


Advance Praise for
The Risk Modeling Evaluation Handbook

A book like this helps reduce the chance of a future breakdown in risk
management.

—Campbell R. Harvey, Professor 
The Fuqua School of Business, Duke University

Inadequate valuation and risk management models have played their part
in triggering the recent economic turmoil felt around the world. Model
risk is thus becoming recognized by risk managers and financial engi-
neers as an important source of additional risk. This timely book, writ-
ten by experts in the field, will surely help them to measure and manage
this risk effectively.

—Fabrice Douglas Rouah, Ph.D., Vice President 
Enterprise Risk Management

The Risk Modeling Evaluation Handbook provides a very timely and
extremely useful guide to the subtle and often difficult issues involved in
model risk—a subject which is only now gaining the prominence it should
always have had. Risk practitioners will find it an invaluable guide.

—Kevin Dowd, Professor of Financial Risk Management 
Nottingham University Business School

This book collects authorative papers on a timely and important topic
written by academics and practitioners. Especially the latter combination
makes this book readable to a wide audience, and it should lead to many
new insights.

—Philip Hans Franses, Professor of Econometrics and Dean 
Erasmus School of Economics, Erasmus University Rotterdam

This invaluable handbook has been edited by experts, with topical con-
tributions on modeling risk, equity and fixed income investments,
superannuation funds, asset returns, volatility, option pricing, credit
derivatives, equity derivatives, valuation models, expected shortfall,
value at risk, operational risk, economic capital, public debt manage-
ment, financial crises, and political risk. The excellent chapters have
been written by leading academics and practitioners, and should prove



to be of great value to investment finance and credit risk modelers in a
wide range of disciplines related to portfolio risk management, risk
modeling in finance, international money and finance, country risk,
and macroeconomics.

—Michael McAleer, FASSA, FIEMSS, Professor of Quantitative
Finance, Econometric Institute, Erasmus School of Economics, 

Erasmus University Rotterdam; Research Fellow, Tinbergen Institute;
Distinguished Chair and Professor, Department of Applied Economics,

National Chung Hsing University

This book gives an up-to-date, comprehensive overview of the latest
developments in the field of model risk, using state-of-the-art quantita-
tive techniques.

—Ben Tims, Assistant Professor of Finance 
Erasmus School of Management, Erasmus University Rotterdam

[T]he previous years have shown that too many capital market experts
have blindly trusted their models. This comprehensive compendium
addresses all the relevant aspects of model risks which helps practitioners
to mitigate the probability of future financial crisis.

—Ottmar Schneck, Professor 
European School of Business, Reutlingen
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Foreword

The deep financial crisis of 2008 and 2009 has challenged numerous
paradigms that were long accepted as standing piers of modern finan-

cial risk management. The unprecedented financial losses in the private and
institutional sectors around the world and the near collapse of the global
banking industry have occurred despite highly praised advances in risk
management methodologies, such as regulatory developments meant to
safeguard the financial system like the Basel II Accord and the Markets in
Financial Instruments Directive, and not least, the multibillion dollars for IT
installations in large financial institutions geared to limit and control finan-
cial risks.

Much of the financial innovation of the last two decades rests on the
industry’s drive to optimize portfolios of financial assets via diversification
strategies along with hedging structures. As such, the emergence of finan-
cial derivatives and the wide use of structured financial products incorpo-
rating embedded derivative contracts has enabled practitioners to separate
components of risk and allowed for warehousing separately such compo-
nents via modern financial engineering. In consequence, large amounts of
economic capital have been freed up in banks around the world. Coupled
with the relatively easy access of debt capital throughout the 1990s and the
first half of the new decade, banks have engaged in a lending spree that
eased funding for numerous projects around the world, thus spearheading
an unprecedented global economic growth.

Unfortunately, the originally U.S. originated subprime and “Alt-A” mort-
gage bubble exploded with an unprecedented vengeance in the face of those
very financial institutions that prided themselves with the ability to best
model complex products like CDOs and ABCDSs, triggering along the near
collapse of the financial system as we know it. The consequences of the
aforementioned crisis are still subject to analysis; however, it is certain that a
new financial order is to emerge, employing new playing rules among partic-
ipants: banks, investment funds/vehicles, rating agencies, and regulators.

While the root causes of the global financial crisis are numerous and
convoluted, it is certain that the failure of some financial pricing models
have catalyzed the spiraling events as they triggered investors’ loss of confi-
dence in the very financial models they were hailing for “best in class” and
“best practices” only a few years ago.



Perhaps the case study of credit exposure mitigation via CDO securiti-
zation is best illustrative of the modeling failures that have been incurred in
many banks around the world.

A financial institution typically gathers a large and diversified portfolio
of debt receivables (henceforth the “collateralized debt obligation” denomi-
nation), places them in a separate financial vehicle (SPV) and issues tranches
of securities backed by the pool of assets (in most cases circumventing the
complexities of the cash flow transfers via writing credit default swaps on
the baskets of the pool assets—in which case the vehicle would be called a
“synthetic CDO”). The pecking order of seniority of the issued securities is
regulated by the cumulative cascading order of defaults in the pool.

Naturally and intuitively sound—the higher the level of borrower
diversification in the pool of assets, the lower the likelihood of simultane-
ous defaults and the more effective the construct from the SPV owner’s
point of view.

Financial modelers have been employing methodologies ranging from
pair-wise (Pearson) default correlations to copula functions (copulas are
functions that link marginal probability distributions with joint distribu-
tions and are widely applied in credit risk models) to assess and often stress
such structures. Results have been calibrated to exhibited defaults over vast
quantities of data and going back decades in a process termed by industry
regulators and risk managers as “backtesting.”

Such security tranches were calibrated to defaults modeled by past expe-
riences. Correlations and copula functions were calibrated and used to pre-
dict future patterns over the lifetime of the securities issued, often in excess
of 10 years. Investors and rating agencies alike assigned credit ratings to
these CDO securities congruent with the expected loss patterns implied by
asset defaults. For example, if the implicit expected loss of a mezzanine
tranche would not exceed the equivalent inherent expected loss of a BBB-
rated corporate security, it would be rated alike and priced accordingly,
tempered by liquidity-driven bid/offer spreads.

By mid–2007 when the first signs of the systemic collapse in U.S. sub-
prime and Alt-A residential mortgages occurred, it became apparent that
the historically calibrated correlation patterns were far from indicative of
future joint default behaviors, and “tail-end probability” or “conditional/
regime-dependent” models were built “in a hurry” in an effort to replace
the original pricing models. For many investors this came unfortunately 
too late.

As prices collapsed (also driven by the new pricing models’ results) and
investors lost confidence in the pricing models, they scrambled to liquidate
as many securities as they could, which triggered an imbalance in supply and
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demand in secondary markets, which further depressed both the liquidity
and the values of the inventories in such tranches. Rating agencies conse-
quently downgraded numerous CDO tranches on the basis that their fair
values implied higher default probabilities, which compounded the sell-off in
the markets (some investors were prohibited by their investment policies and
funds prospectuses to hold securities below a certain agency credit rating).
In short, the credit market panic of 2008 was born: lenders of short-term
commercial paper to the SPVs failed to renew the credit commitments and
the banks were forced either to liquidate the vehicles or consolidate them on
their own balance sheets—triggering expensive capital allocations.

From a systemic point of view, a rather dangerous phenomenon has
occurred, one linked to the risk mitigation effects of securitization: finan-
cial institutions were laying off piles of assets by synthetically buying credit
default protection (most common vehicles are credit-linked notes and credit
default swaps, but also via spread forward and options contracts), thus trad-
ing direct credit exposure for counterparty exposure.

At the margin, a typical transaction would result in a significant risk-
weighted asset relief (and consequently regulatory capital congruent with
the Basel II stipulations for risk mitigation) against a marginal pickup of
counterparty exposure with the protection seller, often a highly rated finan-
cial counterparty such as AIG. The financial institution is in no position to
know how many such credit default swaps (in terms of size, issuers, and
counterparties) the “highly rated protection seller” has on its own books,
therefore, in most cases, no reason to fear the simultaneous collapse of the
insured asset and the counterparty. Unfortunately, this imbalance and
uncertainty proved lethal in the evidence of some CDS players’ overexu-
berance in providing credit protection (for handsome fees), many times
insufficiently hedged, which triggered the near collapse of AIG and a few
other “systemic relevant” institutions. By 2008, many of these institutions
became dependent on “life vests to stay afloat” offered by OECD govern-
ments around the world in highly publicized “weekend rescue operations.”

As a consequence, it is perhaps more imperative than ever for any partic-
ipant in modern financial markets to grasp the importance of modeling
financial products and assess the strengths but also the weaknesses of the
models employed in valuing financial assets. In short, model risk assessment
is gaining in importance if not centrality to any financial activity.

There could be no better timing for a comprehensive and deep com-
pendium on assessing model risk in finance. The appearance of the The Risk
Modeling Evaluation Handbook by Greg N. Gregoriou, Christian Hoppe,
and Carsten S. Wehn is a happy and timely event in this direction. The
authors have done a superb job in compounding the relevant contributory
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articles in an all-encompassing effort to gather the most recent industry
and academic progress in the field. The book stands out for its ability to
match the theoretical thoroughness with the high level of practicality in a
“post subprime crisis” economic environment.

Part 1 (Introduction to Model Risk) reviews some significant articles on
systemic risk from a central banker’s perspective and draws conclusions
from previous financial crises. As such, it builds a bridge in time between
the financial events that have shaped the way professionals assess model risk
in the industry.

Parts 2 and 3 (Model Risk Related to Equity and Fixed Income Invest-
ments and Model Risk Related to Credit and Credit Derivatives Invest-
ments) assess model risk from an investor and asset manager’s viewpoint
across all significant risk categories inherent in modern financial products.
The aforementioned risks as relating to modeling corporate defaults and
more generally migration are being scrutinized and lessons from the ongo-
ing financial crisis are being critically analyzed with a practitioner’s imple-
mentation oriented eye.

Part 4 (Model Risk Related to Valuation Models) specifically analyzes the
risks associated with valuation models and addresses techniques for mitigat-
ing wrong valuations of complex financial securities.

Part 5 (Limitations to Measure Risk) primarily addresses risk manage-
ment professionals as it introduces alternative measures of risk beyond the
“value at risk” concept. It addresses the limitation of VaR as a risk measure
(specifically identifying the subadditive property of a coherent risk measure
as specified by Artzner in a seminal article that appeared in 1999 and prov-
ing through practical portfolio composition that VaR can fail this important
property when the risk factors are not log-normal distributed). Other mod-
ern risk measures such as expected shortfall and copula VaR are analyzed
and their suitability is assessed for practical implementation into overall
bank-wide risk management architectures.

Part 6 (Modeling Model Risk for Risk Models) specifically addresses the
“model risk” within widely used industry risk management models: coun-
terparty risk, credit (portfolio) models, and internal market risk models.

Part 7 (Economic Capital and Asset Allocation) wraps the analysis within
the enterprise risk oversight framework as it addresses economic capital
models while including the interaction among various risk categories, not
least market and funding liquidity risk as well as asset repricing risk (both
typically present in asset liability management activities)

The contributors to the compendium are some of the most prominent
academics and practitioners in the field of modern risk management and
have distinguished themselves over decades with seminal articles that have
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taken the financial risk management profession into the twenty-first cen-
tury. Dr. Gregoriou, Mr. Hoppe, and Dr. Wehn have done an outstanding
job in carefully selecting the most appropriate articles pertaining to each
subject in a flawlessly structured manner.

The Handbook will undoubtedly become a key reference book in the
shelves of any modern financial professional and will likely contribute to
elucidating the still shaded areas of managing model risk, especially in light
of the recent happenings in financial markets.

Andre Horovitz
Financial Risk Fitness, GmbH

Munich, Germany
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1C H A P T E R

Model Risk 
Lessons from Past Catastrophes

Scott Mixon

ABSTRACT

Financial engineers should study past crises and model breakdowns rather
than simply extrapolate from recent successes. The first part of this chapter
reviews the 2008 disaster in convertible bonds and convertible arbitrage.
Next, activity in nineteenth-century option markets is examined to explore
the importance of modern theory in pricing derivatives. The final section
reviews the linkage between theory and practice in bridge building. The
particularly interesting analogy is the constructive direction taken by engi-
neers after the highly visible, catastrophic failure of the Tacoma Narrows
Bridge in Washington in 1940. Engineers were reminded that highly realis-
tic models may increase the likelihood of failure if they reduce the buffer
against factors ignored by the model. Afterward, they focused efforts on
making bridges robust enough to withstand eventualities they did not fully
understand and could not forecast with accuracy.

MODEL RISK: LESSONS FROM PAST
CATASTROPHES

The holddown cables stabilizing the bridge began to vibrate in the wind
around 3:30 in the morning, as the storm increased. The bridge was 
oscillating by 8 a.m., allowing a driver to watch the car up ahead disappear
into a trough. Yet this was nothing new for the bridge nicknamed “Gallop-
ing Gertie.” An hour later, the tiedown cables cracked like whips as they
alternately tightened and slackened.

The twisting began around 10 a.m. Winds were only 45 miles per hour,
but the bridge was pivoting around the center line of the two-lane roadway.



One lane would lift up 45 degrees, and the other would twist down by the
same amount. The bridge was twisting itself to pieces. A major section of
roadway, hundreds of feet long, fell into Gig Harbor at 11 a.m. Ten more
minutes and the remainder of the bridge (plus two abandoned cars and a
dog) was gone. Leon Moisseiff, prominent engineering theorist and
designer of the bridge, was completely at a loss to explain the disaster.

The collapse of the Tacoma Narrows Bridge took with it the entire tra-
jectory and hubris of the suspension bridge building industry. The bridge
lasted just four months, and it failed in winds less than half the 100 miles
per hour for which it was designed to withstand. The dramatic collapse 
was captured on film, so the world saw the images repeated over and over
in newsreels.

Suspension bridges had become longer and thinner in the decades before
the Tacoma Narrows collapse in 1940. The George Washington Bridge,
spanning the Hudson River into New York City, epitomized this trend.
Built according to the most advanced theories, it had doubled the length of
the longest suspension span extant before its 1931 completion. Engineers
were under pressure from the economic realities of the Great Depression to
reduce costs, while theoretical advances showed that conventional bridge
designs were considerably overengineered. Suspension bridges had moved
from designs in which the suspending cables were superfluous to ones in
which cables were the dominant element.

Moisseiff and Lienhard’s (1933) extension of existing theory meant that
wind loads carried by the suspended structure of the George Washington
Bridge, for example, were 80 percent lower than previously thought.1 The
cables carried the weight. It was only natural that Moisseiff ’s Tacoma 
Narrows design would incorporate this economically appealing feature. The
bridge had a width to span ratio of 1:72, even though a more traditional ratio
was 1:30. It was a narrow, two-lane highway suspended in the sky, and it was
theoretically justified to carry its loads adequately. For four months, it did.

Engineers had built little margin of safety into the Tacoma Narrows
Bridge. It was elegant, economical, and theoretically justified. Moving to
more realistic theories of load bearing ironically led to catastrophic failure,
since the theories provided little buffer against risk factors not considered
in the models. Henry Petroski (1994) has noted that the reliance on theory,
with little first-hand experience of the failures from decades before, led to
a design climate in which elements of recent successes were extended
beyond their limits. Petroski therefore recommended that engineers care-
fully study past design failures in order to improve their current design
process. This chapter adopts Petroski’s logic to model risk evaluation for
financial engineers.
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INTRODUCTION

First, we discuss the disaster in the convertible bond market during 2008
and pay particular attention to the difficulties faced by the model-intensive
convertible arbitrage strategy. Next, we review the activity in option mar-
kets in the nineteenth century to explore the importance of modern theory
in pricing derivatives. This is followed by a section reviewing the linkage
between theory and practice in bridge building. It highlights the direction
taken by the engineering profession after the highly visible, catastrophic
failure of the Tacoma Narrows Bridge in 1940. The final section provides
concluding thoughts.

The goal of bringing together such disparate topics is to provide a broad
perspective on model risk. Some of the key issues addressed are: (1) How
can we best frame themes regarding model breakdowns during market
crises? (2) What can the careful study of the evolution of derivatives mar-
kets and no-arbitrage pricing models suggest for robustifying market prac-
t ice against t raumat ic shocks? (3) What can be learned f rom the
experiences of other disciplines that have suffered catastrophic failures
when moving from theory to reality?

There are some straightforward conclusions for this chapter. First, finan-
cial engineers should study past crises and model breakdowns rather than
simply extrapolate from recent successes. Second, theoretical advances have
had a profound impact on the pricing of derivative securities and the mind-
set for financial engineering, but the real world is tricky. Highly realistic
models may increase the likelihood of failure if they reduce the buffer
against factors glossed over by the model. For example, highly complex 
no-arbitrage models may fail miserably when trading is not continuous 
and arbitrage opportunities exist for a period of time (i.e., when liquidity
disappears).

Financial engineers can look to the experience of the civil engineering
profession after the traumatic failure of the Tacoma Narrows suspension
bridge in 1940. Bridge builders could have concluded that their theories
were too naïve to build economical bridges as long as the ones proposed.
They did not throw out the models or abandon the practice of bridge con-
struction. Rather, they focused efforts at making bridges robust enough to
withstand eventualities they did not fully understand and could not forecast
with accuracy.

Faced with calamities such as the recent one in the financial markets, one
could take the position that highly quantitative models are dangerous and
should be thrown out. This idea is completely unjustified. A key idea run-
ning through this chapter is that some of the assumptions behind derivatives
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modeling, such as continuous, frictionless trading at a single market price
(i.e., the absence of arbitrage) can fail at critical moments. Engineers (and
drafters of legal documentation) should seek ways to robustify the structures
so that these disruptions do not lead to catastrophic failures.

For example, some of the hedge fund industry might move to longer
lock-ups and increased acceptance of a secondary market in ownership
interests (a cross between ETFs and closed-end funds). During extreme
liquidity crunches, as in the fall of 2008, investors requiring liquidity could
have raised cash by selling their hedge fund interests, yet the underlying
funds would not have been forced to sell assets to fulfill redemption
requests. Is this not, in fact, a substantial part of the logic behind having a
liquid secondary market for corporate ownership of companies?

CONVERTIBLE CATASTROPHE, 2008

The bottom line is that everything went wrong for convertibles in the last
part of 2008, and the convertible arbitrage strategy gave back about six
years of gains in a few months. There was tremendous selling pressure on
convertibles, about 70 percent of which were held by hedge funds.2 Con-
vertible arbitrageurs typically were long convertibles and hedged various
risks to profit from perceived mispricing of the convertible. In extremely
volatile and thin markets, the ability to hedge was disrupted: the ability to
short many stocks was eliminated (partially by government fiat), synthetic
credit hedges were not following the same trajectory as cash bonds, and the
implicit call options in convertible bonds were priced completely out of
sync with listed options. Margin requirements increased massively.
Redemptions loomed for hedge funds of all stripes, and raising liquidity
became the overriding goal. Convertible arbitrage was hit hardest among
the hedge fund strategies during 2008, with some indexes showing the
strategy down more than 50 percent.

This section puts a finer point on these issues. The conceptual frame-
work of the model risk in mind for a crisis of this type is pit � Em [pit] �
eit, eit � ct � dit, where pit is the market price of asset i at time t, Em [pit] is
the expected value of the asset at time t under the model m, and there is an
error term eit that causes the observed price to deviate from the model
price (“fair value”). We can divide the error term into two components:
the idiosyncratic disturbance dit and the market-wide term ct. Roughly
speaking, a crisis is when ct, on rare occasions, dominates price move-
ments. Evaluating model risk and figuring out ways to work around model
failure during a crisis means understanding when ct is the driving force
behind market prices.
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What Happened?

Table 1.1 displays convertible arbitrage index performance in 2008, along
with performance for the S&P 500 and Vanguard’s Intermediate Corpo-
rate Bond Fund. Returns are standardized by subtracting the average and
dividing by the unconditional standard deviation. Averages and standard
deviations are computed using data through December 2007. The Center
for International Securities and Derivatives Markets (CISDM) index data
begin in January 1992, the Credit Suisse/Tremont data begin in January
1994, and the Hedge Fund Research Performance Index (HFRI) data
begin in January 1990. The S&P 500 and Corporate Bond Fund data
begin in January 1990. Table values in bold are t-statistics of at least 2 in
absolute value.

March 2008 seemed to be a particularly unlucky month for convertible
arbitrage funds, according to the table, as returns were extremely unlikely.
Yet things worsened: September and October were greater than 10 standard
deviations to the downside. The corporate bond fund and the S&P 500
returns were also much larger in absolute magnitude than history would
suggest, so perhaps some of these shocking moves were simply volatility
increasing above the unconditional levels. Still, convertible arbitrage
appears to have experienced some very rare events.
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Table 1.1 Standardized Monthly Convertible Arbitrage Returns, 2008
(Standard Deviations)

Average CB Vanguard 
Credit Suisse/ Arbitrage Corporate 

CISDM Tremont HFRI Index Bond Fund S&P 500

Jan �0.4 �0.9 �2.2 �1.2 0.0 �1.8

Feb �0.9 �1.5 �1.6 �1.3 �0.3 �1.1

Mar �4.1 �5.1 �5.0 �4.7 0.0 �0.3

Apr �0.5 0.3 0.5 0.1 0.1 1.0

May �0.1 0.6 0.0 0.2 �1.0 0.1

Jun �1.6 �0.8 �3.1 �1.8 0.3 �2.4

July �3.0 �2.2 �2.4 �2.5 �0.8 �0.4

Aug �1.9 �1.0 �1.9 �1.6 0.6 0.1

Sep �12.0 �10.4 �13.3 �11.9 �2.8 �2.6

Oct �16.4 �10.7 �18.2 �15.1 �4.5 �4.8

Nov �1.2 �2.0 �3.3 �2.2 4.0 �2.1

Dec 3.0 �1.3 0.2 0.6 6.3 0.0

CISDM, Center for International Securities and Derivatives Markets; HFRI, Hedge Fund Research Inc.; CB,
Convertible Bond.



Figure 1.1 illustrates a measure of convertibles mispricing from January
2005 to April 2009. The chart shows the ratio of the median price (average
of bid and ask) to the median theoretical price for the entire U.S. convert-
ible universe tracked by Deutsche Bank. Both the bid/ask midpoints and the
theoretical prices are Deutsche Bank calculations. From 2005 until the end
of 2007, this mispricing hovered around zero; one can see occasional diver-
gences, such as the spring 2005 cheapening documented by Mitchell and
colleagues (2007). Convertibles then cheapened dramatically in spring 2008
but bounced back toward fair value by July. Then the bottom fell out, with
market prices collapsing to more than a 15 percent discount by November.
The mispricing steadily diminished after that and fell to less than half by
April 2009.

“Fair value” models of convertibles suggested a much higher value than
observed market quotes of late 2008 would suggest. Outright buyers of
convertibles should have moved in, according to the textbook no-arbitrage
condition, and bought up the cheap instruments. Anecdotes suggest this is
what happened eventually, but it was not instantaneous. September through
November felt like really long months to market participants staring at the
wrong side of arbitrage opportunities.

Figure 1.2 displays another way of exploring convertible mispricing in
2008, focusing on the option component of the bonds. The chart displays a
market-capitalization weighted index of one-year, at-the-money implied
volatilities for S&P 100 stocks (constructed from Bloomberg data) and an
issue-weighted index of convertible bond implied volatilities. The convert-
ible index is from Deutsche Bank; it is computed from near-the-money
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investment grade convertibles and is reweighted quarterly. Throughout
2007 and the first half of 2008, the two series track each other quite closely.
The exception during this period is for March 2008, when listed option
volatilities spiked even as convertible volatilities moved in the opposite
direction. (This spike is distinctly noticeable in the convertible arbitrage
standardized returns for March.)

The dramatic divergence in the two markets is in the second half of
2008, when listed volatilities doubled to more than 70 percent and convert-
ible implieds sank to less than 20 percent. Over the course of autumn, listed
volatilities began to decline as markets began to stabilize. By the end of the
year, the listed option volatility index was hovering around 50 percent, yet
convertible implieds were still less than 30 percent.

Convertibles apparently had a negative vega, that is, buying a convertible
meant going short volatility. This is clearly counterintuitive and stands in
contrast to the expected exposure. Arbitrage managers had hedged them-
selves using models that suggested they were close to delta neutral, but the
models would never have suggested such perverse moves in pricing as had
occurred, and the theoretical option models would surely have suggested a
positive vega for convertibles.

Industry analysts suggested that by mid-November, one-third of con-
vertible arbitrage funds had gated redemptions, suspended net assest value
calculations, or were in some other way impaired.3 Some of the stabilization
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in pricing occurred as selling pressure abated due to reduced redemption
pressure. The redemption pressure was artificially capped as some man-
agers gated and simply refused to return investments to investors. The
investor response was not a happy one. Anecdotally, some investors declared
funds that gated as “uninvestible” going forward.

This discussion of convertible mispricing can be made less abstract, par-
ticularly with respect to hedging instruments. Figure 1.3 illustrates a par-
ticularly clear example using traded prices for two bonds issued by
Smithfield Foods. The gray bars represent the straight bond due May 15,
2013, and the squares represent the convertible bond due June 30, 2013.
The chart begins with the June 2008 issuance of the convertible and ends in
late May 2009. Some interesting observations can be made. First, there are
many gaps in the trade history of the bonds, particularly in November
2008. Only 12 of the 18 trading days in that month saw any action, and the
median daily volume over the month was 60 bonds. The convertibles traded
only six days during the month. Second, the price of the convertible is often
below that of the straight bond, suggesting a negative value for the option
to convert the bond into stock (these observations are the white squares).

Figure 1.4 focuses on the valuation of the option implicit in the convert-
ible. The boxes represent the implied volatility (provided by Deutsche
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Bank) for the convertible, and the solid black line represents the implied
volat ilit y f rom the closest comparable listed opt ion (prov ided by 
iVolatility.com). The convertible bond provides for a conversion price (i.e.,
the strike price of the option) of $22.685 per share. The listed implied
volatility is for the January 2010 25-strike call option until December 12,
2008, and for the January 2011 22.5-strike call thereafter.

Corresponding to the many days shown in Figure 1.3 with a convertible
price below the straight bond price, there are many dates for which no
meaningful convertible implied volatility can be calculated. Even on the
days when it can be calculated, it is far below the listed volatility and often
moves in precisely the opposite direction as the listed volatility. The
implicit option in the convertibles was not a good substitute for the compa-
rable listed option during this period. A model that might have worked for
listed options would have failed miserably for convertibles.

Why Did It Happen?

Market participants were convinced about the causes of the shock to con-
vertibles. “It is the cost and availability of leverage that is driving the mar-
ket,” said one portfolio manager.4 Because prime brokerage desks cut back
on financing activity in the midst of increased perceived risk and bank-wide
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deleveraging, convertible margins increased. Margin for convertibles was
typically around 15 percent before September 2008 but had risen to 30 per-
cent by mid-November.5 “At the same time, some funds focused on con-
vertibles borrowed as much as $5 for each $1 of equity in recent years,
leverage that has turned small losses into huge ones. . . . Now prime bro-
kers are either cutting off hedge fund clients, raising borrowing rates or
forcing them to produce more collateral to back the borrowed money.”6

Credit lines had been reduced, and the market for more speculative grade
convertibles had vanished, leaving cash-strapped managers to sell liquid
assets wherever they could be found.

Forced deleveraging by convertible managers was not the only issue
related to increased haircuts: multistrategy hedge funds were said to be
deleveraging to meet margin calls in a variety of areas after losses and mar-
gin increases. Table 1.2 shows estimated changes in margin for a variety of
instruments. Any liquid securities were fair game for raising cash. The
remaining portfolios after the liquidations were highly illiquid. Many funds
imposed gates or put illiquid assets into sidepockets, increasing the gridlock
for investors in need of liquidity.

Another major roadblock that no model expected was the imposition of
arbitrary short-sale constraints by regulators. One regulation by the U.S.
Securities and Exchange Commission (SEC) eliminated the exemption for
options market makers to deliver shares of companies placed on threshold
lists (i.e., stocks for which short sales had failed after the shares were not
delivered). Next, the SEC ordered that market participants could not initiate
new short positions against nearly 800 financial stocks, as of September 19.
“Not only does the SEC rule hamper hedge funds,” concluded the financial
press, “Wall Street trading desks also have been handcuffed. . . . While an
exemption provided by the SEC allows dealers to sell stocks short as part of
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Table 1.2 Typical Haircuts or Initial Margins

April 2007 (%) August 2008 (%)

U.S. Treasuries 0.25 3

Investment-grade bonds 0–3 8–12

High-yield bonds 10–15 25–40

Equities 15 20

Investment grade corporate credit default swap 1 5

Senior leveraged loans 10–12 15–20

Prime mortgage–backed securities 2–4 10–20

Asset-backed securities 3–5 50–60

Source: International Monetary Fund (2008), p. 42.



their function as market makers, that leeway doesn’t apply to market-mak-
ing in convertibles.”7 Nor did it initially apply to option market makers.
Once again, the opinion of market participants was unequivocal: “[O]ptions
market makers were refusing to quote without the ability to hedge. If they
don’t fix it, there just won’t be an options market on Monday.”8

The week before the elimination of the exemption was overturned,
option trading desks faced difficulties facilitating customer orders to hedge
exposure in financials. As an indication of the dislocation in the option mar-
ket due to the SEC short-selling regulations, consider the percentage
bid/ask spread of XLF options. The XLF is a market capitalization
weighted basket of financial stocks, and options on it should reflect the diffi-
culties of shorting these stocks. The following numbers reflect a weighted
average closing bid/ask spread using the put option slightly above and below
the closing spot price for the XLF (using Bloomberg data). For the two
weeks prior to the SEC rulings (September 2–12), the spread averaged 
3.7 percent. During the week of the short sale rulings, the spread increased
to an average of 15.3 percent. The following week, market maker exemp-
tions were re-established and spreads declined to 6.2 percent. Based on the
sharp change in spreads over these event dates, I infer that option market
liquidity was severely diminished by the rulings.

Frictions remained after the exemption was reinstated. Market makers
could not knowingly effect a short sale for a customer who was establishing
or increasing a short position in restricted stocks. Desks required a memo
from customers stating that the purchase of put options, for example, would
not increase the customer’s economic short position in that name (lying on
the memo was fraud, said the SEC). Selling calls on a financial stock was
similarly difficult.

Post Mortem

Convertible bond managers saw their assets sold off due to exogenous
shocks, and they faced thin markets if they tried to sell. The buyers’ strike
meant that price discovery was difficult, if not impossible, for convertibles.
Continuing supply shocks (prop desks or hedge funds unwinding entire
books by sending out bid lists of portfolios) and tighter budget constraints
for remaining funds meant that “good deals” went ignored. Gates, side-
pockets, or suspensions were likely to be imposed on some funds. End-
investors had little visibility into the portfolios and redeemed more than
they really wanted, just to get the redemptions they needed. The cycle was
vicious. Textbook arbitrageurs with unlimited capital and the ability to
swoop in and buy underpriced assets were a myth.

chapter 1 Model Risk :  Lessons from Past Catastrophes 13



What models would have coped with this situation better and managed
losses better? Hedge funds needed to raise cash or hedge their convertible
positions, but convertible markets were minimally open and hedging instru-
ments were unavailable. Even if they had previously traded a hedge, such as
selling a call option or shorting a similar bond, the hedge moved the wrong
way and they lost money. What are the lessons?

I suggest that tweaking valuation and hedging models that work 99 percent
of the time, by adding transactions costs or occasional massive jumps, may
not be the most useful way to protect against the hundred year floods that
happen every few years in financial markets. Green and Figlewski (1999)
found that writing options with an implied volatility slightly higher than
“expected”—a dealer mark-up, if you will—protects against many small
losses but does not protect much against the most violent shocks. Going back
to the conceptual model pit � Em [pit] � eit, eit � ct � dit described earlier, the
“fair value” of the asset may well be a valid concept for the fund manager,
even if (especially if?) it occasionally diverges dramatically from the market
price. It may be also be perfectly adequate for hedging local risks. Tweaking
the model may produce slightly different values or hedge ratios, but any vari-
ation is likely to be swamped by a huge value for ct during crisis periods. Fac-
toring in huge risk premiums to account for every eventuality, no matter how
remote, effectively means walking away from the strategy.

The most important model to fix, in this instance, might be the investment
and distribution model for hedge funds rather than the pricing model. Ensur-
ing effective communication to investors, along with appropriate transparency,
should help diminish noise trading by investors. Given the reluctance of hedge
funds to “talk their books,” perhaps this is best accomplished by passing the
information through an intermediary (e.g., a risk aggregator service, or a
managed account platform with established risk controls) who can vouch for
the fund’s prudence without revealing sensitive portfolio information. Second,
the gridlock and uncertainty faced by investors at a market-wide level might
be minimized to the extent possible by allowing better access to secondary
markets in claims on hedge fund interests. This might facilitate better price
discovery that is not buffeted by liquidity shocks that could amplify funda-
mental market disturbances. An open question would be how to minimize the
principal-agent problems with a setup similar to this one.

BEFORE THERE WERE OPTION 
PRICING MODELS…
This section provides a brief review of how option pricing actually worked
before modern no-arbitrage models dominated thinking. It turns out that
option pricing in the nineteenth century, for example, did not work so 
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differently than it does today. After the widespread adoption of no-arbi-
trage models (based on continuous trading and perfectly liquid markets),
the major change was the sharp decline in the gap between implied and
realized volatility. Option prices using the old rules of thumb were consid-
erably overengineered, at least according to the textbooks.

We start by observing that option markets existed and worked reasonably
well in the centuries before no-arbitrage models came to the fore. This
should not be such a surprise, as markets for other assets or commodities
still function well without no-arbitrage models. Option prices conformed
to a number of empirical regularities seen in today’s markets: implied
volatility typically exceeded realized volatility and followed its general
movements, the volatility skew existed and moved similarly across stocks,
and implied volatility matched realized volatility in the cross section of
stocks (i.e., high volatility stocks had higher implied volatility) (Mixon,
2009). Supply and demand conditions plus trader intuition was enough to
generate the same empirical regularities as modern markets. The striking
difference is that implied volatility was vastly higher than realized volatility
during the nineteenth century, and the gap between the two fell sharply as
soon as the Chicago Board Options Exchange opened in the early 1970s.
Theory did not create option markets, but it sharply impacted them along
that one dimension.

Traders used rules of thumb that approximated the precise values pre-
scribed by modern theories. For example, options in London featured a
strike price generally set at the market price of the stock at initiation (plus
interest until expiration, hence the options were effectively struck at the
forward). If the stock was at $75 and the option was quoted at 1.25 percent,
for example, the price of a 75-strike call was $125 per hundred shares. If a
buyer wanted to cheapen the cost of the option, the rule of thumb was to
adjust the option price by half the adjustment in the strike price. Modifying
the example above, a call strike at $76 would cost 0.75 percent or $75.9

Figure 1.5 readily demonstrates the sophistication of option markets in
the nineteenth century. The heavy black line is trailing one-month realized
volatility for Union Pacific, an active railroad stock. The measure is the
annualized Parkinson volatility computed using high and low daily price
data. The black squares represent a 50 delta implied volatility for one-
month Union Pacific options, computed from indicative quotes in the Com-
mercial and Financial Chronicle. Mixon (2008) provides a full discussion of
the market and the construction of the data used here.

Visual inspection shows that volatility moved around quite a bit during
this period as Union Pacific’s and the wider market’s prospects varied. Base-
line volatility appears to be around 20 percent, with spikes up to the 40 to
50 percent range. Volatility spiked up over 100 percent during the Crisis of
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September 1873. Some observations are apparent. First, implied volatility
generally tracks the movements in realized volatility, gradually declining as
markets quieted down after the crash in September 1873, rising during the
April 1874 market decline, and so forth. Second, the gap between implied
and realized volatility averaged around 14 volatility points for dates when
both values are available. This contrasts with the decidedly smaller values
observed in modern-day markets.

Figure 1.6 illustrates the skew for equity options during the ninteenth
century. When Union Pacific sold off during the Crédit Mobilier of
America scandal of 1873, 25 delta call volatilities were bid up relative to 25
delta puts. This pressure also applied during the rally in early 1874. As the
market traded in a range and then rallied sharply into 1875, the skew
tended to fluctuate around zero.

These illustrations suggest that option markets were, and remain, highly
influenced by supply and demand factors. Generally speaking, modern mar-
kets generate option prices the same way they did long before sophisticated
mathematical models became available. After the introduction of “fair
value” prices based on no-arbitrage models and perfect markets, the major
change was the sharp decline in the gap between implied and realized
volatility. Option prices using the old rules of thumb were considerably
overengineered. Whereas the textbook no-arbitrage Black-Scholes solution
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predicts that option supply (long or short) is unlimited at the no-arbitrage
price, this appears not to hold exactly in the real world. Careful research on
modern option markets (e.g., Bollen and Whaley [2004]) underscores this
proposition. Surely the impact is magnified during crisis periods, as the sec-
tion above documents for convertibles during 2008.

LESSONS FROM BRIDGE BUILDING

Like option traders in the nineteenth century, bridge designers in that era
had to rely on intuition and experience. They watched light suspension
bridges blown away in storms, and a primary focus in bridge building was
building a bridge that would not fail. Suspension bridge builders made their
designs heavy and stiff and virtually ignored the presence of the cables hold-
ing up the roadway. They added stays and trusses, and they added weight so
that the bridge would not swing like a pendulum in the wind. Yet, as the
field progressed, the theoretical basis for their designs became far more real-
istic regarding how loads were distributed among the various components of
the bridge. All that stiffness became expensive, unnecessary overkill.

Suspension bridges so long as to be virtually unbuildable using mid-
nineteenth-century theories became feasible and turned into reality. 
The George Washington Bridge in New York spans 3,500 feet and was
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completed in 1931; it provides a useful example. Buonopane and Billington
(1993) computed the deflection at the midpoint of the span, for a particular
load, under several theories. The deflection theory, which we can treat as
approximately the “true” value, indicates that the bridge would flex by 
34 inches under the load. The less sophisticated elastic theory, dating from
the 1880s, predicts a deflection over 10 times that amount at 363 inches.
The Rankine theory from the 1850s would predict a deflection of 5,800
inches. The simple unsupported beam theory, which does not account for
the cables at all, predicted a bending of nearly 2.4 million inches (nearly
200,000 feet). The old theories were far too conservative.

The upshot was that engineers in the 1930s could calculate quite pre-
cisely how bridges would perform under various loads. They economized
on steel and cable, as the theories prescribed exactly how much they could
safely carry. The newer, more realistic theories allowed designers to build
longer bridges, build them more cheaply, and to make them quite elegant
and graceful, instead of the expensive, bulky bridges from the past. For
example, it has been estimated that building the George Washington Bridge
with the deflection theory saved US$10 million (in 2008 dollars, that’s
more than US$100 million) due to reduced requirements for steel, cable,
and anchorage costs.10 In general, the application of the improved theory
for the design of suspension bridges led to savings in truss steel estimated
from 20 to 65 percent.11

And yet, the precise theories that allowed the designers to eliminate the
expensive deck stiffening reintroduced wind-induced motion as a major
design issue into bridge construction. The theories were fine as far as they
went, but they were not sophisticated enough to deal with the aerodynamic
issues emerging even at a relatively low velocity wind. The designers had
become so sophisticated they forgot the lessons their predecessors had
learned the hard way about making a bridge stable in the wind.

After the humbling experience of the Tacoma Narrows Bridge failure,
bridge designers began carefully studying bridge aerodynamics. They stiff-
ened the bridges. They utilized numerical methods to analyze the problems
and built scale models. They still debate the exact mechanism by which the
Tacoma Narrows twisted itself apart.12 Perhaps the most important lesson
for financial engineers is that they did not abandon sophisticated models,
nor did they abandon building ever-more sophisticated and longer bridges.

Shoehorning economics questions into a physics or engineering frame-
work may seem misplaced, but perhaps creative thinking can be stimulated
by analogy, that is, by examining how those disciplines have responded to
practical problems. For example, Strogatz and colleagues (2005) concluded
that pedestrians on a swaying footbridge find that falling into step with the
bridge’s swaying is more comfortable than fighting it. Yet this individually
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rational “phase locking” behavior amplifies the swaying and could lead to
disaster. The solution is to modify the bridge to dampen the feedback. Lit-
tle imagination is needed to find the analogy of hedge funds or other insti-
tutions selling assets to reduce leverage in a crisis, amplifying the effects.
What kind of dampeners could reduce such feedback during a marketwide
financial deleveraging?

CONCLUSION

Some straightforward conclusions on the art of financial model building
emerge from this review. First, financial engineers should carefully study
past failures. Extrapolating from seemingly successful structures without
understanding potential causes of failure can lead to catastrophes. Ironi-
cally, reliance on more precise theories can lead to disaster, as the structure
can become more exposed to forces not incorporated into the more sophis-
ticated theories. Other professionals, such as MBAs, analyze case studies
from the real world in order to stimulate critical thinking; we should expect
no less from financial engineers. The book by Bruner (2005) is an example
of such work in the corporate finance area; it draws lessons from corporate
mergers that, in retrospect, were disasters.

Second, continuous trading and the absence of arbitrage are crucial to
most modern financial models. However, the real world contains frictions
that make this broad assumption too strong to generate realistic predictions
at all times. Financial engineers should be mindful of these extreme cases
and design structures that can withstand such bursts of chaos.

Finally, despite the disasters and public disrepute associated with finan-
cial engineering, the last thing we should do is give up on building sophisti-
cated models to understand how the world works. We have to learn how to
work around our limited knowledge and make incremental progress.
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ABSTRACT

Model risk involves the risk of model misspecification. In this chapter it is
argued that unsystematic risk is an indicator of country-specific and
human factors. With a strong theoretical base for a systemic capital asset
pricing model specification, these factors may be classified as political risk,
which is influenced by social, legal, and cultural effects. When adjusted
for degrees of systemic information efficiency and country–industry
interaction with global stock markets, this uncomplicated analytical tool
could reduce model risk and be used to calculate composite political risk,
which can be used as an adjunct to other risk indicators. Government and
industry risk analysts may be able to preempt market and political risk
problems and to price risk premia in international bank lending with
greater frequency of information than is currently available. The example
used in study involves a hypothetical country banking industry and its
interaction with the global banking industry. Future research will test the
model’s efficacy.



INTRODUCTION

This chapter is motivated by the need to return to a basic political risk indi-
cator and risk valuation model in light of the recent global turbulence in
economies and financial markets. A lesson to be learned from the economic
and financial crises of 2008 and the Middle Eastern political turmoil from
2001 is that an additional analytical tool utilizing country and global stock
market indexed data would be useful. Much of the blame for the current
global financial crisis is leveled at model risk relating to the econometric
models produced by financial economists. The model expounded in this
chapter perseveres with a theoretical view on the basis that financial econo-
mists cannot be held responsible for the human element that produces dys-
function in stock market sectors. Nevertheless, the model discussed in this
chapter strives to measure human or political influences in country stock
market sectors and takes the example of the banking sector. Such an indica-
tor would provide a broad picture of composite political risk in each coun-
try and its impact on the banking sector in that country on a daily basis.

Country risk is the risk that a country will be unable or unwilling to
service to its external commitments. The inability to perform relates 
to economic and financial factors. The unwillingness to perform is related
to human factors or, in other words political, social, legal, and cultural fac-
tors. In this chapter these human factors are classified under the broad cate-
gory of composite political risk. Economic and financial risk is objectively
assessed by examining factual and historical economic and financial infor-
mation. Political risk is essentially the slowing down in the meeting of
external commitments for overtly political, social, legal, and cultural rea-
sons. Up to this point, however, political risk analysis has been infrequent
and subjectively assessed but, based logically, on expert opinion.

Risk ratings agencies,1 canvassing the opinions of credit risk experts,
have attempted to quantify political risk by scoring various countries
according to degrees of such risks as corruption, quality of bureaucracy,
and history of law and order. These subjective assessments also provide an
indication of the propensity of that country to experience and transmit
political unrest and this unrest would include extreme political acts. One
problem with the ratings is that they do not respond as frequently as they
should to randomly arriving good and bad news. Changes in political risk
ratings are only reported monthly at best.

A more frequent composite political risk indicator should be available, at
least on a daily basis. A simplified model is needed where human behav-
ioral inferences can be made from randomly arriving good and bad news
relating to stock markets which are major indicators of a system’s financial
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and economic health. Such an indicator would also reflect the country’s
degree of interaction with the global economy as another element of com-
posite political risk. It is not suggested that the indicator replace existing
risk ratings. It is suggested that it be used as another political risk manage-
ment tool for use in conjunction with political risk ratings information.

Stock markets are major indicators of a country’s economic and financial
health and growth. In regression analysis of a basic systemic2 market model,
the regression coefficients represent systematic or market risk. The returns
of a country’s stock market index (adjusted by the risk-free rate of interest
in that country) are regressed on a global stock market index (adjusted for
an appropriate global proxy of a risk-free interest rate3). Market risk in
financial and economic systems is dependent on economic and financial fac-
tors which are the same for all and cannot be diversified. These factors are
objectively assessed as they are based on factual and historical information.

If it is assumed market risk captures all financial and economic factors in
a stock market system in an economy as well as the effect of the interaction
of one system with the global stock market system when stock markets are
efficient (that is, where stock market returns are a random walk4), it may
also be assumed that the error term in such a regression represents unsys-
tematic or idiosyncratic risk. The error of such a regression is thus country
specific and reflects the composite human element related to political,
social, legal, and cultural factors. It contains all subjective factors that are
by themselves difficult to measure and predict. It would, apart from the
effect of any natural disaster, reflect composite political risk. Herein lies 
the basis for a new composite political risk indicator. The higher the error,
the higher the degree of political risk. This information is as frequently
available as stock market share price indices information.

To illustrate the functioning of this model, samples of developed and
developing country financial systems are examined. The findings should be
of interest to investors, regulators, and government trade and security pol-
icy makers. The model could help to anticipate not only financial crises
(with the examination of market risk) but also political crises and climates
for extreme political acts (with the examination and comparison of unsys-
tematic risk components adjusted for the degree of information efficiency in
each compared country).

EXISTING RISK RATINGS SYSTEMS
Sovereign credit rating history is published by world credit risk rating agen-
cies such as Standard and Poor’s, Moody’s, and Fitch-IBCA. The ratings
scales and assessments are comparable and are largely reflective of economic
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and financial factors. The scales extend from extremely strong ability to
repay through to default. The agencies also report credit watches (short-
term potential direction) and ratings outlooks (long-term potential direc-
tions). This is very useful information particularly when such information
can be disaggregated into specific economic and financial risk components.

Simpson (2002) undertook a cross-sectional study of country and inter-
national banking risk ratings and economic and financial data for 1995, and
from this study several comments may be made about the leading
country/sovereign risk ratings agencies. First, the risk ratings from these
agencies are highly positively correlated. Second, country risk ratings may
be largely replicated using primarily trade performance and debt service-
ability data. Third, country risk ratings are also highly positively correlated
with international banking risk ratings, thus reflecting the importance of
banks as key economic agents. Fourth, pure political risk factors have a very
small role in the ratings replication process.

Finally, from a cross-sectional analysis of risk ratings alone, it is not pos-
sible to tell whether or not the ratings lead or lag either financial or eco-
nomic crises. It is also evident that sovereign risk, country risk, and political
risk definitions are often confused. In this chapter country risk is the broad
concept (total risk) composed of economic and financial risk (systematic
component) and political risk (the unsystematic component).

COUNTRY RISK, SOVEREIGN RISK, 
AND POLITICAL RISK

Most researchers have failed to differentiate country risk components con-
ceptually, thus ignoring pure political risk. Nevertheless, several studies
involving the relationship between market data and country risk ratings
have been useful. Holthausen and Leftwich (1986), Hand, Holthausen, and
Leftwich (1992), and Maltosky and Lianto (1995) argued that sovereign
risk rating downgrades were informative to equity markets, but upgrades
did not supply markets with new information. Cantor and Packer (1996)
examined a sample of developed and emerging markets over the period
1987 to 1994 and found that sovereign risk ratings had a significant impact
on bond yield spreads.

Erb, Harvey, and Viskanta (1996) discussed the importance of an under-
standing of country risk for investors. They found that country risk meas-
ures are correlated with future equity returns, but financial risk measures
reflect greater information. They also found that country risk measures are
also highly correlated with country equity valuation measures and that
country equity value-oriented strategies generated higher returns.
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Diamonte, Liew, and Stevens (1996) used analyst’s estimates of country
risk to show that country risk represents a more important determinant of
stock returns in emerging rather than in developed markets. They also
found that over the past 10 years country risk had decreased in emerging
markets and increased in developed markets. They speculated that if that
trend continued the differential impacts of country risks in each of those
markets would narrow. In this chapter, the size of the error will also reflect
the degree of globalization achieved by each country. Any reduction in the
average size of the error for individual countries and for all countries will
reflect increased globalization and a reduction in political risk.

Larrain, Reisen, and von Maltzan (1997) incorporated country risk data
up to the Mexican crisis of 1994 to 1995 and found that the overall impact
of ratings changes on bond prices was insignificant. Hill (1998) found that
in times of crisis many investors may be determined to minimize exposure
to securities affected by country risk until they have more information, but
after a period of calm the spreads being offered appear to be too high rela-
tive to the risks. After more investors return to the market, the spreads
lessen and when there is another crisis the cycle recommences.

Specifically in regard to the Asian currency crisis, Radelet and Sachs
(1998) suggested that country/sovereign risk ratings agencies were too
slow to react and when they did react it was suggested that their ratings
intensified and prolonged the crisis. Ferri, Liu, and Stiglitz (1999) argued
that the ratings agencies behaved in a procyclical manner by upgrading
country/sovereign risk ratings during boom times and downgrading them
during crises.

Reisen and von Maltzan (1999) argued that ratings agencies exacerbated
boom-bust cycles in financial markets and put emerging markets at greater
risk. Hooper and Heaney (2001) studied regionalism, political risk, and cap-
ital market segmentation in international asset pricing. They concluded that
multi-index models should be tested that incorporate a regional index, an
economic development attribute, commodity factors, and a political risk
variable in order to more effectively price securities.

Brooks and colleagues (2004) argued that equity market responses to
country/sovereign risk ratings changes revealed significant responses fol-
lowing downgrades. Hooper, Hume, and Kim (2004) found that ratings
agencies provided stock markets and foreign exchange markets in the
United States with new tradeable information. Ratings upgrades increased
stock markets returns and decreased volatility significantly. They also dis-
covered significant asymmetric effects of ratings announcements where the
market responses were greater in the case of ratings downgrades. Few
authors have examined pure political risk factors.
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However, Busse and Hefeker (2005) explored the connection between
pure political risk, institutions, and foreign direct investment flows (some of
which is channeled into stock markets). They found that government stabil-
ity, the absence of internal conflicts and ethnic tensions, basic democratic
rights, and the ensuring of law and order are highly significant determinants
of foreign investment f lows. Evidence of the direct adverse effects of
extreme political acts on industries and economies is provided and cited in
Simpson (2007a, 2007b).

The evidence is mixed but most evidence points to country/sovereign
risk having a significant relationship with stock market returns. Some argu-
ments imply that financial crises reflected in reduced stock market returns
are the drivers of sovereign risk ratings. If this is the case, risk ratings agen-
cies cannot contribute new information to financial markets for investors
and nor could they be useful to regulators and government policy makers.
Under the surface, the unwillingness to service external debt may be influ-
enced by economic and financial factors, such as acute shortages of foreign
exchange (Bourke and Shanmugam, 1990).

MARKET RISK, MARKET EFFICIENCY, 
AND CONTAGION

The proposed model is strongly based in portfolio, market efficiency, and
financial contagion theories and is therefore more likely (subject to thor-
ough testing) to avoid problems of model risk and model misspecification.

Market Risk Models

Markowitz (1959) developed a basic portfolio model for securities based on
a series of broad assumptions relating to investor behavior.5 He demon-
strated that the variance of the returns was a meaningful measure of port-
folio risk. Under his assumptions, a single asset or a group of assets in a
portfolio is efficient if no other asset or group of assets provides a higher
expected rate of return for the same or lower risk or lower risk with the
same or higher rate of return. Capital market theory has built on the
Markowitz portfolio model and requires similar investor behavioral
assumptions with additional assumptions that include consideration of the
risk-free rate of return.6 The proposed model in this chapter contains simi-
lar behavioral assumptions and controls for the risk-free rate and thus
excess returns.

The capital asset pricing model (CAPM) developed by Sharpe (1964) and
arbitrage pricing theory (APT) developed by Ross (1976) differ in that the
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latter includes several risk factors. This permits a more comprehensive defi-
nition of systematic investment risk than that in the CAPM’s single market
portfolio. Fama and French (1992) found a weak association between the
returns of an asset and its beta. They found statistically significant relation-
ships between returns, firm size, and the ratio of book to market values.
Roll (1977) suggested that the market proxy for CAPM may not be mean-
variance efficient. A criticism of the APT is that the risk factors in the
model are not defined in terms of their quantity, but significantly, the APT
asserts that a security’s return has an expected and an unexpected compo-
nent. By implication it has a measurable or quantifiable or systematic com-
ponent based on fact and a difficult to measure or unsystematic component
that is based largely on opinion.

This is consistent with the model adopted in this chapter, although the
model does not control for the factors discussed by Fama and French (1992)
or Roll (1977). The model in this chapter is in accordance with APT asser-
tions where the systematic or quantifiable components are economic and
financial in nature and the unsystematic component is reflective of human
behavior in a country’s political system, which in turn is affected by social,
legal, and cultural factors in that country.

More recently, multifactor models have attempted to turn theory into
practice and use a variety of macro- and microeconomic factors to explain
risk and return. Many of these multifactor models may not be firmly
founded in capital market or economic theory and there are many different
specifications (Reilly and Brown, 2003). Ultimately, if political, social, legal,
and cultural factors are to be taken into account in a model of country
stock market returns, it is necessary to assume that they are incorporated in
such a basic market model. This avoids the myriad of problems encountered
in more advanced versions of the CAPM or the APT or the multifactor
models. Reilly and Brown (2003) imply that it is feasible to apply a basic
market model to a financial system using systemic stock price index data
provided the constituents of the indices used are representative of the
industry in the country concerned.

Contagion and Spillovers

The global f inancial crisis has highlighted the concept of contagion,
spillovers, and the importance of the interconnection of global financial
markets and economies. Researchers that have studied stock market
spillovers are many and include Baig and Goldfajn (1998), Forbes and
Rigobon (1999), Dungey and Zhumabekova (2001), Caporale, Cipollini,
and Spagnolo (2003), Rigobon (2004), with currency market literature in
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Ellis and Lewis (2000). This literature has focused on the manifestation of
financial contagion.

Market Efficiency

According to Fama (1970), security markets can be tested for information
efficiency at three levels. They are weak-form efficient if stock prices
and/or returns are a random walk; semi-strong-form efficient if stock prices
and/or returns immediately reflect all available public information; and they
are strong-form efficient if stock prices and/or returns reflect all public and
private information. However, many developing markets have not achieved
even weak-form efficiency. Strong-form efficiency is yet to be attained in
even the most developed market, as evidence by the frequency of cases of
investigation of insider trading and market manipulation.

It is quite clear that the raw composite political risk scores derived from
the market model would need to be adjusted for varying degrees of infor-
mation efficiency in each system. The scores will only be consistent and
provide meaningful indication if all markets have a similar degree of infor-
mation efficiency or if they are weighted according to the degree of effi-
ciency achieved in each system. The level of market eff iciency for a
country’s stock market can be proven through autocorrelation tests (that is,
testing the independence or randomness of prices and/or returns) and event
studies (that is, testing the timing of the changes in prices and/or returns
around public news events).

THE MODEL

The whole point about political risk is that it is largely composed of legal
differences between countries and that these differences are exacerbated by
other human factors relating to social and cultural environments. The
model that follows cannot control for the various components of political
risk. However, the model recognizes that there is a composite political risk
value that comprises all these human and legal components. Political news
good or bad arrives randomly. If we are examining daily data, models must
attempt to provide daily composite political risk indication. Such models do
not do this at present. Let it be assumed that the study involves a country
banking system. A simple capital assets pricing model is specified and
expanded to not only control for the country stock market, but also the
interaction with the global banking market and the global stock market.

The major assumptions of the portfolio, efficient markets, and financial
contagion theories are carried over to the specified model. That is, that all
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economic and financial influences on a country banking sector are captured
in the regression intercept and its coefficients. All country specific and
therefore all social, cultural, legal, and political influences (which collec-
tively make up composite political risk) on the country banking industry
are captured in the unsystematic risk component. That is, in the error term
of the regression. The basic capital asset pricing model is expanded to be
assumed to be applicable to an industry sector rather than a firm within
that sector. The model is also expanded to include control for global inter-
action and relative market efficiency variables. These are unique features of
the model which, in its expanded form, is more likely to avoid model risk
problems and model misspecification.

Step One

The first step is the specification of a basic market model of unlagged
returns variables. According to this model, systematic risk (financial and
economic) components are assumed captured in the regression intercept
and beta coefficient and idiosyncratic (unsystematic or country specific
political, social, legal, and cultural factors) risk components are assumed
captured in the error term. Note: Returns of the country banking industry
price index, the country stock market index, and the global banking indus-
try price index below are as follows:

(2.1)

(2.2)

where Rit is the return on a country’s banking share price index i at time t.
Riftt is the risk-free rate in the country system i at time t. αit and βit are the
regression coefficients representing the proportion of systematic or market
risk in system i at time t arising from the country stock market and the
global stock and banking markets. RiMt is the return on a country stock
market price index at time t. eit is the error term of the regression indicating
the unsystematic risk in banking system i at time t.

Note 1: The error term is the raw composite political risk component and
it also reflects the degree of a country’s global interaction in banking mar-
kets. Thus the development of the model in Equation (2.1) needs to control
for global interaction.
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Note 2: The model deals with returns and thus reduces the likelihood of
dealing with nonstationary data as well as dealing with serial correlation in
the error term. It is, however, likely that heteroscedasticity7 is persistent in
the error terms. This could be controlled for by the specification of a gen-
eralized least-squared regression or an autoregressive conditional het-
eroscedasticity model.

Step Two

Models that try to control for country and political risk have not taken into
account the interaction between their stock market returns and the global
stock market and, in the context of this chapter, the global banking market.
A better way to control for these factors is to examine the interrelationships
between the country banking market returns and those of the global stock
market (IiGMt) and the global banking market (IiGBt). These interrelation-
ships may be proxied by the correlations (ρt) between each market in
returns at time t where

(2.3)

The interrelationship terms for the country banking market with the global
stock market and the global banking market may then be added to Equation
(2.2) as follows:

(2.4)

Step Three

The remaining problem is to expand the model to control for the differing
levels of information efficiency in different country banking markets. There
are several ways that this could be handled. The logical proposal is to test for
a random walk using autocorrelation tests on each set of systemic data. This
test will indicate whether the country banking sector lacks any degree of
information efficiency or is at least weak-form efficient. The analysis could
then move to test semi-strong and strong-form efficiency by running event
studies around structural breaks in the weak-form efficient systems8 where
the structural breaks are proven to exist around major political or economic
events.9 Each system will be shown to be 

1 � Not information efficient
2 � Weak-form efficient
3 � Semi-strong-form efficient
4 � Strong-form efficient
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It might be adequate to divide the error term (as it represents a raw com-
posite political risk score out of 100) by the level of information efficiency.
That is, divide the inefficient markets error by 1, the weak-form efficient
markets by 2, the semi-strong-form efficient markets by 3 and the strong
form efficient markets by 4. In reality, in a full analysis of all country banking
sectors there will be few, if any, countries in category 4 due to the frequency,
even in very developed markets, of insider trading and market manipulation.

Perhaps a better way of capturing the level of efficiency of each banking
market would be to specify a dummy variable (that is, a dummy variable
denoted Diefft with the level of efficiency of each market ascribed a number, for
example inefficient market � 4 through strong-form efficient � 1), as follows:

(2.5)

Note: The speed with which each country banking market change reacts to
changes in the country stock market, the global stock market, and the global
banking market could also be obtained by running vector autoregressive
model based causality tests on lagged data and/or impulse response func-
tions.10 The degree of information efficiency of the particular market could
be proxied by the relative speed with which each banking market reacts to
changes in the domestic stock market, the global stock market, and the
global banking market and to any changes in the efficiency of that market.

For Example

Table 2.1 shows the results of hypothetical regression analysis of Equation
(2.4) for a sample of developed and developing countries.11
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Table 2.1 Regression Results of the Basic Banking Market Model for 
Each Country

Raw
Adjusted Composite

R-Squared Political
Value Beta t Statistic Standard Risk Score

Systematic Coefficients of Beta Errors (Regression
Country or Market risk Summary Summary Summary Errors)

United States 0.6332 1.2979 46.0952 0.0282 36.68

United Kingdom 0.4717 1.1467 33.1446 0.0346 52.83

Australia 0.0956 1.1048 8.3246 0.0457 90.44

Malaysia 0.0266 0.3635 5.8011 0.0553 97.34

Philippines 0.0019 0.0884 2.5048 0.0662 99.53

Thailand 0.0047 0.0660 1.8247 0.0727 99.81



Note 2: The value and significance of regression parameters, t statistics,
and standard errors may also be useful for ranking either market risk or
unsystematic risk in the country banking industry.

In an overall comparison of the selected countries, the developed coun-
try system regressions (particularly those for the United States and the
United Kingdom, also, to a lesser extent, Australia) have, on the day of test-
ing, higher adjusted R-squared values, higher regression coefficients, higher
t statistics, and lower standard errors than the developing country banking
industry sectors. In this way a running regression can be employed, using
past daily data up to the date of analysis.

It may be concluded that the developed country banking sectors have
higher levels of systematic risk and lower levels of unsystematic risk than
the developing country banking sectors, when interacting with their own
stock market as well as the global stock and banking markets in returns.
When the unsystematic risk component is converted to a score out of 100
for political risk, the ranking of least to most risky country in the sample
is the United States, the United Kingdom, Australia, Malaysia, the Philip-
pines, and Thailand. Logically this is the reverse of the market risk (sys-
tematic risk) ranking, as more developed countries are likely to have a
greater component of banking market risk as their banking sector markets
are more information efficient and they possess a greater degree of global
integration.

Australia is a developed country with a sophisticated financial system and
a stable economic and political environment. A political risk score of more
than 90 does not provide a true indication of its riskiness in terms of social,
legal, and cultural factors that impact its political willingness to service its
external debt and commitments. Australia’s banking market might be tested
and demonstrated to be semi-strong-form efficient. Hypothetically, the
United States and the United Kingdom may have tested as strong-form and
semi-strong-form efficient, respectively. Malaysia and the Philippines may
have tested as weak-form efficient. Thailand may have tested as lacking any
level of information efficiency. The scores could be adjusted daily, until the
markets are again tested for levels of efficiency some time in the future
when deemed appropriate.

However, if the control for the level of information efficiency of a partic-
ular banking market is implemented using a dummy variable [as described in
Equation (2.5)], the results of the testing of the model may reveal the fol-
lowing information in Table 2.2. In this table it would be concluded that the
U.S. market possesses the lowest composite political risk and the Thailand
market the highest. While Australia has a high raw composite political risk
rating due to a lack of global interaction, a suitable adjustment has been
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made to this rating by controlling in the final model for the semi-strong
level of market efficiency that exists in the Australian market.

Step Four

When the daily errors terms are held for each country banking system they
are compared with the composite political risk ratings from risk rating
agencies. If there is a high positive correlation between the errors and the
risk ratings, this verifies the correct specification of the model and the
nonexistence of model risk.

It is likely that the returns of the country banking sector and the politi-
cal risk scores are stationary series. It is thus likely that the level series of
banking industry prices (Pit) and level series errors (composite political risk
score denoted PRit) are integrated nonstationery processes and that a uni-
variate vector auto regressive (VAR) model can be specified by lagging the
variables in the single-period model. The single-period model is as follows:

(2.6)

When these variables are optimally lagged in a VAR specification, the VAR-
based tests of cointegration and exogeneity can demonstrate the strength of
the relationship between country banking industry stock market prices, and
the composite political risk variable and the exogeneity of the composite
political risk variable can also be tested. Pairwise Granger causality tests and
impulse-response functions can indicate whether country banking industry
prices are influenced by the composite political risk variable or vice versa. If
the prices are driven by political risk, then political risk is an important vari-
able that adds new information to the country banking market and can assist
in the pricing of credit risk premia for international lending purposes.
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Table 2.2 Adjusted Raw Composite Political Risk Scores

Market
Level of Raw Composite Efficiency-Adjusted

Information Political Risk Composite Political
Country Market Efficiency Score Risk Score (Rank)

United States 4 36.68 9.17 (1)
United Kingdom 3 52.83 17.61 (2)
Australia 3 90.44 30.15 (3)
Malaysia 2 97.34 48.67 (4)
Philippines 2 99.53 49.77(5)
Thailand 1 99.81 99.81 (6)
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CONCLUSION

In terms of theoretical consistency, developed country banking sectors
have higher levels of systematic risk and lower levels of unsystematic risk
than those in developing countries. Unsystematic risk, which includes
country-specific political factors impacted by social, legal, and cultural
effects, particularly legal effects, is greater in developing country banking
sectors. These country banking sectors exhibit less information efficiency
due to higher political risks in areas such as government stability, corrup-
tion, and quality of bureaucracy. Their degree of globalization and interac-
tion with the world market is expected to be less. The specified model
controls for global interaction between a country banking industry and the
global stock market and the global banking industry with the use of corre-
lation variables.

It is posited that developed economies with banking markets that are
semi-strong-form efficient but which possess low global interaction (for
example, Australia and New Zealand) still require a substantial reduction in
their raw composite political risk score because they are assumed to and can
be proven to possess greater information efficiency than developing country
systems. The specified model controls for varying degrees of information
efficiency in differing country banking industries by introducing a dummy
variable that ascribes proven levels of information efficiency to each system.

The specified model has a strong theoretical base in portfolio, market
efficiency, and financial contagion theories. If the assumptions of these the-
ories are adopted for the specified model it may be tested for each country
banking system. If the errors of the regressions are highly positively corre-
lated with actual composite political risk ratings by reputable risk rating
agencies, then the model has zero model risk and is correctly specified. The
errors of the model become the composite political risk ratings and VAR-
based cointegration and causality tests may be run on the level series. If the
new composite political risk rating drives the banking industry prices, it
may be assumed that political risk adds new information to the banking
industry; and this information may be used by the banking industry in each
country to price international lending and credit risk premia.

Previous studies have demonstrated that country/sovereign risk ratings
from leading ratings agencies may be replicated using nonpolitical data and
largely reflect economic and financial information. The scoring of pure
political risk (such as changes of government, corruption, the role of the
military, the quality of bureaucracy, and other factors that are either the
cause or the effect of social, legal, and cultural factors) by reputable politi-
cal risk rating agencies remains valuable. However, a composite political risk
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score appropriate for the banking industry or any industry derived from
more frequent market data and adjusted for country market efficiency levels
and global interaction is also considered to be useful for investors and pol-
icy makers. It is posited that the possibility exists that a significant reduc-
tion in market risk in one country might mean that substantial increases in
political risk (from overseas or domestically) have been priced into the mar-
ket. It remains for the model to be properly tested for all country stock
market sectors across all countries.
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NOTES

1. For example, ICRG (2005) published by the Political Risk Services
Group.

2. Note the different meanings in this chapter of the words systemic and
systematic. Systemic relates to a financial or economic system. System-
atic relates to systematic risk, which is one of the components of total
risk in a financial system.

3. For example, a eurocurrency interbank offered rate.
4. Where returns immediately reflect all available randomly arriving news

and returns are independent of each other.
5. For example, investors maximize one-period expected utility and their

utility curves demonstrate diminishing marginal utility of wealth, and,
for a given risk level, investors prefer higher to low returns and for a
given level of return lower for higher risk.

6. Other principal assumptions are that capital markets are in equilibrium
with all investments priced accurately in line with their risk levels and
that there is no inflation or change in interest rates or inflation is fully
anticipated. Also assumed is that there are no taxes or transaction costs
in buying or selling assets.

7. Unequal variance of the error term.
8. For example, Chow and other structural break tests indicate significant

changes in regression parameters comparing the full sample period, the
period up to the break and the period after the break. If prices and/or
returns have demonstrated the production of abnormal positive returns
prior to the event, this may mean either insider trading or market
manipulation based on withheld good news.
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9. Practically, one could select reputable empirical evidence of country
stock market efficiency and grade countries accordingly.

10. These tests provide a one standard deviation shock to the endogenous
(dependent) variable. The response time of the exogenous (independent)
variables can then be observed.

11. The hypothetical sample of country banking sectors was selected to
represent strong, globally integrated developed economies in the
United States, United Kingdom, and Australia as well as a group of
developing South East Asian economies in Thailand, Malaysia, and the
Philippines.
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ABSTRACT

The most relevant, practical impediment to an application of the Markowitz
portfolio selection approach is the problem of estimating return moments,
in particular, return expectations. We present four valuation models based
on analysts’ forecasts that are utilized for the derivation of implied expected
stock returns: the dividend discount model, the residual income model, the
Ohlson/Jüttner-Nauroth model, and the discounted cash flow model. In an
empirical capital market study, we implement these four models and several
benchmark strategies to obtain and compare the out-of-sample perfor-
mance of the respective strategies from June 1, 1999, to December 1, 2008.
Furthermore, we estimate corresponding market risk premia for six out of
all nine strategies we examine. Though theoretically equivalent, practical



results across the four approaches under consideration vary to a great
extent. Moreover, it is hard to systematically beat a simple naïve portfolio
selection strategy even on the basis of analysts’ forecasts.

INTRODUCTION

The estimation of expected returns of investments is one of the central
problems of portfolio management and asset pricing. Within the frame-
work of portfolio management, this information is used to carry out quan-
titative portfolio optimizations. In the context of asset pricing, the
knowledge of the cost of capital is necessary, since it is used for discount-
ing expected cash flows. The determination of cost of capital is closely
related to the calculation of the market risk premium which corresponds to
the difference of the weighted average cost of equity of all risky securities
and the riskless interest rate.

While the application of historical return realizations for the estimation
of expected returns has been discussed for quite a long time, the idea of
utilizing analysts’ forecasts concerning corporate cash flows and perfor-
mance indicators is quite new. Depending on which analyst’s estimation is
taken as a basis, four different models can be distinguished: the dividend
discount model (DDM), the residual income model (RIM), the Ohlson/
Jüttner-Nauroth model (OJM), and the discounted cash f low model
(DCM). In the second section of this chapter, all four approaches are
briefly introduced. Thereafter we follow Breuer, Feilke, and Gürtler (2008)
who utilized a modification of the DDM for the case of a nonflat term
structure of interest rates, and we extend the application of this approach to
the RIM and the DCM. However, a similar straightforward implementation
is not possible for the OJM.

Despite the theoretical equivalence of these four approaches, resulting
estimators for expected one-period stock returns need not be identical as a
consequence of inconsistent parameter fixation and varying underlying
assumptions. Although in Breuer, Feilke, and Gürtler (2008), the DDM has
already been examined as a basis for portfolio optimization and for the esti-
mation of market risk premia, it seems interesting to study the adequacy of
the other three approaches as well. We do this based on monthly data for
HDAX or DAX100 firms from January 1, 1994, to January 1, 2009. Our
results are presented in this chapter’s fourth section. In general, portfolio
selection results and corresponding estimators for market risk premia vary
considerably across all four approaches. Thereby, we find that the OJM per-
forms best for low-risk aversion and the RIM outperforms all other models
for moderate and higher risk aversion.
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UTILIZING ANALYSTS’ FORECASTS FOR
EXPECTED RETURN ESTIMATION

The Dividend Discount Model (DDM)

We start our analysis with a closer look at DDM. This approach can be
traced back to Williams (1938) and Gordon (1959, 1966). According to this
model, at a given point in time t, the expected stock return µ̂i

(D) with respect
to firm i will be determined as an internal rate of return of the expected
dividend payments on the basis of the market value of equity EQi,t of firm i
at time t. For reasons of practicability, typically a two-phase model is
employed. In the first phase, starting at time t, estimations of dividends D̂i,τ

of the points in time τ � t�1, …, t � T are available. In the second phase,
starting from time t � T � 1 on, only a constant relative growth gi

(D) of
dividends is assumed. If necessary, an intermediate phase will be modeled in
order to procure a gradual adaption to the dividend growth rate from the
end of the first phase to the final phase (see, for instance, Stotz, 2004,
2005). The two-phase model leads to

(3.1)

Under the assumption that analysts’ forecasts are (on average) true and rep-
resentative for all investors on the capital market, µ̂i

(D) in Equation (3.1) by
definition corresponds to the cost of equity of the firm over its entire life-
time. However, it is not necessarily identical to the expected one-period
return from holding this firm’s stocks from t to t � 1. Despite this prob-
lem, this additional (implicit) assumption is exactly what is needed to make
use of µ̂i

(D) for portfolio management purposes. Then it is possible to deter-
mine the expected return of the market portfolio as the weighted average of
the expected individual stock returns. Subtraction of the riskless interest
rate leads to the one-period market risk premium. This premium is an
essential component of many valuation formulas, especially those which are
based on the capital asset pricing model (CAPM).

In the case of heterogeneous expectations, ‘the’ market risk premium no
longer exists, thus such a question leads nowhere. However, the approach,
according to Equation (3.1) can still be used to determine µ̂i

(D), although
this value can no longer be interpreted as the cost of equity over a firm’s
lifetime. However, it may still be utilized for portfolio selection purposes.

Seemingly, several shortcomings of the basic approach have been intro-
duced so far. First of all, µ̂i

(D) will be generally valid only as an average 
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discount rate over the whole time horizon of the firm under consideration.
In particular, in situations with a nonflat term structure of interest rates,
corresponding one-period discount rates will not be constant. In order to
take varying risk free interest rates into account, one may replace µ̂i

(D) by
φ̂i

(D)� r ( f )
t�κ, with r ( f )

t�κ being the risk free (forward) interest rate from time
t �κ �1 to t �κ and φ̂i

(D) being the average equity risk premium over the
whole lifetime of the firm under consideration. Under the assumption of
constant risk-free interest rates from time T on, Equation (3.1) becomes

(3.2)

and could be used to determine φ̂i
(D) . Adding the risk-free interest rate r ( f )

t�κ

would then result in another, hopefully better, estimator for the expected
one-period stock return.

In Equation (3.2) it is assumed that information for forward risk-free
interest rates are available for the same time horizon as analysts’ forecasts
for future dividends. However, with T1 being the former relevant time hori-
zon and T2 being the latter, we typically have T1 � T2. This simply means
that in Equation (3.2), T has to be substituted by T1 and for future divi-
dends between τ � t � T2 � 1 and τ � t � T1, we have to write D̂i,t�τ �

D̂i,t�T2 ·(1 � gi
(D))t�τ�T2.

Moreover, up to now, we have been silent on tax considerations. How-
ever, corporate taxes are already allowed for by analysts when estimating
future dividend payments. It remains to take a closer look at personal taxes.
Nevertheless, as situations may be quite different for different investors, we
will refrain from this possible model extension (see, however, Breuer,
Feilke, and Gürtler, 2008, for an analysis of this topic).

The Residual Income Model (RIM)

The DDM is not the only approach by which the market value of a firm’s
equity can be computed as a sum of discounted earnings figures. Another
one is RIM. It makes use of the fact that, under certain circumstances, the
market value of equity cannot only be computed cash flow oriented, accord-
ing to Equation (3.1), but can also be determined income oriented as a result
of the Preinreich-Lücke theorem (Preinreich, 1937; Lücke, 1955). As long
as an increase in corporate income either leads to higher dividends or to a
higher book value of equity and thus a balance sheet extension (so-called
clean-surplus condition), the market value of equity can be determined by
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discounting the corporate residual gains with the appropriate cost of equity
(estimator)  µ̂i

(RG)

(3.3)

In addition, in this context, it is essential that expected gains Gi,t are
reduced by the absolute costs of equity µ̂i

(RG)· BEQi,t�1 (with BEQi,t �1 being
the book value of equity at time t �1) to arrive at the so-called residual
gain or income RGi,t (see Breuer, 2007, p. 460)

(3.4)

In the same way as with respect to DDM, we may utilize the solution µ̂i
(RG)

of Equation (3.3) as an estimator for the one-period expected stock return
and, after subtraction of the relevant risk-free interest rate, as an estimator
for the corresponding one-period equity risk premium of firm i. Moreover,
with the replacement of µ̂i

(RG) by φ̂ i
(RG) � r ( f )

t�κ, we could once again allow for
nonflat term structures of interest rates. Corporate taxes have already been
taken into account by analysts when estimating future expected gains and,
as in the case of DDM, we refrain from personal taxes.

The Ohlson/Jüttner-Nauroth Model (OJM)

The OJM is another approach that aims at determining a firm’s equity
value by discounting earnings figures by the equity cost of capital. In con-
trast to the RIM, it is based on the assumption of a constant growth rate 
gi

(G) of expected firm gains. In order to circumvent the necessity of the
clean-surplus condition for valuation approaches which rely on gains
instead of payments, the concept of excess income is introduced. The
excess income zi,t�1 at time t �1 corresponds to the discounted income
growth of the time period from t �1 to t � 2 minus the reinvested retained
income of time t �1 (with the cost of equity estimator µ̂i

(OJM) as the relevant
discount rate)

(3.5)

For this excess income, a constant growth rate gi
(z) is assumed as well

(3.6)
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Under this assumption, one gets (Ohlson and Jüttner-Nauroth, 2005, 
p. 354; Reese, 2005, p. 7)

(3.7)

Thus, the value of equity is determined as a capitalized income Ĝi,t�1/
µ̂i

(OJM) of the following period (i.e., the value of a perpetuity amounting to
Ĝi,t�1) and an additional premium for future excess income. Again, corpo-
rate taxes have been deducted from the income.

An application of Equation (3.7) is possible even without the validity of
the clean-surplus condition. However, a flat-term structure of interest rates
is assumed in order to arrive at Equation (3.7). As a nonflat modification of
OJM is not necessarily solvable, we refrain from extending our examination
in this direction. Furthermore, only future expected gains of the next two
periods and the future dividend of time t � 1 have to be estimated. These
are clearly practical advantages of OJM. However, in order to reach these
advantages, constant growth rates gi

(G) and gi
(z) as well as a flat term struc-

ture of interest rates must be assumed.

The Discounted Cash Flow Model (DCM)

In contrast to the three approaches discussed above, DCM is used to derive
an estimator for a firm’s total cost of capital; this is then applied to compute
the corresponding value for a firm’s equity cost of capital. To be precise,
DCM is based on the fact that the value of a firm is calculated as the net
present value of the future expected free cash flows. With market values
EQi,t and DBi,t for equity and debt at time t, CFi, t�τ as the (as seen from
time t) estimated free cash flow of company i at time t � τ, and gi

(CF) as the
growth rate of the free cash flow, a firm’s weighted costs of capital WACCi

over its whole lifetime can be calculated as follows:

(3.8)

Under the assumptions that WACC is identical to a firm’s expected one-
period return on total firm value and that debt financing is risk free, we
may derive from this a corresponding estimator of expected one-period
stock return by the help of the following relationship:
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(3.9)

From Equation (3.9), it is once again possible to derive an estimator µ̂i
(WACC)

for the expected one-period stock return and the corresponding stock risk
premium µ̂i

(WACC) �r( f )
t�1. Different from the other three approaches, the cor-

porate tax rate s(F) explicitly appears in the relevant formula. Since debt cap-
ital reduces the tax burden of companies, the term (1�s(F)) is added. For
example, for Germany, a typical value of s(F) � 40% is utilized. At any rate,
as is the case for analysts’ dividend and gain forecasts, in analysts’ future
cash flow estimations, corporate taxes are taken into account as well.

Again, it would be possible to allow for nonflat term structures of for-
ward risk-free interest rates in Equation (3.8) by replacing WACCi by the
corresponding sum φ̂i

(WACC) � r( f )
t�κ of a risk premium on total firm value and

the relevant risk-free forward interest rate.

PRACTICAL APPLICATIONS

In general, valuation Equations (3.1), (3.3), (3.7), and (3.8) are equivalent.
Nevertheless, in practical applications, resulting estimates for expected one-
period stock returns may be different, as there are different underlying
assumptions which may be violated and, in addition, parameter estimates
may not be consistent with each other even if there are no violations of
assumptions. This gives rise to the question of which approach performs
best in practical applications of portfolio selection and market risk premium
estimation.

The accuracy of the four estimation models described hinges crucially on
the validity of analysts’ dividend estimates. In fact, there is much evidence for
analysts’ forecasts to be ‘biased.’ In particular, two basic causes can be
adduced for this. On the one hand, there are reasons for analysts’ forecasts
tending to be too optimistic, even under the assumption of unlimited ration-
ality. For instance, an investment bank can ameliorate the business connection
to a company by publishing a positive assessment and thus realize additional
earnings (Dugar and Nathan, 1995; Lin and McNichols, 1998; Michaely and
Womack, 1999; Wallmeier, 2005). However, the advantage that has been
achieved by this means stands in opposition to the disadvantage of the ana-
lyst’s forecast impreciseness which reduces his reputation and consequently
generates lower earnings. This mitigates analysts’ incentives for too opti-
mistic forecasts, but does not completely eliminate it ( Jackson, 2005). Besides
such a rational argument, there is also a cognitive bias which results from
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analysts’ misperception and improper processing of information as, empirical
analyses show. Whether analysts’ forecasts generally react too strongly (e.g.,
DeBondt and Thaler, 1990) or too weakly (Abarbanell, 1991; Abarbanell and
Bernard, 1992) to new information, or that over- and underreactions depend
on the type of information (Easterwood and Nutt, 1999), is still under dis-
cussion. The same is true for the question of whether analysts rather tend to
give overly pessimistic (Brown, 1996; Chan, Karecski, and Lakonishok, 2007)
or overly optimistic forecasts (Crichfield, Dyckman, and Lakonishok, 1978;
O’Brien, 1988; Lys and Sohn, 1990; Hong and Kubik, 2003) or both depend-
ing on the situation (Abarbanell and Lehavy, 2003). Breuer, Feilke, and
Gürtler (2008) show that biases in analysts’ forecasts are only of secondary
importance concerning questions of portfolio management, if all expected
returns determined on this basis are similarly biased up- or downward. 
Moreover, as we want to compare different approaches which are all based on
analysts’ estimates, this issue is of only minor relevance for our investigation,
as it will not primarily inf luence the relative performance of all four
approaches. We therefore refrain from a separate analysis of this problem in
this chapter.

EMPIRICAL EXAMINATION

In this section, the different models are applied with real capital market
data.1 For this purpose, monthly data from January 1, 1994 to January 1,
2009 of all HDAX and DAX100 stocks are available. Since DAX100 was
replaced by HDAX not before March 24, 2003, it will form the basis of our
empirical examination in the beginning. DAX100 was composed of 30 DAX
shares and 70 MDAX shares. However, HDAX is composed of 30 DAX
shares, 50 restructured MDAX shares, and 30 TecDAX-shares. We are con-
sidering 100 shares until March 24, 2003 and 110 shares thereafter. Only
stocks that are included in the index (either DAX100 before April 2003 or
HDAX from April 2003) at a specified point in time are considered in the
optimization at this time. Furthermore, we examine whether all data are
available for the implementation of the models, for example, the consensus
forecasts regarding dividends per share or earnings per share. If not all data
that are required for the empirical examination are available, the respective
share is not used in the optimization for this point in time. This procedure
allows for an optimization that, at a certain point in time, contains a stock,
which is no longer in the index after this point in time; thus, in this empiri-
cal examination, a survivorship bias is nonexistent. The number of shares
which are optimized over time fluctuates between 8 and 49. Risk-free inter-
est rates are calculated on the basis of the interest yield curve as provided by
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the Deutsche Bundesbank for (remaining) maturities of 1 to 15 years. Data
are extracted from the Thomson Reuters Datastream database.

For any point in time t from June 1, 1999 to December 1, 2008, we apply
all portfolio selection strategies under consideration and several benchmark
strategies. What all our portfolio selection strategies have in common is that
(if necessary) we estimate excess return variances and covariances on the
basis of historical return realizations by way of a single index model, as the
number of stocks sometimes exceeds the number of months in the estima-
tion period, which is 24. The resulting variance-covariance matrix would
not be invertible and the optimization could not be applied. The approaches
under consideration only differ with respect to the estimation or considera-
tion of expectation values of excess stock returns.

As outlined in the second section of this chapter, we take into account
four different valuation models to determine estimates of expected excess
returns on the basis of analysts’ forecasts. In case 1, we apply Equation
(3.2) of DDM for the special situation with a nonflat term structure of
interest rates with T1 �15 and T2 �3. The stock price and the dividend
forecasts for the next three years are taken from Datastream. Case 2
implements Equation (3.4) according to RIM for a nonflat term structure
and also T1 �15 and T2 �3. In order to determine expected returns the
following values are required: dividends per share for the next two years,
earnings per share for the next three years and the last reported book
value per share. With the help of dividends per share and earnings per
share and applying the clean-surplus-relation the book value per share for
the next three years can be calculated. The current book value per share
is determined as the compounded last reported book value per share
BEQi,lr using the predicted return on equity (Ĝi,t�1 / BEQi,lr) as the appro-
priate interest rate

(3.10)

where months (fiscal year-end firm i, t) denotes the number of months
between the end of the fiscal year of firm i and the estimation date t.2 Case
3 is based on Equation (3.7) according to OJM and case 4 on the DCM of
Equations (3.8) and (3.9). The OJM requires the knowledge of current
stock price, dividends per share for the next year, and earnings per share for
the next two years. The cash flow per share for the next three years, the
current stock price, and the debt to equity ratio are input parameters of
DCM. With respect to the determination of the expected rate of return via
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Equation (3.9), firm debt is assumed to be risk free. The true cost of debt
capital will typically be greater than r ( f )

t�1 due to a positive credit spread.
However, such data are not available from the database. The OJM is applied
with a flat term structure of interest rates because the nonflat model is not
necessarily solvable. For all four valuation models, it is necessary to define
the annual growth rate gi of the specified forecasts of firm i beyond the
horizon of current analysts’ forecasts. While Stotz (2004) used gi �g � 6 %
on the basis of the average annual growth rate of the (nominal) gross
national income in Germany from 1980 to 1999, we apply the average of
the last 20 years of the annual growth rate of the (nominal) gross national
income just before the point in time when the respective portfolio selection
takes place. We thus take into account time-varying estimators for future
national growth rates. As a robustness check we also tested the average of
the last 5 or 10 years of the gross national income growth rate and our
results were stable.

Cases 5 to 7 describe portfolio selection strategies that do not rely on
explicit estimations of expected excess returns. In case 5 (holding the mar-
ket portfolio), at each point in time from June 1, 1999, until December 1,
2008, the investor realizes a portfolio structure of risky assets that is identi-
cal to that of the whole supply of all equity shares under consideration
(MKT). In case 6, we assume that the investor adheres to a risky subportfo-
lio with a share of 1/nt for each of the different stocks with nt being the
number of assets in the optimization at time t (EW). Case 7 is defined by
the holding of the variance minimal stock portfolio at each point in time
from June 1, 1999 until December 1, 2008 (MVP). Case 8 refers to the
estimation of expected excess returns at a point in time t as the average of
24 (monthly) excess return realizations from t�23 to t (HIST). Case 9 is
an application of a Bayesian approach of Kempf, Kreuzberg, and Memmel
(2002) (BAYES). Within the approach, a prior estimator of expected stock
returns is combined with information on historical return realizations sum-
marized in the vector Mhist of average historical stock returns. The prior
estimator φ is called the grand mean and is identical to the average histori-
cal return realization over all stocks under consideration. The mean of the
predictive density function MKKM of expected stock returns is then com-
puted as a weighted average of φ ·1 (1: a vector of nt ones) and Mhist. To be
more specific, define Σ as the estimator of the variance-covariance matrix
based on the single index model, E as the unit matrix, T as the number of
historical return realizations under consideration (for our analysis: T �24)
and τ2 as the estimated variance of the historical return estimators of each
stock in relation to the grand mean as the corresponding expectation value
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(3.11)

Then

(3.12)

As a peculiarity of Bayesian approaches, we also have to adjust the variance-
covariance estimator

(3.13)

For all nine cases under consideration, we compute 115 successive opti-
mal (myopic) portfolios from June 1, 1999 to December 1, 2008 with a
time horizon of one month each, subject to short sales constraints 0 xj 1
for all stocks j � 1, … , nt under consideration. We maximize the following
preference function

(3.14)

Assuming constant absolute risk aversion and normally distributed returns
involves this certainty equivalent, which can be maximized instead of the
expected utility (Anderson and Bancroft, 1952; Freund, 1956). Here, X
stands for the nt vector of asset weights; Σ describes the N � N variance-
covariance matrix of asset returns; M is the expected return vector; λ a
parameter of relative3 risk aversion; and µP and σ 2

P are the expected portfo-
lio return and the portfolio variance, respectively. We apply different values
for λ from 0.5 to 3.5 to account for more or less risk averse investors.4 The
optimization is constrained as portfolio weights are restricted to be
between 0 and 1 and the sum of asset weights has to be 1. This seems to be
the practically most relevant consideration, as many investors cannot realize
short sales or get into debt.

For all nine cases and 115 periods of the rolling optimization proce-
dure, we determine corresponding realized portfolio excess rates r(exc)

P,t�1 of
return at time t �1. By this procedure, we get 115 excess return realiza-
tions for nine strategies, that means we obtain 9 �115 �1,035 optimized
portfolios. With µ̂(exc) as the mean excess return over all 115 excess return
realizations and σ̂ (exc) as the corresponding estimator for the excess return
standard deviation, we are able to compute (estimators for) resulting
Sharpe ratios φs� µ̂(exc)/σ̂ (exc) for any portfolio selection strategy under 
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consideration. We extend our analysis to several other performance meas-
ures, e.g., Jensen’s alpha, the Treynor ratio, and the certainty equivalent
according to Equation (3.14).

Table 3.1 presents our empirical results for the nine strategies described
above with a risk aversion parameter of 0.5. The OJM performs best for all
considered performance measures (Sharpe ratio, 5.74%). Regarding the
Sharpe ratio, the equally weighted portfolio (3.41%) and the MVP (1.10%)
follow directly. There are only four strategies that are able to attain a posi-
tive Sharpe and Treynor ratio over the optimization period. The other
rankings (negative ratios) are not listed, as negative Sharpe and Treynor
ratios imply the superiority of a simple riskless investment. The DCM also
performs quite well except for the certainty equivalent. Notice that the
market portfolio is not able to reach a positive excess return on average
from June 1, 1999, to December 1, 2008.

Table 3.2 displays analogous results for a risk aversion parameter of 2.0.
Now RIM outperforms all other strategies for three out of four perfor-
mance measures. The OJM and the equally weighted portfolio share rank 2
and DDM reaches a positive Sharpe and Treynor ratio at least (rank 5).

The outcomes for the most risk averse investor with λ � 3.5 are pre-
sented in Table 3.3. Again RIM performs best (Sharpe ratio, 4.93%) and the
equally weighted portfolio follows directly (Sharpe ratio, 3.41%). The OJM
is ranked on position 4 on average. Therefore, a less risk averse investor
should implement OJM and a more risk averse investor should hold a portfo-
lio according to RIM. Particularly we can advise these two models from the
models based on analysts’ forecasts for an implementation. This is remark-
able, as, e.g., OJM is based on the assumption of a flat term structure of
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Table 3.1 Sharpe Ratios, Certainty Equivalents, Jensen’s Alphas, and Treynor
Ratios for Nine Different Portfolio Strategies With Risk Aversion λ � 0.5

Sharpe Certainty Jensen’s Treynor
No. Strategy Ratio Rank Equivalent Rank Alpha Rank Ratio Rank

1 DDM �0.0563 �0.0085 8 �0.0065 8 �0.0068

2 RIM �0.0123 �0.0022 7 �0.0008 7 �0.0013

3 OJM 0.0574 1 0.0060 1 0.0075 1 0.0067 1

4 DCM 0.0092 4 �0.0014 6 0.0021 3 0.0011 4

5 MKT �0.0086 0.0008 5 0.0000 5 �0.0006

6 EW 0.0341 2 0.0039 2 0.0028 2 0.0027 2

7 MVP 0.0110 3 0.0027 3 0.0008 4 0.0011 3

8 HIST �0.0717 �0.0114 9 �0.0090 9 �0.0094

9 BAYES �0.0075 0.0008 4 �0.0001 6 �0.0008



interest rates, while the DDM which performs considerably poorer seems to
be a much more straightforward approach.

Nevertheless, across all three scenarios, the equally weighted portfolio
performs quite well. As argued in DeMiguel, Garlappi, and Uppal (2009), it
is indeed difficult to find a portfolio selection strategy that is systematically
better than a simple naïve diversification.

Table 3.4 presents the annual market risk premia for six out of all nine
strategies. After estimating individual expected stock returns, the implied
expected excess return of the market portfolio is computed for given cur-
rent market capitalizations. As strategies 5 to 7 are not based on explicit
expected return estimations, we can only refer to the remaining strategies
in order to compute the market risk premia. According to Table 3.4, the
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Table 3.3 Sharpe Ratios, Certainty Equivalents, Jensen’s Alphas, and Treynor
Ratios for Nine Different Portfolio Strategies With Risk Aversion λ � 3.5

Sharpe Certainty Jensen’s Treynor
No. Strategy Ratio Rank Equivalent Rank Alpha Rank Ratio Rank

1 DDM 0.0180 5 �0.0029 4 0.0015 5 0.0019 5

2 RIM 0.0493 1 �0.0008 2 0.0034 1 0.0050 1

3 OJM 0.0224 3 �0.0045 6 0.0020 4 0.0023 4

4 DCM �0.0087 �0.0246 9 �0.0004 8 �0.0011

5 MKT �0.0086 �0.0071 7 0.0000 7 �0.0006

6 EW 0.0341 2 �0.0026 3 0.0028 2 0.0027 2

7 MVP 0.0110 6 �0.0003 1 0.0008 6 0.0011 6

8 HIST 0.0223 4 �0.0108 8 0.0026 3 0.0026 3

9 BAYES �0.0466 �0.0040 5 �0.0020 9 �0.0048

Table 3.2 Sharpe Ratios, Certainty Equivalents, Jensen’s Alphas, and Treynor
Ratios for Nine Different Portfolio Strategies With Risk Aversion λ � 2

Sharpe Certainty Jensen’s Treynor
No. Strategy Ratio Rank Equivalent Rank Alpha Rank Ratio Rank

1 DDM 0.0032 5 �0.0038 7 0.0007 5 0.0004 5

2 RIM 0.0412 1 �0.0002 3 0.0037 1 0.0044 1

3 OJM 0.0277 3 �0.0025 5 0.0029 2 0.0029 2

4 DCM �0.0096 �0.0150 9 �0.0006 7 �0.0012

5 MKT �0.0086 �0.0032 6 0.0000 6 �0.0006

6 EW 0.0341 2 0.0007 2 0.0028 3 0.0027 3

7 MVP 0.0110 4 0.0012 1 0.0008 4 0.0011 4

8 HIST �0.0181 �0.0122 8 �0.0015 9 �0.0022

9 BAYES �0.0311 �0.0020 4 �0.0014 8 �0.0032



market risk premium estimator is lowest for DDM. Low risk premia result-
ing from implied expected returns are in line with the study of Claus and
Thomas (2001) who utilized RIM. With respect to our analysis, RIM and
OJM involve premia of 4.44 percent and 8.63 percent, respectively. This is
much lower than the risk premium of the models based on historical data
with 13.53 percent for the historical strategy and 10.69 percent for the
Bayesian approach. The DCM provides the highest market risk premium
with 15.25 percent.

