture that was set. 

After all this, you tested the code by changing the default culture. All dates, 
times, text, and graphics for the program changed according to the culture set. 

This is a rather lightweight program to localize but all the concepts discussed 
in Chapters 4, 5, and 6 are demonstrated here. The program is not quite as robust 
as it could be, but I toned down the error handling for clarity's sake. If you find 
the program useful and want to extend it, feel free. 

Next I take you through a small ASP.NET program that includes localization 
from the start. 



CHAPTER 9 

Localization • 1n 
ASP.NET 

THIS CHAPTER IS WHERE YOU MAKE a foray into the next Stage of .NET localization
the Internet. 

One of the major changes and advancements that .NET offers web program
mers is a better and more programmer-friendly ASP development model. No 
longer are your ASP pages a jumble of HTML text and VB code. The HTML text is 
now on one page and the code is behind the scenes in its own class file. 

Traditionally ASP pages were written using VB script. ASP.NET allows you to 
write ASP code in any of the .NET languages. With this in mind, I provide the code 
in both C# and VB .NET for this final example. This example is also designed from 
the start with localization. If you remember, the resource editor in Chapter 7 was 
intentionally written with no localization in mind. Chapter 8 was where you went 
back and localized the resource editor program. 

NOTE If you are using the source from the Apress web site, you 
need to install it in the InetPubs directory on your C: drive. Also 
the solution files need to be installed in a different directory 
than the InetPubs directory. They need to be installed in your 
. \mydocuments\visual studio projects directory. 

The Coldest Hotel Application 

The example I show in this chapter is a simple ASP page that takes a customer 
through booking a hotel room. When I say simple, I mean simple. The purpose of 
this ASP page is not to teach you ASP programming but to show you what needs to 
be done to localize a web application. There are some differences and pitfalls 
to localizing a web application than to localizing a Windows Forms application. 

Start out by opening a new VB or C# ASP. NET web application. The default 
name is WebApplicationl. Rename the project "ColdHotel." Press OK to accept 
this .. NET grinds away and makes a web application template for you. 

277 



Chapter9 

278 

The ASP page will be called "WebForml.aspx." In the Solution window, 
rename this form "ColdHotel.aspx." Your Solution window should look like mine 
(Figure 9-1). 

Solution 'ColdHotel' ( 1 projec 
B··· ColdHotel 

References 

~ Assembly Info. vb 
~ ColdHotel. aspx 

... ColdHotel. vsdisco 

~ Global. a sax 
~ Styles. css 
= Web. config 

Figure 9-1. Solution window showing all files for the ColdHotel project 

The form you are presented with is kind of blah. I changed the background 
color of my form to silver. This makes it stand out a little bit when debugging starts. 

The next thing to do is to start adding controls to the form. There are two 
basic ways to do this. One is to use HTML controls and the other is to use web 
controls. I chose web controls because they are server-side controls. This means 
that the server, not the client, decides how the controls are rendered. It also 



Localization in ASP.NET 

allows you to manage the controls programmatically just like the normal 
Windows Forms. 

The controls I chose for this example demonstrate most things you change 
during localization. I show text, numbers, dates, times, and a calendar. 

Open your Web Forms toolbox and put the following controls on your form. 

• Label. Name it lblChooseLang. 

• DropDownList. Name it cmbChooseLang. Make sure the AutoPostback 
property is set to 'frue. 

• Label. Name it lblWelcome. Make the Font property X-Large. 

• Label. Name it lbllnstructions. Make the Font property Medium. 

• Calendar. Name it calReservation. 

• Label. Name it lblTodaysDate. 

• Label. Name it lblCurrentDate. Change the BorderStyle property to Inset. 

• Label. Name it lblConfirm. 

• Label. Name it lblArriveDate. Change the BorderStyle property to Inset. 

• Label. Name it lblHitText. 

• Label. Name it lblHitCount. Change the BorderStyle property to Inset. 

That's it for controls. Make all the text controls about twice as long as the text 
that fits in them. Place them on the screen in a similar fashion to what I show in 
Figure 9-2. 

279 



Chapter9 

280 

,s;hoose Language 
JUnbound 3 
:D 

Welcome to the Arctic Hotel 

fnstructions 

T W 

2 

9 10 

16 17 

23 Z4 

30 31 

Figure 9-2. ASP web page showing all controls 

The calendar control I use will look different than yours by default. You can 
change the appearance by right-clicking the control and choosing the 
AutoFormat property. There are seven schemes you can choose from. 

Notice that all the controls have a small green arrow at the top left of the con
trol. This lets you know that the control is a server control. The other way to tell is 
to right-click the form and choose View HTML Source. The definition of each 
control says: runat="server." 

You can also go back and forth between the HTML view and the design view 
using the navigation buttons at the bottom left of the screen. 

Writing the Code 

Open the code pane to this form you just made. If you are in VB make sure that 
the first line of code is the Option Strict On statement. This disallows any implicit 
type conversions. 

Next add the necessary lines to include the following namespaces. 



Localization inASP.NET 

• System.Globalization 

• System.Resources 

• System. Threading 

The definition of the class, along with the control declarations, are shown in 

Listing 9-1. 

Listing 9-1. Class and control definitions 

VB 

Option Strict On 

Imports System 
Imports System.Globalization 
Imports System.Resources 
Imports System.Threading 

Public Class ColdHotel 
Inherits System.Web.UI.Page 

(# 

Protected WithEvents lblCurrentDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblWelcome As System.Web.UI.WebControls.Label 
Protected WithEvents lblinstructions As System.Web.UI.WebControls.Label 
Protected WithEvents lblTodaysDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblArriveDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblConfirm As System.Web.UI.WebControls.Label 
Protected WithEvents calReservation As System.Web.UI.WebControls.Calendar 
Protected WithEvents lblHitText As System.Web.UI.WebControls.Label 
Protected WithEvents lblHitCount As System.Web.UI.WebControls.Label 
Protected WithEvents cmbChooseLang As System.Web.UI.WebControls.DropDownList 

using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 

281 



Chapter9 

282 

using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
using System.Globalization; 
using System.Resources; 
using System.Threading; 

namespace ColdHotel_c 
{ 

Ill <summary> 
Ill Summary description for WebForml. 
Ill </summary> 
public class ColdHotel : System.Web.UI.Page 
{ 

protected System.Web.UI.WebControls.Label lblChooselang; 
protected System.Web.UI.WebControls.DropDownlist cmbChooselang; 
protected System.Web.UI.WebControls.Label lblWelcome; 
protected System.Web.UI.WebControls.Label lbllnstructions; 
protected System.Web.UI.WebControls.Calendar calReservations; 
protected System.Web.UI.WebControls.Label lblTodaysDate; 
protected System.Web.UI.WebControls.Label lblCurrentDate; 
protected System.Web.UI.WebControls.Label lblArriveDate; 
protected System.Web.UI.WebControls.Label lblHitCount; 
protected System.Web.UI.WebControls.Label lblHitText; 
protected System.Web.UI.WebControls.Label lblConfirm; 

The next thing to do is add a couple of class variables and an Enum. The 
Enum is a list oflanguages that can be used in this program. The variable HitCnt 
is necessary to show a large number whose group and decimal separators change 
according to culture. 

VB 

Add this code just below the definitions of the controls. 

Private HitCnt As Long = 5442367 
Private Enum Languages_tag 

English 
German 
Spanish 
French 

End Enum 
Private rm As ResourceManager 



Localization in ASP. NET 

(# 

private long HitCnt = 5442367; 
private enum Languages_tag 
{ 

}; 

English, 
German, 
Spanish, 
French 

private ResourceManager rm; 

Notice that I added a resource manager to get the text resources from the 

resource files. You use the resource manager in two different ways in this exam

ple. One way is with loose resources and the other way is the traditional satellite 

resource file method. Although both ways are valid, I will show you why one way 

is much better than the other when it comes to ASP pages. 
For demonstration's sake there is one set of text strings that I am not localiz

ing. Those strings make up the set of languages supported by the web page. 

Normally in a program like this you would have the set of languages appear in the 

language that the user's computer is set to. 
You need to make a method to fill the drop-down list with the languages that 

this program supports. Listing 9-2 shows this method. 

Listing 9-2. Method to load all the language strings in the drop-down list box 

VB 

Private Sub Filllanguages() 

If cmbChooselang.Items.Count = 0 Then 
cmbChooselang.Items.Clear() 
cmbChooselang.Items.Add("English") 
cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

CStr(Languages_tag.English) 

cmbChooseLang.Items.Add("German") 

cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 
CStr(Languages_tag.German) 

cmbChooselang. Items. Add ("Spanish") 

cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

CStr(Languages_tag.Spanish) 
cmbChooselang.Items.Add("French") 
cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

CStr(Languages_tag.French) 

283 



Chapter9 

284 

C# 

End If 

LanguageWasSelected(cmbChooselang, Nothing) 

End Sub 

private void Filllanguages() 
{ 

} 

if ( cmbChooselang.Items.Count == o ) 
{ 

} 

cmbChooselang.Items.Clear(); 
cmbChooselang.Items.Add("English"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.English).ToString(); 
cmbChooselang.Items.Add("German"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.German).ToString(); 
cmbChooselang.Items.Add("Spanish"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.Spanish).ToString(); 
cmbChooseLang.Items.Add("French"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.French).ToString(); 

LanguageWasSelected(cmbChooselang, null); 

I use the Value property of each choice to hold the value of the enum that 
corresponds to the language. The Value property is a string, so I cast the enum 
to a string before I store it. The reason I store the enum value of the language is to 
make the language chosen by the user independent of the index chosen in the 
drop-down box. I can then change the order of the languages and any code that 
I add without affecting the user's choice. Also, since I compare what the user 
chose to a number, I can localize the strings in this drop-down list without 
changing the code that determines what the user picked. 



Localization in ASP. NET 

Handling the Events 

Before I take you through the resource manager code I think that it is best that 

the event-handling code be generated first. 
Two events are of interest. The first is when the user chooses a new language, 

and the other is when the user picks a date from the calendar. 

The drop-down list contains several languages the user can choose. If the 

user chooses a new language it would be nice if the text, dates, number format, 

and calendar change accordingly. For this to happen you need to post an event to 

the server. The event that needs to be handled is the SelectedlndexChanged 

event. The VB code for this is relatively easy and is shown in Listing 9-3. 

Listing 9-3. VB code to handle the cmbChooseLang.SelectedlndexChanged event 

Private Sub LanguageWasSelected(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) _ 
Handles cmbChooseLang.SelectedlndexChanged 

Select Case cmbChooseLang.Items(cmbChooseLang.Selectedindex).Value 

Case CStr(Languages_tag.French) 
Thread.CurrentThread.CurrentCulture = New Culturelnfo("fr-FR") 

Case CStr(Languages_tag.German) 
Thread.CurrentThread.CurrentCulture = New Culturelnfo("de-DE") 

Case CStr(Languages_tag.Spanish) 
Thread.CurrentThread.CurrentCulture = New Culturelnfo("es-ES") 

Case Else 
Thread .CurrentThread. CurrentCulture New Cul tureinfo( "en-US") 

End Select 

Thread.CurrentThread.CurrentUICulture Thread.CurrentThread.CurrentCulture 

End Sub 

This is fairly simple code. It takes the Value property of the current selection 

and compares it to the enum list. If the choice is in the list, then I change the cur

rent thread to the correct culture. The last thing I do is set the CurrentUICulture 

to the CurrentCulture. This is good practice as there are very few times when you 

want them to be different. 
Notice that I explicitly cast the enum value to a string before comparing it to 

the Value property of the drop-down list. This is because the Value property is 
a string. 

285 



Chapter9 

286 

The C# code for the same event handler is almost identical. However, as you 
saw with the ResourceEditor project, C# requires that you explicitly declare a del
egate for each event. 

Open the Web Form Designer Generated Code region of the C# project. Add 
the following line of code to the InitializeComponent method. 

this.cmbChooselang.Selected!ndexChanged += 
new System.EventHandler(this.LanguageWasSelected); 

Now add the method in Listing 9-4 to your C# project 

Listing 9-4. C# code to handle the cmbChooseLang.SelectedlndexChanged event 

private void LanguageWasSelected(object sender, EventArgs e) 
{ 

} 

switch (Convert.Toint32(cmbChooselang.Items 
[cmbChooselang.Selectedindex].Value)) 

{ 

} 

case (int)Languages_tag.French: 
Thread.CurrentThread.CurrentCulture = new Culture!nfo("fr-FR"); 
break; 

case (int)Languages_tag.German: 
Thread.CurrentThread.CurrentCulture = new Culture!nfo("de-DE"); 
break; 

case (int)Languages_tag.Spanish: 
Thread.CurrentThread.CurrentCulture = new Culture!nfo("es-ES"); 
break; 

default: 
Thread.CurrentThread.CurrentCulture = new Culture!nfo("en-US"); 
break; 

Thread.CurrentThread.CurrentUICulture=Thread.CurrentThread.CurrentCulture; 

If you look at the code, you see that I am casting the Value property from 
a string to an integer in the switch statement. Each of the case statements casts 
the enum to an integer as well. Why? Well I need to compare an integer to an inte
ger. This is not VB 6 with evil typecasting going on behind the scenes converting 
one type to another. C# forces you to know what you want to do. 

You need to take a couple of steps before you can test the code for the first 
time. They include adding code to the PageLoad method to call various functions 
and stubbing out the InitStrings method. Listing 9-5 shows almost the complete 



Localization in ASP.NET 

code you need to run this example. Note that the InitStrings method is virtually 
empty. Mter you test this code, I take you through what you need in the 
InitStrings method. 

Listing 9-5. Complete code for the ASP example without the complete 
InitStrings method 

VB Code with Web Form Designer Generated Code Expanded 

Option Strict On 

Imports System 
Imports System.Globalization 
Imports System.Resources 
Imports System.Threading 

Public Class ColdHotel 
Inherits System.Web.UI.Page 
Protected WithEvents lblCurrentDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblWelcome As System.Web.UI.WebControls.Label 
Protected WithEvents lblinstructions As System.Web.UI.WebControls.Label 
Protected WithEvents lblTodaysDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblArriveDate As System.Web.UI.WebControls.Label 
Protected WithEvents lblConfirm As System.Web.UI.WebControls.Label 
Protected WithEvents calReservation As System.Web.UI.WebControls.Calendar 
Protected WithEvents lblHitText As System.Web.UI.WebControls.Label 
Protected WithEvents lblHitCount As System.Web.UI.WebControls.Label 
Protected WithEvents cmbChooselang As System.Web.UI.WebControls.DropDownlist 

#Region " Web Form Designer Generated Code " 

'This call is required by the Web Form Designer. 
<System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent() 

End Sub 

Private Sub Page_Init(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) Handles MyBase.Init 

'CODEGEN: This method call is required by the Web Form Designer 
'Do not modify it using the code editor. 
InitializeComponent() 

End Sub 

287 



Chapter9 

288 

#End Region 

Private HitCnt As Long = 5442367 
Private Enum Languages_tag 

English 
German 
Spanish 
French 

End Enum 
Private rm As ResourceManager 

Private Sub Page_Load(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) Handles MyBase.Load 

Filllanguages () 
InitStrings() 
lblCurrentDate. Text = Today(). ToString("D") 

End Sub 

Private Sub InitStrings() 

lblHitCount.Text = HitCnt.ToString("n") 
If lblArriveDate.Text <> "" Then 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D") 
End If 

End Sub 

Private Sub Filllanguages() 

If cmbChooselang.Items.Count = 0 Then 
cmbChooseLang.Items.Clear() 
cmbChooselang.Items.Add("English") 
cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

CStr(Languages_tag.English) 
cmbChooselang.Items.Add("German") 
cmbChooseLang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

C5tr(Languages_tag.German) 
cmbChooselang.Items.Add("Spanish") 
cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value = _ 

CStr(Languages_tag.Spanish) 
cmbChooselang.Items.Add("French") 
cmbChooselang.Items.Item(cmbChooselang.Items.Count - l).Value 



Localization in ASP.NET 

End If 
LanguageWasSelected(cmbChooselang, Nothing) 

End Sub 

CStr(Languages_tag.French) 

Private Sub Reservation(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) _ 

Handles calReservation.SelectionChanged 

lblArriveDate.Text calReservation.SelectedDate.ToString("D") 

End Sub 

Private Sub LanguageWasSelected(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) _ 
Handles cmbChooselang.SelectedindexChanged 

Select Case cmbChooselang.Items(cmbChooselang.Selectedindex).Value 

Case CStr(Languages_tag.French) 
Thread .CurrentThread. CurrentCul ture New Cultureinfo("fr-FR") 

Case CStr(Languages_tag.German) 
Thread. CurrentThread. CurrentCul ture New Cul tureinfo( "de-DE") 

