

Cryptography
in C and C++

MICHAEL WELSCHENBACH
Translated by DAVID KRAMER

ApressTM

Cryptography in C and C++

Copyright c©2005 by Michael Welschenbach

Translator and Compositor: David Kramer

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell,
Tony Davis, Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Copy Manager: Nicole LeClerc

Production Manager: Kari Brooks-Copony

Proofreader: Anne Friedman

TEX Support: Fred Bartlett and Arthur Ogawa

Manufacturing Manager: Tom Debolski

Cover Designer: Kurt Krames

Library of Congress Cataloging-in-Publication Data
Welschenbach, Michael.

[Kryptographie in C und C++. English]
Cryptography in C and C++ / Michael Welschenbach ; translated by David Kramer.–
2nd American ed., rev. and enl.

p. cm.
The first American edition is a translation of the second German edition, which has
been revised and expanded from the first German edition.
Includes bibliographical references and index.
ISBN 1-59059-502-5

1. Computer security. 2. Cryptography. 3. C (Computer program
language) 4. C++ (Computer program language) I. Title.

QA76.9.A25W4313 2005
005.8–dc22 2005002553

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring
Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH &
Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com,
or visit http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail
orders@springer.de, or visit http://www.springer.de. For information on translations, please
contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. Phone 510-549-5930,
fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully
download the code.

To my family, as always

Contents

Foreword xiii

About the Author xv

About the Translator xvi

Preface to the Second American Edition xvii

Preface to the First American Edition xix

Preface to the First German Edition xxiii

I Arithmetic and Number Theory in C 1

1 Introduction 3

2 Number Formats: The Representation of Large Numbers in C 13

3 Interface Semantics 19

4 The Fundamental Operations 23
4.1 Addition and Subtraction . 24
4.2 Multiplication . 33

4.2.1 The Grade School Method 34
4.2.2 Squaring Is Faster . 40
4.2.3 Do Things Go Better with Karatsuba? 45

4.3 Division with Remainder . 50

5 Modular Arithmetic: Calculating with Residue Classes 67

6 Where All Roads Meet: Modular Exponentiation 81
6.1 First Approaches . 81
6.2 M -ary Exponentiation . 86
6.3 Addition Chains and Windows 101
6.4 Montgomery Reduction and Exponentiation 106
6.5 Cryptographic Application of Exponentiation 118

v

Contents

7 Bitwise and Logical Functions 125
7.1 Shift Operations . 125
7.2 All or Nothing: Bitwise Relations 131
7.3 Direct Access to Individual Binary Digits 137
7.4 Comparison Operators . 140

8 Input, Output, Assignment, Conversion 145

9 Dynamic Registers 157

10 Basic Number-Theoretic Functions 167
10.1 Greatest Common Divisor . 168
10.2 Multiplicative Inverse in Residue Class Rings 175
10.3 Roots and Logarithms . 183
10.4 Square Roots in Residue Class Rings 191

10.4.1 The Jacobi Symbol . 192
10.4.2 Square Roots Modulo pk 198
10.4.3 Square Roots Modulo n 203
10.4.4 Cryptography with Quadratic Residues 211

10.5 A Primality Test . 214

11 Rijndael: A Successor to the Data Encryption Standard 237
11.1 Arithmetic with Polynomials . 239
11.2 The Rijndael Algorithm . 244
11.3 Calculating the Round Key . 247
11.4 The S-Box . 248
11.5 The ShiftRowsTransformation 249
11.6 The MixColumnsTransformation 250
11.7 The AddRoundKeyStep . 252
11.8 Encryption as a Complete Process 253
11.9 Decryption . 256
11.10 Performance . 259
11.11 Modes of Operation . 260

12 Large Random Numbers 261
12.1 A Simple Random Number Generator 265
12.2 Cryptographic Random Number Generators 268

12.2.1 The Generation of Start Values 269
12.2.2 The BBS Random Number Generator 273
12.2.3 The AES Generator . 279
12.2.4 The RMDSHA-1 Generator 283

vi

Contents

12.3 Quality Testing . 286
12.3.1 Chi-Squared Test . 287
12.3.2 Monobit Test . 289
12.3.3 Poker Test . 289
12.3.4 Runs Test . 289
12.3.5 Longruns Test . 289
12.3.6 Autocorrelation Test . 290
12.3.7 Quality of the FLINT/C Random Number Generators . . . 290

12.4 More Complex Functions . 291

13 Strategies for Testing LINT 305
13.1 Static Analysis . 307
13.2 Run-Time Tests . 309

II Arithmetic in C++ with the Class LINT 317

14 Let C++ Simplify Your Life 319
14.1 Not a Public Affair: The Representation of Numbers in LINT . . . 324
14.2 Constructors . 325
14.3 Overloaded Operators . 329

15 The LINTPublic Interface: Members and Friends 337
15.1 Arithmetic . 337
15.2 Number Theory . 347
15.3 Stream I/O of LINTObjects . 352

15.3.1 Formatted Output of LINTObjects 353
15.3.2 Manipulators . 360
15.3.3 File I/O for LINTObjects 362

16 Error Handling 367
16.1 (Don’t) Panic . 367
16.2 User-Defined Error Handling . 369
16.3 LINTExceptions . 370

17 An Application Example: The RSA Cryptosystem 377
17.1 Asymmetric Cryptosystems . 378
17.2 The RSA Algorithm . 380
17.3 Digital RSA Signatures . 395
17.4 RSA Classes in C++ . 403

18 Do It Yourself: Test LINT 413

vii

Contents

19 Approaches for Further Extensions 417

III Appendices 419

A Directory of C Functions 421
A.1 Input/Output, Assignment, Conversions, Comparisons 421
A.2 Basic Calculations . 422
A.3 Modular Arithmetic . 423
A.4 Bitwise Operations . 425
A.5 Number-Theoretic Functions 426
A.6 Generation of Pseudorandom Numbers 427
A.7 Register Management . 431

B Directory of C++ Functions 433
B.1 Input/Output, Conversion, Comparison: Member Functions . . . 433
B.2 Input/Output, Conversion, Comparison: Friend Functions 436
B.3 Basic Operations: Member Functions 438
B.4 Basic Operations: Friend Functions 439
B.5 Modular Arithmetic: Member Functions 440
B.6 Modular Arithmetic: Friend Functions 442
B.7 Bitwise Operations: Member Functions 443
B.8 Bitwise Operations: Friend Functions 444
B.9 Number-Theoretic Member Functions 445
B.10 Number-Theoretic Friend Functions 446
B.11 Generation of Pseudorandom Numbers 450
B.12 Miscellaneous Functions . 450

C Macros 451
C.1 Error Codes and Status Values 451
C.2 Additional Constants . 451
C.3 Macros with Parameters . 453

D Calculation Times 459

E Notation 461

F Arithmetic and Number-Theoretic Packages 463

References 465

Index 473

viii

List of Figures

4-1 Calculations for multiplication 35
4-2 Calculations for squaring . 41
4-3 CPU time for Karatsuba multiplication 49
4-4 Calculational schema for division 51

11-1 Layering of transformations in the Rijndael rounds 246
11-2 Diagram for round keys for Lk = 4 248

12-1 Periodic behavior of a pseudorandom sequence 263

17-1 Example of the construction of a certificate 401
17-2 Certification of a digital signature 402

ix

List of Tables

1-1 Arithmetic and number theory in C in directory flint/src 7
1-2 Arithmetic modules in 80x86 assembler (see Chapter 19) in direc-

tory flint/src/asm . 7
1-3 Tests (see Section 13.2 and Chapter 18) in directories flint/test and

flint/test/testvals . 7
1-4 Libraries in 80x86 assembler (see Chapter 19) in directories flint/lib

and flint/lib/dll . 8
1-5 RSA implementation (see Chapter 17) in directory flint/rsa . . . 8

3-1 FLINT/C error codes . 21

5-1 Composition table for addition modulo 5 71
5-2 Composition table for multiplication modulo 5 71

6-1 Requirements for exponentiation 88
6-2 Numbers of multiplications for typical sizes of exponents and

various bases 2k . 88
6-3 Values for the factorization of the exponent digits into products of

a power of 2 and an odd factor 90
6-4 Numbers of multiplications for typical sizes of exponents and

various bases 2k . 91
6-5 Exponentiation functions in FLINT/C 117

7-1 Values of a Boolean function . 132
7-2 Values of the CLINTfunction and_l() 132
7-3 Values of the CLINTfunction or_l() 133
7-4 Values of the CLINTfunction xor_l() 133

8-1 Diagnostic values of the function vcheck_l() 154

10-1 The ten largest known primes (as of December 2004) 215
10-2 The number of primes up to various limits x 220
10-3 The number k of passes through the Miller–Rabin test to achieve

probabilities of error less than 2−80 and 2−100 as a function of the
number l of binary digits (after [DaLP]). 228

10-4 Approximate calculation times for the AKS test, after [CrPa] . . . 234

11-1 Elements of F23 . 240

xi

List of Tables

11-2 Powers of g(x) = x + 1, ascending left to right 242
11-3 Logarithms to base g(x) = x + 1 243
11-4 Number of Rijndael rounds as a function of block and key length 245
11-5 Representation of message blocks 246
11-6 rc(j) constants (hexadecimal) 247
11-7 rc(j) constants (binary) . 248
11-8 Representation of the round keys 248
11-9 The values of the S-box . 250
11-10 The values of the inverted S-box 251
11-11 ShiftRows for blocks of length 128 bits (Lb = 4) 251
11-12 ShiftRows for blocks of length 192 bits (Lb = 6) 252
11-13 ShiftRows for blocks of length 256 bits (Lb = 8) 252
11-14 Distances of line rotations in ShiftRows 252
11-15 Interpretation of variables . 253
11-16 Interpretation of fields . 253
11-17 Interpretation of functions . 253
11-18 Comparative Rijndael performance in bytes per second 259

12-1 Tolerance intervals for runs of various lengths 290
12-2 Test results of the FLINT/C random number generators 291

13-1 Group law for the integers to help in testing 314
13-2 FLINT/C test functions . 315

14-1 LINTconstructors . 328
14-2 LINTarithmetic operators . 330
14-3 LINTbitwise operators . 330
14-4 LINTlogical operators . 331
14-5 LINTassignment operators . 331

15-1 LINTstatus functions and their effects 356
15-2 LINTmanipulators and their effects 361
15-3 LINTflags for output formatting and their effects 362

16-1 LINTfunction error codes . 369

17-1 Recommended key lengths according to Lenstra and Verheul . . 393

D-1 Calculation times for several C functions (without assembler
support) . 459

D-2 Calculation times for several C functions (with 80x86 assembler
support) . 460

D-3 Calculation times for several GMP functions (with 80x86 assem-
bler support) . 460

xii

Foreword

CRYPTOGRAPHY IS AN ANCIENT ART, well over two thousand years old. The need
to keep certain information secret has always existed, and attempts to preserve
secrets have therefore existed as well. But it is only in the last thirty years that
cryptography has developed into a science that has offered us needed security in
our daily lives. Whether we are talking about automated teller machines, cellular
telephones, Internet commerce, or computerized ignition locks on automobiles,
there is cryptography hidden within. And what is more, none of these applications
would work without cryptography!

The history of cryptography over the past thirty years is a unique success story.
The most important event was surely the discovery of public key cryptography in
the mid 1970s. It was truly a revolution: We know today that things are possible
that previously we hadn’t even dared to think about. Diffie and Hellman were
the first to formulate publicly the vision that secure communication must be
able to take place spontaneously. Earlier, it was the case that sender and receiver
had first to engage in secret communication to establish a common key. Diffie
and Hellman asked, with the naivety of youth, whether one could communicate
secretly without sharing a common secret. Their idea was that one could encrypt
information without a secret key, that is, one that no one else could know. This
idea signaled the birth of public key cryptography. That this vision was more
than just wild surmise was shown a few years later with the advent of the RSA
algorithm.

Modern cryptography has been made possible through the extraordinarily
fruitful collaboration between mathematics and computer science. Mathematics
provided the basis for the creation and analysis of algorithms. Without
mathematics, and number theory in particular, public key cryptography
would be impossible. Mathematics provides the results on the basis of which the
algorithms operate.

If the cryptographic algorithms are to be realized, then one needs procedures
that enable computation with large integers: The algorithms must not function
only in theory; they must perform to real-world specifications. That is the task of
computer science.

This book distinguishes itself from all other books on the subject in that it
makes clear this relationship between mathematics and computing. I know of no
book on cryptography that presents the mathematical basis so thoroughly while
providing such extensive practical applications, and all of this in an eminently
readable style.

xiii

Foreword

What we have here is a master writing about his subject. He knows the theory,
and he presents it clearly. He knows the applications, and he presents a host
of procedures for realizing them. He knows much, but he doesn’t write like a
know-it-all. He presents his arguments clearly, so that the reader obtains a clear
understanding. In short, this is a remarkable book.

So best wishes to the author! And above all, best wishes to you, the reader!

Albrecht Beutelspacher

xiv

About the Author

MICHAEL WELSCHENBACH CURRENTLY WORKS FOR SRC Security Research &
Consulting GmbH in Bonn, Germany. He graduated with a master’s degree in
mathematics from the University of Cologne and has gained extensive experience
in cryptological research over the years. Currently, his favorite programming
languages are C and C++. When not working, he enjoys spending time with
his wife and two sons, programming, reading, music, photography, and digital
imaging.

xv

About the Translator

DAVID KRAMER EARNED HIS PH.D. in mathematics at the University of Maryland,
and his M.A. in music at Smith College. For many years he worked in higher
education, first as a professor of mathematics and computer science, and later as
a director of academic computing. Since 1995 he has worked as an independent
editor and translator. He has edited hundreds of books in mathematics and the
sciences and has translated a number of books in a variety of fields, including
The Definitive Guide to Excel VBA and The Definitive Guide to MySQL, both by
Michael Kofler; and Enterprise JavaBeans 2.1, by Stefan Denninger and Ingo
Peters; all published by Apress. Other translations include Luck, Logic, and White
Lies, by Jörg Bewersdorff; The Game’s Afoot! Game Theory in Myth and Paradox,
by Alexander Mehlmann; the children’s musical Red Riding! Red Riding! by Ernst
Ekker with music by Sergei Dreznin; In Quest of Tomorrow’s Medicines, by Jürgen
Drews; and the novel To Err Is Divine, by Ágota Bozai.

xvi

Preface to the Second

American Edition

When I have to wrestle with figures, I feel I’d like to stuff myself into a hole
in the ground, so I can’t see anything. If I raise my eyes and see the sea, or a
tree, or a woman—even if she’s an old ’un—damme if all the sums and figures
don’t go to blazes. They grow wings and I have to chase ’em.

—Nikos Kazanzakis, Zorba the Greek

THE SECOND AMERICAN EDITION OF this book has again been revised and enlarged.
The chapter on random number generators has been completely rewritten,
and the section on primality testing was substantially revised. The new results
of Agrawal, Kayal, and Saxena on primality tests, whose discovery in 2002 that
“PRIMES is in P” caused a sensation, are covered. The chapter on Rijndael/AES
has been relocated for a better presentation, and it is pointed out that the
standardization of Rijndael as the Advanced Encryption Standard has meanwhile
been made official by the U.S. National Institute of Standards and Technology
(NIST).

Unlike previous editions of the book, the second American edition does not
contain a CD-ROM with the source code for the programs presented. Instead,
the source code is available for download at www.apress.com in the Downloads
section.

I wish to thank the publishers and translators who have meanwhile made this
book available in Chinese, Korean, Polish, and Russian and through their careful
reading have contributed to the quality of this edition.

I again thank David Kramer for his engaging and painstaking English
translation, and Gary Cornell, of Apress, for his willingness to bring out the
second American edition.

Finally, I wish to thank Springer Science publishers, and in particular once
again Hermann Engesser, Dorothea Glausinger, and Ulrike Sricker, for their
pleasant collaboration.

xvii

Preface to the First

American Edition

Mathematics is a misunderstood and even maligned discipline. It’s not the
brute computations they drilled into us in grade school. It’s not the science
of reckoning. Mathematicians do not spend their time thinking up cleverer
ways of multiplying, faster methods of adding, better schemes for extracting
cube roots.

—Paul Hoffman, The Man Who Loved Only Numbers

THE FIRST AMERICAN EDITION IS A TRANSLATION OF the second German edition,
which has been revised and expanded from the first German edition in a number
of ways. Additional examples of cryptographic algorithms have been added,
such as the procedures of Rabin and El Gamal, and in the realization of the RSA
procedure the hash function RIPEMD-160 and formatting according to PKCS
#1 have been adopted. There is also a discussion of possible sources of error
that could lead to a weakening of the procedure. The text has been expanded
or clarified at a number of points, and errors have been corrected. Additionally,
certain didactic strategies have been strengthened, with the result that some of
the programs in the source code differ in certain details from those presented
in the book. Not all technical details are of equal importance, and the desire for
fast and efficient code is not always compatible with attractive and easy-to-read
programs.

And speaking of efficiency, in Appendix D running times are compared to
those for certain functions in the GNU Multiprecision Library. In this comparison
the FLINT/C exponentiation routine did not do at all badly. As a further extension,
Appendix F provides references to some arithmetic and number-theoretic
packages.

The software has been expanded by several functions and in places has been
significantly overhauled, and in the process a number of errors and points of
imprecision were removed. Additional test functions were developed and existing
test functions expanded. A security mode was implemented, whereby security-
critical variables in the individual functions are deleted by being overwritten. All
C and C++ functions are now clearly cited and annotated in the appendices.

Since current compilers represent varying stages of development of the C++
standard, the C++ modules of the FLINT/C package have been set up in such
a way that both traditional C++ header files of the form xxxxx.h and the new

xix

Preface to the First American Edition

ANSI header files can be used. For the same reason the use of the operator new()
has been checked, as always, as to whether the null pointer is returned. This
type of error handling does not make use of the ANSI standard exceptions, but it
nonetheless functions with current compilers, while the method that conforms
to the standard, by which new() generates an error via throw(), is not universally
available.

Although the focus of this book is the fundamentals of asymmetric
cryptography, the recent nomination of Rijndael by the American National
Institute of Standards and Technology (NIST) to be the advanced encryption
standard (AES) encouraged me to include a final chapter (Chapter 11) with an
extensive description of this algorithm. I am indebted to Gary Cornell, at Apress,
for bringing up the subject and convincing me that this would be a worthwhile
complement to the topics of this book. I would like to thank Vincent Rijmen,
Antoon Bosselaers, Paulo Barreto, and Brian Gladman for their kind permission
to include the source code for their Rijndael implementations in the source code
that accompanies this book.

I wish to thank all the readers of the first edition, particularly those who
called errors to my attention, made comments, or suggested improvements. All
their communications were most welcome. As always, the author assumes all
responsibility for errors that may yet remain in the text or the software, as well as
for any new errors that may have crept in.

I offer my heartfelt thanks to Gary Cornell, at Apress, and again to Hermann
Engesser, Dorothea Glaunsinger, and Ulrike Stricker, at Springer-Verlag, for their
unstinting commitment and friendly collaboration.

I am deeply grateful to my translator, David Kramer, who has contributed
with distinguished expertise and indefatigable dedication many valuable hints,
which have been incorporated into the German edition of this book as well.

Warning

Before making use of the programs contained in this book please refer to the
manuals and technical introductions for the relevant software and computers.
Neither the author nor the publisher accepts any responsibility for losses due
to improper execution of the instructions and programs contained in this book
or due to errors in the text or in the programs that despite careful checking
may remain. The programs in the downloadable source code are protected by
copyright and may not be reproduced without permission of the publisher.

xx

Preface to the First American Edition

Disclaimer

In this book frequent use is made of the term “leading zeros.” The use of this term
is in no way to be construed as alluding to any person or persons, in public or
private life, living or dead, and any such correspondence is entirely coincidental.

xxi

Preface to the First

German Edition

Mathematics is the queen of the sciences, and number theory is the queen
of mathematics. Frequently, she deigns to assist astronomy and other of the
natural sciences, but primacy is due her under all circumstances.

—Carl Friedrich Gauss

WHY DO WE NEED A book on cryptography whose principal focus is the arithmetic
of whole numbers—the integers—and its application to computer programming?
Is this not a rather insignificant subject in comparison to the important problems
with which computer science generally involves itself? So long as one confines
oneself to the range of numbers that can be represented by the standard
numerical types of a programming language, arithmetic is a rather simple affair,
and the familiar arithmetic operations make their traditional appearances in
programs accompanied by the familiar symbols +, −, /, ∗.

But if one requires results whose length far exceeds what can be expressed
in 16 or 32 bits, then the situation begins to get interesting. Even the basic
arithmetic operations are no longer available for such numbers, and one gets
nowhere without first investing considerable effort in solving problems that
never even seemed like problems before. Anyone who investigates problems in
number theory, whether professionally or as a hobby, in particular the topic of
contemporary cryptography, is familiar with such issues: The techniques of doing
arithmetic that we learned in school now demand renewed attention, and we find
ourselves sometimes dealing with incredibly involved processes.

The reader who wishes to develop programs in these areas and is not inclined
to reinvent the wheel will find included with this book a suite of functions that
will serve as an extension of C and C++ for calculating with large integers. We
are not talking about “toy” examples that say, “this is how it works in principle,”
but a complete collection of functions and methods that satisfy the professional
requirements of stability, performance, and a sound theoretical basis.

Making the connection between theory and practice is the goal of this
book, that is, to close the gap between the theoretical literature and practical
programming problems. In the chapters ahead we shall develop step by step the
fundamental calculational principles for large natural numbers, arithmetic in
finite rings and fields, and the more complex functions of elementary number
theory, and we shall elucidate the many and various possibilities for applying

xxiii

Preface to the First German Edition

these principles to modern cryptography. The mathematical fundamentals
will be explained to the extent necessary for understanding the programs that
are presented here, and for those interested in pursuing these matters further
there are extensive references to the literature. The functions that we develop
will then be brought together and extensively tested, resulting in a useful and
comprehensive programming interface.

Beginning with the representation of large numbers, in the following
chapters we shall first deal with the fundamentals of computation. For addition,
subtraction, multiplication, and division of large numbers we shall create
powerful basic functions. Building on these, we shall explain modular arithmetic
in residue classes and implement the relevant operations in library functions.
A separate chapter is devoted to the time-intensive process of exponentiation,
where we develop and program various specialized algorithms for a number of
applications in modular arithmetic.

After extensive preparation, which includes input and output of large
numbers and their conversion into various bases, we study algorithms of
elementary number theory using the basic arithmetic functions, and we then
develop programs, beginning with the calculation of the greatest common divisor
of large numbers. We shall then move on to such problems as calculating the
Legendre and Jacobi symbols, and inverses and square roots in finite rings,
and we shall also become familiar with the Chinese remainder theorem and its
applications.

In connection with this we shall go into some detail about the principles of
identifying large prime numbers, and we shall program a powerful multistage
primality test.

A further chapter is devoted to the generation of large random numbers,
in which a cryptographically useful bit generator is developed and tested with
respect to its statistical properties.

To end the first part we shall concern ourselves with testing arithmetic
and other functions. To do this we shall derive special test methods from the
mathematical rules of arithmetic, and we shall consider the implementation of
efficient external tools.

The subject of the second part is the step-by-step construction of the C++
class LINT (Large INTegers), in the course of which we shall embed the C
functions of the first part into the syntax and semantics of the object-oriented
programming language C++. We shall put particular weight on formatted input
and output of LINT objects with flexible stream functions and manipulators, as
well as error handling with exceptions. The elegance with which algorithms can
be formulated in C++ is particularly impressive when the boundaries between
standard types and large numbers as LINT objects begin to dissolve, resulting in
the syntactic closeness to the implemented algorithms and in great clarity and
transparency.

xxiv

Preface to the First German Edition

Finally, we shall demonstrate the application of the methods we have
developed by implementing an extensive RSA cryptosystem for encryption and
the creation of digital signatures. In the process we shall explain the theory of
the RSA procedure and its operation as the most prominent representative of
asymmetric cryptosystems, and in a self-contained example we shall develop
an extensible kernel for applications of this ultramodern cryptographic process
according to the object-oriented principles of the programming language C++.

We shall round all of this off with a glimpse of further possible extensions
of the software library. As a small highlight at the end we shall present four
functions in 80x86 assembly language for multiplication and division, which will
improve the performance of our software. Appendix D contains a table of typical
calculation times with and without the assembler supplement.

All readers of this book are heartily invited to join me on this path, or
perhaps—depending on individual interest—to focus on particular sections or
chapters and try out the functions presented there. The author hopes that it will
not be taken amiss that he refers to his readers, together with himself, as “we.” He
hopes thereby to encourage them to take an active role in this journey through a
cutting-edge area of mathematics and computer science, to figure things out for
themselves and take from this book what is of greatest benefit. As for the software,
let the reader not be lacking in ambition to extend the scope or speed of one or
more functions through new implementations.

I wish to thank Springer-Verlag and particularly Hermann Engesser, Dorothea
Glaunsinger, and Ulrike Stricker for their interest in the publication of this book
and for their friendly and active collaboration. The manuscript was reviewed
by Jörn Garbers, Josef von Helden, Brigitte Nebelung, Johannes Ueberberg, and
Helga Welschenbach. I offer them my heartfelt thanks for their critical suggestions
and improvements, and above all for their care and patience. If despite all of our
efforts some errors remain in the text or in the software, the author alone bears
the responsibility. I am extremely grateful to my friends and colleagues Robert
Hammelrath, Franz-Peter Heider, Detlef Kraus, and Brigitte Nebelung for their
insights into the connections between mathematics and computer science over
many years of collaboration that have meant a great deal to me.

xxv

Part I

Arithmetic and

Number Theory in C

How necessary arithmetic and the entire art of mathematics are can be easily
measured, in that nothing can be created that is not connected with precise
number and measurement, and no independent art can exist without its
measures and proportions.

—Adam Ries: Book of Calculation, 1574

Typographical rules for manipulating numerals are actually arithmetical
rules for operating on numbers.

—D. R. Hofstadter: Gödel, Escher, Bach: An Eternal Golden Braid

The human brain would no longer be burdened with anything that needed to
be calculated! Gifted people would again be able to think instead of scribbling
numbers.

—Sten Nadolny: The Discovery of Slowness, trans. Ralph Freedman

CHAPTER 1

Introduction

God created the integers. All the rest is the work of man.

—Leopold Kronecker

If you look at zero you see nothing; but look through it and you will see the
world.

—Robert Kaplan, The Nothing That Is: A Natural History of Zero

TO BE INVOLVED WITH MODERN cryptography is to dive willy-nilly into number
theory, that is, the study of the natural numbers, one of the most beautiful areas
of mathematics. However, we have no intention of becoming deep-sea divers who
raise sunken treasure from the mathematical ocean floor, which in any case is
unnecessary for cryptographic applications. Our goals are much more modest.
On the other hand, there is no limit to the depth of involvement of number theory
with cryptography, and many significant mathematicians have made important
contributions to this area.

The roots of number theory reach back to antiquity. The Pythagoreans—the
Greek mathematician and philosopher Pythagoras and his school—were already
deeply involved in the sixth century B.C.E. with relations among the integers,
and they achieved significant mathematical results, for example the famed
Pythagorean theorem, which is a part of every school child’s education. With
religious zeal they took the position that all numbers should be commensurate
with the natural numbers, and they found themselves on the horns of a serious
dilemma when they discovered the existence of “irrational” numbers such as

√
2,

which cannot be expressed as the quotient of two integers. This discovery threw
the world view of the Pythagoreans into disarray, to the extent that they sought
to suppress knowledge of the irrational numbers, a futile form of behavior oft
repeated throughout human history.

Two of the oldest number-theoretic algorithms, which have been passed
down to us from the Greek mathematicians Euclid (third century B.C.E.) and
Eratosthenes (276–195 B.C.E.), are closely related to the most contemporary
encryption algorithms that we use every day to secure communication across
the Internet. The “Euclidean algorithm” and the “sieve of Eratosthenes” are both
quite up-to-date for our work, and we shall discuss their theory and application
in Sections 10.1 and 10.5 of this book.

3

Chapter 1

Among the most important founders of modern number theory are to be
counted Pierre de Fermat (1601–1665), Leonhard Euler (1707–1783), Adrien
Marie Legendre (1752–1833), Carl Friedrich Gauss (1777–1855), and Ernst Eduard
Kummer (1810–1893). Their work forms the basis for the modern development of
this area of mathematics and in particular the interesting application areas such as
cryptography, with its asymmetric procedures for encryption and the generation
of digital signatures (cf. Chapter 17). We could mention many more names of
important contributors to this field, who continue to this day to be involved in
often dramatic developments in number theory, and to those interested in a
thrilling account of the history of number theory and its protagonists, I heartily
recommend the book Fermat’s Last Theorem, by Simon Singh.

Considering that already as children we learned counting as something to be
taken for granted and that we were readily convinced of such facts as that two
plus two equals four, we must turn to surprisingly abstract thought constructs
to derive the theoretical justification for such assertions. For example, set theory
allows us to derive the existence and arithmetic of the natural numbers from
(almost) nothing. This “almost nothing” is the empty (or null) set ∅ := { },
that is, the set that has no elements. If we consider the empty set to correspond
to the number 0, then we are able to construct additional sets as follows. The
successor 0+ of 0 is associated with the set 0+ := { 0 } = {∅ }, which contains
a single element, namely the null set. We give the successor of 0 the name 1, and
for this set as well we can determine a successor, namely 1+ := {∅, {∅ } }.
The successor of 1, which contains 0 and 1 as its elements, is given the name 2.
The sets thus constructed, which we have rashly given the names 0, 1, and 2, we
identify—not surprisingly—with the well-known natural numbers 0, 1, and 2.

This principle of construction, which to every number x associates a
successor x+ := x ∪ {x } by adjoining x to the previous set, can be continued to
produce additional numbers. Each number thus constructed, with the exception
of 0, is itself a set whose elements constitute its predecessors. Only 0 has no
predecessor. To ensure that this process continues ad infinitum, set theory
formulates a special rule, called the axiom of infinity: There exists a set that
contains 0 as well as the successor of every element that it contains.

From this postulated existence of (at least) one so-called successor set, which,
beginning with 0, contains all successors, set theory derives the existence of a
minimal successor set N, which is itself a subset of every successor set. This
minimal and thus uniquely determined successor set N is called the set of natural
numbers, in which we expressly include zero as an element.1

1 It was not decisive for this choice that according to standard DIN 5473 zero belongs to the
natural numbers. From the point of view of computer science, however, it is practical to begin
counting at zero instead of 1, which is indicative of the important role played by zero as the
neutral element for addition (additive identity).

4

Introduction

The natural numbers can be characterized by means of the axioms of
Giuseppe Peano (1858–1932), which coincide with our intuitive understanding of
the natural numbers:

(I) The successors of two unequal natural numbers are unequal: From n �= m

it follows that n+ �= m+, for all n, m ∈ N.

(II) Every natural number, with the exception of 0, has a predecessor:
N+ = N \ { 0 }.

(III) The principle of complete induction: If S ⊂ N, 0 ∈ S, and n ∈ S always
imply n+ ∈ S, then S = N.

The principle of complete induction makes it possible to derive the arithmetic
operations with natural numbers in which we are interested. The fundamental
operations of addition and multiplication can be defined recursively as follows.
We begin with addition:

For every natural number n ∈ N there exists a function sn from N to N such
that

(i) sn(0) = n,

(ii) sn

(
x+

)
= (sn(x))+ for all natural numbers x ∈ N.

The value of the function sn(x) is called the sum n + x of n and x.
The existence of such functions sn for all natural numbers n ∈ N must,

however, be proved, since the infinitude of natural numbers does not a priori
justify such an assumption. The existence proof goes back to the principle of
complete induction, corresponding to Peano’s third axiom above (see [Halm],
Chapters 11–13). For multiplication one proceeds analogously:

For every natural number n ∈ N there exists a function pn from N to N such
that

(i) pn(0) = 0,

(ii) pn

(
x+

)
= pn(x) + n for all natural numbers x ∈ N.

The value of the function pn(x) is called the product n · x of n and x.
As expected, multiplication is defined in terms of addition. For the arithmetic

operations thus defined one can prove, through repeated application of complete
induction on x in accordance with Axiom III, such well-known arithmetic laws as
associativity, commutativity, and distributivity (cf. [Halm], Chapter 13). Although
we usually use these laws without further ado, we shall help ourselves to them as
much as we please in testing our FLINT functions (see Chapters 13 and 18).

In a similar way we obtain a definition of exponentiation, which we give here
in view of the importance of this operation in what follows.

5

Chapter 1

For every natural number n ∈ N there exists a function en from N to N such
that

(i) en(0) = 1,

(ii) en

(
x+

)
= en(x) · n for every natural number x ∈ N.

The value of the function en(x) is called the xth power nx of n. With complete
induction we can prove the power law

nxny = nx+y, nx · mx = (n · m)x, (nx)y = nxy,

to which we shall return in Chapter 6.
In addition to the calculational operations, the set N of natural numbers

has defined on it an order relation “<” that makes it possible to compare two
elements n, m ∈ N. Although this fact is worthy of our great attention from a
set-theoretic point of view, here we shall content ourselves with noting that the
order relation has precisely those properties that we know about and use in our
everyday lives.

Now that we have begun with establishing the empty set as the sole
fundamental building block of the natural numbers, we now proceed to consider
the materials with which we shall be concerned in what follows. Although number
theory generally considers the natural numbers and the integers as given and
goes on to consider their properties without excessive beating about the bush, it
is nonetheless of interest to us to have at least once taken a glance at a process
of “mathematical cell division,” a process that produces not only the natural
numbers, but also the arithmetic operations and rules with which we shall be
deeply involved from here on.

About the Software

The software described in this book constitutes in its entirety a package, a
so-called function library, to which frequent reference will be made. This library
has been given the name FLINT/C, which is an acronym for “functions for large
integers in number theory and cryptography.”

The FLINT/C library contains, among other items, the modules shown in
Tables 1-1 through 1-5, which can be found as source code at www.apress.com.

6

Introduction

Table 1-1. Arithmetic and number theory in C in directory flint/src

flint.h header file for using functions from flint.c

flint.c arithmetic and number-theoretic functions in C

kmul.{h,c} functions for Karatsuba multiplication and squaring

ripemd.{h,c} implementation of the hash function RIPEMD-160

sha{1,256}.{h,c} implementations of the hash functions SHA-1, SHA-256

entropy.c generation of entropy as start value for pseudorandom sequences

random.{h,c} generation of pseudorandom numbers

aes.{h,c} implementation of the Advanced Encryption Standard

Table 1-2. Arithmetic modules in 80x86 assembler (see
Chapter 19) in directory flint/src/asm

mult.{s,asm} multiplication, replaces the C function mult() in flint.c

umul.{s,asm} multiplication, replaces the C function umul()

sqr.{s,asm} squaring, replaces the C function sqr()

div.{s,asm} division, replaces the C function div_l()

Table 1-3. Tests (see Section 13.2 and Chapter 18) in directories flint/test and
flint/test/testvals

testxxx.c[pp] test programs in C and C++

xxx.txt test vectors for AES

7

Chapter 1

Table 1-4. Libraries in 80x86 assembler (see Chapter 19) in
directories flint/lib and flint/lib/dll

flinta.lib library with assembler functions in OMF (object module format)

flintavc.lib library with assembler functions in COFF (common object file format)

flinta.a archive with assembler functions for emx/gcc under OS/2

libflint.a archive with assembler functions for use under LINUX

flint.dll DLL with the FLINT/C functions for use with MS VC/C++

flint.lib link library for flint.dll

Table 1-5. RSA implementation (see Chapter 17) in directory flint/rsa

rsakey.h header file for the RSA classes

rsakey.cpp implementation of the RSA classes RSAkey and RSApub

rsademo.cpp example application of the RSA classes and their functions

A list of the individual components of the FLINT/C software can be found
in the file readme.doc is the source code. The software has been tested with the
indicated development tools on the following platforms:

• GNU gcc under Linux, SunOS 4.1, and Sun Solaris

• GNU/EMX gcc under OS/2 Warp, DOS, and Windows (9x, NT)

• Borland BCC32 under Windows (9x, NT, 2000, XP)

• lcc-win32 under Windows (9x, NT, 2000, XP)

• Cygnus cygwin B20 under Windows (9x, NT, 2000, XP)

• IBM VisualAge under OS/2 Warp and Windows (9x, NT, 2000, XP)

• Microsoft C under DOS, OS/2 Warp, and Windows (9x, NT)

• Microsoft Visual C/C++ under Windows (9x, NT, 2000, XP)

• Watcom C/C++ under DOS, OS/2 Warp, and Windows (3.1, 9x, NT, XP)

• OpenWatcom C/C++ under Windows (2000, XP)

The assembler programs can be translated with Microsoft MASM,2 with
Watcom WASM, or with the GNU assembler GAS. They are contained in the
downloadable source code in translated form as libraries in OMF (object module

2 Call : ml /Cx /c /Gd 〈filename〉.

8

Introduction

format) and COFF (common object file format), respectively, as well as in the
form of a LINUX archive, and are used instead of the corresponding C functions
when in translating C programs the macro FLINT_ASM is defined and the assembler
object modules from the libraries, respectively archives, are linked.

A typical compiler call, here for the GNU compiler gcc, looks something like
the following (with the paths to the source directories suppressed):

gcc -O2 -o rsademo rsademo.cpp rsakey.cpp flintpp.cpp

randompp.cpp flint.c aes.c ripemd.c sha256.c entropy.c

random.c -lstdc++

The C++ header files following the ANSI standard are used when in
compilation the macro FLINTPP_ANSI is defined; otherwise, the traditional header
files xxxxx.h are used.

Depending on the computer platform, there may be deviations with regard
to the compiler switches; but to achieve maximum performance the options for
speed optimization should always be turned on. Because of the demands on
the stack, in many environments and applications it will have to be adjusted.3

Regarding the necessary stack size for particular applications, one should note the
suggestion about the exponentiation functions in Chapter 6 and in the overview
on page 117. The stack requirements can be lessened by using the exponentiation
function with dynamic stack allocation as well as by the implementation of
dynamic registers (see Chapter 9).

The C functions and constants have been provided with the macros

__FLINT_API Qualifier for C functions
__FLINT_API_A Qualifier for assembler functions
__FLINT_API_DATA Qualifier for constants

as in

extern int __FLINT_API add_l(CLINT, CLINT, CLINT);

extern USHORT __FLINT_API_DATA smallprimes[];

or, respectively, in the use of the assembler functions

extern int __FLINT_API_A div_l (CLINT, CLINT, CLINT, CLINT);

These macros are generally defined as empty comments /**/. With their
aid, using the appropriate definitions, compiler- and linker-specific instructions
to functions and data can be made. If the assembler modules are used and not

3 With modern computers with virtual memory, except in the case of DOS, one usually does not
have to worry about this point, in particular with Unix or Linux systems.

9

Chapter 1

the GNU compiler gcc, the macro __FLINT_API_A is defined by __cdecl, and
some compilers understand this as an instruction that the assembler functions
corresponding to the C name and calling conventions are to be called.

For modules that import FLINT/C functions and constants from a dynamic
link library (DLL) under Microsoft Visual C/C++, in translation the macros
-D__FLINT_API=__cdecl and -D__FLINT_API_DATA= __declspec (dllimport)

must be defined. This has already been taken into account in flint.h, and it
suffices in this case to define the macro FLINT_USEDLL for compilation. For other
development environments analogous definitions should be employed.

The small amount of work involved in initializing a FLINT/C DLL is taken care
of by the function FLINTInit_l(), which provides initial values for the random
number generator4 and generates a set of dynamic registers (see Chapter 9).
The complementary function FLINTExit_l() deallocates the dynamic registers.
Sensibly enough, the initialization is not handed over to every individual process
that uses the DLL, but is executed once at the start of the DLL. As a rule, a function
with creator-specific signature and calling convention should be used, which is
executed automatically when the DLL is loaded by the run-time system. This
function can take over the FLINT/C initialization and use the two functions
mentioned above. All of this should be considered when a DLL is created.

Some effort was made to make the software usable in security-critical
applications. To this end, in security mode local variables in functions, in
particular CLINT and LINT objects, are deleted after use by being overwritten
with zeros. For the C functions this is accomplished with the help of the macro
PURGEVARS_L() and the associated function purgevars_l(). For the C++ functions
the destructor ∼LINT() is similarly equipped. The assembler functions overwrite
their working memory. The deletion of variables that are passed as arguments to
functions is the responsibility of the calling functions.

If the deletion of variables, which requires a certain additional expenditure
of time, is to be omitted, then in compilation the macro FLINT_UNSECURE must
be defined. At run time the function char* verstr_l() gives information about
the modes set at compile time, in which additionally to the version label X.x,
the letters “a” for assembler support and “s” for security mode are output in a
character string if these modes have been turned on.

4 The initial values are made up of 32-bit numbers taken from the system clock. For applications
in which security is critical it is advisable to use suitable random values from a sufficiently large
interval as initial values.

10

Introduction

Legal Conditions for Using the Software

The software is exclusively for private use. For such purposes the software may be
used, altered, and distributed under the following conditions:

1. The copyright notice may not be altered or deleted.

2. All changes must be annotated by means of comment lines. Any other use,
in particular the use of the software for commercial purposes, requires
written permission from the publisher or the author.

The software has been created and tested with the greatest possible care.
Since errors can never be completely eliminated, neither the author nor the
publisher can take responsibility for direct or indirect damages that may arise
from the use or unusability of the software, regardless of the purpose to which it
has been put.

Contacting the Author

The author would be glad to receive information about errors or any other helpful
criticism or comment. Please write to him at cryptography@welschenbach.com.

11

CHAPTER 2

Number Formats:

The Representation of

Large Numbers in C

So I have made up my own system for writing large numbers and I am going
to use this chapter as a chance to explain it

—Isaac Asimov, Adding a Dimension

The process that has led to the higher organization of this form could also be
imagined differently

—J. Weber, Form, Motion, Color

ONE OF THE FIRST STEPS in creating a function library for calculating with large
numbers is to determine how large numbers are to represented in the computer’s
main memory. It is necessary to plan carefully, since decisions made at this point
will be difficult to revise at a later time. Changes to the internal structure of a
software library are always possible, but the user interface should be kept as
stable as possible in the sense of “upward compatibility.”

It is necessary to determine the order of magnitude of the numbers to be
processed and the data type to be used for coding these numerical values.

The basic function of all routines in the FLINT/C library is the processing
of natural numbers of several hundred digits, which far exceeds the capacity of
standard data types. We thus require a logical ordering of a computer’s memory
units by means of which large numbers can be expressed and operated on. In
this regard one might imagine structures that automatically create sufficient
space for the values to be represented, but no more than is actually needed. One
would like to maintain such economically organized housekeeping with respect
to main memory by means of dynamic memory management for large numbers
that allocates or releases memory according to need in the course of arithmetic
operations. Although such can certainly be realized (see, for example, [Skal]),
memory management has a price in computation time, for which reason the

13

Chapter 2

representation of integers in the FLINT/C package gives preference to the simpler
definition of static length.

For representing large natural numbers one might use vectors whose
elements are a standard data type. For reasons of efficiency an unsigned data
type is to be preferred, which allows the results of arithmetic operations to be
stored in this type without loss as unsigned long (defined in flint.h as ULONG),
which is the largest arithmetic standard C data type (see [Harb], Section 5.1.1). A
ULONG variable can usually be represented exactly with a complete register word of
the CPU.

Our goal is that operations on large numbers be reducible by the compiler as
directly as possible to the register arithmetic of the CPU, for those are the parts
that the computer calculates “in its head,” so to speak. For the FLINT/C package
the representation of large integers is therefore by means of the type unsigned

short int (in the sequel USHORT). We assume that the type USHORT is represented
by 16 bits and that the type ULONG can fully accept results of arithmetic operations
with USHORT types, which is to say that the informally formulated size relationship
USHORT× USHORT≤ ULONG holds.

Whether these assumptions hold for a particular compiler can be deduced
from the ISO header file limits.h (cf. [Harb], Sections 2.7.1 and 5.1). For example,
in the file limits.h for the GNU C/C++ compiler (cf. [Stlm]) the following appears:

#define UCHAR_MAX 0xffU

#define USHRT_MAX 0xffffU

#define UINT_MAX 0xffffffffU

#define ULONG_MAX 0xffffffffUL

One should note that with respect to the number of binary places there
are actually only three sizes that are distinguished. The type USHRT (respectively
USHORT in our notation) can be represented in a 16-bit register; the type ULONG fills
the word length of a CPU with 32-bit registers. The type ULONG_MAX determines
the value of the largest unsigned whole numbers representable by scalar types
(cf. [Harb], page 110).1 The value of the product of two numbers of type USHRT

is at most 0xffff * 0xffff = 0xfffe0001 and is thus representable by a ULONG
type, where the least-significant 16 bits, in our example the value 0x0001, can be
isolated by a cast operation into the type USHRT. The implementation of the basic
arithmetic functions of the FLINT/C package is based on the above-discussed
size relationship between the types USHORT and ULONG.

An analogous approach, one that used data types with 32-bit and 64-bit
lengths in the role of USHORT and ULONG in the present implementation, would
reduce the calculation time for multiplication, division, and exponentiation

1 Without taking into account such practical nonstandard types as unsigned long long in GNU
C/C++ and certain other C compilers.

14

Number Formats: The Representation of Large Numbers in C

by about 25 percent. Such possibilities are realizable with functions written
in assembler with direct access to 64-bit results of machine instructions for
multiplication and division or with processors with 64-bit registers that would
also allow to C implementations the lossless storage of such results in a ULONG

type. The FLINT/C package contains some examples whose gain in speed results
from the use of arithmetic assembler functions (see Chapter 19).

The next question is that of the ordering of the USHORT digits within a vector.
We can imagine two possibilities: from left to right, with a descending evaluation
of digits from lower to higher memory addresses, or the other way round, with
an ascending evaluation of digits from lower to higher memory addresses. The
latter arrangement, which is the reverse of our usual notation, has the advantage
that changes in the size of numbers at constant addresses can take place with the
simple allocation of additional digits, without the numbers having to be relocated
in memory. Thus the choice is clear: The evaluation of digits of our numerical
representation increases with increasing memory address or vector index.

As a further element of the representation the number of digits will be
appended and stored in the first element of the vector. The representation of long
numbers in memory thus has the format

n = (ln1n2 . . . nl)B , 0 ≤ l ≤ CLINTMAXDIGIT, 0 ≤ ni < B, i = 1, . . . , l,

where B denotes the base of the numerical representation; for the FLINT/C
package we have B := 216 = 65536. The value of B will be our companion from
here on and will appear continually in what follows. The constant CLINTMAXDIGIT
represents the maximal number of digits of a CLINT object.

Zero is represented by the length l = 0. The value n of a number that is
represented by a FLINT/C variable n_l is calculated as

n =

⎧⎪⎪⎨
⎪⎪⎩

n_l[0]∑
i=1

n_l[i]Bi−1, if n_l[0] > 0,

0, otherwise.

If n > 0, then the least-significant digit of n to the base B is given by n_l[1],
and the most-significant digit by n_l[n_l[0]]. The number of digits of n_l[0]
will be read in what follows by the macro DIGITS_L (n_l) and set to l by the
macro SETDIGITS_L (n_l, l). Likewise, access to the least-significant and most-
significant digits of n_l will be conveyed by LSDPTR_L(n_l) and MSDPTR_L(n_l),
each of which returns a pointer to the digit in question. The use of the macros
defined in flint.h yields independence from the actual representation of the
number.

15

Chapter 2

Since we have no need of a sign for natural numbers, we now have all
the required elements for the representation of such numbers. We define the
corresponding data type by

typedef unsigned short clint;

typedef clint CLINT[CLINTMAXDIGIT + 1];

In accordance with this, a large number will be declared by

CLINT n_l;

The declaration of function parameters of type CLINT can follow from the
instruction CLINT n_l in the function header.2 The definition of a pointer myptr_l
to a CLINT object occurs via CLINTPTR myptr_l or clint *myptr_l.

FLINT/C functions can, depending on the setting of the constant
CLINTMAXDIGIT in flint.h, process numbers up to 4096 bits in length, which
corresponds to 1233 decimal digits or 256 digits to the base 216. By changing
CLINTMAXDIGIT the maximal length can be adjusted as required. The definitions of
other constants depend on this parameter; for example, the number of USHORTs in
a CLINT object is specified by

#define CLINTMAXSHORT CLINTMAXDIGIT + 1

and the maximal number of processable binary digits is defined by

#define CLINTMAXBIT CLINTMAXDIGIT << 4

Since the constants CLINTMAXDIGIT and CLINTMAXBIT are used frequently, yet
are rather unwieldy from a typographical point of view, we shall denote these
constants by abbreviations MAXB and MAX2 (with the exception of program
code, where the constants will appear in their normal form).

