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Preface 

The objective of this dissertation is to advance the state-of-the-art in the 

kinematic modeling, identification, and control of robotic manipulators with 

rigid links in an effort to improve robot kinematic performance. 

The positioning accuracy of commercially-available industrial robotic 

manipulators depends upon a kinematic model which describes the robot 

geometry in a parametric form. Manufacturing error in the machining and 

assembly of manipulators lead to discrepancies between the design 

parameters and the physical structure. Improving the kinematic perfor­

mance thus requires the identification of the actual kinematic parameters of 

each individual robot. The identified kinematic parameters are referred to as 

the arm signature. 

Existing robot kinematic models, such as the Denavit-Hartenberg 

model, are not directly applicable to kinematic parameter identification. In 

this dissertation we introduce a new kinematic model, called the 5-Model, 

which is applicable to kinematic parameter identification, and use it as the 

foundation for our development of a general technique for identifying the 

kinematic parameters of any robot with rigid links. 

The objective of our 5-Model identification algorithm is to estimate the 

S-Model kinematic parameters from a set of mechanical features which are 

inherent to the manipulator. Each revolute joint possesses two such features 
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and each prismatic joint possesses one. These features contain the essential 

information to model completely the kinematics of a manipulator. The initial 

step of the algorithm involves the explicit identification of the feature 

parameters. Each feature is identified in an independent procedure and is 

based upon measurements of the three-dimensional Cartesian positions of 

target points mounted on each of the links of the manipulator. A relatively 

simple and systematic method for collecting these measurements is one of 

the practical advantages of our approach. The identified feature parameters 

are then used to establish the positions and orientations of Cartesian coor­

dinate frames fixed relative to each link of the manipulator in accordance 

with the definition of the 5-Model. The parameters of the 5-Model are then 

computed from the estimated link coordinate frame locations. Finally, the 

Denavit-Hartenberg parameters for the manipulator are extracted from the 

identified 5-Model parameters. 

We have implemented a complete prototype arm signature identifica­

tion system and have applied it to identify the signatures and control the 

end-effector of seven Unimation/Westinghouse Puma 560 robots. Evalua­

tion of the experimental results has demonstrated consistent and significant 

improvements in the kinematic performance of all the robots tested. 
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KINEMATIC MODELING, IDENTIFICATION, 
AND 

CONTROL OF ROBOTIC MANIPULATORS 



1.1. Overview 

Chapter 1 

Introduction 

This dissertation describes the development of a general technique for 

identifying kinematic parameters of serial link robotic manipulators and for 

improving their kinematic performance. The research described here ad­

dresses three problems in robot kinematics: modeling, parameter identification, 

and control. Accurate robot kinematic models are needed to improve the 

positioning and orienting accuracy of commercially available robotic 

manipulators. The strong inter-relationships between the parameters of cur­

rently formulated kinematic models makes it extremely difficult to apply 

and guarantee the convergence of standard parameter estimation techniques 

such as least-squares. Thus, kinematic models which simplify the identifica­

tion process are needed. Kinematic models of manipulators with revolute 

joints are inherently nonlinear and identification algorithms must be capable 

of accurately identifying the nonlinear kinematic parameters. Since the iden­

tified models will not possess closed-form inverse solutions, new methods 

for designing and implementing robot kinematic control algorithms must be 

developed, which incorporate the identified kinematic parameters, to im­

prove robot kinematic performance. 

This introduction discusses the significance of these problems and the 

motivation for the research (in Section 1.2), and highlights goals and con­

tributions (in Section 1.3). The introduction closes with an outline of the 

dissertation (in Section 1.4). 



2 INTRODUCTION 

1.2. Motivation 

Robotic manipulators are articulated open chains of serially connected 

links. An n degree-of-freedom (OOF) manipulator has n independent joints 

and n+l links. The i th joint connects the i-l th and i th links and has one 

degree-of-freedom. The joints can either be prismatic or revolute. Actuation 

of a prismatic joint translates the link along the joint axis, while actuation of a 

revolute joint rotates the link about the joint axis. The base link, Link 0, is 

rigidly attached to a mounting surface and the end-effector, Link n, is free to 

move in accordance with the actuation of the n joints. Industrial 

manipulators are currently used primarily as positioning devices (e.g., for 

pick and place operations). In these applications, accuracy of the Cartesian 

position and orientation of the end-effector is the control objective. 

The design and implementation of robot manipulators require plan­

ning of the desired trajectory, followed by analysis of the kinematic and 

dynamic characteristics to develop a control system [1B}. Trajectory planners 

operate in one of two modes depending upon whether the robot is 

programmed with respect to a coordinate frame or programmed in a move­

and-teach scenario. When they are programmed with respect to a coordinate 

frame, heuristics are applied to compute temporal sequences of the end­

effector's Cartesian position and orientation from high-level task descrip­

tions. In a move-and-teach scenario, curve-fitting algorithms are used to 

compute a joint space trajectory from a series of manually-recorded robot 

configurations. Kinematic control, which is the solution of the inverse 

kinematic problem (IKP), computes the set of joint positions from the desired 

Cartesian position of the end-effector. Dynamic control computes the control 

forces and/or torques, which are required to produce the motion specified 

by the joint space trajectories. The performance of robotic manipulators 

depends upon all three of these factors. This dissertation focuses upon the 
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kinematic modeling, identification, and control of industrial robotic 

manipulators for improved positioning accuracy. The design and analysis of 

trajectory planners and dynamic controllers are beyond the scope of this 

disserta tion. 

Kinematic models are required for the analysis and design of robot 

controllers. Kinematic models describe the static relationships between the 

joint positions and the Cartesian position and orientation of the end-effector. 

These relationships are usually expressed in terms of parametric relations 

among joint positions and orientations [5,20,26,32]. Increasing the number 

of revolute joints in a manipulator dramatically increases the complexity of 

the kinematics. The physical interpretation and systematic structure of the 

Denavit-Hartenberg model [5] have led to its widespread use in robot control. 

The inverse kinematic problem described above uses the parametric 

kinematic model to compute the required joint positions for positioning of 

the robot arm. 

Conventional robot positioning systems rely on the kinematic model to 

predict the end-effector position and orientation when only the joint posi­

tions are known. Whereas sensory feedback techniques are more appealing, 

the real-time measurement of the end-effector's position and orientation is 

impractical. In practice, engineers neglect gear backlash, friction, link com­

pliance, encoder resolution, joint wobble, and manufacturing errors in for­

mulating a kinematic robot model. Standard practice in robot control is to 

use the kinematic parameters specified in the robot manufacturer's design, 

rather than the actual kinematic parameters that emerge from the manufac­

turing process. This approach simplifies the modeling task and facilitates 

the implementation of ideal inverse kinematic algorithms for control. In par­

ticular, use of an idealized model leads to a closed-form inverse kinematic 

solution. This dissertation describes a method for identifying the kinematic 
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parameters of robotic manipulators, evaluates an implementation of the 

method, and considers the overall improvement in end-effector positioning 

and orienting accuracy. 

In the past, positioning errors introduced by the mismatch between the 

actual kinematics and the kinematic model have been overshadowed by 

more fundamental inadequacies of robotic systems. Over the past decade, 

however, marked improvements have been made in the accuracy, reliability, 

and dynamic performance of robots. There now exists a need to develop 

kinematic control algorithms to improve robot performance [23]. The fact 

that engineers often program robots in a move-and-teach mode, thereby cir­

cumventing the kinematic controller, to increase positioning accuracy reaf­

firms this realization and provides further motivation for this dissertation. 

Interest in the kinematic modeling problem has led to the analysis of 

kinematic modeling errors and a number of schemes have been proposed for 

their identification [4,8, 13, 14, 15,30,31]. Most of these schemes have not 

been implemented and evaluated. 

1.3. Dissertation Goals and Contributions 

This dissertation describes the development of new kinematic robot 

models and kinematic parameter identification algorithms for the design of 

controllers to improve robot kinematic performance. These models and al­

gorithms have been implemented and evaluated on standard industrial 

robots. The effects of manufacturing errors upon robot kinematic behavior 

and the design of kinematic control algorithms for industrial robots have 

been analyzed using simulation tools and compared with experimental 

results. 

This dissertation contributes to four areas of robotics: 
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• Kinematic Modeling used for the analysis and design of robot con­
trollers. Our research in this area has led to the development of a 
new robot kinematic model, called the S-Model, which is directly 
applicable to the kinematic parameter identification problem. 

• Identification of robot kinematic parameters. Our research in this 
area has led to the development of a practical kinematic 
parameter identification algorithm called the S-Model identifica­
tion algorithm. 

• Kinematic Performance Evaluntion for the assessment and specifica­
tion of robot kinematic accuracy. 

• Kinematic Control for the design and evaluation of recursive con­
trol algorithms for robotic manipulators. 

5 

We anticipate that our research will impact both the mechanical design and 

manufacture of robots and the implementation of advanced control al­

gorithms for industrial manipulators. We have shown that implementation 

of our proposed identification and control algorithms can increase robot per­

formance and thereby expand the range of robotic applications. 

1.4. Dissertation Outline 

This dissertation is organized as follows. In Chapter 2, we review 

robot kinematics, identification, and control. In Chapter 3, we introduce the 

new kinematic model, the S-Model, and derive its relationship to the 

Denavit-Hartenberg model. Then, in Chapter 4, we apply the S-Model to 

formulate the robot arm signature identification algorithm. In Chapter 5, we 

describe two algorithms for solving the inverse kinematic problem and 

evaluate both their computational complexity and numerical accuracy. The 

software and hardware implementation of the S-Model identification algo­

rithm and the subsequent control performance evaluation is presented in 

Chapter 6. In Chapter 7 we use Monte-Carlo simulation techniques to 

evaluate the statistical performance properties of the S-Model identification 
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algorithm. Chapters 3 through 7, which highlight our research, are the major 

contributions of this dissertation. Finally, in Chapter 8, we summarize our 

contributions and identify areas for further research. 



2.1. Overview 

Chapter 2 

Review of Robot Kinematics, 
Identification, and Control 

In this chapter, we review the formulation of robot kinematic models 

and establish robot kinematic control as a framework for the development of 

the dissertation. The fundamental problem in the development of robot 

kinematic models is the use of geometric and trigonometric principles to 

systematically specify the relative positions and orientations of robot joints. 

Approaches to this problem are reviewed in this chapter. Standard terminol­

ogy is used throughout the dissertation. 

2.2. Coordinate Frame Kinematic Models 

Coordinate frame kinematic models are based, conceptually, upon the 

assignment of Cartesian coordinate frames fixed relative to each of the links. 

The spatial transformation between two consecutive link coordinate frames 

is a function of the position of the joint which connects the two links 

together. In robotics, the (4x4) homogeneous transformation matrix intro­

duced by Denavit and Hartenberg [5] and later adopted by Pieper [201 and 

Paul [18] has become the most common approach to describing these spatial 

transformations. A general homogeneous transformation matrix has the 

form 
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r 
Ox ax 

p, 1 ny Oy a y Py 

Dz Oz 8z pz 

0 0 0 1 

(2.1) 

or, in terms of its vector components, 

[~ 
where 

It = 

0 = 

"it = 

is = 

11 "It ~l 0 0 

[nx ny nz]T 

[ox 0y Oz]T 

[ax ay az]T 

[Pxpypz]T 

,and 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Consider the two arbitrary cartesian coordinate frames depicted in 

Figure 2-1. If the matrix1 C defines the spatial transformation from coor­

dinate frame 1 to coordinate frame 2, then the unit direction vectors it, 0, and 

"it specify the orientation of the X, Y, and Z axes of coordinate frame 2 in 

terms of coordinate frame 1, respectively. The vector is specifies the position 

of the origin of coordinate frame 2 with respect to coordinate frame 1. 

The (3x3) orthogonal rotation matrix R(3x3) formed by it, 0, and "it is the 

orientational component of (2.1) and is is the translational component of (2.1). 

The coordinates of a point P in frame 1, Xl = [Xl YI Zl l]T, expressed in terms 

of its coordinates relative to coordinate frame 2, x2 = [l2 h z2 l]T, is 

lUppercase boldface letters (e.g., Tj and Sj ) denote (4x4) homogeneous transformation 
matrices. 
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y 
1 

Frame 1 
X 

1 

Z 2 

X 
2 

Figure 2-1: Two Arbitrary Cartesian Coordinate Frames 

Frame 2 

9 

(2.7) 

The homogeneous transformation matrix (2.1) has a variety of mathematical 

properties which are used extensively in robotics and are presented in [18]. 

The transformation between any two cartesian coordinate frames can 

always be decomposed into a combination of primitive transformations. 

Using Paul's notation, the six primitive transformations are 

• Trans(x, 0, 0) - Translate x units along the X axis. 

• Trans( O,y, 0) - Translate y units along the Y axis . 

• Trans( 0, 0, z) - Translate z units along the Z axis. 

• Rot(x, e) - Rotate theta degrees about the X axis. 

• Rot(y, 9) - Rotate theta degrees about the Yaxis. 

• Rot(z, 9) - Rotate theta degrees about the Z axis. 
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Paul's notation will be used throughout this dissertation. The elements of 

the primitive transformations are evaluated in Appendix A to indicate their 

structure. 

2.2.1. Denavit-Hartenberg Model 

The Denavit-Hartenberg model [5] 

(2.8) 

has become the standard robot kinematic model because of its physical inter­

pretation, strict definition, and multiplicative structure. In (2.8), the (4x4) 

homogeneous transformation matrix Til defines the position and orientation 

of a coordinate frame fixed relative to the last link (n th link or end-effector) 

of a manipulator with respect to a coordinate frame fixed relative to the base 

of the manipulator. Conceptually, the right-hand side of (2.8) describes the 

spatial relationships between coordinate frames fixed relative to each of the 

manipulator links. The Denavit-Hartenberg link coordinate frames, 'l'l for 

;=1, ... ,n , are specified such that the forward transformation matrices Ai are 

prescribed by 

Ai = Ai(qi) = Rot (z,9i)Trans (0, 0, di)Trans (ai,O,O) (2.9) 
Rot (x, C1.i ) • 

The input parameters to the model (2.8) are the n generalized joint coor­

dinates qi' The generalized coordinates are used to represent the joint posi­

tions without explicitly specifying the physical nature of the joint (i.e., 

whether revolute or prismatic). Expanding (2.9) yields 

2Uppercase script letters (e.g., '1i and Si ) denote the symbolic name of a cartesian coordinate 
system. 



REVIEW OF ROBOT KINEMATICS, IDENTIFICATION, AND CONTROL 11 

cosei - sinei cos a; sinei sina; 

ai sinei 
~ 00,9, 1 

sinei cosei cosa; - COSSi sma; 
Ai 0 sin a; d i 

(2.10) 
cosa; 

0 0 0 I 

In (2.9), the transformation Aj from coordinate frame '1i-l to coordinate frame 

'1i is a function of the four Denavit-Hartenberg parameters, 9j , d j , aj , and a? 

An n degree-of-freedom manipulator requires the specification of 4'n 

parameters, n of which are the controllable joint positions. Geometrically, 

the link length, a j , is the length of the common normal between the joint i 

and joint i+l axes. The link twist, Clj , is the angle between the joint i and 

joint i+ 1 axes measured in the plane perpendicular to the common normal to 

the joint axes. The parameter 9 j is the angle, measured in the plane perpen­

dicular to the joint i axis, between the joint axis common normals of the i-l th 

and i th link. The fourth parameter, d j , is the linear displacement between 

the intersections of the link i-l and i axis common normals with the joint i 

axis. Figures 2-2 and 2-3 illustrate the physical definition of these parameters 

for both revolute and prismatic joints, respectively. 

The characteristics of the Denavit-Hartenberg model are immediate 

consequences of the Denavit-Hartenberg convention applied to specify the 

link coordinate frames. The Denavit-Hartenberg convention follows from a 

geometrical analysis of the spatial relationships between consecutive joint 

axes. The Denavit-Hartenberg convention specifies the following link coor­

dinate frame assignments: 

• The Z axis of coordinate frame '1i-l must be parallel to the joint i 
axis. 

3Lowercase letters (e.g., djand I3j) denote scalar parameters. 
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Figure 2-2: Denavit-Hartenberg Parameters for a Revolute Joint. 
Reprinted with permission [18]. 

• The origin of coordinate frame 'li-l must lie on the joint i axis at 
the intersection point of the common normal between the joint i-l 
and joint i axes, and the joint i axis. 

• The X axis of coordinate frame 'li-l must be parallel to the com­
mon normal between the joint i-l and joint i axes. The positive 
direction of the X axis points towards the joint i axis. 

• The Y axis of coordinate frame ~-l is defined by the vector cross 
product of the Z axis unit direction vector with the X axis unit 
direction vector . 

• If the joint i and joint i+ 1 axes intersect, the point of intersection is 
the origin of the 'li-l coordinate frame. 
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Figure 2-3: Denavit-Hartenberg Parameters for a Prismatic Joint. 
Reprinted with permission [18]. 

• If the joint i and joint i+ 1 axes are parallel the origin of the coor­
dinate frame, 'Ii-I is chosen so that the joint distance d i+l for the 
next link is equal to zero. 

• The origin of the base link coordinate frame, '1Q ' coincides with 
the origin of the link 1 coordinate frame '1i. . 

• The origin of the last coordinate frame, ~ , coincides with the 
origin of the next to last coordinate frame ~-l . 

These assignments guarantee the functional form of the Denavit-Hartenberg 

model in (2.8). By using different conventions to specify the link coordinate 



14 REVIEW OF ROBOT KINEMA TICS, IDENTIFICATION, AND CONTROL 

frames, alternative kinematic models with the same multiplicative structure 

as in (2.8) can be formulated. For robots with rigid links and single degree­

of-freedom joints, the model in (2.8) is exact. 

For a revolute joint, the generalized coordinate qj is the joint i position aj 

and the three parameters, d j , aj, and aj are constants. For a prismatic joint, qj 

is the joint i position d j and the three parameters aj , aj, and a j are constants. 

In practice, the joint encoders of a manipulator are typically calibrated such 

that the encoder outputs match the Denavit-Hartenberg joint positions (i.e., 

aj for a revolute joint and d j for a prismatic joint). Without this calibration, 

constant offsets must be introduced to specify the difference between the 

joint positions measured by the encoder and the joint positions defined by 

the Denavit-Hartenberg model. When all of the joint positions are zero, we 

say that the manipulator is in the Denavit-Hartenberg Zero Configuration. 

From a modeling point of view, the Denavit-Hartenberg model has at 

least one potential disadvantage. It can be demonstrated [15,30] that for 

some manipulator geometries the definition of the parameter d j may cause 

elements of the Aj matrices to be '~xtremely large and hence ill-conditioned. 

We have observed such ill-conditione"a Ai matrices with very large elements 

in our identification of real robot kinematic model parameters. This situa­

tion can lead to numerical instabilities depending upon the application and 

the available numerical precision. The ramifications of potentially ill­

conditioned transformation matrices upon the kinematic parameter iden­

tification problem are discussed in Chapter 4. 

The Denavit-Hartenberg parameters are defined according to a concep­

tual model of the kinematics rather than a purely physical model. Thus, the 

link coordinate frames 'Ii may be located at a point external to the physical 

links of the manipulator. This is often the case for manipulators with near 

parallel consecutive joint axes. 
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2.2.2. Whitney-Lozinski Model 

In formulating an approach to the kinematic identification problem, 

Whitney and Lozinski [30] use the model 

where 

Wj = Wj(qj) = Rot(y,Oj)Trans(O,Yj,Zj)Rot(z,"'j) 

Rot(y,Oj)Rot(x,'I'j) , 

(2.11) 

(2.12) 

to describe the rigid body geometric component of the kinematics4. The final 

three transformations in (2.12) constitute a general Roll-Fitch-Yaw (RPY) 

rotational transformation. Expanding (2.12) yields 

Ox Ox ax Px 

Dy Oy ay Py 
Wi = Dz Oz 8z pz 

(2.13) 

0 0 0 1 

where 

nx = cosOjCOS"'jcosOj - sin OJ sin ° , (2.14) 

fly = sin "'jCOS OJ , (2.l5) 

nz = -sin OJ cos "'jCOS OJ - cos OJ sin OJ • (2.16) 

Ox == cos OJ [cos "'j sin OJ sin 'l'j- sin "'j cos 'l'j] + 
sin OJ [cos OJ sin 'l'j] , (2.17) 

0, = sin "'jsin OJ sin 'l'j + cos "'jcos'l'j , (2.18) 

Oz = -sin OJ [cos "'jsin OJ sin 'l'j-sin"'jCOS 'l'j] + 
cos OJ [cos 0jsin'l'j] , (2.19) 

4The complete model used by Whitney and Lozinski for identification also contains a 
non-geometric component. 
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ax = cos 9 i [cos CPi sin 0i cos 'Vi + sin CPi sin 'Vi] + 
sin 9j [cos OJ cos 'V) , (2.20) 

ay = sinCPisinOicos'Vi - cosCPisin'Vi , (2.21) 

az - - sin 9i [cos CPisin gicoS 'Vi + sin CPi sin 'Vi] + 
cos 9j [cos gicos 'Vi] , (2.22) 

Px = zi sin9i , (2.23) 

Py E Yi ,and (2.24) 

Pz = Zicos 9j (2.25) 

In (2.12), the transformation Wj from coordinate frame '1i-l to coordinate 

frame '1i is a function of the six parameters, 9j , Yj' Zj , CPj, 0i' and 'Vi. An n 

degree-of-freedom manipulator requires the specification of 6·n parameters, 

n of which are the controllable joint positions. In contrast to the Denavit­

Hartenberg model which requires four parameters per joint, the model in 

(2.11) is a non-minimum realization requiring six parameters per joint. 

For a revolute joint, the generalized coordinate qj is the joint i position 9i 

and the five parameters, Yi' zi' CPi' 0i' and 'Vi are constants. For a prismatic 

joint, qi is the jOint i position Yi and the five parameters 9i , zi ' CPi' 0i ' and 'Vi 

are constants. For a prismatic joint, the parameter 9i can be arbitrarily set to 

zero. Like (2.8), the model in (2.11) is exact for robots with rigid links and 

perfect joints. With two additional parameters for each link transformation 

matrix, the model in (2.11) conceptually introduces a greater degree of 

flexibility in assigning the locations of the link coordinate frames Wi. This 

flexibility is reflected in the rules applied to specify the locations of the link 

coordinate frames, '1i: 

• The Y axis of the link coordinate frame '1i-l must be parallel to the 
joint i axis in the direction defined by the positive sense of the 
rotation or translation of the i th joint. 

• The origin of the coordinate frame '1i-l must lie on the joint i axis. 
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• The Z axis of the link coordinate frame 'Ti-l must point in the 
direction such that the origin of coordinate frame 'Ii lies in the 
plane formed by the Y and Z axis of coordinate frame 'Ii-I when 
joint i is in its zero position . 

• The origin of coordinate frame ~ lies on the joint n axis. 
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The parameters of the model (2.11) have no real physical significance. 

Consequently, the model (2.11) lacks the apparent elegance of the Denavit­

Hartenberg model. The expression (2.12) for the link transformation matrix 

Wi is considerably more complex than the link transformation matrix Ai in 

(2.10). 

2.3. Models of Revolute Joint Manipulators 

In contrast to coordinate frame kinematic models, the models introduced 

for rotary manipulators by Mooring [15], Sugimoto and Duffy [25], and Suh 

and Radcliffe [26] find their roots in the theory of screws [2]. These models 

possess the same multiplicative structure as in (2.8) and (2.11). The Cartesian 

position and orientation of the end-effector with respect to the base coor­

dinate frame is specified by the transformation matrix 

(2.26) 

where the constant matrix t,! is the location of the end-effector when all of 

the joint positions are zero. For the model (2.26), the zero configuration can 

be associated with any arbitrary physical configuration of the manipulator. 

The simplest approach is to let the zero positions of the joints correspond 

directly to the physical joint encoder readings. In the literature [15], the 

homogeneous transformation matrices Di are called displacement matrices 

and are functions of the joint positions 
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(2.27) 

A displacement matrix specifies the spatial transformation undergone by a 

point when it is rotated about an axis in space. The general form of the 

displacement matrix is 

u;ve + ce uxuyve - uzse uxuz ve + uyse d14 

UxUyve + Uzse U;ve + ce uyuz ve - uxse d24 (2.28) 
Di uxuzve - uyse uyuzve + uxse u;ve + ce d34 

0 0 0 1 

where 

(2.29) 

(2.30) 

(2.31) 

and djk is the (j,k) element of the displacement matrix D, s( e) = sin e j , 

c(e) =cose j, and V(e) = l-cose j • The matrix D j is parameterized by the 

six components, ux' uy , Uz 'Px' Py , and Pz of the vectors Uj and Pi' In (2.26), 

the unit direction vector Ui points along the joint i axis of rotation and is 

referenced with respect to an arbitrarily located base coordinate frame. The 

vector Pi specifies the location of an arbitrary point on the joint i axis with 

respect to the base frame. Together the two vectors, ui and Pj , locate the 

joint axis in space. 



REVIEW OF ROBOT KINEMATICS, IDENTIFICATION, AND CONTROL 19 

2.4. Modeling Assumptions 

The accuracy of a mathematical model of a manipulator is detennined 

by the validity of the assumptions upon which it is fonnulated. These as­

sumptions are introduced to insure the tractability of the modeling task. In 

practice, however, these assumptions are not always satisfied. For robot 

control, the resulting inaccuracies give rise to discrepancies between the 

predicted and actual end-effector position. The kinematic models reviewed 

in Sections 2.2 and 2.3 are based upon the following seven assumptions: 

• Link compliance is negligible (A-I). 

• Gear train compliance is negligible (A-2). 

• Motor-bearing wobble is negligible (A-3). 

• Gear backlash is negligible (A-4). 

• Link deformation, due to such environmental effects as tempera­
ture variations, is negligible (A-5). 

• Encoder resolution is infinite (A-6). 

• The kinematic parameters of the actual manipulator are known 
exactly (A-7). 

The difference between the predicted and the actual end-effector posi­

tions can be reduced by ensuring the validity of underlying modeling as­

sumptions. Reduction of this error is critical to improving the kinematic 

performance of robotic manipulators. Two approaches are commonly taken 

to reduce manipulator-model mismatch. The model can be expanded to 

incorporate previously unmodeled features or the manipulator can be 

modified to more closely resemble the desired model. For the kinematic 

modeling and control of robots, a combination of these approaches appears 

to be reasonable. 
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The complexity in modeling link compliance, gear train compliance, 

bearing wobble, gear backlash, gear friction, link deformation, and encoder 

resolution suggests that to incorporate these features into a kinematic model 

would be impractical, if not infeasible. Furthermore, since an extremely 

wide range of mechanical components are used in the design of manipulator 

drive mechanisms, there is little hope that a general model or set of models 

could be developed to adequately describe these effects for an arbitrary 

manipulator. Commercially, a case by case analysiS of these effects on each 

individual manipulator after it is manufactured would be too costly. 

Recent advances in robot actuator and sensor technology and com­

posite materials for robotic applications improve the validity of many of 

these assumptions. Determination of the actual kinematic parameters is a 

different issue. Manufacturing errors introduce errors between the actual 

kinematic parameters and the design parameters. Unfortunately for many 

industrial robots, economic reality precludes the further reduction of 

manufacturing tolerances. It thus becomes essential to expand the kinematic 

model to account for these manufacturing errors. We must identify either 

the manufacturing errors or the actual kinematic parameters. The identifica­

tion algorithm developed in this dissertation employs the latter approach. 

The observation that the actual kinematic parameters of a manipulator can 

vary significantly from the design parameters due to the presence of 

manufacturing errors is the principal motivation for the development of this 

dissertation. The dissertation relies on Assumptions (A-I) - (A-6). 
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2.5. Kinematic Identification 

The goal of a kinematic identification algorithm is to identify the 

parameters of a kinematic model which describe the actual position and 

orientation of the end-effector in terms of the measured joint positions, and 

which incorporates the geometrical variations in the structure caused by 

manufacturing errors. Several identification algorithms have been proposed 

in the literature [4, 13, 14, 15,30], but to our knowledge only the algorithm 

proposed by Whitney and Lozinski [30] has been actually implemented and 

evaluated. 

The algorithm developed by Whitney and Lozinski is designed to iden­

tify both geometric and nongeometric parameters. The geometric 

parameters correspond to the kinematic parameters of a rigid body descrip­

tion of the robot while the nongeometric parameters represent compliance, 

gear transmission errors, and backlash. The model (2.11), presented in Sec­

tion 2.2.2, constitutes their description of the geometrical portion of the com­

plete robot model. The mathematical form of the non-geometrical com­

ponent is derived separately from experiments performed on the robot. The 

non-geometrical model maps measured joint positions into actual joint posi­

tions. In the example cited, the gear transmission error for one of the joints is 

modeled as a sinusoid. The geometrical and non-geometrical models are 

combined to form the complete robot kinematic model. 

In this approach, a theodolite is used to measure the position of the 

robot's end-effector corresponding to various joint configurations. Ad­

ditional parameters are introduced into the robot model in order to relate the 

Cartesian position of the end-effector to the angular coordinates of the 

theodolite. For instance, the coordinates defining the position and orien­

tation of the theodolite, relative to the robot, must be included into the new 
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model. The model parameters are estimated by minimizing the cost function 

(2.32) 

... ... 
where zi is the vector of measured theodolite angular readings, f (ai • ell) is the 

vector of predicted theodolite angular readings, ai is the vector of joint en-
... 

coder readings, ell is the vector of model parameters, and n is the number of 

configurations at which measurements are made. A nonlinear least-squares 

numerical search algorithm is applied to minimize (2.32). 

The authors have implemented their algorithm and have applied it to 

improve the kinematic performance of a Puma 560 robot. Twenty eight 

geometric parameters and eight non-geometric parameters were identified 

using 60 sets of theodolite readings. It appears, however, that in order for 

the numerical search to converge, certain parameters within the original 

model had to be set to predefined values. Nevertheless substantial improve­

ments in performance were obtained. For instance, in one particular case the 

relative positioning error of the end-effector was reduced from 4.8 mm to .3 

mm. 