Case CStr(Languages_tag.Spanish) 
Thread. CurrentThread. CurrentCulture New Cul tureinfo( "es-ES") 

Case Else 
Thread.CurrentThread.CurrentCulture New Cultureinfo("en-US") 

End Select 

Thread.CurrentThread.CurrentUICulture Thread.CurrentThread.CurrentCulture 

End Sub 

End Class 

(# 

using System; 
using System.Collections; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Web; 

289 



Chapter9 

290 

using System.Web.SessionState; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Web.UI.HtmlControls; 
using System.Globalization; 
using System.Resources; 
using System.Threading; 

namespace ColdHotel_c 
{ 

Ill <summary> 
Ill Summary description for WebForml. 
Ill </summary> 
public class ColdHotel : System.Web.UI.Page 
{ 

protected System.Web.UI.WebControls.Label lblChooselang; 
protected System.Web.UI.WebControls.DropDownlist cmbChooselang; 
protected System.Web.UI.WebControls.Label lblWelcome; 
protected System.Web.UI.WebControls.Label lbl!nstructions; 
protected System.Web.UI.WebControls.Label lblTodaysDate; 
protected System.Web.UI.WebControls.Label lblCurrentDate; 
protected System.Web.UI.WebControls.Label lblArriveDate; 
protected System.Web.UI.WebControls.Label lblHitCount; 
protected System.Web.UI.WebControls.Label lblHitText; 

protected System.Web.UI.WebControls.Label lblConfirm; 

private long HitCnt = 5442367; 
protected System.Web.UI.WebControls.Calendar calReservation; 

private enum Languages_tag 
{ 

}; 

English, 
German, 
Spanish, 
French 

private ResourceManager rm; 

public ColdHotel() 
{ 

Page.Init += new System.EventHandler(Page_Init); 
} 



private void Page_Load(object sender, System.EventArgs e) 
{ 

} 

Filllanguages(); 
InitStrings(); 
lblCurrentDate. Text Date Time. Today. ToString("D"); 

private void Page_Init(object sender, EventArgs e) 
{ 

} 

II 

II CODEGEN: This call is required by the ASP.NET Web Form Designer. 
II 

InitializeComponent(); 

#region Web Form Designer generated code 
Ill <summary> 
Ill Required method for Designer support - do not modify 
Ill the contents of this method with the code editor. 
Ill </summary> 
private void InitializeComponent() 
{ 

} 

this.cmbChooselang.SelectedindexChanged += 

new System.EventHandler(this.LanguageWasSelected); 
this.calReservation.SelectionChanged += 

new System.EventHandler(this.Reservation); 
this.Load += new System.EventHandler(this.Page_Load); 

#endregion 

private void InitStrings() 
{ 

} 

lblHitCount. Text = HitCnt. ToString("n"); 
if (lblArriveDate.Text != "" ) 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D"); 

private void Filllanguages() 
{ 

if ( cmbChooselang.Items.Count == o ) 
{ 

Localization in ASRNET 

291 



Chapter9 

292 

} 

} 

cmbChooseLang.Items.Clear(); 
cmbChooselang.Items.Add("English"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.English).ToString(); 
cmbChooselang.Items.Add("German"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.German).ToString(); 
cmbChooselang.Items.Add("Spanish"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.Spanish).ToString(); 
cmbChooselang.Items.Add("French"); 
cmbChooselang.Items[cmbChooselang.Items.Count - l].Value = 

((int)Languages_tag.French).ToString(); 

LanguageWasSelected(cmbChooselang, null); 

private void Reservation(object sender, EventArgs e) 
{ 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D"); 
} 

private void LanguageWasSelected(object sender, EventArgs e) 

{ 

switch (Convert.Toint32(cmbChooselang.Items 
[cmbChooseLang.Selectedindex].Value)) 

{ 

case (int)Languages_tag.French: 
Thread.CurrentThread.CurrentCulture new Culture!nfo("fr-FR"); 
break; 

case (int)Languages_tag.German: 
Thread.CurrentThread.CurrentCulture new Culturelnfo("de-DE"); 
break; 



Localization in ASP.NET 

} 

case (int)Languages_tag.Spanish: 
Thread.CurrentThread.CurrentCulture = new Cultureinfo("es-ES"); 
break; 

default: 
Thread.CurrentThread.CurrentCulture = new Cultureinfo("en-US"); 
break; 

Thread.CurrentThread.CurrentUICulture = 
Thread.CurrentThread.CurrentCulture; 

} 

} 

} 

Now it is time to test the example. 
There are a couple of ways to test this code. You can test it in a browser or you 

can "Build and Browse," which tests the code in the IDE. 
The Build and Browse method is invoked one of two ways. One way is to 

right-click the form definition in the Solution window and choose "Build 
and Browse" from the drop-down menu. The other way is to choose "Build and 
Browse" from the File menu. 

I prefer the browser method. If it works here you know it will work on some
one else's browser. The procedure for testing in a browser is the same as for 
a Windows Forms project. Press F5. 

Have you pressed F5 yet? If not, do it. Your screen should look like mine, as 
shown in Figure 9-3. Do not worry about the text right now. You reconcile your 
programs later when I explain the InitStrings function. Be sure to click a date in 
the calendar. If you have loaded the code from the web site instead of typing it, 
you may get an error indicating that you should set a start page first. If so, right
click the page in the Solution Explorer and choose "Set as Start Page." 

293 



Chapter9 

294 

Choose Language 
!English :.:J 

Welcome to the Arctic Hotel 

Instructions 

s October ZOO I 2. 

H w T 
Todays date 

;19. 1 l ~ ~ ~ fl 
~arurday, October ?:1. 2001 

z § 2 ., ll ll ll 

~ u ll lA ll lQ 
Reservallon Date 

u ll ll ~ ll ~ ll ffledllesday, October 10, 2001 
l§ u ~ ll l 

;i ~ i. § 

&Count 
,442,367.00 

Figure 9-3. First test of ColdHotel project in a browser 

OK. Now everything is in the default culture, which in my case is American 
English. You see today's date, the calendar in English, and the hit count number 
displayed as it would be in the United States. 

The test comes when you choose another language. Choose German for 
example. Your browser should now change to look like mine (Figure 9-4). 



Localization in ASP. NET 

Choose Langu~ 
!German :::J 

Wetcome to the Arctic Hotel 

Instructions 

s. Oktobrr lOU I 2. 

" 0 " 0 

~ l.i 

~ 1 1 ~ § z 
i ll ll ll 11 

Reservallon Dale 
ll l.Z 11! ll Zll ll JM;ttwoch, I 0 Oktober 200 I 

ll u Z! ~ Z6_ ll Zl 

ll 1!1 1l il :l 

H1r Count 

~.442.367,00 

Figure 9-4. ColdHotel program in German 

If your code worked, you should see a German calendar. You will also notice 
that the dates are in German and the hit count number is displayed as it would 
be in Germany. 

This is pretty cool I think. All I needed to do in the code was to change the 
current threads culture to German and use the ToString method to display 
the values. 

The To String method is culturally aware. The Calendar control provided by 
.NET is also culturally aware. 

Play around with other languages. Scroll through the calendar and choose 
other dates. It should all work without any problems. 

Displaying the Strings 

Now it is time to fill in the InitStrings method. I cover this last because there are 
a couple of ways to get strings in a web form. There are some caveats. 

295 



Chapter9 

296 

Generating Strings with the Resource Editor 

First you need a resource file. Open the Resource Editor you built in Chapters 7 
and 8. Enter the following key/text pairs. 

• Key= HIT COUNT. Text= Hit Count. 

• Key= INSTRUCTIONS. Text= Using the calendar, please choose a date that 
you would like to stay with us. 

• Key =TO DAYS DATE. Text= To day's date. 

• Key =RESERVATION DATE. Text= Reservation date. 

• Key= WELCOME. Text= Welcome to the Arctic Hotel. You may stay at one 
of our various Igloos, Polar bear dens or in the Hotel itself. 

Save the file as both a text resource file and a binary resource file. The base 
name for the file should be "ColdHotel." 

While you are here, make the German, Spanish, and French resource files as 
well. Similar to the ResourceEditor project, you do not translate the strings but 
just denote that they belong to a particular language. For German, prefix each 
text string with the character (G). For Spanish use (S). For French use (F). 

The Spanish resource files should have the basename/ culturename of 
"ColdHotel.es-ES." The German resource files should have the basename/ 
culturename of"ColdHotel.de-DE." The French resource files should have the 
basename/ culturename of "ColdHotel.fr-FR." 

You need to put these files somewhere your ColdHotel program can access 
them. But where? Do you know where .NET put your project? 

When .NET creates a web project it puts it under a directory called 
Inetpub \ wwwroot. This directory is usually located on your C: drive. Figure 9-5 
shows my directory structure for both the VB and C# examples. 



r;J ··aJ Local Disk ( C:) 

$ .. ComponentOne 

$ .. Documents and Settings 

$ .. Downloads 

t;~ .. Inetpub 

_vti_pvt 

_vti_script 

_vti_txt 

aspnet_client 

ColdHotel 

$ ·· _vti_cnf 

$ .. _vti_pvt 

$ .. _ vti_script 

$ .. _vti_txt 

; !±J.. bin 

EJ.. ColdHotel-c 

$ .. _vti _cnf 

l±l· _vti_pvt 

$ .. _vti _script 
!±J .. _vti _txt 
!±J .. bin 

; 

!±J .. images 

Figure 9-5. Directory structure for web projects 

Localization in ASP. NET 

297 



Chapter9 

298 

You get resources using the "loose resources" method to start. The default 
directory for loose resource files in a web project is C:\WINNT\System32. Put 
your ColdHotel.resources file here. 

A loose resources approach uses the GetFileBasedResourceManager method. 
Listing 9-6 shows the complete InitStrings method. This includes retrieving the 
strings and displaying them. 

Listing 9-6. IntiStrings method using loose resources 

VB 

C# 

Private Sub InitStrings() 

'Loose resources with default resource set 

rm = ResourceManager.CreateFileBasedResourceManager("ColdHotel", . , Nothing) 

lblWelcome. Text = rm.GetString("WELCOME") 

lbllnstructions. Text = rm. Get String ("INSTRUCTIONS") 

lblHitText. Text = rm.GetString("HIT COUNT") 

lblTodaysDate.Text = rm.GetString("TODAYS DATE") 

lblConfirm.Text = rm.GetString("RESERVATION DATE") 

lblHitCount.Text = HitCnt.ToString("n") 

If lblArriveDate.Text <>""Then 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D") 

End If 

End Sub 

private void InitStrings() 

{ 

//Loose resources with default resource set 

rm = ResourceManager.CreateFileBasedResourceManager("ColdHotel",".",null); 

lblWelcome. Text = rm.GetString("WELCOME"); 

lbllnstructions. Text = rm.GetString( "INSTRUCTIONS"); 

lblHitText. Text = rm.GetString("HIT COUNT"); 

lblTodaysDate.Text = rm.GetString("TODAYS DATE"); 

lblConfirm. Text = rm.GetString("RESERVATION DATE"); 



Localization in ASP.NET 

} 

lblHitCount.Text = HitCnt.ToString("n"); 
if (lblArriveDate.Text != "" ) 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D"); 

Now that you have this method in your code, test it by pressing F5. You 
should see the English strings appear no matter which language you choose. For 
now, this is OK. 

End the debugging session. Now what is the procedure for editing the 
resource file? Well you go back into the ResourceEditor, make your changes, and 
save the file. You then save the file to the C:\ WlNNT\System32 directory so the 
web program can use it. 

Try this experiment. Copy the "ColdHotel.resources" file to the 
C: \ WlNNT\System32 directory. What happens? You should get an error saying 
that this file is locked and is being used by another application. You could kill all 
programs on your machine and you still would not be able to copy over this file. 
The only recourse is to reboot ... or is it? 

ASP.NET locks resource files that are used in a ResourceSet. The 
GetFileBasedResourceManager method uses the default ResourceSet provided 
by.NET. 

There is a way around this. You can release the resources by using the 
ReleaseAllResources method. Put the following line of code as the last line of your 
InitStrings method. 

VB 

rm.ReleaseAllResources() 

C# 

rm.ReleaseAllResources(); 

Now run your program and exit. Try copying the "ColdHotel.resources" to the 
C:\WlNNT\System32 directory. The process will be successful. 

This method is OK but it has a major drawback. Can you guess what it is? The 
fact that I had to release the resources means that the file was locked during the 
time I was using it. What happens if you have a large web application that opens 
a resource set at the start but does not release the resource file until the program 
stops? You would never be able to update the resource file while the program is 
working. If you had to shut your web server down every time you wanted to 
update the resource file you would make some surfers pretty mad. This method 
of resource file utilization effectively breaks XCOPY deployment. 

299 



Chapter9 

300 

So what is the answer? Well, the best way is to use satellite resource files. 

These files are put in memory when accessed because they are DLLs. You are 

then able to copy over the DLL with a new version while it is in use. The next time 

you load the DLL in your web program, you get all the newest resources. No need 

to shut down the program. 

Using the Fallback Method 

It's time to change the InitStrings method to work with satellite resource files. 

First, you need to turn the .resources files into DLLs. Locate your bin directory 

within your project directory tree. Refer to Figure 9-5 to see where mine is. Yours 

should be similar. 
Make four subdirectories off this bin directory. They are listed here. 

• en-US: Put the ColdHotel.resources file in here. 

• es-ES: Put the ColdHotel.es-ES.resources file in here. 

• fr-FR: Put the ColdHotel.fr-FR.resources file in here. 

• de-DE: Put the ColdHotel.de-DE.resources file in here. 

These directories are where your DLL resource files will be located. It is best 

to make a build. bat file and put it in each of these directories. The contents of this 

batch file is slightly different for each resource file. Put this line of code in each of 

the five batch files respectively. Make sure that you type this as one line of code; 

not two. 

en-US Build.bat File Contents 

al /out:ColdHotel.Resources.Dll /v:1.o.o.o /c:en-US 

/embed:ColdHotel.en-US.resources,ColdHotel.en-US.resources,Private 

es-ES Build.bat File Contents 

al /out:ColdHotel.Resources.Dll /v:1.0.0.0 /c:es-ES 

/embed:ColdHotel.es-ES.resources,ColdHotel.es-ES.resources,Private 



Localization in ASRNET 

en-US Build.bat File Contents 

al /out:ColdHotel.Resources.Dll /v:l.O.o.o /c:en-US 
/embed:ColdHotel.en-US.resources,ColdHotel.en-US.resources,Private 

fr-FR Build.bat File Contents 

al /out:ColdHotel.Resources.Dll /v:l.O.O.O /c:fr-FR 
/embed:ColdHotel.fr-FR.resources,ColdHotel.fr-FR.resources,Private 

de-DE Build.bat File Contents 

al /out:ColdHotel.Resources.Dll /v:l.O.O.O /c:de-DE 
/embed:ColdHotel.de-DE.resources,ColdHotel.de-DE.resources,Private 

You should now have a .resources file and a build. bat file in each of 
these directories. 

To run these batch files you need to run the corvars.bat file first. This is best 
done in DOS so you can run the batch file immediately afterward. 

Open a DOS box. Run the corvars.bat file. Go to each of these directories and 
run the build. bat file in each. You should now have three files in each of these 

directories. They are a build. bat file, .resources file, and ColdHotel.Resources.dll. 

Making the Final Change to the InitStrings Method 

Now that you have the correct directories set up with the correct files, it is time to 
change the InitStrings method to take advantage of these satellite resource files. 

First, get rid of the private resource manager. There is no need to scope 
the resource manager for the whole class. You will be using one internal to the 
InitStrings method. Now change the InitStrings method to look like mine, as in 

Listing 9-7. 

Listing 9-7. InitStrings method using satellite resource files 

VB 

Private Sub InitStrings() 

'The best way is to use satellite assemblies 
Dim rm As ResourceManager = New ResourceManager("ColdHotel", _ 

GetType(ColdHotel).Module.Assembly) 

301 



Chapter9 

302 

(# 

lblWelcome.Text = rm.GetString("WELCOME") 

lblinstructions. Text = rm.GetString( "INSTRUCTIONS") 

lblHitText.Text = rm.GetString("HIT COUNT") 

lblTodaysDate.Text = rm.GetString("TODAYS DATE") 

lblConfirm.Text = rm.GetString("RESERVATION DATE") 

lblHitCount.Text = HitCnt.ToString("n") 

If lblArriveDate.Text <> "" Then 

lblArri veDate. Text = calReservation. SelectedDate. ToString ( "D") 

End If 

End Sub 

private void InitStrings() 

{ 

} 

//The best way is to use satellite assemblies 

ResourceManager rm = new ResourceManager( "ColdHotel", 

typeof(ColdHotel).Module.Assembly); 

lblWelcome. Text = rm.GetString("WELCOME"); 

lblinstructions. Text = rm.GetString("INSTRUCTIONS"); 

lblHitText.Text = rm.GetString("HIT COUNT"); 

lblTodaysDate.Text = rm.GetString("TODAYS DATE"); 

lblConfirm.Text = rm.GetString("RESERVATION DATE"); 

lblHitCount.Text = HitCnt.ToString("n"); 

if (lblArriveDate.Text != "" ) 

lblArriveDate.Text = calReservation.SelectedDate.ToString("D"); 

Now press FS to test the program. Change languages and you should see the 

correct text, numbers, dates, and calendar. 