With this definition it follows that CLINT objects can assume whole-number
values in the interval

[
0, BMAXB − 1

]
, respectively

[
0, 2MAX2 − 1

]
. We denote

the value BMAXB − 1 = 2MAX2 − 1, the largest natural number that can be
represented by a CLINT object, by Nmax.

2 In this regard compare Chapters 4 and 9 of the extremely readable book [Lind], where there
is an extensive explanation of when vectors and pointers in C are equivalent, and above all,
when this is not the case and what types of errors can arise from a misunderstanding of these
issues.

16

Number Formats: The Representation of Large Numbers in C

For some functions it is necessary to process numbers that have more digits
than can be accommodated by a CLINT object. For these cases the variants of the
CLINT type are defined by

typedef unsigned short CLINTD[1+(CLINTMAXDIGIT<<1)];

and

typedef unsigned short CLINTQ[1+(CLINTMAXDIGIT<<2)];

which can hold double, respectively four times, the number of digits.
As support personnel to aid in programming, the module flint.c defines

the constants nul_l, one_l, and two_l, which represent the numbers 0, 1, and 2
in CLINT format; and in flint.h there are corresponding macros SETZERO_L(),
SETONE_L(), and SETTWO_L(), which set CLINT objects to the corresponding values.

17

CHAPTER 3

Interface Semantics

When people hear some words, they normally believe
that there’s some thought behind them.

—Goethe, Faust, Part 1

IN THE FOLLOWING WE SHALL set some fundamental properties that relate to the
behavior of the interface and the use of FLINT/C functions. First we shall consider
the textual representation of CLINT objects and FLINT/C functions, but primarily
we wish to clarify some fundamentals of the implementation that are important
to the use of the functions.

The functions of the FLINT/C package are identified with the convention
that their names end with “_l”; for example, add_l denotes the addition function.
Designators of CLINT objects likewise end with an underscore and an appended l.
For the sake of simplicity we shall equate from now on, when conditions permit,
a CLINT object n_l with the value that it represents.

The representation of a FLINT/C function begins with a header, which
contains the syntactic and semantic description of the function interface. Such
function headers typically look something like the following.

Function: a brief description of the function

Syntax: int f_l (CLINT a_l, CLINT b_l, CLINT c_l);

Input: a_l, b_l (operands)

Output: c_l (result)

Return: 0 if all is ok
otherwise, a warning or error message

Here we distinguish, among other things, between output and return value:
While output refers to the values that are stored by the function in the passed
arguments, by return we mean the values that the function returns via a return

command. Except for a few cases (for example, the functions ld_l(), Section 10.3,
and twofact_l(), Section 10.4.1), the return value consists of status information
or error messages.

Parameters other than those involved with output are not changed by the
function. Calls of the form f_l(a_l, b_l, a_l), where a_l and b_l are used

19

Chapter 3

as arguments and a_l is overwritten with the return value at the end of the
computation, are always possible, since the return variable is written to with the
return value only after the complete execution of the operation. From assembler
programming one says in this case that the variable a_l is used as an accumulator.
This modus operandi is supported by all FLINT/C functions.

A CLINT object n_l possesses leading zeros if for a value l one has

(DIGITS_L (n_l) == l) && (l > 0) && (n_l[l] == 0);

Leading zeros are redundant, since although they lengthen the representation of a
number, they have no effect on its value. However, leading zeros are allowed in the
notation of a number, for which reason we should not simply ignore this option.
The acceptance of leading zeros is, to be sure, a burdensome implementation
detail, but it leads to increased tolerance of input from external sources and thus
contributes to the stability of all the functions. CLINT numbers with leading zeros
are thus accepted by all FLINT/C functions, but they are not generated by them.

A further setting is related to the behavior of arithmetic functions in the
case of overflow, which occurs when the result of an arithmetic operation is
too large to be represented in the result type. Although in some publications
on C the behavior of a program in the case of arithmetic overflow is said to be
implementation-dependent, the C standard nonetheless governs precisely the
case of overflow in arithmetic operations with unsigned integer types: There
it is stated that arithmetic modulo 2n should be executed when the data type
can represent integers of n-bit length (see [Harb], Section 5.1.2). Accordingly,
in the case of overflow the basic arithmetic functions described below reduce
their results modulo (Nmax + 1), which means that the remainder after whole-
number division by Nmax + 1 is output as the result (see Section 4.3 and Chapter
5). In the case of underflow, which occurs when the result of an operation is
negative, a positive residue modulo (Nmax + 1) is output. The FLINT/C functions
thus behave in conformity with arithmetic according to the C standard.

If an overflow or underflow is detected, the arithmetic functions return the
appropriate error code. This and all other error codes in Table 3-1 are defined in
the header file flint.h.

20

Interface Semantics

Table 3-1. FLINT/C error codes

Error Code Interpretation

E_CLINT_BOR invalid basis in str2clint_l() (see Chapter 8)

E_CLINT_DBZ division by zero

E_CLINT_MAL error in memory allocation

E_CLINT_MOD nonodd (even) modulus in Montgomery multiplication

E_CLINT_NOR register unavailable (see Chapter 9)

E_CLINT_NPT null pointer passed as argument

E_CLINT_OFL overflow

E_CLINT_UFL underflow

21

CHAPTER 4

The Fundamental

Operations

Thus calculation can be seen as the basis and foundation of all the arts.

—Adam Ries, Book of Calculation

And you, poor creature, you are completely useless. Look at me. Everyone
needs me.

—Aesop, “The Fir and the Blackberry Bush”

There is one small prerequisite for mastering the mathemagic tricks in
this chapter—you need to know the multiplication tables through 10 . . .
backward and forward.

—Arthur Benjamin, Michael B. Shermer, Mathemagics

THE FUNDAMENTAL BUILDING BLOCKS OF any software package for computer
arithmetic are the functions that carry out the basic operations of addition,
subtraction, multiplication, and division. The efficiency of the entire package
hangs on the last two of these, and for that reason great care must be taken in the
selection and implementation of the associated algorithms. Fortunately, volume
2 of Donald Knuth’s classic The Art of Computer Programming contains most of
what we need for this portion of the FLINT/C functions.

In anticipation of their representation to come, the functions developed in
the following sections use the operations cpy_l(), which copies one CLINT object
to another in the sense of an allocation, and cmp_l(), which makes a comparison
of the sizes of two CLINT values. For a more precise description see Section 7.4 and
Chapter 8.

Let us mention at this point that for the sake of clarity, in this chapter the
functions for the fundamental arithmetic operations are developed all of a piece,
while in Chapter 5 it will prove practical to split some of the functions into their
respective “core” operations and from there develop additional steps such as
the elimination of leading zeros and the handling of overflow and underflow,
where, however, the syntax and semantics of the functions are kept intact. For an
understanding of the relations described in this chapter this is irrelevant, so that
for now we can forget about these more difficult issues.

23

Chapter 4

4.1 Addition and Subtraction

This notion of “further counting” means, “to the integer n1 add the integer
n2,” and the integer s at which one arrives by this further counting is called
“the result of addition” or the “sum of n1 and n2” and is represented by
n1 + n2.

—Leopold Kronecker, On the Idea of Number

Since addition and subtraction are in principle the same operation with differing
signs, the underlying algorithms are equivalent, and we can deal with them
together in this section. We consider operands a and b with representations

a := (am−1am−2 . . . a0)B =

m−1∑
i=0

aiB
i, 0 ≤ ai < B,

b := (bn−1bn−2 . . . b0)B =

n−1∑
i=0

biB
i, 0 ≤ bi < B,

where we assume a ≥ b. For addition this condition represents no restriction,
since it can always be achieved by interchanging the two summands. For
subtraction it means that the difference is positive or zero and therefore can be
represented as a CLINT object without reduction modulo (Nmax + 1).

Addition consists essentially of the following steps.

Algorithm for the addition a + b

1. Set i ← 0 and c ← 0.

2. Set t ← ai + bi + c, si ← t mod B, and c ← �t/B�.

3. Set i ← i + 1; if i ≤ n − 1, go to step 2.

4. Set t ← ai + c, si ← t mod B, and c ← �t/B�.

5. Set i ← i + 1; if i ≤ m − 1, go to step 4.

6. Set sm ← c.

7. Output s = (smsm−1 . . . s0)B .

The digits of the summands, together with the carry, are added in step 2, with
the less-significant part stored as a digit of the sum, while the more-significant
part is carried to the next digit. If the most-significant digit of one of the
summands is reached, then in step 4 any remaining digits of the other summand
are added to any remaining carries one after the other. Until the last summand
digit is processed, the less-significant part is stored as a digit of the sum, and
the more-significant part is used as a carry to the next digit. Finally, if there is a

24

The Fundamental Operations

leftover carry at the end, it is stored as the most-significant digit of the sum. The
output of this digit is suppressed if it has the value zero.

Steps 2 and 4 of the algorithm appear in a similar form in the case of
subtraction, multiplication, and division. The associated code, which is illustrated
by the following lines, is typical for arithmetic functions:1

s = (USHORT)(carry = (ULONG)a + (ULONG)b + (ULONG)(USHORT)(carry >> BITPERDGT));

The intermediate value t that appears in the algorithm is represented by the
variable carry, of type ULONG, which holds the sum of the digits ai and bi as well
as the carry of the previous operation. The new summation digit si is stored in
the less-significant part of carry, from where it is taken by means of a cast as a
USHORT. The resulting carry from this operation is held in the more-significant part
of carry for the next operation.

The implementation of this algorithm by our function add_l() deals with a
possible overflow of the sum, where in this case a reduction of the sum modulo
(Nmax + 1) is carried out.

Function: addition

Syntax: int add_l (CLINT a_l, CLINT b_l, CLINT s_l);

Input: a_l, b_l (summands)

Output: s_l (sum)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL in the case of overflow

int

add_l (CLINT a_l, CLINT b_l, CLINT s_l)

{

clint ss_l[CLINTMAXSHORT + 1];

clint *msdptra_l, *msdptrb_l;

clint *aptr_l, *bptr_l, *sptr_l = LSDPTR_L (ss_l);

ULONG carry = 0L;

int OFL = E_CLINT_OK;

1 The C expression in this compact form is due to my colleague Robert Hammelrath.

25

Chapter 4

The pointers for the addition loop are set. Here it is checked which of the two
summands has the greater number of digits. The pointers aptr_l and msdaptr_l

are initialized such that they point respectively to the least-significant and most-
significant digits of the summand that has the most digits, or to those digits of a_l
if both summands are of the same length. This holds analogously for the pointers
bptr_l and msdbptr_l, which point to the least-significant and most-significant
digits of the shorter summand, or to those digits of b_l. The initialization is
carried out with the help of the macro LSDPTR_L() for the least-significant dig-
its and MSDPTR_L() for the most-significant digits of a CLINT object. The macro
DIGITS_L (a_l) specifies the number of digits of the CLINT object a_l, and with
SETDIGITS_L(a_l, n) the number of digits of a_l is set to the value n.

if (DIGITS_L (a_l) < DIGITS_L (b_l))

{

aptr_l = LSDPTR_L (b_l);

bptr_l = LSDPTR_L (a_l);

msdptra_l = MSDPTR_L (b_l);

msdptrb_l = MSDPTR_L (a_l);

SETDIGITS_L (ss_l, DIGITS_L (b_l));

}

else

{

aptr_l = LSDPTR_L (a_l);

bptr_l = LSDPTR_L (b_l);

msdptra_l = MSDPTR_L (a_l);

msdptrb_l = MSDPTR_L (b_l);

SETDIGITS_L (ss_l, DIGITS_L (a_l));

}

In the first loop of add_l the digits of a_l and b_l are added and stored in the result
variable ss_l. Any leading zeros cause no problem, and they are simply used in the
calculation and filtered out when the result is copied to s_l. The loop runs from the
least-significant digit of b_l to the most-significant digit. This corresponds exactly
to the process of pencil-and-paper addition as learned at school. As promised,
here is the implementation of the carry.

while (bptr_l <= msdptrb_l)

{

*sptr_l++ = (USHORT)(carry = (ULONG)*aptr_l++

+ (ULONG)*bptr_l++ + (ULONG)(USHORT)(carry >> BITPERDGT));

}

26

The Fundamental Operations

The two USHORT values *aptr and *bptr are copied via a cast to ULONG representa-
tion and added. To this the carry from the last interation is added. The result is
a ULONG value that contains the carry from the addition step in its higher-valued
word. This value is allocated to the variable carry and there reserved for the next
iteration. The value of the resulting digit is taken from the lower-valued word of the
addition result via a cast to the type USHORT. The carry saved in the higher-valued
word of carry is included in the next iteration by a shift to the right by the number
BITPERDGT of bits used for the representation of USHORT and a cast to USHORT.

In the second loop only the remaining digits of a_l are added to a possible existing
carry and stored in s_l.

while (aptr_l <= msdptra_l)

{

*sptr_l++ = (USHORT)(carry = (ULONG)*aptr_l++

+ (ULONG)(USHORT)(carry >> BITPERDGT));

}

If after the second loop there is a carry, the result is one digit longer than a_l. If
it is determined that the result exceeds the maximal value Nmax representable
by the CLINT type, then the result is reduced modulo (Nmax + 1) (see Chapter 5),
analogously to the treatment of standard unsigned types. In this case the status
announcement of the error code E_CLINT_OFL is returned.

if (carry & BASE)

{

*sptr_l = 1;

SETDIGITS_L (ss_l, DIGITS_L (ss_l) + 1);

}

if (DIGITS_L (ss_l) > (USHORT)CLINTMAXDIGIT) /* overflow? */

{

ANDMAX_L (ss_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

cpy_l (s_l, ss_l);

return OFL;

}

The run time t of all the procedures given here for addition and subtraction is
t = O(n), and thus proportional to the number of digits of the larger of the two
operands.

27

Chapter 4

Now that we have seen addition, we shall present the algorithm for
subtraction of two numbers a and b with representations

a = (am−1am−2 . . . a0)B ≥ b = (bn−1bn−2 . . . b0)B

to base B.

Algorithm for the subtraction a − b

1. Set i ← 0 and c ← 1.

2. If c = 1, set t ← B + ai − bi; otherwise, set t ← B − 1 + ai − bi.

3. Set di ← t mod B and c ← �t/B�.

4. Set i ← i + 1; if i ≤ n − 1, go to step 2.

5. If c = 1, set t ← B + ai; otherwise, set t ← B − 1 + ai.

6. Set di ← t mod B and c ← �t/B�.

7. Set i ← i + 1; if i ≤ m − 1, go to step 5.

8. Output d = (dm−1dm−2 . . . d0)B .

The implementation of subtraction is identical to that of addition, with the
following exceptions:

• The ULONG variable carry is used to “borrow” from the next-higher digit of
the minuend if a digit of the minuend is smaller than the corresponding
digit of the subtrahend.

• Instead of an overflow one must be on the lookout for a possible underflow,
in which case the result of the subtraction would actually be negative;
however, since CLINT is an unsigned type, there will be a reduction
modulo (Nmax + 1) (see Chapter 5). The function returns the error code
E_CLINT_UFL to indicate this situation.

• Finally, any existing leading zeros are eliminated.

Thus we obtain the following function, which subtracts a CLINT number b_l from
a number a_l.

28

The Fundamental Operations

Function: subtraction

Syntax: int sub_l (CLINT aa_l, CLINT bb_l, CLINT d_l);

Input: aa_l (minuend), bb_l (subtrahend)

Output: d_l (difference)

Return: E_CLINT_OK if all is ok.
E_CLINT_UFL in the case of underflow

int

sub_l (CLINT aa_l, CLINT bb_l, CLINT d_l)

{

CLINT b_l;

clint a_l[CLINTMAXSHORT + 1]; /* allow 1 additional digit in a_l */

clint *msdptra_l, *msdptrb_l;

clint *aptr_l = LSDPTR_L (a_l);

clint *bptr_l = LSDPTR_L (b_l);

clint *dptr_l = LSDPTR_L (d_l);

ULONG carry = 0L;

int UFL = E_CLINT_OK;

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

msdptra_l = MSDPTR_L (a_l);

msdptrb_l = MSDPTR_L (b_l);

In the following the case a_l < b_l is considered, in which b_l is subtracted not
from a_l, but from the largest possible value, Nmax. Later, the value (minuend+1)

is added to this difference, so that altogether the calculation is carried out mod-
ulo (Nmax + 1). To generate the value Nmax the auxiliary function setmax_l()

is used.

29

Chapter 4

if (LT_L (a_l, b_l))

{

setmax_l (a_l);

msdptra_l = a_l + CLINTMAXDIGIT;

SETDIGITS_L (d_l, CLINTMAXDIGIT);

UFL = E_CLINT_UFL;

} else

{

SETDIGITS_L (d_l, DIGITS_L (a_l));

}

while (bptr_l <= msdptrb_l)

{

*dptr_l++ = (USHORT)(carry = (ULONG)*aptr_l++

- (ULONG)*bptr_l++ - ((carry & BASE) >> BITPERDGT));

}

while (aptr_l <= msdptra_l)

{

*dptr_l++ = (USHORT)(carry = (ULONG)*aptr_l++

- ((carry & BASE) >> BITPERDGT));

}

RMLDZRS_L (d_l);

The required addition of (minuend + 1) to the difference Nmax − b_l stored in
d_l is carried out before the output of d_l.

if (UFL)

{

add_l (d_l, aa_l, d_l);

inc_l (d_l);

}

return UFL;

}

In addition to the functions add_l() and sub_l() two special functions for
addition and subtraction are available, which operate on a USHORT as the second
argument instead of a CLINT. These are called mixed functions and identified by a
function name with a prefixed “u,” as in the functions uadd_l() and usub_l() to
follow. The use of the function u2clint_l() for converting a USHORT value into a
CLINT object follows in anticipation of its discussion in Chapter 8.

30

The Fundamental Operations

Function: mixed addition of a CLINT type and a USHORT type

Syntax: int uadd_l (CLINT a_l, USHORT b, CLINT s_l);

Input: a_l, b (summands)

Output: s_l (sum)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

int

uadd_l (CLINT a_l, USHORT b, CLINT s_l)

{

int err;

CLINT tmp_l;

u2clint_l (tmp_l, b);

err = add_l (a_l, tmp_l, s_l);

return err;

}

Function: subtraction of a USHORT type from a CLINT type

Syntax: int usub_l (CLINT a_l, USHORT b, CLINT d_l);

Input: a_l (minuend), b (subtrahend)

Output: d_l (difference)

Return: E_CLINT_OK if all is ok
E_CLINT_UFL if underflow

int

usub_l (CLINT a_l, USHORT b, CLINT d_l)

{

int err;

CLINT tmp_l; u2clint_l (tmp_l, b);

err = sub_l (a_l, tmp_l, d_l);

return err;

}

31

Chapter 4

Two further useful special cases of addition and subtraction are realized in
the functions inc_l() and dec_l(), which increase or decrease a CLINT value by 1.
These functions are designed as accumulator routines: The operand is overwritten
with the return value, which has proved practical in the implementation of many
algorithms.

It is not surprising that the implementations of inc_l() and dec_l() are
similar to those of the functions add_l() and sub_l(). They test for overflow and
underflow, respectively, and return the corresponding error codes E_CLINT_OFL

and E_CLINT_UFL.

Function: increment a CLINT object by 1

Syntax: int inc_l (CLINT a_l);

Input: a_l (summand)

Output: a_l (sum)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

int

inc_l (CLINT a_l)

{

clint *msdptra_l, *aptr_l = LSDPTR_L (a_l);

ULONG carry = BASE;

int OFL = E_CLINT_OK;

msdptra_l = MSDPTR_L (a_l);

while ((aptr_l <= msdptra_l) && (carry & BASE))

{

*aptr_l = (USHORT)(carry = 1UL + (ULONG)*aptr_l);

aptr_l++;

}

if ((aptr_l > msdptra_l) && (carry & BASE))

{

*aptr_l = 1;

SETDIGITS_L (a_l, DIGITS_L (a_l) + 1);

if (DIGITS_L (a_l) > (USHORT) CLINTMAXDIGIT) /* overflow ? */

{

SETZERO_L (a_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

}

return OFL;

}

32

The Fundamental Operations

Function: decrement a CLINT object by 1

Syntax: int dec_l (CLINT a_l);

Input: a_l (minuend)

Output: a_l (difference)

Return: E_CLINT_OK if all is ok
E_CLINT_UFL if underflow

int

dec_l (CLINT a_l)

{

clint *msdptra_l, *aptr_l = LSDPTR_L (a_l);

ULONG carry = DBASEMINONE;

if (EQZ_L (a_l)) /* underflow ? */

{

setmax_l (a_l); /* reduce modulo max_l */

return E_CLINT_UFL;

}

msdptra_l = MSDPTR_L (a_l);

while ((aptr_l <= msdptra_l) && (carry & (BASEMINONEL << BITPERDGT)))

{

*aptr_l = (USHORT)(carry = (ULONG)*aptr_l - 1L);

aptr_l++;

}

RMLDZRS_L (a_l);

return E_CLINT_OK;

}

4.2 Multiplication

If the individual summands n1, n2, n3, . . . , nr are all equal to one and the
same integer n, then one calls the addition “multiplication of the integer n by
the multiplier r” and sets n1 + n2 + n3 + · · · + nr = rn.

—Leopold Kronecker, On the Idea of Number

Multiplication is one of the most critical functions of the entire FLINT/C package
due to the computation time required for its execution, since together with
division it determines the execution time of many algorithms. In contrast to our

33

Chapter 4

experience heretofore with addition and subtraction, the classical algorithms
for multiplication and division have execution times that are quadratic in the
number of digits of the arguments, and it is not for nothing that Donald Knuth
asks in one of his chapter headings, “How fast can we multiply?”

In the literature there have been published various procedures for rapid
multiplication of large and very large integers, among which are some rather
difficult methods. An example of this is the procedure developed by A. Schönhage
and V. Strassen for multiplying large numbers by application of fast Fourier
transforms over finite fields. The running time in terms of the number of digits n

in the arguments is bounded above by O(n log n log log n) (see [Knut], Section
4.3.3). These techniques encompass the fastest known multiplication algorithms,
but their advantage in speed over the classical O

(
n2
)

methods comes into play
only when the number of binary digits is in the range 8,000–10,000. Based on the
demands of cryptographic systems, such numbers, at least for the present, are far
beyond the range envisioned in the application domain of our functions.

For our realization of multiplication for the FLINT/C package we would like
first to use as a basis the grade school method based on “Algorithm M” given
by Knuth (see [Knut], Section 4.3.1), and we shall make an effort to achieve as
efficient an implementation of this procedure as possible. Then we shall occupy
ourselves in a close examination of the calculation of squares, which offers great
potential for savings, and for both cases we shall finally look at the multiplication
procedure of Karatsuba, which is asymptotically better than O

(
n2
)

.2 The
Karatsuba multiplication arouses our curiosity, since it seems simple, and one
could pleasantly occupy a (preferably rainy) Sunday afternoon trying it out. We
shall see whether this procedure has anything to contribute to the FLINT/C
library.

4.2.1 The Grade School Method

We are considering multiplication of two numbers a and b with representations

a = (am−1am−2 . . . a0)B =

m−1∑
i=0

aiB
i, 0 ≤ ai < B,

b = (bn−1bn−2 . . . b0)B =

n−1∑
i=0

biB
i, 0 ≤ bi < B,

to the base B. According to the procedure that we learned in school, the product
ab can be computed for m = n = 3 as shown in Figure 4-1.

2 When we say that the calculation time is asymptotically better, we mean that the larger the
numbers in question, the greater the effect. One should not fall victim to premature euphoria,
and for our purposes such an improvement may have no significance whatsoever.

34

The Fundamental Operations

(a2a1a0)B · (b2b2b0)B

c20 p20 p10 p00

+ c21 p21 p11 p01

+ c22 p22 p12 p02(
p5 p4 p3 p2 p1 p0

)
B

Figure 4-1. Calculations for multiplication

First, the partial products (a2a1a0)B · bj for j = 0, 1, 2, are calculated:
The values aibj are the least-significant digits of the terms (aibj + carry)
with the inner products aibj , and the c2j are the more-significant digits of
the p2j . The partial products are summed at the end to form the product
p = (p5p4p3p2p1p0)B .

In the general case the product p = ab has the value

p =

n−1∑
j=0

m−1∑
i=0

aibjB
i+j .

The result of a multiplication of two operands with m and n digits has at least
m + n − 1 and at most m + n digits. The number of elementary multiplication
steps (that is, multiplications by factors smaller than the base B) is mn.

A multiplication function that followed exactly the schema outlined above
would first calculate all partial products, store these values, and then sum them
up, each provided with the appropriate scaling factor. This school method is
quite suitable for calculating with pencil and paper, but for the possibilities of
a computer program it is somewhat cumbersome. A more efficient alternative
consists in adding the inner products aibj at once to the accumulated values in
the result digit pi+j , to which are added the carries c from previous steps. The
resulting value for each pair (i, j) is assigned to a variable t:

t ← pi+j + aibj + c,

where t can be represented as

t = kB + l, 0 ≤ k, l < B,

and we then have

pi+j + aibj + c ≤ B − 1 + (B − 1)(B − 1) + B − 1

= (B − 1)B + B − 1 = B2 − 1 < B2.

The current value of the result digit is taken by the assignment pi+j ← l from this
representation of t. As the new carry we set c ← k.

35

Chapter 4

The multiplication algorithm thus consists entirely of an outer loop for
calculating the partial products ai (bn−1bn−2 . . . b0)B and an inner loop for
calculating the inner products aibj , j = 0, . . . , n− 1, and the values t and pi + j.
The algorithm then appears as follows.

Algorithm for multiplication

1. Set pi ← 0 for i = 0, . . . , n − 1.

2. Set i ← 0.

3. Set j ← 0 and c ← 0.

4. Set t ← pi+j + aibj + c, pi+j ← t mod B, and c ← �t/B�.

5. Set j ← j + 1; if j ≤ n − 1, go to step 4.

6. Set pi+n ← c.

7. Set i ← i + 1; if i ≤ m − 1, go to step 3.

8. Output p = (pm+n−1pm+n−2 . . . p0)B .

The following implementation of multiplication contains at its core this main
loop. Corresponding to the above estimate, in step 4 the lossless representation
of a value less than B2 in the variable t is required. Analogously to how we
proceeded in the case of addition, the inner products t are thus represented as
ULONG types. The variable t is nonetheless not used explicitly, and the setting of
the result digits pi+j and the carry c occurs rather within a single expression,
analogous to the process already mentioned in connection with the addition
function (see page 25). For initialization a more efficient procedure will be chosen
than the one shown in step 1 of the algorithm.

Function: multiplication

Syntax: int mul_l (CLINT f1_l, CLINT f2_l, CLINT pp_l);

Input: f1_l, f2_l (factors)

Output: pp_l (product)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

36

The Fundamental Operations

int

mul_l (CLINT f1_l, CLINT f2_l, CLINT pp_l)

{

register clint *pptr_l, *bptr_l;

CLINT aa_l, bb_l;

CLINTD p_l;

clint *a_l, *b_l, *aptr_l, *csptr_l, *msdptra_l, *msdptrb_l;

USHORT av;

ULONG carry;

int OFL = E_CLINT_OK;

First the variables are declared; p_lwill hold the result and thus is of double length.
The ULONG variable carry will hold the carry. In the first step the case is dealt with
in which one of the factors, and therefore the product, is zero. Then the factors are
copied into the workspaces aa_l and bb_l, and leading zeros are purged.

if (EQZ_L (f1_l) || EQZ_L (f2_l))

{

SETZERO_L (pp_l);

return E_CLINT_OK;

}

cpy_l (aa_l, f1_l);

cpy_l (bb_l, f2_l);

According to the declarations the pointers a_l and b_l are given the addresses of
aa_l and bb_l, where a logical transposition occurs if the number of digits of aa_l
is smaller than that of bb_l. The pointer a_l always points to the operand with the
larger number of digits.

if (DIGITS_L (aa_l) < DIGITS_L (bb_l))

{

a_l = bb_l;

b_l = aa_l;

}

else

{

a_l = aa_l;

b_l = bb_l;

}

msdptra_l = a_l + *a_l;

msdptrb_l = b_l + *b_l;

37

Chapter 4

To save time in the computation, instead of the initialization required above,
the partial product (bn−1bn−2 . . . b0)B · a0 is calculated in a loop and stored in
pn, pn−1, . . . , p0.

carry = 0;

av = *LSDPTR_L (a_l);

for (bptr_l = LSDPTR_L (b_l), pptr_l = LSDPTR_L (p_l);

bptr_l <= msdptrb_l; bptr_l++, pptr_l++)

{

*pptr_l = (USHORT)(carry = (ULONG)av * (ULONG)*bptr_l +

(ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

Next follows the nested multiplication loop, beginning with the digit a_l[2] of a_l.

for (csptr_l = LSDPTR_L (p_l) + 1, aptr_l = LSDPTR_L (a_l) + 1;

aptr_l <= msdptra_l; csptr_l++, aptr_l++)

{

carry = 0;

av = *aptr_l;

for (bptr_l = LSDPTR_L (b_l), pptr_l = csptr_l;

bptr_l <= msdptrb_l; bptr_l++, pptr_l++) {

*pptr_l = (USHORT)(carry = (ULONG)av * (ULONG)*bptr_l +

(ULONG)*pptr_l + (ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

}

The largest possible length of the result is the sum of the numbers of digits of
a_l and b_l. If the result has one digit fewer, this is determined by the macro
RMLDZRS_L.

SETDIGITS_L (p_l, DIGITS_L (a_l) + DIGITS_L (b_l));

RMLDZRS_L (p_l);

If the result is larger than can be accommodated in a CLINT object, it is reduced,
and the error flag OFL is set to the value E_CLINT_OFL. Then the reduced result is
assigned to the object pp_l.

38

The Fundamental Operations

if (DIGITS_L (p_l) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{

ANDMAX_L (p_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

cpy_l (pp_l, p_l);

return OFL;

}

With t = O(mn) the run time t for the multiplication is proportional to the
product of the numbers of digits m and n of the operands. For multiplication,
too, the analogous mixed function is implemented, which processes a CLINT type
and as second argument a USHORT type. This short version of CLINT multiplication
requires O(n) CPU multiplications, which is the result not of any particular
refinement of the algorithm, but of the shortness of the USHORT argument. Later,
we shall set this function implicitly within a special exponentiation routine for
USHORT bases (see Chapter 6, the function wmexp_l()).

For the implementation of the umul_l() function we return primarily to a
code segment of the mul_l() function and reuse it with a few modifications.

Function: multiplication of a CLINT type by a USHORT

Syntax: int umul_l (CLINT aa_l, USHORT b, CLINT pp_l);

Input: aa_l, b (factors)

Output: pp_l (product)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

int

umul_l (CLINT aa_l, USHORT b, CLINT pp_l)

{

register clint *aptr_l, *pptr_l;

CLINT a_l;

clint p_l[CLINTMAXSHORT + 1];

clint *msdptra_l;

ULONG carry;

int OFL = E_CLINT_OK;

39

Chapter 4

cpy_l (a_l, aa_l);

if (EQZ_L (a_l) || 0 == b)

{

SETZERO_L (pp_l);

return E_CLINT_OK;

}

After these preliminaries, the CLINT factor is multiplied in a pass through a loop by
the USHORT factor, and at the end the carry is stored in the most-significant USHORT
digit of the CLINT value.

msdptra_l = MSDPTR_L (a_l);

carry = 0;

for (aptr_l = LSDPTR_L (a_l), pptr_l = LSDPTR_l (p_l);

aptr_l <= msdptra_l; aptr_l++, pptr_l++)

{

*pptr_l = (USHORT)(carry = (ULONG)b * (ULONG)*aptr_l +

(ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

SETDIGITS_L (p_l, DIGITS_L (a_l) + 1);

RMLDZRS_L (p_l);

if (DIGITS_L (p_l) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{

ANDMAX_L (p_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

cpy_l (pp_l, p_l);

return OFL;

}

4.2.2 Squaring Is Faster

The calculation of a large square is accomplished with significantly fewer
multiplications than in the case of the multiplication of large numbers. This
is a result of the symmetry in the multiplication of identical operands. This
observation is very important, since when it comes to exponentiation, which
involves not one, but hundreds, of squarings, we shall be able to achieve
considerable savings in speed. We again look at the well-known multiplication
schema, this time with two identical factors (a2a1a0)B (see Figure 4-2).

40

The Fundamental Operations

(a2a1a0)B · (a2a1a0)B

a2a0 a1a0 a0a0

+ a2a1 a1a1 a0a1

+ a2a2 a1a2 a0a2(
p5 p4 p3 p2 p1 p0

)
B

Figure 4-2. Calculations for squaring

We recognize that the inner products aiaj for i = j appear once (in boldface
in Figure 4-2) and twice for i �= j (in boxes in the figure). Thus we can save three
out of nine multiplications by multiplying the sum aiajB

i+j for i < j by 2. The
sum of the inner products of a square can then be written as

p =

n−1∑
i,j=0

aiajB
i+j = 2

n−2∑
i=0

n−1∑
j=i+1

aiajB
i+j +

n−1∑
j=0

a2
i B2i.

The number of required elementary multiplications is thus reduced with
respect to the school method from n2 to n(n + 1)/2.

A natural algorithmic representation of squaring calculates the above
expression with the two summands in two nested loops.

Algorithm 1 for squaring

1. Set pi ← 0 for i = 0, . . . , n − 1.

2. Set i ← 0.

3. Set t ← p2i + a2
i , p2i ← t mod B, and c ← �t/B�.

4. Set j ← i + 1. If j = n, go to step 7.

5. Set t ← pi+j + 2aiaj + c, pi+j ← t (mod B), and c ← �t/B�.

6. Set j ← j + 1; if j ≤ n − 1, go to step 5.

7. Set pi+n ← c.

8. Set j ← i + 1; if i = n − 1, go to step 7.

9. Output p = (p2n−1p2n−2 . . . p0)B .

In selecting the necessary data types for the representation of the variables we
must note that t can assume the value

(B − 1) + 2(B − 1)2 + (B − 1) = 2B2 − 2B

(in step 5 of the algorithm). But this means that for representing t to base B more
than two digits to base B will be needed, since we also have B2−1 < 2B2−2B <

41

Chapter 4

2B2 − 1, and so a ULONG will not suffice for representing t (the inequality above
is derived from the fact that one additional binary digit is needed). While this
poses no problem for an assembler implementation, in which one has access to
the carry bit of the CPU, it is difficult in C to handle the additional binary digit. To
get around this dilemma, we alter the algorithm in such a way that in step 5 the
required multiplication by 2 is carried out in a separate loop. It is then required
that step 3 be carried out in its own loop, whereby for a slight extra expenditure of
effort in loop management we are spared the additional binary digit. The altered
algorithm is as follows.

Algorithm 2 for squaring

1. Initialization: Set pi ← 0 for i = 0, . . . , n − 1.

2. Calculate the product of digits of unequal index: Set i ← 0.

3. Set j ← i + 1 and c ← 0.

4. Set t ← pi+j + aiaj + c, pi+j ← t mod B, and c ← �t/B�.

5. Set j ← j + 1; if j ≤ n − 1, go to step 4.

6. Set pi+n ← c.

7. Set i ← i + 1; if i ≤ n − 2, go to step 3.

8. Multiplication of inner products by 2: Set i ← 1 and c ← 0.

9. Set t ← 2pi + c, pi ← t mod B, and c ← �t/B�.

10. Set i ← i + 1; if i ≤ 2n − 2, go to step 9.

11. Set p2n−1 ← c.

12. Addition of the inner squares: Set i ← 0 and c ← 0.

13. Set t ← p2i + a2
i + c, p2i ← t mod B, and c ← �t/B�.

14. Set t ← p2i+1 + c, p2i+1 ← t mod B, and c ← �t/B�.

15. Set i ← i + 1; if i ≤ n − 1, go to step 13.

16. Set p2n−1 ← p2n−1 + c; output p = (p2n−1p2n−2 . . . p0)B .

In the C function for squaring the initialization in step 1 is likewise, in analogy
to multiplication, replaced by the calculation and storing of the first partial
product a0 (an−1an−2 . . . a1)B .

42

The Fundamental Operations

Function: squaring

Syntax: int sqr_l (CLINT f_l, CLINT pp_l);

Input: f_l (factor)

Output: pp_l (square)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

int

sqr_l (CLINT f_l, CLINT pp_l)

{

register clint *pptr_l, *bptr_l;

CLINT a_l;

CLINTD p_l;

clint *aptr_l, *csptr_l, *msdptra_l, *msdptrb_l, *msdptrc_l;

USHORT av;

ULONG carry;

int OFL = E_CLINT_OK;

cpy_l (a_l, f_l);

if (EQZ_L (a_l))

{

SETZERO_L (pp_l);

return E_CLINT_OK;

}

msdptrb_l = MSDPTR_L (a_l);

msdptra_l = msdptrb_l - 1;

The initialization of the result vector addressed by pptr_l is carried out by means
of the partial product a0 (an−1an−2 . . . a1)B , in analogy with multiplication. The
digit p0 is here not assigned; it must be set to zero.

*LSDPTR_L (p_l) = 0;

carry = 0;

av = *LSDPTR_L (a_l);

for (bptr_l = LSDPTR_L (a_l) + 1, pptr_l = LSDPTR_L (p_l) + 1;

bptr_l <= msdptrb_l; bptr_l++, pptr_l++)

43

Chapter 4

{

*pptr_l = (USHORT)(carry = (ULONG)av * (ULONG)*bptr_l +

(ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

The loop for summing the inner products aiaj .

for (aptr_l = LSDPTR_L (a_l) + 1, csptr_l = LSDPTR_L (p_l) + 3;

aptr_l <= msdptra_l; aptr_l++, csptr_l += 2)

{

carry = 0;

av = *aptr_l;

for (bptr_l = aptr_l + 1, pptr_l = csptr_l; bptr_l <= msdptrb_l;

bptr_l++, pptr_l++)

{

*pptr_l = (USHORT)(carry = (ULONG)av * (ULONG)*bptr_l +

(ULONG)*pptr_l + (ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

}

msdptrc_l = pptr_l;

Then comes multiplication of the intermediate result in pptr_l by 2 via shift
operations (see also Section 7.1).

carry = 0;

for (pptr_l = LSDPTR_L (p_l); pptr_l <= msdptrc_l; pptr_l++)

{

*pptr_l = (USHORT)(carry = (((ULONG)*pptr_l) << 1) +

(ULONG)(USHORT)(carry >> BITPERDGT));

}

*pptr_l = (USHORT)(carry >> BITPERDGT);

Now we compute the “main diagonal.”

carry = 0;

for (bptr_l = LSDPTR_L (a_l), pptr_l = LSDPTR_L (p_l);

bptr_l <= msdptrb_l; bptr_l++, pptr_l++)

44

The Fundamental Operations

{

*pptr_l = (USHORT)(carry = (ULONG)*bptr_l * (ULONG)*bptr_l +

(ULONG)*pptr_l + (ULONG)(USHORT)(carry >> BITPERDGT));

pptr_l++;

*pptr_l = (USHORT)(carry = (ULONG)*pptr_l + (carry >> BITPERDGT));

}

All the rest follows in analogy to multiplication.

SETDIGITS_L (p_l, DIGITS_L (a_l) << 1);

RMLDZRS_L (p_l);

if (DIGITS_L (p_l) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{

ANDMAX_L (p_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

cpy_l (pp_l, p_l);

return OFL;

}

The run time for squaring is, with O
(
n2
)

, likewise quadratic in the number
of digits of the operators, but with n(n + 1)/2 elementary multiplications it is
about twice as fast as multiplication.

4.2.3 Do Things Go Better with Karatsuba?

The antispirit of multiplication and division deconstructed everything and
then focused only on a specific part of the whole.

—Sten Nadolny (trans. Breon Mitchell), God of Impertinence

As announced, we shall now consider a method of multiplication named for the
Russian mathematician A. Karatsuba, who has published several variants of it
(See [Knut], Section 4.3.3). We assume that a and b are natural numbers with
n = 2k digits to base B, so that we can write a = (a1a0)Bk and b = (b1b0)Bk

with digits a0 and a1, respectively b0 and b1, to base Bk. Were we to multiply a

and b in the traditional manner, then we would obtain the expression

ab = B2ka1b1 + Bk (a0b1 + a1b0) + a0b0,

45

Chapter 4

with four multiplications to base Bk and thus n2 = 4k2 elementary
multiplications to base B. However, if we set

c0 := a0b0,

c1 := a1b1,

c2 := (a0 + a1) (b0 + b1) − c0 − c1,

then we have

ab = Bk
(
Bkc1 + c2

)
+ c0.

For calculating ab it now appears that only three more multiplications
by numbers to base Bk, or 3k2 multiplications to base B, are necessary, in
addition to some additions and shifting operations (multiplication by Bk can be
accomplished by left shifting by k digits to base B; see Section 7.1). Let us assume
that the number of digits n of our factors a and b is a power of 2, with the result
that by recursive application of the procedure on the remaining partial products
we can end with having to carry out only elementary multiplications to base B,
and this yields a total of 3log2 n = nlog2 3 ≈ n1.585 elementary multiplications,
as opposed to n2 in the classical procedure, in addition to the time for additions
and shift operations.

For squaring, this process can be simplified somewhat: With

c0 := a2
0,

c1 := a2
1,

c2 := (a0 + a1)
2 − c0 − c1,

we have

a2 = Bk
(
Bkc1 + c2

)
+ c0.

Furthermore, to our advantage, the factors in the squaring always have the
same number of digits, which is not generally the case in multiplication. With all
these advantages, we should, however, mention that recursion within a program
function always costs something, so that we may hope to experience a savings
in time over the classical method, which manages without the added burden of
recursion, only when the numbers get large.

To obtain information on the actual time performance of the Karatsuba
procedure the functions kmul() and ksqr() are provided. The division of the
factors into two halves takes place in situ, and so a copying of the halves is
unnecessary. But it is necessary that the functions be passed pointers to the
least-significant digits of the factors and that the numbers of digits be passed
separately.

The functions presented below in experimental form use the recursive
procedure for factors having more than a certain number of digits determined
by a macro, while for smaller factors we turn to conventional multiplication or

46

The Fundamental Operations

squaring. For the case of nonrecursive multiplication the functions kmul() and
ksqr() use the auxiliary functions mult() and sqr(), in which multiplication and
squaring are implemented as kernel functions without the support of identical
argument addresses (accumulator mode) or reduction in the case of overflow.

Function: Karatsuba multiplication of two numbers a_l and b_l

with 2k digits each to base B

Syntax: void kmul (clint *aptr_l, clint *bptr_l,

int len_a, int len_b, CLINT p_l);

Input: aptr_l (pointer to the least-significant digit of the factor a_l)
bptr_l (pointer to the least-significant digit of the factor b_l)
len_a (number of digits of a_l)
len_b (number of digits of b_l)

Output: p_l (product)

void

kmul (clint *aptr_l, clint *bptr_l, int len_a, int len_b, CLINT p_l)

{

CLINT c01_l, c10_l;

clint c0_l[CLINTMAXSHORT + 2];

clint c1_l[CLINTMAXSHORT + 2];

clint c2_l[CLINTMAXSHORT + 2];

CLINTD tmp_l;

clint *a1ptr_l, *b1ptr_l;

int l2;

if ((len_a == len_b) && (len_a >= MUL_THRESHOLD)

&& (0 == (len_a & 1)))

{

If both factors possess the same even number of digits above the value
MUL_THRESHOLD, then recursion is entered with the splitting of the factors into two
halves. The pointers aptr_l, a1ptr_l, bptr_l, b1ptr_l are passed to the corre-
sponding least-significant digits of one of the halves. By not copying the halves,
we save valuable time. The values c0 and c1 are calculated by recursively calling
kmul() and then stored in the CLINT variables c0_l and c1_l.

47

Chapter 4

l2 = len_a/2;

a1ptr_l = aptr_l + l2;

b1ptr_l = bptr_l + l2;

kmul (aptr_l, bptr_l, l2, l2, c0_l);

kmul (a1ptr_l, b1ptr_l, l2, l2, c1_l);

The value c2 := (a0 + a1) (b0 + b1) − c0 − c1 is computed with two additions, a
call to kmul(), and two subtractions. The auxiliary function addkar() takes pointers
to the least-significant digits of two equally long summands together with their
number of digits, and outputs the sum of the two as a CLINT value.

addkar (a1ptr_l, aptr_l, l2, c01_l);

addkar (b1ptr_l, bptr_l, l2, c10_l);

kmul (LSDPTR_L (c01_l), LSDPTR_L (c10_l),

DIGITS_L (c01_l), DIGITS_L (c10_l), c2_l);

sub (c2_l, c1_l, tmp_l);

sub (tmp_l, c0_l, c2_l);

The function branch ends with the calculation of Bk
(
Bkc1 + c2

)
+ c0, which

used the auxiliary function shiftadd(), which during the addition left shifts the
first of the two CLINT summands by a given number of places to base B.

shiftadd (c1_l, c2_l, l2, tmp_l);

shiftadd (tmp_l, c0_l, l2, p_l);

}

If one of the input conditions is not fulfilled, the recursion is interrupted and the
nonrecursive multiplication mult() is called. As a requirement for calling mult()

the two factor halves in aptr_l and bptr_l are brought into CLINT format.

else

{

memcpy (LSDPTR_L (c1_l), aptr_l, len_a * sizeof (clint));

memcpy (LSDPTR_L (c2_l), bptr_l, len_b * sizeof (clint));

SETDIGITS_L (c1_l, len_a);

SETDIGITS_L (c2_l, len_b);

mult (c1_l, c2_l, p_l);

RMLDZRS_L (p_l);

}

}

48

The Fundamental Operations

The Karatsuba squaring process proceeds analogously to this and will not be
described in detail. For calling kmul() and ksqr() we make use of the functions
kmul_l() and ksqr_l(), which are equipped with the standard interface.

Function: Karatsuba multiplication and squaring

Syntax: int kmul_l (CLINT a_l, CLINT b_l, CLINT p_l);

int ksqr_l (CLINT a_l, CLINT p_l);

Input: a_l, b_l (factors)

Output: p_l (product or square)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

The implementation of the Karatsuba functions are contained in the source file
kmul.c in the downloadable source code (www.apress.com).

Extensive tests with these functions (on a Pentium III processor at 500 MHz
under Linux) have given best results when the nonrecursive multiplication
routine is called for a digit count under 40 (corresponding to 640 binary digits).
The computation time of our implementation appears in Figure 4-3).

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

binary digits

se
co

n
d

s
p

er
 5

0,
00

0
it

er
at

io
n

s

mul_l

sqr_l

kmul_l

ksqr_l

Figure 4-3. CPU time for Karatsuba multiplication

We conclude from this overview what we expected, that between standard
multiplication and squaring there is a difference in performance of about 40
percent, and that for numbers of over 2000 binary digits a pronounced spread of
the measured times becomes noticeable, with the Karatsuba routine in the lead.
It is interesting to note that “normal” squaring sqr_l() is noticeably faster than
Karatsuba multiplication, and Karatsuba squaring ksqr_l() takes the lead only
above 3000 binary digits.

49

Chapter 4

The large drop in performance of the Karatsuba functions for smaller
numbers that was remarked on in the first edition of this book has in the
meantime been eliminated. Yet there is still potential for improvement. The
observable discontinuity in the calculation times of kmul_l() indicates that the
recursion breaks off earlier than specified by the threshold value if the factors of a
recursion step do not have an even number of digits. In the worst case this occurs
right at the beginning of the multiplication, and even for very large numbers we
are no better off than we were in the standard case. It would seem worthwhile,
then, to extend the Karatsuba functions to be able to process arguments with
differing numbers of digits and odd numbers of digits.

At the Max Planck Institute in Saarbrücken, J. Ziegler [Zieg] developed a
portable implementation of Karatsuba multiplication and squaring for a 64-bit
CPU (Sun Ultra-1) that overtakes the conventional method at 640 binary digits.
With squaring an improvement in performance of 10% occurred at 1024 binary
digits and 23% at 2048 binary digits.

C. Burnikel and J. Ziegler [BuZi] have developed an interesting recursive
division procedure based on Karatsuba multiplication that from about 250
decimal digits on is increasingly faster than the school method.

Once again, however, the Karatsuba functions have no particular advantage
for our cryptographic applications without considerable optimization, for which
reason we shall prefer to fall back on the functions mul_l() and sqr_l(), which
realize the conventional procedures (and their variants in assembly language
optimized by hand; see Chapter 19). For applications for which the Karatsuba
functions seem suited one could simply substitute those functions for mul_l()
and sqr_l().

4.3 Division with Remainder

And marriage and death and division
Make barren our lives.