The identification algorithm developed by Whitney and Lozinski has 

several disadvantages. 

• The nonlinear minimization algorithm used to estimate the model 
parameters is not necessarily guaranteed to converge. 

• The process of measuring the position of the end-effector is ex­
tremely time-consuming and requires a highly skilled operator. 

• Analytic models of the non-geometric errors must be developed 
for each individual robot. 

• There is no mechanism for determining at which joint configura­
tions the end-effector's position should be measured to obtain the 
best estimates. 
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• Separate procedures must be used to establish a length standard 
since a theodolite only measures angular displacements. 
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Further analysis and evaluation will be required to fully assess the 

capabilities and limitations of this approach. 

Mooring [15] has proposed a method for identifying the kinematic 

parameters of a revolute joint manipulator using the model (2.26). The basis 

for his algorithm lies in the form of the transformation matrix 0i in (2.28). If 

the position of joint i is zero, the transformation matrix 0i becomes the 

identity matrix regardless of the values of it or p in (2.28). This property 

provides a mechanism to partially decouple the identification problem. If, 

with the exception of joint i, the positions of all the joints are zero, then the 

matrix Tn will be equal to the matrix 0i' 

The first step of the identification procedure is to move all joints to 

their zero positions. Then, the positions of three points on the end-effector 

must be measured and the position of an arbitrary fourth point computed. 

The measured positions are combined to form the matrix of measured posi-

tions, 

xI,1 XI,2 xI,3 xI,4 

YI,I YI,2 YI,3 YI,4 
Xl 

Zl,l Zl,2 Zl,3 zl,4 
(2.33) 

1 1 1 

After rotating joint i to another position, the positions of the three pOints on 

the gripper again are measured, the position of the fourth point is computed, 

and the matrix X2 analogous to (2.33) is formed. The eight measurements 

correspond to the positions of the same four physical points on the end­

effector and thus 
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(2.34) 

Since only joint i has a nonzero position, OJ in (2.34) is equivalent to I for j * i 
and 

(2.35) 

The elements of 0; in (2.35) can be applied to solve for the kinematic model 

parameters (i.e., the elements of the vectors it and p). The process is then 

repeated for each of the remaining joints. 

The scheme presented in [15] has neither been implemented nor 

evaluated using either simulated data or real data. A variation of this 

scheme was tested using simulated data and was shown to identify the 

robot's true kinematic parameters within "acceptable limits" in [15]. 

However, this paper did not discuss whether or not the simulated end­

effector measurements were corrupted with measurement noise and/or how 

measurement noise effects the accuracy of the identified parameters. Further 

analysis is required before a judgement as to its potential for improving the 

kinematic performance of robots can be made. The development of a sensor 

system which can accurately measure the positions of the three points on the 

robot's end-effector over a large volume appears to be a major factor in 

determining the feasibility and practicality of this approach. 
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2.6. Kinematic Control 

The kinematic control problem focuses upon the computation of the 

joint positions required to locate the end-effector at a desired Cartesian posi­

tion and orientation. Since feedback, which requires the measurement of the 

Cartesian position and orientation of the end-effector, is often infeasible, we 

must implement open-loop feedforward control. In the design of feedforward 

control algorithms for industrial robots, we must address the trade-off be­

tween algorithm complexity and controller performance. Since the control 

algorithms for robots are derived directly from the forward kinematic model, 

their complexity increases as the complexity of the forward kinematic model 

increases. Incorporating the effects of manufacturing errors into a kinematic 

model will lead to increased robot performance at the expense of controller 

complexity. 

The design of kinematic control algorithms for industrial robots in­

volves: 

• Formulation of a kinematic model 

• Inversion of the forward kinematic model 

• Implementation of the inverse kinematic algorithms. 

This straightforward approach leads to a relatively simple control algorithm 

provided that the initial kinematic model possesses a simple structure. 

Kinematic models with closed-form inverses are defined as simple structures. 

The fact that relatively few of the possible manipulator configurations pos­

sess a closed-form inverse kinematic model has had a strong influence upon 

the mechanical design and kinematic modeling of robotic manipulators. For 

instance, basic geometrical features, such as parallel or perpendicular joint 

axes, are incorporated into the mechanical design of a robot to guarantee the 
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existence of a simply-structured kinematic model. In the design of con­

trollers for these robots, it is conveniently assumed that the manipulator has 

been manufactured with negligible machining and assembly errors. For high 

precision applications, the failure of this assumption often accounts for the 

observed end-effector positioning errors. 

The most difficult task in the design of kinematic control algorithms 

has been the formulation of the inverse model. If the Denavit-Hartenberg 

formulation is applied to model the kinematics, the backward multiplication 

technique of Paul [18] can be applied to derive the inverse kinematics of 

simply-structured manipulators. Paul's backward multiplication technique 

has contributed significantly to the widespread appeal of the Denavit­

Hartenberg formulation. Consider the model in (2.8) where the elements of 

the matrix T /I' the desired position and orientation of the end-effector, are 

known. Premultiplying both sides of (2.8) yields 

(2.36) 

The left-hand side of (2.36) is a function of the unknown joint position qI and 

known elements of T /I. (The inverse of the homogeneous transformation 

matrix Al can be expressed analytically in closed form.) The objective in 

Paul's technique is to symbolically expand both sides of (2.36) and to equate 

elements on the left-hand side which involve qI with elements on the right­

hand side which are independent of the remaining joint positions. The 

resulting set of equations are then solved to determine the joint position qI. 

The next step uses the solution qI to evaluate the left-hand side of (2.36) 

which thus becomes a matrix of known constants. Similarly, by premul­

tiplying (2.36) by the inverse of Az 1 we obtain 

(2.37) 
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The situation is analogous to that in (2.36). The left-hand side of (2.37) is 

now only a function of the unknown position q2 and known constants. 

Matrix element equality is then employed to isolate and solve for q2' This 

procedure is repeated to sequentially solve for the remaining unknown jOint 

positions. For revolute joints, the equations involving qj are trigonometric. 

The arc tangent function which has two arguments, the ordinate y, and the 

abscissa x should be used to solve for qj as opposed to the arc sine or ilrc 

cosine functions. The accuracy of the arc tangent function is uniform over its 

full range of definition [18]. Based upon the sign of its arguments, the arc 

tangent function returns an angle in the interval-1t to 1t. 

The premultiplication procedure described above will require 

modification if two or more of the joint axes are parallel. For instance, if the 

joints i and i+l are parallel, the sum of the two joint positions qj and qj+i 

must first be determined in one step followed by determination of either qi or 

qj+1 in the following step. Hence, after solving for qi-I' we expand 

(2.38) 

-I -I 
The elements of Aj+I"Aj will be a function of the sum (qj + qj+I)' After 

solving for this sum, other elements of (2.38) can be used to solve for the 

individual joint positions. 

Most manipulators with revolute joints, especially anthropomorphic 

manipulators, can reach a desired end-effector location in one of several 

distinct joint configurations. The Puma 560, which has six revolute joints, 

has, in general, eight distinct solutions. The multiplicity of inverse kinematic 

solutions for a given end-effector location can be easily computed using 

Paul's technique. However, since the model (2.8) does not account for the 

mechanical joint limitations, not all the multiple solutions are physically ach-
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ievable. The ability to reach a particular joint configuration can only be 

determined after the solution has been evaluated. 

We indicated in Section 2.4 that kinematic models of increasing com­

plexity and accuracy are needed to improve robot positioning performance. 

Since these models will not have closed-form inverses, numerical algorithms 

must be applied to solve the inverse kinematic problem. Application of 

these algorithms gives rise to such issues as the rate of convergence, conver­

gence to a global versus a local minimum, and the feasibility of real-time 

implementation. 

2.7. Conclusions 

In this chapter, we have reviewed robot kinematic modeling, identifica­

tion, and control techniques, and established a framework in which to 

present our research contributions. 

We introduced the concept of coordinate frame kinematic models (based 

upon the conceptual notion of fixing Cartesian coordinate frames to the 

various links of a robot). The analytiC properties and physical interpretation 

of the Denavit-Hartenberg model which has become widely used in both 

industry and academia for modeling robot kinematics were discussed. The 

model used by Whitney and Lozinski [30J and the displacement matrix model 

used to model the kinematics of revolute joint manipulators were also 

presented. We then delineated the engineering assumptions upon which 

these models are formulated. We reviewed the kinematic parameter iden­

tification algorithms proposed by Whitney and Lozinski [30J and Mooring 

[15J, and outlined some of practical problems with each of these approaches. 

Finally, we formulated the robot kinematic control problem and reviewed 

the Backward Multiplication Technique developed by Paul [18J. 
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In this dissertation, we: 

• Develop (in Chapter 3) a new robot kinematic model, called the 
S-Model, whose analytic properties and conceptual formulation 
make it directly amenable to identification. 

• Develop (in Chapter 4) the S-Model identification algorithm 
which can be applied to identify the kinematic parameters of any 
robotic manipulator with rigid links. 

• Synthesize and evaluate (in Chapter 5) two methods for inverting 
identified arm signature models. 

• Develop (in Chapter 6) a prototype arm signature identification 
system and apply it to significantly improve the performance of 
several standard robotic manipulators. 

• Evaluate and compare Chapter 7 the statistical performance of the 
design model based and signature-based approach to robot 
kinematic control. 
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3.1. Overview 

Chapter 3 

Formulation of the S-Model 

In this chapter, we introduce the formulation and properties of a new 

kinematic model for describing robot kinematics. This kinematic model, 

which we call the S-Model, was designed to facilitate kinematic parameter 

identification. This model can be applied to model the kinematics of all 

robotic manipulators which satisfy assumptions (A-I) through (A-7) (refer to 

Chapter 2). 

3.2. S-Model 

Like the Denavit-Hartenberg model, the S-Model is a general method 

of describing and characterizing kinematics of robotic manipulators. In the 

S-Model, the matrix 

(3.1) 

defines the position and orientation of a coordinate frame fixed relative to 

the last link of a manipulator with respect to a coordinate frame fixed rela­

tive to the base link. The general transformation matrices, Hi' in (3.1) are (4x4) 

homogeneous transformation matrices. The Hi and Sn matrices in (3.1) arc 

analogous to the Ai and Tn matrices of the Denavit-Hartenberg model in 

(2.8). The symbolic name Si signifies the ith link coordinate frame defined by 
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the S-Model. The transformation matrix, Bi , describes the relative transfor­

mation between the Si-l and Si coordinate frames (measured with respect to 

the Si-l coordinate frame). In the S-Model, six parameters, ~i ' di ' iij , ~ , 'Yj , 

and bi , define the transformation matrix 

Bj = Rot(z'~i)Trans(O,O,di)Trans(ii,O,O)Roi(x,o.i) 

Rot (z, 'Yi )Trans (0, 0, b i) 

Expanding (3.2) yields 

nx Ox sin~i sina;. bi sin~i sina;. + 3i COS~i 1 
ny Oy - COS~i sin a;. - bi COS~i sina;. + 3i sin~i 

sina;. Sin'Yi sina;. C0S"fi cosa;. b, COS~ + ~ j 
0 0 0 

where 

nx - cos ~ i cos 'Yi - sin ~ . cos (X. si,n 'Y. , 
I I I 

ny = sin ~ i cos 'Yi + cos ~.cos(X.sin 'Y' , 
I I, I 

Ox - -cos ~isin 'Yi - sin ~i cos (Xi cos 'Yi ,and 

0y - - sin ~i sin 'Yi + cos ~icOS (Xicos'Yi 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

To specify the S-Model for an n degree-of-freedom manipulator thus re­

quires 6'n parameters. 

To insure that the manipulator's kinematics can be modeled by (3.1), 

we introduce an S-Model convention to define the allowable locations of the 

link coordinate frames. Because each link transformation matrix is specified 

by six parameters rather than by four, the S-Model convention is less restric­

tive than the Denavit-Hartenberg convention. 

The following four aSSignments, which are a subset of the Denavit-
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Hartenberg convention reviewed in Section 2.2.1, specify the locations of the 

S-Modellink coordinate frames: 

• The Z axis of the link coordinate frame, Sj-l ' must be parallel to 
the joint i axis in the direction defined by the positive sense of the 
rotation or translation of the i th joint. 

• The origin of the coordinate frame, Sj-l ' must lie on the joint i 
axis. 

• The Z axis of the last coordinate frame, Sn' is parallel to the Z axis 
of the next to the last coordinate frame, Sn-l' 

• The origin of the last coordinate frame, Sn ' lies on the joint n-l 
axis. 

There are two fundamental distinctions between the Denavit­

Hartenberg link coordinate frames, 'Ii ' and the S-Model link coordinate 

frames, Sj. First, in contrast to the origin of 'Ii which is fixed, the location of 

the origin of Sj on the joint i+l axis is arbitrary. Second, the direction of the X 

axis of Sj must only be orthogonal to the Z axis. The arbitrary location of the 

origin of Sj along the joint axis and the arbitrary orientation of the X axis of Si 

provide an infinite number of link coordinate frames, So through Sn ' which 

satisfy the 5-Model convention. 

The transformation matrix, Bj , can be formulated from the geometry of 

either Figure 3-1 or Figure 3~2. In Figures 3-1 and 3-2, we apply the S-Model 

convention to define a pair of link coordinate frames, Sj_l and Sj. For com­

parison, we also depict the Denavit-Hartenberg coordinate frames 'Ii-I and 'Ii 
. The angle Yj is defined as the angular displacement between the X axes of 

the Denavit-Hartenberg coordinate frame 'Ii and the S-Model coordinate 

frame Sj. The parameter b j is defined as the linear displacement between the 

origins of the Denavit-Hartenberg coordinate frame 'Ii and the 5-Model1ink 

coordinate frame Sj' If the displacement is in the direction of the Z axis of 

joint i, then Yj is positive. 
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Figure 3-1: 5-Model Parameters for a Revolute Joint 
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Figure 3-2: S-Model Parameters for a Prismatic Joint 
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The transformation matrix, Bi , specifies the spatial transformation be­

tween the Sj_I and Sj link coordinate frames for both prismatic and revolute 

joints. From Figure 3-1 and the definitions of 'Yj , b j , and Aj , the transfor­

mation matrix, Bj , is the product 

Bj = Rot (z'-Yi-I )Trans (0, O,-bH HRot(z, 9j )Trans (0, 0, d j ) 

Trans (ai' O,O)Rot (x, (Xi) ]Rot(z, 'Y)Trans(O,O, bj) . (3.8) 

The first transformation, Rot (z'-Yj_I ), aligns the orientation of the axes of 

coordinate frames Sj_I and '1i-I The second transformation, 

Trans(O,O,-bi-I)' translates the origin of Sj_I so that it coincides with the 

origin of the Denavit-Hartenberg coordinate frame '1i-I . The four bracketed 

transformations define the Denavit-Hartenberg matrix Aj • (The parameters 

9j , dj , aj , and (Xj are the Denavit-Hartenberg parameters for link i.) These 

four transformations transform coordinate frame 'Ii-I to the Denavit­

Hartenberg coordinate frame '1i. In analogy with the first two transfor­

mations, the cascade Rot (z, Yj )Trans (0, 0, b j) transforms the Denavit­

Hartenberg coordinate frame '1i to the S-Modellink coordinate frame Sj • 

By combining terms according to the rules of homogeneous transfor­

mations [18], Bj in (3.8) simplifies to 

Bi = Rot(z,9i-Yi_l)Trans(0,O,di-bi_l)Trans(ai'0,0) 

Rot (X, (Xj)Rot (z,-Yj)Trans(O, 0, b) 

Since (3.2) and (3.8) are equivalent, 

R. = 9· - '11. 1 1-'1 I '1-

d. = d. - b· I ' I I 1-

(3.9) 

(3.10) 

(3.11) 

where the joint rotational offset, Yi' and the joint translational offset, b j , are 

constant parameters. 
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If joint i is revolute, ~j is a function of the joint position OJ and the 

remaining five parameters, dj , i j , ~ , Yj , and bj , are constants. If joint i is 

prismatic, dj is a function of the joint position dj and the remaining five 

parameters, ~j , i j , a; , Yi' and b i ' are constants. For a manipulator with 

revolute joints, the four Denavit-Hartenberg parameters are extracted from 

the six 5-Model parameters according to 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

According to the Denavit-Hartenberg model, the link transformation 

matrix 

Aj = Aj(qj) == Rot(z,Oj)Trans(O,O,dj)Rot(x,exj ) , (3.16) 

for a prismatic joint and the parameter aj , is by definition zero. This con­

dition is guaranteed by requiring that the axis of the prismatic joint, joint i, 

be chosen to intersect with the joint i+l axis, as illustrated in Figure 2-3. 

Thus, the location of the coordinate frame '1f-l is constrained even more for a 

prismatic joint than for a revolute joint. This is not the case in the 5-Model. 

From Figure 3-2, it is, in general, impossible to model the spatial transfor­

mation between the 5j- 1 and 5j link coordinate frames by the general trans­

formation matrix in (3.2) with the parameter i j set to zero. Thus, if we were 

to apply the relations (3.12) - (3.15), the computed Denavit-Hartenberg 

parameter aj would be nonzero. The parameters OJ, d j , aj , and exj obtained 

in this way for a prismatic joint are called the modified Denavit-Hartenberg 

parameters. In the modified model, the origin of the coordinate frame '1i-l is 
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arbitrary. In Chapter 4, we present a method for determining the true 

Denavit-Hartenberg parameters for manipulators with prismatic joints. 

3.3. Computing S-Model Parameters 

In this section, we apply the backward multiplication technique [18] to 

derive the closed-form expressions for the 5-Model parameters, ~i ' di ' ai ' 

n;, 'Yi' and b i , in terms of the elements of the general transformation matrix 

Bi · 

The transformation matrix Bi is given by 

o 
~ 

o 

Px 1 Py 

pz 
1 

(3.17) 

where the individual elements are known. Premultiplying (3.2) by 

ROll (z, ~i) yields 

Rot-l (z'~i)'Bi = Trans(O,O,di)Trans(ii,O,O)Rot(x,n;) 

Rot(z, 'Yi)Trans(O,O, b i ) , (3.18) 

which when expanded becomes 

COS~i Sin~i 0 0 

- sin~i cos~ 0 0 

0 0 1 0 Bi 

0 0 0 1 
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COSYi - SinYi 0 8i 

COSa; sinYi cosa; COSYi - sina; - bi sina; 

sina; SinYi sinYi cosa; bi cosa;. + di 
(3.19) 

0 0 0 1 

An expression for ~i is obtained by equating the (1,3) elements in (3.19) 

(3.20) 

From (3.20), we obtain the two solutions 

-a 
~i = atan-" and 

ay 
(3.21) 

~i = 
ax 

atan- . -ay 
(3.22) 

which differ by 180 degrees. If both ax and ay are zero, the i th and i+ 1 th joint 

axes are parallel and the parameters ~i and Yi are redundant. When this 

situation occurs, we can arbitrarily set ~i to zero. Thus, 

~i = 0 (3.23) 

when ax=ay=O. The rotational parameter ii; can be expressed in terms of Pi 
by equating the (2,3) and (3,3) elements in (3.19). The expressions are 

(3.24) 

(3.25) 

Having computed Pi using either (3.21) or (3.22), the unique solution for ~ 

obtained from (3.24) and (3.25), is 
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(3.26) 

Two expressions involving 1i and ~i can also be obtained from (3.19). Equat­

ing the (1,1) and (1,2) elements in (3.19) yields 

(3.27) 

(3.28) 

Using (3.27), (3.28), and ~i ' the unique solution for 1i is 

(3.29) 

The solution for i\ is obtained by equating the (1,4) elements in (3.19). Thus, 

Equating the (2,4) elements in (3.19) yields 

from which we obtain the solution 

__ -P.xsin~i + PyCOS~i 
bi 

sinai 

bj = 0 

(3.30) 

(3.31) 

if sinaj=O . (3.32) 

Finally, equating the (3,4) elements in (3.19) and rearranging, yields the solu­

tion for (Ii ' namely 

(3.33) 
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In chapter 4, we apply the solutions (3.21), (3.26), (3.29), (3.30), (3.32), 

and (3.33) in formulating the S-Model identification algorithm. 

3.4. Conclusions 

The S-Model described in this chapter offers several advantages for the 

development of a kinematic identification algorithm: 

• The flexibility in assigning link coordinate frames leads to a 
simple, efficient, and accurate algorithm for identifying the loca­
tion of the S-Modellink coordinate frames Sj for i =<>, ... ,n-l 

• The Denavit-Hartenberg model parameters may be extracted 
from the S-Model parameters according to (3.12) - (3.15) 

The development of a kinematic identification algorithm using these prin­

ciples is described in the next chapter. 



4.1. Overview 

Chapter 4 

Kinematic Identification 

The goal of a kinematic identification algorithm is to identify the 

parameters of a kinematic model which describes the actual position and 

orientation of the end-effector in terms of the measured joint positions, and 

which incorporates the geometrical variations in the structure caused by 

manufacturing errors. Either the Denavit-Hartenberg model or the S-Model 

are adequate to provide an exact description of the actual robot kinematics. 

Identification of these parametric models, however, requires detailed con­

sideration of the structure of the models as well as an adequate procedure to 

measure robot configurations. Because of manufacturing errors, all exact 

kinematic models will possess non-simple structures leading to more com­

plex control algorithm design and implementation tasks. 

While the Denavit-Hartenberg model is specified by a minimum num­

ber of parameters, it possesses a rigid structure and is not amenable to direct 

identification. The term "rigid" signifies that all the parameters and com­

ponents to the model are precisely defined and are unique. In contrast, the 

S-Model is directly applicable to kinematic identification. The relationships 

in (3.12) - (3.15) provide a mechanism for calculating the Denavit-Hartenberg 

parameters from the identified S-Model parameters. 

In Section 4.2, we describe the intrinsic properties of mechanical joints, 
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referred to as the kinematic features. Then, in Section 4.3, we develop the 

S-Model identification algorithm. 

4.2. Kinematic Features 

The objective of S-Model Identification is to estimate the S-Model 

kinematic parameters from a set of 2nr+np mechanical features inherent to 

the manipulator, where nr is the number of revolute joints and np is the 

number of prismatic joints. (The number of degrees-of-freedom n=nr+np ). 

The two features of a revolute joint are called the center-of-rotation and the 

plane-of-rotation, and the feature of a prismatic joint is called the 

line-of-translation. 

These features are derived from basic geometric considerations of the 

joints. The locus of a point rotating about an axis is a circle lying in a plane, 

called the plane-of-rotation and the normal to this plane is a vector which is 

parallel to the axis of rotation. The center of the circle is a point, called the 

center-of-rotation which lies on the axis of rotation. When joint i-1 of a 

manipulator is rotated, any point which is fixed relative to the i th link 

defines a plane-of-rotation and a center-of-rotation, under the assumption 

that the positions of joints 1 through i-2 remain fixed. We associate this 

plane-of-rotation and center-of-rotation with the (i-1) th joint and the i th link. 

The line-of-translation is a feature of a prismatic joint. When a point is 

displaced linearly, its trajectory is a straight line which is parallel to the 

vector which indicates the direction of the displacement. For a manipulator, 

any point which is fixed relative to link i defines a line-of-translation when 

joint i-I is moved, under the assumption that the positions of joints 1 through 

i-2 remain fixed. 
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4.3. S-Model Identification 

4.3.1. Overview 

The approaches to solving the manipulator kinematic parameter iden­

tification problem discussed in Chapter 2 all propose to identify the 

kinematic parameters directly and explicitly from a set of observed measure­

ments, typically the position and/or orientation of the end-effector. Since 

the kinematics of any manipulator with at least one revolute joint will be 

nonlinear, such a direct method inevitably leads to a nonlinear minimization 

problem. In contrast, the S-Model identification algorithm is an indirect 

method of identification which leads naturally to a separation of the iden­

tification problem into a set of independent, less complex minimization 

problems. 

In this section, we describe our solution to the kinematic parameter 

identification problem. The detailed formulation and implementation are 

presented in subsequent sections. The 5-Model identification algorithm in­

cludes four steps: 

1. Feature identification 

2. Link coordinate frame specification 

3. S-Model parameter computation 

4. Denavit-Hartenberg parameter extraction 
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4.3.1.1. Feature Identification 

In the first step, feature identification the kinematic features are iden­

tified from measurements of the Cartesian position of targets physically at­

tached to the robots links. The positions of these targets, relative to an 

independent fixed coordinate frame, vary as the manipulator changes its 

configuration. During data collection the manipulator is programmed to 

move through a sequence of jOint configurations. At each configuration the 

position of a target is measured. The kinematic features are described 

analytically by an algebraic equation, and the coefficients of these equations 

are the feature parameters which are estimated. 

4.3.1.2. Link Coordinate Frame Specification 

The second step in our identification algorithm is link coordinate frame 

specification. If the manipulator configuration is known in terms of the joint 

positions a set of link coordinate frames which satisfy the S-Model conven­

tion (in Section 3.2) may be defined. By collecting target measurements and 

identifying the parameters of the kinematic features which correspond to 

this same manipulator configuration, we can readily establish a valid set of 

S-Modellink coordinate frames. Then, we can apply the estimated feature 

parameters to construct and evaluate the elements of the matrices Sj in (3.1). 

4.3.1.3. S-Model Parameter Computation 

The third step, S-Model parameter computation applies the application of 

the inverse kinematic parameter relationships developed in Section 3.3. The 

elements of the general transformation matrices Bj , which are the arguments 

to these inverse relationships, are a function of the transformation matrices Sj 

determined in the previous step. Identifying the S-Model parameters re­

quires straightforward numerical evaluation. 
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4.3.1.4. Denavit-Hartenberg Parameter Extraction 

In the fourth and final step, Denavit-Hartenberg parameter extraction the 

relationships developed in Section 3.2 are applied to determine the 

manipulators Denavit-Hartenberg kinematic parameters from the identified 

S-Model parameters. 

The procedure for varying the configuration of the manipulator in or­

der to obtain the necessary measurements of the target positions and the 

analytic techniques for solving for the estimated feature parameters are 

presented in Section 4.3.2. In Section 4.3.3, we introduce the rules for es­

tablishing valid S-Model link coordinate frames and constructing the 

matrices Sj. Evaluation of the general transformation matrices and the S­

Model parameters are described in Section 4.3.4 with special attention given 

to the determination of the first and last link parameters. Finally, in Section 

4.3.5, we review the procedure for extracting the Denavit-Hartenberg 

parameters and introduce the notion of a pseudo Denavit-Hartenberg model 

to account for physical alignment constraints. 

4.3.2. Feature Identification 

Identifying a plane-of-rotation and a center-of-rotation is conceptually 

straightforward. Imagine an arbitrary target point fixed relative to link i+1. 

When joint i is rotated, this target point traces a circle in space. The plane in 

which the circle lies is, by definition, a plane-of-rotation. The coeffic~ents of 

the equation of this plane can be estimated from a curve fit of m measured 

Cartesian positions of the target along the circle corresponding to m different 

positions of joint i. (It is assumed that all Cartesian measurements are made 

with respect to the sensor frame). The center of the traced circle, defined by 

its thr~imensional Cartesian coordinates, is the center-of-rotation. We can 
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extract the coordinates of the center-of-rotation from an estimate of the 

parameters of the equation for the traced circle. Identifying a line-of­

translation is also straightforward. When joint i is translated, the target point 

traces a line in space. The parameters of the line, which constitute the 

line-of-translation, can be estimated by fitting the measured target locations to 

the equation of a line. 

In practice, the target point may be a physical location on the i+l st link 

or a location of a point on a body which is attached rigidly to link i+l. We 

will refer to the target point attached to link i+l as the i th target point or as 

target point i. The flexibility in choosing the location of the target point is 

another important advantage of our approach. For a revolute joint, the 

nominal radius of the target point to the jOint axis can be controlled to ac­

commodate the sensor system constraints and to enhance feature estimate 

accuracy. We will return to the issue of enhancing estimate accuracy once 

we have formulated and presented solutions to the feature parameter es­

timation problem. 

Identifying a plane-of-rotation and a center-of-rotation from a set of 

points in three dimensions corresponds to the problem of fitting such points 

to a circle. In this problem, the parameters to be identified are the coor­

dinates of the center of the circle, the circle's radius, the unit normal vector to 

the plane in which the circle lies, and the coordinates of n points lying on the 

circle corresponding to each of the n measured points. Given the measured 

positions of the target points, PI ' P2' ... 'Pn we wish to minimize the 

function 

(4.1) 

subject to the constraints 
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IIXj - jJlj2 - ,2 = 0 , (4.2) 

(4.3) 

11011 - 1 = 0 , 
(4.4) 

and minimized with respect to the 3·n + 7 scalar parameters contained within 

p, a, r, Xl' XZ , ••• ,X". The vector p defines the Cartesian position of the 

center of the circle, the vector a defines the unit vector normal to the plane in 

which the circle lies, r is the radius of the circle, and the vectors xi 
for i= 1,2, ... ,n define the Cartesian position of n points on the circle. This 

constrained minimization problem can be transfonned into an equivalent 

unconstrained minimization problem using LaGrange's technique. The solu­

tion is then given by the solution to a set of 5·n + 8 simultaneous nonlinear 

algebraic equations in the same number of unknowns. The additional 2·n + 1 

unknowns are LaGrange multipliers. In practice, the minimization of (4.1) 

becomes an extremely difficult problem to solve when the number of 

measurements, as in our implementation, is on the order of 50 to 100. In 

Sections 4.3.2.1 and 4.3.2.2, the problem of identifying the plane-of-rotation 

and center-of-rotation is separated into two independent problems. The 

combination of the two solutions is both realistically and intuitively pleasing. 

4.3.2.1. Plane-of-Rotation Estimation 

We present two methods for fitting the measured target positions of a 

revolute joint to a plane. Our objective is to minimize the sum of the perpen­

dicular distances between the measurements and the estimated plane. The 

solution to this minimization problem yields the coefficients which define an 

estimated plane-of-rotation. The first method [1], is based on an error 

measure divided by its average gradient and uses an eigenvalue solution. 