Summary 

This is the last big example in this book. You have made a simple ASP. NET pro

gram that is localized. No doubt it can be improved tremendously. However 

teaching you web design is not really the goal. The intent is to show you how 

localization is done in ASP.NET. 
ASP is a big subject worthy of several books in its own right. I suggest you 

pick up a copy of one of the Apress ASP.NET books. 



Localization in ASP.NET 

You saw that although you could use loose resources it is not a good idea in 
ASP programming. Instead it is best to use satellite resource files. 

Here are some points to remember when localizing ASP pages: 

• Using a resource set locks the resource file. This breaks XCOPY deployment 
and prevents you from copying over a new resource file. 

• You can use ReleaseAllResources to release the resource file but it will still 
be locked while you use it. 

• It is best to use the Satellite resource file capability of .NET for localizing 
ASP programs. 

The remaining chapters are dedicated to miscellaneous aspects of .NET pro
gramming and localization design in general. 

303 



CHAPTER 10 

Versioning Resource 
Files • 1n .NET 

IN THIS CHAPTER You woK AT actions you need to do to properly deploy resource files 
for your .NET programs. 

As you peruse .NET books on VB and C# you will invariably find a general 
chapter on .NET security and versioning. This can be quite a large topic. I look 
into security and versioning with an eye toward the interaction between resource 
files and the programs that use them. 

What is security in .NET? Well, there are several kinds of security. 

• Role-based security: This is where access to a program or resource is based 
on the user or an identity. 

• Code-based security: This is where access is given to a program based on 
the accessing program's identity. 

• Client -certificate-based security: This is used within the ASP. NET world. 

• Version security: This is where your program demands a particular version 
of another assembly to work with. 

• No security: Anything goes and anyone can access your program. 

Version security is what I deal with in this chapter. I show you the details of 
how to version a resource file and use that resource file while assuring that it was 
you who actually wrote it. 

On your trip through the versioning process there are a few stops you need to 
make along the way. There are some concepts and tools you need to fully under
stand the versioning process. 

305 



Chapter 10 

306 

Implicit Security 

There is another kind of security in .NET that you have been using throughout the 

examples in this book. You may not have realized it but by keeping your DLLs and 

programs in certain directories, you are keeping them private to your program. 

How would you implicitly make them public? You put them in the GAC. No, 

GAC is not the sound your cat sometimes makes; it is the Global Assembly Cache. 
A very loose interpretation of the GAC is to think of it like the registry. All you 

COM programmers know that the registry is where all the GUIDs and related pro

gram information is stored. The registry is where COM looks to find the location 

of a program when your COM application tries to instantiate an interface. 

That being said the registry is open to anyone with a programmer's license to 
store any information he or she wants. It is amazing to see how much, and what, 

information is stored in the registry. Some of it belongs in configuration files ... 

but I digress. 
The GAC differs from the registry in that it is only used to keep .NET DLLs. 

The GAC is actually a folder on your C: \ drive. Point your browser to 

C: \ WINNT\Assembly. 
Note that what you see in the right pane is not the usual information. 

Figure 10-1 shows my GAC as seen through Windows Explorer. 

I Flo Edt - F-.. Tool< Help 

.P BoO. • ~ • tlJ S.ard'l I 

tfoldot's 

!t ·:.J temp 

8 ~ WINNT 
,,, Cl SNtlkW>staiQ300972i 

I~ :.t adcins 
~ w AppPatd'l 
~ •...J os....oty 

..:Jcct'log ,., w ( ()t'tlO(banWI:¥d 

•...J c ...... 
·' _I twedat• 
. _I OeO.JQ 

jijl • -

Figure 10-1. The GAG as shown with Windows Explorer 

Y"<lon 

1.0.2111 .0 
2.7.0.0 
1.0.0.0 

9.1.00 
9.1.0.0 
9.1.0.0 
9.1 .0 .0 
9.1.0.0 
1.0.0 .0 
1.0.0.0 
1.0.0.0 

euitu'e Nlkr Tobo 
bOJISf7f II ciSOo3a 
b03f517fltcl50o3a 
<rn30dftS4<2'1< 
~f3430dftS4<24< 

<f3<30dfl54<24< 
if3<30dfi~C2'1< 

<IJ4JOclf I S'I<Z<c 
•IJ•30df I 54<2'1< 
413<JOclt I 54<2'1< 
if3430cffl54<21< 
1f3<30dlt54<24C 

Here you see all the global assemblies that .NET knows about. The infor

mation in the right pane shows the name, type, Culture, and Public Key Token. 

You know about the Culture (or should by now). The type refers to whether or 

not the code is pre-jitted. The version is the version of the program, and the 

Public Key Token uniquely identifies the program. 
So what is pre-jitted? The short answer is that .NET programs are compiled to 

Intermediate Language, or IL code. When the program runs, it is just-in-time 

compiled for your machine. The compiled version of code is then kept in mem

ory. Hence the name JIT compiler. Pre-jitted code means that you have used 



Versioning Resource Files in .NET 

a .NET program called ngen.exe to precompile your code to native machine code. 
The advantage of this is loading speed (no need to JIT compile). The disadvan
tage is that the code is compiled to a generic machine. It does not take advantage 
of any advanced machine properties that your computer may have. Pre-jitted 
code also is compiled for a particular platform. If the .NET CLR is ever ported 
over to another platform- say Linux- then your pre-jitted code will not work. 

How about this Public Key Token? What's that all about? Part of the answer 
lies in Microsoft's answer to DLL hell. A program that you develop in .NET can be 
given a strong name. This strong name is a unique name, part of which consists 
of a public and private key. Cryptography is out of the scope of this book but suf
fice it to say the public key is the signature of your program. The private key is 
what generated this signature. No one else can regenerate your program without 
the private key (that only you have). Most companies would store their private 
keys in a safe place so they can't be used to spoof your program. This is what 
makes your program unique. The public key allows you to access information 
that was encrypted with the corresponding private key. 

The public key token is actually a hash of the public key. Hashing allows you 
to get a signature of the public key that is embedded in the assembly. This token 
is sufficient to determine if the dependent assembly is the exact one you want. 
It is virtually impossible for two different public keys to generate the same hash 
token. The reverse is also true. It is also impossible to reverse engineer the public 
key from the hash value. One thing the public/private key system does not do is 
identify the author. It is an anonymous system. To identify an author of an 
assembly you need a sign code system, such as Authenticode, to sign the pro
gram. This subject is beyond what I want to talk about. 

By the way, did you notice that all the programs in the GAC have public keys? 
What does this tell you? It means that to be in the GAC your program must have 
a strong name. This is after all a common area for .NET programs and there must 
be a unique way to identify each one. 

Did you also notice that most of all the .NET assemblies have the same public 
key token? This should tell you that they were signed with the same public key file. 

Installing Your Program in the GAC 

Now that you know about strong names, how do you give a strong name to a pro
gram? There is a tool called sn.exe. This program generates a public/private key 
pair that you can use to sign your assembly. If you have a resource file in the 
form of a satellite DLL you may want to install it in the GAC so more than one 
program can access the resources. It is the sn.exe tool that you use to generate 
the keys that allows you to put your program there. 

It is good practice to use the same public/private key pair to sign all your files 
within the same assembly. With that in mind, suppose you were writing several 

307 



Chapter 10 

308 

modules that needed to access the resource file you put in the GAC. You finished 
your resource file but not the rest of the files. This means you probably do not 
have access to the final public/private key pair with which to sign your resource 

DLL. What to do? 
There is a method to handle this situation-delayed signing. Delayed signing 

means that the compiler inserts the public key into the assembly manifest and 
space is reserved in your assembly portable executable (PE) file for the strong 
name at final build. It is possible to delay-sign an assembly, install it in the GAC, 
and sign it properly later. 

NOTE By the way, if a program does not have a strong name 
what kind of name does it have? A weak one? No, Microsoft 
probably did not like the connotation of weak. The opposite 

of a strong name is a simple name. 

Start a small VB Windows Forms project. I named mine CHlOSNVB. Place 
two labels on the form and change the label BorderStyle to 3D so you can see 
them. Those are all the forms and controls you need for this project. My form is 

shown in Figure 10-2. 

~ "';! 

b:B!Forml ::.~. 

---~---· ···· 

Figure 10-2. Simple test form for a strong name application 



Versioning Resource Files in .NET 

Press F5 to build and run the program. Once you do this, .NET makes some 
directories and files for you. Using Windows Explorer, make a new directory under 
the bin directory called "en-US." This is the familiar culture directory. 

NOTE This program is so trivial that it does not warrant 
a mirror in C#. 

Open your NotePad editor and make a text resource file called 
CHlOSNVB.en-US.txt. Put in the following lines of code to make up the resources. 

HELLO = Hello 

PUBLIC = Public 

This is not the most comprehensive resource file but it serves the purpose. Save 
the file and turn it into a satellite resource file. Let's review the steps for this. 

1. Open a DOS box in this directory. 

2. Run the CorVars.bat file to get the paths set correctly. 

3. Type "resgen CHlOSNVB.en-US.txt" to generate the binary .resources file. 

4. Use the AL assembly generation tool to make a satellite resource file DLL. 
Type "al /out:CHlOSNVB.Resources.Dll /v:l.O.O.O /c:en-US 
I embed:CHlOSNVB.en-US.resources,CH lOSNVB.en-US.resources,private." 

You should now have three files in your en-US directory. They are: 

• CHlOSNVB.en-US.txt 

• CHlOSNVB.en-US.resources 

• CHlOSNVB.Resources.dll 

Return to your VB project (without closing the DOS box) and add code to 
have a fallback resource manager connect to the resource file and fill in the labels 
on the form. The reason I use the fallback method in this example is that it forces 
.NET to find the resource file. If you use a resource set, you would be telling .NET 

309 



Chapter 10 

310 

where to find it. This is important when you install the resource file in the GAC. 
Listing 10-1 shows the code in the form necessary to do this. 

Listing 10-1. Form code to read resource file and fill in label fields 

Option Strict On 

Imports System.Resources 
Imports System.IO 

Public Class Forml 
Inherits System.Windows.Forms.Form 

Windows Form Designer generated code 

Private Sub Forml_Load(ByVal sender As System.Object, _ 
ByVal e As System.EventArgs) Handles MyBase.Load 

Dim rm As ResourceManager = New ResourceManager 
("CHlOSNVB", Me.GetType() .Assembly) 

LabelL Text = rm.GetString("HELLO") 
Label2. Text = rm.GetString("PUBLIC") 

End Sub 
End Class 

I did not include the Windows-generated code in this listing. There is nothing 
special there as far as this example is concerned. 

Press FS and run the program. It should work and you should see a form sim
ilar to mine, as shown in Figure 10-3. 



Versioning Resource Files in .NET 

~Forml · ·' 

Public 

Figure 10-3. Working form showing text obtained from the resource file 

Now it is time to delay-sign the resource file and install it in the GAC. Once 
that is done you will make some minor code alterations and run the program 
again. The resources will then be obtained from the resource file in the GAC. 

You use two new command-line utilities here. They are sn.exe and 
gacutil.exe. The sn.exe program creates a s trong name file that contains a public/ 
private key pair. The gacutil.exe program installs and removes programs from 
theGAC. 

Go back to your DOS box in the en-US directory. Type the following com
mand making sure to use a lower case "k" for the switch: 

sn -k key.snk 

This makes a new file called key.snk. It is a binary file and cannot be read with 
NotePad. Next, type the following command: 

sn -p key.snk pubkey.snk 

What this does is extract the public key from the key.snk file and put it in a file 
called pubkey.snk. It is this file that you use to delay-sign your assembly. Now it is 
time to rebuild your satellite resource file DLL giving it a delayed strong name 
based on the public key. Type the following line at your DOS command prompt. 
Make sure that the next three lines are typed as just one line. 

311 



Chapter 10 

312 

al /out :CHlOSNVB.Resources .Dll /v :l.O.O.O /c :en-US 
/embed:CHlOSNVB.en-US.resources , CHlOSNVB.en -US.resources /delay+ 
/keyfile:pubkey . 

This is virtually the same command you used earlier to build the dll file. The 
difference is that instead of making the file private you are making it public and 
giving it a strong name. When you change your program, you will need to tell it 
where the pubkey.snk file is. Copy it to a directory that is easy to get to. I moved 
my pubkey.snk file and key.snk file to D: \ . 

There is one last thing to do before you install this file in the GAC. Because 
this file is not fully signed you need to prevent gacutil from checking its version 
before it installs it in the GAC. Otherwise the gacutil program fails. Type the fol
lowing command: 

sn - Vr chlOsnvb.resources .dll 

Make sure that the command line switch is Vr. The "V" must be capitalized. Now 
you can install this file in the GAC. Type the following command: 

gacutil -i chlOsnvb.resources.dll 

Your resource file now has a strong name and is now installed in the GAC. 
Point your Windows Explorer to the GAC in C: \ WINNT\assembly. You should see 
your resource file in the GAC similar to mine, as shown in Figure 10-4. 

!?. ,...:.J WUMT 

CJ ~oiQ300972t 
<·a-· a-a..-... 
, ;::JC<rl'<l 
• Cl Comecbon-..d 

-l .O 2411.0 

2.7.0.0 

LO 0.0 <lf3430dfl'S11(24C 
9 .1.0.0 •f)430cff1~ 

9.1.0.0 1f~30cffl~ 

9. l -D.D #3130dfl54c24( 

Figure 10-4. GAG showing that the new resource file has been installed 

Notice that the resource file has a culture associated with it and that the version 
is 1.0.0.0. This conforms to the AL command you typed to generate this DLL. 



Versioning Resource Files in .NET 

Using the GAC Resource File 

Now it is time to see if your program still works. Press F5 to run your program. It 
should fail when getting the resources. Can you guess why? Your resource file is 
still where you left it in the en-US directory. The answer is that your resource file 
is now strong named and your small program does not have the right to access it. 
Security at work! 

How do you fix this? You need to make a small adjustment to your 
program to temporarily sign it with the same public key. You delay sign this pro
gram using attributes. 

Open your Assemblyinfo.vb file in the Solution Explorer window. You will see 
a set of attributes that are kept in the assembly's manifest. You will add to this set 
of attributes to delay sign your program with the same key as the resource file. 
Enter the following lines of code at the end of the file: 

<Assembly: AssemblyKeyFileAttribute("d:\pubkey.snk")> 
<Assembly: AssemblyDelaySignAttribute(True)> 

The first line passes the name of the file containing the public key to this attri
bute's constructor. The second line indicates that delayed signing is being used. 

Compile the program. Now run the program and it should run without errors. 
How do you know that the resources are being obtained from the GAC? ny 

renaming your resource file DLL in the en-US directory. Run your program again. 
You should have no errors. 

It may seem like a lot of work to do all this. It is easy enough for you to make 
a batch file that performs these steps for generating the key file to sign the 
resource file and install it in the GAC. This batch file method is a method I would 
highly recommend. 

Using the Full Strong Name 

So much for delayed signing. What happens when it is time to deploy your appli
cation and your keeper-of-the-keys has given you the full key pair file?You need to 

sign your assemblies with the full strong name. The procedure is simple enough. 
Go to your DOS box in the en-US directory. Type the following command: 

sn -R ch10snvb.resources.dll key.snk 

What this does is re-sign your assembly with the full public/ private key. Now 
use the gacutil program to reinstall the resource file into the GAC.JYpe the fol
lowing command. 

313 



Chapter 10 

314 

gacutil -i chlOsnvb.resources.dll 

OK, now your resource assembly is properly signed. You need to do the same 
for your program. Comment out the second line that identifies your program as 
delayed. You will not need it. 

Change the line: 

<Assembly: AssemblyKeyFileAttribute("d:\pubkey.snk")> 

to: 

<Assembly: AssemblyKeyFileAttribute("d:\key.snk")> 

All you have done is replace the name of the key file with which this assembly 
is signed. Recompile your project and comment out this line. Press F5 to run your 
program. It should run as expected. 

I would like to mention one last thing about the GAC and managing it. You 
are probably wondering if you can see the GAC in Windows Explorer, can you 
drag a strong-named dll and drop it in? Well, in fact you can. It is not strictly nec
essary to use the gacutil.exe program to do this. You can also click on a dll in this 
view and delete it from the GAC. 