Apparently, market risk premia estimators vary considerably across these
six approaches as well as across those four which are based on analysts’
forecasts. Certainly, deeper theoretical investigations are necessary in order
to identify the reasons for this finding. At any rate, one may not conclude
that those approaches which perform best for portfolio selection purposes
are also most suited for market risk premia estimation, as a superior perfor-
mance points to the fact that the corresponding return expectations are not
identical to market expectations. The adequate estimation of market risk
premia will thus remain an issue.

CONCLUSION

The object of this chapter was to analyze the relevance of estimation mod-
els on the basis of analysts’ forecasts for portfolio selection purposes and
for the computation of market risk premia estimates. We presented four
valuation models that are utilized for the derivation of implied expected
stock returns: the dividend discount model, the residual income model, 
the Ohlson/Jüttner-Nauroth model, and the discounted cash flow model.
In our empirical study, we implemented these four models and several
benchmark strategies in order to obtain and to compare the out-of-sample
performance of the corresponding portfolio selection strategies. We found
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Table 3.4 Annual Market Risk Premia for Six
Different Approaches

Market 
No. Strategy Risk Premia

1 DDM 0.0129

2 RIM 0.0444

3 OJM 0.0863

4 DCM 0.1525

8 HIST 0.1353

9 BAYES 0.1069



that the Ohlson/Jüttner-Nauroth model performs best for a low risk aver-
sion and the residual income model outperforms all other models for mod-
erate and higher risk aversions. Nevertheless, simple naïve diversification
performs in a satisfying way in all three scenarios. This chapter presents
further evidence that it is difficult to systematically beat simple passive
portfolio selection strategies.

Furthermore, we estimated the market risk premium with six out of all
nine strategies under consideration. The lowest premium was estimated with
the dividend discount model, and the discounted cash flow model produced
the highest market risk premium. As market risk premia vary considerably
across all approaches under consideration, further effort will be necessary in
order to identify the computation method which is most adequate.
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NOTES

1. For the general empirical setting, see Breuer, Feilke, and Gürtler
(2008). 

2. See Daske, Gebhardt, and Klein (2006), p. 11. 
3. To be more precise, λ is an investor’s relative risk aversion for a rate of

portfolio return of just zero.
4. In Breuer and Gürtler (2008) it is shown that plausible values of λ

approximately are between 1 and 2. We slightly extend the interval
upward and downward to allow for nonconventional investors.
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ABSTRACT

The market timing ability of fund managers remains a major research
issue in finance. In the Australian context, greater personal responsibility
is now required for retirement incomes via superannuation fund invest-
ments of individuals. Accordingly, the performance of these funds is an
issue of major public policy importance. To some extent any assessment of
performance is model specific, and therefore a possible concern is that
results obtained are due to model risk or misspecification. This chapter
extends the previous literature by exploring the market timing ability of
Australian superannuation funds using the class of nonlinear smooth tran-
sition models. This chapter develops a tiered definition of market timing
ability in terms of strong form, mild form and weak form. The analysis
shows that the conventional models used to measure market timing ability
of Treynor and Mazuy (1966), Henriksson and Merton (1981), and Merton
(1981) are appropriate for measuring market timing ability and therefore
in this context the findings are not due to model risk. Consistent with the



previous literature, we find only limited evidence in support of strong mar-
ket timing ability.

INTRODUCTION

The issue of an aging workforce has led Australia, like many other coun-
tries, to move from a publicly funded pension system to a retirement
incomes system in which individuals now have greater personal responsibil-
ity for their retirement incomes through long-term investment vehicles
such as superannuation investments. This has led to a strong increase in
individual share ownership and managed funds investments by individuals.
Thus, comparable to a range of other countries, there is now a greater
interest in fund performance in the Australian context, around a range of
issues such as performance persistence and market timing ability. The ques-
tion of market timing ability is of great importance, in terms of the benefits
of investments through managed funds.

The market timing ability of Australian funds have been studied by a num-
ber of authors. Hallahan and Faff (1999) find little evidence of market timing
ability on the part of Australian equity trusts. International equity funds have
been studied by Benson and Faff (2003) and Gallagher and Jarnecic (2004),
who find an absence of market timing ability and no gains in terms of superior
returns from active management. Do, Faff, and Wickramanayake (2005) find
no market timing ability on the part of Australian hedge funds. Sinclair (1990)
finds evidence of perverse market timing ability on the part of Australian
managed funds. However, Sawicki and Ong (2000) find reduced evidence of
perverse market timing ability for managed Australian funds after condition-
ing on publicly available information along the lines of Ferson and Schadt
(1996), with a particularly strong role found for the dividend yield variable.
Further, Prather, Middleton, and Cusack (2001) find no evidence of market
timing ability for Australian managed funds in an analysis focusing on the role
of management teams. Holmes and Faff (2004) study multisector trusts and
find greater evidence of negative market timing once an allowance is made for
volatility timing in the analysis. Gallagher (2001) finds that the lack of evi-
dence supporting market timing ability is not overcome by including a wider
set of assets than only equities in the benchmark portfolio. The range of mod-
els used in the analysis raise queries about the extent to which the results are
driven by model risk or misspecification; the present study explores this matter
via consideration of a more general model.

The majority of previous studies make use of the Treynor and Mazuy
(1966) quadratic market models and/or the Henriksson and Merton (1981)
and Merton (1981) dual beta models in their assessment of the measurement
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of market timing ability. In a recent paper Chou, Chung, and Sun (2005)
propose extending the Henriksson and Merton (1981) model to a more gen-
eral case of the threshold regression model in the assessment of the perfor-
mance of U.S. mutual funds. This chapter extends the Chou, Chung, and
Sun (2005) analysis in a variety of ways. First, using the Henriksson and
Merton (1981) and Merton (1981) dual beta models as a base, we provide an
extended definition of market timing ability that allows for three tiered
states of market timing ability, specifically, strong, mild, and weak. Second,
we then provide a more general nonlinear model in which to test market
timing ability that nests the Treynor and Mazuy (1966) quadratic market
model, the Henriksson and Merton (1981) and Merton (1981) dual beta
model, and the logistic smooth transition regression model of Teräsvirta and
Anderson (1992), and its subsequent generalization by Granger and
Terasvirta (1993) as special cases. Third, we then conduct a test of the mar-
ket timing ability of Australian wholesale and retail superannuation funds
using this generalized modeling framework. Interestingly, our results sup-
port the use of the Treynor and Mazuy (1966) and Henriksson and Merton
(1981) and Merton (1981) models as appropriate for measuring market 
timing ability, relative to the more complex nonlinear models. Thus, our
findings show in the present context that model risk or misspecification
issues are not driving our timing performance results. Further, consistent
with the previous literature, we find only limited evidence in support of
strong market timing ability.

The plan of this chapter is as follows. In the second section in this chap-
ter, we outline our modeling framework that develops our tiered approach
to measuring market timing ability, and our nested modeling structure.
This chapter’s third section then provides the empirical results of our test
of the market timing ability of Australian wholesale and retail superannua-
tion funds. The final section then contains some concluding remarks.

MODELING FRAMEWORK

A major model on which tests of the market timing ability of funds is
assessed is the dual beta model of Henriksson and Merton (1981) and Merton
(1981). In this section we propose a more general framework for modeling
market timing that allows us to generalize to a tiered definition (strong, mild,
weak) of market timing ability and a general model that includes the Treynor
and Mazuy (1966) quadratic market model, the Henriksson and Merton
(1981) and Merton (1981) dual beta model, the Terasvirta and Anderson
(1992) and Granger and Terasvirta (1993) logistic smooth transition model,
and the constant beta model as special cases. Our aim is to derive a basis for
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determining the market timing ability of fund managers in the general case of
K market conditions and when fund managers react in a continuous and
smooth manner to all changes in market conditions.

For the purpose of the analysis we assume that the capital asset pricing
model is the base model, however, we allow beta to vary depending on mar-
ket conditions. This, in part captures the Pettengill, Sundaram, and Mathur
(1995) critique of the Fama and French (1992) results, although we poten-
tially allow for the more general setting of K states. Thus, we allow the
betas to vary depending on the contemporaneous excess market return,
(Rmt �Rft) into K sets of market conditions. As an extension of Merton
(1981), we partition the excess market return into K ordered subsets
defined by the boundary parameters ξ1 � ξ2 � …� ξK�1. Assuming that K
discretely different target betas η1, η2, …, ηK are chosen by the fund man-
ager, where ηK is chosen if the forecast of the excess market return falls kth
in the interval, R(k) then, β(R*) �η1I1� …� ηkIk, where, R*t � (Rmt � Rft), Ii

is an indicator variable for the i th set of market conditions. Provided the
fund manager is rational, then ηk � ηk�1 for all k � 1, …, K � 1.

Let qk; k �1, …, K; 0 � qk � 1 represent the fund manager’s uncondi-
tional probability that the excess market return will fall in the kth subinter-
val. Let pik be the known conditional probability that the one step ahead
excess market return will fall in interval k at time t �1, given that it actu-
ally fell in interval i at time period t. Then

In this setting β(t) is a random variable and we can define θ (t)�[β(t) �b]
as the unanticipated component of β. Then conditional on (Rmt �Rft) ∈R(i)

we have 

Therefore, the excess fund return can be expressed as (Rpt �Rft)� α �[β(t)]
(Rmt �Rft)�εpt or (Rpt �Rft) � α � [b �θ(t)](Rmt � Rft) � εpt, which by substi-
tution we can write as,
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Ordinary least squares estimation of the equation yt � α � β1x1t � …�

βKxKt � wt, with xit defined as above, yt ≡ (Rpt � Rft) and wt the disturbance
term, provides consistent estimates of the parameters βi � ΣK

k�1 pik ηk for 
I � 1. . . K. Therefore, if we assume that a rational fund manager will be
one who attempts to increase/decrease risk only when market conditions
improve/worsen, a fund manager will be a good market timer if and only if

s�1
Σ
K

pis ηs �
s�1
Σ
K

Pks ηs for i � k. Then to generalize these conditions to the case
where the fund manager responds to all movements in the excess market
return, we let K → ∞ and assume that the fund manager’s systematic risk is
a continuous function of the excess market return (Rm �Rf). We then define
three tests for market timing ability. In order of the strength of the timing
ability, they are as follows.

Strong-Form Market Timing Ability

This test requires that the value of beta satisfies β(x � ζ ) � β (x) for all x
and all ζ � 0 . In other words, beta is a monotonic increasing function of
the excess market return. Strong-form market timing ability is concluded
when the estimates of the coefficients governing the positive relationship
between the excess market return and risk are significant.

Mild-Form Market Timing Ability

This test requires that the value of beta satisfies β(x � ζ) β(x) for all x and
all ξ � 0 and β(x � ζ ) � β(x)for some x and all ζ � 0 . Mild form market
timing ability is concluded when the threshold model applies and δ̂, the esti-
mated differential value of the up market slope, is significantly positive.

Note that this test does not give special attention to the behavior of beta
for (Rm �Rf) near zero. Despite the fact that up and down beta formulations
have proven popular in tests of asset pricing (see Pettengill, Sundaram, and
Mathur (1995)) and are based around the switching at a return interval
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around zero, we adopt a more general approach that allows for multiple
thresholds that do not necessarily give special weighting to the zero value.
If a fund beta is an increasing function of the excess market return in a
small neighborhood of zero but a decreasing function of the excess market
return everywhere else, then for most values of the excess market return,
the manager acts in a perverse manner. In other words, even though the
return on the fund is positively affected by his actions when the excess mar-
ket return is in the small neighborhood around zero, outside this neighbor-
hood the rebalancing decisions are perverse. Note that for the threshold
Merton (1981) model, with a threshold value denoted by c, the mild-form
market timing ability holds when the up-market beta is larger than its
down-market counterpart because in that case β(x � ξ) 	 β(x) ∀ x and for
∀ ξ � 0 and β(c �ς1) � β(c � ς2) ∀ ς1, ς2 � 0. The point we are making
with our mild-form market timing ability conditions is that for any gain to
occur through timing decisions, the fund manager must rebalance appro-
priately for at least some values of the excess market return while not taking
perverse timing decisions elsewhere in other return intervals.

Weak-Form Market Timing Ability

This is a test that requires that the average value of beta corresponding to 
(Rmt �Rft) � Median (Rmt�Rft) is less than the average value of beta corre-
sponding to (Rm�Rf)t 
 Median (Rm � Rf)t. In other words since we have an
estimated beta for each value of (Rmt � Rft), we can take the average of this
series on each side of the median value of (Rmt � Rft). The procedure used for
this ‘test’ is not inferential but rather based on descriptive statistics alone. We
simply compare the average value of the estimated up-market beta with the
average estimated value of the down-market beta. If the average value of the
estimated up-market beta is larger than the average value of the estimated
down-market beta, we conclude in favor of weak-form market timing ability.

The point of this condition is that for a fund manager to make a favor-
able difference, at the very least, we would expect that on average when the
market is up the beta will be larger than when it is down. Consistent with
the approach above of not assigning a special a priori significance to the
zero value, we choose the median as the demarcating value.

The most general form of the empirical model that we consider is yt�α1�

α2Dt � β1x1t � δ · Dt · x1t � β2x2t β3x3t � β4x4t � β5x5t � β6x6t � εt , where 
yt � (Rpt � Rft), x1t � Rmt � Rft and xlt � (Rmt � Rft) · Rt

*l�1 for l � 2,3,4,5,6,
Rp, Rm, Rf and R*t represent the return on the fund portfolio, the market port-
folio, the risk-free rate, and the market condition transition variable, respec-
tively. In addition, Dt is where the excess market return is greater than a
threshold and zero otherwise.
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This general formulation nests within a number of the popular models
used in the assessment of market timing ability and thus allows analysis of
the importance of model risk. In the Merton (1981) testing framework 
R*t � (Rmt � Rft) is the contemporaneous excess market return. The logistic
smooth transition model (LSTM) can be approximated by a model in which
α2, β5, β6, and δ are set equal to zero. The quadratic market model of
Treynor and Mazuy (1966) can be obtained by setting α2, β3, β4, β5, β6, and
δ equal to zero. The threshold dual beta model of Merton (1981) can be
obtained by setting α2, β2, β3, β4, β5, and β6 equal to zero. Each of these
models can be extended to allow the intercept to vary dichotomously with
changes in market conditions by allowing for α2 values not equal to zero.
Finally, setting all of the parameters to zero except for α1 and β1 produces a
model where the beta risk is constant. The Treynor and Mazuy (1966)
model has been used in previous tests of Australian fund performance (see
Sawicki and Ong (2000), Gallagher (2001), Prather, Middleton, and Cusack
(2001), Benson and Faff (2003), Gallagher and Jarnecic (2004), Holmes and
Faff (2004)). The Henriksson and Merton (1981) and Merton (1981) dual
beta model has also been used in previous tests of Australian fund perfor-
mance (see Sinclair (1990), Hallahan and Faff (1999), Gallagher (2001),
Prather, Middleton, and Cusack (2001), Benson and Faff (2003)).

The first stage of our empirical analysis involves the nonlinearity tests of
Luukkonen, Saikkonen, and Teräsvirta (1988) and Tsay (1989). The
Luukkonen, Saikkonen, and Teräsvirta (1988) testing methodology has
been shown by these authors (1988) and Petrucelli (1990) to have good
power against the threshold (dual beta model with endogenous threshold)
and LSTM forms in small samples. In addition it was designed to have good
power against nonlinearity of a general form. For cases where we cannot
reject the null hypothesis of linearity, we do not proceed with further mod-
eling and conclude that there is an absence of market timing ability. How-
ever, if the null hypothesis of linear model is rejected, we then go on to
estimate the general model and all 13 nested nonlinear alternatives that can
be produced by setting zero restrictions on the alpha and beta parameter
values. From this set of 13 models we then choose a best model on the basis
of the modified Akaike information criterion (AIC) derived by Fox (2000).
After a model is chosen, we then perform the strong, mild, and weak form
tests of market timing ability.

EMPIRICAL RESULTS

Australian superannuation funds data obtained from the ASSIRT rating
agency were used for our empirical analysis. Monthly returns of 30
wholesale and 40 retail funds for the period May 1991 to July 2002 were
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collected. We used the All Ordinaries Accumulation Index as a market
proxy and the 13-week Treasury bill as a proxy for the risk-free asset.
The excess market return was calculated as the difference between the
return on the market portfolio and the risk-free rate.

We selected balanced funds with investment in multiple sectors to ensure
that our sample captured active changes in portfolio weights in response to
changing market conditions. Wholesale funds represent those superannua-
tion funds for which the contribution from the employee/investor is indi-
rect. The employer of the company makes the investment choice. Although
some large employers allow some choice to employees, the choice is quite
limited. For retail superannuation funds, employees invest directly in their
fund of choice. Generally, retail funds are more expensive than wholesale
funds because they engage financial advisers to market the funds. They also
charge entry and exit fees to contributors and spend more on advertising to
attract investors. Thus retail funds tend to be more competitive than whole-
sale funds. Wholesale funds enjoy more economies of scale and may not
need investor-level competition. This data is unique in that with it we are
able to address the role that choice plays on fund performance. This is a
major public policy issue with the federal government in Australia legislating
for greater choice in funds for employees.

Although the transition variable, R*t, can be any indicator of market con-
dit ions, our empirical results are based only on an excess market
return–based model since this is the variable that must be used in tests of
market timing ability. We begin our model selection process by testing for
nonlinearity using the Luukkonen, Saikkonen, and Teräsvirta (1988) and
Tsay (1989) test statistics. The rejection counts for each of the tests and the
significance levels are reported in Table 4.1. In general, the results vary
across the tests. For both the retail and wholesale fund, there is only slight
evidence of nonlinearity.

Table 4.1 reports the results of nonlinearity testing using the Luukkonen,
Saikkonen, and Teräsvirta (1988) and Tsay (1989) test statistics for the sam-
ple of wholesale and retail funds. Rejection counts are reported at three sig-
nificance levels (1%, 5%, 10%) for the three versions of the Luukkonen,
Saikkonen, and Teräsvirta (1988) test (S1, S1*, S3) and the two versions of
the Tsay (1989) test (Tsay and Tsay*).

For cases where any of the five nonlinearity tests reject, we then esti-
mated the most general form of the empirical model and all of the 13
nested nonlinear alternatives and choose the model with best performance
on Fox’s (2000) modified AIC. Using the excess market return as the transi-
tion variable, we estimate the nonlinear models for 14 of the 30 wholesale



funds, and 22 of the 40 retail funds. In our modeling we explore setting the
threshold at zero versus endogenous estimation of the threshold value. In
all cases the modified AIC supports the models with the endogenously esti-
mated threshold values and as such these are the focus of the results
reported in this chapter.

The results are reported for the wholesale funds in Table 4.2 and for the
retail funds in Table 4.3. For the wholesale funds, the modified AIC tends
to choose either the Treynor and Mazuy (1966) or the Merton (1981) dual
beta model as the preferred model with a time-varying intercept. The
endogenously estimated thresholds are evenly spread across positive and
negative values. A total of five funds exhibit abrupt beta transition (the cases
where δ is in the model chosen by the modified AIC), while the remaining
nine funds exhibit smooth transition around the threshold. In terms of mar-
ket timing ability, only one fund (w7) shows strong market timing ability in
that beta is a monotonic increasing function of the transition variable and
β2 is significantly positive. Another two funds (w10 and w29) also exhibit
weak-form market timing ability in that their average beta in the upper
regime is larger than their average beta in the lower regime.

For the retail funds, the modified AIC tends to choose the endogenous
threshold Merton (1981) dual beta model as the preferred form with and
without a time-varying intercept. The endogenously estimated thresholds
are evenly spread across positive and negative values. In total, 13 of the
funds exhibit abrupt transition (the cases where δ is in the model chosen by
the modified AIC), while the remaining nine funds exhibit smooth transition
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Table 4.1 Nonlinearity Testing for Wholesale and Retail Funds

S1 S*1 S3 Tsay Tsay*

WHOLESALE FUNDS (N � 30)

Transition Variable

Rm � Rf

1% 0 1 0 0 2

5% 1 2 3 1 5

10% 7 4 7 5 9

RETAIL FUNDS (N � 40)

Rm � Rf

1% 0 0 0 1 0

5% 4 3 2 2 3

10% 9 5 7 13 9



Table 4.2 Estimates of the Nonlinear Models for Wholesale Funds: Excess Market Return as Transition Variable

Fund α1 α2 β1 β2 β3 β4 β5 β6 δ c|L AIC Model
–
βL

–
βU

w2 �0.189 0.596 0.463 �0.062 �0.605 0.8836 DBM 0.44 0.40
(�1.046) (2.760) (13.655) (�1.359) 49

w4 �0.482 1.029 0.554 �0.007 �0.605 0.8570 TM 0.57 0.53
(�2.227) (3.298) (16000) (�2.003) 49

w7 �0.288 �0.824 0.217 0.013 4.903 0.4754 TM 0.19 0.26
(4.903) (�2.181) (10.615) (3.642) 118

w10 �0.749 0.915 0.183 0.004 �4.415 0.5359 TM 0.17 0.20
(�1.857) (2.255) (7.451) (0.981) 16

w19 0.173 0.714 0.422 �0.018 �0.002 4.198 0.7681 0.44 0.33
(2.055) (2.377) (13.561) (�3.242) (�4.051) 111

w27 0.859 �0.931 0.731 �0.016 �0.003 �1.796 0.8022 0.73 0.63
(2.776) (�2.453) (11.042) (�3.064) (�3.971) 38

w29 0.138 �9.100 0.450 1.125 5.146 0.2461 DBM 0.45 0.72
(1.571) (�0.707) (16.34) (0.639) 119

w31 0.851 �0.766 0.634 �0.017 �0.002 �1.796 0.8124 0.65 0.54
(2.939) (�2.196) (9.963) (�3.425) (�2.161) 38

w33 0.208 0.523 �0.118 �4.415 0.7848 DBM 0.43 0.41
(2.529) (9.474) (�1.825) 16

w36 0.066 0.562 0.401 �0.133 0.860 0.8117 DBM 0.40 0.27
(0.572) (2.698) (13.553) (�2.246) 69

w37 0.276 0.560 �0.125 1.912 0.8169 DBM 0.56 0.47
(2.496) (21.351) (�2.018) 86

w40 �0.034 1.015 0.192 �0.075 0.011 0.002 �0.000 �0.000 0.860 0.774 1.40 �0.4
(�0.204) (2.847) (1.813) (�3.167) (2.378) (2.666) (�2.117) (�2.162) 69

w42 0.267 1.108 0.394 �0.019 4.198 0.7948 TM 0.44 0.33
(2.785) (2.835) (13.070) (�3.450) 111

w43 0.288 0.805 0.384 �0.016 4.198 0.7341 TM 0.42 0.33
(2.773) (2.206) (12.096) (�3.372) 111

AIC, Akaike information criterion; DBM, dual beta model; TM, Treynor and Mazuy model.
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Table 4.3 Estimates of the Nonlinear Models for Retail Funds: Excess Market Return as Transition Variable

Fund α1 α2 β1 β2 β3 β4 β5 β6 δ c|L AIC Model
–
βL

–
βU

rms36 0.208 0.29 �0.116 �2.202 0.5226 DBM 0.23 0.17

(1.972) (8.008) (�2.103) 30

rms37 1.161 �1.322 0.461 �0.050 �0.005 0.0006 0.00005 �1.649 0.4954 0.5 0.28

(3.196) (�3.463) (5.447) (�2.728) (�1.928) (2.228) (1.796) 39

rms38 1.084 �1.079 0.383 �0.212 �1.649 0.3071 DBM 0.29 0.17

(3.009) (�2.867) (5.573) (�2.762) 39

rms320 �2.317 2.442 �0.150 0.328 �4.415 0.4967 DBM 0.1 0.18

(�4.348) (4.531) (�2.441) (4.966) 16

rms321 �1.980 2.058 �0.053 0.229 �4.415 0.5181 DBM 0.12 0.18

(�3.885) (3.98) (�0.797) (3.219) 16

rms324 �1.115 1.192 0.039 0.176 �2.476 0.6440 DBM 0.16 0.22

(�4.949) (5.028) (1.365) (4.714) 24

rms56 �0.413 0.529 0.244 0.001 0.008 0.0003 �0.0001 �0.0000 �2.202 0.8454 0.31 0.32

(�1.067) �1.408 (4.63) (0.047) (2.642) (0.522) (�2.800) (�1.642) 30

rms57 �0.656 0.794 0.235 0.092 �2.202 0.7575 DBM 0.29 0.33

(�2.521) (2.874) (6.067) (1.895) 30

rms74 0.039 0.329 �0.192 �2.476 0.2878 DBM 0.2 0.14

�0.321 (4.239) (�2.063) 24

rms75 0.119 0.53 �0.154 �2.146 0.7375 DBM 0.45 0.38

�0.999 (16.840) (�2.595) 24

rms710 �0.004 2.291 0.423 �0.431 4.333 0.8072 DBM 0.42 0.28

(�0.056) (2.836) (24.135) (�3.182) 112
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Table 4.3 (Continued)

Fund α1 α2 β1 β2 β3 β4 β5 β6 δ c|L AIC Model
–
βL

–
βU

rms713 0.181 0.926 0.556 �0.026 �0.003 4.198 0.7715 0.58 0.42

(1.559) (1.862) (14.900) (�3.107) (�3.212) 111

rms714 0.225 0.959 0.368 �0.018 4.493 0.7306 TM 0.41 0.31

(2.312) (2.336) (11.526) (�3.747) 115

rms715 0.092 0.301 �0.287 4.493 0.8211 DBM 0.3 0.22

(0.976) (14.753) (�2.987) 115

rms716 0.047 3.379 0.453 �0.587 4.493 0.7792 DBM 0.45 0.28

(0.586) (3.176) (19.001) (�3.334) 115

rms721 0.214 0.508 �0.144 2.272 0.6925 DBM 0.51 0.41

(1.897) (15.361) (�2.282) 88

rms722 �0.022 �0.950 0.626 0.034 �0.003 �0.000 3.225 0.7622 LSTM 0.54 0.67

(�0.196) (�2.205) (10.201) (2.787) (�2.971) (�3.358) 99

rms725 0.144 1.194 0.528 �0.026 �0.002 4.464 0.8271 0.57 0.41

(1.365) (3.363) (15.555) (�4.376) (�3.565) 114

rms726 0.115 0.516 �0.121 �2.146 0.8539 DBM 0.45 0.4

(1.300) �18.741 (�2.668) 32

rms727 0.097 0.806 0.412 �0.010 4.198 0.8353 TM 0.44 0.38

(1.132) (3.402) (17.037) (�2.716) 111

rms728 0.593 �0.820 0.482 �0.009 �1.640 0.65 TM 0.5 0.45

�3.090 (�2.678) (11.883) (�2.029) 40

rms730 0.272 1.363 0.432 �0.026 4.493 0.6926 TM 0.5 0.34
(2.0510) (2.256) (9.509) (�3.880) 115
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around the threshold. None of the funds exhibit strong market timing abil-
ity. Four funds (rms320, rms321, rms324, and rms57) exhibit mild-form
market timing ability in that δ̂ is significantly positive. Another two funds
(rms56 and rms722) also exhibit weak-form market timing ability in that
their average beta in the upper regime is larger than their average beta in the
lower regime. In general, the results support a lack of market timing ability
for both wholesale and retail funds.

Table 4.2 reports the results of the model chosen by the modified AIC
for the 14 wholesale funds for which nonlinearity was identified by any of
the five tests when the excess market return is used as a transition variable.
The table reports parameter estimates and t statistics (calculated using
White (1980) standard errors) for the null hypothesis that the coefficient
equals zero in parentheses. In the tables c and L are the threshold and num-
ber of observations in the lower regime, respectively, while 

–
βL and –

βU are
the average of the fitted values for beta over for the excess market return
less than the median and larger than the median, respectively.

Table 4.3 reports the results of the model chosen by the modified AIC
for the 22 retail funds for which nonlinearity was identified by any of the
five tests using the excess market return as a transition variable. The table
reports parameter estimates and t statistics (calculated using White (1980)
standard errors) for the null hypothesis that the coefficient equals zero in
parentheses. In the tables c and L are the threshold and number of observa-
tions in the lower regime, respectively, while –βL and –βU are the average of
the fitted values for beta over for the excess market return less than the
median and larger than the median, respectively.

CONCLUSION

This chapter has explored the market timing ability of Australian super-
annuation funds. In the exploration, the chapter has generalized the 
Henriksson and Merton (1981) and Merton (1981) dual beta model to a
definition that allows a tiered approach (strong, mild, weak) to market tim-
ing ability and developed it using a class of nonlinear models that captures
the Treynor and Mazuy (1966) quadratic market model, the Henriksson
and Merton (1981) and Merton (1981) dual beta model, and the logistic
smooth transition model of Teräsvirta and Anderson (1992), and Granger
and Teräsvirta (1993) as special cases. In this context our analysis of
Australian wholesale and retail superannuation funds finds that the simpler
models of Treynor and Mazuy (1966) and Henriksson and Merton (1981)
and Merton (1981) are more appropriate than the more complex nonlinear
models of market timing ability, suggesting our findings are not sensitive
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to the model risk of extending these simpler models to a set of general
nonlinear alternatives. This is an important finding given that these two
models constitute the workhorses for testing market timing ability in the
literature. Finally, our empirical results show a general absence of market
timing ability consistent with the previous literature.
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ABSTRACT

Recent debacles have raised the alarm that risk modeling is the main chal-
lenge for the financial community in the coming years. Model risk arises
either from employing inappropriate models to describe a given economic
dynamic or violating modeling assumptions. In this view, model risk con-
cerns pricing models as well as quantitative risk assessment tools. Indeed,
the violation of the classic Gaussian assumption as well as the negligence
or underestimation of the well-known correlation risk (i.e., leverage effect
in credit derivatives market) strongly impairs valuation and risk assessment
processes. Under such a setting, we investigate the distributional proper-
ties of asset returns, and then propose a sound and simple measure of the
corresponding correlation risk. Nowadays, such concerns are of huge sig-
nificance in the era of increased asset comovements and asymmetric reac-
tions to financial and economic shocks (e.g., subprime crisis). We focus on
the link prevailing between credit default swap spreads (as a credit risk
proxy) and the U.S. financial market (as a market risk proxy) in a world
free of distributional assumptions. The relationship between CDX spreads
and Dow Jones Composite Average index return is investigated with the
flexible least squares regression method. We care about bad scenarios
where a decrease in the U.S. market index triggers an increase in CDX



spreads. Namely, we focus on the downside risk so that the evolution of
the Dow Jones Composite Average index returns impairs CDX spreads
(i.e., widening of credit spreads).

INTRODUCTION

Recent debacles (e.g., LTCM hedge fund default in 1998, Amaranth col-
lapse in 2006, and the subprime crisis since summer 2007) have raised the
alarm that proper risk modeling is the main challenge for the financial com-
munity in the coming years. Model risk arises from an estimation error
embedded in the assessment process of a specific economic phenomenon.
Basically, model risk can be considered as a component of operational risk
because it represents the potential failure in assessing the phenomenon
under consideration. Originally, such assessment risk arises from the poten-
tial violations of the assumptions underlying the model that is in use 
(Derman, 1996). For example, many valuation models are founded on basic
assumptions such as Gaussian returns, market liquidity, and preference-free
framework so that we can assume a risk-neutral world. However, current
studies have shown the frequent violations of such assumptions. Another
source of error comes from neglecting the correlation risk between either
financial assets (Barberis, Shleifer, and Wurgler, 2005; Dungey et al., 2006;
Fender and Kiff, 2004) or market segments, namely the link prevailing
between various risk sources (i.e., violation of some independency assump-
tions). For example, some authors show the skewed and fat-tailed nature of
asset returns (Black, 2006; Taleb, 2007), whereas behavioral finance focuses
on the importance of investor preferences in asset price determination
(Amromin and Sharpe, 2005). On the other hand, Abid and Naifar (2006),
Collin-Dufresne, Goldstein, and Martin (2001), Ericsson, Jacobs, and
Oviedo (2004), Gatfaoui (2005, 2008), Gordy (2000), and Merton (1974),
among others, showed the interaction between credit markets and equity
markets (i.e., systematic factors). Consequently, applying classic models,
which rely on basic violated assumptions, generates valuation biases known
as model risk. Hence, model risk results from a mistaken valuation process
because either the model is inappropriate2 (i.e., erroneous dynamic) or
assumptions are violated (i.e., nonrealistic world representation). Such
issues favored the emergence of back-testing techniques to check for the
validity of models as well as related scenario analysis to check for the model
output and behavior, depending on the future economic and/or financial
state, which will materialize (Peters, Shevchenko, and Wüthrich, 2007).
The model performance is usually assessed through the analysis of its 
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corresponding error (e.g., pricing error and misspecification of parameters,
incorrect risk measurement in terms of biased profit and loss profile, see
Kato and Yoshiba, 2000; Hull and Suo, 2002; Frey and McNeil, 2003;
Cont, 2006; Nalholm and Poulsen, 2006).

Most credit risk determinants in use consist of credit spreads, namely
the difference between corporate yields and corresponding Treasury
yields. Credit spreads represent a compensation for the credit risk borne
by investors. Such credit risk indicators are highly correlated with credit
default swap (CDS) spreads, which are mainly default risk fundamentals
but also liquidity determinants (Longstaff, Mithal, and Neis, 2005; Zhu,
2006). Indeed, Blanco, Brennan, and Marsh (2005) studied the equiva-
lence between CDS prices and credit spreads.3 Moreover, the correlation
between credit risk indicators and equity market determinants is widely
documented (Merton, 1974; Ericsson, Jacobs, and Oviedo, 2004; Abid and
Naifar, 2006; Gatfaoui, 2008).4 For example, Merton (1974) supports the
significance of equity volatility in explaining credit spread levels. Analo-
gously, Ericsson, Jacobs, and Oviedo (2004) exhibited equity volatility as a
key determinant of the CDS spreads describing senior debt. In the same
line, Abid and Naifar (2006) studied the influence of equity volatility on
CDS rates in terms of level and daily changes, whereas Gatfaoui (2008)
quantified the impact of changes in both an equity market benchmark’s
returns and equity market’s implied volatility on credit defaults swap
spread changes. Basically, several credit-risky instruments bear a nonneg-
ligible portion of market/systematic risk insofar as these assets are traded
within the financial market. Since the equity market bears a huge part 
of systematic risk as well, credit and equity markets should be correlated
to some large extent. Namely, a well-chosen equit y market index 
should be a good representative of the systematic/market risk factor,5

which should help explain observed credit and CDS spreads (Sharpe,
1963). Along with academic and empirical research, we investigate the
link prevailing between CDS spreads and the Dow Jones Composite 
Average index (DJC) return on a daily basis. We study the response of
CDS spreads to moves in stock market benchmark’s returns without spe-
cific distributional assumptions (i.e., no a priori probability setting).
Namely, we focus on a bad scenario where CDS spreads increase (i.e., an
increase in credit risk level, a worsening of credit market conditions)
when DJC return decreases (i.e., a degradation of financial market condi-
tions, an increase in systematic risk level). Specifically, downside risk is
focused on through a negative link between CDS spreads and DJC
returns over time.
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DATA

We introduce the data and related stylized facts over the studied time hori-
zon. Rather than focusing on recent history, a general prevailing link is tar-
geted. Such a link is all the more important during stable time horizons
because it strengthens during disturbed times (Fisher, 1959).6

Description

Daily data run from September 20, 2005, to August 14, 2006, for a total of
225 observations per series. We first consider the return of DJC expressed
in basis points (R_DJC) as a proxy of market/systematic risk factor. The
fact an index represents the market is not necessarily linked to the number
of assets it encompasses (provided that the number of assets lies above the
minimum admissible threshold). It depends rather on the way it is built, and
two schools deal with this topic. The first school relies on the Markowitz
(1952, 1959) diversification principle telling us that 30 assets suffice to
build a diversified portfolio. The second school relies on statistical princi-
ples advocating at least 100 assets or a few hundreds of assets in a market
benchmark, such as the S&P 500 index. But Campbell and colleagues
(2001) have shown that the S&P 500 index still encompasses a nonnegligi-
ble part of idiosyncratic risk. Therefore, the informational content of
selected data and a convenient definition of the relevant phenomenon
should be targeted.7

Second, we consider a set of eight Dow Jones CDX indexes (DJCDX),
which are CDS-type indexes tracking the CDS market as well as related
liquidity side.8 Specifically, DJCDX indexes are Dow Jones aggregate credit
derivative indexes, which represent credit risk fundamentals. The first six
indexes under consideration are DJCDX North America credit derivative
indexes. They refer to entities (i.e., issuers) domiciled in North America
and dist r ibuted among f ive sectors. We label them NA_IG,
NA_IG_HVOL, NA_HY, NA_HY_BB, NA_HY_B, and NA_XO repre-
senting investment grade, investment-grade high volatility, high yield, BB-
rated high yield, B-rated high yield, and crossover DJCDX indexes,
respectively. Investment-grade indexes consider good and higher credit
quality reference obligations/credits (i.e., BBB- to AAA-rated credits with
low default risk). High yield indexes consider speculative grade credits, dis-
tressed debt, as well as some weaker BBB-rated credits. Crossover index
NA_XO expresses credit rating divergences between Standard & Poor’s and
Moody’s rating agencies across BB/Ba–BBB/Baa rating classes. Finally, the
last two indexes under consideration are DJCDX emerging markets credit
derivative indexes. They refer to entities domiciled either in Latin America,
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Eastern Europe, Middle East, Africa, or Asia. We label EM and EM_DIV
as the emerging markets and emerging markets diversified DJCDX indexes,
respectively. The EM index is based on sovereign entities, whereas
EM_DIV is founded on both sovereign and corporate entities.

Basically, DJCDX credit derivative indexes are equal-weighted indexes,
except the EM index whose weights depend on the decisions of CDS
IndexCo LLC. Moreover, CDX indexes are reviewed regularly (i.e., issuers’
selection and corresponding reference obligations) and updated on a semi-
annual basis. Finally, we consider the spreads of DJCDX indexes against
appropriate LIBOR rates (see www.markit.com for more details about the
aggregation and computation/update process of indexes).9 Those CDX
spreads are expressed in basis points.

Properties

As regards time series properties, DJC return and DJCDX spreads are
asymmetric and fat tailed (Table 5.1). Apart from the EM_DIV index,
DJCDX spreads have negative excess kurtosis. Moreover, the NA_HY
index exhibits the highest average DJCDX spread, whereas the NA_IG
index exhibits the lowest one (i.e., lowest credit risk level). An unreported
Phillips-Perron test10 showed a stationary DJC return and first order inte-
grated DJCDX spreads (i.e., stationary daily changes).

Unreported Kendall and Spearman correlations between DJCDX
spreads and DJC return yielded mitigated results with regard to their
respective sign. Obtained estimates are insignificant at a 5 percent bilateral
test level (i.e., two-sided Student test).11 Specif ically, only the EM,
EM_DIV, and NA_HY DJCDX indexes exhibit negative correlation coeffi-
cients while the other DJCDX indexes exhibit positive correlation coeffi-
cients. Moreover, Kendall and Spearman statistics range from �0.0625 and
�0.0941 for the EM index (i.e., minimum observed values) to 0.0296 and
0.0454 for the NA_HY_BB index (i.e., maximum values).

Consequently, data are generally far from exhibiting a Gaussian behavior
as supported by the goodness-of-fit test in Table 5.2,12 and classic statistical
tools do not allow for detecting any joint link between our chosen market
risk proxy and credit risk fundamentals.

QUANTITATIVE ANALYSIS

Investigating the link between DJCDX spreads and DJC returns, we
address the following question: How does market risk impair credit risk?
We focus specifically on the negative impact of the financial market on 
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Table 5.1 Descriptive Statistics for CDX Spreads and DJC Return

Standard Excess Minimum
Index Mean Median Deviation Skewness Kurtosis* (Maximum)

EM 154.0639 154.7300 27.8717 �0.1584 �0.4742 90.8800

(221.1200)

EM_DIV 102.9907 102.1300 15.4991 0.7123 0.7566 71.9600

(152.2600)

NA_HY_BB 237.0725 240.4400 27.4675 �0.3275 �0.6396 176.5500

(292.9100)

NA_HY_B 313.9764 310.6200 26.9951 0.0117 �0.3855 250.9800

(382.7800)

NA_HY 348.1687 344.1000 32.8510 0.4284 �0.1431 284.0900

(449.4400)

NA_IG_HVOL 88.5607 89.1900 10.7279 �0.1817 �0.9118 64.3900

(108.9600)

NA_IG 43.7473 44.2200 3.7758 �0.2183 �0.5853 34.0000

(51.1700)

NA_XO 204.2981 211.5600 24.3584 �0.3938 �0.7453 147.6400

(257.5000)

R_DJC 3.5220 6.5810 80.0253 0.1164 0.4459 �214.4586

(245.6136)

* The excess kurtosis is simply the kurtosis coefficient minus 3 (i.e., deviation from the benchmark Gaussian
kurtosis). It assists in identifying distribution tails relative to the Gaussian probability law. A time series with a
positive excess kurtosis (i.e., peaked, leptokurtic distribution) exhibits fatter distribution tails than the Gaussian
law. The probability that extreme values may occur is then higher than the probability of extreme values for the
Gaussian distribution. In the reverse case (i.e., flat, platykurtic distribution), the time series exhibits thinner
distribution tails than the Gaussian probability law.

Table 5.2 Goodness-of-Fit Test for a Gaussian Distribution

Index Anderson-Darling* Estimated Mean Estimated Standard 
Deviation

EM 0.8052 154.0639 27.8717

EM_DIV 1.9641 102.9907 15.4991

NA_HY_BB 1.4296 237.0725 27.4675

NA_HY_B 1.1337 313.9764 26.9951

NA_HY 1.5667 348.1687 32.8510

NA_IG_HVOL 2.3511 88.5607 10.7279

NA_IG 1.5331 43.7473 3.7758

NA_XO 4.1120 204.2981 24.3584

R_DJC† 0.5021 3.5220‡ 80.0253

* Adjusted Anderson-Darling statistic accounting for finite sample and parameter uncertainty.
† The Gaussian probability distribution assumption is validated.
‡ Nonsignificant at a 5% test level, all other parameters being significant.



corporate credit market, namely the downside risk (Gatfaoui, 2005). For
this purpose, we run flexible least squares (FLS) regressions of observed
DJCDX spreads on observed DJC returns over the time horizon under
consideration (i.e., investigating a dynamic linear link). Such a method is
powerful since no probability assumption is required for the data.

Econometric Study

The FLS regression method was formerly introduced by Kalaba and 
Tesfatsion (1988, 1989, 1990). Such econometric method allows for run-
ning regressions with time-varying parameters, capturing some instanta-
neous link between random variables with robustness in terms of sample
size. The efficiency of the method is such that systematic moves of regres-
sion coefficients such as unanticipated regime shifts (e.g., structural breaks
or jumps at dispersed time points) are handled. Moreover, this methodology
is also robust to outliers, nonstationary data as well as correlated data,
among others. Such a feature is quite convenient given that market returns
are stationary, whereas credit spread returns are not stationary. Finally, FLS
setting requires no distributional assumptions or properties about the data
under consideration, except the following implicit assumptions. Indeed,
applying FLS linear regression principle assumes that both a linear link
exists locally between the variables under consideration, and regression
coefficients evolve slowly over time. The local linear link is supported by
considering data, which are expressed in the same units and exhibit the
same order of magnitude.13 Consequently, we apply FLS method to run
regressions of a given DJCDX spread S on DJC return

St � at � bt � R_DJCt � vt (5.1)

where time t ranges from 1 to 225, at and bt are time-varying trend and
slope regression coefficients, and vt is a residual measurement error. Coeffi-
cient at represents the DJCDX spread component that is unexplained by
DJC return (i.e., idiosyncratic/unsystematic trend over time), whereas bt

coefficient catches the dynamic link between DJCDX spread and DJC
return (i.e., instantaneous correlation risk indicator).14 Therefore, we
expect the trend coefficient to be positive, whereas the slope coefficient can
be either positive or negative. Such slope coefficient captures the asymmet-
ric response of DJCDX spread moves to shocks on DJC returns. Indeed, it
quantifies both how DJCDX spreads change in directional terms, and the
extent to which these spreads change subsequent to a change in DJC return
(i.e., magnitude of CDS spread moves). In particular, FLS method helps
account for two market influences. First, the linear link between DJCDX
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spread and DJC return (i.e., equity volatility impacts credit spreads) catches
market price risk. Second, market volatility risk is handled through the time
variation of the slope coefficient (i.e., the magnitude of bt over time reflects
the impact and significance of market volatility risk).

Given optimal cost parameters c1 and c2, the following objective function
F is minimized:

(5.2)

Minimizing function F yields a goodness-of-fit criterion since function F
represents the estimation costs of relation (Equation (5.1)). The first term
of F is simply the sum of squared regression residuals, whereas the remain-
ing terms represent the weighted sums of squared dynamic specification
errors.15 Specifically, the weights represent the cost parameters, which
account for FLS coefficient variations. The lower the cost parameters, the
more volatile are the time-paths of related regression coefficients.16 Con-
versely, the higher cost parameters are, the smoother (i.e., more regular and
stable) corresponding coefficient time-paths. The set of possible FLS solu-
tions is called residual efficiency frontier by Kalaba and Tesfatsion (1988).
Such efficiency frontier represents the pairs of sums of squared regression
residuals and dynamic specification errors, which satisfy the quadratic mini-
mization in Equation (5.2), conditional on the observed data.

Discussing Optimal FLS Choice

The optimization program solving for the cost function’s minimization
yields FLS estimates, which belong to the efficiency frontier. Any FLS
choice on the efficiency frontier is arbitrary (Kalaba and Tesfatsion, 1996).17

However, Kalaba and Tesfatsion (1989) underline that “residual measure-
ment errors and residual dynamic errors are anticipated to be symmetrically
distributed around zero.” Therefore, in line with the implicit assumption
about generally smooth time-varying coefficients and previous statement,
we condition the optimal criterion on the quality of regression residuals.
Namely, the best FLS estimates yield regression residuals, which are
approximately symmetrically distributed around zero so that they evolve
around this threshold in a stable way with the lowest standard deviation.
The approximate distribution criterion we apply is so that we allow for a
deviation margin of 10 percent around the perfect 50 percent level. Basi-
cally, we allow for observing at least 40 percent (or at most 60 percent) of
estimated regression residuals to be above zero, and the other 60 percent
(or 40 percent) to be below zero.
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Results

Optimal cost parameters are 0.001 apart from the EM, EM_DIV, and
NA_HY indexes for which c1 is 0.10, and NA_HY_B for which c1 is 10. 
As a robustness check, Table 5.3 displays statistical information about
regression residuals. Observed standard deviations and percentage statistics
show the stable evolution as well as the closeness of residual levels to the
zero threshold. Moreover, residuals exhibit an approximate balanced disper-
sion around zero.18 Regression trends at are stable (Figure 5.1) over time,
whereas bt slope coefficients are highly volatile over time (Figure 5.2). As a
result, DJCDX spreads exhibit a stable default component (i.e., a stable
unsystematic/idiosyncratic component), whereas they exhibit an extremely
volatile market-based component (i.e., volatile systematic/market compo-
nent). Moreover, the descriptive statistics displayed in Table 5.4 advocate
the nonconstancy assumption about regression parameters. Indeed, the
standard deviation levels are far from being zero, which confirms Kalaba
and Tesfatsion’s (1989) statement.19 As an extra investigation, unreported
results confirmed the stationary and white noise patterns in regression
residuals while estimating simple and partial autocorrelations as well as
Phillips-Perron and Ljung-Box statistics.20

With regard to Figure 5.1, the NA_IG index exhibits the lowest unsys-
tematic component over time, whereas NA_HY exhibits the highest one.
Moreover, the idiosyncratic CDX spread components tend generally to
decrease until the end of the first quarter 2006 and start increasing during
the second quarter 2006 (i.e., higher default risk level). A structural break
seems then to arise from a reversal in the previous decreasing trend of most
CDX spreads. Generally speaking, the default risk level (i.e., idiosyncratic
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Table 5.3 Statistics About Regression Residuals

Standard 
Index Median Deviation Prop% � 0 Prop% � 0 |Prop%| � 0.0001*

EM �4.2967E–07 4.16E–06 50.6667 49.333 88.8889

EM_DIV 5.4555E–08 1.0086E–06 49.7778 50.2222 93.7778

NA_HY_BB 4.4582E–07 9.6578E–08 44.8889 55.1111 95.5556

NA_HY_B 2.6733E–06 4.6557E–06 41.3333 58.6667 83.5556

NA_HY 1.7917E–06 5.0681E–06 43.5556 56.4444 85.3333

NA_IG_HVOL 5.6814E–07 1.1697E–08 40.4444 59.5556 96.8889

NA_IG 1.1589E–07 2.739E–09 40.8889 59.1111 98.2222

NA_XO 6.2802E–07 6.4137E–08 41.7778 58.2222 94.2222

* Proportion of residual observations lying below this threshold in absolute value.
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Figure 5.1 Flexible Least Squares Regression Trend Coefficient
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CDX spread component) is lower at the end of the studied time horizon than
at the beginning. The previous stylized facts support a strong relationship
between credit risk fundamentals and equity volatility (i.e., equity market).
Specifically, the low, realized volatility level supports persistent and tight
credit spreads over our time horizon. Possible explanations result from the
firms’ financial stability and propitious financing environment coupled with a
low correlation risk within the stock market (Beil and Rapoport, 2008).

With regard to Figure 5.2, the prevailing link between CDX spread lev-
els (i.e., credit risk fundamental) and DJC return level (i.e., market risk
proxy) illustrates the dynamic dependence of credit risk relative to market
risk. Hence, the slope coefficient bt represents a dynamic correlation risk
measure. Figure 5.2 exhibits a highly fluctuating and sign-varying instanta-
neous correlation risk between DJCDX spreads and DJC return. Such a
stylized fact probably explains the failure of classic statistical tools to cap-
ture the (instantaneous) correlation risk prevailing between credit markets
and equity markets. Targeting the joint credit risk and market risk evolu-
tion, we focus on the sign of bt regression coefficients. Specifically, a nega-
tive bt coefficient means that DJCDX spread increases when DJC return
decreases, and the converse.21 In the worst case, credit risk increases
(through CDS spread widening) when market risk increases (through DJC
return tightening). To get a view, we compute the proportion of positive
and negative values of bt coefficients over our studied time horizon for each
DJCDX index (Figure 5.3).

The proportions of observed negative bt slope coefficients lie generally
above the proportions of observed positive bt slope coefficients over the
t ime hor izon under considerat ion,  except for the NA_HY_BB,
NA_HY_B, and NA_IG_HVOL indexes. Such a stylized fact tends to
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Table 5.4 Statistics About Time-varying Regression Coefficients

Trend at Slope bt

Standard Standard
Index Mean Median Deviation Mean Median Deviation

EM 158.5191 157.9222 36.4352 �0.2333 �0.0411 7.0738

EM_DIV 102.8709 103.2003 9.7011 �0.0597 �0.0013 1.7182

NA_HY_BB 237.2983 234.3079 573.2639 �0.0117 0.0021 0.2315

NA_HY_B 303.8953 303.8389 0.0093 �0.1039 0.0107 7.2588

NA_HY 339.3182 339.6218 45.4022 �0.1846 �0.0211 7.0929

NA_IG_HVOL 88.3319 86.7457 97.3956 0.0058 0.0007 0.0407

NA_IG 43.7308 43.6557 10.5388 0.0021 �0.0005 0.0073

NA_XO 203.0801 200.7260 423.9249 �0.0039 �0.0034 0.2116



support an average negative relationship between credit risk fundamentals
and market risk proxy.

Unreported computations handled Spearman correlation coefficients
between the first order differences of DJCDX spreads22 (i.e., daily varia-
tions ∆St � St � St�1) and the first order differences of DJC return (i.e.,
daily changes ∆R_DJCt). All correlation coefficients are negative and signifi-
cant at a 1 percent bilateral test level. Therefore, DJCDX spreads and DJC
return tend to evolve in an opposite way over the time horizon under con-
sideration. Moreover, previous correlation coefficients range from �0.3584
for the EM index to �0.1541 for the NA_HY_BB index. As an extension,
the joint evolution of first order differences of both DJCDX spreads and
DJC return was also considered (Table 5.5). Table 5.5 considers the respec-
tive signs of the first order differences of DJCDX spreads and DJC return,
and summarizes the cases where those signs are identical and reverse, as
compared with the total number of observed cases (i.e., a total of 224 obser-
vations for first order differences time series). The proportion of simultane-
ous reverse changes in both ∆St and ∆R_DJCt is far above the proportion of
simultaneously correlated changes in both ∆St and ∆R_DJCt. The lowest
and highest rate of correlated joint daily variation is 33.9286 percent and
45.5357 percent for the EM and NA_HY_BB indexes, respectively, whereas
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the respective lowest and highest rate of converse joint daily variation is
53.5714 percent and 65.6250 percent for the NA_HY_BB and EM indexes,
respectively. Such feature confirms the general worst case-joint trend for
credit and market risks over the studied time horizon. Therefore, market
risk tends to impair credit risk over the time horizon under consideration.

In conclusion, it is possible to decompose CDS spreads into a pure
default (i.e., nonsystematic) component and a systematic component, which
is linked to the equity market. The default CDS spread component evolves
in a stable way over the studied time horizon but exhibits a reversal during
the first half of 2006. In an opposite way, the systematic CDS spread com-
ponent is highly fluctuating. Moreover, the instantaneous correlation risk,
as represented by the slope coefficient, is also highly volatile and exhibits
frequent sign changes. Such features suggest to model credit spreads while
accounting for a stable time-varying trend, which undergoes deviations
subsequent to shocks arising from moves in the equity market. Hence, the
correlation between the credit market and the equity market needs to be
taken into account in a dynamic and volatile way. Finally, equity market
moves tend generally to impact the credit market in a negative way. The
negative equity market influence dominates while driving the credit market.
The previous results are significant for credit risk and market risk manage-
ment prospects such as value-at-risk implementations. Related implications
are twofold. First, the impact of equity markets has to be taken into
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Table 5.5 Proportions for Joint Changes in CDX Spreads and DJC Return

Correlated behavior Reverse behavior

CDX CDX CDX CDX
spreads spreads spreads spreads
increase decrease increase decrease
and DJCI and DJCI and DJCI and DJCI

return return return return
Percentage* increases decreases Sum decreases increases Sum

EM 12.5000 21.4286 33.9286 31.2500 34.3750 65.6250

EM_DIV 16.5179 25.0000 41.5179 272321      308036 58.0357

NA_HY_BB 18.7500 26.7857 45.5357 25.4464 28.1250 53.5714

NA_HY_B 15.6250 28.1250 43.7500 24.1071 31.6964 55.8036

NA_HY 15.6250 25.8929 41.5179 26.3393 31.6964 58.0357

NA_IG_HVOL 18.3036 24.1071 42.4107 28.1250 29.0179 57.1429

NA_IG 15.6250 25.0000 40.6250 27.2321 31.2500 58.4821

NA_XO 16.9643 24.5536 41.5179 28.1250 29.9107 58.0357

* All probabilities do not sum to 100% since CDX spreads remain stable in less than 1% of cases.



account. Second, the correlation between equity and credit markets needs
to be soundly measured under a time-varying setting. Failing to account for
those two features will engender estimation biases while assessing credit
risk under the Basel II landscape. Indeed, the Basel II setting (Basel Com-
mittee on Banking Supervision, 2006, 2009a,b,c) sheds light on the main
standards for sound risk management practices (i.e., regulatory capital
framework). In particular, three cornerstones called pillars I, II, and III
describe such a management process. Pillar I focuses on the minimum capi-
tal requirements implied by the different risk exposures. In this view, sound
risk measurement practices are needed so as to assess fairly and accurately
the risks under consideration as well as the related potential economic
expected losses. Moreover, the potential correlation between asset classes
and within asset classes needs to be seriously considered in both risk miti-
gation and fair risk assessment prospects. For this purpose, model risk and
model validation control processes have to be undertaken (e.g., back-test-
ing). Pillar II strengthens such needs since it focuses on the supervisory
review process. Under this pillar, banks and financial institutions among
others apply their homemade internal processes to assess their specific capi-
tal requirements and to monitor their respective capital adequacy. Basically,
the economic capital modeling and corresponding expected losses rely on
stress-testing methods (i.e., computing expected losses under various future
market or portfolio scenarios23). At this stage, the robustness property and
the stability of the selected model are very important (e.g., model stability,
efficiency, and sensitivity to various market moves or extreme scenarios).
Finally, the risk assessment results inferred from the settings in pillars I and
II are displayed along with pillar III, which requires regular information
disclosure about capital adequacy and risk level assessment (i.e., trans-
parency rules).

CONCLUSION

Under the Basel II setting, model risk concern has gained a significant place
among the risk management community. Such issue requires using appropri-
ate quantitative tools to soundly assess risk. Such tool appropriateness
depends strongly on the statistical profile exhibited by asset prices over time.
Therefore, the statistical profile has to be drawn before running any analysis
in order to emphasize the observed real world and to drive the relevance of
the chosen model. Indeed, the stylized features and properties of price and
return time series often invalidate the use of classic risk measurement tools.
Such an issue applies also to the relationship between CDS spreads and
stock market benchmark returns, which are far from being Gaussian.
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Resorting to FLS regression method, we exhibited the dynamic link pre-
vailing between DJCDX spreads and DJC return. Indeed, the time-varying
trend coefficient illustrates idiosyncratic DJCDX spread components,
whereas the time-varying slope coefficient reflects the instantaneous corre-
lation risk between credit risk and market risk over time (i.e., market
volatility risk). We also quantified the joint evolution of credit risk and mar-
ket risk over our studied time horizon. First, we found stable positive
unsystematic/idiosyncratic DJCDX spread components over time. Second,
the link between DJCDX spreads and DJC return was extremely volatile
and exhibited frequent sign changes over time (i.e., unstable correlation
risk). Therefore, the dependence structure between credit risk (i.e.,
DJCDX spreads) and market risk (i.e., DJC return) is proved to be time-
varying and highly volatile. Finally, we found a general negative link
between credit risk and market risk over the time horizon under considera-
tion (i.e., aggregate static view). Further extension should however study
such a dependence structure in a two-dimension setting (i.e., more accurate
bivariate setting assessing the simultaneous correlation risk) as well as in a
nonlinear framework (e.g., nonlinear Kalman filter methodology). Such an
assessment task could easily be handled, for example, in a multivariate dis-
tribution setting or a copula-based modeling framework (Cherubini,
Luciano, and Vecchiato, 2004; Gatfaoui, 2007).

Finally, the noticeable reversal in the general trend of DJCDX spreads
during the first half of 2006 may be considered ex post as a signal about the
future heat of credit markets. Consequently, the FLS approach may assist
in building useful advanced indicators of credit conditions and credit mar-
ket trend. However, such a useful task requires further investigation.
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NOTES

1. We would like to thank participants at the 4th AFE-QASS conference
( July 2007, Samos, Greece) and the GdRE f inancial r isks day 
(November 2007, Créteil, France), as well as Carsten Wehn for their
interesting questions and comments. We apologize for any missing ref-
erences on the topic. A summarized draft of the paper was formerly
titled “Are credit default swap spreads market driven?” The usual dis-
claimer applies.

2. Model inadequacy refers to the adequacy with the targeted dynamic
rather than the related model’s degree of complexity. For example, esti-
mating a specific dynamic over a past horizon of observed relevant data
to assess a future risk exposure assumes implicitly that the past
observed dynamic will prevail on the future time horizon under con-
sideration. Such stability considerations need to be carefully handled in
terms of risk features, and specifically when the risk position is sensitive
to market and economic reversals (e.g., structural breaks). Of course,
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the role of the considered horizon’s length depends on the risk struc-
ture stability which is assumed (e.g., local risk exposure on a short-
term horizon or global risk exposure over a medium or long-term
horizon). A striking example comes from the asset returns? normality
assumption. Such assumption is valid as long as returns are highly and
homogeneously distributed around their related historical mean so that
extreme return values exhibit a low probability of occurrence.

3. Equivalence is valid under specific assumptions so as to yield an equilib-
rium relationship between CDS prices and credit spreads (e.g., stable
market conditions). During disturbed market times such as the sub-
prime mortgage crisis of 2007–2008, the correlation between credit
spreads and CDS prices drops since CDS prices incorporate additional
information on corporate bond liquidity and credit spread volatility
among others (Das, 2009). However, these two fundamentals encom-
pass much common relevant information about credit risk (i.e., high
correlation).

4. Studies usually consider regressions of credit risk indicators on market
risk determinants among others. Hence, the impact of market/system-
atic factors on credit risk determinants is studied (Abid and Naifar,
2006; Collin-Dufresne, Goldstein, and Martin, 2001; Ericsson, Jacobs,
and Oviedo, 2004; Gatfaoui, 2008).

5. At least, such an index should encompass relevant market information,
be it on an implicit basis (e.g., latent information content).

6. We’ll notice later in this chapter that previous history may encompass
insights of future history.

7. Dow Jones Composite Average index encompasses at least implicitly rel-
evant information about the global financial market’s trend.

8. Credit risk becomes sometimes worse due to a degradation of liquidity
conditions. For example, Ericsson and Renault (2006) exhibited the liq-
uidity component in U.S. corporate credit spreads during the 1990s.
They underlined the decreasing term structure of the liquidity compo-
nent in credit spreads. Indeed, the shorter the credit spread maturity is,
the higher the liquidity component in credit spreads becomes. Specifi-
cally, Longstaff et al. (2005) split the nondefault component in credit
spreads into both a microeconomic component representative of bond-
specific liquidity and a macroeconomic component representative of
corporate market-based liquidity.

9. All data analyzed in this applied research paper were initially extracted
from the Dow Jones Corporation’s Web site. Since January 2007, data
have been provided by Markit Corporation.

10. One percent test level according to Phillips and Perron (1988).
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11. Such a feature may result from the frequency of data, which probably
generates some noise without forgetting the one-lag dependency in
DJCDX spread data. Moreover, the volatile behavior observed from the
daily data renders the correlation analysis more complex.

12. An Anderson-Darling test at a 5 percent level yields generally the rejec-
tion of the normal probability distribution assumption (Anderson and
Darling, 1954). The Gaussian distribution assumption is however vali-
dated for the Dow Jones Composite Average index return (R_DJC).

13. “In particular, the units in which the regressor variables are measured
should be chosen so that the regressors are approximately of the same
order of magnitude.” Kalaba and Tesfatsion (1989).

14. The slope coefficient represents the link with the equity market, and
generally with the broad financial market.

15. The case where the sums of squared dynamic specification errors are zero
corresponds to the ordinary least squares setting. Indeed, such sums are
zero when we require the regression coefficients to be constant.

16. Time-variation in regression parameters is weakly penalized, whereas it
is strongly penalized in the converse case.

17. “Without additional prior information, restricting attention to any
proper subset of the FLS estimate is an arbitrary decision.” Kalaba and
Tesfatsion (1996).

18. The level of regression residuals has to be balanced with the observed
level of default swap spreads, which is globally measured in hundreds of
basis points.

19. “The standard deviation of the FLS kth coefficient estimates about their
average value provides a summary measure of the extent to which these
estimates deviate from constancy.” Kalaba and Tesfatsion (1989).

20. It is convenient to assume white noise residuals when the econometric
relationship captures the most relevant features (i.e., economic sound-
ness and statistical validity). In our case, such a pattern is more than
welcome since our methodology accounts for time-variation in parame-
ters as well as corresponding structural breaks. Indeed, even if markets
are described by nonlinear dynamics, it is always powerful and true to
assume a local time-updating linear dynamic. In the end, the dynamic
is locally linear (i.e., over very short-term windows) but nonlinear over
a larger time scale. Moreover, the time-varying coefficients also handle
volatility changes and clustering to some extent.

21. A negative slope coefficient illustrates an opposite simultaneous evolu-
tion of DJCDX spreads and DJC return.
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22. Recall that DJCDX spreads are based on credit default swap spreads,
which are computed against corresponding LIBOR rates. Therefore,
DJCDX spreads are relative returns per se.

23. Value-at-risk or expected shortfall techniques are often employed.
However, the assumptions, the theoretical and practical limitations, and
the economic as well as financial anomalies describing and surrounding
the selected model require special attention. Previous features are key
determinants of the model?s efficiency, robustness, and validity.
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ABSTRACT

Decomposing a time series into its high- and low-frequency components
has been the object of study in various fields of knowledge since the nine-
teenth century. Such decomposition has gained ground in the finance field
in recent years motivated by the existence of heterogeneous investment
horizons. A mathematical tool developed in the early 1990s, denominated
as wavelets, has become increasingly popular to characterize the short-
and long-term behavior of financial indexes. In particular, in an article
published in 2005, Connor and Rossiter provide an appealing interpreta-
tion of wavelet analysis by pointing out that long-term traders focus on
price fundamentals which drive overall trends, while short-term traders
react to incoming information within a short-term horizon. Such hetero-
geneity, in Connor and Rossiter’s (2005) view, can be modeled by means
of wavelet analysis.

In this chapter, we illustrate the usefulness of wavelets in gauging asset
return co-movement, structural variance shifts, and the overall risk of a
portfolio as measured by its value at risk. Specifically, we concentrate on
the nine Standard & Poor’s Depository Receipts sectors––i.e., consumer
discretionary, consumer staples, energy, financial, health care, industrial,
materials, technology, and utilities––along the period 1999 to 2007.



INTRODUCTION

The extant literature on price transmission has resorted to several statistical
techniques to gauge spillovers and tail dependency. To date, the most popu-
lar ones are vector autoregressive regression (VAR) systems, multivariate
generalized autoregressive conditional heteroscedasticity (GARCH) models
in their various forms, heteroscedasticity-robust correlation coefficients,
and extreme value theory. An alternative approach, which is relatively new
to the finance field, is wavelet analysis. This is a refinement of Fourier
analysis whose origin dates back to the late 1980s, and which offers a pow-
erful methodology for the decomposition of a time series into orthogonal
components at different frequencies. Such frequencies are associated with
short- and long-term fluctuations, which are characterized by their time
location. Put simply, wavelets make it possible to trace the evolution of a
return series within a one-week period, for instance.

Wavelets have several advantages over traditional statistical tools com-
monly utilized in finance. First, given that they enable us to decompose a
time series into its low- and high-frequency components, we can character-
ize a financial index into its trend and the deviations from it. A potential
application of such characterization is cointegration analysis and the quan-
tification of risk diversification. Second, wavelets make it possible to carry
out a variance decomposition of a time series, which yields us information
about the most important contributors to time-series variability. Such
decomposition allows us to test for the presence of variance structural
breaks, for instance. Similarly, a wavelet-based covariance can be computed
for paired time series. The combination of variance and covariance decom-
positions provides us with multiple applications, such as the obtainment of
wavelet-based betas and value at risk (VaR), which are dealt with in this
chapter. Finally, wavelets can be also utilized in forecasting and business-
cycle analysis, given their ability to distinguish among seasonal, cyclical,
and trend components of a time series.

Wavelet analysis has gained more ground in the finance field from the
mid–1990s onward. The main reason for such success is that wavelets rep-
resent an alternative way of looking at different sources of risk (i.e., on a
scaled basis), which is key under the worldwide turbulence experienced by
international financial markets in the past decade.

Recent contributions in this area have dealt with the relation between
futures and spot prices, the estimation of systematic risk of an asset in 
the context of the domestic and international version of the capital asset
pricing model (CAPM), heterogeneous trading in commodity markets,
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selection of an optimal hedge ratio for a commodities portfolio, struc-
tural breakpoints in volatilit y, volatilit y persistence, business-cycle
decomposit ion, and wavelet-based VaR computation, among other
themes. See, for instance, Lin and Stevenson (2001), Gençay, Whitcher,
Selçuk (2003, 2005), Connor and Rossiter (2005), Karuppiah and Los
(2005), In and Kim (2006), Kyaw, Los, and Zong (2006), Fernandez
(2005, 2006a, 2006b, 2007, 2008), Fernandez and Lucey (2007), Lien and
Shrestha (2007), and Yogo (2008). A thorough discussion on the use of
wavelets in finance can be found in the textbook by Gençay, Selçuk, and
Whitcher (2002).

In this chapter, we illustrate several applications of wavelets that are of
interest to practitioners, such as computing time-varying correlations, asset
betas, and a portfolio VaR, and testing for volatility shifts. A wavelet-based
decomposition is mathematically complex to carry out, but nowadays there
exist canned routines built into mathematical languages, which enormously
facilitate its implementation.1

This chapter is organized as follows. The second section of this chapter
briefly introduces the concept of wavelets and various applications. The
third is devoted to an empirical application illustrating the various uses 
of wavelets referred to in the second section, by resorting to the nine 
sectors of the Standard & Poor’s Depository Receipts (SPDR, called 
“spiders”)—consumer discretionary, consumer staples, energy, financial,
health care, industrial, materials, technology, and utilities—along the
period 1999 to 2007. A brief description of these data series also is 
presented in the third section in this chapter, along with discussions on
quantifying the degree of co-movement of the cyclical components of the
sampled spiders, testing for the presence of variance shifts in such cyclical
components, and computing a VaR estimate of an equally weighted port-
folio made up of the nine spiders. This chapter ends with a summary of
our main findings.

Overall, our results have two important implications for risk modeling.
First, as our estimation shows, the degree of co-movement of financial
series depends on the timescale under consideration. This finding suggests
that portfolio diversification gains will vary across individuals, depending
on their investment horizons. Second, similarly to an economic indicator, a
financial index can be decomposed into a cyclical and a trend component.
The cyclical component, which is associated with medium-term fluctua-
tions, may be subjected to variance shifts over time. The presence of such
breakpoints must be taken into consideration when computing a portfolio
potential loss in a medium-term horizon.
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WAVELETS IN A NUTSHELL

Connor and Rossiter (2005) provide an appealing interpretation of wavelet
analysis by pointing out that long-term traders focus on price fundamen-
tals that drive overall trends, while short-term traders react to incoming
information within a short-term horizon. Hence, market dynamics in the
aggregate is the outcome of the interaction of agents with heterogeneous
time horizons. Such heterogeneity, in Connor and Rossiter’s view, can be
modeled by means of wavelet analysis, a mathematical tool developed in
the early 1990s.

Wavelets enable us to decompose a time series into high- and low-fre-
quency components (see, for instance, Percival and Walden, 2000). High-
frequency components describe the short-term dynamics, whereas
low-frequency components represent the long-term behavior of the series.
Wavelets are classified into father and mother wavelets. Father wavelets cap-
ture the smooth and low-frequency parts of a time series, whereas mother
wavelets describe its detailed and high-frequency parts.

In addition, wavelet-variance analysis makes it possible to decompose the
variance of a time series into components that are associated with different
time scales (i.e., time horizon). That is, this methodology enables us to
conclude which scales are important contributors to the overall variability
of a time series at a given time horizon. A concrete application of wavelet-
variance analysis is the computation of a wavelet-based VaR. As discussed in
Fernandez (2006a) and Fernandez and Lucey (2007), one can easily derive
an expression for the VaR of a portfolio based on an empirical representa-
tion of CAPM. And, from such a representation a wavelet-based VaR can
be readily obtained. The usefulness of a wavelet-based VaR is that it yields
an estimate of the potential loss at a particular time horizon, by relying on a
frequency decomposition of the data. In particular, the more volatile com-
ponents of the returns series will contribute more to the overall portfolio
risk. Indeed, such components will be associated with the high-frequency
components of the returns data.

Another application of wavelets we provide in the empirical section deals
with extracting the cyclical component from a time series. In particular,
such procedure allows us to study the co-movement of paired time series
along the business cycle. In other words, once the trend component of each
series has been extracted, we are able to gauge the correlation between the
two at the short and medium-term. (The trend components of the two
series can be also obtained from the above-mentioned wavelet decomposi-
tion. Both trend components will be in turn associated with the long-term
behavior of the series.)
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Wavelet analysis also allows testing for the presence of variance shifts in
the data. This subject is of particular interest to risk gauging. As we know,
failing to account for variance breaks will lead to biased estimates of market
risk (e.g., Fernandez and Lucey, 2007).

In the next section, we illustrate these alternative applications of wavelet
analysis to sector SPDRs. First, we concentrate on the degree of co-move-
ment of the cyclical components of some selected spiders, and study how
they have evolved over time. Second, we explore the presence of variance
shifts along the business cycle in order to test whether the war in Iraq has
turned out to be a source of instability across economic sectors. Third, we
focus on a portfolio made up of the nine above-mentioned spiders and
construct a rolling VaR measure.

EMPIRICAL RESULTS

The Data

Our data set comprises nine years ( January 1999–December 2007) of daily
data of the sector SPDRs, which are exchange-traded funds (ETFs) that
divide the S&P 500 into nine sector index funds. Spiders are traded like
regular stocks on the American Stock Exchange under the ticker symbol
SPY. Each share of a spider contains one-tenth of the S&P index and trades
at approximately one-tenth of the dollar-value level of the S&P 500. Spiders
allow large institutions and traders to keep track of the overall direction of
the U.S. main economic sectors. They are also appealing to individual
investors engaged in passive management.2

The SPDRs include consumer discretionary (automobiles and compo-
nents, consumer durables, apparel, hotels, restaurants, leisure, media, and
retailing); consumer staples (food and drug retailing, beverages, food prod-
ucts, tobacco, household products, and personal products); energy (develop-
ment and production of crude oil and natural gas, drilling, and other
energy-related services); financial (business lines ranging from investment
management to commercial and investment banking); health care (health care
equipment and supplies, health care providers and services, biotechnology,
and pharmaceuticals industries); industrials (aerospace and defense, building
products, construction and engineering, electrical equipment, conglomerates,
machinery, commercial services and supplies, air freight and logistics, airlines,
marine, road and rail, and transportation infrastructure); materials (chemi-
cals, construction materials, containers and packaging, metals and mining,
and paper and forest products); technology (semiconductor equipment and
products, computers and peripherals, diversified telecommunication services
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and wireless telecommunication services); and, utilities (water and electrical
power and natural gas distribution). In addition, our data set includes the
S&P index as a proxy for the market portfolio.

Cyclical Co-Movement over Time

As mentioned in the Introduction section, wavelets enable us to decom-
pose a time series into its cycle and trend. To illustrate, Figure 6.1 and
Figure 6.2 show scatter plots of the cycles obtained for the health and
energy spiders by assuming a zero-mean random walk and taking scales 
1 to 4 from the wavelet decomposition of each index. For both sectors,
the Pearson correlation between the random walk and wavelet-based
cyclical components is around 0.4.3

The cyclical decomposition of the sampled indexes makes it possible in
turn to analyze the co-movement of the high-frequency components of the
data across economic sectors. In other words, the unit-root component
associated with the low-frequency component of the data is removed so that
correlation coefficients are free from spuriousness.

For the sake of brevity, we compute rolling wavelet-based correlation
coefficients for four paired cyclical components: consumer discretionary/
consumer staples, energy/industrials, financial/technology, and health
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care/technology, by taking a rolling window of 450 observations and focus-
ing on scales 2 and 4 (i.e., 4–8 day and 16–32 day dynamics, respectively) of
the paired series. As a benchmark, a rolling-correlation coefficient is com-
puted for the raw data.

A couple of remarks prior to the discussion of our results seem relevant.
First, the window width suffices to make the computation of rolling
wavelet-based correlations numerically feasible. In general, shorter win-
dows tend to cause numerical problems. On the other hand, by choosing a
window as short as possible, our correlation estimates become less sensitive
to the potential existence of structural breaks along the sample period.
Second, gauging the co-movement of paired cyclical components at differ-
ent timescales boils down to describing the degree of synchronicity of
paired de-trended series at alternative time horizons.

Our results obtained for the period 2001 to 2007 are depicted in Figures
6.3 to 6.6. As we see, the behavior of the rolling correlations is similar in
the raw data and at its second scale. This comes as no surprise because each
cycle already summarizes the high-frequency parts of each corresponding
sector spider. By contrast, more noticeable differences arise when compar-
ing the co-movement dynamics in the raw data and at its fourth scale.

For instance, when focusing on Figure 6.6, we see that, while the corre-
lation of health care and technology reached a peak of 0.66 in the raw data
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and of 0.7 at scale 2 during the second and third quarters of 2003, such cor-
relation exhibited a decreasing trend at scale 4 by dropping from around 
0.5 to 0.4 from the second to the third quarter of 2003.

With the exception of the consumer discretionary/consumer staples
pair, we observe a greater degree of co-movement in the raw data and at
its second scale during 2003 to 2004. In particular, the industrial sector
appears to have been more sensitive to the behavior of the energy sector
during that time period. It is possible that the beginning of the war in Iraq
may have been a driving factor behind such a pattern.

On the other hand, it is worth noticing that the cycles of both the
health care and financial sectors were positively and highly correlated
with that of the technology sector for the most part of the sample period.
Specif ically, toward the end of the sample, the correlation exhibited 
by the two pairs was more than 0.6. This finding may be indicative of a
nonnegligible dependence of the financial and health care sectors on tech-
nological issues.

Variance Shifts in SPDR Cycles

Given that the time period we are examining includes two major political
events, namely, 9/11 and the ongoing war in Iraq, it is likely that the sam-
pled series experienced variance shifts. Testing for the existence of such
breakpoints is relevant to risk management as quantifying financial risk
may be quite sensitive to the assumption of variance constancy.

We again concentrate on cyclical components and take a rolling 
window of 450 observations to compute the so-called D statistic (e.g.,
Percival and Walden, 2000, chapter 9). Specifically, we construct a rolling
D statistic during 2001 to 2007 for the second scale (i.e., 4–8 daily
dynamics) of the de-trended consumer staples, health care, technology,
and utilities spiders. A violation of the null hypothesis of variance con-
stancy is encountered when the D statistic exceeds the critical value rep-
resented by the dashed horizontal line at the selected significance value 
(5 percent in this case).

As illustrated in Figure 6.7 and Figure 6.8, the null hypothesis is
strongly rejected for health care and technology during 2001 to 2004
when taking a window length of about two years. This finding seems to
suggest that during this time period the cyclical variability of these two
spider sectors most probably exhibited regime shifts that lasted less than
two years. A similar conclusion is drawn for consumer staples and utilities,
although in these two cases the evidence against the null is not so strong
for 2001.
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When focusing on 2005 to 2007, we find that the evidence against
variance constancy is much less compelling for the four spiders under
consideration. In particular, the cyclical component of the health care spi-
der did not exhibited any variance shifts during that time period when
considering the dynamics at 4 to 8 day horizon.

Rolling Wavelet-based Value at Risk of a SPDR Portfolio

As previously discussed, 2001 to 2004 was a particularly volatile time
period during which the de-trended sampled indexes experienced various
regimens. We further investigate this issue by computing a rolling wavelet-
based estimate of the VaR of an equally weighted portfolio made up of the
nine SPDR sectors.

Specifically, by taking successive rolling-windows of 500 observations
(i.e., about two years of data), we obtain series of 1,763 observation of
wavelet-based betas for each of the nine return indexes at alternative
timescales. The market portfolio is approximated by the S&P 500 index.
Descriptive statistics of the rolling betas at scales 1 to 6 are provided in
Table 6.1. The energy and utility sectors are the ones less subject to sys-
tematic risk, while the opposite holds for the consumer staples and indus-
trial sectors. As reported in previous studies, e.g., Gençay, Whitcher,
Selçuk (2005) and Fernandez (2005, 2006a), the CAPM tends to have more
predictive power at a medium-term horizon (i.e., at the intermediate scales
3 and 4, in this case), as the computed betas tends to reach a maximum at
such scales.

Ninety-five percent VaR estimates for a $1,000 equally weighted port-
folio at scales 1, 3, and 5 (i.e., 2–4 day, 8–16 day, and 32–64 day dynamics,
respectively) are depicted in Figure 6.4. As we see, the portfolio VaR
remained approximately constant during 2001 and the first two quarters
of 2002. From mid–2002 onward, it exhibited an increasing trend to reach
ultimately a maximum and remain relatively stable over 2003 to 2004.
Specifically, the greatest potential portfolio loss over the sample period
was $13, $6.5, and $4 per day at scales 1, 3, and 5, respectively, at a 
95 percent confidence level. Afterward, the portfolio VaR displayed 
a decreasing trend at the three reported scales during 2005 to 2007, 
to end up at a smaller level than that observed in 2001. (At the first 
scale, however, the VaR tends to equal that observed in 2001 toward the
end of 2007.)
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Table 6.1 Descriptive Statistics of Wavelet-based Rolling Betas

SPDR Sector Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6

(a) Mean

Consumer discretionary 0.680 0.683 0.679 0.677 0.675 0.678

Consumer staples 0.757 0.767 0.726 0.782 0.708 0.772

Energy 0.348 0.351 0.326 0.355 0.351 0.362

Financial 0.683 0.670 0.706 0.698 0.715 0.723

Health care 0.732 0.761 0.704 0.721 0.681 0.633

Industrial 0.775 0.779 0.781 0.769 0.775 0.722

Materials 0.530 0.522 0.546 0.553 0.503 0.526

Technology 0.548 0.563 0.539 0.534 0.525 0.516

Utilities 0.489 0.497 0.465 0.539 0.460 0.506

(b) 1st quartile

Consumer discretionary 0.618 0.606 0.634 0.639 0.570 0.660

Consumer staples 0.576 0.559 0.469 0.716 0.527 0.610

Energy 0.212 0.219 0.202 0.228 0.224 0.218

Financial 0.667 0.657 0.701 0.689 0.698 0.669

Health care 0.663 0.703 0.648 0.653 0.602 0.542

Industrial 0.739 0.745 0.737 0.712 0.719 0.659

Materials 0.468 0.472 0.482 0.445 0.431 0.381

Technology 0.443 0.448 0.429 0.459 0.440 0.426

Utilities 0.461 0.405 0.437 0.427 0.405 0.392

(c) 3rd quartile

Consumer discretionary 0.756 0.767 0.746 0.751 0.755 0.777

Consumer staples 0.926 0.943 0.899 0.975 0.899 1.045

Energy 0.520 0.539 0.465 0.522 0.511 0.511

Financial 0.788 0.789 0.798 0.767 0.778 0.850

Health care 0.803 0.863 0.752 0.806 0.752 0.760

Industrial 0.805 0.822 0.815 0.809 0.841 0.769

Materials 0.668 0.655 0.670 0.716 0.624 0.569

Technology 0.603 0.618 0.610 0.600 0.613 0.589

Utilities 0.550 0.551 0.535 0.646 0.504 0.605

The wavelet-based rolling betas are computed by taking a window length of 500 observations and by using
the S&P 500 index as the market portfolio.



As discussed by Fernandez (2005, 2006a) and by Fernandez and Lucey
(2007), and as can be also observed from Figure 6.9, the wavelet-based
portfolio VaR tends to decrease as we move to the upper scales of the
return data. The reason is that the least volatile parts of the sampled series
(i.e., their lowest-frequency components) are precisely located at the upper
scales, which translates into lower portfolio risk.

CONCLUSION

Wavelet analysis has become increasingly popular in the finance field as a
tool to characterize the short- and long-term behavior of financial series.
Such characterization is possible due to the time localization of the high-
and low-frequency components of a time series yielded by the wavelet tech-
nique. A simple interpretation of the wavelet-based decomposition of a time
series is that its high- and low-frequency parts represent, respectively,
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short- and long-term investors’ viewpoints. Specifically, long-term traders
focus on price fundamentals that drive overall trends (i.e., low-frequency
components), while short-term traders react to incoming information
within a short-term horizon (i.e., high-frequency components).

This chapter illustrated the usage of the wavelet technique for gauging
asset return co-movement, structural variance shifts, and VaR at alterna-
tive timescales. Specifically, we concentrated on the nine SPDR sectors—
consumer discretionary, consumer staples, energy, financial, health care,
industrial, materials, technology, and utilities—along the period 1999 
to 2007.

Our estimation results suggest that, in general, a greater degree of co-
movement in the raw data and at its second scale was observed during
2003 to 2004. In addition, we conclude that 2001 to 2004 was a particu-
larly volatile period over which the cyclical components of the sampled
U.S. sector indexes experienced several variance shifts. The existence of
such variance breakpoints had an impact on the overall risk of an
equally-weighted portfolio composed of the sampled indexes. Indeed,
when computing a rolling estimate of the VaR of such a portfolio, 
we find that along the sample period VaR reached its maximum during
2003 to 2004.

From these findings, we conclude that portfolio diversification gains will
be contingent on agents’ investment horizon, and that the presence of vari-
ance breakpoints in the cyclical component of a financial index must be
taken into account when computing VaR.
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NOTES

1. In particular, Gençay, Whitcher, and Selçuk’s 2002 textbook contains
various applications of wavelets written in R, a programming language
and software environment for statistical computing and graphics. A
comprehensive list of wavelet sof t ware can be found at
http://www.amara.com/current/wavesoft.html. In this study, we utilize
S-Plus 8.0 and its library S� Wavelets 2.0.
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2. Daily obser vat ions of spiders can be downloaded f reely at
finance.yahoo.com.

3. Given that wavelet filtering performs poorly at the extremes of a data
series, the first and last 50 observations of each reconstructed cycle are
discarded.
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ABSTRACT

Financial markets have become more interconnected and hence there is a
greater need to understand the volatility of stock returns, given its impor-
tant role in portfolio selection and asset management. An important find-
ing is that when price drops, the volatility of its return typically rises.
There has been extensive research work undertaken which concerns the
apparent asymmetry in the relationship between equity market returns
and volatility. Hence, quite a few explanations have been given for the
observed asymmetry, namely, financial leverage, operating leverage, and
risk premium. This chapter focuses on the analysis of the modeling of the
volatility of the U.S. market. It aims to answer important questions about
the determinants of volatility asymmetry at the individual stock level, in
particular by considering whether volatility asymmetry is a function of
debt-equity ratio for stocks listed in the U.S. market. The analysis uses
the APARCH model, which has proven to be very successful on index
data for a range of countries to construct the measures of volatility asym-
metry. The evidence is not consistent with the stylized arguments of a
leverage effect in that the debt ratio does not seem to be a major variable
that explains volatility asymmetry.



INTRODUCTION

In current market conditions a rigorous approach to risk measurement is
essential. Financial markets have become more interconnected and hence
there is a greater need to understand the volatility of stock returns, given
its important role in portfolio selection and asset management. An impor-
tant finding is that when price drops, the volatility of its return typically
rises. Extensive research work has been undertaken that concerns the
apparent asymmetry in the relationship between equity market returns and
volatility. Hence, there are quite a few explanations given for the observed
asymmetry, namely, financial leverage, operating leverage, and risk pre-
mium. The first explanation is that as the price of stock goes down, a firm’s
financial leverage goes up which explains the higher volatility of stock
returns. The operating leverage argument is that as a firm forecasts a lower
cash f low level, the stock price tends to fall and stock becomes more
volatile. The identification of the determinants of volatility is a model spec-
ification issue. Thus, given the key role that volatility plays in the models of
the risk-return trade-off, this creates a potential model risk problem. That
is, we might draw inaccurate conclusions about the nature of the risk-return
trade-off if we do not model the determinants of volatility accurately.

Early literature on firm level volatility asymmetry has been undertaken by
Black (1976), Christie (1982), Cheung and Ng (1992), and Duffee (1992), and
most of these papers have attributed the asymmetric return-volatility rela-
tionship to changes in financial leverage. However, it can be argued that the
magnitude of the decline in stock prices on future volatilities seems too large
to be explained only by the leverage effect. The more recent literature tends
to focus mostly on index-level volatility attributes which provide another lead-
ing explanation given in the literature that is the risk premium effect; see, for
example, French, Schwert, and Stambaugh (1987), Glosten, Jaganathan, and
Runkle (1993), Bekeart and Wu (2000), and Wu (2001). They argue that an
increase in unexpected volatility will increase the expected future volatility.
Then the risk premium will also increase causing prices to drop. Wu (2001)
finds evidence that both financial leverage and risk premium are important
determinants of volatility asymmetry. While most of the previous studies
have focused on a country index level, the aim of this chapter is to extend the
analysis at the individual firm level with a particular focus on the U.S. market.
In addition, this chapter employs the autoregressive conditional heteroscedas-
ticity (ARCH) family of models introduced by Engle (1982) which in fact
plays a key role for studies in volatility. Following this model, there have been
a number of improved models developed to better capture volatility asymme-
try. A popular model, which captures the asymmetric impact of good and bad
news and a leverage effect, is the asymmetric power ARCH (APARCH)
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model introduced by Ding, Granger, and Engle (1993). They demonstrate
how the simple ARCH model is nested within the general APARCH model.
The applicability of this model has been very successful in developed stock
markets (United Kingdom, Japan, Hong Kong, New Zealand, Germany,
France, Singapore, Canada, and Australia); see Brooks et al. (2000). The focus
in the literature has been mostly the application of the APARCH model at the
country index level. This chapter will make a significant extension to the 
previous literature via the analysis of volatility asymmetry at the individual
firm level using the APARCH model to model risk.

DATA AND MODELING FRAMEWORK

In terms of the data utilized in this study, individual stocks in the U.S. mar-
ket have been considered with a particular focus on daily returns for each of
the companies for a period of five years, 2002 to 2006, which was collected
from DataStream database. The number of companies that were initially
downloaded was 984 firms. As far as the debt ratios are concerned, these
were compiled from the OSIRIS database where information about the
gearing level of the company, long-term debt, short-term debt, and net assets
is available. The data were then cleaned for the five-year period and a new
database created with the returns of each firm and the associated level of
gearing for each of the firms. This process eliminated a number of firms as
there was a mismatch of the firms listed in both of the databases. The final
set of data that was used in the study hence included 710 firms with daily
return data for the five years. In addition to the debt level, some other vari-
ables which are typical of a firm’s characteristics have also been collected,
that is, the size and volume data. The proxy that was used for size is market
value of the firm and these were the average for the five-year period. The
modeling framework will be as follows in the following equation:

(7.1)

(7.2)

(7.3)

The model can be estimated at the individual stock level using daily
returns data in the Eviews package. In Equation (7.1) the returns on the
individual stock index (Rit) follow an autoregressive process and autoregres-
sive lags are included in response to significant lags in the partial autocorre-
lation function for each individual series. In Equation (7.2) the conditional
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errors, εit are allowed to follow either a normal or a t distribution, with a
time varying conditional variance (σ2

it). The conditional variance is modeled
following the APARCH model introduced by Ding et al. (1993). The power
term (d ) in Equation (7.3) captures both the conditional standard deviation
(d � 1) and conditional variance (d � 2) as special cases. The γ and d param-
eters can be used to construct a measure of the degree of volatility asymme-
try at the individual stock level. The volatility asymmetry measure is then
calculated. This measure is used by Jayasuriya, Shambora, and Rossiter
(2005) and Brooks (2007) to compare the degree of volatility asymmetry
across countries. The following formula was applied to calculate volatility:

Volatility Asymmetry � ((1 � γ)/(1 � γ))d (7.4)

Once the volatility asymmetry was calculated, this was mapped on the
following equation to test for the relationship between volatility and gear-
ing level of each firm.

Volatility Asymmetry� f(Debt, Volume, Size, Beta) (7.5)

This cross-sectional analysis explores the relationship between firm lever-
age as measured by the gearing ratio and the estimated volatility asymmetry
after adjustment for other firm level variables such as firm size, volume, and
beta. The results of this analysis will provide information on the determinants
of volatility asymmetry and identify possible model risk issues that flow from a
focus on the relationship between financial leverage and volatility asymmetry.

RESULTS

The market model was estimated for all the firms to provide an estimate of
the values of α and β. For estimation of the model the lagged ARCH terms
(αi) are set to 1 ( p � 1), and then lagged GARCH terms ( βj ) are set to 
1 (q � 1). The asymmetry in the model is captured via the parameter γ and
the power term d is also estimated. In contrast to the current literature
across countries, this study finds there are around 325 firms for which the
power parameter is significantly different from unity. Out of these firms,
there are around 228 where the power parameter ranges between 1.3 to 2
and around 40 firms for which the power term is significantly greater than
2. To estimate Equation (7.2), the normal conditional errors were used.

The volatility asymmetry is then calculated using the metric presented in
Equation (7.4). Of the whole sample of 710 firms, 286 firms have a volatility
asymmetry measure of greater than 3. Equation (7.5) is being run using white
standard error to provide correct estimates of the coefficient covariances in
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the presence of heteroscedasticity. The results are reported in Table 7.1. Table
7.1 reports the results of the regression in Equation (7.5). The tests have been
conducted for all firms and given that the volatility measure includes some
high estimates the test is repeated by trimming extreme deciles, followed by
trimming extreme quintiles, and finally trimming the extreme quartiles. Con-
trary to the results in the current literature whereby the asymmetric return-
volatility relationship is explained by changes in financial leverage, the results
indicate that in the case of the U.S. firms, the gearing level of the firm does
not provide much explanation of the volatility-return relationship. The debt
level is statistically significant at the 10 percent level for all the firms. How-
ever, the sample includes some high value volatility asymmetry measure that
may be driving the results, hence by trimming the extreme deciles, quintiles,
and quartiles, the sample excludes these large estimates. However, the results
differ in that in these three cases the debt level is not significant, though the
volume of trading seems to be significant for all three options used and the
risk measure, beta, is significant when the extreme quintiles and quartiles are
excluded. This suggests that the determinants of volatility asymmetry may
vary across firms which may be an important model specification and risk
issue to be considered in understanding the risk-return trade-off. Table 7.1
reports the results of estimation Equation (7.5) for all firms. The analysis is
also extended by excluding the extreme deciles, quintiles, and quartiles of
firms by volatility asymmetry. Values in parenthesis are p values.
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Table 7.1 Volatility Asymmetry: All Firms

Dependent Variable:Volatility Asymmetry

Trimming Trimming Trimming 
All Extreme Extreme Extreme 

Firms: Deciles: Quintiles: Quartiles:
1–710 71–639 142–568 177–533

c 105389 5.6587 2.4536 2.3669

(0.5621) (0.0002) (0.0000) (0.0000)

Volume 1.7471 �0.0002 0.0000 0.0000

(0.8786) (0.0922)* (0.0024)† (0.0124)†

Market value �0.9605 0.0000 0.0000 0.0000

(0.2213) (0.2284) (0.7103) (0.8478)

Beta 169087 1.9816 0.4232 0.2532

(0.3222) (0.1590) (0.0129)† (0.0618)*

Gearing �599.1774 �0.0045 �0.0003 0.0001

(0.0654)* (0.2878) (0.5959) (0.8680)

* Denotes statistical significance at 10% level.
† Denotes statistical significance at 5% level.