—Algernon Charles Swinburne, “Dolores”

We still need to place the last stone in our edifice of the fundamental arithmetic
processes on large numbers, namely, division, which is the most complex of them
all. Since we are calculating with natural numbers, we have only natural numbers
at our disposal to express the results of a division. The principle of division that
we are about to expound will be called division with remainder. It is based on the
following relation. Given a, b ∈ Z, b > 0, there are unique integers q and r that
satisfy a = qb + r with 0 ≤ r < b. We call q the quotient and r the remainder of
the division of a by b.

50

The Fundamental Operations

Frequently, we are interested only in the remainder and couldn’t care less
about the quotient. In Chapter 5 we shall see the importance of the operation of
calculating remainders, since it is used in many algorithms, always in conjunction
with addition, subtraction, multiplication, and exponentiation. Thus it will
be worth our while to have at our disposal as efficient a division algorithm as
possible.

For natural numbers a and b the simplest way of executing a division with
remainder consists in subtracting the divisor b from the dividend a continually
until the remaining quantity r is smaller than the divisor. By counting how often
we have carried out the subtraction we will have calculated the quotient. The
quotient q and the remainder r have the values q = �a/b� and r = a − �a/b�b.3

This process of division by means of repeated subtraction is, of course,
terribly boring. Even the grade school method of long division uses a significantly
more efficient algorithm, in which the digits of the quotient are determined one
by one and are in turn used as factors by which the divisor is multiplied. The
partial products are subtracted in turn from the dividend. As an example consider
the division exercise depicted in Figure 4-4.

 354938 : 427 = 831, remainder 101
– 3416
= 01333
 – 1281
 = 00528
 – 427
 = 101

Figure 4-4. Calculational schema for division

Already at the determination of the first digit, 8, of the quotient we are
required to make an estimate or else discover it by trial and error. If one makes
an error, then one discovers either that the product (quotient digit times divisor)
is too large (in the example, larger than 3549), or that the remainder after
subtraction of the partial product from the digits of the dividend is larger than the
divisor. In the first case the chosen quotient digit is too large, while in the second
it is too small, and in either case it must be corrected.

This heuristic modus operandi must be replaced in an implementation of
a division algorithm by a more precise process. In [Knut], Section 4.3.1, Donald
Knuth has described how such rough calculations can be made precise. Let us
look more closely at our example.

3 Note that for a < 0 with q = −�|a|/b� and r = b − (|a| + qb) if a � b, respectively r = 0 if
a | b, division with remainder is reduced to the case a, b ∈ N.

51

Chapter 4

Let a = (am+n−1am+n−2 . . . a0)B and b = (bn−1bn−2 . . . b0)B be two
natural numbers, represented to the base B, and for bn−1, the most-significant
digit of b, we have bn−1 > 0. We are looking for the quotient q and remainder r

such that a = qb + r, 0 ≤ r < b.
Following the long division above, for the calculation of q and r a quotient

digit qj := �R/b� < B is returned in each step, where in the first step
R = (am+n−1am+n−2 . . . ak)B is formed from the most-significant digit of
the dividend with the largest k for which 1 ≤ �R/b� < B holds (in the above
example at the start we have m + n− 1 = 3 + 3− 1 = 5, k = 2, and R = 3549).
Then we will set R := R − qjb, where as a control for the correctness of the
quotient digit qj the condition 0 ≤ R < b must be satisfied. Then R is replaced
by the value RB + (next digit of the dividend), and the next quotient digit is
again �R/b�. The division is complete when all digits of the dividend have been
processed. The remainder of the division is the last calculated value of R.

For programming this procedure we must repeatedly determine, for two large
numbers R = (rnrn−1 . . . r0)B and b = (bn−1bn−2 . . . b0)B with �R/b� < B,
the quotient Q := �R/b� (rn = 0 is a possibility). Here we take from Knuth
the given approximation q̂ of Q, which is computed from the leading digits of
R and b.

Let

q̂ := min

{⌊
rnB + rn−1

bn−1

⌋
, B − 1

}
. (4.1)

If bn−1 ≥ �R/b�, then for q̂ (see [Knut], Section 4.3.1, Theorems A and B), we
have q̂ − 2 ≤ Q ≤ q̂. Under the favorable assumption that the leading digit of the
divisor is sufficiently large in comparison to B, then as an approximation to Q, q̂
is at most too large by 2 and is never too small.

By scaling the operands a and b this can always be achieved. We choose d > 0

such that dbn−1 ≥ �B/2�, set â := ad = (âm+nâm+n−1 . . . â0)B , and set
b̂ := bd =

(
b̂n−1b̂n−2 . . . b̂0

)
B

. The choice of d is then made in such a way that

the number of digits of b̂ never increases in comparison to that of b. In the above
notation it is taken into account that â possibly contains one more digit than a (if
this is not the case, then we set âm+n = 0). In any case, it is practical to choose
d as a power of 2, since then the scaling of the operands can be carried out with
simple shift operations. Since both operands are multiplied by a common factor,
the quotient is unchanged; we have

⌊
â/b̂

⌋
= �a/b�.

The choice of q̂ in (4.1), which we want to apply to the scaled operators
â, respectively r̂, and b̂, can be improved with the following test to the extent
that q̂ = Q or q̂ = Q + 1: If from the choice of q̂ we have b̂n−2q̂ >(
r̂nB + r̂n−1 − q̂b̂n−1

)
B + r̂n−2, then q̂ is reduced by 1 and the test is

repeated. In this way we have taken care of all cases in which q̂ is too large by 2 at
the outset, and only in very rare cases is q̂ still too large by 1 (see [Knut], Section
4.3.1, Exercises 19, 20). The latter is determined from the subtraction of the partial

52

The Fundamental Operations

product “divisor times quotient digit” from what is left of the dividend. Then for
the last time q̂ must be reduced by 1 and the remainder updated. The algorithm
for division with remainder is now essentially the following procedure.

Algorithm for division with remainder of a =
(
am+n−1am+n−2 . . . a0

)
B

≥ 0

by b = (bn−1bn−2 . . . b0)B > 0

1. Determine the scaling factor d as given above.

2. Set r := (rm+nrn+m−1rm+n−2 . . . r0)B ← (0am+n−1am+n−2 . . . a0)B .

3. Set i ← m + n, j ← m.

4. Set q̂ ← min
{⌊

r̂iB+r̂i−1

b̂n−1

⌋
, B − 1

}
with the digits r̂i, r̂i − 1,

and b̂n−1 obtained from scaling by d (see above). If b̂n−2q̂ >(
r̂iB + r̂i−1 − q̂b̂n−1

)
B + r̂i−2, set q̂ ← q̂ − 1 and repeat this

test.

5. If r − bq̂ < 0, set q̂ ← q̂ − 1.

6. Set r := (riri−1 . . . ri−n)B ← (riri−1 . . . ri−n)B − bq̂ and qj ← q̂.

7. Set i ← i − 1 and j ← j − 1; if i ≥ n, go to step 4.

8. Output q = (qmqm−1 . . . q0)B and r = (rn−1rn−2 . . . r0)B .

If the divisor has only a single digit b0, then the process can be shortened
by initializing r with r ← 0 and dividing the two digits (rai)B by b0 with
remainder. Here r is overwritten by the remainder, r ← (rai)B − qib0, and ai

runs through all the digits of the dividend. At the end, r contains the remainder
and q = (qmqm−1 . . . q0)B forms the quotient.

Now that we have at hand all the requisite processes for implementing
division, we present the C function for the above algorithm.

Function: division with remainder

Syntax: int div_l (CLINT d1_l, CLINT d2_l, CLINT quot_l,

CLINT rem_l);

Input: d1_l (dividend), d2_l (divisor)

Output: quot_l (quotient), rem_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

53

Chapter 4

int

div_l (CLINT d1_l, CLINT d2_l, CLINT quot_l, CLINT rem_l)

{

register clint *rptr_l, *bptr_l;

CLINT b_l;

/* Allow double-length dividend plus 1 digit */

clint r_l[2 + (CLINTMAXDIGIT << 1)];

clint *qptr_l, *msdptrb_l, *lsdptrr_l, *msdptrr_l;

USHORT bv, rv, qhat, ri, ri_1, ri_2, bn_1, bn_2;

ULONG right, left, rhat, borrow, carry, sbitsminusd;

unsigned int d = 0;

int i;

The dividend a =
(
am+n−1am+n−2 . . . a0

)
B

and divisor b
(
bn−1bn−2 . . . b0

)
B

are copied into the CLINT variables r_l and b_l. Any leading zeros are purged.
If the divisor has the value zero, the function is terminated with the error code
E_CLINT_DBZ.

We allow the dividend to possess up to double the number of digits determined
in MAXB . This makes possible the later use of division in the functions of mod-
ular arithmetic. The storage allotment for a doubly long quotient must always be
available to the calling function.

cpy_l (r_l, d1_l);

cpy_l (b_l, d2_l);

if (EQZ_L (b_l))

return E_CLINT_DBZ;

A test is made as to whether one of the simple cases is at hand: dividend = 0,
dividend < divisor, or dividend = divisor. In these cases we are done.

if (EQZ_L (r_l))

{

SETZERO_L (quot_l);

SETZERO_L (rem_l);

return E_CLINT_OK ;

}

i = cmp_l (r_l, b_l);

54

The Fundamental Operations

if (i == -1)

{

cpy_l (rem_l, r_l);

SETZERO_L (quot_l);

return E_CLINT_OK ;

}

else if (i == 0)

{

SETONE_L (quot_l);

SETZERO_L (rem_l);

return E_CLINT_OK ;

}

In the next step we check whether the divisor has only one digit. In this case a
branch is made to a faster variant of division, which we shall discuss further below.

if (DIGITS_L (b_l) == 1)

goto shortdiv;

Now begins the actual division. First the scaling factor d is determined as the
exponent of a power of two. As long as bn−1 ≥ BASEDIV2 := �B/2�, the most-
significant digit bn−1 of the divisor is shifted left by one bit, where d, beginning
with d = 0, is incremented by 1. Furthermore, the pointer msdptrb_l is set to
the most-significant digit of the divisor. The value BITPERDGT − d will be used
frequently in the sequel, and therefore it is saved in the variable sbitsminusd.

msdptrb_l = MSDPTR_L (b_l);

bn_1 = *msdptrb_l;

while (bn_1 < BASEDIV2)

{

d++;

bn_1 <<= 1;

}

sbitsminusd = (int)(BITPERDGT - d);

If d > 0, then the two most-significant digits b̂n−1b̂n−2 of db are computed and
stored in bn_1 and bn_2. In this we must distinguish the two cases that the divisor b

has exactly two, or more than two, digits. In the first case, binary zeros are inserted
into b̂n−2 from the right, while in the second case the least-significant digits of
b̂n−2 come from bn−3.

55

Chapter 4

if (d > 0)

{

bn_1 += *(msdptrb_l - 1) >> sbitsminusd;

if (DIGITS_L (b_l) > 2)

{

bn_2 = (USHORT)(*(msdptrb_l - 1) << d) + (*(msdptrb_l - 2) >> sbitsminusd);

}

else

{

bn_2 = (USHORT)(*(msdptrb_l - 1) << d);

}

}

else

{

bn_2 = (USHORT)(*(msdptrb_l - 1));

}

Now the pointers msdptrr_l and lsdptrr_l are set to the most-significant, respec-
tively least-significant, digit of (am+nam+n−1 . . . am+1)B in the CLINT vector
r_l, which will represent the remainder of the division. At the digit am+n the
variable r_l is initialized to 0. The pointer qptr_l is set to the highest quotient
digit.

msdptrb_l = MSDPTR_L (b_l);

msdptrr_l = MSDPTR_L (r_l) + 1;

lsdptrr_l = MSDPTR_L (r_l) - DIGITS_L (b_l) + 1;

*msdptrr_l = 0;

qptr_l = quot_l + DIGITS_L (r_l) - DIGITS_L (b_l) + 1;

We now enter the main loop. The pointer lsdptrr_l runs over the digits
am, am−2, . . . , a0 of the dividend in r_l, and the (implicit) index i over the values
i = m + n, . . . , n.

while (lsdptrr_l >= LSDPTR_L (r_l))

{

56

The Fundamental Operations

As preparation for determining q̂ the three most-significant digits of part
(aiai−1 . . . ai−n)B of the dividend multiplied by the scaling factor d are calcu-
lated and stored in the variables ri, ri_1, and ri_2. The case where the part of the
dividend under consideration has only three digits is handled as a special case.
In the first pass through the loop there are at least three digits present: On the
assumption that the divisor b itself has at least two digits, there exist the most-
significant digits am+n−1 and am+n−2 of the dividend, and the digit am+n was
set to zero during the initialization of r_l.

ri = (USHORT)((*msdptrr_l << d) + (*(msdptrr_l - 1) >> sbitsminusd));

ri_1 = (USHORT)((*(msdptrr_l - 1) << d) + (*(msdptrr_l - 2) >> sbitsminusd));

if (msdptrr_l - 3 > r_l) /* there are four dividend digits */

{

ri_2 = (USHORT)((*(msdptrr_l - 2) << d) +

(*(msdptrr_l - 3) >> sbitsminusd));

}

else /* there are only three dividend digits */

{

ri_2 = (USHORT)(*(msdptrr_l - 2) << d);

}

Now comes the determination of q̂, stored in the variable qhat. Corresponding to
step 4 of the algorithm, we distinguish the cases ri �= bn_1 (frequent) and ri =

bn_1 (rare). The case ri > bn_1 is excluded, on account of r/b < B. Therefore, q̂

is set to the minimum of
⌊
(r̂iB + r̂i−1) /b̂n−1

⌋
and B − 1.

if (ri != bn_1) /* almost always */

{

qhat = (USHORT)((rhat = ((ULONG)ri << BITPERDGT) + (ULONG)ri_1) / bn_1);

right = ((rhat = (rhat - (ULONG)bn_1 * qhat)) << BITPERDGT) + ri_2;

If bn_2 * qhat > right, then qhat is too large by at least 1 and by at most 2.

if ((left = (ULONG)bn_2 * qhat) > right)

{

qhat--;

57

Chapter 4

The test is now repeated only if we have rhat = rhat + bn_1 < BASE due to
the decrementing of qhat (otherwise, we already have bn_2 * qhat < BASE2 ≤
rhat * BASE).

if ((rhat + bn_1) < BASE)

{

if ((left - bn_2) > (right + ((ULONG)bn_1 << BITPERDGT)))

{

qhat--;

}

}

}

}

else

In the second, rare, case, ri = bn_1, first q̂ is set to the value BASE− 1 = 216 − 1 =

BASEMINONE. In this case for rhat we have rhat = ri * BASE + ri_1 - qhat * bn_1

= ri_1 + bn_1. Only in the case that rhat < BASE is a test made as to whether qhat
is too large. Otherwise, we have already bn_2 * qhat < BASE2 ≤ rhat * BASE.
Under the same condition as above the test of qhat is repeated.

{

qhat = BASEMINONE;

right = ((ULONG)(rhat = (ULONG)bn_1 + (ULONG)ri_1) << BITPERDGT) + ri_2;

if (rhat < BASE)

{

if ((left = (ULONG)bn_2 * qhat) > right)

{

qhat--;

if ((rhat + bn_1) < BASE)

{

if ((left - bn_2) > (right + ((ULONG)bn_1 << BITPERDGT)))

{

qhat--;

}

}

}

}

}

58

The Fundamental Operations

Then comes the subtraction of qhat · b from the part u := (aiai−1 . . . ai−n)B of
the dividend, which is replaced by the difference thus calculated. There are two
things to note:

• The products qhat · bj can have two digits. Both digits are saved for the time
being in the ULONG variable carry. The more-significant word of carry is dealt
with as a carry in the subtraction of the next-higher digit.

• For the case that qhat is still too large by 1 and the difference u − qhat · b is
negative, as a precaution the value u′ := Bn+1 + u − qhat · b is calculated
and the result considered modulo Bn+1 as the B complement û of u. After
the subtraction the highest digit u′

i+1 of u′ is located in the most-significant
word of the ULONG variable borrow. Finally, that qhat is here too large by 1

is recognized in that u′
i+1 �= 0. In this case the result is corrected in the

following by the addition u ← u′ + b modulo Bn+1.

borrow = BASE;

carry = 0;

for (bptr_l = LSDPTR_L (b_l), rptr_l = lsdptrr_l;

bptr_l <= msdptrb_l; bptr_l++, rptr_l++)

{

if (borrow >= BASE)

{

*rptr_l = (USHORT)(borrow = ((ULONG)*rptr_l + BASE -

(ULONG)(USHORT)(carry = (ULONG)*bptr_l *

qhat + (ULONG)(USHORT)(carry >> BITPERDGT))));

}

else

{

*rptr_l = (USHORT)(borrow = ((ULONG)*rptr_l + BASEMINONEL -

(ULONG)(USHORT)(carry = (ULONG)*bptr_l * qhat +

(ULONG)(USHORT)(carry >> BITPERDGT))));

}

}

if (borrow >= BASE) {

*rptr_l = (USHORT)(borrow = ((ULONG)*rptr_l + BASE -

(ULONG)(USHORT)(carry >> BITPERDGT)));

}

else

{

*rptr_l = (USHORT)(borrow = ((ULONG)*rptr_l + BASEMINONEL -

(ULONG)(USHORT)(carry >> BITPERDGT)));

}

59

Chapter 4

The quotient digit is stored, subject to a possible necessary correction.

*qptr_l = qhat;

As promised, now a test is made as to whether the quotient digit is too large by
1. This is extremely seldom the case (further below, special test data will be pre-
sented) and is indicated by the high-valued word of the ULONG variable borrow

being equal to zero; that is, that borrow < BASE. If this is the case, then u ← u′ + b

modulo Bn+1 is calculated (notation as above).

if (borrow < BASE)

{

carry = 0;

for (bptr_l = LSDPTR_L (b_l), rptr_l = lsdptrr_l;

bptr_l <= msdptrb_l; bptr_l++, rptr_l++)

{

*rptr_l = (USHORT)(carry = ((ULONG)*rptr_l + (ULONG)(*bptr_l) +

(ULONG)(USHORT)(carry >> BITPERDGT)));

}

*rptr_l += (USHORT)(carry >> BITPERDGT);

(*qptr_l)--;

}

Now the pointers are set to the remainder and the quotient, and we return to the
beginning of the main loop.

msdptrr_l--;

lsdptrr_l--;

qptr_l--;

}

The length of the remainder and that of the quotient are determined. The
number of digits is at most 1 more than the number of digits of the dividend
minus the number of digits of the divisor. The remainder possesses at most the
number of digits of the divisor. In both cases the exact length is set by the removal
of leading zeros.

60

The Fundamental Operations

SETDIGITS_L (quot_l, DIGITS_L (r_l) - DIGITS_L (b_l) + 1);

RMLDZRS_L (quot_l);

SETDIGITS_L (r_l, DIGITS_L (b_l));

cpy_l (rem_l, r_l);

return E_CLINT_OK;

In the case of “short division” the divisor possesses only the digit b0, by which
the two digits (rai)B are to be divided, where ai runs through all digits of the
dividend; r is initialized with r ← 0 and assumes the difference r ← (rai)B−qb0.
The value r is represented by the USHORT variable rv. The value of (rai)B is stored
in the ULONG variable rhat.

shortdiv:

rv = 0;

bv = *LSDPTR_L (b_l);

for (rptr_l = MSDPTR_L (r_l), qptr_l = quot_l + DIGITS_L (r_l);

rptr_l >= LSDPTR_L (r_l); rptr_l--, qptr_l--)

{

*qptr_l = (USHORT)((rhat = ((((ULONG)rv) << BITPERDGT) + (ULONG)*rptr_l)) / bv);

rv = (USHORT)(rhat - (ULONG)bv * (ULONG)*qptr_l);

}

SETDIGITS_L (quot_l, DIGITS_L (r_l));

RMLDZRS_L (quot_l);

u2clint_l (rem_l, rv);

return E_CLINT_OK;

}

With t = O(mn), the run time t of the division is analogous to that for
multiplication, where m and n are the numbers of digits of the dividend and
divisor, respectively, to the base B.

In the sequel we shall describe a number of variants of division with
remainder, all of which are based on the general division function. First we have
the mixed version of the division of a CLINT type by a USHORT type. For this we
return once again to the routine for small divisors of the function div_l(), where
it is placed almost without alteration into its own function. We thus present only
the interface of the function.

61

Chapter 4

Function: division of a CLINT type by a USHORT type

Syntax: int udiv_l (CLINT dv_l, USHORT uds, CLINT q_l,

CLINT r_l);

Input: dv_l (dividend), uds (divisor)

Output: q_l (quotient), r_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

We have already indicated that for a given calculation the quotient of a
division is not required, and only the remainder is of interest. This will not result
in a great savings of time, but in such cases, at least the passing of a pointer to
the storage location of the quotient is burdensome. It is therefore worthwhile to
create an independent function for computing remainders, or “residues.” The
mathematical background of the use of this function is discussed more fully in
Chapter 5.

Function: Remainders (reduction modulo n)

Syntax: int mod_l (CLINT d_l, CLINT n_l, CLINT r_l);

Input: d_l (dividend), n_l (divisor or modulus)

Output: r_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

Simpler than the general case is the construction of the remainder modulo
a power of 2, namely 2k, which is worth implementing in its own function. The
remainder of the dividend in a division by 2k results from truncating its binary
digits after the kth bit, where counting begins with 0. This truncation corresponds
to a bitwise joining of the dividend to 2k − 1 = (111111 . . . 1)2, the value of
k binary ones, by a logical AND (cf. Section 7.2). The operation is concentrated
on the digit of the dividend in its representation to base B that contains the kth
bit; all higher-valued dividend digits are irrelevant. For specifying the divisor the
following function mod_l() is passed only the exponent k.

62

The Fundamental Operations

Function: remainder modulo a power of 2 (reduction modulo 2k)

Syntax: int mod2_l (CLINT d_l, ULONG k, CLINT r_l);

Input: d_l (dividend), k (exponent of the divisor or modulus)

Return: r_l (remainder)

int

mod2_l (CLINT d_l, ULONG k, CLINT r_l)

{

int i;

Since 2k > 0, there is no test for division by 0. First d_l is copied to r_l and a test
is made as to whether k exceeds the maximal binary length of a CLINT number, in
which case the function is terminated.

cpy_l (r_l, d_l);

if (k > CLINTMAXBIT)

return E_CLINT_OK;

The digit in r_l in which something changes is determined and is stored as an
index in i. If i is greater than the number of digits of r_l, then we are done.

i = 1 + (k >> LDBITPERDGT);

if (i > DIGITS_L (r_l))

return E_CLINT_OK;

Now the determined digit of r_l (counting from 1) is joined by a logical AND to
the value 2kmod BITPERDGT − 1 (= 2kmod16 − 1 in this implementation). The new
length i of r_l is stored in r_l[0]. After the removal of leading zeros the function
is terminated.

63

Chapter 4

r_l[i] &= (1U << (k & (BITPERDGT - 1))) - 1U;

SETDIGITS_L (r_l, i);

RMLDZRS_L (r_l);

return E_CLINT_OK;

}

The mixed variant of calculating residues employs a USHORT type as divisor
and represents the remainder again as a USHORT type, where here again only the
interface is given, and we refer the reader to the FLINT/C source code for the
short functions.

Function: remainders, division of a CLINT type by a USHORT type

Syntax: USHORT umod_l (CLINT dv_l, USHORT uds);

Input: dv_l (dividend), uds (divisor)

Return: nonnegative remainder if all is ok
0xFFFF if division by 0

For testing the division there are—as for all other functions as well—some
considerations to be taken into account (see Chapter 13). In particular, it is
important that step 5 be tested explicitly, though in randomly selected test cases it
will appear with a probability of only about 2/B (= 2−15 in our implementation)
(see [Knut], Section 4.3.1, Exercise 21).

In the following the given dividend a and divisor b with associated quotient q

and remainder r have the effect that the program sequence associated to step 5 of
the division algorithm is run through twice, and can therefore be used as test data
for this particular case. Additional values with this property are contained in the
test program testdiv.c.

64

The Fundamental Operations

The display of test numbers below shows the digits in hexadecimal, running
from right to left in ascending order, without specifying the length:

Test values for step 5 of the division

a = e3 7d 3a bc 90 4b ab a7 a2 ac 4b 6d 8f 78 2b 2b f8 49 19

d2 91 73 47 69 0d 9e 93 dc dd 2b 91 ce e9 98 3c 56 4c f1

31 22 06 c9 1e 74 d8 0b a4 79 06 4c 8f 42 bd 70 aa aa 68

9f 80 d4 35 af c9 97 ce 85 3b 46 57 03 c8 ed ca

b = 08 0b 09 87 b7 2c 16 67 c3 0c 91 56 a6 67 4c 2e 73 e6 1a

1f d5 27 d4 e7 8b 3f 15 05 60 3c 56 66 58 45 9b 83 cc fd

58 7b a9 b5 fc bd c0 ad 09 15 2e 0a c2 65

q = 1c 48 a1 c7 98 54 1a e0 b9 eb 2c 63 27 b1 ff ff f4 fe 5c

0e 27 23

r = ca 23 12 fb b3 f4 c2 3a dd 76 55 e9 4c 34 10 b1 5c 60 64

bd 48 a4 e5 fc c3 3d df 55 3e 7c b8 29 bf 66 fb fd 61 b4

66 7f 5e d6 b3 87 ec 47 c5 27 2c f6 fb

65

CHAPTER 5

Modular Arithmetic:

Calculating with

Residue Classes

Every fine story must leave in the mind of the sensitive reader an intangible
residuum of pleasure . . .

—Willa Cather, Not Under Forty, “Miss Jewett”

WE BEGIN THIS CHAPTER WITH a discussion of the principle of division with
remainder. In relation to this we shall explain the significance of these remainders,
their possible applications, and how one calculates with them. In order for the
functions to be introduced later to be understandable, we begin with a bit of
algebra.

We have seen that in division with remainder of an integer a ∈ Z by a natural
number 0 < m ∈ N one has the unique representation

a = qm + r, 0 ≤ r < m.

Here r is called the remainder after division of a by m or the residue of a modulo
m, and it holds that m divides a − r without remainder, or in mathematical
notation,

m | (a − r).

This statement about divisibility was given a new notation by Gauss, in
analogy to the equal sign:1

a ≡ r mod m

(say “a is congruent to r modulo m”).
Congruence modulo a natural number m is an equivalence relation on the

set of natural numbers. This means that the set R := { (a, b) | a ≡ b mod m }

1 Carl Friedrich Gauss, 1777–1855, is to be counted among the greatest mathematicians of all
time. He made many significant discoveries in mathematics as well as in the natural sciences,
and in particular, at the age of 24 he published his famous Disquisitiones Arithmeticae, which
is the foundation upon which modern number theory has been built.

67

Chapter 5

of integer pairs satisfying m | (a − b) has the following properties, which result
immediately from division with remainder:

(i) R is reflexive: For all integers a it holds that (a, a) is an element of R, that is,
we have a ≡ a mod m.

(ii) R is symmetric: If (a, b) is in R, then so is (b, a); that is, a ≡ b mod m

implies b ≡ a mod m.

(iii) R is transitive: If (a, b) and (b, c) are in R, then so is (a, c); that is,
a ≡ b mod m and b ≡ c mod m implies a ≡ c mod m.

The equivalence relation R partitions the set of integers into disjoint sets, called
equivalence classes: Given a remainder r and a natural number m > 0 the set

r := { a | a ≡ r mod m },
or, in other notation, r + mZ, is called the residue class of r modulo m. This class
contains all integers that upon division by m yield the remainder r.

Here is an example: Let m = 7, r = 5; then the set of integers that upon
division by 7 yield the remainder 5 is the residue class

5 = 5 + 7 · Z = { . . . ,−9,−2, 5, 12, 19, 26, 33, . . . }.
Two residue classes modulo a fixed number m are either the same or disjoint.2

Therefore, a residue class can be uniquely identified by any of its elements. Thus
the elements of a residue class are called representatives, and any element can
serve as representative of the class. Equality of residue classes is thus equivalent to
the congruence of their representatives with respect to the given modulus. Since
upon division with remainder the remainder is always smaller than the divisor,
for any integer m there can exist only finitely many residue classes modulo m.

Now we come to the reason for this extensive discussion: Residue classes
are objects with which one can do arithmetic, and in fact, by employing their
representatives. Calculating with residue classes has great significance for algebra
and number theory and thus for coding theory and modern cryptography. In what
follows we shall attempt to clarify the algebraic aspects of modular arithmetic.

Let a, b, and m be integers, m > 0. For residue classes a and b modulo m

we define the relations “+” and “·”, which we call addition and multiplication
(of residue classes), since they are based on the like-named operations on the
integers:

a + b := a + b (the sum of classes is equal to the class of the sum);

a · b := a · b (the product of classes is equal to the class of the product).

2 Two sets are said to be disjoint if they have no elements in common, or put another way, if
their intersection is the empty set.

68

Modular Arithmetic: Calculating with Residue Classes

Both relations are well-defined, since in each case the result is a residue
class modulo m. The set Zm := { r | r is a residue modulo m } of residue
classes modulo m together with these relations forms a finite commutative ring
(Zm, +, ·) with unit, which in particular means that the following axioms are
satisfied:

1. Closure with respect to addition:
The sum of two elements of Zm is again in Zm.

2. Associativity of addition:
For every a, b, c in Zm one has a +

(
b + c

)
=
(
a + b

)
+ c.

3. Existence of an additive identity:
For every a in Zm one has a + 0 = a.

4. Existence of an additive inverse:
For each element a in Zm there exists a unique element b in Zm such that
a + b = 0.

5. Commutativity of addition:
For every a, b in Zm one has a + b = b + a.

6. Closure with respect to multiplication:
The product of two elements of Zm is again an element of Zm.

7. Associativity of multiplication:
For every a, b, c in Zm one has a · (b · c) =

(
a · b) · c.

8. Existence of a multiplicative identity: For every a in Zm one has a · 1 = a.

9. Commutativity of multiplication: For each a, b in Zm one has a · b = b · a.

10. In (Zm, +, ·) the distributive law holds: a · (b + c) = a · b + a · c.

On account of properties 1 through 5 we have that (Zm, +) is an abelian
group, where the term abelian refers to the commutativity of addition. From
property 4 we can define subtraction in Zm as usual, namely, as addition of the
inverse element: If c is the additive inverse of b, then b + c = 0, and so for each
a ∈ Zm we may define

a − b := a + c.

In (Zm, ·) the group laws 6, 7, 8, and 9 hold for multiplication, where the
multiplicative identity is 1. However, in Zm it does not necessarily hold that each
element possesses a multiplicative inverse, and thus in general, (Zm, ·) is not a
group, but merely a commutative semigroup with unit.3 However, if we remove
from Zm all the elements that have a common divisor with m greater than 1, we

3 A semigroup (H, ∗) exists merely by virtue of there existing on the set H an associative
relation ∗.

69

Chapter 5

then obtain a structure that forms an abelian group with respect to multiplication
(see Section 10.2). This structure, which in particular does not contain 0, is called
a reduced residue system and is denoted by

(
Z×

m, ·).
The significance of an algebraic structure like

(
Z×

m, ·), in view of the results
we have obtained thus far, can be illustrated by looking at some other well-known
commutative rings: The set of integers Z, the set of rational numbers Q, and the
set of real numbers R are commutative rings with unit (in fact, the real numbers
form a field, indicating additional internal structure), with the difference that
these rings are not finite. The rules for computation that we have outlined above
for our finite ring are well known to us because we use them every day. We shall
return to these laws in Chapter 13. There they will prove to be trusty allies when
it comes to testing arithmetic functions. In this chapter we have collected some
important prerequisites.

For calculating with residue classes we rely completely on the classes’
representatives. For each residue class modulo m we select precisely one
representative and thereby form a complete residue system, in terms of which
all of our calculations modulo m can be carried out. The smallest nonnegative
complete residue system modulo m is the set Rm := { 0, 1, . . . , m − 1 }. The
set of numbers r satisfying −1

2m < r ≤ 1
2m will be called the smallest absolute

complete residue system modulo m.
As an example we consider Z26 =

{
0, 1, . . . , 25

}
. The smallest nonnegative

residue system modulo 26 is R26 = { 0, 1, . . . , 25 }, and the smallest absolute
residue system modulo 26 is the set {−12,−11, . . . , 0, 1, . . . , 13 }. The relation
between arithmetic with residue classes and modular arithmetic with residue
systems can be clarified as follows:

18 + 24 = 18 + 24 = 16

is equivalent to

18 + 24 ≡ 42 ≡ 16 mod 26,

while

9 − 15 = 9 + 11 = 20

is equivalent to

9 − 15 ≡ 9 + 11 ≡ 20 mod 26.

By identifying the alphabet with the residue class ring Z26 or the set of ASCII
characters with Z256 we can calculate with characters. A simple encoding system
that adds a constant from Z26 to each letter of a text is ascribed to Julius Caesar,
who is said to have preferred the constant 3. Each letter of the alphabet would
thereby be shifted one position to the right, with X moving to A, Y to B, and Z to C.4

4 See Aulus Gellius, XII, 9 and Suetonius, Caes. LVI.

70

Modular Arithmetic: Calculating with Residue Classes

Calculation in residue class rings can be made clearer by employing
composition tables, which we present in Tables 5-1 and 5-2 for the operations “+”
and “·” in Z5.

Table 5-1. Composition table for addition modulo 5

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Table 5-2. Composition table for multiplication modulo 5

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

The fact that the set of residue classes is finite gives the nice advantage
over infinite structures, such as the ring of integers, that the representation of
the results of arithmetic expressions within a computer program will not cause
overflow if in forming residues a suitable class representative is chosen. This
operation, as executed for example by the function mod_l(), is called reduction
(modulo m). We can thus calculate to our hearts’ content with the bounded
representation of numbers and the functions of the FLINT/C package within a
complete residue system modulo m, so long as we have m ≤ Nmax. We always
choose positive representatives and rely on nonnegative residue systems. Because
of these properties of residue classes the FLINT/C package does very well with the
CLINT representation of large numbers, except for a few situations, which we shall
discuss in some detail.

So much for the theory of the arithmetic of residue classes. Now we shall
develop our functions for modular arithmetic. We first recall the functions mod_l()
and mod2_l() from Section 4.3, which return the remainder of a reduction modulo
m, respectively modulo 2k, and we shall deal in turn with modular addition
and subtraction, as well as modular multiplication and squaring. Because of its
particular complexity, we devote a separate chapter to modular exponentiation.

71

Chapter 5

We shall avoid the notation a for a residue class by simply omitting the bar and
letting the representative a denote the class of a, provided that there is no chance
of confusion.

The process by which the functions for modular arithmetic operate consists
essentially in carrying out the corresponding nonmodular function on the
operands and then using division with remainder to carry out a modular
reduction. However, one must note that intermediate results can grow to a size
of 2MAXB digits, which due to their size or, in the case of subtraction, on
account of a negative sign, cannot be represented in a CLINT object. We have
previously called these situations respectively overflow and underflow. The basic
arithmetic functions possess mechanisms for dealing with situations of overflow
and underflow that reduce these intermediate results modulo (Nmax + 1) (see
Chapters 3 and 4). These would be effective here if the result of the complete
modular operation were representable by a CLINT type. In order to obtain correct
results in these cases, we shall extract from the functions that we already have for
the basic operations, as announced in Chapter 4, kernel functions

void add (CLINT, CLINT, CLINT);

void sub (CLINT, CLINT, CLINT);

void mult (CLINT, CLINT, CLINT);

void umul (CLINT, USHORT, CLINT);

void sqr (CLINT, CLINT);

The kernel functions comprise the arithmetic operations that have been
removed from the functions add_l(), sub_l(), mul_l(), and sqr_l(), which we
have met earlier. What remains in these functions are simply the processes of
removing leading zeros, supporting the accumulator operation, and handling
possible overflow or underflow, while for the actual arithmetic operations the
kernel functions are invoked. The syntax and semantics of these earlier functions
are not altered, and the functions can be used as described.

As an example of multiplication mul_l(), this process leads to the following
function (see in this regard the implementation of the function mul_l() on
page 36).

Function: multiplication

Syntax: int mul_l (CLINT f1_l, CLINT f2_l, CLINT pp_l);

Input: f1_l, f2_l (factors)

Output: pp_l (product)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

72

Modular Arithmetic: Calculating with Residue Classes

int

mul_l (CLINT f1_l, CLINT f2_l, CLINT pp_l)

{

CLINT aa_l, bb_l;

CLINTD p_l;

int OFL = E_CLINT_OK;

Purging of leading zeros and support of the accumulator operation.

cpy_l (aa_l, f1_l);

cpy_l (bb_l, f2_l);

Call the kernel function for multiplication.

mult (aa_l, bb_l, p_l);

Check for and deal with overflow.

if (DIGITS_L (p_l) > (USHORT)CLINTMAXDIGIT) /* overflow ? */

{

ANDMAX_L (p_l); /* reduce modulo (Nmax + 1) */

OFL = E_CLINT_OFL;

}

cpy_l (pp_l, p_l);

return OFL;

}

For the remaining functions add_l(), sub_l(), and sqr_l() the changes are
similar. The arithmetic kernel functions themselves contain no new components
and therefore do not need to be given here. For details look at the implementation
in flint.c.

The kernel functions do not allow overflow, and they execute no reduction
modulo (Nmax + 1). They are intended for internal use by the FLINT/C functions
and therefore are declared as static. In using them, however, one must note that
they are not equipped for dealing with leading zeros and that they cannot be used
in accumulator mode (see Chapter 3).

The use of sub() presupposes that the difference is positive. Otherwise,
the result is undefined; there is no control in sub() in this regard. Finally, the
calling functions must make available enough space for the result of oversized
intermediate results. In particular, sub() requires that the result variable have
available at least enough storage space as for the representation of the minuend.

73

Chapter 5

We are now equipped to develop the functions madd_l(), msub_l(), mmul_l(), and
msqr_l() for modular arithmetic.

Function: modular addition

Syntax: int madd_l (CLINT aa_l, CLINT bb_l, CLINT c_l,

CLINT m_l);

Input: aa_l, bb_l (summands), m_l (modulus)
Output: c_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

int

madd_l (CLINT aa_l, CLINT bb_l, CLINT c_l, CLINT m_l)

{

CLINT a_l, b_l;

clint tmp_l[CLINTMAXSHORT + 1];

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

if (GE_L (a_l, m_l) || GE_L (b_l, m_l))

{

add (a_l, b_l, tmp_l);

mod_l (tmp_l, m_l, c_l);

}

else

If a_l and b_l both lie below m_l, then we are spared a division.

{

add (a_l, b_l, tmp_l);

if (GE_L (tmp_l, m_l))

{

sub_l (tmp_l, m_l, tmp_l); /* underflow excluded */

}

74

Modular Arithmetic: Calculating with Residue Classes

In the preceding call by sub_l() some care was taken: We supply sub_l() with the
argument tmp_l, which here as the sum of a_l and b_l is possibly one digit larger
than allowed by the constant MAXB . Within the function sub_l() nothing can
go awry as long as we provide storage space for an additional digit in the result.
Therefore, we let the result be stored in tmp_l and not immediately in c_l, as one
might suppose. Because of these conditions, at the end of sub_l() we have that
tmp_l has at most MAXB digits.

cpy_l (c_l, tmp_l);

}

return E_CLINT_OK;

}

The function for modular subtraction msub_l() uses only the positive
intermediate results of the functions add_l(), sub_l(), and mod_l(), in order to
remain within a positive residue system.

Function: modular subtraction

Syntax: int msub_l (CLINT aa_l, CLINT bb_l, CLINT c_l,

CLINT m_l);

Input: aa_l (minuend), bb_l (subtrahend), m_l (modulus)

Output: c_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

int

msub_l (CLINT aa_l, CLINT bb_l, CLINT c_l, CLINT m_l)

{

CLINT a_l, b_l, tmp_l;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

75

Chapter 5

We distinguish the cases a_l ≥ b_l and a_l < b_l. The first case is a standard
situation; in the second case we compute (b_l − a_l), reduce modulo m_l, and
subtract a positive remainder from m_l.

if (GE_L (a_l, b_l)) /* a_l - b_l ≥ 0 */

{

sub (a_l, b_l, tmp_l);

mod_l (tmp_l, m_l, c_l);

}

else /* a_l - b_l < 0 */

{

sub (b_l, a_l, tmp_l);

mod_l (tmp_l, m_l, tmp_l);

if (GTZ_L (tmp_l))

{

sub (m_l, tmp_l, c_l);

}

else

{

SETZERO_L (c_l);

}

}

return E_CLINT_OK;

}

Now come the functions mmul_l() and msqr_l() for modular multiplication and
squaring, of which we show only that for multiplication.

Function: modular multiplication

Syntax: int mmul_l (CLINT aa_l, CLINT bb_l, CLINT c_l,

CLINT m_l);

Input: aa_l, bb_l (factors), m_l (modulus)
Output: c_l (remainder)

Return: E_CLINT_OK if all ok
E_CLINT_DBZ if division by 0

76

Modular Arithmetic: Calculating with Residue Classes

int

mmul_l (CLINT aa_l, CLINT bb_l, CLINT c_l, CLINT m_l)

{

CLINT a_l, b_l;

CLINTD tmp_l;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

mult (a_l, b_l, tmp_l);

mod_l (tmp_l, m_l, c_l);

return E_CLINT_OK;

}

The functions for modular multiplication and squaring are so similar that for
modular multiplication we give only the interface of the function.

Function: modular squaring

Syntax: int msqr_l (CLINT aa_l, CLINT c_l, CLINT m_l);

Input: aa_l (factor), m_l (modulus)

Output: c_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

To each of these functions (of course, with the exception of squaring) there
is a corresponding mixed function, which as its second argument takes a USHORT

argument. As an example, we demonstrate the function umadd_l(). The functions
umsub_l() and ummul_l() follow exactly the same pattern, and so we shall not go
into them in detail.

77

Chapter 5

Function: modular addition of a CLINT type and a USHORT type

Syntax: int umadd_l (CLINT a_l, USHORT b, CLINT c_l,

CLINT m_l);

Input: a_l, b (summands), m_l (modulus)

Output: c_l (remainder)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

int

umadd_l (CLINT a_l, USHORT b, CLINT c_l, CLINT m_l)

{

int err;

CLINT tmp_l;

u2clint_l (tmp_l, b);

err = madd_l (a_l, tmp_l, c_l, m_l);

return err;

}

Our collection of mixed functions with a USHORT argument will be extended in
the following chapter to include two further functions. To end this chapter we
would like, with the help of modular subtraction, to construct an additional
useful auxiliary function that determines whether two CLINT values are equal as
representatives of a residue class modulo m. The following function mequ_l()

accomplishes this by using the definition of the congruence relationship
a ≡ b mod m ⇐⇒ m | (a − b).

To determine whether two CLINT objects a_l and b_l are equivalent modulo
m_l, we need do nothing further than apply msub_l(a_l, b_l, r_l, m_l) and
check whether the remainder r_l of this operation is equal to zero.

Function: test for equivalence modulo m

Syntax: int mequ_l (CLINT a_l, CLINT b_l, CLINT m_l);

Input: a_l, b_l (operands), m_l (modulus)

Return: 1 if (a_l == b_l) modulo m_l

0 otherwise

78

Modular Arithmetic: Calculating with Residue Classes

int

mequ_l (CLINT a_l, CLINT b_l, CLINT m_l)

{

CLINT r_l;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

msub_l (a_l, b_l, r_l, m_l);

return ((0 == DIGITS_L (r_l))?1:0);

}

79

CHAPTER 6

Where All Roads Meet:

Modular Exponentiation

For a long time on that spot I stood,
Where two roads converged in the wood and I thought:
“Someone going the other way
Might someday stop here for the sake
Of deciding which path to take.”
But my direction lay where it lay.
And walking on, I felt a sense
Of wonder at that difference.

—Ilya Bernstein, Attention and Man

IN ADDITION TO THE CALCULATIONAL rules for addition, subtraction, and multi-
plication in residue classes we can also define an operation of exponentiation,
where the exponent specifies how many times the base is to be multiplied by
itself. Exponentiation is carried out, as usual, by means of recursive calls to
multiplication: For a in Zm we have a0 := 1 and ae+1 := a · ae.

It is easy to see that for exponentiation in Zm the usual rules apply (cf.
Chapter 1):

ae · af = ae+f , ae · be = (a · b)e, (ae)f = aef .

6.1 First Approaches

The simplest approach to exponentiation consists in following the recursive rule
defined above and multiplying the base a by itself e times. This requires e − 1

modular multiplications, and for our purposes that is simply too many.
A more efficient way of proceeding is demonstrated in the following examples,

in which we consider the binary representation of the exponent:

a15 = a23+22+2+1 =

(((
a2
)

a
)2

a

)2

a, a16 = a24

=

(((
a2
)2
)2
)2

.

81

Chapter 6

Here raising the base to the fifteenth power requires only six multiplications,
as opposed to fourteen in the first method. Half of these are squarings, which, as
we know, require only about half as much CPU time as regular multiplications.
Exponentiation to the sixteenth power is accomplished with only four squarings.

Algorithms for exponentiation of ae modulo m that calculate with the binary
representation of the exponent are in general much more favorable than the first
approach, as we are about to see. But first we must observe that the intermediate
results of many integer multiplications one after the other quickly occupy more
storage space than can be supplied by all the computer memory in the world,
for from p = ab follows log p = b log a, and thus the number of digits of the
exponentiated ab is the product of the exponent and the number of digits of the
base. However, if we carry out the calculation of ae in a residue class ring Zm,
that is, by means of modular multiplication, then we avoid this problem. In fact,
most applications require exponentiation modulo m, so we may as well focus our
attention on this case.

Let e = (en−1en−2 . . . e0)2 with en−1 > 0 be the binary representation
of the exponent e. Then the following binary algorithm requires �log2 e� = n

modular squarings and δ(e) − 1 modular multiplications, where

δ(e) :=

n−1∑
i=0

ei

is the number of ones in the binary representation of e. If we assume that each
digit takes on the value 0 or 1 with equal probability, then we may conclude
that δ(e) has the expected value δ(e) = n/2, and altogether we have 3

2 �log2 e�
multiplications for the algorithm.

Binary algorithm for exponentiation of ae modulo m

1. Set p ← aen−1 and i ← n − 2.

2. Set p ← p2 mod m.

3. If ei = 1, set p ← p · a mod m.

4. Set i ← i − 1; if i ≥ 0, go to step 2.

5. Output p.

The following implementation of this algorithm gives good results already for
small exponents, those that can be represented by the USHORT type.

82

Where All Roads Meet: Modular Exponentiation

Function: mixed modular exponentiation with USHORT exponent

Syntax: int umexp_l (CLINT bas_l, USHORT e, CLINT p_l,

CLINT m_l);

Input: bas_l (base)
e (exponent)
m_l (modulus)

Output: p_l (power residue)

Return: E_CLINT_OK if all ok
E_CLINT_DBZ if division by 0

int

umexp_l (CLINT bas_l, USHORT e, CLINT p_l, CLINT m_l)

{

CLINT tmp_l, tmpbas_l;

USHORT k = BASEDIV2;

int err = E_CLINT_OK;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ; /* division by zero */

}

if (EQONE_L (m_l))

{

SETZERO_L (p_l); /* modulus = 1 ==> remainder = 0 */

return E_CLINT_OK;

}

if (e == 0) /* exponent = 0 ==> remainder = 1 */

{

SETONE_L (p_l);

return E_CLINT_OK;

}

if (EQZ_L (bas_l))

{

SETZERO_L (p_l);

return E_CLINT_OK;

}

mod_l (bas_l, m_l, tmp_l);

cpy_l (tmpbas_l, tmp_l);

83

Chapter 6

After various checks the position of the leading 1 of the exponent e is determined.
Here the variable k is used to mask the individual binary digits of e. Then k is
shifted one more place to the right, corresponding to setting i ← n − 2 in step 1
of the algorithm.

while ((e & k) == 0)

{

k >>= 1;

}

k >>= 1;

For the remaining digits of e we run through steps 2 and 3. The mask k serves as
loop counter, which we shift to the right one digit each time. We then multiply by
the base reduced modulo m_l.

while (k != 0)

{

msqr_l (tmp_l, tmp_l, m_l);

if (e & k)

{

mmul_l (tmp_l, tmpbas_l, tmp_l, m_l);

}

k >>= 1;

}

cpy_l (p_l, tmp_l);

return err;

}

The binary algorithm for exponentiation offers particular advantages
when it is used with small bases. If the base is of type USHORT, then all of the
multiplications p ← pa mod m in step 3 of the binary algorithm are of the type
CLINT * USHORT modulo CLINT, which makes possible a substantial increase in
speed in comparison to other algorithms that in this case would also require the
multiplication of two CLINT types. The squarings, to be sure, use CLINT objects, but
here we are able to use the advantageous squaring function.