The second method approximates the solution of the desired minimization 
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problem by the repeated application of a linear least-squares regression. In 

formulating the latter, we rely heavily upon our a priori knowledge of and 

control over the generation of the target positions. We have incorporated 

both algorithms into our 5-Model identification algorithm. In Chapter 6 we 

demonstrate experimentally that for measurements obtained using an 

ultrasonic sensor system, the performance of these two algorithms is iden­

tical (Le., the same feature parameters are obtained). For sensor systems 

with different noise properties and/or physical constraints upon the 

measurable target locations, the two algorithms may yield differences in per­

formance. The linear least-squares solution is easier to implement in 

software. The eigenvalue solution is analytically exact. 

While measuring the poSition of the ; th target, joints 1 through ;-1 are 

required to be in their corresponding signature configuration positions. 

Joints ;+1 to n, on the other hand, can be positioned arbitrarily. Through 

independent control of the manipulators joints, joint i is then sequentially 

indexed to m different positions, qi,j for j = I, ... ,m. These positions should 

be uniformly spaced about the physical range of motion of joint i. To later 

maintain a correct sense of rotation, it is assumed that the positions qi,j are 

ordered such that qi,j < qi,j+l' as illustrated in Figure 4-1. Thus, the interval 

between successive joint positions 

(4.5) 

where q~ and q~ are the corresponding minimum and maximum limits 

for joint i, respectively. At each successive configuration, the Cartesian posi­

tion of the i th target, denoted by the column vector Pj=[xj'Yj,Zj]T , is 

measured with respect to the sensor frame. The correspondence between the 

manipulator configurations and the target position measurements is listed in 

Table 4-1. 
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Figure 4-1: Indexing Joint i to Generate a Plane-of-Rotation and a 
Center-of-Rotation 

The normal form for the equation of plane is 

Ax + By + Cz + D = 0 , (4.6) 

where the coefficients A, B, C, and D are the parameters to be identified. We 

chose as the measure of error between the measured target position and the 

plane the function 

~(x,y,z) = Ax + By + Cz + D 

~(x,y,z) q,Te = eTc!> (4.7) 
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Table 4-1: Target Point Correspondence 

Manipulator Configuration Measured Target Position 

Pl =[xl Yl zl ]T 

P2=[.xz Yz z2]T 

• • 
• • 
• • 

p.= [x· y. 
J J J 

z.]T 
J 

• • 
• • 
• • 

pn=[xn Yn z ]T n 

where 

<P = [x y z l]T , (4.8) 

and 

e = [A B C D]T (4.9) 

are the augmented information vector and parameter vector, respectively. 

At a point on the plane, the error function ~(x,y,z) is zero. It is also observed 

that the magnitude of the error function increases at points farther away 

from the plane. For points close to the plane, the error function is propor­

tional to the perpendicular distance from the point to the plane. The con­

stant of proportionality is the reciprocal of the magnitude of the gradient of 

~(x,Y, z). The magnitude of the error is 
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Using the m measured target positions, Pi,i' the aggregate error is 

where 

m 

4> = I,(CIHlh 
. 1 J J r-

53 

(4.10) 

(4.11) 

(4.12) 

Minimizing the sum of the squares of the perpendicular distances between 

the measured target points and the plane is equivalent to minimizing ::: 

under the constraint that the average magnitude of the gradient of the error 

function at the measured target points, Pi,i' for j= 1, ... ,m, is unity. The 

squared magnitude of the gradient of the error is 

(V~)2 == (a~)2 + (~}2 + (a~)2 = aT'P9 
ax ay az (4.13) 

where 'P is the (4x4) diagonal matrix Diag [1 1 1 0]. Since 'P is constant, the 

constraint requiring that the. mean-squared gradient of ~ equal unity is 

equivalent to setting (4.13) equal to one, 

9 T'P9 = 1 . (4.14) 

We thus seek the parameter vector 9 that minimizes (4.11) subject to the 

constraint (4.14). Using LaGrange multipliers, the solution to this con­

strained minimization is given by the solution to the generalized eigenvalue 

problem [24] 

4>9 = A'P9 , (4.15) 

where A is a scalar. Using (4.11) and (4.15), the aggregate error :::=Am. 
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Therefore, the desired set of parameters are given by the eigenvector cor­

responding to the smallest eigenvalue. The singularity of 'II precludes the 

direct application of typical eigenvalue methods to solve (4.15). To solve 

(4.15), we first partition it into the form 

LX·2 
J LXjYj L XjZj LXj A 

LYjXj LY[ L YjZj LYj B 

L ZjXj L ZjYj L z·2 
l LZj C 

LXj LYj L Zj m D 

1 0 0 0 A 

0 1 0 0 B 

A- 0 0 1 0 C (4.16) 

0 0 0 0 D 

where summations from j = 1 to m are indicated by the symbol L. The scalar 

equation defined by the bottom row in (4.16) yields the solution for the 

parameter D, namely, 

m m m 

D = 
A L Xj + B L Yj + C L z· 

j=l j=l j=l ) 

m 
(4.17) 

= - (Ai + By + Cz) 

where X, y, and z are the sample means of the x, y, and z coordinates, 

respectively. Substituting solution (4.17) into the upper 3x3 matrix equation 

in (4.16) yields the well defined standard eigenvalue problem 
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r 
E -2 XjXj - m X 

E YjXj - m xy 

E ZjXj - m xz 

E XjYj - m yx 
'<" -2 
..., YjYj - m Y 

L ZjYj - m yz 

55 

E XjZj - m :: 1 r A 1 
E YjZj - m Z Y B 

L ZjZj - m z2 C 

II. (4.18) 
"I [CAB 1 

which can be solved using any number of methods, such as the Q-R algo­

rithm [10]. The estimated plane-of-rotation defined by the parameter vector 

e is given by the eigenvector corresponding to the smallest eigenvalue Ak 

which comprises a solution to (4.18) and D obtained from (4.17). 

Algorithms for solving eigenvalue problems are relatively complex and 

may be costly to implement in software. As an alternative method of solving 

the desired minimization problem, we have developed an algorithm which 

uses repeated application of a linear least-squares regression. Formally, this 

algorithm provides an approximate solution rather than the exact solution to 

(4.18) and (4.17). Our experiments (in Chapter 6), however, have 

demonstrated that for our system the two solutions are essentially identical. 

The formulation and performance of this algorithm is based upon the follow­

ing assumptions: 

• The standard deviation in the measurements of the target's Car­
tesian position is several orders of magnitude (Le., typically> 3) 
less than the nominal distance between the target and the axis-of­
rotation (Le., the nominal target radius) (B-l). 

• The measured target positions correspond to joint positions 
uniformly distributed between the upper and lower limits of the 
joints travel (B-2). 

• The manipulators revolute joints have at least 180 degrees of 
travel (B-3). 
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Ensuring that assumptions (B-1) and (B-2) are satisfied is a simple matter and 

nearly all industrial robotic manipulators satisfy assumption (B-3) in order to 

have sufficient dexterity and reach. 

The general equation for a plane (4.6) can be rewritten as 

Z = Ex + Fy + G = ella. (4.19) 

where 

ell = [x Y I]T • (4.20) 

and 

a = [E F G]T (4.21) 

are defined. to be the information vector and the parameter vector, respec­

tively. The Z coordinate is defined. to be the output of (4.19). A simple 

regreSSion of z on x, y, and 1 corresponds to a minimization of the the sum of 

the squared. errors in the z coordinate, namely 

m m m 
:s = L~· = ~ (z-z.)2 = L (eIITa-z.)2 

. 1 'J. J • 1 J 
J= r- r-

(4.22) 

The well known closed form solution [24] for the minimization of (4.22) is 

where 

CIJ = [eIIl cj)z ••••• eIIm]T • 

Z = [zl ~ ••..• zm]T • 

(4.23) 

(4.24) 

(4.25) 

The (3x3) correlation matrix ClJT CIJ is composed of sums of products of x, y, 

and 1. The application of (4.22) assumes that the X and Y coordinates are 
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independent variables and measured without error. Consequently, the 

closer the plane-of-rotation is to being parallel with the Z axis the farther the 

solution (4.23) is from the true plane-of-rotation. We avoid this problem by 

transforming the data to a new coordinate frame in which the measured 

target positions lie essentially in the X-V plane. Assumption (B-l) insures 

that the measured data closely fits a plane. Then, by applying the linear 

least-squares solution (4.23), we are effectively minimizing the sum of the 

perpendicular errors to the plane-of-rotation. The required transformation 

can be computed using three of the m measured target positions. These three 

positions uniquely define an initial approximation to the plane-of-rotation. 

The initial approximation is formed using the three measured positions 

which are mutually most distant from one another. We denote them by P k ' 

PI ' and Pm. Further, we require that the corresponding joint positions 

satisfy qi,k < qi,l < qi,m in order to preserve the sense of rotation. Figure 4-2 

illustrates the coordinate frame Co formed by these points. 

z 
sensor 

z 

y 

\rEr:;ot.----_ X 

X 

sensor 

P 
1 

Figure 4-2: Initial Approximation to the Plane-of-Rotation Using Three 
Mutually Distant Target Measurements 
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The X axis is parallel to the line joining jJ k and jJ I ; the Z axis is perpendicular 

to this line and the line joining jJ k ; and jJ m ' and the Y axis completes the 

orthogonal system The origin of Co is coincident with the origin of the 

sensor frame. Thus, the homogeneous transformation matrix defining the 

transformation between the sensor frame and Co is 

R [~ ~] (4.26) 

where 

n 
PI-Pk 

= 
IPI-Pk l 

(4.27) 

a 
(PI-Pk)x(Pm -Pk) 

= 
I (PI-Pk)x(Pm -Pk)1 

(4.28) 

and 

() = axn . (4.29) 

The transformed measurements are computed according to 

for j=l • ... • m (4.30) 

and are then used in (4.23) to obtain the first estimate, e=e~, for the plane­

of-rotation with respect to coordinate frame CoS. The standard coefficients 

AO, BO, Co, and DO can then be computed. The coefficients are transformed 

back into the sensor frame via [A Be D]T =RT[AO BO CO DO]T , since R 

represents a pure rotation. The nr unit normal vectors to the estimated 

plane-of-rotations which will be used in the next section are 

SThe superscript "0" indicates that the associated parameters are measured with respect to 
coordinate frame CO-
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[Aw Bw CW]T (4.31) 

where 

(4.32) 

In general, since the estimated plane-of-rotation will not be exactly parallel to 

the X-V plane of Co ' the desired minimization problem may not be ade­

quately solved. To improve upon the estimate 9 1 we repeatedly transform 

the measured target positions and apply the least-squares solution (4.23). At 

the i th iteration, the transformation matrix R=Ri is computed using the 

estimated normal to the plane-of-rotation (4.31) obtained from the previous 

iteration. In (4.26), the Z axis unit direction vector zt is then given by the i th 

normal estimate (4.31) while the X and Y axis unit direction vectors it and -0 

are chosen arbitrarily. When the difference between consecutive estimates of 

the plane-of-rotation becomes negligible, the algorithm terminates. Figure 

4-3 is a flowchart of the repeated linear least-squares estimation algorithm. In 

practice, when assumptions (B-1), (B-2), and (B-3) are satisfied, only a few 

iterations e.g., 2 - 4, are required. 

4.3.2.2. Center-of-Rotation Estimation 

The center-of-rotation feature physically corresponds to the position of 

an arbitrary point which lies on the joint axis of rotation. In this section, we 

present an algorithm for estimating the Cartesian position of one such point. 

We then apply the estimate, in Section 4.3.3, to formulate a kinematic model. 

Ideally, the target positions Pi.i (in Section 4.3.2.1), in addition to lying 

on a plane, should also lie on a circle in space. The point defined by the 

center of this circle naturally satisfies the criteria for a center-of-rotation fea­

ture even though it may be impossible to determine to which physical point 

on the joint axis and/or on the manipulator this point corresponds. An 
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Form R (Eqn 4.26) 
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+ 
Solve for Parameters 

(Eqn 4.23) 

compute 
Plane-of-Rotation 

Normal Vector 
-.:>. 
a (Eqn 4.31) 

-.:>. -.:>. 
Select nand 0 

Mutually Perpendicular 
-.:>. 

with a 

Figure 4-3: Flow Chart of the Repeated Linear Least-Squares Algorithm 
for Estimating the Plane-of-Rotation 
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estimate for the Cartesian coordinates of the center-of-rotation, with respect 

to the sensor frame, are obtained by fitting the measured target positions Pi,} 

, for j= 1, ... ,m, to the equation of a circle. Our objective in this estimation 

problem is to minimize the sum of the perpendicular distances between the 

measured and the estimated circle. Unfortunately, a method analogous to 

the average gradient constraint algorithm used in Section 4.3.2.1 cannot be 

applied to solve this minimization problem. Therefore, we take the same 

approach as in Section 4.3.2.1 to develop an algorithm based upon repeated 

application of a linear least-squares regression. In other words, it is assumed 

that (B-l), (B-2), and (B-3) are satisfied. 

The standard fonn for the equation of circle is 

(x-gf + (y_h)2 = il , (4.33) 

where g and h are the X and Y coordinates of the center, respectively, and r is 

the radius. While a circle can lie in three dimensions, it only spans two 

dimensions. In the fonn (4.33), the Z coordinate of the center is thus im­

plicitly zero. To apply (4.33) or a variation thereof, we must project the 

measured target positions which will, in general, span three dimensions to 

an appropriate two-dimensional subspace. From our previous discussions in 

Section 4.2, the required subspace is defined by the corresponding estimated 

plane-of-rotation. Furthennore, since (4.33) is represented to lie in the X-V 

plane, a transformation of coordinates is also necessary. If the appropriate 

coordinate frame transformation is applied to the data first, the subsequent 

projection onto the subspace becomes trivial. 

The new coordinate frame is denoted by C. The transformation be­

tween the sensor frame and Cis defined by the homogeneous transformation 

matrix 
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R [~ <1i 
o ~l (4.34) 

where the vector a is the unit normal vector to the estimated plane of rota­

tion (4.31) and the parameters A, B, C, and D are obtained using either of the 

methods in Section 4.3.2.1. The unit direction vectorsn and 0 can be chosen 

arbitrarily so long as n, 0, and a form an orthogonal right-handed coordinate 

system. The target positions are transformed according to 

for j= 1, ... ,m. (4.35) 

The Z coordinate of the center-of-rotation in frame Cis 

D 
(4.36) 

(A2+ B2+C2)1/2 

Since the X-Y plane of C is parallel to the estimated plane-of-rotation, the X 

and Y coordinates of p/ constitute the projection of the target positions. 

The equation of a circle (4.33) can be rewritten as 

w == i2 + y2 = Ax + By + C = cjl8 , (4.37) 

where 

cp = [x y 1 f (4.38) 

and 

8 = [A B C]T (4.39) 

are the information vector and the parameter vector, respectively. The out­

put of (4.37) is the squared distance between a point on the circle and the 

origin. A simple regression of w on x, y, and 1 corresponds to the minimiza­

tion of 
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- = L~' . I 'J 
J= 
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m 
= ~ (CllS-W)2 

FI 

(4.40) 

the sum of the squared errors in the output, w. The solution is identical to 

(4.23) with Z replaced by the column vector W containing the elements 

wj=xf + yf. In general, minimizing (4.40) is not the same as minimizing the 

sum of the squared perpendicular distances between the measurements and 

the circle, unless the origin of the coordinate frame and the circle are coin­

cident. Following the approach taken in the previous section, we repeatedly 

apply the linear solution (4.23) and a transformation of coordinates. At the i 

th iteration, we translate the X and Y components of the originally projected 

measurements t; by 

i 
Xj = 
i 

Yj = 

x 
Xj -

x 
Yj -

gi-l 

hi- l 

(4.41) 

(4.42) 

where gj-l and hi-I are the estimated coordinates of the center-of-rotation 

computed during the i-I th iteration. By repeatedly translating the original 

data during each iteration, the origin of the circle in the translated frame 

approaches zero (i.e., approaches the origin of the frame). The solution (4.23) 

using x; and Y; thus approaches the solution to the desired minimization 

problem. Figure 4-4 is a flow chart of the repeated linear least-squares algo­

rithm for estimating the center-of-rotation. The vector defining the center-of­

rotation for joint i in coordinate frame cis [g h zc]T. The center-of-rotation 

in sensor coordinates is 

(4.43) 

where R is defined in (4.34). The set of nr center-of-rotation vectors are used 

in Section 4.3.3 to construct a kinematic model of the manipulator. 
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* * 
Xj - Xj - sumq 

• * 
Y j - Y - sumh 

2 • 
Wj _ Xj + Yj 

G 
Figure 4-4: Flow Chart of the Repeated Linear Least-Squares Algorithm 

for Estimating the Center-of-Rotation 
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4.3.2.3. Line-of-Translation Estimation 

Prismatic joints are characterized by a single kinematic feature, their 

line-of-translation. This feature is defined by two components - a unit direc­

tion vector indicating the orientation of the line and a vector indicating the 

position of an arbitrary point on the line. 

The standard form for the equation of line in 3-dimensions is 

X-Xo Y-Yo z-zo 
= = a -b- c (4.44) 

where xo ' Yo' and Zo are the coordinates of a point on the line. Analogous to 

our approaches taken in Sections 4.3.2.1 and 4.3.2.2, we seek the line (4.44) 

which minimizes the sum of the squared perpendicular distances between it 

and the measured target positions. It is relatively simple to prove that the 

best fit line, in this sense, must pass through the mean of the measurements 

Pj (i.e., the center of gravity). Hence, the parameter vector 

1 m "0 = - L po , mOl } 
}= 

(4.45) 

where "o=[xo Yo zo]T. We then subtract the mean from the set of measure­

ments to simplify our problem to that of determining the orientation of the 

line. The standardized measurements are denoted by pr To determine the 

best estimate for a, b, and c, we apply the principal axis method [3,6]. The 

vector v = [a b c JT under the condition that v Tv = 1 represents the unit 

direction vector defining the orientation of the line (4.44). It also represents 

the unit normal vector to the plane ax+by+cz=O. The perpendicular dis­

tance between such a plane and the point p/ is dj=vTp/. Consider the 

plane which maximizes the sum of the squares of the distances dj' The idea 

behind the principal axis method is that the line normal to the plane im-
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plicitly minimizes the sum of the squares of the distances between it and the 

points TIt Hence, we seek the parameters t/ which maximize the error 

function 

m 

.... = ~ d·2 I-J 
)=1 

m 

= 4, (t/Tp!)2 = t/TMt/ 
)=1 

(4.46) 

where M is the covariance matrix of the standardized measurements. The 

vector t/ which maximizes (4.46) is the normalized eigenvector of M cor­

responding to the maximum eigenvalue of M. This normalized eigenvector 

is not uniquely defined. The two possible solutions differ in sign (Le., they 

point in opposite directions). In Section 4.3.3, we require that the vector t/ 

indicate the direction of positive joint translation. According to assumption 

(B-1), the dot product 

tIT (Pm - PI) 
IPm - PII 

(4.47) 

between the vector t/ and unit direction vector pointing from the measure­

ment PI to Pm should have a magnitude of approximately 1. The sign of 

(4.47) indicates whether the t/ points in the positive or negative direction of 

travel. If (4.47) is negative, t/ is multiplied by -1. 

We apply the np line-of-translation feature estimates, along with the nr 

plane-of-rotation and center-of-rotation feature estimates, in the following 

section to specify the position and orientation of a set of S-Modellink coor­

dinate frames. From these link coordinate frames, we formulate a complete 

manipulator kinematic model and identify the Denavit-Hartenberg 

kinematic parameters. 
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4.3.3. Link Coordinate Frame Specification 

In Step 2, we apply the identified features to specify the location of the 

S-Modellink coordinate frames which satisfy the S-Model convention (in 

Section 3.2). We compute the n+l matrices 

for i=O, ... ,n (4.48) 

to define the positions and orientations of the S-Model link coordinate 

frames and an end-effector coordinate frame with respect to the sensor coor­

dinate frame. In (4.48), P is a constant homogeneous transformation matrix 

representing the spatial transformation from the sensor coordinate frame to 

the manipulator base coordinate frame So. Placement of the sensor system 

relative to the manipulator is arbitrary, at least from the analytical point-of-

view. The set of n constant matrices Sj describes the kinematics of the 

manipulator in the signature configuration. In Section 4.3.5, we generalize this 

constant model to incorporate the entire joint space. 

In Figure 4-5, we illustrate the construction of Sj when joint i+l is 

revolute.The position and orientation of the i th link coordinate frame is 

specified by the identified joint i+l features. By definition 

Si [~ (4.49) 

The unit direction vector aj is the unit normal vector to the estimated plane­

of-rotation of the i+l th joint. The direction of either the X axis, defined by nj 
,or the Y axis, defined by OJ, is arbitrary in the S-Model (in Section 3.2). Any 

method for selecting and orthogonalizing these vectors can be applied. We 

choose the unit direction vector nj to be 
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lane-of-Rotation 

oint i+l) 

Sensor Coordinate Frame 

Figure 4-5: Coordinate Frame Construction for a Revolute Joint 

iti = Pi+l.l - Pi+l.c (4.50). 

IPi+l.l - Pi+l,c I 

where Pi+l.l is the location of the first target position for joint i+l projected 

onto the plane-of-rotation. For convenience, we have used the first target 

position. The Y axis direction vector 0i is the cross product of the Z and X 

axis unit direction vectors ai and 1\ ' respectively. The origin of the link i 

coordinate frame Pi is the center-of-rotation Pi+l.c. When computing ai from 

the plane-of-rotation, the positive sense of ai must correspond with the posi­

tive sense of rotation of the i+l th joint. 

In Figure 4-6, we illustrate the construction of Si for a prismatic joint. 

The unit direction vector ai in (4.49) is the unit direction vector to the es-
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Figure 4-6: Coordinate Frame Construction for a Prismatic Joint 
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timated line-of-translation of the i+l th joint. Hence, ai=v where v is defined 

in Section 4.3.2.3. It is essential that the positive sense of ai corresponds with 

the positive sense of translation of the i+l th joint. Again, the direction of 

either the X axis, defined by ni , or the Y axis, defined by 0i' is arbitrary. To 

avoid additional computations, we choose ni to be either of the two eigen­

vectors previously computed in Section 4.3.2.3 which correspond to the two 

smallest eigenvalues. The Y axis direction vector 0i is the cross product of 

the Z and X axis unit direction vectors ai and ni ,respectively. Unlike a 

revolute joint, a prismatic joint does not have a unique axis. In general then, 

the origin of the i th link coordinate frame is arbitrary. For convenience, 

however, we define Pi to be the mean of the measurements It defined in 

Section 4.3.2.3. 
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The matrix 5/1 represents the position and orientation of the end­

effector with respect to the end-effector coordinate frame. There are no 

features associated with this frame since the end-effector is assumed to have 

zero degrees of freedom. The end-effector in this sense refers to the face 

plate or mounting flange attached to the last joint. For convenience, the 

end-effector coordinate frame 5/1 is defined to be cOrrlcident with the n-l th 

link coordinate frame when the manipulator is the signature configuration (i.e., 

5/1= 5/1_1)' 

These simple construction methods are applied to evaluate the ele­

ments of the n+l matrices 5 j which are then used to compute the S-Model 

parameters. 

4.3.4. S-Model Parameters 

In Step 3, we compute the transformation matrices Bj from the 5 j 

matrices according to (3.1) and (4.48) 

B· 
-1 

Sj I Sj_1 

B· 
-1 p-1 P S. = 5j-l I I 

B· 
~1 

5· for i=l ..... n (4.51) = 5 j_ 1 I I 

We then apply Paul's backward multiplication technique [18] to compute the 

six constant transformation matrix parameters ~j' dj , aj , ~'Yj' and b j from 

Bj • The expressions for these parameters in terms of the elements of Hj were 

derived in Section 3.3 and are repeated here for clarity and completeness. 

They are 
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[ 
0 when a =a =0 x y 

l3i = (4.52) 

-ax 
otherwise atan-

ay 

a sin 13· - aycos l3i 
~ atan x I (4.53) = 

az 

-0 cos 13· - 0 sin 13· 
Yi = atan x I y I (4.54) 

nxcosl3i + nysinl3i 

ai = Pxcosl3i + pysin l3i (4.55) 

f 
-Pxsin l3i + Pycosl3i 

if sini\ ~ 0 

b· = sini\ (4.56) 
I 

0 if sini\=O 

di = Pz - bicosi\ , (4.57) 

where 

nx Ox ax Px 

ny Oy ay Py 
(4.58) Bi nz Oz az pz 

0 0 0 1 

4.3.5. Denavit-Hartenberg Parameters 

In the fourth and final step of our identification algorithm, we extract 

the Denavit-Hartenberg parameters from the 5-Model parameters to model 

the kinematics of the manipulator over the entire joint space. The physical 

position of a joint, as measured by the joint encoders, may not coincide with 
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the value of the joint position as defined in the Denavit-Hartenberg model. 
. d offset The constant offset between these two measurements is enoted by qj . In 

terms of the signature configuration, q~ffset is 

(4.59) 

where ~ is the encoder measured signature configuration position of joint i 

and qf is the corresponding Denavit-Hartenberg position of joint i computed 

according to (3.12) for a revolute joint or (3.13) for a prismatic joint. The 

Denavit-Hartenberg model parameters, qj=9j for a revolute joint and qj=dj 

for a prismatic joint, defined in (2.9) are thus 

(4.60) 

The parameters 9j and d j are functions of the controllable and measurable 

position <L. With the exception of 91 or d 1, the remaining (3·n)-1 constant 

Denavit-Hartenberg parameters are computed according to (3.12) - (3.15). 

For manipulators with prismatic joints, these are actually the modified 

Denavit-Hartenberg parameters (Le, the parameter a j for a prismatic joint is 

nonzero). In most applications, determination of the true Denavit­

Hartenberg parameters is not necessary. However, if they are required, 

slight modifications must be made to the identified S-Model. 

The Denavit-Hartenberg parameters of manipulators with prismatic 

joints can be obtained using the following method. For expository purposes, 

we will describe the method for a manipulator with n-l revolute joints and 

one prismatic joint. Let joint i denote the prismatic joint. Our objective is to 

implicitly redefine the location of the link coordinate frame Sj_1 depicted in 

Figure 3-2. Altering the location of Sj_1 will naturally affect the computation 

of the S-Model parameters for link i-l. The new location of the coordinate 
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frame is chosen to insure that the parameter ai in the S-Model is zero. When 

we later apply (3.12) - (3.15) to determine the Denavit-Hartenberg 

parameters, ai will be identically zero. 

The first step is to determine the S-Model parameters of all the links 

except for links i-1 and i using the relations (4.52) - (4.57). We then recognize 

that the coordinate frame Si-} can always be relocated, while still satisfying 

the S-Model convention, such that the parameters bi- 1 ' bi ' and 1i-l are 

redundant. For convenience, we let bi=-dj+1 and set bi-} and 1j-l equal to 

zero. The parameter ~ represents the angle between the joint i and i+ 1 axes. 

The unit vectors describing the orientation of these axes, with respect to the 

coordinate frame Si-l are [0 0 If and the vector it in Bj ,respectively. The 

solution for ~ , derived from the dot product and cross product of these two 

vectors, is 

(4.61) 

where ax' ay ' az are elements of Bj . Our relocation of Si-l includes a rotation 

of the X and Y axes. The new X axis is defined to point in the direction of the 

vector formed by the cross product of the joint i and i+ 1 axes. Since the 

orientation of the Z axis of Sj_l must remain the same, the new Y axis merely 

completes the orthogonal set. Having rotated the axes, we can then solve for 

the parameter 1i . The new X axis direction vector, measured with respect to 

the original coordinate frame Si-l' is [-ay ax Of. The parameter 1i 

represents the angle between this new X axis and the X axis of coordinate 

frame Si. Using the definition of the dot product and the cross product, 

(4.62) 



74 KINEMATIC IDENTIFICATION 

The new Si-l coordinate frame is, in fact, the Denavit-Hartenberg link 

coordinate frame 'Ii-I in Figure 3-2. Furthermore, the transformation be­

tween Si-2 and Si is independent of the physical location of Si-l' This trans­

formation is defined by the matrix product 

Bi_IBi = Rot(z'~i_l )Trans(O,O,di_1 )Trans(ii"':I'O,O) 

Rot (x, ~-l )Rot(z, 'Vi-I )Trans (0,0, b i_1 )Rot(z, ~i) 

Trans(O,O,di)Trans(ii,O,O)Rot(x,~)Rot(z,ri) 

Trans (0, 0, bi) , (4.63) 

which is derived from (3.2). Setting b.=-d. 1 and'll. l=b. l=a.=O in (4.63) 1 1+ 1,- 1- 1 

and rearranging yields 

Rot (z, ~i-l )Trans (0, 0, d i-l )Trans (ai-I' 0, 0) 

(4.64) 

The left-hand side of (4.64) can be evaluated using the parameters iii and 'Vi 

obtained from (4.61), (4.62), and (4.54), and the known matrices Bi-l and Bi . 

Conversely, the right-hand side of (4.64) is a function of the unknown 

parameters ~i-l ' di-l ' a i- 1 ' ~-1 ' ~i ' and d i · Upon comparison, the 

right-hand side of (4.64) is functionally identical to that of the general trans­

formation matrix in (3.2). Applying the appropriate substitutions to (4.52) -

(4.57), the solutions for the six the remaining unknown S-Model parameters 

are: 

~i-l 

when a =a =0 x y 

(4.65) 
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i 
~1 

-a 
atan~ 

ay 

-oxcosPi-l - 0ySinPi-l 
Pi = atan . ' 

nxcosPi-l + n" sm Pi-I 

ai-I = PxcosPi_l + pysinPi_I ' 

-PxsinPi-l + pycosPi-l 

sin~1 

o 

75 

otherwise 

(4.66) 

(4.67) 

(4.68) 

if sin Dr-I * 0 

(4.69) 

(4.70) 

where n" ' ny , nz ' 0" ' 0, ' az ' a" ' a, ' and az are the elements of the matrix 
defined by the left-hand side of (4.64). When two or more consecutive joints 

are prismatic, the corresponding 5-Model link coordinate frames should be 

relocated such that their origins coincide. Solutions for the nonzero S-Model 

parameters, analogous to those in (4.65) - (4.70), can then be derived. 