Following the results in Table 7.1, the analysis was repeated by consid-
ering each decile of firms in the sample. The results are summarized in
Table 7.2. The results however do not improve much and are consistent
with the previous analysis, that is, the leverage of the firm still does not
explain volatility asymmetry. Table 7.2 reports the results of Equation
(7.5), with the analysis extended to analyze firms for each decile by volatil-
ity asymmetry. Values in parenthesis are p values.

The analysis was repeated to include the industry classif ication as 
a dummy variable. The industries were obtained from the NYSE. The
classifications are as follows: basic materials (42 firms), consumer goods
(70 firms), consumer services (105 firms), financials (67 firms), health care
(67 firms), industrials (144 firms), oil and gas (55 firms), technology 
(89 firms), telecommunications (17 firms), and utilities (50 firms). The
results are summarized in Table 7.3, which reports the results of Equation
(7.5), with the analysis extended to include industry dummies and the firm
by excluding the extreme deciles, quintiles, and quartiles. Values in paren-
thesis are p values.

Consistent with previous results obtained in this study, debt is statisti-
cally significant when the analysis is done using the whole sample of firms at
the 10 percent level. The volume of trading is significant when the extreme
values are excluded from the sample and the risk measure is significant
when the extreme quintiles and quartiles are excluded. However, none of
the industries’ dummies add any value to this analysis. The regression is
repeated for each decile as in the previous cases, but the results are not
reported here as there is no statistical significance in any of the results
obtained. The analysis was then further extended and the regression was
run for each of the industries separately. The results obtained are still con-
sistent with the general finding of this study in that the level of debt does
not provide the explanation for volatility; hence the results are not reported
in this chapter.

CONCLUSION

Asset return volatilities are central to finance, whether in asset pricing,
portfolio allocation, or market risk measurement. Hence there has been
much focus on time-varying volatility and associated tools for its measure-
ment, modeling, and forecasting of risk. While most of the previous studies
have focused on a country index level, this chapter has explored the applica-
bility of the APARCH model in the context of modeling the volatility of
individual firms in the U.S. market for a period of five years, 2002 to 2006.
The analysis has been conducted by repeating the models using different
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Table 7.2 Volatility Asymmetry—Deciles Analysis

Decile Analysis

D1: D2: D3: D4: D5: D6: D7: D8: D9: D10:
1–71 72–142 143–213 214–284 285–355 356–426 427–497 498–568 569–639 640–710

c 0.7565 1.1876 1.3801 1.6992 2.1279 2.6585 3.5163 5.5698 84.6113 3764985

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0065) (0.3575)

Volume 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 33.3124

(0.2624) (0.0056)† (0.9393) (0.0000)† (0.1611) (0.1072)* (0.2702) (0.8908) (0.3552) (0.8631)

Market value (0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 �0.0003 �3.3739

(0.4359) (0.0002)† (0.7011) (0.9778) (0.1238) (0.1316) (0.4879) (0.7523) (0.1950) (0.7946)

Beta 0.0345 �0.0288 �0.0025 �0.0124 0.0024 �0.0329 �0.1313 �0.1381 �36.4701 �976865.8

(0.6254) (0.0208)† (0.8883) (0.5211) (0.9672) (0.6259) (0.1338) (0.6420) (0.1488) (0.7496)

Gearing �0.0001 0.0000 0.0000 0.0000 �0.0002 0.0001 0.0003 �0.0009 �0.0520 �9169

(0.4171) (0.7288) (0.7696) (0.7607) (0.3983) (0.6846) (0.4019) (0.1678) (0.0591)* (0.2038)

* Denotes statistical significance at 10% level.
† Denotes statistical significance at 5 % level.
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Table 7.3 Volatility Asymmetry and Industry Effects

Dependent Variable:Volatility Asymmetry

Trimming Trimming Trimming 
All Extreme Extreme Extreme 

Firms: Deciles: Quintiles: Quartiles:
1–710 71–639 142–568 177–533

c �90818 7.0499 2.5847 2.5542

(0.5463) (0.0864) (0.0000) (0.0000)

Volume �0.1924 �0.0002 0.0000 0.0000

(0.9871) (0.0500)† (0.0106)* (0.0286)†

Market value �1.0189 0.0001 0.0000 0.0000

(0.3480) (0.1549) (0.7403) (0.9015)

Beta 163190 1.9142 0.4493 0.2714

(0.3443) (0.1596) (0.0093)† (0.046)†

Gearing �653.7862 �0.0070 �0.0003 0.0001

(0.0756)* (0.1460) (0.6555) (0.7846)

Basic materials 50611 �4.1044 0.2054 �0.0181

(0.3728) (0.3159) (0.7579) (0.9735)

Consumer goods �2903 �5.2638 �0.2617 �0.0727

(0.9574) (0.1939) (0.6574) (0.8823)

Consumer services 363659 �3.9264 �0.0725 �0.2544

(0.1574) (0.3353) (0.9032) (0.6020)

Financials 32459.35 �4.3633 �0.3249 �0.3992

(0.5483) (0.2885) (0.5836) (0.4134)

Health care 630820.1 0.8481 �0.1895 �0.2092

(0.3245) (0.8861) (0.7496) (0.6752)

Industrials 17849.53 2.0359 �0.1890 �0.3395

(0.7560) (0.7023) (0.7461) (0.4773)

Oil and gas 326860.1 1.8606 �0.2262 �0.1509

(0.2987) (0.7622) (0.7051) (0.7667)

Technology 459159.7 1.9737 �0.3425 �0.1892

(0.0901) (0.7098) (0.5545) (0.6955)

Utilities 65344.93 �2.7156 0.2404 0.0623

(0.3111) (0.5110) (0.7015) (0.9070)

* Denotes statistical significance at 10% level.
† Denotes statistical significance at 5 % level.

subsamples from the whole data set as well as by including the industry
classification in the models. The results obtained from this study are incon-
sistent with what has been argued in the literature in this area. While most
studies have attributed the asymmetric return-volatility relationship to
changes in f inancial leverage, the results obtained for this volatilit y 



asymmetry measure for this time period in the case of U.S. individual stock
is different. The gearing level of the firm does not seem to be an important
driver of the return-volatility relationship. This suggests that studies that
focus on leverage as the prime determinant of volatility might be exposed
to model risk issues.
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ABSTRACT

In this study, we aim to determine the extent to which the GARCH option
pricing model developed by Duan (1995) is robust in determining varying
parameter estimation methods and in capturing the effects of using differ-
ent objective functions such as implied volatility error, pricing error, per-
centage pricing error, and absolute pricing error on overall and relative
pricing performance. Hence, with an application to S&P 500 index options,
we attempt to discover which parameter estimation method minimizes the
model risk.

INTRODUCTION

Derivative instruments have reached remarkable trading volumes in the last
three decades. Parallel with this remarkable growth, many pricing models
have been developed. Banks and other financial institutions use these math-
ematical models to determine the prices of securities for either speculating
or hedging. As a consequence, they have become increasingly exposed to
some risks such as applying the wrong model, implementing the model



improperly, or using inappropriate data. Known as “model risk,” this notion
occupies more and more the work in the field. For example, in its second
accord, the Basel Committee has expanded the scope of risks that financial
institutions are exposed to in such a way as to cover the operational risk,
one important component of which is the model risk.

There are a number of reasons why building a model can engender some
risks. Derman (1996) provides a comprehensive analysis of the assumptions
of models and the list of their consequent risk. Figlewski (1998) discussed
the reasons that give rise to model risk and groups them as follows:

1. Although a correct model is applied, an incorrect solution may be
obtained due to technical mistakes. For example, the renowned
Black-Scholes option pricing model assumes that the underlying
asset’s volatility is constant, but this simplification does not match
with the observed volatility in the real world. The same argument
holds for the distributional assumptions of the underlying asset.
(Probability distributions are assumed symmetrical in the model,
whereas they can be asymmetrical in reality.)

2. The model may be applied correctly, but not in the way its developers
intended.

3. Due to the errors in numerical solution, badly approximated answers
may be obtained for a correctly formulated problem.

4. Estimations from certain historical data that the model requires may
not satisfy the properties of the variable or parameter. For instance,
there are a number of ways for obtaining volatility estimates such as
finding the variance of historical data, implied volatility, and
generalized autoregressive conditional heteroscedasticity (GARCH)
methods. Each of these methods gives good estimations for different
conditions, some of which have been examined in detail by Figlewski
(1997). For example, while estimating historical volatility with daily
data improves the accuracy for short-term horizons, it does not give
good results for long-term horizons, estimation with monthly data
being more suited (see Figlewski, 1997).

For every model, model risk is an inevitable consequence since each
model is just a theoretical conceptualization of the real phenomena. How-
ever, model risk is more striking in derivative pricing due to the use of
highly sophisticated mathematical techniques in this field. The Black-
Scholes (1973) option pricing model is a base for almost all subsequent
derivative pricing research. Nevertheless, the weaknesses and unrealistic
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assumptions of this model have been thoroughly discussed and reported in
Macbeth and Meville (1979). Many papers such as Merton (1975), Hull and
White (1987), Naik (1993), Amin and Ng (1993), Scott (1997), and Duan
(1995), have developed models which take into account and deal with the
shortcomings of the Black-Scholes model, such as constant volatility, con-
stant interest rate, and lognormality assumptions. Merton (1975) questioned
the continuity assumption in the Black-Scholes model and proposed a jump
diffusion process for stocks returns. Hull and White (1987) modeled stock
returns as a generalized Wiener process. Naik (1993) tried to incorporate
discontinuity and changing volatility in the same model but with a different
approach than Merton (1975) and Hull and White (1987). Amin and Ng
(1993) tried to develop a more realistic model by incorporating stochastic
volatility and interest rate. Scott (1997) took into account all of the devia-
tions, stochastic variance, stochastic interest rate, and discontinuity topics,
which were also addressed by previous researchers. Duan (1995), in his turn,
added the variable variance by introducing the GARCH models. However,
while researchers have tried to approximate the models to real dynamics of
option prices, they have had to use more complex mathematical techniques
which in turn increase the likelihood of being subject to model risk.

Inadequately used or applied models may give rise to many problems for
those who take part in financial markets. As pointed out by Figlewski
(1999), option writers may sell contracts at very low prices or investors may
buy contracts at very high prices, which may lead to bad hedging strategies
or cause market risk and credit risk measures to be significantly erroneous.

As we mentioned previously, model risk arises from different sources and
exist at different levels. Therefore, one can examine a model and its risk
from different perspectives. In this chapter, we mainly focus on the model
risk arising from model specification. We aim to evaluate Duan’s (1995)
GARCH option pricing model for different parameter estimation methods
and determine the sensitivity of the model to different parameter estima-
tion procedures. The following section briefly introduces the GARCH
option pricing model. The third and fourth sections describe the data and
methodology for the analysis. The final section in this chapter presents the
results and the last section concludes the study.

GARCH OPTION PRICING MODEL

GARCH type models have gained widespread acceptance in modeling
volatility of stock returns in finance literature. Duan (1995) developed an
option pricing model by using this strong econometric model of volatility.
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According to GARCH in mean volatility model, stocks are assumed to
follow the below dynamic:

(8.1)

(8.2)

(8.3)

where ln is the natural logarithm, St is the stock price at time t, λ is the risk
premium, εt is a process with zero mean and unit variance, φt is the infor-
mation set, and ht is the conditional variance. To price options, Duan used
the local risk-neutral valuation relationship that allows a valuation under
changing variance. This is different than the traditional risk-neutral valua-
tion which assumes a constant variance. The stock price dynamic under the
locally risk-neutralized measure takes the following form:

(8.4)

(8.5)

(8.6)

After the determination of the process of underlying asset with Equation
(8.4), one can find the option price with strike K and maturity T as the dis-
counted value of conditional expected value of the end of maturity payment
(St � K) under the risk-neutral measure Q, mathematically denoted as follows:

(8.7)

Simulation methods are a natural tool for approximating this expectation.
For the estimation of Equation (8.7), there are a variety of numerical meth-
ods detailed by Boyle, Broadie, and Glasserman (1997). However, a draw-
back of using simulation methods for option pricing is that the simulated
prices may violate the rational option pricing bounds, hence may result in
unreasonable price estimates. Therefore, we prefer the simulation proce-
dure of the empirical martingale simulation developed by Duan and
Simonato (1998) and also used in Duan and Zhang (2001). This method
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incorporates a simple correction to the standard procedure by ensuring that
the simulated paths together are martingales empirically.

DATA

The empirical analysis in this study is based on the data that include quotes
covering the S&P 500 European index options traded on the Chicago
Board Options Exchange from August 22, 2007 to February 27, 2008. We
choose S&P 500 index opt ions for several reasons as many other
researchers do (Hsieh and Ritchken, 2005; Rubinstein, 1994; Bakshi, Cao,
and Chen, 1997; Bates, 1991; Dumas, Fleming and Whaley, 1998). These
options are the most actively traded European-style contracts and provide a
wide range of actively traded contracts with different strikes and maturities.
Since there are a variety of contracts, it is possible to construct the prices of
options with constant moneyness and maturity.

We construct weekly data sets using the official settlement prices on
Wednesday. The general tendency in the literature is the use of Wednesday
data to perform empirical analysis because Wednesday is the day of the
week with the least coincidence with holidays. Although the results may
ignore the seasonal dynamics like the day-of-the-week effect in stock
returns (see Lakonishok and Smidt, 1988; and French, 1980), this allows for
a comparative study. Hence, in line with the general tendency, we construct
weekly data sets using the official settlement prices on Wednesday and end
up with 28 sets, each set containing data for all the available maturities.
Approximately 500 options data are used in the analysis. To avoid liquidity
biases, we exclude from the sample all the options having less than 15 days
to maturity. For the same purpose, we exclude deep-in-the-money and
deep-out-of-the-money options since these are thinly traded and may dis-
tort the information on volatilities. As a result, we only include the options
data within the 0.9 and 1.1 moneyness regions.

Table 8.1 details the number of call options contracts in our empirical
analysis. It shows the groups and their usage in the analysis. As can be seen,
the most prevailing group in moneyness dimension is at-the-money
options, while in maturity dimension the options having more than 60 days
to expiry are the most numerous.

METHODOLOGY

As mentioned in the previous section, we use sets of weekly cross-sectional
option prices, i.e., the data of options with different strikes and maturities.
Although it is possible to employ the time series of S&P 500 index data
instead of option prices to determine the parameters of the model, we 
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prefer cross-sectional option prices because this method takes account of
the information content of the option prices complementing the time series
of the underlying asset.

Parameter estimation requires an optimization procedure to discover
the values of parameters from the data sets. In the literature, it is common
to take the pricing error as the objective function for the corresponding
option pricing model. For instance, Huang and Wu (2004) used the pric-
ing error but with little difference by giving different weights to pairs of
theoretical and market prices. Hsieh and Ritchken (2005) used the pricing
error for their model as did Heston and Nandi (1997). Bakshi, Cao, and
Chen (1997) examined the alternative option pricing models from differ-
ent perspectives such as hedging and out-of-sample pricing. They also use
the pricing error as the objective function for the parameter estimation.
Jackwerth and Rubinstein (1996) derived the risk-neutral probabilities 
of S&P 500 European index options by using the sum of squared differ-
ences of prior from posterior probabilities, which follows the same logic
as that of the pricing error. They also use goodness-of-f it, absolute
difference, and maximum entropy functions as the objective function of the
optimization problem.

These examples show that the pricing error function predominates over
other objective functions such as absolute pricing error, percentage pricing
error, and implied volatility error functions. Each objective function gives
different weights to different error terms. The pricing error function pun-
ishes large errors in comparison to small errors due to the quadratic form,
while the percentage pricing error function attributes a higher importance to
small and high percentage errors. These differences lead to discrepancies in
the optimization procedure. For instance, the pricing error may attribute too
much importance to expensive options, e.g., in-the-money and long-term
options, while giving less weight to cheap options, e.g., out-of-the-money and
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Table 8.1 Number of S&P 500 Index Call Option Contracts by Moneyness
and Maturity

Moneyness Days-to-Expiration Subtotal

K/S �30 30–60 �60

ITM �1.1 30 43 33 (106)

ATM 0.97–1.02 60 78 98 (236)

OTM �0.97 46 60 70 (176)

Subtotal (136) (181) (201) (518)

K, strike price; S, spot S&P 500 index level; ITM, in-the-money option; ATM, at-the-money option; OTM out-
of-the-money option.



short-term options. On the other hand, the percentage pricing may give more
weight to cheap options (out-of-the-money and short-term options) than
expensive ones (in-the-money and long-term options).

In this study, we examine how the results of Duan (1995) GARCH
option pricing model would differ when different objective functions are
implemented in the optimization process. We perform an analysis with four
different objective functions.

1. The implied volatility error function: Let σmod
m.t denote the Black-Scholes

implied volatility under GARCH option pricing model for the option with
exercise price Km and maturity Tt, and σ mkt

m.t denote the corresponding
implied volatility based on the market price. Then, the objective function
for the parameter estimation is

Here, T shows the number of maturities available at a certain week, and
Mt represents the number of exercise prices for the tth maturity. Conse-
quently, N �Σ

T

t
Mt is the total number of options used in the optimization

for a given week.

2. The pricing error function: Let P mod
m.t denote the price obtained by the

GARCH option pricing model for the option with exercise price Km and
maturity Tt, and P mkt

m.t denote the market price. Then, the objective func-
tions of pricing error, absolute pricing error, and percentage pricing error
are as follows:

3. The absolute pricing error function:
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4. The percentage pricing error function:

The parameters α0, α1, β1, λ and ht in Equation (8.6) are estimated by
minimizing the above objective functions. We employ the quasi Newton-
Raphson method with Golden Section Search and quadratic interpolation
for the unconstrained optimization problem as in Duan and Zhang (2001).
We begin the iteration with an initial guess of parameter values and then
obtain the option prices by the empirical martingale simulation with 5,000
sample paths. Parameters are updated until the objective functions reach
their minimum value. The simulation is seeded with the same random
numbers to ensure the continuity of the optimization problem. Therefore,
the optimized parameters and indirectly the performance of the GARCH
model will show discrepancies. If the differences are significant, then users
of the GARCH option pricing model are faced with a model risk due to the
choice of the objective function. For evaluating the performance of the
models, we compare them with the ad hoc version of the Black-Scholes
model (used as a benchmark). For each set of data, we update the volatility
parameter in the Black-Scholes model. Then, the relative performance is
measured by the logarithm of the ratio of the root-mean-square errors
(RMSE) that were obtained from the corresponding objective function
ln(RMSEGARCH/RMSEBS) where RMSEGARCHdenotes the root-mean-
square error obtained from the GARCH model and RMSEBS denotes the
root-mean-square error obtained from the Black-Scholes model. Negative
(positive) values of this log ratio indicate the outperformance (underperfor-
mance) of the GARCH model and when this value is close to zero, both
models perform the same.

EMPIRICAL ANALYSIS

This section presents the results of the empirical analysis we performed on
the S&P 500 index options. Table 8.2 reports the RMSEs of the GARCH
model and its benchmark (the Black-Scholes model) as well as the perfor-
mance of the GARCH model in comparison with this benchmark sepa-
rately for each objective function. A negative value in the Performance
column signifies that the GARCH model outperforms the Black-Scholes
model since the performance is measured by ln(RMSEGARCH/RMSEBS).

132 Part Ii Model Risk related to equity and fixed income investments

Objective
p p pm t m t

mkt
m t
mkt

m

M

4 1=

−
=min

( ) /.
mod

. .

tt

t

T

N

∑∑
=





















1



Table 8.2 Root-Mean-Square Errors and Performance Ratios

OBJ. FN. Implied Volatility Error Pricing Error Absolute Pricing Error Percentage Pricing Error

WEEK RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance

1 0.02 0.03 �0.56 2.23 6.29 �1.03 1.80 2.23 �0.22 0.32 0.58 �0.60

2 0.01 0.03 �0.88 2.39 7.05 �1.08 1.58 2.29 �0.37 0.28 0.55 �0.66

3 0.01 0.03 �1.75 4.95 4.70 0.05 2.12 1.98 0.07 0.36 0.56 �0.45

4 0.01 0.03 �1.28 4.42 8.05 �0.60 2.12 2.39 �0.12 0.25 0.44 �0.57

5 0.03 0.05 �0.41 4.56 8.45 �0.62 1.88 2.47 �0.28 0.29 0.43 �0.38

6 0.02 0.03 �0.31 1.65 45.99 �3.33 1.47 5.07 �1.24 0.24 0.61 �0.93

7 0.01 0.04 �1.76 0.97 23.45 �3.19 1.36 3.23 �0.86 0.31 0.51 �0.48

8 0.01 0.02 �0.79 1.39 3.63 �0.96 1.25 1.67 �0.29 0.19 0.27 �0.35

9 0.01 0.02 �0.84 2.41 26.56 �2.40 1.42 3.09 �0.77 0.22 0.40 �0.61

10 0.04 0.10 �1.03 9.17 14.33 �0.45 2.43 2.75 �0.13 0.38 0.54 �0.34

11 0.01 0.03 �1.48 2.12 39.83 �2.93 1.42 4.02 �1.04 0.29 0.63 �0.76

12 0.01 0.05 �1.86 3.75 9.26 �0.90 1.72 2.62 �0.42 0.40 0.70 �0.57

13 0.02 0.05 �0.95 3.25 8.38 �0.95 2.00 2.46 �0.20 0.37 0.91 �0.90

14 0.03 0.04 �0.18 1.90 8.34 �1.48 2.52 2.45 0.03 0.37 0.53 �0.36

15 0.01 0.02 �0.63 2.48 3.94 �0.46 1.98 1.81 0.09 0.34 0.42 �0.20

16 0.02 0.02 �0.39 4.50 29.70 �1.89 1.90 3.11 �0.49 0.35 0.40 �0.13

17 0.04 0.06 �0.56 7.36 39.03 �1.67 2.53 4.35 �0.54 0.35 0.66 �0.64

18 0.27 0.44 �0.49 22.6 39.92 �0.57 3.71 5.03 �0.31 0.54 0.66 �0.21

19 0.01 0.04 �1.62 1.17 7.55 �1.87 1.19 2.35 �0.68 0.35 0.70 �0.68

20 0.03 0.05 �0.49 4.31 15.97 �1.31 2.05 3.09 �0.41 0.49 0.57 �0.15

21 0.01 0.02 �0.54 2.61 5.12 �0.67 1.52 1.99 �0.27 0.28 0.50 �0.60

22 0.02 0.02 �0.03 3.12 4.57 �0.38 4.26 4.99 �0.16 0.59 0.60 �0.02
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Table 8.2 (Continued)

OBJ. FN. Implied Volatility Error Pricing Error Absolute Pricing Error Percentage Pricing Error

WEEK RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance RMSEGARCH RMSEBS Performance

23 0.12 0.12 �0.05 15.5 39.08 �0.92 3.42 4.64 �0.31 0.46 0.81 �0.57

24 0.05 0.08 �0.51 6.70 11.73 �0.56 2.84 2.98 �0.05 0.69 0.84 �0.20

25 0.02 0.08 �1.43 2.14 16.87 �2.06 1.68 3.57 �0.75 0.92 1.46 �0.46

26 0.01 0.03 �1.05 2.49 4.71 �0.64 2.14 2.01 0.06 0.36 0.44 �0.20

27 0.01 0.02 �0.47 2.84 4.26 �0.41 2.22 1.85 0.18 0.30 0.46 �0.42

28 0.03 0.04 0.39 7.33 8.49 0.15 2.67 2.43 0.10 0.41 0.61 0.40

The table depicts for various objective functions the root-mean-square errors of the GARCH and the Black-Scholes models (RMSEGARCH and RMSEBS) as well as the performance of the
GARCH model relative to the Black-Scholes model. The Performance column represents the logarithm of the ratio of RMSEs, i.e. ln(RMSEGARCH/RMSEBS). The calibration is carried out by
minimizing the corresponding objective function. Positive values of Performance (which means the Black-Scholes model outperforms the GARCH model) are in italic.
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From Table 8.2, one can easily notice the superior performance of the
GARCH option pricing model over Black-Scholes model, obvious by the
dominance of negative values for each objective function. In fact, this was
expected since GARCH uses more parameters than Black-Scholes. How-
ever, the focus of this study is not the comparison of these two models, but
the effect of the different objective functions on the performance of the
GARCH model in relation to its benchmark. Therefore, we analyze the
Performance columns of the models with different objective functions.

From Table 8.2, the parameter estimations with implied volatility error
and percentage pricing error have the same pattern. Thus the choice
between these two objective functions makes no difference in terms of the
number of weeks that GARCH outperforms the benchmark. In all 28 weeks,
the GARCH model shows better performance relative to the benchmark.
However, the parameter estimations with pricing error and absolute pricing
error reveal some differences. While the GARCH model outperforms rela-
tive to the benchmark for all 28 weeks when parameterized by the implied
volatility error and percentage pricing error functions, it underperforms for
one week when parameterized by the pricing error function and for five
weeks when parameterized by the absolute pricing error function.

The differences are more visible on the histograms in Figure 8.1 that
gives the performance of the GARCH model relative to the benchmark
separately for each objective function. In Figure 8.1, PER2 and PER3,
which represent the relative performances of the GARCH model calibrated
with pricing error and absolute pricing error, respectively, take both nega-
tive and positive values; while PER1 and PER4, which represent the rela-
tive performances of the GARCH model calibrated with implied volatility
error and percentage pricing error, respectively, take only negative values.
In this figure, negative values indicate the outperformance of the GARCH
model and positive values indicate the outperformance of the benchmark.

In order to determine whether the discrepancies between the models
with different objective functions are significant, we run t tests on the mean
performances (see the last row of panel A in Table 8.3) in addition to
descriptive statistics. As t test requires the data to be normally distributed
and this is only rarely satisfied in financial time series, we additionally per-
form nonparametric tests (Table 8.3, panel B). Although one should inter-
pret parametric test results with caution due to this eventual problem with t
test, Tables 8.1 and 8.3 provide strong evidence about the dominance of
negative values over positive ones. Therefore, we conveniently conclude that
the outperformance of the GARCH model relative to its benchmark is
independent from the choice of the objective function (Table 8.3, panel A).
The Kruskal-Wallis test in panel B (Table 8.3) also shows that the average
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Table 8.3 Descriptive Statistics and Equality Tests for Performances

PANEL A. Descriptive Statistics

Performance 1 Performance 2 Performance 3 Performance 4

Minimum �1.86 �3.33 �1.24 �0.93

Maximum �0.03 0.05 0.18 �0.02

Mean �0.81* �1.19* �0.33 * �0.46*

PANEL B. Equality of Means and Variances

Value Probability

Kruskal-Wallis 29.04 0.0000

Barlett 50.96 0.0000

Levene 14.68 0.0000

Brown-Forsythe 7.93 0.0001

* The corresponding mean values are significantly different from zero at 99% level.
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Figure 8.1 Relative Performances

The figures depict the distribution of performances of the GARCH model relative to the Black-Sholes model
(the benchmark). PER1 represents the performance of the GARCH model calibrated with the implied
volatility error function; PER2, PER3, and PER4 represent the same for the pricing error, the absolute pricing
error, and the percentage pricing error functions, respectively.



performances of the models with different objective functions are signifi-
cantly different from each other at 99% level. That is, different objective
functions affect the performance of the GARCH option pricing model,
although it always outperforms the benchmark. Barlett, Levene, and
Brown-Forsythe tests results reveal that the variances of the models with
different objective functions are also significantly different. This implies
that for some models the relative performance fluctuates in a narrow band
and for some others in a wide range.

For a more detailed examination, we take the advantage of a box plot of
performance estimations.

With the help of Figure 8.2, one can make a deeper insight into the dis-
crepancies originated from the use of different parameter estimation proce-
dures. In what follows, we can deduce that the use of pricing error function
improves the performance of the GARCH model relative to the bench-
mark. In other words, on average, the GARCH option pricing model shows
its best performance relative to the benchmark when parameterized by the
pricing error function. However, when absolute error function is used, the
performance of the GARCH model becomes close to the benchmark.
Another difference can be observed in the spreads of the models. Pricing
error function again differs from the others strikingly. It has a very large
spread changing approximately between 0 and �3.5, which means that
compared with the parameter estimations with other error functions, the
parameter estimation with the pricing error function results in a more
varying degree of outperformance of the GARCH model. Hence, the low
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and negative values of this spread makes the GARCH model more appro-
priate compared with the benchmark. The second objective function that
most improves the performance of the GARCH model is the implied
volatility error function. Absolute pricing error and percentage pricing
error functions are relatively more consistent in their context. That is, the
performances of the option pricing models characterized by these two
objective functions do not change significantly. In general, it is not wrong
to say that the success of the model depends on the choice of the objective
function in the optimization procedure.

CONCLUSION

The aim of this study is to highlight the sensitivity of mathematically
sophisticated option pricing models to different parameter estimation
methods. We use four different objective functions to estimate the
parameters in the model and try to determine whether they affect the
model performance. Our fundamental finding is that different parameter
estimation procedures affect the model performance and obviously this
brings about a risk for the model users. For some objective functions, the
outperformance of the GARCH option pricing model is beyond dispute
for all 28 sets of weekly data, while for some others, the benchmark out-
performs the GARCH model in some weeks. Changing the objective
function in the optimization procedure affects the performance of the
GARCH model in terms of both mean level and variance. This implies
that these models price options with varying success rates and the spread
of the success rates may be large depending on the choice of objective
function. In summary, changes made in the objective function that is used
in the parameter estimation significantly affects both the performance of
the GARCH option pricing model and its performance relative to the
benchmark.
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ABSTRACT

This chapter examines the existence, magnitude, and significance of bench-
mark misspecification effect on risk-adjusted performance measures. We
analyze three multifactor performance measures, namely, Jensen’s alpha, the
information ratio (IR) and we propose a generalization of the traditional
Modigliani-Modigliani measure (noted GM2). We focus our analysis on the
monthly returns of 5,012 distinct mutual funds from January 1996 to
December 2006. Our results reveal that the GM2 measure is more stable
and more persistent to model specification changes than IR and even more
compared with Jensen’s alpha.

INTRODUCTION

In the funds industry, a large literature is devoted to the different perfor-
mance measures. Since a portfolio manager can increase the expected
return by increasing the systematic risk of the portfolio, the assessment of
performance must integrate the notion of risk. Therefore, a traditional per-
formance reporting generally computes various risk-adjusted performance



measures that assess the reward with some adjustments for risks. Currently,
these risk-adjusted metrics are generally used to define portfolio allocations
and performance fees. These measures do not treat the risk (and conse-
quently the adjustment applied to the reward) in the same way, but they all
have the same objective of performance assessment. For these reasons, the
stability and persistence of such measures is fundamental.

Nowadays, the majority of the professionals are using performance
measures that are adjusted to a single risk factor. However, there is no
doubt that a unique risk factor is not sufficient to capture the variety of
systematic risk sources. Therefore, we decide to focus our analysis on risk-
adjusted performance measures designed for several risk factors.

We limit our analysis to three performance measures: namely Jensen’s
alpha (α ), the information ratio (IR), and we propose a generalized form of
the Modigliani-Modigliani measure that we note (GM2). We study these
measures because they are designed for a multifactor market model and
they are the most famous metrics used by practitioners.

We explore in this chapter the impact of model specification changes on
the three performance measures values and rankings. Indeed, model valida-
tion plays a key role in finance modeling and influences in different ways
the behavior of portfolio managers. In that way, we evaluate the model risk
linked to the benchmark selection.

This chapter has two main objectives. First, we analyze the empirical sta-
bility of the three measures between different model specifications. Second,
we assess the persistence of the rankings from one model specification to
another. Our analysis is then restricted to the study of the impact of model
specification (or benchmark (mis)specification) on the performance meas-
ures (values or rankings) over a given period of time. We do not assess the
sensitivity of the measures to other parameters such as the length of the
computation window or the return frequency used. Furthermore, we do not
analyze the stability or persistence through time.

The empirical part of this chapter is based on a large sample of 5,012
mutual funds from the database of the Center for Research in Security
Prices (CRSP). The period of time covered begins in January 1996 and fin-
ishes in December 2006.

The chapter is organized as follows. The second section in this chapter
depicts the risk-adjusted performance measures used in our study. In this
chapter’s third section, we present the empirical method and the data
sources. We report in the fourth section the results of the different tests
and correlation analysis realized between the series of values or the series of
rankings. The last section provides conclusive remarks and suggestions for
future research and practices.
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DESCRIPTION OF THE RISK-ADJUSTED
PERFORMANCE MEASURES

We present in this section the three risk-adjusted performance measures
that we compare in the empirical part of the chapter. Their common partic-
ularity is that they are all designed for multifactor models.

We assume that the traditional Fama and French (1993) market model
resulting from the following empirical regression (for all t of the analyzed
period) with n risk factors is confirmed: Rit �αi �Σ

j�1

n

βij * Fjt �eit , where Rit is
the return of the fund i in excess of the risk-free rate at time t, αi is the
intercept of the linear regression for the fund i, βij is the risk loading related
to the risk factor j for the fund i, Fjt is the premium (i.e., expressed in
excess of the risk-free rate) of the risk factor j at time t and eit is the residual
of the regression for the fund i at time t.

We assume no constraint on the risk loadings and the optimal values are
obtained minimizing the sum of the squared residual terms (i.e., the
method of ordinary least squares).

Our first performance measure is Jensen’s alpha (1967), noted α, defined
as the intercept of the empirical capital asset pricing model (CAPM) devel-
oped by Sharpe in 1964. The Jensen measure represents the excess return
that a fund/portfolio generates over its expected return (defined by the
benchmark portfolio return, i.e., the systematic risk factors).

Our second performance measure is the information ratio (IR) com-
puted as the alpha divided by the standard deviation of the empirical
regression residual terms: 

In other words, the IR is the expected active return (the difference
between the fund return and its benchmark return) divided by the tracking
error. This metric detects the manager-specific skills and autonomy. The
higher the IR the better the manager is. Note that the Sharpe ratio (1964
and 1966) is similar to the information ratio where there is a unique risk
factor, the risk-free asset. Furthermore, a strong but tenable assumption is
that the specific risk of the security i is assessed by the standard deviation of
the error term series.

The third performance measure that we propose is a generalization of
the Modigliani-Modigliani measure (GM2) developed in 1997. Indeed, we
are working in a multifactor market model framework which requires an
adaptation of the M2 measure. The traditional M2 measure is computed
multiplying the fund’s average excess return by the quotient of the stan-
dard deviation of the index excess return by the standard deviation of the
fund’s excess return. Knowing that we do not have a single index, we need

IR
ei
i

i

=
α

σ ( ).
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to replace the one-factor index by the estimated composite index series
Σ
j�1

n

βij * Fjt for each value of t. We have therefore the following formula-
t ion of our generalizat ion of the Modigliani-Modigliani measure:

, where Ri. is the return series of the fund i
in excess of the risk-free rate, βij is the risk loading related to the risk 
factor j for the fund i, Fj. is the risk premium series (i.e. expressed in
excess of the risk-free rate) of the risk factor j and σ is the standard devia-
tion of the series between the brackets.

Thus, this measure expresses the expected return of the fund weighted
by its relative risk compared with the (composite) index risk. We can note
that the risk is considered here to be the standard deviation of the returns
and does not take into consideration the higher order moments of the statis-
tical distribution (notably the skewness and the kurtosis). Therefore, this
measure is more relevant to investors who invest in normally distributed
financial assets (Scholz and Wilkens, 2005).

METHODOLOGY AND DATA SOURCES

Our CRSP mutual fund database covers the monthly returns of 5,012
mutual funds over the period from January 1996 to December 2006 (a total
of 132 months). We have expressed all mutual funds returns in excess of the
risk-free rate (using the risk-free series provided on Kenneth R. French’s
Web site, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

To test the impact of model specification changes, we choose eight different
common risk factors and we test all potential combinations of n factors
selected among this set of regressors. In this way, we are composing different
sets of benchmarks to compare the sensitivity of each performance measure to
a model specification change.

The eight risk factors considered are the following: the traditional Fama
and French three factors (RMRF, SMB, and HML) (1993), the Carhart
momentum effect (UMD) (1997) (see Kenneth R. French’s Web site), a
liquidity risk premium (LIQ), and three multimoment premiums (COV,
SKE, and KUR).

Hereafter, we look at each potential combination of factors for a given
number n of selected factors (n going from one to seven). Obviously, we 
do not consider n equals to 8 because there is, in this specific case, only one
possible combination of factors and no model specification change possibility.

For a given number of factors (from one to seven over eight available
alternatives), for each possible factor combination, we compute the values of
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the three analyzed performance measures and the corresponding series of
rankings between the 5,012 mutual funds. We study these series of values
and rakings two by two by calculating the rank correlations for each per-
formance measure and each number of selected factors.

EMPIRICAL RESULTS

On the one hand, the sensitivity between the series of values (i.e., between
two different model specifications) is measured by the Spearman correlation
which is a nonparametric correlation measure more reliable than the Pear-
son correlation coefficient (which is linear and more sensitive to outliers).
On the other hand, we use the Kendall correlation to compute the depend-
ence between the series of rankings. Indeed, Kendall correlation is also a
nonparametric statistic but specially designed to compute the degree of cor-
respondence between two series of rankings.

We present in Table 9.1 the number of model specifications, the mean
R2, and the mean adjusted R2 for each number of selected factors (from one
to seven factors selected among the eight factors proposed). The number of
model specifications is the number of n possible combinations of elements
taken once from eight elements. The mean (adjusted) R2 is computed as the
average (adjusted) R2 of each combination of model specification and
mutual fund.

Table 9.1 shows simply that the fitting is improving when the number of
selected factors increases (even if the R2 is adjusted). It is important to note
that the average (adjusted or not) R2 is quite poor when there is only one
risk factor.

First, we report below some correlation statistics (almost all significant at
the 1 percent level) for the different performance measures without consid-
ering the model specification individually. In other terms, we aggregate the
information without comparing the performance measures for an identical
model specification change.
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Table 9.1 Number of Model Specifications, Mean R2, and Mean Adjusted R2

for Each Number of Selected Factors

Number of Selected Factors
1 2 3 4 5 6 7

Number of Model 8 28 56 70 56 28 8
Specifications

Mean R2 0.1004 0.1787 0.2403 0.2905 0.3331 0.3707 0.4047

Mean-adjusted R2 0.0935 0.1660 0.2225 0.2682 0.3067 0.3405 0.3711



We compute in Table 9.2 the mean correlations between the values of
each performance measure for all the potential combinations of factors.
We observe that GM2 mean correlations between the series of values are
always strictly higher than the mean correlations of the two other perfor-
mance measures. More precisely, the difference tends to be higher when
the number of different model specifications is high (i.e., when the model
misspecification likelihood is high). For each number of selected factors,
the alpha is always the poorest measure in terms of stability to model spec-
ification changes.

We also calculate in Table 9.2 the mean correlations between the series
of rankings of each performance measure for all the potential combinations
of factors. These results confirm, the ones obtained with the correlations
between the values, that dominates the two other measures providing a bet-
ter persistence to model specification changes. Again, quite intuitively, the
difference between the GM2 and the two other measures is emphasized 
for high number of model specification possibilities. Except for a unique
selected factor, the alpha is the worst persistent measure.

If we look at the standard deviation of the correlation coefficients
(between the series of values or the series of rankings), we note that,
beyond the higher mean correlations, there is also clearly less disparity for
the GM2 stability and persistence around its mean value. In each scenario,
i.e., each number of selected risk factors, the standard deviation of the GM2

correlations is lower than the standard deviation of the IR, which is itself
lower than the standard deviation of the α.

Second, we compare the correlation statistics (almost all significant at the
1 percent level) between the series (of values or rankings) for an identical
change in the model instead of averaging the values.

Table 9.3 presents the ranking between the three measures for each cor-
relation computed between two series of values (given the model specifica-
tion change). More precisely, for a given model specification change, we
compute the correlation between the series of values for each performance
measure. Next, we simply rank the three computed correlations to define
the highest, the middle, and the lowest correlations between the three
measures. We count the number of times that a given performance measure
is the highest, the middle, and the lowest correlation, and we convert these
figures in percentages.

We note that, except for the case where a unique factor is chosen, the
GM2 overperformed the two other measures exhibiting a higher stability
(correlation between the series of values) for an identical model specifica-
tion change. Globally, IR is at the second place and the alpha is the worst
performer in terms of stability to model changes.
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Table 9.2 Mean and Standard Deviation of the Correlation Metrics for
Each Number of Selected Factors Considering All Possible Model
Specification Changes

Number of Selected Factors
1 2 3 4 5 6 7

Mean Correlation (SD)

Alpha 0.8145 0.7068 0.6205 0.5654 0.5550 0.6042 0.7215

(0.2299) (0.2636) (0.2893) (0.2963) (0.2897) (0.2783) (0.2586)

IR 0.8463 0.7901 0.7567 0.7476 0.7667 0.8152 0.8866

(0.1485) (0.1826) (0.1932) (0.1887) (0.1742) (0.1474) (0.0976)

GM2 0.8980 0.9743 0.9870 0.9918 0.9946 0.9965 0.9981

(0.0593) (0.0164) (0.0076) (0.0051) (0.0039) (0.0031) (0.0024)

Mean Correlation (SD)

Alpha ranking 0.7383 0.6372 0.5640 0.5169 0.5038 0.5395 0.6409

(0.2094) (0.2276) (0.2434) (0.2480) (0.2418) (0.2342) (0.2287)

IR ranking 0.7230 0.6707 0.6388 0.6281 0.6435 0.6900 0.7701

(0.1579) (0.1854) (0.1934) (0.1885) (0.1754) (0.1562) (0.1289)

GM2 ranking 0.7497 0.8812 0.9183 0.9377 0.9514 0.9634 0.9758

(0.0781) (0.0410) (0.0279) (0.0235) (0.0217) (0.0204) (0.0182)

SD, standard deviation; IR, information ratio; GM2, generalized Modigliani-Modigliani measure.

Table 9.3 Comparison of the Correlation Between the Series of Values for
an Identical Model Specification Change

Number of Selected Factors
1 2 3 4 5 6 7

% Highest Correlation

Alpha 42.86 7.67 2.27 1.16 0.19 0 0

IR 17.86 7.67 2.27 0.87 0.45 0.26 0

GM2 39.29 84.66 95.45 97.97 99.35 99.74 1

% Median Correlation

Alpha 25.00 33.33 23.64 16.11 10.58 5.03 0

IR 57.14 57.14 73.96 82.86 89.03 94.71 1

GM2 17.86 9.52 2.40 1.04 0.39 0.26 0

% Lowest Correlation

Alpha 32.14 58.99 74.09 82.73 89.22 94.97 1

IR 25.00 35.19 23.77 16.27 10.52 5.03 0

GM2 42.86 5.82 2.14 0.99 0.26 0 0

IR, information ratio; GM2, generalized Modigliani-Modigliani measure.



We compute exactly the same figures for the series of rankings in
Table 9.4. We arrive at equivalent conclusions for the persistence of each
performance measure. The persistence of the GM2 is clearly higher than
the persistence of the two other measures (excluding, again, the case of a
single-factor model).

Thus, the impact of a model specification change is generally lower for
the GM2 than for the two other measures analyzed. In other words, a mis-
specification of the model used to compute the performance measure has a
lower impact on the stability and the persistence of the GM2 compared
with the two other frequently used measures.

From this set of evidence, we can definitely conclude that the new per-
formance measure derived from the original M2 measure outperforms the
more traditional metrics adopted by financial practice, namely the alpha and
the information ratio. In the context of model uncertainty regarding the
actual systematic risk exposures adopted by active portfolio managers, it is
important to be able to trust a performance measure, and it appears that the
traditional view of computing the alpha generates significant instability of
rankings across asset pricing specifications.

The GM2 cumulates the advantages of yielding an interpretation of abnor-
mal return, just as the original measure and the alpha, while providing the
level of confidence that is sought for in parametric performance evaluation.
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Table 9.4 Comparison of the Correlation Between the Series of Rankings
for an Identical Model Specification Change

Number of Selected Factors
1 2 3 4 5 6 7

% Highest Correlation

Alpha ranking 57.14 10.05 3.25 1.78 0. 32 0 0

IR ranking 7.14 6.61 1.36 0. 41 0. 19 0 0

GM2 ranking 35.71 83.33 95.39 97.81 99.48 1 1

% Median Correlation

Alpha ranking 14.29 36.24 29.55 21.04 14.29 6.88 0

IR ranking 67.86 52.91 67.99 77.68 85.45 93.12 1

GM2 ranking 17.86 10.85 2.47 1.28 0.26 0 0

% Lowest Correlation

Alpha ranking 28.57 53.70 67.21 77.18 85.39 93.12 1

IR ranking 25.00 40.48 30.65 21.90 14.35 6.88 0

GM2 ranking 46.43 5.82 2.14 0.91 0.26 0 0

IR information ratio; GM2, generalized Modigliani-Modigliani measure.



CONCLUSION

Although there exist plenty of performance measures (Cogneau and Hübner,
2009a, 2009b, report more than 100 different ways to measure perfor-
mance), to date only the alpha is really popular in the context of multifactor
models. Our findings indicate that the choice of such a way to measure the
skills of portfolio managers is significantly prone to the modeling choice for
the measurement of required returns. Such an exposure to specification risk
can prove to be particularly delicate when the remuneration and, possibly,
the hiring (or firing) decision of a manager is based on such a metric.

Of course, one may try to refine the asset pricing model itself in order to
come up with the highest reliability of the regression constant, and thus of
the performance attributed to the manager. The perspective taken in this
paper is different, as we recognize that such a perfect specification does not
always exist. Rather, we identify that the other popular absolute perfor-
mance measure, the M2, has not really been exploited in a multifactor con-
text. Obviously, our results indicate that there would be significant value
added in considering this new, yet very simple, indicator in the context of
performance evaluation. Of course, much remain to be done to refine the
measurement and interpretation of such a measure in a multifactor context,
but we view this chapter as a step in this direction.
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ABSTRACT

This chapter analyzes the relationship between the term structure of sover-
eign credit default swaps (CDS) spreads and the carry trade in foreign
exchange markets. The term structure of sovereign CDS spreads proxies
sovereign default probability and recovery rate on a high-frequency basis.
These variables yield important information on exchange rate risk, and
therefore help predict returns and inform trading activities in the carry
trade. The chapter uses daily data on sovereign CDS and exchange rates
and documents the extent that sovereign CDS are useful in predicting carry
trade activities and returns.

INTRODUCTION

A currency carry trade refers to the strategy of borrowing low-yielding
currencies to purchase high-yielding currencies, at the risk to have to pay
back the borrowed currencies at higher cost if exchange rates move
adversely. In theory, the uncovered interest rate parity would imply that
carry trades should not yield predictable excess returns as exchange rates



would be expected to move to offset interest rate differentials. If markets
were efficient and investors risk-neutral,2 forward rates would be unbiased
forecasts of future spot rates, and, therefore, a strategy that would, for a
given interest rate differential, sell forward currencies that are at a forward
premium and buy forward currencies that are at a forward discount would
not systematically produce profits.

The vast amount of empirical literature has rarely supported the theoret-
ically appealing purchasing power parity and market efficiency under
rational expectations hypotheses.3 The failure of the forward exchange rate
to be an unbiased forecast of the future spot rate leave scope for effecting
profitable carry trade strategies. While considering also the role of funda-
mentals, this chapter focuses on one possible factor behind short-term
exchange rate movements, potentially explaining the forward exchange rate
puzzle: credit risk.

Credit default swaps (CDS) are credit protection contracts that require
one party, in exchange for a periodic premium, to make a contingent pay-
ment to another party in the case of a defined credit event. Sovereign CDS
are financial contracts whose payoffs are linked to changes in the credit
quality of underlying sovereign securities. Under certain conditions, the
premium on CDS (in basis points) is closely correlated to the spread on a
sovereign bond of the same maturity, reflecting a fairly close cross-sectional
relationship with credit risk of the underlying security as measured by
credit rating agencies. The term structure of sovereign CDS spreads
reflects the probability of defaults and possible recovery rates on sovereign
securities (Pan and Singleton, 2008). 

According to Packer and Suthiphongchai (2003) and Zhu (2004), the
CDS market has grown more than double both in number of trades and
quotes between 1997 and 2003, of which the sovereign CDS accounts for
about 15 percent of the total market capitalization. The fast-developing
market for sovereign CDS provides a unique opportunity to investigate
investors’ risk-neutral probabilities of a credit event. In addition, unlike
sovereign bonds, CDS contracts are standardized across maturities, which
has contributed to a surge in sovereign CDS trading to the point that these
derivatives have become far more liquid than the underlying sovereign
bonds for a wide range of maturities. CDS spreads are therefore useful
proxies to infer a full term structure of default probabilities.

This chapter analyzes the relationship between the term structure of
sovereign credit default swaps (CDS) spreads and the carry trade in foreign
exchange markets. The term structure of sovereign CDS spreads proxies
sovereign default probability and recovery rate on a high-frequency basis.
These variables yield important information on exchange rate risk, and
therefore help predict returns and inform trading activities in carry trade.
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The chapter uses daily data on sovereign CDS and exchange rates and doc-
uments the extent to which sovereign CDS are useful in predicting carry
trade activities and returns.

The chapter is organized as follows. The second section presents the
carry trade strategy and introduces CDS spreads as factors determining
carry trade payoffs. The third section discusses the data and data sources;
and the fourth introduces the empirical methodology to estimate carry
trade returns controlling for fundamentals and, more specifically, credit
risks. This chapter’s fifth section reports on the empirical findings; its final
section concludes.

THE CARRY TRADE STRATEGY

Burnside, Eichenbaum, and Rebelo (2007) report three main empirical find-
ings with regard to a carry trade strategy: (1) it generates payoffs that are
on average large and uncorrelated with traditional risk factors (for instance,
the excess risk-adjusted return on carry trade strategy is fairly high but
uncorrelated with the returns on US stocks); (2) the Sharpe ratio associated
with carry trade substantially increases when emerging markets currencies
are included in the portfolio; and (3) the bid-ask spreads are two to four
times larger in emerging markets than in developed countries and that large
positive Sharpe ratios emerge only if these bid-ask spreads are taken into
account. These puzzling results suggest that carry trade strategies generate
large excess returns even after market risk is factored in.

We use a carry trade strategy that exploits the forward premium and dis-
count, while incorporating bid-ask spreads, as in Burnside et al (2006). Let
Sa and Sb denote ask and bid spot exchange rates, Fa and Fb denote ask and
bid forward exchange rates at time t for forward contract maturing at time t
� 1. All exchange rates represent foreign currency units per U.S. dollar.
The strategy involves selling X dollars (normalized to 1) forward according
to the rule:

This means that the investor will have a short position (selling forward) if
the bid forward rate is at a discount compared to the ask spot rate and a
long position if ask forward rate is at a premium compared to the bid spot
rate. The investor will have neutral position if the bid forward rate is nei-
ther at discount or at premium. The strategy involves settling existing open
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positions and taking new open positions at time t. The strategy is optimal
under risk-neutrality with respect to nominal payoffs and under the
assumption that exchange rates are martingales. Also, no collateralization
requirement for the short position is assumed. The carry trade strategy
takes a long/short position in the same currency, although it would be pos-
sible to use cross-currencies bid/ask forward and spot rates. The strategy
will yield the following payoff:

This strategy takes into account the potential transaction cost involved
in carry trade strategies. The carry trade return (Rt�1) also incorporates a
liquidity cost as reflected in bid-ask spreads. The accumulated return of the
carry trade strategy is simply the sum of Rt�1 over a certain period. The
returns are not normally distributed but concentrated on the lower end,
implying that carry trade returns are generally small but positive.

Carry trade payoffs are clearly linked to exchange rate movements, with
the latter reflecting, inter alia, investors’ perception of a country’s funda-
mentals and, ultimately, the country’s credit risk.4 The term structure of
risk would provide useful information about the likelihood that a certain
carry trade strategy yield excess returns. As a proxy for credit risk and
potential recovery rate in a certain country across maturities, we look at the
term structure of sovereign CDS spreads. The existing evidence indicates
that sovereign CDS spreads at different maturities tend to move closely
together and that sovereign CDS spreads across emerging markets are
highly correlated (Chan-Lau and Kim, 2004).5

We estimate the term structure of CDS spreads on a rolling basis with a
two-month window for each country in the sample.  This provides para-
metric estimates of the slope and curvature of the term structure of the
CDS spreads. The intercept of the term structure would correspond to the
short maturity of CDS spreads. In our case, it refers to the one-year sover-
eign CDS spreads. Most countries exhibit a positive term structure on
CDS spreads in most periods, with the exception of the period after
mid–2008, where a few crisis countries have inverted U-shaped term struc-
ture, i.e., one-year CDS spreads remarkably higher than five-year spreads,
which, in turn, are lower than 10-year spreads.
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THE DATA

Data on exchange rates across countries are obtained from Datastream,
covering the period from January 2001 to April 2009 on a daily and
weekly basis. Reliable data are available for a selection of 46 countries. The
data structure is an unbalanced panel as countries are included as data
become available. The original source of data is the Reuters system (daily
quotes at closing). The exchange rates include spot and forward rates (one
week and one month) with both bid and ask rates. Each exchange rate is
quoted as foreign currency (Cf) per U.S. dollar. Daily data are converted to
weekly data.

Data on sovereign CDS are provided by CMA, available from Data-
stream, one of the major trading platforms for credit derivatives. Data are
available for 46 countries. It contains various quotes for sovereign CDS
spreads. Our sample consists of daily quotes for CDS contracts with matu-
rities of 1, 2, 3, 5, and 10 years. The sample covers the period January 2001
to April 2009. Throughout the sample period, countries’ sovereign rating
would vary as would the corresponding CDS spreads.

Stock market returns and relative returns on financial and commodity
sector assets are obtained from the stock exchanges in individual countries.
Stock market returns are based on percentage changes in aggregate indexes.
Relative sector returns are calculated as the percentage change in the sector
indices relative to the stock market index (normalized to 100 as of January
1, 2007). The returns are then annualized. Relative sector returns are posi-
tive if returns on the sector exceed that of the aggregate stock market. The
financial sector relative return would capture the degree of financial devel-
opment relative to other sectors in a country. The commodity sector rela-
tive return would indicate the degree of reliance and exposure of a country
to movements in commodity prices. These two factors would serve as con-
trol variables in examining the impact of sovereign CDS spreads on carry
trade activity.

Reflecting the drastic fluctuations in asset prices during the crisis, the
sample is divided into five periods (Table 10.1), broadly matching the devel-
opment of the crisis (Mody 2009). The first “pre-crisis” period spans from
the start of the sample period to mid-July 2007, when the turmoil in the
U.S. market for asset-backed securities first emerged. The second period
starts in mid-July 2007 and ends on March 7, 2008, at the time of Bear
Stearns’ collapse. The third period ranges between the collapse of Bear
Stearns and May 20, 2008, at the time banks in the United Kingdom were
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intervened. The fourth period goes from May 2008 to September 5, 2008,
i.e., the time of Lehman Brothers’ collapse. Finally, the last period is from
the collapse of Lehman Brothers until the end of the sample period at end-
April 2009. Dummy variables are used to control for these periods.

Each country is identified as developed or emerging market and whether
it is experiencing a crisis or not. The classification between developed and
emerging countries are based on the World Economic Outlook. The classifi-
cation of whether a country is experiencing a crisis is based on whether the
country has an active program with the International Monetary Fund as of
end-April 2009 (see Appendix for list of countries and their classification).

EMPIRICAL FACTS ON FORWARD EXCHANGE
PREMIUM AND SOVEREIGN CDS SPREADS

We construct four portfolios of carry trade strategies with different combi-
nations of countries in the portfolio. The first portfolio consists of all
emerging markets, the second of all developed countries, the third of all
countries currently in crisis, and the last portfolio includes countries that
do not have a Fund program as of end-April 2009. Each portfolio assigns
equal weight at each point in time for each currency if data are available and
the position from the carry trade strategy is not neutral.

Several stylized facts emerge from the summary statistics of the five
portfolios (Figure 10.1 and Table 10.2). The table reports the mean,
median, standard deviation, and Sharpe ratio of the carry trade returns and
the sovereign CDS spreads at different maturities. Returns on the stock
market and sector returns are also reported. These summary statistics are
reported for each of the five sample subperiods.

Exchange Rate Premium

1. Forward rates move closely with spot rates—most foreign currencies
appreciated between 2004 and 2007, but have depreciated sharply
since the start of the current crisis.
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Table 10.1 Timetable for the Collapse of Lehman Brothers

Dummy Sample Period

D1 Before July 13, 2007

D2 Between July 13, 2007 and March 7, 2008

D3 Between March 7, 2008 and May 16, 2008

D4 Between May 16, 2008 and September 3, 2008

D5 Since September 3, 2008



2. All five portfolios show positive monthly returns, ranging from 0.13
to 0.44 percent (annualized to be 6.7 and 22.8 percent), with
standard deviation of about 4.0 percent. Moreover, Sharpe ratios are
significantly higher than the stock market in the U.S.

3. The annualized Sharpe ratios and returns vary significantly across
sample periods but remain consistently positive and higher than the
Sharpe ratios for stocks, similar to Burnside et al. (2007).
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Table 10.2 Summary Statistics

A. Emerging market economies B. Developed countries

Standard Sharpe Standard Sharpe 
Mean deviation ratio Obs. Mean deviation ratio Obs.

Forward exchange rate premium
Period 11 0.0018 0.0048 0.3680 4616 0.0015 0.0016 0.9331 2368
Period 2 0.0018 0.0048 0.3680 884 0.0016 0.0021 0.7628 442
Period 3 0.0026 0.0028 0.9362 260 0.0016 0.0018 0.9230 130
Period 4 0.0029 0.0029 0.9950 416 0.0020 0.0020 0.9990 208
Period 5 0.0058 0.0117 0.4956 832 0.0013 0.0019 0.6695 416

1-year Sovereign CDS spread
Period 1 40 60 4239 3 3 1874
Period 2 63 75 922 10 18 442
Period 3 88 89 281 32 74 123
Period 4 107 146 448 28 65 208
Period 5 660 1064 878 135 276 429

3-year Sovereign CDS spread
Period 1 78 100 4239 7 8 2058
Period 2 98 105 922 16 23 476
Period 3 147 125 281 40 72 133
Period 4 158 162 448 35 62 224
Period 5 667 948 878 159 240 461

5-year Sovereign CDS spread
Period 1 116 135 4478 9 11 2198
Period 2 128 129 922 19 26 454
Period 3 188 146 281 47 69 133
Period 4 195 175 448 40 62 224
Period 5 660 863 878 167 232 461

10-year Sovereign CDS spread
Period 1 145 156 4239 15 16 2505
Period 2 157 157 918 24 27 476
Period 3 216 170 271 52 63 133
Period 4 220 193 432 47 59 224
Period 5 647 819 864 161 194 461

Stock market return
Period 1 0.31 0.24 1.2663 5051 0.24 0.16 1.4736 2944
Period 2 �0.16 0.29 �0.1912 986 �0.30 0.25 �1.2324 544
Period 3 0.02 0.25 0.0906 290 0.25 0.26 0.9757 160
Period 4 �0.53 0.26 �2.0442 464 �0.39 0.19 �1.9851 256
Period 5 �0.52 0.51 �0.9637 957 �0.69 0.51 �1.3486 528

Relative return on financial sector
Period 1 0.05 0.15 0.3475 4175 0.00 0.10 �0.0135 2890
Period 2 �0.09 0.14 �0.6302 782 �0.13 0.14 �0.9063 544
Period 3 �0.05 0.20 �0.2320 230 0.08 0.17 0.4560 160
Period 4 0.06 1.39 0.0408 368 �0.13 1.33 �0.0975 256
Period 5 �0.07 0.42 �0.1692 759 �0.16 0.39 �0.4131 528

Relative return on commodity sector
Period 1 0.00 0.22 �0.0122 3680 0.11 0.26 0.4160 2657
Period 2 0.21 0.25 0.8157 680 0.25 0.32 0.7876 544
Period 3 0.39 0.24 1.5808 200 0.18 0.34 0.5169 160
Period 4 �0.02 0.24 �0.0864 320 0.16 0.29 0.5482 256
Period 5 0.01 0.34 0.0373 660 0.32 1.08 0.2948 528

Source: CMA, Datastream, and individual stock markets.

Note: Returns on financial markets are annualized returns. See Appendix 1 for a list of countries in different groups.

1. Period 1 represents date before July 13, 2007; period 2 from July 13, 2007, to March 7, 2008 (Asset-backed secruities to collapse of Bear Stearns; 
period 3 from March 7, 2008, to May 16, 2008, (collapse of Bear Stearns to UK banks); period 4 from May 23, 20 to September 5, 2008
(collapse of UK banks to collapse to Lehman Brothers); period 5 from September 5, 2008, to end-April 2009 (after collapse of Lehman Brothers).
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C. Program countries D. Nonprogram countries E. All countries

Standard Sharpe Standard Sharpe Standard Sharpe 
Mean deviation ratio Obs. Mean deviation ratio Obs. Mean deviation ratio Obs.

0.0017 0.0025 0.6924 1756 0.0017 0.0044 0.3736 5228 0.0017 0.0040 0.4160 6984
0.0012 0.0021 0.5657 340 0.0016 0.0022 0.7322 986 0.0015 0.0022 0.6885 1326
0.0020 0.0020 1.0079 100 0.0024 0.0027 0.8851 290 0.0023 0.0025 0.9014 390
0.0027 0.0023 1.1307 160 0.0026 0.0028 0.9294 464 0.0026 0.0027 0.9733 624
0.0040 0.0039 1.0234 320 0.0044 0.0112 0.3927 928 0.0043 0.0098 0.4364 1248

39 53 1349 26 52 4764 29 53 6113
72 89 340 37 56 1024 46 67 1364

119 97 70 55 80 304 71 89 404
145 158 160 61 114 496 82 131 656
997 1205 320 323 734 987 488 920 1307

72 94 1349 50 87 4948 55 89 6297
102 107 340 60 88 1058 70 94 1398
175 113 100 93 118 314 113 121 414
199 167 160 91 133 512 117 149 672
981 1084 320 339 640 1019 492 816 1339

99 125 1535 76 120 5141 81 122 6676
129 131 340 80 111 1036 92 118 1376
213 121 100 120 142 314 142 143 414
235 171 160 115 151 512 143 164 672
954 992 320 344 584 1019 490 750 1339

129 151 1349 96 139 4940 103 142 6289
152 162 340 98 134 1054 111 143 1394
230 148 100 140 162 304 162 163 404
250 193 160 132 166 496 161 180 656
899 932 320 344 560 1005 478 710 1325

0.35 0.24 1.4695 1713 0.26 0.21 1.2560 6282 0.28 0.22 0.3041 7995
�0.29 0.27 �1.1077 340 �0.10 0.28 �0.3610 1190 �0.14 0.27 �0.5214 1530
�0.19 0.24 �0.8233 100 0.19 0.26 0.7314 350 0.11 0.26 0.4108 450
�0.62 0.27 �2.3368 160 �0.44 0.23 �1.9063 560 �0.48 0.24 �2.0090 720
�0.94 0.59 �1.5935 330 �0.48 0.51 �0.9365 1155 �0.58 0.53 �1.0966 1485

1.10 1.16 0.6040 1234 1.02 0.12 0.1291 5831 0.03 0.13 0.2302 7065
�0.04 0.11 �0.3943 238 �0.12 0.15 �0.8054 1088 �0.10 0.14 �0.7430 1326
�0.10 0.13 �0.7468 0.03 0.20 0.1353 320 0.00 0.19 0.0221 390
�0.25 1.14 �0.2150 112 �0.02 1.41 �0.0134 512 �0.02 1.37 �0.0146 624
�0.38 0.41 �0.9182 231 �0.05 0.41 �0.1194 1056 0.11 0.41 0.2639 1287

�0.02 0.27 �0.0791 1222 0.06 0.23 0.2630 5115 0.44 0.24 1.8689 6337
0.36 0.34 1.0639 238 0.19 0.27 0.7201 986 0.23 0.28 0.7967 1224
0.62 0.37 1.6679 70 0.21 0.27 0.7999 290 0.29 0.29 1.0060 360
0.11 0.28 0.3851 112 0.05 0.26 0.1816 464 0.06 0.26 0.2229 576
0.72 1.55 0.4651 231 0.01 0.37 0.0261 957 0.15 0.76 0.1946 1188



Credit Default Swap Spreads

1. The term structure of CDS spreads in the selected country groups
has been largely positive, with the exception in the last period (period
5) since the collapse of Lehman Brothers in September 2008. It was
almost flat but positive before the onset of the financial crisis, but has
steepened sharply since early 2008. In particular, the difference
between 10-year and one-year CDS spreads have exceeded 100 basis
points for emerging markets on average. However, the term structure
of CDS spreads has turned negative for the crisis countries that have
programs with the International Monetary Fund.

2. CDS spreads were at their lowest level between 2005 to early 2007.
Spreads for emerging markets were very close to those for developed
countries. The difference has increased remarkably since the crisis, as
evidenced by the big jump in CDS spreads for emerging markets,
while the increase in developed countries has been mild.

The carry trade payoffs in emerging markets are related to the level and
term structure of sovereign CDS spreads. This empirical fact is robust even
accounting for stock market returns, financial development, and commodity
price movements in individual countries. The latter are generally considered
to be the factors explaining the profitable carry trade activities in the last
few years. Profitability of these carry trade strategies dropped after the col-
lapse in the financial sector and decline in commodity prices in late 2008.

There is strong (at 5 percent significance level) positive correlation
between forward exchange premium and CDS spreads across all maturities
and in most periods (Table 10.3). For emerging markets, correlation coeffi-
cients are larger than 0.3 before the global crisis started, and become less
significant in the midst of crisis between March and September 2008 (peri-
ods 3 and 4). The correlation becomes stronger after the collapse of
Lehman Brothers. A similar pattern was observed for developed countries,
although the correlations are less significant and smaller. For crisis coun-
tries, the forward exchange premium tends to become significantly corre-
lated with CDS spreads only after the collapse of Lehman Brothers.
Nonprogram countries show strong positive correlations throughout the
entire sample period.

Notably there is also a strong correlation between the forward exchange
premium with the term structure of sovereign CDS spreads. The term
structure of CDS spreads is measured by the slope parameter on a rolling
basis. The strong correlation remains for most country groups across all
sample periods except period 4. Moreover, correlation coefficients were posi-
tive in periods before the collapse of Lehman Brothers (periods 1 to 4) and
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turned negative afterward. This largely reflects the fact that the term struc-
ture of CDS spreads have turned negative, with one-year spreads at a much
higher level than longer maturity, probably reflecting the short-term increase
in default probabilities and lower recovery rate. A higher difference between
long- and short-maturity CDS spreads suggest a steepening of the risk term
structure, which likely generates a higher forward exchange premium.

The correlations of forward exchange premium with individual stock
returns and sector returns on both financial development and commodity
boom are negligible—less than 0.05—and insignificant. This finding is con-
sistent with the result in Burnside et al. (2006) that U.S. stock returns could
not explain excess returns on carry trades.

ESTIMATION RESULTS AND ROBUSTNESS

The estimation uses a panel regression with fixed effects across countries.
All estimations have forward exchange premium as the dependent variable.
The dependent variable refers to the returns on the carry trade strategy
constructed using the forward and spot exchange rates with bid-ask spreads
discussed in the previous section. Returns on each country are then used to
construct four portfolios, namely, emerging markets, developed countries,
crisis countries, and noncrisis countries, using simple average of returns
across selected countries. The right-hand side variables include the lagged
forward exchange premium, lagged change in sovereign CDS spreads, the
term structure of sovereign CDS spreads, and various control variables.
Dummy variables are included to distinguish across subperiods.

(10.1)

where i stands for individual countries, τ|	0 denotes the lagged variables.
Rt is the forward exchange premium according to the carry trade strategy
described in this chapter’s second section, using one month forward rates,
CDS refers to the five-year sovereign CDS spreads, Term is the term struc-
ture of the sovereign CDS spreads calculated as rolling average with a two-
month window, and Z represents the control variables including stock
market returns, sector returns, and dummy variables.

These estimates suggest that sovereign CDS spreads and their term
structure are important determinants of the forward exchange premium
(Table 10.4). The panel regression shows robust standard-errors despite het-
eroscedasticity. The reported coefficients on CDS spreads are significant 
at five percent level for emerging markets and crisis countries. The term
structure of CDS spreads is significant across all country groups. Dummy

chapter 10 Carry Trade Strategies 163

R R CDS Term Zi t i i t i t i t i t, , , , ,= + + + +− − −α β γ λ φτ τ τ∆ −− +τ ε i t,



Table 10.3 Correlation with Forward Exchange Rate Premium

March 7, 2008, to May 23, 2008, to 
July 13, 2007, to May 16, 2008 (Bear Stearns September 5, 2008 (Bear September 5, 2008, to 

March 7, 2008 (ABS crisis collapse to intervention Stearns to Lehman now (after Lehman 
Before July 13,2007 to Bear Stearns collapse) in UK banks) Brothers collpase) Brothers collapse)

A. Emerging market 
economies

1-year CDS spread 0,26 * 0,19 * 0,04 0,32 * 0,42 *

3-year CDS spread 0,30 * 0,28 * 0,09 0,37 * 0,42 *

5-year CDS spread 0,32 * 0,31 * 0,13 * 0,41 * 0,42 *

10-year CDS spread 0,31 * 0,34 * 0,18 * 0,47 * 0,43 *

Term structure CDS 0,31 * 0,40 * 0,30 * 0,53 * �0,32 *

Stock market return 0,00 �0,01 �0,03 0,04 0,03

Financial indicators 0,03 �0,05 �0,02 0,05 �0,05

Commodities indicators 0,00 0,00 �0,05 0,04 0,03

B. Developed countries

1-year CDS spread �0,02 0,47 * �0,14 0,35 * 0,35 *

3-year CDS spread 0,09 * 0,35 * �0,13 0,29 * 0,27 *

5-year CDS spread �0,10 * 0,36 * �0,13 0,27 * 0,27 *

10-year CDS spread �0,09 * 0,37 * �0,12 0,28 * 0,26 *

Term structure CDS 0,05 * 0,50 * 0,21 0,07 �0,35 *

Stock market return �0,03 �0,08 �0,04 0,05 �0,01

Financial indicators 0,01 0,00 0,01 0,02 �0,03

Commodities indicators 0,03 0,15 * 0,09 0,04 �0,01
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C. Crisis countries

1-year CDS spread �0,01 0,07 �0,20 * 0,34 * 0,21 *

3-year CDS spread �0,03 0,05 �0,14 0,34 * 0,20 *

5-year CDS spread �0,04 0,04 0,07 0,30 * 0,19 *

10-year CDS spread �0,05 0,05 0,08 0,36 * 0,18 *

Term structure CDS �0,07 * 0,03 0,31 * 0,16 * �0,24 *

Stock market return 0,03 �0,10 �0,07 0,04 0,15 *

Financial indicators 0,00 �0,04 �0,01 �0,05 0,04

Commodities indicators 0,03 0,24 * �0,01 0,02 �0,07

D. Noncrisis countries

1-year CDS spread 0,36 * 0,34 * 0,17 * 0,37 * 0,63 *

3-year CDS spread 0,38 * 0,37 * 0,23 * 0,45 * 0,64 *

5-year CDS spread 0,39 * 0,39 * 0,26 * 0,49 * 0,66 *

10-year CDS spread 0,38 * 0,41 * 0,28 * 0,52 * 0,67 *

Term structure CDS 0,36 * 0,43 * 0,34 * 0,62 * �0,42 *

Market return �0,01 �0,01 * �0,05 * 0,04 0,01

Financial indicators 0,04 * �0,03 �0,04 0,08 �0,05

Commodities indicators 0,00 0,00 0,03 0,03 0,03

Source: Datastream.

’*’ denotes 5% significant level. See Appendix 1 for a list of countries included in different groups.
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variables are all significant, indicating that CDS spreads and their term
structure would impact the returns on carry trade differently across periods.

Table 10.4 (second panel) shows the result of the panel regression once
control variables on the stock market, financial development, and commod-
ity sector are introduced. Financial development, measured using the
returns in the financial sector relative to the market, is significant across all
country groups. However, commodity movements do not seem to affect the
carry trade returns. Accounting for these control variables, the sovereign
CDS spreads and their term structure are still significant at one percent
level, confirming the informational content of sovereign CDS spreads in
predicting carry trade returns across countries.

For robustness, these results are checked across different sample periods
by incorporating dummy variables. After controlling for stock market
movements, sovereign CDS spreads and their term structure remain signif-
icant (Table 10.5). The interacting dummy also suggests that the impact of
sovereign CDS spreads is generally stronger in the initial periods, which are
also the years in which carry trade activities were most common. Since the
crisis started, the impact of sovereign spreads on carry trade returns, while
remaining significant in most cases, has declined. Financial development
remains an important variable in explaining the carry trade returns across
all country groups.
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Table 10.4 Panel Regression Estimates

Dependent variable: R(t)

Baseline Baseline with control variable

Noncrisis Crisis Developed Emerging Crisis Noncrisis Developed Emerging
VARIABLES countries countries countries markets countries countries countries markets

R(t-1) 0.500 0.612 0.777 0.603 0.491 0.581 0.749 0.586
(0.0211) (0.0240) (0.0239) (0.0158) (0.0243) (0.0293) (0.0199) (0.0192)

(***) (***) (***) (***) (***) (***) (***) (***)

R(t-2) 0.292 0.208 0.123 0.247 0.290 0.184 0.116 0.279
(0.0198) (0.0242) (0.0257) (0.0161) (0.0227) (0.0301) (0.0228) (0.0197)

(***) (***) (***) (***) (***) (***) (***) (***)

CDS(t-1) 0.0000 0.0239 0.0018 0.0072 0.0040 0.0186 0.0143 0.0065
�0.00002 �0.00003 �0.00002 0.00000 �0.00002 �0.00003 �0.00003 �0.00001

() (***) () (***) (**) (***) (***) (***)

Term(t-1) �4.51 �2.66 �0.256 2.52 �4.14 �5.92 �0.466 4.56
�0.00779 �0.0103 �0.000981 �0.0118 �0.00889 �0.0148 �0.00106 �0.0139

(***) (**) (***) (**) (***) (***) (***) (***)

FIN(t-1) 0.000842 �0.00201 0.00108 �0.000321
�0.00000974 �0.0000278 �0.0000194 �0.0000146

(***) (***) (***) (**)

OIL(t-1) �0.0117 �0.0017 �0.00505 �0.00225
�0.000869 �0.00935 �0.00501 �0.0141

() () () ()
Rmkt(t-1) �0.0139 �0.00981 0.114 �0.257

�0.00189 �0.00733 �0.00252 �0.00254
() () (***) (***)
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Table 10.4 Panel Regression Estimates (Continued)

Dependent variable: R(t)

Baseline Baseline with control variable

Noncrisis Crisis Developed Emerging Crisis Noncrisis Developed Emerging
VARIABLES countries countries countries markets countries countries countries markets

D1 0.000149 9.18e-05 9.33e-05 4.47e-05 �0.000669 0.00207 �0.000932 0.000358
(9.97e-06) (1.63e-05) (7.54e-06) (7.33e-06) (9.14e-05) (0.000278) (0.000182) (0.000142)

(***) (***) (***) (***) (***) (***) (***) (**)

D2 2.35e-05 �0.000173 �3.59e-05 2.61e-05 7.03e-05 �5.29e-05 3.95e-05 2.10e-05
(6.68e-06) (2.27e-05) (7.97e-06) (9.62e-06) (8.81e-06) (2.76e-05) (1.46e-05) (1.18e-05)

(***) (***) (***) (***) (***) (*) (***) (*)

D3 0.000133 �0.000283 6.19e-05 0.000111 0.000207 �0.000153 0.000156 8.43e-05
(1.39e-05) (5.63e-05) (1.52e-05) (1.63e-05) (1.96e-05) (6.69e-05) (2.29e-05) (2.03e-05)

(***) (***) (***) (***) (***) (**) (***) (***)

D4 0.000174 �0.000198 5.39e-05 0.000134 0.000269 2.40e-06 0.000201 6.71e-05
(1.16e-05) (4.69e-05) (8.34e-06) (1.34e-05) (1.95e-05) (6.01e-05) (2.57e-05) (1.79e-05)

(***) (***) (***) (***) (***) () (***) (***)

D5 9.25e-05 �0.000779 �0.000104 0.000198 0.000107 �0.000466 1.81e-05 0.000127
(2.54e-05) (0.000110) (3.11e-05) (2.63e-05) (2.96e-05) (0.000138) (3.81e-05) (3.00e-05)

(***) (***) (***) (***) (***) (***) () (***)

Observations 12099 2720 5559 9810 9158 1841 4789 6540
No. of countries 37 10 17 30 29 7 16 20
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Table 10.5 Panel Regression Estimates with Interacting Terms

Dependent variable: R(t)

with interacting dummy variables

Noncrisis Crisis Developed Emerging
VARIABLES countries countries countries markets

R(t-1) 0.477 0.577 0.733 0.575

(0.0236) (0.0288) (0.0198) (0.0201)

(***) (***) (***) (***)

R(t-2) 0.296 0.177 0.135 0.267

(0.0222) (0.0305) (0.0225) (0.0204)

(***) (***) (***) (***)

CDS (t-1) 0.0104 0.0322 0.0115 0.0071

�0.00002 �0.00009 �0.00003 �0.00001

(***) (***) (***) (***)

Term(t-1) �2.82 �6.06 �0.233 5.6

�0.00805 �0.0158 �0.00109 �0.0141

(***) (***) (**) (***)

FIN(t-1) 0.00138 �0.00195 0.00131 �0.00027

�0.00001 �0.00003 �0.00002 �0.00001

(***) (***) (***) (*)

OIL(t-1) �0.0112 �0.00121 �0.00763 �0.00528

�0.000848 �0.00098 �0.000631 �0.00143

() () () ()

Rmkt(t-1) 0.00151 �0.000349 0.13 �0.24

�0.0018 �0.00738 �0.00242 �0.00253

() () (***) (***)

D1 �0.00121 0.00196 �0.00115 0.000313

(0.000130) (0.000340) (0.000185) (0.000143)

(***) (***) (***) (**)

D2 �0.000107 2.82e-05 �5.28e-05 �6.57e-05

(1.39e-05) (3.36e-05) (1.74e-05) (1.70e-05)

(***) () (***) (***)

D3 0.000123 4.00e-05 0.000187 2.71e-05

(3.55e-05) (0.000108) (3.18e-05) (3.96e-05)

(***) () (***) ()
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Table 10.5 Panel Regression Estimates with Interacting Terms (Continued)

Dependent variable: R(t)

with interacting dummy variables

Noncrisis Crisis Developed Emerging
VARIABLES countries countries countries markets

D4 0.000267 �0.000101 0.000174 7.91e-05
(3.87e-05) (0.000105) (2.92e-05) (2.67e-05)

(***) () (***) (***)

D5 0.000209 �0.000443 �3.48e-05 2.10e-05
(5.23e-05) (0.000164) (4.55e-05) (4.90e-05)

(***) (***) () ()

D2*CDS(t-1) 0.0667 �0.0193 0.0332 0.021
�0.0000396 �0.0000826 �0.0000444 �0.0000322

(***) (**) (***) (***)

D3*CDS(t-1) 0.0118 �0.0214 �0.00379 0.00708
�0.0000444 �0.0000948 �0.0000344 �0.000033

(***) (**) () (**)

D4*CDS(t-1) 0.00899 �0.0036 0.00922 0.0018
�0.00492 �0.00937 �0.00291 �0.0019

(*) () (***) ()

D5*CDS(t-1) �0.00793 �0.0126 0.00579 0.00512
�0.0000327 �0.0000834 �0.0000152 �0.0000155

(**) () (***) (***)

Observations 9158 1841 4789 6228
No. of countries 29 7 16 20
R-squared 0.713 0.846 0.852 0.904
Log Lik 63794 11527 34528 41070

CONCLUSION

Carry trade activity has burgeoned over the last several years to the point
to pose serious stress on financial markets in cases of unexpected shocks.
Carry trade strategies rest on the empirical regularity, at odds with the
uncovered interest parity, that currency that are at a forward discount tend
to appreciate offering the opportunity for excess returns. This chapter
looked at the excess return arising from carry trade activity and to how it is
related to credit risk and other fundamentals by looking at sovereign CDS
spreads and their term structure and by controlling for developments in the
stock market and commodity sector.



Analyzing a large sample of both developed countries and emerging mar-
kets over the past several years, we find that the carry trade activity based
on forward exchange premium on average generates an excess return after
adjusting for traditional risk factors. Moreover, sovereign CDS spreads and
their term structure are significant determinants of carry trade excess
returns. The correlation is significant and robust after controlling for stock
market returns, financial development, and commodity fluctuations. The
correlations also seem to vary through time and country groups, clearly
showing the impact of the current global financial crisis.
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APPENDIX 1: LIST OF COUNTRIES IN 
THE SAMPLE

Emerging markets (1) / Crisis countries (1) /
Country Code Developed countries (0) Noncrisis countries (0)

1 Argentina ARG 1 0

2 Australia AUD 0 0

3 Austria AUR 0 0

4 Brazil BRA 1 0

5 Chile CHE 1 0

6 Colombia COL 1 0

7 China CHN 1 0

8 Croatia CRA 1 0

9 Cyprus CYP 0 0

10 Czech CZE 0 0

11 Denmark DEN 0 0

12 Estonia EST 1 0

13 Egypt EGY 1 0

14 Finland FIN 0 0

15 Greece GRE 0 0

16 Hungary HUN 1 1

17 Iceland ICE 0 1

18 India IND 1 0

19 Indonesia IDO 1 0

20 Ireland IRE 1 0

21 Korea KOR 0 0

22 Kazakhstan KAZ 1 0

23 Lithuania LTH 1 0

24 Lebanon LEB 1 0

25 Malaysia MAL 1 0

26 Mexico MEX 1 1

27 NewZealand NZD 0 0

28 Norway NOR 0 0

29 Peru PER 1 0

30 Pakistan PAK 1 1

31 Philippines PHL 1 0

(Continued)



NOTES

1. International Monetary Fund, 19th Street NW, Washington DC
20431. The views expressed herein are those of the authors and should
not be attributed to the IMF, its Executive Board, or its management.

2. All available information is used rationally; the market is competitive;
and there are no taxes, transaction costs, or other frictions. A risk neu-
tral investor needs no compensation for risk and so the future spot rate
may not differ from expectation.

3. See Bakshi and Naka (1997); Cavaglia, Verschoor, and Wolff (1994);
Fama (1984); Geweke and Feige (1979); Gregory and McCurdy (1984);
and Hansen and Hodrick (1980).

4. Part of the carry trade excess return could also be related to the finan-
cial development of a country and commodity price movements as
these affect trade and capital flows, eventually impacting the exchange
rate. For example, many investors borrowed the low-yield Japanese yen
and held long positions in the high-yield Australian and New Zealand
dollars, which benefited from a surge in commodity prices.

5. CDS markets in some countries or at some maturities may not be very
liquid. However, this should not alter the key findings in this chapter
since liquidity should be reflected in bid-ask spreads to a large extent.
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Emerging markets (1) / Crisis countries (1) /
Country Code Developed countries (0) Noncrisis countries (0)

32 Poland POL 1 1

33 Romania ROM 1 1

34 Russia RUS 1 0

35 Slovakia SLK 1 0

36 Slovenia SOL 1 0

37 South Africa SAF 1 0

38 Spain SPN 0 0

39 Switzerland SWI 0 0

40 Thailand THL 1 0

41 Turkey TUR 1 0

42 Ukraine UKR 1 1

43 Uruguay URU 1 0

44 United Kingdom UKB 0 0

45 Japan JPY 0 0

46 Venezuela VEN 1 0
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ABSTRACT

In the present chapter, we propose a strategic management simulation
approach to model risk in ratings. As companies prosper in developed or
emerging markets, and they duplicate their successes in these areas, they
have a template that deals exclusively with risk and this gives them the first
mover advantage over their competitors. This simulation permits insight
into forecasting sales volume, costs, and other influential factors.

The approach adopts elements of strategic management, risk tools cur-
rently in use and a performance management tool too creating a new risk
management template that will attempt to be conducive to model risk in
ratings. In essence the proposed template will heighten the elements in
regard to model risk and look at new ways to approach it.

INTRODUCTION

Strategic management is the management art of guiding an organization to
reenergizing its goals and to work in tandem, all within a company and
responding to a changing environment. It is a disciplined approach to
induce fundamental decisions and actions that shape and articulate the orga-
nization to focus on the future.



In order to be strategic the organization requires a clear distinction of
what are their objectives and to incorporate at a conscious level their
responsiveness to operate within a dynamic environment. Strategic man-
agement is a discipline, and a sense of order and rigidity needs to be
applied, but also requires a certain amount of flexibility, as the dynamics of
the environment changes it needs to adapt, yet still maintain a focus and
productive approach.

There are issues raised that assist the strategists to examining issues,
test assumptions, collate and retrieve data, from a historical point and to
rationalize within an educated best guess on how the organization will be
positioned in the future.

The dynamics include fundamental decisions and courses of actions, as
the choices include the what, why, and how the company does things. In
applying an effective strategy this includes a myriad of questions posed, and
the choices made are tough, challenging, and may even bring discord, but
these in reality are the challenges that need to be faced in bringing the
organization to compete in the global market.

The basics of a supportive strategy should be the backbone of strategic
thinking: Are we basing our decisions ethically and on soundness, do we
fully understand the environment we operate in, and are there any internal
and external mechanisms that hinder us to attain our goals? In short, it can
be stated, that strategic management prepares and gears the organization to
interact accordingly.

Since strategy is an evolving dimension and nothing in its environment
remains stable, organizations need to reshape themselves as they encounter
new environments and hindrances arises. This includes the willingness to
be flexible, psychologically sound, and to effectively make proper judg-
ments. There is a sense of creativity involved in strategy and the tools uti-
lized and data analyzing is not the only ingredients in articulating a
strategy, but only the rationale of the people involved. Strategy does not fly
straight and deviations along its path will disrupt the process.

Twenty years and more ago the world was a comparably stable and pre-
dictable place and on the one hand, strategist could plan over several years
to ascertain the goals. Now, all has changed, markets are volatile and one
financial crisis can topple markets and cause a worldwide catastrophe. To
critically formulate a workable strategy is at best said difficult and funda-
mentally only a course of actions that the organization proposes and fore-
sees as the best alternative. The approach taken in this insight is essentially
a strategic thought, but the management of how the model risk in ratings
also needs to assess on the impact of the efficiency and effectiveness of the
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support systems that organizations use in providing accurate information
and to reducing their risks.

As for the development in providing new insight, previous literature
requires a thorough examination and a definite need to identifying the key
points. This approach is also argued in the development of strategy and
evaluation and alignment with its environment, with specific focus on a
framework that develops the strategic plan. External market data and pro-
gram evaluation results provide critical data to support strategy develop-
ment. Without this information and insight, the organization’s strategies
will not be in alignment with or effective in the marketplace. The critical
issues list serves as the specific focus and framework for the activities of the
organization and the pattern of these activities (developing and selecting the
strategies). Issues would include: Do the issues that relate to the company’s
overall strengths and knowledge base and how to integrate these two and
propel ahead; is the approach sound; does it answer the right questions; and
are we structured accordingly to meet future demands on the existing
framework and, if not, what do we need to change?

The inclusion of having the right information and enabling the correct
actions is a factor that cannot be underestimated and especially in ratings
this is essential in making the right assessment. The need to properly assess
the data, how it was acquired, and verifying and disseminating is all crucial
to the overall process. This is a systematic approach and has been well doc-
umented, but there still seem to be flaws in the generic makeup and this
needs to be addressed. Ultimately the strategic management insight is also
to reduce the cost overlay, alleviating a high degree of uncertainty and risk,
yet still adding value to the decision and creating information that is useful
to third parties alike. This concept should be rational, within reason, and
reflect adequately to what is being assessed and given the context of the
purpose be clear of bias and partiality, and provide information.

The decisions gleaned should derive from a sound framework and has
check points and if need be stop gaps where the process can be halted, if
deviations occur and correction measures taken. Previously it was men-
tioned that ultimately people are involved in the overall decision making
process and it is within this context that the decision makers would rational-
ize to make the correct decision, but as we have seen with the subprime cri-
sis and eventually leading to the credit crisis, analysts grew bolder and
started to take larger risks.

These decisions ultimately led to the crisis unfolding and it was quite clear
that the decisions made were unsatisfactory and the focus was not from an
objective and realistic point of view. With regard to these decisions and the
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adaptation of a strategic point of view, the following themes would be incor-
porated within the insight proposed: Assessments are to be tailored on the
evaluation approach to the specific decision proposed and critical information
easily obtainable and based on a mixture of financial and strategic decisions.

In 2008 we saw a new phenomenon occurring: Governments national-
ized financial systems and a major bailout from the U.S. government in
order to subvert unemployment and restore stability in order to foster a
burgeoning economy; and investment banks that were common employ-
ment haunts for MBA graduates either shrunk, disappeared, or were
merged with the their more robust competitors. The all-too-common
energy source, oil, spiralled, while in some countries the residential proper-
ties derailed and expectations are more to come.

The uncertainty within the economy has bought some valuable lessons
and this will make the proposed model sturdier and more able to withstand
the knocks of this new global order that will emerge after the crisis has dissi-
pated; lessons learned and knocks taken will not be easily repeated. Govern-
ments will intervene and regulate their national financial systems and this in
turn will lead to a more robust global financial system, but it is still up to
industry to ultimately be the players in the financial world and this will
determine if industry will be able to avoid a decline and respond accordingly.

According to what we know:

• The financial drive within a global context is not functional.
• Governments are trying to stimulate their economies.
• Globalization has introduced trade and growth and free movement of

capital.
• The 2008 U.S. domestic crisis has spread globally.
• Already in certain economies, foreign direct investment has shrunk.
• Unemployment is at an all-time high and looks to escalate further.
• The thought of nationalizing certain industries is under consideration.
• Short-term and long-term government intervention is proposed and

initiatives undertaken.
• New models are proposed and undertaken.

The models proposed are being envisaged and introduced; it is within
this context and time of volatility that we propose a strategic management
insight into model risk in ratings.

Thus far, we have provided a basis of what is strategy and have included
the elements of strategic decision making and also looked at the uncertainty
that lies ahead. The template this is proposed consisted of the process of
strategic making, but as stated in the abstract, it would be and includes risk
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tools currently in use, as this has to a degree provide the essentials to
promulgate the proper choices to a certain degree. What is new is the tool
of a performance management element will enhance a new risk manage-
ment template and focus on the internal as well as the ultimate outcome for
the decision makers.

In essence the proposed model will heighten the elements in regard to
model risk and look at new ways to approach it.

DESCRIPTION OF A TYPICAL RATING 
METHOD IN THIS CATEGORY

Within the scope of a commissioned research project by Germany’s Saxon
State Ministry of Economics and Labor, which conducted the Institute for
Practical Economic Research and Economic Advice together with the
Technical University of Dresden, Germany as well as the advisory associa-
tion WIMA GmbH, RMCE RiskCon GmbH, and the FutureValue Group
AG, for the first time in the determination of a rating for about 150 Saxon
companies, a simulation model as a stand-alone rating system has been
introduced that can

• Directly reduce the chance of insolvency from the simulation and
therewith

• Make rating prognosis possible

A simulation allows a company to forecast sales volume, costs, and other
influential factors that would appear on balance sheets, for a project-leader
through a planning period of over five years in consideration of the interro-
gated risks. With the help of simulation-based calculation methods, one can
receive an allocation for the balance sheet profit and of the liquidity of the
company, whereby the chance of insolvency through excessive indebtedness
or liquidity over a period of five years can be directly determined. Then a
rating-note or a rating-grade rank can be aligned to the subject, in such a
way that the probability of failure can be determined. The initial point of
derivation for this rating is the description of the probability of insolvency.
The cause of insolvency is self-evident in the following situations:

• An excessive indebtedness, meaning the figure of (economic) capital is
smaller than zero

• Liquidation, meaning that the payment obligations are no longer
covered through liquid funds and an agreement for short-term credit
is made
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In order to be able to determine the probability for excessive indebted-
ness, the allocation function of the owned capital has to be determined in
each period. This result defines the capital acquired over a period of time
from the capital acquired in the previous period, plus the changes of the
surplus saved capital and of the deposits and withdrawals, as well as of the
retained balance sheet profits, whereupon an alternation of capital-similar
funds such as bonds and bindings against allied companies or associations or
deposits of informal associates are not included in the planning period.
Then with yearly records and analysis of acquired capital, a probability of a
nonpositive capital can be determined, which precisely matches the cause
for insolvency: “excessive indebtedness.”

However, since, as a general rule within companies, no excessive docu-
mentation of indebtedness exists, as there is concentration on the vital
assets, excessive indebtedness occurs. If the companies have hidden reserves
in a larger amount, the probability of default will be estimated too high. If
on the other hand high derivative company values, through acquisition, are
in the balance sheet, it is possible that the probability of default can be
underestimated. The situation of liquidity occurs for a company, if its pay-
ments-out exceeds the payments-in plus liquid funds plus not yet exhausted
credit lines. But before this situation occurs, the company still has several
adaptabilities. Especially investments that can be delayed or even aban-
doned. Through downsizing or short-term work from personnel, a state of
liquidity can also be salvaged.

Main components (regarding the company model, which was the basis of
such planning) are the calculation of profit, and the calculated estimate of loss
as well as the budgeted balance sheet (see Figure 11.1). The interest applies
for the allocation function of capital as well as liquidation. For the aforemen-
tioned indicators of profit are modeled according to the formula “profit, is
sales volume minus expenses,” this means, on one hand, sales volume process
and, on the other hand, costs process, and its details must be described.

In determining the probability of insolvency for the period of mid-term
company planning, the company is seen through randomly determined pro-
cesses, means, and affine-linear dependencies on the sales volume (detailed
specifications are found in Leibbrand, 2002 and 2004, as well as Gleißner and
Leibbrand, 2004a and 2004b). As randomly defined processes establish the
sales volume, the material recovered paper utilization rate, the personnel costs,
and the interest rates could be modeled, whereby the aforementioned pro-
cesses make the base variation possible and thus the calculation of the insol-
vency probability. As a means for discovery, the attitude towards investing, the
personnel adjustment, the distribution politics, and the setting of a credit line
would be appropriate. Affine-linear dependencies of different balance sheet
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and profit-and-loss positions of the sales volume define the penetrating power
of turnover fluctuations on the acquired capital and liquidity.

Risks that exist within the company like machine failure or miscalcula-
tions are considered as separate stochastic processes.

At the execution of the simulation in one run, for example (see scenario
S1 from Figure 11.1), it is assumed that in the company that the greatest
client drops out (which is why the sales volume in Figure 11.1 drops from
the estimated value of 6,500 to 5,000), a major order gets miscalculated
(the other expenses rise from 20 percent of the sales volume to 22 percent)
and personnel expenses rise (the personnel expenses rise from 50 percent of
the sales volume to 54 percent). The accumulation of these unfortunate cir-
cumstances leads to an annual loss of €258,000.