I suppose I could have left the discussion of the GAC at that point, but 
I am a rather curious type and wanted to discover more. Here are some of the 
questions I had when I was playing around with the GAC. 

• Why is the view different in Explorer than any other directory? The reason 
is that Windows uses a special Wmdows Explorer shell extension DLL 
named shfusion.dll to view the contents ofthis directory. 

• Is this a true directory? No. What you see as files in this folder are actually 
trees of subdirectories. Open a DOS box in the c: \ WINNT\assembly folder 
and type in "tree." You will be amazed at what you see. 

If you want to know more about the GAC, I encourage you to investigate further. 

Versioning in .NET 

Versioning in .NET only works when you use strong names. The version is actu
ally a part of the strong name. This allows you to fully identify your program as 
being unique from all others in the known universe. 

There are many ways to version files for security, and there are quite a few 
tools in .NET that help you. Versioning and security in .NET could take a whole 



Versioning Resource Files in .NET 

book in itself. For now, I concentrate on versioning resource files and allowing 
.NET programs to use them correctly. 

You have made many satellite resource files throughout this book. Each one 
was generated with the al.exe tool. You have probably noticed that I always 
include a version flag in the arguments. It is always Version 1.0.0.0. 

NOTE Microsoft has strict ways to version files. If you want 
to version a file and refer to a version file, you must use the 
complete Microsoft version. This consists of a major version, 
minor version, build number, and revision. This is why 
a version is in the form of 1. 0. 0. 0. 

When you signed the satellite DLL with the key file, the version was incorpo
rated in the signature hash code. The version of DLL that you put in the GAC was 
version 1.0.0.0. Now it is time to change versions a little. 

Using Multiple Satellite Versions 

Part of getting rid of DLL hell is being able to put the two versions of the same file 
in the GAC or memory and specify which one you want to use. There is no more 
of this copying over old versions with new ones and breaking programs. I have 
stated that you can install in the GAC-version satellite resource files, and this is 
what you will do. 

I suggest using a batch file for this process so you can play with the versions 
and the GAC without too much effort on your part. 

First, make two new text files and call them vl.txt and v2.txt respectively. 
Type the following lines into vl.txt: 

HELLO = Hello V1 
PUBLIC = Public V1 

Put the following lines into v2.txt: 

HELLO = Hello V2 
PUBLIC = Public V2 

Make a batch file called buildvl.bat and another batch file called buildv2.bat. 
Enter the code in Listing 10-2 in the buildvl.bat file. I put my corvars.bat file in 

315 



Chapter 10 

316 

the root directory for easy access. You may want to do the same, as you will be 

using the command line quite a bit. 

Listing 10-2. Batch file that compiles a version 1 of the resource file 

call c:\corvars.bat 
resgen vl.txt chlOsnvb.en-US.resources 

al /out:CHlOSNVB.Resources.Dll /v:l.O.O.O /c:en-US 

/embed:CH10SNVB.en-US.resources,CH10SNVB.en-US.resources 

/keyfile:key.snk 
gacutil -i chlOsnvb.resources.dll 

pause 

The al.exe line is very long. Make sure it is complete. What I am doing 

here is taking the vi. txt file, generating a chlOsnvb.resources file, compiling 

the .resources file into a satellite DLL, and installing it in the GAC. You will do the 

same thing for the buildv2. bat file only you will use the v2. txt file as a base. Enter 

the code from Listing 10-3 into your buildv2.bat file. 

Listing 10-3. Batch file that compiles a version 2 of the resource file 

call c:\corvars.bat 
resgen v2.txt ch10snvb.en-US.resources 
al /out:CH10SNVB.Resources.Dll /v:2.0.0.0 /c:en-US 

/embed:CH10SNVB.en-US.resources,CH10SNVB.en-US.resources /keyfile:key.snk 

gacutil -i chlOsnvb.resources.dll 

pause 

Notice that in addition to usingv2.txt in Listing 10-3, I also changed the 

version of the satellite DLL to V:2.0.0.0. 

Now that you have these two batch files, run build!. bat followed by 

build2.bat. Look at the GAC. Remember it is in C:\WINNT\assembly. You 

should see the same file differentiated only by version. What I see is shown in 

Figure 10-5. 



Versioning Resource Files in .NET 

;, CJ Wllf<T bO::W5f7fttd50b3a 

a~-721 2.7.0.0 ba:lf>flflld!Do:la .... .;,--.. 2.0.0.0 ...us Oe65<lfl!339635610 ::J-- \.00.0 ...us Oe65<lfl!33963510 

... ..:J .....q 1.0.0.0 413430cffl 5«2« 

7 2J Cor£q 9.1.00 4f)l30cfl l51a« 

~.uc~W&:trd 9.\.0.0 4f)ll0cfll51a« 

r.-.. ac~.~$01', 9. 1.0 0 413430cfll 5«2« 

Figure 10-5. The GAG shows the same resource file, but different versions 

Pretty neat huh? Two of the same files with the same public key token and 
culture. They seem to be differentiated only by version. Let's use them! 

Go back into your project and edit the Assemblylnfo.vb file. Press F5 
to run the program. What do you see? You should see your form with the 
version 2 resources. This is telling you that with multiple versions of the same 
satellite resource file in the GAC, .NET chooses the latest version for you unless 
you say otherwise. So, you ask, how do you say otherwise? You use attributes in 
the main program that are accessing the DLL. For this you need to use the 
SatelliteContractVersionAttribute class. You need to instantiate this class con
structor with the resource DLL version number. This class is not used in the 
traditional sense but is used as an attribute. Type the following line of code at 
the bottom of your Assemblylnfo.vb file: 

<Assembly : Resources.SatelliteContractVersion("l.O.o .o")> 

This now tells the resource manager to search for, and use, the resource file that 
is marked as version l. Press F5 and run the program. What do you see? You 
should see the text from the version 1 resource file. 

NOTE There are many attributes that end in the word 
attribute .. NET accepts and recognizes the name of the attri
bute without the ending "attribute" suffix. That is why I was 
able to use SatelliteContractVersion instead of 
SatelliteContractVersionAttribute. 

This is important because it allows you to force the use of a particular version 
of a file. In this case, a resource file. 

There wiil come a time when you have released a product with a certain 
version. You find a bug in your program and make a patch. The bug has no 
impact on the resource file. To release the patch you need to bump the version of 
the executable. By using the SatelliteContractVersionAttribute attribute you can 

317 



Chapter 10 

318 

tell your new version to use the old version of resource files. You will not have to 
distribute a new resource file with your patch. 

Suppose you wanted to do the reverse? It is also possible to change the 
resource file and redistribute it with a new version even if the program that uses 
it wants the previous version. This is accomplished with a publisher policy file. It 
allows you to tell all calling programs that this new resource file is good for vari
ous program versions. 

Setting the Policy 

There are three basic configuration files associated with any .NET program. 
These configuration files allow the developer to externalize some of the proper
ties associated with an assembly's manifest. It also allows you to override quite 
a few of the assembly's attributes with ones you specify in the configuration file. 
Each of these three files follows the same XML format. 

The Application Configuration File 

The first file is the application configuration file. This file resides in the same 
directory as the assembly it applies to. It is generally used for remoting in .NET. 
There are a number ofXML tags that refer to dependent assemblies and which 
versions of those assemblies can be redirected. The application configuration file 
is the first file that the CLR checks for information that would override version 
information contained in the assembly's manifest. 

The name of this file is the name of the assembly with a .config extension. In 
our case the name of the assembly is chlOsnvb.exe. The application configuration 
file for this would be called chlOsnvb.exe.config. 

The Publisher Policy Configuration File 

The next file is the publisher policy configuration file. This file is the second place 
that the CLR looks for manifest override information. The policy file normally 
overrides the application configuration file. The exception to this is when the 
application configuration file contains a tag that enforces safe mode. Safe mode 
is invoked by using the <publisher Policy apply="yeslno" I> element. If this tag is 
set to "yes," then the information in the policy configuration file is removed from 
the binding process. 

The publisher configuration file is the file you normally send to the client 
when sending a new version of a resource file to work with an older version of the 
application. This file is meant to redirect an assembly reference to a new version. 



Versioning Resource Files in .NET 

Recall that you put an attribute in the assembly called 
SatelliteContractVersion. This attribute told the resource file to get its resources 
from a particular version of the resource file. Although this version information 
was hard-coded into the client application, the policy configuration file can over
ride this attribute and redirect the resource manager to get its resources from 
another version. 

If the application configuration file is in the same directory as the application, 
where is the policy configuration file kept? It is kept in the GAC with the shared 
assembly it refers to. This means that the policy configuration file is a DLL with 
a strong name. 

A policy file has an interesting naming convention. Its name is 
policy.major.minor.assemblyname.dll. If you had an assembly called MyProg.dll 
that was version 2.3, the policy configuration file would be called 
"policy.2.3.myprog.dll." Redirecting a resource file involves the same kind of pol
icy file. The resource file you use in this chapter is chlOsnvb.resources.dll. The 
policy file for version 1 of this resource file is policy.l.O.chlOsnvb.resources.dll. 
The policy file for version 2 of this resource file is policy.2.0.chl0snvb.resources.dll. 

Since the policy configuration file is an XML file how do you get it into a DLL 
and into the GAC?You use the al.exe tool to create the DLL and the gacutil.exe tool 
to install it in the GAC. The following piece of code is the al.exe command neces
sary to make a DLL out of a MyProg.cfg file to be used for the program MyProg.dll. 
Make sure that the following two lines of code are typed as one line only. 

Al /Link:MyProg.cfg /out:policy.2.0.MyProg.dll 
/keyfile: MyProg.snk /version:2.0.o.o 

Notice that I am using the strong name key file that was used for the assembly. 
This is necessary to reconcile the policy file with the assembly. The code that fol
lows is the gacutil.exe line necessary to install this policy DLL file into the GAC. 

gacutil -i policy.2.0.Myprog.dll 

Once the policy file is installed in the GAC along with the assembly it refer
ences, the binding redirection is automatically performed by the CLR. 

The Machine Configuration File 

This file is pretty much the same as the other two configuration files in that it 
uses the same XML commands to redirect versions. It also has quite a few other 
tags to control other aspects of the .NET runtime. 

319 



Chapter 10 

320 

This file should not be used to hold redirection information. It is the last file 
the CLR looks at before loading assemblies. The settings in this file cannot 
be overridden. 

It is interesting to look at this file and see what is in it. It can be quite instruc
tive. Mine is in C:\IWNNT\Microsoft.net\framework\vl.0.2914\config. It is called 
machine.config. I advise you not to change anything in here. 

There is a tool you can use to manage the machine.config file. It is an mmc 
snap-in called mscorcfg.msc. You can run it from the command line by typing: 

mmc c:\winnt\microsoft .net\framework\v1.0 .2914\mscorcfg.msc 

The utility lets you manage all the assemblies in the GAC. Figure 10-6 shows 
the administration tool. 

!i'1f J'1 T Adm1n Tool 

..,....,..,~c_..-,----- 1 Configured Assomblles 

~ As>embiy Cacha 

~ Corllgosed ... -
~~5ervlc .. 

;., cjl Ibn.., Secuty Poky 
4 frte-priSo 

~-... o-
.. Aor>~c-.. 

Configured assemblies are the assemblies from the assembly cache that have an assocoated 
polocy 

The two pohcy settongs avaolable determone assembly verSJon bondong and assembly codebases . 
Blndtng policy allows you to spec1fy a new vers1on of the assembly when an appllca •on 
requests a dofferent versoon. codebases allow you to specofy the locatoon of an assembly for a 
parttcular verston. Codebases are parttcularly useful af the computer does not already have the 
Vf:trston of the assembly needed to run the appbcat1on. 

These configured assembhes affect all apphc:atoons that run on thos versoon of the .NET 
Frameworl! . 

Tasks 

VIeW Lft pfCmfwecJ Assefl't)ln 
Toggle to lhe lost of canflgLred assembiOJS tD see whch eras have blndng policy and codebases se 

Cgnfq.re, As~ 
Add anolher as...mblt to lti{ConllgLred Assembl.,.los Aller the assembly has been added, tb.ble
clr:k the assembly n 1he ConfigLred Assemblies lost tD set 1 bn:lng polcy and ~. 

P Show thos Help toptc by default 
You can use the V1ew menu to toggle between th1s Help topac and the l1st vaew, 

Figure 10-6 . . NET machine configuration administration tool 

Listing 10-4 shows a sample policy configuration file that redirects an assem
bly version from version 1.0.0.0 to 2.0.0.0. 



Versioning Resource Files in .NET 

Listing 10-4. Redirection policy file 

<configuration> 
<runtime> 

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.vl"> 
<dependentAssembly> 

<assemblyldentity name="aaa.Resources" 
publickeytoken="a35708b34e9f1417" 
culture="en-us" I> 

<bindingRedirect oldVersion=" 1. 0. 0. o" 
newVersion="2.0.0.0"I> 

</dependentAssembly> 
</assemblyBinding> 

</runtime> 
</configuration> 

As you can see it is a fairly simple and readable file. 

Summary 

Throughout the examples in previous chapters, no consideration was given to 
versioning and the security that goes with it. Although it is possible, and most 
probable, you can release your code with no version-checking enabled. But you 
don't want to do that. If you do, you will be right back in version hell. Perhaps not 
with other programs, but with your updates. 

This chapter has shown you the methods necessary to properly version your 
programs and the resource files that it depends on. I have also shown you a few 
tools. Some of which are familiar. They are: 

• AL.EXE: This is the assembly linker. You have used it to create resource 
DLLs and to sign them with the proper version and strong name. 

• SN.EXE: This is the strong name tool. It creates a public/private key pair 
that is unique. This key pair allows you to uniquely sign your program. 

• GACUTIL.EXE: This is the GAC installer. It checks your program's strong 
name to make sure it is OK and then installs it into the GAC. 

You also spent some time discovering the GAC. You now have an idea of what 
it really is and how to manipulate it. The GAC is a very important part of .NET. 

321 



Chapter 10 

322 

Last, I went over the three configuration files that are important to all assem
blies. Each of these configuration files allows the developer to update an 
assembly with attribute information. The files can also be used to redirect bind
ings and provide an alternate probing path to find your assembly. 

Next is the last chapter of the book. In it, I go over program design in general, 
with an eye toward localization. 



CHAPTER 11 

Localization Wrap-up 

THis IS THE FINAL CHAPTER in this book. This chapter wraps up what you have 
learned and points out a few things about localization that do not really fit any
where else. 

Help Files 

Visual Basic 5 and 6 used a Help file system called WinHelp. This was Microsoft's 
Help system before they standardized on HTML-based Help. UsingWinHelp in 
earlier versions ofVB was fairly easy. Microsoft had built-in support for calling 
WinHelp files automatically if a user pressed Fl. 

WinHelp, however, had some problems and was supplanted by HTML Help 
systems. HTML Help uses a browser window to display Help topics. You have 
used HTML Help when using .NET. You can see by using the .NET Help system 
that there are all kinds of hyperlinks and hierarchies that can be built using 
HTMLHelp. 

Help Formats Explained 

The kind of Help files that you create are based on what you think the users' 
requirements will be. WinHelp is a Microsoft-based Help system that was 
designed as either stand-alone Help or online Help for Windows applications. It 
is based on RTF (rich text format) files. 

HTML Help was designed to be based on Hypertext Markup Language 
(HTML) files. You can run Microsoft HTML Help on any Wmdows 9x and up 
machine. Windows 95 and NT4.0 required Internet Explorer 4.x or above browser 
to view the Help files. Windows 98, 2000 and above uses either a browser or 
a built-in viewer. Table 11-1 describes some feature comparisons between HTML 
Help and WinHelp. 

323 



Chapter 11 

324 

Table 11-1. WinHelp vs. HTML Help 

FEATURE HTML HELP WINHELP 
ActiveX Controls Yes No 

Bookmarks Yes No 

Background colors Yes Yes 

PopupWmdow Yes Yes 

Context sensitive help Yes Yes 

Custom Windows Yes Yes 

Dynamic HTML Yes No 

Expandable TOC Yes Yes 

Forms Yes No 

Frames Yes No 

Include Image Yes Yes 

Include Links Yes Yes 

Include borders Yes No 

Tri-Pane Window Yes No 

While the choice of which Help system to use may be a difficult one, the 
choice of whether to translate it is not. If you want a true world-ready program, 
you need to have a localized Help system that goes with it. 

The Help files should be completed and translated at the same time as the 
translations for your program. Quite often you will have the same phrases in your 
Help files as you have in your program. It is important for continuity that these 
words, phrases, and sentences be translated identically. 