The Denavit-Hartenberg parameters 01 and d l are functions of the S­

Model parameters 'Yo and bo ' respectively. In principle, 'Yo and bo can be 

computed from the elements of the matrix Bo' From (4.51), however, Bo is 

undefined since neither 5_1 nor equivalently S_1 is defined in our identifica­

tion algorithm. Fortunately, 01 and d1 are not essential for the kinematic 

modeling and control of manipulators. We circumvent the problem by 

modifying the model in (2.8). We replace the matrix Til by Til to represent 

the poSition and orientation of the nth link coordinate frame in terms of the 
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identified S-Model base coordinate frame So' To distinguish between the 

modified model and the original Denavit-Hartenberg model in (2.8), we ex-

press Tn as 

Tn = Ar A2· .. · ·An 
= [Rot(z, -yo)Trans(O,O,-bo)]Tn (4.71) 

where the matrix ~ ~ (ql) has the functional form of (2.9), and 

Ai = Ai(iL) fori=2, ... ,no We replace ql by 

(4.72) 

for a revolute joint and 

(4.73) 

for a prismatic joint. We call the model in (4.71) the pseudo Denavit­

Hartenberg model. Even though the parameters Yn and bn are not required 

to formulate the pseudo Denavit-Hartenberg model in (4.71), we compute all 

of the S-Model parameters in the third step of our identification procedure. 

The parameters Yn and bn may be required to invert (4.71). 

The model (4.71) describes the spatial relationship between a coor­

dinate frame attached to the base of the manipulator and a coordinate frame 

attached to the end-effector as a function of the joint positions as defined by 

the joint encoders. Robot kinematic models, such as (2.8), (3.1), and (4.71), 

only describe the internal kinematics of the device. The location of the link 

coordinate frames with respect to physical points or surfaces on the mechani­

cal linkages, is not specified by these models. In particular, the physical 
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location of the base frame and the end-effector frame are unknown. In prac­

tice, most robot manufacturers select the parameters of the design model so 

as to insure that the base frame and end-effector frame coincide with certain 

physical features of the base and end-effector <e.g., machined bosses or the 

surface of a mounting flange). This, in principle, allows the users to 

precisely locate the manipulator in a workcell and to program the robot 

motions in terms of absolute coordinates. This approach to robot program­

ming and control has numerous disadvantages. 

The preferred approach is to generate task descriptions and control 

programs which are independent of the manipulator. All motions of the 

end-effector are referenced to an arbitrary coordinate frame called the task 

coordinate frame. Prior to executing the task, the robot is taught the location 

of the task coordinate frame. Thus, in the practical implementation of robot 

tasks the absolute physical locations of the base frame and end-effector coor­

dinate frames are not necessary. 

The location of targets 1 and n, in the 5-Model identification algorithm, 

determines where the base and end-effector coordinate frames lie. Their 

location and the location of the remaining n-2 targets has, conceptually, no 

affect upon identified internal kinematics of the manipulator. If, however, 

the application demands that the robot be positioned in a particular refer­

ence frame, the relationship between the base and end-effector frame must 

be specified with respect to the physical device. This is accomplished by 

mounting targets 1 and n at predefined locations which satisfy the necessary 

physical constraints. 
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4.4. Conclusions 

The S-Model identification algorithm possesses the following features 

for accurate kinematic parameter estimation and robot modeling: 

• Since the 5-Model is an exact kinematic description, the estimated 
model approaches the ideal model as the measurement noise is 
reduced to zero. Simulation experiments have demonstrated this 
property of the model. 

• The sensor system for measuring the position of the target point 
is independent of the robotic manipulator and eliminates the need 
for sophisticated fixturing and accurate placement of the 
manipulator. Acoustic and optical sensor systems for this ap­
plication are commercially available. 

• Placement of the target points on the robot is essentially arbitrary 
and requires only minor fixturing. 

• Simple linear least-squares algorithms are applied to estimate the 
parameters. Solving a huge nonlinear minimization problem, as 
proposed by Whitney and Lozinski [30], is thus eliminated. 

• One can calculate the standard Denavit-Hartenberg parameters 
from the 5-Model parameters. 

• The effects of measurement noise upon the estimated parameters 
can be reduced by increasing either the number of target loca­
tions measured per circle (line) or the nominal target radius (for 
revolute joints). 

• The approach leads to a robust algorithm for identifying the 
kinematic structure of all n degree-of-freedom robotic 
manipulators. 

• The systematic structure of the algorithm leads to efficient and 
practical implementations requiring little or no operator inter­
action (as demonstrated by our implementation described in 
Chapter 6). 



5.1. Overview 

ChapterS 

Inverse Kinematics 

The inverse kinematic problem requires the solution of a set of n 

coupled nonlinear equations. Since arm signature models do not possess 

closed-form inverse kinematics, numerical methods must be applied to solve 

the nonlinear equations. In this chapter, we describe two algorithms for 

solving the inverse kinematic problem. The first algorithm, based upon 

Newton's method, was originally proposed by Khosla, et al. [12]. We have 

applied this algorithm in our hardware implementation and evaluation of 

arm signature identification. The second algorithm is the Jacobi iterative 

algorithm applied specifically to the inversion of signature models. In the 

context of this dissertation, we consider the implementation of the inverse 

kinematic equations to be synonymous with the robot's kinematic control 

algorithms. Used by themselves to position the end-effector, the inverse 

kinematic equations correspond to an open-loop control structure. Closed­

loop or sensory feedback techniques are more appealing but the real-time 

measurement of the end-effector's position and orientation is, in general, 

impractical with current technologies. In this chapter, the term kinematic 

control will be used instead of the term inverse kinematics. 
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5.2. Newton-Raphson Algorithm 

The kinematics of serially-connected robotic manipulators can be 

described by the multiplicative matrix model 

(5.1) 

where the Ki matrix can be expressed as 

if joint i is revolute (5.2) 

or 

if joint i is prismatic. (5.3) 

The constant homogeneous transformation matrix ~ defines the constant 

component of the transformation from the link i-l coordinate frame to the 

link i coordinate frame. The matrix Tn defines the position and orientation of 

the end-effector in terms of a coordinate frame fixed relative to the base of 

the manipulator. 

For kinematic control, our objective is to determine the joint coor­

dinates 'f which correspond to the desired end-effector position and orien-
• tation Tn=Tn. When the nonlinear equations in (5.1) are solved iteratively by 

the Newton-Raphson algorithm [12], the solution at the (k+1) th iteration is 

(504) 

where J(qk) is the manipulator Jacobian evaluated at qk. The vector r; k 

represents the differential translation and rotation between the position and 

orientation of the desired end-effector location T: and the predicted end­

effector location corresponding to q k= [q~ q~ ... q~]T defined in (5.1). The 



INVERSE KINEMATICS 81 

differential translation and rotation vector "8 k is defined in terms of the base 

coordinates in (5.1). Any set of rotation angles with a predefined sequence of 

rotations (e.g., Eu1er angles, roll-pitch-yaw, and Cartesian x-y-z) can be used 

to define the rotational components of "8 k. The choice only affects the for­

mu1ation of the manipulator Jacobian. Expressions for the manipulator 

Jacobian in terms of the elements of the Ki matrices for different definitions 

of "8 k are presented in [7, 18]. 

The Newton-Raphson algorithm (5.4) converges in theory when the 

difference, Til (qk+l)_T: ' becomes zero. In practice, two approaches can be 

taken to assess convergence. In the first, the algorithm is assumed to con­

verge when each element of the above difference has reached a user­

prescribed threshold. The second approach assumes that the algorithm has 

converged when each component of the incremental change in the solution is 

less than the resolution of the corresponding joint encoder. The latter ap­

proach is easier to implement and takes into account the physical1imitations 

of the device itself. 

Application of numerical methods to solve the inverse kinematic 

problem gives rise to the following issues: 

• Selection of an initial estimate 

• Rate of convergence 

• Convergence to the desired solution 

• Presence of singularities 

Selection of an initial estimate, in our application, is relatively simple. Since 

the robot design and identified signature models are nearly identical in 

terms of predicting end-effector position and orientation, we apply the 

design model to initialize qo. Our initial estimate qO is then the inverse 
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solution of the design model evaluated at the desired end-effector location 
• Tn' The number of iterations required for (5.4) to converge is directly related 

to the accuracy of the initial estimate. Since the initial estimate obtained 

from the design model is close to the true solution, we require only a few 

iterations. In our experimental evaluation of the Newton-Raphson algorithm 

we have found that the algorithm converges to the true solution within 2-3 

iterations. 

Fully articulated manipulators, such as the Puma 560, possess multiple 

inverse kinematic solutions. These multiple solutions differ by such physical 

characteristics as the right and left shoulder configurations of the Puma 560. 

For kinematic models with closed-form inverses, a parameter to specify the 

unique characteristics of a desired solution can be incorporated explicitly 

into the inverse algorithm. This approach, however, does not apply to 

kinematic models without closed-form inverse solutions. Consequently, the 

issue arises as to how to insure that the iterative solution converges to the 

desired solution. Since our initial estimate, which is derived from a closed­

form inverse model, is close to the true solution, we select the initial estimate 

to be of the configuration of the desired solution. 

The Newton-Raphson algorithm has two practical disadvantages. 

First, it requires the evaluation of the inverse Jacobian at each iteration. In­

version of the Jacobian matrix is a major contributor to its computational 

complexity. If the desired end-effector position T: corresponds to a joint 

configuration which is close to being degenerate, the algorithm in (5.4) be­

comes numerically unstable (Le., the Jacobian matrix becomes singular). 

Degenerate or near-degenerate configurations can almost always be avoided 

by modifying the robot trajectory planner. This approach often reduces 

manipulator dexterity and programmability, thereby limiting the range of 

applications to which the robot can be applied. Second, the Newton-
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Raphson algorithm requires a significant number of multiplications, ad­

ditions, and trigonometric function calls at each iteration (refer to Section 

5.5). Computationally intensive operations include generation of the 

Jacobian elements, and evaluation of (5.1) and the elements of 8 k. The 

Newton-Raphson algorithm is more computationally complex than the 

closed-form inverse solution typically applied to kinematic control. 

5.3. Jacobi Iterative Method 

The extent to which arm signature identification and control is applied 

to improve robot positioning performance will, in part, be determined by the 

computational complexity of the signature control algorithm. In this section, 

we apply the Jacobi iterative algorithm to invert arm signature models as an 

alternative to the computationally complex Newton-Raphson algorithm. In 

contrast to the Newton-Raphson algorithm, the Jacobi iterative algorithm 

explicitly incorporates the knowledge of both the robot design and the sig­

nature models. 

We introduce the following notation. Let the forward kinematics, ac­

cording to the design model, be denoted by T,!=Fd(ct) and the inverse 

kinematic model by q=F~l<T,!). Similarly, let the forward kinematics, ac­

cording to the signature model, be denoted by ~=Fs(q) and the inverse 

kinematic model by q=F~l~). Finally, let 

(5.5) 

Our objective is to determine the joint coordinates if so that Fs{q·) is 
• equal to the desired end-effector position and orientation Til (i.e., to compute 

it =F~l (T:». We premultiply both sides of (5.5) by [Fs(q)r1 and the result 

by the design model Fd(q) to obtain 
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(5.6) 

By applying the inverse design kinematic model relationships F~l (cD to both 

sides of (5.6), we obtain the fixed point equation 

(5.7) 

We thus seek the joint coordinates if which are the fixed point of the right­

hand side of (5.7) [9]. According to the Jacobi iterative algorithm, we can 

obtain a solution by iterating the right-hand side of (5.7). The Jacobi iterative 

algorithm is 

(5.8) 

which is initialized by setting if= F~l(T:). We select the initial estimate to be 

of the configuration of the desired solution as we did for the Newton­

Raphson algorithm. 

The algorithm (5.8) has a relatively simple physical interpretation. In 

Figure 5-1, we represent the end-effector positions and orientations defined 

by the matrices Fs(qk), Fd(qk), and T: by three generic vectors in six dimen­

sions. The vector denoted by Ak in Figure 5-1 represents the difference be­

tween the solution at the k th iteration and the desired solution, measured in 

Cartesian space. Analytically, Ak is the product 

(5.9) 

contained in (5.8) and is the error term which drives the algorithm towards 

the solution. The new Cartesian position and orientation 
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Figure 5-1: Physical Interpretation of the Jacobi Iterative Algorithm 

(5.10) 

in (5.8) is then input to the inverse design kinematic model to compute the 

new solution qk+l. At each iteration, the location 1* is translated and rotated 

by the same amount as the error between the desired and signature model 

end-effector locations. Implicitly, the algorithm searches for the end-effector 

location 1* corresponding to T: such that 

-1 k -1· 
Fd (T ) = Fa (T,.) . (5.11) 

In the Jacobi algorithm, the design model Fd(qk) and the signature model 

Fs(qk) must both be expressed in terms of the same physical base coordinate 

frame as illustrated by the common origin in Figure 5-1. 

We have applied this algorithm in simulation to invert signature 
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models. Our simulations demonstrate that the algorithm in (5.8) converges 

to the true solution if if the product 

(5.12) 

is close to the identity matrix. The matrix P (en is the transfonnation be­

tween the end-effector position and orientation predicted by the design and 

the signature models. Since robot manufacturing errors are small in com­

parison with the physical dimensions of the robot, the mappings between the 

joint and Cartesian spaces defined by the two models will, in practice, be 

similar. Hence, for joint configurations qk in the vicinity of if, the model 

mismatch (5.12) will vary only slightly in comparison to the workspace of the 

manipulator (e.g., for the Puma 560, typical values for the model mismatch 

are on the order of 0.5 mm and 0.1 degrees). 

Henrici [9] has shown that the Jacobi iterative algorithm is guaranteed 

to converge if the function on the right-hand side of (5.7) is a continuous 

contraction mapping. While we cannot prove that this function is a con­

tinuous contraction mapping due to the analytic complexity of the design 

and signature models and the inverse design model, the simulations il­

lustrate the fact that the Jacobi iterative algorithm has a linear rate of conver­

gence and that the Newton-Raphson algorithm has a quadratic rate of con­

vergence. We assume that the algorithm has converged when all the com­

ponents of the incremental change in the solution are less than the resolution 

of their corresponding joint encoder. In all of our simulations, the Jacobi 

iterative algorithm converged to the solution (within the limits of the Puma 

560 joint encoders) within at most 9 iterations while the Newton-Raphson 

algorithm required 3-4 iterations to converge to an equally accurate solution. 

The algorithm in (5.8) requires matrix multiplication, evaluation of the 
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closed-form inverse of a homogeneous transformation matrix, and the evalua­

tion of the inverse design model. Since homogeneous transformation 

matrices are orthogonal, their closed-form inverses are written by inspection. 

Even though the Newton-Raphson algorithm requires fewer iterations than 

the Jacobi iterative algorithm to converge, our simulations indicate that the 

reduced number of iterations may not offset their additional complexity. 

Computationally, the Newton-Raphson and Jacobi Iterative algorithm are 

both significantly more complex than the closed-form inverse model for a 

Puma 560. In Sections 5.4 and 5.5, we evaluate the comparative performance 

and real-time applicability of the Newton-Raphson and Jacobi Iterative al­

gorithms. The computational complexity, the rate of convergence, and the 

effects of reduced precision computation upon the performance of these al­

gorithms will be among the features to be compared. 

5.4. Performance Evaluation 

Our evaluation of the performance of the Newton-Raphson algorithm 

(5.4) and the Jacobi Iterative algorithm (5.8) consists of comparing their rates 

of convergence and the effects of reduced precision computation. The con­

vergence of the control algorithms depends upon the overall mismatch be­

tween the design and signature models and the desired end-effector position 

and orientation. In simulation, we applied both algorithms to numerically 

invert identified arm signature models of a perfectly manufactured Puma 

560 robot (i.e., the manufacturing errors are assumed zero). The identified 

arm signature models of the Puma 560 were obtained from a simulator 

(described in Chapter 7). With this second simulator, we identified arm 

signatures of varying accuracy. 

Each control algorithm was used to invert three different signature 

models for n different desired end-effector locations (i.e., the input to the 
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control algorithm}. The three signature models span a wide range in ac­

curacy as determined by the magnitude of simulated measurement noise. 

The n end-effector locations are chosen to span the full range of the Puma 

560's workspace. At each iteration of each algorithm, we compute the error 

/}"k with respect to the base coordinates. The orientational component of the 

error is expressed in terms of Euler angles. We also compute the radial 

position error as the Euclidean norm of the X, Y, and Z axis translational 

errors. The four translational errors and three rotational errors were com­

puted during each iteration of the two algorithms for the three signature 

models and the various end-effector locations. 

For all cases tested, the behavior of the two algorithms was qualita­

tively equivalent. As the accuracy of the identified signature model in­

creased the number of iterations required by both algorithms to converge 

decreased. In all but a few cases, the three orientational and four trans­

lational measures of the error term /}"k converged asymptotically. The dif­

ference between the solutions obtained using single precision arithmetic ver­

sus double precision arithmetic was insignificant6. Tables 5-1 and 5-2 list the 

components of the error between the desired end-effector location and the 

end-effector location computed using the solution at each iteration for the 

Newton-Raphson algorithm and the Jacobi Iterative algorithm, respectively. 

Table 5-1 illustrates the quadratic convergence of the Newton-Raphson 

algorithm as compared to the linear convergence of the Jacobi algorithm in 

Table 5-2. In this example, the Jacobi algorithm required nine iterations to 

converge while the Newton-Raphson algorithm required only four. The 

errors listed in Tables 5-1 and 5-2 were computed using the same identified 

60ur simulations were conducted on a Digital Equipment Corporation VAX 11/780 and 
implemented in the C Programming Language. 
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Table 5-1: Typical Convergence Behavior of the Newton-Raphson Al­
gorithm 

X Axis Error Y Axis Error Z Axis Error Radial Error 
Iteration (em) (em) (em) (em) 

0 4.6465327 4.8498771 1.1024610 6.8063937 
1 0.0271668 0.0072422 -0.0710502 0.0764108 
2 0.0000035 0.0000184 -0.0000147 0.0000238 
3 0.00000% -0.0000160 -0.0000000 0.0000187 

Table 5-2: Typical Convergence Behavior of the Jacobi Iterative Algo­
rithm 

X Axis Error Y Axis Error Z Axis Error Radial Error 
Iteration (em) (em) (em) (em) 

0 4.6465327 4.8498771 1.1024610 6.8063937 
1 -0.2821745 0.2077792 -0.0052285 0.3504596 
2 0.0264061 -0.0120712 -0.0386135 0.0483115 
3 0.0107435 -0.0024874 -0.0036998 0.0116318 
4 -0.0011183 0.0000441 0.0011644 0.0016151 
5 -0.0000703 0.0000454 -0.0000066 0.0000839 
6 0.0000188 -0.0000212 -0.0000116 0.0000306 
7 0.0000123 -0.0000165 -0.0000007 0.0000206 
8 0.0000092 -0.0000160 0.0000004 0.0000184 
9 0.0000096 -0.0000160 -0.0000000 0.0000186 

signature model and same desired end-effector location. For expository pur­

poses, the signature model was grossly inaccurate. The error computed at 

the 0 th iteration is in fact a measure of this inaccuracy expressed in Cartesian 

space. Recall that the initial solution is obtained from the closed-form in­

verse design model. The radial component to the error is 6.806 centimeters. 

In practice, the radial error for a Puma 560 robot will typically be less than 

5.0 millimeters. In this example, the Newton-Raphson algorithm requires 
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approximately 2 iterations to converge while the Jacobi algorithm requires 

approximately 3-5 iterations. Based upon the results of numerous simula­

tions, we conclude that both algorithms are numerically stable and extremely 

robust. 

In the next section, we analyze the computational complexity of the 

Newton-Raphson and Jacobi Iterative algorithm and assess their real-time 

applicability. 

5.5. Comparative Computational Complexity 

The computations required by the closed-form inverse design model 

(in Appendix B) for a Puma 560 are outlined in Table 5-3. 

Table 5-3: Computational Complexity of the Closed-Form Inverse 
Kinematic Model of the Puma 560 Robot 

Variable atan2 sin cos + x -r-
91 2 0 0 3 2 1 

93 I I 1 5 5 1 

923 1 1 1 4 6 0 

92 0 0 0 1 0 0 

94 1 0 1 3 7 0 

95 1 0 1 2 5 0 

96 I 0 1 7 15 0 

Total 7 2 5 25 40 2 

The first column indicates the joint position or sum of joint positions to 

which the operations correspond. Similarly, the computations required by 
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one iteration of the Newton-Raphson algorithm and one iteration of the 

Jacobi Iterative algorithm for a Puma 560 are outlined in Tables 5-4 and 5-5, 

respectively. 

Table 5-4: Computational Complexity of One Iteration of the Newton­
Raphson Algorithm 

Step sin cos + x I 

I 6 6 172 266 0 

2 0 0 12 0 0 

3 0 0 6 9 0 

4 0 0 27 36 0 

5 0 0 0 0 0 

6 0 0 45 45 15 

7 0 0 6 0 0 

8 0 0 0 0 0 

Total 6 6 268 356 15 

The Newton-Raphson algorithm and the Jacobi algorithm are described in 

terms of a sequence of steps. The eight steps of the Newton-Raphson algo­

rithm and the six steps of the Jacobi algorithm are defined in Appendix C. 

The total number of operations for one iteration of each algorithm are also 

listed in the tables. The total complexity of each algorithm is obtained by 

multiplying these totals by an upper bound for the number of iterations 

required for convergence. The most computationally intensive step in the 

Newton-Raphson algorithm is the evaluation of the inverse jacobian. The 

majority of the computations involved in this task actually pertain to 

evaluating the forward signature model. 
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Table 5-5: Computational Complexity of One Iteration of the Jacobi 
Iterative Algorithm 

Step sin cos atan2 + x ~ 

1 6 6 0 0 0 0 

2 0 0 0 154 236 0 

3 0 0 0 22 50 0 

4 0 0 0 6 9 0 

5 0 0 0 54 72 0 

6 2 5 7 25 40 2 

Total 8 11 7 261 407 2 

The execution times of the Motorola 68020 microprocessor hard ware 

instructions with a 68881 floating point co-processor are listed in Table 5-6 

[16, 17]. 

Table 5-6: Execution Times of the Motorola 68020 with a 68881 Floating 
Point Co-Processor (12-MHz Clock) 

Function Time (J.l.S) 

Multiply 9.42 

Add 7.75 

Divide 12.08 

Square Root 12.25 

Sine 35.92 

Cosine 35.92 

Arc Tangent 36.92 

The times listed in Table 5-6 are based upon a 12 megahertz clock frequency. 
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These floating point operation times, including the times required to load 

and store the operand, are used to estimate the time required to compute the 

inverse kinematic solution. The execution times of the 68020/68881 are rep­

resentative of the computational capabilities of microprocessors currently 

being applied to robot control. The estimated computation time for the 

closed-form inverse model is 1.1 ms. In contrast, the Newton-Raphson algo­

rithm requires 17.77 ms (assuming three iterations to converge) and the 

Jacobi algorithm requires 33.99 ms (assuming five iterations to converge). 

The cycle time for the Puma 560 is 28.0 ms7 corresponding to a sample 

rate of 39 Hz. During each cycle, the trajectory planner inputs an end­

effector location to the kinematic controller which must then compute the 

inverse solution and output the result to the various joint servo controllers. 

The estimates indicate that the Newton-Raphson is implementable in real­

time using commercially-available hardware whereas the Jacobi Iterative al­

gorithm is not. The Newton-Raphson algorithm is computationally more 

efficient than the Jacobi Iterative algorithm in terms of a direct single proces­

sor implementation. However, the Jacobi algorithm does have a potential 

advantage over the Newton-Raphson algorithm. The evaluation of the for­

ward signature model in Step 1 of the Jacobi algorithm involves numerous 

operations which can be performed in parallel. With the proper hardware, 

significant reductions in the computation time can be realized. A cursory 

examination suggests that the time required to perform the operations con­

tained in steps 1 through 5 of the Jacobi Iterative algorithm can be reduced 

by a factor four yielding a total computation time of approximately 12.6 ms. 

This is not the case for the Newton-Raphson algorithm where the evaluation 

of the forward signature model must be performed sequentially to provide 

7 A recent update to the Puma 560 controller includes an 8 ms cycle time. 
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the intermediate results necessary for computing the elements of the inverse 

Jacobian matrix. 

5.6. Conclusions 

In this chapter, two numerical algorithms for solving the inverse 

kinematic problem have been presented, namely, the Newton-Raphson algo­

rithm and Jacobi Iterative algorithm. The results of numerous simulations, 

indicate that both algorithms are numerically stable and extremely robust. 

In our experiments, we have found that the Newton-Raphson algorithm con­

verges to the true solution within 2-3 iterations while the Jacobi Iterative 

algorithms typically converges within 7-9 iterations. 

Computationally, the Newton-Raphson and Jacobi Iterative algorithm 

are both significantly more complex than the closed-form inverse model. In 

fact, the closed-form inverse solution is applied in both cases to provide the 

initial estimate with which to begin. Based upon a serially programmed 

single processor architecture, the Jacobi Iterative algorithm requires sig­

nificantly more computation time than does the Newton-Raphson algorithm. 

Based upon the execution times of the Motorola 68020 microprocessor with a 

68881 floating point co-processor the Newton-Raphson solution takes ap­

proximately 17.77 ms to compute and the Jacobi Iterative solution takes ap­

proximately 33.99 ms. Since the cycle time of a Puma 560 robot is 28.0 ms, 

the Newton-Raphson algorithm is implementable in real-time using 

commercially-available hardware. 

The Jacobi Iterative algorithm has two distinct advantages over the 

Newton-Raphson algorithm. First, it is easier to program. The Newton­

Raphson algOrithm, for instance, requires separate algorithms just to invert 

the 6x6 manipulator jacobian. Second, the Jacobi Iterative algorithm involves 



INVERSE KINEMATICS 95 

numerous operations which can be performed in parallel which, with the 

proper processor architecture, could significantly reduce the overall com­

putation time. A rough estimate suggests a total computation time of ap­

proximately 12.6 ms which is less than the Newton-Raphson algorithm. The 

recent development of customized processors for robotic applications is ex­

pected to further reduce the computation time. 

In the next chapter, we demonstrate both the feasibility and practicality 

of arm signature identification and control by applying the S-Model iden­

tification and Newton-Raphson algorithms in proof-of-concept hardware ex­

periments to improve the performance of seven Puma 560 robots. 



Chapter 6 

Prototype System and Performance 
Evaluation 

6.1. Overview 

In order to demonstrate the feasibility and evaluate the performance of 

the identification and control algorithms, we have developed a complete 

prototype system. This prototype arm signature system has been applied to 

identify and control seven Westinghouse/Unimation Puma 560 robots. 8. 

The Puma 560 is a six degree of freedom robot with revolute joints. Evalua­

tion of the arm signature-based control showed consistent improvement of 

accuracy in several standard tasks. 

In this chapter, we describe the hardware/software implementation of 

the identification and control algorithms and describe the evaluation of 

kinematic performance. 

8Puma is a trademark of the Weslinghouse/Unimation Corporation 
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6.2. System Overview 

Figure 6-1 illustrates the configuration of the hardware components in 

the implementation. Figure 6-2 is photograph of the system with the target 

sparker for Joint 6 mounted in the bar on the end-effector. The sensor array, 

described in Section 6.3.1, is a rigid fixture which supports four ultrasonic 

microphones. In the figure, the microphones are labeled as A, B, C, and 

D. The sensor array also supports to calibration rods indicated by the two 

sets of parallel lines which intercept with microphones Band 

D. Microphones A, B, and C form an approximate right triangle with vertex 

at microphone B. The sensor array is mounted on a wall such that the active 

volume of the sensor array and the workspace of manipulator which is 

mounted on a table coincide. The sensor array in combination with the 

GP-8-3D sonic digitizer are used to measure the straight line distances be­

tween the microphones and the target points attached to the robot. These 

measurements, called slant ranges, are then used to determine the Cartesian 

position of the target points based upon triangulation. The ultrasonic 

digitizer is interfaced to the Puma Controller using an RS-232 serial line 

which is itself interfaced to a V AX 11/780 using another RS-232 serial line. 

The software which controls the Puma 560 during the collection of the 

raw target slant ranges is implemented on the Puma's Val II Controller and 

is written in the Val II programming language [27,28]. This program is 

initially downloaded from the V AX 11/780 which maintains current versions 

of all the system software and provides permanent storage for all experimen­

tal data. The software which implements the slant range compensation and 

target triangulation algorithms (Appendix E.2) is written in the C program­

ming language to run under the Unix9 operating system on the Digital 

9Unix is a trademark of AT&T Bell Laboratories, Murray Hill, NJ. 
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Figure 6-2: Arm Signature Identification System and Puma 560 Robot. 

Used with permission from the Robotics Institute at Carnegie-Mellon 
University, copyright 1987. Photo taken by Mary Jo Dowling. 
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Equipment Corporation VAX 11/780 [11]. The slant range measurements 

are thus collected by the VAL II controller and then uploaded to the VAX 

11/780. The software which implements the feature parameter estimation 

and computes the signature parameters is also written in the C programming 

language and runs on the VAX 11/780. Once identified, the arm signature is 

stored for future use to control the manipulator. 

The closed-form inverse kinematics of the Puma 560 (refer to Appendix 

B.2) and the Newton-Raphson algorithm (in Section 5.2) are implemented in 

the C programming language on the VAX 11/780. We apply both the 

closed-form inverse kinematic model and Newton-Raphson algorithm to 

solve for the joint configurations corresponding to desired Cartesian loca­

tions of the end-effector and to control the robot in a variety of tasks. The 

tasks used to analyze manipulator kinematic performance and the in­

strumentation required to obtain the pertinent measurements are described 

in Section 6.5. 