If assuming only an acquired capital volume of €150,000 is at hand, this
loss cannot be absorbed, so that insolvency on the basis of excessive indebt-
edness comes into existence. In another scenario, in which the sales volume
rises by 9 percent, the material-recovered paper utilization rate stays con-
stant; at constant wages, productivity growth can be reached (scenario S3 in
Figure 11.1) and the company reaches an annual surplus in the volume of
€353,000 before taxes and at a tax rate of 44 percent €198,000 after taxes,
thus an extraordinarily good result. Ten thousand simulation runs stated
that the frequency diagram from Figure 11.2 (354 simulation results can
not be displayed because they are located outside of the area from �230TE
and �250TE).
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The determination of rating through randomly defined company plan-
ning has a crucial theoretical advantage compared with traditional rating
systems; that fluctuations of the income level are modeled and that it is
solely aimed towards the future. Theoretically, over time, the randomly
defined company planning model is the optimal path, which although
requires careful consideration, can prove itself as worthwhile, if, for exam-
ple, it becomes laborious, complex, or even impossible for a credit institu-
tion to receive the relevant information.

CONCLUSION

Through increased simulations, the probability of insolvency can be user-
defined, approached delicately, and without information being given directly
at a desk. Whether the calculated probability of insolvency matches the
actual, depends on two set screws: the quality of the company model and
the quality of the assumed stochastic processes.

From the Saxon rating project, it is known that the modeling of the
company has a crucial influence on the probability of insolvency. If, for
instance, for an East German enterprise, the accelerated depreciation
remains unconsidered, the probabilities of insolvency will be displayed as
far too high. It is also easy to understand the modeling sensitivity for the
effect of a sales collapse on the annual surplus. If, for example, no personnel
are dismissed at a sales volume calibration, then as a general rule, insolvency
has already occurred.
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The second big lever on the rating result comes from the modeling of
the stochastic processes and their correlation structure. For instance, are
the expenses for products and the staff members positively correlated, how
high is the risk of flood water damage? Also, here the Saxon rating process
showed that on the part of the enterpriser, the risk situation is not ade-
quately evaluated (see also Leibbrand, 2004).

Since the prognosis of insolvency probability depends mainly on the use
of randomly defined processes, the end quality comparison for finance rat-
ings, that is, for the short term, is not at all impressive. However, it seems
to be desirable that the companies start to think in density functions, so
that the responsible individuals within the companies become more able to
observe the randomly defined processes more precisely.

This is particularly helpful, in order to show, for example, the conse-
quences of alternative strategies and planning in rating prognosis, and to
make a contribution to crisis prevention in this way. Prognosis for insol-
vency probabilities through stochastic simulation are then incredibly mean-
ingful, when for a company (for instance, because of great structural
changes, growth, or distinctive coincidental effects through historical
annual closing data) occurring risks for last annual closings are not repre-
sentative of the future.
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ABSTRACT

This chapter discusses various practical aspects, in particular sources of
model risk, with respect to the application of the supervisory formula
approach (SFA) of Basel II to securitization transactions. After a brief
introduction of the different approaches that Basel II provides for the risk
weighting of securitization exposures, this chapter provides an explanation
of the SFA itself as well as its input parameters. The sensitivity of capital
requirements calculated according to the SFA’s input parameter is then dis-
cussed in detail. Thereafter, further sources of model risk resulting from
the underlying pool’s dynamic character as well as static regulatory mini-
mum requirements are analyzed. At the end of the chapter, a brief summary
as well as an outlook on the future role of the SFA within Basel II against
the background of recent regulatory reforms is provided.



INTRODUCTION

With the introduction of Basel II, the Basel Committee for Banking Super-
vision (BCBS) replaced the previous set of rules, commonly known as Basel
I. Probably the most important reason that made new capital requirements
necessary is the substantial change that the banking industry experienced
during the advent of financial engineering and the rise of securitization
transactions.

The basics of Basel II are still straightforward (i.e., banks have to hold
8 percent regulatory capital for different types of risks). However, while
under Basel I there have been no particular rules for securitizations, 
Basel II for the first time introduced a so-called securitization framework,
which, unfortunately, makes determining capital requirements for securi-
tization exposures far more complex. Hence, this chapter provides an
overview of the new rules, how they are implemented and which risks—
particularly model risks—arise when the securit ization framework 
is applied.

THE BASICS OF THE BASEL FRAMEWORK

According to Basel II, banks can calculate their capital requirements using
one of two general types of approaches, i.e., the standardized approach
(SA) and the internal ratings-based approach (IRBA). They differ with
respect to their sophistication level when measuring credit risk. While the
SA focuses on external ratings and is primarily an enhanced version of the
Basel I approach, the IRBA does not use external ratings but instead
internal ratings. Those internal ratings are derived using internally devel-
oped mathematical models based on historical data, or more precisely a
Vasicek one-factor model based on the following functional relationship:
EL � EAD � f (PD,M) � LGD.

Depending on which IRBA is used; i .e. ,  foundat ion IRBA 
(F-IRBA) or advanced IRBA (A-IRBA), banks need to estimate as input
parameter PD only, or the PD—LGD as well as EAD. Consequently, each
possible combination of input factors provides an individual risk weight
which, in addition, is unlikely to be the same for internal models that differ-
ent banks have developed. In more technical terms, the IRBA risk weight
function is a continuous function (see Figure 12.1), while the risk weight
function used in the SA is a step or staircase function.

While applying the IRBA is more complex, it promises a more risk-sensi-
tive calculation and thus, at least for some banks, potentially lower capital
requirements. In practice, the higher risk-sensitivity as well as “soft pressure”
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Figure 12.1 Risk-Weight Functions for SA and IRBA According to Basel II

from regulatory authorities encouraged larger banks to choose one of the
IRBAs, while smaller banks in most cases preferred to apply the SA.

THE BASEL II SECURITIZATION FRAMEWORK

The ever-growing significance of securitization transactions as well as the
recent trend of financial engineering to structure more and more complex
financial instruments (which came to a most likely partial and temporary
halt with the emerging credit crisis) attaches particular importance to the
newly introduced rules for securitization exposures.

Different Approaches for Securitization Transactions
According to Basel II

When considering the regulatory treatment of securitization exposures,1

Basel II entails quite a number of amendments. Before the implementation of
Basel II, in most cases banks applied a 100 percent risk weight to securitiza-
tion exposures. The rationale behind that approach was the fact that it is usu-
ally not possible to match an exposure which was acquired in a securitization



with an individual debtor. Thus, following an obviously conservative
approach, the most unfavorable risk weight for standard exposures was used.
As shown below in Figure 12.2, Basel II provides a broader choice of differ-
ent approaches for securitization exposures.2

Determining the exposure’s risk weight in the SA is straight forward:
Exposures receive risk weights according to their individual external rating
or based on the actual composition of the underlying portfolio. In contrast
to the fixed 100 percent risk weighting under Basel I, the new rules obvi-
ously allow for greater risk sensitivity.

Nevertheless, the Basel Committee on Banking Supervision was aiming
at further improving the risk sensitivity of capital charges for securitization
exposures: If a bank applies one of the IRBAs, there are three different
methods for determining the risk weights of securitization exposures. How-
ever, this does not mean that banks can choose freely between these three
approaches. In fact, Basel II sets out a strict hierarchy as to which approach
might be used and which might not.

If an external rating is available or if a rating can be inferred,3 the rat-
ings-based approach (RBA) is applied. Under the RBA, risk weights are
determined in a similar way as compared with using SA for securitization
exposures, i.e., the individual risk weight is based on an external or inferred
credit assessment. If an external rating is not available and an external rating
cannot be inferred, banks using the IRBA for securitization exposures have
to apply either the internal assessment approach (IAA) or the SFA. The
IAA may only be used for liquidity facilities, credit enhancements as well as
other securitization exposures which were extended to a qualifying asset-
backed commercial paper program.
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If an external/inferred rating is not available and the IAA cannot be
used, IRBA-banks are required to determine the risk weights of their secu-
ritization exposures using the SFA or have to risk weight the respective
exposure at 1,250 percent. Thus, in order to avoid a full capital deduction
of the exposures, the capital charge must be calculated based on the func-
tional relationship of several input parameters using the “supervisory for-
mula” that follows: 

The SFA for Securitization Exposures

The SFA is used to calculate the capital charges based on the functional
relationship of several input parameters using a rather complex mathemati-
cal formula. More precisely, the capital charge depends on various bank-
supplied inputs. Below we introduce the five most important ones,4 of
which three are pool parameters (KIRBA, N, LGD) and two structural
parameters (L, T ).

The Supervisory Formula Approach Input Factors

The IRBA Capital Charge If the Underlying Exposures 
Had Not Been Securitized (KIRBA)5

KIRBA is defined as the ratio of the IRB capital requirement (including the EL
portion of the underlying exposures in the pool of underlying assets) to the
exposure amount of the pool. The IRBA capital requirement is calculated
according to the “standard” rules for IRBA banks, including accounting for
potential credit risk protection.

The Pool’s Effective Number of Exposures; and (N)
The Basel II framework refers to the effective number of underlying expo-
sures (N) comprised in the securitized portfolio. Banks can choose between
two alternative methods as to how to calculate N using one of the following
formulas, of which the first is the inverse

In the formulas above, EADi stands for the sum of all credit risk positions
against the debtor i and C1 for the share that the credit risk position with the
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highest EAD (more precisely, regulatory basis for assessment) has in the total
of all individual EAD (or basis for assessment) in the securitized portfolio. In
this context, debtors who are related to each other in a way which makes it
likely that financial problems of one debtor lead to financial problems of the
other debtor count as one single debtor and hence do not increase the input
parameter N. Thus, both formulas for the calculation of the effective num-
ber of underlying exposures not only consider the total number of exposures
within the pool but also the concentration within the pool.

The Pool’s Exposure Weighted Average Loss Given Default (LGD)
The exposure-weighted average LGD is determined according to the 
following formula:

In this context, LGDi is determined as the weighted average LGD associ-
ated with all exposures to the ith obligor. In the case of a resecuritization,
an LGD of 100 percent must be assumed for the underlying securitized
exposures.

The Tranche’s Credit Enhancement Level (L)
The credit enhancement level is measured as the ratio of the amount of all
securitization exposures subordinate to the tranche in question to the
amount of exposures in the pool. For example, the 10 to 25 percent tranche
of a securitization would represent a credit enhancement level of 10 per-
cent. As a general rule, reserve accounts can increase the individual credit
enhancement level. For this purpose, the reserve account must be junior to
the tranche in question and funded by accumulated cash flows from the
underlying assets. Unfunded reserve accounts cannot be considered when
calculating L.

The Tranche Thickness (T)
The tranche thickness is defined as the ratio of the size of the tranche in
question measured by the tranche’s notional amount to the total notional
amount of exposures in the pool that is securitized. For example, if a port-
folio of loans with a nominal amount of $500 million is securitized and the
tranche in question has a face value of $100 million, the tranche thickness
T would equal 20 percent. Alternatively, using the same notation as in the
example of a 10 to 25 percent tranche above, the tranche thickness T would
equal 15 percent.
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Individual Importance of the Supervisory Formula 
Approaches Input Factors

As the above input factors are interdependent to a certain extent, it is diffi-
cult to assess each of the factor’s individual importance on the total capital
charge resulting from a particular (securitization) exposure to which SFA is
applied. However, in practice, the pool’s effective number of exposures as
well as its exposure weighted average loss given default effect on capital
requirements is significantly weaker than the effect of the IRBA capital
charge had the exposures not been securitized KIRBA, the tranche’s credit
enhancement level L as well as its thickness T.

The charts in Figure 12.3 depict the sensitivity of the capital require-
ments calculated according to the SFA to the number of exposures. On the
left-hand side, the risk weights for different values of the number of underly-
ing exposures (N) are illustrated, assuming values for the average risk weight
including expected losses KIRBA*12.5, LGD, credit enhancement level L, and
tranche thickness T of 62.5, 45, 5 and 95 percent, respectively. The graph
clearly illustrates that the function shows the highest sensitivity for small
values of N. Once the number of exposures reaches values of approximately
60, the curve begins to flatten rapidly. In other words, the impact of incre-
mental increases of N on the risk weight decreases. As can be seen from the
graph on the right-hand side, even if the input parameters are modified, the
curve’s shape remains similar and the general conclusion valid: Except for
extraordinarily nongranular pools of underlying assets, the sensitivity of
capital requirements to the number of underlying exposures N is low.

While the charts above depict the sensitivity of the capital requirements
to the number of exposures N, Figure 12.4 shows on the z-axis by how
much a tranche’s risk weight increases if the tranche’s average loss given
default jumps from 45 to 100 percent. For this purpose, N is given as a
fixed 125. The three other remaining parameters that are required for the
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calculation of a tranche’s risk weight, i.e., KIRBA, L, and T are given on the 
x-axis (KIRBA) and y-axis (L and T, assuming T is given by 1�L). In other
words, the height of the peaks indicates for various combinations of KIRBA

and L (and thus T, as we assume a two-tranche securitization) the increase
of a senior tranche’s risk weight in percent given a jump of LGD from 45 to
100 percent.

While the maximum increase of the risk weights calculated according to
the SFA as a result of an increase of LGD from 45 to 100 percent in the
above example is approximately 35 percent, the graph also shows that for
most combinations of KIRBA and credit enhancement level L, the impact on
the risk weights is significantly lower, i.e., in most cases below 5 percent. In
the example above, in absolute terms, the maximum increase of the risk
weight is 9.8 percentage points.

In Table 12.1, the respective risk weights for a senior tranche in a two-
tranche securitization are given for different combinations of KIRBA*12.5
and different credit enhancement levels. The number of underlying expo-
sures and the average LGD are assumed to be constant at 125 and 45 per-
cent, respectively.

As can be seen from this table, the risk weights of exposures can be
reduced significantly under the SFA if the underlying exposures (had they
not been treated according to the securitization rules of Basel II) carry a
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rather low-risk weight and benefit from a substantial level of credit
enhancements. More precisely, assuming credit enhancement levels of up to
10 percent, the SFA’s minimum risk weight of 7 percent can be achieved for
exposures which would have received an average risk weight of up to 
100 percent under the nonsecuritization rules.

In that context, it is important to understand that the risk weights would
differ significantly if the assumption that the tranche thickness T equals 
1 minus credit enhancement level L would not hold as this would mean that
the relevant exposure is not considered a most senior position. All other
factors unchanged, where the investor has an exposure to a mezzanine
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Table 12.1 Risk Weights According to the Supervisory Formula Approach
for a Most Senior Tranche (Example)

Enhancement level

KIRBA*
12.5 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

20% 12.8% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0%

40% 35.4% 23.0% 10.4% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0%

60% 57.6% 45.4% 33.0% 20.3% 7.9% 7.0% 7.0% 7.0% 7.0% 7.0%

80% 79.4% 67.5% 55.3% 42.8% 30.1% 17.2% 7.0% 7.0% 7.0% 7.0%

100% 101.1% 89.4% 77.4% 65.2% 52.7% 40.0% 27.0% 13.7% 7.0% 7.0%

120% 122.6% 111.1% 99.4% 87.4% 75.1% 62.6% 49.9% 36.8% 23.5% 11.0%

140% 144.0% 132.7% 121.2% 109.5% 97.5% 85.2% 72.7% 59.9% 46.8% 33.4%

160% 165.3% 154.3% 143.0% 131.4% 119.7% 107.6% 95.4% 82.8% 70.0% 56.9%

180% 186.6% 175.7% 164.7% 153.4% 141.8% 130.0% 118.0% 105.7% 93.1% 80.2%

200% 207.8% 197.1% 186.3% 175.2% 163.9% 152.3% 140.5% 128.5% 116.1% 103.5%

220% 228.9% 218.5% 207.8% 197.0% 185.9% 174.6% 163.0% 151.2% 139.1% 126.8%

240% 249.9% 239.7% 229.3% 218.7% 207.8% 196.7% 185.4% 173.9% 162.0% 143.9%

260% 271.0% 261.0% 250.8% 240.4% 229.7% 218.9% 207.8% 196.5% 184.9% 173.0%

280% 291.9% 282.1% 272.2% 262.0% 251.6% 241.0% 230.1% 219.0% 207.7% 196.1%

300% 312.8% 303.3% 293.5% 283.5% 273.4% 263.0% 252.4% 241.5% 230.4% 219.1%

320% 333.7% 324.4% 314.8% 305.1% 295.1% 285.0% 274.6% 264.0% 253.2% 242.1%

340% 354.5% 345.4% 336.1% 326.6% 316.8% 306.9% 296.8% 286.4% 275.8% 265.0%

360% 375.3% 366.4% 357.3% 348.0% 338.5% 328.8% 318.9% 308.8% 298.4% 287.9%

380% 396.1% 387.4% 378.5% 369.4% 360.1% 350.7% 341.0% 331.1% 321.0% 310.7%

400% 416.8% 408.3% 399.6% 390.7% 381.7% 372.5% 363.0% 353.4% 343.5% 333.5%

420% 437.5% 429.2% 420.7% 412.1% 403.2% 394.2% 385.0% 375.6% 366.0% 356.2%

440% 458.1% 450.0% 441.8% 433.3% 424.7% 416.0% 407.0% 397.8% 388.5% 378.9%

460% 478.7% 470.8% 462.8% 454.6% 446.2% 437.7% 428.9% 420.0% 410.9% 401.5%

480% 499.2% 491.6% 483.8% 475.8% 467.6% 459.3% 450.8% 442.1% 433.2% 424.2%

500% 519.7% 512.3% 504.7% 496.9% 489.0% 480.9% 472.6% 464.2% 455.5% 446.7%



tranche with attachment point and detachment point equaling 5 and 20 per-
cent, respectively, (i.e., a tranche thickness of 15 percent), the risk weights
would increase substantially, as can be seen in the Table 12.2.

The examples in Table 12.2 clearly show that structuring securitization
transactions can be a rather complex task given the various input parameters
and covenants that have to be considered thoroughly in order to achieve the
transaction’s objectives. Due to this complexity, in practice securitizations are
usually structured using models with different sophistication levels that aim at
balancing the various constraints in an optimal way. However, as we will see
below, the optimum is not necessarily achieved if a tranche’s risk weight
reaches the minimum value of 7 percent and thus cannot be further reduced.

Other Sources of Model Risk Resulting from the 
Application of the SFA

As we have seen previously, various input factors have to be considered
when structuring a securitization deal. Finding the optimal balance
between these input factors given a particular set of objectives that is to be
achieved (e.g., tranching in a way that meets an individual customer’s
demands with respect to the tranche’s risk profile, risk transfer that allows
for reduction of capital requirements, achieving a certain cash flow profile,
etc.) under the securitization transaction at a given point in time is, without
a doubt, a complex task. However, to a certain extent, securitization trans-
actions are somewhat like “living organisms” that are subject to permanent
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Table 12.2 Risk Weights According to the Supervisory Formula Approach
for a Mezzanine Tranche (Example)

Enhancement level

KIRBA*
12.5 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

20% 84.3% 18.8% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0% 7.0%

40% 233.9% 150.6% 67.3% 20.7% 7.2% 7.0% 7.0% 7.0% 7.0% 7.0%

60% 380.0% 296.7% 213.3% 130.0% 50.0% 20.0% 7.8% 7.0% 7.0% 7.0%

80% 524.2% 440.8% 357.5% 274.2% 190.9% 107.5% 42.0% 18.6% 7.7% 7.0%

100% 667.1% 583.8% 500.5% 417.1% 333.8% 250.5% 167.1% 83.8% 36.3% 16.7%

120% 808.8% 725.7% 642.5% 559.2% 475.9% 392.5% 309.2% 225.9% 142.5% 66.0%

140% 948.1% 866.3% 783.5% 700.4% 617.2% 533.8% 450.5% 367.2% 283.9% 200.5%

160% 1080.1% 1002.9% 922.5% 840.4% 757.6% 674.5% 591.2% 507.9% 424.6% 341.3%

180% 1192.7% 1128.5% 1055.4% 977.2% 896.3% 814.1% 731.2% 648.1% 564.8% 481.5%

200% 1250.0% 1225.3% 1171.9% 1104.7% 1030.0% 951.0% 869.7% 787.3% 704.4% 621.2%



change over the life of a securitization transaction. Thus, structuring a deal
“at the limit”, i.e., by meeting the minimum requirements in order to
achieve the desired result (e.g., risk weighting of a particular tranche) might
turn out to be suboptimal from a broader (or longer-term) perspective.

SFA models allow one to “play” with the input parameters assuming
either different scenarios with respect to the composition of the underlying
pool of assets (thus assuming different levels of KIRBA, LGD, or the effective
number of exposures) or a different tranching of the transaction (thus
assuming different values for the credit enhancement level L and tranche
thickness T ). Some models also use optimization routines that provide the
most efficient tranching of a securitization transaction in terms of capital
requirements given a set of predetermined constraints. However, the
ineluctable dynamics of a portfolio of underlying assets and thus of the
securitization itself usually remain out of the scope of such models. For a
transaction to be successful, however, these very dynamics must be consid-
ered and one must attempt to anticipate their potential impact on future
cash flows, capital requirements, as well as other relevant factors.

Two of the foremost factors in this context are rating migration (or rat-
ing transition)7 as well as amortization of the transaction’s pool of underly-
ing assets. Rating migration, on the one hand, suggests that the average
quality of the underlying pool of assets deteriorates over time and, all
things being constant, increases KIRBA and thus a securitization tranche’s
risk weight. Amortization, on the other hand, can (but not necessarily
must) have an offsetting effect, depending on the transaction’s individual
amortization schedule as defined in the legal documentation. In general,
for a nonrevolving transaction (i.e., where the pool of underlying assets is
not replenished), there are three basic forms of amortization as shown in
Figure 12.5.

First, a securitization can be structured as a sequential pay structure, i.e.,
the most senior tranche is the first to receive principal payments from the
underlying pool of assets. Once the most senior tranche is repaid, the next
most senior tranche receives payments, and so on. Another way of structur-
ing is a pro rata pay structure where principal payments are used to pay each
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individual tranche of a securitization proportionally. The last option is to
have a tailor-made amortization schedule that combines the sequential amor-
tization and pro rata amortization based on agreed upon triggers. For exam-
ple, the amortization schedule could be arranged so that the securitization
amortizes sequentially first and changes to a pro rata schedule (or vice versa)
once certain performance triggers have been breached.

As noted above, the particular amortization structure should be consid-
ered in the structuring process: While a pro rata amortization schedule
does not impact the structuring results, sequential structures affect the
supervisory formula’s input factors credit level enhancement L and tranche
thickness T. We will explain this feature of amortization in detail below.

Let us take an example assuming an underlying pool of assets having a
total amount of $1,000,000 with an IRBA capital charge had the underlying
exposures not been securitized (KIRBA) of 5 percent (equaling an average
pool’s risk weight of 62.5 percent), an effective number of exposures N of
100 and an average LGD of 50 percent. Let us further assume that the deal
structure comprises three tranches, i.e., 0 to 5 percent, 5 to 20 percent, and
20 to 100 percent, respectively. The values for the three individual tranche
thickness T and credit enhancement level L as well as the resulting risk
weights, risk-weighted assets, and capital charges for each individual
tranche are given in Table 12.3.

Let us now assume that at two later points during the life of the securiti-
zation (denominated as t1 and t2) there have been amortization payments of
$100,000 each according to a pro rata amortization schedule. As can be
seen from Table 12.4, while the total amounts for the capital charge and
risk-weighted asset amount are reduced proportionately, the tranche thick-
ness and credit enhancement level and thus their individual risk weights
remain unchanged.

However, where a sequential amortization schedule is used, the amorti-
zations alter the parameters L and T. As shown in Table 12.5, the first
amortization in t1 lowers the credit enhancement level and tranche thick-
ness of the tranches to 77.78 and 22.22 percent, 16.67 and 5.56 percent, as

196 Part iii Model Risk related to credit and credit derivatives

Table 12.3 Example Portfolio

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

800,000.00 4,480.00 56,000.00 7.00% 80.00% 20.00%

150,000.00 8,603.84 107,547.97 71.70% 15.00% 5.00%

50,000.00 50,000.00 625,000.00 1,250.00% 5.00% 0.00%

1,000,000.00 63,083.84 788,547.97



well as 5.56 and 0 percent, respectively. This in turn reduces the mezzanine
and junior tranche’s risk weights to around 39 percent (from 72 percent)
and 1,202 percent (from 1,250 percent), respectively. After the second
amortization payment of $100,000 in t2, the risk weights are reduced even
further to approximately 21 and 1,110 percent, respectively.

As stated previously, the amortization effect on risk weights can be offset
by rating migration trends. Based on the example above, we now use a
sequential amortization schedule: Let us assume that KIRBA has increased to
5.5 percent (equals an average risk weight of 68.75 percent) in t1 and 6 per-
cent (equals an average risk weight of 75 percent) in t2. Table 12.6 shows
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Table 12.4 Example Portfolio after Pro Rata Amortizations

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

720,000.00 4,032.00 50,400.00 7.00% 80.00% 20.00%

t1 135,000.00 7,743.45 96,793.17 71.70% 15.00% 5.00%

45,000.00 45,000.00 562,500.00 1,250.00% 5.00% 0.00%

900,000.00 56,775.45 709,693.17

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

640,000.00 3,584.00 44,80.00 7.00% 80.00% 20.00%

t2 120,000.00 6,883.07 86,038.38 71.70% 15.00% 5.00%

40,000.00 40,000.00 500,000.00 1,250.00% 5.00% 0.00%

800,000.00 50,467.07 630,838.38

Table 12.5 Example Portfolio after Sequential Amortizations

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

700,000.00 3,920.00 49,000.00 7.00% 77.78% 22.22%

t1 150,000.00 4,665.31 58,316.32 38.88% 16.67% 5.56%

50,000.00 48,078.15 600,976.86 1,201.95% 5.56% 0.00%

900,000.00 56,663.45 708,293.18

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

600,000.00 3,360.00 42,000.00 7.00% 75.00% 25.00%

t2 150,000.00 2,468.56 30,857.05 20.57% 18.75% 6.25%

50,000.00 44,414.51 555,181.33 1,110.36% 6.25% 0.00%

800,000.00 50,243.07 628,038.38



that this will partially offset the (positive) effect on risk weights from the
sequential amortization. However, while the total effect remains positive,
given a steeper increase in KIRBA, the total effect of rating migration and
amortization could easily turn out to be negative.

The examples in Table 12.6 clearly demonstrate that the level of com-
plexity of structuring a securitization efficiently increases with the number
of (to a certain extent) interdependent parameters. While many SFA models
are likely to reach their limits given the structuring challenges discussed
above, there are even more aspects that might influence a securitization
transaction’s success. One of which is the “efficient risk transfer criterion”
that banks are required to meet in order to obtain any regulatory capital
relief from a securitization according to Basel II. Currently, in most juris-
dictions, the focus for identifying a significant risk transfer is on the mezza-
nine positions of a securitization. In this context, a mezzanine securitization
position for which SFA is used is defined as an exposure (1) for which a risk
weight of lower than 1,250 percent applies and (2) that is junior to the most
senior position. In rating terms, for most cases this turns out to be every-
thing in the range from BBB� to A� (or where the most senior position is
rated A� or below, everything in the range from BBB� to the highest rated
position which is still junior to the most senior position). A significant risk
transfer is usually8 considered to be achieved if the risk weighted exposure
amounts that an originating bank retains from a securitization do not
exceed 50 percent of the risk-weighted exposure amounts of all mezzanine
positions of the securitization.
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Table 12.6 Example Portfolio after Sequential Amortizations 
and Rating Migration

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

700,000.00 3,920.00 49,000.00 7.00% 77.78% 22.22%

t1 150,000.0 7,685.93 96,074.08 64.05% 16.67% 5.56%

50,000.00 49,971.45 624,643.12 1,249.29% 5.56% 0.00%

900,000.00 61,577.38 769,717.20

Exposure Capital Risk-weighted Risk Thickness Credit
($) Charge ($) Assets ($) Weight (%) (T) Enhancement (L)

600,000.00 3,360.00 42,000.00 7.00% 75.00% 25.00%

t2 150,000.00 6,000.03 75,000.35 50.00% 18.75% 6.25%

50,000.00 49.603.01 620,037.66 1,240.08% 6.25% 0.00%

800,000.00 50,243.07 628,038.38



The rationale behind this is actually straightforward: The junior positions
are considered irrelevant for the purpose of identifying an efficient risk
transfer as these positions are risk weighted at 1,250 percent anyway and
thus all the underlying risks are sufficiently accounted for from a regulatory
capital perspective. The most senior pieces, despite in most cases being the
largest piece with respect to its notional, usually bear only a very small frac-
tion of the entire risks that have been securitized. Thus, the mezzanine posi-
tions represent the majority of the underlying risk and consequently are
considered when determining whether a risk transfer has been achieved or
not. However, this approach can become difficult to handle if securitizations
are modeled using the SFA: Consider the securitization in Table 12.7 with
three tranches we used as an example (see Table 12.3).

If the originator was to retain a 10 percent share in the 5 to 20 percent
tranche (which we do not denominate as mezzanine tranche intentionally)
and 70 percent in the 0 to 5 percent tranche,9 the abovementioned 50 per-
cent rule would be met, as the originator’s individual risk-weighted expo-
sure amount in what is considered the mezzanine tranche for regulatory
purposes would be $10,754.80 or 10 percent of the regulatory mezzanine
tranche’s total risk-weighted exposure amount ($107,547.97). The origina-
tor’s share in the junior tranche is not considered due to its 1,250 percent
risk weight as discussed above. However, if the junior tranche’s risk weight
becomes less than 1,250 percent during the life of the securitization, the 
50 percent limit might in fact be up for discussion. If, for example, amorti-
zation and rating migration effects reduce the 0 to 5 percent tranche’s risk
weight down to 1,249.29 percent (see example for t1 in Table 12.6), it would
subsequently have to be considered as a “regulatory mezzanine tranche”
when assessing whether a significant risk transfer has been achieved or not.
The total risk weighted exposure amount of the mezzanine tranche then
would be $150,000 * 64.05% � $50,000 * 1,249.29% � $720,717.20. If the
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Table 12.7 Example Portfolio after Sequential Amortizations

Retained
Total Risk- Risk-weighted
weighted Exposure

Nominal Risk Weight Exposure Retained by Amount by
Tranche ($) (%) Amount ($) Originator (%) Originator ($)

20%–100% 800 7% 56 0% —

5%–20% 150 71.70% 107,547.97 10% 10,754.80

0%–5% 50 1,250.00% 625,000.00 70% 437,500.00

1,000,000 788,547.97



originator’s share in the 0 to 5 percent tranche and the 5 to 20 percent
tranche were to remain unchanged, the originator’s individual share in the
regulatory mezzanine tranche would be $446,857.59, which exceeds the 
50 percent limit (i.e. $360,358.60). Obviously, where achieving a risk trans-
fer and thus regulatory capital relief is part of the originator’s target setting
(and thus considered when determining the transactions “financials”),10

inadequate consideration of the problem area discussed above within the
models would thwart the success of a securitization as the “financials” of a
transaction necessarily depend on the transaction’s regulatory treatment.

In addition to the above, the dynamic character of a securitization’s
underlying asset pool might cause SFA models to fail in another respect:
Currently, IRB banks (only these are actually allowed to apply the SFA)
have to meet minimum capital requirements, which for most assets are
determined based on the rules for IRBA (which should be the standard case
for IRBA banks). For some assets, however, IRBA banks are allowed to
determine capital requirements based on the rules for the SA, either during
a transitional period after the implementation of Basel II only, or for other
assets on a permanent basis. However, in order for a securitization to be
SFA-eligible, some supervisors require that the underlying pool predomi-
nantly consists of such assets that would be treated according to the IRBA
rules had they not been securitized. Thus, for transactions that securitize a
pool of assets which partially consist of assets that an originator or investor
would not treat under the IRBA rules, it must be assured that the share of
assets that are treated under the rules for the SA is not and cannot become
larger than 50 percent of the total asset pool.11

CONCLUSION

There is little doubt that securitizations as such are and will continue to be
an important instrument for achieving risk transfer and risk diversification
as well as a means of funding for the financial system during as well as after
the crisis. Given the fact that international supervisors have taken a rather
negative stance in terms of risk weighting toward securitizations in general
and resecuritizations, e.g., CDO^2 and similar products, in particular as
well as the fact that credit rating agencies going forward will also take a
rather conservative approach when assessing the credit quality of securitiza-
tions, the application of the SFA to securitizations might experience a
boom. This is likely to be supported by the fact that the SFA reveals some
interesting benefits compared with RBA as an alternative for calculating risk
weights for securitization exposures. In practice, using the SFA is not only
rather uncomplicated given its straightforward methodology, it also allows
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for securitization of a broader range of asset classes (for which rating agen-
cies would require comprehensive information which goes far beyond the
asset’s individual risk weighting). In addition, the SFA also allows for higher
transparency with respect to the structuring process as compared with a
situation where rating agencies are involved. This could also mean cost
advantages compared to RBA.

However, as discussed previously, the SFA for assessing the capital
requirements of unrated securitization exposures bears some significant
sources of model risk. First of all, models that are based on the SFA must
allow for the different sensitivity of the risk weighting of securitization
exposures to the formula’s input factors. While some input factors develop
a rather limited effect on the risk weighting of a securitization (LGD, N),
others have significantly greater influence (KIRBA, L, T).

However, it is not only the different input factors’ general sensitivity as
compared with each other that makes the application of the SFA models a
complex task. In fact, the input parameters’ sensitivity does not unfold in a
linear manner. Instead, there are bands of critical values in terms of sensi-
tivity. Outside these bands, modifications have only a negligible influence
on risk weights. Obviously, the assessment of such sensitivities alone is a
challenging task. Even though the SFA models are without a doubt impor-
tant tools in the structuring process, this is particularly the case when look-
ing at the securitization structure at one particular point in time. However,
as a securitization’s underlying pool is dynamic as it amortizes over time
and is subject to a general rating migration trend for example, the “opti-
mal” result that was achieved initially might not necessarily be optimal at
any later point in time. As we have seen above, portfolio amortization,
depending on the particular amortization schedule, and rating migration
can have offsetting effects with respect to risk weights. On the one hand,
this has clearly some impact on the “financials” of a transaction. Assuming
that modifications to input parameters are incremental, one could suggest
that the impact on risk weights and thus the transaction’s financials would
be incremental, too.

However, irrespective of the fact whether this makes sense from an eco-
nomic perspective, regulatory rules define critical limits with respect to a
transaction’s underlying portfolio. We discussed this taking the example of
the Basel II rules regarding an efficient risk transfer as well as the compo-
sition of the underlying asset pool with respect to IRBA and non-IRBA
assets. Where these critical limits are breached, the originator and/or
investor of a securitization may no longer be allowed to calculate the capi-
tal requirements, according to the SFA (which in turn might require a full
capital deduction of a respective exposure), or to recognize any regulatory
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capital relief from the transaction, even though from an economic per-
spective a credit risk transfer has actually taken place.

Therefore, structuring a securitization “at the limit,” i.e., by meeting the
minimum requirements in order to achieve the predefined objectives might
turn out to be suboptimal from a broader (or longer) perspective. In fact, it
would be more appropriate to include a “risk buffer” that makes the trans-
action as a whole less sensitive for changes in its underlying parameters.
However, how big should such a risk buffer to be included in the structur-
ing process actually be? Unfortunately, there is no generally true answer to
that question—and most likely none that SFA models might be able to pro-
vide—as this depends not only on the securitization’s underlying pool of
assets but also on its individual structural elements, i.e., the transaction’s
number of tranches, their attachment and detachment points, as well as sev-
eral other (legal) constraints.
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NOTES

1. Standard securitization exposures have to be distinguished from 
so-called first loss position (FLP). FLPs were already under Basel I,
subject to full capital deduction.

2. Basel Committee on Banking Supervision (2006), p. 120.
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3. Basel Committee on Banking Supervision (2006), p. 136. In this case,
an unrated position is assigned the external rating of another securitiza-
tion exposure which is subordinated as compared with the original
exposure in every respect.

4. The SFA also provides for different treatment of retail and nonretail
portfolios for which the calculation routine is slightly different. Thus, it
is open to dispute whether the retail criterion is actually another input
parameter or whether there are two different SFAs for retail and non-
retail exposures, respectively.

5. Cf. Deacon (2004), p. 247.
6. Cf. Gordy (2004), p. 320.
7. For an overview on rating transitions, cf. Hu (2004), p. 87.
8. The 50 percent rule is used as a standardized test. However, banks are

free to demonstrate that an efficient risk transfer has been achieved
even if the 50 percent rule is not accomplished.

9. In order to avoid confusion with regard to the denomination of
tranches as “mezzanine” from a regulatory perspective, we refer to the
tranches simply by naming their respective attachment and detachment
points.

10. Cf. Batchvarov, et al. (2004), p. 363.
11. For example, Germany’s supervisory authority BaFin has issued a state-

ment that beginning October 1, 2009, it will object to the application
of the SFA to transactions where the share of non-IRBA assets within
the underlying asset pool exceeds 50 percent.
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ABSTRACT

The increasing usage of quantitative techniques in rating assignment and
loan portfolio management is a great source of model risk and amplifies the
tendency towards commoditization and short-termism of bank lending.
Relationship banking is put in jeopardy. Roles and responsibilities of rela-
tionship managers, credit risk models structures, and statistical-based rating
systems architectures are clear indicators of the magnitude and the nature
of model risk in credit management processes. Results are relevant for
banks’ strategies and organization design, as well as for improving regula-
tions on banks.

INTRODUCTION

We define model risk for ratings systems (MRRS) as the economic loss
deriving from unexpected outcomes related to the use of rating models.
The relation with unexpected outcomes is indirect when the unexpected
outcomes are a consequence of (1) use of ratings as inputs of credit portfo-
lio models, and/or (2) business and cultural modifications in the market. 
It is direct when the unexpected outcomes are a consequence of typical
applications of rating systems, such as portfolio reporting, credit manage-
ment, credit administration, and process auditing.



Given MRRS definition and Basel II definition for rating systems
(“comprises all of the methods, processes, controls, and data collection,”
Basel Committee, 2004, §394), taxonomy of direct sources of MRRS is
presented in Table 13.1. Direct sources of model risk are clearly addressed
in Basel II, mainly in Part 2, III, H.

At the same time, “it is not the Committee’s intention to dictate the form
or operational detail of banks’ risk management policies and practices” (Basel
Committee, 2004, §389). As a consequence, individual banks directly and
freely set up their models and should compare the model risk arising from a
key choice: the chosen degree of mechanization of rating systems. However,
national supervisory authorities are often using secondary regulation and/or
moral suasion to orientate banks’ choices toward statistical-based rating 
systems (SBRSs). In any case, the degree of mechanization of the assign-
ment process is dif ferent iated in dif ferent market and/or product 
segments. SBRSs can be appropriate for markets and/or product segments
where model risks may be compensated by cost reduction of analysis,
increased objectivity and consistency of ratings, faster underwriting, better
separation of the risk-taking oriented loan officers (focused on commercial
activity in loan departments), and risk-controlling oriented credit officers
(focused on analysis and underwriting in credit departments).
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Table 13.1 Direct Sources of Model Risk of Rating Systems and Treatment
in Basel II

Direct Sources Basel II References

Model design Part 2, III, H, 3, i) Rating dimension

Part 2, III, H, 3, ii) Rating structure

Dataset Part 2, III, H, 4 iv) Data maintenance

Part 2, III, H, 7 Risk quantification

Model building Part 2, III, H, 3, iii) Rating criteria

Part 2, III, H, 3, iv) Rating assignment horizon

Model calibration Part 2, III, H, 7 Risk quantification

Model usage Part 2, III, H, 4 Risk rating systems operations

Part 2, III, H, 5 Corporate governance and oversight

Part 2, III, H, 6 Use of internal ratings

Part 2, III, H, 12 Disclosure requirements

Internal validation and Part 2, III, H, 8 Validation of internal estimates

compliance with Basel Part 2 (Pillar 1, in case of application for IRB approaches)

II requirements Part 3 (Pillar 2)

Part 4 (Pillar 3)

IRB, internal ratings-based.



The research question of this chapter is: Are SBRSs, and the implied
model risk, also appropriate for segments of the credit market traditionally
based on relationship banking?

METHODOLOGY AND POLICY IMPLICATIONS

The methodology is based on the distinction of direct and indirect relations
between the use of rating models and unexpected outcomes. Our hypothe-
sis is that transactional banking and relationship banking face model risk
differently (Table 13.2).

The research hypothesis will be tested by

• Identifying which are the potential direct and indirect relations and
implications

• Explaining why indirect relations are significant for relationship banking
• Clarifying why direct relations are stronger in relationship banking

than in transactional banking, and why they are only partially
controlled in the former case

Policy implication of positive testing of the research hypothesis is that it
is necessary to reduce the degree of mechanization of rating systems used
in relationship banking.

The issue we analyze is relevant because of the huge impacts on long-
term profitability of banks, optimal allocation of financial resources, and
economic growth.

The structure of the chapter is as follows: in the first and second section
of this chapter are set definitions, research question, research hypothesis
and methodology, relevance of the issue and policy implications; in the
third section, the literature review is presented; in the fourth section,
sources of model risk for SBRS are identified and the size of the model risk

chapter 13 model risk in credit management processes 207

Table 13.2 The Research Hypothesis

Use of SBRS and Relationship Banking Transactional Banking
Unexpected outcomes

Direct relations Strong and partially controlled Medium and under control

Indirect relations Strong and overlooked Weak and ignored

Consequence Model risks possibly higher Model risks probably lower 
than SBRS advantages than SBRS advantages

SBRS, statistical-based rating system.



arising is outlined; in the fifth section, it is showed that the above identified
indirect sources of model risk are real consequence of the use of SBRSs.
The sixth section of this chapter shows why direct relations are stronger in
relationship banking and why they are only partially controlled at the
moment; in the final section conclusions are drawn.

LITERATURE REVIEW

There are many components in the rating process which could lead to
model risk, such as (1) the economic cycle and the impact in pro-cyclical
credit policies; (2) the size of companies demanding loans; and (3) the char-
acteristic of industries that borrowers belong to.

Pro-cyclicality depends on three main factors: (1) how capital requirement
has been designed by regulators; (2) how banks implement their capital man-
agement approaches; and (3) how rating are estimated through internal mod-
els. First, in order to make the capital accord less pro-cyclical, regulators
corrected the relation between ratings and risk weights. Second, solutions such
as introducing dynamic provisioning policies that allow the use of reserves
accumulated in “sunny” periods (when returns are higher than the long-term
average) help to reduce pro-cyclical effects (Gordy and Howells, 2004).
Thirdly, rating systems can be designed through-the-cycle (TTC) or point in
time (PIT). Rating agencies look for stable ratings TTC, whereas banks tend
to use PIT ratings that change according to the stage of economic cycle. To
reduce the risk of cyclicality and short-termism embedded in many credit risk
models, some adjustments have been suggested (Pederzoli and Torricelli, 2005)

The second component is the firm size. A large part of the literature has
focused on the special character of small business lending and the impor-
tance of relationship banking to face information asymmetries that affect
small and medium enterprises (SMEs) in particular. Many studies discuss
the role of soft information (Berger, Frame, and Miller, 2002; Allen,
DeLong, and Saunders, 2004; Petersen, 2004; Degryse and Ongena, 2005).
Some other risk factors for small business loans depend on monitoring
costs, informative transparency, and recovery rates.

The third component is the industry impact. Portfolio diversification has
been analyzed mainly in order to manage market risk. Applications of finan-
cial approaches to credit risk are more recent in financial literature; Morris
(2001) compares the concentration issues for credit portfolios in different
countries and sectors, demonstrating that: (1) most countries set limits on
large exposures for banks, and (2) strong differences remain among coun-
tries in terms of limits for exposures to specific industries.

In the late 1990s two surveys froze the state of the art of internal rat-
ing systems in their early stages. The Basel Committee (2000) stated that 
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alternative approaches can be viewed as points on a continuum with, at 
one extreme, systems focused on the judgment of expert personnel, and 
at the other, those based solely on statistical models. Treacy and Carey
(1998) obtained similar findings on large U.S. banks. Since the late 1990s,
there has been a clearly observable worldwide tendency of banks to develop
rating systems that relay much more on statistical-based scoring models
(De Laurentis, Saita, and Sironi, 2004). Many national supervisory authori-
ties are pushing in this direction. This tendency is not driven by Basel II
requirements—just the opposite, the Basel Committee has stated warnings
on the use of mechanical approaches (Basel Committee, 2004, §417). In
order to take into account all relevant and material information not consid-
ered by the model, banks are often combining model results with human
judgment using the so-called “override process.” A series of questions arise:
Is override room large enough to take account of external-to-model infor-
mation? Are SBRSs forward looking enough to enable relationship bank-
ing? In the mainstream literature relationship banking is associated with
credit risk assessment processes based on the use of soft information, bot-
tom-up credit analysis methodologies, customer proximity of those having
lending authority (Diamond 1984; Berger and Udell, 2001; Petersen and
Rajan, 2002; Degryse and Ongena, 2005). Brunner, Krahnen, and Weber
(2000) have analyzed information production changes in credit relationships
due to the increasing use of internal rating systems. Some large banks, tra-
ditionally less inclined to interrelate with small, informationally opaque and
risky businesses with a relationship-oriented approach, saw divisionalization
by customers segments as the way to attack the attractive markets of local
banks (De Young, Hunter, and Udell, 2003; De Laurentis, 2005). Direct
sources of model risk of SBRS derive from weaknesses of their discrimina-
tion and calibration properties. The assessment of these properties is part
of typical validation of rating systems (Engerlmann and Rauhmeier, 2006;
Committee of European Banking Supervisors, 2005; Basel Committee,
2005). Agencies’ ratings performance can be considered benchmark meas-
ures for banks’ rating systems, because of their long time-series and their
publicly available results (Standard & Poor’s, 2009).

INDIRECT SOURCES OF MODEL RISK: 
RATINGS AS INPUTS FOR PORTFOLIO 
CREDIT RISK MODELS

A rating system can be classified as cyclical, anti-cyclical, or neutral depend-
ing on its relation with the business cycle (Catarineu-Rabell, Jackson, 
and Tsomocos, 2005). TTC and PIT ratings are the extremes of a con-
tinuum. Rating agencies tend to assign stable ratings over the cycle 
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(but associated default rates are volatile), whereas banks tend to use PIT
methods focusing on short-term borrowers’ credit quality. The choice of a
limited time horizon is driven by a variety of factors, including data avail-
ability, internal budgeting cycle of banks, expected time needed to raise
capital and implement risk mitigation actions. Both TTC and PIT ratings
are dependent on the economic cycle, even if at different degrees. In any
case, ratings measure the risk of individual instruments or borrowers; as
such, they do not explicitly consider correlation and its changes over time
that must be properly addressed by full portfolio credit risk models. These
models have different structures, but most of them extrapolate from recent
history, so that good current economic conditions signal good future pros-
pects. When these models are not carefully designed to take account of rat-
ings variability and ratings calibration over time, a first source of model risk
can be observed.

Regulators have clearly identified this model risk: for instance, the
Financial Stability Forum (2009) addressed recommendations to the Basle
Committee: (1) to carry out regular assessments of the risk coverage of the
capital framework in relation to financial developments and banks’ evolving
risk profiles; and (2) to make appropriate adjustments to dampen excessive
cyclicality of the minimum capital requirements, in particular, to reassess
mechanisms through which migrations in credit scores should be addressed.
Nevertheless, the Basel Committee preliminary conclusion is to maintain
the risk sensitivity of the inputs of capital requirements and instead focus
on dampening the outputs. This approach does not eliminate a great part of
such model risk.

When banks manage loans, they are expected to estimate not only the
idiosyncratic risk, but also the concentration one, which could depend 
on many factors, such as the firms’ size and industry. In the New Accord
(Basel II), the highest asset correlation for corporate exposures (0.24) will
apply to the lowest probability of default (PD) that are typical among large
companies; the lowest asset correlation (0.12) applies to firms with the
highest PD, typically small ones. SMEs exposures’ risk weights depend on
firm-size adjustments (firms’ sales). For “other retail exposures,” it is in the
range of 0.03 to 0.16. The main reason for this differential treatment is
that small business loans are generally found to be less sensitive to system-
atic risk, being more of idiosyncratic nature. Another reason is that maturi-
ties are generally shorter for loans to small firms (Dietsch and Petey, 2004,
for France and Germany; Shen, 2005 for Taiwan). Gabbi and Vozzella,
2009a, analyzed Italian data (Table 13.3). The rigid treatment of firm size
adopted by Basel II generate a model risk in terms of correlation errors
(Gabbi and Vozzella, 2009b), as shown in Table 13.4.
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DETERMINANTS OF INDIRECT SOURCES 
OF MODEL RISK FOR SBRS

In this section we prove that in relationship banking direct and indirect
relations of model risk with SBRS are strong and only partially controlled
or overlooked.

In relationship banking, banks are engaged in both assessing borrowers’
credit-worthiness on medium-long term and feeding customers with the
most appropriate products, advisory services, and assistance. For informa-
tion-based theory of financial intermediation, banks exist because of infor-
mation synergies they can exploit from credit risk assessment processes and
commercial activities. The problem is that risk analysis based on SBRS does
not produce information spillovers beneficial for commercial activities.

A different picture arises when relationship managers and credit analysts
interact to elaborate information. There are different degrees of spillovers
coming from more or less sophisticated judgmental approaches. A sophisti-
cated approach, in which analysts are required to assign partial ratings to
firm’s “risk factors” such as business risks, financial risks, (borrower’s own)
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Table 13.3 Asset Correlation and Risk Across Size Classes (Italy, turnover
in million €)

Rating �1M 1–5M 5–7.5M 7.5–10M 10–25M

A 0,132 0,062 0,070 0,091 0,093

BBB 0.144 0.065 0.096 0.106 0.103

BB� 0.144 0.086 0.099 0.079 0.074

B 0.159 0.112 0.119 0.121 0.137

B� 0.143 0.150 0.126 0.198 0.155

CCC 0.196 0.257 0.276 0.217 0.230

Table 13.4 Asset Correlation and Risk Across Industries (Italy)

Sectors 1 2 3 4 5 6 7 8 9 10 11

A 0.1054 0.1127 0.1136 0.1359 0.1016 0.1538 0.0533 0.1859 0.2131 0.1640 0.0913

BBB 0.0856 0.1209 0.1136 0.1051 0.1186 0.1279 0.0801 0.0981 0.0667 0.1321 0.1123

BB� 0.1280 0.1079 0.1022 0.0970 0.0798 0.1449 0.0832 0.0913 0.1610 0.0911 0.1126

B 0.1330 0.1292 0.1440 0.1287 0.1247 0.1341 0.1130 0.0728 0.1716 0.1183 0.1096

B� 0.1513 0.1425 0.2476 0.1715 0.1148 0.1468 0.1586 0.1230 0.2105 0.2096 0.1367

CCC 0.1802 0.2244 0.2298 0.2602 0.1914 0.2340 0.2456 0.1302 0.2934 0.3536 0.2334

Sectors: (1) real estate; (2) retail consumer; (3) car industry; (4) wholesale consumer; (5) building; (6) food;
(7) mechanics; (8) oil and gas; (9) transport; (10) leather and shoes; (11) clothing industry.



credit risks, and operating risks, would require to integrate all available
information sources in order to address the key risks a firm is facing. Doing
so, the bank achieves a deep understanding of a firm’s strength and weak-
nesses and opportunities and needs, also useful for relationship managers
who can comprehensively servicing and advising customers. At the same
time, they can provide to credit analysts valuable private information for a
better assessment of risks on a longer time horizon.

A simpler judgmental approach, where analysts are required to deter-
mine the final borrower rating by assigning partial ratings to different
“data sources” (typically, income statement, balance sheet, flow of funds
statement, behavioral data, credit register data, business sector, strategic
positioning) would result in a poorer understanding of firms, because the
analysis misses the key risk factors triggering credit risk: information
spillovers for commercial activities are much lower and credit risk assess-
ment is less forward looking. Compared with the outlined simpler judg-
mental approach, SBRSs are even less informative.

The hypothesis of banks requiring the use of judgmental analysis of bor-
rower credit-worthiness for purposes other than rating assignment and
credit underwriting suffers from severe limitations: (1) bearable costs (and,
consequently, effectiveness) of this analysis because of its limited scope, (2)
low incentives to undertake deep firm’s analysis, (3) relationship managers
do not benefit from credit analysts” expertise and bear the entire burden of
the analysis. This is the framework in banks using SBRS as the key tool to
assess PDs.

In case the judgmental analysis is developed for credit underwriting,
whereas SBRS are used for other risk management purposes, the drawbacks
are: (1) ratings are not benefitting from judgmental analysis achievements,
as they are separate processes; and (2) ratings do not reflect risk valuations
developed for underwriting decisions, that is, provisions, capital require-
ments, and risk-adjusted performance measures based on rating are not
directly linked with individual lending decisions. This is the peculiar frame-
work envisaged by supervisors requiring that “those having credit under-
writing authorities . . . must not have the power of the final assignment of
ratings” (Bank of Italy, 2006).

To overcome some weaknesses of SBRS, banks are often combining
model results with human judgment (“override process”). This seems
appropriate also to take into account all relevant and material information
not considered by the model, that is a Basel II–specific requirement. How-
ever, in the Basel II framework, for “model-based ratings,” overrides are
strictly regulated exceptions. Banks are actually limiting override room,
above all when it leads to improvements of ratings. Rationale of limiting
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changes to model-based ratings through overrides is twofold: override pro-
posals are usually set by relationship managers, who can be interested to
increase loans extended and reaching their personal targets; qualitative con-
siderations, considered for overrides, are simplified valuation of some
aspects of the borrower, usually based on multiple-choices questionnaires.

We conclude that these approaches are also not compatible with relation-
ship lending.

DIRECT RELATIONS ARE STRONGER 
IN RELATIONSHIP BANKING 
AND PARTIALLY CONTROLLED

In this section, we focus on model risk directly arising from weaknesses of
SBRS to produce a fair and stable rank ordering of risk among borrowers.
Basic validation tools for discriminatory power are transition (or migration)
matrix, Lorenz curves, and Gini ratios (or their twins ROC curves and
AuROC).

A transition matrix indicates satisfactory discriminatory power when:
(1) transitions to default (default rates) are higher for worse ratings; 
(2) values on the diagonal are high, indicating that ratings are stable and
forward looking (if the first condition holds, we can exclude that stability
denotes poor sensitivity); and (3) transition rates to closer classes are
higher than transition rates to less contiguous classes. Benchmark meas-
ures for banks’ rating systems are agencies’ ratings, due to their wide-
spread availabilit y and long time series. Table 13.5 shows that, on 
the long run (1981–2008), Standard & Poor’s ratings satisfy all three
conditions.

chapter 13 model risk in credit management processes 213

Table 13.5 Corporate Transition Matrices (1981–2008)—One-Year 
Transition Rates (%)

From/To AAA AA A BBB BB B CCC/C D NR

AAA 88.39 7.63 0.53 0.06 0.08 0.03 0.06 0.00 3.23

AA 0.58 87.02 7.79 0.54 0.06 0.09 0.03 0.03 3.86

A 0.04 2.04 87.19 5.35 0.40 0.16 0.03 0.08 4.72

BBB 0.01 0.15 3.87 84.28 4.00 0.69 0.16 0.24 6.60

BB 0.02 0.05 0.19 5.30 75.74 7.22 0.80 0.99 9.68

B 0.00 0.05 0.15 0.26 5.68 73.02 4.34 4.51 12.00

CCC/C 0.00 0.00 0.23 0.34 0.97 11.84 46.96 25.67 14.00

Source: Standard & Poor’s, 2009.



Table 13.6 denotes that, considering transitions in a five-year period, of
course stability decreases but other conditions are still met.

Rating models discriminatory power can be quantified using Lorenz
curves. Once observations are ordered from worse to better ratings/scores,
the Lorenz curve is a graphical representation of the proportionality of a
distribution of the cumulative share of issuers by rating (x axis) plotted
against the cumulative share of defaulters ( y axis). If the rating system is
able to perfectly separate nondefaulting and defaulting borrowers, the curve
would reach 100 percent of defaults on the y axis while having considered
only the exact percentage of defaulted borrowers in the sample on the x
axis. On the other hand, if the system assigns ratings randomly, the Lorenz
curve falls along the diagonal. Thus, a good model has a curve quite verti-
cal and close to the perfect model curve. The Gini coefficient is a summary
statistic of the Lorenz curve, representing the area between the random
model curve and an actual model curve, divided by the area between the
perfect model curve and the random model curve: zero indicates that the
actual model behaves randomly, one that mirrors the perfect model (Figure
13.1). Of course, discriminatory power decreases when a longer time hori-
zon is considered, as it is more difficult to predict the issuer-quality five
years ahead than only one year from the time the rating is assigned (Figure
13.2). But performances are still satisfactory.

Summary statistics of Gini coefficients indicate valuable discriminatory
power, both at one-year and longer time horizons, above all for nonfinancial
corporates (Table 13.7).

How do banks’ SBRSs perform compared with agencies’ ratings? Gini
coefficients are sample-dependent measures. Moody’s Investors Services
(March 2000) is among a few studies that has benchmarked SBRSs on a
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Table 13.6 Corporate Transition Matrices (1981–2008)—Five-Year 
Transition Rates (%)

From/To AAA AA A BBB BB B CCC/C D NR

AAA 54.23 23.49 5.10 0.93 0.12 0.09 0.06 0.28 15.69

AA 1.75 51.73 23.52 4.08 0.60 0.36 0.04 0.30 17.62

A 0.12 5.92 53.37 15.23 2.44 0.95 0.17 0.68 21.11

BBB 0.05 0.78 10.84 47.07 8.28 2.91 0.52 2.57 26.99

BB 0.02 0.12 1.51 12.26 28.12 11.03 1.59 9.98 35.37

B 0.03 0.06 0.50 2.13 10.92 20.83 2.88 23.18 39.47

CCC/C 0.00 0.00 0.23 1.21 3.48 11.21 3.33 47.80 32.73

Source: Standard & Poor’s, 2009.
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Figure 13.1 Global One-Year S&P’s Corporate Ratings Performance
(1981–2008)

Source: Standard & Poor’s, 2009.
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Figure 13.2 Global Five-Year S&P’s Corporate Ratings Performance
(1981–2008)

Source: Standard & Poor’s, 2009.



common dataset (most of the tested models had one-year Gini ratio in the
range of 50 to 75 percent for out-of-sample and out-of-time tests). The
solution, envisaged by supervisory authorities, of creating a reference data
set of borrowers to be used to benchmark rating systems performances is
frustrated by the different structures of independent variables, in particular
internal behavioral and qualitative data.

Qualitative data create the biggest problem for comparisons. If they are
considered on a merely judgmental basis, it is not possible to replicate the
rating on a large scale: this is the case for overrides of SBRS based on
experts’ judgments. In SBRSs qualitative data can be incorporated as nomi-
nal and ordinal variables, usually collected by closed-form questionnaires
filled in by relationship managers. The issue of consistency in the treatment
of qualitative information is greatly reduced when relationship managers
are only required to fill in a questionnaire, but it still remains for questions
with subjective answers and in presence of incentives schemes based on the
amount of loan “sold” (as internal analysis conducted by banks show).

Qualitative data collected by questionnaires may participate to the final
model in two different ways (De Lerma, Gabbi, and Matthias, 2007). The
first approach is to use individual nominal and ordinal data as possible
explanatory variables, together with quantitative data, in the estimation of
the final algorithm representing the SBRS. This approach is rare because:
(1) most qualitative data are either nominal or ordinal, so they are crowded
out by variables selection procedures because of their low discriminatory
power; (2) the collection of questionnaire-based qualitative data has been
implemented only recently, so data sets are small; and (3) different types of
quantitative data are not always available for all borrowers. This is why
banks tend to use a second approach: a specific “qualitative module” is built;
it produces a “qualitative rating” to be subsequently combined with “partial
ratings” obtained by other “quantitative” modules (typically for financial
statement, credit register, and internal behavioral data). Using this
approach, more qualitative data indirectly enter into the SBRS. But the
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Table 13.7 Gini Coefficients for Global Corporates by Broad Sector
(1981–2008)

Time horizon (years)

Sector 1 3 5 7

Average financial 78.53 72.43 66.08 61.81

Average nonfinancial 82.95 76.64 73.20 70.22

Source: Standard & Poor’s, 2009.



nature of qualitative data brings a low Gini ratio of the qualitative module.
Thus, when combining partial ratings into the final algorithm, its relative
relevance is low. The final result is that SBRSs do not leverage much on
qualitative information.

Quantitative data entered into SBRSs may either derive from the past or
represent economic forecasts. The use of forecast as explanatory variables
in SBRS appears to be rare and, if present, it is more typical to include
them in the qualitative module rather than to mix them up with historical,
more objective, and certified data.

A key aspect is to get the time frame by which quantitative objective
information are collected (Figure 13.3). “Time zero” is the point in time on
which credit analysis is performed, so all information available at the
moment can be incorporated into the model that will try to forecast if the
borrower will go into default during the “observation period.” Behavioral
data produced by bank information systems is usually available the day
after. Credit register data can be available according to the frequency of
data distribution set up; in Italy, on average, it is available after one month.
If annual financial statements are approved after a few months from year-
end, they become available for credit analyses that take place, on average,
about one year after year-end. Quarterly results shrink the lag.

Different sources of quantitative objective information have a different
freshness. Is it positively correlated with predictive power? Yes, if we con-
sider a one-year observation period. In this case, the typical result you get
when calculating ROC curves for accounting module, credit register mod-
ule, and behavioral module, and then for the final model that combines them
(using partial scorings as explanatory variables), is depicted in Figure 13.4.
Behavioral module has the best performance among all partial modules and
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it is only slightly improved when combined with other modules in the final
model. A final model that closely resembles results obtained from the behav-
ioral module is a great source of model risk, in terms of short sightedness.

In fact, behavioral data suffers from two severe limitations: (1) they only
reflect the current conditions of debts for the borrower (in other words,
they reflect what is going on at the specific point in time, from the crude
perspective of debt balances and cash flows, ignoring value creation and
firm’s potential); and (2) they are ref lective information because they
depend on a bank’s own credit decisions: if a bank extends more credit to a
given borrower, its debt behavior improves. At a lower level, also credit reg-
ister data suffer for the same weaknesses. At the end, the final model is rely-
ing on point in time, short-term, and reflective information.

The majority of banks use a one-year observation period from time zero
as the time frame for building SBRS to be used in daily operations, even if
this is not what Basel II expects form them (§414 states that “although the
time horizon used in PD estimation is one year, banks must use a longer
time horizon in assigning ratings”). If a two-year or three-year period of
observation from time zero is considered, behavioral and credit register
data lose their apparent discriminatory power, and accounting data gain rel-
evance in the final SBRS. On the other hand, it would result in much lower
Gini ratios and/or AuROC.
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The current bad state of the economy increases the demand for “banks to
be bankers” and using a longer time horizon when assessing borrower cred-
itworthiness. In fact, we know that the pattern of Gini coefficients for
agency ratings appears to be broadly cyclical (Figure 13.5). In periods of
economic stress, there is an increased likelihood of companies from across
the rating spectrum suffering a more rapid deterioration of credit quality,
which reduces the Gini ratio. In 2008, the one-year Gini ratio dropped to
an all-time low of 65 percent, mainly attributable to extraordinary turbu-
lence among global financials. Thus, strong discontinuities in the state of the
economy worsen performance even in ratings that, being judgment based,
can better accommodate a larger variety of factors into the rating process.

Do SBRSs perform better or worse than judgment-based ratings in peri-
ods of economic turnarounds? No robust analyses exist, because SBRS are
very recent, dating back to only the late 1990s for a few banks and much
later for other banks; and SBRS are continuously improved, often so much
that is impossible to back-test them on old datasets. Theoretically, SBRSs
are more point in time and based on a much smaller set of variables, so
their performance probably lags behind judgment-based approaches in rap-
idly changing times. This is a further source of model risk.
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CONCLUSION

Model risk has many sources in credit processes, due to exogenous and
endogenous factors to rating models. Among external ones, economic
cycles, firm size, and industry reduce the aptitude of credit models to
identif y actual counterpart and concentration risk. Many empirical
researches show that also regulatory approaches may fail to ease the
model risk.

SBRSs are a great source of model risk, in particular in cases of relation-
ship lending. When credit decisions concerning individual borrowers
depend on SBRSs, their discriminatory capability and their calibration are
required to hold at a satisfactory level, case by case, and on longer (than
one-year) time horizons. Whereas, for transaction-based lending and for
other applications, such as calculating bank provisions and capital adequacy,
good Gini ratios on vast aggregates obtained by point in time rating sys-
tems can be sufficient.
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ABSTRACT

Choosing an appropriate approach for taking into account loss dependen-
cies in loan portfolios is a well-known, but also a challenging problem in
modeling credit portfolio risk. In our chapter, we investigate model risk in
terms of loss dependencies by using two different structural credit portfo-
lio models, namely, a standard Merton-style model and an augmented
approach which incorporates a cash flow default trigger in addition to the
standard default trigger based on asset values. A rigorous simulation analy-
sis is conducted in order to observe the impact of this source of model risk
on the portfolio’s expected shortfall and value at risk statistics. We base
our study on a generic portfolio of shipping loans because asset value and
cash flow data are comparatively well observable in the shipping market.
Our results have implications on the widely used structural model
approach in practice.



INTRODUCTION

Structural portfolio models are based on the so-called Merton approach
which was pioneered by Robert C. Merton (1974) more than 35 years ago,
who introduced the idea of using an asset value, or structural model, to evalu-
ate credit risk. In his eminent contribution, Merton proposed to apply the
Black-Scholes option model to the capital structure of a company and identi-
fies its equity holders as the owner of a European call option on the com-
pany’s assets with a strike price equal to the book value of the company’s debt.
This is why structural models are also called option-theoretic or contingent-
claim models. If the asset value of the company falls below its debt level at
option’s maturity, the company is in default. In this framework, default is a
function of both the asset value and the liability structure of a company and,
thus, can be solely derived from the evolution of the company’s structural
variables. The Merton model provides a very useful framework for modeling
credit risk and is widely accepted and used by financial market participants.

Without denying the outstanding relevance of Merton’s contribution to
the credit risk literature there is, however, also some basic criticism on his
proposed model approach. It mainly refers to the rather simplified assump-
tions with respect to two aspects in the original publication, namely, (1) the
assumed capital structure which implies a single default trigger and (2) the
default timing which is solely restricted to the maturity of the company’s
debt. Concerning the latter aspect, one of the first generalizations of the
Merton framework was proposed by Black and Cox (1976). In their model
variant a company’s default can occur in principle at any time during the
company’s lifetime. More precisely, the company’s default time is defined as
the point in model time at which the asset value falls below a certain
(“default”) threshold.2 While in the meantime a lot of literature can be
found that concentrates on the problem of how to determine the “correct”
default threshold with respect to aspect (1), on the contrary, the de facto
standard approach still assumes that defaults are exclusively triggered by the
company’s assets which have to be below such a threshold. However, one
recent contribution to the question, whether several default triggers should
be considered instead, is proposed by Dav ydenko (2007). He studies
whether default is caused by low market asset values or by liquidity shortages
which he denotes as economic distress and financial distress, respectively.

According to this terminology, on the one hand, it can be argued that a
company’s default is driven by economic rather than by financial distress,
because typically shareholders will be willing to balance a temporary cash
short fall by raising external financing as long as the asset value remains
above the aforementioned boundaries. This argument implies that purely
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financial distress becomes more or less irrelevant. However, on the other
hand, financial distress does appear to be a significant variable by all means,
even though empirical analysis emphasizes that the asset value is the most
important determinant of companies’ default behavior.3

The well-known procedure to generate correlated asset price develop-
ments across a pool of obligors establishes a straightforward method to
expand the standard structural credit model approach for single borrowers
outlined above to a structural portfolio model in which correlated defaults
of obligors are simulated. The relatively easy implementation as well as the
well-founded underlying theory probably make structural portfolio models
the most popular approach of modeling bonds and bank loans today. For
instance, rating agencies use such a model framework to valuing synthetic
collateralized debt obligations, so-called CDOs, which are securities linked
to a pool of bonds or loans (see the rating tools named CDOEvaluator,
CDOROM or the PCM Suite, formerly VECTOR model, provided by
Standard & Poor’s, Moody’s, and Fitch, respectively). Regulators and bank
portfolio managers also apply similar models for assessing the credit risk of
portfolios.

However, as already indicated above for the case of credit risk models of
single borrowers, these structural portfolio models used by the market par-
ticipants typically concentrate on economic rather than financial distress in
terms of the terminology proposed by Davydenko (2007). The main reason
for neglecting the influence of cash shortages on the default characteristic of
a portfolio within the “classical” structural model approach might be the
inaccessibility of the relevant data, which, however, will lead to an overesti-
mation of risk in general and, as a consequence, to a misallocation of capital.

In our contribution we will investigate the bias that arises from using a
classical structural model approach versus considering cash shortages as an
extra default trigger in the proposed model framework, which we under-
stand as a sort of model risk in this context. We conduct our study by using
a generic portfolio of shipping loans since asset value and cash flow data can
be comparatively well observed in the shipping market. The reason for the
relatively good availability of those data is the following. Shipping loans are
typically granted to single-purpose companies (SPCs). Thus, the asset
value of each company can be identified with the second-hand value of the
financed vessel and charter income makes up the only cash flow to meet the
debt service. Since we will exclusively deal with standardized ship types
(e.g., container carriers, bulkers, and tankers), the development of the sec-
ond-hand values and charter rates of a benchmark ship can be derived from
historical time series which are available from leading ship brokers, who
publish those worldwide valid market data.
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Since we want to concentrate our discussion on portfolio modeling risk
(with respect to cash shortage as an additional default trigger), we assume
that individual probabilities of default (PDs) and losses given default
(LGDs) for borrowers are exogenously given in our portfolio. This coin-
cides with the usual treatment of credit portfolio risk in practice where
organizational separation of rating development and portfolio modeling is
typical, even though not optimal.4

MODEL OUTLINE

Asset Value and Cash Flow Representation

For our “classical structural model” (CSM), which will be our benchmark
model in the following, we use a structural model approach where the
default of a company is driven by a single latent variable, i.e., its asset
return. Correlation in asset returns is modeled by systematic factors (“risk
drivers”), which describe the current state of the shipping market. For this
reason, we divide the shipping market into n � 1, …,11 shipping subseg-
ments where each company of our generic portfolio can be assigned to
exactly one of them.5 The asset return Ai,t of company i at time t can be
written as

where Ψ(A) denotes the systematic risk associated to the shipping subseg-
ment and ε(A) denotes the idiosyncratic risk. Moreover X is a χ2-distributed
random variable with d degrees of freedom (independent of the Ψ(A)s and
ε(A)s), which leads to a Student-t distribution for the asset return Ai,t. The
Student-t distribution of Ai,t is motivated by an analysis of historic data of
second-hand values provided by Clarksons,6 which indicate for a fat-tail dis-
tribution of the log-differences of the time series. Note, that in the case of
SPC financing in the shipping industry, it is straightforward to identify the
asset value of each company with the second-hand value of the financed
vessel, because the ship is the only asset on the balance sheet. Hence, we
can assume that the asset value return is mainly determined by the log-
differences of the second-hand values of the subsegment specific benchmark
ship represented by the risk driver Ψ(A) in our model equation. Note 
further, that by scaling the standard normal distributed random variable

by the factor ����d/X�t�, we use in fact a Student-t
copula representation which shows tail dependence in contrast to the 
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standard Gaussian copula.7 Moreover it is important to remark that a further
look to the Clarksons data shows a high correlation of log-returns of the
second-hand values of vessels across different shipping subsegments. Thus,
the Ψ(A) are assumed to be highly correlated across the 11 subsegments in
our model framework. Small variations in the ship’s equipment, its technical
standard, and its overall condition within the respective subsegment lead to
the idiosyncratic influence ε(A). Since an empirical evidence for the parame-
ters ρn,A is hard to obtain (and since our contribution does not aim to focus
on the uncertainty of model parameter estimation), we use the average
intrasegment correlation as a proxy for the factor loading parameter ρn,A.8

Our “augmented structural model” (ASM) is an extension of our bench-
mark model and also takes the incoming cash flows of each company into
account. Here, the charter income of the vessels serves as a proxy for the
financial situation of the company. Such information is also provided for the
n � 1,…,11 different shipping subsegments by Clarksons.9 In the ASM we
proceed in a similar way as for the asset return Ai,t outlined above and
assume an additional structural model equation for the evolution of the
cash flow situation of each company. More precisely, we denote the log-
differences in the companies’ cash flows by Ci,t which evolves according to

Ci,t � ��d (���ρn,C�� Ψ(C )
n,t � ����1���ρ�n,�Cε(C)

i,t ) /���X t, Cov(ε(C)
i,t , ε(C)

i,t ) � 0 for all t with
i ≠ j, Cov (Ψ(C)

n,t, ε(C)
n,t) � 0 for all n,i,t, Ψ(C)

n,t ~ N(0,1) for all n, t, ε(C)
i,t ~ N(0,1) 

for all i, t, where again the risk drivers Ψ(C ) are correlated via intercorrela-
tions across the shipping subsegments and the factor loading parameters ρn,C

are given by the average intrasegment correlation of the logarithmic changes
of the charter rates. Moreover, the Ψ(C) are correlated with the former intro-
duced Ψ(A). Thus, in summary, the ASM consists of the combination of two
dependent structural model components, namely, on the one hand, our
benchmark CSM describing the asset return of the shipping companies, and
a second structural model part, for which the companies’ cash flow changes
are chosen as an additional latent variable.

So far, neither the number of degrees of freedom for the marginal 
Student-t distributions of asset returns Ai,t and cash flow changes Ci,t nor the
correlation assumptions for the risk drivers Ψ(A) and Ψ(C ) are specified. To
become able to estimate the number of degrees of freedom for the distribu-
tions of the variables Ai,t and Ci,t from a relatively large data set (as well as to
simplify matters), we assume the same number of degrees of freedom for all
latent variables and obtain an est imate of approximately d � 3 by 
fitting all corresponding historic data to one single Student-t distribution.
The dependence structure for the risk drivers Ψ(A) and Ψ(C) are determined
by estimating the Spearman correlation coefficients for the log-returns of the

chapter 14 neglecting cash flow information 227



second-hand values, the log-differences of charter rates as well as the depend-
ence between these two sets of variables among the 11 shipping subsegments
by using historic Clarksons time series. Table 14.1 shows the average segment
correlations calculated from the original (22 � 22) matrix. The relatively
high correlation across the risk drivers in shipping can clearly be detected.

Default and Loss Identification

Assuming a rating for each company and consulting a cumulative default
table published by a rating agency,10 the (conditional) default probabilities
PDi,t of company i in year t, given that no default has occurred before, are
derived. Afterward, the PDi,t are transferred into default thresholds TH
which trigger a default in our ASM in time step t whenever Ai,t � THA,i,t ^
Ci,t �THC,i,t holds. The thresholds are quantiles of the (correlated) distribu-
tion of Ai,t and Ci,t so that Pr(Ai,t � THA,i,t,Ci,t � THC,i,t) � PDi,t. The pairs
of THA,i,t and THC,i,t are not unique because a reduction of one threshold
can be compensated by an appropriate increase of the other threshold in
order to hit the same PDi,t. Obviously this provides the possibility to 
allow for differentiating between individual loan to values and debt service
coverage ratios of borrowers in the ASM framework.11 However, we will
abstract from such distinction in our analysis in the following and define
THA,i,t � THC,i,t :� THCondition_AC,i,t, which leads to Pr(Ai,t � THCondition_AC,i,t,
Ci,t � THCondition_AC,i,t) � PDi,t. Monte Carlo simulation techniques are em-
ployed to derive the thresholds for the analysis.

In our CSM approach the default thresholds, i.e., quantiles, are determined
by Pr(Ai,t � THCondition_A,i,t) � PDi,t. Since the Ai,t are one dimensional Student-
t distributed with d � 3 degrees of freedom, the thresholds can be calculated
using the inverse of the respective cumulative distribution function.
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Table 14.1 Segment Averages of the Correlations of Subsegment Specific
Risk Drivers

Log-differences of Log-differences of
Short-term Charter Rates Second-hand Values

Container Bulker Tanker Container Bulker Tanker

Log-differences of Container 87%
Short-term Bulker 52% 86%
Charter Rates Tanker 1% 24% 80%

Log-differences of Container 68% 47% 19% 80%
Second-hand Values Bulker 43% 72% 26% 49% 76%

Tanker 23% 29% 71% 41% 43% 84%



ANALYSIS

Our analysis is based on a generic portfolio consisting of 550 loans equally
sized and evenly spread across the 11 shipping subsegments. Furthermore,
the rating of each loan is assumed to be BBB-, where the LGD is set to
30% of the loans’ initial outstanding and each loan matures in five years.12

As already mentioned above, only SPCs are financed in our portfolio which
are characterized by owning one single ship. Moreover, we assume that all
vessels in the portfolio operate in the short-term charter market. Moreover,
additional securities such as guarantees from third parties or any other risk
mitigating factors do not exist for the loans in our portfolio.

Table 14.2 shows our base case simulation results. We note the following:

• Statistics on the left-hand side are simulated with the CSM, in which
defaults are solely determined by the asset value triggers
THCondition_A,i,t. The results of the ASM, which uses asset value and
cash flow triggers THCondition_AC,i,t, are presented on the right-hand side
of the table.

• The portfolio expected loss (EL) is the sum of the expected losses of
the individual borrowers and is therefore independent of the chosen
dependence structure. Consequently, the portfolio ELs are identical
in both model approaches, because the different thresholds
THCondition_AC,i,t and THCondition_A,i,t ensure that in both of the two
models the same desired PDi,t are simulated.

• The correlation assumption of the asset and cash flow variables (along
with the choice of the Student-t copula dependence structure)
determines the portfolio risk, which we measure by means of expected
shortfall (ES) and value at risk (VaR).

• Taking into account the additional cash flow triggers vs. triggering
defaults only by the asset values, lowers the measured portfolio risk as
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Table 14.2 Base Case Analysis

THCondition_A,i,t THCondition_AC,i,t

Expected Loss 1.09% 1.09%

ES(95%) 12.86% 12.21%

ES(99%) 21.23% 19.89%

VaR(95%) 7.09% 7.09%

VaR(99%) 16.91% 15.82%

ES, expected shortfall; VaR, value at risk.



expected. In fact, small differences in the ES figures can be observed,
e.g., 0.65 percent for ES(95%) and 1.34 percent for ES(99%).

• If cash flow information is included, the VaR calculated at the 99
percent quantile changes by 1.09 percent (from 16.91 to 15.82
percent). However, the simulation results for the VaR(95%) are
identical for both model variants.

• In sum, the differences between both model approaches are relatively
small. The reason for this finding is the high correlation of cash flows
and asset values, which leads to the fact that incorporating a liquidity
dimension for the default trigger of the borrowers adds only limited
extra information.

• The similarity of the results can also be seen in Figure 14.1. Both
graphs describe the loss distributions from which the portfolio risk
statistics summarized in Table 14.2 have been calculated. More
precisely, the graphs are histograms of the simulated relative portfolio
losses (x axis), where the frequencies are divided by the total number
of runs and hence can be interpreted as probabilities ( y axis).

The high dependence of risk drivers is typical for the shipping industry.
But the existence of long-term charter contracts reduces the correlation in
shipping loan portfolios significantly.

In order to investigate this effect in further details, we lower the intra
cash flow correlations and the correlation between cash flows and asset
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values stepwise to 75, 50, and 25 percent of their initial values. Table 14.3
presents the results:

• The statistics are based on the ASM approach. Numbers in
parentheses indicate the difference in comparison with CSM results
from Table 14.2. Note that intra asset value correlations are not
changed in our sensitivity analysis, which leave the CSM results
unchanged.

• Since the left-hand side of Table 14.3 starts with the 100 percent
correlation level, it shows the base case investigation already known
from Table 14.2, while the other columns exhibit results for the
lowered intra cash flow and inter cash flow/asset value correlations.
We observe that the portfolio risk in terms of ES and VaR shrinks
significantly. For instance, if the correlation level is only 25 percent of
its initial value the ES(99%) will decrease from 19.89 to 14.10
percent in the ASM. This means, that the CSM results overestimate
the ES(99%) by 7.13 percent for this case.

• Fifty percent is a realistic assumption for vessels in shipping loan
portfolios to be long-term employed. This lowers the average intra
cash flow correlation as well as the correlation between cash flows and
asset values by about 50 percent.13 Using the correlation sensitivity
analysis as a proxy for the impact on the measured portfolio risk, we
overestimate the ES(99%) by 4.99 percent in the CSM due to the fact
that the cash flow default trigger is ignored.

• Figure 14.2 exhibits corresponding loss distributions derived from
histograms of the simulation runs (see Figure 14.1 for further
details). It is well observed that the probability to simulate portfolio
losses below 10 percent (above 10 percent) is significantly larger
(smaller) with the 50 percent reduced correlations used in the ASM
50% than in the CSM.
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Table 14.3 First Correlation Sensitivity Analysis, Starting from Original
Overall Correlation Level

Correlation 100% 75% 50% 25%

ES(95%) 12.21% (0.65%) 11.25% (1.61%) 10.18% (2.68%) 9.03% (3.83%)

ES(99%) 19.89% (1.34%) 18.22% (3.01%) 16.24% (4.99%) 14.10% (7.13%)

VaR(95%) 7.09% (0.00%) 6.65% (0.44%) 6.22% (0.87%) 5.78% (1.31%)

VaR(99%) 15.82% (1.09%) 14.40% (2.51%) 12.76% (4.15%) 11.18% (5.73%)

ES, expected shortfall; VaR, value at risk.



In our first sensitivity analysis outlined above, the intra asset correlations
were held constant and, thus, were remained at their relatively high original
level. Furthermore, even the reduction of the remaining coefficients left the
overall dependence in the portfolio comparatively strong.

However, other pools, for instance, a corporate debt portfolio, are char-
acterized by less joint behavior. Therefore, our next investigation will pro-
vide an approximation of the effect of neglecting cash flow information in
rather weakly correlated portfolios. For this purpose all correlations,
including the intra asset value correlations, are lowered by 50 percent in the
first step. In the second step, the intra cash flow and inter cash flow/asset
value correlations are again decreased exactly in the same way as for the
sensitivity analysis described before. Table 14.4 contains our findings:

• All results shown in Table 14.4 are simulated with the ASM. Values in
parentheses show the mistakes that are made when the CSM approach
would be applied.

• Note that the results of the CSM have changed compared to Table
14.2 (and Table 14.3), since the intra asset value correlations have
been manipulated.

• The first results on the left-hand side of the table are based on the
initial reduction of all correlations to 50 percent of their original
level. The decrease of all correlations makes the discrepancy between
the CSM and ASM more significant than in our base case analysis
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shown in Table 14.2. For instance, we observe a deviation of
2.20 percent instead of 1.34 percent by neglecting the cash flow
default trigger for ES(99%).

• Decreasing the intra cash flow and inter cash flow/asset value
coefficients leads to an increasing bias as already observed in our
investigation shown in Table 14.3. However, the absolute and relative
biases get smaller in comparison to our first sensitivity analysis,
because the incremental diversification effects by the cash flows get
exhausted in a lower overall correlation environment.

• Figure 14.3 shows the loss distributions for the second sensitivity
analysis. The graphs illustrate a gradual reduction of the probability
to simulate extreme portfolio losses. High portfolio losses are
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Table 14.4 Second Correlation Sensitivity Analysis, Starting from Reduced
Overall Correlation Level

Correlation 50% 37.5% 25% 12.5%

ES(95%) 9.35% (1.29%) 8.87% (1.77%) 8.29% (2.35%) 7.75% (2.89%)

ES(99%) 14.85% (2.20%) 13.91% (3.14%) 12.82% (4.23%) 11.73% (5.32%)

VaR(95%) 5.84% (0.54%) 5.67% (0.71%) 5.40% (0.98%) 5.18% (1.20%)

VaR(99%) 11.67% (1.80%) 10.91% (2.56%) 10.15% (3.32%) 9.38% (4.09%)

ES, expected shortfall; VaR, value at risk.



simulated more frequently by the CSM compared with the ASM 
50% when starting the sensitivity analysis from the reduced overall
correlation level. After the extra decrease of intra cash flow and inter
cash flow/asset value correlations in the ASM framework (i.e., ASM
25%) the probability of high losses is further reduced.

FURTHER REMARKS

In contrast to the Student-t copula, the Gaussian copula is missing tail
dependence. Lacking the property of tail dependence seems especially
questionable with regard to the experience in the current financial crisis, in
which the behavior of risk factors appears highly dependent. But also events
like the September 11 terror act have provided important insight into the
dependence mechanics of industry sectors when a shock induces sharply
increasing correlations. To conclude, it can be stated that a realistic credit
portfolio model should not exhibit asymptotic independence like the Gauss-
ian copula approach does (Bluhm and Overbeck, 2007).

It is well known that applying a Student-t copula (with a low number of
degrees of freedom) instead of a Gaussian copula has a large impact on the
loss distribution. A final analysis will show these differences on the basis of
the CSM. See Table 14.5 for the results:

• All results shown in Table 14.5 are simulated with the CSM.
• We observe striking differences, i.e., an almost doubled risk statistic

for the Student-t copula compared to the simulation results obtained
for the Gaussian copula.

• The significant differences are also reflected in the loss distributions
depicted in Figure 14.4. Portfolio losses above 7 percent are triggered
with significantly higher probability in case of the applied Student-t
copula compared with the Gaussian copula.

CONCLUSION

Structural portfolio models are widely used in credit portfolio risk model-
ing today. Typically, the rating information of the borrowers is a model
input in these types of portfolio models, because organizational separation
of rating development and portfolio modeling is common in financial insti-
tutions, even though not optimal.

Structural models mainly concentrate on economic distress rather than
on financial distress and, thus, neglect the correlation reducing effect of the
borrowers’ liquidity endowment in a loan portfolio. Ignoring such cash flow
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information leads to a significant overestimation of risk, if the overall level
of correlation of cash flows and asset values remains moderate. But even in
shipping loan portfolios, where cash flows are strongly correlated with asset
values, and hence do not provide considerable extra information, a bias per-
sists. Our example of a shipping loan portfolio suggests that the mistakes
that are made by ignoring the liquidity situation of the borrowers become
highly significant in the presence of long-term employment contracts
because those contracts usually stabilize the income and hence reduce the
intra cash flow as well as the inter cash flow/asset value dependence.

In accordance with our findings from historic shipping time series, we
apply a Student-t copula in our ASM framework, which is characterized by
tail dependence in contrast to a Gaussian copula. It is a broad consensus
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Table 14.5 Different Copula Choices in the Classical
Structural Model Approach

Correlation Gaussian Copula Student-t Copula
Reduction THCondition_A,i,t THCondition_A,i,t

ES(95%) 7.67% 12.86%

ES(99%) 12.10% 21.23%

VaR(95%) 4.96% 7.09%

VaR(99%) 9.33% 16.91%

ES, expected shortfall; VaR, value at risk
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that modeling the correlation behavior of risk drivers for extremely rare
events in structural portfolio models is a challenging but also an essential
task which seems to us to become apparent, in particular, in the current
financial crisis. But on the way to use more extreme dependence structures
in future applications of credit portfolio models in practice, the necessity to
allow for incorporating diversification effects in the model framework
seems to be indispensable in order to ensure loss distributions in line with
empirical evidence. Moreover, our investigation indicates that, on the one
hand, cash flow information is an obviously missing diversifying parameter
in structural portfolio models and, on the other hand, augmenting the stan-
dard approach with respect to this model feature is straight forward and
relatively easy to implement.

REFERENCES

Black, F. and Cox, J.C. (1976) Valuing Corporate Securities: Some Effects
of Bond Indenture Provisions. Journal of Finance, 31: 351–367.

Bluhm, C. and Overbeck, L. (2007) Structured Credit Portfolio Analysis,
Baskets & CDOs. London: Chapman & Hall.

Davydenko, S.A. (2007) When Do Firms Default? A Study of the Default
Boundary. AFA 2009 San Francisco Meetings Paper; EFA 2005
Moscow Meetings Paper; WFA 2006 Keystone Meetings Paper. 
Available at: http://ssrn.com/abstract�672343.

Elizalde, A. (2006) Credit Risk Models II: Structural Models. CEMFI
Working paper 0606.

Merton, R. (1974) On the Pricing of Corporate Debt: The Risk Structure
of Interest Rates. Journal of Finance, 29: 449–470.

NOTES

1. This article reflects the personal view of the authors and does not pro-
vide any information about the opinion of HSH Nordbank AG. The
article has been written solely for academic purposes and should be
read on this note.

2. See Elizalde (2006) for an overview, criticism and extensions of struc-
tural models in credit risk modeling.

3. See Davydenko (2007) for a detailed literature review on default trig-
gers as well as for an empirical study of cash flow and asset value
related default boundaries.  

4. The typical organizational separation of loan origination and port-
folio management activities in bank applications as well as the very
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heterogeneous asset classes in the banks’ overall portfolio are argu-
ments for a clear organizational/process-related interface. But also the
rating process of CDOs is a good example for this stepwise procedure:
in the first step, a rating is determined for the individual assets of the
underlying portfolio; in the second step, standard portfolio models are
used to evaluate the portfolio risk of the CDO transaction. See Bluhm
and Overbeck (2007) for a discussion on this topic.

5. We model the following subsegments: (1a) panmax, (1b) subpanamax,
(1c) handymax, and (1d) handy container vessels; (2a) capsize, (2b)
panamax, (2c) handymax, and (2d) handy bulker; (3a) VLCC, (3b) suez-
max, and (3c) aframax tanker, which total 11 subsegments. See also the
section “Analysis” for a description of the portfolio. 

6. Clarksons is one of the leading brokers in the shipping industry and
publishes historic time series of second-hand values, charter rates, etc.
For our analysis we use data comprising a period from 1997 to 2008.

7. See Bluhm (2007) for a more detailed discussion on the construction of
the standard structural model approach with different types of copula
functions.

8. For example, the average second-hand ship value correlation between
the container vessel subsegments. 

9. Note that the used data set comprises the same time period as already
mentioned above.

10. We use the cumulative default table for corporates provided by Fitch
for demonstrative reasons. 

11. The loan to value (LTV) and the debt service coverage ratio (DCSR)
are commonly used risk statistics in object financing. The LTV is cal-
culated by dividing the financed ship value by the outstanding debt
amount of a single purpose company. Hence, a LTV below 100% indi-
cates sufficient loan collateral as a rule of thumb. Dividing the income
from operating the vessel by the sum of due interest and loan repay-
ment in a certain time period gives the DSCR. Thus a DSCR below
100% indicates a problematic cash flow situation of a borrower.  

12. Note that the rating assumption as well as the assumption on the LGD
and the maturity of the loans is chosen arbitrary due to the fact that we
consider a generic portfolio. Nevertheless, these characteristics of the
loans seem to us to be in a range which are observable in real shipping
portfolios.

13. The decrease in correlations has been estimated by assigning randomly
chosen sequences of zeros to a simulation sample of the borrowers’
cash flow changes in our portfolio and subsequently compare the new
correlations with the original ones on average.
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ABSTRACT

The independent review and validation of front office pricing models is a
key component of any framework attempting to mitigate model risk. A
number of complementary approaches can be used to validate valuation
models and this chapter details these different concepts.

INTRODUCTION

A valuation (or pricing) model can be considered as a mathematical repre-
sentation which is implemented within a trading and risk management sys-
tem and is used to map a set of observable market prices for its liquid
calibrating instruments to the price of an exotic product. At a basic level, 
a pricing model can be considered as having three components, namely, the
input data, the model engine, and the output data as represented pictorially
in the Figure 15.1. All three model components are possible sources 
of model risk which need to be addressed through the model validation
process and the concepts explained in this chapter.

On one level, pricing models are theoretical constructs relying on a
number of mathematical equations and assumptions. The first step in any
attempt at validating valuation models should naturally start with a review
of the theory underpinning the model and a re-derivation of all equations
and theoretical results to ensure that no errors have been made in the theo-
retical specification of the model. A model cannot be reviewed in isolation



from the product which it will be used to value, and the adequacy of the
modeling framework for the product also needs to be considered as part of
this step. Any contractual features of the product which are not captured
by the model should be highlighted together with any relevant risk factors
not being modeled. The use of incorrect dynamics and distributional
assumptions for one or more of the underlying variables may also render
the modeling approach inapplicable for the product under consideration.
This review of the theoretical aspects of the model is arguably the most
understood concept involved in validating pricing models. However, ensur-
ing the correct transformation of a valuation model from its theoretical
construct to its practical implementation within a trading and risk manage-
ment system necessitates the consideration of a number of other validation
concepts which are not all as familiar.

CODE REVIEW

Code review can be a contentious topic in the independent validation of val-
uation models with practitioners often divided over the usefulness of carry-
ing out a line-by-line examination of the pricing model code in order to
identify implementation errors. Detractors often assert that there is little
value in such an exercise since the same results can be achieved through
appropriate model testing and that, in any case, the model developers carry
out such code review and testing as part of their developmental work. Set-
ting aside the question of the independence of the validation, it is the
author’s experience that model developers are not necessarily natural pro-
grammers, are prone to favoring opaque coding techniques, and have little
appetite for appropriately commenting to their code. Furthermore, the
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amount of actual testing and code review carried out by developers prior to
independent validation is not always obvious. Although it is true that the
existence of implementation errors can be detected (and brought to the
attention of model developers) through the formulation of relevant model
tests, a major concern with such an approach is that it will never be possible
to second guess all implementation errors which may arise in practice and
that the set of model tests carried out will never, by their very nature, be
exhaustive. Carrying out a code review also provides the validator with a
“feeling” for the model and some level of comfort around the developers’
skills which all form part of the subjective picture being mentally built dur-
ing the validation. Furthermore, there are some errors such as those leading
to memory leaks and the unintentional “reading/writing” of memory loca-
tions resulting from overstepping array boundaries which can often only be
caught through code analysis. Code reviews also highlight instances of
hard-coded variables, the nature of any numerical approximations made,
and allow the checking of all those minor calculation errors which may only
be material on a portfolio basis.

The decision to perform a code review will invariably depend on the
complexit y of the model under consideration. Many models can be
thought of as “framework � payoff ” constructs in which the generation
of sets of values for the model variables at different points in time is car-
ried out separately from the payoff function which simply takes these sets
of values as inputs and applies to them a set of deterministic rules reflect-
ing the product payoff. Once the underlying framework for generating
the sets of asset paths has been validated, then a new “model” is in reality
just a new payoff function, and a review of the code which implements
this functionality would definitely be recommended since it would not be
time consuming (most payoff functions are a few hundred lines of code at
most) and furthermore, this is the only way of determining with absolute
confidence that the product implemented is exactly that described by the
model developers. On the other hand, the framework engine itself may
run to many tens of thousands of lines of permanently evolving code, and
it could be reasonably argued that the time needed to check every such
line of code would be better spent elsewhere. In some cases, carrying out
a full code review is the necessary prerequisite to the independent valida-
tion due to the lack of appropriate model documentation; the code review
then serves the dual purpose of model discovery and model validation.
Such lack of appropriate model documentation should be addressed
through the imposition of model documentary standards on the develop-
ers as part of the governance structure around models as detailed in
Whitehead (2010).
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Code review is one of those areas in which policy should not be pre-
scriptive with regard to the requirement, or otherwise, of carrying out a
full or partial independent code review; instead, flexibility should be given
to the model validation group to exercise its judgment on a model-by-
model case between the time required to carry out such a review and its
perceived rewards. However, policy should make it a requirement for the
model developers to appropriately comment their code, prepare detailed
model documentation, and grant the model validation group full access to
the pricing code so that this team can use the code to appropriately guide
their validation efforts.