The Help system can be just as important as the program itself. Often the 
Help files can be sent to a customer as a demo of your program. 

Getting It Translated 

I have mentioned throughout the book that it is wise to keep text resources in 
a text resource file. This file contains just key /value pairs. This type of file also can 
contain comments. Listing 11-1 shows a sample text-based resource file that 
.NET understands. 

Listing 11-1. A text-based .NET resource file 

;Resource file for MyProgram.exe 
LOGIN Enter Login Name 
LOGOUT = Logout from program 



Localization Wrap-up 

OPEN = Open file 
CLOSE = Close File 
'See glossary for button 
BUTTON = Press Button 
;Following line must be 20 character maximum 
BADPRB = prb Is wrong type 
CANCEL = Cancel operation 

It is most likely that your company does not have an in-house translator. 
More than likely, it will send this file to an outside translation service. Whether or 
not you send the file out or translate it in-house, you still need to make the trans
lator's job as easy as possible. 

The sample resource file in Listing 11-1 has some aspects to it that make the 
translator's job easier. 

• Comments: Do not be stingy with comments in resource files. They help 
you as well as the translator. 

• Line length: Let the translator know when space is at a premium. 

• References to a glossary: The translator may not know your industry
specific terms. What you mean as a keypad button may be translated as 
a shirt button. 

Make sure the glossary is kept up-to-date. It needs to be used by all people 
on your project. This includes developers, technical writers, marketing people, and 
so forth. It should become a standard to make a smooth transition between dif
ferent parts of your product. 

When you send the resource file out to be translated, send out the glossary. If 
you use a translation service that you have used before do not assume the glos
sary it has is up-to-date. Send a new one. 

Checking Out the Translation 

As you investigate translation services, you will find that the good ones do not 
have many translators on their actual staff. Most send out your translation work 
to contractors. Why do this? Well think of all the languages that your product 
could be translated to. Multiply that by the number of cultures that speak that 
language. Each culture has its own linguistic idiosyncrasies that need to be taken 
into consideration. Remember the Culturelnfo class and the number of cultures 
you can localize your program to? 

325 



Chapter 11 

326 

Not only do they have to worry about cultures within languages but the good 
translation services also try to find a translator who is familiar with your industry. 
So you have the following equation: (languages x cultures x industries) = transla
tors needed. This is a lot of people. Hence, most translations are farmed out. 

What the translation service provides is a good project manager who makes 
sure you get a good translation. You do not have to worry about all the details. 

By the way, often this translator equation needs to be doubled. Why? Well just 
as you have implemented code reads among your developers, translation ser
vices often want a translation checker to go over the work that was done. 

Thoroughness is important when localizing a program. Remember your 
company's reputation often relies on it. Speaking of thoroughness, what should 
you do with the translations once you get them back? Do you package them up 
and sell your program right away? I wouldn't. In my early days, I was burned 
a few times by doing just that. Despite how thorough some of these translation 
services are, some things may fall through the cracks. 

If you are translating a program for a particular country, chances are that you 
have a distributor in that country who works for you. When you send out the 
resource file to be translated, sign up the distributor to go over the translations 
when you get them back. This final check can avoid some subtle translation 
problems that the translation service may have missed. 

If you do not have a company contact in the target country, it behooves you 
to find one. 

Translation Programs 

The last few years have seen a growth in translation programs. These programs 
can be grouped into a few categories. 

• Localization enablers 

• Text extraction software 

• Translation software 

Localization Enablers 

Localization enablers provide software to help lay out your keyboard with exist
ing templates or custom ones. These keyboard layouts allow you to have an 
American keyboard but type foreign characters directly into your program. Often 
they include multiple font sets. You can switch between fonts depending on the 
language you choose. 



Localization Wrap-up 

If you have an in-house translator, this kind of product can be very 
useful indeed. 

Under the heading oflocalization enablers comes another kind of software, 
which is multilanguage OCR software. There are programs that take a document 
and read it through a scanner. The software recognizes the words and can input 
them directly into a Word document. Where would this be useful? I can see using 
this to scan and read in a paper manual for redistribution on disk. This type of 
software could save you quite a bit of time and expense. 

Translation Software 

There is a category of software that tries to be the translation service. This software 
can take an executable file and extract all its resources. It can then do the trans
lations and put these translations back into your executable. Instant language. 

Some of these software packages are rather complex in that they can also let 
you edit the size of controls that text will fit into. They can also read and write 
XML files and databases. For example if you had an Access database it would be 
possible to extract and translate the text in the database. 

So, are these worthwhile tools? The answer depends on your level of comfort. 
If you are OK with the translations performed using cookie cutter text then this 
might work for you. These tools are also mainly used for translations of programs 
that were never really designed with localization in mind. For a quick and dirty 
solution this may be OK. 

I prefer to have a person translate my strings. I feel that only a person can han
dle the nuances involved in translating properly from one language to another. 

Text Extractors 

Text extractors are interesting indeed. A text extractor takes your source code, be 
it C++, VB, or Delphi, and finds all the hard-coded strings within. Here is how 
a text extractor would work for VB 6 code. 

• The tool loads all the project's source code. 

• It searches for all hard-coded strings. Such strings are usually delimited 
with quotes. 

• It extracts all strings to a VB 6 .res file. This .res file is the compiled 

resource file. 

• It replaces all the text strings with a LoadResString() function call that ref
erences the new strings. 

327 



Chapter 11 

328 

This seems like a pretty cool tool. There are, however, some drawbacks and 
some things to watch out for. 

• The LoadResString() function usually references a string via a number such 
as LoadResStrings(l234). This can cause severe maintenance headaches. 

• Some strings may be translated that should not be. Most of these tools 
have a method to prevent a particular string from being extracted. 

• Constant strings cannot be referenced by a LoadResString() function. 

• The resulting resource file cannot be used by multiple projects. 

If a resource extractor forces you to spend time adding directives to prevent 
string extraction then this time could be better used to extract the strings yourself 
properly. If you extract strings yourself you control how they are referenced and 
you can use the same resource file for multiple projects. 

Some of these tools do a pretty good job of externalizing the strings in your 
project. However it usually takes quite a bit of work on your part to make sure 
that it is all done right. To me, their use is nebulous. 

Testing Your Localized Code 

There are many books on software testing methodologies. I do not attempt to 
elucidate the different aspects of software testing in general but instead try 
to give a few pointers on the localization part. 

Before you send out a resource file to be tested, make sure your program 
works as advertised. There are many aspects of software development and testing 
that can be done in parallel. Testing localization is not one of those. It should be 
done at the end of the normal testing cycle. Why not test in parallel? How muddy 
do you want your testing waters? Too many variables in the testing protocol 
could easily confuse the issue. For instance, how would you know if a bug you 
found is due to the insertion of a new string or due to a real bug in the code. If 
the only difference between a program working or not is the addition of a partic
ular string, then the bug would be much easier to find. 

Often during the testing cycle dialog boxes are added or removed and text is 
changed. It would be very expensive to retranslate resource files that never saw 
the light of day to begin with. 



Localization Wrap-up 

The Platform Counts 

If you have developed your code on an English Windows platform, it would be 
very difficult to test a Japanese translation on it. Buying the correct version of 
Windows is essential. 

Windows 2000 and above can be purchased as a multilanguage version. This 
allows you to not only change the language that documents are displayed in but 
also change the language that the operating system dialogs are displayed in. This 
is a great help in testing your software. But is it enough? Not if you want to make 
sure your program really works in the country it is destined for. 

Let's start with the operating system itself. It is most probable that your pro
gram will be installed on a computer that has a version ofWindows that was 
designed for that locale. You must test on that version ofWindows yourself. 
If you have, say a dozen translations to test this could get expensive. How would 
you keep the testing costs down? 

Microsoft sells a product called the MSDN. The Universal version ofthis soft
ware gets you a package from Microsoft that contains virtually every byte of code 
they put out. This includes every version ofWindows that is made. The MSDN 
also includes monthly update disks that include all service patches (always a joy) 
and any new software they come out with including beta software. The cost for 
the Universal license is not cheap, but it is well worth it. The MSDN Universal 
allows you to test on the target Windows version any time you want. I consider 
the MSDN a necessary tool for any development team. 

Is All Hardware the Same? 

The other part to testing is the hardware. Testing on the Cyrillic version of 
Windows is fine but how would a user type text? You need to buy and test with 
keyboards that are used in the country you are targeting. Pressing hot keys or key 
combinations is not a substitute for pressing the actual key that gives you a par
ticular character. 

It is also not a good idea to have some driver pop-up a screen anytime you 
want to input a character that does not appear in your program. Your end user 
will not have this program, why should you? There may be some interaction you 
are not aware of. 

Finally, in the hardware vein I come to the machine itself. I know I said 
I would not expound on testing philosophy in general but I make an exception in 
this case. It is very important to test your software not just on different operating 
system versions and keyboards, but also on different machines. 

During the design of your product, your team came up with a specification 
for the target computer. This spec described the processor speed, memory capac
ity, hard drive capacity, and so on. The hardware spec is always the minimum 

329 



Chapter 11 

330 

necessary for your program to run. When you test your program, you should test 
it on hardware that starts at the minimum level to the latest in computing power. 
Also make sure you do not get all your test computers from the same manufac
turer. For general testing you will likely require four or five different computers. 

So, that being said, let me add another wrinkle to this hardware philosophy. 
If you can, test your localized software on a computer that was bought from the 
destination country. 

I have had software run just fine on my platform-testing suite only to have it 
fail inexplicably when loaded on the target computer. After getting the target 
computer sent back to me, I found that there are subtle differences in the hard
ware setups and components used from the computers I bought in the United 
States. The software I designed at the time was hardware-intensive and hardware
sensitive. I have since managed to get a "jelly bean" computer for the target 
country for testing purposes before sending out the software. I have found hard
ware compatibility problems and have solved them before the customer calls 
come in. 

Don't Forget the Install 

The install is a part of the software development cycle that often gets little 
attention. A professional software package needs a professional installation 
program. There is no excuse to go to all the trouble of localizing your software 
only to have an English -only install program. 

Installation programming is an art in itself. The goal is to make an install pro
gram that requires almost no user intervention. This can sometimes be very 
difficult. For those cases where you want to get user input and give status mes
sages you will need to do it in a way that the user understands. There are several 
packages available that allow multilingual installs. InstallShield is one program, 
and the Wise Installer is another. These are the two most popular installation pro
grams out there. Both have versions that work with both Eastern and Western 
languages. I highly recommend paying as much attention to detail in the install 
program as you would in your final product. 

Final Comments 

This book has been about using .NET to localize your software. I have taken you 
through some general localization concepts and showed you how to apply them. 
I have also shown you how .NET was constructed from the ground up to make it 
easy to localize any program. Since the localizing capability is built into the CLR 
you have seen that localizing software written in one programming language is 
the same for any programming language that .NET supports. 



Localization Wrap-up 

Here are some major things you have learned about localizing in .NET. 

• How to make VB 6 provide the same fallback functionality as .NET 

• The Cultureinfo class and how it is used 

• The System Globalization namespace 

• The SystemResources namespace 

• Command line tools necessary to help in localization 

• The three different kinds of resource files 

• How resource files are constructed and used in .NET 

• How to localize Windows Forms 

• A resource file editor example 

• An ASP.NET example 

There are quite a few languages in .NET. Only three are in the initial release 
but if you hunt on the web you will find languages such as COBOL, FORTRAN, 
PERL, PYTHON, and so on. Having this many programming languages for the 
same CLR is akin to translating your program into many different spoken lan
guages. Your program is still the same; it is just how others communicate with it 
that is different. 

Most programmers are multilingual in the programming language sense but 
some are not. Also, like spoken languages, some programming languages become 
the preferred language for some developers. 

Microsoft realized this when they invented the .NET framework. No longer 
are developers forced to use a language they do not know or are uncomfortable 
with. You can use any one of a variety of programming languages as the interface 
to .NET. As your program is translated for easy use in other countries Microsoft 
has done the same with .NET. 

Because .NET works in a variety of programming languages, it will become 
widely used by programmers from many backgrounds. You should strive to do 
the same by localizing your software for different cultures. 

Visual Studio .NET makes localizing your software much easier than 
ever before. 

I hope you have found the book useful and enjoyed reading it as much as 
I enjoyed writing it. 

331 



APPENDIX 

for Resources 
Internationalization 

and Localization 
Projects 

THE FIRST FEW CHAPTERS of this book gave you a good overview of localization in 
general. Although the overview is informative, it is not exhaustive. This appendix 
gives you ideas of where to go for more information on localization. I've included 
web sites where you can pursue specific localization subjects in depth. 

General Globalization Web Sites 

You can find a good overview of the international support provided by Windows 
2000/XP at the following web site: 

http://www.msdn.microsoft.com/library/backgrnd/html/intl_sup_nts.htm 

The following site has information of a general nature on global soft
ware development. 

http://www.microsoft.com/globaldev 

Multilingual Computing and Technologymagazine is dedicated to reporting 
on all aspects of the internationalization of software. 

http://www.multilingual.com 

To get guidance on internationalizing web sites, explore: 

http://www.webofculture.com 

333 



Appendix 

334 

Machine Translation Services 

The following sites mentioned are interesting in that they let you type in a word 
or a paragraph and get it translated immediately. Since the translation is done by 
machine you can get a good idea as to how well this type of translation works. 

http://babelfish.altavista.com/ 
http://www.freetranslation.com/ 

Places to Get Fonts 

Fonts. At the end of the day, fonts are what the user ultimately sees. While the 
multilingual version ofWindows includes quite a few fonts, you will need more. 
Also you may decide that some of the fonts from these web sites are better than 
the native fonts you are working with. 

http://www.linguistsoftware.com/ 
http://www.unionway.com 

Standards 

Throughout this book, I have referred to various standards for culture naming 
and so forth. Here are web sites where you can see some of these standards. 

The ISO is the keeper and updating agency for all internationalization stan
dards. You can go to its web site and buy any of the official standards you want. 
The key word here is buy. The site is: 

http://www.iso.ch 

There are, however, numerous sites that show various internationalization 
standards for free. The ISO 3166 standard detailing the countries and two letter 
codes can be found here: 

http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html 

The ultimate standard is Unicode. This is what makes code pages obsolete 
and allows any language invented to be assigned a code point in the Unicode 
map. The Unicode home page is here: 

http://www.unicode.org 



Resources for Internationalization and Localization Projects 

Editors 

There are quite a few editors on the market that help you type in foreign lan
guages into your documents. Many of these are Unicode editors. 

AbiWord is a freeware Open Source word processor that is available for 32-bit 
Windows platforms, for several versions of Unix, and for an experimental version 
ofBeOS. In addition to its own file format, it can read UTF-8, text, Rich Text 
Format, XHTML, and Microsoft Word files. The site for this editor is: 

http://www.abisource.com/products.phtml 

What about the handhelds? Do PDAs get left behind? This editor is designed 
for you Windows CE folks. No one is forgotten here. 

http://lp-group.com/store/uniwriter.html 

Of course we cannot forget Microsoft. Microsoft's FrontPage 2000 HTML edi
tor can be used to produce multilingual web pages with the aid of Unicode fonts 
and visual keyboards. Some of these visual keyboards are pretty cool. Microsoft's 
Visual Keyboard enhances the ability ofWindows to switch keyboard layouts by 
adding the option to have the new keyboard appear in a floating window. 

The last one in this bunch is UniEdit from Human Computing Corp. It was 
recently part of Duke University. UniEdit is not free, but it is very full featured. 
I have used this editor extensively and find it invaluable. 

http://www.humancomp.org/ 

While this list of web sites is in no way comprehensive, you will find a wealth 
of information within them. Most of them also have links to other web sites that 
may be useful. 