6.3. Sensor System 

The sensor system measures the three-dimensional positions of targets 

attached to the robot arm. We use an ultrasonic source (sparker) for each 

target and an array of four ultrasonic range detectors to estimate target posi­

tions. Each detector measures time-of-flight independently from the target 

and computes an estimated range. Knowing the geometry of the detector 

configuration the three-dimensional coordinates of the point may be es­

timated. 
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6.3.1. Description 

The GP-8-3D Sonic Digitizer (manufactured by the Science Accessories 

Corporation) is an ultrasonic range sensing system which computes range 

measurements based upon the time of flight of an ultrasonic wave emitted 

from a source to a set of receiving microphones [22]. The primary com­

ponents of the GP-8-3D Sonic Digitizer are 

• A controller 

• A multiplexer 

• Four ultrasonic piezo-electric transducers (microphones) 

• Eight emitters (sparkers) 

The interconnection of these components is illustrated in Figure 6-3. 

Parallel Interface 

Power;., 
;4~--~----~~ 

123456 

Sparkers 

Figure 6-3: GP-8-3D Sonic Digitizer Components 

The controller, equipped with an RS-232 serial port, can be interfaced to a 
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host computer to allow for remotely-controlled digitizing and data acquisi­

tion. In our application, the host computer is the PDP 11/73 in the Puma 560 

Controller. Using the multiplexer, the range measurements to anyone of 

eight different sparkers can be obtained. The GP-8-3D controller has four 

input channels, one for each microphone. When requested to digitize, the 

GP-8-3D initiates a control signal which simultaneously triggers the desired 

sparker to spark and resets four counters. 

When the sound wave emitted by the sparker reaches a microphone a 

level detector is triggered, and the time of flight is recorded. The velocity of 

sound at ambient temperature is used to compute the estimated range from 

the time-of-flight and the computed slant ranges are then transmitted to the 

Puma 560 Controller via the RS-232 serial line. 

Our sensor system utilizes five sparkers and four microphones. For 

identification purposes, the sparkers are numbered 1 through 5 and the 

microphones are labeled A through D. Sparker 5 represents the target 

sparker which is attached to each of the links of the manipulator during the 

identification process. The remaining sparkers and the microphones are 

mounted at fixed locations relative to one another as illustrated in Figure 6-4. 

The locations of microphones A, B, and C define the sensor plane. The sensor 

system is mounted on a wall such that the sensor plane is perpendicular to 

the ground and the line joining microphones A and C is approximately 

horizontal. In our implementation, the distances between microphones A 

and B, Band C, and A and C are nominally 143.0 cm, 143.0 cm, and 203.0 cm, 

respectively. The active volume of the sensor array depicted in Figure 6-4 is 

a cube approximately 143.0 cm on a side with vertices at microphones A, B, 

andC. 

The Cartesian coordinates of the target sparker, Sparker 5, obtained 
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through triangulation, are referenced to a Cartesian coordinate frame im­

plicitly defined by the location of Microphones A, B, and C. This reference 

frame is the Sensor Coordinate Frame depicted in Figure 6-4. Its origin coin­

cides with the acoustic zero point of Microphone C. The Y axis is directed 

along the line joining the acoustic zero points of Microphones C and B. The Z 

axis is perpendicular to and out of the plane defined by the acoustic zero 

points of Microphones A, B, and C. The X axis, formed by the vector cross 

product of the Y and Z axis unit direction vectors, completes the orthogonal 

set. 

The GP-8-3D ean measure slant ranges between 30 em and 250 em with 

a resolution of .01 cm. The accuracy of the computed slant ranges, however, 

varies significantly, depending upon the environmental operating con­

ditions. The speed at which sound travels in air is primarily a function of 
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temperature, humidity, altitude, frequency, barometric pressure, and air 

flow. The speed of sound is particularly sensitive to variations in tempera­

ture (1281.4.4 cm/secrF at 70.0 OF). For instance, if the actual temperature 

of the air between a microphone and the sparker is 69.0 OF instead of the 

assumed 70.0 OF, the GP-8-3D would measure a 150.0 em slant range as 

155.79 cm. In general, differences between the actual and nominal operating 

conditions produce a difference between the actual and nominal speed of 

sound and hence, reduce the accuracy of the computed slant ranges. The use 

of multiple sparkers and a special sensor array design enable us to compen­

sate the slant range measurements taken by the GP-8-3D for variations in the 

speed of sound (refer to Appendix E). This greatly increases the Cartesian 

accuracy of the overall sensor system. 

Following the compensation procedure described in Appendix E, the 

final estimates for the three primary slant ranges sl ' s2 ' and s3 representing 

the distances between the target sparker and Microphones A, B, and C, 

respectively, are applied to determine the Cartesian coordinates of the target. 

Upon triangulating, the X, Y, and Z coordinates of the target are computed 

according to 

x 
rcos(e) + rtan 2(e) cos (e) - y 

= tane 
(6.1) 

(wB C)2 + (83)2 - (82)2 
Y = 

2WB,C 
(6.2) 

z = "';(83)2 -Xl-y2 (6.3) 

where 

(wA,a2 + (83)2 - (81)2 
r = 

2WA,C 
(6.4) 
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cos (9) 
(wA,c)2 + (wB,cY - (w A,B)2 

(6.5) = 
2wACw BC . , 

tan (9) 
(1 - cos 2(9»2 

(6.6) = 
cos (9) 

and wA,B' wB•C ' and wA•C are the distances between Microphones A and B, B 

and C, and A and C, respectively. The coordinate relations (6.1) - (6.3) can be 

simplified if the triangle fonned by Microphones A, B, and C is a perfect 

right triangle. 

6.4. Generating Features 

The 5-Model Identification algorithm leads to an efficient and well­

defined method for collecting measurements. We sequentially attach a 

sparker to each link of the Puma robot to implement the target points 

described in Section 4.3.2. The fixtures used to attach the sparker to a link 

are simple both in design and construction. For example, consider the fix­

ture illustrated in Figure 6-5 which supports the sparker to Link 6 im­

plementing Target Point 6. The two requirements for this fixture are that it be 

rigid and that the distance between the sparker and the Joint 6 axis be ap­

proximately equal to R6 ' where R6 depends upon the active volume of the 

sensor system. We call R j the nominal radius of target point i. The nominal 

radii for the six target points in our implementation are listed in Table 6-1. 

In general, increasing the nominal radii increases the accuracy of the 

identified planes-of-rotation. 

We begin the measurement process by positioning the manipulator in 

the desired signature configuration using a teach pendant. Conceptually, the 

signature configuration can be any arbitrary configuration. However, in 

practice, the signature configuration may depend upon the characteristics of 
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Figure 6-5: Fixture for Attaching Target Point 6 to link 6 

Table 6-1: Puma 560 Target Point Nominal Radii 

Target Point Nominal Radius (em) 

1 40.87 

2 41.62 

3 43.71 

4 33.30 

5 45.13 

6 33.30 

the sensor system. In our implementation, we must insure that the lines of 

sight between the target sparker and the three Microphones A, B, and C 

remain unobstructed. Requirements such as this may also affect the design 

of the mounting fixtures and the selection of the target point's positions with 

respect to the links. The signature configuration we have selected is il­

lustrated in Figure 6-6.The angular positions of the joints which define the 

signature configuration are measured and recorded. We denote the sig­

nature configuration by the vector q"= [q~,q;, ... ,q~]T. In Figure 6-6, q S is 

nominally [155.0 179.0 178.00.00.0 O.O]T. 
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Figure 6-6: Approximate Signature Configuration for the Puma 560 

We independently and incrementally vary the position of each joint of 

the manipulator such that the six target points generate circular trajectories 

in space. At each fixed configuration of the manipulator, we measure and 

record the set of seven slant ranges required to determine the Cartesian 

position of the target sparker. To further improve the estimates of measured 

target positions, we measure and record several sets (typically 10-20) of 

seven slant ranges at each configuration. Random fluctuations in the 

measured slant ranges are then reduced through averaging. 

The measured target positions represent sample points on the 

generated circular trajectories. Six sets of points are obtained, each set cor­

responding to the trajectory of a distinct target point. The measured target 

positions will be used to identify 12 kinematic features, six planes-of-rotation 

and six centers-of-rotation, which are then applied to construct the set of 
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S-Modellink coordinate frame transformation matrices Si for i=l, ... ,6. To 

identify the manipulator's kinematic parameters, the matrices Si must 

represent the position and orientation of a set of S-Model link coordinate 

frames when the manipulator is in the specified signature configuration. 

Consequently, while taking measurements of the i th target's position, joints 

1 - i-1 must remain in their respective signature configuration positions (Le., 

ql =q~, q2=q~, ... , qi-l =q~-l)' The positions of joints i+1 - 6 have no effect 

upon the position of the i th target point since it is assumed to be rigidly 

attached to the i th link., Joints i+1 - 6 are positioned so as not to limit the 

motion of joint i or obstruct the lines of sight between the target and the 

sensor array. 

We have established a systematic method for indexing the configura­

tion of the manipulator to insure that the previous conditions are satisfied. 

Figure 6-7 is a flow chart indicating the sequence of operations in this 

method. Measurements of the position of Target Point 6 are first qbtained, 

followed successively by those of Target Points 5, 4, 3, 2, and 1. In Figure 6-7, 

Ni denotes the number of distinct positions of joint i at which the position of 

target i is measured and Nallg denotes the number of slant range measure­

ments averaged at each target position. Increasing Ni typically increases the 

accuracy of the estimated feature parameters. In Section 6.5 we explore the 

relationship between Ni and the arm signature accuracy. We have identified 

signatures using as few as five measurements per circle and as many as 100. 

Each identified arm signature is based upon 

6 

L 7Nallg-Ni 
i=l 

(6.7) 

raw slant range measurements. For instance, if Ni=l00 for i=l, ... ,6 and 

Nallg = 10, then 42,000 slant range measurements will be required. We are 

able to obtain these measurements using the hardware in Figure 6-1 in ap-
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proximately 1 1/2 hours. This includes the time required to manually switch 

the target sparker from one target point fixture to the next. The algorithm 

described in Figure 6-7 is implemented in the VAL II programming lan­

guage. 

6.5. Measuring Performance 

We have devised three methods for measuring manipulator kinematic 

performance and have applied these methods to evaluate the performance of 

the seven Puma 560 robots. Each method has an associated task which is 

performed by the robot. These are 

• The one-dimensional grid touching task 

• The two-dimensional grid touching task 

• The three-dimensional grid touching task 

During these tasks, the manipulator is programmed to sequentially position 

its end-effector at the vertices of a one-, two-, or three-dimensional grid 

defined with respect to the workspace coordinate frame. At each of the grid 

points, the actual relative position of the end-effector with respect to the 

workspace coordinate frame is measured. Measurements of the end­

effector's position, with respect to the robot's base coordinate frame cannot 

be obtained since the physical location of the base frame has not been deter­

mined in the signature analysis. The Cartesian positioning accuracy of a 

robot with respect to a workspace coordinate frame is most useful in applica­

tions. 

The Puma is initially taught three arbitrary points to define a 

workspace coordinate frame. The corresponding joint configurations are 

denoted by the vectors "if1, "if2, and "if3• These configurations are recorded by 
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the Puma Controller. The position and orientation of the end-effector, with 

respect to the base coordinate frame for each of these configurations, are 

computed using the appropriate forward kinematic model (Le., either the 

signature model or the design model). The origin of the workspace coor­

dinate frame is defined to be coincident with the position of the end-effector 

at Point 1. The X axis is parallel to the line joining the end-effector's position 

at Points 1 and 2. The Z axis is normal to the plane defined by the position of 

the end-effector at Points 1, 2, and 3. Finally, the Y axis completes the 

orthogonal set. Using this procedure, it is relatively easy to align the 

workspace coordinate frame with a desired physical coordinate frame such 

as that defined by the surface of a table. 

Our objective is to measure positioning errors resulting from the mis­

match between the actual and identified kinematics and the actual and 

design kinematics. The positioning errors which occur while a robot is in 

motion are both a function of the kinematic errors and the dynamic control 

system errors. Consequently, measurements of the end-effector's positions 

are taken only when the manipulator is stationary in specified fixed con­

figuration. The Puma's steady-state joint positioning errors are typically 

within ± I encoder count (± .005 degrees) of the desired positions. 

6.5.1. One-Dimensional Grid 

The objective in the one-dimensional grid touching task is to determine 

the accuracy with which the robot can displace its end-effector. The robot is 

programmed to touch two points in space. The location of these points is 

specified in terms of Cartesian coordinates and defined with respect to a 

previously taught workspace coordinate frame. Conceptually, these points 

represent the endpoints of a traced line. We attach a pushpin to the end­

effector and measure the actual distance between the tip of the pin at the two 

points with a cathetometer. Figure 6-8 illustrates the measurement process. 
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Figure 6-8: Measuring the Performance of a Puma 560 with a Catheto­
meter 

Used with permission from the Robotics Institute at Carnegie-Mellon 
University, copyright 1987. Photo taken by Mary Jo Dowling. 



114 PROTOTYPE SYSTEM AND PERFORMANCE EVALUATION 

A cathetometer is an instrument used to measure the differences of 

levels and changes from a horizontal or vertical line. It consists of a tele­

scope mounted on the carriage of a linear translational stage. The axis of the 

telescope and the axis of the translational stage are perpendicular. The car­

riage can be positioned and clamped in an approximate position and then 

finely adjusted using a micrometer-screw. A vernier scale, which can be 

read through a separate viewing microscope, measures the relative displace­

ment of the carriage. A small leveling instrument is also mounted on the 

carriage. The entire stage and carriage assembly can be rotated about the 

axis of the stage and clamped at any desired position. The base which 

supports the assembly has adjustable feet for leveling the telescope. Our 

cathetometer has a range of 1.2 m and a resolution of 0.05 mm (.002 in.). 

The axis of the cathetometer is brought into parallel with the line join­

ing the two endpoints through a series of iterative adjustments in the posi­

tion and orientation of the cathetometer. During this procedure, the robot is 

programmed to move back and forth between the endpoint locations. Fol­

lowing each move, a machinist's rule and square are used to determine the 

approximate normal distance between the endpoint locations and the 

cathetometer axis. Small misalignments of the cathetometer have a negli­

gible effect upon the accuracy of our measurements. Once aligned, the ac­

tual measurement is taken and recorded. 

In an experiment, we perform the grid touching task twice, once with 

the ideal parameters and once with the arm signature parameters. In both 

cases, we use the same physical workspace coordinate frame and endpoint 

locations. The procedure for specifying the workspace coordinate frame and 

the endpoint locations must be performed twice since the physical location 

of the base coordinate frame for the two models will, in general, differ. 
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Relative end-effector positioning errors are a function of the magnitude 

of the displacement and the location of the line within the workspace of the 

robot. These errors tend to increase as the robot approaches full extension 

and as the magnitude of the displacement increases. In the experiments 

conducted, we utilize large displacements between the endpoints to increase 

the observability of the errors. Furthermore, to evaluate the robots perfor­

mance over its entire workspace, pairs of endpoint locations are selected 

which span the majority of the robot's workspace. For convenience, the lines 

formed by the endpoints are approximately aligned with the axes of the ideal 

model's base coordinate frame. 

6.5.2. Two-Dimensional Grid 

We evaluated the performance of six of the Puma 560 robots with a 

two-dimensional grid touching task. During this task, the manipulator was 

programmed to sequentially position its end-effector at the vertices of a two­

dimensional grid defined with respect to a workspace coordinate frame. The 

workspace coordinate frame is taught using the same procedure as in the 

one-dimensional case. The grid plane is nominally aligned with the surface 

of the table upon which the robot is mounted and a custom-designed, 

spring-loaded pen is attached to the robot's end-effector. The pen assembly, 

illustrated in Figure 6-9, is adjusted to insure that the pen tip just hits the 

surface of the table when the end-effector reaches a vertex. The positions of 

the end-effector (i.e., the pen point) are recorded on a piece of mylar affixed 

to the surface of the table. In practice, a set of approach points are also 

defined to insure that the pen generates points on the mylar and not lines. 

The approach locations are defined to be 3.0 em above (relative to the table's 

surface) the vertex locations. The robot is programmed to first position the 

end-effector at an approach point. At a reduced speed, the end-effector then 

moves to the corresponding vertex point, generating a spot on the mylar, 
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"1I1d 

Figure 6-9: Spring-Loaded Pen Assembly Attached to the Puma 560's 
End-Effector 

Used with permission from the Robotics Institute at Carnegie-Mellon 
University, copyright 1987. Photo taken by Mary Jo Dowling. 
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followed by a return move to the approach point. The speed is temporarily 

increased during motions between successive approach points. 

A machinist's rule is applied to measure the relative positional devia­

tions in the grid points. Features of interest are the perpendicularity of the 

lines defined by the vertices, line straightness, and line length. The advan­

tage of this approach is that the positional errors in two dimensions can be 

analyzed. Qualitatively, it is then easy to determine whether the arm sig­

nature model provides improved kinematic performance as compared to the 

ideal model. The disadvantage is that the physical size of the pen tip and the 

resolution of the rule severely limits the accuracy with which the errors can 

be measured. Only an approximate quantitative description of the robot's 

performance was obtained. 

6.5.3. Three-Dimensional Grid 

A challenging task for analyzing the kinematic performance of a 

manipulator is the three-dimensional grid touching task. The Puma is in­

itially taught three arbitrary points to define a workspace coordinate frame. 

During this task, the manipulator is programmed to sequentially position its 

end-effector at the vertices of a three-dimensional grid defined with respect 

to the workspace coordinate frame. Again, the workspace coordinate frame 

is taught using the same procedure as in the one-dimensional case. At each 

of the grid points, the actual position and orientation of the end-effector are 

measured. To obtain these measurements, we constructed a measurement 

system using a Ranky sensor jig [211 and a Bridgeport milling machine. The 

Ranky sensor jig, illustrated in Figure 6-10, consists of three mutually or­

thogonal plates of steel oriented to form the inner corner of a box. Three 

precision dial gauges are mounted in each plate. The axes formed by the 

intersections of the three plates define the jig's Cartesian coordinate frame as 
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Figure 6-10: Ranky Sensor Jig for Measuring End-Effector Position and 
Orientation 

Used with permission from the Robotics Institute at Carnegie-Mellon 
University, copyright 1987. Photo taken by Mary Jo Dowling. 
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indicated in Figure 6-10. A similar box comer, made of an aluminum alloy, 

is affixed to the end-effector. It too has an associated coordinate frame im­

plicit to its shape. The objective is to place the cube on the end-effector into 

the jig so as to deflect the nine dial gauges. From the measured deflections 

and the known placement of the gauges, one can determine the position and 

orientation of the end-effector relative to the sensor jig. 

We mounted the sensor jig on the bed of a three-axis milling machine 

equipped with linear optical encoders. The jig can thus be displaced ac­

curately over a large volume. A set of approach points are defined to insure 

that the test cube does not damage the dial gauge stems by hitting them 

sideways. In addition, the retraction of the test cube from the jig permits 

indexing of the machine bed. The robot is programmed to first position the 

end-effector at an approach point. At a reduced speed, the end-effector then 

moves to the corresponding vertex point, deflecting the nine dial gauges. 

The end-effector remains at the vertex point while the dial gauges are read 

and the measurements are recorded. The end-effector then returns to the 

approach point and the sensor jig is translated to the next vertex point. The 

speed is temporarily increased during motions between successive approach 

points. The dial gauges have a resolution of 0.001 in. The accuracy of our 

sensor jig is 0.001 in. in position and 0.01 degree in orientation. In the 

experimental results which follow, the grid size was 25 cm x 25 cm x 60 cm. 

The measured set of dial gauge deflections are uploaded to the VAX 11/780 

and stored. Separate software, residing on the VAX 11/780, processes the 

grid touching measurement data and tabulates indices of kinematic perfor­

mance. Grid line perpendicularity, line straightness, and line length are the 

primary features of interest. 

The three-dimensional grid touching experiments were conducted in 

the Civil Engineering Department Machine Shop at Carnegie-Mellon Univer-
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sity. Each experiment requires several hours of setup time and ap­

proximately 3 hours to collect the measurements. The limited availability of 

the six robots from Unimation meant that only two Puma 560s could be 

tested using this technique, the results of which are presented in Section 

6.6.3. 

6.6. Kinematic Performance Evaluation 

We illustrate the performance of the identification algorithm and the 

subsequent increase in manipulator kinematic performance for seven Puma 

560 robots. The Denavit-Hartenberg parameters of the ideal kinematic 

model of a Puma 560 prior to manufacture are listed in Table 6-2 [27]. 

Table 6-2: Unimate Puma 560 Denavit-Hartenberg Kinematic 
Parameters 

Link Variable d (cm) a (cm) a (deg) 

I 91 0.0 0.0 -90.0 
2 92 14.909 43.18 0.0 
3 93 0.0 -2.032 90.0 
4 94 43.307 0.0 -90.0 
5 9s 0.0 0.0 90.0 
6 96 0.0 0.0 0.0 

In Table 6-3, we list the pseudo Denavit-Hartenberg parameters identified 

by the S-Model identification algorithm for Robots 1 and 2. The identified 

pseudo Denavit-Hartenberg parameters of the five remaining robots are 

listed in Table D-1 in Appendix D. 

The estimated values in Table 6-3 illustrate the sensitivity of the 

Denavit-Hartenberg parameters to typical mechanical errors in the physical 
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Table 6-3: Identified Arm Signature Parameters 

Name Link Variable 9o//set (deg) d (em) a (em) ex (deg) 

1 91 110.308 -20.678 -0.005 -90.066 

2 92 79.977 11,210.213 7.607 -0.217 

3 93 -79.483 -11,194.978 -2.039 90.519 
Robot 1 

4 94 -0.296 43.278 -0.001 -90.007 

5 9s -0.497 -0.018 0.002 89.990 

6 96 -89.081 10.300 0.000 0.000 

1 91 110.849 -20.428 -0.023 -90.013 

2 92 63.467 2,783.580 19.084 -0.803 

3 93 -63.276 -2,768.574 -2.028 90.134 
Robot 2 

4 94 0.328 43.299 -0.009 -89.991 

5 8s -0.126 -0.054 0.007 89.969 

6 86 -89.517 10.273 0.000 0.000 

manipulator. For instance, the values of ~ and d3 in Table 6-3 indicate that 

the joint 2 and joint 3 axes are slightly out of parallel. Customarily, this is 

referred to as the convergence angle problem. When these axes are slightly out 

of parallel, their common normal lies extremely far from the physical 

manipulator (refer to Figure 2-2). Since the origin of the Denavit-Hartenberg 

Link 2 coordinate frame is defined by the intersection of the joint 2 axis and 

this common normal, it too lies extremely far from the physical manipulator. 

The parameters d2 and ~, which are opposite in sign and nearly equal in 

magnitude, represent the translation out to and back from the link 2 coor­

dinate frame, respectively. The dramatic differences between the identified 

and the ideal parameters arise from small manufacturing errors. 

The error committed in positioning and orienting the robot end­

effector is a measure of the cumulative accuracy of the kinematic parameters 
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upon which the control algorithms are based. For the parameters identified 

in Table 6-3, the cumulative accuracy can also be measured by determining 

the mean square errors between the Cartesian target positions and the iden­

tified features. Intuitively, as the overall accuracy of the identified signature 

increases these errors decrease. 

In Section 4.3.2.1, our estimate of a plane-of-rotation feature minimizes 

the sum of the squares of the perpendicular errors between the target posi­

tions and the plane. Similarly, in Section 4.3.2.2, our estimate of a circle of 

rotation minimizes the sum of the squares of the perpendicular errors be­

tween the projected target positions and the circle. The algorithms presented 

in Sections 4.3.2.1 and 4.3.2.2, for minimizing these functions, are implicitly 

based upon the assumption that the measurement errors (i.e., the residual 

errors) are random and normally distributed. In Figure 6-11, we have 

plotted the residual errors in fitting a plane and a circle to the measured 

Cartesian positions of Target Point 6 corresponding to the identified sig­

nature of Robot 1 listed in Table 6-3. The perpendicular errors between the 

target's positions and the identified plane (i.e., the normal residuals) are 

indicated by asterisks. The circles represent the perpendicular errors be­

tween the projected target positions and the identified circle (i.e, the radial 

residuals). These errors are plotted as a function of the measurement num­

ber. (The measurement number corresponds to the index i in Figure 4-1.) 

The behavior of the residuals in Figure 6-11, as a function of the measure­

ment number, is typical of the behavior of the residuals which correspond to 

the remaining identified signatures in Table D-1. The lack of any significant 

systematic trends in the normal and radial residuals leads us to assume that 

the target position errors are random. Furthermore, we have observed that 

the distributions of the residual errors are closely approximated by the nor­

mal distribution. To illustrate, Figures 6-12 and 6-13 contain the histograms 

of the twelve sets of residual errors corresponding to the identified arm 
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Figure 6-11: Residuals: Normal to Plane and Radial (Joint 6) 

signature of Robot 1. The sample variances and standard deviations of these 

residuals are listed in Table 6-4. 

The essential aspect of a plane-of-rotation is its angular orientation. 

The accuracy of the angular orientation of an identified plane-of-rotation is a 

function of the accuracy of the target measurements, the number of measure­

ments Nj , and the nominal radius of the target point. In Section 4.3.2.1, we 

applied simple linear regression techniques to estimate the parameters E, F, 

and G in (4.19) which define the identified plane-of-rotation. The physical 

interpretation of these parameters is illustrated in Figure 6-14. It is noted that 
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Table 6-4: Sample Variances and Standard Deviations of the Normal 
and Radial Residuals 

Nonnal Residuals Radial Residuals 
Joint Variance Stdev Variance Stdev 

(cm 2) (cm) (cm 2) (cm) 

1 0.000187 0.0137 0.000133 O.oI15 

2 0.000848 0.0291 0.000329 0.0181 

3 0.001437 0.0379 0.000202 0.0142 

4 0.000114 0.0107 0.000416 0.0204 

5 0.000142 0.0119 0.000090 0.0095 

6 0.000230 0.0152 0.000230 0.0152 

z 

y 

x 

Figure 6-14: An Identified Plane-of-Rotation 

during the final iteration of the repeated least-squares algorithm, the es­

timated parameters E and F, in the model (4.19), will be approximately zero. 

If the residual errors ~j , in (4.22), are independent with zero mean and 
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variance O'~, then the estimate e (4.23) will be unbiased [29]. Furthermore, 

the variance of e will be 

(6.8) 

where ~ is defined in (4.24). Expanding (6.8) yields 
n 

O'~LY'J 
VAR(E) 

2 j=l - O'E = n n n 
(6.9) 

LX'~LY'~ - [LX'Y']2 
. 1 J. 1 J and J= J= j=l 

n 

O'~LX'J 
VAR(F) 2 j=l 

- O'F = n n n 

:L,X'~:L,Y'~ - [:L,£'Y']2 
. 1 J. 1 J 

J= J= j=l 

(6.10) 

where X'j and Y'j represent the original Xj and Yj minus their respective means 

(i.e., X'j=xrx andY'j=YrY). The estimated variances ofE and F are computed 

according to (6.9) and (6.10) with O'~ replaced by the sample variance of the 

normal residuals. 

A variation in the parameter E corresponds to an angular variation in 

the slope of the plane parallel with the X axis. Similarly, a variation in the 

parameter F corresponds to an angular variation in the slope of the plane 

parallel with the Y axis. When the parameters E and F are small (i.e., much 

less than 1.0) and their variances are also small, the variances (6.9) and (6.10) 

represent the variances of the angular orientation of the plane with respect to 

the X and Y axes, expressed in units of rad 2• The standard deviations of the 

estimates E and F, O'E and O'F' provide a physically meaningful measure of 

the orientational accuracy of the estimated plane-of-rotation. These standard 

deviations translate into confidence intervals which can be compared with 
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manufacturing tolerances to determine whether an identified signature is 

likely to be more or less accurate than the robot's design model. If the 

standard deviation in the orientational accuracy of the planes-of-rotation are 

significantly greater than the orientational accuracy with which the robot can 

be manufactured, then it is highly probable that the identified signature will 

actually degrade the performance of the robot. 

For many robots, the expressions (6.9) and (6.10) can be simplified due 

to the symmetry of the target measurements in the X-Y plane. For instance, 

consider a joint which has 360 degrees of rotation. The X and Y coordinates 

of the target's positions, with respect to the coordinate frame indicated in 

Figure 6-14, lie essentially on a circle of radius R i • According to the 

methodology outlined in Section 4.3.2.1, these points are equally spaced 

along the circle's circumference. Consequently, the covariance of the X and 

Y coordinates of the measurements is zero. Therefore, the term 41 ~j9'j in 

(6.9) and (6.10), equals zero. Furthermore, it can be readily shown that the 

sums Lj:1~; and 4=19'; are equal to nR2i /2.0. The variance in the angular 

orientation of the plane is, in this case, the same in all directions and equal to 

2 
Rin 

(6.11) 

We are thus 95 percent confident that the true angular orientation of the 

plane lies within ± 2o'lj radians of the estimated orientation. The expression 

(6.11) for the variance is intuitively pleasing. As the accuracy of the 

measurements decrease the accuracy of the estimate decreases; as the 

nominal radius of the increases the accuracy of the estimate increases; and as 

the number of measurements increases the accuracy of the estimate in­

creases. Most importantly, The expression (6.11) provides a simple 

mechanism for determining how to select the identification parameters nand 
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Ri given the accuracy of a proposed sensor system and the manufacturing 

tolerances of the robot. 

In general, for a joint with less than 360 degrees of rotation, the 

variance in the angular orientation of the estimated plane-of-rotation varies 

with the direction within the plane. The maximum occurs in the direction in 

which the projection of the measurements onto the plane has the least 

variance. If, for instance, the minimum and maximum limits on the motion 

of a joint are 0 degrees and 270 degrees, respectively, then the maximum 

variance in angular orientation of the estimated plane-of-rotation will occur 

in the direction of 315 degrees. The exact value for the maximum variance 

can be computed using (6.9). However, for joints with at least 180 degrees of 

rotation, we have determined experimentally that the maximum variance is 

closely approximated by 

2 
2 an 

as '" (6.12) 
2 R j n (.OO244X - .344) 

where X represents the joint range of motion in degrees. The expression 

(6.12) is a conservative approximation. 