Thus in the following we shall implement the exponentiation function
wmexp_l(), the dual to umexp_l(), which accepts a base of type USHORT. The
masking out of bits of the exponent is a good preparatory exercise in view of the
following “large” functions for exponentiation. The way of proceeding consists
essentially in testing one after the other each digit ei of the exponent against a
variable b initialized to 1 in the highest-valued bit, and then shifting to the right
and repeating the test until b is equal to 0.

84

Where All Roads Meet: Modular Exponentiation

The following function wmexp_l() offers for small bases and exponents up to
1000 bits, for example, a speed advantage of about ten percent over the universal
procedures that we shall tackle later.

Function: modular exponentiation of a USHORT base

Syntax: int wmexp_l (USHORT bas, CLINT e_l, CLINT rest_l,

CLINT m_l);

Input: bas (base)
e_l (exponent)
m_l (modulus)

Output: rest_l (remainder of base_l mod m_l)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

int

wmexp_l (USHORT bas, CLINT e_l, CLINT rest_l, CLINT m_l)

{

CLINT p_l, z_l;

USHORT k, b, w;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ; /* division by 0 */

}

if (EQONE_L (m_l))

{

SETZERO_L (rest_l); /* modulus = 1 ==> remainder = 0 */

return E_CLINT_OK;

}

if (EQZ_L (e_l))

{

SETONE_L (rest_l);

return E_CLINT_OK;

}

if (0 == bas)

{

SETZERO_L (rest_l);

return E_CLINT_OK;

}

SETONE_L (p_l);

cpy_l (z_l, e_l);

85

Chapter 6

Beginning with the highest-valued nonzero bit in the highest-valued word of
the exponent z_l the bits of the exponent are processed, where always we have
first a squaring and then, if applicable, a multiplication. The bits of the expo-
nent are tested in the expression if ((w & b) > 0) by masking their value with
a bitwise AND.

b = 1 << ((ld_l (z_l) - 1) & (BITPERDGT - 1UL));

w = z_l[DIGITS_L (z_l)];

for (; b > 0; b >>= 1)

{

msqr_l (p_l, p_l, m_l);

if ((w & b) > 0)

{

ummul_l (p_l, bas, p_l, m_l);

}

}

Then follows the processing of the remaining digits of the exponent.

for (k = DIGITS_L (z_l) - 1; k > 0; k--)

{

w = z_l[k];

for (b = BASEDIV2; b > 0; b >>= 1)

{

msqr_l (p_l, p_l, m_l);

if ((w & b) > 0)

{

ummul_l (p_l, bas, p_l, m_l);

}

}

}

cpy_l (rest_l, p_l);

return E_CLINT_OK;

}

6.2 M-ary Exponentiation

Through a generalization of the binary algorithm on page 82 the number
of modular multiplications for exponentiation can be reduced even further.
The idea is to represent the exponent in a base greater than 2 and to replace
multiplication by a in step 3 by multiplication by powers of a. Thus let the

86

Where All Roads Meet: Modular Exponentiation

exponent e be given by e = (en−1en−2 . . . e0)M , to a base M yet to be
determined. The following algorithm calculates the powers ae mod m.

M -ary algorithm for exponentiation ae mod m

1. Calculate and store a2 mod m, a3 mod m,. . . , aM−1 mod m as a table.

2. Set p ← aen−1 mod m and i ← n − 2.

3. Set p ← pM mod m.

4. If ei �= 0, set p ← paei mod m.

5. Set i ← i − 1; if i ≥ 0, go to step 3.

6. Output p.

The number of necessary multiplications evidently depends on the number of
digits of the exponent e and thus on the choice of M . Therefore, we would like
to determine M such that the exponentiation in step 3 can be computed to the
greatest extent possible by means of squaring, as in the example above for 216,
and such that the number of multiplications by the precomputed powers of a be
minimized to a justifiable cost of storage space for the table.

The first condition suggests that we choose M as a power of 2: M = 2k. In
view of the second condition we consider the number of modular multiplications
as a function of M :

We require

�logM e� log2 M = �log2 e� (6.1)

squares in step 3 and on average

�logM e�pr (ei �= 0) =

⌊
log2 e

k

⌋
pr (ei �= 0) (6.2)

modular multiplications in step 4, where

pr (ei �= 0) =

(
1 − 1

M

)

is the probability that a digit ei of e is nonzero. If we include the M − 2

multiplications for the computation of the table, then the M -ary algorithm
requires on average

µ1(k) := 2k − 2 + �log2 e� +

⌊
log2 e

k

⌋(
1 − 1

2k

)
(6.3)

= 2k − 2 + �log2 e�
(

1 +
2k − 1

k2k

)
(6.4)

modular squarings and multiplications.

87

Chapter 6

For exponents e and moduli m of, say, 512 binary places and M = 2k we
obtain the numbers of modular multiplications for the calculation of ae mod m

as shown in Table 6-1. The table shows as well the memory requirement
for the precomputed powers of a mod m, which result from the product
(2k − 2)CLINTMAXSHORT · sizeof(USHORT).

Table 6-1. Requirements for exponentiation

k Multiplications Memory (in Bytes)

1 766 0

2 704 1028

3 666 3084

4 644 7196

5 640 15420

6 656 31868

We see from the table that the average number of multiplications reaches a
minimum of 640 at k = 5, where the required memory for each larger k grows by
approximately a factor of 2. But what are the time requirements for other orders
of magnitude of the exponents?

Table 6.2 gives information about this. It displays the requirements for
modular multiplication for exponentiation with exponents with various numbers
of binary digits and various values of M = 2k. The exponent length of 768 digits
was included because it is a frequently used key length for the RSA cryptosystem
(see Chapter 17). The favorable numbers of multiplications appear in boldface.

Table 6-2. Numbers of multiplications for typical sizes of exponents and various bases 2k

Number of Binary Digits in the Exponent

k 32 64 128 512 768 1024 2048 4096

1 45 93 190 766 1150 1534 3070 6142

2 44 88 176 704 1056 1408 2816 5632

3 46 87 170 666 996 1327 2650 5295

4 52 91 170 644 960 1276 2540 5068

5 67 105 181 640 945 1251 2473 4918

6 98 135 209 656 954 1252 2444 4828

7 161 197 271 709 1001 1294 2463 4801

8 288 324 396 828 1116 1404 2555 4858

88

Where All Roads Meet: Modular Exponentiation

In consideration of the ranges of numbers for which the FLINT/C package
was developed, it appears that with k = 5 we have found the universal base
M = 2k, with which, however, there is a rather high memory requirement of 15
kilobytes for the powers a2, a3, . . . , a31 to base a that are to be precomputed.
The M -ary algorithm can be improved, however, according to [Cohe], Section 1.2,
to the extent that we can employ not M − 2, but only M/2, premultiplications
and thus require only half the memory. The task now additionally consists in
the calculation of the power ae mod m, where e = (en−1en−2 . . . e0)M is the
representation of the exponent to the base M = 2k.

M -ary Algorithm for exponentiation with reduced number of
premultiplications

1. Compute and store a3 mod m, a5 mod m, a7 mod m,. . . , a2k−1 mod m.

2. If en−1 = 0, set p ← 1.
If en−1 �= 0, factor en−1 = 2tu with odd u. Set p ← au mod m and then
p ← p2t

mod m.
In each case set i ← n − 2.

3. If ei = 0, set p ← p2k

mod m by calculating

(
· · ·

((
p2
)2)2 · · ·

)2

mod m

(k-fold squaring modulo m).
If ei �= 0, factor ei = 2tu with odd u; set p ← p2k−t

mod m and then
p ← pau mod m; now set p ← p2t

mod m.

4. Set i ← i − 1; if i ≥ 0, go to step 3.

5. Output p.

The trick of this algorithm consists in dividing up the squarings required in step 3
in a clever way, such that the exponentiation of a is taken care of together with the
even part 2t of ei. Within the squaring process the exponentiation of a by the odd
part u of ei remains. The balance between multiplication and squaring is shifted
to the more favorable squaring, and only the powers of a with odd exponent need
to be precomputed and stored.

For this splitting one requires the uniquely determined representation
ei = 2tu, u odd, of the exponent digit ei. For rapid access to t and u a table is
used, which, for example, for k = 5 is displayed in Table 6-3.

To calculate these values we can use the auxiliary function twofact_l(),
which will be introduced in Section 10.4.1. Before we can program the improved
M -ary algorithm there remains one problem to be solved: How, beginning with
the binary representation of the exponent or the representation to base B = 216,
do we efficiently obtain its representation to base M = 2k for a variable k > 0?
It will be of use here to do a bit of juggling with the various indices, and we can

89

Chapter 6

“mask out” the required digits ei to base M from the representation of e to base
B. For this we set the following: Let (εr−1εr−2 . . . ε0)2 be the representation
of the exponent e to base 2 (we need this on account of the number r of binary
digits). Let (eu−1eu−2 . . . e0)B be the representation of e as a CLINT type
to base B = 216, and let

(
e′n−1e

′
n−2 . . . e′0

)
M

be the representation of e to

the base M = 2k, k ≤ 16 (M should not be greater than our base B). The
representation of e in memory as a CLINT object e_l corresponds to the sequence
[u + 1] , [e0] , [e1] , . . . , [eu−1] , [0] of USHORT values e_l[i] for i = 0, . . . , u + 1;
one should note that we have added a leading zero.

Let f :=
⌊

r−1
k

⌋
, and for i = 0, . . . , f let si :=

⌊
ki
16

⌋
and di := ki mod 16.

With these settings the following statements hold:

1. There are f + 1 digits in
(
e′n−1e

′
n−2 . . . e′0

)
M

; that is, n − 1 = f .

2. esi contains the least-significant bit of the digit e′i.

3. di specifies the position of the least-significant bit of e′i in esi (counting of
positions begins with 0). If i < f and di > 16 − k, then not all the binary
digits of e′i are in esi ; the remaining (higher-valued) bits of e′i are in esi+1.
The desired digit e′i thus corresponds to the k least-significant binary digits
of ⌊

esi+1B + esi

2di

⌋
.

Table 6-3. Values for the factorization of the exponent digits into
products of a power of 2 and an odd factor

ei t u

0 0 0

1 0 1

2 1 1

3 0 3

4 2 1

5 0 5

6 1 3

7 0 7

8 3 1

9 0 9

10 1 5

ei t u

11 0 11

12 2 3

13 0 13

14 1 7

15 0 15

16 4 1

17 0 17

18 1 9

19 0 19

20 2 5

21 0 21

ei t u

22 1 11

23 0 23

24 3 3

25 0 25

26 1 13

27 0 27

28 2 7

29 0 29

30 1 15

31 0 31

90

Where All Roads Meet: Modular Exponentiation

As a result we have for i ∈ { 0, . . . , f } the following expression for determining
e′i:

e′i = ((e_l [si + 1] | (e_l [si + 2] << BITPERDGT)) >> di) & (2k − 1); (6.5)

Since for the sake of simplicity we set e_l [sf + 2] ← 0, this expression holds
as well for i = f .

We have thus found an efficient method for accessing the digits of the
exponent in its CLINT representation, which arise from its representation
in a power-of-two base 2k with k ≤ 16, whereby we are saved an explicit
transformation of the exponent. The number of necessary multiplications and
squarings for the exponentiation is now

µ2(k) := 2k−1 + �log2 e�
(

1 +
2k − 1

k · 2k

)
, (6.6)

where in comparison to µ1(k) (see page 87) the expenditure for the precomputa-
tions has been reduced by half. The table for determining the favorable values of
k (Table 6-4) now has a somewhat different appearance.

Table 6-4. Numbers of multiplications for typical sizes of exponents and various bases 2k

Number of Binary Digits in the Exponent

k 32 64 128 512 768 1024 2048 4096

1 47 95 191 767 1151 1535 3071 6143

2 44 88 176 704 1056 1408 2816 5632

3 44 85 168 664 994 1325 2648 5293

4 46 85 164 638 954 1270 2534 5066

5 53 91 167 626 931 1237 2459 4904

6 68 105 179 626 924 1222 2414 4798

7 99 135 209 647 939 1232 2401 4739

8 162 198 270 702 990 1278 2429 4732

Starting with 768 binary digits of the exponent, the favorable values of k

are larger by 1 than those given in the table for the previous version of the
exponentiation algorithm, while the number of required modular multiplications
has easily been reduced. It is to be expected that this procedure is on the whole
more favorable than the variant considered previously. Nothing now stands in the
way of an implementation of the algorithm.

91

Chapter 6

To demonstrate the implementation of these principles we select an adaptive
procedure that uses the appropriate optimal value for k. To accomplish this we
rely again on [Cohe] and look for, as is specified there, the smallest integer value k

that satisfies the inequality

log2 e ≤ k(k + 1)22k

2k+1 − k − 2
, (6.7)

which comes from the formula µ2(k) given previously for the number of
necessary multiplications based on the condition µ2(k + 1) − µ2(k) ≥ 0.
The constant number of modular squarings �log2 e� for all algorithms for
exponentiation introduced thus far is eliminated; here only the “real” modular
multiplications, that is, those that are not squarings, are considered.

The implementation of exponentiation with variable k requires a large
amount of main memory for storing the precomputed powers of a; for k = 8

we require about 64 Kbyte for 127 CLINT variables (this is arrived at via
(
27 − 1

)
* sizeof(USHORT) * CLINTMAXSHORT), where two additional automatic CLINT

fields were not counted. For applications with processors or memory models
with segmented 16-bit architecture this already has reached the limit of what is
possible (see in this regard, for example, [Dunc], Chapter 12, or [Petz], Chapter 7).

Depending on the system platform there are thus various strategies
appropriate for making memory available. While the necessary memory for the
function mexp5_l() is taken from the stack (as automatic CLINT variables), with
each call of the following function mexpk_l() memory is allocated from the heap.
To save the expenditure associated with this, one may imagine a variant in which
the maximum needed memory is reserved during a one-time initialization and
is released only at the end of the entire program. In each case it is possible to fit
memory management to the concrete requirements and to orient oneself to this
in the commentaries on the following code.

One further note for applications: It is recommended always to check whether
it suffices to employ the algorithm with the base M = 25. The savings in time that
comes with larger values of k is relatively not so large in comparison to the total
calculation time so as to justify in all cases the greater demand on memory and
the thereby requisite memory management. Typical calculation times for various
exponentiation algorithms, on the basis of which one can decide whether to use
them, are given in Appendix D.

The algorithm, implemented with M = 25, is contained in the FLINT/C
package as the function mexp5_l(). With the macro EXP_L() contained in flint.h

one can set the exponentiation function to be used: mexp5_l() or the following
function mexpk_l() with variable k.

92

Where All Roads Meet: Modular Exponentiation

Function: modular exponentiation

Syntax: int mexpk_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

Input: bas_l (base)
exp_l (exponent)
m_l (modulus)

Output: p_l (power residue)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0
E_CLINT_MAL if malloc() error

We begin with a segment of the table for representing ei = 2tu, u odd, 0 ≤ ei <

28. The table is represented in the form of two vectors. The first, twotab[], contains
the exponents t of the two-factor 2t, while the second, oddtab[], holds the odd
part u of a digit 0 ≤ ei < 25. The complete table is contained, of course, in the
FLINT/C source code.

static int twotab[] =

{0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5, ...};

static USHORT oddtab[]=

{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15,1,17,9,19,5,21,11,23,3,25,13, ...};

int

mexpk_l (CLINT bas_l, CLINT exp_l, CLINT p_l, CLINT m_l)

{

The definitions reserve memory for the exponents plus the leading zero, as well as
a pointer clint **aptr_l to the memory still to be allocated, which will take point-
ers to the powers of bas_l to be precomputed. In acc_l the intermediate results of
the exponentiation will be stored.

93

Chapter 6

CLINT a_l, a2_l;

clint e_l[CLINTMAXSHORT + 1];

CLINTD acc_l;

clint **aptr_l, *ptr_l;

int noofdigits, s, t, i;

ULONG k;

unsigned int lge, bit, digit, fk, word, pow2k, k_mask;

Then comes the usual checking for division by 0 and reduction by 1.

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

if (EQONE_L (m_l))

{

SETZERO_L (p_l); /* modulus = 1 ==> residue = 0 */

return E_CLINT_OK;

}

Base and exponent are copied to the working variables a_l and e_l, and any
leading zeros are purged.

cpy_l (a_l, bas_l);

cpy_l (e_l, exp_l);

Now we process the simple cases a0 = 1 and 0e = 0 (e > 0).

if (EQZ_L (e_l))

{

SETONE_L (p_l);

return E_CLINT_OK;

}

if (EQZ_L (a_l))

{

SETZERO_L (p_l);

return E_CLINT_OK;

}

94

Where All Roads Meet: Modular Exponentiation

Next, the optimal value for k is determined; the value 2k is stored in pow2k, and
in k_mask the value 2k − 1. For this the function ld_l() is used, which returns the
number of binary digits of its argument.

lge = ld_l (e_l);

k = 8;

while (k > 1 && ((k - 1) * (k << ((k - 1) << 1))/((1 << k) - k - 1)) >= lge - 1)

{

--k;

}

pow2k = 1U << k;

k_mask = pow2k - 1U;

Memory is allocated for the pointers to the powers of a_l to be computed. The
base a_l is reduced modulo m_l.

if ((aptr_l = (clint **) malloc (sizeof(clint *) * pow2k)) == NULL)

{

return E_CLINT_MAL;

}

mod_l (a_l, m_l, a_l);

aptr_l[1] = a_l;

If k > 1, then memory is allocated for the powers to be computed. This is not nec-
essary for k = 1, since then no powers have to be precomputed. In the following
setting of the pointer aptr_l[i] one should note that in the addition of an offset
to a pointer p a scaling of the offset by the compiler takes place, so that it counts
objects of the pointer type of p.

We have already mentioned that the allocation of working memory can be car-
ried out alternatively in a one-time initialization. The pointers to the CLINT objects
would in this case be contained in global variables outside of the function or in
static variables within mexpk_l().

95

Chapter 6

if (k > 1)

{

if ((ptr_l = (clint *) malloc (sizeof(CLINT) * ((pow2k >> 1) - 1))) == NULL)

{

return E_CLINT_MAL;

}

aptr_l[2] = a2_l;

for (aptr_l[3] = ptr_l, i = 5; i < (int)pow2k; i+=2)

{

aptr_l[i] = aptr_l[i - 2] + CLINTMAXSHORT;

}

Now comes the precomputation of the powers of the value a stored in a_l. The
values a3, a5, a7, . . . , ak−1 are computed (a2 is needed only in an auxiliary role).

msqr_l (a_l, aptr_l[2], m_l);

for (i = 3; i < (int)pow2k; i += 2)

{

mmul_l (aptr_l[2], aptr_l[i - 2], aptr_l[i], m_l);

}

}

This ends the case distinction for k > 1. The exponent is lengthened by the
leading zero.

*(MSDPTR_L (e_l) + 1) = 0;

The determination of the value f (represented by the variable noofdigits).

noofdigits = (lge - 1)/k;

fk = noofdigits * k;

Word position si and bit position di of the digit ei in the variables word and bit.

word = fk >> LDBITPERDGT; /* fk div 16 */

bit = fk & (BITPERDGT-1U); /* fk mod 16 */

Calculation of the digit en−1 with the above-derived formula; en−1 is represented
by the variable digit.

96

Where All Roads Meet: Modular Exponentiation

switch (k)

{

case 1:

case 2:

case 4:

case 8:

digit = ((ULONG)(e_l[word + 1]) >> bit) & k_mask;

break;

default:

digit = ((ULONG)(e_l[word + 1] | ((ULONG)e_l[word + 2]

<< BITPERDGT)) >> bit) & k_mask;

}

First run through step 2 of the algorithm, the case digit = en−1 �= 0.

if (digit != 0) /* k-digit > 0 */

{

cpy_l (acc_l, aptr_l[oddtab[digit]]);

Calculation of p2t

; t is set to the two-part of en−1 via twotab[en−1]; p is
represented by acc_l.

t = twotab[digit];

for (; t > 0; t--)

{

msqr_l (acc_l, acc_l, m_l);

}

}

else /* k-digit == 0 */

{

SETONE_L (acc_l);

}

Loop over noofdigits beginning with f − 1.

for (--noofdigits, fk -= k; noofdigits >= 0; noofdigits--, fk -= k)

{

97

Chapter 6

Word position si and bit position di of the digit ei in the variables word and bit.

word = fk >> LDBITPERDGT; /* fk div 16 */

bit = fk & (BITPERDGT - 1U); /* fk mod 16 */

Computation of the digit ei with the formula derived above; ei is represented by
the variable digit.

switch (k)

{

case 1:

case 2:

case 4:

case 8:

digit = ((ULONG)(e_l[word + 1]) >> bit) & k_mask;

break;

default:

digit = ((ULONG)(e_l[word + 1] | ((ULONG)e_l[word + 2]

<< BITPERDGT)) >> bit) & k_mask;

}

Step 3 of the algorithm, the case digit = ei �= 0; t is set via the table twotab[ei] to
the two-part of ei.

if (digit != 0) /* k-digit > 0 */

{

t = twotab[digit];

Calculation of p2k−t

au in acc_l. Access to au with the odd part u of ei is via
aptr_l [oddtab [ei]].

for (s = k - t; s > 0; s--)

{

msqr_l (acc_l, acc_l, m_l);

}

mmul_l (acc_l, aptr_l[oddtab[digit]], acc_l, m_l);

98

Where All Roads Meet: Modular Exponentiation

Calculation of p2t

; p is still represented by acc_l.

for (; t > 0; t--)

{

msqr_l (acc_l, acc_l, m_l);

}

}

else /* k-digit == 0 */

{

Step 3 of the algorithm, case ei = 0: Calculate p2k

.

for (s = k; s > 0; s--)

{

msqr_l (acc_l, acc_l, m_l);

}

}

}

End of the loop; output of acc_l as power residue modulo m_l.

cpy_l (p_l, acc_l);

At the end, allocated memory is released.

free (aptr_l);

if (ptr_l != NULL) free (ptr_l);

return E_CLINT_OK;

}

The various processes of M -ary exponentiation can be clarified with the help
of a numerical example. To this end let us examine the calculation of the power
1234667 mod 18577, which will be carried out by the function mexpk_l() in the
following steps:

99

Chapter 6

1. Precomputations
The representation of the exponent e = 667 can be expressed to the base
2k with k = 2 (cf. the algorithm for M -ary exponentiation on page 89),
whereby the exponent e has the representation e = (10 10 01 10 11)22 .

The power a3 mod 18577 has the value 17354. Further powers of a do not
arise in the precomputation because of the small size of the exponent.

2. Exponentiation loop

exponent digit ei = 2tu 21 · 1 21 · 1 20 · 1 21 · 1 20 · 3
p ← p2 mod n – 14132 13261 17616 13599

p ← p22
mod n – – 4239 – 17343

p ← pau mod n 1234 13662 10789 3054 4445

p ← p2 mod n 18019 7125 – 1262 –

3. Result
p = 1234667 mod 18577 = 4445.

As an extension to the general case we shall introduce a special version
of exponentiation with a power of two 2k as exponent. From the above
considerations we know that this function can be implemented very easily by
means of k-fold exponentiation. The exponent 2k will be specified by k.

Function: modular exponentiation with exponent a power of 2

Syntax: int mexp2_l (CLINT a_l, USHORT k, CLINT p_l,

CLINT m_l);

Input: a_l (base)
k (exponent of 2)
m_l (modulus)

Output: p_l (residue of a_l2
k

mod m_l)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0

int

mexp2_l (CLINT a_l, USHORT k, CLINT p_l, CLINT m_l)

{

CLINT tmp_l;

if (EQZ_L (m_l))

{

return E_CLINT_DBZ;

}

100

Where All Roads Meet: Modular Exponentiation

If k > 0, then a_l is squared k times modulo m_l.

if (k > 0)

{

cpy_l (tmp_l, a_l);

while (k-- > 0)

{

msqr_l (tmp_l, tmp_l, m_l);

}

cpy_l (p_l, tmp_l);

}

else

Otherwise, if k = 0, we need only to reduce modulo m_l.

{

mod_l (a_l, m_l, p_l);

}

return E_CLINT_OK;

}

6.3 Addition Chains and Windows

A number of algorithms for exponentiation have been published, some of which
are conceived for arbitrary operands and others for special cases. The goal is
always to find procedures that employ as few multiplications and divisions as
possible. The passage from binary to M -ary exponentiation is an example of how
the number of these operations can be reduced.

Binary and M -ary exponentiation are themselves special cases of the
construction of addition chains (cf. [Knut], Section 4.6.3). We have already
taken advantage of the fact that the laws of exponentiation allow the additive
decomposition of the exponent of a power: e = k + l ⇒ ae = ak+l = akal.
Binary exponentiation decomposes the exponent into a sum

e = ek−1 · 2k−1 + ek−2 · 2k−2 + · · · + e0,

from which follows the exponentiation in the form of alternating squarings and
multiplications (cf. page 82):

ae mod n =

(
· · ·

(((
(aek−1)2

)
aek−2

)2
)
· · ·
)2

ae0 mod n.

101

Chapter 6

The associated addition chain is obtained by considering the exponents to
powers of a that arise as intermediate results in this process:

ek−1,

ek−1 · 2,

ek−1 · 2 + ek−2,

(ek−1 · 2 + ek−2) · 2,

(ek−1 · 2 + ek−2) · 2 + ek−3,

((ek−1 · 2 + ek−2) · 2 + ek−3) · 2,

...

(· · · ((ek−1 · 2 + ek−2) · 2 + ek−3) · 2 + · · · + e1) · 2 + e0.

Here terms of the sequence are omitted if ej = 0 for a particular j. For the
number 123, for example, based on the binary method the result is the following
addition chain with 12 elements: 1, 2, 3, 6, 7, 14, 15, 30, 60, 61, 122, 123.

In general, a sequence of numbers 1 = a0, a1, a2, . . . , ar = e for which for
every i = 1, . . . , r there exists a pair (j, k) with j ≤ k < i such that ai = aj + ak

holds is called an addition chain for e of length r.
The M -ary method generalizes this principle for the representation of the

exponent to other bases. Both methods have the goal of producing addition
chains that are as short as possible, in order to minimize the calculational expense
for the exponentiation. The addition chain for 123 produced by the 23-ary
method is 1, 2, 3, 4, 7, 8, 15, 30, 60, 120, 123; with the 24-ary method the addition
chain 1, 2, 3, 4, 7, 11, 14, 28, 56, 112, 123 is created. These last chains are, as
expected, considerably shorter than those obtained by the binary method, which
for larger numbers will have a greater effect than in this example. In view of the
real savings in time one must, however, note that in the course of initialization for
the calculation of ae mod n the M -ary methods construct the powers a2, a3, a5,
aM−1 also for those exponents that are not needed in the representation of e to
the base M or for the construction of the addition chain.

Binary exponentiation represents the worst case of an addition chain: By
considering it we obtain a bound on the greatest possible length of an addition
chain of log2 e + H(e) − 1, where H(e) denotes the Hamming weight of e.1 The
length of an addition chain is bounded below by log2 e + log2 H(e) − 2.13, and
so a shorter addition chain for e is not to be found (cf. [Scho] or [Knut], Section
4.6.3, Exercises 28, 29). For our example this means that the shortest addition
chain for e = 123 has length at least 8, and so the results of the M -ary methods
cited earlier seem not to be the best possible.

1 If n possesses a representation n = (nk−1nk−2 . . . n0)2, then H(n) is defined as
∑

i ni.
(See [HeQu], Chapter 8.)

102

Where All Roads Meet: Modular Exponentiation

The search for shortest addition chains is a problem for which there is as yet
no known polynomial-time procedure. It lies in the complexity class NP of those
decision problems that can be solved in polynomial time by nondeterministic
methods, that is, those that can be solved by “guessing,” where the necessary
time for calculation is bounded by a polynomial p that is a function of the size
of the input. In contrast to this, the class P contains those problems that can
be solved deterministically in polynomial time.2 It is not surprising that P is a
subset of NP, since all polynomial-time deterministic problems can also be solved
nondeterministically.

The determination of the shortest addition chain is an NP-complete problem,
that is, a problem that is at least as difficult to solve as all other problems in the set
NP (cf. [Yaco] and [HKW], page 302). The NP-complete problems are therefore of
particular interest, since if for even one of them a deterministic polynomial-time
procedure could be found, then all other problems in NP could be solved in
polynomial time as well. In this case, the classes P and NP would collapse into
a single set of problems. Although P �= NP is conjectured, this problem has
remained unsolved, and it represents a central problem of complexity theory .

With this it is clear that all practical procedures for generating addition chains
must rest on heuristics, that is to say, mathematical rules of thumb such as that
for the determination of the exponent k in 2k-ary exponentiation, of which one
knows that it has better time behavior than other methods.

For example, in 1990 Y. Yacobi [Yaco] described a connection between
the construction of addition chains and the compression of data according to
the Lempel–Ziv procedure; there an exponentiation algorithm based on this
compression procedure as well as on the M -ary method is also given.

In the search for the shortest possible addition chains the M -ary exponenti-
ation can be further generalized, which we shall pursue below in greater detail.
The window methods represent the exponent not as in the M -ary method by
digits to a fixed base M , but by digits of varying binary lengths. Thus, for example,
long sequences of binary zeros, called zero windows, can appear as digits of the
exponent. If we recall the M -ary algorithm from page 89, it is clear that for a
zero window of length l only the l-fold repetition of squaring is required, and the
corresponding step is then

3. Set p ← p2l

mod m =

(
· · ·

((
p2
)2)2 · · ·

)2

(l times) mod m.

Digits different from zero will be treated, depending on the process, either
as windows of fixed length or as variable windows with a maximal length. As

2 If the input to such a problem is an integer n, then the number of digits of n can serve as a
measure of the size of the input. There then exists a polynomial p such that the calculation
time is bounded by p(log2 n). The difference whether the cost of solving the problem grows
with n or with the number of digits of n is decisive.

103

Chapter 6

with the M -ary process, for every nonzero window (in the following called not
quite aptly a “1-window”) of length t, in addition to the repeated squaring an
additional multiplication by a precalculated factor is required, in analogy to the
corresponding step of the 2k-ary procedure:

3′. Set p ← p2t

mod m and then set p ← paei mod m.

The number of factors to be precomputed depends on the permitted
maximal length of the 1-window. One should note that the 1-windows in
the least-significant position always have a 1 and thus are always odd. The
factorization of the exponent digit on page 89 into an even and odd factor will
thus at first not be needed. On the other hand, in the course of exponentiation
the exponent is processed from the most-significant to least-significant place,
which means for the implementation that first the complete decomposition of the
exponent must be carried out and stored before the actual exponentiation can
take place.

Yet, if we begin the factorization of the exponent at the most-significant
digit and travel from left to right, then every 0- or 1-window can be processed
immediately, as soon as it is complete. This means, of course, that we will also
obtain 1-windows with an even value, but the exponentiation algorithm is
prepared for that.

Both directions of decomposition of the exponent into 1-windows with fixed
length l follow essentially the same algorithm, which we formulate below for
decomposition from right to left.

Decomposition of an integer e into 0-windows and 1-windows having fixed
length l

1. If the least-significant binary digit is equal to 0, then begin a 0-window and
go to step 2; otherwise, begin a 1-window and go to step 3.

2. Add the next-higher binary digits in a 0-window as long as no 1 appears. If a
1 appears, then close the 0-window, begin a 1-window, and go to step 3.

3. Collect a further l − 1 binary digits into a 1-window. If the next-higher digit
is a 0, begin a 0-window and go to step 2; otherwise, begin a 1-window
and go to step 3. If in the process all digits of e have been processed, then
terminate the algorithm.

The decomposition from left to right begins with the most-significant binary
digit and otherwise proceeds analogously. If we suppose that e has no leading
binary zeros, then the algorithm cannot reach the end of the representation of e

within step 2, and the procedure terminates in step 3 under the same condition
given there. The following examples illustrate this process:

104

Where All Roads Meet: Modular Exponentiation

• Let e = 1896837 = (111001111000110000101)2, and let l = 3. Beginning
with the least-significant binary digit, e is decomposed as follows:

e = 111 001 111 00 011 0000 101.

The choice l = 4 leads to the following decomposition of e:

e = 111 00 1111 0 0011 000 0101.

The 2k-ary exponentiation considered above yields, for example for k = 2,
the following decomposition:

e = 01 11 00 11 11 00 01 10 00 01 01.

The window decomposition of e for l = 3 contains five 1-windows, while
that for l = 4 has only four, and for each the same number of additional
multiplications is required. On the other hand, the 22-ary decomposition
of e contains eight 1-windows, requires double the number of additional
multiplications compared to the case l = 4, and is thus significantly less
favorable.

• The same procedure, but beginning with the most-significant binary digit,
yields for l = 4 and e = 123 the decomposition

e = 1110 0 1111 000 1100 00 101,

likewise with four 1-windows, which, as already established above, are not
all odd.

Finally, then, exponentiation with a window decomposition of the exponent
can be formalized by the following algorithm. Both directions of window
decomposition are taken into account.

Algorithm for exponentiation ae mod m with the representation of e in
windows of (maximal) length l for odd 1-windows

1. Decompose the exponent e into 0- and 1-windows (ωk−1 . . . ω0) of
respective lengths lk−1, . . . , l0.

2. Calculate and store a3 mod m, a5 mod m, a7 mod m, . . . , a2l−1 mod m.

3. Set p ← aωk−1 mod m and i ← k − 2.

4. Set p ← pli mod m.

5. If ωi �= 0, set p ← paωi mod m.

6. Set i ← i − 1; if i ≥ 0, go to step 4.

7. Output p.

105

Chapter 6

If not all 1-windows are odd, then steps 3 through 6 are replaced by the
following, and there is no step 7:

3′. If ωk−1 = 0, set p ← p2lk−1
mod m =

(
· · ·

((
p2
)2)2 · · ·

)2

(lk−1 times)

mod m. If ωk−1 �= 0, factor ωk−1 = 2tu with odd u; set p ← au mod m,
and then p ← p2t

mod m. In each case set i ← k − 2.

4′. If ωi = 0, set p ← p2li
mod m =

(
· · ·

((
p2
)2)2 · · ·

)2

(li times) mod m.

If ωi �= 0, factor ωi = 2tu with odd u; set p ← p2li−t

mod m, and then
p ← pau mod m; now set p ← p2t

mod m.

5′. Set i ← i − 1; if i ≥ 0, go to step 4′.

6′. Output p.

6.4 Montgomery Reduction and Exponentiation

Now we are going to abandon addition chains and turn our attention to another
idea, one that is interesting above all from the algebraic point of view. It makes it
possible to replace multiplications modulo an odd number n by multiplications
modulo a power of 2, that is, 2k, which requires no explicit division and is
therefore more efficient than a reduction modulo an arbitrary number n. This
useful method for modular reduction was published in 1985 by P. Montgomery
[Mont] and since then has found wide practical application. It is based on the
following observation.

Let n and r be relatively prime integers, and let r−1 be the multiplicative
inverse of r modulo n; and likewise let n−1 be the multiplicative inverse of n

modulo r; and furthermore, define n′ := −n−1 mod r and m := tn′ mod r. For
integers t we then have

t + mn

r
≡ tr−1 mod n. (6.8)

Note that on the left side of the congruence we have taken congruences
modulo r and a division by r (note that t + mn ≡ 0 mod r, so the division has
no remainder), but we have not taken congruences modulo n. By choosing r as a
power of 2 in the form 2s we can reduce a number x modulo r simply by slicing
off x at the sth bit (counting from the least-significant bit), and we can carry out
the division of x by r by shifting x to the right by s bit positions. The left side of
(6.8) thus requires significantly less computational expense than the right side,
which is what gives the equation its charm. For the two required operations we
can invoke the functions mod2_l() (cf. Section 4.3) and shift_l() (cf. Section 7.1).

106

Where All Roads Meet: Modular Exponentiation

This principle of carrying out reduction modulo n is called Montgomery
reduction. Below, we shall institute Montgomery reduction for the express
purpose of speeding up modular exponentiation significantly in comparison to
our previous results. Since the procedure requires that n and r be relatively prime,
we must take n to be odd. First we have to deal with a couple of considerations.

We can clarify the correctness of the previous congruence with the help
of some simple checking. Let us replace m on the left-hand side of (6.8) by
the expression tn′ mod r, which is (6.9), and further, replace tn′ mod r by
tn′ − r

⌊
tn′/r

⌋ ∈ Z to get (6.10), and then in (6.10) for n′ the integer expression(
r′r − 1

)
/n for a certain r′ ∈ Z and obtain (6.11). After reduction modulo n we

obtain the result (6.12):

t + mn

r
≡ t + n

(
tn′ mod r

)
r

(6.9)

≡ t + ntn′

r
− n

⌊
tn′

r

⌋
(6.10)

≡ t + t
(
rr′ − 1

)
r

(6.11)

≡ tr−1 mod n. (6.12)

To summarize equation (6.8) we record the following: Let n, t, r ∈ Z with
gcd(n, r) = 1, n′ := −n−1 mod r. For

f(t) := t +
(
tn′ mod r

)
n (6.13)

we have

f(t) ≡ t mod n, (6.14)

f(t) ≡ 0 mod r. (6.15)

We shall return to this result later.
To apply Montgomery reduction we shift our calculations modulo n into a

complete residue system (cf. Chapter 5)

R := R(r, n) := {ir mod n | 0 ≤ i < n}
with a suitable r := 2s > 0 such that 2s−1 ≤ n < 2s. Then we define the
Montgomery product “×” of two numbers a and b in R:

a × b := abr−1 mod n,

with r−1 representing the multiplicative inverse of r modulo n. We have

a × b ≡ (ir)(jr)r−1 ≡ (ij)r mod n ∈ R,

and thus the result of applying × to members of R is again in R. The Montgomery
product is formed by applying Montgomery reduction, where again n′ :=

−n−1 mod r. From n′ we derive the representation 1 = gcd(n, r) = r′r − n′n,

107

Chapter 6

which we calculate in anticipation of Section 10.2 with the help of the extended
Euclidean algorithm. From this representation of 1 we immediately obtain

1 ≡ r′r mod n

and

1 ≡ −n′n mod r,

so that r′ = r−1 mod n is the multiplicative inverse of r modulo n, and
n′ = −n−1 mod r the negative of the inverse of n modulo r (we are anticipating
somewhat; cf. Section 10.2). The calculation of the Montgomery product now
takes place according to the following algorithm.

Calculation of the Montgomery product a × b in R(r, n)

1. Set t ← ab.

2. Set m ← tn′ mod r.

3. Set u ← (t + mn)/r (the quotient is an integer; see above).

4. If u ≥ n, output u − n, and otherwise u. Based on the above selection of
the parameter we have a, b < n as well as m, n < r and finally u < 2n; cf.
(6.21).

The Montgomery product requires three long-integer multiplications, one in
step 1 and two for the reduction in steps 2 and 3. An example with small numbers
will clarify the situation: Let a = 386, b = 257, and n = 533. Further, let r = 210.
Then n′ = −n−1 mod r = 707, m = 6, t + mn = 102400, and u = 100.

A modular multiplication ab mod n with odd n can now be carried out by
first transforming a′ ← ar mod n and b′ ← br mod n to R, there forming
the Montgomery product p′ ← a′ × b′ = a′b′r−1 mod n and then with
p ← p′ × 1 = p′r−1 = ab mod n obtaining the desired result. However, we
can spare ourselves the reverse transformation effected in the last step by setting
p ← a′ × b at once and thus avoid the transformation of b, so that in the end we
have the following algorithm.

Calculation of p = ab mod n (n odd) with the Montgomery product

1. Determine r := 2s with 2s−1 ≤ n < 2s. Calculate 1 = r′r − n′n by means
of the extended Euclidean algorithm.

2. Set a′ ← ar mod n.

3. Set p ← a′ × b and output p.

108

Where All Roads Meet: Modular Exponentiation

Again we present an example with small numbers for clarification: Let
a = 123, b = 456, n = 789, r = 210. Then n′ = −n−1 mod r = 963, a′ = 501,
and p = a′ × b = 69 = ab mod n.

Since the precalculation of r′ and n′ in steps 1 and 2 is very time-
consuming and Montgomery reduction in this version also has two long-number
multiplications on its balance sheet, there is actually an increased computational
expenditure compared with “normal” modular multiplication, so that the
computation of individual products with Montgomery reduction is not
worthwhile.

However, in cases where many modular multiplications with a constant
modulus are required, for which therefore the time-consuming precalculations
occur only once, we may expect more favorable results. Particularly suited for
the Montgomery product is modular exponentiation, for which we shall suitably
modify the M -ary algorithm. To this end let once again e = (em−1em−2 . . . e0)B

and n = (nl−1nl−2 . . . n0)B be the representations of the exponent e and
the modulus n to the base B = 2k. The following algorithm calculates powers
ae mod n in Zn with odd n using Montgomery multiplication. The squarings
that occur in the exponentiation become Montgomery products a × a, in the
computation of which we can use the advantages of squaring.

Exponentiation modulo n (n odd) with the Montgomery product

1. Set r ← Bl = 2kl. Calculate 1 = rr′ − nn′ with the Euclidean algorithm.

2. Set a ← ar mod n. Calculate and store the powers a3, a5, . . . , a2k−1 using
the Montgomery product × in R(r, n).

3. If em−1 �= 0, factor em−1 = 2tu with odd u. Set p ← (au)2
t

.
If em−1 = 0, set p ← r mod n.
In each case set i ← m − 2.

4. If ei = 0, set p ← p2k

=

(
· · ·

((
p2
)2)2 · · ·

)2

(k-fold squaring p2 = p×p).

If ei �= 0, factor ei = 2tu with odd u. Set p ← (
p2k−t × au

)2t

.

5. If i ≥ 0, set i ← i − 1 and go to step 4.

6. Output the Montgomery product p × 1.

Further possibilities for improving the algorithm lie less in the exponentiation
algorithm than in the implementation of the Montgomery product itself, as
demonstrated by S. R. Dussé and B. S. Kaliski in [DuKa]: In calculating the
Montgomery product on page 108, in step 2 we can avoid the assignment
m ← tn′ mod r in the reduction modulo r. Furthermore, we can calculate with
n′

0 := n′ mod B instead of with n′ in executing the Montgomery reduction.

109

Chapter 6

We can create a digit mi ← tin
′
0 modulo B, multiply it by n, scale by the factor

Bi, and add to t. To calculate ab mod n with a, b < n the modulus n has the
representation n = (nl−1nl−2 . . . n0)B as above, and we let r := Bl as well as
rr′ − nn′ = 1 and n′

0 := n′ mod B.

Calculation of the Montgomery product a × b à la Dussé and Kaliski

1. Set t ← ab, n′
0 ← n′ mod B, i ← 0.

2. Set mi ← tin
′
0 mod B (mi is a one-digit integer).

3. Set t ← t + minBi.

4. Set i ← i + 1; if i ≤ l − 1, go to step 2.

5. Set t ← t/r.

6. If t ≥ n, output t − n and otherwise t.

Dussé and Kaliski state that the basis for their clever simplification is the
method of Montgomery reduction to develop t as a multiple of r, but they offer no
proof. Before we use this procedure we wish to make more precise why it suffices
to calculate a × b. The following is based on a proof of Christoph Burnikel [Zieg]:

In steps 2 and 3 the algorithm calculates a sequence
(
t(i)

)
i=0,...,l

by means

of the recursion

t(0) = ab, (6.16)

t(i+1) = f

(
t(i)

Bi

)
Bi, i = 0, . . . , l − 1, (6.17)

where

f(t) = t +
(
(t mod B)

(
−n−1 mod B

)
mod B

)
n

is the already familiar function that is induced by the Montgomery equation (cf.
(6.13), and there set r ← B in f(t)). The members of the sequence t(i) have the
properties

t(i) ≡ 0 mod Bi, (6.18)

t(i) ≡ ab mod n, (6.19)

t(l)

r
≡ abr−1 mod n, (6.20)

t(l)

r
< 2n. (6.21)

Properties (6.18) and (6.19) are derived inductively from (6.14), (6.15), (6.16),
and (6.17); from (6.18) we obtain Bl | t(l) ⇔ r | t(l). From this and from

110

Where All Roads Meet: Modular Exponentiation

t(l) ≡ ab mod n follows (6.20), and lastly we have (6.21) on account of

t(l) = t(0) + n

l−1∑
i=0

miB
i < 2nBl

(note here that t(0) = ab < n2 < nBl).
The expenditure for the reduction is now determined essentially by

multiplication of numbers of order of magnitude the size of the modulus. This
variant of Montgomery multiplication can be elegantly implemented in code that
forms the core of the multiplication routine mul_l() (cf. page 36).

Function: Montgomery product

Syntax: void mulmon_l (CLINT a_l, CLINT b_l, CLINT n_l,

USHORT nprime, USHORT logB_r,

CLINT p_l);

Input: a_l, b_l (factors a and b)
n_l (modulus n > a, b)
nprime (n′ mod B)
logB_r (logarithm of r to base B = 216;
it must hold that BlogB_r−1 ≤ n < BlogB_r)

Output: p_l (Montgomery product a × b = a · b · r−1 mod n)

void

mulmon_l (CLINT a_l, CLINT b_l, CLINT n_l, USHORT nprime,

USHORT logB_r, CLINT p_l)

{

CLINTD t_l;

clint *tptr_l, *nptr_l, *tiptr_l, *lasttnptr, *lastnptr;

ULONG carry;

USHORT mi;

int i;

mult (a_l, b_l, t_l);

lasttnptr = t_l + DIGITS_L (n_l);

lastnptr = MSDPTR_L (n_l);

The earlier use of mult() makes possible the multiplication of a_l and b_l without
the possibility of overflow (see page 72); for the Montgomery squaring we simply
insert sqr(). The result has sufficient space in t_l. Then t_l is given leading zeros
to bring it to double the number of digits of n_l if t_l is smaller than this.

111

Chapter 6

for (i = DIGITS_L (t_l) + 1; i <= (DIGITS_L (n_l) << 1); i++)

{

t_l[i] = 0;

}

SETDIGITS_L (t_l, MAX (DIGITS_L (t_l), DIGITS_L (n_l) << 1));

Within the following double loop the partial products minBi with mi := tin
′
0 are

calculated one after the other and added to t_l. Here again the code is essentially
that of our multiplication function.

for (tptr_l = LSDPTR_L (t_l); tptr_l <= lasttnptr; tptr_l++)

{

carry = 0;

mi = (USHORT)((ULONG)nprime * (ULONG)*tptr_l);

for (nptr_l = LSDPTR_L (n_l), tiptr_l = tptr_l;

nptr_l <= lastnptr; nptr_l++, tiptr_l++)

{

*tiptr_l = (USHORT)(carry = (ULONG)mi * (ULONG)*nptr_l +

(ULONG)*tiptr_l + (ULONG)(USHORT)(carry >> BITPERDGT));

}

In the following inner loop a possible overflow is transported to the most-
significant digit of t_l, and t_l contains an additional digit in case it is needed.
This step is essential, since at the start of the main loop t_l was given a value and
not initialized via multiplication by 0 as was the variable p_l.

for (;

((carry >> BITPERDGT) > 0) && tiptr_l <= MSDPTR_L (t_l);

tiptr_l++)

{

*tiptr_l = (USHORT)(carry = (ULONG)*tiptr_l +

(ULONG)(USHORT)(carry >> BITPERDGT));

}

if (((carry >> BITPERDGT) > 0))

{

*tiptr_l = (USHORT)(carry >> BITPERDGT);

INCDIGITS_L (t_l);

}

}

112

Where All Roads Meet: Modular Exponentiation

Now follows division by Bl, and we shift t_l by logB_r digits to the right, or ig-
nore the logB_r least-significant digits of t_l. Then if applicable the modulus n_l

is subtracted from t_l before t_l is returned as result into p_l.

tptr_l = t_l + (logB_r);

SETDIGIT_L (tptr_l, DIGITS_L (t_l) - (logB_r));

if (GE_L (tptr_l, n_l))

{

sub_l (tptr_l, n_l, p_l);

}

else

{

cpy_l (p_l, tptr_l);

}

}

The Montgomery squaring sqrmon_l() differs from this function only
marginally: There is no parameter b_l in the function call, and instead of
multiplication with mult(a_l, b_l, t_l) we employ the squaring function
sqr(a_l, t_l), which likewise ignores a possible overflow. However, in modular
squaring in the Montgomery method one must note that after the calculation of
p′ ← a′ × a′ the reverse transformation p ← p′ × 1 = p′r−1 = a2 mod n must
be calculated explicitly (cf. page 108).

Function: Montgomery square

Syntax: void sqrmon_l (CLINT a_l, CLINT n_l, USHORT nprime,

USHORT logB_r, CLINT p_l);

Input: a_l (factor a), n_l (modulus n > a)
nprime (n′ mod B)
logB_r (logarithm of r to base B = 216);
it must hold that BlogB_r−1 ≤ n < BlogB_r

Output: p_l (Montgomery square a2r−1 mod n)

In their article Dussé and Kaliski also present the following variant of the
extended Euclidean algorithm, to be dealt with in detail in Section 10.2, for
calculating n′

0 = n′ mod B, with which the expenditure for the precalculations
can be reduced. The algorithm calculates −n−1 mod 2s for an s > 0 and for this
requires long-number arithmetic.