INDEPENDENT RECONSTRUCTION OF MODELS

The independent reconstruction of all or parts of the front office pricing
models is considered best practice by regulators and auditors alike but, just
like code review, is another divisive issue for practitioners since this requires
the setting up of another team of model developers, almost identical in size,
albeit acting this time independently from the front office business areas.
The rationale for rebuilding models is that the independent model 
is extremely unlikely to recreate the exact same errors as the model being
validated and therefore provides a useful validation on the implementation of
the front office pricing model. However, emphasis should be placed here on
“the exact same errors,” because, just as front office model builders are
prone to errors, the same can be said for independent model validators and
the process of managing any valuation differences between the two models
can be complicated. In any case, the rationale for rebuilding exactly the same
model is arguable; any systematic reconstruction of front office models
should focus instead on considering alternative quantitative techniques (for
example, using lattice based techniques instead of Monte Carlo simulation)
and on using a model with a greater number of risk factors or different
dynamics for the underliers. This would have the advantage of permitting
the testing of the model assumptions themselves as part of the independent
validation and of investigating the impact of any perceived limitations in the
front office pricing model. The implementation of the payoff formulations
can still be carried out in such cases as all models can be degenerated to
their deterministic cases, which allows for the comparison of outputs when
both model set-ups are nonrandom. It should also be emphasized at this
stage that model validators have a tremendous advantage over their front
office counterparts in that their alternative model specifications will not be
used under real trading conditions and, consequently, do not need to be fast.
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A practical compromise to the joint issues of code review and model
reconstruction would be to enable the model validation group to install a
clone copy of the front office pricing source code on their own independ-
ent testing platform that would allow them to modify portions of the
pricing code to build variants of the front office pricing model to test out
various hypotheses and concerns which they may develop during their
validation efforts. In such a set-up, the model validation group would be
carrying out an implicit code review as part of their modification of the
pricing model and the impact of any model changes carried out by the
model validation group in constructing their model variants would be
easy to explain since the differences with the original code base would 
be transparent.

BENCHMARK MODELS

A key motivation for building an alternative model as part of the validation
process is to produce a benchmark against which the behavior of the front
office model can be compared. The use of as many benchmark models as
possible in model testing is primordial for the independent validation of
valuation models. Most model validation groups will have access to a wide
variety of front office production models from different front office teams
working on different product areas. Each such model development team
will tend to favor certain quantitative techniques and model dynamics and
the model validation group should learn to leverage their access to such 
a wide set of comparative modeling tools. The difficulty consists in being
able to collapse the product under consideration to a different product 
covered by an alternative front office pricing model (possibly employing
different modeling assumptions) in such a way as to ensure consistency of
model inputs and consistency of model payoffs. This may require the
transformation of certain data inputs or the restriction of contractual
parameters but if such equivalence can be achieved, then this provides
ready-made alternative modeling and implementation benchmarks. Vendor
models and independent valuation services could also be employed as
benchmarks although their usefulness tends to be hindered by the lack of
detailed information provided by such third parties on their model
assumptions and implementation. Naturally, market prices would be the
best yardsticks for the model if these were observable and, failing that,
comparison against the market standard model would be essential but this
is covered in detail elsewhere (Whitehead, 2010) and will not be consid-
ered any further here.
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MODEL TESTING

Exhaustive testing of the valuation model, both in isolation and compared
against other benchmarks, is a main component of any model validation
process. This requires devising a number of scenarios, each one being a dif-
ferent combination of input parameters, which will enable the validator to
determine if the pricing model, acting as a “black box” in which nothing is
assumed known apart from the model inputs and its outputs, is behaving in
an expected and consistent manner, and whether or not it is in agreement
with the available benchmark models. The two main dimensions to such
testing involve the varying of input contractual parameters and market
data- related input parameters (the exact specification of which will depend
on whether the model is internally or externally calibrated as detailed more
fully later on in this chapter). Different types of model tests can also be
recognized as detailed in the following paragraphs.

Vanilla repricing scenarios verify the accuracy of the model in valuing
both the hedging instruments in terms of which the model was constructed
and other basic financial instruments. Tests on limiting cases consider the
natural boundaries of the product and aim to produce deterministic out-
comes. Examples would include put options with zero strike; and barriers
set to either very large or small values. Limiting cases can be considered as
the extremes of monotonicity tests in which a single input parameter is var-
ied from a lower to an upper bound with a view to determining whether the
trend of values produced is correct. For example, a derivative in which the
buyer can exercise an option on a set of dates should not decrease in value if
the number of exercise dates is increased; call option values should decrease
with increasing strikes; and a product in which the associated payoff is
capped at a certain level should not decrease in value as the cap is increased.
Such trend analysis should also be applied to all market data related input
parameters such as current values for the underlying variables, volatilities,
correlations, discounting rates, and so on. Other tests include exploiting
put-call parity-type relationships to combine products to yield determinis-
tic payoffs; setting values for the underlying variables so that they are
deeply “in-the-money” and behave as forwards, so that the product should
show little sensitivity to volatility inputs; and constructing scenarios which
bound valuations between certain ranges of values.

Payoff implementation tests aim to verify that the actual product payoff
correctly reflects that described by the model developers and requires valu-
ing the product with different combinations of contractual input parame-
ters in conjunction with input market data specified in such a way as to
produce a deterministic evolution for the underlying variables. With a
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known deterministic evolution for the relevant quantities, even payoffs to
path dependent options can be independently replicated on a spreadsheet
and allow comparisons with the model produced outputs.

Convergence tests relate to varying nonmarket data-related model
parameters and are invaluable for simulation (e.g., Monte Carlo) and grid
(e.g., finite difference and tree) based models to ensure that a sufficient
number of paths or grid density is being used to ensure accurate model out-
puts. Ensuring adequate convergence is particularly important when under-
lying variables are set close to barriers as the required number of paths or
grid density required to attain an acceptable level of accuracy can dramati-
cally increase as the underlying variables are moved toward the barrier. The
same comment can be made when the valuation date is moved closer to a
date on which a contractual feature of the product gets resolved.

Model stability tests highlight possible implementation problems and
involve a slight perturbation in the model input parameters (mainly to mar-
ket data-related parameters but also to contractual parameters), which
should result in only a slight change in model outputs. Instability with
regards to market data may also be indicative of problems in the calibration
of the model.

Model stress testing involves constructing scenarios using market data
which is significantly different in levels, shape, steepness and interrelation-
ships from normal market conditions in order to ascertain how the model
and its outputs would behave under such extreme conditions. The perfor-
mance of the calibration of the model under these adverse conditions needs
careful investigation since scenarios will always exist under which the model
will simply not be able to calibrate to its data and, as a result, the model is
not able to produce any outputs whatsoever. The results of such calibration
failures under live trading conditions can be catastrophic. Even if the cali-
bration process for a model does not fail under extreme conditions, the
quality of the calibration may be significantly impaired. The aim of model
stress testing is to raise awareness of the extreme market conditions under
which the valuation and hedging of a product using a particular model and
calibration targets break down, or are no longer recommended. The valida-
tion process should identify such conditions and raise them as possible
model limitations, and the parties involved in controlling the model envi-
ronment then need to consider the steps which would be required to man-
age such extreme situations should they occur.

The change in value of a product over a given period of time should be
fully explainable in terms of the change in the underlying market data and
the sensitivity of the product to this data. Trade profit-and-loss (PnL)
explained reports form a standard part of any validation and control process
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and the existence of a large percentage of unexplained change in the valua-
tion of a trade should be cause for concern. PnL explains are tests on the
internal consistency of a model, ensuring that model prices and hedge sensi-
tivities are compatible. Although the valuation of some products using spe-
cific models may result in closed-form formulae for option sensitivities, the
majority of hedge sensitivities are produced through numerical schemes.
Even in these cases, the numerical sensitivities output from the model itself
(for example, using neighboring grid points in finite difference techniques
for option deltas) will rarely be used in official trading and risk management
systems since common practice is to run batch processes on all trading
books in which the market data is perturbed externally to the model to
obtain different prices from which the sensitivities are calculated using
standard central difference formulae (the advantage of such external “bump
and revalue” batch processes being that the systems do not need to “know”
how a particular model produces its sensitivities). Hedge sensitivity tests
should verify the accuracy of the option sensitivities output by the model by
independently carrying out a “bump and revalue” approach. In addition, a
similar analysis should be carried out on the batch system produced num-
bers on a sample trade basis.

Backtesting a model through an entire simulated lifecycle of a product is
the ultimate test of its internal consistency but imposes such significant sys-
tem and storage resource requirements that this is never more than just a
theoretical concept. Such backtesting requires the specification and storage
of plausible market data for every business day during the simulated life of
the product, the calibration of the model and production of hedge sensitivi-
ties on a daily basis, in addition to formulating rules-based hedging strate-
gies which would mimic the action of traders. This is equivalent to setting
up a full test-trading environment as part of the model validation process
and is the reason why carrying out simulated backtesting does not normally
form part of the validation process.

A much more realistic goal is the production of a hedge simulation tool
which would carry out simulated PnL explain tests for a large number of
scenarios over a single time period only. This simply requires the specifica-
tion of market data at the start of the period (which can be obtained for test-
ing purposes from random deformations of real market data) from which
trade valuations and hedge sensitivities can be obtained using the pricing
model, together with the specification of the market data and corresponding
trade valuations at the end of the period. Each set of values for the market
data at the end of the period will lead to a single PnL explain test and con-
struction of a routine for producing random sets of market data from an ini-
tial set would enable the automation of a large number of such scenarios.
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TRADE SEASONING

The testing of pricing models can easily end up focusing uniquely on sce-
narios in which products are set up as “new” trades with the first contrac-
tual fixing date occurring after the chosen valuation date. However, the
proper valuation of live trades is usually dependent on a history of realized
past values for specific quantities; for example, the valuation of an Asian
option in which a number of the averaging dates have already elapsed will
be dependent on the actual, realized asset prices on those past dates and the
pricing model must be able to take these values into account to obtain a
correct trade valuation. The validation of such trade seasoning is easily
overlooked and although errors in trade seasoning will not affect the initial
price at which a trade is transacted, it will lead to valuation differences and
hedging errors subsequently throughout the life of the trade. The logic for
trade seasoning can either occur mainly within or outside of the pricing
model, leading to different validation and control requirements. Using the
above Asian option example, if trade seasoning occurs externally to the
model, then the model would have to have an input parameter for the aver-
age asset price over elapsed fixing dates and this average would be calcu-
lated through some external process and then fed as an input into the
model. This leads to higher operational risk since any failure to update that
average in the upstream process would result in a stale past average being
used by the model. In addition, the meaning of such trade seasoning input
parameters must be clearly understood by all relevant parties. For an Asian
option, the past fixings would actually be most easily captured through the
past sum of realized fixings rather than through its elapsed average since
use of the latter also requires an input parameter to reflect the number of
past fixings. Confusion around the input requirements could easily lead to
erroneously passing an elapsed average when the model expects a sum and
leads to valuation errors. With an internal approach to trade seasoning, the
history of past fixings would be the input parameter and the model itself
would internally calculate the required sum over elapsed averaging dates.
This approach is less prone to operational problems but places greater
reliance on ensuring that this trade seasoning logic is validated through
both code reviews and appropriate model testing (specifically, using scenar-
ios in which a deterministic evolution of the underlying variables is guaran-
teed and replicating the seasoned payoff in a spreadsheet). Apart from the
operational concerns, the decision to use internal or external trade season-
ing for such simple options might be open to personal preferences. How-
ever, as soon as very path-dependent products are considered, for example,
with a single payment at maturity but where the coupon paid accrues over a
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number of periods depending on the behavior of multiple underlying vari-
ables during those periods, then the use of fully internal trade seasoning
logic in which only the past fixings for the relevant underlying variables are
model inputs becomes essential. Once the validation of the trade seasoning
logic has been effected, then the only control requirement is to verify the
accuracy of the past fixings input data for the live trade population.

PRICE VERIFICATION

Incorrectly entered historical trade fixings is one source of model risk
related to the use of input data in valuation models. Another relates to
incorrectly entered contractual data which should be addressed as part of
standard, deal review processes carried out by middle office functions.
These processes do however need to consider the common practice of
shifting contractual parameters such as barriers and strikes for hedging
purposes; deal review processes should identify those shifted trades and
monitor on an ongoing basis the size of the resulting embedded reserves.
It should be noted that the validation of model input parameters is not 
normally considered part of the model validation process but is neverthe-
less crucial to ensuring accurate valuations. In most firms, traders set the
values of the input market data which is used to price trades; the rationale
for this practice is that these input values will impact not only valuations,
but crucially for risk management purposes, hedge sensitivities as well and
traders should have the freedom to risk manage their positions according
to their own views. The compensating control for this practice is the price
verification process which is typically carried out by the valuation control
group and aims to source independent market data with which to compare
the input values used by traders and the impact, or variances, on product
valuations resulting from differences in the market data used by the desk
and the valuation control group. The price verification process needs to
contend not only with incorrectly specified input market data but also with
the use of proxies and historical data for illiquid markets. This process is
further complicated by the prevalent use of calibrated model input param-
eters for which the linkage to the original market data used by the traders
during the calibration process is often not available.

CALIBRATION

The role of calibrations in the validation of valuation models is crucial and
far reaching. The formulation of pricing models contains either an explicit
or an implicit description of the stochastic evolution of the underlying 
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variables from which all other necessary quantities are derived. These
dynamics are usually postulated in terms of mathematical equations through
a parsimonious set of model parameters. Different sets of model parameters
will imply different evolutions over time for the financial quantities under
consideration and consequently different model prices for exactly the same
product. Calibration is the process of assigning values to model parameters
in a manner consistent with the observed market values of the simpler finan-
cial instruments which are being used to hedge the risk on the more exotic
product valued with the pricing model. In effect, the more exotic product is
being priced relative to the vanilla hedging instruments in terms of which it
can be replicated. These vanilla instruments are said to be the “calibration
targets” for that product when valued using this model. Since the use of
different vanilla instruments as targets will lead to different values for model
parameters and hence different valuations for the exotic product, the choice
and transparency around calibration targets is essential. This is a major
theme of Whitehead (2010) where the need to enforce a strict product-
model calibration scope when approving and controlling models is empha-
sized. Calibration is in itself a complex numerical routine which attempts
through an iterative process to minimize (some specified function of ) the
differences between the market values of the target calibration set and their
model prices. The process may allow the placing of greater emphasis on 
certain individual elements of the calibration set and usually requires the
specification of an initial guess for the model parameters.

The calibration process can either be carried out externally to the pric-
ing model or else it can be subsumed within the model itself. This choice
will impact not only the representation of market data-related input param-
eters but also the validation and control processes required to ensure the
integrity and transparency of this calibration process and subsequent prod-
uct valuations. With external calibration, the model parameters are them-
selves input parameters to the pricing model, whereas with internal
calibration, it is the values for the set of calibration targets which are the
actual market data-related input parameters. The debate around internal or
external calibrations revolves around the trade-off between speed and con-
trols. Use of externally calibrated model parameters leads to a significant
speed advantage when large portfolios of positions are considered since a
number of trades are likely to be using the same calibration sets and conse-
quently the actual number of calibrations which need to be carried out will
be smaller with the external calibration approach. This speed advantage
only increases for models with multiple assets. On the other hand, pricing
models in which the calibration routine is internal will actually be recali-
brated every time that the model is invoked to return a valuation. However,
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the control advantages of internal calibrations are significant. First of all,
the calibrations will never be stale since they are implicitly updated for
every valuation performed; external calibrations can suffer from infrequent
recalibrations. The calibration routine and choice of targets explicitly forms
part of the model validation process for internal calibrations since it is part
of the model leading to greater transparency around the calibration process
and choice of targets. With external calibrations, the actual calibration rou-
tine and choice of targets may not be at all visible to the control functions,
rendering it difficult to verify that the trader is not internally manipulating
the calibration process and parameters. The price verification process is
also a lot more straightforward to carry out for internal calibrations since
this only requires the replacement of trader supplied market data in the
model function calls with independently sourced market data. The possible
lack of visibility around the selection of targets with external calibrations
significantly complicates the price verification process that may now have to
reference the market data values implied by the desk calibrations and the
desk sensitivities rather than enabling a full, independent revaluation of the
positions using independent data.

The choice of calibration targets and the number of sets of targets asso-
ciated with a particular model will be dictated by whether a local or global
calibration approach is being employed. With local calibrations, each
product may have its own specific set of calibration targets, and the appro-
priateness of each particular set will need to be considered. Local calibra-
tions should result in a good calibration fit with very close repricing of the
calibration instruments. A global calibration approach would specify a sin-
gle, larger set of target instruments applicable for a wide range of products
being valued using that model and results in a more generic calibration
with reasonable overall fit but greater local errors in the repricing of spe-
cific calibration instruments within the wider calibration universe. The
debate around local and global calibrations can be illustrated through a
specific example. Consider an option with a three-year maturity that is
being valued through a global calibration to the implied volatility surface
for maturities up to ten years. Should the trader really be concerned about
the quality of the calibration fit beyond three years for this option if this
results in a worse calibration fit up to three years when compared with an
equivalent local calibration up to three years only? Now consider this in
conjunction with a second option of seven years’ maturity and assume that
two local calibration sets are being used for these options. Both options
are being valued as accurately as possible in isolation but since they are
using different sets of model parameters, the trader may not be convinced
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that these options are being consistently valued with regards to each other
which may have an impact when exposures are netted across positions. 
A global calibration would ensure consistency of pricing but would result
in locally worse calibration fits. Note that a product using local calibration
will only show sensitivities to its target instruments, whereas a global cali-
bration approach would result in a product showing exposure to all avail-
able market data points.

The validation of the calibration process and choice of targets is an inte-
gral part of the overall validation of valuation models. As already mentioned,
the choice of calibration targets to be used in conjunction with a particular
model and for a specific product must be explicitly specified during the
model approval process and a key component of the validation process itself
relates to the appropriateness of the calibration set for the product and
model under consideration. It should be emphasized that differences
between the postulated calibration set and the actual set of instruments used
by traders to risk manage the product on a daily basis may occur in practice
and would result in inconsistencies between the model prices and sensitivi-
ties and the real life hedging of the positions. However, the impact of any
such differences is likely to be obscured by the netting of sensitivities across
positions and the macro hedging of trading books.

The stabilit y of the calibration process should be investigated by 
perturbing the values of the calibration targets (both in isolation and in
combination), recalibrating the model and investigating the impact of the
changes on calibrated model parameters (for external calibration) and prod-
uct valuations (for both internal and external calibrations). A stable calibra-
tion would result in only small changes to model parameters and valuations.
Instability of model parameters and valuations may indicate a problem with
the calibration routine itself, an implementation error in the model or 
a misspecified model. For externally calibrated model parameters, the 
stability of model parameters over time should also be considered. A well-
specified model will have model parameters which do not change too dra-
matically over time. Finally, the goodness of the calibration fit should be
examined together with the sensitivity of the calibrated model parameters
and valuations to the initial guess for the model parameters.

CONCLUSION

This chapter has considered a number of different concepts involved in the
validation of valuation models which is an essential part of any framework
attempting to address model risk.
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ABSTRACT

The simplest approach to assess an equity derivative pricing model is to
check how well market prices of vanilla options are fitted. However, when
pricing exotic options, this approach is not sufficient for the rational choice
of a model. Generally, each type of exotic option has its own set of most
suitable models that take into account specific risks of the contract type. In
this chapter, we provide an overview of studies that analyze the question of
which model should be chosen to price and hedge barrier options. We
check the results provided in the literature using a set of numerical experi-
ments. In our test we compare prices of forward-start options in the local
volatility, Heston, and Barndoff-Nielsen–Shephard models.

INTRODUCTION

The market of equity derivatives can be split into a market for vanilla
options, i.e., call and put options, and a market for exotic options. The
exotic options market covers all products which are not standard calls and
puts. Examples are forward-start call and put options, path-dependent
options like barrier or Asian options, and products on several underlyings
such as basket options. To understand the relevance of model risk for
equity derivatives we start with a short description of the vanilla and the
exotics market.



Vanilla options on indexes or single stocks are traded on exchanges. On
the EUREX, vanilla options on the DAX or the EuroStoxx 50 are traded
for a set of strikes and maturities that is defined by the exchange. These
options are of European t ype. Options on single stocks like EON,
Deutsche Bank, or Siemens that are traded on the EUREX are of American
type. For these products prices are quoted every day for the set of strikes
and expiries where these instruments are traded. No model risk exists for
these options because prices are delivered every day by the exchange. If the
price of an option for a different strike or expiry is needed, typically an
interpolation using the Black-Scholes model is applied. Prices given by the
exchange are converted into implied volatilities using the Black-Scholes
model. These implied volatilities are interpolated to find the implied volatil-
ity corresponding to the option’s strike and expiry. The option’s price is
computed using the Black-Scholes model with this interpolated implied
volatility. An alternative would be to calibrate a pricing model like the Hes-
ton model to the prices given by the exchange and price the option using
the calibrated model. In this context model risk is rather low because the
price of the vanilla option with the irregular strike and expiry has to be in
line with the set of prices of similar options that is given in the market.

For exotic options hardly any market prices exist. They are not traded on
exchanges but typically over-the-counter between banks or banks and institu-
tional investors such as asset management firms or insurance companies. For
these products prices are determined by pricing models. These models are
typically calibrated to vanilla options, i.e., the model parameters are deter-
mined to replicate the given prices of vanilla options as close as possible. After
calibrating a model, the price of an exotic product is computed in this pricing
model. The basic idea behind this procedure is to price an exotic product in
line with the market for vanilla options. In this context model risk can be sub-
stantial. The more the characteristics of an exotic product differ from a
vanilla option, the less its price is determined by the vanilla options market.

This chapter is structured as follows. In the first section, we provide an
overview of pricing models for equity derivatives. In the second section, we
describe the problem of model risk in more details. A numerical example
illustrates the problem for the case of forward-start vanilla options in the
following section. In the final section we discuss the practical implications.

EQUITY DERIVATIVES PRICING MODELS

In this section we give a short overview of equity derivatives pricing 
models. The most prominent equity derivatives pricing model is the 
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Black-Scholes model (Black and Scholes, 1973). Its dynamics under the
risk-neutral measure is given by dSt � (r � d ) · St · dt � σ · St · dWt, where
S is the price of a stock or stock index, r denotes the risk-free interest rate,
d the dividend yield, σ the volatility, and W a Wiener process. In the Black-
Scholes model r, d, and σ are at most time dependent.1 It is well known that
prices in the market for vanilla options cannot be explained by the Black-
Scholes model. Computing implied volatilities from observed market prices
leads to a volatility smile for short maturities and to a volatility skew for
longer expiries. Therefore, assuming a time-dependent volatility is incon-
sistent with the vanilla options market.

A natural extension of the Black-Scholes model is the local volatility
model. Its dynamics is identical to the Black-Scholes model but the volatil-
ity σ is a function of spot and time σ (St, t). It was shown by Dupire (1994)
that for every surface of arbitrage-free prices of European call options 
C(K, T ), where K is the strike and T the option’s expiry, exists a unique
local volatility function σ (St, t) that is consistent with the given price sur-
face. Therefore, the local volatility model can be calibrated perfectly to
every arbitrage-free surface of European call option prices. However, as
shown in Hagan et al. (2002), the predictions of future volatility smiles and
the smile dynamics under spot shifts implied by the model are unrealistic.
For this reason, new models which are both able to explain the current
implied volatility smile and give realistic predictions of future smiles had
been developed.

It is observed in the market that stock volatility goes up when prices go
down and vice versa. Further, it is observed that the level of volatility is
fluctuating in time. Therefore, a natural extension to the Black-Scholes
model is a stochastic volatility model. The most prominent example is the
Heston (1993) model. Its dynamics is given by 

dSt � (r � d ) · st · dt � σt · St · dWt , 
dσ 2

t � κ · (η � σ 2
t ) · dt � θ · σt · dW

—
t , 

Cov[dWt , dW
—

t], � ρ · dt,

where θ is the volatility of volatility, η the long-term variance, and κ is
mean-reversion speed. The correlation between the driving Brownian
motions is denoted with ρ. This correlation has to be negative to explain
the observed co-movement of spot and volatility.

The Heston model still implies continuous spot paths. In reality some-
times huge jumps in the spot are observed. This can be included in the
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model by adding a jump component to the spot dynamics of the Heston
model (Bates, 1996):

where Nt is a Poisson process with intensity λ � 0. The Poisson process is
independent of both Wiener processes and J is the percentage jump size
which is log-normally distributed. This distribution is determined by the
parameters µJ and σ J.

An alternative model class are Levy models with stochastic time (Carr
et al., 2003). The underlying process is modeled under the risk-neutral
measure as 

where Xt is a Levy process, Yt is a business time, and yt the rate of time
change. Typical choices for Xt are the variance gamma process or the
normal inverse Gaussian process, for yt the Cox-Ingersoll-Ross process or
the Gamma-Ornstein-Uhlenbeck process. This class of processes is able
to represent current implied volatility surfaces with reasonable accuracy
and gives realistic predictions on the future shape of implied volatilities.
However, compared to Heston or Bates, the parameters in this model
class are less intuitive. For instance, a trader might be more comfortable
with a volatility of volatility than with a mean-reversion speed of a sto-
chastic clock.

A further alternative is the Barndorff-Nielsen–Shephard (2001) model.
Its dynamics is given by

with jt � Σ
Nt

n �1
xn, where Nt is a Poisson process with intensity a, xn is inde-

pendent and identically distributed following an exponential distribution
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with mean 1/b. The function k is given by k(u) � ln(E[exp(�u · J1)]) � �a
· u · (b � u). In this model the volatility process is entirely a jump process
and only the spot process has a diffusive component.

All models presented so far model the spot and at most in addition the
instantaneous volatility. For all these models the characteristic function of
the spot distribution is known in closed form at any future point in time
which allows the calculation of expectations of the spot and the calculation
of European vanilla options prices.2 The calibration of these models is done
by solving the optimization problem

Since the model price of a European call option can be computed almost
analytically in these models, the calibration can be carried out in a very
efficient way.

MODEL RISK FOR EQUITY DERIVATIVES

In the last section we have introduced the most prominent equity deriva-
tives pricing models. After calibrating these models they all give reasonable
prices for European vanilla options. When pricing an exotic option, like a
down-and-out put option or a cliquet option, the question arises as to
which of the models presented so far is best suited for the specific product.

As a first step, one could ask the question if it makes a difference which
model is used. This question was answered by Schoutens, Simons, and 
Tistaert (2004). In Schoutens et al. (2004), several exotic equity options are
prices in the Heston model, the Bates model, four Levy models, and the
Barnsdorff-Nielsen–Shephard model. They find that all models are able to
replicate the prices of European call options with reasonable accuracy but
that differences in prices of exotic options can be substantial. Especially
prices of reverse barrier options are extremely model sensitive.

The reason for this behavior is that these models make very different
predictions of the distribution of forward volatility. Especially for cliquet
options or forward-start options, it is clear that forward volatility plays a
crucial role. However, in these models the distribution of forward volatility
is not transparent but hidden inside the model assumptions. For this reason,
some modern modeling approaches attempt to model forward volatility
explicitly. An example is Bergomi (2005). These modeling approaches have
the advantage that the modeling of forward volatility is no longer opaque
but the disadvantage that not enough market instruments are available to
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calibrate the model and hedge exotic options in this model. Therefore, the
Bergomi model is not yet suited for practical applications and one has to
rely on one of the models presented in the last section.

When choosing a model for an exotic product several aspects have to be
taken into account. First of all one has to decide about the relevance of model
risk for the specific product. We will present an illustrative example in the
next section. If the result is that model risk is substantial then it is rather dif-
ficult to make a decision for a specific model. One way is to carry out a back-
test as in Engelmann et al. (2006) to make a model decision. In this backtest
historical market data is needed for several years. On the historical data the
issuing of exotic options and hedging their risks can be simulated on real
market data and the hedging error over the lifetime of the product can be
measured. The model that delivers on average the least hedging error should
be the most suitable model for the exotic product. Further, an indication for
the most suitable hedging strategy is also found in this way.

If a long history of market data is not available, there is an alternative to
a backtest. One could use an advanced model like the Bergomi (2005)
model and assume that this model gives a realistic description of markets.
Although it cannot be calibrated to the market it can be parameterized and
it can be assumed that after parameterization it represents a realistic mar-
ket. After that, prices of vanilla options are calculated and the models of the
last section are calibrated. Then the exotic product is prices both in the
Bergomi model and in all the other models. This is done for several param-
eterizations of the Bergomi model. The model that delivers prices that are
closest to the prices in the Bergomi model can be considered the most real-
istic model for the specific product. A reference for this procedure is Kilin,
Nalholm, and Wystup, (2008).

ILLUSTRATIVE EXAMPLE

In this section we describe a numerical example where we restrict the
analysis to comparison of option prices in three models only. We calculate
prices of forward-start vanilla options in the local volatility, Heston and
Barndorff-Nielsen–Shephard models using different implied volatility sur-
faces as an input. We then analyze which patterns of the implied volatility
surface lead to highest model risk.

We generate 24 different implied volatility surfaces from 24 different
sets of parameters of the Heston model. Values of these parameters are
reported in Table 16.1. When generating the implied volatility surfaces we
use European call option with maturities of one, three, and six months and
one, three, and five years. For the first maturity (one month) we use only
one at-the-money option. For the second maturity we use three options
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with 90, 100, and 110 percent strike. For all further maturities we calculate
prices of 15 vanilla options with the strikes equidistantly distributed
between 65 and 135 percent. After calculating the prices of these options in
the Heston model, we calculate implied volatilities from these prices using
the inverse of the Black-Scholes formula. These implied volatility surfaces
are then used for calibration of the local volatilit y and Barndorff-
Nielsen–Shephard models. The local volatility model is calibrated using the
algorithm described in A ndersen and Brotherton-Ratclif fe (1998). 
The Barndorff-Nielsen–Shephard model is calibrated using the direct inte-
gration method and caching technique described in Kilin (2007). After
these calibrations we have parameters of three models for each of the 24
scenarios. Using these parameters we calculate prices of ten forward-start
options specified in Table 16.2. The payoff of a forward-start call is
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Table 16.1 Parameters of the Heston Model Used for Generating Implied
Volatility Surfaces

Long-run Mean-reversion Volatility of Short
Scenario Variance Rate Variance Volume Correlation

1 0.04 0.25 0.5 0.25 �0.5

2 0.04 0.25 0.5 0.25 �0.6

3 0.04 0.25 0.5 0.25 �0.7

4 0.04 1.15 0.39 0.2 �0.64

5 0.04 2 1.5 0.3 �0.5

6 0.04 2 1.5 0.3 �0.6

7 0.04 2 1.5 0.3 �0.7

8 0.04 2 1.2 0.3 �0.7

9 0.049 2 1 0.8 �0.7

10 0.01 2 0.2 0.16 �0.7

11 0.04 2 0.5 0.3 0

12 0.04 2 0.5 0.9 �0.7

13 0.04 2 0.5 0.7 �0.7

14 0.04 2 0.5 0.3 �0.7

15 0.04 2 0.5 0.3 �0.5

16 0.04 2 0.5 0.3 �0.6

17 0.04 2 0.5 0.3 �0.8

18 0.04 2 0.5 0.3 �0.9

19 0.04 2 0.5 0.24 �0.7

20 0.04 2 0.5 0.26 �0.7

21 0.04 2 0.5 0.34 �0.7

22 0.04 2 0.5 0.38 �0.7

23 0.04 2 0.4 0.3 �0.7

24 0.04 2 0.6 0.3 �0.7



max(S(T ) � kS(t0), 0). The payoff of a forward-start put is max (kS(t0) �

S(T ), 0), where T is the maturity of the option, t0 is the forward-start time,
k is the relative strike.

In all our experiments we make a simplifying assumption of zero interest
rates and absence of dividends. The results of the experiment are reported in
Tables 16.3 to 16.8 and analyzed below. In the rest of this section we describe
special features of the implied volatility surfaces corresponding to scenarios
used in our experiment. Scenarios 1 to 3 describe situations when 
at-the-money implied volatilities decrease very slowly as the expiries of options
increases. Scenario 4 is based on parameters reported in Bakshi, Cao, and
Chen (1997). This is an example of a Heston model parameterization com-
monly used in academic literature. Scenarios 5 to 8 deal with strong convexity
of the implied volatility curves. This convexity is especially strong for scenarios
5 to 7. Parameters of scenario 9 produce an example of volatile markets. A typ-
ical example of calm markets is described by parameters of scenario 10. Sce-
nario 11 describes implied volatility surface with almost symmetric smiles.
Scenarios 12 and 13 correspond to the case of very high short-term at-the-
money implied volatility. Scenario 14 illustrates a standard case for equity
derivatives markets. Scenarios 15 to 18 are derived from scenario 14 by chang-
ing the skew of the implied volatility. The skew is modified by changing the
correlation between the underlying process and variance process in the Heston
model. Scenarios 19 to 22 are derived from scenario 14 by changing the short-
term, at-the-money volatility. These changes are obtained by modifying the
initial state of the variance process in the Heston model. Scenarios 23 and 24
are derived from scenario 14 by varying the convexity of the implied volatility
curves. Specifically, the volatility of variance parameter is changed.

262 Part IV model risk related to valuation models

Table 16.2 Specification of Forward-Start Options That Are Used in the
Pricing Experiment

Instrument Forward-start Time Maturity Relative Strike Option Type

1 0.25 0.5 0.8 Put

2 0.25 0.5 1 Call

3 0.5 1 0.9 Put

4 0.5 1 1 Call

5 0.75 1 1 Call

6 1 3 0.8 Put

7 1 3 1 Call

8 2.5 3 1 Call

9 1 5 1 Call

10 4 5 1 Call
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Table 16.3 Prices of Forward-Start Options in Different Models. Scenarios 1–4

Barndorff-Nielsen-
Scenario Instrument Heston Local Volatility Shephard

1 1 0.0048 0.0041 0.0041

1 2 0.0326 0.0380 0.0404

1 3 0.0188 0.0224 0.0181

1 4 0.0589 0.0669 0.0494

1 5 0.0367 0.0454 0.0318

1 6 0.0231 0.0331 0.0339

1 7 0.1135 0.1131 0.0772

1 8 0.0475 0.0564 0.0267

1 9 0.2059 0.1853 0.1152

1 10 0.0607 0.0770 0.0395

2 1 0.0049 0.0043 0.0046

2 2 0.0321 0.0369 0.0383

2 3 0.0188 0.0222 0.0172

2 4 0.0584 0.0654 0.0456

2 5 0.0361 0.0439 0.0285

2 6 0.0228 0.0330 0.0347

2 7 0.1122 0.1097 0.0735

2 8 0.0466 0.0542 0.0230

2 9 0.2052 0.1855 0.1150

2 10 0.0597 0.0785 0.0383

3 1 0.0051 0.0047 0.0050

3 2 0.0316 0.0356 0.0358

3 3 0.0187 0.0219 0.0160

3 4 0.0578 0.0635 0.0407

3 5 0.0357 0.0422 0.0245

3 6 0.0226 0.0326 0.0357

3 7 0.1106 0.1053 0.0700

3 8 0.0456 0.0518 0.0209

3 9 0.2044 0.1880 0.1161

3 10 0.0590 0.0811 0.0378

4 1 0.0023 0.0020 0.0026

4 2 0.0281 0.0296 0.0336

4 3 0.0147 0.0164 0.0183

4 4 0.0592 0.0588 0.0461

4 5 0.0388 0.0399 0.0309

4 6 0.0225 0.0278 0.0333

4 7 0.1287 0.1139 0.0981

4 8 0.0600 0.0579 0.0445

4 9 0.2237 0.1835 0.1428

4 10 0.0833 0.0811 0.0665
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Table 16.4 Prices of Forward-Start Options in Different Models. Scenarios 5–8

Barndorff-Nielsen-
Scenario Instrument Heston Local Volatility Shephard

5 1 0.0061 0.0056 0.0053

5 2 0.0224 0.0364 0.0345

5 3 0.0133 0.0197 0.0174

5 4 0.0489 0.0610 0.0361

5 5 0.0299 0.0415 0.0202

5 6 0.0199 0.0312 0.0351

5 7 0.1135 0.1125 0.0814

5 8 0.0494 0.0571 0.0274

5 9 0.2121 0.1851 0.1265

5 10 0.0700 0.0803 0.0485

6 1 0.0062 0.0061 0.0054

6 2 0.0215 0.0341 0.0312

6 3 0.0133 0.0192 0.0170

6 4 0.0484 0.0590 0.0320

6 5 0.0295 0.0407 0.0173

6 6 0.0202 0.0315 0.0366

6 7 0.1128 0.1103 0.0805

6 8 0.0490 0.0557 0.0263

6 9 0.2119 0.1844 0.1271

6 10 0.0695 0.0800 0.0472

7 1 0.0062 0.0055 0.0055

7 2 0.0206 0.0307 0.0269

7 3 0.0132 0.0196 0.0167

7 4 0.0477 0.0575 0.0281

7 5 0.0290 0.0388 0.0146

7 6 0.0203 0.0322 0.0379

7 7 0.1118 0.1078 0.0795

7 8 0.0486 0.0540 0.0252

7 9 0.2113 0.1839 0.1276

7 10 0.0690 0.0799 0.0461

8 1 0.0063 0.0050 0.0059

8 2 0.0242 0.0324 0.0296

8 3 0.0149 0.0187 0.0187

8 4 0.0515 0.0583 0.0321

8 5 0.0317 0.0392 0.0173

8 6 0.0218 0.0298 0.0394

8 7 0.1169 0.1088 0.0870

8 8 0.0515 0.0548 0.0293

8 9 0.2159 0.1828 0.1350

8 10 0.0728 0.0808 0.0520
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Table 16.5 Prices of Forward-Start Options in Different Models. Scenarios 9–12

Barndorff-Nielsen-
Scenario Instrument Heston Local Volatility Shephard

9 1 0.0325 0.0289 0.0236

9 2 0.0860 0.0891 0.0945

9 3 0.0447 0.0470 0.0437

9 4 0.0939 0.0988 0.0828

9 5 0.0536 0.0609 0.0463

9 6 0.0322 0.0319 0.0552

9 7 0.1374 0.1245 0.0837

9 8 0.0586 0.0625 0.0195

9 9 0.2351 0.1950 0.1404

9 10 0.0825 0.0895 0.0380

10 1 0.0003 0.0002 0.0004

10 2 0.0182 0.0182 0.0225

10 3 0.0040 0.0043 0.0064

10 4 0.0422 0.0390 0.0282

10 5 0.0266 0.0252 0.0182

10 6 0.0035 0.0040 0.0081

10 7 0.0909 0.0699 0.0564

10 8 0.0423 0.0350 0.0256

10 9 0.1762 0.1243 0.0801

10 10 0.0574 0.0461 0.0383

11 1 0.0036 0.0031 0.0025

11 2 0.0399 0.0446 0.0474

11 3 0.0171 0.0208 0.0203

11 4 0.0676 0.0703 0.0568

11 5 0.0441 0.0472 0.0377

11 6 0.0188 0.0269 0.0315

11 7 0.1340 0.1233 0.1019

11 8 0.0628 0.0626 0.0450

11 9 0.2259 0.1870 0.1514

11 10 0.0872 0.0807 0.0662

12 1 0.0422 0.0419 0.0361

12 2 0.1113 0.1129 0.1186

12 3 0.0630 0.0673 0.0683

12 4 0.1237 0.1250 0.1130

12 5 0.0739 0.0775 0.0677

12 6 0.0339 0.0364 0.0479

12 7 0.1489 0.1345 0.1011

12 8 0.0622 0.0613 0.0194

12 9 0.2382 0.1951 0.1357

12 10 0.0860 0.0817 0.0302
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Table 16.6 Prices of Forward-Start Options in Different Models.
Scenarios 13–16

Scenario Instrument Heston Local Volatility BNS

13 1 0.0261 0.0255 0.0216

13 2 0.0857 0.0874 0.0915

13 3 0.0455 0.0481 0.0480

13 4 0.1018 0.1022 0.0895

13 5 0.0614 0.0639 0.0531

13 6 0.0295 0.0309 0.0504

13 7 0.1418 0.1256 0.0932

13 8 0.0620 0.0604 0.0215

13 9 0.2332 0.1892 0.1383

13 10 0.0859 0.0817 0.0382

14 1 0.0050 0.0043 0.0058

14 2 0.0370 0.0390 0.0407

14 3 0.0191 0.0201 0.0242

14 4 0.0654 0.0646 0.0502

14 5 0.0420 0.0429 0.0307

14 6 0.0238 0.0274 0.0386

14 7 0.1322 0.1160 0.1050

14 8 0.0617 0.0591 0.0457

14 9 0.2268 0.1843 0.1497

14 10 0.0857 0.0818 0.0707

15 1 0.0046 0.0040 0.0047

15 2 0.0378 0.0409 0.0445

15 3 0.0186 0.0204 0.0238

15 4 0.0661 0.0668 0.0545

15 5 0.0426 0.0443 0.0351

15 6 0.0226 0.0273 0.0373

15 7 0.1330 0.1183 0.1059

15 8 0.0620 0.0602 0.0473

15 9 0.2268 0.1851 0.1492

15 10 0.0863 0.0814 0.0713

16 1 0.0048 0.0042 0.0054

16 2 0.0374 0.0400 0.0429

16 3 0.0188 0.0202 0.0243

16 4 0.0657 0.0656 0.0527

16 5 0.0423 0.0436 0.0331

16 6 0.0233 0.0272 0.0377

16 7 0.1327 0.1171 0.1046

16 8 0.0619 0.0597 0.0466

16 9 0.2268 0.1846 0.1490

16 10 0.0860 0.0815 0.0706

BNS, Barndorff-Nielsen-Shephard
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Table 16.7 Prices of Forward-Start Options in Different Models.
Scenarios 17–20

Scenario Instrument Heston Local Volatility BNS

17 1 0.0052 0.0045 0.0065

17 2 0.0365 0.0378 0.0383

17 3 0.0193 0.0200 0.0242

17 4 0.0651 0.0635 0.0481

17 5 0.0418 0.0420 0.0286

17 6 0.0243 0.0272 0.0403

17 7 0.1318 0.1146 0.1045

17 8 0.0615 0.0585 0.0447

17 9 0.2267 0.1839 0.1503

17 10 0.0854 0.0819 0.0704

18 1 0.0053 0.0047 0.0064

18 2 0.0361 0.0365 0.0352

18 3 0.0195 0.0197 0.0244

18 4 0.0647 0.0621 0.0459

18 5 0.0415 0.0409 0.0269

18 6 0.0249 0.0272 0.0415

18 7 0.1312 0.1133 0.1065

18 8 0.0613 0.0577 0.0444

18 9 0.2267 0.1833 0.1530

18 10 0.0851 0.0821 0.0703

19 1 0.0034 0.0030 0.0039

19 2 0.0308 0.0326 0.0355

19 3 0.0166 0.0177 0.0212

19 4 0.0617 0.0608 0.0481

19 5 0.0402 0.0409 0.0311

19 6 0.0234 0.0276 0.0360

19 7 0.1314 0.1155 0.1034

19 8 0.0617 0.0589 0.0462

19 9 0.2263 0.1844 0.1470

19 10 0.0857 0.0818 0.0700

20 1 0.0039 0.0034 0.0046

20 2 0.0328 0.0346 0.0372

20 3 0.0174 0.0185 0.0225

20 4 0.0629 0.0621 0.0489

20 5 0.0408 0.0416 0.0311

20 6 0.0235 0.0276 0.0375

20 7 0.1317 0.1156 0.1032

20 8 0.0617 0.0590 0.0463

20 9 0.2264 0.1843 0.1473

20 10 0.0857 0.0818 0.0704

BNS, Barndorff-Nielsen-Shephard
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Table 16.8 Prices of Forward-Start Options in Different Models.
Scenarios 21–24

Scenario Instrument Heston Local Volatility BNS

21 1 0.0062 0.0055 0.0067

21 2 0.0414 0.0435 0.0446

21 3 0.0210 0.0221 0.0254

21 4 0.0682 0.0676 0.0519

21 5 0.0434 0.0444 0.0310

21 6 0.0242 0.0271 0.0420

21 7 0.1329 0.1163 0.1051

21 8 0.0617 0.0592 0.0437

21 9 0.2272 0.1843 0.1519

21 10 0.0857 0.0818 0.0691

22 1 0.0077 0.0069 0.0075

22 2 0.0460 0.0481 0.0502

22 3 0.0231 0.0242 0.0267

22 4 0.0713 0.0708 0.0553

22 5 0.0450 0.0460 0.0328

22 6 0.0246 0.0271 0.0446

22 7 0.1336 0.1168 0.1054

22 8 0.0617 0.0593 0.0407

22 9 0.2277 0.1843 0.1528

22 10 0.0858 0.0817 0.0673

23 1 0.0045 0.0041 0.0053

23 2 0.0390 0.0402 0.0432

23 3 0.0194 0.0205 0.0245

23 4 0.0677 0.0662 0.0543

23 5 0.0439 0.0439 0.0343

23 6 0.0236 0.0273 0.0386

23 7 0.1345 0.1177 0.1075

23 8 0.0634 0.0599 0.0483

23 9 0.2281 0.1850 0.1519

23 10 0.0878 0.0817 0.0728

24 1 0.0054 0.0046 0.0061

24 2 0.0349 0.0378 0.0381

24 3 0.0186 0.0197 0.0236

24 4 0.0631 0.0634 0.0466

24 5 0.0402 0.0421 0.0275

24 6 0.0239 0.0274 0.0400

24 7 0.1299 0.1144 0.1022

24 8 0.0600 0.0582 0.0426

24 9 0.2253 0.1837 0.1479

24 10 0.0836 0.0818 0.0675

BNS, Barndorff-Nielsen-Shephard



CONCLUSION

In this experiment we measure model risk as price differences of products
between different models. The highest model risk is observed for the
options with long maturities. In most of the cases the prices of the forward-
start options in the Heston model are higher than in the local volatility
model. The forward-start options in the Barndorff-Nielsen–Shephard
model are typically cheaper than in the local volatility and Heston models.
If we compare different patterns of the implied volatility surfaces, the high-
est model risk is observed for scenarios 9, 12, and 13, i.e., for scenarios with
the highest values of the short-term at-the-money implied volatility. The
lowest model risk is observed for scenarios 4 and 14 to 24. These are the
cases that correspond to standard implied volatility surfaces in the equity
derivatives market. We can conclude from these observations that the
model risk becomes an extremely important issue especially in nonstandard
market situations.

The results of our experiment imply possible practical recommendation
for financial institutions dealing with forward-start and cliquet options.
These institutions should be aware of the model risk, especially in cases of
high short-term implied volatility and options with long maturities or in
cases when an implied volatility surface has some uncommon features that
have not been observed in the past.

Usually a trader has to decide which model he wants to use to hedge his
options book and he cannot switch between models frequently. In this situ-
ation one has to live with the risk that a pricing model is inadequate for
hedging purposes in some market situations. When buying or selling a
product, the prices for the product should be calculated in several models.
If one of the models gives a substantially different price than the model
used by traders and sales the alarm bells should ring and one should think
very carefully about the price where one is willing to make the trade or if
the trade should be made at all.
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NOTES

1. We remark that for equity derivatives the modelling of discrete divi-
dends is crucial especially for options on single stocks. In this article we
neglect this important issue and assume that modelling dividends by a
dividend yield is sufficient which can at least be justified for stock
indexes.

2. An exception is the local volatility model where the local volatility can
be computed analytically from the surface of given European call
options prices.
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ABSTRACT

Model risk can be defined as the loss arising from a misspecified, misap-
plied, or incorrectly implemented model, or resulting from incorrect deci-
sions taken on the basis of model outputs affected by model risk. Model risk
affects all types of models used in financial institutions, whether pricing
models used for official valuations and hedging purposes, market and credit
risk exposure measurement models used to estimate the risks faced by those
institutions and the amount of capital set aside to cover those risks, or mod-
els used to define the strategic directions taken by institutions. All models
are wrong by design because they are simplifications of reality. Model risk
is therefore inherent in the use of models and can never be fully eliminated.
Model risk can only ever be controlled and managed but this first requires a
clear understanding of the origins and evolution of model risk as reflected
in the structure of this chapter. Emphasis is placed on treating model risk
as a multidisciplinary subject with close cooperation between all parties
involved in the development, implementation, and use of models; on the
need for the creation of a new position of “Chief Model Risk Officer”; and
on the need to apply a strict model-product scope.



INTRODUCTION

The widespread reliance on models in the banking and financial services
industry was a little known fact outside of the arcane world of quantitative
modeling, derivative pricing, and structured finance. The credit and bank-
ing crisis of 2007 to 2009 has placed the prevalence and role of models
across banking and finance firmly in the public spotlight. Complex prod-
ucts, the models used for securitization and by credit rating agencies to
assess the relative riskiness of such products, together with the general
underpricing of risk and mark-to-market accounting have all been blamed
for creating and exacerbating this crisis. If it was not beforehand, model
risk is now a key concern for banking supervisors, auditors, and market par-
ticipants alike. However, even before this crisis, the possible consequences
of model risk related events should have been sufficient to make controlling
and minimizing such risks a priority for senior management in financial
institutions. The most obvious outcome of a model risk event, namely
mark-to-market losses from revised lower valuations and those resulting
from incorrect hedging, although having the potential to lead in extreme
cases to earning restatements, are usually the easiest for firms to absorb
and, beyond the pure monetary loss, are likely to have little lasting impact.
It is the indirect results of model risk which can be far more damaging.
Senior management routinely make strategic decisions about the allocation
of capital between their different businesses and trading desks on the basis
of the perceived relative risk and return profiles of the different activities in
which their institution engages. Any errors in the models used to reach
such decisions may have dramatic consequences if the outcome is erroneous
overexposure to a particular business or product. A clear example of this is
the massive build up of subprime securities in certain firms which resulted
from the incorrect low risk assigned to such products by internal models.
Finally, in an era where the branding and image of institutions are all
important, the reputational risk following a publicized model-related loss
can be immeasurable, especially if resulting from a lack of, or breakdown
in, controls, and if followed by regulatory redress.

Given the possible impact of model risk, the lack of publications dealing
with model risk as a whole is somewhat surprising and we can only make ref-
erence here to the excellent articles by Derman (2001) and Rebonato (2002).

THE MARKET STANDARD MODEL

Pricing models are used for the valuation of mark-to-model positions and
to obtain the sensitivities to market risk factors of those trades which are
mark-to-market through exchanges. In general, model risk can be defined
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as the loss which results from a misspecified, misapplied, or incorrectly
implemented model. For pricing models, the implications of market prac-
tices and fair value accounting require us to consider a further definition
model risk. Trading books must be mark-to-market and the valuations pro-
duced by pricing models must be in line with either market prices or else
with those produced by the market standard models once these become vis-
ible to all market participants. Pricing model risk can therefore also be
defined as the risk that the valuations produced by the model will eventually
turn out to be different from those observed in the market (once these
become visible) and the risk that a pricing model is revealed to be different
from the market accepted model standard. This is also the definition of
model risk used in Rebonato (2002). The challenge resides in the fact that
the “true” model for valuing a product will never be known in reality. The
market standard model itself will evolve over time and the process by which
a model becomes accepted as the “standard” is inherently complex and
opaque. The Venn diagram in Figure17.1 illustrates the interaction
between the model being used to value a trade, the “true” model and the
“market standard” model and their associated model risk. This diagram is
static, whereas the realities of model risk would be better reflected through
a diagram in which each component was moving dynamically and in which
all boundaries were blurred.

The market standard model is simply the model which the majority of
market players believe to be the closest to the “true” model. Other partici-
pants may disagree with the choice of market standard model. Regardless,
they must value their positions in line with the appropriate market standard
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model until such a time as the majority of market participants actively
believe that this standard model is wrong. The reason for this is that, to exit
a trading position, participants must either unwind their position with the
existing counterparty, or novate it to a different counterparty, or else enter
into an opposing trade so as to neutralize the market risk exposure of that
position. If all other counterparties believe in a particular market standard
model, then the price at which these counterparties will be willing to trade
will be dictated by that model. In any case, the widespread use of credit
agreements and the posting of collateral between counterparties further
binds all participants into valuing their positions consistently with the mar-
ket standard model. Any significant differences in valuations from the mar-
ket consensus would lead to diff icult discussions with auditors and
regulators. Finally, in the presence of a number of knowledgeable and com-
petitive market players, all dictated by the same market standard model,
trading desks should not be winning or losing all trades. This would be a
clear indication that the model being employed is under- or overpricing 
the trades.

The market standard model does not have to be invariably correct or the
most appropriate for hedging purposes. Trading desks should have the free-
dom to adopt any model for their hedging purposes as long as all official
valuations and risk sensitivities are in line with the market consensus. If a
trading desk believes that the market standard model is wrong and that
prices in the market are too expensive or cheap, then the desk would trade
and risk manage according to their proprietary model with all valuation dif-
ferences with the market model being isolated and withheld until such a
time as the market adopts the new model as the correct standard. The trad-
ing desk can only realize the benefits of their superior model once it
becomes the market standard and until that time, the desk will need to be
able to withstand the losses from valuing their positions at the perceived
incorrect market standard model. Model risk losses are thus realized when
the market becomes visible and model prices are off-market or else through
the implementation of a new model to better reflect the market standard
model. Such adjustments tend to occur in sizeable amounts. On the other
hand, the incorrect hedging resulting from using a wrong model will tend
to result in small but steady losses which will often be both obscured and
minimized by the macro hedging of trading books and the netting of long
and short risk positions.

The market standard model may not always be apparent and price dis-
covery mechanisms may need to be employed to build up a picture of this
model. Participation in market consensus services offers some insights into
where other participants are valuing similar products, although care must
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be taken when interpreting results of such surveys since some contributors
may be deliberately biasing their submissions for their own reasons. Such
services also tend to focus on the vanilla calibrating instruments rather than
the exotic products themselves. Two-way trading of products and sourcing
reliable broker quotes provide important data points as will internal infor-
mation on collateral calls and margin disputes. Working papers and publica-
tions by market participants and academics, together with conferences and
discussions posted on various internet forums, are all components of the
market’s perceptions around specific models and their possible replace-
ments. This should all be complemented by market intelligence from the
trading desks and sales teams.

Liquidity, the existence of observable market prices, and that of an
accepted market standard model are intricately linked. Model risk is directly
related to the observability of market prices with very liquid products hav-
ing very low model risk. It should come as no surprise that model risk will
be at its greatest in illiquid markets and for new, complex products (albeit
mitigated by the high margins available to such products). However, price
observability must always be considered in conjunction with its domain of
applicability; model risk can be significant when models are used to extrap-
olate prices beyond the limits of their domain of observability. Model risk is
prevalent when trading is primarily in one direction and consequently for
trading books whose exposure to a product is predominantly long or short.
In a balanced book, netting of positions would significantly minimize the
impact of using a wrong model on overall valuation and market risk,
although not on counterparty credit risk. Model risk may also result when
the output from one model is used as an input to another model and the
assumptions and limitations of the first model are not known to the devel-
oper of the second model. Prepayment and historical default models are
topical examples given the recent subprime-related losses.

THE EVOLUTION OF MODELS 
AND MODEL RISK

The evolution of models and model risk can be described through three
phases in the life cycle of a product, its valuation models, and their associ-
ated model risk. In phase I, the market for the product is completely new
and illiquid. Indeed, there are not even any liquid hedging instruments.
The models used in this phase will be very simple to allow participants to
enter the market quickly and to benefit from the high margins associated
with such a new product. There is no price consensus in the market. The
lack of liquid hedging instruments results in infrequent recalibration of the
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model used to price the product in this first phase, which in turn leads to
little valuation volatility being observed. One might argue that this phase
exhibits the highest model risk, although this should be mitigated through
appropriate reserving of the available high margins. The market in phase II
has become more established with some price observability but is still illiq-
uid. Margins are tightening and the pricing models are at their most sophis-
ticated in this stage. The market has matured enough to enable the
development and trading of liquid hedging instruments leading to frequent
recalibration of model parameters and thereby to greater volatility in the
valuation of trades. Phase II is characterized by high model risk. Once the
market has become well established and liquid, the product enters the third
phase in its life cycle which is characterized by small margins and full price
observability. The models in this phase act as pure price interpolators and
there is low model risk. Phase III does, however, display the greatest valua-
tion volatility as prices continuously readjust to market information. This
highlights a paradox in the evolution of model risk, namely, that those
products which have the greatest uncertainty in their valuation exhibit the
smallest amount of valuation volatility.

MODEL OBSOLESCENCE

The evolution of models just depicted hints at another source of risk,
namely, model obsolescence. Models should evolve and improve over time.
The concern here is that the market has become more sophisticated and
this does not get reflected in a timely manner in the production pricing
model. This can be linked to the existence of second-order effects and risk
factors which did not need to be taken into account at inception of a new
product but which get priced into the market over time as the market
matures and margins narrow. Obsolete models often reside in model
libraries which, due to changes in personnel or trading desk structures, are
no longer being maintained by research and analytic groups but have
instead become deeply embedded within technology systems and essen-
tially forgotten. Ensuring adequate ownership of such legacy model
libraries and the aged trades being valued on them is a necessary task. The
production of model inventory and usage reports, and the decommission-
ing of obsolete models are key controls to avoid this source of model risk.
The decommissioning of outdated models, in particular, can be a contro-
versial subject since traders, research analysts, and software developers are
usually reluctant to remove existing functionality from the trading and risk
management systems.
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The environment in which a model operates must be frequently moni-
tored to ensure that the market has not evolved without corresponding
changes in the model. Although the regular re-review and reapproval of
models is usually considered best practice by auditors and regulators, this is
not necessarily an optimal use of market participants’ control resources. If a
model has not been materially changed, then there would be little point in
carrying out a full revalidation and re-review of the model as its payoff and
implementation will not have changed; the same set of inputs will still pro-
duce the same set of outputs. In any case, research teams tend to be prolific
in their model development and it is unlikely that the model used to value a
particular product will not change over the lifecycle of a trade. Instead, the
focus should be on the ongoing monitoring of model performance and the
regular reappraisal of the suitability of a model for a particular product
(and calibration set) given changes in market conditions and in the percep-
tion of market participants.

MODEL APPLICABILITY

The use of an obsolete model to value a trade is but one example of model
inapplicability: a situation which arises when the model is internally reason-
able and well implemented, but is being improperly used. Other examples of
model inappropriateness include the booking of trades on the wrong model,
the simplified representation of trades to enable the model to be used 
(i.e., approximate bookings), models being used for an incorrect product
subclass (for example, using a high-yield bond option model to value high-
grade bond options), and the application of existing models developed for a
particular product area to a new and completely different product class 
(for example, applying interest rate models to commodity and energy prod-
ucts). Model inapplicability may also be related to particular implementa-
tion aspects; for example, a model relies on an upper (respectively lower)
bound approximation for its solution and is therefore only applicable in the
valuation of short (respectively long) positions, or the model solution is only
valid for a certain domain of a risk factor and is employed outside of its
range of applicability. Furthermore, the use of a model might only be inap-
propriate under specific market conditions; for example, in high volatility
regimes or for steeply declining volatility surfaces. Finally, a very subtle
example of model inapplicability relates to the possible lack of convergence
of a model. This is often performance related in the case of Monte Carlo
simulation models but can also be trade and market data specific; for exam-
ple, if an asset is near a barrier, then a more densely populated grid is
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required, or if a coupon payment date is nearing, then a greater number of
simulation paths may be required to attain the required level of accuracy.

A STRICT MODEL-PRODUCT SCOPE APPROACH

Enforcing a strict model-product scope when developing, using, and con-
trolling models is crucial to limiting model appropriateness issues. A model
cannot be considered in isolation without any reference to the products
being valued with that model, or the restrictions under which it is applicable
for those products. A model should always be associated with a product
and, furthermore, with a set of calibration targets; and, it is that triplet of
model-product-calibration instruments which is relevant. Indeed, the model
approval process should in reality be product focused: permission is given
to value a well-specified product using a particular model employing a spe-
cific calibration methodology on a precise set of target, vanilla hedging
instruments for that product. This strict product-model-calibration
approach must be enforced because the majority of models developed are in
reality frameworks which can be applied quite generally to a variety of
products using numerous different calibration sets. The temptation with
such flexibility is simply to approve the modeling framework with either no,
or at best, very general, product descriptions. However, the existence of dif-
ferent modeling frameworks within the same trading and risk management
system, each being able and allowed to value the same product using differ-
ent sets of calibration instruments, makes it very difficult to ensure that the
trading desk is not internally arbitraging the models and/or calibration sets.
The only solution is a strict product-based approval which strongly binds
the product to the model and calibration set. Furthermore, being fully
explicit about the product-model-calibration requirements assists the deal
review processes, which aim precisely to ensure that each trade is booked
correctly, and highlights any model inapplicability concerns.

The implementation of a strict model-product-calibration approach is
not without its challenges. This requires the adoption and maintenance of a
granular product classification system by both model developers and trad-
ers, and places constraints on the allowed representation of products in the
trading and risk management systems. These concepts are anathema to
model developers and traders and may necessitate efforts to persuade the
front office that a change of mindset is required. It should be emphasized
that such constraints on the flexibility of trade representation is perfectly
compatible with having a scaleable system architecture since the required
restrictions on the representation of products only need to be applied at the
topmost user booking interfaces where trades would be captured within
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clearly defined and unique product templates. The issue of model appropri-
ateness is then reflected in that of the product template. In overly flexible
systems, the same trade can be correctly represented payoff-wise using sev-
eral different templates or even using the same general template. This pro-
liferation of possible representations leads to a lack of visibility and a non
uniqueness of model use with regards to identical trades from which model
applicability problems can easily arise. The extreme case is the common use
of scripts which allow payoffs to be expressed in terms of characters, sym-
bols, and even computer code and which all form part of the trade booking
itself rather than the system software. Use of such scripts allows the traders
to book almost any product using a multitude of models and calibration sets
and necessitates detailed technical trade reviews simply to ensure that the
payoff has been correctly represented, let alone to ascertain that it is using
the appropriate model and calibration set.

A ROBUST MODEL CONTROL FRAMEWORK

The existence of a robust model control framework is essential to mitigate
model risk. Controlling the deployment and use of models tends to be over-
looked as the less glamorous side of dealing with model risk (compared with
the development of ever more sophisticated models to address current model
limitations), even though lack of model control probably accounts for the
majority of model-related losses across the industry. The cornerstones of a
strong and well-joined up model control framework are as follows:

• Clearly defined responsibilities
• An inclusive model approval process
• Adherence to a strict model-product scope
• Calibration control
• Independent model validation
• Model reserving methodologies
• Model release and change management procedures
• Decommissioning of obsolete models
• Model control committees
• Model inventory reports
• Documentary standards
• Audit oversight

In most firms, the responsibilities for the development, use, and control
of models is segregated across different groups to prevent conflicts of inter-
est and to leverage the expertise of the different functions. Front office

chapter 17 techniques for mitigating model risk 279



research builds and refines models through a continuous feedback process
with the trading desk and information technology (IT) deploys these mod-
els into production. The IT groups must be functionally independent from
the business units to guarantee the integrity of the pricing model code and
executables. Trades on these models will be booked into the systems by
middle office and their valuations will automatically flow downstream to
feed finance ledgers and risk management systems. On the control side,
structured deal review teams carry out an analysis of new trades to ensure
that they have been correctly booked; product control reconcile and explain
the daily profit and loss on all trades; market and credit risk management
measure, monitor and analyze the associated risks; collateral management
liaises with counterparties on the need for any additional margin to be
posted; client valuation teams provide prices to clients; model validation
groups review the pricing models; and valuation control teams independ-
ently verify the prices of all positions. Every one of these teams gains
insights into the performance of the models being used, and, if properly
managed, the existence of such a diverse collection of teams involved with
models can lead to a very strong model control culture in which all facets of
model usage, appropriateness, and control are continuously and seamlessly
monitored, discussed, and resolved as required.

The reality can be far removed from this utopia, often being one of
arrogance and disdain by the front office for the back office; of almost
unquestioning reverence and acquiescence in return; and of a lack of under-
standing and intense rivalries between the different groups on the control
side. This can lead to the creation of opaque silos which may hinder the
dissemination of necessary information between teams, and increases the
likelihood that crucial controls do not get addressed anywhere since each
group will have the ability to unilaterally formulate its own remit without
having to consider the impact on the overall model control environment.

This breakdown in model control culture and processes is in itself a key
source of model risk and can only be mitigated by ensuring that the respon-
sibilities for all parties involved in model development, use, and control are
clearly defined, well-joined up, and known to all parties. The challenge on
the control side is to reconcile the required skills and expectations of the
two main teams involved in managing model risks, namely, the model vali-
dation and valuation control groups, whilst ensuring the existence of direct
oversight over both groups at a realistically manageable level. The model
validation group commonly resides within risk management and the aspira-
tions of a typical model validator would be a position as a front office
research analyst or as a risk manager. The valuation control group is part of
the finance division and a typical career path for a valuation controller
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would lead up through the finance and product control ranks. Recurring
discussions tend to take place about the reporting lines of the model valida-
tion group and, in particular, whether this team should be moved into the
finance division. Given the differing team aspirations, such a move could be
perceived as hindering career choices and might lead to higher staff turn-
over. In addition, there seems no need to merge these two control teams as
long as their responsibilities are clearly articulated and cover all required
elements. However, this can be hindered by political rivalries and the fact
that the ultimate senior management reporting line for these two teams
tend to be the chief risk officer (CRO) and the chief financial officer
(CFO), respectively, resulting in the fact that there is often no common
reporting line below the executive committee. Given the industry focus on
model risk, the time may have come for the creation of a “CMRO” posi-
tion, the chief model risk officer, whose sole responsibility would be model
risk and control. The heads of model validation, valuation control, and any
other control team dealing with model issues would report into the CMRO,
who would be jointly accountable to the CRO and CFO. This should also
be mirrored in the industry with the acceptance of model risk as a separate
risk category, rather than trying to consider it as a subset of market, credit,
or operational risk.

AN INCLUSIVE MODEL APPROVAL PROCESS

Although a crucial component of any framework to control model risk, the
model approval process is often erroneously taken to be the whole frame-
work itself—it is hoped that this chapter has clearly articulated the need for
a much more widely encompassing definition. The recommendation for an
inclusive model approval process engaging all parties involved in model
development, use, and control, and based on product approvals should come
as no surprise given the previous discussions. In many firms, a model is
considered approved once the model validation group, and only this group,
has signed off on the model. Furthermore, the approval may reference a
modeling framework only, or, at best, a very general product description.
Given the number of groups involved in model use, and the issues of model
appropriateness, this is clearly not acceptable anymore. In addition, the
front office needs to take clear ownership for its models, their usage, and
limitations. The front office decides on the choice of model to use for a
particular product but this gets modulated by the control groups during the
approval process.

The model approval process should be treated as a product approval pro-
cess with the product scope of the model placed clearly at the forefront.
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Please note that this is separate from approvals granted by new product
committees which provide firm-wide permissions to start trading entirely
new product classes and consider a much larger set of issues (from infra-
structure to legal, compliance, and reputational aspects). A new product
approval may be contingent on prior model approval but the model
approval process usually deals with products which are already within the
trading mandate of a particular business unit. The model approval process
should also be used to capture changes to existing models or migrations of
positions onto new models. Approval should be requested for a specific
product, to be officially valued and risk managed using a particular model
and referencing a clearly defined set of calibration targets. As part of this
process, clear documentation should be produced by the front office detail-
ing the product (with the payoff made explicit), model theory, numerical
implementation, calibration methodology and targets, method for produc-
ing risk sensitivities, results of tests carried out, model limitations, model
risks, and recommended model reserves to compensate for those limitations
and risks. The approvals should be with regards to the information submit-
ted in this documentation, and every group should be able to propose mod-
ifications to this document. The whole process should furthermore be
embedded within an automated workflow system which stores the docu-
mentation, tracks the status of all approvals, notifies the next group in the
chain of a new approval request, provides reporting capabilities, and allows
for a fully auditable process.

The responsibilities of all approvers need to be made explicit—every
group must be fully and unambiguously aware of the meaning and implica-
tions of their sign-off. Model consistency must be explicitly considered as
part of the approval process; there should only be one model and calibra-
tion set approved at any one time for a particular product and the rationale
for approving another model and/or calibration set for the same product
(without rescinding the existing approval) must be clearly understood and
the domain of applicability of the new approval emphasized. Such situations
should only occur when considering trading in different economies for
which the market behavior is substantially different. But the same product
on the same currency should be valued using the same model and calibra-
tion set. Although this may seem obvious, the reality is that, since models
and approvals are rarely decommissioned, most firms will have a legacy of
models which are all approved to value exactly the same product. Full
approval should also be withheld until the model/product is fully imple-
mented in the production trading and risk management system on its own
product template.

282 Part IV model risk related to valuation models



Modeling frameworks should be submitted through this approval pro-
cess, but with an empty product scope and a clear disclaimer that approval
for the framework does not constitute permission to use that framework for
official valuations for any specific product and that separate product
approvals will be necessary. For practical purposes, having one approval for
the modeling framework (for example, a new stochastic volatility model)
with an empty product scope then enables product approvals to reference
specific sections of this framework documentation, and leads to a more
streamlined documentation and approval process. Since the documentation
detailing the product-model under approval needs to be disseminated to an
audience which is even wider than the approvers, sensitive theoretical and
numerical implementation sections can always be brief as long as they refer-
ence other more detailed documents which can then be access controlled to
the relevant parties.

Model risk is inherent not only in the use of models but also in their
construction. Conceptually, a pricing model can be considered as having
three components, namely, the input data, the model engine, and the output
data. All three model components are possible sources of model risk and
the mitigation of these particular risks is typically addressed through the
independent validation of the model, and we refer the reader to Whitehead
(2010) for details on the necessary concepts to mitigate these risks through
the model validation process.

CODE CONTROL AND REGRESSION TESTING

Change management, model release, and calibration control procedures
ensure the integrity of the pricing codes, and pricing model executables.
Such procedures do not aim to address the appropriateness of the pricing
models and calibration choices themselves, but rather to verify that the
approved models and calibrations are the ones actually used in production,
that any changes to the model code are audited and have only been made by
authorized personnel, and that any proposed changes to the model executa-
bles or calibration sets have to go through a rigorous process prior to
release into production. These procedures are necessary to minimize the
possibility of not only accidental, but especially deliberate, manipulation of
the system to hide losses or inflate gains. Common features of such proce-
dures include the requirements that code must be kept under a source con-
trol database with access levels regularly reviewed, that the rationale 
for code changes must be documented and that the production version of
the model must reside in a secure location. Regression testing between the
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current production version of the model and its proposed replacement pro-
vides not only an assessment of the materiality of the proposed model
changes on prices and risk sensitivities, but also serves as a tool to confirm
that only those advertised changes have in fact been made. This regression
testing must be carried out not only against the current portfolio of trades,
but also against a static portfolio purposely built so that every material por-
tion of code is covered by a regression test. For example, consider the situa-
tion in which the only live barrier positions are of type “up and in call”; a
regression test which only uses the currently traded portfolio would not
capture changes to the code used to price “down and in put” options. The
construction of such a static portfolio of test cases can be onerous given the
numerous features which most products contain. The author’s suggestion
would be to leverage the comprehensive tests carried out by the model vali-
dation group as part of their validation process. Finally, all relevant control
groups must explicitly sign off on the proposed production release to cer-
tify awareness of the impact of the new release and to confirm that this
release does not contravene other model control policies.1

MODEL GOVERNANCE

The governance structure placed around the use of models will be critical
to foster a strong, transparent and consistent model control environment,
and to minimize the impact of model risk-related events. The governance
of model risk must not only provide comfort to senior management that
model-related issues will receive the appropriate focus and escalation, but
must also facilitate the awareness of senior executives to, and their active
involvement in, model related issues. The need for a new position of Chief
Model Risk Officer has already been highlighted to unite the different
model-focused control groups under the same hierarchy and to raise the
profile of model control. Oversight of the model control environment
occurs through the aegis of model control committees which meet typically
monthly and are meant to monitor the model control environment. The
challenge with such committees is to ensure senior management involve-
ment whilst ensuring that the committees remain at a manageable level.
Creation of a CMRO can only strengthen these committees. New product
committees are an integral part of all institutions and participation of the
relevant model control staff in such committees is required to address
model-related issues. Good governance also demands the implementation of
strong documentary standards to facilitate the role of all parties, to create a
corporate record and mitigate key person risk. Such documentary standards
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should not only include detailed policies and procedures for all model con-
trol aspects and the use of model documentation standards, but also the
requirement that all model code be explicitly commented by the developer
at inception. The final point is the need to have full internal audit oversight
of every aspect of model use, approval, and control.

CONCLUSION

The approaches discussed in this chapter to mitigate model risk have con-
centrated on the overall control framework and, as such, apply equally to all
trades. Any additional efforts at mitigating model risk should be focused on
particular trades and given resource constraints, must be aimed at those
trades which are deemed to be exposed to the highest model risk. This
requires the automated calculation of model risk metrics for each trade and
the existence of methodologies for the assessment and measurement of
model risk. In any case, one cannot hope to fully control what is unquantifi-
able. Techniques for measuring model risk can be divided into qualitative
approaches (assigning subjective ratings to models) and quantitative
methodologies which postulate the use of specific model risk loss functions
but implicitly require the production of valuations under a number of dif-
ferent models (please refer to Kerkhof, Melenberg, and Schumacher, 2002
for details of such an approach). Unfortunately, much progress remains to
be made in this area and most firms are not able to quantify model risk on
an automated basis. As a proxy, model inventory reports can be used with
aggregated standard metrics such as present value, notional, and associated
sensitivities. If such measurements were possible, then firms could address
model risk by implementing a reserving methodology based on their model
risk metrics. The difficulties involved in carrying out precisely such an
automated quantification of model risk for traded positions are implicitly
acknowledged by regulators who do not currently require the calculation of
an explicit regulatory capital charge related to model risk. Instead, model
risk is implicitly captured in the setting of the various “multipliers” applied
to the regulatory capital charges for market and credit risk, reflecting an
assessment of the model controls implemented in each firm.
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NOTES

1. For example, if a firm’s policy is to require all model changes to be fully
approved prior to being placed into production, then a proposed pro-
duction release which would lead to unapproved changes being used in
production would have to be rejected.
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ABSTRACT

Value at risk is the leading risk measure in financial markets, despite short-
comings that may discourage the diversification of risk and could provide
incentives to make more risky investments. Coherent risk measures have
been developed that have properties which are theoretically superior and
should reduce model risk arising from the shortcomings in the value-at-risk
measure. This chapter will provide an overview of the most commonly used
coherent risk measures in financial markets as well as in insurance. We will
discuss the properties of these risk measures and also evaluate the quality of
their estimation.

THE PROBLEM WITH VALUE AT RISK

Value at risk (VaR) has become the most commonly used risk measure in
the banking industry since its introduction in the mid–1990s. The attrac-
tion of VaR is that it focuses on potential losses—the main concern of risk
managers and regulators—and its interpretation is easily accessible to non-
specialists. As with all risk measures that have been proposed in the past, it
is not without its flaws. Apart from econometric problems in estimating
VaR and the fact that confidence intervals around the VaR estimate are sub-
stantial in most cases, there are also problems with the properties of VaR;



Krause (2003) provides an overview. To illustrate the first of the main con-
ceptual problems, let us consider the example given in Danielsson et al.
(2005) with the assets having a payoff of Xi

(18.1)

Let us consider the 99 percent VaR of an investment into two units of asset
X1. In this case 0.9 percent of the potential losses are covered by the shock
ηi and the outcome εi can only contribute 0.1 percent of the losses toward
VaR, giving rise to a VaR of 6.2 for those two units of asset X1. Suppose
now that the investor diversifies the portfolio and invests into one unit 
of asset X1 and one unit of asset X2. In this case we can show that 
the VaR of this investment is 9.8. The reason for the larger losses in the
second portfolio is that the losses from the shocks ηi are now above the 
1 percent threshold, while in the first portfolio they were below this 
1% level; thus the substantial increase in VaR; Figure 18.1 illustrates this
problem. We observe then that holding a diversified portfolio does not
necessarily reduce VaR.

This result is driven by the presence of large shocks which are relatively
frequently occurring, in the above example with a probability of 0.9 per-
cent. It can easily be argued that for the vast majority of cases in the finan-
cial industry such large shocks do not occur that frequently, if at all.
However, an example given in Breuer (2006) shows that the VaR of a port-
folio consisting of a short position in out-of-the-money call options and a
short position in out-of-the-money put options can have a VaR that is
larger than the VaR of the individual positions. In general we observe sim-
ilar problems when trading nonlinear asset such as options or other deriva-
tives. Therefore, trading derivatives positions, which obviously is a very
common situation for most financial institutions, may actually result in sit-
uations where the use of VaR discourages diversification of investments.
This is in contrast to the usual perception that diversification reduces risk
and should thus be encouraged.

Another problem with VaR is that it might actually encourage taking
larger risks than a decision maker would choose when using other risk
measures. Consider two probability distributions with the same VaR 
but in the tail of the distribution beyond which one might actually pro-
duce potentially larger losses than one would with the other, i.e., would
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generally be regarded as riskier. With the general relationship between
risk and returns being positive and the two VaRs being identical, an
investor would choose the investment with the higher expected return,
i.e., the more risky project. The reason for this result is that VaR ignores
the size of any losses beyond VaR.

Given these shortcomings of VaR, we will in this chapter discuss a num-
ber of risk measures which have been proposed and are not subject to the
problems mentioned above. By avoiding these problems, we can assure 
that risk is modeled adequately in all situations and thereby reducing the
model risk arising from the risk measure itself. After discussing general
properties risk measures should have in the coming section, we will explore
in more detail the risk measure which is closest to VaR, expected shortfall,
in this chapter’s third section. The fourth section explores the more general
class of distortion risk measures, of which expected shortfall and VaR are
special cases, before we cover lower partial moments in this chapter’s fifth
section. We conclude our discussion in the final section of this chapter.

COHERENT RISK MEASURES

Given the problems with VaR as detailed above, Artzner et al. (1997, 1999)
suggested a number of desirable properties a risk measure should have in
order to be a good risk measure. They called risk measures with such prop-
erties coherent.
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Axioms

The first of these required properties can be deduced by comparing two
investments, X and Y. Suppose that for any scenario the outcome of X never
exceeds the outcome of Y, i.e., X � Y, then X is more risky than Y. A risk
measure ρ(·) has to reflect this property.

Axiom 1 (Monotonicity): If X � Y, then ρ(X) 	 ρ(Y).

Suppose that we have two investments, X and Y, whose outcomes for any
scenario differ only by the fixed amount α, hence Y � X � α. The possible
losses of Y, compared to X, are reduced by α, thus reducing the risk by α.
Hence investing an amount of α into a riskless asset reduces the risk by that
amount.

Axiom 2 (Translation invariance): For any constant α, ρ(X � α) � ρ(X) � α.

From setting α � ρ(X), we see that ρ(X � ρ(X)) � 0, thus justifying the
need for a capital requirement of ρ(X) to cover the risks associated with an
investment X. It is reasonable to propose that the size of a position has no
influence on the characteristics of the risks associated with it, all possible
outcomes are transformed proportionally with the position size and so is
the risk. This inference obviously neglects potential losses arising from the
imperfect liquidity of markets.

Axiom 3 (Scale invariance): For all λ 	 0, ρ(λX) � λρ(X).

When comparing the risk of a combination of two investments X and Y, 
X � Y, with the individual risks of each investment, it should be that no addi-
tional risks arise from this combination. The reasoning behind this require-
ment is the usual argument that diversification reduces the risks involved.

Axiom 4 (Sub-additivity): ρ(X � Y ) � ρ(X) � ρ(Y).

A risk measure fulfilling these four axioms is called a coherent risk measure.
Such coherent risk measures exhibit properties that should ensure that
choices which are commonly regarded as more risky, receive a higher value
of the risk measure.

It was furthermore shown in Acerbi (2004) that any convex combi-
nation of coherent risk measures is again a coherent risk measure, i.e., 
ρ(X) � Σ

i
λiρi(X) with Σ

i
λi � 1 and λi 	 0 is coherent if all ρi (X) are coherent.

Coherence of Common Risk Measures

We have shown with the example above that VaR is not sub-additive; hence
it is not a coherent risk measure. It can in fact be shown that VaR is fulfilling
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all the other axioms of coherence, but it is the lack of sub-additivity that fails
to ensure the proper assessment of risks.

The other risk measure commonly used in finance is the standard devia-
tion of returns. As we know that var[X � α] � var[X], it is obvious that the
standard deviation is not translation invariant and therefore not a coherent
risk measure. The same can easily be shown for the covariance of returns
with the market and therefore the commonly used β that measures the sys-
tematic risk. The problem with these risk measures is two assets with the
same standard deviation or β but very different means are supposed to have
the same risk.

Given that the most commonly used risk measures VaR, standard
deviation and β are not coherent and thus do not ensure a proper risk
assessment, we will in the coming sections of this chapter explore a range
of coherent risk measures that have been proposed.

Limitations of Coherent Risk Measures

Although coherent risk measures are mostly consistent with the preferences
of their users, the coherence axioms have been subject to criticism, see, e.g.,
Krause (2002). The main focus of this critique has been the requirement of
axiom 4, sub-additivity. The argumentation has been that in the presence of
catastrophic risks, this sub-additivity is not necessarily fulf illed; see
Rootzen and Klüppelberg (1999) and Danielsson (2002).

The essence of the argument is that with catastrophic losses causing the
failure of companies, regulators have to include systemic risks in their
assessment. Systemic risks arise when not all losses can be covered by the
company, thus causing creditors to bear parts of these losses, which in turn
may force them into bankruptcy. Companies treat systemic risks as exter-
nalities which are not further considered.

When a large number of catastrophic risks are covered by small inde-
pendent companies, losses to creditors are also relatively small and hence
systemic risks negligible, provided the risks are sufficiently independent of
each other. On the other hand, if a single company faces a large number of
these risks, each of which may cause the company to fail, the losses to cred-
itors are much larger given the increased size of the company. Therefore
the systemic risk is increased, despite the diversification of the company
into several (catastrophic) risks, an obvious violation of sub-additivity. The
above example shows the importance of an appropriate perspective on risks.
Companies exclude systemic risks in their considerations, concentrating
only on the risks faced by their organization. Therefore the single company
above took on additional risks; while from a regulator’s point of view, this
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was merely a reallocation of risks between organizations which obviously
affected the systemic risk. There are, however, no additional risks taken as
required for the applicability of sub-additivity. Hence with a proper view of
risk, sub-additivity has not been violated.

Although coherent risk measures provide a framework to choose appro-
priate risk measures based on theoretical considerations, it has to be
ensured that the definition of risk suits the perspective of its user. Once this
definition has been made appropriately, coherent risk measures can provide
a risk assessment in accordance with preferences.

EXPECTED SHORTFALL

One of the advantages of value at risk is that the concept is easily under-
stood and the value itself has an instant meaning. When introducing a
coherent risk measure, it would be beneficial if such properties could be
retained as much as possible. Based on VaR, a similar measure, called
expected shortfall, has been developed, which is a coherent risk measure.
Although expected shortfall is a special case of the distortion risk measures
we will discuss in the coming section, its role as one of the most prominent
coherent risk measures in finance deserves a more detailed treatment.

Definition and Properties

Value at risk is commonly defined implicitly as the c-quantile of the distri-
bution of possible outcomes X

(18.2)

A more formal definition of VaR would be

(18.3)

Based on VaR we can now define a new risk measure which does take into
account the size of potential losses beyond the VaR

(18.4)

This measure, known as expected shortfall or tail conditional expectation for
continuous outcome distributions, measures the expected losses, given that
VaR has been exceeded. Using the expected shortfall overcomes one of the
problems VaR faces, namely, that the size of losses beyond its value is not
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considered. It has furthermore been shown in Acerbi and Tasche (2002a,
2002b) that expected shortfall is actually a coherent risk measure, thus also
dealing with the lack of sub-additivity of VaR.

Despite being a coherent risk measure, and thus superior to VaR,
expected shortfall still retains much of the intuitive meaning that made VaR
so popular. While VaR is commonly interpreted as the amount that can
reasonably be lost, where “reasonable” is determined via the confidence
level c, we can interpret expected shortfall as the average amount that is lost
once VaR is exceeded. Thus expected shortfall represents the average loss if
the losses are exceptionally high.

Tail Risk

One important aspect, apart from measuring risk appropriately, is whether
the risk measure orders different risks in accordance with the preferences of
individuals. In accordance with Yamai and Yoshiba (2002b, 2002c) we can
define a tail risk as the possibility of choosing the wrong alternative due to
the risk measure underestimating the risk from fat tails.

In order to evaluate the choices we can use the concept of stochastic dom-
inance. We can recursively define nth–order stochastic dominance, by setting
F1

X
(z) � FX (z) and

One of the key results from utility theory is that if X dominates Y by
nth–order stochastic dominance, and for all k � 1, …, n we have (�1)kU(k)(x) �
0, then E[U(X )] 	 E[U(Y )], i.e., the choice is fully compatible with the
preferences of individuals; see Ingersoll (1987, pp. 138–139). A risk is called
consistent with nth–order stochastic dominance if X 	n Y ⇔ ρ(X ) � ρ(Y ).
We can now more formally introduce the notion of tail risk. Suppose ρ(X )
� ρ(Y ) and � z � Z for some threshold Z we find that F n

X
(z) � F n

Y
(z). In

this case we say that the risk measure ρ(·) is free of nth–order tail risk; thus
a risk measure without nth–order tail risk is consistent with nth–order sto-
chastic dominance.

It has been shown in Yamai and Yoshiba (2002b) that VaR is in general only
consistent with first order stochastic dominance, thus it cannot be ensured that
VaR ranks choices according to their downside risk. In contrast to this,
expected shortfall is consistent with second-order stochastic dominance and
thereby always ordering choices by their downside risk. While using expected
shortfall will not ensure making choices always in accordance with prefer-
ences, it will provide the correct choice in a much wider range of situations.
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Under certain restrictions, however, VaR will also be a consistent risk
measure under second-order stochastic dominance. If the underlying 
distribution of two choices is from the same class of elliptical distributions
and the distributions have the same mean, VaR will be consistent with 
second-order stochastic dominance. While such distributions might be
appropriate for a wide range of financial assets and the means will in most
cases not differ substantially to make a meaningful difference to the out-
come, they are often not adequate for the use of derivatives as well as the
presence of rare but extreme events similar to that used in the introduc-
tory example above.

It is thus not only that expected shortfall is superior in terms of being a
coherent risk measure, it is also superior in that it allows decision making in
accordance with preferences. It is, however, not the only risk measure
which fulfills these conditions (as we will see in the following two sections)
but generally regarded to be the most accessible and intuitively understood
risk measure for financial markets.

Estimating Expected Shortfall

When estimating expected shortfall, we are interested in observations at
the lower tail of the distribution, i.e., extreme values. It is therefore natural
to use extreme value theory as a way to estimate expected shortfall.
Extreme value theory suggests that beyond a threshold u, the distribution
of outcomes follows a Generalized Pareto Distribution as u → ∞:

(18.5)

here β is the shape parameter, taking a similar role to the standard deviation
for a normal distribution, and ξ determines the tail of the distribution; 
a value of ξ � 0 denotes fat tails.

If we define a threshold u beyond which we estimate the Generalized
Pareto Distribution, Yamai and Yoshiba (2002c) derived that

(18.6)
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where Nu denotes the number of observations exceeding the threshold u and
N being the sample size. The expected shortfall can then be estimated as

(18.7)

The standard error of the estimation of expected shortfall is generally
slightly larger than the standard error of the VaR estimate. From Kendall
(1994) we can derive that for the VaR estimate we get as the standard error

(18.8)

where qc denotes the c-quantile and f(�) the density function. For the
expected shortfall we need to define a quantile d � c and then Yamai and
Yoshiba (2002a) obtain for sufficiently large sample sizes N

(18.9)

Comparing the standard errors of VaR and expected shortfall, relative to
their respective mean estimate for a student-t distribution of outcomes, we
find that the relative standard errors of the expected shortfall are slightly
below that of VaR, due to the expected shortfall having a larger mean esti-
mate. As Yamai and Yoshiba (2002a) pointed out, the above standard errors
are only correct for large sample sizes; for sample sizes that we consider
here, they are shown to be slightly larger. Overall we can deduct that
expected shortfall and VaR have comparable estimation errors, which for
small quantiles can be quite substantial.

DISTORTION RISK MEASURES

Expected shortfall as well as VaR are only special cases of a wider class of risk
measures, distortion risk measures, that we will introduce in this section.
General properties of these risk measures to ensure that they are coherent as
well as consistent with second-order stochastic dominance are also considered.
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Definition and Use

A distortion risk measure, introduced by Wang (1996), adjusts the distribu-
tion function such that large losses receive a higher weight than their actual
probability in the risk analysis. Define a distortion function g: [0,1] → [0,1]
which is nondecreasing with g(0) � 0 and g(1) � 1 and with F denoting the
distribution function we set S � 1 � F as the decumulative distribution
function. We can define

(18.10)

as a risk measure of a risky variable X, where we only consider losses for
simplicity.1

If we use different distortion functions we will obtain a wide range of risk
measures, VaR and expected shortfall included; see Wirch and Hardy (1999).

Other risk measures can be constructed using different distortion func-
tions; Table 18.1 provides an overview of the most commonly used distor-
tion risk measures. We find that VaR as well as expected shortfall only use
information on the distribution up to the c-quantile. Other distortion
functions, however, use the entire distribution and thus use information
also on the size of “reasonable”losses to make an optimal choice; for those
risk measures that use information on the entire distribution we find that
� t � 1: g(t) � 1.

Distortion risk measures can be estimated easily by using a discrete
approximation of the integral in Equation (18.10) through estimating a
range of quantiles and then applying the distortion function. The standard
error of such an estimation can in general only be determined by using
Monte Carlo simulations, although some attempts to find analytical solu-
tions have been made; see Gourieroux and Liu (2006).

It would be important to establish which of the distortion risk measures
fulfills the required properties, coherence, and consistency with at least sec-
ond-order stochastic dominance.

Concave Distortion Functions

Wirch and Hardy (1999) have shown that concave distortion functions gen-
erate coherent risk measures, i.e., for any 0 � λ � 1 we find g(λx � (1 �
λ)y) 	 λg(x) � (1 � λ)g(y). The concavity of the distortion function is a
necessary and sufficient condition for the risk measure to be coherent.

It is obvious that the distortion function for VaR is not concave and there-
fore confirms that VaR is not a coherent risk measure. On the other hand, the
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distortion function of expected shortfall is concave, thus expected shortfall is
a coherent risk measure as outlined above. From Table 18.1 we see that a
wide range of other distortion risk measures also give rise to coherent risk
measures; hence, expected shortfall is only one of many candidates with the
desired properties to choose from. The attractiveness of expected shortfall in
finance is its simplicity in interpreting the results obtained by nonspecialists
while the other risk measures are mostly used in actuarial sciences to deter-
mine insurance premia. These risk measures are much less intuitively under-
stood and for that reason not widely used outside their original remit.

Risk measures which have a distortion function that is strictly concave,
i.e., for any 0 � λ � 1 we find g(λx � (1 � λ)y) � λg(x) � (1 � λ)g (y), can be
shown to preserve second-order stochastic dominance strongly. If the distor-
tion function is not strictly concave, the risk measure preserves second-order
stochastic dominance only weakly, thus we may find X 	2 Y ⇒ ρ(X ) � ρ(Y ).
Clearly expected shortfall preserves second order stochastic dominance only
weakly, as do the other coherent distortion risk measures presented in Table
18.1. If the restrictions on the distortion functions are tightened such that
they become strict inequalities, second-order stochastic dominance is pre-
served strongly, except for VaR and expected shortfall. There has been some
recent progress in Bellini and Caperdoni (2007) to establish consistency with
higher order stochastic dominance, in particular third-order stochastic 
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Table 18.1 Overview of Distortion Risk Measures

Risk Measure Distortion Function Restrictions for
Coherent Risk Measures

Beta-distortion

a � 1, b 	 1

Proportional hazard g(t) � ta a � 1
transform

Dual power function g(t) � 1 � (1 � t)a a 	 1

Gini principle g(t) � (1 � a)t � at2 0 � a � 1

Wang transform g(t) � Φ(Φ�1(t) � Φ�1(c))

Lookback g(t) �ta(1 � a ln t) 0 � a � 1

Expected shortfall

Value at risk



dominance. The results so far are however limited and it is not clear whether
apart from the expected value, i.e., g(t) � t any other distortion functions do
exist that are consistent with third-order stochastic dominance.

We thus find distortion risk measures to exhibit desirable properties that
can easily be verified: strictly concave distortion functions generate coher-
ent risk measures that preserve second-order stochastic dominance strongly.
Despite these desirable properties, Darkiewicz et al. (2003) show that con-
cave distortion functions in general do not preserve the correlation order,
potentially causing problems for portfolios of assets. However, they point
out that for most distortion functions this has no real practical relevance
and therefore distortion risk measures can be used for portfolios.

LOWER PARTIAL MOMENTS

One problem when using expected shortfall as well as a range of other
coherent distortion risk measures is that they in general are only consistent
with second-order stochastic dominance. We can use lower partial moments
to address this problem. Define

(18.11)

as the nth lower partial moment of the distribution of outcomes X with some
benchmark K. It can be shown that using the nth lower partial moment
ensures choices are made in accordance with (n � 1)th–order stochastic domi-
nance. However, the nth lower partial moment is not a coherent risk measure,
thus missing one of the important characteristics of a good risk measure.

It has, however, been shown in Fischer (2001) that convex sums of lower
partial moments are coherent risk measures. Define a risk measure as

(18.12)

where Σ
�∞

i�1
ai � a∞ � 1, which is a coherent risk measure. Please note that it is

not necessary to consider all lower partial moments of the distribution as we
can set a large number of coefficients equal to zero and use a weighted aver-
age of a small number of lower partial moments, usually restricted to first and
second lower partial moments, sometimes also the third or fourth moment, as
well as σ , which is the measure for the maximum loss. Although such risk
measures are coherent, it is not ensured that they are also consistent with sto-
chastic dominance, an issue that merits further research.
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CONCLUSION

Value at risk has become the most popular risk measure, not least because
of the regulatory framework set in Basel II, besides the intuitive meaning it
has to nonspecialists. Over time it has been shown, however, that its prop-
erties are not always desirable and that it can be manipulated, particularly
when using derivatives, to show a lower risk of a position than it actually
has. Furthermore, it does not necessarily encourage diversification of risks
and is in general not compatible with the preferences of individuals. These
problems arose as the result of VaR not being coherent and not being con-
sistent with second-order stochastic dominance.