335 



Index 

A 
abbreviations, 7-8 
AbiWord, 335 
AddPic method, 256-258 
addresses, 14-15 
al.exetool 

creating satellite resources with, 
138-140,157 

defined, 321 
application configuration file, 318 
ASCII character sets, 31 
AskKeyform 

choosing graphics file in, 209 
with controls, 206 

ASP.NET localization, 277-303 
of Coldest Hotel web application, 

277-280 
displaying strings in Web form; 

. 295-302 
event-handling code, 285-295 

SelectlndexChanged event, 
285-287 

without complete InitStrings 
method,287-293 

lnitStrings method using satellite 
resource files, 301-302 

loading language strings to drop
down list box, 283-284 

overview, 277,302-303 
testing ColdHotel project in browser, 

293-295 
writing code for class and control def

initions, 280-283 
assembly linker tool, 321 
attributes, 317 

c 
C# 

AddPic method for manually adding 
graphics, 257-258 

changing numeric format for current 
culture, 90-91 

ColdHotel class and control def
initions, 280-283 

converting icon to bitmap image, 
247-255 

Currentlnfo property in 
DateTimeFormatlnfo class, 
86-87 

defining 
calendar and manipulating dates, 

66-67 
CurrentCulture member of 

Culturelnfo class in, 74-75 
entering code for ResUtil class, 

216-226 
event-handling for 

SelectlndexChanged event, 
286 

formatting 
dates in, 20 
numbers and currency, 23-27 

handling events, 241-242 
InitStrings method for ResEdit project, 

245 
loading language strings to drop

down list box, 283-284 
loose resources, 125-126 
making 

custom collection class, 226-230 
resource manager, 269-27 4 

337 



Index 

338 

C# (continued) 
parsing strings in, 102-103 
resource dump program, 109 
resource reader in, 114-115 
resource sets, 111-112 
ResXReader and writer, 117 
sample GetFormat and GetJYpe 

methods in, 85 
SaveToBinaryFile and SaveToXMLFile 

methods,253-255 
saving picture to XML resource file, 

131 
table generator program using 

Regionlnfo class, 99-100 
ToLongDate functions, 79-80 
Windows Forms resource editors, 

213-242 
entering code for ResUtil class, 

216--226 
handling events, 241-242 
making custom collection class, 

226--230 
providing display resources manip

ulation code, 230-240 
starting ResEditor project, 213-215 

Calendar class, 65-69 
defining calendar and manipulating 

dates, 65-69 
table of popular calendars, 65 

Calendar property of Culturelnfo class, 
81 

calendars 
defining and manipulating dates, 

65-69 
localization issues for, 21-22 
table of popular, 65 

character sets, Unicode and double-byte, 
31-32 

classes 
Calendar, 65-69 
constants, 214-215 
Culturelnfo, 69-73 
Custom Collection, 226--230 
DateTimeFormatlnfo, 85-89 
defined, 63-64 
Exception, 179 
finding missing ResX, 118-121 
generating resource handler, 17 4-188 

entering Image Wrapper class, 
175-177 

getting and saving data, 187-188 
NumberFormatlnfo class, 89-91 
Regionlnfo, 91-100 
Reslmage,214-215,247-255 
Reslmagescollection,227-229 
Resource~anage~ 105-107 
ResourceReader, 108-109, 115 

ResourceSet, 110-113, 115 
ResourceWriter, 113-115 
ResUtil 

attributes for, 177 
completed code for, 188-199 
constructors and properties for, 

177-180 
input/output resource files meth-

ods for, 180-187 
ResXResourceReade~115-118 
ResXResourceSet, 115-118 
ResXResourceWriter, 115-118 
Stringlnfo, 100-104 
Thread.CurrentThread.Current-

Culture, 121, 122 
Thread.CurrentThread.CurrentUI

Culture, 121, 122-123 
VB Collection, 170 
See also specific classes 

code pages 
information in Culturelnfo. Textlnfo 

property for, 83 
Unicode and improved translation of, 

30-31 
Coldest Hotel web application, 277-303 

adding resource manager in, 283 
directory structure for, 297 
event-handling code for, 285-295 
generating strings with resource edi-

tor, 296--300 
installing source files in directories, 

277 
namespaces for, 280-281 
overview of, 277-280 
setting up form and adding controls, 

277-280 
testing in browser, 293-295 

color and cultural symbolism, 3-4 
complex strings, 6--7 
constants 

adding referring to resource file, 46 
adding to ResEdit form, 169-170 
constants class inC# ResEditor proj-

ect, 214-215 
including in Windows Forms resource 

editor application, 170 
constructors 

Regionlnfo class, 96--97 
ResourceSet class, 110-113 
Stringlnfo class, 100 
uses for overloaded, 177 

controls 
adding localized controls to forms, 

142-144 
for ColdHotel project, 279-280 
initializing with strings, 244-246 
localizing, 168 



placing on Final tab screen of 
ResEditor form, 166-168 

renaming in ResEdit project, 244 
writing code for web application, 

280-283 
CSC.exe, 157 
Culturelnfo class, 69-73 

Calendar property of, 81 
CurrentCulture member of, 74-75 
CurrentUICulture member of, 74, 75 
DateTimeFormat property of, 77-80 
DisplayName property of, 82 
EnglishName property of, 82 
GetFormat and Get'JYpe methods for, 

84-85 
lnstalledUICulture member of, 74, 

75-76 
lnvariantCulture member of, 74, 

76-77 
language standards, 84 
LCID property of, 82 
Name property of, 83 
Number Format property of, 80-81 
Textlnfo property, 83-84 

cultures 
changing numeric format for current, 

90-91 
displaying in native language, 259-262 
loading resource sets for, 110-113 
regional string values in Windows cul-

ture identifiers, 69, 70-73 
currency 

formatting, 23-27 
verifying correct display of localized, 

259-260 
CurrencySymbol property of Regionlnfo 

class, 97 
CurrentCulture member of Culturelnfo 

class, 74-75 
Currentlnfo property 

for DateTimeFormatlnfo class, 86-87 
for System. Globalization namespace, 

86-87 
CurrentRegion property of Regionlnfo 

class, 97 
CurrentUICulture member of 

Culturelnfo class, 74, 75 
Custom Collection class, 226-230 

D 
dates 

format patterns supported by 
DateTimeFormatlnfo class, 87 

format specifiers for, 78 
formatting, 18-21 
localization issues and, 1 

pattern specifiers for DateTimelnfo, 
88 

sample code for defining and manip
ulating, 65-69 

verifying correct display of localized, 
259-260 

See also calendars 
DateTimeFormat property of 

System. Globalization name
space, 77-80 

DateTimeFormatlnfo class, 85-89 
Currentlnfo property for, 86-87 
format patterns supported by, 87-89 
Invariantlnfo property for, 87 

DBCS (double-byte character sets), 31-32 
delayed signing, 308,313 
designing 

error handling, 2 
help files, 28-29 
localizing programs with IDE forms 

designer, 151-152 
programs for localization, 156-157 
resource files in ResourceManager 

class, 105-107 
userscreens,16-17 

dialog boxes 
choosing languages in, 54 
localization of, 15-16, 17 

directories 
generating satellite DLLs for ResEditor 

program,268-269 
installing ColdHotel source files in, 

277,278 
structure of 

for Coldest Hotel Web application, 
297 

language subdirectories, 56-57 
for resource files, 268 

DisplayName property 
of Culturelnfo class, 82 
ofRegionlnfo class, 98 

DLL files 
clearing errors when making, 62 
enumerating all, 118-121 
generating satellite, 268-269 
making external resource file as, 39 
using multiple satellite versions, 

315-318 
Dynamic Resource File Loading dialog 

box,46 

E 
editor screen for WinRes.exe, 154 
eliminating hard-coded strings 

error strings, 273-274 

Index 

339 



Index 

340 

eliminating hard coded strings (continued) 
initializing controls with strings, 

244-246 
overview, 243-244, 275 

emotional connotations of color, 4 
EnglishName property 

of Culturelnfo class, 82 
of Regionlnfo class, 98 

enumerators in ResEdit form, 169-170 
error handling 

clearing errors when making DLL file, 
62 

designing, 2 
eliminating hard-coded error strings, 

273-274 
example code 

AddPic method for manually adding 
graphics, 256-258 

for completed ResUtil class module, 
188-199 

constants 
adding reference to resource file, 

46 
C# constants class, 214-215 

converting icon to bitmap image, 
247-255 

defining and manipulating dates, 
65-69 

event-handling for 
SelectlndexChanged event, 
285--287 

exiting ResEditor form, 17 4 
finding resources namespaces, 

118-121 
form code for reading file and display-

ing label fields, 310-311 
frmResources form, 230-240 
GetString.bas, 41-44 
GetStrings() module, 50-52 
for Image Wrapper class, 175-176 
InitStrings method 

ASP event-handling without com
plete, 287-293 

for ResEdit project, 245-246 
retrieving strings and icon from 

resource manager, 271-273 
instantiating resource managers, 

270-271 
languages 

changing from combo box, 54-56 
detecting new, 58-61 
enumerating, 53 
loading alternate, 44-45 
loading new, 53 
switching, 4 7 

loading 
error text from resource file, 27 4 
form and setting up text grid 

control, 171-17 4 
loose resources, 125-126 
making resource manager, 269-270 
picture button event handler, 206-209 
redirection policy file, 321 
remove button event handler, 205-206 
replacing LoadResString() with 

LoadStringRes(),42-43 
Reslmage class, 214-215 
resource dump program, 108-109 
resource files 

compiling multiple satellite 
versions of, 316 

creating multilingual, 48-49 
loading error text from, 27 4 
text-based .NET, 324-325 
~L, 128-129,132-134 

resource reader, 113-115 
ResUtil class, 216-226 
ResXReader and writer, 116-117 
retrieving resources for open and 

append menu functions, 
199-201 

SaveToBinaryFile and SaveTo~LFile 
methods,251-255 

single delegate for check box events, 
241-242 

tabs 
event code for control, 209-210 
handling controls on third tab 

page, 210-212 
showing and arranging pictures on, 

201-202 
testing localization program, 27 4-275 

Exception class, 179 
exiting ResEditor form, 174 
external resource compiler, 36-37 
external resource files, 39-40 

F 
files 

application configuration, 318 
DLL 

clearing errors when making, 62 
enumerating all, 118-121 
generating satellite, 268-269 
making external resource file as, 39 
using multiple satellite versions, 

315-318 



external resource, 39-40 
help 

designing, 28-29 
WinHelp vs. HTML, 323-324 

importing file resources to program, 
203-209 

international help, 28-29 
machine configuration, 319-320 
naming text resource, 123 
publisher policy configuration, 

318-319 
translating resource, 324-328 
versioning, 305-322 

implicit security, 306-314 
in .NET, 314-321 
overview, 305,321-322 
tools for, 322 

See also resource files 
fonts and localization, 16-17 
formatting 

dates, 18-21 
date format patterns, 87 
pattern specifiers for 

DateTimelnfo, 88 
international time, 17-18 
numbers and currency, 23-27 

format specifiers for numbers, 81 
forms 

G 

adding constants to ResEdit, 169-170 
adding localized controls to, 142-144 
AskKey, 206, 209 
changing localizable properties of, 

141 
ResEditor 

adding enumerators to, 169-170 
adding menus to, 164 
adding tab pages to, 165-168 
exiting, 174 

Web 
displaying strings in, 295-302 
setting up and adding controls, 

277-280 

GAC (Global Assembly Cache) 
about, 306-307 
further investigations of, 314 
GAC resource file, 313 
installing program in, 307-312 
viewing multiple satellite versions in, 

317 
gacutil.exe (GAC installer), 321 

GetData method, 187-188 
GetFormat method for Culturelnfo class, 

84-85 
GetNextTextElement property of 

Stringlnfo class, 101 
GetString.bas, 41-44 
GetStrings() module, 50-52 
GetTextElementEnumerator function of 

Stringlnfo class, 101 
GetType method for Culturelnfo class, 

84-85 
Global Assembly Cache. See GAC 
Globalization names pace, See also 

System. Globalization name
space 

globalization web site resources, 333 
graphics 

adding pictures 
to form, 206-209 
with picture list box event handler, 

204-205 
importing resource files to text grid, 

203-204 
localization and choices for, 2-3 
manually adding with AddPic 

method, 256-258 
removing picture with remove button 

event handler, 205-206 
showing and arranging pictures on 

tab,201-202 
XML resource file with bitmap image, 

132-134 
graphics user interface (GUI), 13-29 

calendars, 21-22 
creating international help files, 28-29 
dialog box for choosing languages, 54 
fonts and keyboards, 16-17 
formatting 

dates, 18-21 
international time, 17-18 

message boxes, dialog boxes, maps, 
and menus, 15-16 

numbers and currency formatting, 
23-27 

renaming controls in ResEdit project, 
244 

sort order and language, 27-28 
translation and length of strings, 

13-15, 17 
Gregorian calendar 

about, 21, 22 
defining and manipulating dates for, 

65-68 
GUI. See graphics user interface 

Index 

341 



Index 

342 

H 
hardware issues for localized code, 

329-330 
Hebrew calendar 

about, 65 
defining and manipulating dates for, 

68-69 
help files 

designing, 28-29 
WinHelp vs. HTML, 323-324 

HTML Help, 323-324 

I 
icons 

alternate graphics for localized, 
266-267 

choosing, 3 
enhancing Resimage class to hold, 

247-250 
manually adding to resource editor, 

255-258 
representing default language of 

ResEditor, 264 
saving graphic as bitmap image or, 

250-255 
IDE forms designer, 140-152, 157 

adding localized controls to forms, 
142-144 

changing localizable properties of 
forms, 141 

incremental form resource file, 
144-147 

retrieving resources with Wmdow 
generated code, 150-151 

rules for using, 151-152 
WinRes.exe with, 152 

implicit security, 306-314 
about GAC and Public Key Token, 

306-307 
full strong name for assembly, 

313-314 
installing program in GAC, 307-312 
using GAC resource file, 313 

importing file resources, 203-209 
adding picture 

to form with picture button event 
handler, 206-209 

with picture list box event handler, 
204-205 

removing picture with remove button 
event handler, 205-206 

inheritance of classes and interfaces, 
63-64 

input/ output resource files methods for 
ResUtil class, 180-187 

installation programming, 330 
lnstalledUICulture member of 

Cultureinfo class, 74, 75-76 
InstallShield, 330 
instantiating resource managers, 

270-271 
integrating display with ResUtil class 

events, 199-202 
getting resources for open and 

append menu functions, 
199-201 

showing and arranging pictures on 
tab,201-202 

interfaces, 63-64 
international help files, 28-29 
InvariantCulture member of Cultureinfo 

class, 7 4, 76-77 
lnvariantlnfo property for 

DateTimeFormatlnfo class, 87 
IsMetric property of Regioninfo class, 98 
ISO codes by country/region, 92-96 
ISO standards 

date and time, 18-19 
two and three letter language names, 

84 
two and three letter region names, 98 
web sites for, 334 

ISOCurrencySymbol property of 
Regioninfo class, 97 

K 
keyboard localization issues, 16-17 

L 
languages 

adding at runtime, 49-57 
changing from combo box, 54-56 
example code for language enu

meration, 53 
loading new language, 53 
structure of language subdirecto-

ries, 56-57 
declaring standards for, 84 
displaying cultures in native, 259-262 
loading alternate, 44-45 
resource files 

creating multilingual, 48-49 



handling idiomatic differences in, 
50 

localizing for multiple, 262-267 
supplying English from embedded, 

54 
sort order and, 27-28 
starting program and choosing, 57-62 

detecting new language, 58-61 
example code for choosing lan

guage,57-58 
translation and increasing length of 

strings, 13-15, 17 
See also translating resource files 

LCID property 
codes by country/region, 92-96 
defined, 69 
table ofWindows culture identifiers 

with,69, 70-73 
three parts of, 69 
using, 82 

loading 
culture resource sets, 110-113 
error text from resource file, 27 4 
form and setting up text grid control 

for resource editor, 171-17 4 
language strings to drop-down list 

box,283-284 
resources at runtime 

adding new languages, 49-57 
arguments of LoadString() call, 

43-44 
example code for, 44-45 
GetString.bas example for, 41-44 
making string definition file, 45-49 
overview, 40-41 
starting program and choosing lan-

guage,57-62 
LoadLibraryO API function, 40-41 
LoadString() API function, 40-41,43-44 
localization 

about, 1 
ASP.NET, 277-303 

displaying strings in Web form, 
295-302 

event-handling code for, 285-295 
loading language strings to drop

down list box, 283-284 
of Coldest Hotel web application, 

277-280 
overview, 277,302-303 
writing code for class and control 

definitions,280-283 
controls, 168 
cultural symbolism of color, 3-4 
designing programs for, 156-157 
graphic choices for, 2-3 

GUI, 13-29 
calendars, 21-22 
creating international help files, 

28-29 
fonts and keyboards, 16-17 
formatting dates, 18-21 
formatting international time, 

17-18 
message boxes, dialog boxes, maps, 

and menus, 15-16 
numbers and currency formatting, 

23-27 
sort order and language, 27-28 
translation and length of strings, 

13-15,17 
help files, 323-324 
installation and, 330 
multilanguage support for, 1-2 
overview, 330-331 
resource editor, 243-276 

displaying cultures in native Ian
guage,259-262 

enhancing Resimage class, 247-255 
finalizing code in resource man

ager, 267-274 
initializing controls with strings, 

244-246 
laying out task, 243-244 
localizing resource file for multiple 

languages,262-267 
manually adding icon, 255-258 
overview, 243, 275-276 
renaming controls in ResEdit 

project, 244 
testing program, 274-275 

resource files, 5-11 
about, 5 
calling up loose resources, 10-11 
retrieving strings from in VB.NET, 