Table 6-5 lists the variances and standard deviations of the angular 

orientation of the identified planes-of-rotation corresponding to the iden­

tified arm signature of Robot 1, listed in Table 6-3. For Joint 6, the orien­

tation of the identified plane-of-rotation is accurate to within ±.0074deg. 

Similar results are obtained for the remaining signatures listed in Table D-l. 

It is apparent that the orienta tiona I accuracies of the identified planes-of­

rotation are significantly greater than the machining and assembly accuracies 

with which commercially available robots are manufactured. Such ac­

curacies may be on the order of hundredths of a degree or more. 



130 PROTOTYPE SYSTEM AND PERFORMANCE EV ALUA nON 

Table 6-5: Orientational and Positional Accuracy of the Identified 
Planes-of-Rotation and Centers-of-Rotation Corresponding 
to the Arm Signature of Robot 1 

Feature Estimate Accuracy 
Joint Plane-of-Rotation Center -of-Rotation 

0"1) (deg) O"c(cm) 

1 .002937 .00176 

2 .007397 .00335 

3 .008514 .00250 

4 .003204 .00356 

5 .004149 .00184 

6 .003699 .00176 

The essential aspect of a center-of-rotation is its position relative to a 

joint axis. The accuracy of the position of an identified center-of-rotation is a 

function of the accuracy of the target positions measured relative the joint 

axis. Since the origin of an S-Modellink coordinate frame is permitted to lie 

anywhere on the joint axis, errors in the identified position of a center-of­

rotation in the direction of the joint axis, have no effect upon the accuracy of 

the identified kinematic parameters. In Section 4.3.2.2, we applied simple 

linear regression techniques to estimate the parameters A, B, and C which 

define the identified circle-of-rotation. The parameters A and B are linearly 

related to the X and Y coordinates of the center-of-rotation. Unfortunately, 

since the errors in measuring w (4.37), are dependent upon x and y, a deriva­

tion of the variances of the estimates of the parameters A and B analogous to 

that for the parameters E and F is impossible. 

We have applied Monte-Carlo simulation techniques to empirically 
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determine the relationship between the variance in the estimated coordinates 

of the center-of-rotation, the variance in the measurements, the range of mo­

tion of the joint, and the number of measurements. In these simulations, we 

have assumed that the errors in the measurements of the target point coor­

dinates, Xj and Yj , are independent and normally distributed with zero mean 

and variance a2 I(2x2)' Furthermore, it is assumed that the target radius is 

much larger than the measurement noise, as would be the case in practice. 

The simulation experiments demonstrate that the radial residuals (i.e., the 

errors in w) are essentially characterized by a normal distribution. For joints 

with 360 degrees of rotation, the variances in the estimated coordinates of the 

center-of-rotation are equal while for joints with less than 360 degrees of 

rotation, these variances will differ. For our purposes, we characterize the 

accuracy of the coordinates of the estimated center-of-rotation by the max­

imum variance, denoted by 0';. The relationship between the variance 0';, the 

number of measurements, and the range of motion of the joint is found to be 

2 
2 O'r 

0' c ... -n"""( .'""00""2:"::2':'9 X=---.'""3"""13~) , (6.13) 

where a; is the variance of the radial residuals and X is the range of motion 

of the joint measured in degrees. The accuracy of an estimated center-of­

rotation can be increased by either increasing the accuracy of the sensor 

system or increasing the number of measurements. 

Table 6-5 lists the positional accuracies of the identified centers-of­

rotation for the arm signature of Robot 1. The positional accuracy of the 

identified Joint 6 center-of-rotation is ±O.OO176 cm. Again, this exceeds the 

machining tolerances with which commercially available robots are 

manufactured. The accuracies of the identified features of Robots 2 through 

7 are essentially the same as those for Robot 1. In the following sections, we 
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demonstrate that the identified ann signatures of Robots 1 through 7 are 

indeed more accurate than the design model by applying them to improve 

the kinematic performance of all seven robots. 

6.6.1. One-Dimensional Performance Evaluation 

We have applied the one-dimensional grid touching task to evaluate 

the kinematic performance of Robot 1, both with and without arm signature 

identification. Table 6-6 lists a sampling of results obtained in this task. 

Table 6-6: Line Length Errors 

Desired Design Model Signature Model 

Line Length 

(em) 
Length Error Length Error 

(em) (em) (em) (em) 

1 60.0 59.470 -0.530 59.959 -0.050 

2 50.0 50.350 0.350 49.875 -0.125 

3 60.0 59.710 -0.290 59.940 -0.060 

4 50.0 60.325 0.325 49.895 -0.105 

5 60.0 59.375 -0.625 59.960 -0.040 

6 60.0 59.725 -0.275 59.955 -0.045 

Lines 1 and 4 are nominally aligned with the robot's X axis; Lines 2 and 5 are 

nominally aligned with the robot's Y axis; and Lines 3 and 6 are nominally 

aligned with the robot's Z axis. The locations of Lines 1 through 6, relative to 

the base of the robot, are depicted in Figure 6-15. The approximate coor­

dinates of the Lines 1 through 6 are listed in Table 6-7. (Note that the X-V 

plane of the base coordinate frame indicated in Figure 6-15 is coincident with 

the surface of the table to which the robot is mounted. Fonnally, the X-V 

plane of the base coordinate frame is parallel with the Joint 2 axis.) 
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Figure 6-15: Approximate Location of Lines 1 through 6 

Table 6-7: Line Coordinates Measured Relative to Base Coordinate 
Frame 

Line 
X Coordinate Y Coordinate Z Coordinate 

(em) (em) (em) 

1 - 58.0 3.0 

2 8.0 - 38.0 

3 8.0 73.0 -
4 - 8.0 38.0 

5 -58.0 - 3.0 

6 -73.0 8.0 -

The results listed. in Table 6-6 indicate that the identified arm signature 
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model significantly improves the Cartesian displacement accuracy of the 

Puma 560. Similar results have been obtained throughout the robot's 

workspace. From these results, we can further illustrate that the arm sig­

nature model is cumulatively more accurate than the design model. 

If we assume that the design model accurately represents the kinematic 

structure of Robot 1, we can apply it to predict the displacement error 

generated by using the signature model for control. For instance, consider 

Line 1. According to the signature model, the desired Cartesian position and 

orientation of the end-effector at the beginning and end of the line cor­

respond to the two joint configurations 

711=[-48.062 -200.056 56.300 0.241 -36.208 41.812]T 

and 

712=[-102.706 -199.448 54.660 1.880 -35.392 -14.207f , 

respectively. Using the design model, configurations 711 and 712 correspond 

to the two Cartesian end-effector positions (-32.047, 57.957, -56.562) and 

(28.519,59.118, -56.555), respectively. The predicted displacement of the end­

effector is thus 60.577 cm and the predicted displacement error is 0.577 cm. 

This compares with the actual measured displacement error of -0.050 cm. On 

the other hand, if we assume that the signature model accurately represents 

the kinematic structure of Robot 1, we can apply it to predict the displace­

ment error generated by using the design model for control. According to 

the design model, the desired Cartesian position and orientation of the end­

effector at the beginning and end of the line corresponds to the two joint 

configura tions 

71 1 = [-48.106 -200.029 56.287 0.0 -36.258 41.894]T 

and 

712=[-102.385 -197.951 50.4860.0 -32.534 -12.385]T , 
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respectively. Using the signature model, configurations 7/1 and 7/2 cor­

respond to the two Cartesian end-effector positions (-31.019, 57.813, -57.300) 

and (28.394, 57.065, -57.245), respectively. The predicted displacement of the 

end-effector is thus 59.418 cm and the predicted displacement error is -0.582 

em. This error compares with the actual measured displacement error of 

-0.530 em. In this case and others, the signature model is clearly a better 

predictor of displacement errors than the design model. Therefore, the sig­

nature model is cumulatively more accurate than the design model. 

6.6.2. Two-Dimensional Performance Evaluation 

We have applied the two-dimensional grid touching task to evaluate 

the kinematic performance of Robots 2 through 7. Figure 6-16 illustrates the 

position and orientation of the grid relative to the robot's base as viewed 

from above the table. The X and Y axes of the grid were nominally aligned 

with the X and Y axes of the robot's base coordinate frame. The grid spans 

60 cm in the X direction and 15 em in the Y direction. The grid contains 62 

uniformly spaced points (i.e., vertices). The desired X and Y axis spacings 

were both 5.0 cm. 

The features used to measure the performance of a robot are line 

length, line straightness and grid perpendicularity. Ideally, the end­

effector's position would have coincided with the intersection points of Lines 

Xl,X2,X3,X4 and Lines Yl,n, ... ,Y13, indicated in Figure 6-16. In reality, 

the grid lines are neither parallel, perpendicular, nor straight. We denote the 

actual grid lines by Xl·,X2·,X3·,X4· and Yl.,n·, ... ,Y13. The line xi" is 

defined to be the line which passes through the actual recorded points (l,i) 

and (l3,i). Similarly, the line Y/ is defined to be the line which passes 

through the actual recorded points G,1) and (j,4). The actual length of line xi" 
is the distance between points (l,i) and (l3,i). The actual length of line Y/ is 
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Figure 6-16: Relative Location of Two-Dimensional Grid 

the distance between points (j,l) and (j,4). For each line, we also measure the 

normal deviation of the intermediate points. The maximum normal devia­

tion provides a measure of the straightness (i.e., the curvature) of the grid 

line. The perpendicularity of the grid is determined by measuring the length 

of the grid diagonals (i.e., the distances between actual points (1,1) and (13, 

4), and points (13,1) and (1,4». 

Tables 6-8 and 6-9 are a summary of the results obtained in the two­

dimensional grid touching task. Table 6-8 pertains to the case where the 

design model is applied to control the position and orientation of the end­

effector and Table 6-9 pertains to the case where the signature model is 

applied to the control the end-effector. The columns labeled X Line Length 

Error and Y Line Length Error represent the maximum deviation in line length 
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Table 6-8: Two-Dimensional Grid Touching Task Performance Sum­
mary Using the Design Model 

X Line YLine Maximum Diagonal 1 Diagonal 2 

Robot 
Length Length Normal Length Length 
Error Error Deviation Error Error 

1 

2 

3 

4 

5 

6 

(em) (em) (em) (em) (em) 

0.100 -0.575 0.150 -0.495 -0.320 

0.075 -0.150 0.050 -0.170 -0.070 

0.150 0.300 0.075 0.480 0.105 

0.050 -0.750 0.025 -0.095 0.005 

-0.075 0.350 0.075 -0.695 0.230 

-0.125 0.950 0.125 0.755 0.705 

Table 6-9: Two-Dimensional Grid Touching Task Performance Sum­
mary Using the Signature Model 

X Line YLine Maximum Diagonal 1 Diagonal 2 

Robot 
Length Length Normal Length Length 
Error Error Deviation Error Error 
(em) (em) (em) (em) (em) 

1 -0.050 -0.050 0.025 -0.020 0.005 

2 0.050 -0.050 - 0.030 -0.095 

3 0.075 0.075 0.025 0.105 0.030 
4 0.075 -0.025 - -0.080 -0.095 

5 0.050 -0.100 - -0.045 -0.070 

6 -0.025 0.050 0.025 0.030 0.105 

among the sets of lines Xl·,Xt,X3·,X4· and Yl·,n·, ... ,Y13·, respectively. 

The column labeled Maximum Normal Deviation represents the maximum of 

the set of 4 maximum normal deviations for lines Xl·,X2·,X3·,X4·. (Since the 

lines Yl·, n", ... ,Y13· are only 15 cm long, the observed normal deviations 

are negligible.) 



138 PROTOTYPE SYSTEM AND PERFORMANCE EVALUATION 

A comparison of the results in Table 6-8 with the results in Table 6-9 

again indicates that use of the identified signature model to control the end­

effector's Cartesian position and orientation leads to a general improvement 

in the kinematic performance of all 6 robots. Unfortunately, due to the 

limited accuracy with which these specific measurements were obtained, it is 

difficult to state with any accuracy by what factor the performance has in­

creased. 

6.6.3. Three-Dimensional Performance Evaluation 

We have applied the three-dimensional grid touching task to evaluate 

the kinematic performance of Robots 3 and 5. The X and Y axes of the grid 

were nominally aligned with the X, Y, and Z axes of the robot's base coor­

dinate frame. The grid spans 60 cm in the X direction, 25 cm in the Y 

direction, and 25 cm in the Z direction. The range in the Y and Z directions 

was limited by the throw of the corresponding two axes of the milling 

machine. The grid contains 63 uniformly spaced points (i.e., vertices). The 

desired X, Y, and Z axis spacings were 10.0 em, 12.5 cm, and 12.5 em, respec­

tively. 

The features used to measure the performance of a robot are line 

length, line straightness, grid line perpendicularity, radial deviation, and 

orientational deviation. In analogy to the two-dimensional grid, the three­

dimensional grid contains 9 lines nominally parallel with the X axis, 21 lines 

nominally parallel with the Y axis, and 21 lines nominally parallel with the Z 

axis. The actual lines are defined by the corresponding pairs of points along 

the grid's border. In Tables 6-10 and 6-11, we summarize thirteen measured 

indices which describe the relative improvements in the kinematic perfor­

mance of Robots 3 and 5, respectively. The last column in each of these tables 

lists the performance improvement factor which is the ratio of the error 
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Table 6-10: Three-Dimensional Grid Touching Task Performance Sum­
mary for Robot 3 

Description 
Design Signature Improvement 
Model Model Factor 

Maximum Normal Deviation from a Line 
0.071 0.023 3.09 

Parallel with the X Axis 

Maximum Normal Deviation from a Line 
0.023 0.006 3.83 

Parallel with the Y Axis 

Maximum Normal Deviation from a Line 
0.019 0.007 2.71 

Parallel with the Z Axis 

Magnitude of Line Length Error for 
0.055 0.077 0.71 

Line Parallel with the X Axis 

Magnitude of Line Length Error for 
0.096 0.016 6.00 

Line Parallel with the Y Axis 

Magnitude of Line Length Error for 
0.027 0.013 2.08 Line Parallel with the Z Axis 

Deviation from Perpendicular between 
-1.040 -0.096 10.83 X Axis and Y Axis Grid Lines 

Deviation from Perpendicular between 
-0.278 0.229 1.21 Y Axis and Z Axis Grid Lines 

Deviation from Perpendicular between 
-0.505 -0.238 2.12 

Z Axis and X Axis Grid Lines 

Relative Orientational Deviation about 
0.153 -0.038 4.00 X Axis at Vertex 4 

Relative Orientational Deviation about 
-0.157 0.038 4.14 Y Axis at Vertex 4 

Relative Orientational Deviation about 
-0.067 -0.027 2.50 Z Axis at Vertex 4 

committed when the arm signature model is used for control to the error 
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Table 6-11: Three-Dimensional Grid Touching Task Performance Sum­
mary for Robot 5 

Description 
Design Signature Improvement 
Model Model Factor 

Maximum Normal Deviation from a Line 
0.066 0.023 2.87 

Parallel with the X Axis 

Maximum Normal Deviation from a Line 
0.022 0.006 3.67 

Parallel with the Y Axis 

Maximum Normal Deviation from a Line 
0.038 0.009 3.98 

Parallel with the Z Axis 

Magnitude of Line Length Error for 
0.139 0.182 0.76 

Line Parallel with the X Axis 

Magnitude of Line Length Error for 
0.110 0.016 6.88 

Line Parallel with the Y Axis 

Magnitude of Line Length Error for 
0.079 0.026 3.04 

Line Parallel with the Z Axis 

Deviation from Perpendicular between 
-0.974 -0.077 12.65 

X Axis and Y Axis Grid Lines 

Deviation from Perpendicular between 
0.365 0.226 1.62 

Y Axis and Z Axis Grid Lines 

Deviation from Perpendicular between 
0.271 -0.160 1.69 

Z Axis and X Axis Grid Lines 

Relative Orientational Deviation about 
0.172 0.000 -X Axis 

Relative Orientational Deviation about 
-0.086 -0.005 16.0 

Y Axis 

Relative Orientational Deviation about 
-0.041 -0.014 3.01 

Z Axis 

committed when the design model is used for control. The improvement 

factors range between 0.71 and 16.0. 
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6.7. Conclusions 

In this chapter, we have described our hardware/software implemen­

tation of a complete prototype arm signature identification system and have 

applied this system to improve the positioning accuracy of seven Puma 560 

robots. This system incorporates an ultrasonic range sensor to measure the 

three-dimensional Cartesian positions of target sparkers placed on the 

rooot's links. The S-Model identification algorithm uses the target position 

measurements to first identify a set of robot kinematic features and then 

combines the information contained therein to identify the robot's Denavit­

Hartenberg kinematic parameters. This algorithm leads to an efficient 

method for collecting measurements. Using our prototype system, 

thousands of measurements can be obtained in less than one hour. The use 

of our prototype system to increase the performance of actual robots 

demonstrates that the S-Model identification algorithm is both feasible and 

practical. 

A key issue in the design of an arm signature identification system is 

the selection and/or design of a sensor system. Our sensor system incor­

porates a commercially available ultrasonic range sensor to measure the 

three-dimensional Cartesian positions of target sparkers placed on the 

robot's links. A unique sensor array design and specialized slant range 

compensation algorithms are used to obtain ultrasonic range measurements 

which are significantly more accurate (by a factor of 10-50) than accuracies 

which can be obtained using the commerCially available system itself. 

For arm signature identification, the ad van tages of using our ultrasonic 

sensor system design are: 

• The sensor array can be easily calibrated. 
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• The fixtures required to attach the target sparkers to the robot are 
extremely simple to manufacture and there placement with 
respect to the links is essentially arbitrary. This avoids the need 
for elaborate and costly fixturing. 

• The sensor system can be easily interfaced to a host computer 
(typically the robot controller) which can coordinate the digitiz­
ing operation while simultaneously controlling the robots mo­
tions. 

• The ultrasonic emission characteristics of the sparkers are such 
that they can be modeled as infinitely small point sources. The 
sparkers are thus ideally suited for implementing the target 
points used in the 5-Model identification algorithm. 

• The sparkers and the microphones remain stationary during the 
measurement process. This is, for instance, in contrast to optical 
devices which would customarily require an elaborate position­
ing system to enable the detector to track and locate the position 
of a target. A voiding the tracking problem leads to a simple, 
efficient, and relatively inexpensive sensor system. 

• The sensor system has a large dynamic range with high resolu­
tion. The active volume is a cube approximately 1.5 meters in 
length and the Cartesian positioning accuracy is on the order of ± 
0.02 em. 

• The speed at which range measurements can be acquired and the 
Cartesian positions of the target can be determined enables high 
sampling rates (on the order of 4 measurements/sec) to be ach­
ieved. 

• The configuration of the sensor array and the two calibration rods 
are fixed and independent of the target sparker. Thus, the 
measurements for identifying the arm signatures of a variety of 
robots can be obtained without reconfiguring or recalibrating the 
sensor array. 

• Remote range sensing eliminates the need to position detectors 
within close proximity to the target and avoids the problems as­
sociated with contact sensing. 

• The ability to increase the target radii provides a mechanism for 
increasing arm signature accuracy. 
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• The operation of the sensor system can be completely automated 
thus eliminating the need for a highly skilled operator. 
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We have devised three methods for evaluating manipulator kinematic 

performance in which the Puma is programmed to position its end-effector 

at the vertices of a one-, two-, or three-dimensional grid. At each of the grid 

vertices, the actual relative position of the end-effector is measured. 

In the one-dimensional grid touching task, the relative position of the 

end-effector is measured with a cathetometer. The tip of a pin, attached to 

the end-effector is sighted through the telescope of the cathetometer. The 

task is performed twice, once using signature based control and once using 

the design kinematic model for control. The relative improvement in perfor­

mance is then determined. With signature-based control, the end-effector 

positioning accuracy of one Puma 560 robot was increased by as much as a 

factor of 10.0. The lowest increase in performance for this same robot was a 

factor 2.8. 

In the two-dimensional grid touching task, the workspace coordinate 

frame is aligned with the surface of a table and a custom-designed, spring­

loaded pen is attached to the robot's end-effector. The positions of the end­

effector are recorded when the pen touches the mylar surface. A machinist's 

rule is applied to measure the relative positional deviations in the grid 

points. Features of interest are the perpendicularity of the lines defined by 

the vertices, line straightness, and line length. The measured performance of 

six Puma 560 robots using design model based control and signature-based 

control are listed in Tables 6-8 and 6-9, respectively. These tables describe 

the general improvement in the performance of all six robots. 

In the three-dimensional grid touching task, a jig is mounted on the 

table of a three-axis milling machine. As the robot approaches a desired 
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target point, the precision test cube attached to its end-effector deflects the 

nine dial gauges within the jig. The relative Cartesian position and orien­

tation of the end-effector is computed based upon the measured deflections 

and the known geometry of the gauge array. The three instrumented axes of 

the milling machine are used to accurately position the jig in three dimen­

sions. The robot is programmed to position its end-effector at 63 vertex 

points within a rectangular grid coinciding with the position of the jig. This 

technique has been applied to measure and evaluate the performance of two 

Puma 560 robots, the results of which are listed in Tables 6-10 and 6-11. As 

in the previous two methods, the performance of these robots was sig­

nificantly increased by using the identified kinematic parameters for control. 

The performance improvement factors listed in Tables 6-10 and 6-11 range 

between 1.21 and 16.0, with but two exceptions. 

The improvements are not as large as one might expect based upon the 

feature estimate accuracy predictions listed in Table 6-5. The disparity is 

believed to be caused by the presence of small biases in the individual range 

measurements, and this appears to be the limiting factor in the performance 

of our prototype system. In order to obtain additional improvements in 

manipulator kinematic performance, alternative sensor systems may be 

necessary. 



Chapter 7 

Performance Evaluation Based Upon 
Simulation 

7.1. Overview 

In this chapter, we consider the statistical performance of robot posi­

tion control methods, and discuss the origin of robot positioning errors. In 

conventional design-model robot control, the robot design model is used as a 

basis for kinematic control. In this case, manufacturing errors contribute 

most to robot positioning errors. In arm signature-based robot control (5-

Model), the correct arm signature model eliminates kinematic errors due to 

manufacturing. In this case, robot performance is limited by sensor errors 

which contribute to inaccuracy of the identified arm Signature model. 

Experimental studies of D-Model and S-Model control were described 

in the previous chapter. In those studies, the S-Model control showed con­

sistent performance improvement, and demonstrated accuracy approaching 

limits predicted by the joint encoder resolution. In this chapter, we analyze 

the origin of this improvement, and quantify the requirements of an arm 

signature identification system in terms of the underlying sensor perfor­

mance. 

D-Model control performance depends upon the manufacturing 

process which determines the actual geometry of the robot. Since manufac­

turing error vary randomly from one robot to another, the performance of an 
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arbitrarily chosen robot has a random component. The statistical parameters 

which characterize a robot's positioning accuracy are related to the statistical 

parameters which characterize the manufacturing error probability distribu­

tion functions. Unfortunately, the complexity of robot kinematics prevents 

us from analytically deriving this relationship. 

In this chapter, we apply Monte-Carlo simulation techniques to gain 

insight into the relationship between manufacturing error and the perfor­

mance of a design model controller. A kinematic model of a Puma 560 robot 

which directly incorporates manufacturing errors as parameters has been 

developed for our analysiS and is described in Section 7.2.2. The results of 

our analysis are presented in Section 7.4.1 and 7.4.2, and bring to light some 

of the major disadvantages of the design model control approach. 

The performance of S-Model control is dictated by the presence of er­

rors in the arm signature identification process and not by the presence of 

manufacturing errors. Errors are introduced into the identification process 

by the sensor system and must be analyzed to determine if the performance 

of the robot is improved relative to the performance obtained by Controller 

D. In this chapter, we analyze the relationship between target measurement 

errors and Controller 5 performance using simulation tpethods. 

This chapter is organized as follows. In Section 7.2, we describe the 

structure of our Monte-Carlo simulator and test its validity in Section 7.3. 

Then, in Sections 7.4.1 and 7.4.2, we explore the relationship between the 

performance of the D-Model controller and the two types of manufacturing 

errors referred to as encoder calibration errors and machining and assembly 

errors. Sections 7.4.3 - 7.4.5 discuss the relationships between the perfor­

mance of the S-Model controller and the target measurement accuracy, the 

number of measurements, and the length of the target radii, respectively. 
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Finally, in Section 7.5, the issue as to whether or not S-Model control im­

proves robot end-effector positioning accuracy is resolved. 

7.2. A Monte-Carlo Simulator 

In this section, we describe a Monte-Carlo simulation of a robot under 

either D-control or S-control and analyze the effects of the various error 

sources on resulting perfonnance. 

The performance evaluation of these two controllers is complicated by 

the nonlinear robot kinematics, the nonlinearities of the S-Model identifica­

tion algorithm, and the presence of error sources. Random errors are intro­

duced into both the manufacturing and identification processes. This reality 

forces us to develop a Monte-Carlo simulator to conduct a statistical evalua­

tion. Because of the variability of robot designs, development of a general­

purpose Monte-Carlo simulator was impractical. Thus, to complement our 

hardware experimentation, we have evaluated the kinematic performance of 

the Puma 560 robot with both design model based control and signature­

based control. In doing so, we have established a methodology to evaluate 

the kinematic perfonnance of all robots. 

7.2.1. Evaluating Kinematic Performance 

The three-dimensional grid touching task is used in simulation to 

evaluate the kinematic perfonnance of the Puma 560 with alternative con­

troller designs. The grid contains twelve vertices, labeled 1 through 12, 

whose approximate positions, relative to the robot, are indicated in Figure 

7-1. The desired positions of the vertices, measured with respect to the base 

coordinates of an ideal Puma 560 are listed in Table 7-1. The desired orien­

tation of the end-effector is the same for all twelve vertices. The orientational 
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Figure 7-1: Definition and Location of Points in the Simulated Three­
Dimensional Grid Touching Task 

relationship between the robot's base coordinate frame and the end-effector's 

coordinate frame is specified by the transformation Rot(y, 180.0)Rot(z, 90.0). 

Vertices 1 through 8 define four lines parallel to the X axis (Lines 1,4,5, and 

8) each 60.0 cm long, four lines parallel to the Y axis (Lines 2, 3, 6, and 7) each 

30.0 cm long, and four lines parallel to the Z axis (Lines 9, 10, 11, and 12) 

each 50.0 em long. The four vertices 9 through 12 are the midpoints of lines 

1,4, 5, and 8, respectively. 

Six types of positioning and orienting errors are used to measure and 

evaluate robot performance. 

1. Linear Displacement Errors - These errors are defined as the dif­
ference between the actual and desired lengths of various grid 
lines. Sixteen linear displacement errors are considered, twelve 
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Table 7-1: Positions of Three-Dimensional Grid Vertices 

Cartesian Position 
Point X Y Z 

(em) (em) (em) 

1 -30.0 40.0 30.0 
2 30.0 40.0 30.0 
3 -30.0 70.0 30.0 
4 30.0 70.0 30.0 
5 -30.0 40.0 80.0 
6 30.0 40.0 80.0 
7 -30.0 70.0 80.0 
8 30.0 70.0 80.0 
9 0.0 40.0 30.0 

10 0.0 70.0 30.0 
11 0.0 40.0 80.0 
12 0.0 70.0 80.0 

corresponding to the errors between the actual and desired 
lengths of Lines 1 through 12 and the four corresponding to the 
errors between the actual and desired lengths of the diagonal 
lines defined by Vertices, 1 and 4,2 and 3, 5 and 8, and 6 and 7. 

2. Normal Deviation Errors - These errors are defined as the normal 
distance between the end-effector's position at one of the mid­
point vertices and the line joining the two actual positions of the 
end-effector at the lines' endpoints. These errors represent a 
measure of line straightness. For each of the Lines, 1,4, 5, and 8, 
a normal deviation error is computed. 

3. Radial Displacement Errors -- These errors are defined as the 
radial distances between the actual and desired positions of the 
end-effector. Errors at Vertices 1,4,5, and 8 are computed. 

4. Absolute Orientational Errors - These errors are defined as the 
angular deviation between the actual and desired orientations of 
the end-effector. Absolute orientational errors are computed at 
Vertices 1,4,5,8. 

5. Relative Orientational Errors - Each of these errors are defined as 
the angular deviation between the actual orientation of the end-

149 
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effector at a specified vertex and the orientation of the end­
effector at the grid origin (i.e., Vertex 1). 

6. Line Perpendicularity Errors - The X-Y Line Perpendicularity Error 
is the angular deviation between Line 1 and Line 3, minus 90 
degrees. Similarly, the angular deviations between Lines 3 and 
8 and Lines 8 and 1 are the Y-Z and Z-X Line Perpendicularity 
Errors, respectively. 

A total of thirty-four positioning and orienting errors are computed 

during each experiment (i.e., simulated event) within a simulation run in 

order to measure the robot's kinematic performance. Each error represents 

an index of performance and each simulation consists of 500 experiments. 

Following the completion of each simulation, we compute the mean, 

variance, and standard deviation of each performance index. Different sets 

of input parameters are specified in each simulation. To analyze the effects 

of manufacturing errors upon the performance of the D-Model controller, the 

input parameters are the manufacturing error variances while to analyze the 

performance of the S-Model controller, the input parameters are the nominal 

target radii Rj , number of points per circle N j , and etc. 