An alternative which is coherent and weakly preserves second-order sto-
chastic dominance was found to be expected shortfall, the average loss once
VaR has been exceeded. Expected shortfall has the advantage of being
nearly as easily accessible as VaR while overcoming most of its theoretical
shortcomings and at the same time its estimation errors are approximately
equivalent. Expected shortfall is however only a special case of the much
larger class of coherent distortion and risk measures. These wider classes of
risk measures have the advantage of using information on the entire distri-
but ion of outcomes rather than only informat ion up to the 
c-quantile as expected shortfall does.

A drawback of distortion and spectral risk measures is that they are not
easily understood and interpreted, unlike expected shortfall. While these
risk measures are widely used in actuarial sciences, they are nearly
unknown in the wider financial world and by investors. These risk measures
have additionally been developed to suit the specific needs of users in the
insurance industry and so not surprisingly do not appeal to the needs of
investors in financial markets. As the class of distortion and spectral risk
measures is potentially very large, it leaves the prospect open for newly
developed risk measures that are able to address the needs of investors.

Investors who are more inclined to use moments of their distribution of
outcomes to assess the risk of a position can use a weighted average of lower
partial moments as an alternative coherent risk measure, only requiring
small adjustments to the moments commonly used in finance.
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NOTES

1. A related class of risk measures are spectral risk measures; see Acerbi (2002,
2004) and Dowd and Cotter (2007). These risk measures are defined as

, where qp denotes the p-quantile and we require that

. The different spectral risk measures differ only in their risk

spectrum ϕ. Gzyl and Mayoral (2006) have shown that spectral and dis-
tortion risk measures are identical if g' � ϕ.
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ABSTRACT

This chapter recalls the main tools useful to compute value at risk (VaR)
associated with an m-dimensional portfolio. The limitations of the use of
these tools are explained when nonstationarities are observed in time series.
Indeed, specific behaviors observed by financial assets, such as volatility,
jumps, explosions, and pseudo-seasonalities, provoke nonstationarities
which affect the distribution function of the portfolio. Thus, a new way for
computing VaR is proposed which allows the potential noninvariance of the
m-dimensional portfolio distribution function to be avoided.

INTRODUCTION

Value at risk (VaR) is now a major task of much financial analysis involved
in risk management. It has become the standard market measure for portfo-
lios holding various assets. Value at Risk is defined as the potential loss
which is encountered in a specified period, for a given level of probability.
Hence, VaR is essentially measured by quantiles.

The main objective of the 1988 Basel Accord was to develop a risk-based
capital framework that strengthens and stabilizes the banking system. In



1993, the group of 30 set out the following requirements: “Market risk is
best measured as ‘Value at Risk’ using probability analysis based upon a
common confidence interval and time horizon” (Gamrowski and Rachev,
1996). In 1996, following this recommendation, the Basel Committee
decided to take into account the importance of market risks. The way to
define capital requirements thus changed in order to be sufficiently sensitive
to the risk profile of each institution. Until now, capital requirements are
increasingly based on risk-sensitive measures, which are directly based on
VaR for market risk. VaR is a common language to compare the risks of the
different markets and can be translated directly into a regulatory capital
requirement (Basel Committee, 1996). This measure has also permitted the
financial institutions to develop their own internal model. On the other
hand, this measure is based on some unrealistic assumptions that are speci-
fied later, and the expected shortfall (ES) measure appears preferable
(Artzner et al., 1997).

As VaR measures appear mainly as quantiles, the different ways to com-
pute them are specified in univariate and multivariate settings. To do so,
financial data sets are used which are characterized by structural behaviors
such as the volatility, jumps, explosions, and seasonality that provoke non-
stationarity. The question is how to model these features through the dis-
tribution function to obtain a robust VaR. New strategies have to be
defined and some of them are proposed.

RISK MEASURES

Definition

Traditionally, the risk from an unexpected change in market prices (i.e., the
market risk) was based on the mean of the deviation from the mean of the
return distribution: the variance. In the case of a combination of assets, risk
is computed via the covariance between the pairs of investments. Using this
methodology makes it possible to describe the behavior of the returns by
the first two moments of the distributions and by the linear correlation
coefficient ρ(X, Y) between each pair of returns. This latter measure, which
is a measure of dispersion, can be adopted as a measure of risk only if the
relevant distribution is symmetrical (and elliptical). On the other hand, the
correlation coefficient measures only the codependence between the linear
components of two returns X and Y. This very intuitive method is the basis
of the Markowitz (1959) portfolio theory, in which the returns on all assets,
as well as their dependence structure are assumed to be Gaussian. This
approach becomes incorrect as a measure of the dependence between
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returns, as soon as the cumulative distribution of returns is totally asym-
metric, leptokurtic, and contains extreme values.

So far, since the 1996 Basel amendment, the official measure of market
risk is the value at risk which is specified below.

Definition 19.1: For a given horizon and a probability level α, 0 � α � 1,
VaRα is the maximum loss that may be recorded in a specified period, with a
level of confidence of 1 � α. If X is a random return with distribution func-
tion FX, then

(19.1)

Thus, losses lower than Varα occur with probability α.
It is now well known that the VaR number can provide an inadequate rep-

resentation of risk because some assumptions are often unrealistic. The main
problem is its incoherent property. Indeed, the VaR measure does not verify
the subadditivity property, meaning that the VaR of the sum of two posi-
tions X and Y is not less or equal to the sum of the VaR of the individual
positions. This situation arises with nonlinear financial instruments such as
options. Alternatively, VaR can also indicate what the worst loss incurred in
(1 � α)% of time is, but it says nothing about the loss on the remaining α%.
This means that during periods of turmoil, the VaR measure is unable to
provide information about the largest losses. This could lead a risk manager
to select the worst portfolio, thinking it to be the least risky. Finally, exis-
tence of nonstationarities inside most financial data sets makes the computa-
tion of VaR often very irrelevant. Another measure of market risk is the ES
(also called conditional value at risk). This coherent measure represents the
expectation of a loss, given that a threshold is exceeded, for instance VaRα,
and for a probability level α is equal to: ESα � E[X|X � VaRα].

In that latter case, the ES measure is a lower bound of the VaRα intro-
duced in this section.

This chapter discusses the different problems encountered in computing
a robust VaR from sample data sets, given nonstationarity. All these discus-
sions can be extended without difficulty to the ES risk measure.

The Basel amendment has imposed several rules, the most important
being the daily calculation of a capital charge to cover the market risk of a
portfolio. This calculus is linked to the estimated VaR and has led the
financial institutions to develop their internal models. The rule needs 
to develop methods to estimate the distribution function FX every day in
order to compute Equation (19.1). Now, assuming the invariance of the dis-
tribution for any asset during the whole period under study is not always
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reasonable, since the basic properties of financial assets are not the same in
stable periods and during crisis. Guégan (2008) provided a recent discus-
sion of this problem, so that specific strategies need to be developed in 
the context discussed below. The next section specifies the tools used to
compute VaR.

Tools to Compute VaR

Assuming a portfolio is composed of a unique asset, its distribution func-
tion can be estimated analytically, using tests (Kolmogorov test, x 2 test),
graphical methods (Q-Q plot, etc.) or using a nonparametrical kernel
method. When the portfolios are composed of more than one asset, the
joint distribution of all assets making up the portfolio needs to be com-
posed as well. In case of independent assets, this last distribution is the
product of the assets’ distribution. When the assets exhibit dependence
between each other, the best way to compute the distribution function of
the portfolio is to use the notion of copula, if the aim is to obtain an ana-
lytical form of the distribution; if not, nonparametric techniques like the
kernel method can be used, which are not studied here. A copula may be
defined as follows.

Definition of a Copula

Consider a general random vector X � (X1, …, Xm) which may represent
m components of a portfolio measured at the same time. It is assumed
that X has an m-dimensional joint distribution function F (x1,…, xm) �

Pr[X1 � x1,…, Xm � xm]. It is further assumed that for all i∈ {1,…, m},
the random variables Xi have continuous margins Fi, such that Fi(x) �

Pr[Xi � x]. Accordingly, it has been shown by Sklar (1959) that:

Definition 19.2: The joint distribution F of a vector X � (X1, …, Xm)
with continuous margins F1, …, Fm can be written as

F(x1,…, xm) � C(F1(x1),…, Fm(xm)), (x1,…, xm) ∈ R m. (19.2)

The unique function C in Equation (19.2) is called the copula associated to
the vector X.

The function C is a multivariate distribution function, generally depend-
ing on a parameter θ, with uniform margins on [0,1] and it provides a natu-
ral link between F and F1,…, Fm. From Equation (19.2), it may be observed
that the univariate margins and the dependence structure can be separated,
and it makes sense to interpret the function C as the dependence structure
of the random vector X.
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Estimation of a Copula

To choose a copula associated to a portfolio, we restrict ourselves to the
bivariate case. Let X � (X1, X2 ) be a random vector with a bivariate distri-
bution function F, continuous univariate marginal distribution functions F1

and F2, and the copula C: F (x1, x2; θ ) � C(F1(x1), F2 (x2); θ ).
Here, the copula is parameterized by the vector θ ∈ Rq, with q ∈ N. X �

{(Xi1, Xi2 ), i � 1, 2, …,n} denotes a sample of n observations and the proce-
dure to determine the copula is the following:

1. The marginal distribution functions Fj, j � 1,2 are estimated by the
rescaled empirical distribution functions:

(19.3)

2. The parameter θ of the copula C is estimated by a maximum log-
likelihood method. It is assumed, in this case that the density c of the
copula exists, and then θ̂ maximizes the following expression:

(19.4)

where F̂nj, j � 1,2 is introduced in Equation (19.3) and: c (u1, u2; θ ) �

. The estimator θ̂ is known to be

consistent and asymptotically normally distributed under regular
conditions.

3. In order to apply the maximum likelihood method to estimate θ, we
need to work with independent, identically random variables. Xij is
known for i � 1,2,…, n and j � 1,2 to be not independent time
series, so that each time series can start being filtered using an
adequate filter (ARMA processes, related GARCH processes, long
memory models, Markov switching models, etc.). Then, the previous
step is applied to obtain the copula Cθ on the residuals (εi1, εi2) for 
i � 1,2,…, n, associated with each time series. It should be noted 
that the copula which permits the dependence between (X1, X2) and
(ε1, ε2 ) to be measured will be the same.

4. In order to choose the best copula Cθ , several criteria can be used:
a. The D2 criteria. the D2 distance is associated to the vector 

(X1, X2): . Then, the copula

Cθ̂ for which the smallest D2
C is obtained will be chosen as the best
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copula. Here F̂(x1, x2) is the empirical joint distribution function
associated to the vector (X1, X2).

b. AIC criteria. When the parameter of the copula by maximizing
the log-likelihood Equation (19.4) is obtained, the maximization
provides a value of the AIC criteria. This value can be used to
discriminate between different copulas. The copula for which this
criterion is minimum, is retained.

c. Graphical criteria. From the definition of a copula C, it is known
that if U and V are two uniform random variables then the random 
variables C (V/U) � ∂C—–

∂U
(U, V ) and C (V/U ) � ∂C—–

∂V
(U, V ) are also 

uniformly distributed. This property can be used to estimate the
adjustment between the empirical joint distribution and the
different copulas, by way of the classical Q-Q plot method. For
this, it is necessary to calculate the partial derivatives of the 
various copulas considered. In the case of Archimedean copulas
(see below), only Cθ (U/V ) are investigated, since they are
symmetrical.

Classes of Copulas

The previous methods can be adjusted on many copulas. Two classes of
copulas are mainly used: elliptical copulas and Archimedean copulas.

1. Elliptical copulas. The most commonly used elliptical distributions to
model financial assets are the Gaussian and student-t distributions.
Their expressions are:

and where Φ�1 (u) is the inverted Gaussian probability distribution
function and t�1

v is the inverted student-t probability distribution
function with degrees of freedom. These copulas are both
symmetrical but they have different tail dependence behavior.

2. Archimedean copulas. A second class of copulas which is very attractive
concerns the Archimedean copulas. To define these copulas, the
following class of functions is introduced: Φθ � {ϕθ: [0,1] → [0, ∞],
ϕθ (1) � 0, ϕ′θ (t) � 0, ϕ″θ (t) � 0,θ ∈ [�1, 1]}. Classical functions for ϕθ

∈ Φθ are:, ϕθ (t) � �logt, ϕθ (t) � (1 � t)θ, ϕθ (t) � t�θ �1 with θ � 1.
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It is then easy to show that for all convex functions ϕθ ∈ Φθ, a function
Cθ exists such that

(19.5)

and Cθ (u, v) � 0 otherwise. The function Cθ (u, v) is a symmetric
two-dimensional distribution function whose margins are uniform in
the interval[0,1]. This is called the Archimedean copula generated by
Φθ. Amongst the Archimedean distributions, several laws exist: for
instance, the Frank law, the Cook and Johnson law, the Gumbel law,
the Ali-Mikhail-Haq law ( Joe, 1997). The Archimedean property
means that it is possible to construct a copula by way of a generator
Φθ and that a formula exists which permits Kendall’s tau to be
computed from this operator, say:

(19.6)

M-Variate Archimedean Copulas

It is not easy to work in a multivariate setting using copula. Nevertheless a
bivariate family of Archimedean copulas can be extended naturally enough
to an m-variate family of Archimedean copulas, m � 2, under some con-
straints ( Joe, 1997). First of all, to get this extension, all the bivariate mar-
ginal copulas which make up the multivariate copulas have to belong to the
given bivariate family. Second, all multivariate marginal copulas up 3 to m
� 1 may have the same multivariate form. This situation may be illustrated
for a trivariate copula. It is assumed three markets denoted (X1, X2, X3) may
be observed, and for each there is an n sample. It is assumed that each
bivariate margin is characterized by a dependence parameter θi, j, (i 
 j ∈
{1,2,3}). If θ2 � θ1 with θ1,2 � θ2, and θ1,3 � θ2,3 � θ1, then a trivariate
Archimedean copula has the following form:

Empirically, for two random variables X1 and X2, θ (X1, X2) denotes the
dependence parameter deduced from Kendall’s tau, denoted by τ (X1, X2),
by means of Equation (19.6). For a random vector X � (X1, X2 X3) with
joint distribution F and continuous marginal distribution functions, F1, F2,
F3, Equation (19.2) becomes for all (x1, x2, x3) ∈ R3: F(x1, x2, x3 ) � Cθ1θ 2

(F1(x1), F2(x2), F3(x3)) � Cθ1 (Cθ 2 (F1(x1), F2(x2)), F3(x3)), if θ1 � θ2 with 
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θ1 �θ (X1, X2) �θ (X2, X3) and θ �θ (X1, X2). When the copulas are
retained, in order to choose the trivariate copula Cθ̂1θˆ2 that best models the
empirical joint distribution F̂ of the series (X1, X2, X3), an extension of the
numerical criterion D2

c can be derived: D3
C � ∑

x1,x2,x3
|Cθ̂1(Cθ̂2(F̂1(x1), F̂2(x2),

F̂3(x3))�F̂ (x1, x2, x3)|2

Then, the copula Cθ̂1θ̂2 which yields the lowest D3
C value, is retained as the

best copula.

Copula’s Tail Behavior

The copulas are also characterized by their tail behavior, through their
upper tail and lower tail coefficients. These coefficients are important for
the computation of the VaR measure. Indeed, if we retain a copula whose
lower tail behavior is null although there are co-movements inside the mar-
kets following negative shocks for instance, then the computation of the
VaR will be biased. The tail dependence concept indicates the amount of
dependence in the upper-right quadrant tail or in the lower-left quadrant
tail of a bivariate distribution. The upper and lower tail dependence param-
eters of a random vector (X1, X2) with copula C can be defined as:

Definition 19.3: If a bivariate copula C is such that limu↑1
–C(u,u)/(1�u) �λU

exists with –C(u, u) �1�2u � C(u, u), then the copula C has an upper tail
dependence if λU ∈ (0, 1], and no upper tail dependence if λU � 0. Moreover
if a bivariate copula C is such that: limu↓0

C(u,u)/u �λL exists, it may be said
that the copula C has lower tail dependence if λL ∈ (0, 1], and no lower tail
dependence if λL � 0. These tail coefficients can be computed in different
ways with respect to the classes of copulas considered here.

1. Student-t copula. For this copula, the lower and upper tail dependence 

coefficients are equal to where 

–τv�1(x) � 1 � tv�1(x), tv�1(x), is the student distribution function with
v � 1 degrees of freedom, and ρ the linear correlation coefficient.
Thus, λU is an increasing function of ρ. We can also observe that when
v tends to infinity, λU tends to 0.

2. Archimedean copulas. If the generator function is such that ϕ′ (0) is
finite, the copula Cθ does not have upper tail dependence. If Cθ has
upper tail dependence, then ϕ′(0) � �∞, the upper tail dependence
parameter is λU � 2 � 2 limt↓0

ϕθ
�1′(2t)/ϕθ

�1′(t), and the lower tail
dependence parameter is λL � 2limt→∞ (ϕθ

�1′(2t)/ϕθ
�1′(t)). If ϕ�1′ is known,

λ λ τ
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then the tail dependence of any Archimedean copula can be
estimated.

3. Survival copulas. λU, λL of a survival copula can also be derived 
from its associated copula (the survival copula of C is given by:
C(S)(u,v) �u � v �1�C (1�u, 1�v)). Thus, λU

C(S)
�λC

L and λL
C(S )�λC

U.
This means that if a copula has an upper tail dependence then the
associated survival copula has a lower tail dependence and vice-versa.
Moreover, a survival copula and its associated copula have the same
Kendall’s tau.

4. Linear combinations of copulas. In order to obtain copulas which have
upper and lower tail dependences without being symmetrical, new
copulas are constructed as convex linear combinations of two
copulas. Hence, for ω ∈ [0, 1] and two Archimedean copulas Cθ1 and
Cθ 2 a new copula C is obtained, which is defined as: C(u, v) �ωCθ 1
(u, v) � (1�ω) Cθ 2 (u, v). The properties of these copulas can be
derived from those of Cθ1 and Cθ 2. Suppose that Cθ1 and Cθ 2 have,
respectively, an upper and a lower tail dependence, then λC

U � ωλC
θ 1U

and λC
L � (1 � ω)λC

θ 2L.

COMPUTATION OF THE VAR

As soon as the distribution function of a portfolio is known, the VaR is
directly computed from this multivariate distribution function or from the
associated copula. The VaR measure corresponds to a quantile of a distri-
bution function associated with a small probability. Several strategies have
therefore been formulated to compute it:

• The quantile can be estimated directly from the multivariate
distribution function using the previous approach.

• The behavior of the distribution function above may be considered 
at a certain threshold to focus on the tail behavior of the joint
distribution function.

VaR as a Quantile of the Whole Distribution Function

Computing the VaR from the whole sample is not simple because of nonsta-
tionarities which exist inside the financial data sets. Indeed, most of the finan-
cial data sets cover a reasonably long time period, so economic factors may
induce some changes in the dependence structure. The basic properties of
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financial products may change in different periods (stable periods and crisis
periods). Therefore, it seems important to detect changes in the dependence
structure in order to adapt all the previous tools inside a nonstationary set-
ting. Different strategies can be considered: one is based on the notion of
dynamic copula, the other one on the notion of meta-distribution.

Dynamic Copulas

Dynamic copulas have recently been studied in risk management by Dias
and Embrechts (2004) investigating the dynamic evolution of copulas’
parameters. A change in a copula’s family may also be examined, Caillault
and Guégan (2005, 2009) and Guégan and Zhang (2008, 2009). Using
dynamics inside a copula permits some time-varying evolutions inside the
data sets to be modeled. Other nonstationary features can be modelled
when a copula’s family is changed, change-point techniques can be used to
find the change times both for the parameters and the distribution func-
tions. These changes can also be detected using moving windows along the
data sets observed. This method makes all types of copula changes observ-
able and makes the change trend clearer. However, how to decide the width
of the moving window and the length of the time interval of movement is
important and influences the accuracy of the result for the copula change.
The following may be carried out:

1. Testing the changes inside the parameters when the copula family
remains static.

2. Testing the changes inside the copulas.
In order to understand clearly copula changes, a series of nested tests
based on the conditional pseudo copula can be used (Fermanian,
2005). The different steps are:
a. A test is first carried out to see whether the copula does indeed

change during a specified time period
b. If the copula seems changeless, the result in the static case

continues to hold
c. Whether the copula’s family changes is then detected
d. If the result of the test shows that the copula’s family may 

not change, then only changes of copula parameters are 
dealt with

e. Otherwise, if the result of the test tells us that the copula family
may change, then the changes of copula family are examined

3. Change-point tests can be used to detect when there is change inside
the parameters. Now, considering that change-point tests have less
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power in case of “small” changes, it may be assumed that the
parameters change according to a time-varying function of
predetermined variables.

4. U-statistics can also be used to detect change point.

Finally, this sequence of steps permits a sequence of copulas to be obtained:
it can be a particular copula with evolutionary parameters and/or sequences
of different copulas. At each step the VaR measure is computed providing a
sequence of VaR measures that evolve over time.

Meta-Distribution

In the previous approach, the complete information set was used in order 
to try to adapt empirically the evolution of the changes that are observed 
all along the trajectory. Sometimes the changes are very important corre-
sponding to specific events and need to be clearly identified. Indeed, 
in finance, structural behaviors such as volatility, jumps, explosions, and
seasonality provoking strong nonstationarity may be observed. Alterna-
tively, aggregation or distortion may also be at the origin of nonstationarity.
Thus, the assumptions of strong or weak stationarity fail definitively.
Indeed, the existence of volatility means that the variance must depend on
time. With seasonality, the covariance depends on time producing evidence
of nonstationarity. Existence of jumps produces several regimes within data
sets. These different regimes can characterize the level of the data or its
volatility. Changes in mean or in variance affect the properties of the distri-
bution function characterizing the underlying process. Thus, this distribu-
tion function cannot be invariant under time shifts and thus a global
stationarity cannot be assumed. Distortion effects correspond to explosions
that cannot be removed from any transformation. This behavior can also be
viewed as a structural effect. Existence of explosions means that some
higher order moments of the distribution function do not exist. Concate-
nated data sets used to produce specific behavior cannot have the same
probability distribution function for the whole period, as soon as there is a
juxtaposition of several data sets. Aggregation of independent or weakly
dependent random variables is a source of specific features. All of these
behaviors may provoke the nonexistence of higher order moments and non-
invariance of the distribution function. Using the dynamic copula concept
does not make it always possible to detect correctly the time at which
changes arise, because the change point method is not always applicable.
Thus, it appears necessary to work in another way, in order to integrate
correctly the nonstationarities in the computation of VaR.
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This research proposes to build homogeneity intervals on which the
underlying distribution function is invariant almost up to the four first
moments extending the works of Starica and Granger (2005), who propose
a test based on the first two order moments of a distribution function. The
principle of the test here is the following. It is assumed that a time series
(Y1,…, Yn) is observed, and a subset (Ym1,…, Ym2), �m1,m2 ∈ N considered,
on which the test is then applied, based on the four first moments. For 
this subset, the test provides a certain value and a confidence interval.
Then, rolling windows are used, and another subset (Ym2�1, …Ym2�P), for
some p ∈ N, is considered, on which the test is again applied. This is
extended in the same way, sequentially. For each interval, the value of the
test is compared with the one obtained with the previous interval, using
confidence intervals. Thus, a sequence of homogeneity intervals is con-
structed, for which invariance is known to exist for the fourth order
moments using the following statistic:

(19.7)

where ĉk is an estimate of ck, the cumulants of order k of the process (Yt)t,
fck,Y denote the spectral density of cumulants of order k, and ICk,Y,n, its esti-
mate using a sample (Y1,…,Yn).

It may be shown, under the null hypothesis that the cumulants of order k
are invariant in the subsamples, that Equation (19.7) converges in distribution 

to where B(.) is the Brownian bridge, for k � 3, 4. The

critical values associated with this test can be computed, and will permit con-
fidence intervals to be built. Then, as soon as these homogeneity intervals
have been identified, an invariant distribution function can be computed for
each interval, and so a sequence of invariant distribution functions can be
defined throughout the sample.

For a portfolio which is composed of m assets, this is calculated for each
asset. Therefore, a copula linking these different assets using the margins
can be estimated for a specific homogeneity interval, for instance on the last
one. But other strategies can also be developed. This approach provides two
kinds of results:

1. Working with only one asset: this method associating this
nonstationary time series with a distribution function obtained
through a copula, permits to link a sequence of invariant distribution
functions detected all along the trajectory. Indeed, as soon as the
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asset (Yt)t is characterized by a sequence of r stationary 
subsamples Y(1),…, Y (r), each characterized by an invariant
distribution function FY(i), i � 1, …, r, the copula linking these
margins permits the distribution function of (Yt)t to be estimated,
and provides an analytical expression of this distribution function
that is called a meta-distribution function (this copula can also be
characterized by sequence of parameters θ evolving over time):
F(Y (1),…,Y (r)) � Cθ (F(Y (1)),…, F (Y(r))), where Y (i)

t is the process
defined in each subsample, i �1, …, r.

2. Working with m assets: if a portfolio which has m assets 
(X1, X2, …, Xm) is considered next, the same procedures as used
before may be used again. This means that for each asset, a sequence
of invariant distribution functions (F (1)

Xi , …, F (r)
Xi ) is defined, for 

i �1, …, m (assuming that r homogeneity intervals are detected for
each asset). Then, in order to obtain a robust value of the VaR
measure associated with this portfolio, the best copula Cθ is
estimated which permits, for instance, the invariant distribution
function associated to each market to be linked to the last
homogeneity interval. This provides the following multivariate
distribution function:

(19.8)

where Ir is the r-th homogeneity interval. For a given α, the VaRα is
computed as the quantile of the expression (19.8) for this α.

The Pot Method

To compute the VaR associated with a portfolio, it is also possible to con-
sider an approach based on the behavior of the tails of the empirical joint
distribution of the assets, using the peak-over-threshold method. This
method computes the associated distribution of excesses over a high
threshold u, for a random variable X whose distribution function is F, as
Fu( y) �P [X �u � y|X � u]

(19.9)

for 0 � y � x� � u, where x� � ∞ is the upper endpoint of F. For a large
class of distribution functions F (including all the common continuous distri-
bution functions), the excess function Fu converges on a generalized Pareto
distribution (GPD), denoted Gξβ , as the threshold u rises. Furthermore, it
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may be assumed that the GPD models can approximate the unknown excess
distribution function Fu. For a certain threshold u and for some ξ and β (to be
estimated):

(19.10)

By setting x �u � y and combining Equations (19.9) and (19.10) the follow-
ing is obtained: F (x) � (1 �F(u))Gξβ (x �u) �F (u), x � u, which permits
an approximation of the tail of the distribution F to be obtained. From an
empirical point of view, the following steps are taken:

1. If dealing with a time series with an unknown underlying distribution
F, an estimate for F(u) may be constructed, using the Nu data exceeding
the fixed threshold u and the parameters ξ and β of the GPD may be
estimated. Then the following estimator for the tail distribution is
obtained

(19.11)

which is only valid for x � u.
2. Next, using the tail estimator from Equation (19.11) with the

estimated values of ξ̂ and  β̂, the tail of the empirical marginal
distribution F̂i may be computed for each market Xi for 
xi � ui, i � 1, 2.

3. In order to find the copula associated with these markets, the
empirical values τ̂ of the Kendall’s tau between the two markets 
Xi, i �1,2 may be computed. This τ̂ is computed in the tails (that are
defined by the points on which the GPD is adjusted). The parameter
θ̂ of the Archimedean copula is computed using the estimation τ̂.

4. Using the empirical distribution F̂i computed on the tails of each
market Xi for xi � ui, i � 1,2, the following relationship may be
obtained for the market (X1, X2):  F̂ (xi, xj) � Cθ̂ (F̂(xi),  F̂ (xj)), xi �

ui, xj � uj, where Cθ̂ denotes a copula.
5. Finally the diagnosis proposed in this chapter’s second section is

employed to retain the best copula.

To use this method, the threshold u needs to be chosen, which can be a
limitation on the method. One way to solve this problem is to use the
approach developed in the third section of this chapter, Guégan and
Ladoucette (2004).
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CONCLUSION

In this chapter, we discussed extensively the influence of the presence of
nonstationarity within data sets in order to compute for VaR. To detect the
existence of local or global stationarity on data sets, a new test based on the
empirical moments more than two is presented. Then, the concept of meta-
distribution is introduced to characterize the joint distribution function of a
nonstationary sample. This approach provides interesting solutions to some
current, open questions. It is likely that more robust values for the VaR
measure may be obtained using this approach, as well as for ES.

Other points still need to be developed to improve the computations of
the risk measures in a nonstationary setting.

• The use of the change point theory has to be developed to get the
exact date at which the homogeneity intervals begin.

• The notion of “extreme” copulas need to be investigated in details, in
order to build robust estimates for VaR and ES measures.

• The knowledge of the computation of VaR measures in an m-
dimensional setting is still open. An approach has been proposed by
Aas et al. (2009) based on cascades method. Nevertheless the choice
of the best copulas inside so many permutations is not clear and the
computation of VaR depends strongly of the choice of these
permutations. Some new proposals have recently been put forward by
Guégan and Maugis (2008), using vines.
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ABSTRACT

Copulas have been recently proposed as a statistical tool to build flexible
multivariate distributions, since they allow for a rich dependence structure
and more flexible marginal distributions that better fit the features of
empirical financial and economic data. Our extensive simulation studies
investigate how misspecification in the marginals may affect the estimation
of the dependence function represented by the copula and the effects of
these biases for value-at-risk and impulse response functions analyses. We
show that the use of normal marginals, when the true data generating pro-
cess is leptokurtic, produces biased estimates of the correlations. This may
results in more aggressive value-at-risk estimates or in smaller confidence
bands when computing impulse response functions.

INTRODUCTION

The need for multivariate models beyond the multivariate normal distribu-
tion has been demonstrated by a wide literature showing evidence against the
normality assumption for economic variables, starting with Mills (1927) and



continuing to the present; see, e.g., Nelsen (2006) and references therein.
Using copulas allows the reconsideration of the assumptions made in the
analysis of jointly dependent random variables: while there are many univari-
ate distributions that can be used, there are much fewer multivariate distribu-
tions and this problem becomes dramatic in very large dimensions; see, e.g.,
Fantazzini (2009, 2010). Furthermore, even though one can use pseudo-
maximum likelihood techniques where the marginal distributions are known,
but the joint is not, Greene (2002) showed that in some cases this will result
in inconsistent estimates. Similar problems may arise when dealing with
quasi-maximum likelihood estimation, too, as recently discussed in details in
Prokhorov and Schmidt (2009), who showed that estimates can be inconsis-
tent when independence has been incorrectly assumed.

Indeed, using copulas allows to factor a joint distribution into the mar-
ginals and the dependence function represented by the copula. The
dependence relationship is modeled by the copula, while position, scaling,
and shape (mean, standard deviation, skewness, and kurtosis) are modeled
by the marginals. Copulas have been used extensively in biology, finance,
and statistics, and we refer the readers to the textbooks by Cherubini,
Luciano, and Vecchiato (2004) and Nelsen (2006) for a detailed discussion
of copulas and their financial applications. Recently, copulas have also been
applied to model operational risks (cf. Chernobai, Rachev, and Fabozzi,
2007; Fantazzini, Dalla Valle, and Giudici, 2008).

The first contribution of this chapter is a Monte Carlo study of the finite
sample properties of the marginals and copula estimators, under different
hypotheses about the data generating process (DGP). We find the interest-
ing result that, when the true DGP is leptokurtic, using normal marginals
without generalized autoregressive condit ional heteroskedast icit y
(GARCH) effects cause the dependence parameters to be biased. Particu-
larly, the correlations show a negative bias that increases in absolute value
with the degree of leptokurtosis. Moreover, if small samples are concerned,
this bias generally increases, except for strongly leptokurtic data, where the
small sample distortion has no clear sign. We also remark that, when the
DGP has GARCH effects, the small sample biases of the variance parame-
ters are very large, even though they vanish as the sample size increases.
The same behavior is shown by the degrees of freedom of the Student’s t.

The second contribution is the analysis, applying a Monte Carlo study,
of misspecified margins on the estimation of multivariate value at risk (VaR)
for equally weighted portfolios. When there are no GARCH effects, the
GARCH models (both with normally and Student’s t distributed errors)
deliver very conservative VaR estimates; while if there are GARCH effects
with normally distributed errors, the use of normal-GARCH marginals
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underestimates the true VaR. In both cases, the biases are due to poor 
marginals estimates in small/medium datasets. When the true DGP is 
leptokurtic, the models employing normal marginals (with or without
GARCH effects) underestimate the true VaR, particularly in the case of
extreme quantiles. However, in this case, the negative biases are mainly due
to the negative correlations biases.

The third contribution of the chapter is the proposal of a general
methodology to compute impulse response functions (IRFs) with a non-
normal joint multivariate distribution. We show that using normal margin-
als, when data are leptokurtic, produces confidence bands narrower than
they should be, while a shock may be considered statistically more persist-
ent than it actually is. Moreover, negative biases in the marginals and in the
dependence structure can underestimate the true IRFs. That is why some
caution should be taken when using IRFs estimated with a multivariate nor-
mal vector autoregression (VAR) model implemented in standard software
packages. In this perspective, we propose here a general methodology to
compute IRFs for a general copula-VAR-GARCH model, where we accom-
modate for both non-normality and nonlinearities, and we allow for the
imposition of structural restrictions. Furthermore, we suggest the use of
bootstrapped standard errors to gauge the precision of the estimated IRFs.

The rest of the chapter is organized as follows. This chapter’s second sec-
tion presents the copula-VAR and copula-VAR-GARCH models, while in the
third section we perform simulation studies in order to assess the finite sam-
ple properties of these models under different DGPs. We investigate the
effects of model misspecifications on VaR in the fourth section of this chapter,
while we examine the effects of misspecifications on IRFs analysis in the fifth
section, where we also describe a procedure to construct generalized IRFs
together with bootstrapped standard errors. The final section concludes.

COPULA-VAR-GARCH MODELING

We present here a copula-VAR model, where there are n endogenous vari-
ables xi,t explained by an intercept µi, autoregressive terms of order p, and
an heteroskedastic error term ���hi,tηi,t ,

(20.1)
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We suppose the standardized innovations ηi,t to have mean zero and vari-
ance one, while ���hi,t can be time varying as in GARCH models or con-
stant, depending on the data at hand

(20.2)

The innovations ηi,t have a multivariate joint distribution Ht (η1,t , …, ηn,t ; θ)
with the parameters vector θ, which can be rewritten by using Sklar’s theorem
(1959):

(20.3)

Particularly, the joint distribution Ht is the copula Ct [· ; γ ] of the cumulative
distribution functions (cdf ) of the innovations marginals F1,t(η1,t ; α1),…,
Fn,t (η1,t; αn), where γ, α1, …,αn are the copula and the marginals parameters,
respectively.

Thanks to Sklar’s theorem, using copulas has the important benefit of
linking together two or more marginals distributions, not necessarily iden-
tical, to form a well-defined multivariate joint distribution, which is known
in statistics as meta-distribution.1

Sklar’s theorem can be used to find the analytical density functions for
many important copulas. Among these, the normal-copula density function
can be computed as follows:

(20.4)

where ζ � (Φ�1(u1),…, Φ�1(un))′ is the vector of univariate Gaussian
inverse distribution functions, ui � Φ (xi), while Σ is the correlation matrix.
We remark that this copula belongs to the class of elliptical copulas. As an

324 Part V Limitations to measure risk

h h h

h

t t t t

n t

1 1 1 1 1 1 1
2

1 1 1, , , ,

,

( )= + +

=

− − −ω α η β

ω

� � �

nn n n t n t n n th h+ +− − −α η β( ), , ,1 1
2

1

c x x
f xNormal

n n

Normal

( ( ), ..., ( ); )
( , .

Φ Φ1 1 0
1θ =

..., )

( )

( ) | |
exp

/ /

x

f x

n

i
Normal

i
i

n

n

=

∏

=

−

1

2 1 2

1
2π Σ

11
2

1
2

1
2

1

1

2

1

′










−










=

=

−

=

∏

x x

xi
i

n

Σ

Σ

π
exp

| ||
exp ( )

/1 2
11

2
− ′ −











−ζ ζΣ I

( , , ) ( , , ; ) [ (, , ,η η η η θ η1, 1,t n t t t n t t tH C F… ∼ … = 1 11 n,t ,t; ), , ( ; ); ],α η α γn n t nF…



alternative to elliptical copulas we could use Archimedean copulas, but
they present the serious limitation of modeling only positive dependence
(or only partial negative dependence), while their multivariate extensions
involve strict restrictions on dependence parameters. As a consequence we
do not consider them here.

We can follow a procedure similar to Equation (20.4) to derive the cop-
ula of the multivariate Student’s t distribution (the t-copula). Moreover, the
copula parameters can be made time varying, too. However, recent litera-
ture (see Chen, Fan, and Patton, 2004) has shown that a simple time con-
stant normal copula is, in most cases, sufficient to describe the dependence
structure of daily financial data. Instead, when the number of variables is
larger than 20, more complicated copulas than the normal are needed. 
Similar evidence has been found recently by Fantazzini et al. (2008) who
analyzed monthly operational risk data. Actually, macroeconomic analysis
usually works with a small number of endogenous variables sampled at a
monthly or lower frequency, which are known to have a simpler dependence
structure than daily financial data. For this reason, we examine here only a
constant normal copula Ct

Normal � CNormal.

SIMULATION STUDIES

This section discusses the results of the simulation studies concerning a
trivariate copula-VAR(1)-GARCH(1,1) model specified as follows:

(20.6)

where the matrix h is diagonal and contains the square roots of the vari-
ances: hi,t � ωi � αi(ηi,t�1 ���hi,t�1�� )2 � βihi,t�1, i � 1, 2, 3. The innovations
ηt are modeled by a Gaussian copula, with Gaussian or Student’s t marginals,
and the correlation matrix Σ:

(20.7)

We consider the following possible DGPs:

• We consider different marginals specifications for the true DGP in
Equation (20.6):
• Student’s t with 3 degrees of freedom
• Student’s t with 10 degrees of freedom
• Normal distribution

• Distributions are used with and without GARCH volatility
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• Time series of 500, 2,000, and 20,000 observations are chosen for our
simulations

This allows us to study the two-step inference functions from marginals
(IFMs, e.g., see Cherubini, Luciano, and Vecchiato, 2004) estimation
method also in the case of short time series. For this reason, the Gaussian
specification is also estimated by a two-step procedure, rather than by ordi-
nary least squares.

For each marginals and variance specification, we generate 1,000 Monte
Carlo samples and estimate the following models: Normal, Normal-
GARCH, and Student’s t-GARCH.

We do not report the numerical results, which are available upon
request. We focus our discussion on correlation and variance parameters
because, with regard to the coefficients of the autoregressive terms, we
remark that the estimated parameters are very similar across the various
specifications and their biases are very small. Besides, the variance and cor-
relations are the most important parameters with respect to various eco-
nomic and financial applications, such as VaR estimates. Moreover, as
Fantazzini (2008) clearly shows in a wide empirical exercise, “the AR speci-
fication of the mean is not relevant in all cases.”

The simulation studies performed yield some interesting results:

• Correlation parameters ρi,j: The normal innovations distribution
generally underestimates the absolute value of correlations. This bias
increases with the leptokurtosis of the DGP. For example, for very
fat-tailed cases, this negative bias is approximately equal to 14 percent
of the true value. This bias stabilizes around these percentages also
with a larger sample of 20,000 observations. As expected, the bias
decreases when the degrees of freedom of the Student’s t increase and
when the volatility is constant. When the time series becomes shorter,
the correlation biases may either increase or decrease, but they
generally remain negative. Obviously, the well specified Student’s t
model estimates correlations with greater precision, instead. Indeed,
the Student’s t is very precise when the true DGP is strongly
leptokurtic, while it behaves like the normal when the degrees of
freedom increase.

• Variance parameters: As expected, when there are no GARCH effects,
the model employing normal marginals works best, while the
Student’s t model is not efficient. However, it is interesting to note
that if there are GARCH effects with normally distributed errors, the
use of normal-GARCH marginals underestimates the variance when
small samples are used. In this case, a copula-Student’s t-GARCH
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model seems a better choice. Furthermore, the Student’s t is more
precise when the true DGP is strongly leptokurtic ( υ � 3), while the
normal again underestimates the variance parameters.

IMPLICATIONS FOR VALUE-AT-RISK ESTIMATION

Value at risk is a concept developed in the field of risk management that is
defined as the maximum amount of money that one could expect to lose
with a given probability over a specific period of time. While the VaR
approach is widely used, its notion is nonetheless controversial, primarily as
a consequence of the diverse methods used in computing VaR, producing
widely divergent results. If the cdf of the joint distribution is known, then
the VaR is simply its p-th quantile times the value of the financial position;
however, the cdf is not known in practice and must be estimated. Jorion
(2007) provided an introduction to VaR as well as a discussion of its estima-
tion, while the www.gloriamundi.org website comprehensively cites the VaR
literature as well as providing other VaR resources.

We explore here the potential impact of misspecified marginals on the
estimation of multivariate VaR for equally weighted portfolios, by using the
same DGPs discussed at the beginning of this chapter’s third section. For
the sake of simplicity, we suppose to invest an amount Mi � 1, i � 1,…, n
in every asset (where n � 3 in our simulation studies).

We consider eight different quantiles to better highlight the overall
effects of the estimated copula parameters on the joint distribution of the
losses: 0.25, 0.50, 1.00, 5.00, 95.00, 99.00, 99.50, 99.75 percent, that is we
consider both the “loss tail” and the “win tail.” Tables 20.1 to 20.6 report
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Table 20.1 VaR Estimates when the True Marginals Are Normal
without/with GARCH Effects; Employed Marginals for Estimation: Normal
without GARCH Effects

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Normal Normal GARCH Normal

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0027 0.0027 �0.49 0.0000 0.25% 0.0161 0.0158 �1.74 0.0001

0.50% 0.0018 0.0018 0.83 0.0000 0.50% 0.0141 0.0138 �1.62 0.0001

1.00% 0.0008 0.0008 0.64 0.0000 1.00% 0.0119 0.0117 �1.27 0.0000

5.00% �0.0018 �0.0018 �0.32 0.0000 5.00% 0.0060 0.0059 �2.25 0.0000

99.75% �0.0191 �0.0191 �0.36 0.0000 99.75% �0.0327 �0.0325 �0.69 0.0000

99.50% �0.0182 �0.0182 �0.15 0.0000 99.50% �0.0306 �0.0305 �0.56 0.0000

99.00% �0.0173 �0.0172 �0.04 0.0000 99.00% �0.0285 �0.0283 �0.50 0.0000

95.00% �0.0146 �0.0146 0.09 0.0000 95.00% �0.0226 �0.0224 �0.64 0.0000

www.gloriamundi.org
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Table 20.2 VaR Estimates when the True Marginals Are Normal 
without/ with GARCH Effects; Employed Marginals for Estimation:
Normal with GARCH Effects

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Normal Normal GARCH Normal

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0027 0.0147 441.29 0.1398 0.25% 0.0161 0.0077 �52.20 0.0682

0.50% 0.0018 0.0128 613.33 0.1147 0.50% 0.0141 0.0064 �54.58 0.0580

1.00% 0.0008 0.0108 1213.46 0.0989 1.00% 0.0119 0.0050 �57.96 0.0458

5.00% �0.0018 0.0052 �385.48 0.0492 5.00% 0.0060 0.0011 �81.62 0.0240

99.75% �0.0191 �0.0312 63.27 0.1412 99.75% �0.0327 �0.0242 �26.02 0.0705

99.50% �0.0182 �0.0294 61.42 0.1238 99.50% �0.0306 �0.0229 �25.41 0.0599

99.00% �0.0173 �0.0274 58.61 0.1010 99.00% �0.0285 �0.0214 �24.77 0.0482

95.00% �0.0146 �0.0217 48.93 0.0488 95.00% �0.0226 �0.0175 �22.19 0.0240

Table 20.3 VaR Estimates when the True Marginals Are Normal 
without/ with GARCH Effects; Employed Marginals for Estimation:
Student’s t with GARCH Effects

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Student’s t-GARCH Normal-GARCH Student’s t-GARCH

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0027 0.0320 1076.44 0.8395 0.25% 0.0161 0.0158 �1.89 0.0001

0.50% 0.0018 0.0286 1499.18 0.6949 0.50% 0.0141 0.0138 �1.73 0.0001

1.00% 0.0008 0.0251 2955.51 0.5619 1.00% 0.0119 0.0117 �1.37 0.0000

5.00% �0.0018 0.0153 �937.55 0.2846 5.00% 0.0060 0.0059 �2.22 0.0000

99.75% �0.0191 �0.0490 156.01 0.8608 99.75% �0.0327 �0.0324 �1.08 0.0001

99.50% �0.0182 �0.0457 150.55 0.7390 99.50% �0.0306 �0.0304 �0.78 0.0001

99.00% �0.0173 �0.0420 143.48 0.6037 99.00% �0.0285 �0.0283 �0.80 0.0001

95.00% �0.0146 �0.0321 119.92 0.2930 95.00% �0.0226 �0.0224 �0.69 0.0000
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Table 20.4 VaR Estimates when the True Marginals Are Student’s t 
(υ � 3, υ� 10) with GARCH; Employed Marginals for Estimation:
Normal without GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ � 3) GARCH Normal (υ �10) GARCH Normal

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0263 0.0164 �37.60 0.0970 0.25% 0.0180 0.0159 �11.90 0.0045

0.50% 0.0195 0.0144 �25.86 0.0252 0.50% 0.0153 0.0138 �9.74 0.0021

1.00% 0.0139 0.0123 �11.48 0.0024 1.00% 0.0127 0.0117 �7.38 0.0008

5.00% 0.0042 0.0063 51.97 0.0046 5.00% 0.0059 0.0059 �1.04 0.0000

99.75% �0.0434 �0.0333 �23.40 0.1024 99.75% �0.0347 �0.0325 �6.17 0.0045

99.50% �0.0365 �0.0311 �14.87 0.0292 99.50% �0.0320 �0.0305 �4.80 0.0023

99.00% �0.0307 �0.0289 �6.03 0.0033 99.00% �0.0293 �0.0283 �3.25 0.0009

95.00% �0.0207 �0.0228 10.08 0.0042 95.00% �0.0225 �0.0224 �0.25 0.0000

Table 20.5 VaR Estimates when the True Marginals Are Student’s t 
(υ � 3, υ � 10) with GARCH; Employed Marginals for Estimation:
Normal with GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ � 3) GARCH Normal GARCH (υ �10) GARCH Normal GARCH

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0263 0.0156 �40.60 0.1097 0.25% 0.0180 0.0150 �16.76 0.0087

0.50% 0.0195 0.0137 �29.82 0.0329 0.50% 0.0153 0.0131 �14.33 0.0048

1.00% 0.0139 0.0115 �16.93 0.0054 1.00% 0.0127 0.0111 �12.58 0.0025

5.00% 0.0042 0.0058 39.32 0.0026 5.00% 0.0059 0.0054 �8.24 0.0002

99.75% �0.0434 �0.0324 �25.53 0.1173 99.75% �0.0347 �0.0317 �8.71 0.0087

99.50% �0.0365 �0.0303 �17.04 0.0375 99.50% �0.0320 �0.0297 �7.16 0.0052

99.00% �0.0307 �0.0282 �8.42 0.0064 99.00% �0.0293 �0.0276 �5.58 0.0026

95.00% �0.0207 �0.0223 7.86 0.0026 95.00% �0.0225 �0.0220 �2.32 0.0003



the true VaR, the mean across simulations, the bias in percentage, and the
root mean square error. For the sake of interest and space, we report only
the results for n � 500.

In general, the est imated quantiles show a very large degree of
under/overestimation, which depends heavily both on the sample dimension
and the underlying joint distribution. The major findings are reported
below:

• When there are no GARCH effects, the GARCH models (both with
normal and Student’s t errors) deliver very conservative VaR estimates.
This is due to poor estimates of the marginals variance and confirms
previous evidence found by Hwang and Valls Pereira (2006)
concerning small sample properties of GARCH models.

• If there are GARCH effects with normally distributed errors, the use of
normal-GARCH marginals underestimates the true VaR. This is again
due to poor estimates of the marginals variance.

• When the true DGP is leptokurtic (υ � 3 or υ � 10), the normal models
(with or without GARCH effects) underestimate the true VaR,
particularly in the case of extreme quantiles. In this case, the negative
biases are not due to the marginals problems (since they are more or
less correctly estimated), but to the negative correlations biases. As
expected, the negative biases decrease when the degrees of freedom υ
increase from 3 to 10.
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Table 20.6 VaR Estimates when the True Marginals Are Student’s t 
(υ � 3, υ � 10) with GARCH; Employed Marginals for Estimation:
Student’s t with GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ � 3) GARCH Student’s t-GARCH (υ �10) GARCH Student’s t-GARCH

Bias Bias
VaR (%) RMSE VaR (%) RMSE

0.25% 0.0263 0.0218 �17.24 0.0204 0.25% 0.0180 0.0165 �8.44 0.0022

0.50% 0.0195 0.0176 �9.64 0.0034 0.50% 0.0153 0.0143 �6.95 0.0011

1.00% 0.0139 0.0139 �0.10 0.0000 1.00% 0.0127 0.0119 �5.70 0.0005

5.00% 0.0042 0.0057 37.80 0.0024 5.00% 0.0059 0.0058 �2.22 0.0000

99.75% �0.0434 �0.0384 �11.53 0.0249 99.75% �0.0347 �0.0332 �4.15 0.0020

99.50% �0.0365 �0.0342 �6.38 0.0053 99.50% �0.0320 �0.0309 �3.47 0.0012

99.00% �0.0307 �0.0304 �1.05 0.0001 99.00% �0.0293 �0.0286 �2.37 0.0005

95.00% �0.0207 �0.0222 7.20 0.0022 95.00% �0.0225 �0.0224 �0.58 0.0000



The Monte Carlo evidence highlights that one should first check for
GARCH effects, and then for the type of marginals distribution. If the
null hypothesis of homoskedasticity is accepted, normal or Student’s t
marginals with constant volatility are a much more efficient choice than
trying an (unrestricted) model with time-varying volatility, particularly
when dealing with small/medium datasets with a number of observations
less than 1,000.

IMPLICATIONS FOR IMPULSE RESPONSE
FUNCTIONS ANALYSIS

An IRF traces the effect of a one-time shock to one of the innovations in
current and future values of the endogenous variables. If the innovations ηt

are contemporaneously uncorrelated, the interpretation of the IRF is
straightforward: the i-th innovation ηi.t is simply a shock to the i-th
endogenous variable xi.t. Innovations, however, are usually correlated, and
may be viewed as having a common component which cannot be associated
with a specific variable: hence a shock to variable i cannot be identified on
that variable only. The identification problem is the subject of the structural
VAR literature (e.g., see Sims, 1980, Blanchard and Quah, 1989, and
Amisano and Giannini, 1997). For example, it is possible to use the inverse
of the Cholesky factor of the normal copula correlation matrix Σ to orthog-
onalize the impulses and transform the innovations so that they become
uncorrelated. However, other identification schemes can be imposed.

Following Fang, Kotz, and Ng (1987), we know that given a matrix A
such as Σ � AA′, and assuming a set of i.i.d standard normal random vari-
ables (Z1,…, Zn)′, the random vector AZ is multi-normally distributed with
mean zero and covariance matrix Σ. Estimates of the impulse response vec-
tors can then be derived by combining the parameter estimates of the cop-
ula VAR, together with the structural matrix A derived by imposing
restrictions on the estimated copula correlation matrix Σ. The full proce-
dure is the following one:

1. We consider an initial disturbance vector u0 � (0…,0, 1, 0,…,0)′, i.e.,
a vector of all zeroes apart from the k-th element, and we premultiply
this vector by the estimate of the structural matrix A, to get the
impact response S � A u0, as if the innovations ηt were multi-
normally distributed with mean zero and covariance matrix Σ (which
coincides with the correlation matrix).

2. Since we work with the normal copula, which is the copula of the
multivariate normal distribution, and recalling (20.4), we have to
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transform the vector S by using the standard normal cdf, i.e., 
Yi � Φ(Si), i � 1, …, n.

3. In order to get the standardized innovations ηi.t, we have to use 
the inverse of the different marginals cdfs Fi, i � 1, …, n, that 
is, Z � (Z1, …, Zn)′ � (F1

�1 (Y1),…, F n
�1 (Yn)), with F 1

�1 not
necessarily identical.

4. Finally, we have to rescale these standardized innovations by using
the square roots of the variances ���hi,t to get the response vector
θt,k,0 � Z1 ���hi,t ,…, Zn���hn,t , where ���hi,t may be constant or time
varying.

5. The remaining response vectors θk,h at time t � h can be estimated
by solving forwards for the endogenous variables in Equations
(20.1)–(20.3).

We want to remark that if we use normal marginals Fi � Φi together with a
normal copula, we are back to the joint normal distribution and steps 2 and
3 cancel out. Moreover, if we also assume constant variances, ���hi,t � ωi, we
get the IRFs for a standard VAR model. In this sense, our approach is a
general one which nests many standard cases.

In order to gauge the precision of the estimated IRFs, we can employ
bootstrapping techniques. This procedure involves creating artificial histo-
ries for the endogenous variables of the model and then submitting these
histories to the same estimation procedure as real data. The artificial histo-
ries are created by replacing the parameters in the model with their esti-
mated values, drawing residuals whose moments are determined by the
estimated copula-marginals functions and then calculating the endogenous
variables. Since the artificial histories are finite samples, their estimates will
not coincide exactly with those from the original data; by creating a large
number of artificial histories, we can then make a bootstrapped approxima-
tion to the distribution of the estimated parameters. This distribution
forms the basis for adding confidence intervals bands to the central estimate
of the IRFs. The full procedure is reported below.

1. Draw an n � T vector of standardized innovations ηi for 
i � 1,…, n, from the joint normal copula-marginals density 
CNormal [F1,t (η1,t; α̂1), …, Fn,t (η1,t; α̂n); Σ̂].

2. Create an artificial history for the endogenous variables: replace all
parameters in Equations (20.1)–(20.3) by their estimated values,
together with the standardized innovations ηi,t drawn in the previous
step, which have to be rescaled by the square roots of the variances
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���hi,t. Equations (20.1)�(20.3) can then be applied recursively to get
an artificial sample.

3. Estimate a copula-VAR model, using the data from the artificial
history. The estimation gives bootstrapped estimates of the
marginals parameters {~µi, 

~
φi, j,l, ~ωi, ~αi, 

~
βi} for i �,…, n, j �1,…, n

and l � 1, …, p and of the copula correlation matrix ~Σ.
4. Estimate the matrix Ã, by imposing identification restrictions on the

estimated correlation matrix ~Σ, where ÃÃ′ � 
~
Σ.

5. Calculate the bootstrapped estimates of the IRFs. Use the new parameters
{~µi, 

~
φ i, j,l, ~ωi, ~αi, 

~
βi} for i �,…, n, j � 1, …, n and l � 1,…, p together

with Ã, to get a bootstrapped estimate of the IRFs ~θt,k,0,…, ~θt,k,h.
6. Repeat the above five steps for a large number of times, in order to get a

numerical approximation of the distribution of the original estimates
~
θt,k,0,…, ~ θ̂t,k,h. This distribution forms the basis for adding confidence
intervals bands to the central estimate of the IRFs.

We present the IRFs of the first endogenous variable to its own noise
impulse, where we use the DGPs and the simulated parameters employed
in the section Simulation Studies, for the first 10 lags together with the 
90 percent bootstrapped confidence intervals. We report only the results
for n � 500 for sake of interest and space, since macroeconomic empirical
analyses deal with short time series.
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Table 20.7 IRFs when the True Marginals Are Normal without/with
GARCH Effects; Employed Marginals for Estimation: Normal without
GARCH Effects (n � 500)

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Normal Normal-GARCH Normal

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF _1 0.2240 0.2114 0.2331 0.2362 IRF _1 0.5000 0.3809 0.4817 0.6593

IRF _2 0.1120 0.0888 0.1116 0.1273 IRF _2 0.2500 0.1693 0.2385 0.3500

IRF _3 0.0112 �0.0450 0.0069 0.0226 IRF _3 0.0250 �0.0358 0.0231 0.0861

IRF _4 0.0168 �0.0111 0.0129 0.0277 IRF _4 0.0375 �0.0190 0.0339 0.0896

IRF _5 0.0118 �0.0160 0.0092 0.0282 IRF _5 0.0263 �0.0244 0.0224 0.0668

IRF _6 �0.0014 �0.0211 �0.0026 0.0135 IRF _6 �0.0031 �0.0457 �0.0054 0.0353

IRF _7 �0.0011 �0.0084 �0.0009 0.0066 IRF _7 �0.0024 �0.0187 �0.0019 0.0164

IRF _8 0.0007 �0.0022 0.0014 0.0077 IRF _8 0.0015 �0.0075 0.0017 0.0128

IRF _9 �0.0003 �0.0034 0.0005 0.0044 IRF _9 �0.0006 �0.0082 0.0002 0.0093

IRF _10 �0.0004 �0.0006 0.0004 0.0026 IRF _10 �0.0008 �0.0026 0.0011 0.0073



334 Part V Limitations to measure risk

Table 20.8 IRFs when the True Marginals Are Normal without/with
GARCH Effects; Employed Marginals for Estimation: Normal with
GARCH Effects

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Normal-GARCH Normal-GARCH Normal-GARCH

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF _1 0.2240 0.2117 0.2350 0.2364 IRF_1 0.5000 0.3815 0.4491 0.4605

IRF _2 0.1120 0.0923 0.1124 0.1275 IRF_2 0.2500 0.1269 0.1690 0.2660

IRF _3 0.0112 �0.0462 0.0068 0.0226 IRF_3 0.0250 �0.0862 �0.0203 �0.0129

IRF _4 0.0168 �0.0115 0.0130 0.0277 IRF_4 0.0375 �0.0611 �0.0135 �0.0082

IRF _5 0.0118 �0.0160 0.0092 0.0282 IRF_5 0.0263 �0.0193 0.0242 0.0664

IRF _6 �0.0014 �0.0213 �0.0026 0.0135 IRF_6 �0.0031 �0.0411 �0.0048 0.0313

IRF _7 �0.0011 �0.0084 �0.0009 0.0066 IRF_7 �0.0024 �0.0162 �0.0025 0.0123

IRF _8 0.0007 �0.0022 0.0014 0.0077 IRF_8 0.0015 �0.0063 0.0018 0.0113

IRF _9 �0.0003 �0.0035 0.0005 0.0044 IRF_9 �0.0006 �0.0071 0.0001 0.0085

IRF _10 �0.0004 �0.0006 0.0004 0.0026 IRF_10 �0.0008 �0.0026 0.0011 0.0073

Table 20.9 IRFs when the True Marginals Are Normal without/with
GARCH Effects; Employed Marginals for Estimation: Student’s t with
GARCH Effects

True Model: Estimated Marginals: True Model: Estimated Marginals:
Normal Student’s t-GARCH Normal-GARCH Student’s t-GARCH

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF_1 0.2240 0.2100 0.2350 0.2848 IRF_1 0.5000 0.4647 0.5047 0.5484

IRF_2 0.1120 0.0819 0.1124 0.1285 IRF_2 0.2500 0.2085 0.2516 0.3010

IRF_3 0.0112 �0.0825 0.0068 0.0243 IRF_3 0.0250 �0.0224 0.0234 0.0680

IRF_4 0.0168 �0.0254 0.0130 0.0289 IRF_4 0.0375 �0.0088 0.0352 0.0785

IRF_5 0.0118 �0.0350 0.0092 0.0401 IRF_5 0.0263 �0.0198 0.0245 0.0681

IRF_6 �0.0014 �0.0242 �0.0026 0.0138 IRF_6 �0.0031 �0.0418 �0.0048 0.0318

IRF_7 �0.0011 �0.0127 �0.0009 0.0067 IRF_7 �0.0024 �0.0165 �0.0026 0.0126

IRF_8 0.0007 �0.0024 0.0014 0.0112 IRF_8 0.0015 �0.0063 0.0019 0.0115

IRF_9 �0.0003 �0.0041 0.0005 0.0059 IRF_9 �0.0006 �0.0073 0.0001 0.0086

IRF_10 �0.0004 �0.0045 0.0004 0.0033 IRF_10 �0.0008 �0.0025 0.0005 0.0049
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Table 20.10 IRFs when the True Marginals Are Student’s t (υ� 3, υ� 10)
with GARCH Effects; Employed Marginals for Estimation: Normal without
GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ� 3) GARCH Normal (υ� 10) GARCH Normal

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF_1 0.5984 0.3801 0.4774 0.6605 IRF_1 0.5263 0.4483 0.4955 0.5454

IRF_2 0.2992 0.1712 0.2349 0.3280 IRF_2 0.2631 0.1999 0.2452 0.2976

IRF_3 0.0299 �0.0297 0.0226 0.0748 IRF_3 0.0263 �0.0209 0.0225 0.0685

IRF_4 0.0449 �0.0191 0.0333 0.0872 IRF_4 �0.0395 �0.0115 0.0359 0.0815

IRF_5 0.0314 �0.0251 0.0233 0.0739 IRF_5 0.0276 �0.0182 0.0241 0.0666

IRF_6 �0.0037 �0.0450 �0.0040 0.0348 IRF_6 �0.0033 �0.0412 �0.0051 0.0323

IRF_7 �0.0029 �0.0185 �0.0015 0.0161 IRF_7 �0.0026 �0.0162 �0.0024 0.0129

IRF_8 0.0018 �0.0083 0.0023 0.0149 IRF_8 0.0015 �0.0065 0.0020 0.0122

IRF_9 �0.0007 �0.0081 0.0005 0.0106 IRF_9 �0.0006 �0.0071 0.0001 0.0081

IRF_10 �0.0009 �0.0027 0.0010 0.0069 IRF_10 �0.0008 �0.0026 0.0004 0.0052

Table 20.11 IRFs when the True Marginals Are Student’s t (υ � 3, υ � 10)
with GARCH Effects; Employed Marginals for Estimation: Normal with
GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ� 3) GARCH Normal-GARCH (υ� 10) GARCH Normal-GARCH

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF_1 0.5984 0.4767 0.5819 0.7676 IRF_1 0.5263 0.4490 0.4963 0.5463

IRF_2 0.2992 0.2240 0.2881 0.3764 IRF_2 0.2631 0.1999 0.2456 0.2981

IRF_3 0.0299 �0.0150 0.0330 0.0708 IRF_3 0.0263 �0.0212 0.0226 0.0686

IRF_4 0.0449 �0.0021 0.0559 0.0866 IRF_4 0.0395 �0.0119 0.0359 0.0816

IRF_5 0.0314 �0.0100 0.0327 0.0695 IRF_5 0.0276 �0.0183 0.0242 0.0667

IRF_6 �0.0037 �0.0443 0.0071 0.0410 IRF_6 �0.0033 �0.0413 �0.0051 0.0323

IRF_7 �0.0029 �0.0121 0.0067 0.0194 IRF_7 �0.0026 �0.0163 �0.0024 0.0129

IRF_8 0.0018 0.0002 0.0059 0.0181 IRF_8 0.0015 �0.0065 0.0020 0.0122

IRF_9 �0.0007 0.0004 0.0085 0.0126 IRF_9 �0.0006 �0.0071 0.0001 0.0081

IRF_10 �0.0009 0.0068 0.0188 0.0083 IRF_10 �0.0008 �0.0026 0.0004 0.0052



We note that, as expected, confidence bands are wider with Student’s t
noise distributions than with normal noise distributions. This evidence
clearly highlights the fact that neglecting leptokurtosis in empirical data
may result in confidence bands which do not consider the greater uncer-
tainty displayed by the underlying economic process. A policy maker may
therefore consider a shock to be more persistent than it actually is. Besides,
the use of wrong marginals underestimates the true IRFs, because of the
negative biases in the dependence structure highlighted in the section 
Simulation Studies. That is why some caution should be taken when using
the IRFs estimated with a multivariate normal VAR model implemented in
all standard software packages.

CONCLUSION

This chapter analyzed copula-VAR and copula-VAR-GARCH modeling
and highlighted some pitfalls that may emerge if wrong marginals are used,
with particular attention to value at risk and impulse response functions
analysis.

The simulation studies performed highlighted the fact that the use of
normal marginals (such as in ordinary least squares estimates of normal VAR
models), when the true data generating process is leptokurtic, produces
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Table 20.12 IRFs when the True Marginals Are Student’s t (υ � 3, υ � 10)
with GARCH Effects; Employed Marginals for Estimation: Student’s t with
GARCH Effects

True Model: True Model:
Student’s t Estimated Marginals: Student’s t Estimated Marginals:
(υ� 3) GARCH Student’s t-GARCH (υ� 10) GARCH Student’s t-GARCH

True Lower Upper True Lower Lower
IRFs Values C. B. IRF C. B. IRFs Values C. B. IRF C. B.

IRF_1 0.5984 0.4562 0.5732 0.7970 IRF_1 0.5263 0.4520 0.5216 0.5754

IRF_2 0.2992 0.2047 0.2820 0.4002 IRF_2 0.2631 0.2103 0.2582 0.3128

IRF_3 0.0299 �0.0353 0.0271 0.0896 IRF_3 0.0263 �0.0220 0.0237 0.0719

IRF_4 0.0449 �0.0236 0.0400 0.1077 IRF_4 0.0395 �0.0121 0.0378 0.0859

IRF_5 0.0314 �0.0295 0.0280 0.0894 IRF_5 0.0276 �0.0191 0.0254 0.0702

IRF_6 �0.0037 �0.0540 �0.0048 0.0415 IRF_6 �0.0033 �0.0435 �0.0054 0.0340

IRF_7 �0.0029 �0.0225 �0.0019 0.0195 IRF_7 �0.0026 �0.0171 �0.0025 0.0136

IRF_8 0.0018 �0.0103 0.0028 0.0182 IRF_8 0.0015 �0.0068 0.0021 0.0128

IRF_9 �0.0007 �0.0097 0.0006 0.0126 IRF_9 �0.0006 �0.0075 0.0001 0.0086

IRF_10 �0.0009 �0.0033 0.0012 0.0085 IRF_10 �0.0008 �0.0027 0.0005 0.0054



biased estimates of the copula parameters vector. Particularly, we found 
evidence of a negative bias in the correlation parameters. However, this bias
decreases as the number of degrees of freedom of the true DGP increases,
and when the variance is constant. Besides, we also found evidence that small
samples may increase such a bias, because of poor estimates of the marginals
variance parameters.

We then assessed the potential impact of misspecified marginals on the
estimation of multivariate VaR and we found that the marginals and
dependence biases may result in lower VaR estimates, particularly for
extreme quantiles, which are fundamental for risk management.

The chapter also developed a procedure to construct a set of IRFs for a
copula-VAR-GARCH model with a multivariate distribution different
from the normal one and with structural identifying assumptions. A proce-
dure for computing bootstrapped standard errors was also presented. We
found that the use of wrong marginals underestimates the IRFs and may
result in narrower confidence bands. That is why some caution should be
taken when using the IRFs estimated with a multivariate normal VAR
model, as implemented in standard software packages.

An avenue of future research might be to perform a simulation analysis
with higher dimensional portfolios and dynamic copulas.
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NOTES

1. As an example of copula flexibility, if we have three marginals, the first
F1,t (η1,t ; ν1) may follow a Student’s t distribution with ν1 degrees of
freedom, the second F2,t (η2,t) a standard normal distribution, while the
third F3,t (η3,t; λ3, ν3) may be a skewed Student’s t distribution with ν3

degrees of freedom, where λ3 is the skewness parameter. Moreover, the
copula function may be, for example, a normal one.
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ABSTRACT

Extreme value theory (EVT) deals with the analysis of rare events and it
has been recently used in finance to predict the occurrence of such events,
or, at least, to build more robust models for unexpected extreme events.
Particularly, EVT has been used to model the loss severities in operational
risk management, while the use of GARCH-EVT models has gained popu-
larity when computing value at risk (or other risk measures) in market risk
management. To date, little attention has been devoted to the analysis of the
small-sample properties of EVT estimators and their effects on the compu-
tation of financial risk measures. In this chapter we present and discuss the
results of a Monte Carlo study of the small sample properties of these esti-
mators in an operational risk setting, together with an empirical analysis
dealing with market risk management.

INTRODUCTION

Extreme value theory (EVT) has become a valuable tool to assess the like-
lihood of rare but large events in financial risk management. EVT deals
with the modeling of extreme events and aims at modeling the tails of a



distribution. The first pioneering work about EVT dates back to Fisher
and Tippett (1928), while Balkema and de Haan (1974) and Pickands
(1975) presented the foundation for threshold-based extreme value meth-
ods. EVT methods have been applied to different areas, from hydrology to
engineering, and recently made applicable to finance and insurance. Text-
book level presentation can be found in Embrechts, Kluppelberg, and
Mikosh (1997) and Reiss and Thomas (1997).

A well-known result in market risk management (MRM) is that absolute or
squared financial log-returns are strongly autocorrelated, due to the empirical
fact that a large absolute movement tends to be followed by a large absolute
movement. Such phenomena are typically modeled as ARCH or GARCH
processes (see Bollerslev, 1986), and risk measures are then computed based
on the conditional forecasts for the mean and the variance. As an alternative
way to improve relevant measures for market risk management, one can con-
sider the two-step procedure proposed by McNeil and Frey (2000).

Recently, EVT methods have also been proposed in operational risk
management (ORM) to model the tail of the severity distributions, in order
to build more robust models for unexpected extreme events. This is
extremely important when calculating a risk measure such as value at risk
(VaR) or the expected shortfall (ES) at high confidence levels, such as the
case of operational risk, where VaR at the 99.9 percent level is required. 
See Cruz (2002) for a review of EVT for operational risk.

Nevertheless, little attention has been devoted to the analysis of the
small-sample properties of EVT estimators and their effects on the compu-
tation of financial risk measures, with the exception of Jalal and Rockinger
(2008), who “investigate the consequences of using GARCH filtered
returns when the data is generated either by some GARCH but with non-
Gaussian innovations or some non-GARCH type process such as a switch-
ing regime process or a stochastic volatility with jumps model” (p. 876).

In this work we first present and discuss the results of a Monte Carlo
study of the small-sample properties of EVT estimators, where the simula-
tion data-generating processes (DGPs) are designed to reflect the stylized
facts about real operational risk. Then, we compare different EVT estima-
tors to compute risk measures for market risk management using very
recent U.S. data, including also the global financial crisis. The rest of the
chapter is organized as follows: the second section in this chapter shows
how EVT can be used in operational risk management and discusses the
small-sample properties of EVT estimators for this case. This chapter’s
third section compares different EVT estimators for market risk manage-
ment by using recent U.S. data, while the final section concludes.
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EVT AND OPERATIONAL RISK MANAGEMENT:
SMALL-SAMPLE PROPERTIES

Theoretical Setup: The Standard LDA Approach

The standard loss distribution approach (LDA) for ORM employs two
types of distributions: the one that describes the frequency of risk’s events
and the one that describes the severity of the losses that arise for each con-
sidered event. The frequency represents the number of loss events in a time
horizon, while the severity is the loss associated to the k-th loss event. For-
mally, for each type of risk i (for example, business lines) and for a given
time period, operational losses could be defined as a sum (Si) of the random
number (ni) of the losses (Xij): Si � Xi1 � Xi2 � …�Xi ni.

A widespread statistical model is the actuarial model. In this model, the
probability distribution of Si could be described as follows: Fi(Si) � Fi(ni)*
Fi(Xij), where Fi(Si) is the probability distribution of the expected loss for
risk i,  Fi(ni) the probability of event (frequency) for the risk i, while Fi(Xij)
is the loss given event (severity) for the risk i. The underlying assumptions
for the actuarial model are that the losses are random variables independent
and identically distributed (i.i.d.), and the distribution of ni (frequency) is
independent of the distribution of X ij (severity). In the actuarial model, the
frequency of a loss event in a certain temporal horizon could be modeled 
by a Poisson distribution or a negative binomial. For the severity, we could
use an exponential, a pareto, a gamma distribution, or the generalized pareto
distribution (GPD). However, due to the extremely difficulty in estimating
the parameter θ in small samples, as highlighted by Fantazzini et al. (2008)
where, with T � 72, 40 percent of the simulated samples resulted in a nega-
tive θ, and even with a dataset of T � 2,000 observations the estimates of
θ were not stable, we consider here only the Poisson distribution.

The distribution Fi of the losses for each intersection business line/event
type i is obtained by the convolution of the frequency and severity distribu-
tions; nevertheless, the analytic representation of this distribution is com-
putationally difficult or impossible. For this reason it is common to use a
Monte Carlo simulation. A risk measure such as VaR or ES is then esti-
mated to evaluate the capital requirement for that particular intersection i.
See Fantazzini, Dallavalle, and Giudici (2008) and Rachedi and Fantazzini
(2009) for more details about frequency and severity modeling.

Given the extreme behavior of operational risk losses, we can analyze the
tail of the severity distributions using EVT and the GPD. In short, EVT
affirms that the losses exceeding a given high threshold u converge asymptot-
ically to the GPD, whose cumulative function is usually expressed as follows:
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where y � x � u, y 	 0 if ξ 	 0 and 0 � y � � β/ξ if ξ � 0, and where y
are called excesses, whereas x are exceedances. It is possible to determine 
the conditional distribution function of the excesses, i.e., y as a function of

In these representations the parameter ξ is crucial: when ξ � 0, we have an
exponential distribution; when ξ � 0, we have a Pareto distribution type II
and when ξ � 0 we have a Pareto distribution type I. Moreover this param-
eter has a direct connection with the existence of finite moments of the
losses distributions. We have that E(xk) � ∞ if k 	 1/ξ.

Hence, in the case of a GPD as a Pareto type I, when ξ 	 1, we have
inf inite mean models, as also shown by Neslehova, Embrechts, and
Chavez-Demoulin (2006). Following Di Clemente and Romano (2004) and
Rachedi and Fantazzini (2009), we suggest to model the loss severity using
the log-normal for the body of the distribution and EVT for the tail, in
the following way:

where Φ is the standardized normal cumulative distribution functions, Nu(i)
is the number of losses exceeding the threshold u(i), N(i) is the number of
the loss data observed in the i-th ET, whereas β(i) and ξ(i) denote the scale
and the shape parameters of GPD.

Simulation Studies

In this section we present the results of a Monte Carlo study of the small-
sample properties of different frequency-severity marginal estimators dis-
cussed in the previous sections. The simulation data-generating processes
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are designed to reflect the stylized facts about real operational risks and we
chose the parameters of DGPs among the ones estimated in Fantazzini,
Dallavalle, and Giudici (2008). We consider a total of 24 possible DGPs in
Table 21.1.

In addition to these DGPs, we consider two possible data situations: (1)
T �50 and (2) T �500. We generated 1,000 Monte Carlo samples for each
marginal specification described in Table 21.1 and we estimated the VaR at the
99 and 99.9 percent levels, together with ES at the 99 and 99.9 percent levels.
We then considered the following marginal estimators: (1) Poisson-exponential,
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Table 21.1 Parameters of Frequency-Severity
Models Used for 24 Simulated DGPs

DGP Poisson Exponential

(1) 1.40 9844.48

(2) 2.19 21721.43

(3) 0.08 153304.55

(4) 0.46 206162.38

(5) 0.10 96873.25

(6) 0.63 7596.41

(7) 0.68 12623.41

(8) 0.11 35678.13

DGP Poisson Gamma

(9) 1.40 0.15 64847.81

(10) 2.19 0.20 109320.57

(11) 0.08 0.20 759717.47

(12) 0.46 0.11 1827627.20

(13) 0.10 0.20 495700.99

(14) 0.63 0.38 19734.01

(15) 0.68 0.06 211098.10

(16) 0.11 0.26 135643.25

DGP Poisson Pareto

(17) 1.40 2.36 13368.41

(18) 2.19 2.50 32493.69

(19) 0.08 2.51 230817.02

(20) 0.46 2.25 258587.73

(21) 0.10 2.49 143933.30

(22) 0.63 3.25 17104.96

(23) 0.68 2.13 14229.16

(24) 0.11 2.71 61145.58



(2) Poisson-gamma, (3) Poisson-Pareto, (4) Poisson-log-normal-GPD, and (5)
GPD directly on the marginal loss Si.

Tables 21.2–21.4 report the true VaR/ES at the 99 and 99.9 percent lev-
els, the mean bias in percentage, the median bias in percentage, the relative
root mean square error, i.e, the RMSE with respect to the true value, and
the t test for the null hypothesis that the empirical mean across simulations
is equal to the true value. For sake of interest and due to space limits, we
report here only the results for T �50 for the Poisson–log-normal–GPD
model and for GPD directly fitted to the losses, while the results for
T � 500 and for the remaining models are available from the authors upon
request.

We estimated the Poisson and the exponential distribution by maximum
likelihood methods, while we resorted to the method of moments for
gamma and Pareto. Instead, we use the probability weighted moments for
GPD, given the better small sample properties; see Rachedi and Fantazzini
(2009) and Fantazzini, Dallavalle, and Giudici (2008) for more details.

• True DGP-Poisson-Exponential (DGPs 1–8) (Table 21.2): If we use
the Poisson-exponential or the Poisson-gamma marginal models,
the VaR/ES estimates are already precise with T � 50
observations, where the former model is the most efficient, as
expected. The use of the Poisson-Pareto model results in
overestimated risk measures around 5 to 10 percent of the true
values, while the Poisson–log-normal–GPD model delivers slightly
underestimated VaR at the 99 and 99.9 percent level (around �10
percent when T � 50), whereas the ES at the 99.9 percent level is
usually quite precise or slightly overestimated. Instead, using GPD
directly on the marginal losses Si results in strongly
underestimated risk measures, between �20 and �40 percent
when T � 50, while the empirical estimates are very close to the
theoretical VaR and ES when T � 500.

• True DGP-Poisson-Gamma (DGPs 9–16) (Table 21.3): The Poisson-
exponential model results in strongly underestimated risk measures,
around �50 and �70 percent, and the degree of underestimation
remains constant over the time dimension. The correct Poisson-
gamma model delivers negatively biased estimates when T � 50,
between �10 and �20 percent of the true value and the median biases
are slightly higher, thus highlighting a skewed empirical distribution
when small samples are of concern. When T � 500, the risk measures
are close to the true value and t statistics are already not statistically
significant. The Poisson-Pareto model produces strongly
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Table 21.2 VaR Estimation: Monte Carlo Results for DGPs 1–8 (Poisson-Exponential), T � 50

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 1 VaR 99% 101615 �6.38 �8.06 0.19 �10.53 VaR 99% 101615 �14.19 �19.82 0.34 �42.03

VaR 99.9% 185344 3.13 �3.34 0.41 2.42 VaR 99.9% 185344 �17.22 �31.11 0.54 �32.07

ES 99% 137452 1.50 �2.72 0.32 1.47 ES 99% 137452 �14.59 �24.49 0.44 �33.08

ES 99.9% 228411 28.30 9.41 1.06 8.47 ES 99.9% 228411 �2.96 �33.81 0.92 �3.23

DGP 2 VaR 99% 313211 �5.41 �6.92 0.20 �8.75 VaR 99% 313211 �14.27 �19.19 0.32 �44.86

VaR 99.9% 553840 4.72 �2.66 0.36 4.13 VaR 99.9% 553840 �17.05 �29.65 0.51 �33.55

ES 99% 415997 2.78 �1.70 0.29 3.04 ES 99% 415997 �14.57 �23.12 0.41 �35.22

ES 99.9% 674750 31.11 10.87 0.90 10.95 ES 99.9% 674750 �3.48 �31.57 0.87 �4.02

DGP 3 VaR 99% 330012 �19.85 �18.72 0.35 �17.69 VaR 99% 330012 �16.43 �24.96 0.53 �30.92

VaR 99.9% 723369 �10.50 �13.93 0.26 �12.78 VaR 99.9% 723369 �19.39 �36.29 0.68 �28.71

ES 99% 501148 �11.13 �11.45 0.27 �12.82 ES 99% 501148 �17.12 �28.82 0.60 �28.69

ES 99.9% 928222 0.23 �5.96 0.35 0.21 ES 99.9% 928222 �6.52 �40.79 1.06 �6.17

DGP 4 VaR 99% 1018803 �11.19 �12.26 0.22 �16.09 VaR 99% 1018803 �14.93 �21.54 0.38 �39.15

VaR 99.9% 2025206 �2.95 �6.66 0.27 �3.50 VaR 99.9% 2025206 �19.96 �36.36 0.59 �33.95

ES 99% 1443464 �3.55 �6.60 0.24 �4.64 ES 99% 1443464 �16.09 �28.55 0.50 �32.43

ES 99.9% 2555860 13.77 1.36 0.55 7.98 ES 99.9% 2555860 �5.41 �38.70 0.98 �5.52

DGP 5 VaR 99% 225753 �17.85 �17.87 0.34 �16.38 VaR 99% 225753 �17.69 �25.84 0.51 �34.57

VaR 99.9% 480685 �10.19 �12.93 0.27 �12.01 VaR 99.9% 480685 �18.77 �34.81 0.65 �28.86

ES 99% 336726 �9.82 �11.22 0.28 �11.14 ES 99% 336726 �17.25 �28.64 0.57 �30.11

ES 99.9% 616740 2.49 �4.43 0.40 1.95 ES 99.9% 616740 �6.00 �38.31 1.01 �5.95

(Continued )
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Table 21.2 VaR Estimation: Monte Carlo Results for DGPs 1–8 (Poisson-Exponential), T � 50 (Continued )

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 6 VaR 99% 45414 �8.42 �10.50 0.21 �12.52 VaR 99% 45414 �14.77 �21.67 0.38 �39.23

VaR 99.9% 88368 �1.62 �5.56 0.26 �1.97 VaR 99.9% 88368 �18.18 �34.28 0.59 �30.79

ES 99% 63756 �2.21 �5.11 0.23 �3.00 ES 99% 63756 �15.22 �27.25 0.49 �30.80

ES 99.9% 110906 16.53 3.89 0.54 9.67 ES 99.9% 110906 �2.51 �36.25 1.00 �2.52

DGP 7 VaR 99% 79651 �7.97 �9.50 0.21 �12.20 VaR 99% 79651 �15.27 �21.44 0.37 �41.65

VaR 99.9% 153445 �0.90 �6.48 0.29 �0.98 VaR 99.9% 153445 �18.96 �34.65 0.58 �32.96

ES 99% 111252 �1.77 �6.10 0.25 �2.26 ES 99% 111252 �15.98 �27.03 0.48 �33.29

ES 99.9% 192598 17.81 3.51 0.60 9.37 ES 99.9% 192598 �4.00 �37.13 0.97 �4.10

DGP 8 VaR 99% 88382 �15.41 �15.81 0.32 �15.27 VaR 99% 88382 �18.35 �26.09 0.48 �37.88

VaR 99.9% 184445 �8.23 �11.35 0.28 �9.33 VaR 99.9% 184445 �18.18 �34.42 0.65 �27.96

ES 99% 130202 �8.08 �10.02 0.27 �9.42 ES 99% 130202 �17.14 �28.69 0.56 �30.41

ES 99.9% 237017 5.11 �2.99 0.45 3.59 ES 99.9% 237017 �5.06 �38.00 1.02 �4.94
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Table 21.3 VaR Estimation: Monte Carlo Results for DGPs 9–16 (Poisson-Gamma), T � 50

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 9 VaR 99% 225010 1.39E+03 3.56E+01 1.87E+02 2.35 VaR 99\% 225010 �19.70 �30.69 0.52 �38.02

VaR 99.9% 560773 5.42E+07 1.22E+04 1.27E+07 1.35 VaR 99.9\% 560773 �26.51 �46.61 0.71 �37.57

ES 99% 366154 7.58E+15 8.68E+05 2.39E+15 1.00 ES 99\% 366154 �21.53 �38.77 0.64 �33.58

ES 99.9% 756196 3.64E+16 4.15E+06 1.15E+16 1.00 ES 99.9\% 756196 �10.02 �47.98 1.14 �8.82

DGP 10 VaR 99% 641189 1.99E+02 2.23E+01 1.61E+01 3.92 VaR 99\% 641189 �18.41 �27.44 0.47 �39.03

VaR 99.9% 1442803 3.86E+05 2.35E+03 8.52E+04 1.43 VaR 99.9\% 1442803 �23.19 �41.86 0.65 �35.44

ES 99% 979505 6.69E+08 2.27E+04 1.10E+08 1.92 ES 99\% 979505 �19.20 �33.63 0.58 �33.18

ES 99.9% 1877655 3.46E+09 1.14E+05 5.71E+08 1.92 ES 99.9\% 1877655 �6.46 �42.82 1.05 �6.16

DGP 11 VaR 99% 382391 �3.74E+01 �5.38E+01 6.82E�01 �17.31 VaR 99\% 382391 �23.24 �55.21 0.98 �23.61

VaR 99.9% 1629975 3.98E+02 6.50E+00 4.60E+01 2.74 VaR 99.9\% 1629975 �38.73 �66.91 0.89 �43.37

ES 99% 905140 1.42E+07 2.06E+03 1.99E+06 2.26 ES 99\% 905140 �29.99 �60.15 0.93 �32.18

ES 99.9% 2336919 5.46E+07 7.91E+03 7.64E+06 2.26 ES 99.9\% 2336919 �10.70 �62.05 1.39 �7.67

DGP 12 VaR 99% 2266368 4.16E+02 6.47E+00 8.58E+01 1.53 VaR 99\% 2266368 �24.07 �40.06 0.67 �35.98

VaR 99.9% 6756605 1.04E+09 1.41E+04 2.13E+08 1.55 VaR 99.9\% 6756605 �29.72 �52.25 0.82 �36.39

ES 99% 4155346 1.98E+20 7.52E+07 5.97E+19 1.05 ES 99\% 4155346 �24.42 �45.12 0.79 �30.92

ES 99.9% 9640343 8.45E+20 3.21E+08 2.55E+20 1.05 ES 99.9\% 9640343 �9.52 �52.64 1.35 �7.07

DGP 13 VaR 99% 283012 �2.91E+01 �4.33E+01 6.86E�01 �13.41 VaR 99\% 283012 �27.50 �55.93 0.91 �30.14

VaR 99.9% 1114108 5.46E+02 1.71E+01 4.42E+01 3.90 VaR 99.9\% 1114108 �38.22 �65.36 0.87 �43.88

ES 99% 632332 1.37E+07 2.66E+03 1.71E+06 2.53 ES 99\% 632332 �30.75 �59.22 0.90 �34.29

ES 99.9% 1581744 5.42E+07 1.06E+04 6.77E+06 2.53 ES 99.9\% 1581744 �10.01 �60.62 1.36 �7.34
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Table 21.3 VaR Estimation: Monte Carlo Results for DGPs 9–16 (Poisson-Gamma), T � 50 (Continued )

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 14 VaR 99% 65074�5.06E�02 �4.23E+00 3.23E�01 �0.05 VaR 99\% 65074 �17.39 �25.94 0.45 �38.61

VaR 99.9% 147027 2.51E+02 5.19E+01 8.48E+00 9.36 VaR 99.9\% 147027 �24.10 �42.19 0.65 �37.15

ES 99% 99513 6.54E+02 9.22E+01 2.66E+01 7.76 ES 99\% 99513 �19.30 �33.29 0.57 �33.84

ES 99.9% 193359 3.16E+03 4.13E+02 1.31E+02 7.64 ES 99.9\% 193359 �9.14 �44.63 1.05 �8.67

DGP 15 VaR 99% 218604 2.96E+06 4.13E+01 6.76E+05 1.39 VaR 99\% 218604 �25.62 �45.06 0.74 �34.75

VaR 99.9% 757972 5.08E+18 6.74E+07 1.23E+18 1.30 VaR 99.9\% 757972 �35.29 �59.68 0.82 �42.85

ES 99% 7.30E+37 1.86E+16 2.28E+37 1.01 ES 99\% 444283 �28.45 �52.19 0.82 �34.73

ES 99.9% 1122525 2.86E+38 7.29E+16 8.96E+37 1.01 ES 99.9\% 1122525 �15.42 �59.42 1.27 �12.17

DGP 16 VaR 99% 115926 �2.26E+01 �3.03E+01 5.53E�01 �12.95 VaR 99\% 115926 �27.23 �47.62 0.75 �36.17

VaR 99.9% 371620 1.70E+02 7.42E+00 1.45E+01 3.71 VaR 99.9\% 371620 �31.16 �55.00 0.81 �38.23

ES 99% 224627 6.61E+05 2.67E+02 1.53E+05 1.37 ES 99\% 224627 �26.38 �49.32 0.80 �32.87

ES 99.9% 514208 2.86E+06 1.15E+03 6.62E+05 1.37 ES 99.9\% 514208 �4.58 �51.25 1.32 �3.48
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Table 21.4 VaR Estimation: Monte Carlo Results for DGPs 17–24 (Poisson-Pareto), T � 50

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 17 VaR 99% 144665 �7.86 �19.63 0.47 �5.31 VaR 99% 144665 �13.10 �30.05 0.72 �18.20

VaR 99.9% 448613 �19.64 �41.42 0.77 �8.07 VaR 99.9% 448613 �31.12 �58.18 1.19 �26.10

ES 99% 278714 �14.72 �34.58 0.71 �6.55 ES 99% 278714 �23.63 �48.56 1.16 �20.37

ES 99.9% 799700 �21.86 �53.12 1.12 �6.15 ES 99.9% 799700 �28.73 �69.33 1.92 �14.94

DGP 18 VaR 99% 454143 �9.69 �19.76 0.43 �7.06 VaR 99% 454143 �13.64 �28.60 0.63 �21.73

VaR 99.9% 1327934 �21.68 �40.38 0.72 �9.54 VaR 99.9% 1327934 �30.20 �55.62 1.06 �28.51

ES 99% 837643 �16.58 �33.19 0.65 �8.10 ES 99% 837643 �22.97 �45.99 1.01 �22.85

ES 99.9% 2280756 �22.86 �50.25 1.03 �7.04 ES 99.9% 2280756 �26.87 �66.79 1.71 �15.71

DGP 19 VaR 99% 309696 �17.81 �23.39 0.45 �12.60 VaR 99% 309696 �8.98 �33.99 0.97 �9.22

VaR 99.9% 1165924 �14.50 �29.42 0.57 �8.11 VaR 99.9% 1165924 �33.68 �63.37 1.13 �29.89

ES 99% 686919 �14.51 �25.36 0.53 �8.59 ES 99% 686919 �25.26 �54.08 1.14 �22.21

ES 99.9% 2128319 �19.79 �42.92 0.92 �6.81 ES 99.9% 2128319 �33.09 �74.25 1.62 �20.49

DGP 20 VaR 99% 1324492 �9.25 �17.53 0.40 �7.29 VaR 99% 1324492 �11.33 �31.61 1.19 �9.56

VaR 99.9% 4444021 �20.65 �37.59 0.61 �10.78 VaR 99.9% 4444021 �28.99 �60.54 2.19 �13.24

ES 99% 2730023 �17.67 �31.74 0.55 �10.20 ES 99% 2730023 �22.01 �51.97 2.23 �9.87

ES 99.9% 8406870 �28.78 �51.22 0.81 �11.20 ES 99.9% 8406870 �26.47 �71.97 3.76 �7.04

DGP 21 VaR 99% 219709 �19.81 �26.00 0.45 �13.94 VaR 99% 219709 �14.34 �36.77 0.90 �15.87

VaR 99.9% 802824 �18.02 �32.20 0.57 �10.07 VaR 99.9% 802824 �34.70 �63.07 1.19 �29.12

ES 99% 475132 �17.27 �28.27 0.54 �10.03 ES 99% 475132 �27.00 �54.12 1.21 �22.33

ES 99.9% 1450893 �22.27 �43.10 1.01 �7.00 ES 99.9% 1450893 �32.59 �72.86 1.84 �17.75
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Table 21.4 VaR Estimation: Monte Carlo Results for DGPs 17–24 (Poisson-Pareto), T � 50 (Continued )

Poisson_LogNormal_GPD GPD_ONLY

T=50 True VaR Mean % Median % RRMSE T-stat T=50 True VaR Mean % Median % RRMSE T-stat

DGP 22 VaR 99% 55870 �9.20 �14.73 0.35 �8.25 VaR 99% 55870 �15.49 �28.25 0.57 �27.32

VaR 99.9% 149545 �12.38 �26.53 0.59 �6.65 VaR 99.9% 149545 �28.85 �51.59 0.96 �29.93

ES 99% 96083 �9.04 �20.19 0.51 �5.55 ES 99% 96083 �22.02 �42.31 0.90 �24.54

ES 99.9% 232701 �7.87 �34.10 0.91 �2.74 ES 99.9% 232701 �21.47 �60.18 1.66 �12.92

DGP 23 VaR 99% 108813 �5.18 �18.69 0.57 �2.86 VaR 99% 108813 �12.22 �31.81 0.78 �15.62

VaR 99.9% 376892 �15.02 �41.55 1.00 �4.77 VaR 99.9% 376892 �32.77 �62.25 1.19 �27.61

ES 99% 230677 �12.14 �35.63 0.91 �4.23 ES 99% 230677 �25.75 �53.59 1.17 �22.09

ES 99.9% 736264 �21.40 �56.84 1.38 �4.91 ES 99.9% 736264 �33.37 �74.22 1.74 �19.19

DGP 24 VaR 99% 89317 �13.82 �19.34 0.41 �10.76 VaR 99% 89317 �15.66 �34.99 1.35 �11.62

VaR 99.9% 302301 �16.05 �28.96 0.57 �8.93 VaR 99.9% 302301 �31.18 �59.61 2.50 �12.50

ES 99% 181472 �13.34 �23.46 0.49 �8.60 ES 99% 181472 �23.75 �50.74 2.62 �9.05

ES 99.9% 516015 �19.22 �38.50 0.83 �7.36 ES 99.9% 516015 �23.83 �69.07 4.87 �4.89
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underestimated estimates (�10 to �20 percent) which do not improve
when the time dimension T increases. Interestingly, the Poisson-log-
normal-GPD model results in exploding risk measures, particularly
the ES which is often over e16, which decrease very slowly when the
sample dimension T increases. Unreported results show that only 
when T � 10,000 this model starts delivering realistic risk measures.
Instead, if we apply the GPD directly on the losses Si, we obtain
strongly underestimated risk measures (mean bias, �20 to 
�30 percent; median bias, �40 to �50 percent) when T � 50, 
whereas much better estimates are obtained with T � 500 (around
�10 percent), even though they are still significantly different from
the true estimates.

• True DGP-Poisson-Pareto (DGPs 17–24): The use of the Poisson-
exponential marginal model result in strongly underestimated risk
measures, particularly the ES which can reach a mean bias of
�70 percent, and the degree of underestimation remain constant
over the time dimension, similarly to what we saw when the true
DGP is a Poisson-gamma model. The Poisson-gamma model results
in an overestimated VaR at the 99 percent level, while the other risk
measures are found to be underestimated, particularly the ES at the
99.9 percent level. A similar pattern is found for the correct
Poisson-Pareto model, too, which shows in some cases worse results
than the misspecified Poisson-gamma model when T � 50. When
the sample dimension increases, both models improve their
performances, but still some problems remain with ES at the 
99.9 percent level which is strongly underestimated (�20 to �30
percent). Interestingly, the Poisson–log-normal–GPD model is now
the one delivering the most precise estimates when T � 500,
particularly when ES is of concern, while its performance is similar
(if not better) to the Poisson-gamma and Poisson-Pareto models
when dealing with small samples (T � 50). Finally, the GPD
strongly underestimates all the considered risk measures when 
T � 50 (up to ms70 percent), while it delivers rather precise
estimates when T � 500.