8-10 
strings in, 5-8 
translation of, 324-328 

resources for, 333-335 
editors, 335 
fonts, 334 
general globalization web sites, 333 
internationalization standards, 

334-335 
machine translation services, 334 

testing localized code, 328-330 
hardware issues for, 329-330 
overview, 328 
platform considerations, 329 

Unicode, 29-33 
about, 29-30 
code page usage in, 30-31 

Index 

343 



Index 

344 

Unicode (continued) 
programming with, 32-33 
relating double-byte character sets 

to,31-32 
localization enablers, 326-327 
loose resources 

M 

calling up, 10-11 
example code using, 125-126 
retrieving and displaying with 

InitStrings method, 296-300 

machine configuration file, 319-320 
machine translation services, 334 
maps, 16,17 
menus 

adding to ResEditor form, 164 
localization issues for, 16 

message boxes, 15 
methods 

AddPic, 256-258 
GetData, 187-188 
GetFormat, 84-85 
GetType, 84-85 
InitStrings 

ASP event-handlingwithout com
plete, 287-293 

generating strings with loose 
resources approach, 296-300 

for ResEdit project, 245-246 
retrieving strings and icon from 

resource manager, 271-273 
using satellite resource files, 

301-302 
managed and nonmanaged calls, 

10-11 
ResourceSet class, 110 
Resource Writer class, 113 
ResUtil class input/ output resource 

file,180-187 
SaveDatamethod, 187-188 
SaveToBinaryFile,252-255 
SaveTo~LFile,251-254 
tcResource_Click, 261-262 

Microsoft FrontPage 2000 HTML editor, 
335 

Microsoft version numbering, 315 
military time, 17-18 
MSDN Universal, 329 
multiple resource files in VB 6, 35-40 

about, 25-26, 35 
external resource compiler, 36-37 
improving readability of, 38 

N 

limitations of, 36 
loading resources at runtime 

adding new languages, 49-57 
arguments of LoadStringO call, 

43-44 
example code for, 44-45 
GetString.bas example for, 41-44 
making string definition file, 45-49 
overview, 40-41 
starting program and choosing lan

guage,57-62 
making external resource files, 39-40 

Name property 
of Culturelnfo class, 83 
of Regionlnfo class, 98 

names 
simple, 308 
strong, 307,321 

names paces 
for Coldest Hotel web application, 

280-281 
defined, 65 
including in Windows Forms resource 

editor application, 169-170 
System. Globalization 

about interfaces and classes, 63-64 
Calendar class, 65-69 
calendar implementations in, 22 
Culturelnfo class, 69-73 
DateTimeFormatlnfo class, 85-89 
defined, 64-65 
NumberFormatlnfo class, 89-91 
Regionlnfo class, 91-100 
Stringlnfo class, 100-104 

System.Resources, 105-118 
finding missing classes with re

flection program, 118-121 
ResourceManager class of, 105-107 
ResourceReader class of, 108-109, 

115 
ResourceSet class of, 110-113, 115 
ResourceWriter class of, 113-115 
ResX classes of, 115-118 

System.Threading, 121-123 
Thread.CurrentThread.Current

Culture class, 121, 122 
Thread.CurrentThread.CurrentUI

Culture class, 121, 122-123 
See also System. Globalization name

space 



naming, text resource files, 123 
National Language Support (NLS) locale 

identifier, 69 
.NET versioning, 314-321 

application configuration file, 318 
machine configuration file, 319-320 
Microsoft version numbering, 315 
multiple satellite versions, 315-318 
publisher policy configuration file, 

318-319 
NLS (National Language Support) locale 

identifier, 69 
Number Format property of Culturelnfo 

class, 80-81 
NumberFormatlnfo class, 89-91 
numbers 

0 

format specifiers for, 81 
formatting, 23-27 
phone numbers, 14 
verifying correct display oflocalized, 

259-260 

Option Strict option, 168-169 

p 

ParseCombiningCharacters function of 
Stringlnfo class, 101-102 

PDA editors, 335 
phone numbers, 14 
picture button event handler, 206-209 
picture list box event handler, 204-205 
platform considerations for localized 

code, 329 
programming 

avoiding slang in, 7 
creating complex strings for ease of 

translation, 6-7 
designing 

error handling in, 2 
resource files in ResourceManager 

class, 105-107 
userscreens,16-17 

eliminating hard-coded strings 
error strings, 273-274 
initializing controls with strings, 

244-246 

overview, 243-244, 275 
installation coding, 330 
translating resource files, 324-328 
Unicode, 32-33 

Public Key Token, 306-307 
publisher policy configuration file, 

318-319 
R 
readability ofVB 6 resource files, 38 
Regionlnfo class, 91-100 

about, 91 
constructors for, 96-97 
CurrencySymbol property, 97 
CurrentRegion property, 97 
DisplayName, EnglishName, and 

Name properties, 98 
IsMetric property, 98 
ISO codes and LCID codes by coun-

try/region, 92-96 
ISOCurrencySymbol property, 97 
table generator program using, 98-100 
ThreeLetteriSORegionName, 

TwoLetteriSORegionName, 
ThreeLetterWindowsRegion 
Name properties, 98 

religious significance of colors, 4 
remove button event handler, 205-206 
ResEditor project 

C# 
constants class, 214-215 
starting, 213-215 

generating satellite DLLs for, 268-269 
icons representing default language 

of, 264 
renaming controls, 244 
saving localized resource files, 265, 

267 
text resources needed for, 263 
Visual Basic .NET 

adding constants and enumerators 
to ResEdit form, 169-170 

adding menus to ResEditor form, 
164 

exiting ResEditor form, 17 4 
placing controls on Final tab 

screen of form, 166-168 
starting, 161-168 

ResGen.exe utility, 136-138, 157 
limitations of, 137 
uses of, 136-137 

Index 

345 



Index 

346 

Reslmage class 
enhancing to hold icon, 24 7-255 
example code for, 214-215 

Reslmages collection class, 227-229 
resource editors, 159-242 

about, 159-161 
available .NET, 159 
C#,213-242 

entering code for ResUtil class, 
216--226 

handling events, 241-242 
making custom collection class, 

226--230 
providing display resources manip

ulation code, 230-240 
starting ResEditor project, 213-215 

localization of, 243-276 
displaying cultures in native lan

guage,259-262 
enhancing Reslmage class, 247-255 
finalizing code in resource man

ager, 267-274 
initializing controls with strings, 

244-246 . 
laying out task, 243-244 
localizing resource file for multiple 

languages, 262-267 
manually adding icon, 255-258 
overview, 243, 275-276 
renaming controls in ResEdit 

project, 244 
testing program, 27 4-275 

Visual Basic .NET, 161-212 
adding constants and enumera

tors, 169-170 
generating resource handler class, 

174-188 
importing file resources to pro

gram, 203-209 
integrating display with ResUtil 

class events, 199-202 
loading form and setting up text 

grid control, 171-17 4 
localizing controls, 168 
Option Strict option, 168-169 
saving data, 209-212 
starting ResEditor project, 161-168 

resource file tools, 135-157 
al.exe, 138-140,157,321 
CSC.exe, 139, 157 
IDE forms designer, 140-152, 157 

adding localized controls to forms, 
142-144 

changing localizable properties of 
forms, 141 

reviewing resource files generated 
with,144-152 

ResGen.exe, 136--138, 157 
WinRes.exe, 152-157 

defined, 152 
editor screen, 154 
reviewing program's resource file 

forms, 152-153 
XML Designer, 135-136, 157 

resource files, 5-11 
about, 5 
creating with Resource Writer class, 

113-115 
directory structure needed to find, 268 
displaying icons in, 24 7 
eliminating hard-coded error strings, 

273-274 
embedding in executable, 139 
handling idiomatic differences in, 50 
loading all resources for culture, 

110-113 
localizing for multiple languages, 

262-267 
managed and nonmanaged method 

of calling, 10-11 
modifying methods for saving icon in, 

250-255 
multiple VB 6, 35-62 

about, 25-26, 35 
adding new languages, 49-57 
arguments of LoadStringO call, 

43-44 
example code for, 44-45 
external resource compiler, 36--37 
GetString.bas example for, 41-44 
improving readability of, 38 
limitations of, 36 
making external resource files, 

39-40 
making string definition file, 45-49 
overview, 40-41 
starting program and choosing lan

guage,57-62 
test form for, 46 

opening and listing resource keys in, 
108 

for ResourceManager class, 105-106 
retrieving strings from in VB.NET, 

8-10 
reviewing IDE-generated, 144-152 

incremental form resource file, 
144-147 

retrieving resources with Window 
generated code, 150-151 

satellite 
creating, 138 
generating for ResEditor project, 

268-269 
using multiple versions, 315-318 



saving 
data in, 209-212 
localized, 265, 267 

strings in, 5-8 
text-based .NET, 324-325 
translating, 324-328 

checking out translation services, 
325-326 

setting up for ease of translation, 
323-324 

types of translation programs, 
326-328 

types of, 123-127 
ResX, 124-127 
Text, 123-124 
XM:L, 128-134 

versioning, 305-322 
implicit security, 306-314 
in .NET, 314-321 
overview, 305,321-322 
tools for, 322 

XML, 115-118 
resource handler class, 174-188 

completed code for ResUtil class 
module, 188-199 

constructors and properties for 
ResUtil, 177-180 

entering Image Wrapper class, 
175-177 

getting and saving data, 187-188 
input/ output resource files methods 

for ResUtil class, 180-187 
resource managers, 267-274 

adding in ColdHotel project, 283 
creating in VB and C#, 269-274 
directory structure needed to find 

resource files, 268 
generating satellite files, 268-269 
instantiating, 270-271 
steps before using, 267 

resource sets, 110-113 
ResourceManager class, 105-107 
ResourceReader class, 108-109, 115 
.resources files, 124-127 
ResourceSet class, 110-113, 115 
ResourceWriter class, 113-115 
ResUtil class 

generating resource handler class, 
174-188 

completed code for ResUtil class 
module, 188-199 

constructors and properties for 
ResUtil, 177-180 

entering Image Wrapper class, 
175-177 

getting and saving data, 187-188 

input/output resource files meth
ods, 180-187 

integrating display with class events, 
199-202 

getting resources for open and 
append menu functions, 
199-201 

showing and arranging pictures on 
tab,201-202 

modifying save methods to save as 
icon or bitmap image, 250-255 

ResX classes, finding missing, 118-121 
ResXresource files, 124-127 

defined, 124 
ResXReader and writer, 116-117 

ResXResourceReader class, 115-118 
ResXResourceSet class, 115-118 
ResXResourceWriter class, 115-118 

s 
sacred colors, 4 
satellite resource files 

creating, 138 
displaying strings in Web form with, 

300-301 
generating for ResEditor project, 

268-269 
SaveData method, 187-188 
SaveToBinaryFile method, 252-255 
SaveToXMLFilemethod,251-254 
saving 

data, 209-212 
code handling controls on third tab 

page,210-212 
display of output resource file 

names,212 
filling in basic information fields, 

209-210 
in VB .NET resource handler, 

187-188 
icon in resource file, 250-255 
localized resource files, 265, 267 

security, 306-314 
about GAC and Public Key Token, 

306-307 
full strong name for assembly, 

313-314 
installing program in GAC, 307-312 
types of, 305 
using GAC resource file, 313 
See also versioning resource files 

simple names, 308 
simple strings, 5-6 

Index 

347 



Index 

348 

slang, 7, 17 
sn.exe (strong name tool), 307,321 
Solution Explorer pane 

files for ColdHotel project, 278 
showing files needed for ResEditor 

project inC#, 213 
viewing all files in, 162 
viewing localized form resource with, 

141,142 
sort order oflanguages, 27-28 
StatusBarPanel Collection Editor, 164 
string definition file, 45-49 

adding constants referring to resource 
file,46 

making form and loading strings, 
46-47 

switching languages, 4 7 
Stringlnfo class, 100-104 

about, 100 
constructor for, 100 
GetNextTextElement property, 101 

strings 
abbreviations, 7-8 
about Stringlnfo class, 100 
avoiding slang in, 7, 17 
complex, 6-7 
displaying in ColdHotel Web form, 

295-302 
eliminating hard-coded 

error strings, 273-274 
initializing controls with strings, 

244-246 
overview, 243-244, 275 

InitStrings method to get from 
resource manager, 271-273 

loading language strings to drop
down list box, 283-284 

regional string values in Windows cul
ture identifiers, 69, 70-73 

retrieving from resource files in 
VB.NET, 8-10 

sorting order for, 27-28 
translating, 5-6, 13-15, 17 

Strings.rc resource file, 58-59 
strong name tool (sn.exe), 307,321 
strong names 

about, 307 
assigning assemblies full, 313-314 
.NET versioning and, 314 

System. Globalization namespace, 63-104 
about interfaces and classes, 63-64 
Calendar class, 65-69 
calendar implementations in, 22 
Culturelnfo class, 69-73 

Calendar property of, 81 
CurrentCulture member of, 74-75 

CurrentUICulture member of, 74, 
75 

DateTimeFormat property of, 
77-80 

DisplayName property of, 82 
EnglishName property of, 82 
GetFormat and GetType methods 

for, 84-85 
lnstalledUICulture member of, 74, 

75-76 
InvariantCulture member of, 74, 

76-77 
language standards, 84 
LCID property of, 82 
Name property of, 83 
Number Format property of, 80-81 
Textlnfo property, 83-84 

DateTimeFormatlnfo class, 85-89 
Currentlnfo property for, 86-87 
format patterns supported by, 

87-89 
Invariantlnfo property for, 87 

defined, 64-65 
NumberFormatlnfo class, 89-91 
Regionlnfo class, 91-100 

about, 91 
constructors for, 96-97 
CurrencySymbol property, 97 
CurrentRegion property, 97 
DisplayName, EnglishName, and 

Name properties, 98 
IsMetric property, 98 
ISO codes and LCID codes by 

country/region, 92-96 
ISOCurrencySymbol property, 97 
table generator program using, 

98-100 
ThreeLetteriSORegionName, 

TwoLetteriSORegionName, 
ThreeLetterWindowsRegion 
Name properties, 98 

Stringlnfo class, 100-104 
about, 100 
constructor for, 100 
GetNextTextElement property, 101 
GetTextElementEnurnerator 

function, 101 
ParseCombiningCharacters 

function, 101-102 
parsing strings code example, 

102-104 
System.Resources namespace, 105-118 

finding missing classes with reflection 
program, 118-121 

ResourceManager class of, 105-107 
ResourceReader class of, 108-109, 115 



ResourceSet class of, 110-113, 115 
ResourceWriter class of, 113-115 
ResXResourceReader, 

ResXResourceSet, 
ResXResourceWriter classes, 
115-118 

System. Threading namespace, 121-123 
Thread.CurrentThread.Current

Culture class, 121, 122 
Thread.CurrentThread.CurrentUI

Culture class, 121, 122-123 

T 
Tab page Collection Editor screen, 163 
tab pages, 165-168, 201-202,209-212 
tables 

attached to grid, 173-17 4 
Regionlnfo class program generating, 

98-100 
tags for XMLforms, 127-128 
tcResource_Click method, 261-262 
testing 

ColdHotel project in browser, 293-295 
localization ofresource editor, 

274-275 
localized code, 328-330 

hardware issues for, 329-330 
overview, 328 
platform considerations, 329 

text 
alternate language text for ResEditor 

program, 266 
creating multilingual resource files, 

48-49 
entering text resources for ResEditor 

program,263-264 
loading error text from resource file, 

274 
Text resource file format, 123-124 
translation and length of strings, 

13-15,17 
See also languages 

text box localization, 23 
text extractors, 327-328 
text grid 

importing resource files to, 203-204 
loading form and setting up, 171-17 4 
table attached to, 173-17 4 

Text resource file format, 123-124 
TextElementEnumerator, 101 
Textlnfo property of Culturelnfo class, 

83-84 
Thread.CurrentThread.CurrentCulture 

class, 121, 122 
Thread.CurrentThread.CurrentUICulture 

class, 121, 122-123 
ThreeLetteriSOLanguageName member 

of Culture Info class, 84 
ThreeLetteriSORegionName property of 

Regionlnfo class, 98 
ThreeLetterWindowsLanguageName 

member of Culturelnfo class, 
84 

ThreeLetterWindowsRegionName prop-
erty of Regionlnfo class, 98 

time 
format patterns supported by 

DateTimeFormatlnfo class, 87 
format specifiers for, 78 
formatting international, 17-18 
localization issues and, 1, 68 
pattern specifiers for DateTimelnfo, 

88 
verifying localized, 259-260 

tools 
al.exe, 138-140, 157,321 
CSC.exe, 139, 157 
IDE forms designer, 140-152, 157 
ResGen.exe, 136-138, 157 
for versioning resource files, 322 
WinRes.exe, 152-157 

translating resource files, 324-328 
checking out translation services, 

325-326 
creating complex strings for trans-

lation ease, 6-7 
length of strings, 13-15, 17 
machine translation services, 334 
setting up for ease of translation, 