113

Chapter 6

Algorithm for calculating the inverse −n−1 mod 2s for s > 0, n odd

1. Set x ← 2, y ← 1, and i ← 2.

2. If x < ny mod x, set y ← y + x.

3. Set x ← 2x and i ← i + 1; if i ≤ s, go to step 2.

4. Output x − y.

With complete induction it can be shown that in step 2 of this algorithm
yn ≡ 1 mod x always holds, and thus y ≡ n−1 mod x. After x has taken on the
value 2s in step 3, we obtain with 2s − y ≡ −n−1 mod 2s the desired result if we
choose s such that 2s = B. The short function for this can be obtained under the
name invmon_l() in the FLINT/C source. It takes only the modulus n as argument
and outputs the value −n−1 mod B.

These considerations are borne out in the creation of the functions
mexp5m_l() and mexpkm_l(), for which we give here only the interface, together
with a computational example.

Function: modular exponentiation with odd modulus

(25-ary or 2k-ary method with Montgomery product)

Syntax: int mexp5m_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

int mexpkm_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

Input: bas_l (base)
exp_l (exponent)
m_l (modulus)

Output: p_l (power residue)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0
E_CLINT_MAL if malloc() error
E_CLINT_MOD if even modulus

These functions employ the routines invmon_l(), mulmon_l(), and sqrmon_l()

to compute the Montgomery products. Their implementation is based on the
functions mexp5_l() and mexpk_l() modified according to the exponentiation
algorithm described above.

We would like to reconstruct the processes of Montgomery exponentiation
in mexpkm_l() with the same numerical example that we looked at for M -ary

114

Where All Roads Meet: Modular Exponentiation

exponentiation (cf. page 100). In the following steps we shall calculate the power
1234667 mod 18577:

1. Precomputations
The exponent e = 667 is represented to the base 2k with k = 2 (cf. the
algorithm for Montgomery exponentiation on page 114). The exponent e

thereby has the representation

e = (10 10 01 10 11)22 .

The value r for Montgomery reduction is r = 216 = B = 65536.
The value n′

0 (cf. page 110) is now calculated as n′
0 = 34703.

The transformation of the base a into the residue system R(r, n) (cf.
page 107) follows from

a = ar mod n = 1234 · 65536 mod 18577 = 5743.

The power a3 in R(r, n) has the value a3 = 9227. Because of the small
exponent, further powers of a do not arise in the precomputation.

2. Exponentiation loop

exponent digit ei = 2tu 21 · 1 21 · 1 20 · 1 21 · 1 20 · 3
p ← p2 – 16994 3682 14511 11066

p ← p22
– – 6646 – 12834

p ← p × au 5743 15740 8707 16923 1583

p ← p2 9025 11105 – 1628 –

3. Result
The value of the power p after normalization:

p = p × 1 = pr−1 mod n = 1583r−1 mod n = 4445.

Those interested in reconstructing the coding details of the functions
mexp5m_l() and mexpkm_l() and the calculational steps of the example related to
the function mexpkm_l() are referred to the FLINT/C source code.

At the start of this chapter we developed the function wmexp_l(), which has
the advantage for small bases that only multiplications p ← pa mod m of the
type CLINT * USHORT mod CLINT occur. In order to profit from the Montgomery
procedure in this function, too, we adjust the modular squaring to Montgomery
squaring, as in mexpkm_l(), with the use of the fast inverse function invmon_l(),
though we leave the multiplication unchanged. We can do this because with the
calculational steps for Montgomery squaring and for conventional multiplication
modulo n, (

a2r−1
)

b ≡
(
a2b

)
r−1 mod n,

115

Chapter 6

we do not abandon the residue system R(r, n) = { ir mod n | 0 ≤ i < n }
introduced above. This process yields us both the function wmexpm_l() and the
dual function umexpm_l() for USHORT exponents, respectively for odd moduli,
which in comparison to the two conventional functions wmexp_l() and umexp_l()

again yields a significant speed advantage. For these functions, too, we present
here only the interface and a numerical example. The reader is again referred to
the FLINT/C source for details.

Function: modular exponentiation with Montgomery reduction
for USHORT-base, respectively USHORT exponents
and odd modulus

Syntax: int wmexpm_l (USHORT bas, CLINT e_l,

CLINT p_l, CLINT m_l);

int umexpm_l (CLINT bas_l, USHORT e,

CLINT p_l, CLINT m_l);

Input: bas, bas_l (base)
e, e_l (exponent)
m_l (modulus)

Output: p_l (residue of base_l mod m_l, resp. bas_le mod m_l)

Return: E_CLINT_OK if all is ok
E_CLINT_DBZ if division by 0
E_CLINT_MOD if even modulus

The function wmexpm_l() is tailor-made for our primality test in Section 10.5,
where we shall profit from our present efforts. The function will be documented
with the example used previously of the calculation of 1234667 mod 18577.

1. Precalculations
The binary representation of the exponent is e = (1010011011)2 .
The value r for the Montgomery reduction is r = 216 = B = 65536.
The value n′

0 (cf. page 110) is calculated as above, yielding n′
0 = 34703.

The initial value of p is set as p ← pr mod 18577.

2. Exponentiation loop

Exponent bit 1 0 1 0 0 1 1 0 1 1

p ← p × p in R(r, n) 9805 9025 16994 11105 3682 6646 14511 1628 11066 9350

p ← pa mod n 5743 – 15740 – – 8707 16923 – 1349 1583

3. Result
The value of the exponent p after normalization:

p = p × 1 = pr−1 mod n = 1583r−1 mod n = 4445.

116

Where All Roads Meet: Modular Exponentiation

A detailed analysis of the time behavior of Montgomery reduction with the
various optimizations taken into account can be found in [Boss]. There we are
promised a ten to twenty percent saving in time over modular exponentiation by
using Montgomery multiplication. As can be seen in the overviews in Appendix D
of typical calculation times for FLINT/C functions, our implementations bear
out this claim fully. To be sure, we have the restriction that the exponentiation
functions that use Montgomery reduction can be used only for odd moduli.
Nonetheless, for many applications, for example for encryption and decryption,
as well as for computing digital signatures according to the RSA procedure (see
Chapter 17), the functions mexp5m_l() and mexpkm_l() are the functions of choice.

Altogether, we have at our disposal a number of capable functions for
modular exponentiation. To obtain an overview, in Table 6-5 we collect these
functions together with their particular properties and domains of application.

Table 6-5. Exponentiation functions in FLINT/C

Function Domain of Application

mexp5_l() General 25-ary exponentiation, without memory allocation, greater
stack requirements.

mexpk_l() General 2k-ary exponentiation with optimal k for CLINT numbers,
with memory allocation, lower stack requirements.

mexp5m_l() 25-ary Montgomery exponentiation for odd moduli, without
memory allocation, greater stack requirements.

mexpkm_l() 2k-ary Montgomery exponentiation for odd moduli, with optimal k
for CLINT numbers up to 4096 binary digits, with memory allocation,
lower stack requirements.

umexp_l() Mixed binary exponentiation of a CLINT base with USHORT exponent,
lower stack requirements.

umexpm_l() Mixed binary exponentiation of a CLINT base with USHORT exponent
and Montgomery reduction, thus only for odd moduli, lower stack
requirements.

wmexp_l() Mixed binary exponentiation of a USHORT base with CLINT
exponent,lower stack requirements.

wmexpm_l() Mixed binary exponentiation with Montgomery squaring of a USHORT
base with CLINT exponent, odd moduli, lower stack requirements.

mexp2_l() Mixed exponentiation with a power-of-2 exponent, lower stack
requirements.

117

Chapter 6

6.5 Cryptographic Application of Exponentiation

We have worked hard in this chapter in our calculation of powers, and it is
reasonable to ask at this point what modular exponentiation might have to offer
to cryptographic applications. The first example to come to mind is, of course,
the RSA procedure, which requires a modular exponentiation for encryption and
decryption—assuming suitable keys. However, the author would like to ask his
readers for a bit (or perhaps even a byte) of patience, since for the RSA procedure
we still must collect a few more items, which we do in the next chapter. We shall
return to this extensively in Chapter 17.

For those incapable of waiting, we offer as examples of the application of
exponentiation two important algorithms, namely, the procedure suggested
in 1976 by Martin E. Hellman and Whitfield Diffie [Diff] for the exchange of
cryptographic keys and the encryption procedure of Taher ElGamal as an
extension of the Diffie–Hellman procedure.

The Diffie–Hellman procedure represents a cryptographic breakthrough,
namely, the first public key, or asymmetric, cryptosystem (see Chapter 17).
Two years after its publication, Rivest, Shamir, and Adleman published the RSA
procedure (see [Rive]). Variants of the Diffie–Hellman procedure are used today
for key distribution in the Internet communications and security protocols
IPSec, IPv6, and SSL, which were developed to provide security in the transfer of
data packets in the IP protocol layer and the transfer of data at the application
level, for example from the realms of electronic commerce. This principle of
key distribution thus has a practical significance that would be difficult to
overestimate.3

With the aid of the Diffie–Hellman protocol two communicators, Ms. A and
Mr. B, say, can negotiate in a simple way a secret key that then can be used for the
encryption of communications between the two. After A and B have agreed on
a large prime number p and a primitive root a modulo p (we shall return to this
below), the Diffie–Hellman protocol runs as follows.

Protocol for key exchange à la Diffie–Hellman

1. A chooses an arbitrary value xA ≤ p − 1 and sends yA := axA mod p as her
public key to B.

2. B chooses an arbitrary value xB ≤ p − 1 and sends yB := axB mod p as his
public key to A.

3 IP Security (IPSec), developed by the Internet Engineering Task Force (IETF), is, as an extensive
security protocol, a part of the future Internet protocol IPv6. It was created so that it could also
be used in the framework of the then current Internet protocol (IPv4). Secure Socket Layer
(SSL) is a security protocol developed by Netscape that lies above the TCP protocol, which
offers end-to-end security for applications such as HTTP, FTP, and SMTP (for all of this see
[Stal], Chapters 13 and 14).

118

Where All Roads Meet: Modular Exponentiation

3. A computes the secret key sA := yxA

B mod p.

4. B computes the secret key sB := yxB

A mod p.

Since

sA ≡ yxA

B ≡ axBxA ≡ yxB

A ≡ sB mod p,

after step 4, A and B are dealing with a common key. The values p and a do not
have to be kept secret, nor the values yA and yB exchanged in steps 1 and 2.
The security of the procedure depends on the difficulty in calculating discrete
logarithms in finite fields, and the difficulty of breaking the system is equivalent
to that of calculating values xA or xB from values yA or yB in Zp.4 That the
calculation of axy from ax and ay in a finite cyclic group (the Diffie–Hellman
problem) is just as difficult as the calculation of discrete logarithms and thus
equivalent to this problem is, in fact, conjectured but has not been proved.

To ensure the security of the procedure under these conditions the modulus
p must be chosen sufficiently large (at least 1024 bits, better 2048 or more; see
Table 17-1), and one should ensure that p − 1 contains a large prime divisor
close to (p − 1)/2 to exclude particular calculational procedures for discrete
logarithms (a constructive procedure for such prime numbers will be presented
in Chapter 17 in connection with the generation of strong primes, for example for
the RSA procedure).

The procedure has the advantage that secret keys can be generated as needed
on an ad hoc basis, without the need for secret information to be held for a long
time. Furthermore, for the procedure to be used there are no further infrastructure
elements necessary for agreeing on the parameters a and b. Nonetheless, this
protocol possesses some negative characteristics, the gravest of which is the lack
of authentication proofs for the exchanged parameters yA and yB. This makes
the procedure susceptible to man-in-the-middle attacks, whereby attacker X

intercepts the messages of A and B with their public keys yA and yB and replaces
them with falsified messages to A and B containing his own public key yX.

Then A and B calculate “secret” keys s′A := yxA

X mod p and s′B := yxB

X mod p,
while X on his or her part calculates s′A from yxX

A ≡ axAxX ≡ axXxA ≡ yxA

X ≡
s′A mod p and s′B analogously. The Diffie–Hellman protocol has now been
executed not between A and B, but between X and A as well as between X and B.
Now X is in a position to decode messages from A or B and to replace them by
falsified messages to A or B. What is fatal is that from a cryptographic point of
view the participants A and B are clueless as to what has happened.

To compensate for these defects without giving up the advantages, several
variants and extensions have been developed for use in the Internet. They all take
into account the necessity that key information be exchanged in such a way that

4 For the problem of calculating discrete logarithms see [Schn], Section 11.6, as well as [Odly].

119

Chapter 6

its authenticity can be verified. This can be achieved, for example, by the public
keys being digitally signed by the participants and the associated certificate
of a certification authority being sent with them (see in this regard page 400,
Section 17.3), which is implemented, for example, in the SSL protocol. IPSec and
IPv6 use a complexly constructed procedure with the name ISAKMP/Oakley,5

which overcomes all the drawbacks of the Diffie–Hellman protocol (for details see
[Stal], pages 422–423).

To determine a primitive root modulo p, that is, a value a whose powers
ai mod p with i = 0, 1, . . . , p − 2 constitute the entire set of elements of the
multiplicative group Z×

p = { 1, . . . , p − 1 } (see in this regard Section10.2), the
following algorithm can be used (see [Knut], Section 3.2.1.2, Theorem C). It is
assumed that the prime factorization p − 1 = P e1

1 · · · pek

k of the order of Z×
p is

known.

Finding a primitive root modulo p

1. Choose a random integer a ∈ [0, p − 1] and set i ← 1.

2. Compute t ← a(p−1)/pi mod p.

3. If t = 1, go to step 1. Otherwise, set i ← i + 1. If i ≤ k, go to step 2. If i > k,
output a and terminate the algorithm.

The algorithm is implemented in the following function.

Function: ad hoc generation of a primitive root modulo p (2 < p prime)

Syntax: int primroot_l (CLINT a_l, unsigned noofprimes,

clint **primes_l);

Input: noofprimes (number of distinct prime factors in p − 1,
the order of the group)

primes_l (vector of pointers to CLINT objects, beginning with
p − 1, then follow the prime divisors p1, . . . , pk of the
group order p − 1 = pe1

1 · · · pek

k , k = noofprimes)

Output: a_l (primitive root modulo p_l)

Return: E_CLINT_OK if all is ok
−1 if p − 1 odd and thus p is not prime

5 ISAKMP: Internet Security Association and Key Management Protocol.

120

Where All Roads Meet: Modular Exponentiation

int

primroot_l (CLINT a_l, unsigned int noofprimes, clint *primes_l[])

{

CLINT p_l, t_l, junk_l;

ULONG i;

if (ISODD_L (primes_l[0]))

{

return -1;

}

primes_l[0] contains p − 1, from which we obtain the modulus in p_l.

cpy_l (p_l, primes_l[0]);

inc_l (p_l);

SETONE_L (a_l);

do

{

inc_l (a_l);

As candidates a for the sought-after primitive root only natural numbers greater
than or equal to 2 are tested. If a is a square, then a cannot be a primitive root
modulo p, since then already a(p−1)/2 ≡ 1 mod p, and the order of a must be
less than φ(p) = p − 1. In this case a_l is incremented. We test whether a_l is a
square with the function issqr_l() (cf. Section 10.3).

if (issqr_l (a_l, t_l))

{

inc_l (a_l);

}

i = 1;

The calculation of t ← a(p−1)/pi mod p takes place in two steps. All prime factors
pi are tested in turn; we use Montgomery exponentiation. If a primitive root is
found, it is output in a_l.

do

{

div_l (primes_l[0], primes_l[i++], t_l, junk_l);

mexpkm_l (a_l, t_l, t_l, p_l);

}

121

Chapter 6

while ((i <= noofprimes) && !EQONE_L (t_l));

}

while (EQONE_L (t_l));

return E_CLINT_OK;

}

As a second example for the application of exponentiation we consider the
encryption procedure of ElGamal, which as an extension of the Diffie–Hellman
procedure also provides security in the matter of the difficulty of computing
discrete logarithms, since breaking the procedure is equivalent to solving the
Diffie–Hellman problem (cf. page 119). Pretty good privacy (PGP), the workhorse
known throughout the world for encrypting and signing e-mail and documents
whose development goes back essentially to the work of Phil Zimmermann, uses
the ElGamal procedure for key management (see [Stal], Section 12.1).

A participant A selects a public and associated private key as follows.

ElGamal key generation

1. A chooses a large prime number p such that p − 1 has a large prime divisor
close to (p − 1)/2 (cf. page 388) and a primitive root a of the multiplicative
group Z×

p as above (cf. page 120).

2. A chooses a random number x with 1 ≤ x < p − 1 and computes
b := ax mod p with the aid of Montgomery exponentiation.

3. As public key A uses the triple 〈p, a, b〉A , and the associated secret key is
〈p, a, x〉A.

Using the public key triple 〈p, a, b〉A a participant B can now encrypt a
message M ∈ { 1, . . . , p − 1 } and send it to A. The procedure is as follows.

Protocol for encryption à la ElGamal

1. B chooses a random number y with 1 ≤ y < p − 1.

2. B calculates α := ay mod p and β := Mby mod p = M (ax)y mod p.

3. B sends the cryptogram C := (α, β) to A.

4. A computes from C the plain text using M = β/αx modulo p.

Since

β

αx
≡ β

(ax)y ≡ M
(ax)y

(ax)y ≡ M mod p,

the procedure works. The calculation of β/αx is carried out by means of a
multiplication βαp−1−x modulo p.

122

Where All Roads Meet: Modular Exponentiation

The size of p should be, depending on the application, 1024 bits or longer (see
Table 17-1), and for the encryption of different messages M1 and M2 unequal
random values y1 �= y2 should be chosen, since otherwise, from

β1

β2
=

M1b
y

M2by
=

M1

M2

it would follow that knowledge of M1 was equivalent to knowledge of M2. In view
of the practicability of the procedure one should note that the cryptogram C is
twice the size of the plain text M , which means that this procedure has a higher
transmission cost than others.

The procedure of ElGamal in the form we have presented has an interesting
weak point, which is that an attacker can obtain knowledge of the plain text with
a small amount of information. We observe that the cyclic group Z×

p contains
the subgroup U := { ax | x even } of order (p − 1)/2 (cf. [Fisc], Chapter 1). If
now b = ax or α = ay lies in U , then this holds, of course, for axy . If this is the
case and the encrypted text β is also in U , then M = βa−xy is in U as well. The
same holds if axy and β are both not contained in U . In the other two cases, in
which precisely one of axy and β does not lie in U , then M is also not in U . The
following criteria provide information about this situation:

1. axy ∈ U ⇔ (ax ∈ U or ay ∈ U). This, and whether also β ∈ U , is tested
with

2. For all u ∈ Z×
p , u ∈ U ⇔ u(p−1)/2 = 1.

One may ask how bad it might be if an attacker could gain such information
about M . From the point of view of cryptography it is a situation difficult to
accept, since the message space to be searched is reduced by half with little effort.
Whether in practice this is acceptable certainly depends on the application.
Surely, it is a valid reason to be generous in choosing the length of a key.

Furthermore, one can take some action against the weakness of the
procedure, without, one hopes, introducing new, unknown, weaknesses: The
multiplication Mby mod p in step 2 of the algorithm can be replaced with an
encryption operation V (H (axy) , M) using a suitable symmetric encryption
procedure V (such as Triple-DES, IDEA, or Rijndael, which has become the
new advanced encryption standard; cf. Chapter 11) and a hash function H (cf.
page 398) that so condenses the value axy that it can be used as a key for V .

So much for our examples of the application of modular exponentiation. In
number theory, and therefore in cryptography as well, modular exponentiation
is a standard operation, and we shall meet it repeatedly later on, in particular
in Chapters 10 and 17. Furthermore, refer to the descriptions and numerous
applications in [Schr] as well as in the encyclopedic works [Schn] and [MOV].

123

CHAPTER 7

Bitwise and

Logical Functions

And sprinkled just a bit
Over each banana split.

—Tom Lehrer, “In My Home Town”

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were
so, it would be: but as it isn’t, it ain’t. That’s logic.”

—Lewis Carroll, Through the Looking-Glass

IN THIS CHAPTER WE SHALL present functions that carry out bitwise operations on
CLINT objects, and we shall also introduce functions for determining the equality
and size of CLINT objects, which we have already used quite a bit.

Among the bitwise functions are to be found the shift operations, which
shift a CLINT argument in its binary representation by individual bit positions,
and certain other functions taking two CLINT arguments that enable the direct
manipulation of the binary representation of CLINT objects. How such operations
can be applied to arithmetic purposes is most clearly seen in the shift operations
described below, but we have also seen, in Section 4.3, how the bitwise AND
operation can be used in reduction modulo a power of two.

7.1 Shift Operations

Necessity devises all manner of shifts.

—Rabelais

The simplest way to multiply a number a with the representation a =

(an−1an−2 . . . a0)B to the base B by a power Be is to “shift a to the left by e

digits.” This works with the binary representation exactly as it does in our familiar
decimal system:

aBe = (ân+e−1ân+e−2 . . . âeâe−1 . . . â0)B ,

125

Chapter 7

where

ân+e−1 = an−1, ân+e−2 = an−2, . . . ,

âe = a0, âe−1 = 0, . . . , â0 = 0.

For B = 2 this corresponds to multiplication of a number in binary
representation by 2e, while for B = 10 it corresponds to multiplication by a
power of ten in the decimal system.

In the analogous procedure for whole-number division by powers of B the
digits of a number are “shifted to the right”:⌊ a

Be

⌋
= (ân−1 . . . ân−eân−e−1ân−e−2 . . . â0)B ,

where

ân−1 = · · · = ân−e = 0, ân−e−1 = an−1, ân−e−2 = an−2, . . . , â0 = ae.

For B = 2 this corresponds to integer division of a number in binary
representation by 2e, and the analogous result holds for other bases.

Since the digits of CLINT objects are represented in memory in binary form,
CLINT objects can easily be multiplied by powers of two by shifting left, where the
next digit to the right is shifted into each place where a digit has been shifted left,
and the binary digits left over on the right are filled with zeros.

In an analogous way CLINT objects can be divided by powers of two by shifting
each binary digit to the right into the next lower-valued digit. Digits left free at the
end are either filled with zeros or ignored as leading zeros, and at each stage in
the process (shifting by one digit) the lowest-valued digit is lost.

The advantage of this process is clear: Multiplication and division of a CLINT

object a by a power of two 2e are simple, and they require at most e �logB a�
shift operations to shift each USHORT value by one binary digit. Multiplication and
division of a by a power Be uses only �logB a� operations for storing USHORT

values.
In the following we shall present three functions. The function shl_l()

executes a rapid multiplication of a CLINT number by 2, while the function
shr_l() divides a CLINT number by 2 and returns the integer quotient.

Lastly, the function shift_l() multiplies or divides a CLINT type a by a power
of two 2e. Which operation is executed is determined by the sign of the exponent
e of the power of two that is passed as argument. If the exponent is positive, then
the operation is multiplication, while if it negative, then division is carried out.
If e has the representation e = Bk + l, l < B, then shift_l() carries out the
multiplication or division in (l + 1) �logB a� operations on USHORT values.

All three functions operate modulo (Nmax + 1) on objects of CLINT type. They
are implemented as accumulator functions, and thus they change their CLINT
operands in that they overwrite the operand with the result of the operation.
The functions test for overflow, respectively underflow. However, in shifting,
underflow cannot really arise, since in those cases where more positions are to

126

Bitwise and Logical Functions

be shifted than there are digits the result is simply zero, almost as it is in real life.
The status value E_CLINT_UFL for underflow then merely indicates that there was
less to shift than was required, or, in other words, that the power of two by which
division was to be carried out was larger than the dividend, and so the quotient is
zero. The three functions are implemented in the following manner.

Function: shift left (multiplication by 2)

Syntax: int shl_l (CLINT a_l);

Input: a_l (multiplicand)

Output: a_l (product)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow

int

shl_l (CLINT a_l)

{

clint *ap_l, *msdptra_l;

ULONG carry = 0L;

int error = E_CLINT_OK;

RMLDZRS_L (a_l);

if (ld_l (a_l) >= (USHORT)CLINTMAXBIT)

{

SETDIGITS_L (a_l, CLINTMAXDIGIT);

error = E_CLINT_OFL;

}

msdptra_l = MSDPTR_L (a_l);

for (ap_l = LSDPTR_L (a_l); ap_l <= msdptra_l; ap_l++)

{

*ap_l = (USHORT)(carry = ((ULONG)*ap_l << 1) | (carry >> BITPERDGT));

}

if (carry >> BITPERDGT)

{

if (DIGITS_L (a_l) < CLINTMAXDIGIT)

{

*ap_l = 1;

SETDIGITS_L (a_l, DIGITS_L (a_l) + 1);

error = E_CLINT_OK;

}

127

Chapter 7

else

{

error = E_CLINT_OFL;

}

}

RMLDZRS_L (a_l);

return error;

}

Function: shift right (integer division by 2)

Syntax: int shr_l (CLINT a_l);

Input: a_l (dividend)

Output: a_l (quotient)

Return: E_CLINT_OK if all is ok
E_CLINT_UFL if “underflow”

int

shr_l (CLINT a_l)

{

clint *ap_l;

USHORT help, carry = 0;

if (EQZ_L (a_l))

return E_CLINT_UFL;

for (ap_l = MSDPTR_L (a_l); ap_l > a_l; ap_l--)

{

help = (USHORT)((USHORT)(*ap_l >> 1) | (USHORT)(carry <<

(BITPERDGT - 1)));

carry = (USHORT)(*ap_l & 1U);

*ap_l = help;

}

RMLDZRS_L (a_l);

return E_CLINT_OK;

}

128

Bitwise and Logical Functions

Function: left/right shift
(multiplication and division by powers of two)

Syntax: int shift_l (CLINT n_l, long int noofbits);

Input: n_l (operand)
noofbits (exponent of the power of two)

Output: n_l (product or quotient, depending on sign of noofbits)

Return: E_CLINT_OK if all ok
E_CLINT_UFL if “underflow”
E_CLINT_OFL if overflow

int

shift_l (CLINT n_l, long int noofbits)

{

USHORT shorts = (USHORT)((ULONG)(noofbits < 0 ? -noofbits : noofbits) / BITPERDGT);

USHORT bits = (USHORT)((ULONG)(noofbits < 0 ? -noofbits : noofbits) % BITPERDGT);

long int resl;

USHORT i;

int error = E_CLINT_OK;

clint *nptr_l;

clint *msdptrn_l;

RMLDZRS_L (n_l);

resl = (int) ld_l (n_l) + noofbits;

If n_l == 0, we need only set the error code correctly, and we are done. The same
holds if noofbits == 0.

if (*n_l == 0)

{

return ((resl < 0) ? E_CLINT_UFL : E_CLINT_OK);

}

if (noofbits == 0)

{

return E_CLINT_OK;

}

Next it is checked whether there is an overflow or underflow to announce. Then a
branch is taken depending on the sign of noofbits to shift either to the left or to
the right.

129

Chapter 7

if ((resl < 0) || (resl > (long) CLINTMAXBIT))

{

error = ((resl < 0) ? E_CLINT_UFL : E_CLINT_OFL); /*underflow or overflow*/

}

msdptrn_l = MSDPTR_L (n_l);

if (noofbits < 0)

{

If noofbits < 0, then n_l is divided by 2noofbits. The number of digits of n_l to
shift is bounded by DIGITS_L (n_l). First the whole digits are shifted, and then the
remaining bits with shr_l().

shorts = MIN (DIGITS_L (n_l), shorts);

msdptrn_l = MSDPTR_L (n_l) - shorts;

for (nptr_l = LSDPTR_L (n_l); nptr_l <= msdptrn_l; nptr_l++)

{

*nptr_l = *(nptr_l + shorts);

}

SETDIGITS_L (n_l, DIGITS_L (n_l) - (USHORT)shorts);

for (i = 0; i < bits; i++)

{

shr_l (n_l);

}

}

else

{

If noofbits > 0, then n_l is multiplied by 2noofbits. If the number shorts of digits
to be shifted is greater than MAXB , then the result is zero. Otherwise, first the
number of digits of the new value is determined and stored, and then the whole
digits are shifted, and the freed-up digits filled with zeros. To avoid an overflow the
start position is limited by n_l + MAXB and stored in nptr_l. As before, the last
bits are shifted individually, here with shl_l().

130

Bitwise and Logical Functions

if (shorts < CLINTMAXDIGIT)

{

SETDIGITS_L (n_l, MIN (DIGITS_L (n_l) + shorts, CLINTMAXDIGIT));

nptr_l = n_l + DIGITS_L (n_l);

msdptrn_l = n_l + shorts;

while (nptr_l > msdptrn_l)

{

*nptr_l = *(nptr_l - shorts);

--nptr_l;

}

while (nptr_l > n_l)

{

*nptr_l-- = 0;

}

RMLDZRS_L (n_l);

for (i = 0; i < bits; i++)

{

shl_l (n_l);

}

}

else

{

SETZERO_L (n_l);

}

}

return error;

}

7.2 All or Nothing: Bitwise Relations

The FLINT/C package contains functions that allow the built-in bitwise C
operators &, |, and ˆ to be used for the type CLINT as well. However, before we
program these functions we would like to understand what their implementation
will net us.

From a mathematical viewpoint we are looking at relations of the generalized
Boolean functionsf : { 0, 1 }k → { 0, 1 } that map a k-tuple (x1, . . . , xk) ∈
{ 0, 1 }k to the value 0 or 1. The effect of a Boolean function is usually presented
in the form of a table of values such as that shown in Table 7-1.

131

Chapter 7

Table 7-1. Values of a Boolean function

x1 x2 . . . xk f (x1, . . . , xk)

0 0 . . . 0 0

1 0 . . . 0 1

0 1 . . . 0 0
...

...
...

...
...

1 1 . . . 1 1

For the bitwise relations between CLINT types we first regard the variables
as bit vectors (x1, . . . , xn), and furthermore, the function values of the Boolean
functions will be formed into a sequence. Thus we have functions

f : { 0, 1 }n × { 0, 1 }n → { 0, 1 }n

that map n-bit variables x1 :=
(
x1

1, x
1
2, . . . , x

1
n

)
and x2 :=

(
x2

1, x
2
2, . . . , x

2
n

)
by

f (x1, x2) :=
(
f1 (x1, x2) , f2 (x1, x2) , . . . , fn (x1, x2)

)
,

with fi (x1, x2) := f
(
x1

i , x2
i

)
, again to an n-bit variable (x1, . . . , xn), which is

then interpreted as a number of type CLINT.
Decisive for the operation of the function f is the definition of the partial

functions fi, each of which is defined in terms of a Boolean function f . For the
CLINT functions and_l(), or_l(), and xor_l() the Boolean functions that are
implemented are defined as in Tables 7-2 through 7-4.

Table 7-2. Values of the CLINT function and_l()

x1 x2 f (x1, x2)

0 0 0

0 1 0

1 0 0

1 1 1

The implementations of these Boolean functions in the three C functions
and_l(), or_l(), and xor_l() do not actually proceed bitwise, but process the
digits of CLINT variables by means of the standard C operators &, |, and ˆ. Each of
these functions accepts three arguments of CLINT type, where the first two are the
operands and the last the result variable.

132

Bitwise and Logical Functions

Table 7-3. Values of the CLINT function or_l()

x1 x2 f (x1, x2)

0 0 0

0 1 1

1 0 1

1 1 1

Table 7-4. Values of the CLINT function xor_l()

x1 x2 f (x1, x2)

0 0 0

0 1 1

1 0 1

1 1 0

Function: operating by bitwise AND

Syntax: void and_l (CLINT a_l, CLINT b_l, CLINT c_l);

Input: a_l, b_l (arguments to be operated on)

Output: c_l (value of the AND operation)

void

and_l (CLINT a_l, CLINT b_l, CLINT c_l)

{

CLINT d_l;

clint *r_l, *s_l, *t_l;

clint *lastptr_l;

First pointers r_l and s_l are set to the respective digits of the arguments. If the
arguments have different numbers of digits, then s_l points to the shorter of the
two. The pointer msdptra_l points to the last digit of a_l.

133

Chapter 7

if (DIGITS_L (a_l) < DIGITS_L (b_l))

{

r_l = LSDPTR_L (b_l);

s_l = LSDPTR_L (a_l);

lastptr_l = MSDPTR_L (a_l);

}

else

{

r_l = LSDPTR_L (a_l);

s_l = LSDPTR_L (b_l);

lastptr_l = MSDPTR_L (b_l);

}

Now the pointer t_l is set to point to the first digit of the result, and the maximal
length of the result is stored in d_l[0].

t_l = LSDPTR_L (d_l);

SETDIGITS_L (d_l, DIGITS_L (s_l - 1));

The actual operation runs in the following loop over the digits of the shorter
argument. The result cannot have a larger number of digits.

while (s_l <= lastptr_l)

{

*t_l++ = *r_l++ & *s_l++;

}

After the result is copied to c_l, where any leading zeros are expunged, the
function is ended.

cpy_l (c_l, d_l);

}

Function: operating by bitwise OR

Syntax: void or_l (CLINT a_l, CLINT b_l, CLINT c_l);

Input: a_l, b_l (arguments to be operated on)

Output: c_l (value of the OR operation)

134

Bitwise and Logical Functions

void

or_l (CLINT a_l, CLINT b_l, CLINT c_l)

{

CLINT d_l;

clint *r_l, *s_l, *t_l;

clint *msdptrr_l;

clint *msdptrs_l;

The pointers r_l and s_l are set as above.

if (DIGITS_L (a_l) < DIGITS_L (b_l))

{

r_l = LSDPTR_L (b_l);

s_l = LSDPTR_L (a_l);

msdptrr_l = MSDPTR_L (b_l);

msdptrs_l = MSDPTR_L (a_l);

}

else

{

r_l = LSDPTR_L (a_l);

s_l = LSDPTR_L (b_l);

msdptrr_l = MSDPTR_L (a_l);

msdptrs_l = MSDPTR_L (b_l);

}

t_l = LSDPTR_L (d_l);

SETDIGITS_L (d_l, DIGITS_L (r_l - 1));

The actual operation takes place within a loop over the digits of the shorter of the
two arguments.

while (s_l <= msdptrs_l)

{

*t_l++ = *r_l++ | *s_l++;

}

The remaining digits of the longer argument are taken into the result. After the
result is copied to c_l, where any leading zeros are eliminated, the function is
terminated.

135

Chapter 7

while (r_l <= msdptrr_l)

{

*t_l++ = *r_l++;

}

cpy_l (c_l, d_l);

}

Function: operation by bitwise exclusive OR (XOR)

Syntax: void xor_l (CLINT a_l, CLINT b_l, CLINT c_l);

Input: a_l, b_l (arguments to be operated on)

Output: c_l (value of the XOR operation)

void

xor_l (CLINT a_l, CLINT b_l, CLINT c_l)

{

CLINT d_l;

clint *r_l, *s_l, *t_l;

clint *msdptrr_l;

clint *msdptrs_l;

if (DIGITS_L (a_l) < DIGITS_L (b_l))

{

r_l = LSDPTR_L (b_l);

s_l = LSDPTR_L (a_l);

msdptrr_l = MSDPTR_L (b_l);

msdptrs_l = MSDPTR_L (a_l);

}

else

{

r_l = LSDPTR_L (a_l);

s_l = LSDPTR_L (b_l);

msdptrr_l = MSDPTR_L (a_l);

msdptrs_l = MSDPTR_L (b_l);

}

t_l = LSDPTR_L (d_l);

SETDIGITS_L (d_l, DIGITS_L (r_l - 1));

136

Bitwise and Logical Functions

Now the actual operation takes place. The loop runs over the digits of the shorter
of the two arguments.

while (s_l <= msdptrs_l)

{

*t_l++ = *r_l++ ˆ *s_l++;

}

The remaining digits of the other argument are copied as above.

while (r_l <= msdptrr_l)

{

*t_l++ = *r_l++;

}

cpy_l (c_l, d_l);

}

The function and_l() can be used to reduce a number a modulo a power of two
2k by setting a CLINT variable a_l to the value a, a CLINT variable b_l to the value
2k − 1, and executing and_l(a_l, b_l, c_l). However, this operation executes
faster with the function mod2_l() created for this purpose, which takes into
account that the binary representation of 2k − 1 consists exclusively of ones (see
Section 4.3).

7.3 Direct Access to Individual Binary Digits

Occasionally, it is useful to be able to access individual binary digits of a number
in order to read or change them. As an example of this we might mention the
initialization of a CLINT object as a power of 2, which can be accomplished easily
by setting a single bit.

In the following we shall develop three functions, setbit_l(), testbit_l(),
and clearbit_l(), which set an individual bit, test a particular bit, and delete a
single bit. The functions setbit_l() and clearbit_l() each return the state of the
specified bit before the operation. The bit positions are counted from 0, and thus
the specified positions can be understood as logarithms of powers of two: If n_l is
equal to 0, then setbit_l(n_l, 0) returns the value 0, and afterwards, n_l has the
value 20 = 1; after a call to setbit_l(n_l, 512), n_l has the value 2512.

137

Chapter 7

Function: test and set a bit in a CLINT object

Syntax: int setbit_l (CLINT a_l, unsigned int pos);

Input: a_l (CLINT argument)
pos (bit position counted from 0)

Output: a_l (result)

Return: 1 if the bit at position pos was already set
0 if the bit at position pos was not set
E_CLINT_OFL if overflow

int

setbit_l (CLINT a_l, unsigned int pos)

{

int res = 0;

unsigned int i;

USHORT shorts = (USHORT)(pos >> LDBITPERDGT);

USHORT bitpos = (USHORT)(pos & (BITPERDGT - 1));

USHORT m = 1U << bitpos;

if (pos >= CLINTMAXBIT)

{

return E_CLINT_OFL;

}

if (shorts >= DIGITS_L (a_l))

{

If necessary, a_l is zero filled word by word, and the new length is stored in a_l[0].

for (i = DIGITS_L (a_l) + 1; i <= shorts + 1; i++)

{

a_l[i] = 0;

}

SETDIGITS_L (a_l, shorts + 1);

}

The digit of a_l that contains the specified bit position is tested by means of the
mask prepared in m, and then the bit position is set to 1 via an OR of the relevant
digit with m. The function ends by returning the previous status.

138

Bitwise and Logical Functions

if (a_l[shorts + 1] & m)

{

res = 1;

}

a_l[shorts + 1] |= m;

return res;

}

Function: test a binary digit of a CLINT object

Syntax: int testbit_l (CLINT a_l, unsigned int pos);

Input: a_l (CLINT argument)
pos (bit position counted from 0)

Return: 1 if bit at position pos is set
0 otherwise

int

testbit_l (CLINT a_l, unsigned int pos)

{

int res = 0;

USHORT shorts = (USHORT)(pos >> LDBITPERDGT);

USHORT bitpos = (USHORT)(pos & (BITPERDGT - 1));

if (shorts < DIGITS_L (a_l))

{

if (a_l[shorts + 1] & (USHORT)(1U << bitpos))

res = 1;

}

return res;

}

Function: test and delete a bit in a CLINT object

Syntax: int clearbit_l (CLINT a_l, unsigned int pos);

Input: a_l (CLINT argument)
pos (bit position counted from 0)

Output: a_l (result)

Return: 1 if bit at position pos was set before deletion
0 otherwise

139

Chapter 7

int

clearbit_l (CLINT a_l, unsigned int pos)

{

int res = 0;

USHORT shorts = (USHORT)(pos >> LDBITPERDGT);

USHORT bitpos = (USHORT)(pos & (BITPERDGT - 1));

USHORT m = 1U << bitpos;

if (shorts < DIGITS_L (a_l))

{

If a_l has enough digits, then the digit of a_l that contains the specified bit posi-
tion is tested by means of the mask prepared in m, and then the bit position is set
to 0 by an AND of the corresponding digit with the complement of m. The previous
status of the bit position is returned at the termination of the function.

if (a_l[shorts + 1] & m)

{

res = 1;

}

a_l[shorts + 1] &= (USHORT)(˜m);

RMLDZRS_L (a_l);

}

return res;

}

7.4 Comparison Operators

Every program requires the ability to make assertions about the equality or
inequality or the size relationship of arithmetic variables, and this holds as well
for our dealings with CLINT objects. Here, too, the principle is obeyed that the
programmer does not need knowledge of the internal structure of the CLINT type,
and the determination of how two CLINT objects are related to each other is left to
functions designed for such purposes.

The primary function that accomplishes these tasks is the function cmp_l().
It determines which of the relations a_l < b_l, a_l == b_l, or a_l > b_l holds
for two CLINT values a_l and b_l. To this end, first the numbers of digits of the
CLINT objects, which have been liberated from any leading zeros, are compared. If
the number of digits of the operands is the same, then the process begins with a
comparison of the most-significant digits; as soon as a difference is detected, the
comparison is terminated.

140

Bitwise and Logical Functions

Function: comparison of two CLINT objects

Syntax: int cmp_l (CLINT a_l, CLINT b_l);

Input: a_l, b_l (arguments)

Return: −1 if (value of a_l) < (value of b_l)

0 if (value of a_l) = (value of b_l)
1 if (value of a_l) > (value of b_l)

int

cmp_l (CLINT a_l, CLINT b_l)

{

clint *msdptra_l, *msdptrb_l;

int la = DIGITS_L (a_l);

int lb = DIGITS_L (b_l);

The first test checks whether both arguments have length, and hence value, 0.
Then any leading zeros are eliminated, and a decision is attempted on the basis
of the number of digits.

if (la == 0 && lb == 0)

{

return 0;

}

while (a_l[la] == 0 && la > 0)

{

--la;

}

while (b_l[lb] == 0 && lb > 0)

{

--lb;

}

if (la == 0 && lb == 0)

{

return 0;

}

if (la > lb)

{

return 1;

}

141

Chapter 7

if (la < lb)

{

return -1;

}

If the operands have the same number of digits, then the actual values must be
compared. For this we begin with a comparison of the most-significant digits and
proceed digit by digit until two digits are found that are unequal or until the least-
significant digits are reached.

msdptra_l = a_l + la;

msdptrb_l = b_l + lb;

while ((*msdptra_l == *msdptrb_l) && (msdptra_l > a_l))

{

msdptra_l--;

msdptrb_l--;

}

Now we compare the two digits and make our determination, and the
corresponding function value is returned.

if (msdptra_l == a_l)

{

return 0;

}

if (*msdptra_l > *msdptrb_l)

{

return 1;

}

else

{

return -1;

}

}

If we are interested in the equality of two CLINT values, then the application of
the function cmp_l() is a bit more than is necessary. In this case there is a simpler
variant, which avoids the size comparison.

142

Bitwise and Logical Functions

Function: comparison of two CLINT objects

Syntax: int equ_l (CLINT a_l, CLINT b_l);

Input: a_l, b_l (arguments)

Return: 0 if (value of a_l) �= (value of b_l)
1 if (value of a_l) = (value of b_l)

int

equ_l (CLINT a_l, CLINT b_l)

{

clint *msdptra_l, *msdptrb_l;

int la = DIGITS_L (a_l);

int lb = DIGITS_L (b_l);

if (la == 0 && lb == 0)

{

return 1;

}

while (a_l[la] == 0 && la > 0)

{

--la;

}

while (b_l[lb] == 0 && lb > 0)

{

--lb;

}

if (la == 0 && lb == 0)

{

return 1;

}

if (la != lb)

{

return 0;

}

msdptra_l = a_l + la;

msdptrb_l = b_l + lb;

143

Chapter 7

while ((*msdptra_l == *msdptrb_l) && (msdptra_l > a_l))

{

msdptra_l--;

msdptrb_l--;

}

return (msdptra_l > a_l ? 0 : 1);

}

These two functions in their raw form can easily lead the user into the thickets
of error. In particular, the meaning of the function values of cmp_l() must be kept
constantly in mind or looked up repeatedly. As a measure against errors a number
of macros have been created by means of which comparisons can be formulated
in a more mnemonically satisfactory way (see in this regard Appendix C, “Macros
with Parameters”). For example, we have the following macros, where we equate
the objects a_l and b_l with the values they represent:

GE_L (a_l, b_l) returns 1 if a_l ≥ b_l, and 0 otherwise;

EQZ_L (a_l) returns 1 if a_l == 0, and 0 if a_l > 0.

144

CHAPTER 8

Input, Output,

Assignment, Conversion

The numerals were now being converted automatically from base 2 to base
10 . . . 881, 883, 887, 907 . . . each one confirmed as a prime number.

—Carl Sagan, Contact

WE BEGIN THIS CHAPTER WITH assignment, the simplest and also the most
important function. To be able to assign to a CLINT object a_l the value of another
CLINT object b_l, we require a function that copies the digits of b_l to the reserved
storage space for a_l, an event that we shall call elementwise assignment. It will
not suffice merely to copy the address of the object b_l into the variable a_l, since
then both objects would refer to the same location in memory, namely that of
b_l, and any change in a_l would be reflected in a change in the object b_l, and
conversely. Furthermore, access to the area of memory addressed by a_l could
become lost.

We shall return to the problems of elementwise assignment in the second
part of this book when we concern ourselves with the implementation of the
assignment operator “=” in C++ (see Section 14.3).

The assignment of the value of a CLINT object to another CLINT is effected with
the function cpy_l().

Function: copy a CLINT object as an assignment

Syntax: void cpy_l (CLINT dest_l, CLINT src_l);

Input: src_l (assigned value)

Output: dest_l (destination object)

145

Chapter 8

void

cpy_l (CLINT dest_l, CLINT src_l)

{

clint *lastsrc_l = MSDPTR_L (src_l);

*dest_l = *src_l;

In the next step leading zeros are found and then ignored. At the same time, the
number of digits of the target object is adjusted.

while ((*lastsrc_l == 0) && (*dest_l > 0))

{

--lastsrc_l;

--*dest_l;

}

Now the relevant digits of the source object are copied into the goal object. Then
the function is terminated.

while (src_l < lastsrc_l)

{

*++dest_l = *++src_l;

}

}

The exchange of the values of two CLINT objects can be accomplished with
the help of the macro SWAP_L, the FLINT/C variant of the macro SWAP, which
manages in an interesting way to accomplish the exchange of two variables using
XOR operations without the requirement of intermediate storage in a temporary
variable:

#define SWAP(a, b) ((a)ˆ=(b), (b)ˆ=(a), (a)ˆ=(b))

#define SWAP_L(a_l, b_l) \
(xor_l((a_l), (b_l), (a_l)), \
xor_l((b_l), (a_l), (b_l)), \
xor_l((a_l), (b_l), (a_l)))

146

Input, Output, Assignment, Conversion

Function: swap the values of two CLINT objects

Syntax: void fswap_l (CLINT a_l, CLINT b_l);

Input: a_l, b_l (values to be exchanged)

Output: a_l, b_l

The functions in the FLINT/C library for the input and output of numbers in a
form readable by human beings are not among the most exciting functions in this
library, yet for many applications they are unavoidable. For practical reasons a
form was selected to allow for the input and output by means of character strings,
as vectors of type char. For this the two essentially complementary functions
str2clint_l() and xclint2str_l() were developed: The first transforms a
character string with digits into a CLINT object, and the second, conversely,
transforms a CLINT object into a character string. The base of the character string’s
representation is specified, with representations to bases in the range from 2 to
16 allowed.

The conversion to be carried out by the function str2clint_l() of a
representation of type CLINT into a representation in the base specified is
accomplished by means of a sequence of multiplications and additions to base B

(cf. [Knut], Section 4.4). The function registers any overflow that occurs, the use of
invalid bases, and the passing of the null pointer and returns the corresponding
error code. Any prefixes indicating the number’s representation, “0X,” “0x,” “0B,”
or “0b,” are ignored.

Function: conversion of a character string into a CLINT object

Syntax: int str2clint_l (CLINT n_l, char *str, USHORT b);

Input: str (pointer to a sequence of char) base
(base of the numerical representation of the character

string, 2 ≤ base ≤ 16)

Output: n_1 (target CLINT object)

Return: E_CLINT_OK if all is ok
E_CLINT_BOR if base < 2 or base > 16,

or if the number of digits in str is larger than base

E_CLINT_OFL if overflow
E_CLINT_NPT if in str the null pointer was passed

147

Chapter 8

int

str2clint_l (CLINT n_l, char *str, USHORT base)

{

USHORT n;

int error = E_CLINT_OK;

if (str == NULL)

{

return E_CLINT_NPT;

}

if (2 > base || base > 16)

{

return E_CLINT_BOR; /* error: invalid base */

}

SETZERO_L (n_l);

if (*str == ’0’)

{

if ((tolower_l(*(str+1)) == ‘x’) ||

(tolower_l(*(str+1)) == ‘b’)) /* ignore any prefix */

{

++str;

++str;

}

}

while (isxdigit ((int)*str) || isspace ((int)*str))

{

if (!isspace ((int)*str))

{

n = (USHORT)tolower_l (*str);

Many implementations of tolower() from non-ANSI-conforming C libraries re-
turn undefined results if a character is not uppercase. The FLINT/C function
tolower_l() calls tolower() only for uppercase A–Z and otherwise returns the
character unchanged.