To sum up, the previous simulation studies show that EVT works fine with
medium to large datasets (T � 500), particularly if the GPD is directly fit-
ted to the losses Si, while it is rather problematic when dealing with small
samples. In this case, the Poisson-gamma model represents a good compro-
mise if both Var and ES are of concern, while the Poisson-Pareto model is
a more suitable model for extremely high ES estimates.
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EVT AND MARKET RISK MANAGEMENT:
EMPIRICAL EVIDENCE WITH RECENT 
U.S. DATA

In this section, we present four different EVT estimators and two standard
methods, and we compare them by computing VaR at different confidence
levels for the S&P 500 index over the period from January 2, 2003, to May
5, 2009, thus including the recent global financial crisis.

EVT Estimators

Proposition 1: Estimation Algorithm for VaR Based on 
AR(1)-T-GARCH(1,1) Model

This is the benchmark model for financial returns; see, for example, Han-
sen and Lunde (2005) and references therein.

• Step 1: For log-returns during any fixed consecutive 1,000 days
interval (within the considered period of time), which we denote 
as [T – 999, T ], to estimate the parameters of and AR(1)-T-
GARCH(1,1) model, which is specified as

(21.1)

where (ηt) are i.i.d. random variables, which have student distribution
with some ν degrees of freedom; µ,ϕ as the real-valued parameters of
the model and ω,α,β,ν as the positive real-valued parameters of the
model (to ensure positive conditional variance).

• Step 2: Using the model specification and its estimated parameters,
we calculate VaR at 1 percent level (lower tail) and 99 percent level
(upper tail) for the distribution function of XT�1, respectively, as
follows:

(21.2)

where for 0 � α � 1 the value st ν̂
�1(α) is defined as α-th quantile of

the student distribution with ν̂ degrees of freedom.1 Herein, we will
denote the estimates by the letters with hats.
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Proposition 2: Estimation Algorithm for VaR Based on 
AR(1)-T-GJR(1,1) Model 2

• Step 1: We consider the log-returns during any fixed consecutive 
1,000 days interval (within the considered period of time), which
denote as [T – 999,T], and for them we estimate the AR(1)-T-GJR(1,1)
model, which has the following specification:

(21.3)

where (ηt) are i.i.d. random variables, which have student distribution
with some ν degrees of freedom; I(εt�1 � 0) as the indicator-function 
of the event (εt�1 � 0); µ,ϕ as the real-valued parameters of the model
and ω, α, ξ, β, ν as the positive real-valued parameters of the model 
(to ensure the positivity of the conditional variance). As compared with
the previous AR(1)-T-GARCH(1,1) model, in which the positive and
negative shocks have the same effects on conditional mean, the AR(1)-
T-GJR(1,1) model takes into account the asymmetries in impacts of
positive and negative shocks on the volatility (or equivalently, on
conditional volatility), which are proper for financial time series.

• Step 2: Using the model specification and its estimated parameters, 
we calculate the VaR at 1 percent level (lower tail) and 99 percent
level (upper tail) for the distribution function of XT�1, respectively, 
as follows:

(21.4)

where and for 0 � α � 1 the 

value st�1ν(α) is defined as α-th quantile of the student distribution
with ν degrees of freedom.

Proposition 3: McNeil and Frey’s Approach for Estimation of VaR3

• Step 1: By using the pseudo-maximum likelihood approach, we fit an
AR(1)-GARCH(1,1) model (with normal standardized innovations) to
the log-returns for the fixed period [T – 999,T ], where T � 1000,…, N

σ ω αε ξ ε βσ
εT T
T

T TI+ + + +1
2

(

2 2= >0) ;ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ
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(N is the number of the last day in our sample) and calculate the implied
model’s standardized residuals.4

(21.5)

The procedure of Step 1 is called AR(1)-N-GARCH(1,1) filtration.
• Step 2: We calculate the levels from which extremely positive or

extremely negative standardized residuals will be defined. For the
extremely positive standardized residuals, the level equals 90 percent-
order statistics (denoted as U(T )) and every standardized residual,
which excesses this level is considered as extremely high. Then, we
calculate the values of excesses relative to them (which we call the
upper tail exceedances). For the extremely negative standardized
residuals, the level equals 10 percent-order statistics (denote it as
L(T )) and every standardized residual, which is lower than this level,
is considered as extremely low. Then, we calculate the differences
between the 10 percent-order statistics and extremely low residuals
(which we call the lower tail exceedances).

• Step 3: We fit the generalized Pareto distribution to the upper 
tail exceedances and to the lower tail exceedances, respectively:
G( y) �1– (1 � ξ

y—β )�1/ξ, using the method of the maximum
likelihood. Denote ξU, βU as the estimators of GPD for the upper tail
exceedances and ξL, βL as the estimators of GPD for the lower tail
exceedances.

• Step 4: Finally, we calculate VaR at 99 percent level (lower tail) and at
1 percent level (upper tail) for the distribution function of XT�1. Let’s
denote with F(x) the distribution function of the standardized
residuals Z. We have that: 

For x � U(T ) we approximate F(x) by the empirical distribution
function of the standardized residuals. Thus, 1 – F(U(T )) is
approximated by 0.1. And for x � U(T ) we approximate 
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So that the p-th quantile (where 0.9 � p � 1) of the distribution
function F(x) approximation is calculated as: 

Similarly we get that p-th quantile (where 0 � p � 0.1) of the
distribution function F(x) approximation is calculated as: 

For more detail see Frey and McNeil (2000) and references therein.
Therefore, we have

(21.6)

Proposition 4: Gonzalo and Olmo’s Approach for Estimation of VaR5

• Step 1: We make AR(1)-N-GARCH(1,1) filtration as in the first step of
Proposition 3.

• Step 2: We compute the set of Hill’s estimators extremal indexes6

(γ l(k)), (γ u(k)) both for the lower and upper tail of the distribution
function for standardized residuals. Suppose that we have mu positive
standardized residuals η̂u

1,…, η̂u
mu

and let 0 � η̂u
(mu ) � …� η̂u

(1) be their
ordered statistics. Then the set of Hill’s estimators (γu(k)) is defined as
follows: 

where 1 � k � mu � 1. We will call the order statistics η̂u
(k�1) the k �

1-th upper threshold. For the negative standardized residuals, we
consider their absolute values and construct for them the set of Hill’s
estimators (γ l(k)) as for the positive standardized residuals.

• Step 3: In order to get the estimator for the upper tail quantiles, we
consider the sequence of functions corresponding to the upper
thresholds (η̂u

(k�1)):
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Suppose F̂η̂u
(k�1)

( y) is the empirical distribution function for the η̂u
1, …, η̂u

mu
exceeding the threshold η̂u

(k�1). We regard γu(k0) as optimal estimator of the
upper tail extremal index, if the following equity holds: 

Let’s denote with F(x) the distribution function of the standardized residu-
als Z. For all x we have: 

we approximate F(x) by the empirical distribution function of the standard-
ized residuals (not only positive standardized residuals). Thus 1�F (η̂u

(k0�1))
is approximated by k0/N, where N is the size of the standardized residuals
sample. And for x � (η̂u

(k0�1)), we approximate

So that the p-th quantile (where 0.9 � p � 1) of the distribution function
F(x) approximation is calculated as:

Analogously, we have for the lower tail, that the p-th quantile (where 0 � p
� 0.1) of the distribution function F(x) approximation is calculated as: 

where k1 corresponds to the optimal threshold η û
(k1�1) for absolute values of

the negative standardized residuals. For more detail see Gonzalo and Olmo
(2004). Hence, we have:

(21.7)
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Proposition 5: Huisman, Koedijk, and Pownell’s Approach for
Estimation of VaR7

• Step 1: We make AR(1)-N-GARCH(1,1) filtration as in the first step of
Proposition 3.

• Step 2: We compute the set of Hill’s estimators extremal indexes8

(γ l(k)), (γ u(k)) both for the lower and upper tail of the distribution
function for standardized residuals. Suppose that we have mu positive
standardized residuals  η̂u

1, …, η̂u
mu and let  0 � η̂u

(mu ) � …� η̂u
(1) be their

ordered statistics. Then the set of Hill’s estimators (γu(k)) is defined as
follows:

where k � 1,…, mu�1. For the negative standardized residuals we
consider their absolute values and construct for them the set of Hill’s
estimators (γ l(k)) similarly as for the positive standardized residuals.

• Step 3: Under certain regularity conditions of the distribution
function with heavy tails, we can consider the following model for
(γu(k)) (and for γ l(k)):

(21.8)

where E(γu(k)) � γ u � bu
1k, Var (εu

k) � σ2/k and γ u is the true value of
the extremal index for the upper tail of the distribution function.
Then we can estimateγ u by using the method of weighted least
squares with a weighting κ � κ matrix W (that has (��1, …,��κ ) on
the main diagonal and zeroes elsewhere). Analogously we may
estimate γ l as the true value of the extremal index for the lower tail of
the distribution function.

• Step 4: We compute the upper tail p-th quantiles (0.9 � p � 1) for the
standardized innovations as follows: 

And the lower tail p-th quantiles (0 � p � 0.1) in the following way: 
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where γ l is the estimator for the lower tail extremal index.
Multiplication by 

is needed for the standardization. Finally, we calculate the VaR at 1
percent level (lower tail) and 99 percent level (upper tail) for the
distribution function of XT�1, respectively, as follows:

(21.9)

Empirical Analysis

In order to illustrate the comparative analysis of the algorithms described in
the preceding subsections, we use the S&P 500 index over the period from
January 2, 2003 to May 5, 2009. We analyze the quality of 1 percent (lower
tail) and 99 percent (upper tail) VaR measure for the log-returns Xt of the
daily prices Pt estimation, for which we have Xt � log(Pt) – log(Pt�1), 
t �1001, …, 1604 (t � 1604 corresponds to the date May 5, 2009). If we
use the perfect VaR models, the violations should not be predictable and the
VaR0.99 (Xt VaR0.01(Xt), violations should be simply percent and percent every
day, respectively. We employ both the Kupiec’s unconditional coverage test
(1995) and the Christoffersen’s conditional coverage test (1998), given their
importance in the empirical literature. However, we remark that their
power can be very low. Alternatively, one can consider tests based on the
whole distribution, such as Berkowitz (2001) or Granger, Patton, and
Terasvirta (2006).

Table 21.5 highlights some mixed results and the outcomes are not as
satisfactory as one may have expected, particularly for the standard EVT
estimators discussed in propositions 3 and 5.

CONCLUSION

We have presented and discussed the results of a Monte Carlo study of the
small-sample properties of EVT estimators, where the simulation DGPs
were designed to reflect the stylized facts about real operational risk. We
found out that EVT works fine with medium to large datasets (T � 500),
particularly if the GPD is directly fitted to the losses Si, while it is rather
problematic when dealing with small samples. Next, we compared different
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EVT estimators to compute risk measures for market risk management
using very recent U.S. data up to May 2009. Standard EVT estimators were
not completely satisfactory.
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NOTES

1. We remark that for each 0 � α � 1 we have st�1.ν(α) � �st�1ν(1 � α).
2. This model was firstly proposed by Glosten, Jagannathan, and Runkle

(1993).
3. The detailed description of the model is presented in McNeil and Frey

(2000).
4. If the model is tenable, the residuals should behave like the realizations

of the i.i.d. random variables.
5. A detailed description of the model is presented in Gonzalo and Olmo

(2004).
6. For more detail about Hill’s estimator, see Hill (1975).
7. The detailed description of the model is presented in Huisman,

Koedijk, and Pownall (1998).
8. For more detail about Hill’s estimator, see Hill (1975).
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ABSTRACT

In this chapter the model risks inherent to the first two steps of generating
counterparty exposure profiles will be discussed. First, future market sce-
narios have to be generated. Under these scenarios the over-the-counter
derivatives portfolio of a counterparty has to be revalued to measure its
exposure; different evolution dynamics have to be chosen. Each choice car-
ries, therefore, a certain portion of model risk. The actual revaluation of
the derivative positions in the second step usually relies on simplified meth-
ods (at least compared with typical market risk and P&L calculations).
Hence, another portion of model risk is inherent to the choice of these sim-
plifications needed to keep the task tractable within a reasonable timeframe.

Consequently, the chapter aims at identifying the different sources of
model risk and tries to classify and identify potential issues of these risks in
counterparty exposure measurement.

INTRODUCTION

Modeling of counterparty exposures is one of the most challenging tasks on
the borderline between market and credit risk. Even under mild assumptions
on the methods used to produce so-called counterparty exposure profiles,



various assumptions and asset dynamics have to be specified, as well as the
choice of fast but still adequate pricing models that lead to an important por-
tion of model risk which is essential knowledge for each risk manager.

Counterparty exposure profiles contain the information of the amount
of money the financial institution is exposed to a certain counterparty at a
certain point in time in the future. If the market value of all outstanding
contracts, e.g., over-the-counter (OTC) derivatives or securities financing
transactions, is positive, a default of the counterparty at a particular point
in time will lead to an unwinding of these positions, producing a loss. Since
the exposure is nothing else but the positive market value of the (possibly
netted) counterparty portfolio, it depends on the market environment at
that particular time. Despite the situation of classical credit exposures (say,
loans) a direct modeling of potential future market scenarios is necessary
under which all contracts have to be revalued. Thereafter, according 
to applicable margin agreements and credit support annexes (CSA), the
resulting market values have to be aggregated (in the respective netting
sets) to produce the overall counterparty exposure at that particular point
in time.

Hence, counterparty exposure profiles are generated along three steps
in which we follow the same lines as Pykhtin and Zhu (2006); a somewhat
refined view is given by Tang and Li (2007) and excellent brand new
monographs of Cesari et al. (2009) and Gregory (2009), who also deal
with credit valuation adjustments (CVA), i.e., incorporating counterparty
risk into the pricing, which is not a subject we deal with in this article. We
aim at discussing the model risks inherent to measuring counterparty
credit risk for risk management purposes only. In particular, we focus on
those model risks that arise in the first two steps in scenario generation
and instrument pricing in detail, while the third step on aggregation
(which is necessary for collateralized exposures only) will be dealt with in a
follow-up publication.

In the first step, future market scenarios have to be generated. Under
these scenarios, a counterparty’s OTC derivatives portfolio has to be reval-
ued to measure its exposure. Different evolution dynamics for the driving
risk factors have to be chosen and each choice carries, therefore, a certain
portion of model risk.

Additionally, the actual revaluation of the OTC derivative instrument
usually relies on simplified methods (at least compared with typical market
risk and P&L calculations). Hence, another portion of model risk is inher-
ent in the choice of these simplifications needed to keep the task tractable
within a reasonable timeframe.
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Consequently, the chapter aims at identifying the different sources of
model risk and attempts to classify and identify potential issues of these
risks on counterparty exposure measurement.

BASIC INGREDIENTS OF A CREDIT RISK
MEASUREMENT SYSTEM

A counterparty credit risk measurement system (CRMS) usually consists of
three main components already sketched in the introduction to calculate a
total exposure profile per counterparty portfolio.

• First, an economic scenario generator (ESG) is used to produce
future realizations of the risk factors relevant to the institution’s
positions on a certain set of dates defined by a prespecified 
time grid.

• Second, these risk factors are used to revalue the positions at certain
future points in time to calculate the relevant exposure.

• Finally, a collateral model is superposed to come up with an
aggregated view on the total exposure of a counterparty portfolio,
taking into account any collateral and margin agreements that are in
place to reduce the exposure. At this step, all exposures are
aggregated and a statistical measure, e.g., the mean of the future
distributions of market values (which yields the so-called expected
exposure (EE), expected positive exposure (EPE), or effective
expected exposure (EEPE)), or a quantile (for the so-called potential
future exposure (PFE)1) is calculated on portfolio, counterparty,
netting set, or single trade level.

Each of these steps (cf. also Figure 22.1) is subject to different aspects of
model risk and, therefore, has to be treated separately in the following dis-
cussion. For this purpose, we will focus on the first two steps in this article
and begin with short descriptions of typical implementations following
Pykhtin and Zhu (2006).

In particular, calculation time constraints have to be actively taken into
account since, in contrast to a single present value calculation for P&L and
market risk purposes, all revaluations have to be performed at any future
time step to calculate a present value (PV) at that point in time given the
scenario produced by ESG. Hence, complex products can often not or at
least not completely be treated by CRMS because such products would
require Monte-Carlo-on-Monte-Carlo calculations.
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For these reasons, model risk inherent to CRMS is by far more com-
plex than in classical market risk models. In order to analyze the different
sources of model risk, we start with describing the respective steps in
more detail.

Methods to Generate Future Economic Risk Factor Scenarios
(Economic Scenario Generation)

Potential market scenarios are generated in all relevant market risk factors
at different times in the future on a prespecified time grid of dates. This
simulation time grid is usually chosen to have daily and, after a few weeks,
weekly or monthly time-steps in the short end while the grid points
become sparser in the mid- and long term. The fixed simulation time grid
can also be enriched by additional, portfolio- or trade-specific time buckets.
By this, risk-relevant cash flows can be incorporated according to the
underlying payment schedule(s) because certain cash flows may significantly
influence the total balance of the counterparty exposure.

Typically, the evolution of interest rates, FX rates, equity prices, credit
spreads, and commodity prices can be generated in various ways. Some-
times, factor models are used, e.g., by modeling equity indexes and using
beta regressions for deriving single share prices; while in other cases evolu-
tion dynamics similar to those used in models for instrument pricing are
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used, e.g., by choosing short rate or LIBOR market models to model the
evolution of the term-structure of interest rates in the needed currencies
(cf., e.g., Reimers and Zerbs (1999), Zerbs (1999), or Hegre (2006) and
Beck (2010)).

The dynamics of risk factors are in most cases based on log-normal or
mean-reverting stochastic processes governed by Brownian motions evolv-
ing under the empirical measure. This modeling approach is in concor-
dance with the usual dynamics specified for risk measurement (e.g., in
market risk measurement systems) which are generically built on the real
measure based on historical data (and not necessarily constrained to a risk
neutral framework; see the section “Methods for Pricing Financial Instru-
ments”). For example, in a front-office pricing model, the interest rate sce-
narios are usually generated by construction of zero rates or discount
factors using the market prices of government bonds or swap rates. How-
ever, such construction is in most cases computationally expensive and the
forward rates or forward volatility surfaces implied from these may be too
insensitive to mimic possible real-world changes over the considered time
horizon as a consequence of arbitrage-free constraints.

Thereafter, the dependent evolution of risk factors is usually modeled
by correlating the driving stochastic processes governing the single risk
factor evolutions. Typically, correlated Brownian motions are based on
empirical covariance matrices which were estimated from historical time
series for the governing risk factors. This is aimed at ensuring the consis-
tency and reasonableness of (real) market scenarios generated by the differ-
ent stochastic processes (see later on in this chapter for a deeper discussion
of this subject).

Methods for Pricing Financial Instruments

The methods used for pricing financial instruments are in principle the
same as for market risk purposes. But due to the problem to revaluate the
whole OTC derivative portfolio at a large number of future simulation dates
the possibility to run complex and calculation power and time consuming
algorithms is rather limited. In contrast to the pricing for P&L purposes,
computationally intensive models have to be replaced by analytical approxi-
mations or simplified models which might be less accurate but efficient 
(see also Gregory, 2008).

Using a Brownian bridge technique, the so-called conditional valuation
approach by Lomibao and Zhu (2005), even path-dependent exotics (of the
first generation, e.g., barrier options, Asian options, or swap-settled swap-
tions) can be revalued in an efficient manner consistent to the paths generated
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under the economic scenario generators and the plain vanilla derivatives
priced based on these scenarios.

SPECTRA OF MODEL RISKS IN A COUNTERPARTY
CREDIT RISK MEASUREMENT SYSTEM

As seen in the previous section we need to distinguish the three fundamen-
tal steps in generating exposure profiles before we can measure some kind
of total model risk of a CRMS. According to the above description of the
measurement process we define:

• Scenario generation risks as those model risks (including all aspects of
specification, estimation and implementation risks) that occur by
specifying the evolution of risk factors and all relevant assumptions on
the choice of risk factors and time buckets as well as generating
overall consistent future market scenarios.

• Pricing risks as those model risks (including all aspects of
specification, estimation, and implementation risks) inherent to 
the specific requirements on instrument model pricing routines 
that are needed to evaluate the counterparty’s positions in a fast but
adequate manner.

• Aggregation risks as those model risks (including all aspects of
specification, estimation, and implementation risks) occurring in the
process of aggregating the counterparty’s exposures, recognizing any
eligible netting agreements, and modeling the margin process
including collateral valuations, etc. We will consider these risks in a
forthcoming publication in more detail (see Martin, 2009a).

Furthermore, any model risks inherent to bilateral counterparty risk val-
uation models or credit valuation adjustments (CVA) measurement routines
(for an introduction, see the new monographs of Cesari et al. 2009 or 
Gregory 2009 and the work by Brigo and his collaborators 2008a, 2008b,
2009; Gregory, 2009; or Crépey, Jeanblanc, and Zargari, 2009) will also not
be covered by this article. The corresponding model risks might be classi-
fied as those model risks inherent to pricing and hedging collateral risk on a
single trade level (see Martin, 2009b). Finally, any model risks occurring in
economic capital calculations via the so-called alpha factor and due to an
inadequate assessment of wrong way risks can not be covered by this article
(for an introduction to the alpha factor and wrong way risk issues, see
Wilde (2005)).
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Sources of Model Risk in Economic Scenario Generation

The overwhelming portion of model risk dominating the scenario genera-
tion risk is the specification risk of risk factor evolution dynamics in 
scenario generation, including the choice of risk factors and adequate
future simulation dates, the stochastic dynamics used to model interest
and FX rates, stock and index prices, credit spreads, commodity futures,
and so on which directly influences the overall level of counterparty risk
measure.

For example, using a simple log-normal process for describing the evo-
lution of interest rate or FX rates might lead to unrealistically large or
small future rates and, consequently, to an overestimation of counterparty
exposures resulting from instruments sensitive to these risk factors. On
the other hand, too simplistic modeling approaches might lead to an
underestimation. Take the case when a term structure model would only
be able to generate future market scenarios which are due to parallel shifts
of today’s term structure or when an important (class of ) risk factor(s) is
not even stochastically modeled while being an important contributor to
the total counterparty risk.

A possible solution to a reduced way to model future market scenarios
can in some cases be achieved by Martingale resampling methods proposed,
e.g., by Tang and Li (2007). These techniques could also be of great impor-
tance for the generation of realistic and consistent future market scenarios
which often carry a further portion of model risk. Given the idealized situ-
ation that we have perfectly chosen the evolution dynamics for all relevant
risk factors as well as the simulation time grid, one has to define a way to
generate a correlated scenario at each future simulation date. To do so, the
driving stochastic processes have to be modeled in a correlated fashion,
which is an ambitious task because of the diversity of processes needed to
describe the risk factor evolutions. The easiest way is to assume a multivari-
ate normal distribution or normal copula to specify this dependency based
on covariance matrices derived empirically. Both choices carry an enormous
portion of model risk or, more precisely, specification risk (see, e.g., Frey,
McNeil, and Nyfeler, 2001).

But the consistency within a simulated future market scenario has to be
checked additionally, for example, the well-known link between credit
spreads and stock prices implies that a defaulting or close-to-defaulting cor-
porate cannot have a high equity share value while the credit spread indi-
cates the closeness-to-default and vice-versa. Hence, consistency checks
have to be established to ensure that the simulated scenario makes sense
economically and, therefore, to reduce the specification risks.
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Unfortunately, this is still not the full picture of model risks that have to
be subsumed to scenario generation risks. When it comes to generating the
actual market scenarios over a long time horizon, it is essential to use con-
tinuous-time models (of path-dependent simulation or direct-jump to simu-
lation date type as proposed by Pykhtin and Zhu, 2006) or sophisticated
discret izat ion schemes to ensure the st rong convergence of the 
sampled scenario paths to the prespecified risk factor distributions (see
Kloeden and Platen, 1999, for an overview on different methods). Clearly,
these estimation risks will be of second order compared with the overall
noise in risk factor evolutions on a long simulation horizon for plain vanilla
instruments but might become of higher importance for more complex an
exotic deals with long-term maturities.

Sources of Model Risk in Pricing Models

Only to a small extent are the pricing risks similar and of the same spirit as
in classical market risk modeling as far as the accuracy of pricing models is
considered as an isolated goal (see Bossy et al., 2001; Branger and Schlag,
2004a, 2004b; Courtadon, Hirsa, and Madan, 2002; Gibson et al., 1998;
Hull and Suo, 2001; Kerkhof, Melenberg, and Schumacher, 2002; Rebonato,
2005; Derman, 1997; Martin (2005); as well as Ammann and Zimmermann
(2002), which is the only study of pricing risk in the context of CRMS).
Nevertheless, the counterparty risk modeling specific aspects have to be
explicitly discussed since the choice of a certain instrument model for coun-
terparty risk measurement purposes is in almost all cases a trade-off
between accuracy and computational efficiency. This topic has never been
treated in academic literature before such that even no measures are pub-
licly available supporting the risk manager in her decision. Since the partic-
ular decision process has to be taken into account to thoroughly quantify
the model risks, we can only provide a rather vague framework on the
model risks arising in this context.

In principle, a recalibration of each pricing model (or change to the risk
neutral or pricing measure) would be necessary at every future simulation
date given the simulated real market scenario (i.e., the market scenario gener-
ated under the real or empirical measure). Hence, a simple way to assess the
first-order model risk is to compare the market value distributions generated
under the empirical or real measure and under the risk neutral measure
(instead of performing numerous recalibrations). The use of so-called 
“stochastic deflator techniques” that enable a pricing of financial instruments
under the empirical measure is a relatively new development in actuarial
mathematics and has to be further investigated for these purposes as well.
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Another question refers to the consistency of dynamics specified in ESG
for the universe of tradable plain vanilla instruments and those stochastic
evolution models used in pricing models which we can easily demonstrate
by an example as follows: assume a jump-diffusion dynamics is deemed nec-
essary for the stochastic evolution of a certain share. On the other hand,
when it comes to pricing an option on this share a Black-Scholes–type for-
mula is used that assumes a complete market and a log-normal distribution
of the underlying asset. Hence, the evolutionary dynamics of the option
pricing model and the simulated asset distribution of the underlying are not
consistent, which might lead to over- or underestimation of risks in one or
the other direction (depending on the financial institution’s positions). In
this particular situation even the elsewhere very helpful Martingale resam-
pling techniques by Tang and Li (2007) won’t apply such that at least an
empirical study on a set of benchmark trades has to be performed to get a
better idea on whether the resulting effects have a conservative or progres-
sive impact on the counterparty exposure.

Aggregation of Model Risks

Overall, the two steps described above describe the model risks occurring
in portfolios with uncollateralized trades only. Even in this simplified case
the aggregation of scenario generation risks and pricing risks to an overall
model risk is extremely difficult to obtain. A rather general framework to
assessing the model risk of (general) pricing models was given by Cont
(2006). In this section, we aim at adjusting these requirements for a meas-
ure of model uncertainty (which is equivalent to our term “model risk”
used throughout this chapter) for our purposes.

1. For liquidly traded plain vanilla instruments whose driving risk
factors are modeled stochastically in the CRMS, the price is
determined by the market within a bid-ask spread, i.e., there is no
(market risk) model uncertainty on the value of a liquid instrument
which is a basic ingredient of simulation of the future market
scenarios. The modeling exercise therefore should emphasize the
importance of these instruments and adequacy of the corresponding
risk factor evolutions which should be tested in-depth historically (in-
sample and out-of-sample).

2. Any measure of model uncertainty for CRMS must take into account
the possibility of setting up (total or partial) hedging strategies in a
model-free way. If an instrument can be replicated in a model-free
way, then its value involves no model uncertainty; if it can be partially
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hedged in a model-free way, this should also reduce the model
uncertainty on its value. Hence, the CRMS should be designed to
recognize these possibilities in order to reduce the computational
burden and the pricing model risks as well.

3. When some instruments (typically, European-style call or put
options for short maturities and strikes near the money) are available
as liquid instruments on the market, they can be used as hedging
instruments for more complex derivatives, but also carry important
information on the risk-neutral counterparty exposure of the
underlying (as their market value is a measure for the counterparty
exposure of the plain vanilla underlying for the time to maturity of
the option). This information can be used to challenge the
corresponding risk factor evolution (in particular concerning the
short-term, at-the-money, volatility assumptions for the driving risk
factor(s)). This procedure will ensure a consistent short-term
prognosis given today’s information which is essential for prudent
risk management purposes.

4. If one intends to compare model uncertainty with other, more
common, measures of counterparty exposure risk of a portfolio, the
model uncertainty on the value of a portfolio today as well as on a
future simulation date should be expressed in monetary units and
normalized to make it comparable to today’s market value and the
future exposure measure of the portfolio.

5. The consistency, mathematically and economically, of the generated
scenarios and techniques applied to revalue the counterparty
portfolio, netting sets, or single trades has to be ensured by
additional manually or automatically performed checks of the
simulated future market scenarios. This includes any estimation
techniques for assessing discrepancies in the dynamics of risk factor
evolutions and pricing models.

Given these guidelines a basic framework might be set up for studying
the model risk of counterparty risk measurement systems following
broadly the lines of Cont (2006). A thorough study of these ideas has to be
carried out with supporting empirical studies which go beyond the scope
of this chapter.

Nevertheless, the model risk measurement process for counterparty
exposure measurement systems has to be embedded into the overall risk
management and risk controlling processes that are of vital importance for
the internal validation process of CRMS. Certain additional processes
should also be incorporated into the daily market and counterparty risk
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management and measurement; e.g., one can compare the market values of
all instruments that were delivered on one hand by daily P&L calculation
processes with those market values obtained from (possibly simplified) pric-
ing models in the CRMS. These differences might be used to set up devia-
tion limits which might trigger an in-depth analysis of a single-pricing
routine or the CRMS as a whole.

In market risk measurement systems the well-established backtesting
processes and methodologies usually also provides insights into the perfor-
mance of pricing models and the overall measurement system. Up to now
there seems to be no comparable standard for backtesting exposure meas-
urement systems which, again, are harder to assess than market risk meas-
urement models (in particular due to the extremely long forecast horizon,
which in turn means that the influence of correlations and auto-correlations
must not be neglected).

CONCLUSION

This chapter aimed at providing a first assessment of possible approaches to
measure and manage the model risks of CRMS. In fact, it provides a formal
but practical classification structure for identifying the sources of model
risks according to the process of generating future market value distribu-
tions and exposure measures.

This also points to several fields of potential future research. Currently
there is no aggregation scheme known for measuring the overall effect of
the different sources of model risks. Furthermore, empirical studies should
be undertaken to tackle the distinct sources in more detail; e.g., the use of
analytical approximations in pricing of more complex OTC derivatives is
computationally extremely attractive such that there is a trade-off between
pricing accuracy, computational efficiency, and the resulting model risk which
has to be analyzed carefully. Finally, the question of adequately modeling 
collateral processes adds an additional layer of complexity and hence model
risks which will be analyzed and classified in a forthcoming research work.
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1. For a discussion and concise definitions of these counterparty exposure
measures, see Pykhtin and Zhu (2006) or Pykhtin (2005).
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ABSTRACT

The loss distribution of a credit portfolio depends on default probabilities,
exposures, and recovery rates. Moreover, certain background factors impact
significant parts of the portfolio. The dependence of loans to those factors
is often modeled in a Gaussian framework. For homogeneous portfolios
with Gaussian background factors, Vasicek (1991 and 2002) provided an
analytic formula for the overall loss distribution. His formula turned out to
be useful for many practical situations. Starting from that, we shall see that
main input factors are not well known in a financial institution’s database.

In this chapter, we will study the impact of misjudging the model’s
parameters on the risk estimate. Each important parameter will be exam-
ined separately. Furthermore, we try to identify possible indicators of
wrong estimates.

INTRODUCTION

In today’s credit portfolio models, portfolio behavior depends on default
probabilities, exposures, and recovery rates. Moreover, certain background
factors (macroeconomic factors) have an impact on significant parts of the
portfolio. The dependence of loan defaults to those factors is often modeled
using a Gaussian framework. For homogeneous portfolios, Vasicek (1991
and 2002) provided an analytic formula for the overall loss distribution. His
formula turned out to be useful for many practical situations. It has even
been made the heart of the Basel II accord for regulatory capital. Starting



from this formula, we shall see that the main input factors are not well
known in a financial institution’s database.

In this chapter, we will study the impact of misjudging the model’s
parameters on the risk estimate. Each important parameter will be exam-
ined separately. Furthermore, we will try to identify possible indicators of
wrong estimates.

VASICEK’S ONE-FACTOR MODEL

The underlying idea is a large homogenous portfolio. Every obligor has an
ability-to-pay or “asset value” which can be decomposed into a systematic
and specific part.1

(23.1)

G and all of Zi are assumed to be independent standard normal distributed
random variables. The only source of dependence between two obligors is
via their respective exposures to the global factor G, which can be inter-
preted as an economic factor.

An obligor i defaults, if Xi falls below a default threshold ci. This makes i’s
default probability equal to Φ(ci).

In a large homogenous portfolio, all exposures and all default probabili-
ties are equal, so are all the asset correlations ρi. The number of obligors is
assumed to be large. In fact, the following approximations are derived for n
approaching infinity.

Vasicek (2002) showed that under these circumstances, assumptions for
the overall portfolio loss (called L) has the following distribution function:2

(23.2)

which we shall call the “Vasicek-distribution.” It has two parameters: the
default probability p and asset correlation ρ.

Vasicek (2002) suggested using F(V,p,ρ) to fit loan portfolio loss distribu-
tions with more complex properties (like heterogeneous default probabili-
ties, positive recoveries, etc.) or those which were obtained differently, e.g.,
by multifactor models.

For this reason, we frequently utilize moment-matching. The expected
loss and the variance of a loan portfolio are calculated analytically or by a
small number of simulations.3 The relations4
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E(L) � p (23.3)

Var (L) � Φ2 (Φ�1( p), Φ�1( p), ρ)�p2 (23.4)

(where Φ2 denotes the cumulative bivariate Gaussian distribution function)
can then be used to calculate the appropriate p and ρ for the best-matching
Vasicek distribution.5

The α-quantile of this distribution is given by6

Lα � Fv,p,ρ (α, 1 � p, 1 � ρ) (23.5)

which is important for risk measurement, since credit risk is regularly
measured with quantile-related numbers such as value at risk or expected
shortfall7 (see Figure 23.1).

Wehrspohn (2003) showed that Vasicek’s model is extendible in a
straightforward way to portfolios consisting of several significant subport-
folios with different probability of default or asset correlation.

In this chapter we shall focus on the modeling of

• Probabilities of default
• Asset correlations
• Distribution assumptions
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For each of these influencing factors, we shall ask ourselves about the
potential impact of possible estimation errors, a realistic range in which the
estimates may vary and a way to assess the quality of our estimates or
assumptions.

PROBABILITIES OF DEFAULT

The most fundamental input to credit risk models is the probability of
default (PD). It is usually estimated using the bank’s own loss database
combined with publicly available default information, such as rating agen-
cies’ reports. By its nature, a debtor’s PD is an estimate.

The relative size of confidence sets for default probabilities depends on
the number of available observations and the probability itself. As a rule of
thumb, smaller PDs are harder to estimate.

Trück and Rachev (2005) examined the influence of the number of
observations on PD confidence sets and illustrated how much of the
uncertainty surrounding AAA and AA PDs is due to the rareness of such
corporates.

The size of confidence sets for PDs might be only a few basis points in
“A” grades, but compared to the PD, it is of high impact. Either the relative
coefficient of variation σ–µ or the upper confidence bound compared with the
estimated PD should be good measures of uncertainty. The higher the
ratios, the greater the relative impact of PD underestimation.

An overview of Trück and Rachev’s findings is given in Table 23.1.
The impact of misestimating the PD on the quantiles of Vasicek’s 

distribution is less than proportional in a typical range of PD and ρ
(Figure 23.2).
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Table 23.1 Uncertainty in Probabilities of Default Estimates According to
Trück and Rachev8

Upper Confidence
Rating Grade PD Mean (bps)

σ
—µ Bound to Mean PD Ratio

Aaa 1 1.6 7.0

Aa 6 1.6 6.7

A 19 0.9 3.0

Baa 49 0.6 1.9

Ba 126 0.4 2.0

B 262 0.2 1.6

Caa 473 0.3 1.3



A major driver of model risk in PD estimation is the relation between
the upper confidence interval bound and the mean estimate.

Hanson and Schuermann (2005) used four different methods to derive
PD confidence intervals from S&P rating data. For investment grades, 
so-called duration-based confidence intervals obtained by bootstrapping
seem to be much tighter than those calculated using other methodologies.
Duration-based PD estimates take into account intrayear rating migra-
tions that are neglected by cohort-based ones.9 Unfortunately, cohort-
based estimation is a common practice in calibrating internal rating
systems.

For “A” grades, the upper bounds are well below the 3 bps minimum
floor introduced by the Basel II rules. Hanson and Schuermann find upper
confidence bounds to be roughly twice as high as the PD estimate. How-
ever, this ratio can be worse for noninvestment grade ratings. For those
grades, other estimation methods may be preferable.

ASSET CORRELATIONS

Cassart, Castro, and Langendries (2007) used both a default-driven and a
rating migration–driven technique to derive asset correlations and confi-
dence bounds. The analysis was separated by industry groups and a special
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focus was placed on intraindustry versus interindustry correlations. For
almost half the sectors, correlations were not significantly different from
zero, while in other industry sectors they were significant. They also stated
that the default-driven approach may not be practicable in good rating
grades where defaults are rare. The upper bound for intraindustry asset
correlations topped at 0.21 (for farming/agriculture) and mean estimates of
0.13, while in other sectors it was well below this value. This looks like fur-
ther indication for an uncertainty multiple of 2, with higher values possible
if average correlations are lower.

Akhavein, Kocagil, and Neugebauer (2005)10 compared six different
approaches for estimating asset correlations. Interindustry asset correlation
was found to average between 0.1444 and 0.2092, depending on the model
used. Within the industry group, correlations ranged between 0.1973 and
0.2649. However, a rating transition–based model produced values that
were much lower than all other methods. The estimates were 0.0456
(intraindustry) and 0.0785 (intraindustry). This allows for an uncertainty
of factor 3 or more when only one model is used.

For the small business sector, Schwarz (2006) used PD variance and boot-
strapping techniques to calculate asset correlations for Austrian small- and
medium-sized enterprises (Table 23.2). His analysis resulted in correlations
around 2 percent, while confidence bounds topped at 6 percent.

On the one hand, an uncertainty allowing for three times higher correla-
tions can be embarrassing (even though the impact on loss distribution
quantiles might be less than factor 3; see figure 23.3). On the other hand, at
least it looks like the regulatory assumptions concerning asset correlations
look pretty conservative.

It would be desirable to see an analysis on the difference between corre-
lations in normal and economically difficult times to assess “conditional”
asset ρ’s that are likely to drive loan portfolio risks.
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Table 23.2 Small- and Medium-sized Enterprise (SME) Asset Correlations
in Austria (Schwarz, 2006)

95% Confidence Upper
Size Class Turnover (Euro) Mean Interval Bound/Mean

Small SME � €1 m 0.0183 0.0046–0.0414 2.3

Medium SME � €5 m 0.0259 0.0064–0.0442 1.7

Large SME � €50 m 0.0216 0.0015–0.0646 3.0

Total 0.0160 0.0094–0.0246



DISTRIBUTIONAL ASSUMPTIONS

A popular candidate to replace the normal distribution in Equation (23.1) is
the t distribution. If X is standard normally distributed and follows a X 2

distribution with ν degrees of freedom, then

(23.6)

is t (or student) distributed with ν degrees of freedom.
For large ν, this distribution looks very much like the normal distribu-

tion, but for smaller values of ν, leptokurtic behavior becomes apparent and
the tails are fatter.

Generating t-distributed, pseudo-random numbers is as easy or difficult
as standard normal-distributed ones.

Bluhm et al.11 made a simulation study replacing the Gaussian-distrib-
uted risk factor in Equation (23.1) with a t-distributed one with ν � 10. In
a portfolio of low asset correlation and low PD (0.5%), the quantile was
about 3.5-times as high as in the Gaussian world. An even higher impact on
the more extreme quantiles was observed. However, the effect is more
moderate when examining higher PDs and ρ’s.
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BACKTESTING

If the Vasicek assumptions hold, default rates should be Vasicek distributed.
If the true ρ is unknown, it may be derived using the moment matching
approach mentioned above.

The Kolmogorov-Smirnov test can be an approach to test the distribu-
tion. We shall give an example using a default rate time series from
Moody’s corporate ratings.12 We used two time series from 1983 to 2007
for Baa and Ba letter rating, respectively (Table 23.3).

If one is worried about underestimation of the distribution’s tails, how-
ever, much more data would be required. Differences between the “real”
and assumed distribution behind the 95% quantile, for example, can only
be found with several observation in this range. This would imply some
multiple of 20 data points.

To get around this, it would be helpful to collect default statistics more
often than yearly. Another promising approach would be the use of market-
based information.

CONCLUSION

One of the main challenges in credit portfolio model backtesting is the lack
of data. Historical time series are short and usually have one data point per
year. Due to the fast developments in academic research and practice, there
may be many structural breaks in internal time series. This leads to wide
confidence sets for key parameters.

To overcome these shortcomings, every opportunity to gain more data per
year should be examined. Concerning correlation, the use of equity correla-
tions to estimate asset or default correlations in structural models is a huge
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Table 23.3 Statistics for Moody’s Default Rates 1983–2007
(Emery, 2008): Empirical Default Rate Distribution Is
Compared with Vasicek Distribution

Baa Ba

Maximum 1.36% 4.78%

Median 0.00% 0.85%

Average 0.19% 1.16%

Standard Deviation 0.37% 1.18%

Implied Rho 17.75% 11.52%

Kolmogorov’s D 0.053 0.116

Critical Value 0.264 0.264



factor (one gets 250 points instead of 1 point). However, this acceleration is a
new source of model risk in itself. Market data is often exponentially aver-
aged, so the last business downturn information vanishes over time.

Other possible sources of daily or weekly market data that may be used
in future are credit default swaps and bond spreads or even co-movements
in rating up- and downgrades.

It would be valuable to have conditional correlation information for weak
economic scenarios such as the dotcom or subprime crises. This could offer
benchmarking opportunities for the estimated loss distribution tail.
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ABSTRACT

Throughout the banking industry two major modeling approaches are
widely used to estimate internal economic capital figures in credit portfolio
models. These two different modeling approaches are either Merton-based
factor models or analyt ically tractable approaches as prov ided by
CreditRisk� (CR�) frameworks.

Along with economic capital (EC) at the group portfolio level, reliable
contributory economic capital (CEC) figures are essential in any aspect 
of EC-based bank steering. In order to enter these figures into EC-based
capital steering and capital management applications, it is crucial that these
figures are robust, accurate, and risk sensitive.

In practice, model-related uncertainties between Merton and CR�

frameworks may lead to inappropriate CEC estimations; ultimately provid-
ing incorrect steering signals. One particularly important source of model-
related uncertainty concerns the differing approaches to calibration of
model-specific risk parameters, especially those parameters which drive
default correlations and risk concentrations. This article focuses on the
modeling risk related to parameter estimation and appropriate methods to
resolving these uncertainties. All analyses presented in this chapter are
based on data samples that show the typical characteristics of a universal
bank portfolio.



INTRODUCTION

Parameterized Merton Model

The implied parameters of the Merton model are given by

• Counterparty-specific asset correlations R2

• Factor model with its underlying covariance matrix Σ
• Counterparty-specific factor weights ωi1, …, ωim, Σm

k�1ωik � 1

The asset correlations are the most crucial parameters of the Merton
model; these can be estimated by regression analysis between firms’ equity
return values and the returns of the model for each factor. For nonpublicly
listed companies, a typical approach to estimating the asset correlation is by
mapping the company to asset correlations deduced from the public com-
pany sector via its size. For retail segments practitioners often take conser-
vative, best-practice values or try to estimate R2 from historical default
rates and rating-migration data. Some banks use the asset correlations given
by the Basel II regulatory rules; however, many practitioners of Merton
modeling frameworks consider the Basel II asset correlations too small on
average and replace them with internally measured figures.

Standard CreditRisk� Parameterization

If CreditRisk� (CR�) is implemented in its standard form, the following
model-implied parameters must be provided for each counterparty-specific
transaction:

• Sector weights: ω i1,…,ωim, Σm
k�1ωik � 1. Here m denotes the number 

of sectors (both specific and systematic) within the model for each
transaction i.

• Volatility of default rates: The volatilities of individual default rates
are inputs for the standard CR� parameterization; these individual
volatilities are subsequently converted into sector default rate
volatilities. This conversion applies the following formula (Avesani
et al., 2006): 

390 Part Vi Modeling Model Risk for Risk Models

σ

σ ω

ω
k

n nk
n

N

n nk
n

N

p
= =

=

∑

∑

1

1



Here, σn, n � 1,…, N denotes the default rate volatility of individual
obligors and σk, k � 1,…K denotes the default rate volatility of sector
k. Individual default probabilities of the obligors are denoted by pn.

For the intersector correlation, the corresponding intersector covariance
σ̂ 2 must be specified as an input parameter. The multisector CR� model is
typically referred to as the compound gamma model. If sector correlations
are incorporated into the model the defining quantity of the compound
gamma model replacing σk is given by βk, which is defined as the difference
between the sector variance σ 2

k and the constant intersector covariance (see
Giese, 2003). In this case, the following formula is applied in order to cal-
culate each βk: βk � σ 2

k � σ̂ 2.

Parameterization of CreditRisk� via Merton

The parameterization routine outlined in this chapter differs depending on
whether a single sector or a multisector CR� model is desired (“multisector”
in the sense that different obligors can be mapped to different sectors). In
this chapter we propose a new approach to calibrate the parameters specific
to CR� via the Merton parameterization with the aim to achieve consistency
of the capital figures between both models. Within both the single-sector
case and the multisector case the normalized sector weights for the system-
atic and idiosyncratic sectors are deduced from a given Merton-model para-
meterization. Along with the sector weights the sector volatilities are also
given as an output of the re-parameterization routine. If a multifactor model
has nonzero correlation between factors, the constant intersector covariance
has to be calibrated from the Merton model factor correlation. The follow-
ing describes the calibration routines in more detail.

The calibration routine of CR� specific parameters via the Merton para-
meterization is an extended and modified version of a parameterization rou-
tine described in Gordy (2000). It is based on the idea of “moment
matching.” It seeks to match both the expected conditional default rates and
the respective volatilities of obligors. Given the Merton parameters, the
corresponding CR� parameters are deduced. For this purpose the sectors of
the CR� model are identified with the factors of the Merton model. These
sector variables will be denoted by xk. The following two conditions are
imposed on the conditional default probabilities of the Merton model and
CR� model, respectively:

• Condition (1): E(pi
CR�

(xk)) � E( pi
Merton(xk)) ≡

–pi

• Condition (2): VAR( pi
CR�

(xk)) � VAR(pi
Merton(xk))
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The first condition is obviously fulfilled by choosing the same obligor
specific probability of default (PD) as input data for both models. There-
fore, only the second condition requires further investigation. For the 
conditional PD, we find the following expression within the Merton model:

Assuming that any counterparty is mapped to a single systematic sector
only, the following expression holds for the conditional PD within the CR�

framework:

pi
CR�

(xk) �
–pi(wi xk �(1�wi)).

Here R2
i denotes the asset correlations implied by the Merton model for

counterparty i, while wi denotes the sector weight of counterparty i on the
systematic sector xk.

From these two expressions we find that the variance of the conditional
default probabilities for the Merton and CR� models are respectively:

Hence, the following condition is deduced for the CR� parameters wi

and σk:

Calibration equation: ( –pi wiσk)2 � N2(N �1 ( p–i), R2
i ) �

–p 2
i.

Now the following problem arises: based on the above condition one could
determine the sector weights for every obligor by assuming some value for
the sector volatilities σk. However, there is no additional information for the
choice of these sector volatilities. In order to proceed it is suggested in
Gordy (2000) to set all sector volatilities equal to 1, which is also the choice
within the original CR� implementation. With this choice, some of the sec-
tor weights wi will exceed 1, leading to negative weights on the specific risk
sector. Technically, negative weights can be tolerated by CR�, as long as the
number of affected obligors is small and the negative weights are relatively
small in magnitude. However, with this choice of sigma, the resulting nega-
tive weights will lead to invalid loss distributions within many realistic bank
portfolios. As such, the following iterative procedure is applied in order to
lessen the extend of negative weights:
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Sector volatilities σk are set equal to 1 and for each obligor i, the sector
weights are then computed according to the following formula:

For all weights wi � 1 the corresponding sector volatilities σk are then cal-
culated under the assumption wi � 1, according to the following equation:

All other volatilities are left as σk�1. At this stage different obligors in sector
k might have different corresponding sector volatilities σk, which is clearly
unwelcome. The final sector volatility will therefore be fixed as the arith-
metic mean of calculated sector volatilities of all obligors within a sector:

These sector volatilities are then reinserted into the original calibration
equation in order to determine the sector weights wi.

In case of high PDs, the recalibration scheme presented above no longer
works properly. High PDs pose a problem within the CR� framework, not
only in the context of parameterization but in general terms, since the ana-
lytical tractability of CR� is based on the assumption of a so-called Poisson
approximation which is only valid for small PDs. Nonetheless in this case
parametrization schemes can be defined that allow the treatment of high
PD facilities while still maintaining consistency between Merton and CR�

contributory economic capital figures.

DEFINITION OF TEST PORTFOLIOS

Test portfolios are defined in order to study the different steps of the
parameterization scheme between Basel II, Merton, and CR� modeling
frameworks. This parameterization scheme is illustrated in Figure 24.1.
For homogeneous, granular portfolios, the Basel II formula is the analytic
approximation of the single-factor Merton model. Consistency with
respect to economic capital figures is therefore expected between Merton
and Basel II for portfolios fulfilling these requirements. The outlined
parameterization scheme allows for consistent parameter translation
between CR� and Merton models and leads to capital figures consistent
with the Basel II formula in case of homogeneous, granular portfolios.
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Heterogeneous portfolios show different capital figures with respect to
Basel II and Merton models; this is due to Basel II being unaffected by
diversification between different industries and countries. Additionally,
within Basel II there is no sensitivity with respect to exposure concentra-
tions. As the natural extension of the Basel II formula the multifactor 
Merton model is considered the benchmark model in case of capital calcula-
tions within nongranular and heterogeneous portfolios. As such the Basel II
and the multifactor Merton models are still comparable in the sense that
model implied differences are easily understood and transparent.

The re-parameterization framework outlined in this chapter makes the
CR� capital figures consistent with both: the Merton-based framework in
the case of heterogeneous, nongranular portfolios and the Merton and
Basel II model in the case of homogeneous and granular portfolios.

Homogeneous Portfolio

The homogeneous portfolio is a sample of 250,000 single positions (each
position belongs to a single counterparty) from a retail portfolio. All clients
are domiciled in the same country. This means all clients in the portfolio
are affected by the same macroeconomy and no further country or industry
diversification can be expected.

In order for the Merton model to reproduce the Basel II capital figures
within this portfolio it is necessary that the chosen portfolio is sufficiently
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granular. For this reason a primary analysis is conducted, where a Monte
Carlo–based single-factor Merton model is applied. The contributory eco-
nomic capital (CEC) figures are then compared with the Basel II contributory
regulatory capital (CRC) values. Since the Basel II formula is the analytic
solution of a single-factor Merton model, it is expected that the capital figures
of the Monte Carlo–based approach and the Basel II formula are the same
once the infinite granularity assumption is approximately fulfilled.

Figure 24.2 shows the result of this granularity analysis. The left-hand
panel shows a scatter plot between the Monte Carlo–based Merton CEC
as a percentage of the total economic capital (EC) versus the CRC as a
percentage of the total regulatory capital (RC). For the remainder of this
chapter, these ratios are denoted as the internal CR�/Merton model and
the regulatory formula capital allocation key. Each point in the figure cor-
responds to a single counterparty-specific transaction. Full agreement
between the Monte Carlo–based model and the Basel II model would be
achieved if each point were located exactly on the diagonal line. As shown
in the plot, all points are sufficiently close to the diagonal line. The largest
relative differences between the allocation keys CEC/total EC versus
CRC/total RC are a few percentages by order of magnitude, suggesting
that the granularity assumption is valid. The right-hand panel shows the
dependence of allocated capital on the rating grades of the master scale.
Here, black diamonds represent the contributory capital figures from the
Basel II formula; grey crosses represent the corresponding figures from
the Monte Carlo Merton model. The small deviations that can be observed
are due to small granularity effects still present in the test portfolio. 
Nevertheless, granularity effects are very small and play no role for fur-
ther investigations.
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Overall, the homogeneous portfolio is large enough to avoid granularity
effects. The asset (and hence the default) correlations are driven by a single
economic factor, the country of domicile and by one idiosyncratic factor
together with the asset correlation R2. The Basel II regulatory formula as
the analytic solution of a single-factor Merton model can therefore be
regarded as the benchmark.

Heterogeneous Portfolio

The heterogeneous portfolio is a sample of 25,000 single positions (each
position belongs to one single counterparty) of a universal bank portfolio.
The counterparties are domiciled in over 10 European countries and the
portfolio contains loans from 10 different industries. Overall, this portfolio
is reasonably well diversified across countries and industries.

The mean portfolio PD is 2.5 percent while the exposure weighted PD
is 1.5 percent, indicating the exposure contribution of the corporate and
bank counterparty segment, which have on average a smaller PD. Since the
portfolio contains a small proportion of very high net exposures, it displays
large granularity effects and is heavily nonhomogeneous. The largest expo-
sure as percentage of the total net exposure is 12 percent, indicating high
concentration risk.

In summary, the heterogeneous portfolio contains all sorts of loans, is
diversified across different countries and industries and contains large expo-
sures with high concentration risk at the lowest PD ranges. The portfolio
has a highly nonhomogeneous, strongly skewed exposure distribution.

The Basel II regulatory capital formula cannot be applied here, since the
two basic assumptions leading to the analytic solution are violated:

1. The assumption of a single systematic risk driver
2. The assumption of infinite granularity

Since this portfolio cannot be treated by the Basel II regulatory frame-
work, the more general framework of a multifactor Merton model sets the
benchmark. Once the multifactor Merton model is setup, the model risk
due to the CR� model for this portfolio can be investigated through the
re-parameterization according to the Merton model.

Numerical Results: Homogeneous Portfolio

We start the analysis by calculating the capital of the homogeneous portfolio
with the Basel II formula and the CR� model with basic parameter settings.
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The regulatory Basel II capital figures are called regulatory capital (RC) and
those calculated by CR� are denoted economic capital (EC). Contributory
economic capital figures at counterparty level as calculated by the Basel II
formula are denoted as contributory regulatory capital (CRC), and those
calculated by the internal model CR� or Merton are called contributory
economic capital (CEC).

In the standard calibration scheme of CR�, the PD volatility of counter-
parties is a crucial modeling parameter. However, within the retail segment,
the PD volatility is difficult to estimate via historical default rates. The time
series of default rates for the retail segment of most banks are only available
over a few years. Even if default rates are available over a longer time hori-
zon, their differentiation according to creditworthiness or rating is mostly
not possible for more than five years. For this reason the PD volatility of
any counterparty is set to be equal to 50 percent of the PD itself, which is a
common value taken by many CR� practitioners. The calibration of PD
volatilities based on internal default time series usually exhibits much
smaller volatilities, this generally leads to significant underestimation of
economic capital. By definition, the weight given to the systematic sector is
set to 100 percent. A reduction of this weight in favor of the idiosyncratic
sector would have the undesirable effect of further reducing the overall
capital (see analysis below).

For the calculation of regulatory capital within the Basel II framework,
the single asset correlation R2 is set to 15 percent for all counterparties in
the homogeneous retail portfolio. This value corresponds to the Basel II
parameter setting for mortgage loans which dominate the exposure in the
retail segment. For other retail segments such as credit cards or personal
loans, the asset correlation of 15 percent is a rather conservative but reason-
able setting. The second parameter used by the regulatory capital formula is
the PD which is given by the rating. The estimation of the credit value at
risk as well as the capital allocation to counterparty level is done consistently
at the 99.95 percent quantile; this is in line with the target rating of many
financial institutions. In order to be able to compare the resulting capital
allocation of the internal model and the Basel II formula also, the latter is
applied at the 99.95 percent quantile. Throughout the whole analysis of this
chapter, we consistently use the expected shortfall as the best practice risk
measure. The expected shortfall threshold is chosen in order to align the
credit value at risk (CVaR) and the expected shortfall at the same numerical
value, i.e., ESF(@99.95 percent C.L.) � CVaR(@99.95 percent C.L.).

Given these parameter settings, CR� in its basic calibration form
severely underestimates the total capital compared with the Basel II regula-
tory formula: by the means of CR� internally estimated portfolio EC
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amounts to approximately 40 percent of the respective Basel II figure. This
is partly a consequence of the conservative setting of the asset correlations;
however, the entire difference cannot be attributed to this. Empirical data
analyses of default rate data do not provide evidence for choosing a higher
PD volatility, which is the only parameter which could cause the increase of
the CR� portfolio EC. The systematic sector weight within CR� is 100
percent and any reduction in favor of the idiosyncratic sector would further
decrease the capital.

A similar discrepancy between the regulatory capital and the internal
capital occurs if the contributory capital figures at counterparty level are
analyzed. The results are plotted in Figure 24.3. The left-hand panel com-
pares the internal CR� model and the regulatory formula allocation key.
Each dot in the figure corresponds to a single counterparty. The allocation
key itself is defined as the allocated capital in percentage of the total capital,
calculated by either the CR� or the regulatory formula. The diagonal line
indicates the position of perfect concordance between the models. It is clear
that the allocation key fluctuates heavily around the diagonal, indicating
discrepancies between the allocation keys of the two models. Model dis-
crepancies are largest when PDs are highest. The plot differentiates
between PD � 7.5 percent (gray triangles) and PD � 7.5 percent (black
diamonds). From a purely methodological perspective, the differences for
high PDs are due to the fact that CR� itself is only applicable for small
PDs. The largest relative differences between the allocation key are in the
order of several hundred percent. This is due to the fact that the analytic
tractability of CR� assumes a Poisson approximation, which is only valid if
PDs are very small. When counterparties have PDs of 10 percent or higher,
this assumption is violated, causing additional model-implied error for capi-
tal calculation and allocation.
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The right-hand panel shows the dependency of the allocated capital of
the counterparty net exposure on the PD denoted by the rating grade. The
CRC figures show a characteristic dependence on the counterparty PD,
whereas the CEC figures have a constant slope. Considering the economics
of the situation, the Basel II capital formula shows the correct dependence,
since the relative concentration risk is highest for the counterparties with
small PD, i.e., the EC/EL ratio is expected to increase with decreasing PD.
Since the CR� model is not sensitive to this effect, the model in its initial,
basic parameterization is not capable of reflecting risk sensitivity with
respect to concentration risk. It should be mentioned here that if choosing
some higher value for the PD volatility, the capital on portfolio level can
normally be matched satisfactorily even when using the standard CR� pa-
rameterization. However, on counterparty level results will still deviate
drastically and the qualitative behavior of the dependence of the CEC fig-
ures on the rating grade as displayed within the right hand side of Figure
24.3 remains unchanged. For this reason, capital allocation fails in case of
the standard CR� parameterization.

The second part of the analysis of the homogeneous retail portfolio is
done via the application of the re-parameterization scheme between the
Merton and CR� frameworks. Here the Basel II formula is just a single fac-
tor Merton model parameterized by the customer PD and the constant
value of R2 � 15 percent. The re-parameterization scheme calculates the
weights of the systematic and idiosyncratic sectors as well as the PD and
sector volatility of the CR� model.

The re-parameterization scheme works successfully and fully aligns the
regulatory formula and the CR� internal capital model. The portfolio EC
calculated by CR� is just 0.7 percent greater than the regulatory portfolio
EC. Similarly good results are achieved for the allocation key, and the CEC
dependency on the counterparty rating as shown in Figure 24.4.

The scattering of the allocation key around the diagonal line in the 
left-hand panel is reduced compared with the basic parameter settings. The
largest deviations are still observed for the counterparties with high PDs.
The relative differences between the allocation key for high PDs is 25 per-
cent at most. This is a significant improvement compared with the basic
parameterization where the allocation key values differed by up to several
hundred percent. Considering the capital allocation with respect to the
counterparty PD (right-hand panel) the re-parameterization scheme also
leads to a similar slope (and therefore similar risk sensitivity) with respect
to concentration risk when compared with the Merton framework.

In summary, it can be concluded that within this homogeneous and
granular retail portfolio the re-parameterization scheme via the Merton
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model delivers comparable results between the Merton/Basel II model and
the CR� model. Although the Merton and CR� models are conceptually
different approaches to credit portfolio modeling, the model implied risk
due to parameter calibration approaches can be avoided by applying the
parameterization rules proposed in this article.

Numerical Results: Heterogeneous Portfolio

The CVaR calculations of the heterogeneous portfolio are performed by
applying the advanced re-parameterization scheme via Merton to the CR�

model. In the case of the homogeneous test portfolio, the single-sector
CR� model with basic parameterization failed to achieve results consistent
with the Merton model as well as realistic risk sensitivity for nondiversified
portfolios. It is therefore expected that the heterogeneous case will display
similarly poor correspondence. Besides, internal bank analysis of default and
rating migration data published by ratings agencies show PD volatilities for
the corporate sector, which are too small to get meaningful capital figures.

We begin the parameterization by assigning asset correlations to the
counterparties of the Merton model. To do this we take market best prac-
tice values of R2 according to the different business sectors contained in the
heterogeneous portfolio. The correlation model underlying the multifactor
Merton model contains 10 industry factors and 10 European country 
factors. The factors itself are represented by MSCI indices and the correla-
tions between the factors are estimated on a weekly return basis over a
period of three years between January 1, 2005 and January 1, 2008.

For reasons of brevity the values of the asset and factor correlations are not
displayed in detail. At a summarized level asset correlations are 15 percent for
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the retail sector, between 20 and 40 percent for the corporate sector and 
30 and 60 percent for banking business, depending on the size and the indus-
try sector of the companies. The factor correlations are approximately 
70 percent on average, where correlations between industries and countries
range from approximately 55 to 95 percent. All parameter settings are taken
from real portfolio parameterizations which are currently running in the
banking industry.

After having parameterized the Merton framework, the CR� parame-
ters are deduced by the re-parameterization scheme. As mentioned previ-
ously, the regulatory analytic approximation of a single-factor Basel II
model is not applicable to a heterogeneous well-diversified portfolio. The
Monte Carlo–based multifactor Merton model—the natural extension of
the Basel II capital formula—is used to set the benchmark results for the
CR� model.

Having applied the re-parameterization scheme, the difference between
the CVaR capital figures of the CR� and the Merton model amounts to
only 2 percent at portfolio level. It can be concluded therefore that both
models are in very good agreement at portfolio level once the re-parame-
terization scheme is applied. The regulatory capital calculated by the Basel
II formula at the regulatory, lower-confidence level of 99.9 percent yields
capital figures which are 10 percent below the internal Merton capital and
12 percent below the CR� capital. The diversification effects given in the
internal models are therefore not sufficient to compensate the CVaR at the
higher, internal 99.95 percent quantile compared with Basel II at 99.9 per-
cent. At first glance this is counterintuitive since most EC capital modelers
expect the internal capital figures to be below the regulatory capital. The
high internal capital is explained by the use of high asset and factor correla-
tions (when calibrated over a recent period of three years, namely, between
January 1, 2005, and January 1, 2008, with the current financial crisis
explicitly excluded), as well as by significant nongranularity effects caused
by large exposure concentrations to counterparties with very small PD.
These high parameter values driving the default correlations are based on
current calibrations of actual market data over the past few years. Asset cor-
relations and factor correlations have experienced an increase over the past
15 years; this can be attributed to the increasing integration of the Euro-
pean financial markets and the growing interdependencies of import and
export due to the globalization of the markets.

The results of capital allocation corresponding to the regulatory Basel II
formula and the Merton model can be deduced from Figures 24.5 and 24.6.

As expected, the allocation key between the diversified, multifactor
Merton model and the regulatory capital model are in total disagreement,
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due primarily to the nonsensitivity of the Basel II framework to country
and industry diversification. Secondarily, the disagreement is a conse-
quence of Basel II’s lack of sensitivity to concentration risk. The largest
model deviations are therefore seen for counterparties with very small PDs
(PD � 70 bps), where distortion of the allocation key is highest. The fre-
quency distribution of the relative differences between the two allocation
keys exhibits deviations of up to 200 percent. We conclude that the Basel II
framework is not suitable for capital allocation.

If the re-parameterization scheme is applied and the allocation key
between the CR� and the Merton model is compared, a different situation
emerges (Figure 24.6). The scattering of the allocation key around the diag-
onal line in Figure 24.6 is much smaller compared with that in Figure 24.5.
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The close concordance between the models is shown once more on the
right-hand panel of Figure 24.6. The relative differences in allocation key
between CR� and Merton are well centered and the maximum disagreement
is 20 percent. Considering the strong heterogeneity of the underlying port-
folio and the fact that CR� does not resolve the full correlation model, the
agreement is highly satisfactory.

In the following the concentration risk effects with respect to the coun-
terparty creditworthiness is discussed and the outcome of the two models is
compared. An intuitive way of considering concentration risk effects is to
take the ratio between contributory capital and expected loss as a risk meas-
ure, i.e., the EC/EL ratio. In contrast to the total capital consumption of a
transaction or the contribution of counterparty specific EC to total EC, the
EC/EL ratio has no dependence on the counterparty exposure; it is a meas-
ure indicating high dependence on credit events in the portfolio and is an
illustrative alternative to study effects of default correlations and risk con-
centrations. For example, a transaction or counterparty may have very low
total or relative EC consumption; nevertheless, it can be highly risky in the
sense that its default is highly correlated to other clients. This would be
indicated by a high EC/EL ratio. Vice versa, high capital consumption can
be less risky if the counterparty default is not correlated to other clients in
the portfolio. In this case the risk would be indicated by EL and the
EC/EL ratio would be low. From an economic viewpoint, concentration
risk and therefore the EC/EL ratio must be a function of PD. The reason
is that obligors with very small PDs are either large corporates or financial
institutions. These counterparties are highly affected by cyclical effects of
the economy. Looking at spread movements of such companies, the relative
movements of the spread in economic downturns compared with the aver-
age value in economically calm environments can jump dramatically; on the
other hand, spread movements for counterparties with lower creditworthi-
ness are much smaller. As such, within a sound credit portfolio model
which is risk sensitive with respect to concentration risk, the EC/EL ratio
should increase with decreasing PD.

The results of this analysis are shown in Figure 24.7. The left-hand
panel shows the EC/EL ratio for any counterparty as a function of PD
indicated by the rating grades (logarithmic scale) of the master scale as 
calculated by the internal, multifactor Merton model. In addition, the regu-
latory EC/EL ratio for retail and corporate clients are displayed at different
confidence levels of 99.9 and 99.95 percent. The increasing curve of
EC/EL with decreasing PD is nicely reproduced. The diversification effects
of the internal Merton model with respect to Basel II are indicated by lower
EC/EL ratios  on average. Nongranularity effects can be easily observed,

chapter 24 Model Risk in Credit Portfolio Models 403



since for each rating grade the EC/EL ratio is spread over a large interval.
Facilities with high relative exposure and low granularity receive a higher
capital charge and those with high granularity get capital relief. After hav-
ing applied the re-parameterization scheme from Merton to CR�, the same
analysis is conducted by taking the contributory capital figures of CR� into
account (as illustrated on the right-hand side of 24.7). It is apparent that the
CR� capital allocation shows the same slope and the same granularity
effects as the Merton model. Again, the re-parameterization scheme results
in model correspondence. The final plots shown here can be considered the
most strenuous comparison tests of credit portfolio models. The particular
shape of the slopes as displayed within Figure 24.7 is due to diversification
effects with respect to Basel II and to the huge impact of concentration risk
due to nongranularity effects.

CONCLUSION

This chapter analyses model risks implied by the inconsistent parameteriza-
tion of differing credit portfolio models. Two major modeling approaches,
namely CR� and Merton models, are shown to contain significant model-
implied risk for portfolio-wide capital figures and the concentration-risk-vital
allocation keys.

The aim of this chapter is to analyze the model-implied risk due to dif-
ferent methods of calibration of the risk parameters underlying the CR�

and Merton models.
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A novel approach to overcome these parameterization-implied discrep-
ancies is outlined, which is based on a translation of Merton model parame-
ters to CR� parameters. As a result, enhanced model consistency can be
achieved. It is shown that when homogeneous, nondiversified, granular
portfolios are considered full consistency between CR�, Merton, and Basel
II model capital figures can be achieved. Parity between internal models
and Basel II is not achievable for diversified, heterogeneous portfolios
exhibiting strong nongranularity effects and exposure concentrations; this
is due to the basic nature of Basel II models which do not take into account
industry diversification and correlation effects and assume full granularity.
The re-parameterization approach provides consistency between the CR�

and multi-factor Merton models, the latter of which is considered the natu-
ral extension of the single-factor Basel II formula.
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ABSTRACT

Any model is a simplified version of reality, and thus always contains the
possibility that the simplifying assumptions do not well match, or properly
account for, the true governing processes of the world. We refer to model
risk as the risk of not accurately estimating the probability of future losses
due to a failure of a risk model. Sources of model risk in risk measurement
models include differences between the assumed and actual distribution and
errors in the logical framework of the model. Thus, successfully estimating
the risk to one’s portfolio requires not only accurate estimates for the
inputs to the model, but also a detailed understanding of the distributions
from which the risky outcomes arise. Understanding how a model might
fail is the first step toward rectifying the problem of model risk. We
demonstrate a measurement of this model risk associated with the problem
of parameter uncertainty in a value-at-risk model. Oftentimes the parame-
ters of a distribution may be estimated with low precision, or there may be
disagreement about the governing processes on which to base a risk model.
Existing standard risk models do not adequately handle this parameter
uncertainty. We show how these traditional methods for handling parame-
ter uncertainty often fail, and provide a technique for quantifying risk more
accurately.



INTRODUCTION

Model risk comes primarily from two possible shortcomings in the model
development process. These shortcomings come out in phrases such as
“models are only as good as the assumptions they are based on”; and “mod-
els are only as good as the data behind them.” Commonly, these risks
express themselves as misspecified distributions and parameter uncertainty.
Consider the well-known Black-Scholes options pricing model, one of the
most successful pricing models in finance. Even so, it falls prey to both of
these problems. First it assumes a normal distribution on asset returns.
Thus in a world filled with fat tails and volatility smiles, a naïve Black-
Scholes user will underpay for all options, misprice at-the-money compared
with out-of the-money options, and quickly go broke. Second, the price
generated from a Black-Scholes equation is only as valid as the estimate
used for the asset volatility. This crucial parameter must be estimated from
historical volatility or forecasted from a volatility model. The uncertainty
behind this volatility estimate can explode on those with too much faith in
their model outputs.

Furthermore, tertiary risks abound. These can be as basic as implemen-
tation risk (say, a trader uses Black-Scholes to value an American put) to
regime shifts (volatility smiles suddenly appearing) to unknown or unantici-
pated risks (such as worsening liquidity placing stress upon heavily lever-
aged arbitrageurs such as Long Term Capital Management).

In this chapter we focus on the model risk contained in value-at-risk
(VaR) models, and primarily on the risk of parameter uncertainty. We build
upon the ideas discussed in Hsu and Kalesnik (2009) and demonstrate that
properly accounting for parameter uncertainty can result in posterior dis-
tributions that do a superior job of capturing return characteristics without
resorting to exotic distributions that are difficult to work with and may not
properly describe asset return behavior in any case.

The issues of misspecified distributions have received tremendous
attention in the last decade since the collapse of Long Term Capital 
Management. In particular, the distributions used in standard VaR analy-
sis do not adequately capture the frequency of extreme shocks to asset
prices (kurtosis) or the size of those shocks (negative skew). This topic
even went mainstream with the publication of Nassim Taleb’s 2007 book,
The Black Swan: The Impact of the Highly Improbable, which discussed in
detail the manifestations of fat tails. The difficulty of addressing these
problems in risk management has received further attention from authors
such as Derman (1996), Hendricks (1996), and Nocera (2009).
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More advanced practitioners of VaR methods have begun to employ
more esoteric distributional assumptions around asset returns, modeling
them with Levy, Cauchy, or other fat-tailed stable Paretian distributions in
an effort to capture this kurtosis and a negative skew. Lucas (2000) is but
one of the practitioners who have published journal articles discussing these
techniques. However, when VaR estimates are produced using more eso-
teric distributional assumptions, the process loses much of its intuitive
appeal. The parameter choice for these distributions can be complicated
and difficult to agree upon. It becomes increasingly difficult to express
committee views in the parameter choice. Additionally, these models fall
prey to a bias towards certainty inherent in the modeling process: as the
level of complexity of the model grows, almost always our estimation of the
remaining uncertainty shrinks more quickly than the uncertainty itself.
This is particularly true when the output of the model is so incredibly sim-
ple—a single dollar figure, expressing the maximum likely loss.

UNCERTAINTY AROUND THE 
MEAN ESTIMATE

Our approach can be illustrated with an example of disagreement around
something as simple as mean return. Suppose a five-member investment
committee is attempting to measure VaR on their equities index portfolio at
the beginning of 2009. Given the tremendous volatility through the bear
market of 2008, members of the committee could hold widely differing
views on possible returns for 2009. Three members of our committee
believe that the unprecedented monetary stimulus and likely fiscal stimulus
package will, over the course of the year, right the economy and rescue the
United States from a prolonged recession. They believe that, given the
sharply discounted valuation ratios, expected returns for 2009 will come in
at 20 percent. On the other hand, two members of the committee believe
that the worst is yet to come. They see the economy entering into a multi-
year recession with no improvement on the horizon, and see room for valu-
ation levels to fall even further. The bearish group believes that equities
will continue downwards with a substantially negative return of �20 per-
cent. To illustrate the point, both sides will agree that volatility will average
15 percent (later we will look at volatility uncertainty).

Given this agreement, how should the committee model the market risk
faced by their portfolio? We will consider four different methods to quan-
tify the disparate views amongst the committee members. We will then
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utilize these assumptions in a log-normal distribution to determine the
VaR for the portfolio. In the following notation, N(µ, σ) is a normal distri-
bution with mean and standard deviation of (µ, σ).

1. We could use the majority opinion number of �20 percent as our
mean estimate. Our distribution is: ln r1 ~ N (20%, 15%).

2. We could use the mean estimate of the committee members for our
expected return. This gives a distribution of: ln r2 ~ N (4%, 15%).

3. To protect against a worst-case scenario, the committee could decide to
assume an expected return of �20% and use ln r3 ~ N (�20%, 15%).

4. Finally, the committee could explicitly model the uncertainty in the
expected mean [Insert eq. here] return. This gives a return
distribution of:

We plot the four ex ante distribution functions in Figure 25.1. Note how
explicitly modeling the mean uncertainty captures the bimodal views of the
group while assigning a far lower probability to the mean outcome (which
no individual expects to occur) than using the second scenario. From the
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distribution we can also see that scenario 4 results in a distribution with
large negative kurtosis, even though the individual distributions had kurto-
sis of zero before blending them together. Thus the mean uncertainty
results in thinner tails rather than the fat tails modeled by Cauchy or Levy
distributions. However, we can see that the parameter uncertainty leads to
decidedly non–log-normal distributions, even when the starting distribu-
tions are themselves log-normal.

The risk statistics presented in Table 25.1 give further insight into these
distributions. The first four columns characterize the ex ante distributions.
The fifth column shows the VaR at the 5 percent confidence level for the
equity portfolio. The sixth column shows the expected loss conditional on
observations in the lowest 5 percent tail of the distribution. And the sev-
enth column shows the results of an investment decision rule: if we wish to
cap our expected losses at �25 percent with a 5 percent probability, this
column shows the maximum percentage of our assets to be invested in
equities, with the remainder in a zero-return cash fund.

The differences in the first three distributions all come as a result of
parameter selection. The first is clearly suboptimal because it ignores infor-
mation; the majority rule approach fails to take into account the range of
possible outcomes and will underestimate the VaR and often be overin-
vested. Scenario 2 shows that using the mean estimate delivers an improved
risk assessment—the 5 percent VaR level and expected shortfall both
increase dramatically. However, given this setup, the investment allocation
decision does not change. Scenario 2 is still a naïve approach, and under-
estimates both the VaR and the expected shortfall. Note that both scenario
2 and scenario 4 have the same expected mean, but in scenario 4 the result-
ing standard deviation becomes considerably larger by modeling the mean
uncertainty.

Although the worst-case assumption shown in scenario 3 shows the most
similar risk characteristics to the mean uncertainty model, it is still suboptimal
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Table 25.1 Risk Statistics for Equity Returns with Uncertainty of the Mean

Max % 
Invested 

Expected (5% chance
Mean Volatility Skewness Kurtosis 5% VaR Shortfall of 25% loss)

Scenario 1 20.00% 15.00% 0.00% 0.00% 4.59% 10.42% 100.00%

Scenario 2 4.00% 15.00% 0.00% 0.00% 18.70% 23.70% 100.00%

Scenario 3 �20.00% 15.00% 0.00% 0.00% 36.05% 39.95% 69.36%

Scenario 4 4.00% 24.68% �20.44% �72.89% 31.13% 36.11% 80.30%



because it results in a significant under allocation to equities. This 11 percent
under allocation costs the portfolio 44 basis points in annual expected return.

The table also shows numerically what was strikingly depicted in the 
figure: the mean uncertainty approach leads to negative skewness and large
negative kurtosis. However, we can also see that the negative kurtosis is
dominated by the increase in the volatility from 15 to 24 percent. This 
suggests that exotic explicit modeling of fat tails may not be as important as
properly modeling parameter uncertainty.

UNCERTAINTY AROUND THE 
VARIANCE ESTIMATE

Perhaps we have a different situation, where a group of investors may agree
on the mean return but differ as to expected future volatility. In this sec-
tion we illustrate how modeling uncertainty in our standard deviation esti-
mates can improve VaR forecasts. We take the same approach as before,
with a five-member investment committee. This time they all agree on an
expected annual return of 10 percent, but three members expect a relatively
quiet market with volatility of 12 percent while two members forecast a
much higher volatility of 25 percent. Again we compare four approaches to
modeling VaR in this situation. In the first, the majority rule decision
would model volatility at 12 percent; in the second, we average the individ-
ual votes and utilize a volatility of 17.25 percent; in the third, we apply the
worst-case scenario of 25 percent; and the fourth directly models the
uncertainty in the variance parameter estimate in the same manner as that
used in the previous section for the mean return.

Figure 25.2 shows the ex ante probability density functions for each of
the four scenarios, and Table 25.2 shows the risk characteristics. As ex-
pected, scenario 1 and scenario 3 provide the least and most, respectively,
conservative risk assessments. The interesting comparison is between the
use of the average forecast, scenario 2, and directly modeling the uncer-
tainty in scenario 4. We see that scenario 4 provides a higher standard devi-
ation than that in scenario 2. However, the difference between these two is
nowhere near as large as the earlier case where we modeled uncertainty
around the mean expected return (an increase in volatility from 15 to 
24.6 percent, compared with a rather mild increase from 17.2 to 18.3 per-
cent). Also, uncertainty in the variance estimate produces high positive 
kurtosis instead of the negative kurtosis produced by uncertainty in the
mean estimate. This transforms the starting log-normal distributions into a
fat-tailed distribution, and it is this increase in kurtosis that drives the
major differences in risk assessment between scenario 2 and scenario 4.
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HISTORICAL TESTING OF THE MEAN
UNCERTAINTY MODEL IN VAR

We next conduct a historical test of how explicitly modeling uncertainty in
the mean return would have impacted VaR estimates. Our test is based on a
setup similar to our example of mean uncertainty. We follow an investment
committee of five members who estimate VaR for their investment in the
S&P 500 index from 1987 through June 2009. The committee is divided
into two camps. Three members are believers in mean reversion; they esti-
mate the future return for their equity investment based on a comparison
of the past 36-month returns to a long-run average equity premium. The
second group of two members believe in trend following, and base their
forecasted return on the average past three-month return.1 At times these
expectations will be very similar, and at times they will differ dramatically.
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Table 25.2 Risk Statistics for Equity Returns with Uncertainty of the Mean

Max % 
Invested 

Expected (5% chance
Mean Volatility Skewness Kurtosis 5% VaR Shortfall of 25% loss)

Scenario 1 10.00% 12.00% 0.00% 0.00% 9.31% 13.93% 100.00%

Scenario 2 10.00% 17.20% 0.00% 0.00% 16.74% 22.40% 100.00%

Scenario 3 10.00% 25.00% 0.00% 0.00% 26.77% 33.87% 93.38%

Scenario 4 10.00% 18.34% 0.00% 147.20% 18.09% 26.68% 100.00%



This gives us a chance to demonstrate how the amount of disagreement
affects the quality of VaR calculations. For simplicity, both groups agree to
estimate the expected volatility by using the historical three-year average.
We should note that neither of these two strategies are being proposed as a
“best-implementation” type of strategy. Rather, they have been chosen as
contrasting forecast models and their ability to demonstrate how the level
of disagreement in mean return estimates can influence the performance of
VaR models.

For each month in our time series, we calculate four estimates of 5 per-
cent VaR: an estimate based on the mean reversion forecast, and estimate
based on the trend following forecast, an estimate based on the weighted
average forecast, and an estimate based on our technique of explicitly mod-
eling the uncertainty in the expected return. We then judge the quality of
the forecasts based on the frequency of violations.

In Figure 25.3, we see the history of the four VaR estimates based on
actual market returns. Although the forecasts vary quite a bit through time,
each of the models delivers a very similar average forecast of between
�6.25 and �6.62 percent. The trending forecast, being based on a much
shorter amount of data, produces much more volatile estimates. Yet all four
measures are highly correlated and rather slow moving through time.

Table 25.3 displays these model performance numbers. Across all months
in our sample, we see that both the mean reversion forecast and the trending
forecast have historically underestimated VaR. Their resulting violations of
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7.78 and 8.89 percent significantly exceed the 5 percent target. However, the
interesting comparison is between the third estimate, taking the average
forecast, and the fourth, which involves directly modeling the mean uncer-
tainty. Both of these measures still underestimate the 5 percent VaR bound,
but perform considerably better than either of the individual forecasts.
While the average estimate produces a 6.67 percent violation frequency, the
mean uncertainty model results in a 5.56 percent violation—still exceeding,
but much closer to, the 5 percent target and a full percentage point better
than the average estimate.

The second part of Table 25.3 demonstrates how the strength of dis-
agreement in the forecasts influences the quality of the VaR estimates.
We rank each month based on the absolute difference between the mean
reversion estimate and the trending estimate. We then split the sample
into two, with those in the half with the greatest difference considered
“High Disagreement” periods and those in the second half labeled “High
Agreement” periods.

When our mean reversion and trending models have relatively similar
forecasts, little can be gained from modeling this disagreement. We see that
the mean reversion estimate slightly underestimates, and the trending fore-
cast overestimates, the VaR figures. And the average forecast and mean
uncertainty forecast are equally good (and quite good in this historical test)
at 5.15 percent. However, the months where there is a high disagreement in
the forecasts show a different result. The two naïve forecasts both perform
poorly at 11.19 percent violations, and the average forecast produces an
8.21 percent violation rate. However, the mean uncertainty model still
scores quite well with a 5.97 percent violation rate—very good, considering
the alternative.

Note that the periods of agreement tend to be quiet market periods of
lower volatility and higher returns. In these circumstances, the penalty for a
poor VaR estimate is generally relatively light. It is in the periods of high
disagreement, characterized by higher volatility, greater negative returns,
and turning points in the market, that the penalties for underestimating VaR
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Table 25.3 Frequencies of 5% VaR Forecast Violations, 1987–2009

Mean Mean Expected
Reversion Trending Average Uncertainty Shortfall

All Months 7.78% 8.89% 6.67% 5.56% �8.33%

High Disagreement 11.19% 11.19% 8.21% 5.97% �9.15%

High Agreement 4.41% 6.62% 5.15% 5.15% �7.52%



are at their greatest. These periods include the market crash in October
1987, the entire 12 months from June 2008 to May 2009, and much of the
crash in the technology bubble of 2000 to 2001. These are the times when
we would most like to have reliable estimates, and these are exactly the times
when the relative performance of the mean uncertainty model is at its best.

The final column of Table 25.3 shows the expected shortfalls estimated by
the mean uncertainty model. It predicts an average shortfall of �8.33 percent
across all months, with a significantly greater shortfall of �9.15 percent in
the High Disagreement months compared to an expected shortfall of
�7.52 percent in the High Agreement months. This also shows the greater
value of precise VaR estimates during times of higher market uncertainty.

CONCLUSION

We have presented a way to directly model uncertainty in key parameters
commonly used in value-at-risk models. Such disagreements are common-
place in financial markets at large as well as within organizations. We show
that by directly incorporating diverse views into our risk models, the result-
ing VaR estimates exhibit superior performance characteristics to other
commonly used techniques. Not only do the resulting ex ante distributions
better capture the assumptions underlying the investment, they also result
in more accurate VaR predictions in our test case for the S&P 500 returns.
Particularly when the level of disagreement is high, leading to high levels of
parameter uncertainty, we see that directly modeling this parameter uncer-
tainty performs exceptionally well.

Standard risk management approaches fail to consider parameter uncer-
tainty, which has led to improper risk management. Blind faith in parameter
estimates has too often led to blind faith in the resulting VaR outputs, and
when these estimates are too often exceeded, the proposed solution is com-
monly to fatten up the tails by using exotic distributions. We show, however,
that directly modeling the uncertainty in mean and variance returns using
standard log-normal distributions can result in posterior distributions with
high degrees of skewness and kurtosis. If we accept a simple world of time-
varying expected returns and variances, the resulting uncertainty around
these constantly shifting parameters places us squarely in this world of inter-
esting and effective posterior distributions.
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NOTES

1. The amount of expected mean reversion is parameterized so that both
groups have, on average, the same expected return for their equity
investment.
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ABSTRACT

The recent financial crisis has shown that models often have their weaknesses,
which is also valid against risk models. Thus, the credibility of a risk model’s
results has to be defended more intensely than ever. In this chapter, it’s
argued that constructing and implementing a model to measure market risk is
still necessary and unavoidable, because having only rudimentary information
regarding market risks is better than having nothing quantitative at all. More
than ever, it is crucial to identify and communicate the modeling assumptions,
and it is indispensable to work continuously to improve the quality of market
risk models with a view towards their adequacy for risk measurement and
management purposes.

The chapter presents in a systematic and concise manner the building
blocks of a market risk model and describes in detail two approaches for
assessing the model’s adequacy: first by assessing the individual building
blocks and by subsequently backtesting the model as a whole. Embedded in
a regular validation process, this can help improve the model continuously.
Regulatory issues are also considered.



MARKET RISK MODELING AND MODEL RISK

Building Blocks of Market Risk Models

The impact of market risk factors on the gains and losses associated with a
portfolio of investments is referred to as market risk. Theses risk factors
might be, e.g., interest rates, equity prices, currencies, or implied volatili-
ties. The starting position for applying adequate statistical means to model
and measure market risk is relatively good as market risk factors are gener-
ally readily observable. The measurement of market risk is preceded by a
prediction of the distribution of the future (and therefore unknown) gains
and losses. These gains and losses of a portfolio are denoted as a random
variable2 Gt. This is completely analogous to the situation encountered
when pricing a financial asset as the risk modeling of portfolio gains and
losses takes all relevant information into account. This information usually
is given by observed risk factor prices or risk factor returns. Thus, the rele-
vant (univariate) predictive distribution is Ft:� Ft (Gt|Rt�1, Rt�2,…), where
Rt�1, Rt�2,… denotes (multivariate) past risk factor returns.

Several building blocks mark the derivation of a predictive distribution
for portfolio gains and losses: first, an identification of relevant risk factors
(such as interest rates for different maturities and rating classes, equity
indices or equity prices, exchange rates, implied volatilities and so on) is
required.

Second, one must choose a relevant multivariate distribution Ft(Rt|Rt�1,
Rt�2,…) for the risk factor returns Rt|Rt�1, Rt�2, …. Here, we should note
that we are dealing with a conditional return distribution (i.e., conditional
on previous observations). Widely used models include generalized auto-
regressive conditional heteroscedasticity (GARCH) and autoregressive con-
ditional heteroscedasticity (ARCH) models for returns of time series.3

Time series of risk factors experience so-called stylized facts. In the model
setup above, this is reflected in the conditional distribution of the risk fac-
tor returns. The stylized facts comprise autocorrelation of risk factor values
and serially almost uncorrelated respective returns. Often volatility clusters
are observable for the returns and the (unconditional) distribution of the
risk factor returns is leptokurtic. The daily return distribution has a mean
around zero and is almost symmetrical.

Third, risk models usually make assumptions concerning the relationship
(mapping) between risk factors (or risk factor returns) and the portfolio gain
and loss function (e.g., sensitivities and “greeks,” full valuation, present value
grids, etc.).

Most risk models show parameters of the conditional distribution Ft such
as a quantile for the value at risk or conditional means for the expected
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shortfall. Value at risk for example is defined as the α-quantile4 of the condi-
tional distribution of a portfolio’s gains and losses: qα

t ��F �1
t (1 �α). 

Nevertheless, the following methods focus mainly on the entire conditional
distribution and in some parts also rely on the respective quantiles. For a
daily risk measurement process, this mapping between risk factors and port-
folio gains and losses changes due to new or matured trades. Moreover, new
information that occurs has to be taken into account for the derivation of
the conditional distribution of the risk factors’ returns Ft (Rt|Rt�1, Rt�2,…),
for a current discussion of calculating the relevant gains and loss figures, see
Finger (2005). As a financial institution commonly reserves economic capital
for risks such as market risk, it is concerned with not reserving too much
(which would be inefficient) or too little capital (thus underestimating the
risks). Therefore, the adequacy of the predictive distribution is of high
importance for the acceptability of a risk model in the bank to generate
trading impulses for the correct management measurements.

Typical Modeling Errors

The above-mentioned setup to model market risk in a risk model helps us
to identify typical errors due to modeling. Some of them stem directly
from the introduced building blocks. When selecting risk factors for the
model, we face the problem of parsimonious modeling. This means that not
all risk factors can be taken into account within the model. Some of this
stems from the “nature” of the “real” risk factor: the yield curve, for exam-
ple, is continuous, implying that key rates have to be identified as risk 
factors. We want to include into the model only risk factors with liquid
quotations. Finally, if we introduce too many risk factors, we face statistical
(and potentially numerical) issues, because the noise associated with esti-
mating a distribution for the risk factors increases and the explanation of
the main risk drivers in the portfolio becomes more and more complicated.

Many common distributions for Ft(Rt|Rt �1,Rt �2, …) comprise the 
normal distribution. This may only be consistent with the stylized facts if
the time series properties like heteroscedasticity are also taken into
account. Nevertheless, many distributions used in the risk modeling context
are not able to reflect rare events with high impact sufficiently. The estima-
tion of the distribution comes along with a respective estimation error.

Concerning the mapping between risk factors and the portfolio’s gains and
losses, one has to admit that, in practice, approximations have to be incorpo-
rated as valuation models might be very complex on a product level and valua-
tion under a certain scenario might be time consuming or involve many
simulations, thus giving rise to numerical issues. The potential recalibration
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of valuation models is another issue to be considered. Thus, common approx-
imations include linear or quadratic approximation, present value grids, or
analytical functions instead of numerical simulations for valuation functions.

From a regulatory point of view, see Basel (1996), typical errors include
the basic integrity of the model in situations where a bank’s risk system is
not capturing the risk, incorrect calculation/algorithm or implementation,
the general necessity to improve a model’s accuracy, insufficient precision in
assessing the risk, inferential or statistical errors, and so on.

Having these toeholds in mind, we will later provide insights into how
adequate means for improving the market risk model can be identified.

Results from Model Risk in a Market Risk Model

Next, we briefly discuss the impact of model risk on the risk management
process. Model risk caused by the market risk model can impact the risk
management process at all steps, which has to be taken into account. 
During risk analysis and identification, a poor model may not be able to
reflect risk adequately or even completely fail to take into account an
important source of risk. This can lead to missing impulses for risk man-
agement decisions, e.g., when the risk measure does not reflect the real risk
by the resulting figures.

Potential under- or overestimation of risk on different levels might
undermine the model’s credibility and lead to an inefficient use of risk capi-
tal. Portfolio effects might be misleading and result in wrong decisions,
resulting from either a false sense of security or insecurity.

The potential impact of model risk in a market risk model makes it obvi-
ous that a tough regular validation and backtesting process is a necessary
requirement for the institution. This will be examined in a later section in
this chapter.

A PRIORI VALIDATION

Risk Factor Selection

As discussed above, the implementation of the risk model faces the problem
of parsimonious modeling that makes a reduction to key risk factors and risk
factor groups necessary. This raises questions such as which key rates should
be taken out of the yield curve or whether we are able to model different
parts of a volatility surface, etc.

The selection of the relevant risk factors depends to a large extent on the
strategy of the portfolio, as the following consideration shows: from a pure
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stochastic modeling perspective more than 95 percent of the yield curve
moves can be explained by parallel shifts, twists, and butterflies, i.e., the
first three eigenvectors. This enables us to reduce the number of risk fac-
tors dramatically. But, if on the other hand, our portfolio follows a steepen-
ing strategy between five and six years, we have the necessity to introduce
these risk factors into the model even if they are highly correlated, since
even small differences will show up in gains or losses.

Hence, typical means to select risk factors rely on common statistical
tools such as regression analysis for calculating the respective contributions
of the individual risk factors to the portfolio’s gains and losses, comparison
of different sets of risk factors, accompanied by tests on homoscedasticity
and autocorrelation.

A selection criterion is the respective impact of the key risk factors on
the portfolio’s gains and losses. Here, many well-known methods are ready
available, but on the other hand, we make other assumptions such as a con-
stant portfolio composition. Furthermore, a nonlinear regression might get
highly complex.

A principle component analysis describes the relevance of different risk
factors by eigenvalue decomposition and can test the significance of eigen-
vectors and eigenvalues. The selection is derived by the impact of the key
risk factors to the risk factors’ total variation.

The application of a principle component analysis to key interest rates, as
in Figure 26.1, shows that the first eigenvector which is a parallel shift
already contributes 83 percent to the total variation of the yield curve, 
the second eigenvector, a twist, contributes 13 percent, and the third eigen-
vector, a butterfly, contributes 2 percent. Thus, more than 98 percent of
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the total variation of the yield curve can be explained by three simple
movements.

The principle component analysis is easy to implement and is a well-
known procedure, but, as already mentioned in the example provided
above, neglects the portfolio’s decomposition.