7.2.2. Design Model Control 

The performance of the D-Model controller is a direct reflection of the 

manufacturing errors. To simulate the performance, we have developed a 

kinematic simulator model of the Puma 560. The model 

• 
T6 = Ko·KI·~·K3·K4·K5·Kt; (7.1) 

where 

Ko = Trans (£1' ez, £3) Rot (x,£~ Rot (y, £5) Trans (0.0, O.O,xl) 

Rot (x, £~ Rot (y,~) Rot (z, £8) (7.2) 
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KI = Rot (z,OI) Trans (0.0, 0.0, E9) Rot (x, EIO) Rot (y,En ) 

Trans (£12,O.O,~Rot(X,E13 +x3) Trans (0.O,O.O,x4) 

Rot (z'£IJ (7.3) 

Kz = Rot (z, 0Z) Trans (0.0, 0.0, £IS + xS) Rot (x, EI~ 

Rot (y, £17) Trans (E18 + x6' 0.0, 0.0) Rot (x, E19) 

Rot (y,Ezo) Rot (z, EzI) (7.4) 

~ = Rot (z, °3) Trans (0.0, 0.0, EzZ> Rot (x, Ez3) Rot (y, EzJ 

Trans (x" + EzS,x8 + £z6,x9 + Ez7) Rot (x,xlO + EzS> 

Rot(y'Ez9)Rot(z,~o) (7.5) 

K4 = Rot (z, OJ Trans (E31' O.O,xn + ~z) Rot (x,xl2 +£33) 

Rot (z'£3J (7.6) 

Ks = Rot (z, 0s) Trans (0.0, 0.0, ~s> Rot (x,x13 + ~~ 

Trans (£37,O.O,xI~ Rot(z'~8) (7.7) 

~= Rot (z, 9~ Trans (0.0, 0.0, xIS + ~9) (7.8) 

incorporates both the nominal mechanical design specifications and the 

manufacturing errors as parameters. The homogeneous transformation 

matrix T~ defines the position and orientation of a coordinate frame fixed 

relative to the end-effector with respect to a coordinate frame fixed relative 

to the base. The parameters, XI' x2' .•. ,xIS' represent the nominal mechani­

cal design specifications while the parameters, EI' £2' ... '~9' represent the 

manufacturing errors. The angular positions of joints 1 through 6, as 

measured by the respective joint encoders, are denoted by °1 through °6, 

respectively. The transformations comprising the matrix Ko describe the 

actual physical structure of the base link while the matrices KI, Kz, ... , K6 

describe the actual physical structure of Links 1, 2, ... , 6, respectively, for a 

particular robot. A derivation of the model (7.1) is presented in Appendix 

F.l. 
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The values of the nominal design parameters for the Puma 560, xl - XIS' 

are listed in Table 7-2. 

Table 7-2: Nominal Design Kinematic Parameters for a Puma 560 

Value 
Parameter 

(em) (deg) 

Xl 58.500 -
Xz 8.900 -
X3 - -90.0 
X4 17.750 -
Xs 2.500 -
X6 43.180 -
X7 -2.032 -
Xs -33.320 -
X9 -5.341 -

XlO - 90.0 
X11 10.050 -
XIZ - -90.0 
Xl3 - 90.0 
Xl4 4.445 -
XIS 1.270 -

When the manufacturing errors are zero, the model (7.1) is nearly equivalent 

to the Denavit-Hartenberg model (2.8) where the ideal Denavit-Hartenberg 

parameters are listed in Table 6-2. The difference is caused by the fact that, 

in (7.1), we consider the base frame to be located at the lower end of Link 0 

(i.e., coincident with the surface to which the robot would normally be 

mounted) as indicated in Figure 7-2. To compare (7.1) with (2.8) the ideal 

Denavit-Hartenberg parameter d l is 67.4 cm - - the desired distance between 

the bottom surface of the base and the Joint 2 axis. 

The values listed in Table 7-2 where obtained from a cursory examina­

tion of the mechanical structure of a Puma 560 and not from an exhaustive 

study of the actual manufacturing process. Such a study is beyond the scope 
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Figure 7-2: Location of Physical Base Coordinate Frame of the Puma 
560 as Defined by the Kinematic Simulator Model without 
Manufacturing Errors 

of this dissertation. It is believed that the model (7.1) is sufficiently complex 

and realistic enough to provide insight into the expected performance of a 

Puma 560 whose kinematics are affected by random manufacturing errors. 

In simulation, the manufacturing errors are generated using standard 

random number generators. Gaussian distributions are used to model the 

variations in manufacturing errors from one robot to another. It is assumed 

that all manufacturing errors have zero mean. 

The manufacturing errors £1' ez, .. , '~9 are divided into three 

categories; positional errors, orientational errors, and encoder calibration errors. 

For convenience, it is assumed that errors within a category have the same 

variance. The variance of the errors in the positional error category is 

measured in cm2 and is denoted by a;. The variances of the errors in the 

remaining two categories are measured in der and are denoted by a; and a; 
,respectively. Our experience with Puma 560 robots suggests that the orien­

tational errors introduced during the calibration of the joint encoders are 
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significantly greater than the orientational errors committed during machin­

ing and assembly thus the need for two separate orientational error 

variances. 

7.2.3. Signature-Based Control 

Simulating the performance of the S-Model controller is complicated by 

the need to simulate the identification process. Arm signature identification 

in combination with signature-based control proceeds through a sequence of 

five steps. Table 7-3 lists the inputs, the outputs, and the potential sources of 

errors for each of these steps. The table indicates how the input errors 

propagate through the identification algorithm to produce end-effector 

positioning and orienting errors. The outputs of a step are affected by both 

the errors of that step and the errors of previous steps. Previous errors are 

thus input errors to the current step. The error sources listed in Steps 1 and 2 

are specific to our sensor system. In practice, by interchanging simulator 

modules, alternative sensor systems can be analyzed. 

Since it would be impractical to simulate all of the errors listed in Table 

7-3 and interpret the results, our primary objective has been to evaluate on 

the effect of sensor errors (i.e., the errors which affect the accuracy of the 

target measurements) on the performance of the S-Model Controller. In our 

simulation of the Puma 560, we have considered only the sensor errors 

which most strongly affect the measurement of the target loci. These include 

slant range errors and sensor system calibration errors. 

The S-Model identification algorithm is applied, in simulation, to iden­

tify the kinematic parameters of a perfectly manufactured Puma 560 robot in 

the presense of slant range errors and sensor system calibration errors. The 

assumption that the actual robot has no manufacturing errors merely 
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Table 7-3: Propagation of Identification and Control Errors 

Step Description Inputs Outputs Sources of Error 

Actual Target Filtered Target Temperature. 

1 Sensor Model Range Range Acoustic Noise. 

Numerical 

2 
Sensor System Filtered Target Cartesian Target Sensor Misalignment. 

Model Ranges Position Numerical 

Joint Wobble. 

Cartesian Target Feature Parameter Link Compliance. 
3 Feature Model 

Positions Vector Gear Backlash. 

Transmission Compliance 

4 S-Model Feature Vectors S-Model Parameters Numerical 

5 D-H Model S-Model Parameters 
Denavit-Hartenberg 

Numerical 
Model Parameters 

Steady-State Joint 

Denavit-Hartenberg Position Control Errors. 

6 Control Model 
Model Parameters Actual End-Effector Encoder Resolution. 

Desired End-Effector Position Link Compliance. 

Position Backlash 

Numerical 

simplified the simulator design task. Since the S-Model identification algo­

rithm is a general method and does not require a priori knowledge as to the 

nominal kinematic structure of the robot, the statistical performance of a 

S-Model Controller for a perfectly manufactured Puma 560 will be identical 

to the performance of an S-Model Controller for a Puma 560 with an ar­

bitrary set of manufacturing errors. When the slant range errors are zero and 

the sensor system calibration errors are zero, the S-Model identification algo­

rithm identifies the true kinematic parameters and the S-Model Controller 

provides infinite positioning accuracy (i.e., the positional and orienta tiona 1 
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deviation between the desired and actual location of the end-effector is zero 

for all points within the workspace of the Puma 560). 

In order to initiate the simulator, a variety of input parameters must be 

specified such as the true locations of the target points with respect to the 

links, and the spatial transformation between the sensor coordinate frame 

and the robot base coordinate frame. A list of the input parameters and the 

values used in our simulation experiments are included in Appendix F.2. 

These values coincide with our hardware implementation of the 5-Model 

identification algorithm and our prototype system. 

We highlight the sequence of computational tasks performed by the 

simulator. First, the Puma 560 design model is used to compute the actual 

locations of the target points with respect to the sensor coordinate frame. 

Then, the actual slant ranges are computed based upon the known positions 

of the microphones. Next, zero mean gaussian noise is added to each of the 

slant ranges. The standard deviation of this noise depends upon the range. 

The linear approximation 

o = 9.6432e-SX + 0.003 (7.9) 

models the relationship between the noise standard deviation, 0, and the 

range, X. In (7.9), 0 and X are measured in centimeters. The corrupted slant 

ranges are also quantized to two decimal places to simulate the limited 

resolution of the GP-8-30. Using these corrupted slant ranges, the 5-Model 

identification algorithm is applied to determine the robot's arm signature. 

This procedure is repeated 500 times producing SOD arm signatures. The 

Newton-Raphson algorithm is then applied to control the actual Puma 560 

robot in performing the grid touching task described in Section 7.2.1 based 

upon each of the identified signatures. Finally, the means, variances, and 

standard deviations of the thirty four performance indices are computed and 

tabulated for later analysis. 
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7.3. Simulator Verification 

The goal in verifying the simulator is to demonstrate that is produces 

realistic and reliable data. Our simulator id divided into two independent 

parts, one which deals with the performance of a D-Model Controller and 

one which deals with the performance of an S-Model Controller. The 

verification of each these parts can be performed independently. 

In verifying the former part we would like to demonstrate that the 

statistical performance of a D-Model Controller predicted by the simulator is 

consistent with the statistical performance of actual Puma 560 robots which 

utilize design model based control. To accomplish this task, we would nor­

mally want to vary one or more of the input parameters to both the physical 

system and the simulator, monitor the outputs of both the physical system 

and the simulator, and then compare the two. Unfortunately in our case, 

there are no parameters of the real system which can be varied so as to effect 

the performance of the robot. Manufacturing errors are physically em­

bedded and fixed within the physical structure of each robot. Furthermore, 

we cannot realistically compare the statistical performance of only seven 

robots with that of the simulator since a sample size of seven can hardly be 

considered statistically meaningful. Although the observed performance of 

the seven Puma 560 robots is consistent with the performance distributions 

predicted by the simulator additional studies would be required to 

rigorously verify the manufacturing error model (7.1). 

Verification of the sensor error model and simulated signature iden­

tification process is more easily accomplished. Experiments were conducted 

in which the calibrated distance, WA,c ' between Microphones A and C (refer 

to Appendix E) is intentionally misaligned. The alignment errors ranged 

from -1.0 to 1.0 em. While alignment errors of this magnitude are unlikely in 
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practice, their use ensures that the measured variations in the performance of 

a robot is statistically significant in comparison to the variability due to other 

random errors. In the laboratory, the alignment errors are produced by 

modifying the calibration data used by the triangulation algorithms. For 

each of eleven different alignment errors we identify the arm signature of 

one of the robot's in the laboratory and apply the signatures to control the 

position and orientation of the end-effector. The one-dimensional grid 

touching task is performed in several times and a cathetometer is used to 

measure the performance. The analogous experiments are conducted in 

simulation. 

The simulated and experimentally measured performance of the Puma 

560 is plotted as a function of the error in WA,c in Figure 7-3. In Figure 7-3, 

performance is measured in terms of line length error. Line length errors for 

three lines are shown: one parallel to the base X axis which is 60.0 cm long, 

one parallel to the Y axis which is 40.0 cm long, and one parallel to the Z axis 

which is 50.0 cm long. The simulated performance curves represent the 

mean performance and the vertical bars (i.e., confidence intervals) delineate 

the 3 standard deviation confidence bands [29]. These results confirm that 

the simulator produces realistic and reliable data. The experimentally 

measured performance curves lie within the confidence intervals of the 

simulated performance curves over most of the range in WA,c' It is only for 

extreme errors in WA c that the correspondence between the simulator and 

the actual performance differ significantly. In practice, such extreme align­

ment errors would not occur. 
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7.4. Results 

Our analysis of the statistical effect of manufacturing errors and iden­

tification errors upon end-effector positioning accuracy is divided into five 

sections. In Section 7.4.1, we consider the effects of encoder calibration er­

rors upon the performance of the D-Model Controller. The effects of machin­

ing and assembly errors upon the performance of the D-Model Controller are 

discussed in Section 7.4.2. Section 7.4.3 discusses the relationship between 

the performance of the S-Model Controller and the sensor system accuracy. 

The relationship between the number of measurements and the performance 

of the S-Model Controller is described in Section 7.4.4. Section 7.4.5 

describes the relationship between the target radii and the performance of 

the S-Model Controller. 

7.4.1. Encoder Calibration Errors 

The procedure for calibrating the joint encoders of a Puma 560 can 

often lead to significant encoder calibration errors. These errors result in 

fixed biases between the actual and measured positions of the joints. Five 

simulations were conducted using model (7.1) to evaluate the effect of ran­

dom encoder calibration errors upon robot performance. In these simula­

tions, the positional error standard deviation and orientational error stan~ 

dard deviation were 00=.01 em and 0p=.Ol deg, respectively. The standard 

deviation of the encoder calibration error 0e was varied from 0.1 deg to 0.5 

deg. The statistical variations in the performance indices of 500 simulated 

robots are plotted as a function of 0e in Appendix G. 

The standard deviations of all 34 performance indices are seen to in­

crease linearly as the standard deviation of the encoder calibration errors 

increase. To illustrate, the radial position errors at Vertices 1,4,5, and 8 are 
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Figure 7-4: Radial Position Error Standard Deviations as a function of 
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plotted as a function of (Jt in Figure 7-4. From Figure 7-4, it is also observed 

that the rate at which different index standard deviations increase varies. 

For instance, the standard deviation of the Vertex 1 radial position error 

increases 1.4 times faster than that at Vertex 4. It is believed that the 

variability in the rate at which the the performance index standard devia­

tions increase as the encoder calibration error standard deviation increases is 

partly due to the variability in robot performance over the workspace. 

Robots with revolute joints, particularly those with revolute joints in the 

positioning system (i.e., the first three joints), tend to amplify joint position­

ing errors. Roughly speaking, the amplification factors are the effective radii 

between the axes where the errors occur and the end-effector. Thus, as a 

robot extends its reach the various amplification factors tend to increase. In 

design model control, encoder calibration errors translate into joint position-
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ing errors. Thus, we would expect robot kinematic performance to decrease 

as the desired end-effector position approaches the outer limits of the robot's 

workspace. Figure 7-4 and the remaining plots in Appendix G clearly sup­

port this hypothesis. The standard deviation of the radial error at Vertices 4 

and 8 are .299 cm and .282 cm, respectively, while the standard deviation of 

the radial error at Vertices 1 and 5 are .225 cm and .202 cm, respectively -­

when a;=O.3deg. From Table 7-1 we see that Vertices 4 and 8 lie near the 

maximum reach of the Puma 560 while Vertices 1 and 5 lie relatively close to 

the base of the robot. 

There is another important feature of the effect of manufacturing errors 

upon performance which is not apparent from the plots in Appendix G. 

Even though the simulated manufacturing errors have zero mean, the means 

of the performance indices are nonzero. In fact for certain performance 

indices, the indices' mean values may be larger than their standard devia­

tions. Furthermore in some cases, the index means vary linearly with the 

encoder calibration error standard deviation. Examples of this are illustrated 

in Figure G-2. 

The mean value of the Line 11 line length error decreases from 0.0268 

cm to 0.0038 cm as ae increases from 0.1 deg to 0.5 deg. Other index mean 

values may even change sign. Robot kinematics, especially those of the 

Puma 560, are highly nonlinear and coupled. As is often the case for non­

linear systems, the expected value of the system output, in this case robot 

performance, is both a function of the mean and standard deviation of the 

input noise. These results are in direct contradiction to the analytic results 

derived by Wu [32]. Our results indicate that in the presense of zero-mean 

gaussian random manufacturing errors the expected positioning accuracy of 

an arbitrary robot will be nonzero. While a reduction in manufacturing 

errors will tend to increase robot positioning accuracy, this approach by itself 
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will not necessarily eliminate the expected positioning errors inherent to 

robots which utilize a design model control strategy. 

7.4.2. Machining and Assembly Errors 

To evaluate the effect of positional and orientational machining and 

assembly errors upon robot performance, five more simulations were per­

formed. In these simulations, the standard deviations of the positional and 

orientational errors, CIp and CIo were varied simultaneously from 0.01 cm and 

0.Q1 deg to 0.05 cm and 0.05 deg, respectively, while the encoder calibration 

error standard deviation, CIe ' was fixed to 0.1 deg. The standard deviations 

of the 34 performance indices are plotted in Appendix G as a function of CIp 

and CIo' These sample standard deviations are based upon the performance 

of 500 robots. 

The variations in the performance index standard deviations in these 

simulations are quite different from those in Section 7.4.1. For instance, 

consider Figure 7-5 where the radial position error standard deviations at 

Vertices 1, 4, 5, and 8 are plotted as a function of CIp and CIo' In contrast to 

Figure 7-4, the relationships shown in Figure 7-5 are distinctly nonlinear. 

Similar nonlinear relationships are exhibited by the remaining performance 

index standard deviations in Figure G-3. Except for the Vertex 1 and Vertex 

4 absolute orienta tiona I error standard deviation, the performance index 

standard deviations all increase monotonically as CIp and CIo increase. Fur­

thermore, the slopes of all 34 curves increase monotonically. 

In further contrast to the curves in Figure 7-4, the curves in Figure 7-5 

do not all diverge from one another. For example, as CIp and CIo increase the 

difference between the variability in the radial positioning error at Vertex 1 

and at Vertex 5 decreases from 0.0224 to 0.0138. In some cases the curves 

may even intersect as shown in Appendix G. 
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The variations in the performance index means as a function of C1p and 

C10 are much more predictable than when as a function of C1e" As C1p and C10 

increase, all of the performance index means increase monotonically. Plots 

of the performance index means as a function of C1p and C10 are presented in 

Figure G-4. For Controller D, the presence of positional and orientational 

manufacturing errors leads to an average decrease in end-effector position­

ing accuracy. 

The effect of positional and orientational manufacturing errors on the 

variability of end-effector positioning accuracy is more complex than that for 

encoder calibration errors as evidenced by the nonlinear relationships in 

Figure 7-5. However, the effect of these manufacturing errors upon the 
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expected end-effector positioning accuracy of a robot is much more simple 

than for the effect due to encoder calibration errors. Finally, the sensitivity of 

the performance index standard deviations to simultaneous variations in (Jp 

and (fo is less than the sensitivity of the performance index standard devia­

tions to variations in (fe' 

7.4.3. Sensor Measurement Errors 

Equations (6.12) and (6.13) describe the relationship between feature 

estimate accuracy and the sensor system accuracy, (f, as well as the iden­

tification parameters, Nj and Rj • Unfortunately, the effect of feature estimate 

accuracy upon the performance of an S-Model Controller cannot be derived 

analytically. Therefore, the simulator described in Section 7.2.3 was applied 

to empirically determine the qualitative relationship between measurement 

noise standard deviation, (f, and the expected performance of a Puma 560 

robot which uses signature-based control. Six separate simulations were 

conducted each using a different values of (f in (7.9), to identify the robot's 

arm signature. In each simulation, the value of (f was computed according to 

(7.9) and then multiplied by a factor k ranging from 1.0 to 10.0. 

The standard deviations of the 34 performance indices as function of k 

are plotted in Appendix G. The plot of the Radial Position Error standard 

deviation is reproduced below in Figure 7-6. The standard deviations of all 

the performance indices increase linearly with the noise measurement factor. 

The more inaccurate the sensor system is the more inaccurate the identified 

Signatures are and hence the greater the variability in the performance of the 

5-Model Controller. The significance of these results is that the sensitivity of 

the performance of the S-Model Controller to variations in sensor system 

accuracy is consistent with the relationships (6.12) and (6.13) which govern 

the feature estimate accuracy. The orientational accuracy of the estimated 
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Figure 7-6: Radial Position Error Standard Deviation as a Function of 
the Measurement Noise Factor k 

planes-of-rotation (6.12) and the positional accuracy of the estimated centers­

of-rotation (6.13) are both directly proportional to the measurement noise 

standard deviation. Feature estimate accuracy has a direct impact upon the 

performance of an S-Model Controller. 

Nineteen of the Performance indices are defined such that they can 

take on any real value (e.g., the various Line Length Error indices). Using 

S-Model control the mean values of these nineteen indices are all zero which 

is in strong contrast to the effect which manufacturing errors have upon the 

performance of the D-Model Controller. The significance of this is that on 

the average we can expect the S-Model identification algorithm to correctly 

identify the true kinematic parameters of a robot and thus eliminate end­

effector positioning errors. For the remaining 15 perfonnance indices, the 
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index's mean values are directly proportional to the measurement noise stan­

dard deviation, cr. 

7.4.4. Number of Measurements 

Equations (6.12) and (6.13) describe the relationship between feature 

estimate accuracy and the S-Model identification parameter Ni . Unfor­

tunately, the effect of feature estimate accuracy upon the performance of 

Controller S cannot be derived analytically. Therefore, the simulator 

described in Section 7.2 was applied to empirically determine the qualitative 

relationship between Ni and the expected performance of a Puma 560 robot 

which uses Controller S. Five separate simulations were conducted each 

using a different number of measurements per joint, Ni ' to identify the 

robot's arm signature. 

The standard deviations of the 34 performance indices for Ni= 20,40, 

60, 80, and 100, are plotted in Appendix G. For comparison purposes, the 

plot of the Radial Position Error standard deviation is reproduced below in 

Figure 7-7. In general, the standard deviations of all 34 performance indices 

are inversely proportional to the square root of Ni . By increasing the num­

ber of measurements used in identifying a robot's arm signature, substantial 

increases in end-effector positioning accuracy can be achieved. For instance, 

in Figure 7-7 the Radial positioning errors are reduced by a factor of 2.34. 

Such findings are consistent with the analytic relationships developed in 

Section 6.6 regarding feature estimate accuracy. The orientational accuracy 

of the estimated planes-of-rotation (6.12) and the positional accuracy of the 

estimated centers-of-rotation (6.13) are both inversely proportional to the 

square root of the number of measurements. Feature estimate accuracy thus 

has a direct impact upon the performance of Controller S. 
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Consider again the nineteen performance indices which are defined 

such that they can take on any real value. Using signature-based control the 

mean values of these nineteen indices are all zero (Le., negligible in com­

parison with the corresponding standard deviations) which is in strong con­

trast to the effect which manufacturing errors have upon the performance of 

D-Model Control. On the average we can expect the S-Model identification 

algorithm to correctly identify the true kinematic parameters of a robot and 

thus eliminate end-effector positioning errors. For the remaining 15 perfor­

mance indices, the index's mean values are inversely proportional to the 

square root of Ni as illustrated in Appendix G. 
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7.4.5. Effect of Target Radius 

In this section, we apply the simulator used in the previous section to 

analyze the relationship between end-effector positioning accuracy and the 

target radii. Naturally, the values of certain target radii will have greater 

impact upon the overall performance of the robot than will others. Since it 

would be impractical to simulate all the possible combinations of the values 

of the six target radii and interpret the results, we have limited our analysis 

to the situation in which all the target radii are equal. Thus in each simula­

tion, Rl = R2= ... = R6= R/IOm. Five simulations were performed in which 

the value of Rnom is varied between 30.0 cm and 50.0 em. The standard 

deviations of the 34 performance indices as a function of R/IOm are plotted in 

Appendix G. The plot of the Radial Position Error standard deviations is 

reproduced in Figure 7-8. 

While the parameter Ni has an effect upon both the accuracy of the 

identified planes-of-rotation and centers-of-rotation, the parameter R/IOm only 

effects the accuracy of the planes-of-rotation. Taken independently, Ni and 

Rnom are both inversely proportional to the accuracy of the identified planes­

of-rotation. From the findings in the previous section we might thus expect 

that increasing Rnom would have less of an overall effect upon the perfor­

mance index standard deviations than does Ni • However, from Figure 7-8 

and the plots in Appendix G this is not the case. The curves in Figure 7-8 are 

approximated more closely by an inverse square relationship rather than by 

an inverse relationship. The cumulative accuracy of an identified arm Sig­

nature appears to be more sensitive to orientational errors than poSitional 

errors. This could be explained by the fact that orientational errors, espe­

cially those involved in the description of a manipulators positional subsys­

tem, not only propagate into orientational errors at the end-effector but they 

are also transformed and amplified into positional errors at the end-effector. 
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The amount of amplification being proportional to the lengths of the links 

and the configuration of the robot. 

The variations in Rnom have no effect upon the mean values of the 

standard deviations of the performance indices which are defined over all 

the real numbers. As in the previous section, the mean values for these 19 

performance indices are zero. For the remaining 15 performance indices, the 

indices' mean values are, in general, inversely proportional to R!'m as il­

lustrated in Appendix G. 

These findings suggest that the best strategy for increasing signature 

accuracy is to first increase the target radii followed by increases in the 

number of measurements. The cost of increasing the number of measure-
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ments is the increased time required to obtain all the target measurements. 

This cost is incurred during the identification of each individual signature. 

In contrast, the cost associated with increasing Rnom is simply the reconstruc­

tion of a set of target mounting fixtures. This cost has only to be incurred 

once since a single set of fixtures can be applied to all robots of the same 

model. 

7.5. Conclusions 

In this chapter, we have formulated a methodology by which to 

evaluate and compare the statistical performance of a conventional design 

model-based kinematic controller and a signature-based kinematic con­

troller. The design model controller incorporates the robot kinematic 

parameters obtained from the mechanical design specifications. In contrast, 

the signature-based controller incorporates the robot kinematic parameters 

estimated by the S-Model identification algorithm. Furthermore, we have 

applied this methodology to evaluate and compare the statistical perfor­

mance of these two controllers when applied to control the joint positions of 

a Puma 560 robot. This work complements our experimental evaluation of 

the performance of seven Puma 560 robots which was described in Chapter 

6. 

Our methodology utilizes Monte-Carlo simulation techniques for the 

generation of end-effector positioning and orienting error distributions. The 

evaluation of the performance of the D-Model Controller, requires the for­

mulation of a robot kinematic model which explicitly incorporates the 

manufacturing errors as parameters. A kinematic model of a Puma 560 robot 

with manufacturing errors was developed and serves to illustrate how such 

a model could be developed for other robots. The performance of the S­

Model Controller depends upon the types of the errors introduced into the 
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arm signature identification process and not upon the presense of robot 

manufacturing errors. Having developed a model of our ultrasonic sensor 

system, we simulated the arm signature identification process using a Puma 

560 robot and applied the identified signatures to control the robot in per­

forming a series of standardized tasks. The positioning and orienting ac­

curacy of the end-effector is used to evaluate of how well S-Model Controller 

performed. This approach can be applied to analyze the statistical perfor­

mance of the 5-Model Controller for any robot with any type of sensor sys­

tem by interchanging simulator modules. In Section 7.3, we devised experi­

ments to verify that our simulator produced realistic and reliable results. 

In Sections 7.4.1 and 7.4.2, we applied our Monte-Carlo simulator to 

investigate the relationship between encoder calibration errors and robot 

performance, and the relationship between machining and assembly errors 

and robot performance, respectively. From this investigation we have dis­

covered that 

• The performance indices standard deviations increase linearly 
with the standard deviation of the encoder calibration errors. 

• The performance indices standard deviations increase non­
linearly and monotonically with simultaneous changes in the 
standard deviations of the positional and orientational manufac­
turing errors. 

• The performance of a D-Model Controller is more sensitive to 
encoder calibration errors than to the positional and orientational 
manufacturing errors. 

• The expected performance of a D-Model Controller is a function 
of both the means and standard deviations of the manufacturing 
errors. 

In practice then, the average performance of a robot using design model 

based control will be less than perfect. This finding clearly supports our 
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claim that arm signature identification techniques are needed to improve 

end-effector positioning and orienting accuracy. 

In Sections 7.4.3 - 7.4.5, we have also applied our Monte-Carlo 

simulator to understand the relationships which govern the performance of 

an S-Model Controller. Specifically, we were interested in the relationships 

between the sensor system accuracy, the identifier parameters N j and R j , and 

the end-effector positioning accuracy. We have found that, 

• The performance indices' standard deviations are directly 
proportional to the sensor measurement error standard deviation 
<J and that this relationship is consistent with the analytic 
relationships between <J and the measures of feature estimate ac­
curacy derived in Section 6.6. 

• The performance indices' standard deviations are inversely re­
lated to the square root of the number of measurements, N j and 
that this relationship is consistent with the analytic relationships 
between Nj and the measures of feature estimate accuracy derived 
in Section 6.6. 

• The performance indices standard deviations are inversely re­
lated to the square of the target radii. 

• The performance of an S-Model Controller is more sensitive to 
orientational identification errors than to positional identification 
errors. 

• The expected performance of an 5-Model Controller depends 
only upon the expected value of the measurement errors. 

The identifier parameters, N j and R j , provide a simple mechanism for in­

creasing the accuracy of the identified arm signatures and hence the perfor­

mance of an 5-Model Controller by a predetermined amount. Conversely, 

then can be used to reduce the need for extremely accurate sensor systems to 

measure the targets positions. Finally, the 5-Model identification algorithm 

and control approach will, on the average, provide perfect end-effector 
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positioning and orienting accuracy in the presense of zero-mean target 

measurement errors. The elimination of biases in the expected performance 

of a robot is a important advantage of the our approach. 



ChapterS 

Summary and Conclusions 

8.1. Introduction 

In this chapter, we summarize (in Section 8.2) our contributions and 

identify (in Section 8.3) areas for future research. 

8.2. Summary and Contributions 

In this section, we review and enumerate the contributions of the dis­

sertation. Our research and contributions lie in three areas: robot kinematic 

modeling, robot kinematic parameter identification, and robot kinematic control. 

We proceed through the development of the dissertation. 