148

Input, Output, Assignment, Conversion

switch (n)

{

case ‘a’:

case ‘b’:

case ‘c’:

case ‘d’:

case ‘e’:

case ‘f’:

n -= (USHORT)(‘a’ -- 10);

break;

default:

n -= (USHORT)‘0’;

}

if (n >= base)

{

error = E_CLINT_BOR;

break;

}

if ((error = umul_l (n_l, base, n_l)) != E_CLINT_OK)

{

break;

}

if ((error = uadd_l (n_l, n, n_l)) != E_CLINT_OK)

{

break;

}

}

++str;

}

return error;

}

The function xclint2str_l(), complementary to str2clint_l(), returns
a pointer to an internal buffer of storage class static (cf. [Harb], Section 4.3),
which contains the calculated numerical representation and its value until
xclint2str_l() is called again or the program is ended.

149

Chapter 8

The function xclint2str_l() carries the required conversion of the CLINT

representation into the representation to the specified base by means of a
sequence of divisions with remainder to the base B.

Function: Conversion of a CLINT object into a character string

Syntax: char * xclint2str_l (CLINT n_l, USHORT base,

int showbase);

Input: n_l (CLINT object to be converted)
base (base of the numerical representation of the character

string to be specified);
showbase (value �= 0: The numerical representation

has a “0x” in the case base = 16 or “0b” if base = 2.
Value = 0: there is no prefix.)

Return: pointer to the calculated character string if all ok
NULL if base < 2 or base > 16

static char ntable[16] =

{‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’,‘9’,‘a’,‘b’,‘c’,‘d’,‘e’,‘f’};

char *

xclint2str_l (CLINT n_l, USHORT base, int showbase)

{

CLINTD u_l, r_l;

int i = 0;

static char N[CLINTMAXBIT + 3];

if (2U > base || base > 16U)

{

return (char *)NULL; /* error: invalid base */

}

cpy_l (u_l, n_l);

do

{

(void) udiv_l (u_l, base, u_l, r_l);

if (EQZ_L (r_l))

{

N[i++] = ‘0’;

}

else

150

Input, Output, Assignment, Conversion

{

N[i++] = (char) ntable[*LSDPTR_L (r_l) & 0xff];

}

}

while (GTZ_L (u_l));

if (showbase)

{

switch (base)

{

case 2:

N[i++] = ‘b’;

N[i++] = ‘0’;

break;

case 8:

N[i++] = ‘0’;

break;

case 16:

N[i++] = ‘x’;

N[i++] = ‘0’;

break;

}

}

N[i] = ‘0’;

return strrev_l (N);

}

For reasons of compatibility with the function clint2str_l() in the first
edition of this book, clint2str_l(n_l, base) was defined as a macro that calls
the function xclint2str(n_l, base, 0).

Furthermore, macros HEXSTR_L(), DECSTR_L(), OCTSTR_L(), and BINSTR_L()

were created, which create, from a passed CLINT object as argument, a character
string without prefix with the numerical representation specified by the macro
name and thus eliminate the base of the representation as an argument (see
Appendix C).

As standard form for the output of CLINT values we have available the macro
DISP_L(), which processes a pointer to a character string and a CLINT object as
arguments. The character string contains, according to the purpose to which it
will be put, information about the following CLINT value to be output, such as “The
product of a_l and b_l has the value” The output of the CLINT value is in
hexadecimal, that is, to base 16. Additionally, DISP_L() outputs in a new line the
number of significant binary digits (that is, without leading zeros) of the indicated
CLINT object (cf. Appendix C).

151

Chapter 8

If there are to be conversions between byte vectors and CLINT objects, then
the pair of functions byte2clint_l() and clint2byte_l() can be employed
(cf. [IEEE], 5.5.1).

It is assumed that the byte vectors embody a numerical representation to
base 256 with values increasing from right to left. For the implementation of these
functions the reader is referred to the file flint.c. We give here only the function
headers.

Function: conversion of a byte vector into a CLINT object

Syntax: int byte2clint_l (CLINT n_l, UCHAR *bytestr, int len);

Input: bytestr (pointer to a sequence of UCHAR)
len (length of the byte vector)

Output: n_l (target CLINT object)

Return: E_CLINT_OK if all ok
E_CLINT_OFL if overflow
E_CLINT_NPT if in bytestr the null pointer was passed

Function: conversion of a CLINT object into a byte vector

Syntax: UCHAR * clint2byte_l (CLINT n_l, int *len);

Input: n_l (CLINT object to be converted)

Output: len (length of the generated byte vector)

Return: pointer to the calculated byte vector
NULL, if in len the null pointer was passed

Finally, for the transformation of unsigned values into the CLINT numerical
format the two functions u2clint_l() and ul2clint_l() can be used. The function
u2clint_l() converts USHORT arguments, and the function ul2clint_l() converts
ULONG arguments, into the CLINT numerical format. The function ul2clint_l()

will be described in the following as an example.

Function: conversion of a value of type ULONG into a CLINT object

Syntax: void ul2clint_l (CLINT num_l, ULONG ul);

Input: ul (value to be converted)

Output: num_l (target CLINT object)

152

Input, Output, Assignment, Conversion

void

ul2clint_l (CLINT num_l, ULONG ul)

{

*LSDPTR_L (num_l) = (USHORT)(ul & 0xffff);

*(LSDPTR_L (num_l) + 1) = (USHORT)((ul >> 16) & 0xffff);

SETDIGITS_L (num_l, 2);

RMLDZRS_L (num_l);

}

To end this chapter we shall discuss a function that carries out a validity
check of a memory object for the CLINT number format. Control functions of
this type are called as needed whenever “foreign” values are imported into a
system for further processing into a subsystem. Such a subsystem can be, for
example, a cryptographic module that before every processing of input data
must check whether it is dealing with valid values or arguments. Checking at
run time whether the assumptions about the input values of a function have
been met is good programming practice, one that helps to avoid undefined
situations and that can contribute decisively to the stability of an application. For
testing and debugging this usually takes place with assertions, with the help of
which run-time conditions can be tested. Assertions are inserted as macros and
can be decommissioned for the actual running of the program, usually during
compilation via #define NDEBUG. In addition to the assert macro of the C standard
library (see [Pla1], Chapter 1) there are a number of further implementations
of similar mechanisms that take various actions when the test conditions are
violated, such as listing recognized exceptional conditions in a log file, with or
without program termination in the event of an error. For extensive information
in this area the reader is referred to [Magu], Chapters 2 and 3, as well as [Murp],
Chapter 4.

The protection of the functions of a program library like the FLINT/C package
against being passed values that lie outside of the domain of definition of the
respective parameters can occur within the invoked functions themselves or
within the calling functions, where in the latter case the responsibility lies with
the programmer who employs the library. For performance considerations, in
the development of the FLINT/C functions we did not test every passed CLINT

argument for a valid address and possible overflow. The thought of carrying out
multiply redundant checks of the numerical format in thousands of modular
multiplications of an exponentiation moved the author to offload this control
task to the programs that use the FLINT/C functions. An exception is the passing
of divisors with the value zero, which is checked as a matter of principle and if it
occurs is acknowledged with a suitable error notification, even in all the functions
for residue class arithmetic. The code of all the functions was particularly
carefully tested to make sure that the FLINT/C library generates only valid
formats (cf. Chapter 12).

153

Chapter 8

The function vcheck_l() was created for the analysis of CLINT arguments
with regard to the validity of their format. It should help to protect the FLINT/C
functions from being passed invalid parameters as CLINT values.

Function: test for a valid CLINT numerical format

Syntax: int vcheck_l (CLINT n_l);

Input: n_l (object to be tested)

Return: E_VCHECK_OK if format ok

errors and warnings according to Table 8-1

Table 8-1. Diagnostic values of the function vcheck_l()

Return Value Diagnosis Explanation

E_VCHECK_OK Format is ok Info: The number has a valid

representation and a value with

the range of definition of a CLINT type.

E_VCHECK_LDZ leading zeros Warning: The number has leading zeros,

but otherwise a valid definition within

the range of definition.

E_VCHECK_MEM memory error Error: NULL Pointer was passed.

E_VCHECK_OFL genuine overflow Error: The passed number is too large;

it cannot be represented as a

CLINT object.

int

vcheck_l (CLINT n_l)

{

unsigned int error = E_VCHECK_OK;

154

Input, Output, Assignment, Conversion

Check for the null pointer: the ugliest error of them all.

if (n_l == NULL)

{

error = E_VCHECK_MEM;

}

else

{

Check for overflow: Does the number have too many digits?

if (((unsigned int) DIGITS_L (n_l)) > CLINTMAXDIGIT)

{

error = E_VCHECK_OFL;

}

else

{

Check for leading zeros: These we can live with ;-)

if ((DIGITS_L (n_l) > 0) && (n_l[DIGITS_L (n_l)] == 0))

{

error = E_VCHECK_LDZ;

}

}

}

return error;

}

The return values of the function are defined as macros in the file flint.h. An
explanation of these values is provided in Table 8-1.

The numeric values of the error codes are smaller than zero, so that a simple
comparison with zero suffices to distinguish between errors on the one hand and
warnings or the valid case on the other.

155

CHAPTER 9

Dynamic Registers

“What a depressingly stupid machine,” said Marvin and trudged away.

—Douglas Adams, The Restaurant at the End of the Universe

IN ADDITION TO THE AUTOMATIC, or in exceptional cases global, CLINT objects used
up to now, it is sometimes practical to be able to create and purge CLINT variables
automatically. To this end we shall create several functions that will enable us to
generate, use, clear, and remove a set of CLINT objects, the so-called register bank,
as a dynamically allocated data structure, where we take up the sketch presented
in [Skal] and work out the details for its use with CLINT objects.

We shall divide the functions into private management functions and public
functions; the latter of these will be made available to other external functions
for manipulating the registers. However, the FLINT/C functions do not use the
registers themselves, so that complete control over the use of the registers can be
guaranteed to the user’s functions.

The number of registers available should be configurable while the program
is running, for which we need a static variable NoofRegs that takes the number of
registers, which is predefined in the constant NOOFREGS.

static USHORT NoofRegs = NOOFREGS;

Now we define the central data structure for managing the register bank:

struct clint_registers

{

int noofregs;

int created;

clint **reg_l; /* pointer to vector of CLINT addresses */

};

The structure clint_registers contains the variable noofregs, which specifies
the number of registers contained in our register bank, and the variable created,
which will indicate whether the set of registers is allocated, as well as the pointer
reg_l to a vector that takes the start address of the individual registers:

static struct clint_registers registers = {0, 0, 0};

157

Chapter 9

Now come the private management functions allocate_reg_l() to set up the
register bank and destroy_reg_l() to clear it. After space for the storage of the
addresses of the registers to be allocated has been created and a pointer is then
set to the variable registers.reg_l, there follows the allocation of memory for
each individual register by a call to malloc() from the C standard library. The fact
that CLINT registers are memory units allocated by means of malloc() plays an
important role in testing the FLINT/C functions. We shall see in Section 13.2 how
this makes possible the examination of any memory errors that may occur.

static int

allocate_reg_l (void)

{

USHORT i, j;

First, memory is allocated for the vector of register addresses.

if ((registers.reg_l = (clint **) malloc (sizeof(clint *) * NoofRegs)) == NULL)

{

return E_CLINT_MAL;

}

Now comes the allocation of individual registers. If in the process a call to malloc()

ends in an error, all previously allocated registers are cleared and the error code
E_CLINT_MAL is returned.

for (i = 0; i < NoofRegs; i++)

{

if ((registers.reg_l[i] = (clint *) malloc (CLINTMAXBYTE)) == NULL)

{

for (j = 0; j < i; j++)

{

free (registers.reg_l[j]);

}

return E_CLINT_MAL; /* error: malloc */

}

}

return E_CLINT_OK;

}

The function destroy_reg_l() is essentially the inverse of the function
create_reg_l(): First, the content of the registers is cleared by overwriting them

158

Dynamic Registers

with zeros. Then each individual register is returned by means of free(). Finally,
memory pointed to by registers.reg_l is released.

static void

destroy_reg_l (void)

{

unsigned i;

for (i = 0; i < registers.noofregs; i++)

{

memset (registers.reg_l[i], 0, CLINTMAXBYTE);

free (registers.reg_l[i]);

}

free (registers.reg_l);

}

Now come the public functions for register management. With the function
create_reg_l() we create a set of registers consisting of the number of individual
registers determined in NoofRegs. This takes place via a call to the private function
allocate_reg_l().

Function: Allocation of a set of registers of type CLINT

Syntax: int create_reg_l (void);

Return: E_CLINT_OK if allocation is ok
E_CLINT_MAL if error with malloc()

int

create_reg_l (void)

{

int error = E_CLINT_OK;

if (registers.created == 0)

{

error = allocate_reg_l ();

registers.noofregs = NoofRegs;

}

if (!error)

{

++registers.created;

}

return error;

}

159

Chapter 9

The structure registers involves the variable registers.created, which
is used for counting the number of requested registers to be created. A call to
the function free_reg_l() described below results in the set of registers being
released only if registers.created has the value 1. Otherwise, registers.created
is simply reduced by 1. With the use of this mechanism, called a semaphore, we
manage to prevent a set of registers allocated by one function being inadvertently
released by another function. On the other hand, every function that requests the
set of registers by calling create_reg_l() is responsible for releasing it again with
free_reg_l(). Moreover, in general, one cannot assume that the registers contain
specific values after a function has been called.

The variable NoofRegs, which determines the number of registers created by
create_reg_l(), can be changed by the function set_noofregs_l(). This change,
however, remains in effect only until the currently allocated set of registers is
released and a new set is created with create_reg_l().

Function: set number of registers

Syntax: void set_noofregs_l (unsigned int nregs);

Input: nregs (number of registers in the register bank)

void

set_noofregs_l (unsigned int nregs)

{

NoofRegs = (USHORT)nregs;

}

Now that a set of registers can be allocated, one may ask how individual
registers can be accessed. For this it is necessary to select the address field
reg_l, dynamically allocated by create_reg_l(), of the above-defined structure
clint_reg. This will be accomplished with the help of the function get_reg_l(),
introduced below, which returns a pointer to an individual register of the set
of registers, provided that the specified ordinal number denotes an allocated
register.

160

Dynamic Registers

Function: output a pointer to a register

Syntax: clint * get_reg_l (unsigned int reg);

Input: reg (register number)

Return: pointer to the desired register reg, if it is allocated
NULL if the register is unallocated

clint *

get_reg_l (unsigned int reg)

{

if (!registers.created || (reg >= registers.noofregs))

{

return (clint *) NULL;

}

return registers.reg_l[reg];

}

Since the set of registers can be changed dynamically with respect to its size
and location in memory, it is not recommended that addresses of registers once
read be stored for further use. It is much to be preferred that one obtain the
register addresses afresh for each use. In the file flint.h are to be found several
predefined macros of the form

#define r0_l get_reg_l(0);

with the help of which the registers can be invoked, without additional syntactic
effort, by their actual current addresses. With the function purge_reg_l(),
introduced below, an individual register of the set can be cleared by overwriting it.

Function: Clear a CLINT register of the register bank by completely
overwriting it with zeros

Syntax: int purge_reg_l (unsigned int reg);

Input: reg (register number)

Return: E_CLINT_OK if deletion is ok
E_CLINT_NOR if register is unallocated

161

Chapter 9

int

purge_reg_l (unsigned int reg)

{

if (!registers.created || (reg >= registers.noofregs))

{

return E_CLINT_NOR;

}

memset (registers.reg_l[reg], 0, CLINTMAXBYTE);

return E_CLINT_OK;

}

Just as an individual register can be cleared with the function purge_reg_l(),
with the function purgeall_reg_l() the complete set of registers can be cleared
by overwriting.

Function: clear all CLINT registers by overwriting with zeros

Syntax: int purgeall_reg_l (void);

Return: E_CLINT_OK if deletion is ok
E_CLINT_NOR if registers are not allocated

int

purgeall_reg_l (void)

{

unsigned i;

if (registers.created)

{

for (i = 0; i < registers.noofregs; i++)

{

memset (registers.reg_l[i], 0, CLINTMAXBYTE);

}

return E_CLINT_OK;

}

return E_CLINT_NOR;

}

It is good programming style and etiquette to release allocated memory
when it is no longer needed. An existing set of registers can be released with the
function free_reg_l(). However, as we have explained above, the semaphore

162

Dynamic Registers

registers.created in the structure registers must have been set to 1 before the
allocated memory is actually released:

void

free_reg_l (void)

{

if (registers.created == 1)

{

destroy_reg_l ();

}

if (registers.created)

{

--registers.created;

}

}

We now present three functions that create, clear, and again free individual
CLINT registers, in analogy to the management of the complete set of registers.

Function: allocation of a register of type CLINT

Syntax: clint * create_l (void);

Return: pointer to allocated registers, if allocation ok
NULL if error with malloc()

clint *

create_l (void)

{

return (clint *) malloc (CLINTMAXBYTE);

}

It is important to treat the pointer returned by create_l() in such a way that
it does not “become lost,” since otherwise, it is impossible to access the created
registers. The sequence

clint * do_not_overwrite_l;

clint * lost_l;

/* . . . */

do_not_overwrite _l = create_l();

/* . . . */

do_not_overwrite _l = lost_l;

163

Chapter 9

allocates a register and stores its address in a variable with the suggestive name
do_not_overwrite_l. If this variable contains the only reference to the register,
then after the last instruction,

do_not_overwrite _l = lost_l;

the register is lost, which is a typical error in the jungle of pointer management.
A register can, like any other CLINT variable, be cleared with the function

purge_l() that follows, whereby the memory reserved for the specified register is
overwritten with zeros and thereby cleared.

Function: clear a CLINT object by completely overwriting with zeros

Syntax: void purge_l (CLINT n_l);

Input: n_l (CLINT object)

void

purge_l (CLINT n_l)

{

if (NULL != n_l)

{

memset (n_l, 0, CLINTMAXBYTE);

}

}

The following function additionally releases the memory allocated for the
specified register after it has been cleared. Afterwards, the register can no longer
be accessed.

Function: clear and release a CLINT register

Syntax: void free_l (CLINT reg_l);

Input: reg_l (pointer to a CLINT register)

164

Dynamic Registers

void

free_l (CLINT reg_l)

{

if (NULL != reg_l)

{

memset (reg_l, 0, CLINTMAXBYTE);

free (n_l);

}

}

165

CHAPTER 10

Basic Number-Theoretic

Functions

I am dying to hear about it, since I always thought
number theory was the Queen of Mathematics—the
purest branch of mathematics—the one branch of
mathematics which has NO applications!

—D. R. Hofstadter, Gödel, Escher, Bach

NOW THAT WE ARE FITTED out with a sturdy tool box of arithmetic functions that we
developed in the previous chapters, we turn our attention to the implementation
of several fundamental algorithms from the realm of number theory. The number-
theoretic functions discussed in the following chapters form a collection that
on the one hand exemplifies the application of the arithmetic of large numbers
and on the other forms a useful foundation for more complex number-theoretic
calculations and cryptographic applications. The resources provided here can be
extended in a number of directions, so that for almost every type of application
the necessary tools can be assembled with the demonstrated methods.

The algorithms on which the following implementations are based are drawn
primarily from the publications [Cohe], [HKW], [Knut], [Kran], and [Rose], where
as previously, we have placed particular value on efficiency and on as broad a
range of application as possible.

The following sections contain the minimum of mathematical theory required
to explicate the functions that we present and their possibilities for application.
We would like, after all, to have some benefit from all the effort that will be
required in dealing with this material. Those readers who are interested in a more
thoroughgoing introduction to number theory are referred to the books [Bund]
and [Rose]. In [Cohe] in particular the algorithmic aspects of number theory
are considered and are treated clearly and concisely. An informative overview of
applications of number theory is offered by [Schr], while cryptographic aspects of
number theory are treated in [Kobl].

In this chapter we shall be concerned with, among other things, the
calculation of the greatest common divisor and the least common multiple
of large numbers, the multiplicative properties of residue class rings, the
identification of quadratic residues and the calculation of square roots in

167

Chapter 10

residue class rings, the Chinese remainder theorem for solving systems of linear
congruences, and the identification of prime numbers. We shall supplement the
theoretical foundations of these topics with practical tips and explanations, and
we shall develop several functions that embody a realization of the algorithms
that we describe and make them usable in many practical applications.

10.1 Greatest Common Divisor

That schoolchildren are taught to use the method of prime factorization
rather than the more natural method of the Euclidean algorithm to compute
the greatest common divisor of two integers is a disgrace to our system of
education.

—W. Heise, P. Quattrocci, Information and Coding Theory

Stated in words, the greatest common divisor (gcd) of integers a and b is the
positive divisor of a and b that is divisible by all common divisors of a and b.
The greatest common divisor is thereby uniquely determined. In mathematical
notation the greatest common divisor d of two integers a and b, not both zero, is
defined as follows: d = gcd(a, b) if d > 0, d | a, d | b, and if for some integer d′

we have d′ | a and d′ | b, then we also have d′ | d.
It is convenient to extend the definition to include

gcd(0, 0) := 0.

The greatest common divisor is thus defined for all pairs of integers, and in
particular for the range of integers that can be represented by CLINT objects. The
following rules hold:

(i) gcd(a, b) = gcd(b, a),

(ii) gcd(a, 0) = |a| (the absolute value of a),

(iii) gcd(a, b, c) = gcd(a, gcd(b, c)),

(iv) gcd(a, b) = gcd(−a, b),

(10.1)

of which, however, only (i)–(iii) are relevant for CLINT objects.
It is obligatory first to consider the classical procedure for calculating the

greatest common divisor according to the Greek mathematician Euclid (third
century B.C.E.), which Knuth respectfully calls the grandfather of all algorithms
(definitely see [Knut], pages 316 ff.). The Euclidean algorithm consists in a
sequence of divisions with remainder, beginning with the reduction of a mod b,
then b mod (a mod b), and so on until the remainder vanishes.

168

Basic Number-Theoretic Functions

Euclidean algorithm for calculating gcd(a, b) for a, b ≥ 0

1. If b = 0, output a and terminate the algorithm.

2. Set r ← a mod b, a ← b, b ← r, and go to step 1.

For natural numbers a1, a2 the calculation of the greatest common divisor
according to the Euclidean algorithm goes as follows:

a1 = a2q1 + a3, 0 ≤ a3 < a2,

a2 = a3q2 + a4, 0 ≤ a4 < a3,

a3 = a4q3 + a5, 0 ≤ a5 < a4,

...

am−2 = am−1qm−2 + am, 0 ≤ am < am−1,

am−1 = amqm−1.

Result:

gcd(a1, a2) = am.

We compute as an example gcd(723, 288):

723 = 288 · 2 + 147,

288 = 147 · 1 + 141,

147 = 141 · 1 + 6,

141 = 6 · 23 + 3,

6 = 3 · 2.

Result:

gcd(723, 288) = 3.

This procedure works very well for calculating the greatest common divisor
or for letting a computer program do the work. The corresponding program is
short, quick, and, due to its brevity, provides few opportunities for error.

A consideration of the following properties of integers and of the greatest
common divisor indicates—at least theoretically—possibilities for improvement
for programming this procedure:

(i) a and b are even ⇒ gcd(a, b) = gcd(a/2, b/2) · 2.

(ii) a is even and b is odd ⇒ gcd(a, b) = gcd(a/2, b).

(iii) gcd(a, b) = gcd(a − b, b).

(iv) a and b are odd ⇒ a − b is even and |a − b| < max(a, b).

(10.2)

169

Chapter 10

The advantage of the following algorithm based on these properties is
that it uses only size comparisons, subtractions, and shifts of CLINT objects,
operations that do not require a great deal of computational time and for which
we use efficient functions; above all, we need no divisions. The binary Euclidean
algorithm for calculating the greatest common divisor can be found in almost the
identical form in [Knut], Section 4.5.2, Algorithm B, and in [Cohe], Section 1.3,
Algorithm 1.3.5.

Binary Euclidean algorithm for calculating gcd(a, b) for a, b ≥ 0

1. If a < b, exchange the values of a and b. If b = 0, output a and terminate
the algorithm. Otherwise, set k ← 0, and as long as a and b are both even,
set k ← k + 1, a ← a/2, b ← b/2. (We have exhausted property (i); a and b

are now no longer both even.)

2. As long as a is even, set repeatedly a ← a/2 until a is odd. Or else, if b is
even, set repeatedly b ← b/2 until b is odd. (We have exhausted property
(ii); a and b are now both odd.)

3. Set t ← (a − b)/2. If t = 0, output 2ka and terminate the algorithm. (We
have used up properties (ii), (iii), and (iv).)

4. As long as t is even, set repeatedly t ← t/2, until t is odd. If t > 0, set a ← t;
otherwise, set b ← −t; and go to step 3.

This algorithm can be translated step for step into a programmed function,
where we take the suggestion from [Cohe] to execute in step 1 an additional
division with remainder and set r ← a mod b, a ← b, and b ← r. We thereby
equalize any size differences between the operands a and b that could have an
adverse effect on the running time.

Function: greatest common divisor

Syntax: void gcd_l (CLINT aa_l, CLINT bb_l, CLINT cc_l);

Input: aa_l, bb_l (operands)

Output: cc_l (greatest common divisor)

170

Basic Number-Theoretic Functions

void

gcd_l (CLINT aa_l, CLINT bb_l, CLINT cc_l)

{

CLINT a_l, b_l, r_l, t_l;

unsigned int k = 0;

int sign_of_t;

Step 1: If the arguments are unequal, the smaller argument is copied to b_l. If b_l
is equal to 0, then a_l is output as the greatest common divisor.

if (LT_L (aa_l, bb_l))

{

cpy_l (a_l, bb_l);

cpy_l (b_l, aa_l);

}

else

{

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

}

if (EQZ_L (b_l))

{

cpy_l (cc_l, a_l);

return;

}

The following division with remainder serves to scale the larger operand a_l. Then
the powers of two are removed from a_1 and b_1.

(void) div_l (a_l, b_l, t_l, r_l);

cpy_l (a_l, b_l);

cpy_l (b_l, r_l);

if (EQZ_L (b_l))

{

cpy_l (cc_l, a_l);

return;

}

171

Chapter 10

while (ISEVEN_L (a_l) && ISEVEN_L (b_l))

{

++k;

shr_l (a_l);

shr_l (b_l);

}

Step 2.

while (ISEVEN_L (a_l))

{

shr_l (a_l);

}

while (ISEVEN_L (b_l))

{

shr_l (b_l);

}

Step 3: Here we have the case that the difference of a_l and b_l can be negative.
This situation is caught by a comparison between a_l and b_l. The absolute value
of the difference is stored in t_l, and the sign of the difference is stored in the
integer variable sign_of_t. If t_l == 0. Then the algorithm is terminated.

do

{

if (GE_L (a_l, b_l))

{

sub_l (a_l, b_l, t_l);

sign_of_t = 1;

}

else

{

sub_l (b_l, a_l, t_l);

sign_of_t = -1;

}

if (EQZ_L (t_l))

{

cpy_l (cc_l, a_l); /* cc_l <- a */

shift_l (cc_l, (long int) k); /* cc_l <- cc_l*2**k */

return;

}

172

Basic Number-Theoretic Functions

Step 4: Depending on the sign of t_l, we have t_l allocated to a_l or b_l.

while (ISEVEN_L (t_l))

{

shr_l (t_l);

}

if (-1 == sign_of_t)

{

cpy_l (b_l, t_l);

}

else

{

cpy_l (a_l, t_l);

}

}

while (1);

}

Although the operations used are all linear in the number of digits of the
operands, tests show that the simple two-line greatest common divisor on page
168 is hardly slower as a FLINT/C function than this variant. Somewhat surprised
at this, we ascribe this situation, for lack of better explanation, to the efficiency of
our division routine, as well as to the fact that the latter version of the algorithm
requires a somewhat more complex structure.

The calculation of the greatest common divisor for more than two arguments
can be carried out with multiple applications of the function gcd_l(), since as we
showed above in (10.1)(iii) the general case can be reduced recursively to the case
with two arguments:

gcd (n1, . . . , nr) = gcd (n1, gcd (n2, . . . , nr)) . (10.3)

With the help of the greatest common divisor it is easy to determine the least
common multiple (lcm) of two CLINT objects a_l and b_l. The least common
multiple of integers n1, . . . , nr, all nonzero, is defined as the smallest element
of the set

{
m ∈ N+ | ni divides m, i = 1, . . . , r

}
. Since it contains at least the

product
∏r

i=1 |ni|, this set is nonempty. For two arguments a, b ∈ Z the least
common multiple can be computed as the absolute value of their product divided
by the greatest common divisor:

lcm(a, b) · gcd(a, b) = |ab|. (10.4)

We shall use this relation for the calculation of the least common multiple of a_l
and b_l.

173

Chapter 10

Function: least common multiple (lcm)

Syntax: int lcm_l (CLINT a_l, CLINT b_l, CLINT c_l);

Input: a_l, b_l (operands)

Output: c_l (lcm)

Return: E_CLINT_OK if all ok
E_CLINT_OFL if overflow

int

lcm_l (CLINT a_l, CLINT b_l, CLINT c_l)

{

CLINT g_l, junk_l;

if (EQZ_L (a_l) || EQZ_L (b_l))

{

SETZERO_L (c_l);

return E_CLINT_OK;

}

gcd_l (a_l, b_l, g_l);

div_l (a_l, g_l, g_l, junk_l);

return (mul_l (g_l, b_l, c_l));

}

It holds for the least common multiple as well that its calculation for more
than two arguments can be recursively reduced to the case of two arguments:

lcm (n1, . . . , nr) = lcm (n1, lcm (n2, . . . , nr)) . (10.5)

Formula (10.4) above does not, however, hold for more than two numbers:
The simple fact that lcm(2, 2, 2) · gcd(2, 2, 2) = 4 �= 23 can serve as a
counterexample. There does exist, however, a generalization of this relation
between the greatest common divisor and the least common multiple for more
than two arguments. Namely, we have

lcm(a, b, c) · gcd(ab, ac, bc) = |abc| (10.6)

and also

gcd(a, b, c) · lcm(ab, ac, bc) = |abc|. (10.7)

The special relationship between the greatest common divisor and the least
common multiple is expressed in additional interesting formulas, demonstrating
an underlying duality, in the sense that exchanging the roles of greatest common
divisor and least common multiple does not affect the validity of the formula, just

174

Basic Number-Theoretic Functions

as in (10.6) and (10.7). We have the distributive law for gcd and lcm, namely,

gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)), (10.8)

lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)), (10.9)

and to top it all off we have (see [Schr], Section 2.4)

gcd(lcm(a, b), lcm(a, c), lcm(b, c)) = lcm(gcd(a, b), gcd(a, c), gcd(b, c)).

(10.10)

Aside from the obvious beauty of these formulas on account of their fearful
symmetry, they also serve to provide excellent tests for functions that deal with
greatest common divisor and least common multiple, where the arithmetic
functions used are implicitly tested as well (on the subject of testing, see
Chapter 12).

Don’t blame testers for finding your bugs.

—Steve Maguire

10.2 Multiplicative Inverse in Residue Class Rings

In contrast to the arithmetic of whole numbers, in residue class rings it is possible,
under certain assumptions, to calculate with multiplicative inverses. Namely,
many elements ā ∈ Zn, not necessarily all, possess a suitable x̄ ∈ Zn such that
ā · x̄ = 1̄. This is equivalent to the assertion that the congruence a · x ≡ 1 mod n

and the statement a · x mod n = 1 hold. For example, in Z14, 3̄ and 5̄ are
multiplicative inverses of each other, since 15 mod 14 = 1.

The existence of multiplicative inverses in Zn is not obvious. In Chapter
5, on page 69, it was determined only that (Zn, ·) is a finite commutative
semigroup with unit 1̄. A sufficient condition for an element ā ∈ Zn to possess a
multiplicative inverse can be obtained with the help of the Euclidean algorithm:
The second-to-last equation in the Euclidean algorithm procedure on page 169,

am−2 = am−1 · qm−2 + am, 0 ≤ am < am−1,

can be transformed into

am = am−2 − am−1 · qm−2. (1)

If we continue in this fashion, then we obtain in succession

am−1 = am−3 − am−2 · qm−3, (2)

am−2 = am−4 − am−3 · qm−4, (3)

...

a3 = a1 − a2 · q1. (m − 2)

175

Chapter 10

If in (1) we replace am−1 by the right side of equation (2), then we obtain

am = am−2 − qm−2 (am−3 − qm−3 · am−2) ,

or

am = (1 + qm−3 · qm−2) am−2 − qm−2 · am−3.

Proceeding thus one obtains in equation (m − 2) an expression for am as a
linear combination of the starting values a1 and a2 with factors composed of the
quotients qi of the Euclidean algorithm.

In this way we obtain a representation of gcd(a, b) = u · a + v · b =: g as
a linear combination of a and b with integer factors u and v, where u modulo
a/g and v modulo b/g are uniquely determined. If for an element ā ∈ Zn we
now have gcd(a, n) = 1 = u · a + v · n, then it follows immediately that
1 ≡ u · a mod n, or, equivalently, ā · ū = 1̄. In this case u modulo n is uniquely
determined, and ū is consequently the inverse of ā in Zn. We have thus found a
condition for the existence of a multiplicative inverse of an element in the residue
class ring Zn, and we have simultaneously obtained a procedure for constructing
such an inverse, which shall demonstrate with the following example. From the
calculation above of gcd(723, 288) we obtain by rearrangement

3 = 141 − 6 · 23,

6 = 147 − 141 · 1,

141 = 288 − 147 · 1,

147 = 723 − 288 · 2.

From this we obtain our representation of the greatest common divisor:

3 = 141 − 23 · (147 − 141) = 24 · 141 − 23 · 147

= 24 · (288 − 147) − 23 · 147 = −47 · 147 + 24 · 288

= −47 · (723 − 2 · 288) + 24 · 288 = −47 · 723 + 118 · 288.

A fast procedure for calculating this representation of the greatest common
divisor would consist in storing the quotients qi (as is done here on the page)
so that they would be available for the backward calculation of the desired
factors. Because of the high memory requirement, such a procedure would
not be practicable. It is necessary to find a compromise between memory
requirements and computational time, which is a typical tradeoff in the design
and implementation of algorithms. To obtain a realistic procedure we shall
further alter the Euclidean algorithm in such a way that the representation of the
greatest common divisor as a linear combination can be calculated along with
the greatest common divisor itself. For ā in Zn there exists an inverse x̄ ∈ Zn if
gcd(a, n) = 1. The converse of this statement can also be demonstrated: If ā in
Zn has a multiplicative inverse, then gcd(a, n) = 1 (one may find a mathematical
proof of this statement in [Nive], the proof to Theorem 2.13). We see, then, that

176

Basic Number-Theoretic Functions

here the issue of having no common factors (that is, being relatively prime) is of
great significance: If we consider the subset Z×

n := { ā ∈ Zn | gcd(a, n) = 1 }
of those elements ā ∈ Zn for which a has no common factor with n other than
1, then with the operation of multiplication one has an abelian group, which we
have denoted by

(
Z×

n , ·) already in Chapter 5. The properties of (Zn, ·) as an
abelian semigroup with unit,

• associativity of (Zn, ·),

• commutativity of (Zn, ·),

• existence of a unit: For all ā ∈ Zn one has ā · 1̄ = ā,

carry over directly to
(
Z×

n , ·). The existence of multiplicative inverses holds
because we have selected precisely those elements that have such inverses, so
that we have now only to demonstrate closure, namely, that for two elements ā

and b̄ in Z×
n the product ā · b̄ is again an element of Z×

n . Closure is easily proved:
If a and b are relatively prime to n, then the product of a and b cannot have a
nontrivial factor in common with n, so that ā · b̄ must belong to the set Z×

n . The
group

(
Z×

n , ·) is called the group of residue classes relatively prime to n.
The number of elements in Z×

n , or, equivalently, the number of integers
relatively prime to n in the set { 1, 2, . . . , n − 1 }, is given by the Euler phi
function φ(n). For n = pe1

1 pe2
2 · · · pet

t written as a product of distinct primes
p1, . . . , pt to positive powers ei, we have

φ(n) =
t∏

i=1

pei−1
i (pi − 1)

(see, for example, [Nive], Sections 2.1 and 2.4). This means, for example, that Z×
p

has p − 1 elements if p is a prime number.1

If gcd(a, n) = 1, then according to Euler’s generalization of the little
theorem of Fermat,2 aφ(n) ≡ 1 mod n, so that the calculation of aφ(n)−1 mod n

determines the multiplicative inverse of ā. For example, if n = p · q with
prime numbers p �= q and a ∈ Z×

n , then a(p−1)(q−1) ≡ 1 mod n, and
therefore a(p−1)(q−1)−1 mod n is the inverse of a modulo n. However, this
calculation requires, even in the advantageous case that φ(n) is known, a
modular exponentiation whose computational cost is O

(
log3 n

)
.

We do significantly better, namely with a computational cost of O
(
log2 n

)
and without knowing the value of the Euler phi function, by integrating the

1 In this case Zp is in fact a field, since both (Zp, +) and
(
Z×

p , ·) = (Zp \ {0}, ·) are abelian
groups (see [Nive], Section 2.11). Finite fields have application, for example, to coding theory,
and they play an important role in modern cryptography.

2 The little Fermat theorem states that for a prime number p and for any integer a one has
ap ≡ a mod p. If p is not a divisor of a, then ap−1 ≡ 1 mod p (see [Bund], Chapter 2, §3.3).
The little theorem of Fermat and its generalization by Euler are among the most important
theorems of number theory.

177

Chapter 10

above constructive procedure into the Euclidean algorithm. For this we introduce
variables u and v, with the help of which the invariants

ai = ui · a + vi · b
are maintained in the individual steps of the procedure presented on page 169, in
which we have

ai+1 = ai−1 mod ai,

and these invariants provide us at the end of the algorithm the desired
representation of the greatest common divisor as a linear combination of a and b.
Such a procedure is called an extended Euclidean algorithm.

The following extension of the Euclidean algorithm is taken from [Cohe],
Section 1.3, Algorithm 1.3.6. The variable v in the above invariant condition is
employed only implicitly, and only at the end is it calculated as v := (d−u · a)/b.

Extended Euclidean algorithm for calculating gcd(a, b) and factors u and v

such that gcd(a, b) = u · a + v · b, 0 ≤ a, b

1. Set u ← 1, d ← a. If b = 0, set v ← 0 and terminate the algorithm;
otherwise, set v1 ← 0 and v3 ← b.

2. Calculate q and t3 with d = q · v3 + t3 and t3 < v3 by a division with
remainder, and set t1 ← u− q · v1, u ← v1, d ← v3, v1 ← t1, and v3 ← t3.

3. If v3 = 0, set v ← (d − u · a)/b and terminate the algorithm; otherwise, go
to step 2.

The following function xgcd_l() uses the auxiliary functions sadd() and
ssub() for the (exceptional) calculation of a signed addition and subtraction. Each
of these functions contains a prelude that deals with the sign as an argument
to be passed, and then calls the kernel functions add() and sub() (cf. Chapter
5), which execute addition and subtraction, respectively, without consideration
of overflow or underflow. Based on the division function div_l() for natural
numbers there exists the auxiliary function smod(), which forms the residue
a mod b with a, b ∈ Z, b > 0. These auxiliary functions will be needed again
later, in connection with the application of the Chinese remainder theorem in the
function chinrem_l() (see Section 10.4.3). In a possible extension of the FLINT/C
library for processing integers they could be used as models for handling signs.

A hint for using the following function is in order: If the arguments satisfy
a, b ≥ Nmax/2, an overflow in the factors u and v, which are returned as the
result of xgcd_l(), can occur. In such cases enough space must be reserved for
holding u and v, which are then declared by the calling program as type CLINTD or
CLINTQ as required (see Chapter 2).

178

Basic Number-Theoretic Functions

Function: extended Euclidean algorithm for calculating the
representation gcd(a, b) = u · a + v · b for natural
numbers a, b

Syntax: void xgcd_l (CLINT a_l, CLINT b_l, CLINT g_l,

CLINT u_l, int *sign_u,

CLINT v_l, int *sign_v);

Input: a_l, b_l (operands)
Output: g_l (gcd of a_l and b_l)

u_l, v_l (factors of a_l and b_l in the representation
of g_l)

*sign_u (sign of u_l)
*sign_v (sign of v_l).

void

xgcd_l (CLINT a_l, CLINT b_l, CLINT d_l, CLINT u_l, int *sign_u, CLINT v_l,

int *sign_v)

{

CLINT v1_l, v3_l, t1_l, t3_l, q_l;

CLINTD tmp_l, tmpu_l, tmpv_l;

int sign_v1, sign_t1;

Step 1: Initialization.

cpy_l (d_l, a_l);

cpy_l (v3_l, b_l);

if (EQZ_L (v3_l))

{

SETONE_L (u_l);

SETZERO_L (v_l);

*sign_u = 1;

*sign_v = 1;

return;

}

SETONE_L (tmpu_l);

*sign_u = 1;

SETZERO_L (v1_l);

sign_v1 = 1;

Step 2: Main loop; calculation of the greatest common divisor and of u.

179

Chapter 10

while (GTZ_L (v3_l))

{

div_l (d_l, v3_l, q_l, t3_l);

mul_l (v1_l, q_l, q_l);

sign_t1 = ssub (tmpu_l, *sign_u, q_l, sign_v1, t1_l);

cpy_l (tmpu_l, v1_l);

*sign_u = sign_v1;

cpy_l (d_l, v3_l);

cpy_l (v1_l, t1_l);

sign_v1 = sign_t1;

cpy_l (v3_l, t3_l);

}

Step 3: Calculation of v and the end of the procedure.

mult (a_l, tmpu_l, tmp_l);

*sign_v = ssub (d_l, 1, tmp_l, *sign_u, tmp_l);

div_l (tmp_l, b_l, tmpv_l, tmp_l);

cpy_l (u_l, tmpu_l);

cpy_l (v_l, tmpv_l);

return;

}

Since dealing with negative numbers within the FLINT/C package requires
additional cost, we arrive at the observation that for calculating the inverse of a
residue class ā ∈ Z×

n only the one factor u of the representation 1 = u · a + v · n
of the greatest common divisor is necessary. A positive representative for u can
always be found, and we can thereby spare ourselves the need to deal with
negative numbers. The following algorithm is a variant of the previous one that
makes use of this observation and eliminates entirely the calculation of v.

Extended Euclidean algorithm for calculating gcd(a, n) and the multiplicative
inverse of a mod n, 0 ≤ a, 0 < n

1. Set u ← 1, g ← a, v1 ← 0, and v3 ← n.

2. Calculate q, t3 with g = q · v3 + t3 and t3 < v3 by division with remainder
and set t1 ← u − q · v1 mod n, u ← v1, g ← v3, v1 ← t1, v3 ← t3.

3. If v3 = 0, output g as gcd(a, n) and u as the inverse of a mod n and
terminate the algorithm; otherwise, return to step 2.

The modular step t1 ← u − q · v1 mod n ensures that t1, v1, and u do not
become negative. At the end we have u ∈ { 1, . . . , n − 1 }. The coding of the
algorithm leads us to the following function.

180

Basic Number-Theoretic Functions

Function: calculation of the multiplicative inverse in Zn

Syntax: void inv_l (CLINT a_l, CLINT n_l, CLINT g_l, CLINT i_l);

Input: a_l, n_l (operands)
Output: g_l (gcd of a_l and n_l)

i_l (inverse of a_l mod n_l, if defined)

void

inv_l (CLINT a_l, CLINT n_l, CLINT g_l, CLINT i_l)

{

CLINT v1_l, v3_l, t1_l, t3_l, q_l;

Test of the operands for 0. If one of the operands is zero, then there does not exist
an inverse, but there does exist a greatest common divisor (cf. page 168). The result
variable i_l is then undefined, which is indicated by being set to zero.

if (EQZ_L (a_l))

{

if (EQZ_L (n_l))

{

SETZERO_L (g_l);

SETZERO_L (i_l);

return;

}

else

{

cpy_l (g_l, n_l);

SETZERO_L (i_l);

return;

}

}

else

{

if (EQZ_L (n_l))

{

cpy_l (g_l, a_l);

SETZERO_L (i_l);

return;

}

}

181

Chapter 10

Step 1: Initialization of the variables.

cpy_l (g_l, a_l);

cpy_l (v3_l, n_l);

SETZERO_L (v1_l);

SETONE_L (t1_l);

do

{

Step 2: With the test in GTZ_L (t3_l) after the division an unnecessary call to
mmul_l() and msub_l() is avoided in the last run through the loop. The assignment
to the result variable i_l is not carried out until the end.

div_l (g_l, v3_l, q_l, t3_l);

if (GTZ_L (t3_l))

{

mmul_l (v1_l, q_l, q_l, n_l);

msub_l (t1_l, q_l, q_l, n_l);

cpy_l (t1_l, v1_l);

cpy_l (v1_l, q_l);

cpy_l (g_l, v3_l);

cpy_l (v3_l, t3_l);

}

}

while (GTZ_L (t3_l));

Step 3: As the last requisite assignment we take the greatest common divisor from
the variable v3_l, and if the greatest common divisor is equal to 1, we take the
inverse to a_l from the variable v1_l.

cpy_l (g_l, v3_l);

if (EQONE_L (g_l))

{

cpy_l (i_l, v1_l);

}

else

{

SETZERO_L (i_l);

}

}

182

Basic Number-Theoretic Functions

10.3 Roots and Logarithms

In this section we shall develop functions for calculating the integer part of square
roots and logarithms to base 2 of CLINT objects. To this end we first consider
the latter of these two functions, since we will need it for the first of them: For
a natural number a we are seeking a number e for which 2e ≤ a < 2e+1. The
number e = �log2 a� is the integer part of the logarithm of a to the base 2 and
is easily obtained from the number of relevant bits of a, as determined from the
following function ld_l(), reduced by 1. The function ld_l(), which is used in
many other functions of the FLINT/C package, disregards leading zeros and counts
only the relevant binary digits of a CLINT object.

Function: number of relevant binary digits of a CLINT object
Syntax: unsigned int ld_l (CLINT n_l);

Input: n_l (operand)
Return: number of relevant binary digits of n_l.

unsigned int

ld_l (CLINT n_l)

{

unsigned int l;

USHORT test;

Step 1: Determine the number of relevant digits to the base B.

l = (unsigned int) DIGITS_L (n_l);

while (n_l[l] == 0 && l > 0)

{

--l;

}

if (l == 0)

{

return 0;

}

Step 2: Determine the number of relevant bits of the most-significant digit. The
macro BASEDIV2 defines the value of a digit that has a 1 in the most-significant bit
and otherwise contains 0 (that is, 2BITPERDGT−1).

183

Chapter 10

test = n_l[l];

l <<= LDBITPERDGT;

while ((test & BASEDIV2) == 0)

{

test <<= 1;

--l;

}

return l;

}

We then calculate the integer part of the square root of a natural number
based on the classical method of Newton (also known as the Newton–Raphson
method), which is used for determining the zeros of a function by successive ap-
proximation: We assume that a function f (x) is twice continuously differentiable
on an interval [a, b], that the first derivative f ′(x) is positive on [a, b], and that we
have

max
[a,b]

∣∣∣∣f(x) · f ′′(x)

f ′(x)2

∣∣∣∣ < 1.

Then if xn ∈ [a, b] is an approximation for a number r with f(r) = 0, then
xn+1 := xn − f (xn) /f ′ (xn) is a better approximation of r. The sequence
defined in this way converges to the zero r of f (cf. [Endl], Section 7.3).

If we set f(x) := x2 − c with c > 0, then f(x) for x > 0 satisfies the above
conditions for the convergence of the Newton method, and with

xn+1 := xn − f (xn)

f ′ (xn)
=

1

2

(
xn +

c

xn

)

we obtain a sequence that converges to
√

c. Due to its favorable convergence
behavior Newton’s method is an efficient procedure for approximating square
roots of rational numbers.

Since for our purposes we are interested in only the integer part r of
√

c,
for which r2 ≤ c < (r + 1)2 holds, where c itself is assumed to be a natural
number, we can limit ourselves to computing the integer parts of the elements of
the sequence of approximations. We begin with a number x1 >

√
c and continue

until we obtain a value greater than or equal to its predecessor, at which point the
predecessor is the desired value. It is naturally a good idea to begin with a number
that is as close to

√
c as possible. For a CLINT object with value c and e := �log2 c�

we have that
⌊
2(e+2)/2

⌋
is always greater than

√
c, and furthermore, we can

easily calculate it with the function ld_l(). The algorithm goes as follows.