323-324 
types of translation programs, 

326-328 
translation software, 327 
1\voLetteriSOLanguageName member of 

Culturelnfo class, 84 
1\voLetteriSORegionName property of 

Regionlnfo class, 98 
JYpe property, 24 7 

Index 

349 



Index 

350 

u 
Unicode, 29-33 

about, 29-30 
code page usage in, 30-31 
defining start of each character in 

string, 101-104 
identifying by data type, 32-33 
programming with, 32-33 
relating double-byte character sets to, 

31-32 
standards for, 334 

UniEdit, 335 

v 
VB Collection class, 170 
versioning resource files, 305-322 

implicit security, 306-314 
about GAC and Public Key Token, 

306-307 
full strong name for assembly, 

313-314 
installing program in GAC, 307-312 
using GAC resource file, 313 

in .NET, 314-321 
about, 314-315 
Microsoft version numbering, 315 
multiple satellite versions, 315-318 
redirecting assembly version with 

policy file, 320-321 
with application configuration file, 

318 
with machine configuration file, 

319-320 
with publisher policy configuration 

file, 318-319 
overview,305,321-322 
tools for, 322 

Visual Basic 6 
clearing errors when making DLL, 62 
event -handling for 

SelectlndexChanged event, 
285 

formatting dates in, 19-20 
loading language strings to drop

down list box, 283-284 
making resource manager, 269-27 4 
multiple resource files, 35-62 

about, 25-26, 35 
adding new languages, 49-57 
arguments ofLoadString() call, 

43-44 
example code for, 44-45 
external resource compiler, 36-37 
GetString.bas example for, 41-44 
improving readability of, 38 
limitations of, 36 
making external resource files, 

39-40 
making string definition file, 45-49 
overview, 40-41 
starting program and choosing lan-

guage,57-62 
resource reader in, 113-114 
ResXReader and writer, 116-117 
saving picture to XML resource file, 

130 
using loose resources, 125-126 
using resource sets, 111 
WinHelp, 323-324 
See also Visual Basic .NET 

Visual Basic .NET 
AddPic method for manually adding 

graphics,256-257 
calendar implementations in 

System. Globalization name
space,22 

changing numeric format for current 
culture, 90, 91 

code for ColdHotel class and control 
definitions,280-283 

converting icon to bitmap image, 
247-255 

Currentlnfo property in 
DateTimeFormatlnfo class, 
86-87 

defining 
calendar and manipulating dates, 

65-66 
CurrentCulture member of 

Culturelnfo class in, 74-75 
designing programs for localization, 

156-157 
formatting 

dates in, 20,21 
numbers and currency, 24-27 

InitStrings method for ResEdit project, 
245 

parsing strings in, 103-104 



resource dump program, 108-109, 115 
resource editor 

adding constants and enumera
tors, 169-170 

existing, 159 
generating resource handler class, 

174-188 
importing file resources to pro

gram, 203-209 
integrating display with ResUtil 

class events, 199-202 
loading form and setting up text 

grid control, 171-17 4 
localizing controls, 168 
Option Strict option, 168-169 
saving data, 209-212 

sample GetFormat and GetType 
methods in, 85 

SaveToBinaryFile and SaveToXMLFile 
methods,251-252,253 

table generator program using 
Regionlnfo class, 98-99 

ToLongDate functions, 78-79 
See also System. Globalization name

space; Visual Basic 6 
Visual Studio XML Designer, 135-136, 

157 

w 
web applications, 277-303 

adding resource manager in, 283 
Coldest Hotel ASP page, 280 
directory structure for example, 297 
event-handling code for, 285-295 
generating strings with resource edi-

tor, 296-300 
installing source files in directories, 

277,278 
namespaces for, 280-281 
overview of, 277-280 
setting up form and adding controls, 

277-280 
testing in browser, 293-295 

web sites 
for editors, 335 
fonts, 334 

general globalization, 333 
internationalization standards, 

334-335 
machine translation services, 334 

Windows forms designer, 159 
Windows Forms resource editors 

available .NET resource editors, 
159-161 

C#, 213-242 
entering code for ResUtil class, 

216-226 
handling events, 241-242 
making custom collection class, 

226-230 
providing display resources manip

ulation code, 230-240 
starting ResEditor project, 213-215 

Visual Basic .NET, 161-212 
adding constants and enumera

tors, 169-170 
generating resource handler class, 

174-188 
importing file resources to pro

gram,203-209 
integrating display with ResUtil 

class events, 199-202 
loading form and setting up text 

grid control, 171-174 
localizing controls, 168 
Option Strict option, 168-169 
saving data, 209-212 
starting ResEditor project, 161-168 

Windows IDE resource editor, 159 
WinHelp, 323-324 
WinRes.exe, 152-157 

defined, 152 
editor screen, 154 
reviewing program's resource file 

forms, 152-153 
setting environmental variables for, 

152 
Wrapper class, 175-176 

X 
XML Designer, 135-136, 157 
XML resource files, 127-134 

aboutXML,127-128 

Index 

351 



Index 

352 

XML resource files (continued) 
with bitmap image, 132-134 
output for, 128-129 
.resX,124 
ResXResourceReader, 

ResXResourceSet, 
ResXResourceWriter classes, 
115-118 

saving picture to, 130-132 
See also resource file tools 



Announcing About VS.NET-
the f.-ee Apress .NET a-newsletter with great 
.NET news, information, code-and attitude 

We guarantee that this isn't going to be your typical boring e-newsletter with 
just a list ofURLs (though it will have them as well). 

Instead, About VS.NET will contain contributions from a whole slate of top 
.NET gurus, edited by award-winning, best-selling authors Gary Cornell and 
Dan Appleman. Upcoming issues will feature articles on: 

• Best coding practices in ADO.NET 

• The hidden "gotchas" in doing thread programming in VB.NET 

• Why C# is (not) a better choice than VB. NET 

• What Java can learn from C# and vice versa 

About VS.NETwill cover it all! 

This free e-newsletter will be the easiest way for you to get up-to-date .NET 
information delivered to your In box every two weeks-more often if there's 
breaking news! 

Books for professionals by professionalsTM 
www.apress.com 

ApressTM 



Apress Titles 
ISBN PRICE AUTHOR TITLE 

1-893115-73-9 $34.95 Abbott Voice Enabling Web Applications: VoiceXML 
and Beyond 

1-893115-01-1 $39.95 Appleman Appleman's Wm32 API Puzzle Book and Thtorial for 
Visual Basic Programmers 

1-893115-23-2 $29.95 Appleman How Computer Programming Works 

1-893115-97-6 $39.95 Appleman Moving to VB. NET: Strategies, Concepts, and Code 

1-893115-09-7 $29.95 Baum Dave Baum's Definitive Guide to LEGO 
MIND STORMS 

1-893115-84-4 $29.95 Baum, Gasperi, Extreme MINDSTORMS: An Advanced Guide to 
Hempel, and Villa LEGO MINDSTORMS 

1-893115-82-8 $59.95 Ben -Gan/Moreau Advanced Transact -SQL for SQL Server 2000 

1-893115-48-8 $29.95 Bischof The .NET Languages: A Quick Translation Guide 

1-893115-67-4 $49.95 Borge Managing Enterprise Systems with the Wmdows 
Script Host 

1-893115-28-3 $44.95 Challa/Laksberg Essential Guide to Managed Extensions for C++ 

1-893115-44-5 $29.95 Cook Robot Building for Beginners 

1-893115-99-2 $39.95 Cornell/Morrison Programming VB .NET: A Guide for Experienced 
Programmers 

1-893115-72-0 $39.95 Curtin Developing Trust: Online Privacy and Security 

1-59059-008-2 $29.95 Duncan The Career Programmer: Guerilla Tactics for an 
Imperfect World 

1-893115-71-2 $39.95 Ferguson Mobile.NET 

1-893115-90-9 $44.95 Finsel The Handbook for Reluctant Database 
Administrators 

1-893115-85-2 $34.95 Gilmore A Programmer's Introduction to PHP 4.0 

1-893115-36-4 $34.95 Goodwill Apache Jakarta-Tomcat 

1-893115-17-8 $59.95 Gross A Programmer's Introduction to Wmdows DNA 

1-893115-62-3 $39.95 Gunnerson A Programmer's Introduction to C#, Second 
Edition 

1-893115-30-5 $49.95 Harkins/Reid SQL: Access to SQL Server 

1-893115-10-0 $34.95 Holub Taming Java Threads 

1-893115-04-6 $34.95 Hyman/Vaddadi Mike and Phani's Essential C++ Techniques 

1-893115-96-8 $59.95 Jorelid J2EE FrontEnd Technologies: A Programmer's 
Guide to Servlets, JavaServer Pages, and Enterprise 
JavaBeans 

1-893115-49-6 $39.95 Kilburn Palm Programming in Basic 

1-893115-50-X $34.95 Knudsen Wrreless Java: Developing with Java 2, Micro 
Edition 

1-893115-79-8 $49.95 Kofler Definitive Guide to Excel VBA 



ISBN PRICE AUTHOR TITLE 

1-893115-57-7 $39.95 Kotler MySQL 

1-893115-87-9 $39.95 Kurata Doing Web Development: Client-Side Techniques 

1-893115-75-5 $44.95 Kurniawan Internet Programming with VB 

1-893115-46-1 $36.95 Lathrop Linux in Small Business: A Practical User's Guide 

1-893115-19-4 $49.95 Macdonald Serious ADO: Universal Data Access with Visual 
Basic 

1-893115-06-2 $39.95 Marquis/Smith A Visual Basic 6.0 Programmer's Toolkit 

1-893115-22-4 $27.95 McCarter David McCarter's VB Tips and Techniques 

1-893115-76-3 $49.95 Morrison C++ For VB Programmers 

1-893115-80-1 $39.95 Newmarch A Programmer's Guide to Jini Technology 

1-893115-58-5 $49.95 Oellermann Architecting Web Services 

1-893115-81-X $39.95 Pike SQL Server: Common Problems, Tested Solutions 

1-893115-20-8 $34.95 Risch pater Wireless Web Development 

1-893115-93-3 $34.95 Risch pater Wireless Web Development with PHP and WAP 

1-893115-89-5 $59.95 Shemitz Kylix: The Professional Developer's Guide and 
Reference 

1-893115-40-2 $39.95 Sill An Introduction to qmail 

1-893115-24-0 $49.95 Sinclair From Access to SQL Server 

1-893115-94-1 $29.95 Spolsky User Interface Design for Programmers 

1-893115-53-4 $39.95 Sweeney Visual Basic for Testers 

1-59059-002-3 $44.95 Symmonds Internationalization and Localization Using 
Microsoft .NET 

1-893115-29-1 $44.95 Thomsen Database Programming with Visual Basic .NET 

1-893115-65-8 $39.95 Tiffany Pocket PC Database Development with eMbedded 
Visual Basic 

1-893115-59-3 $59.95 Troelsen C# and the .NET Platform 

1-893115-26-7 $59.95 Troelsen Visual Basic .NET and the .NET Platform 

1-893115-54-2 $49.95 Trueblood/Lovett Data Mining and Statistical Analysis Using SQL 

1-893115-16-X $49.95 Vaughn ADO Examples and Best Practices 

1-893115-68-2 $49.95 Vaughn ADO.NET and ADO Examples and Best Practices 
for Visual Basic Programmers, Second Edition 

1-59059-012-0 $34.95 Vaughn/Blackburn ADO.NET Examples and Best Practices for C# 
Programmers 

1-893115-83-6 $44.95 Wells Code Centric: T-SQL Programming with Stored 
Procedures and Triggers 

1-893115-95-X $49.95 Welschenbach Cryptography in C and C++ 

1-893115-05-4 $39.95 Williamson Writing Cross-Browser Dynamic HTML 

1-893115-78-X $49.95 Zukowski Definitive Guide to Swing for Java 2, Second 
Edition 

1-893115-92-5 $49.95 Zukowski Java Collections 

Available at bookstores nationwide or from Springer Verlag New York, Inc. at 1-800-777 -4643; 
fax 1-212-533-3503. Contact us for more information at sales@apress. com. 



Apress Titles Publishing SOON! 
ISBN AUTHOR 
1-893115-91-7 Birmingham/Perry 

1-893115-39-9 Chand 

1-893115-42-9 Foo/Lee 

1-893115-55-0 Frenz 

1-59059-009-0 Harris/Macdonald 

1-59059-016-3 Hubbard 

1-893115-38-0 Lafler 

1-893115-43-7 Stephenson 

1-59059-007-4 Thomsen 

1-59059-010-4 Thomsen 

1-59059-011-2 'Iroelsen 

1-893115-98-4 Zukowski 

TITLE 

Software Development on a Leash 

A Programmer's Guide to ADO.NET inC# 

XML Programming Using the Microsoft XML Parser 

Visual Basic for Scientists 

Moving to ASP.NET 

Wmdows Forms inC# 

Power AOL: A Survival Guide 

Standard VB: An Enterprise Developer's Reference for VB 6 
andVB.NET 

Building Web Services with VB .NET 

Database Programming with C# 

COM and .NET lnteroperability 

Learn Java with ]Builder 6 

Available at bookstores nationwide or from Springer Verlag New York, Inc. at 1-800-777 -4643; 
fax 1-212-533-3503. Contact us for more information at sales@apress.com. 



A press™ 
The Ultimate .NET Resource 

Apress is committed to helping developers with all their .NET needs. Whether you're 
looking for information on C#, or how to make the transition from earlier versions of 
Visual Basic to VB. NET, or just looking for general .NET information, Apress will be 

there. Check out our .NET area on www.apress.com for more .NET news and 
information. And, while you're there, see how readers of our books can register for our 

free electronic .NET update program to their books. 

ISBN: 1-893115-59-3 $59.95 ISBN: H393115-97-6 $39.95 

C# and the 
.Net Platform 

Programming VB.NU: 
l a-. lor~ rr.unnmm 

- -----
--- --------·----.. - .. __ 

Moving to VB.NET: 
Slraleales. Concepts. and Code 

A Programmer's 
lntroducuoo to C#, 

Second Edition 

. --·---

ISBN: 1-893115-99-2 $39.95 ISBN: 1-893115-62·3 $39.95 

Books for professionals by professionals'· 
www.apress.com 

Available at bookstores nationwide or from Springer-Verlag New York, Inc. 

at 1-800-777-4643; fax 1-212-533-3503. 

Contact us for more information at sales@apress.com. Apress'M 



books for professionals by professionals™ 

Apress™ 
About Apress 

Apress, located in Berkeley, CA, is an innovative publishing company devoted to meeting the 
needs of existing and potential programming professionals. Simply put, the"!\' in Apress 
stands for the ·~uthor's Press~." Apress' unique author-centric approach to publishing grew 
from conversations between Dan Appleman and Gary Cornell, authors of best -selling, highly 
regarded computer books. In 1998, they set out to create a publishing company that 
emphasized quality above all else, a company with books that would be considered the best 
in their market. Dan and Gary's vision has resulted in over 30 widely acclaimed titles by some 
of the industry's leading software professionals. 

Do You Have What It Takes 
to Write for Apress? 

Apress is rapidly expanding its publishing program. If you can write and refuse to 
compromise on the quality of your work, if you believe in doing more than rehashing existing 
documentation, and if you're looking for opportunities and rewards that go far beyond those 
offered by traditional publishing houses, we want to hear from you! 

Consider these innovations that we offer all of our authors: 

• Top royalties with no hidden switch statements 
Authors typically only receive half of their normal royalty rate on foreign sales. In contrast, 
Apress' royalty rate remains the same for both foreign and domestic sales. 

• A mechanism for authors to obtain equity In Apress 
Unlike the software industry, where stock options are essential to motivate and retain 
software professionals, the publishing industry has adhered to an outdated compensation 
model based on royalties alone. In the spirit of most software companies, Apress reserves a 
significant portion of its equity for authors. 

• Serious treatment of the technical review process 
Each Apress book has a technical reviewing team whose remuneration depends in part on 
the success of the book since they too receive royalties. 

Moreover, through a partnership with Springer-Verlag, one of the world's major publishing 
houses, Apress has significant venture capital behind it. Thus, we have the resources to 
produce the highest quality books and market them aggressively. 

If you fit the model of the Apress author who can write a book that gives the "professional 
what he or she needs to know'"," then please contact one of our Editorial Directors, Gary 
Cornell (gary_cornell@apress.com), Dan Appleman (dan_appleman@apress.com), Karen 
Watterson (karen_watterson@apress.com) or Jason Gilmore (jason_gilmore@apress.com) for 
more information. 