As an extension, one could also think of a parametric approximation like
a Nelson-Siegel parameter set in a yield-curve context or local volatility
models. This is a well-established procedure in pricing context but the
interpretation of the parameters and their distribution is not always intu-
itive and may give rise to numerical instabilities.

Risk Factor Distribution

Focusing on the modeling of the risk factors’ distribution, we have to recall
the model above. Keeping in mind that we are modeling a conditional dis-
tribution, we distinguish between the time series model and the distribu-
tion of the noise term.

Time series models used for market risk should incorporate the stylized
facts. Some examples comprise white noise and (geometric) Brownian
motion, ARCH models with stochastic volatility and variance ht�ω �αε2

t�1,
where εt�1 is the residual term from the last time step, GARCH models with
ht ω �αε2

t�1 � βht �1 and the special case of the exponential weighting scheme
used by RiskMetrics (see Mina and Xiao, 2001).

The relation between risk factors and risk factor returns is modeled by
either logarithmic returns (e.g., for equities), relative returns (e.g., for inter-
est rates), or absolute returns (e.g., for spreads on interest rates). The respec-
tive selection depends on the risk factor and the observation that the noise
term should consist of independent, identically distributed, random variables.

Common distributional assumptions for the noise term in the time series
model are the normal distribution or student-t distributions. As tools for
the validation of the composite distribution, ordinary statistical tests in
combination with graphical means like pp or qq plots seem useful.

Transformation

The third part of the building block is the mapping between the risk factor
(returns) and the portfolio’s gains and losses. This mapping is usually done
on an instrument level. Here, if the model (like historical simulation) allows
a complete evaluation, no further approximations (besides potentially some
parameters) are to be made. If due to complex valuation functions or
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numerical complexity, one has to establish an approximation, this can be
done by a Taylor series expansion (thus by the “greeks”). The derivation is
often done numerically by applying a small shift to the risk factor (differen-
tial quotient), thus requiring that an appropriate shift size be determined.
Often, larger shifts seem on an individual basis plausible as the approxi-
mated values are located in the tails of the distribution. Other practices
include a quadratic function by a three-point approximation, interpolation,
use of present value grids, etc. The goodness-of-fit can be judged by a
measure such as the L2 metric (or L1) between the true valuation function
and the approximation.

A POSTERIORI BACKTESTING

By backtesting, we complement the validation of the main building blocks
of the market risk model by a retrospective view. We compare the results of
a portfolio’s risk estimation with the respective gains and losses.

Theoretical Foundation for Backtesting Methods

Common statistical tests most often require observations stemming from
independent and identically distributed (i.i.d.) random variables. The above
described setup in market risk measurement emphasis that this is clearly not
the case within the backtesting framework. This gives rise to the question
of how to transform the given data to enable a further application of statis-
tical methods and an in-depth analysis of how to improve the risk model.

Diebold, Gunter, and Tay (1998) present a basis to validate the predic-
tions when observing realized values and consequently to heal the missing
i.i.d. property. This approach dates back to an idea by Rosenblatt (1952)
and uses the so-called Rosenblatt transformation:

Theorem 1: Let f
~

t|Xt�1, Xt�2
,… be the conditional densities generating the

time (Xt)t ∈ N series and let ft be the respective predictive densities. These
predictive densities are assumed to be continuous and ft(x) � 0 for all x. For 
the probability integral transform Ut:�Ft(Xt)�∫

Xt

�∞
ft(u)du it holds that

If further on f
~

t|Xt�1, Xt�2
, … ft for all t, then Ft (Xt) � Ut ~ U[0,1]. 
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Proof of Theorem 1: Because of the non-negativity and the continuity of
the predictive density, it holds that Ft(x) � ∫ x

�∞ ft (u) du is strictly increasing
and continuous and hence, invertible. For ς∈ [0,1] it follows that

The second property follows directly from P(Ut � ς ) � ∫
ς

0 
1dx � ς .

Now, we are in a position to draw conclusions regarding the time series’
serial dependence. This is given by the next theorem.

Theorem 2: With the same notation and assumptions as in

Theorem 1, it holds that 

I further on f
~

t|Xt�1, Xt�2
, … ft for all t, then Ft (Xt) � Ut

iid~ U[0,1].
Proof of Theorem 2:5 For (ς t, …, ς1)′ ∈ [0,1]t it follows that
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Equation (*) is derived by t the dimensional transformation theorem for
integrals, equation (**) stems from the decomposition of random variables, and
(as equation (***)) from the property that each predictive density fi is measura-
ble by the σ-field of Xt�1, Xt�2,… and therefore, for i � j, it follows that 

whereas for i � j it follows that

The second property follows directly from 

We can derive a corollary that is helpful in the further context:

Corollary: Let [at, bt] be an interval of the domain of the predictive distribution
with Ft(bt) � Ft(at) � α for all points in time t. If F

~
t|Xt�1, Xt�2

,… � Ft for all t,
it holds that 1[at , bt](Xt) iid~ Ber(α).

These results allow a treatment of the daily pairs of predicted distribu-
tions and realized gains (Ft, gt)T

t�1 over a period of T trading days and yields
the possibility to step into mathematical and statistical backtesting methods
for the validation of the risk model. The distribution Ft(·) is the above-
mentioned conditional predictive distribution, whereas 

~
Ft is the nonobserv-

able ‘true’ distribution of the portfolio’s gains and losses.
The Rosenblatt transformation forces us to focus on the standardized

gains Ut :� Ft(Gt) or if value at risk is the chosen risk measure on the
exceedances Ot,α :�1(�∞,�qα

t ) (Gt). In an ideal risk measurement framework,
due to the Rosenblatt transformation, the standardized gains Ut should be
i.i.d. uniform distributed, i.e., Ut

iid~ U[0,1], and the exceedances Bernoulli
distributed according to the corollary, i.e., Ot,α

iid~ Ber(1,α).

Useful Statistical Tests for Backtesting

This section introduces some statistical tests that can be used to backtest
the risk model. For a deeper description of the tests and the derivation of a
decision tree that can be used in a practical context, we refer to Wehn
(2005, 2008).
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As a direct consequence of the above-introduced Rosenblatt transforma-
tion, we will first examine statistical tests based on exceedances and then
statistical tests based on standardized gains. Every statistical test is charac-
terized by its null hypothesis, critical values, and a brief discussion of
advantages and disadvantages.6

Tests Based on Exceedances

Probably the best-known statistical test for backtesting is the so-called traffic
light approach (TLA) τTLA. This test was introduced in the context of first
allowing internal market risk models for regulatory purposes (see Basel,
1996). The TLA has the null hypothesis of H0: (1 � ~α) ∈ [0,1 � α] ⇔ ~α 	 α,
meaning that it is judging whether the observed relative frequency of
exceedances ~α is significantly lower than the required level of α. As the indi-
vidual exceedances are to be Bernoulli distributed, their sum is binomial with
Σ
T

t�1
Ot,α ~ Bin(T,1�α) leading to a critical zone of KT, β �{x ∈ {0,1}T Σ

T

t�1
xi 	 kT,B}

with respective critical values of kT, β � min {m1 � FBin(T,1�α)
(m � 1) 	 β}.

The Basel Committee on Banking Supervision in its 1996 landmark paper
laid down two different values for β, namely βy � 0.05 and βr � 0.0001 for
the first kind error. The interpretation then is as follows: if the null has to be
rejected by βy, then a yellow light is shown, if it has to be rejected by βr, then
a red light is shown. Entering the yellow or red zone is directly linked to
higher regulatory capital requirements (see section “Regulatory Concerns”)
and can even lead to a refusal of the use of the internal risk model for regula-
tory purposes.

Figure 26.2 shows the critical values for different lengths T of the time
series of exceedances for the two values βr and βy. For regulatory purposes,
the length of T � 250 trading days is relevant.

A simple and understandable concept as well as setting incentives
toward a conservative modeling make for the often discussed advantages
of the TLA, whereas the last point could also be considered to be a disad-
vantage as there is no penalty imposed for overestimating the risks (a
conservative risk model is not necessarily an adequate one). Exceedances
are relatively rare events (especially on the regulatory level of α � 99%)
leading to a low quantity of observations, whereas the values for βr and βy

are rather high.
A whole class of tests is based on the likelihood ratio. This allows the

statistical treatment of the exceedances as well as the whole distribution,
as we will see below. Likelihood ratio tests (LRTs) are best uniform selec-
tive tests. Kupiec (1995) proposes a two-sided extension of the TLA null
by H0: ~α �α. He first concludes that according to theorems 1 and 2
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(including the corollary), the statistic t1:�min {tOt,α �1} is geometrically
distributed, meaning that P(t � t1) � (1 � ~α ) · ~α t1�1. The respective LRT
for the “time until first failure” (TUFF) is given by

It holds by Wilks’ (1938) theorem asymptotically that λTUFF ~asympt χ2
1. Thus,

if λTUFF � F�1
χ 2

1
(1 � β) for a given β, the null has to be rejected. The TUFF

test is characterized by a relatively low discriminatory power and the need
for large observation samples for small values of β and large values of α (for
example, considerably more than 600 when using β � 0.01 and) α � 0.99).7

Kupiec (1995) also proposes a second LRT with the same null. The test
statistic for the “proportion of failure” test (POF) is given by
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where t :�Σ
T

t�1
Ot,α again is assumed to be binomially distributed. It holds

again that λPOF ~asympt χ 2
1. This LRT corresponds to a two-sided binomial

test, hence serving as an extension of the above-mentioned TLA. Like for
TLA, the second kind error for the POF test can also be reduced signifi-
cantly by using larger observation periods. Due to the two-sided property,
the errors of the second kind are clearly higher than in the TLA, but the
POF test consequently removes the disadvantage of the one-sided TLA.

The first LRT focusing on the serial dependence of exceedances based
on the corollary is a statistic proposed by Christoffersen (1998). It takes
into account a transition matrix of the kind

Independence of sequential exceedances results in Pij :�(P0i�P1i) · (P0j�P1j)
� P(Ot,α � j)P(Ot�1, α � i ). Accordingly, the null hypothesis is given by 
(P01, P11)′ ∈ {(x, x)′x ∈ (0,1)} � Θ0 ⊂ Θ � (0,1)2 and with the definition of
tij :� ΣT

t �11j (Ot,α)1i (Ot�1,α) for i, j ∈ {0,1} the number of observations captur-
ing first state i and then state j, the respective statistic is given by

For the respective LRT statistic, it follows that λind ~asympt χ2
1. A very similar

test is the χ2 statistic with

Christoffersen (1998) combines the POF test with the depicted LRT test on
independence which results in a null hypotheses of (α, P01, P11)′ ∈ {(α, x, x)′x
∈ (0,1)} � Θ0 ⊂ Θ � (0,1)3 and derives a LRT test

It follows that λcombined � λind � λPOF (see Christoffersen, 1998). This test, by
construction has a lower discriminatory power than other tests because of
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the joint null hypotheses. The test yields good results to differentiate
between on average good predictions (the POF test would not reject this)
and timely dynamic (i.e., heteroscedastic processes) predictions.

At this point, we can derive a natural extension to the binomial test by
approximating the binomial distribution with a Poisson distribution with the
estimator ν̂ :�Σ

T

t�1
Ot,α for the intensity and its expected value ν �(1�α) ·T.

The respective LRT statistics follows from

The behavior of the Poisson LRT is very similar to the POF test, stemming
from the fact that the POF test assumes the binomial distribution and the
Poisson LRT assumes the Poisson distribution.

Tests Based on the Entire Predictive Distribution

Tests based on exceedances can only give a first impression of the adequacy
of the risk modeling due to the fact that they focus on the main parameter of
the distribution, i.e., the respective quantile, the value at risk. As mentioned
above, the aim is not only to predict a certain (conditional) parameter but
rather to predict a whole conditional distribution of a portfolio’s gains and
losses. Hence, tests focusing on the whole distribution relying on theorem 
1 and 2 come to mind. These tests comprise goodness-of-fit tests, LRTs as
well as others.

Starting with the fact that Ft (Gt)�Ut ~iid U[0,1] when the right distribution
Ft(·) is predicted, one can easily apply goodness-of-fit tests like the test by
Kolmogorov-Smirnov and the statistic

for the case of a U[0,1] distribution. Crnkovic and Drachman (1996) applied
a certain version of the Kolmogorov-Smirnov test dating back to the
Kuiper statistic with

Whereas the Kolmogorov-Smirnov test is very sensitive around the median
of the distribution, the test by Crnkovic and Drachman weighted the entire
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distribution almost equally. Crnkovic and Drachman also proposed a
weighting scheme (such as) w(x) ��1–2 ln (· (x(1�x))) to set more weights to
the tails of the distribution with a statistic

The distribution of the Kolmogorov-Smirnov test statistic as well as that
of the Kuiper test statistic can be derived analytically. For the case of con-
sidering a weighting scheme the respective distribution will be derived by 
a numerical simulation. The disadvantage of the test by Crnkovic and
Drachman is that it has to take into account a large number of realizations
(	1,000).

A further well-known goodness-of-fit test is the χ2 goodness-of-fit test
that is given for the preceding case of a U[0,1] distribution by

for a number of m classes and P(∆t) � 1—m . This statistics is asymptotically χ2

distributed with τχ 2 ~asympt χ2
m�1.

Berkowitz (2001) proposes a modified test based on a transformation by
the normal distribution and testing for autoregressive (AR(1)) properties of
the transformed time series Zt :� Φ�1

(0,1) (Ft(Gt)). The likelihood function
for a Gaussian noise in a AR(1) series follows by

and thus the LRT by

with the respective estimators µ̂, σ̂ and ρ̂.8 This test by Berkowitz with prop-
erty λNT ~asympt χ2

3 only rejects deviations from the mean and variance of a dis-
tribution; it does not identify other distributions with a mean of 0 and a
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variance of 1. Also, it cannot recognize heteroscadesticity. Thus, several
authors (including Dowd, 2004) recommend applying a test on the hy-
potheses of a normal distribution in addition to the test by Berkowitz.

To conclude, we provide a test for the serial independence property of
the standardized returns Ut. Defining ∆i as above, we define δ ij :� 1∆ i

(Ut�1)1∆ i (Ut) for t � 2,…,T as the realization of a standardized return first
in class i and then in class j. This consideration yields, in conjunction with
δi· :� Σm

j�1 and δ·j :� Σm
i�1 δij, the following χ2

(m�1)2 distributed test statistics:

Obviously, the test τχ2(ind ) is a special case of τχ2(ind 2) for only two classes 
∆0 � [0,α) and ∆1 � [α,1].

EMBEDDING VALIDATION AND 
BACKTESTING PROCEDURES

Regular Validation and Backtesting Process

During the validation and backtesting process, the bank regularly examines
the adequacy and validity of the predicted risk values and to a certain extent
the predicted (conditional) distribution of the portfolio’s gains and losses. If
any doubts about the adequacy exist, one can modify the model to better
cope with the risks by re-examining the construction of the model, by
either introducing new risk factors, changing distributional assumptions
about the risk factor returns, or by a better mapping between returns and
portfolio gains and losses.

A systematically formulated backtesting and validation process can be
sketched by several steps (Figure 26.3): the definition of the model and the
respective approach used to calculate the risk (step 1 in the figure), includ-
ing the assumptions such as risk factor selection, distribution, and transfor-
mation. This setup is regularly updated through the backtesting and
validation of results. The second step (2) is the procedure of backtesting
itself. The risk model must be analyzed using a set of backtesting tech-
niques. An ex post analysis takes place in the third step (3), leading to
potential modifications in the risk model and the potential impact to capital
adequacy is judged. Also, new backtesting methods have to be considered
from time to time (step 4).
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In practice, both parts, a validation part and a backtesting part should be
proceeded on a regular basis. By the validation procedures as in section “A
Priori Validation,” we can improve the different building blocks individually,
whereas in a backtesting context, as in section “A Posteriori Validation,” the
impact of the test results can become more complicated. Wehn (2008)
derives a decision tree to improve the model gradually. Briefly, by some of
the tests, we observe a misestimation (under- or overestimation) of risk (e.g.,
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the TLA, the λPOF or τKS, τCD, or τχ2), which might be healed by inspecting
the risk factor distribution. Other tests focus on the serial information (e.g.,
λind, τχ2(ind ), or τχ2(ind 2)). This might be caused by missing information due to
missing risk factors, a coarse modeling of time pattern, or a crude mapping
between risk factor returns and the portfolio gains and losses.

Regulatory Concerns

Basel II (2009) formulates, besides several qualitative standards, the current
requirements for a regular validation process for approved market risk
models which requires, beyond the TLA tests, a demonstration that the
assumptions made are appropriate (e.g., distribution, pricing models, etc.).
The backtests should use hypothetical changes in portfolio value with end-
of-day positions to remain unchanged using different confidence intervals
tests on a subportfolio level. Among others, regulators require the use of
hypothetical portfolios to assess structural properties like insufficient data
histories where a mapping to proxies has to be done. A conduction of the
procedures should be done on a periodical basis but especially when there
have been any significant structural changes.

Market risk models approved by the regulatory authorities have to meet
capital requirements, see Basel II (2009), that is determined by a qualitative
and a quantitative factor. The quantitative factor is directly linked to the
backtesting results from TLA. Thus, the regulatory capital requirements
depend highly on the adequacy of the model, as Figure 26.3 already suggests.

CONCLUSION

This chapter illustrated and systemized the main modeling assumptions
associated with a market risk model. The process for assessing the quality
of the model is now twofold: on the one hand, the building blocks’
assumptions can be validated individually and, on the other hand, the
model’s output can be judged by means of backtesting. Embedded in a
regular process, the results can help to communicate the market risk
model’s strengthens and weaknesses with a view to steadily improving the
adequacy of the model. This is a crucial step in every risk measurement
and management cycle.
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NOTES

1. Dr. Carsten S. Wehn is head of market risk control at DekaBank, 
Frankfurt, Germany. Market risk control is responsible for the measure-
ment of market and liquidity risk of the bank and the development of risk
methods and models as well as the validation of the adequacy of the
respective risk models. All opinions expressed herein are the author’s and
should not be cited as being those of his affiliated institutions. None of the
methods described herein are claimed to be in actual use at DekaBank.

2. We only consider the discrete case of t ∈ {1,2,3,…} with a time step of
one day.

3. For example in the popular RiskMetrics model (a special univariate
GARCH (1,1) case with exponential weighting scheme), it holds that 
Rt � htεt with a stochastic volatility of h2

t � λh2
t�1� (1�λ)R2

t�1 (cf. Mina
and Xiao, 2001).

4. Usually, α is set to a high level of 0.95 or 0.99.
5. Reiss and Thomas (2007, p. 235) give a very short and concise proof

for the Rosenblatt transformation based on the Fubini theorem. The
interested reader is encouraged to have a look at this smart proof, too.

6. A comprehensive complementary discussion of backtesting techniques
is given in Campbell (2005).

7. A potential extension of the TUFF test is given by Haas (2001), where
supplementary to the time until the first exceedance t1 :� min{tOt, α�1}
also the intervals between the individual exceedances t1 :� min{tΣt

j�1 Oj,α

�i }�ti�1 for i :�2,…ΣT
j�1 Oj,α are taken into account. Under indepen-

dence, it holds, that P (t � ti) � (1�αi) · α i
ti�1 and the respective LRT 

follows by 

Further on, this LRT can be combined with the POF test leading to 
λmix :�λTUFF� � λPOF ~asympt χ2

Σ t
j�1 Oj,α�1. As theses statistical tests do not lead

to significant further or complementary insights, they are not mentioned in
the rest of the chapter.

8. The test by Berkowitz can easily be extended to a test on autocorrelation
by the following statistics:
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ABSTRACT

While bank internal validation of rating systems or market risk value-at-risk
models are an established practice in many banks, and has to a significant
degree been driven by regulatory requirements, few banks have rigorously
validated their economic capital systems. The chapter describes how valida-
tion of economic capital models can reduce and manage model risk in prac-
tice. It examines the process, pitfalls, and benefits of internal validation, and
its embedding into the overall risk strategy of a large, globally diversified,
banking organization.

INTRODUCTION

Model risk does not only express itself in quantifiable confidence levels
around parameters or risk capital figures. It is probably as much, if not
more, driven by model assumptions, data quality, IT implementation, and
correct use of the model.

This chapter evaluates how qualitative reviews of risk models can help to
mitigate model risk. We discuss and assess the determinants that make the



process successful in mitigating model risk, which prerequisites need to be
taken, and how reviews should be embedded into the overall governance
structure of a bank. Many of our findings will sound only too familiar to
model owners and developers; however, we find that they are consistently
underrepresented in the academic literature on validation and model risk.

Our findings relate in principle to all risk models of a bank, be they
“back-office”/risk controlling or “front-office”/pricing models, and be they
supervisory recognized value-at-risk (VaR) or internal ratings based
approach models under Pillar 1 of Basel II or internal models for economic
capital modeling. Model reviews will differ in detail with regard to supervi-
sory requirements and/or constraints; the general principle of mitigating
model risk by rigorous reviews and validation is however independent of
supervisory recognition.

The remainder of the chapter is structured as follows: The second sec-
tion explains the regulatory frame; and the third section explains internal
model governance and how it can mitigate model risk. This chapter’s fourth
section discusses the organizational setup and scope of model reviews and
model validations, and requirements with regard to independence. The fifth
section gives an overview of validation techniques; and the final section
concludes with lessons learnt about the most important determinants in
managing and mitigating model risk via independent model reviews.

REGULATORY REQUIREMENTS AND “FIT FOR
PURPOSE” CHARACTERISTICS OF MODELS

Model reviews and validation are formally required for all bank internal
models that determine minimum capital requirements under Pillar 1 of the
new Basel II Accord. These are VaR models and incremental default risk
charge models for market risk, internal rating systems for credit risk, and
advanced measurement approaches for operational risk. Other bank internal
risk models, such as pricing models or Pillar 2 economic capital models, are
not required to be validated.

From a bank internal perspective, the distinction appears however artifi-
cial: risk management units should ensure that all models used for commer-
cial decisions and/or risk and capital management are fit for purpose, that
they are used for their intended purpose only and that they fit within the
risk landscape and business strategy as a whole.

We therefore do not distinguish between “regulated” and “unregulated”
models in the following, and do not refer to any specific supervisory
requirements. The benchmark for mitigating model risk via review and val-
idation is the model’s “fit for purpose” assessment.
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Review and validation are closely linked to the intended use of the model,
and might vary according to this use. Valuation models for the trading book,
as an example, require a high degree of accuracy—traders cannot afford to
err on either the conservative or aggressive side, without pricing themselves
out of the market and/or bearing losses in the long run. Economic capital
models, on the other hand, try to assess a very conservative scenario 
(	99.9 percent quantile), which is very likely never to occur in reality. Eco-
nomic capital is seen as a buffer against such adverse events. Erring a bit on
the conservative side is thus much less dangerous and will probably not lead
to major findings in a validation or review.

MODEL GOVERNANCE AND 
MANAGEMENT OVERSIGHT

The biggest model risk, as the current market crisis has shown, does not lie in
statistical uncertainty in the sense of confidence intervals around estimators
or similar. It lies in

• Poor governance processes that open the door for model misuse,
flawed model inputs and/or a missing understanding of the
assumptions and limitations of a model; or

• Major risks not identified and not modeled at all

A comprehensive governance process can reduce these model risks sig-
nificantly, even though it might not mitigate them completely. The process
illustrated in Figure 27.1 has proven useful in practice and ensures an
appropriate management oversight over risk models and will thereby mini-
mize model risk.

Terms of Reference and Initial Model Approval

The terms of reference for each model should include a short description of
the purpose of the model, its scope and relation to other risk models, the
proposed methodology, and its envisaged use in risk management. The
approving risk committee thereby receives an understanding of how 
the model fits into the overall risk landscape of the bank and can assess
whether all significant risks of the business are covered. From a manage-
ment oversight perspective, it is this coverage of all significant risks by some
potentially rather simple models that provides a better assurance against
model risk than sophisticated methodologies for selected risks only.
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Technical Model Development

Data

The data used for the model development should be relevant, complete, and
current. Model risk sets in if the data available fall short on any of these
characteristics. Especially the first property might face severe limitations in
practice that model developers have to live with. Examples include:

• The use of traded assets data to calibrate correlations for nontraded
assets within credit risk models, such as the standard Merton model.
Equity prices from listed companies certainly do not describe the
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Project proposal and initial approval
Output: Signed off Terms of Reference document

Model testing in “IT/live” environment
Output: (1) Extensive tests of live data interfaces and appropriate

model settings, IT security
(2) Documentation of live implementation and testing 

Monitoring/independent post-implementation review
Output: (1) Regular validation reports

(2) Regular model monitoring, performance reports, etc.
(3) Periodic independent reviews as appropriate

Independent pre-implementation review of
technical model and its IT/live testing

Output: Report/recommendations for improvements before approval

Use of model
Output: Various, and changing/increasing over time

Minimum: regular risk reporting

Model approval and implementation
Output: Signed off model approval

Technical development/vendor search and initial validation
Output: (1) Technical model including its calibration

(2) Documentation of development, calibration, and data sources
(3) Initial Validation results (scenario analysis, robustness check, etc.)

Figure 27.1 Model Governance Process



dependency structure of nontraded borrowers completely, but within
a Merton model context, trading data is needed as an input, such that
the approximation of nontraded borrowers by some “similar” traded
companies seems the only way to go. It is a shortcoming that model
developers and users should be aware of.

• The use of credit default swap (CDS) spreads to calibrate credit risk
includes liquidity premiums into the credit risk charges, which might
or might not be appropriate. Again, model developers need to assess
whether CDS spreads are “relevant enough” for the question they like
to answer, or whether there are other, more relevant data available.

The use of data that do not exactly match the model is almost always
driven by the fact that better data are not available. It is the model devel-
oper’s responsibility to assess whether the deviation is justifiable under
model risk aspects. At the same time, requirements on the relevance of data
should be seen in perspective: each model is a simplification of reality, and
no data will ever fit perfectly. The right balance between accuracy and
availability needs be struck and explained to model users.

Model Assumptions

Each model comes with a set of implicit and explicit assumptions. These
assumptions might or might not hold in practice; they are more often than
not necessary to make the model work. They are not to be seen as a disad-
vantage per se—models are always simplifications of the reality.

Model assumptions should be clearly stated and assessed with regard to
their impact on the model results. Special care should be given to implicit
assumptions, which all too often get forgotten too easily. The following list
provides a sample of common implicit assumptions:

• Use of correlations: correlations are linear and average measures of
dependency. They cannot capture nonlinear dependencies or sudden
changes in data history. Moreover, they tend to critically depend on
the calibration data period and can be highly unstable over time.
Ignoring these characteristics of correlations, and using them as the
one and only dependence measure in complex models, can lead to
severe misspecification.

• Selection of relevant data set: the decision on the time period from
which calibration data are drawn is as important as the methodology
choice itself. By setting out for a certain period, one implicitly
assumes that the pattern of this time series will likely to be repeated
within the forecasting horizon of the model. Data availability aside,
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the choice is nothing else than a judgmental call on the relevant time
period, which should be seen as such and be justified within the model
development documentation.

Model assumptions and model limitations are the two sides of the same
coin. Looking back at the market turmoil of 2008, and the subsequent criti-
cism of quantitative finance and model-based risk management, much of it
came from a lack of understanding of these assumptions and limitations on
model users’ and critics’ side—and a lack of explanation and transparency of
them on the model developers’ (the “quants”) side. Model developers do
have the responsibility to be transparent about their explicit and implicit
model assumptions and their judgmental decisions in developing the model.

Where possible, model developers should undertake scenario tests in the
sense of using different sets of assumptions in the development process.
Choices might be quite limited in reality—more often than not are they
driven by data availability and/or methodological or computational restric-
tions. The assumption of normal distributions for market risk models, for
example, has its origins as much in the well-behaving stochastics of the dis-
tribution as in any other reason.

Model Specification

The calibration data will be used for determining the relevant determinants
and risk drivers for the model, and to calibrate the parameters. Model risk
can be quantified within this step: all parameter estimations should be
accompanied by confidence intervals around them—a standard statistical
technique that is surprisingly seldom used in finance and for risk models.
Confidence intervals around estimations would give an indication of how
reliable the estimates are.

Moreover, they could be used for sensitivity and robustness analysis (i.e.,
evaluation of model results if confidence bounds instead of the estimated
parameters were used). Such analysis gives a comprehensive sense of model
risk in the statistical sense. If the “stressed” model results (in the meaning
of results obtained by using the confidence bounds) are close to the initial
model results, statistical model risk is small. Large deviations indicate a sig-
nificant model risk. They could be driven by either large confidence inter-
vals around the estimations (due to small data sample, wide dispersion, or
general lack of model fit) or by a high significance of the parameter for the
overall model. In either case, the model risk needs to be taken seriously, and
alternative methodologies, different model specifications, and/or better and
richer data might be sought.
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Implementation

IT Specification

The IT implementation of each model poses several challenges to each risk
model, and contributes probably more significantly to model risk than sta-
tistical noises in data or estimation methodologies. Things that can go
wrong are numerous and very often driven by misunderstandings between
IT and model developers. Examples include:

• Incorrect data feeds/interfaces, e.g., local currency versus accounting
currency for the banking group

• Inconsistent data feeds from different source systems, e.g., zero-bond
yields versus “normal” bond yields

• Incorrectly implemented methodologies

A good IT specification from the model developer is vital; a close coor-
dination between IT and model developer during the implementation phase
is desirable. In any case the IT implementation should be extensively tested
by model developers and model users. Tests include replication of test cases
as well as user friendliness and robustness to prevent follow-up issues with
unintended incorrect model use.

Input Data

The model developers need furthermore to ensure that the model can be
regularly run, i.e., that the required input data are available. The require-
ment sounds simple, however, getting calibration data in a one-off exercise
and assuring regular and automated input data feeds into the model can be
very different things in practice.

Documentation

The entire model development and use process should be adequately docu-
mented, including detailed user manuals. Documentation should be at a
level such that a third person experienced in the specific model category
would be able to understand and if necessary replicate or improve the
model. The user manual should be at a level that allows business users to
understand the major model characteristics, its application and limitations,
and the required inputs, and to guide them through the output analysis.

Missing documentation is a material source of model risk: it leads to
inadequate applications of models and in its worst case to models being
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employed after the developer has left, with nobody understanding the
whereabouts of the model, which effectively becomes a black box.

Approval

No model should be used without explicit approval by the designated risk
committee. The approval procedure is, similarly to the initial approval for
model development, a qualitative measure to ensure that the model fits into
the overall model landscape of the bank, that its development and results
are consistent with the intentions at the start of the development and that
the model owners and model users are confident with the usage in practice.

Approval should only be given after the model has been validated and
independently reviewed. 

Monitoring

Once the model is in use, the results should be regularly monitored. Stan-
dard practices are, e.g., backtesting and outlier analysis for market risk and
overwrites for internal rating systems. The monitoring is not to be seen as a
regulatory impetus, especially for backtesting, but rather as a way to detect
shifts in model performance as early as possible. These shifts can come
from various sources: a changing economic environment could render the
old calibration invalid; the portfolio composition might have changed and
requires a recalibration or redevelopment, or other.

Whether a bank sets predetermined thresholds that trigger action, or
whether analysis and potential recalibration or redevelopment are decided
on a case-by-case basis, seems of secondary importance. The monitoring
and the extensive discussion of the monitoring results provide the process
for dealing with model risk under portfolio dynamics.

VALIDATION VERSUS INDEPENDENT REVIEW

Throughout this chapter, we distinguish between the notion of an inde-
pendent review and a model validation. Validation is used for a more nar-
row, highly model-based, and probably stat ist ically/quantitat ively
dominated exercise. It will include out-of-sample tests of the model in ques-
tion and a number of additional techniques.

Model validation should be performed by the model developer, i.e., it is
formally not independent from the model development. A first initial valida-
tion should be due directly after the model specification. Additional vali-
dations, or rather result replications/testing, is required after the IT
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implementation of the model. Finally, each model must be monitored peri-
odically in order to ensure its ongoing fit-for-purpose property. Standard
tools are

• Number and direction of model overrides—how often do model users
believe the model to deliver incorrect results

• Comparison of model estimations and risk realizations2

Independent review, on the other hand, comprises the review of the en-
tire model development process. Reviewers will assess:

1. The formal setup (terms of reference, assigned responsibilities)
2. Model calibration data quality and relevance for the model
3. Model design, parameter estimations, and ultimate model setup

(“makes sense” test)
4. Model validation

Where applicable, reviews should extend into model implementation, in
particular:

5. Whether the model is indeed used for the purposes and asset classes
it has been build for

6. Whether the IT implementation matches the intentions of the model
developers, and that it had been tested accordingly

The independent review, as the name indicates, should be performed by a
unit independent of the model owners and developers. Independence can be
achieved in different ways, whose pros and cons are explained in Table 27.1.

There is no single preferred arrangement for independent reviews; banks
must assess the strengths and weaknesses of each arrangement in the light
of their specific circumstances.

Each model should be independently reviewed before it can be internally
approved and used for its designated purpose. The independent review will
give model owners, approvers, users, and senior management the assurance
that model risk—both in the statistical sense as well as the more profane
implementation risk—has been mitigated to the maximum possible extent.

INDEPENDENT REVIEW AND 
VALIDATION TECHNIQUES

(Statistical) validation techniques are manifold and depend on risk category,
available data, model type, and many other factors. There is extensive liter-
ature and supervisory requirements, which are referred to in the literature
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list at the end of this article. As we intend to assess model risk and its miti-
gation from a more comprehensive, qualitative and process driven perspec-
tive, we do not go into detail.

Rather, the section focuses on independent review techniques that take
model risk sources “around” the core model methodology into account.
Table 27.2 provides an extensive, albeit nonconclusive list of independent
review techniques, and their advantages and challenges.

It is up to the model reviewer to decide which techniques are appropriate
for each model in question. We do not recommend complete suites of tests
that are to be applied without assessment of their applicability; such suites
provide a spurious sense of objectivity. Each test in itself comes with its
baggage of implicit and explicit assumptions, which might or might not be
appropriate for the specific model. Model reviewers should have the experi-
ence and capability, as well as the freedom, to decide what is appropriate in
each case. The decision should, as everything related to model governance,
be transparent and well documented.
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Independent review teams

Internal peer review

External reviewers

Audit

Advantages

• Independence assured

• Good availability if review
needs arise

• Highly qualified staff

• Realistic recommendations
and good knowledge of
model risks

• Internal knowledge
transfer

• Availability

• Independence assured

• Potentially wide industry
experience

• Independence assured

Challenges

• “Losing touch with
reality”—unrealistic
recommendations and/or
missing important model
risks

• Attractive to highly
qualified staff?

• Independence potentially
scrutinized by cross-review
arrangements

• Potentially restrained
resource availability if
review needs arise

• External knowledge
transfer

• Independence assured

How are follow-up/cross
assignments with the
external agency managed?

• Costs

• Detailed quantitative
background could be a
potential issue

Table 27.1 Independent Review Arrangements



CONCLUSION

Model risk can be mitigated through strong model development, validation,
and independent review governance. It goes beyond pure statistical measures
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Technique

Critical
assessment of
model
assumptions

Qualitative review
of methodology

IT system
validation
including data
feed

Use test

Input data
validation

Parameter
validation and
sensitivity testing

P/L attribution

Benchmarking

Model replication

Backtesting

Advantages

• High impact of
model results and
model risk

• Challenge of
methodology

• High impact on
model risk

• The only true
reality check

• High Impact on
model risk

• Core methodology
validation

• Easy

• Comfortable
feeling of not being
the outlier

• Full methodology,
data, and
calibration
validation

• Only truly
statistical
validation

Challenges

• Alternative
assumptions often
computationally
unfeasible

• No quantitative
assessment of
model risk

• Time consuming

• More valuable to
external than
internal addressees

• Time consuming

• Difficulties with
vendor models

• Indication about
directional
accuracy only

• Shows differences
between model
results only

• No clear
statement about
which model is the
correct one

• Compare like and
like?

• Data availability

• Time and resource
consuming

• Data availability

Application

• All risk models

• All risk models

• Selected parts of
all risk models

• All risk models

• Selected parts of
all risk models

• All risk models

• Risk categories
with clearly
attributable P/L

• Very selectively
only

• Very selected
pieces of EC
models only

• Market risk only

Table 27.2 Validation and Review Techniques



of risk and takes processes around the model into account. Particular atten-
tion should be given to all implicit and explicit assumptions that go into each
risk model, including the calibration data sample, whose selection in itself
forms an assumption about historic periods deemed relevant to model future
patterns. Other significant sources of model risk are the implementation and
use of model. The embedding of all risk models into appropriate senior
management approval processes, whether supervisory prescribed or not,
mitigates model risks by ensuring adequate embedding into the overall risk
landscape of a bank.

Resources to mitigate these different sources of model risk need to be
allocated on a case-by-case basis. The core model methodology, while
important in itself, forms only one part of the overall equation for model
risk and should not be overstated. Experience from bank internal gover-
nance processes indicates that model risk is more likely to be caused by the
incorrect implementation, data, and model use, rather than methodology.
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NOTES

1. Katja Pluto heads the Risk Methodology unit at HSBC Holdings plc.
The opinions expressed in this chapter are her own and do not neces-
sarily represent the views of HSBC.

2. We do not use the notion of “backtesting” here, as it is linked to a statis-
tically viable hypothesis testing. The length of the required time series
is usually only available for market risk, where daily data are available.
For other risk categories, annual or at most monthly data prevail, and
the required time series would never be reached.
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ABSTRACT

In the present chapter, we propose a robust portfolio allocation methodol-
ogy when there is some ambiguity concerning the dynamics leading asset
prices. The decision maker considers several prior models for the asset
price dynamics and displays an ambiguity aversion against those priors. We
have developed a two-step ambiguity robust methodology to compute the
portfolio optimal weights that offers the advantage to be more tractable
and easier to implement than the various approaches proposed in the liter-
ature. This methodology decomposes the ambiguity aversion into a
model-specific absolute ambiguity aversion as well as relative ambiguity
aversion across the set of different priors. The weights inferred by each
prior are transformed through a generic Absolute Ambiguity Robust
Adjustment (AARA) function ψ. Then, the optimal transformed weights
are mixed through a Relative Ambiguity Robust Adjustment (RARA)
function π that reflects the relative ambiguity aversion of the investor for
the different priors considered.

INTRODUCTION

In this chapter, we propose a new approach to account in a robust way for
model ambiguity aversion in the asset allocation problem: the Absolute
Ambiguity Adjustment Allocator. Our motivation to propose a simple
methodology to account for ambiguity aversion is essentially due to the
complexity to solve the asset allocation problem under ambiguity proposed



so far in the literature (see for instance the smooth penalty optimization
problem proposed by Klibanoff, Marinacci, and Munkerji, 2005).

Our methodology offers a trade-off between robustness and optimiza-
tion. Our objective is not to find the optimal decision for the decision
maker (for a given choice criterion), since the complexity of most practi-
cal frameworks makes this task almost impossible. We rather focus on an
approach that allows the decision maker to combine different priors in a
practical and tractable way to take the best decision in a robust sense. The
question is really about f inding a robust solution that encompasses 
all the different pieces of information given by the different priors but
also the ambiguity the decision maker is facing regarding the set of priors
she considers.

The chapter is organized as follows: first, we give a general background
for an investor facing a portfolio optimization problem under model ambi-
guity, we then present the absolute ambiguity robust adjustment (AARA)
function ψ, which transforms the optimal weights computed under each
prior considered, according to the idiosyncratic ambiguity aversion the
investor displays for each prior. In the third section, we introduce the rela-
tive ambiguity robust adjustment (RARA) mixture measure π that accounts
for the systematic ambiguity aversion of the different priors considered.
The function π allows us to mix the individual optimal weights obtained in
the precedent phase through the function ψ. We finally present a more
complex theoretical example that illustrates our AARA methodology and
exhibits how the portfolio allocation is affected by ambiguity aversion.

SETTINGS

We consider an investor with a given initial wealth. She wants to allocate her
wealth among the N � 1 different assets available in the market. Xφ repre-
sents the value of her portfolio at a future time horizon and the control vari-
able φ represents her strategy, i.e, how she allocates her wealth among the
assets. More precisely, φ is a vector of weights where each component corre-
sponds to the proportion of wealth the investor is allocating to a given asset,
a negative value translating the fact that this particular asset is sold. Each
element of φ belongs to [�1:1]. Note that there is an investment constraint:
Σ
N

i�0
φi�1 to express the idea that 100 percent of the initial wealth is invested.
We assume the investor considers several different models, or priors, to

represent the dynamic of Xφ. The investor is ambiguous against those models.
We propose a new methodology to solve the allocation problem under

ambiguity. More precisely, we proceed typically in two steps as we distin-
guish two forms of ambiguity:
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• Absolute ambiguity: This refers to the ambiguity aversion the agent has
for a given prior. It is taken into account through the transformation
function ψ, denoted thereafter as the AARA function. The function ψ
is applied to the different optimal weights computed per prior model
Q. The function ψ reflects the specific ambiguity aversion of the
investor toward each prior Q. It solely modifies the optimal weights
computed previously as if Q were the true model. Therefore, this
function ψ transforms the different optimal weights of each model
independently. More precisely, we compute the optimal asset allocation
φQ associated with each model Q as if Q was the true model. Then, we
compute the adjusted weights as the expected value of the weights
transformed by a robust ambiguity aversion transformation ψ,
parameterized by a prior-specific ambiguity parameter γ Q.

• Relative ambiguity: This refers to the relative ambiguity aversion the
agent has for the set of priors Q. It is taken into account through the
distribution π defined on the set of priors, that we denote thereafter as
the RARA function. The function π represents the relative ambiguity
aversion of the investor among the priors considered. We call it
relative, because π takes into account the relative ambiguity aversion
of the investor toward the different priors. The function π also
reflects the overall ambiguity aversion of the investor toward the set
of priors, i.e., how much the investor believes that the set of priors
contain priors close to the true model. 

The final Ambiguity Robust Adjustment Allocation φ ARA is then
defined as: φ ARA ≡ ΣQ Ψ(φQ, γ Q) π (Q). Our methodology offers 
several advantages.
• Tractability: We can make the distinction between the absolute

ambiguity toward a given model, and a relative ambiguity among
all the models selected by the investor.

• Simplicity: The portfolio robust weights under ambiguity can be
easily computed, whereas other portfolio optimization methodolo-
gies are too complex to allow for closed-form solutions and require
numerical solutions.

• Flexibility: The different models selected by the investor do not
have to belong to any particular parameterized family. We free
ourselves from the Gaussian settings, mostly used in empirical
papers (where it is more or less always assumed that the stock
returns are log-normal).

In the next two sections, we present more precisely the AARA and
RARA functions.
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ABSOLUTE AMBIGUITY ROBUST ADJUSTMENT

In order to characterize the AARA function ψ, we first present some
axiomatic characterization of the AARA function. Second, we focus on the
parameterization of the absolute ambiguity parameter γ Q.

Axiomatic Characterization of the AARA Function ψ

The aversion of the investor toward ambiguity is taken into account in
our model by a concave transformation function ψ of the optimal weights
obtained for each model Q. This ψ adjustment is model specific and
rescales the optimal weights inferred by each model Q. More precisely, 
ψ deals with the specific ambiquity aversion of the investor toward each
prior.

Let us first recall some of our notations:

• Set of priors Q: We denote by Q the set of priors, or models. We
suppose that Q is a finite set, for the sake of simplicity in our
argument.1

• Prior Q: We denote by Q an element of Q.
• Prior optimal weight φQ: We denote by φQ the vector of optimal

weights obtained under the assumption that Q is the true probability
measure.

The function ψ must satisfy some key properties to be consistent with
the rationality of the agent:

• Universality of the function ψ: ψ is the same for all the priors. The
investor treats the absolute ambiguity aversion with the same type of
transformation across all the different priors. What distinguishes the
absolute ambiguity aversion transformation across the priors is the
specific ambiguity aversion parameter the investor attributes to each
prior. ψ is parameterized with the positive absolute ambiguity
aversion parameter γQ, that is model specific.

• Maximum weight: The ambiguity aversion parameter γ Q defines the
maximum weight obtained after the ψ transformation of the optimal
weights defined under the prior Q. As the absolute optimal weights φQ

are bounded by 1, ψ(1, γ Q) represents the maximum weight the
investor will assign to an asset after the AARA transformation.

• Monotonicity: One of the key characteristics of ψ is its monotonicity
property. ψ preserves the relative order of the optimal weights φQ
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deduced by a given prior Q, so that the relative preference of the
investor toward the different assets given a prior Q is preserved
through the transformation ψ.

• Convexity: The function ψ is concave on [0;1] and convex on [�1;0],
so that the function ψ reduces more the absolute biggest weights
given by the optimized portfolios under each prior considered. The
convexity scale is parameterized through an aversion coefficient γQ:
the bigger the aversion coefficient, the more averse the investor is to
large weights inferred by Q. Also the convexity of ψ will depend upon
the investor ambiguity aversion toward the model Q considered.

In the following are some additional properties of the function ψ:

• Symmetry: The function ψ is symmetric around zero. The investor
has the same aversion against positive or negative weights of the same
absolute value. In a context where short selling is possible, there is no
reason to differentiate the long or short weights of the same
magnitude in terms of ambiguity aversion.

• Invariant point: There is no ambiguity aversion for a zero weight. This
property boils down to the fact that the investor shows no ambiguity
aversion toward a zero weight: if the model Q assigns no weight on a
given asset, the transformation ψ should not modify the “neutrality”
of the model Q toward this asset.

• Limit behavior: When the investor is infinitely averse to ambiguity, 
it will prevent her from trading as she trusts none of her priors, 
and therefore all the portfolio weights should be defaulted to zero.
Ψ(φ,γ) →γ→0 φ.
On the contrary, if the investor is neutral to ambiguity, the function
ψ should leave the prior-dependent weights invariant, Ψ(φ,γ) →γ→ 0.

• Weight shrinking effect: The absolute ambiguity adjusted weights are
smaller than the optimal weights computed under a given prior Q in
absolute terms.
As an illustration, we plot in Figure 28.1 the following example for
the function ψ for different values of γ: 

In the following subsections, we discuss in more details the ambiguity aver-
sion parametrization of the AARA function and the specific role played by
the risk-free asset.
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The Particular Role of the Risk-Free Asset

The risk-free asset plays a specific role in the ambiguity-adjusted optimal
asset allocation. Such an asset has a certain future value and there is no
model risk associated with it. It therefore plays a specific role in the ARA
asset allocation problem.

Indeed, the risk-free asset can be assimilated to a refuge value in the
following sense: the more the investor is averse to ambiguity, the more she
will invest in the risk-free asset. The ambiguity aversion leads the investor
to invest less in ambiguous assets (as the function ψ reduces the optimal
weights obtained for a prior Q).

Therefore the “disinvested” risky investment value, which is the differ-
ence between the value invested in risky assets under no ambiguity and the
value invested in case the investor is ambiguity averse, is transferred into
the risk-free asset.
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For the risk-free asset, the ARA weight is defined as: φ0
ARA�1� Σ

N

i�1
φARA

i .
In our model, the risk-free asset plays the role of a refuge value. Indeed,

the sum of the transformed weights is not equal to one. Therefore the
residual proportion of wealth not allocated in the risky assets is put into
the risk-free asset. The transformed weight of the risk-free asset repre-
sents the amount of money the investor is reluctant to invest on risky
assets because of her aversion to ambiguity.

The ARA asset allocation is bounded by the subjective expected utility
asset allocation.

Now that we have presented the absolute ambiguity robust adjustment
function, we focus in the next section on the relative ambiguity robust
adjustment function.

RELATIVE AMBIGUITY ROBUST ADJUSTMENT

Once we have transformed the weights through the AARA function, we
need to aggregate those solutions across the different models considered.
We propose a transformation π to account for the mixing of the different
priors ambiguity-adjusted optimal weights.

Once the weights have been computed for each prior Q and have been
independently adjusted for ambiguity aversion through the AARA function,
we need to combine them across all priors. We propose a RARA function
through a mixture measure π, where π(Q) represents the likelihood accord-
ing to the agent anticipation that the model Q occurs, as well as the relative
ambiguity aversion the investor displays toward Q among the set of priors.

Characterization of π

The RARA function π allows the investor to give relative weights to each
of the priors she considers, taking into account:

• The relative ambiguity aversion among the priors (i.e., taking into
account the correlation of the different priors)

• The overall ambiguity aversion of the investor toward the set of priors

The investor aversion to ambiguity is dynamic, in the sense that depend-
ing on the period considered, she will be more or less confident about her
priors and the overall set of priors she considers. Therefore, we allow the
function π to adapt dynamically and expend or contract the total investment
size whether the total ambiguity aversion decreases or increases overtime.
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As pointed out by Epstein and Schneider (2007), the ambiguity aversion of
an investor is not monotonically decreasing over time, as a Bayesian updat-
ing system suggests. Our RARA function allows the investor to adjust her
portfolio weights dynamically, depending on her overall belief of how much
her priors can explain the true distribution.

The measure π is a RARA measure if:

• At best, a model Q perfectly fits reality and is none ambiguous: 
π(Q) � 1. At worse, it is completely ambiguous: π(Q) � 0. We have: 
0 � π (Q) � 1.

• The set of models can at best perfectly represent reality, so we have:
Σ
Q

π(Q) � 1.

Note that the RARA measure is not necessarily a probability measure.
In this respect, π differs from the distribution measure µ on the set of pri-
ors commonly used so far (as in Klibanoff, Marinacci, and Munkerji, 2005).
Indeed, most of the time we will have: Σ

Q
π(Q) � 1, which translates the fact

that the investor does not believe that she has a full understanding of the
true model leading asset returns dynamic.

Estimating π

Many methods could be used in order to calibrate the value of π(Q). We
propose a simple empirical methodology which takes into account the rela-
tive historical performance of the different priors. First, we compute the
time series of performance measures on the different priors considered,
evaluated over a given time window. The measure π can then be computed
as a weighted average of the performance measures. We illustrate the com-
putation of π in an empirical example found in Barrieu and Tobelem
(2009a).

THEORETICAL EXAMPLE

In Barrieu and Tobelem (2009b), we show that our ARA methodology gives
comparable results to the Klibanoff, Marinacci, and Munkerji methodology.
In this section, we provide a theoretical example for our ARA methodol-
ogy, with a more complex setting than the one presented in Klibanoff,
Marinacci, and Munkerji (2005). More precisely, we show that our ARA
methodology allows us to solve cases, where the set of priors is continuous
and the distribution for the risky and ambiguous asset are also continuous,
which would not be possible in a setting such as the one proposed by
Klibanoff, Marinacci, and Munkerji.
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Settings

As in Klibanoff, Marinacci, and Munkerji (2005), we assume there exists
only three different assets in the financial market:

• A risk-free, nonambiguous asset S0

• A risky nonambiguous asset S1, i.e., there is an uncertainty about the
future value of S1, however, there is no uncertainty about the
distribution that leads this value

• An ambiguous nonrisky asset S2, i.e., there is uncertainty about the
model that leads the future value of this asset, although under the
assumption that we know this model Q, the value of S2 is deterministic

For the sake of simplicity, we assume all assets have an initial value of 1
and we consider only one period from time 0 to time T. The set of priors
{Qq}0�q�d is a continuous set. We define by π the distribution on the differ-
ent priors and we assume that all the priors are equipotent for the investor
(all priors have the same likelihood): �q ⊂ [0, d], π (Qq) � 1–d .

Also, we assume that under the prior Qq, the ambiguous asset S2 is equal
to q. Therefore the ambiguous asset follows a uniform law on the prior dis-
tribution π.

We assume that the value of the different assets at horizon time T is
given as follows:

• S0
T � r, the deterministic risk free return is r. The asset S0

T displays a
constant return r whatever the prior considered: it is nonrisky and
nonambiguous.

• S1
T follows a normal distribution with mean d (where r � d), and

standard deviation σ. The risky asset follows the same normal
distribution under any prior Qq: it is a nonambiguous, risky asset.

• S2
T � q, the ambiguous asset follows a uniform distribution on the

priors distribution. It displays a constant return q depending on the
prior Qq considered. Under a given prior Qq, it is a risk-free asset: it is
an ambiguous, nonrisky asset.

In addition, the investor utility function is defined as: u(x,λ) ��exp�λx,
where λ stands for the investor risk aversion. The decision maker wants 
to form a portfolio which maximizes the future expected wealth utility,
where the future wealth Xφ

T is defined as: Xφ
T �Σ

i
φiS i

T, where the φi denote
the weight of the asset Si in the investor portfolio. Note that we have:
X φ

0�Σ
i
φ iSi

0 �1.
In the following subsection, we compute the ARA transformed weights.
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The ARA Transformation

Let us now compute the weights obtained through an ARA transformation.
First we compute the optimal weights under each prior Qq. We consider a
classical setting where the investor wants to maximize the expected utility
of her future portfolio value. Under a given prior Qq, the investor wants
therefore to solve the following program: maxφ E[u(X φ

T)].
We can distinguish two cases:

• Case where 0 � q � r: The ambiguous asset has always a return lower
than the risk-free, ambiguous-free asset. Therefore, under a prior Qq,
the investor will only consider investments in the risky asset and the
most profitable risk-free asset, i.e., in the present case S0. In this case
we have φ2 � 0, and to simplify we can denote φ1 � φ and 
φ0 � 1 � φ. We deduce that the optimal solution in this case is 2:

• Case where r � q � d: The ambiguous asset has always a return
greater than the risk-free, ambiguous-free asset. As previously
argued, under a prior Qq, the investor will only consider investments
in the risky asset and the most profitable risk-free asset, i.e., in the
present case S2. In this case we have φ0 � 0, and to simplify we can
denote φ1 � φ and φ2 � 1 � φ.

Under a given prior Qq, the risk-free return of the ambiguous asset is q.
By similar calculus as previously done, we find that the optimal solution in
this case is:
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We now need to apply the AARA transformation to the optimal weights
obtained for each prior Qq. To simplify the case example, we assume that
the parameter γ remains the same for all the priors considered (this goes
along with the fact that the investor affects a homogeneous weight to all the
priors: a priori, the investor considers all the priors equally ambiguous). We
also apply the RARA transformation across all the priors considered.

The final ARA weights are therefore defined as: φi,ARA�∫ψ(φi,q,γ)π(q)dq,i ⊂
{1,2} and φ0,ARA�1�φ1, ARA�φ2, ARA.

We will assume that the investor risk aversion λ is such that λ � 
d—

σ 2, so
that all the optimal weights under all the priors Qq are defined on the
interval[0,1]. The calculus when λ 	 

d—
σ 2 would be similar.

The weights under the ARA transformation are defined respectively as:

Description of the ARA Weights

It is interesting to study the optimal weights at the limit values of the
parameter γ3.

When the ambiguity aversion goes to infinity, the investor invests all her
wealth in the risk-free, nonambiguous asset:

It is also interesting to consider the weights when the investor has no aversion
to ambiguity (γ � 0):
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When the aversion to ambiguity is null, we are in the case of the subjec-
tive expected utility, as in Savage (1954): the weights are equal to the
expected value of the different priors Qq conditional weights, weighted by
the measure π.

In Figure 28.2, we have plotted the optimal weights with a parameter γ
ranging from 0.1 to 5. The aversion to ambiguity affects the risky asset as
well as the ambiguous asset. The weights of the risky asset and the ambigu-
ous asset decrease with respect to an increase in the aversion parameter γ,
whereas the allocation of the risk-free, nonambiguous asset increases.

CONCLUSION

In this chapter, we proposed an easy to implement robust ambiguity
methodology that allows the investor to adapt her portfolio to her level of
ambiguity aversion. The parameterization for the absolute ambiguity aver-
sion and the relative ambiguity aversion have been studied in Barrieu and
Tobelem (2009a), where we test empirically a linear form for the function π
and where we propose an ad hoc methodology to set the value of the
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parameter γ, depending on the past performance of the different priors Qq

considered. Further studies should focus on a nonlinear form of the RARA
function π, that allows the investor to overweight in a nonlinear way the
assets for which the priors agree (to represent the fact that the more the
priors agree on a given asset weight, the less ambiguous the asset is).
Indeed, the question of mixing the optimal weights obtained through het-
erogeneous priors remains a challenging one in many scientific fields.
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NOTES

1. The results can be extended to a countable set, and even an uncount-
able parameterized family; see the theoretical example we present
below.

2. For a proof, see Tobelem (2009).
3. For a detail of the calculus, see Tobelem (2009).

chapter 28 Asset Allocation Under Model Risk 467

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1318579


This page intentionally left blank 



index

469

AARA. See Absolute ambiguity robust
adjustment

Absolute ambiguity robust adjustment
(AARA), 456, 457, 458–461

convexity and, 459
invariant point and, 459
monotonicity and, 458–459
risk-free asset and, 459–460
symmetry and, 459
transformation of, 464–465
weight and, 458, 465–466
weight shrinking effect and, 459

Absolute difference, 130
Absolute pricing error, 131
Absolute returns, 424
Actuarial model, 341
Affine-linear dependencies, 180
AIC. See Akaike information criterion
Akaike information criterion (AIC), 65

performance of, 67
All Ordinaries Accumulation Index, 66
Amaranth, 76
Ambiguity aversion

asset allocation and, 455–466
monotonicity and, 462

Ambiguous nonrisky asset, 463
American Stock Exchange, 101
Amortization

rating migration and, 197–198
for securitization transactions,

195–200
Anderson-Darling test, 94
Annual growth rate, of gross national

income, 50

APARCH. See Asymmetric power
ARCH

APT. See Arbitrage pricing theory
Arbitrage pricing theory (APT), 26–27
ARCH. See Autoregressive conditional

heteroscedasticity
Archimedean copulas, 310–312, 325
ARMA, 309
AR(1)-T-GARCH(1,1), 352

filtration, 354, 355
pseudo-maximum likelihood

approach and, 353–354
AR(1)-T-GJR(1,1), 353
Asia

currency markets in, 25
options in, 249, 256, 369

ASM. See Augmented structural model
Asset allocation

ambiguity aversion and, 455–466
model risk and, 455–466
robustness in, 455–466

Asset classes, 88
Asset correlation, 383–385

for Basel II, 397
globalization and, 400
in Italy, 210–211
for Merton model, 400
for RC, 397
SMEs and, 384

Asset returns, 75–89
Black-Scholes option pricing model

and, 408
fat tails of, 76
normal distribution on, 408



Asset returns (Cont.)
Student-t copula for, 226
wavelets and, 97–111

Asset value
cash flow and, 226–228
Merton and, 224
Vasicek’s one-factor model and, 380

ASSIRT, 65
Asymmetric power ARCH (APARCH),

115, 117, 118
At-the-money options, 129
Audit, 285, 450
Augmented structural model 

(ASM), 227
CSM and, 231–232

AuROC, 213
Australia

political risk of, 32–33
superannuation funds in, 59–72

Autocorrelation, 30
Berkowitz test and, 437
stylized facts and, 420

Autoregressive conditional
heteroscedasticity (ARCH), 116.
See also Generalized autoregressive
conditional heteroscedasticity

with stochastic volatility, 424
for time series, 420

Back-office risk controlling models, 442
Backtesting, 77, 88

for counterparty exposure, 375
exceedances and, 428–431
for exotic options, 260
for market risk, 425–433
for portfolios, 38
procedures for, 433–435
statistical tests for, 427–433
time series and, 453
TLA and, 435
validation and, 433–435
for valuation models, 248

BaFin, in Germany, 203
Bailout, 178

Banking sector
error term for, 33
globalization and, 34
governance in, 442
regression analysis for, 31–32
regression intercept for, 29
return in, 29

Barlett test, 136–137
Barndorff-Nielsen-Shephard model

(BNS), 258, 261
forward-start call and put options in,

263–268
Barrier options, 255, 369

reverse, 259
Basel Committee for Banking

Supervision (BCBS), 186
Basel II, 88, 126

asset correlation for, 397
CEC and, 395
CR� and, 393–394
CRC and, 397
CVaR and, 400
granularity effects and, 405
heterogeneous portfolios and, 

396, 405
market risk models and, 435
Merton model and, 393–394
MRRS and, 206
overrides and, 212–213
rating systems and, 206
RC and, 397
securitization transactions and,

185–202
SFA and, 185–202
VaR and, 306–307

Basket options, 256
BAYES

Jensen’s alpha for, 53
market risk premium for, 54
Sharpe ratio for, 53
Treynor ratio for, 53

Bayesian approaches, 50–51, 462
BCBS. See Basel Committee for

Banking Supervision

470 inde x



Beam theory, 18
Bear Sterns, 157
Benchmarks, 41, 49

Black-Scholes option pricing model
as, 132

for equity market, 77
GARCH and, 135
misspecification of, 141–149
models, 245
performance ratios and, 141–149
portfolio, 60
rolling-correlation coefficient 

as, 103
for validation, 451
valuation models and, 245

Bergomi model, 260
Berkowitz test, 432–433

autocorrelation and, 437
Bernoulli distribution, 427, 428
Beta coefficient

ESG and, 368
for financial and economic risk, 29
market timing ability and, 63–64
wavelets and, 98

Bid-ask spreads, with carry trade, 155
Binomial test, 431
The Black Swan: The Impact of the Highly

Improbable (Taleb), 408
Black-Scholes option pricing model,

126–127, 373
asset returns and, 408
as benchmark, 132
capital and, 224
continuity assumption of, 127
distribution and, 408
for equity derivatives, 257
GARCH and, 132
implied volatility and, 131, 256, 257
liquidity and, 408
normal distribution with, 408
problems with, 408
tail behavior and, 408
volatility and, 408
volatility smiles and, 408

BNS. See Barndorff-Nielsen-Shephard
model

Bonds. See also Convertible bonds
sovereign risk and, 24

Brown-Forsythe test, 136–137
Brownian bridge technique, 369
Brownian motions, 257, 369, 424
Bump and revalue, 248
Business cycle, rating systems and,

209–210
Business-cycle decomposition, 99
Butterflies, 423

Calibration, 283
CDS for, 445
for CR�, 391
external vs. internal, 251–252
global, 252–253
goodness-of-fit test for, 253
input data and, 447
local, 252–253
of parameters, 446
price verification and, 252
products and, 278
rating systems of, 383
transparency in, 251
of valuation models, 250–253
vanilla options and, 256

Calibration targets, 251–253
Call options, 129–130, 255–256. See also

Forward-start call and put options
in convertible bonds, 6
as deep-out-of-money options, 290
local volatility model for, 257
maturity and, 130
moneyness and, 130
for short positions, 14
at S&P 500, 130
strike price and, 224

Capital. See also Contributory economic
capital; Contributory regulatory
capital; Economic capital

Black-Scholes option pricing model
and, 224

inde x 471



Capital (Cont.)
counterparty exposure and, 403
DCM and, 46–47
disclosure about, 88
for homogeneous portfolio, 398
indebtedness and, 179–180
LGD and, 192
market risk models and, 435
minimum requirements for, 88,

197–198
N and, 191
RC, 395, 397
WACC, 46–47

Capital asset pricing model (CAPM),
26–27, 98

DDM and, 43
Jensen’s alpha and, 143
market timing ability and, 62
for stock markets, 28

Capital market theory, 26
CAPM. See Capital asset pricing model
Carry trade

bid-ask spreads with, 155
CDS and, 153–171
country risk and, 156
excess income with, 173
interest rates and, 153–154
risk-neutral valuation and, 156
Sharpe ratios for, 155, 159
stock markets and, 155

Cash flow
asset value and, 226–228
DCM and, 49
net present value and, 46
portfolios and, 223–236
structural portfolio models and,

223–236
Cauchy distribution, 411
CDOEvalulator, 225
CDOROM, 225
CDOs. See Collateralized debt

obligations
CDS. See Credit default swap market
CDS IndexCo LLC, 79

CEC. See Contributory economic
capital

Center for International Securities and
Derivatives Markets (CISDM), 7

Center for Research in Security Prices
(CRSP), 142

mutual funds and, 144–149
CFO. See Chief Financial Officer
Change management, 283
Change-point tests, 314–315
Chicago Board Options Exchange, 15

option pricing at, 129
Chief Financial Officer (CFO), 281
Chief Model Risk Officer (CMRO), 281
Chief Risk Officer (CRO), 281
Cholesky factor, 331
CISDM. See Center for International

Securities and Derivatives Markets
Clarksons data, 227, 228, 237

fat tails and, 226
Classical structural model (CSM), 226

ASM and, 231–232
default threshold in, 228

Clean-surplus condition, 44
OJM and, 46

Cliquet options, 259
CMA, 157
CMRO. See Chief Model Risk Officer
Code control, 283–284
Code review, valuation models and,

242–244
Coherent risk measures, 291–294
Cohort-based estimation, for rating

systems, 383
Cointegration analysis, 98
Collateralized debt obligations 

(CDOs), 225
Commodity price, ESG and, 368, 371
Commodity sector

CDS and, 157, 166
hedge ratio for, 99
relative returns in, 157

Co-movement
copulas and, 312

472 inde x



cyclical component and, 102–106
of spot, 257
of volatility, 257
wavelets and, 102–106

Compound gamma model, 391
Concave distortion functions, 298–300
Concave transformation function, 458
Concentration risk

CEC and, 403
EL and, 403
model risk and, 220

Conditional return distribution, 420
VaR and, 421

Conditional value at risk. See Expected
shortfall

Constant beta model, 61
Consumer discretionary sector, cyclical

component for, 104
Consumer staple sector, cyclical

component for, 104
Contagion, 27–28
Contingent-option model. See

Structural portfolio model
Continuity assumption, of Black-

Scholes option pricing model, 127
Contributory economic capital 

(CEC), 389
Basel II and, 395
concentration risk and, 403
CR� and, 397
CRC and, 395
Merton model and, 397
Monte Carlo simulation and, 395

Contributory regulatory capital (CRC)
Basel II and, 397
CEC and, 395
counterparty exposure and, 398
EC and, 395
PD and, 398

Convergence tests, 247
Convertible bonds, 6–14

call options in, 6
credit lines for, 12
fair value of, 8

gated redemptions and, 9
implied volatility of, 9
leverage and, 11–12
margins with, 12
options and, 8–9
redemption pressure in, 10
SEC and, 12–13
in Smithfield Foods, 10–11
theoretical values and, 8

Convexity, AARA and, 459
Copulas, 308. See also Student-t copula

AIC and, 310
Archimedean, 310–312, 325
classes of, 310–313
co-movement and, 312
dynamic, 314–315
elliptical, 310, 325
estimation of, 309–310
flexibility of, 338
GARCH and, 309
Gaussian, 227, 234–235, 325
IRFs and, 321–337
linear combinations of, 313
Monte Carlo simulation and, 

322–323
survival, 313
tail behavior and, 312–313
VaR and, 321–337
with VAR and GARCH, 323–325

Corporate Bond Fund, 7
Corporate debt portfolio, 232
Correlations, 445
Cost of equity estimator, 45
Counterparty exposure

backtesting for, 375
capital and, 403
CR� and, 392
CRC and, 398
CRMS and, 370–375
in heterogeneous portfolios, 396
Merton model and, 392
model risk in, 365–375
PD and, 392
valuation models and, 372–373

inde x 473



Country risk, 22, 24–26
carry trade and, 156
equity markets and, 24
forward exchange rate and, 162
globalization and, 25
international banking and, 24
in Mexico, 25
stock markets and, 23, 26

Country stock markets, global stock
markets and, 30

COV, 144
Cox-Ingersoll-Ross process, 258
CR�. See CreditRisk�

CRC. See Contributory regulatory
capital

Credit default swap market (CDS)
for calibration, 445
carry trade and, 153–171
commodity sector and, 157, 166
DJC and, 75–89
dummy variable and, 163
equity markets and, 75–89
exchange rates and, 153–171
implied volatility and, 78
liquidity of, 173
maturity and, 162
panel regression for, 167–170
parameter estimation methods 

for, 156
regression residuals and, 94
robustness and, 166
sovereign, 154–171
spread component of, 87
stock markets and, 157
term structure of, 162–163

Credit derivative indexes, 78–79
Credit lines

for convertible bonds, 12
liquidity and, 180

Credit management, model risk in,
205–220

Crédit Mobilier of America, 16
Credit risk measurement system

(CRMS)

basic ingredients of, 367–370
counterparty exposure and, 370–375

Credit spreads, 78
ESG and, 368, 371
liquidity and, 93
stock price and, 371

Credit Suisse/Tremont, 7
Credit support annexes (CSA), 366
Credit valuation adjustments (CVA),

366, 370
Credit value at risk (CVaR), 397

Basel II and, 400
CR� and, 400
Merton model and, 400

CreditRisk� (CR�)
Basel II and, 393–394
CEC and, 397
counterparty exposure and, 392
CVaR and, 400
defaults and, 390
EC and, 397
heterogeneous portfolios and, 396
Merton model and, 389–405
parameters of, 391–393
PD and, 392, 397
Poisson process and, 393, 398
volatility and, 392–393

CRMS. See Credit risk measurement
system

Crnkovic and Drachman test, 
431–432

CRO. See Chief Risk Officer
CRSP. See Center for Research in

Security Prices
CSA. See Credit support annexes
CSM. See Classical structural model
ct, 6
Currencies, as market risk, 420
Currency carry trade. See Carry trade
Currency markets, in Asia, 25
CVA. See Credit valuation adjustments
CVaR. See Credit value at risk
Cyclical component

co-movement and, 102–106
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for consumer discretionary 
sector, 104

for consumer staple sector, 104
for energy sector, 103, 104
for financial sector, 105
for health care sector, 102, 105, 107
for industrial sector, 104
in SPDR, 106–108
for technology sector, 105, 107
wavelets and, 100

D statistic, 106
Data generating process (DGP)

EVT and, 340, 343–351
GARCH and, 322–323
IRFs and, 333

Datastream. See Thomson Financial
Datastream

DAX100, 42
DCM. See Discounted cash flow model
DCSR. See Debt service coverage ratio
DDM. See Dividend discount model
Debt service coverage ratio 

(DCSR), 237
Debt to equity ratio

DCM and, 49
volatility asymmetry and, 115–123

Deep-in-the-money options, 129
valuation models and, 246

Deep-out-of-money options, 129
call options as, 290
short positions in, 290

Default thresholds, quantiles and, 228
Defaults. See also Credit default swap

market; Probability of default
CR� and, 390
CSM and, 228
Gaussian distribution and, 379
LGD, 190, 226
with Moody’s, 38
stable default component, 83
threshold of, 224

Deflection theory, 18
Delta neutral, 9

Derivatives. See also Equity derivatives
credit derivative indexes, 78–79

Deutsche Bank, 8, 256
Deutsche Bundesbank, 49
Development, political risk and, 32–33
DGP. See Data generating process
Disclosure, about capital, 88
Discontinuity topics, 127
Discount rate, DDM and, 44
Discounted cash flow model (DCM),

42, 46–47
cash flow and, 49
debt to equity ratio and, 49
Jensen’s alpha for, 53
market risk premium for, 54
performance of, 52–54
Sharpe ratio for, 53
stock price and, 49
taxes and, 47
Treynor ratio for, 53

Distortion risk measures, 297–300
stochastic dominance and, 300

Distribution
Black-Scholes option pricing model

and, 408
of Kolmogorov-Smirnov test, 432
of Kuiper test, 432
parameters for, 407
of risk factors, 424

Disturbance term, 63
parameter estimation methods 

and, 63
Diversification

of portfolios, 208
VaR and, 291

Dividend discount model (DDM), 42,
43–44

CAPM and, 43
discount rate and, 44
interest rates and, 44
Jensen’s alpha for, 53
market risk premium for, 43, 54
nonflat interest rates and, 42, 49
performance of, 52–54
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Dividend discount model (Cont.)
Sharpe ratio for, 53
taxes and, 44
Treynor ratio for, 53

DJC. See Dow Jones Composite Average
DJCDX. See Dow Jones CDX indexes
Documentary standards

governance and, 243
model risk and, 284–285

Dow Jones CDX indexes (DJCDX),
78–79

DJC and, 85
one-lag dependency in, 94
relative returns of, 95
Spearman correlation and, 85

Dow Jones Composite Average (DJC)
CDX and, 75–89
DJCDX and, 85
Spearman correlation and, 85

Downgrades, 387
by risk rating agencies, 25

Down-market beta, 64
Dual beta models, 60–65

performance of, 67
Dummy variable

CDS and, 163
for market efficiency, 31

Dynamic copulas, 314–315

EC. See Economic capital
Econometric models, 22
Economic capital (EC), 389, 443

CR� and, 397
CRC and, 395
EL and, 398, 403
for market risk, 421
PD and, 398, 403

Economic risk, 22
beta coefficient for, 29

Economic scenario generator (ESG),
367–369

PV and, 367
risk sources in, 371–372

EE. See Expected exposure

EEPE. See Effective expected exposure
Effective expected exposure 

(EEPE), 367
Eigenvectors, 423
EL. See Expected loss
Elastic theory, 18
Elliptical copulas, 310, 325
Energy sector, cyclical component for,

103, 104
EON, 256
EPE. See Expected positive exposure
Equity derivatives

Black-Scholes option pricing model
for, 257

model risk and, 255–269
valuation models for, 257–259

Equity markets
benchmarks for, 77
CDX and, 75–89
country risk and, 24
implied volatility in, 78
returns of, 77
sovereign risk and, 24

Error term
for banking sector, 33
heteroscedasticity in, 30
political risk and, 29, 31

ES. See Expected shortfall
ESG. See Economic scenario generator
ETFs. See Exchange-traded funds
EUREX, 256
Eviews, 117
EVT. See Extreme value theory
EW, 52–53
Exceedances

backtesting and, 428–431
lower tail, 354
upper tail, 354

Excess income, 45–46
with carry trade, 173
Jensen’s alpha and, 143
market timing ability and, 62
as transition variable, 66–67, 68–69

Excess kurtosis, 80
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Excessive indebtedness, 179–180
Exchange rates

CDS and, 153–171
from Thomson Financial 

Datastream, 156
Exchange-traded funds (ETFs), 101
Exotic options, 255–256

backtesting for, 260
model risk and, 260
vanilla options and, 256

Expected exposure (EE), 367
Expected loss (EL), 229

concentration risk and, 403
EC and, 398, 403
PD and, 398, 403

Expected positive exposure (EPE), 367
Expected shortfall (ES), 229, 294–297,

306, 397
estimating, 296–297
EVT and, 340
Poisson-exponential and, 351
Poisson-log-normal-GDP and, 351
Poisson-Pareto and, 351
quantile and, 420–431
sub-additivity and, 295

External review, 450
Extreme value theory (EVT), 98,

339–359
DGP and, 340, 343–351
ES and, 340
GARCH and, 340
GPD and, 341–342
Monte Carlo simulation and, 340,

342–351
MRM and, 340, 352–358
ORM and, 340, 341–351
VaR and, 340, 352–358

Factor correlations, 400
Fair value, of convertible bonds, 8
Fat tails, 326, 408

of asset returns, 76
Clarksons data and, 226
tail risk from, 295

of time series, 226
Father wavelets, 100
50 percent rule, 203
Financial risk, 22

beta coefficient for, 29
regression intercept for, 29

Financial sector
cyclical component for, 105
nationalization of, 178
relative returns in, 157

Financial Stability Forum, 210
F-IRBA. See Foundation IRBA
First loss position (FLP), 203
Fit for purpose, model risk and,

442–443
Fitch-IBCA, 23
Flat-term interest rates, 46

OJM and, 50
Flexible least squares (FLS), 81–84

regression residuals and, 82
slope coefficient of, 84
trend coefficient of, 84

FLP. See First loss position
FLS. See Flexible least squares
Foreign direct investment, political risk

and, 26
Forward exchange rates, 154

country risk and, 162
sovereign CDS and, 158–163
stock markets and, 163

Forward volatility, 259
Forward-start call and put options, 256,

261–262
in BNS, 263–268
in Heston model, 263–268
local volatility and, 257, 263–268

Foundation IRBA (F-IRBA), 186
Fourier analysis, 98
Framework � payoff, 243
French, Kenneth R., 144
Front-office pricing model, 442

interest rates and, 369
Fubini theorem, Rosenblatt

transformation and, 437
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Futures, spot prices and, 98
FutureValue Group AG, 179
FX rates, ESG and, 368, 371

Gamma-Ornstein-Uhlenbeck 
process, 258

GARCH. See Generalized
autoregressive conditional
heteroscedasticity

Gated redemptions, convertible bonds
and, 9

Gaussian copula, 227, 234–235, 325
Gaussian distribution, 76, 79, 384

defaults and, 379
goodness-of-fit test for, 80
Markowitz portfolio theory and, 306

Gaussian process, 258
Generalized autoregressive conditional

heteroscedasticity (GARCH), 98,
118, 424

benchmarks and, 135
Black-Scholes option pricing model

and, 132
copula and, 309
DGP and, 322–323
EVT and, 340
implied volatility and, 131, 138
IRFs and, 333–336
model risk with, 132
option pricing and, 125–128
pricing error and, 131, 137–138
Student-t copula and, 327–330
for time series, 420
VaR and, 327–331

Generalized Pareto Distribution
(GPD), 296, 317–318

EVT and, 341–342
normal distribution and, 296

George Washington Bridge, 17–18
Germany

BaFin in, 203
Saxon State Ministry of Economics

and Labor in, 179
Gini ratios, 213, 214, 216, 218–219

cyclicality of, 219
Global calibration, 252–253
Global stock markets, country stock

markets and, 30
Globalization, 178

asset correlation and, 400
banking sector and, 34
country risk and, 25

GM2. See Modigliani-modigliani
measure

Gonzalo and Olmo’s approach, for VaR,
355–356

Goodness-of-fit test, 79, 130
for calibration, 253
for Gaussian distribution, 80
Kolmogorov-Smirnov test and, 431
measurement of, 425

Governance
in banking sector, 442
and documentary standards, 243
of model risk, 284–285, 443–448

GPD. See Generalized Pareto
Distribution

Grand mean, 50
Granularity effects

Basel II and, 405
portfolios and, 395

Greeks, 420, 425
Gross national income, annual growth

rate of, 50

HDAX, 42
Health care sector, cyclical component

for, 102, 105, 107
Hedge(s)

model risk and, 274
options markets and, 13

Hedge Fund Research Performance
Index (HFRI), 7

Hedge funds, 6
transparency of, 14

Hedge ratio, for commodity sector, 99
Hedge sensitivity tests, 248
Herfindahl index, 190
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Heston model, 256, 257
forward-start call and put options in,

263–268
implied volatility and, 261
spot paths and, 258

Heterogeneous portfolios
Basel II and, 405
counterparty exposure in, 396
numerical results for, 400–404
PD and, 396

Heteroscedasticity. See also
Autoregressive conditional
heteroscedasticity; Generalized
autoregressive conditional
heteroscedasticity

in error term, 30
stylized facts and, 421

Heteroscedasticity-robust correlation
coefficients, 98, 119, 163

HFRI. See Hedge Fund Research
Performance Index

Hill’s estimators extremal indexes, 
355, 357

HIST, 52–54
HML, 144
Homogeneous portfolios, 394–396

capital for, 398
numerical results for, 396–400

Huisman, Koedijk, and Pownell’s
approach, for VaR, 357–358

Human judgment. See Overrides
Hypothetical portfolios, 435

IAA. See Internal assessment approach
Implied volatility, 16

Black-Scholes option pricing model
and, 131, 256, 257

CDS and, 78
of convertible bonds, 9
in equity markets, 78
GARCH and, 131, 138
Heston model and, 261
as market risk, 420
of options, 9

realized volatility and, 16
with Smithfield Foods, 11
with Union Pacific, 15–16

Impulse-response functions (IRFs), 33,
331–336

copulas and, 321–337
DGP and, 333
GARCH and, 333–336
Student-t copula and, 334–336
VAR and, 323

Inclusive model approval process,
281–283

Indebtedness. See also Debt
capital and, 179–180
CDOs, 225
corporate debt portfolio, 232

Independent review
of model risk, 441–452
validation and, 448–451

Industrial sector, cyclical component
for, 104

Information ratio (IR), 142
performance of, 147–148
regression residuals and, 143
Sharpe ratios and, 143

Information technology (IT), 280
model risk and, 447

Input data
calibration and, 447
for pricing models, 241, 283
validation of, 451
for valuation models, 250

Institute for Practical Economic
Research and Economic 
Advice, 179

Interest rates
carry trade and, 153–154
DDM and, 44
ESG and, 368, 371
front-office pricing model and, 369
as market risk, 420
OJM and, 46
principle component analysis for,

423–424
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Inter-industry asset correlation, 384
Internal assessment approach (IAA),

189, 208–209
Internal audit, 285
Internal peer review, 450
Internal ratings-based approach (IRBA),

186–187
minimum capital requirements for,

197–198
International banking, country risk 

and, 24
International Monetary Fund, 158
Interpolation, 425
In-the-money-options. See Deep-in-

the-money options
Invariant point, AARA and, 459
Investory utility function, 463
IR. See Information ratio
IRBA. See Internal ratings-based

approach
IRFs. See Impulse-response functions
IT. See Information technology
Italy, asset correlation in, 210–211

Jensen’s alpha, 52, 53, 142
CAPM and, 143
coherence of, 293
excess income and, 143
performance of, 147–148

Joint null hypothesis, 431

Kendall correlations, 79, 145, 311
Key person risk, 284
Key rates, 422
KIRB, 189–190
Kolmogorov-Smirnov test, 38

distribution of, 432
goodness-of-fit test and, 431

Kruskal-Wallis test, 135–136
Kuiper test, 431

distribution of, 432
Kupiec’s unconditional coverage 

test, 358
KUR, 144

Kurtosis, 144, 322, 408
excess, 80
leptokurtosis, 336, 420

L. See Tranche’s credit enhancement
Lattice based techniques, 244
LDA. See Loss distribution approach
Least squares estimation, 63
Lehman Brothers, 158, 162
Leptokurtosis, 336, 420
Levene test, 136–137
Leverage

convertible bonds and, 11–12
volatility asymmetry and, 115–123

Levy distribution, 411
Levy model, 258
LGD, capital and, 192
LIBOR, 79

ESG and, 369
Likelihood ratio tests (LRTs), 

428–430
with POF, 437
Poisson process and, 431

Linear combinations, of copulas, 313
Lines of Cont, 374
LIQ, 144
Liquidity, 180

Black-Scholes option pricing model
and, 408

of CDS, 173
credit lines and, 180
credit spreads and, 93
market, 76
market standard model and, 275
options pricing and, 129

Ljung-Box statistics, 83
Loan to value (LTV), 237
Local calibration, 252–253
Local risk-neutral valuation, 127
Local volatility

for call options, 257
forward-start call and put options

and, 263–268
Logarithmic returns, 424
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Logistic smooth transition model
(LSTM), 61, 65

Log-normal distribution, 373
Long memory models, 309
Long Term Capital Management, 408
Long-term

price and, 100
trend coefficient and, 100

Lorenz curves, 213, 214
Loss distribution approach (LDA), for

ORM, 341
Loss given default (LGD), 190, 226
Lower partial moments, 300
Lower tail exceedances, 354
LRTs. See Likelihood ratio tests
LSTM. See Logistic smooth transition

model
LTCM, 76
LTV. See Loan to value

Makes sense test, 449
Malaysia, political risk of, 32–33
Margins, with convertible bonds, 12
Market efficiency

dummy variable for, 31
political risk and, 28

Market liquidity, 76
Market risk, 26–27

backtesting for, 425–433
EC for, 421
implied volatility as, 420
interest rates as, 420
with portfolios, 420
prices as, 420
time series for, 424

Market risk management (MRM), EVT
and, 340, 352–358

Market risk models
Basel II and, 435
capital and, 435
evaluation of, 419–435
model risk for, 407–416, 420–422
model risk in, 422
normal distribution for, 445

Market risk premium, 53–54
DDM and, 43

Market standard model, 272–275
liquidity and, 275
price and, 275

Market timing ability
of Australian superannuation funds,

59–72
beta coefficient and, 63–64
CAPM and, 62
excess income and, 62
mild-form, 63–64
strong-form, 63
threshold regression model and, 64
weak-form, 64–65

Markov switching models, 309
Markowitz portfolio theory, Gaussian

distribution and, 306
Mark-to-market, valuation models 

for, 272
Mark-to-model, valuation models 

for, 272
Maturity

call options and, 130
CDS and, 162

Maximum entropy, 130
McNeil and Frey’s approach, for VaR,

353–355
Mean estimate

PD and, 297, 383
uncertainty with, 409–412
VaR and, 297, 413–416

Mean-reversion speed, 257
Merton, Robert C., asset value 

and, 224
Merton model

asset correlation for, 400
CEC and, 397
CR� and, 389–405

Basel II and, 393–394
counterparty exposure and, 392

CVaR and, 400
data and, 444–445
heterogeneous portfolios and, 396
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Merton model (Cont.)
Monte Carlo simulation and, 395
re-parameterization for, 396, 399

Meta-distribution, 315–317
Mexico, country risk in, 25
Mezzanine tranche, 194–195
Minimizing function, 82
Minimum capital requirements, 88

for IRBA, 197–198
MKT, 52–53
Model applicability, 277–278
Model inadequacy, 92–93
Model obsolescence, 276–277
Model release, 283
Model replication, backtesting of, 451
Model risk, 126

asset allocation and, 455–466
code control for, 283–284
concentration risk and, 220
in counterparty exposure, 365–375
in credit management, 205–220
documentary standards and, 

284–285
documentation for, 447–448
equity derivatives and, 255–269
evolution of, 275–276
exotic options and, 260
fit for purpose and, 442–443
with GARCH, 132
governance of, 284–285
hedges and, 274
inclusive model approval process for,

281–283
independent review of, 441–452
indirect sources of, 209–213
IT and, 447
in market risk models, 407–416,

420–422
mitigating techniques for, 271–285
parameter estimation methods 

for, 446
in portfolios, 379–387, 389–405
ratings and, 175–183
regression analysis for, 283–284

robust model control framework for,
279–281

strategic management in, 175–183
strict model-product scope approach

for, 278–279
validation of, 88
valuation models and, 272–273

Model risk for ratings systems (MRRS),
205–220

Basel II and, 206
direct sources of, 206

Model stability tests, 247
Model stress tests, 247
Models. See also specific models or 

model types
approval of, 448
errors with, 421–422
monitoring of, 448
overrides for, 449
transparency in, 445
validation of, 88, 142

Modigliani-modigliani measure (GM2)

correlations with, 146
performance of, 147–148

Modigliani-modigliani measure (GM2),
142, 143–144

Moisseiff, Leon, 4
Moneyness, 129

call options and, 130
Monotonicity, 292

AARA and, 458–459
ambiguity aversion and, 462

Monte Carlo simulation, 244, 247,
277–278

CEC and, 395
copulas and, 322–323
EVT and, 340, 342–351
Merton model and, 395
VaR and, 322–323

Moody’s, 23
defaults with, 38
SBRS and, 214–216

Mother wavelets, 100
MRM. See Market risk management
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MRRS. See Model risk for ratings
systems

Multivariate normal distribution, 
321, 371

Mutual funds, CRSP and, 144–149
M-variate Archimedean copulas,

311–312
MVP, 52–53

N. See Number of exposures
Nationalization, of financial sector, 178
Negative vega, 9
Nelson-Siegel parameter, 424
Net present value, cash flow and, 46
New product committees, 284
9/11, 234
Nonflat interest rates

DDM and, 42, 49
RIM and, 49

Nongranularity effects, 192, 403–404
Nonlineary tests, 65–71

for retail funds, 67, 69–70
for wholesale funds, 68
for wholesale funds non linearity, 67

Nonstationarities, VaR in, 305–319
Normal distribution, 421

on asset returns, 408
with Black-Scholes option pricing

model, 408
GPD and, 296
log, 373
for market risk models, 445
multivariate, 321, 371

Number of exposures (N), 190
capital and, 191

Ohlson/Jüttner-Nauroth model (OJM),
42, 45–46

clean-surplus condition and, 46
flat-term interest rates and, 50
interest rates and, 46
Jensen’s alpha for, 53
market risk premium for, 54
performance of, 52–54

Sharpe ratio for, 53
stock price and, 49
Treynor ratio for, 53

OJM. See Ohlson/Jüttner-Nauroth
model

One-lag dependency, in 
DJCDX, 94

Operating leverage, 116
Operational risk management 

(ORM)
EVT and, 340, 341–351
LDA for, 341

Optimism, by analysts, 47–48
Option pricing, 14–17

at Chicago Board Options 
Exchange, 129

GARCH and, 125–138
parameter estimation methods for,

125–128
simulation methods for, 127–128

Options. See also specific option types
in Asia, 249, 256, 369
convertible bonds and, 8–9
implied volatility of, 9
price and, 125–128
strike price for, 15

Options markets, hedges and, 13
Options pricing

liquidity and, 129
at S&P 500, 129

Option-theoretic models. See Structural
portfolio model

ORM. See Operational risk management
OSIRIS, 117
OTC. See Over-the-counter
Out-of-the-money options. See

Deep-out-of-money options
Overestimation of risk, 422, 434

quantiles of, 327
Overrides, 209

Basel II and, 212–213
for models, 449
SBRS and, 212

Over-the-counter (OTC), 366
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Paired time series, 98
Pairwise Granger causality tests, 33
Panel regression, for CDS, 167–170
Parallel shifts, 423
Parameter estimation methods

for CDS, 156
disturbance term and, 63
for model risk, 446
for option pricing, 125–138
pricing error and, 130
for stock markets, 47

Parameters
calibration of, 446
of CR�, 391–393
for distribution, 407
regression, 32
uncertainty with, 407–416
for VaR, 407

Parsimonious models, 421, 422
Path-dependent options, 256
Payoff implementation tests, 246–247
PCM Suite, 225
PD. See Probability of default
Peak-over-threshold method (POT), 317
Pearson correlation coefficient, 145
Percentage pricing error, 132
Performance ratios

benchmark misspecification and,
141–149

RMSE and, 133–134
Pessimism, by analysts, 48
Petroski, Henry, 4
PFE. See Potential future exposure
Philippines, political risk of, 32–33
Philips-Peron statistics, 83
PIT. See Point in time
PnL. See Profit-and-loss
POF. See Proportion of failure test
Point in time (PIT), ratings systems

and, 208, 209–210
Poisson process, 258–259

CR� and, 393, 398
LRT and, 431
PD and, 393, 398

Poisson-exponential, 343–346
ES and, 351

Poisson-gamma, 343–344, 347–348
VaR and, 351

Poisson-log-normal-GDP, 344–351
ES and, 351

Poisson-Pareto, 344, 349–351
ES and, 351

Political risk, 21–35
of Australia, 32–33
development and, 32–33
error term and, 29, 31
foreign direct investment and, 26
of Malaysia, 32–33
market efficiency and, 28
of Philippines, 32–33
of Thailand, 32–33
of UK, 32–33
of US, 32–33

Portfolios, 26
backtesting for, 38
benchmarks for, 60
cash flow and, 223–236
corporate debt, 232
diversification of, 208
granularity effects and, 395
heterogeneous, 396, 400–405
homogeneous, 394–400
hypothetical, 435
market risk with, 420
Markowitz theory of, 306
model risk in, 379–387, 389–405
returns for, 42
shipping, 223–236
structural models of, 223–236
valuation models for, 41–55

Positive vega, 9
POT. See Peak-over-threshold method
Potential future exposure (PFE), 367

quantiles for, 367
Power term, 118
pp plots, 424
Preference-free environment, 76
Preinreich-Lücke theorem, 44
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Present value (PV)
ESG and, 367
grids, 420, 425

Price(s)
commodity, 368, 371
determining methods for, 369–370
ESG and, 368
long-term and, 100
as market risk, 420
market standard model and, 275
options and, 125–128
spot, 98
stock, 49, 371
strike, 15, 224
of vanilla options, 255, 260–261
volatility and, 116

Price transmissions. See Wavelets
Price verification

calibration and, 252
valuation models and, 250

Pricing error
GARCH and, 131, 137–138
parameter estimation methods 

and, 130
Pricing models. See Valuation models
Principle component analysis, for

interest rates, 423–424
Probability of default (PD), 210, 226,

382–383
counterparty exposure and, 392
CR� and, 392, 397
CRC and, 398
EC and, 403
EL and, 398, 403
heterogeneous portfolios and, 396
mean estimate and, 297, 383
Poisson process and, 393, 398
SBRS for, 212
SMEs and, 384
Standard and Poor’s and, 383
time horizon for, 218
upper confidence interval bound 

and, 383
volatility of, 397

Products, calibration and, 278
Profit-and-loss (PnL), 247–248
Proportion of failure test (POF),

429–431
LRT with, 437

Pseudo-maximum likelihood
techniques, 322

AR(1)-T-GARCH(1,1) and, 353–354
PV. See Present value

Q-Q plot, 308
qq plots, 424
Quadratic function, three-point

approximation and, 425
Quadratic market models, 60–61, 65
Qualitative data, 216–217
Quantiles

default thresholds and, 228
ES and, 420–431
of overestimation of risk, 327
for PFE, 367
of underestimation of risk, 327
for VaR, 294, 305–306, 313, 323, 327

Rankine Theory, 18
RARA. See Relative ambiguity robust

adjustment
Rating migration, 195

amortization and, 197–198
Ratings

downgrades in, 25, 387
model risk and, 175–183

Ratings systems. See also Model risk for
ratings systems; Risk rating
agencies; Statistical-based rating
systems

Basel II and, 206
business cycle and, 209–210
calibration of, 383
cohort-based estimation for, 383
PIT and, 208, 209–210
SBRS, 205–220
Standard and Poor’s and, 213, 215
transition matrix for, 215
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Ratings systems (Cont.)
TTC and, 208, 209–210
validation of, 209

Ratings-based approach (RBA), 189
RBA. See Ratings-based approach
RC. See Regulatory capital
R_DJC. See Return of DJC
Realized volatility, implied volatility

and, 16
Redemption pressure, in convertible

bonds, 10
Regionalism, 25
Regression analysis

for banking sector, 31–32
for model risk, 283–284
of stock markets, 23

Regression intercept
for banking sector, 29
for financial and economic risk, 29

Regression parameters, 32
Regression residuals

CDS and, 94
FLS and, 82
IR and, 143
statistics about, 83

Regulatory capital (RC), 395
asset correlation for, 397
Basel II and, 397

Relationship banking, 205, 207
SBRS and, 211–212
SMEs and, 208

Relative ambiguity robust adjustment
(RARA), 456, 457, 461–462

Relative returns, 424
in commodity sector, 157
of DJCDX, 95
in financial sector, 157

Re-parameterization, 391, 405
for Merton model, 396, 399

Residual efficiency frontier, 82
Residual gain, 45
Residual income model (RIM), 42,

44–45
Jensen’s alpha for, 53

market risk premium for, 54
nonflat interest rates and, 49
performance of, 52–54
Sharpe ratio for, 53
taxes and, 45
Treynor ratio for, 53

Retail funds, 66
nonlineary tests for, 67, 69–70

Return of DJC (R_DJC), 78
descriptive statistics for, 80

Returns
in banking sector, 29
of equity market, 77
for portfolios, 42
standard deviation of, 293
in stock markets, 30
volatility and, 115–123

Reuters, 157
Reverse barrier options, 259
RIM. See Residual income model
Risk factors

distribution of, 424
missing, 435

Risk measures, 306–313
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