184

Basic Number-Theoretic Functions

Algorithm for determining the integer part r of the square root of a natural
number n > 0

1. Set x ←
⌊
2(e+2)/2

⌋
with e := �log2 n�.

2. Set y ← �(x + n/x) /2�. If y < x, set x ← y and repeat step 2.

3. Output x and terminate the algorithm.

The proof of the correctness of this algorithm is not particularly difficult.
The value of x decreases monotonically, and it is an integer and always positive,
so that the algorithm certainly terminates. When this occurs, the condition
y = �(x + n/x) /2� ≥ x holds, and we assume that x ≥ r + 1. From
x ≥ r + 1 >

√
n it follows that x2 > n, or n − x2 < 0.

However,

y − x =

⌊
(x + n/x)

2

⌋
− x =

⌊(
n − x2

)
2x

⌋
< 0,

in contradiction to the condition for terminating the process. Our assertion is
therefore false, and we must have x = r. The following function, for determining
the integer part of the square root, uses integer division with remainder for the
operation y ← �(x + c/x) /2� without putting the validity of the procedure at
risk.

Function: integer part of the square root of a CLINT object
Syntax: void iroot_l(CLINT n_l, CLINT floor_l);

Input: n_l (operand > 0)
Output: floor_l (integer square root of n_l)

void

iroot_l (CLINT n_l, CLINT floor_l)

{

CLINT x_l, y_l, r_l;

unsigned l;

With the function ld_l() and a shift operation l is set to the value
�(�log2 (n_l)� + 2) /2� , and y_l is set to 2l with the help of setbit_l().

185

Chapter 10

l = (ld_l (n_l) + 1) >> 1;

SETZERO_L (y_l);

setbit_l (y_l, l);

do

{

cpy_l (x_l, y_l);

Steps 2 and 3. Newton approximation and checking for termination.

div_l (n_l, x_l, y_l, r_l);

add_l (y_l, x_l, y_l);

shr_l (y_l);

}

while (LT_L (y_l, x_l));

cpy_l (floor_l, x_l);

}

A generalization of the procedure makes possible the calculation of the

integer part of the bth root of n, i.e.,
⌊
n1/b

⌋
, for b > 1 (see [CrPa], page 3):

Algorithm for calculating the integer part of a bth root

1. Set x ← 2�ld_l(n)/b�.

2. Set y ← ⌊(
(b − 1)x +

⌊
n/xb−1

⌋)
/b
⌋

. If y < x, set x ← y and repeat
step 2.

3. Output x as result and terminate the algorithm.

The implementation of the algorithm uses exponentiation modulo Nmax for
the integer power in xb−1 in step 2:

Function: integer part of the bth root of a CLINT object n_l
Syntax: int

introot_l(CLINT n_l, USHORT b, CLINT floor_l);

Input: n_l, b (operands, b > 0)
Output: floor_l (integer part of the bth root of n_l)

186

Basic Number-Theoretic Functions

int

introot_l (CLINT n_l, USHORT b, CLINT floor_l)

{

CLINT x_l, y_l, z_l, junk_l, max_l;

USHORT l;

if (0 == b)

{

return -1;

}

if (EQZ_L (n_l))

{

SETZERO_L (floor_l);

return E_CLINT_OK;

}

if (EQONE_L (n_l))

{

SETONE_L (floor_l);

return E_CLINT_OK;

}

if (1 == b)

{

assign_l (floor_l, n_l);

return E_CLINT_OK;

}

if (2 == b)

{

iroot_l (n_l, floor_l);

return E_CLINT_OK;

}

/* step 1: set x_l ← 2�ld_l(n_l)/b� */

setmax_l (max_l);

l = ld_l (n_l)/b;

if (l*b != ld_l (n_l)) ++l;

SETZERO_L (x_l);

setbit_l (x_l, l);

187

Chapter 10

/* step 2: loop to approximate the root until y_l ≥ x_l */

while (1)

{

umul_l (x_l, (USHORT)(b-1), y_l);

umexp_l (x_l, (USHORT)(b-1), z_l, max_l);

div_l (n_l, z_l, z_l, junk_l);

add_l (y_l, z_l, y_l);

udiv_l (y_l, b, y_l, junk_l);

if (LT_L (y_l, x_l))

{

assign_l (x_l, y_l);

}

else

{

break;

}

}

cpy_l (floor_l, x_l);

return E_CLINT_OK;

}

To determine whether a number n is a bth root of another number, it suffices
to raise the output value by introot_l() to the bth power and compare the result
with n. If the values are unequal, then n is clearly not a root. For square roots one
must, however, admit that this is not the most efficient method. There are criteria
that in many cases can recognize such numbers that are not squares without the
explicit calculation of root and square. Such an algorithm is given in [Cohe]. It
uses four tables, q11, q63, q64, and q65, in which the quadratic residues modulo
11, 63, 64, and 65 are labeled with a “1” and the quadratic nonresidues with a “0”:

q11[k] ← 0 for k = 0, . . . , 10, q11[k2 mod 11] ← 1 for k = 0, . . . , 5,

q63[k] ← 0 for k = 0, . . . , 62, q63[k2 mod 63] ← 1 for k = 0, . . . , 31,

q64[k] ← 0 for k = 0, . . . , 63, q64[k2 mod 64] ← 1 for k = 0, . . . , 31,

q65[k] ← 0 for k = 0, . . . , 64, q65[k2 mod 65] ← 1 for k = 0, . . . , 32.

From the representation of the residue class ring as the absolute smallest residue
system (cf. page 70) one sees that we obtain all squares in this way.

Algorithm for identifying an integer n > 0 as a square. In this case the square
root of n is output (from [Cohe], Algorithm 1.7.3)

1. Set t ← n mod 64. If q64[t] = 0, then n is not a square and we are done.
Otherwise, set r ← n mod (11 · 63 · 65).

188

Basic Number-Theoretic Functions

2. If q63[r mod 63] = 0, then n is not a square, and we are done.

3. If q65[r mod 65] = 0, then n is not a square, and we are done.

4. If q11[r mod 11] = 0, then n is not a square, and we are done.

5. Compute q ← �√n� using the function iroot_l(). If q2 �= n, then n is not
a square and we are done. Otherwise, n is a square, and the square root q is
output.

This algorithm appears rather strange due to the particular constants that
appear. But this can be explained: A square n has the property for any integer k

that if it is a square in the integers, then it is a square modulo k. We have used the
contrapositive: If n is not a square modulo k, then it is not a square in the integers.
By applying steps 1 through 4 above we are checking whether n is a square
modulo 64, 63, 65, or 11. There are 12 squares modulo 64, 16 squares modulo 63,
21 squares modulo 65, and 6 squares modulo 11, so that the probability that we
are in the case that a number that is not a square has not been identified by these
four steps is(

1 − 52

64

)(
1 − 47

63

)(
1 − 44

65

)(
1 − 5

11

)
=

12

64
· 16

63
· 21

65
· 6

11
=

6

715
.

It is only for these relatively rare cases that the test in step 5 is carried out.
If this test is positive, then n is revealed to be a square, and the square root of n

is determined. The order of the tests in steps 1 through 4 is determined by the
individual probabilities. We have anticipated the following function in Section 6.5
to exclude squares as candidates for primitive roots modulo p.

Function: determining whether a CLINT number n_l is a square
Syntax: unsigned int issqr_l(CLINT n_l, CLINT r_l);

Input: n_l (operand)
Output: r_l (square root of n_l, or 0 if n_l is not a square)
Return: 1 if n_l is a square

0 otherwise

static const UCHAR q11[11]=

{1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0};

static const UCHAR q63[63]=

{1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,

0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,

1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0};

189

Chapter 10

static const UCHAR q64[64]=

{1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0};

static const UCHAR q65[65]=

{1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1};

unsigned int

issqr_l (CLINT n_l, CLINT r_l)

{

CLINT q_l;

USHORT r;

if (EQZ_L (n_l))

{

SETZERO_L (r_l);

return 1;

}

The case q64[n_1 mod 64]

if (1 == q64[*LSDPTR_L (n_l) & 63])

{

r = umod_l (n_l, 45045); /* n_l mod (11·63·65) */

if ((1 == q63[r % 63]) && (1 == q65[r % 65]) && (1 == q11[r % 11]))

Note that evaluation of the previous expression takes place from left to right; cf.
[Harb], Section 7.7

{

iroot_l (n_l, r_l);

sqr_l (r_l, q_l);

if (equ_l (n_l, q_l))

{

return 1;

}

}

}

SETZERO_L (r_l);

return 0;

}

190

Basic Number-Theoretic Functions

10.4 Square Roots in Residue Class Rings

Now that we have calculated square roots of whole numbers, or their integer
parts, we turn our attention once again to residue classes, where we shall do
the same thing, that is, calculate square roots. Under certain assumptions there
exist square roots in residue class rings, though in general they are not uniquely
determined (that is, an element may have more than one square root). Put
algebraically, the question is to determine whether for an element ā ∈ Zm there
exist roots b̄ for which b̄2 = ā. In number-theoretic notation (see Chapter 5) this
would appear in congruence notation, and we would ask whether the quadratic
congruence x2 ≡ a mod m has any solutions, and if it does, what they are.

If gcd(a, m) = 1 and there exists a solution b with b2 ≡ a mod m, then a is
called a quadratic residue modulo m. If there is no solution to the congruence,
then a is called a quadratic nonresidue modulo m. If b is a solution to the
congruence, then so is b + m, and therefore we can restrict our attention to those
residues that differ modulo m.

Let us clarify the situation with the help of an example: 2 is a quadratic
residue modulo 7, since 32 ≡ 9 ≡ 2 (mod 7), while 3 is a quadratic nonresidue
modulo 5.

In the case that m is a prime number, then the determination of square
roots modulo m is easy, and in the next chapter we shall present the functions
required for this purpose. However, the calculation of square roots modulo a
composite number depends on whether the prime factorization of m is known. If
it is not, then the determination of square roots for large m is a mathematically
difficult problem in the complexity class NP (see page 103), and it is this level of
complexity that ensures the security of modern cryptographic systems.3 We shall
return to more elucidative examples in Section 10.4.4

The determination of whether a number has the property of being a quadratic
residue and the calculation of square roots are two different computational
problems each with its own particular algorithm, and in the following sections
we will provide explanations and implementations. We first consider procedures
for determining whether a number is a quadratic residue modulo a given
number. Then we shall calculate square roots modulo prime numbers, and in a
later section we shall give approaches to calculating square roots of composite
numbers.

3 The analogy between mathematical and cryptographic complexity should be approached with
caution: In [Rein] we are informed that the question of whether P
= NP has little relevance in
cryptographic practice. A polynomial algorithm for factorization with running time O

(
n20

)
would still be insuperable for even relatively small values of n, while an exponential algorithm

with running time O
(
en0.1

)
would conquer even relatively large moduli. The security of

cryptographic procedures in practice is really not dependent on whether P and NP are the
same, despite the fact that one often sees precisely this formulation.

191

Chapter 10

10.4.1 The Jacobi Symbol

We plunge right into this section with a definition: Let p �= 2 be a prime number

and a an integer. The Legendre symbol
(

a
p

)
(say “a over p”) is defined to be 1 if

a is a quadratic residue modulo p and to be −1 if a is a quadratic nonresidue

modulo p. If p is a divisor of a, then
(

a
p

)
:= 0. As a definition the Legendre

symbol does not seem to help us much, since in order to know its value we
have to know whether a is a quadratic residue modulo p. However, the Legendre
symbol has properties that will allow us to do calculations with it and above all to
determine its value. Without going too far afield we cannot go into the theoretical
background. For that the reader is referred to, for example, [Bund], Section 3.2.
Nonetheless, we would like to cite some of these properties to give the reader an
idea of the basis for calculation with the Legendre symbol:

(i) The number of solutions of the congruence x2 ≡ a (mod p) is 1 +
(

a
p

)
.

(ii) There are as many quadratic residues as nonresidues modulo p, namely
(p − 1)/2.

(iii) a ≡ b (mod p) ⇒
(

a
p

)
=
(

b
p

)
.

(iv) The Legendre symbol is multiplicative:
(

ab
p

)
=
(

a
p

)(
b
p

)
.

(v)

p−1∑
i=1

(
i

p

)
= 0.

(vi) a(p−1)/2 ≡
(

a
p

)
(mod p) (Euler criterion).

(vii) For an odd prime q, q �= p, we have
(

p
q

)
= (−1)(p−1)(q−1)/4

(
q
p

)
(law of

quadratic reciprocity of Gauss).

(viii)
(

−1
p

)
= (−1)(p−1)/2,

(
2
p

)
= (−1)(p2−1)/8,

(
1
p

)
= 1.

The proofs of these properties of the Legendre symbol can be found in the
standard literature on number theory, for example [Bund] or [Rose].

Two ideas for calculating the Legendre symbol come at once to mind: We
can use the Euler criterion (vi) and compute a(p−1)/2 (mod p). This requires
a modular exponentiation (an operation of complexity O

(
log3 p

)
). Using the

reciprocity law, however, we can employ the following recursive procedure, which
is based on properties (iii), (iv), (vii), and (viii).

Recursive algorithm for calculating the Legendre symbol
(

a
p

)
of an integer a

and an odd prime p

1. If a = 1, then
(

a
p

)
= 1 (property (viii)).

192

Basic Number-Theoretic Functions

2. If a is even, then
(

a
p

)
= (−1)(p2−1)/8

(
a/2
p

)
(properties (iv), (viii)).

3. If a �= 1 and a = q1 · · · qk is the product of odd primes q1, . . . , qk, then(
a

p

)
=

k∏
i=1

(
qi

p

)
.

For each i we compute(
qi

p

)
= (−1)(p−1)(qi−1)/4

(
p mod qi

qi

)

by means of steps 1 through 3 (properties (iii), (iv), and (vii)).

Before we examine the programming techniques required for computing the
Legendre symbol we consider a generalization that can be carried out without
the prime decomposition, such as would be required by the direct application
of the reciprocity law in the version above (vii), which for large numbers takes
an enormous amount of time (for the factoring problem see page 203). At that
point we will be able to fall back on a nonrecursive procedure: For an integer a

and an integer b = p1p2 · · · pk with not necessarily distinct prime factors pi the
Jacobi symbol (or Jacobi–Kronecker, Kronecker–Jacobi, or Kronecker symbol)

(
a
b

)
is defined as the product of the Legendre symbols

(
a
pi

)
:

(a

b

)
:=

k∏
i=1

(
a

pi

)
,

where (a

2

)
:=

{
0 if a is even,

(−1)(a2−1)/8 if a is odd.

For the sake of completeness we set
(

a
1

)
:= 1 for a ∈ Z,

(
a
0

)
:= 1 if a = ±1, and(

a
0

)
:= 0 otherwise.
If b is itself an odd prime (that is, k = 1), then the values of the Jacobi

and Legendre symbols are the same. In this case the Jacobi (Legendre) symbol
specifies whether a is a quadratic residue modulo b, that is, whether there is a
number c with c2 ≡ a mod b, in which case

(
a
b

)
= 1. Otherwise,

(
a
b

)
= −1 (or(

a
b

)
= 0 if a ≡ 0 mod b). If b is not a prime (that is, k > 1), then we have that a

is a quadratic residue modulo b if and only if gcd(a, b) = 1 and a is a quadratic

residue modulo all primes that divide b, that is, if all Legendre symbols
(

a
pi

)
,

i = 1, . . . , k, have the value 1. This is clearly not equivalent to the Jacobi symbol(
a
b

)
having the value 1: Since x2 ≡ 2 mod 3 has no solution, we have

(
2
3

)
= −1.

However, by definition,
(
2
9

)
=
(
2
3

) (
2
3

)
= 1, although for x2 ≡ 2 mod 9 there

is likewise no solution. On the other hand, if
(

a
b

)
= −1, then a is in every

193

Chapter 10

case a quadratic nonresidue modulo b. The relation
(

a
b

)
= 0 is equivalent to

gcd(a, b) �= 1.
From the properties of the Legendre symbol we can conclude the following

about the Jacobi symbol:

(i)
(

ab
c

)
=
(

a
c

) (
b
c

)
, and if b · c �= 0, then

(
a
bc

)
=
(

a
b

) (
a
c

)
.

(ii) a ≡ c mod b ⇒ (
a
b

)
=
(

c
b

)
.

(iii) For odd b > 0 we have
(−1

b

)
= (−1)(b−1)/2,

(
2
b

)
= (−1)(b2−1)/8, and(

1
b

)
= 1 (see (viii) above).

(iv) For odd a and b with b > 0 we have the reciprocity law (see (viii) above)(
a
b

)
= (−1)(a−1)(b−1)/4

(
b
|a|
)

.

From these properties (see the above references for the proofs) of the Jacobi
symbol we have the following algorithm of Kronecker, taken from [Cohe], Section
1.4, that calculates the Jacobi symbol (or, depending on the conditions, the
Legendre symbol) of two integers in a nonrecursive way. The algorithm deals with

a possible sign of b, and for this we set
(

a
−1

)
:= 1 for a ≥ 0 and

(
a
−1

)
:= −1 for

a < 0.

Algorithm for calculating the Jacobi symbol
(

a
b

)
of integers a and b

1. If b = 0, output 1 if the absolute value |a| of a is equal to 1; otherwise, output
0 and terminate the algorithm.

2. If a and b are both even, output 0 and terminate the algorithm. Otherwise,
set v ← 0, and as long as b is even, set v ← v + 1 and b ← b/2. If now v

is even, set k ← 1; otherwise, set k ← (−1)(a2−1)/8. If b < 0, then set
b ← −b. If a < 0, set k ← −k (cf. (iii)).

3. If a = 0, output 0 if b > 1, otherwise k, and terminate the algorithm.
Otherwise, set v ← 0, and as long as a is even, set v ← v + 1 and a ← a/2.

If now v is odd, set k ← (−1)(b2−1)/8 · k (cf. (iii)).

4. Set k ← (−1)(a−1)(b−1)/4 · k, r ← |a|, a ← b mod r, b ← r, and go to step
3 (cf. (ii) and (iv)).

The run time of this procedure is O
(
log2 N

)
, where N ≥ a, b represents

an upper bound for a and b. This is a significant improvement over what we
achieved with the Euler criterion. The following tips for the implementation of
the algorithm are given in Section 1.4 of [Cohe].

194

Basic Number-Theoretic Functions

• The values (−1)(a2−1)/8 and (−1)(b2−1)/8 in steps 2 and 3 are best
computed with the aid of a prepared table.

• The value (−1)(a−1)(b−1)/4 · k in step 4 can be efficiently determined with
the C expression if(a&b&2) k = -k, where & is bitwise AND.

In both cases the explicit computation of a power can be avoided, which of course
has a positive effect on the total run time.

We would like to clarify the first tip with the help of the following considera-

tions: If k in step 2 is set to the value (−1)(a2−1)/8, then a is odd. The same holds
for b in step 3. For odd a we have

2 | (a − 1) and 4 | (a + 1)

or

4 | (a − 1) and 2 | (a + 1),

so that 8 is a divisor of (a − 1)(a + 1) = a2 − 1. Thus (−1)(a2−1)/8 is an

integer. Furthermore, we have (−1)(a2−1)/8 = (−1)((amod8)2−1)/8 (this can
be seen by placing the representation a = k · 8 + r in the exponent). The
exponent must therefore be determined only for the four values a mod 8 = ±1

and ±3, for which the results are 1, −1, −1, and 1. These are placed in a vector
{0, 1, 0,−1, 0,−1, 0, 1}, so that by knowing a mod 8 one can access the value

of (−1)((amod8)2−1)/8. Observing that a mod 8 can be represented by the
expression a & 7, where again & is binary AND, then the calculation of the power
is reduced to a few fast CPU operations. For an understanding of the second tip
we note that (a & b & 2) �= 0 if and only if (a − 1)/2 and (b − 1)/2, and hence
(a − 1)(b − 1)/4 , are odd.

Finally, we use the auxiliary function twofact_l(), which we briefly introduce
here, for determining v and b in step 2, for the case that b is even, as well as in
the analogous case for the values v and a in step 3. The function twofact_l()

decomposes a CLINT value into a product consisting of a power of two and an odd
factor.

Function: decompose a CLINT object a = 2ku with odd u

Syntax: int twofact_l (CLINT a_l, CLINT b_l);

Input: a_l (operand)

Output: b_l (odd part of a_l)

Return: k (logarithm to base 2 of the two-part of a_l)

195

Chapter 10

int

twofact_l (CLINT a_l, CLINT b_l)

{

int k = 0;

if (EQZ_L (a_l))

{

SETZERO_L (b_l);

return 0;

}

cpy_l (b_l, a_l);

while (ISEVEN_L (b_l))

{

shr_l (b_l);

++k;

}

return k;

}

Thus equipped we can now create an efficient function jacobi_l() for
calculating the Jacobi symbol.

Function: calculate the Jacobi symbol of two CLINT objects

Syntax: int jacobi_l (CLINT aa_l, CLINT bb_l);

Input: aa_l, bb_l (operands)

Return: ±1 (value of the Jacobi symbol of aa_l over bb_l)

static int tab2[] = 0, 1, 0, -1, 0, -1, 0, 1;

int

jacobi_l (CLINT aa_l, CLINT bb_l)

{

CLINT a_l, b_l, tmp_l;

long int k, v;

Step 1: The case bb_l = 0.

if (EQZ_L (bb_l))

{

if (equ_l (aa_l, one_l))

{

196

Basic Number-Theoretic Functions

return 1;

}

else

{

return 0;

}

}

Step 2: Remove the even part of bb_l.

if (ISEVEN_L (aa_l) && ISEVEN_L (bb_l))

{

return 0;

}

cpy_l (a_l, aa_l);

cpy_l (b_l, bb_l);

v = twofact_l (b_l, b_l);

if ((v & 1) == 0) /* v even? */

{

k = 1;

}

else

{

k = tab2[*LSDPTR_L (a_l) & 7]; /* *LSDPTR_L (a_l) & 7 == a_l % 8 */

}

Step 3: If a_l = 0, then we are done. Otherwise, the even part of a_l is removed.

while (GTZ_L (a_l))

{

v = twofact_l (a_l, a_l);

if ((v & 1) != 0)

{

k = tab2[*LSDPTR_L (b_l) & 7];

}

Step 4: Application of the quadratic reciprocity law.

if (*LSDPTR_L (a_l) & *LSDPTR_L (b_l) & 2)

{

k = -k;

}

197

Chapter 10

cpy_l (tmp_l, a_l);

mod_l (b_l, tmp_l, a_l);

cpy_l (b_l, tmp_l);

}

if (GT_L (b_l, one_l))

{

k = 0;

}

return (int) k;

}

10.4.2 Square Roots Modulo pk

We now have an idea of the property possessed by an integer of being or not being
a quadratic residue modulo another integer, and we also have at our disposal an
efficient program to determine which case holds. But even if we know whether an
integer a is a quadratic residue modulo an integer n, we still cannot compute the
square root of a, especially not in the case where n is large. Since we are modest,
we will first attempt this feat for those n that are prime. Our task, then, is to solve
the quadratic congruence

x2 ≡ a mod p, (10.11)

where we assume that p is an odd prime and a is a quadratic residue modulo
p, which guarantees that the congruence has a solution. We shall distinguish
the two cases p ≡ 3 mod 4 and p ≡ 1 mod 4. In the former, simpler, case,
x := a(p+1)/4 mod p solves the congruence, since

x2 ≡ a(p+1)/2 ≡ a · a(p−1)/2 ≡ a mod p, (10.12)

where for a(p−1)/2 ≡
(

a
p

)
≡ 1 mod p we have used property (vi) of the Legendre

symbol, the Euler criterion, cited above.
The following considerations, taken from [Heid], lead to a general procedure

for solving quadratic congruences, and in particular for solving congruences of
the second case, p ≡ 1 mod 4: We write p − 1 = 2kq, with k ≥ 1 and q odd, and
we look for an arbitrary quadratic nonresidue n mod p by choosing a random

number n with 1 ≤ n < p and calculating the Legendre symbol
(

n
p

)
. This has

value −1 with probability 1
2 , so that we should find such an n relatively quickly.

198

Basic Number-Theoretic Functions

We set

x0 ≡ a(q+1)/2 mod p,

y0 ≡ nq mod p,

z0 ≡ aq mod p,

r0 := k.

(10.13)

Since by Fermat’s little theorem we have a(p−1)/2 ≡ x2(p−1)/2 ≡ xp−1 ≡
1 mod p for a and for a solution x of (10.11), and since additionally, for quadratic
nonresidues n we have n(p−1)/2 ≡ −1 mod p (cf. (vi), page 221), we have

az0 ≡ x2
0 mod p,

y2r0−1

0 ≡ −1 mod p,

z2r0−1

0 ≡ 1 mod p.

(10.14)

If z0 ≡ 1 mod p, then x0 is already a solution of the congruence (10.11).
Otherwise, we recursively define numbers xi, yi, zi, ri such that

azi ≡ x2
i mod p,

y2ri−1

i ≡ −1 mod p,

z2ri−1

i ≡ 1 mod p,

(10.15)

and ri > ri−1. After at most k steps we must have zi ≡ 1 mod p and that xi is
a solution to (10.11). To this end we choose m0 as the smallest natural number
such that z2m0

0 ≡ 1 mod p, whereby m0 ≤ r0 − 1. We set

xi+1 ≡ xiy
2ri−mi−1

i mod p,

yi+1 ≡ y2ri−mi

i mod p,

zi+1 ≡ ziy
2ri−mi

i mod p,

(10.16)

with ri+1 := mi := min
{

m ≥ 1 | z2m

i ≡ 1 mod p
}

. Then

x2
i+1 ≡ x2

i y2ri−mi

i ≡ aziy
2ri−mi

i ≡ azi+1 mod p,

y2ri+1−1

i+1 ≡ y2mi−1

i+1 ≡
(
y2ri−mi

i

)2mi−1

≡ y2ri−1

i ≡ −1 mod p,

z2ri+1−1

i+1 ≡ z2mi−1

i+1 ≡
(
ziy

2ri−mi

i

)2mi−1

≡ −z2mi−1

i ≡ 1 mod p,

(10.17)

since
(
z2mi−1

i

)2 ≡ z2mi

i ≡ 1 mod p, and therefore by the minimality of mi only

z2mi−1

i ≡ −1 mod p is possible.
We have thus proved a solution procedure for quadratic congruence, on

which the following algorithm of D. Shanks is based (presented here as in [Cohe],
Algorithm 1.5.1).

199

Chapter 10

Algorithm for calculating square roots of an integer a modulo an odd prime p

1. Write p − 1 = 2kq, q odd. Choose random numbers n until
(

n
p

)
= −1.

2. Set x ← a(q−1)/2 mod p, y ← nq mod p, z ← a · x2 mod p, x ←
a · x mod p, and r ← k.

3. If z ≡ 1 mod p, output x and terminate the algorithm. Otherwise, find
the smallest m for which z2m ≡ 1 mod p. If m = r, then output the
information that a is not a quadratic residue p and terminate the algorithm.

4. Set t ← y2r−m−1
mod p, y ← t2 mod p, r ← m mod p, x ← x · t mod p,

z ← z · y mod p, and go to step 3.

It is clear that if x is a solution of the quadratic congruence, then so is
−x mod p, since (−x)2 ≡ x2 mod p.

Out of practical considerations in the following implementation of the search
for a quadratic nonresidue modulo p we shall begin with 2 and run through all the
natural numbers testing the Legendre symbol in the hope of finding a nonresidue
in polynomial time. In fact, this hope would be a certainty if we knew that the
still unproved extended Riemann hypothesis were true (see, for example, [Bund],
Section 7.3, Theorem 12, or [Kobl], Section 5.1, or [Kran], Section 2.10). To the
extent that we doubt the truth of the extended Riemann hypothesis the algorithm
of Shanks is probabilistic.

For the practical application in constructing the following function proot_l()

we ignore these considerations and simply expect that the calculational time is
polynomial. For further details see [Cohe], pages 33 f.

Function: compute the square root of a modulo p

Syntax: int proot_l (CLINT a_l, CLINT p_l, CLINT x_l);

Input: a_l, p_l (operands, p_l > 2 a prime)

Output: x_l (square root of a_l modulo p_l)

Return: 0 if a_l is a quadratic residue modulo p_l

−1 otherwise

200

Basic Number-Theoretic Functions

int

proot_l (CLINT a_l, CLINT p_l, CLINT x_l)

{

CLINT b_l, q_l, t_l, y_l, z_l;

int r, m;

if (EQZ_L (p_l) || ISEVEN_L (p_l))

{

return -1;

}

If a_l == 0, the result is 0.

if (EQZ_L (a_l))

{

SETZERO_L (x_l);

return 0;

}

Step 1: Find a quadratic nonresidue.

cpy_l (q_l, p_l);

dec_l (q_l);

r = twofact_l (q_l, q_l);

cpy_l (z_l, two_l);

while (jacobi_l (z_l, p_l) == 1)

{

inc_l (z_l);

}

mexp_l (z_l, q_l, z_l, p_l);

Step 2: Initialization of the recursion.

cpy_l (y_l, z_l);

dec_l (q_l);

shr_l (q_l);

mexp_l (a_l, q_l, x_l, p_l);

msqr_l (x_l, b_l, p_l);

mmul_l (b_l, a_l, b_l, p_l);

mmul_l (x_l, a_l, x_l, p_l);

201

Chapter 10

Step 3: End of the procedure; otherwise, find the smallest m such that
z2m ≡ 1 mod p.

mod _l (b_l, p_l, q_l);

while (!equ_l (q_l, one_l))

{

m = 0;

do

{

++m;

msqr_l (q_l, q_l, p_l);

}

while (!equ_l (q_l, one_l));

if (m == r)

{

return -1;

}

Step 4: Recursion step for x, y, z, and r.

mexp2_l (y_l, (ULONG)(r - m - 1), t_l, p_l);

msqr_l (t_l, y_l, p_l);

mmul_l (x_l, t_l, x_l, p_l);

mmul_l (b_l, y_l, b_l, p_l);

cpy_l (q_l, b_l);

r = m;

}

return 0;

}

The calculation of roots modulo prime powers pk can now be accomplished
on the basis of our results modulo p. To this end we first consider the congruence

x2 ≡ a mod p2 (10.18)

based on the following approach: Given a solution x1 of the above congruence
x2 ≡ a mod p we set x := x1 + p · x2, from which follows

x2 − a ≡ x2
1 − a + 2px1x2 + p2x2

2 ≡ p

(
x2

1 − a

p
+ 2x1x2

)
mod p2.

202

Basic Number-Theoretic Functions

From this we deduce that for solving (10.18) we will be helped by a solution x2 of
the linear congruence

x · 2x1 +
x2

1 − a

p
≡ 0 mod p.

Proceeding recursively one obtains in a number of steps a solution of the
congruence x2 ≡ a mod pk for any k ∈ N.

10.4.3 Square Roots Modulo n

The ability to calculate square roots modulo a prime power is a step in the right
direction for what we really want, namely, the solution of the more general
problem x2 ≡ a mod n for a composite number n. However, we should say at
once that the solution of such a quadratic congruence is in general a difficult
problem. In principle, it is solvable, but it requires a great deal of computation,
which grows exponentially with the size of n: The solution of the congruence is
as difficult (in the sense of complexity theory) as factorization of the number n.
Both problems lie in the complexity class NP (cf. page 103). The calculation of
square roots modulo composite numbers is therefore related to a problem for
whose solution there has still not been discovered a polynomial-time algorithm.
Therefore, for large n we cannot expect to find a fast solution to this general case.

Nonetheless, it is possible to piece together solutions of quadratic congru-
ences y2 ≡ a mod r and z2 ≡ a mod s with relatively prime numbers r and s to
obtain a solution of the congruence x2 ≡ a mod rs. Here we will be assisted by
the Chinese remainder theorem:

Given congruences x ≡ ai mod mi with natural numbers m1, . . . , mr

that are pairwise relatively prime (that is, gcd (mi, mj) = 1 for i �= j)
and integers a1, . . . , ar, there exists a common solution to the set of
congruences, and furthermore, such a solution is unique modulo the
product m1 · m2 · · ·mr.

We would like to spend a bit of time in consideration of the proof of this
theorem, for it contains hidden within itself in a remarkable way the promised
solution: We set m := m1 · m2 · · ·mr and m′

j := m/mj . Then m′
j is an integer

and gcd
(
m′

j , mj

)
= 1. From Section 10.2 we know that that there exist integers

uj and vj with 1 = m′
juj + mjvj , that is, m′

juj ≡ 1 mod mj , for j = 1, . . . , r

and how to calculate them.
We then form the sum

x0 :=
r∑

j=1

m′
jujaj ,

203

Chapter 10

and since m′
juj ≡ 0 mod mi for i �= j, we obtain

x0 ≡
r∑

j=1

m′
jujaj ≡ m′

iuiai ≡ ai mod mi, (10.19)

and in this way have constructed a solution to the problem. For two solutions
x0 ≡ ai mod mi and x1 ≡ ai mod mi we have x0 ≡ x1 mod mi. This is
equivalent to the difference x0 − x1 being simultaneously divisible by all mi, that
is, by the least common multiple of the mi. Due to the pairwise relative primality
of the mi we have that the least common multiple is, in fact, the product of the
mi, so that finally, we have that x0 ≡ x1 mod m holds.

We now apply the Chinese remainder theorem to obtain a solution of
x2 ≡ a mod rs with gcd(r, s) = 1, where r and s are distinct odd primes and
neither r nor s is a divisor of a, on the assumption that we have already obtained
roots of y2 ≡ a mod r and z2 ≡ a mod s. We now construct as above a common
solution to the congruences

x ≡ y mod r,

x ≡ z mod s,

by

x0 := (zur + yvs) mod rs,

where 1 = ur + vs is the representation of the greatest common divisor of r and
s. We thus have x2

0 ≡ a mod r and x2
0 ≡ a mod s, and since gcd(r, s) = 1, we

also have x2
0 ≡ a mod rs, and so we have found a solution of the above quadratic

congruence. Since as shown above every quadratic congruence modulo r and
modulo s possesses two solutions, namely ±y and ±z, the congruence modulo
rs has four solutions, obtained by substituting in ±y and ±z above:

x0 := zur + yvs mod rs, (10.20)

x1 := −zur − yvs mod rs = −x0 mod rs, (10.21)

x2 := −zur + yvs mod rs, (10.22)

x3 := zur − yvs mod rs = −x2 mod rs. (10.23)

We have thus found in principle a way to reduce the solution of quadratic
congruences x2 ≡ a mod n with n odd to the case x2 ≡ a mod p for primes p.
For this we determine the prime factorization n = pk1

1 · · · pkt
t and then calculate

the roots modulo the pi, which by the recursion in Section 10.4.2 can be used to
obtain solutions of the congruences x2 ≡ a mod pki

i . As the crowning glory of
all this we then assemble these solutions with the help of the Chinese remainder
theorem into a solution of x2 ≡ a mod n. The function that we give takes this
path to solving a congruence x2 ≡ a mod n. However, it assumes the restricted
hypothesis that n = p · q is the product of two odd primes p and q, and first

204

Basic Number-Theoretic Functions

calculates solutions x1 and x2 of the congruences

x2 ≡ a mod p,

x2 ≡ a mod q.

From x1 and x2 we assemble according to the method just discussed the solutions
to the congruence

x2 ≡ a mod pq,

and the output is the smallest square root of a modulo pq.

Function: calculate the square root of a modulo p · q
for odd primes p, q

Syntax: int root_l (CLINT a_l, CLINT p_l, CLINT q_l, CLINT x_l);

Input: a_l, p_l, q_l (operands, primes p_l, q_l > 2)

Output: x_l (square root of a_l modulo p_l * q_l)

Return: 0 if a_l is a quadratic residue modulo p_l * q_l

−1 otherwise

int

root_l (CLINT a_l, CLINT p_l, CLINT q_l, CLINT x_l)

{

CLINT x0_l, x1_l, x2_l, x3_l, xp_l, xq_l, n_l;

CLINTD u_l, v_l;

clint *xptr_l;

int sign_u, sign_v;

Calculate the roots modulo p_l and q_l with the function proot_l(). If a_l == 0,
the result is 0.

if (0 != proot_l (a_l, p_l, xp_l) || 0 != proot_l (a_l, q_l, xq_l))

{

return -1;

}

if (EQZ_L (a_l))

{

SETZERO_L (x_l);

return 0;

}

205

Chapter 10

For the application of the Chinese remainder theorem we must take into account
the signs of the factors u_l and v_l, represented by the auxiliary variables sign_u

and sign_v, which assume the values calculated by the function xgcd_l(). The
result of this step is the root x0.

mul_l (p_l, q_l, n_l);

xgcd_l (p_l, q_l, x0_l, u_l, &sign_u, v_l, &sign_v);

mul_l (u_l, p_l, u_l);

mul_l (u_l, xq_l, u_l);

mul_l (v_l, q_l, v_l);

mul_l (v_l, xp_l, v_l);

sign_u = sadd (u_l, sign_u, v_l, sign_v, x0_l);

smod (x0_l, sign_u, n_l, x0_l);

Now we calculate the roots x1, x2, and x3.

sub_l (n_l, x0_l, x1_l);

msub_l (u_l, v_l, x2_l, n_l);

sub_l (n_l, x2_l, x3_l);

The smallest root is returned as result.

xptr_l = MIN_L (x0_l, x1_l);

xptr_l = MIN_L (xptr_l, x2_l);

xptr_l = MIN_L (xptr_l, x3_l);

cpy_l (x_l, xptr_l);

return 0;

}

From this we can now easily deduce an implementation of the Chinese
remainder theorem by taking the code sequence from the above function and
extending it by the number of congruences that are to be simultaneously solved.
Such a procedure is described in the following algorithm, due to Garner (see
[MOV], page 612), which has an advantage with respect to the application of
the Chinese remainder theorem in the above form in that reduction must take
place only modulo the mi, and not modulo m = m1m2 · · ·mr. This results in a
significant savings in computing time.

206

Basic Number-Theoretic Functions

Algorithm 1 for a simultaneous solution of a system of linear congruences
x ≡ ai mod mi, 1 ≤ i ≤ r, with gcd (mi, mj) = 1 for i �= j

1. Set u ← a1, x ← u, and i ← 2.

2. Set Ci ← 1, j ← 1.

3. Set u ← m−1
j mod mi (computed by means of the extended Euclidean

algorithm; see page 181) and Ci ← uCi mod mi.

4. Set j ← j + 1; if j ≤ i − 1, go to step 3.

5. Set u ← (ai − x) Ci mod mi, and x ← x + u
∏i−1

j=1 mj .

6. Set i ← i + 1; if i ≤ r, go to step 2. Otherwise, output x.

It is not obvious that the algorithm does what it is supposed to, but this can
be shown by an inductive argument. To this end let r = 2. In step 5 we then have

x = a1 + ((a2 − a1) u mod m2) m1.

It is seen at once that x ≡ a1 mod m1. However, we also have

x ≡ a1 + (a2 − a1)m1

(
m−1

1 mod m2

)
≡ a2 mod m2.

To finish the induction by passing from r to r + 1 we assume that the algorithm
returns the desired result xr for some r ≥ 2, and we append a further congruence
x ≡ ar+1 mod mr+1. Then by step 5 we have

x ≡ xr +

((
(ar+1 − x)

r∏
j=1

m−1
j

)
mod mr+1

)
·

r∏
j=1

mj .

Here we have x ≡ xr ≡ ai mod mi for i = 1, . . . , r according to our assumption.
But we also have

x ≡ xr +

(
(ar+1 − x)

r∏
j=1

mj ·
r∏

j=1

m−1
j

)
≡ ar+1 mod mr+1,

which completes the proof.
For the application of the Chinese remainder theorem in programs

one function would be particularly useful, one that is not dependent on a
predetermined number of congruences, but rather allows the number of
congruences to be specified at run time. This method is supported by an
adaptation of the above construction procedure, which does not, alas, have the
advantage that reduction need take place only modulo mi, but it does make it
possible to process the parameters ai and mi of a system of congruences with
i = 1, . . . , r with variable r with a constant memory expenditure. Such a solution
is contained in the following algorithm from [Cohe], Section 1.3.3.

207

Chapter 10

Algorithm 2 for calculating a simultaneous solution of a system of linear
congruences x ≡ ai mod mi, 1 ≤ i ≤ r, with gcd (mi, mj) = 1 for i �= j

1. Set i ← 1, m ← m1, and x ← a1.

2. If i = r, output x and terminate the algorithm. Otherwise, increase i ← i+1

and calculate u and v with 1 = um + vmi using the extended Euclidean
algorithm (cf. page 179).

3. Set x ← umai + vmix, m ← mmi, x ← x mod m and go to step 2.

The algorithm immediately becomes understandable if we carry out the
computational steps for three equations x = ai mod mi, i = 1, 2, 3: For i = 2

we have in step 2

1 = u1m1 + v1m2

and in step 3

x1 = u1m1a2 + v1m2a1 mod m1m2.

In the next pass through the loop with i = 3 the parameters a3 and m3 are
processed. In step 2 we then have

1 = u2m + v2m3 = u2m1m2 + v2m3

and in step 3

x2 = u2ma3 + v2m3x1 mod mm1

= u2m1m2a3 + v2m3u1m1a2 + v2m3v1m2a1 mod m1m2m3.

The summands u2m1m2a3 and v2m3u1m1a2 disappear in forming
the residue x2 modulo m1; furthermore, v2m3 ≡ v1m2 ≡ 1 mod m1 by
construction, and thus x2 ≡ a1 mod m1 solves the first congruence. Analogous
considerations lead us to see that x2 also solves the remaining congruences.

We shall implement this inductive variant of the construction principle ac-
cording to the Chinese remainder theorem in the following function chinrem_l(),
whose interface enables the passing of coefficients of a variable number of
congruences. For this a vector with an even number of pointers to CLINT objects
is passed, which in the order a1, m1, a2, m2, a3, m3, . . . are processed as
coefficients of congruences x ≡ ai mod mi. Since the number of digits of the
solution of a congruence system x ≡ ai mod mi is of order

∑
i log (mi), the

procedure is subject to overflow in its dependence on the number of congruences
and the size of the parameters. Therefore, such errors will be noted and indicated
in the return value of the function.

208

Basic Number-Theoretic Functions

Function: solution of linear congruences with the
Chinese remainder theorem

Syntax: int chinrem_l (int noofeq, clint **coeff_l,

CLINT x_l);

Input: noofeq (number of congruences)
coeff_l (vector of pointers to CLINT coefficients
ai, mi of congruences x ≡ ai mod mi, i = 1, . . . , noofeq)

Output: x_l (solution of the system of congruences)

Return: E_CLINT_OK if all is ok
E_CLINT_OFL if overflow
1 if noofeq is 0
2 if mi are not pairwise relatively prime

int

chinrem_l (unsigned int noofeq, clint** coeff_l, CLINT x_l)

{

clint *ai_l, *mi_l;

CLINT g_l, u_l, v_l, m_l;

unsigned int i;

int sign_u, sign_v, sign_x, err, error = E_CLINT_OK;

if (0 == noofeq)

{

return 1;

}

Initialization: The coefficients of the first congruence are taken up.

cpy_l (x_l, *(coeff_l++));

cpy_l (m_l, *(coeff_l++));

If there are additional congruences, that is, if no_of_eq > 1, the parameters of the
remaining congruences are processed. If one of the mi_l is not relatively prime to
the previous moduli occurring in the product m_l, then the function is terminated
and 2 is returned as error code.

209

Chapter 10

for (i = 1; i < noofeq; i++)

{

ai_l = *(coeff_l++);

mi_l = *(coeff_l++);

xgcd_l (m_l, mi_l, g_l, u_l, &sign_u, v_l, &sign_v);

if (!EQONE_L (g_l))

{

return 2;

}

In the following an overflow error is recorded. At the end of the function the status
is indicated in the return of the error code stored in error.

err = mul_l (u_l, m_l, u_l);

if (E_CLINT_OK == error)

{

error = err;

}

err = mul_l (u_l, ai_l, u_l);

if (E_CLINT_OK == error)

{

error = err;

}

err = mul_l (v_l, mi_l, v_l);

if (E_CLINT_OK == error)

{

error = err;

}

err = mul_l (v_l, x_l, v_l);

if (E_CLINT_OK == error)

{

error = err;

}

The auxiliary functions sadd() and smod() take care of the signs sign_u and sign_v

(respectively sign_x) of the variables u_l and v_l (respectively 4).

210

Basic Number-Theoretic Functions

sign_x = sadd (u_l, sign_u, v_l, sign_v, x_l);

err = mul_l (m_l, mi_l, m_l);

if (E_CLINT_OK == error)

{

error = err;

}

smod (x_l, sign_x, m_l, x_l);

}

return error;

}

10.4.4 Cryptography with Quadratic Residues

We come now to the promised examples for the cryptographic application of
quadratic residues and their roots. To this end we consider first the encryption
procedure of Rabin and then the identification schema of Fiat and Shamir.4

The encryption procedure published in 1979 by Michael Rabin (see [Rabi])
depends on the difficulty of calculating square roots in Zpq . Its most important
property is the provable equivalence of this calculation to the factorization
problem (see also [Kran], Section 5.6). Since for encryption the procedure
requires only a squaring modulo n, it is simple to implement, as the following
demonstrates.

Rabin key generation

1. Ms. A generates two large primes p ≈ q and computes n = p · q.

2. Ms. A publishes n as a public key and uses the pair 〈p, q〉 as private key.

With the public key nA a correspondent Mr. B can encode a message M ∈ Zn

in the following way and send it to Ms. A.

Rabin encryption

1. Mr. B computes C := M2 mod nA with the function msqr_l() on page 77
and sends the encrypted text C to A.

2. To decode the message, A computes from C the four square roots Mi

modulo nA, i = 1, . . . , 4, with the aid of the function root_l() (cf. page
205), which here is modified so that not only the smallest but all four square
roots are output.5 One of these roots is the plain text M .

4 For the fundamental concepts of asymmetric cryptography, see Chapter 17.
5 We may assume that gcd (M, nA) = 1 and that therefore there really exist four distinct roots

of C. Otherwise, the sender B could factor the modulus nA of the receiver A by calculating
gcd (M, nA). This, of course, is not the way a public key system should operate.

211

Chapter 10

Ms. A now has the problem of deciding which of the four roots Mi represents
the original plain text M . If prior to encoding the message B adds some redundant
material, say a repetition of the last r bits, and informs A of this, then A will have
no trouble in choosing the right text, since the probability that one of the other
texts will have the same identifier is very slight.

Furthermore, redundancy prevents the following attack strategy against the
Rabin procedure: If an attacker X chooses at random a number R ∈ Z×

nA
and is

able to obtain from A one of the roots Ri of X := R2 mod nA (no matter how
he or she may motivate A to cooperate), then Ri �≡ ±R mod nA will hold with
probability 1

2 .
From nA = p · q | (R2

i − R2
)

= (Ri − R) (Ri + R) �= 0, however, one
would have 1 �= gcd (R − Ri, nA) ∈ { p, q }, and X would have broken the code
with the factorization of nA (cf. [Bres], Section 5.2). On the other hand, if the
plain text is provided with redundancy, then A can always recognize which root
represents a valid plain text. Then A would at most reveal R (on the assumption
that R had the right format), which for Mr. or Ms. X, however, would be useless.

The avoidance of deliberate or accidental access to the roots of a pretended
cipher text is a necessary condition for the use of the procedure in the real world.

The following example of the cryptographic application of quadratic residues
deals with an identification schema published in 1986 by Amos Fiat and Adi
Shamir. The procedure, conceived especially for use in connection with smart
cards, uses the following aid: Let I be a sequence of characters with information
for identifying an individual A, let m be the product of two large primes p and
q, and let f (Z, n) → Zm be a random function that maps arbitrary finite
sequences of characters Z and natural numbers n in some unpredictable fashion
to elements of the residue class ring Zm. The prime factors p and q of the modulus
m are known to a central authority, but are otherwise kept secret. For the identity
represented by I and a yet to be determined k ∈ N the central authority has now
the task of producing key components as follows.

Algorithm for key generation in the Fiat–Shamir procedure

1. Compute numbers vi = f (I, i) ∈ Zm for some i ≥ k ∈ N.

2. Choose k different quadratic residues vi1 , . . . , vik from among the vi and
compute the smallest square roots si1 , . . . , sik of v−1

i1
, . . . , v−1

ik
in Zm.

3. Store the values I and si1 , . . . , sik securely against unauthorized access
(such as in a smart card).

For generating keys sij we can use our functions jacobi_l() and root_l();
the function f can be constructed from one of the hash functions from Chapter
17, such as RIPEMD-160. As Adi Shamir once said at a conference, “Any crazy
function will do.”