In Chapter 2, we reviewed robot kinematic modeling, identification, 

and control techniques, and established a framework in which to present our 

research contributions. The fundamental problem in the development of 

robot kinematic models is the use of geometric and trigonometric principles 

to systematically specify the relative positions and orientations of robot 

jOints. The goal of a kinematic identification algorithm is to identify the 

parameters of a kinematic model which describe the actual position and 

orientation of the end-effector in terms of the measured joint positions, and 

which incorporates the geometrical variations in the structure caused by 

manufacturing errors . The kinematic control problem focuses upon the 

computation of the joint positions required to locate the end-effector at a 

desired Cartesian position and orientation. 
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In Chapter 3, we introduced the formulation and properties of a new 

model for describing the kinematic structure of any robotic manipulator with 

rigid links. This kinematic model, which we call the S-Model, is designed 

to facilitate kinematic parameter identification. Like the Denavit-Hartenberg 

model, which has had widespread application to robot control, the S-Model 

is conceptually based upon the assignment of Cartesian coordinate frames 

fixed relative to each of the liI1ks. The S-Model possesses three important 

features which make it directly applicable to kinematic identification. First, 

there is a considerable amount of flexibility in assigning the locations of the 

link coordinate frames. Second, the locations of the link coordinate frames 

are independent of the locations of the other link coordinate frames. And 

third, the Denavit-Hartenberg parameters can be easily extracted from the 

S-Model parameters. 

In Chapter 4, we formulated the S-Model identification algorithm 

which can be applied to identify the kinematic parameters of any robot with 

rigid links. The objective of S-Model identification is to estimate the S-Model 

kinematic parameters from a set of 2nr+np kinematic/mechanical features 

inherent to the manipulator, where nr is the number of revolute joints and np 

is the number of prismatic joints. The kinematic features of a revolute joint 

are a plane-of-rotation and a center-of-rotation, and the kinematic feature of 

prismatic joint is a line-of-translation. The S-Model identification algorithm 

consists of four steps. The first step involves the explicit identification of the 

robot's kinematic features from measurements of the Cartesian position of 

targets placed on the robot's links. In the second step, the identified features 

are used to establish the positions and orientations of the S-Modellink coor­

dinate frames with respect to the sensor coordinate frame. In the third step, 

the elements of the S-Modellink transformation matrices are evaluated and 

used to solve for the 6'n S-Model parameters. Finally, in the fourth step, the 

robot's Denavit-Hartenberg parameters are determined. The advantage of 
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the 5-Model identification algorithm is that it decouples the robot kinematic 

identification problem into a set of simpler identification problems which 

can be solved using standard linear regression techniques. 

In Chapter 5, we presented two algorithms for inverting general arm 

signature models and compared both their numerical performance and com­

putation complexity. The inverse kinematic problem requires the solution of 

a set of n coupled nonlinear equations. The first algorithm is based upon 

Newton's method and the second algorithm is the Jacobi iterative algorithm 

applied specifically to the inversion of signature models. 

In Chapter 6, we developed a complete prototype arm signature iden­

tification system and applied it improve the performance of seven Puma 560 

robots. This system incorporates an ultrasonic range sensor (described in 

Section 6.3) to measure the three-dimensional Cartesian positions of the tar­

get sparkers placed on the robors links. The relative Cartesian positioning 

accuracy of the sensor system is approximately ± 0.02 em. The general 

characteristics of the sensor design and the overall system design, which 

exploits averaging over many sensor readings, offer numerous advantages 

for arm signature identification. In this chapter, we also applied the 

prototype system to improve the kinematic performance of seven Puma 560 

robots. Three methods were devised to evaluate manipulator kinematic per­

formance during which the Puma is programmed. to position its end-effector 

at the vertices of a one-, two-, or three-dimensional grid. At each of the grid 

vertices, the actual relative poSition of the end-effector is measured. In the 

three-dimensional case, the actual relative orientation of the end-effector is 

also measured. For these robots, relative end-effector positioning and orient­

ing accuracy was improved on the average by a factor of 5-10. 

In Chapter 7, we considered the statistical performance of robot posi-
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tion control methods, and discussed the origin of robot positioning errors. In 

conventional design-model robot control, manufacturing errors contribute 

most to robot positioning errors. With arm signature-based robot control, 

robot performance is limited by sensor errors which contribute to the in­

accuracy of the identified arm signature model. Monte-Carlo simulation 

techniques have been applied to study the relationship between the perfor­

mance of design model control and manufacturing errors and the relation­

ship between the performance of signature-based control and target 

measurement errors. 

We believe that the contributions of this dissertation are: 

• The design (in Chapter 3) of a new robot kinematic model for 
describing the relationship between the Cartesian position and 
orientation of the end-effector and the robot base coordinate 
frame as a function of the joint positions and a set of fixed 
kinematic parameters. In contrast to other models, our model 
called the S-Model is directly applicable to the kinematic iden­
tification problem. The analytic relationship between S-Model 
and the Denavit-Hartenberg Model is also derived. 

• The identification (in Chapter 4) of the three 
mechanical/kinematic features of robotic manipulators. The 
plane-of-rotation and center-of-rotation features describe the be­
havior of revolute joints and the line-of-translation feature 
describes the behavior of prismatic joints. These features in­
herently describe the kinematic structure of a robot and provide a 
foundation for the design of the S-Model kinematic parameter 
identification algorithm. 

• The development (in Chapter 4) of a general and practical tech­
nique for identifying the kinematic parameters of any robotic 
manipulator with rigid links. The technique, called the S-Model 
identification algorithm, uses measurements of the Cartesian 
position of targets placed on the robot's links and in the absence 
of measurement noise will identify the true kinematic parameters 
of a robot including the geometrical variations in the structure 
caused by robot manufacturing errors. 
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• The fonnulation of the Newton-Raphson and Jacobi Iterative al­
gorithm (in Chapter 5) for solving the inverse kinematics problem 
for robots with non-simple kinematic structures. The conver­
gence properties of both algorithms have been studies and com­
pared based upon simulation results. The computational burden 
of both algorithms is also assessed. The Newton-Raphson algo­
rithm is applied (in Chapter 6) to control the end-effector of 
several Puma 560 robots using identified ann signature 
parameters . 

• The implementation of a complete prototype ann signature iden­
tification system. This prototype system has been applied (in 
Chapter 6) to improve robot end-effector positioning accuracy. 
The contributions derived from the implementation are: 

• The design (in Chapter 6) of an ultrasonic range sensing 
system to measure the three-dimensional positions of tar­
gets attached to the links of the robot. The targets are im­
plemented by an ultrasonic source (sparker) and an array of 
four ultrasonic range detectors are used to measure the 
time-of-flight of the emitted ultrasonic wave. 

• The identification of the arm signatures of seven Puma 560 
robots. 

• The introduction of three methods for evaluating robot 
kinematic performance. These methods, referred to as the 
one-, two-, and three-dimensional grid touching tasks, 
provide a practical means for evaluating robot kinematic 
performance using relatively inexpensive equipment. 

• The comparative evaluation of the actual perfonnance of 
the Puma 560 robots using design model based control and 
signature-based control. As anticipated the identified arm 
signatures significantly improved the performance of all 
seven robots in comparison to their perfonnance with 
design model based control. 

• The demonstration of the applicability and practicality of 
the S-Model identification algorithm towards improving 
robot end-effector positioning and orienting accuracy. 

• The fonnulation of general methodology (in Chapter 7) for 

179 
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evaluating and comparing the statistical performance of robots 
using design model based control and signature-based control. 
The methodology is based upon the use of Monte-Carlo simula­
tion techniques to generate end-effector positioning and orienting 
errors arising from the presence of either robot manufacturing 
errors or measurement errors in the kinematic parameter iden­
tification process. This formulation included: 

• The development (in Chapter 7) of a technique for modeling 
the kinematics of robots with manufacturing errors. We 
apply this technique to a Puma 560 and use the resulting 
model to analyze the effects (in Sections 7.4.1 and 7.4.2) of 
random manufacturing errors upon end-effector poSition 
accuracy . 

• The evaluation and comparison (in Chapter 7) of the statis­
tical performance of a Puma 560 robot using design model 
based control and signature-based control. The evaluation 
leads to design guidelines for specifying the signature iden­
tification parameters (Le., the target radii and the number of 
measurements) and the accuracy of the sensor system used 
to obtain the target measurements. 

8.3. Suggestions for Future Research 

We suggest the following research directions to extend the contribu­

tions of this dissertation: 

• The development of alternative sensor systems for measuring the 
three-dimensional positions of the targets attached to the robot's 
links. The performance of the S-Model identification algorithm is 
limited by the accuracy of the sensor system. The ultrasonic sen­
sor system used in our prototype system is believed to have an 
accuracy of approximately ± 0.02 em. This estimate of the ac­
curacy was obtained indirectly, however, since the physicalloca­
tions of the reference surfaces of the microphones are impossible 
to specify. We suspect that there are in fact small biases in the 
individual range measurements but have been unable to derive a 
method for identifying them. Methods for measuring and/or 
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identifying the biases in such systems are needed to further im­
prove the accuracy of identified arm signatures using ultrasonic 
range measurements. The presence of such biases eventually 
lead to bias errors in the estimated target positions and hence 
limit the accuracy of the identified signatures. 

• The development of techniques for modeling and identifying the 
kinematics of robots with compliance. 

• The development of customized and systematically-organized al­
gorithms to reduce the computational requirements for the on­
line implementation of the Newton-Raphson and Jacobi Iterative 
Iterative algorithms. 

• The development of special purpose hardware for implementing 
kinematic control algorithms to reduce the overall controller sam­
pling rate. As mentioned in Chapter 5 a significant percentage of 
the computations required by the Jacobi Iterative algorithm can 
be performed in parallel. Computer architectures specifically 
designed to exploit this structure and/or the structure of other 
kinematic inversion algorithms would be of great interest to the 
robotics community. 
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We believe that progress in these directions will extend the contributions of 

this dissertation thus leading to further improvements in robot kinematic 

performance and will hopefully expand the range of robotic applications. 



Appendix A 

Primitive Transformations 

The six primitive homogeneous transformations matrices are 

1 0 0 x 
0 1 ° 0 

Trans(x, 0, 0) 0 ° 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 Y 

Trans(O, y, 0) 0 ° 1 0 
0 0 0 

1 0 0 ° 0 1 0 0 
Trans(O, 0, z) 0 0 1 z 

0 ° 0 1 

1 0 ° ° 0 cose - sine ° Rot(x, e) 0 sine cos9 0 
0 0 0 1 
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cose 0 sine 0 
0 1 0 0 

Rot(y, e) = - sine 0 cose 0 

0 0 0 1 

cose - sine 0 0 
sine cose 0 0 

Rot(z, e) 0 0 1 0 
0 0 0 1 
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Ideal Kinematics of the Puma 560 

The following sections list the forward and inverse kinematic relations 

for Puma 560 robot assuming negligible manufacturing errors (i.e., the ideal 

kinematics). A derivation of the inverse kinematics can be found in [19]10. 

B.1. Forward Kinematics 

The forward kinematics of the Puma 560 robot are defined by the 

matrix 

T6 

where 

n" = 

ny = 

nz 

OX = 

llx Ox ax Px 

lly Oy a y Py 

llz Oz ~ pz 

0 0 0 1 

C1 [C23 (C4CSC6 - S4S6) - SZ3SSC6] -

S1 [S4CSC6 + C4S6] 

S1 [C23 (C4CSC6 - S4S6) - SZ3SSC6] + 
C1 [S4CSC6 + C4S6] 

-S23(C4CSC6-S4S6) - C23SSC6 

C1 [-C23 (C4CSS6 + S4C6) + S23SSS6] 

(B.1) 

(B.2) 

(BJ) 

(BA) 

l(}yne derivation in [19] contains two errors which have been oorrected in the above equations. 
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SI [-S4CSS6 + C4C6 ] (B.5) 

0y SI [-C23 (C4CSS6 + S4C6) + S23SSS6] + 
C1 [-S4CSS6 + C4C6 ] (B.6) 

OZ -S23 (C4CSS6 + S4C6) + C23SSS6 (B.7) 

ax CI(C23C4SS+S23CS) - SIS4SS (B.8) 

ay SI (C23C4SS + S23CS) + C1S4SS (B.9) 

az = -S23C4SS + C23CS (B.IO) 

Px = C1 (d4S23 + a3C23 + a2C2) - d3S 1 (B.ll) 

Py SI (d4S23 + a3C23 + a2C2 ) + d3C 1 (B.l2) 

Pz = -( -d4C23 + ~S23 + a2S2 ) (B.l3) 

Si' Ci , Sij' and Cij refer to sin9i , cos9i , sin (9i+9j ) ,and cos (9i+9), respec­

tively. 

B.2. Inverse Kinematics 

The inverse kinematics of the Puma 560, in tenns of the known ele­

ments of T6 in (B.1), are 

d 
tan -I 3 

(r12 - dl)l!2 
(B.l4) 

93 (B.l5) 

if 9s > 0 

(B.l8) 
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9S 
_lC4 [C23 (axCl + aySl) - az S23] 

(B.19) = tan + 
S23 (axCl + aySl ) + azC23 

S4[-axS1 + ayC1] 

S23(ax C1 + ayS 1) + azC23 

96 
_l-CS {C4 [C23 (ox C1 +OySl )-ozS231+ 

= tan 
-S4 [C23 (oxCl +OySl )-ozS23] 

S4[-oxS 1 + 0yCl ]} 

+ 0 + 

+ SS{S23(Ox C 1+0y S 1)+OzC23 } 
(B.20) 

+ C4 [-ox S 1+0yC1] 

where 

'I 
2 2 1/2 (px + Py) , (B.21) 

72 = 2 2 ~ 2 2 
(PxCl +PySl) + Pz - 4 - ~ - a2 (B.22) 

and 

2 2 2;; 
73 = 4a2a3 + 4a2 4 (Constant) (B.23) 

When 9s=0, the manipulator becomes degenerate. Both the Joint 4 and JOint 

6 axes are then aligned. In this case, either 94 or 96 can be chosen arbitrarily. 
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Inverse Kinematics 

C.l. Newton-Raphson Computations 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

StepS: 

Step 6: 

Step 7: 

Step 8: 

Evaluate the elements of the manipulator Jacobian, J, using 
the method described in [18]. In doing so the forward sig­
nature model will also be evaluated (i.e., T6 in (5.1)). 

Compute the positional and orientational differential 
matrix, o!:l, with respect to the manipulator's base coor-
dinates. The matrix 0ll.k = T~ - T6. 

Invert the matrix T6. 

Express differential matrix, 0ll.k, in terms of end-effector 
coordinates. In other words, compute the elements of the 
matrix 61l.k = [T6r1 0f:lc. 

Express differential matrix, 61l.k, in vector form as denoted 
by '3k [18]. 

Solve the system of linear equations '3k = J dq where 
dq:: qk_qk-1. 
Update solution vector according to q = q + dq 

Check if the elements of the vector dqare less than the 
resolution of the corresponding joint encoders. If all are 
then terminate, else return to Step 1. 
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C.2. Jacobi Iterative Computations 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Compute the sines and cosines of the six joint positions. 

Compute the forward signature model (Le., the elements 
of the matrix Fs (q~ in (5.8». 

Compute the forward design model (Le., the elements of 
the matrix Fd(q~ in (5.8». 

Invert the forward signature model matrix Fs(ii;). 

Multiply the matrices Fd(qj), [Fs(q)rl, and T~. 
Evaluate the inverse kinematics of the design model (refer 
to Appendix B) using the matrix evaluated in Step 5 as the 
input. 
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Identified Arm Signtaures 

Table 0-1: Identified Arm Signature Parameters 

Name Link Variable 9olls., (deg) d (cm) 

I 91 110.308 -20.678 

2 92 79.977 11,210.213 

3 93 -79.483 -11,194.976 
Robot 3 

4 94 -0.296 43.278 

5 9s -0.497 -0.018 

6 96 -89.081 10.300 

I 91 109.570 -20.823 

2 92 14.786 1,636.110 

Robot 4 
3 93 -14.883 -1,621.207 

4 94 -0.101 43.388 

5 9s 0.106 -0.070 

6 96 -89.021 10.275 

I 91 110.849 -20.428 

2 92 63.467 2,783.580 

3 93 -63.276 -2,768.574 
Robot 5 

4 94 0.328 43.299 

5 9s -0.126 -0.054 

6 96 -89.517 10.273 

a (cm) a. (deg) 

-0.005 -90.066 

7.6071 -0.217 

-2.039 90.519 

-0.001 -90.007 

0.002 89.990 

0.000 0.000 

-0.037 -89.992 

41.707 -0.394 

-2.059 90.002 

-0.019 -90.036 

-0.011 90.023 

0.000 0.000 

-0.023 -90.013 

19.084 -0.803 

-2.028 90.134 

-0.009 -89.991 

0.007 89.969 

0.000 0.000 
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Table 0-1: (Continued) 

Name Link. Variable 9o//sel (deg) d(cm) a (cm) ex (deg) 

1 91 110.455 -20.672 0.013 -89.997 

2 92 65.427 4,931.060 17.932 -0.459 

Robot 6 
3 93 -64.355 -4.916.063 -2.120 89.938 

4 94 0.420 43.235 -0.022 -90.053 

5 95 -1.081 -0.026 -0.003 90.033 

6 96 -89.809 10.307 0.000 0.000 

1 91 110.849 -20.935 -0.006 -89.985 

2 92 80.179 3,832.102 7.341 -0.639 

Robot 7 
3 93 -79.172 -3,817.059 -2.189 89.977 

4 94 -0.688 43.387 0.010 -89.974 

5 95 -1.428 -0.026 0.006 89.994 

6 96 -89.771 10.282 0.000 0.000 
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Sensor Calibration 

E.l. Calibration Rods 

Two calibration rods are depicted in Figure 6-4. Conceptually, a 

calibration rod is an apparatus for securing two sparkers at a known and 

fixed distance apart. The nominal distance between these sparkers is 100 cm. 

The upper calibration rod contains sparkers 1 and 2, and the lower calibra­

tion rod contains sparkers 3 and 4. The upper calibration rod is positioned 

such that the tips of sparkers 1 and 2 and the acoustic zero point of 

Microphone B are collinear and level. Similarly, the lower calibration rod is 

positioned such that the tips of sparkers 3 and 4 and the acoustic zero point 

of Microphone D are collinear and level. 

These calibration rods provide a means for accurately determining the 

speed of sound at a particular instance in time. Assuming that the speed of 

sound is constant along the line between Sparker 2 and Microphone Band 

along the line between Sparker 4 and Microphone D, the calibration rods 

provide a mechanism to accurately estimate the speed of sound at 

Microphone Band D. Using the upper calibration rod, the ratio of the speed 

of sound at Microphone B to the speed of sound internal to the GP-8-3D, S', 

is 

(E.1) 
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= 
Calibrated distance between sparkers 1 and 2 
Measured distance between sparkers 1 and 2 

where sl and Sz are the measured slant ranges between Sparker 1 and 

Microphone B and Sparker 2 and Microphone B, respectively. The ratios fB 

and fD are applied in Section E.2 to compensate the three primary slant range 

measurements between the target sparker and Microph<mes A, B, and C. 

E.2. Slant Range Compensation 

The method we have developed for correcting the slant ranges ob­

tained from the GP-8-3D (Le., the raw slant ranges) compensates for both 

overall variations in the speed of sound and spatial variations in the speed of 

sound. Applying this method, we have achieved relative Cartesian position­

ing accuracies on the order of the resolution of the GP-8-3D. The resulting 

slant range compensation algorithms are based upon a simplified model of 

the operating environment. According to this model, 

• The effect of air currents upon the speed of sound is negligible 
(B-1). 

• All variables upon which the speed of sound depends, such as 
temperature and humidity, vary slowly relative to the time re­
quired to gather an individual target measurement (e.g., time con­
stants on the order of minutes) (B-2). 

• The temperature of the air within the active region of the sensor 
varies linearly with vertical height and is constant in the two 
horizontal directions (B-3). 

• The temperature differential between the air at the top and bot­
tom of the sensor's active region is less than 2 OF (B-4). 

• The average temperature of the air within the active volume of 
the sensor is between 65 OF and 75 OF (B-5). 

Assumptions (B-1) - (B-5) are consistent with environmental characteristics of 
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our laboratory at the Robotics Institute of Carnegie-Mellon University. Our 

laboratory, originally designed as a computer machine room, is ap­

proximately 30 ft x 30 ft with a 12 ft ceiling. Only a small portion of the 

laboratory is actually utilized. The room contains a raised floor under which 

cooled air from adjacent machine rooms is free to circulate. Due to the lack 

of heating or air conditioning vents, the temperature within the room is 

governed by the conduction or radiation of heat through the walls to the 

adjacent machine rooms. This feature insures that the temperature and 

humidity within the room remains relatively constant. Use of the ultrasonic 

sensor system for accurate measurements requires attention to these issues. 

In practice, robot manufacturers who want to identify the kinematic 

parameters of their manipulators as an integral part of the manufacturing 

process may enclose the sensor system in a moderately-controlled environ­

mental chamber such as that used for testing and qualification. 

The relationship between temperature and the speed of sound is ap­

proximately linear for small variations in temperature (Le., less than 5 OF). 

Thus, according to our model of the environment, the speed at which sound 

travels along a straight line between the target sparker and a microphone 

(i.e., the line of sight) varies linearly with distance traveled. Thus, 

dx 
- = Jlx + ~2 ' dt 

(E.2) 

where x=x(t) is the distance traveled by the ultrasonic wave front in time t 

(i.e., x(O) =0 at the target), Jl is the rate of change of the speed of sound along 

the line of sight, and ~2 is the speed of sound at the microphone. Integrating 

(E.2) from time t = 0 to t = t, the actual time of flight, the distance between the 

target and microphone 
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• P2 • 
x(t) = -[ exp{J1t) - 1] . 

Il 
(E.3) 

By definition, 

P2-P1 
Il = -.-

x(t) 
(E.4) 

where PI is the speed of sound at the target sparker. If the line of sight is 

level, then VI = V 2 and the actual slant range x(t) = pl· 

Estimates for PI and P2 must be obtained in order to solve (E.3). Using 

the upper and lower calibration rods depicted in Figure 6-4, we measure the 

speed of sound at two distinct heights (i.e., fB and fD)' Then, based upon the 

known relative heights of the microphones and the calibration rods, we 

linearly interpolate to estimate the speed of sound at Microphones A, B, and 

C. An additional step is required to estimate PI since the height of the target 

is initially unknown. The objective of this step is to determine an initial 

estimate for the Cartesian coordinates of the target from which an estimate 

for its height can be computed. We define the average speed-of-sound ratio 

over the active region of the sensor array to be 

(E.5) 

By multiplying the three raw slant ranges, 81,82' and 83, by (E.5), we compen­

sate for overall variations in the speed of sound relative to the nominal value 

internal to the GP-8-3D. The compensated slant ranges are used in (6.1) -

(6.6) to compute the initial estimate of the targets Cartesian coordinates. We 

then compute the height of the target and linearly interpolate to estimate PI 
in (E.4). 

We apply Jacobi's Iterative algorithm to solve (E.3) for each of the three 
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primary slant ranges. The resulting final estimates for the slant ranges are 

used in (6.1) - (6.6) to compute the final estimate of the target's Cartesian 

coordinates. Our method of compensating the GP-8-3D's slant range 

measurements requires that all five sparkers must be sparked at least once to 

determine the target's location. Subsequent to the sparking of the sparkers, 

the GP-8-3D will transmit twenty slant range measurements to the host com­

puter. Only seven of the measurements are used in our algorithms. The 

remaining measurements are discarded. In practice, 10-20 sets of slant range 

measurements are obtained and statistically averaged to reduce the effects of 

random measurement noise inherent in the GP-8-3D. 
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Simulator Components 

F.t. Robot Manufacturing Error Model 

To understand the derivation of the model (7.1), consider the task of 

manufacturing the actual physical base link of a Puma 560, shown in Figure 

F-1.Conceptually, the base link is a cylinder. To manufacture the link, one 

end of the cylinder must be machined to a flat surface, the normal of which 

should be coincident with the axis of the cylinder. Similarly, the other end 

should be machined flat such that the two end surfaces are a desired distance 

apart. Then, a bearing race must be mounted within the top of the cylinder 

such that the centroid of the bearing is coincident with the end surface and 

the axis of the bearing is coincident with the axis of the cylinder. Later on 

the base link and Link 1 will be joined. The lower end of Link 1 will contain 

the mating portion of the bearing race which is also characterized by an axis 

and a centroid. Ideally, during the process the axes and centroids of the two 

mating pairs will be perfectly aligned. Similar manufacturing processes can 

be envisioned for the remaining links. 

Imagine two coordinate frames fixed to the components of the link. Let 

the Z axis of the first coordinate frame be coincident with the axis of the 

cylinder and let its origin be coincident with the center of the bottom surface 

of the cylinder. Let the Z axis of the second coordinate frame be coincident 

with the axis of the bearing and let its origin be coincident with the centroid 

of the bearing. Kinematically then, a perfectly manufactured base link is 
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(a) 
(b) 

Figure F-l: Base Link of a Puma 560. (a) Actual (b) Conceptual 

described by the transformation matrix Trans (0.0, 0.0, 67.4cm). However, 

when manufacturing errors are present these two coordinate frames will not 

be perfectly aligned. For instance, the bottom surface of the link may not be 

precisely perpendicular to the axis of the cylinder. In this case, we can 

describe the kinematic structure of the link by the new transformation matrix 

Rot (x, £4) Rot (y, £s)Trans(O.O, 0.0, 67.4cm) , (F. 1) 

where £1 and Ez represent small random deviations in the orientation of the 

machined bottom surface. The machining of the top of the cylinder and the 

mounting of the bearing race may lead to similar orientational errors at the 

other end of the link. Taking these errors into account (F.l) becomes 
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Rot (x, £,J Rot (y, £5) Trans (0.0, 0.0, 67.4cm) Rot (x, £~ 

Rot(y, £.r) • 

201 

(F.2) 

By modifying (F.2) further, to account for possible errors in the length of the 

cylinder, errors in locating the center of the base, and errors in calibrating the 

joint encoder we arrive at the model (7.2) to describe the actual kinematic 

structure of the base link. This same method01ogy has been applied to devel­

op the models (7.3) - (7.8) of Links 1 through 6. 

F.2. Simulator Input Parameters 

This section defines input parameters must be specified in order to 

simulate the performance of Controller S. The values for these parameters 

which coincide with our prototype arm signature identification system are 

also included. Linear parameters are measured in centimeters and angular 

parameters are measured in degrees. 

The spatial transformation between the sensor coordinate frame and 

the robot base coordinate frame is 

9Tb = Trans(106.16,56.98,87.82)Rot(z,45.0) 

Rot (x,-90.0)Rot (z, 155.0) 

Trans(0.O,-20.30,-67.183) . (F.3) 

The spatial transformation between the robot base coordinate frame 

and the Denavit-Hartenberg Link 0 coordinate frame is 

bTO = Trans(0.O,O.O,67.183) (F.4) 

Six targets are attached to the robot's links during the identification 



202 SIMULATOR COMPONENTS 

procedure. By definition, Target i is fixed to Link i. The position of Target i 

with respect to the base coordinate frame is specified by the position vector 

component of the transformation matrix 

(F.5) 

where the matrices Aj are the Denavit-Hartenberg link transformation 

matrices in (2.9), 0i is the angular position of Joint i , and Ri is the Target i 

nominal radius. Values for the nominal target radii are listed in Table 6-l. 

The offset transformation matrices 

Ojfseti = Trans (0.0, 0.0, zi) . Rot (x, rXi) 

for i= 1,2, ... ,6 (F.6) 

are defined by the parameters Zj and rXi' The values for these parameters are 

listed in Table F-l. 

Table F-l: Offset Transformation Matrix Parameters 

Parameter Values 
Transfonnation Zi rXi 

(em) (deg) 

Offsett 20.300 49.00 
Offsetz 33.309 14.47 
Offset 3 18.500 -82.25 
Offset4 53.531 -180.00 
Offsets 3.200 -90.00 
Offset 6 10.225 -180.00 

When the position of joint i is zero, the offset transformation, Ojfset j , defines 

the spatial relationship between the Denavit-Hartenberg Link i-l coordinate 

frame and a coordinate frame whose Z axis is coincident the the joint i axis 

and whose X axis is directed towards Target point i. 



SIMULATOR COMPONENTS 203 

The actual distances between the microphones in the sensor array are 

WA,B = 143.0 cm, WB•C= 143.0 em, and WA•C= 203.0 em (See Appendix E). 
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Simulation Results 

G.1. Encoder Calibration Errors 

The statistical variations in the performance indices of 500 simulated 

robots are plotted in Figures G-l and G-2 as a function of CJe • In the plots in 

Figure G-l, the vertical axes denote the standard deviation in the respective 

performance index. In the plots in Figure G-2, the vertical axes denote the 

mean in the respective performance index. 
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Figure G-l: Performance Index Standard Deviations as a Function of 
the Encoder Calibration Error Standard Deviation, CJe 
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G.2. Machining and Assembly Errors 

The statistical variations in the performance indices of 500 simulated 

robots are plotted in Figures G-3 and G-4 as a function of (1e' In the plots in 

Figure G-3, the vertical axes denote the standard deviation in the respective 

performance index. In the plots in Figure G-4, the vertical axes denote the 

mean in the respective performance index. 
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G.3. Sensor Measurement Errors 

The statistical variations in the performance indices of 500 simulated 

robots are plotted in Figure G-5 and G-6 as a function of N i • In the plots in 

Figure G-5, the vertical axes denote the standard deviation in the respective 

performance index. In the plots in Figure G-6, the vertical axes denote the 

standard deviation in the respective performance index. 
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G.4. Number of Measurements 

The statistical variations in the performance indices of SOO simulated 

robots are plotted in Figure G-7 and G-8 as a function of N j • In the plots in 

Figure G-7, the vertical axes denote the standard deviation in the respective 

performance index. In the plots in Figure G-8, the vertical axes denote the 

standard deviation in the respective performance index. 
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G.S. Target Radius 

The statistical variations in the perfonnance indices of 500 simulated 

robots are plotted in Figure G-9 and G-IO as a function of Target Radius. In 

the plots in Figure G-9, the vertical axes denote the standard deviation in the 

respective perfonnance index. In the plots in Figure G-lO, the vertical axes 

denote the mean in the respective perfonnance index. 
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