212

Basic Number-Theoretic Functions

With the help of the information stored by the central authority on the smart
card Ms. A can now authenticate herself to a communication partner Mr. B.

Protocol for authentication à la Fiat–Shamir

1. A sends I and the numbers ij , j = 1, . . . , k, to B.

2. B generates vij = f (I, ij) ∈ Zm for j = 1, . . . , k. The following steps 3–6
are repeated for τ = 1, . . . , t (for a value t ∈ N yet to be determined):

3. A chooses a random number rτ ∈ Zm and sends xτ = r2
τ to B.

4. B sends a binary vector (eτ1 , . . . , eτk) to A.

5. A sends numbers yτ := rτ
∏

eτi
=1 si ∈ Zm to B.

6. B verifies that xτ = y2
τ

∏
eτi

=1 vi.

If A truly possesses the values si1 , . . . , sik , then in step 6

y2
τ

∏
eτi

=1

vi = r2
τ

∏
eτi

=1

s2
i ·

∏
eτi

=1

vi = r2
τ

∏
eτi

=1

v−1
i vi = r2

τ

holds (all calculations are in Zm), and A thereby has proved her identity to B. An
attacker who wishes to assume the identity of A can with probability 2−kt guess
the vectors (eτ1 , . . . , eτk) that B will send in step 4, and as a precaution in step 3
send the values xτ = r2

τ

∏
eτi

=1 vi to B; for k = t = 1, for example, this would

give the attacker an average hit number of 1
2 . Thus the values of k and t should be

chosen such that an attacker has no realistic probability of success and such that
furthermore—depending on the application—suitable values result for

• the size of the secret key;

• the set of data to be exchanged between A and B;

• the required computer time, measured as the number of multiplications.

Such parameters are given in [Fiat] for various values of k and t with kt = 72.
All in all, the security of the procedure depends on the secure storage of the

values sij , on the choice of k and t, and on the factorization problem: Anyone
who can factor the modulus m into the factors p and q can compute the secret
key components sij , and the procedure has been broken. It is a matter, then, of
choosing the modulus in such a way that it is not easily factorable. In this regard
the reader is again referred to Chapter 17, where we discuss the generation of RSA
moduli, subject to the same requirements.

A further security property of the procedure of Fiat and Shamir is that A

can repeat the process of authentication as often as she wishes without thereby
giving away any information about the secret key values. Algorithms with
such properties are called zero knowledge processes (see, for example, [Schn],
Section 32.11).

213

Chapter 10

10.5 A Primality Test

Primes is in P

—M. Agrawa, N. Kaval, N. Saxena, 2002

Not to stretch out the suspense, the largest known Mersenne prime, M11213,
and, I believe, the largest prime known at present, has 3375 digits and is
therefore just about T-281 1

4
.6

—Isaac Asimov, Adding a Dimension, 1964

Forty-First Known Mersenne Prime Found!!

—http://www.mersenne.org/prime.htm (May 2004)

The study of prime numbers and their properties is one of the oldest branches of
number theory and one of fundamental significance for cryptography. From the
seemingly harmless definition of a prime number as a natural number greater
than 1 that has no divisors other than itself and 1 there arises a host of questions
and problems with which mathematicians have been grappling for centuries and
many of which remain unanswered and unsolved to this day. Examples of such
questions are, “Are there infinitely many primes?” “How are the primes distributed
among the natural numbers?” “How can one tell whether a number is prime?”
“How can one identify a natural number that is not prime, that is, a number that
is composite?” “How does one find all the prime factors of a composite number?”

That there are infinitely many primes was proven already by Euclid about
2300 years ago (see, for example, [Bund], page 5, and especially the amusing proof
variant and the serious proof variant on pages 39 and 40). Another important
fact, which up to now we have tacitly assumed, will be mentioned here explicitly:
The fundamental theorem of arithmetic states that every natural number greater
than 1 has a unique decomposition as a product of finitely many prime numbers,
where the uniqueness is up to the order of the factors. Thus prime numbers are
truly the building blocks of the natural numbers.

As long as we stick close to home in the natural numbers and do not stray
among numbers that are too big for us to deal with easily we can approach a
number of questions empirically and carry out concrete calculations. Take note,
however, that the degree to which results are achievable depends in large measure
on the efficiency of the algorithms used and the capacities of available computers.

6 T is for trillion, whereby Asimov denotes the order of magnitude 1012. Thus T-281 1
4

stands for

1012·281.25 = 103375 ≈ 211211.5.

214

Basic Number-Theoretic Functions

A list of the largest numbers identified as prime, published on the Internet,
demonstrates the impressive size of the most recent discoveries (see Table 10-1
and http://www.mersenne.org).

Table 10-1. The ten largest known primes (as of December 2004)

Prime Digits Discoverer Year

224 036 583 − 1 7 235 733 Findley 2004

220 996 011 − 1 6 320 430 Shafer 2003

213 466 917 − 1 4 053 946 Cameron, Kurowski 2001

26 972 593 − 1 2 098 960 Hajratwala, Woltman, Kurowski 1999

5 539 · 25 054 502 + 1 1 521 561 Sundquist 2003

23 021 377 − 1 909 526 Clarkson, Woltman, Kurowski 1998

22 976 221 − 1 895 932 Spence, Woltman 1997

1 372 930131 072 + 1 804 474 Heuer 2003

1 361 244131 072 + 1 803 988 Heuer 2004

1 176 694131 072 + 1 795 695 Heuer 2003

The largest known prime numbers are of the form 2p − 1. Primes that can be
represented in this way are called Mersenne primes, named for Marin Mersenne
(1588–1648), who discovered this particular structure of prime numbers in his
search for perfect numbers. (A natural number is said to be perfect if it equals
the sum of its proper divisors. Thus, for example, 496 is a perfect number, since
496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.)

For every divisor t of p we have that 2t − 1 is a divisor of 2p − 1, since if
p = ab, then

2p − 1 = (2a − 1)
(
2a(b−1) + 2a(b−2) + · · · + 1

)
.

Therefore, we see that 2p − 1 can be prime only if p is prime. Mersenne himself
announced in 1644, without being in possession of a complete proof, that
for p ≤ 257 the only primes of the form 2p − 1 were those for the primes
p ∈ { 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 }. With the exception of p = 67 and
p = 257, for which 2p − 1 is not prime, Mersenne’s conjecture has been verified,
and analogous results for many additional exponents have been established as
well (see [Knut], Section 4.5.4, and [Bund], Section 3.2.12).

On the basis of the discoveries thus far of Mersenne primes one may
conjecture that there exist Mersenne primes for infinitely many prime numbers
p. However, there is as yet no proof of this conjecture (see [Rose], Section 1.2).
An interesting overview of additional unsolved problems in the realm of prime
numbers can be found in [Rose], Chapter 12.

215

Chapter 10

Because of their importance in cryptographic public key algorithms prime
numbers and their properties have come increasingly to public attention, and it is
a pleasure to see how algorithmic number theory in regard to this and other topics
has become popular as never before. The problems of identifying a number as
prime and the decomposition of a number into its prime factors are the problems
that have attracted the greatest interest. The cryptographic invulnerability of
many public key algorithms (foremost among them the famous RSA procedure)
is based on the fact that factorization is a difficult problem (in the sense of
complexity theory), which at least at present is unsolvable in polynomial time.7

Until recently, the same held true, in a weakened form, for the identification
of a number as prime if one were looking for a definitive proof that a number is
prime. On the other hand, there are tests that determine, up to a small degree of
uncertainty, whether a number is prime; furthermore, if the test determines that
the number is composite, then that determination is definitive. Such probabilistic
tests are, in compensation for the element of doubt, executable in polynomial
time, and the probability of a “false positive” can be brought below any given
positive bound, as we shall see, by repeating the test a sufficient number of times.

A venerable, but nonetheless still useful, method of determining all primes
up to a given natural number N was developed by the Greek philosopher and
astronomer Eratosthenes (276–195 B.C.E.; see also [Saga]), and in his honor it is
known as the sieve of Eratosthenes. Beginning with a list of all natural numbers
greater than 1 and less than or equal to N , we take the first prime number, namely
2, and strike from the list all multiples of 2 greater than 2 itself. The first remaining
number above the prime number just used (2 in this case) is then identified as a
prime p, whose multiples p (p + 2i), i = 0, 1, . . . , are likewise struck from the
list. This process is continued until a prime number greater than

√
N is found, at

which point the procedure is terminated. The numbers in the list that have not
been struck are the primes less than or equal to N . They have been “caught” in
the sieve.

We would like to elucidate briefly why it is that the sieve of Eratosthenes
works as advertised: First, an induction argument makes it immediately plain
that the next unstruck number above a prime is itself prime, since otherwise,
the number would have a smaller prime divisor and thus would already have
been struck from the list as a multiple of this prime factor. Since only composite
numbers are struck, no prime numbers can be lost in the process.

Furthermore, it suffices to strike out only multiples of primes p for which
p ≤ √

N , since if T is the smallest proper divisor of N , then T ≤ √
N . Thus if

a composite number n ≤ N were to remain unstruck, then this number would
have a smallest prime divisor p ≤ √

n ≤ √
N , and n would have been struck as a

7 For a discussion of the complexity-theoretic aspects of cryptography one might have a look at
[HKW], Chapter 6, or [Schn], Sections 19.3 and 20.8, and the many further references therein.
One should also read the footnote in the present book on page 191.

216

Basic Number-Theoretic Functions

multiple of p, in contradiction to our assumption. Now we would like to consider
how this sieve might be implemented, and as preparation we shall develop a
programmable algorithm, for which we take the following viewpoint: Since except
for 2 there are no even prime numbers, we shall consider only odd numbers as
candidates for primality. Instead of making a list of odd numbers, we form the
list fi, 1 ≤ i ≤ �(N − 1) /2�, which represents the primality property of the
numbers 2i + 1. Further, we use a variable p that will contain the current value
2i + 1 of our (imagined) list of odd numbers, as well as a variable s for which the
relation 2s + 1 = p2 = (2i + 1)2, that is, s = 2i2 + 2i, always holds. We may
now formulate the following algorithm (cf. [Knut], Section 4.5.4, Exercise 8).

Sieve of Eratosthenes, algorithm for calculating all prime numbers less than or
equal to a natural number N

1. Set L ← �(N − 1) /2� and B ←
⌈√

N/2
⌉

. Set fi ← 1 for 1 ≤ i ≤ L. Set

i ← 1, p ← 3, and s ← 4.

2. If fi = 0, go to step 4. Otherwise, output p as a prime and set k ← s.

3. If k ≤ L, set fk ← 0, k ← k + p, and repeat step 3.

4. If i ≤ B, then set i ← i + 1, s ← s + 2p, p ← p + 2, and go to step 2.
Otherwise, terminate the algorithm.

The algorithm leads us to the following program, which as result returns a
pointer to a list of ULONG values that contains, in ascending order, all primes below
the input value. The first number in the list is the number of prime numbers
found.

Function: prime number generator (sieve of Eratosthenes)

Syntax: ULONG * genprimes (ULONG N;)

Input: N (upper bound for the prime search)

Return: a pointer to vector of ULONG values with primes less than
or equal to N. (At position 0 the vector contains the
number of primes found.)
NULL, if an error with malloc().

ULONG *

genprimes (ULONG N)

{

ULONG i, k, p, s, B, L, count;

char *f;

ULONG *primes;

217

Chapter 10

Step 1: Initialization of the variables. The auxiliary function ul_iroot() computes
the integer part of the square root of a ULONG variable. For this it uses the procedure
elucidated in Section 10.3. Then comes the allocation of the vector f for marking
the composite numbers.

B = (1 + ul_iroot (N)) >> 1;

L = N >> 1;

if (((N & 1) == 0) && (N > 0))

{

--L;

}

if ((f = (char *) malloc ((size_t) L+1)) == NULL)

{

return (ULONG *) NULL;

}

for (i = 1; i <= L; i++)

{

f[i] = 1;

}

p = 3;

s = 4;

Steps 2, 3, and 4 constitute the actual sieve. The variable i represents the
numerical value 2i + 1.

for (i = 1; i <= B; i++)

{

if (f[i])

{

for (k = s; k <= L; k += p)

{

f[k] = 0;

}

}

s += p + p + 2;

p += 2;

}

218

Basic Number-Theoretic Functions

Now the number of primes found is reported, and a field of ULONG variables of
commensurate size is allocated.

for (count = i = 1; i <= L; i++)

{

count += f[i];

}

if ((primes = (ULONG*)malloc ((size_t)(count+1) * sizeof (ULONG))) == NULL)

{

return (ULONG*)NULL;

}

The field f[] is evaluated, and all the numbers 2i + 1 marked as primes are stored
in the field primes. If N ≥ 2, then the number 2 is counted as well.

for (count = i = 1; i <= L; i++)

{

if (f[i])

{

primes[++count] = (i << 1) + 1;

}

}

if (N < 2)

{

primes[0] = 0;

}

else

{

primes[0] = count;

primes[1] = 2;

}

free (f);

return primes;

}

To determine whether a number n is composite it is sufficient, according
to what we have said above, to institute a division test that divides n by all
prime numbers less than or equal to

√
n. If one fails to find a divisor, then n is

itself prime; the prime test divisors are given to us by the sieve of Eratosthenes.
However, this method is not practicable, since the number of primes that have
to be tested becomes rapidly too large. In particular, we have the prime number

219

Chapter 10

theorem , formulated as a conjecture by A. M. Legendre, that the number π (x) of
primes p, 2 ≤ p ≤ x, approaches x/ ln x asymptotically as x goes to infinity (see,
for example, [Rose], Chapter 12).8 A few values of the number of primes less than
a given x will help to make clear the size of numbers we are dealing with. Table
10-2 gives the values of both π (x), the actual number of primes less than or equal
to x, and the asymptotic approximation x/ ln x. The question mark in the last cell
indicates a number to be filled in by the reader. ;-)

Table 10-2. The number of primes up to various limits x

x 102 104 108 1016 1018 10100

x/ ln x 22 1,086 5,428,681 271,434,051,189,532 24,127,471,216,847,323 4 × 1097

π (x) 25 1,229 5,761,455 279,238,341,033,925 24,739,954,287,740,860 ?

The number of necessary calculations for the division test of x grows almost
with the number of digits of x in the exponent. Therefore, the division test alone
is not a practicable method for determining the primality of large numbers.
We shall see, in fact, that the division test is an important aid in connection
with other tests, but in principle we would be content to have a test that gave
information about the primality of a number without revealing anything about its
factorization. An improvement in the situation is offered by the little theorem of
Fermat, which tells us that for a prime p and all numbers a that are not multiples
of p the congruence ap−1 ≡ 1 mod p holds (see page 177).

From this fact we can derive a primality test, called the Fermat test: If for
some number a we have gcd(a, n) �= 1 or gcd(a, n) = 1 and 1 �≡ an−1 mod n,
then n is composite. An exponentiation an−1 ≡ 1 mod n requires O

(
log3 n

)
CPU operations, and experience indicates that in only a few tries a composite
number will reveal its lack of primality. However, there are exceptions, and these
limit the utility of the Fermat test. Therefore, we shall have to have a closer look at
them.

We must face the fact that the converse of Fermat’s little theorem does
not hold: Not every number n with gcd(a, n) = 1 and an−1 ≡ 1 mod n for
1 ≤ a ≤ n − 1 is prime. There exist composite numbers n that pass the Fermat
test as long as a and n are relatively prime. Such numbers are called Carmichael
numbers, named for their discoverer, Robert Daniel Carmichael (1879–1967). The
smallest of these curious objects are

561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19.

All Carmichael numbers have in common the property that each of them
possesses at least three different prime factors (see [Kobl], Chapter 5). It was only

8 The prime number theorem was proved independently in 1896 by Jacques Hadamard and
Charles-Jacques de la Vallée Poussin (see [Bund], Section 7.3).

220

Basic Number-Theoretic Functions

in the early 1990s that it was proven that there are infinitely many Carmichael
numbers (see [Bund], Section 2.3).

The relative frequency of numbers less than n that are relatively prime to n is

1 − φ(n)

n − 1
(10.24)

(for the Euler φ function see page 177), so that the proportion of numbers that
are not relatively prime to n is close to 0 for large n. Therefore, in most cases
one must run through the Fermat test very often to determine that a Carmichael
number is composite. Letting a run through the range 2 ≤ a ≤ n − 1, eventually,
one encounters the smallest prime divisor of n, and it is only when a assumes this
value that n is exposed as composite.

In addition to the Carmichael numbers there are further odd composite
numbers n for which there exist natural numbers a with gcd(a, n) = 1 and
an−1 ≡ 1 mod n. Such numbers are known as pseudoprimes to the base a. To
be sure, one can make the observation that there are only a few pseudoprimes
to the bases 2 and 3, or that, for example, up to 25 × 109 there are only 1770

integers that are simultaneously pseudoprimes to the bases 2, 3, 5, and 7 (see
[Rose], Section 3.4), yet the sad fact remains that there is no general estimate of
the number of solutions of the Fermat congruence for composite numbers. Thus
the problem with the Fermat test is that the uncertainty as to whether the method
of random tests will reveal a composite number as such cannot be correlated with
the number of tests.

However, such a connection is offered on the basis of the Euler criterion (see
Section 10.4.1): For an odd prime p and for all integers a that are not multiples of
p, we have

a(p−1)/2 ≡
(

a

p

)
mod p, (10.25)

where
(

a
p

)
≡ ±1 mod p denotes the Legendre–Jacobi symbol. In analogy

to Fermat’s little theorem we obtain an exclusionary criterion by taking the
contrapositive of the following statement:

If for a natural number n there exists an integer a with gcd(a, n) = 1

and a(n−1)/2 ≡ (
a
n

)
mod n, then n cannot be a prime number.

The required computational expenditure for establishing this criterion is the
same as that for the Fermat test, namely O

(
log3 n

)
.

As with the Fermat test, where there is the problem of pseudoprimes, there
exist integers n that for certain a satisfy the Euler criterion although they are
composite. Such n are called Euler pseudoprimes to the base a. An example is

221

Chapter 10

n = 91 = 7 ·13 to the bases 9 and 10, for which we have 945 ≡ (
9
91

) ≡ 1 mod 91

and 1045 ≡ (
10
91

) ≡ −1 mod 91.9

An Euler pseudoprime to a base a is always a pseudoprime to the base
a (see page 221), since by squaring a(n−1)/2 ≡ (

a
n

)
mod n it follows that

an−1 ≡ 1 mod n.
There is, however, no counterpart to the Carmichael numbers for the Euler

criterion, and based on the following observations of R. Solovay and V. Strassen
we can see that the risk of a false test result for Euler pseudoprimes is favorably
bounded from above.

(i) For a composite number n the number of integers a relatively prime to n for
which a(n−1)/2 ≡ (

a
n

)
mod n is at most 1

2φ (n) (see [Kobl], Section 2.2,
Exercise 21). From this we have the following proposition.

(ii) The probability that for a composite number n and k randomly selected
numbers a1, . . . , ak relatively prime to n one has a

(n−1)/2
r ≡ (

ar

n

)
mod n,

for 1 ≤ r ≤ k, is at most 2−k.

These results make it possible to implement the Euler criterion as a
probabilistic primality test, where “probabilistic” means that if the test returns
that result “n is not prime,” then this result is definitive, but it is only with a
certain probability of error that we may infer that n is in fact prime.

Algorithm: Probabilistic primality test à la Solvay–Strassen for testing a natural
number n for compositeness

1. Choose a random number a ≤ n − 1 with gcd(a, n) = 1.

2. If has a(n−1)/2 ≡ (
a
n

)
mod n, then output “n is a probable prime.”

Otherwise, output “n is composite.”

This test requires computation time O
(
log3 n

)
for the calculation of the

exponent and the Jacobi symbol. By repeated application of this test we can
reduce the probability of error in step (ii). For example, for k = 60 we obtain a
vanishingly small probability of error less than 2−60 ≈ 10−18, and D. Knuth has
indicated that this value is less than that of a transient hardware error, caused, for
example, by an alpha particle that has found its way into the CPU or memory of a
computer and thereby switched the value of a bit.

We might be satisfied with this test, since we have control over the probability
of error and we have efficient algorithms for all the required computations.
However, there are results that lead to a more efficient algorithm. For this we

9 We have 93 ≡ 106 ≡ 1 mod 91, since 3 is the order of 9 and 6 is the order of 10 in Z91.
Therefore, 945 ≡ 93·15 ≡ 1 mod 91 and 1045 ≡ 106·7+3 ≡ 103 ≡ −1 mod 91.

222

Basic Number-Theoretic Functions

would like to introduce a few considerations that will improve our understanding
of the most widely used probabilistic primality tests

Let us make the hypothesis that n is prime. Then by Fermat’s little theorem
we have an−1 ≡ 1 mod n for integers a that are not multiples of n. The square
root of an−1 mod n can assume only the value 1 or −1, since these are the
only solutions of the congruence x2 ≡ 1 mod n (see Section 10.4.1). If we also
compute from an−1 mod n the successive square roots

a(n−1)/2 mod n, a(n−1)/4 mod n, . . . , a(n−1)/2t

mod n,

one after another until (n − 1)/2t is odd, and if in the process we arrive at a
residue not equal to 1, then this residue must have the value −1, for otherwise, n
cannot be prime, which we have hypothesized. For the case that the first square
root different from 1 has the value −1, we stick by our hypothesis that n is prime.
If n is nevertheless composite, then we shall call n on the basis of this special
property a strong pseudoprime to the base a. Strong pseudoprimes to a base a are
always Euler pseudoprimes to the base a (see [Kobl], Chapter 5).

We assemble all of this into the following probabilistic primality test, though
for the sake of efficiency we shall first compute the power b = a(n−1)/2t

mod n

with odd (n − 1)/2t, and if this is not equal to 1, we continue to square b until we
obtain a value of ±1 or have reached a(n−1)/2 mod n. In the last case we must
have either b = −1 or that n is composite. The idea of shortening the algorithm
so that the last square does not have to be calculated has been taken from [Cohe],
Section 8.2.

Probabilistic primality test à la Miller–Rabin for odd integers n > 1

1. Determine q and t with n − 1 = 2tq, with q odd.

2. Choose a random integer a, 1 < a < n. Set e ← 0, b ← aq mod n. If b = 1,
output “n is probably prime” and terminate the algorithm.

3. As long as we have b �≡ ±1 mod n and e < t − 1, set b ← b2 mod n and
e ← e + 1. If now b �= n − 1, then output “n is composite.” Otherwise,
output “n is probably prime.”

With a running time of O
(
log3 n

)
for the exponentiations, the Miller–Rabin

test (MR test for short) has complexity the same order of magnitude as the
Solovay–Strassen test.

The existence of strong pseudoprimes means that the Miller–Rabin primality
test offers us certainty only about the compositeness of numbers. The number
91, which we trotted out above as an example of an Euler pseudoprime (to base
9) is also—again to base 9—a strong pseudoprime. Further examples of strong
pseudoprimes are

2152302898747 = 6763 · 10627 · 29947

223

Chapter 10

and

3474749660383 = 1303 · 16927 · 157543.

These two numbers are the only pseudoprimes below 1013 to the prime bases
2, 3, 5, 7, and 11 (see [Rose], Section 3.4).

Fortunately, the number of bases of strong pseudoprimes is again diminished
by these numbers themselves. M. Rabin has proved that for a composite number
n there are fewer than n/4 bases a, 2 ≤ a ≤ n − 1, to which n is a strong
pseudoprime (see [Knut], Section 4.5.4, Exercise 22, and [Kobl], Chapter 5).
From this we obtain with k-fold repetition of the test with k randomly chosen
bases a1, . . . , ak a probability smaller than 4−k that a strong pseudoprime has
been falsely accepted as a prime. Therefore, for the same amount of work, the
Miller–Rabin test is superior to the Solovay–Strassen test, which with k repetitions
has probability of error bounded by 2−k.

In practice, the Miller–Rabin test does much better than advertised, since the
actual probability of error is in most cases much smaller than that guaranteed by
the theorem of Rabin (see [MOV], Section 4.4, and [Schn], Section 11.5).

Before we get down to implementing the Miller–Rabin test, we look at two
approaches to improving efficiency.

By beginning the Miller–Rabin test with a division sieve that divides the prime
candidates by small primes, we obtain an advantage: If a factor is found in the
process, then the candidate can be eliminated from consideration without the
expense of a Miller–Rabin test. The question at once presents itself as to how
many prime numbers would be optimal to divide by before undertaking the MR
test. We give a recommendation due to A. K. Lenstra: The greatest efficiency is
achieved if one divides by the 303 prime numbers less than 2000 (see [Schn],
Section 11.5). The reason for this arises from the observation that the relative
frequency of odd numbers without prime divisors less than the bound n is about
1.12/ ln n. Dividing by prime numbers under 2000 eliminates about 85 percent
of all composite numbers without using the MR test, which is then used only on
the remaining candidates.

Each division by a small divisor requires computation time of order only
O (ln n). We make use of an efficient division routine especially for small divisors
and use it in instituting the division sieve.

The division sieve is implemented in the following function
sieve_l(). It, in turn, uses the primes less than 65536 stored in the field
smallprimes[NOOFSMALLPRIMES]. The primes are stored as differences, where for
each prime only a byte of storage is required. The diminished access to these
primes is not a serious problem, since we are using them in their natural order.
The case that the candidate itself is a small prime and is contained in the prime
number table must be specially indicated.

Finally, we profit from the exponentiation function for small bases (see
Chapter 6) by applying the MR test with small primes 2, 3, 5, 7, 11, . . . < B

224

Basic Number-Theoretic Functions

instead of randomly selected bases. According to experience this in no way
impairs the results of the test.

We now introduce the division sieve. The function uses the division routine
for short divisors that we developed for the function div_l().

Function: division sieve

Syntax: USHORT sieve_l (CLINT a_l, unsigned no_of_smallprimes);

Input: a_l (candidate for primality search)
no_of_smallprimes (number of primes to serve as divisors, without 2)

Return: prime factor, if one is found
1, if the candidate itself is prime
0, if no factor is found

USHORT

sieve_l (CLINT a_l, unsigned int no_of_smallprimes)

{

clint *aptr_l;

USHORT bv, rv, qv;

ULONG rhat;

unsigned int i = 1;

For the sake of completeness we first test whether a_1 is a multiple of 2. If, in fact,
a_1 has the value 2, then 1 is returned, while if a_1 is greater than 2 and is even,
then 2 is returned as a factor.

if (ISEVEN_L (a_l))

{

if (equ_l (a_l, two_l))

{

return 1;

}

else

{

return 2;

}

}

bv = 2;

do

{

225

Chapter 10

The prime numbers are computed by successive addition of the numbers stored
in smallprimes[] and stored in bv. The first prime that serves as a divisor is 3. We
use the code of the fast routine for division by a USHORT (see Section 4.3).

rv = 0;

bv += smallprimes[i];

for (aptr_l = MSDPTR_L (a_l); aptr_l >= LSDPTR_L (a_l); aptr_l--)

{

qv = (USHORT)((rhat = ((((ULONG)rv) << BITPERDGT) + (ULONG)*aptr_l)) / bv);

rv = (USHORT)(rhat - (ULONG)bv * (ULONG)qv);

}

}

while (rv != 0 && ++i <= no_of_smallprimes);

If an actual divisor was found (rv == 0 and bv �= a_l; otherwise, a_l itself is
prime!), this is returned. If a_l is itself a small prime, then 1 is returned. Otherwise,
0 is returned.

if (0 == rv)

}

if (DIGITS_L (a_l) == 1 && *LSDPTR_L (a_l) == bv)

}

bv = 1;

}

/* else: result in bv is a prime factor of a_l */

}

else /* no factor of a_l was found */

}

bv = 0;

}

return bv;

}

The function sieve_l() can be used for splitting off prime factors under
65536 from CLINT objects. To enable this, the macro SFACTOR_L(n_l) is defined
in flint.h, which uses the call sieve_l(n_l, NOOFSMALLPRIMES) to test divide
n_l by the primes stored in smallprimes[]; SFACTOR_L() returns the same value
as sieve_l(). By repeated calls to SFACTOR_L() with subsequent division by the
factors found, integers below 232, that is, integers that can be represented by the
standard integer types, can be completely factored. If no factor is found, then we
are dealing with a prime number.

226

Basic Number-Theoretic Functions

The full-blown test function prime_l() integrates the division sieve and
the Miller–Rabin test. To retain maximum flexibility the function is constituted
in such a way that the number of divisions in the pretest and the number of
passes through the Miller–Rabin test can be passed as parameters. To simplify the
situation in applications, the macro ISPRIME_L(CLINT n_l) can be used, which in
turn calls the function prime_l() with preset parameters.

There is differing advice in the literature in relation to the open question of
how many repetitions of the Miller–Rabin test should be made in order to ensure
reliable results. For example, [Gord] and [Schn] recommend five repetitions for
cryptographic purposes, while the algorithm in [Cohe] prescribes 25 passes. In
[Knut], the recommendation is that in 25 passes through the test, the number of
errors for a set of a billion candidates accepted as prime numbers is under 10−6,
although the value 25 is not explicitly endorsed, and he asks the philosophical
question, “Do we really need to have a rigorous proof of primality?”10

For the application area of digital signatures, there is the opinion that error
probabilities less than 2−80 ≈ 10−24 in the generation of prime numbers is
acceptable (in Europe, the bound 2−60 ≈ 10−18 is also under discussion), so
that errors are almost entirely excluded even when large numbers of keys are
generated. In [RegT] it is suggested that in 2010,the threshold value should be
lowered to 2−100. Applied to the estimate of the probability of error by Rabin, this
would mean that 40, respectively 30, rounds of Miller–Rabin tests would be run,
with longer calculation times as the size of the numbers being tested grows. In
fact, however, there exist very much sharper estimates that depend not only on
the number of passes, but also on the length of the prime number candidate (see
[DaLP] and [Burt]). In [DaLP], the following inequalities are proved, where pl,k

denotes the probability that a randomly selected odd number with l binary digits
that is declared prime after k passes through the Miller–Rabin test is actually
composite:

pl,1 < l242−√
l for l ≥ 2; (10.26)

pl,k < l3/22kk−1/242−√
kl for k = 2, l ≥ 88 or 3 ≤ k ≤ l/9, l ≥ 21;

(10.27)

pl,k <
7

20
l · 2−5k +

1

7
l15/42l/2−2k + 12 · l · 2−l/4−3k (10.28)

for l/9 ≤ k ≤ l/4, l ≥ 21;

pl,k <
1

7
l15/42−l/2−2k for k ≥ l/4, l ≥ 21. (10.29)

10 In [BCGP] it is mentioned that Knuth’s assertion holds only because the probability of error
for most composite numbers is significantly less than one-fourth; otherwise, the error bound
given by Knuth would lie significantly above the given number.

227

Chapter 10

From these inequalities we can calculate what probabilities we can get below
with how many passes of the Miller–Rabin test for a given number of digits, or how
many passes are necessary to get below given probabilities of error. The results
are far below those of Rabin, according to whom k repetitions are necessary to
reach a probability of error beneath 4−k. Table 10-3 shows values of k necessary
to reach probabilities below 2−80 and 2−100 as a function of the number l of
binary digits of the numbers being tested.

Table 10-3. The number k of passes through the Miller–Rabin test to achieve
probabilities of error less than 2−80 and 2−100 as a function of the number l of binary
digits (after [DaLP]).

Probability < 2−80 Probability < 2−100

l k l k

49 37 49 47

73 32 73 42

105 25 105 35

137 19 132 29

197 15 198 23

220 to 234 13 223 20

235 to 251 12 242 18

252 to 272 11 253 17

273 to 299 10 265 16

300 to 331 9 335 12

332 to 374 8 480 to 542 8

375 to 432 7 543 to 626 7

433 to 513 6 627 to 746 6

514 to 637 5 747 to 926 5

638 to 846 4 927 to 1232 4

847 to 1274 3 1233 to 1853 3

1275 to 2860 2 1854 to 4095 2

≥ 2861 1 ≥ 4096 1

The effect of using the division sieve before the Miller–Rabin test is not
considered in inequalities (10.26) through (10.29). Since the sieve greatly
reduces the relative frequency of composite candidates, one may expect that the
probabilities of error for a given choice of l and k would be further reduced.

228

Basic Number-Theoretic Functions

For a discussion of the subtle problems of conditional probabilities in relation
to the probability of error in the generation of randomly selected prime numbers,
see [BCGP] and [MOV], Section 4.4.

In the following function prime_l, the values from Table 10-3 will be
considered. We use the exponentiation function wmexpm_l(), which combines
Montgomery reduction with the advantages that accrue from exponentiation of
small bases (see Chapter 6).

Function: probabilistic primality test à la Miller–Rabin with
division sieve

Syntax: int prime_l (CLINT n_l,
unsigned int no_of_smallprimes,
unsigned int iterations);

Input: n_l (candidate for primality)
no_of_smallprimes (number of primes for the division sieve)
iterations (number of Miller–Rabin test iterations; if iterations == 0,
this is determined from Table 10-3)

Return: 1 if the candidate is “probably” prime
0 if the candidate is composite or equal to 1

int

prime_l (CLINT n_l, unsigned int no_of_smallprimes, unsigned int iterations)

{

CLINT d_l, x_l, q_l;

USHORT i, j, k, p;

int isprime = 1;

if (EQONE_L (n_l))

{

return 0;

}

Now the division test is executed. If a factor is found, then the function is ter-
minated with 0 returned. If 1 is returned by sieve_l(), indicating that n_l is
itself prime, then the function is terminated with return value 1. Otherwise, the
Miller–Rabin test is carried out.

229

Chapter 10

k = sieve_l (n_l, no_of_smallprimes);

if (1 == k)

{

return 1;

}

if (1 < k)

{

return 0;

}

else

{

if (0 == iterations)

If iterations == 0 is passed as parameter, then based on the number of digits of
n_l, the optimized number of iterations for coming in under the bound of 2−80 is
determined.

{

k = ld_l (n_l);

if (k < 73) iterations = 37;

else if (k < 105) iterations = 32;

else if (k < 137) iterations = 25;

else if (k < 197) iterations = 19;

else if (k < 220) iterations = 15;

else if (k < 235) iterations = 13;

else if (k < 253) iterations = 12;

else if (k < 275) iterations = 11;

else if (k < 300) iterations = 10;

else if (k < 332) iterations = 9;

else if (k < 375) iterations = 8;

else if (k < 433) iterations = 7;

else if (k < 514) iterations = 6;

else if (k < 638) iterations = 5;

else if (k < 847) iterations = 4;

else if (k < 1275) iterations = 3;

else if (k < 2861) iterations = 2;

else iterations = 1;

}

230

Basic Number-Theoretic Functions

Step 1. The decomposition of n − 1 as n − 1 = 2kq with odd q is carried out by
the function twofact_l(). The value n − 1 is retained in d_l.

cpy_l (d_l, n_l);

dec_l (d_l);

k = (USHORT)twofact_l (d_l, q_l);

p = 0;

i = 0;

isprime = 1;

do

{

Step 2. The bases p are formed from the differences stored in the field
smallprimes[]. For the exponentiation we use the Montgomery function wmexpm_l,
since the base is always of type USHORT and, after the pretest with the division sieve
of the prime candidate n_l, always odd. If afterwards the power in x_l is equal to
1, then the next test iteration begins.

p += smallprimes[i++];

wmexpm_l (p, q_l, x_l, n_l);

if (!EQONE_L (x_l))

{

j = 0;

Step 3. Squaring, as long as x_l is different from ±1 and k − 1 iterations have not
yet been executed.

while (!EQONE_L (x_l) && !equ_l (x_l, d_l) && ++j < k)

{

msqr_l (x_l, x_l, n_l);

}

if (!equ_l (x_l, d_l))

{

isprime = 0;

}

}

}

231

Chapter 10

Loop over the number iterations of test iterations.

while ((--iterations > 0) && isprime);

return isprime;

}

}

For the cases in which definitive test results are required, the APRCL test,
published in 1981 by its developers L. Adleman, C. Pomerance, R. Rumely, H.
Cohen, and A. K. Lenstra, shows the direction of development of such tests. H.
Riesel praised this test as a breakthrough, proving that fast, generally applicable,
definitive primality tests were possible (see [Ries], page 131). The test determines

the primality property of an integer n in time of order O
(
(ln n)C ln ln ln n

)
for a suitable constant C. Since the exponent ln ln ln n behaves like a constant
for all practical purposes, it can be considered a polynomial-time procedure,
and integers with several hundreds of decimal digits can have their primality or
lack thereof determined definitively in times that are otherwise achieved only
by probabilistic tests.11 The algorithm, which uses analogues of Fermat’s little
theorem for higher algebraic structures, is theoretically complicated and difficult
to implement. For further information see [Cohe], Chapter 9, or the original
article cited therein, as well as the extensive explication in [Ries].

One might also ask whether one would obtain a definitive proof of primality
by testing sufficiently many bases with the Miller–Rabin test. In fact, G. Miller
has proved, on the assumption of the extended Riemann hypothesis (see
page 200) that an odd natural number n is prime if and only if for all bases a,
1 ≤ a ≤ C · ln2 n, the Miller–Rabin test indicates the primality of n (the constant
C is specified in [Kobl], Section 5.2, as 2). Used in this way the Miller–Rabin test is
a deterministic polynomial-time primality test that uses about 106 iterations, for
primes of about 1024 binary digits, to produce a definitive answer. If we suppose
10−3 seconds for each iteration (this is the order of magnitude for the time
required for an exponentiation on a fast PC; cf. Appendix D), then a definitive test
would take about an hour. Considering that there is an unproven hypothesis to be
reckoned with, this theoretical result will satisfy neither the mathematical purists
nor the computational pragmatists interested in fast procedures.

A surprising mathematical breakthrough occurred in 2002, when Maninda
Agrawal, Neeraj Kayal, and Nitin Saxena, of the Indian Institute of Technology,
in Kanpur, published an algorithm that provided a definitive proof of primality
in polynomial time, thereby proving that the problem of recognizing a number

11 Cohen suggests in this connection that the practicably implementable variant of the APRCL al-
gorithm is again probabilistic, but that nonetheless a less practical, but deterministic, version
exists (see [Cohe], Chapter 9).

232

Basic Number-Theoretic Functions

to be prime belongs in the computational complexity class P. The algorithm was
declared “brilliant and beautiful” by Carl Pomerance. The proof is elegant and
surprisingly without any deep complexity, in contrast to what had been supposed,
since a solution to the problem had been sought for centuries. Above all, we note
that the proof does not rely on any unproven conjectures (see [AgKS]).

AKS algorithm for determining whether an integer n is prime

1. If n is a power of a natural number, go to step 8.

2. Set r ← 2.

3. If gcd(r, n) �= 1, go to step 8.

4. If r is not prime, go to step 5. Otherwise, let q be the largest prime factor of
r − 1. If q ≥ 4

√
r log n and n(r−1)/q �= r, go to step 6.

5. Set r ← r + 1 and go to step 3.

6. If for some a in the set { 1, . . . , �2√r log n� } it is the case that (X − a)n �≡
Xn − a (mod Xr − 1, n), go to step 8.12

7. Output “n is prime.”

8. Output “n is composite.”

To exclude powers of natural numbers in step 1 of the AKS test it suffices to

test whether
⌊
n1/b

⌋b �= b for 2 ≤ b < log n. The integer part of the root
⌊
n1/b

⌋
is calculated with the algorithm previously presented in this chapter.

The AKS algorithm is based on a variant of Fermat’s little theorem together
with the binomial theorem, according to which for 1 < n ∈ N and a ∈ Z×

n , the
integer n is prime precisely when in the polynomial ring Zn[X] (see [AgKS], page
2), one has

(X + a)n = (Xn + a) . (10.30)

A test based on this fact for an element a of Zn[X] would then be able to
determine definitively whether an integer n is prime. However, there would be
considerable computation to determine the n coefficients of the polynomial
(X + a)n, even more than in applying the sieve of Eratosthenes. Following the
idea of Agrawal, Kayal, and Saxena, it turns out that both sides of equation (10.30)
can be reduced modulo (Xr − 1) for a suitable value of r. If for sufficiently many
values of a one has the equality

(X + a)n = (Xn + a) (10.31)

12 According to the notation of Agrawal, Kayal and Saxena, p(x) ≡ q(x) (mod xr − 1, n) if p(x)
and q(x) have the same remainders on division by both xr − 1 and n.

233

Chapter 10

in the ring Zn[x]/ (Xr − 1), then n is prime. Conversely, for a composite
number n, there exist values of a and r such that (X + a)n �= (Xn + a) in
Zn[x]/ (Xr − 1). What is decisive here is that such values of a and r can be found
in polynomial time if n is not prime, while if n is prime, it can be determined
in polynomial time that such values do not exist. The size of the polynomial
coefficients are bounded by r, and thus the calculation is faster, the smaller r is. If
r is of order log n, the polynomial residue can be computed in polynomial time.

Agrawal, Kayal, and Saxena showed that suitable values of r can be
found of size O

(
log5 n

)
and that the AKS test must be run only for values

1 ≤ a ≤ 2
√

r log n. The running time of the AKS test is therefore polynomial in
log2 n, given by O

(
log7.5+ε n

)
.13 The problem is solved.

There remains the fascinating question what practical relevance the AKS
test has from the point of view of cryptography: The expected calculation time
determines whether it is of any practical use.

Crandall gives the values in Table 10-4 for small values of n from a small
experimental C implementation on a “decent workstation.”

Table 10-4. Approximate calculation times for the AKS test, after [CrPa]

n Approximate Time

70 001 3 seconds

700 001 15 seconds

2 147 483 647 200 seconds

1125 899 906 842 679 4000 seconds (ca. 1 hour)

618 970 019 642 690 137 449 562 111 100 000 seconds (ca. 1 day)

The times in the table correspond to about 10−6 log6 n seconds. An
implementation by F. Bornemann based on the Pari-GP library requires nine
seconds on a 1.7-GHz PC for proving the primality of 628 363 443 011 (see
http://www-m3.ma.tum.de/m3/ftp/Bornemann/PARI/aks2.txt). The running time
for a 512-bit prime number would then take several days. We thus obtain a
definitive result, whose certainty we can approach only asymptotically using
probabilistic primality tests. Since we can make the remaining probability of
error, say by using the Miller–Rabin test, arbitrarily small, the disadvantage of not
having that last bit of certainty is not very large in practice.

13 Improvements in these numbers have been considered on the basis of suggestions by H.
Lenstra and D. Bernstein (see [Bern]). If we consider a conjecture about the density of Sophie
Germain primes (prime numbers n for which 2n + 1 is also prime) by Hardy and Littlewood
(1922), we would have a run time for the AKS test of O

(
log6+ε n

)
. Hardy and Littlewood

conjectured that the cardinality of the set { p ≤ x | p and 2p + 1 are prime } is asymptotic to
2C2/ ln2 x, with C2 = 0.6601618158 . . . , the so-called twin-primes constant. This conjec-
ture has been verified up to x = 10 000 000 000, and therefore, the more favorable run-time
estimate for the AKS test holds at least for numbers with up to 100 000 digits (see [Born]).

234

Basic Number-Theoretic Functions

In sum, we should recognize that the AKS test represents a sensational
result from the point of view of complexity theory, but that the Miller–Rabin test
will continue to be the test of choice for cryptographic applications due to its
enormous advantage in speed, even if Henri Cohen seems to be answering the
above-quoted question of Knuth when he categorically asserts ([Cohe], Section
8.2), “Primality testing, however, requires rigorous mathematical proofs.”

235

CHAPTER 11

Rijndael: A Successor

to the Data

Encryption Standard

I don’t know if we have any real chance. He can multiply and all we can do is
add. He represents progress and I just drag my feet.

—Sten Nadolny (translated by Breon Mitchell), God of Impertinence

THE AMERICAN NATIONAL INSTITUTE OF Standards and Technology (NIST) launched
a competition in 1997 under the aegis of an Advanced Encryption Standard (AES)
with the goal of creating a new national standard (federal information processing
standard, or FIPS) for encryption with a symmetric algorithm. Although we
have concentrated our attention in this book on asymmetric cryptography, this
development is important enough that we should give it some attention, if only
cursorily. Through the new standard FIPS 197 [F197], an encryption algorithm
will be established that satisfies all of today’s security requirements and that in
all of its design and implementation aspects will be freely available without cost
throughout the world. Finally, it replaces the dated data encryption standard
(DES), which, however, as triple DES remains available for use in government
agencies. However, the AES represents the cryptographic basis of the American
administration for the protection of sensitive data.

The AES competition received a great deal of attention abroad as well as in
the USA, not only because whatever happens in the United States in the area
of cryptography produces great effects worldwide, but because international
participation was specifically encouraged in the development of the new block
encryption procedure.

From an original field of fifteen candidates who entered the contest in 1998,
by 1999 ten had been eliminated, a process with involvement of an international
group of experts. There then remained in competition the algorithms MARS, of
IBM; RC6, of RSA Laboratories; Rijndael, of Joan Daemen and Vincent Rijmen;
Serpent, of Ross Anderson, Eli Biham, and Lars Knudson; and Twofish, of Bruce
Schneier et al. Finally, in October 2000 the winner of the selection process was
announced. The algorithm with the name “Rijndael,” by Joan Daemen and

237

Chapter 11

Vincent Rijmen, of Belgium, was named as the future advanced encryption
standard (cf. [NIST]).1 Rijndael is a successor of the block cipher “Square,”
published earlier by the same authors (cf. [Squa]), which, however, had proved to
be not as powerful. Rijndael was especially strengthened to attack the weaknesses
of Square. The AES report of NIST gives the following basis for its decision.

1. Security
All candidates fulfill the requirements of the AES with respect to security
against all known attacks. In comparison to the other candidates, the
implementations of Serpent and Rijndael can at the least cost be protected
against attacks that are based on measurements of the time behavior of
the hardware (so-called timing attacks) or changes in electrical current use
(so-called power or differential power analysis attacks).2 The degradation in
performance associated with such protective measures is least for Rijndael,
Serpent, and Twofish, with a greater advantage to Rijndael.

2. Speed
Rijndael is among the candidates that permit the most rapid implemen-
tation, and it is distinguished by equally good performance across all
platforms considered, such as 32-bit processors, 8-bit microcontrollers,
smart cards, and implementations in hardware (see below). Of all the
candidates Rijndael allows the most rapid calculation of round keys.

3. Memory requirement
Rijndael makes use of very limited resources of RAM and ROM memory and
is thus an excellent candidate for use in restricted-resource environments.
In particular, the algorithm offers the possibility to calculate round
keys separately “on the fly” for each round. These properties have great
significance for applications on microcontrollers such as used in smart
cards. Due to the structure of the algorithm, the requirements on ROM
storage are least when only one direction, that is, either encryption or
decryption, is realized, and they increase when both functions are needed.
Nonetheless, with respect to resource requirements Rijndael is not beaten
by any of the other four contestants.

4. Implementation in hardware

1 The name “Rijndael” is a portmanteau word derived from the names of the authors. Sources
tell me that the correct pronunciation is somewhere between “rain doll” and “Rhine dahl.” Per-
haps NIST should include in the standard a pronunciation key in the international phonetic
alphabet.

2 Power analysis attacks (simple PA/differential PA) are based on correlations between indi-
vidual bits or groups of bits of a secret cryptographic key and the average consumption of
electricity for the execution of individual instructions or code sequences depending on the
key (see, for example, [KoJJ], [CJRR], [GoPa]).

238

Rijndael: A Successor to the Data Encryption Standard

Rijndael and Serpent are the candidates with the best performance in
hardware implementations, with a slight advantage going to Rijndael due to
its better performance in output and cipher feedback modes.

The report offers further criteria that contributed to the decision in favor of
Rijndael, which are collected into a closing summary (see [NIST], Section 7):

There are many unknowns regarding future computing platforms
and the wide range of environments in which the AES will be
implemented. However, when considered together, Rijndael’s
combination of security, performance, efficiency, implementability,
and flexibility make it an appropriate selection for the AES for use in
the technology of today and in the future.

Given the openness of the selection process and the politically interesting fact that
with Rijndael an algorithm of European vintage was selected, one might expect
future speculation about secret properties, hidden trap doors, and deliberately
built-in weaknesses to be silenced, which never quite succeeded with DES.

Before we get involved with the functionality of Rijndael, we would like as
preparation to go on a brief excursion into the arithmetic of polynomials over
finite fields, which leans heavily on the presentation in [DaRi], Section 2.

11.1 Arithmetic with Polynomials

We start by looking at arithmetic in the field F2n , the finite field with 2n

elements, where an element of F2n is represented as a polynomial f(x) =

an−1x
n−1 + an−2x

n−2 + · · · + a1x + a0 with coefficients ai in F2 (which
is isomorphic to Z2). Equivalently, an element of F2n can be represented
simply as an n-tuple of polynomial coefficients, each representation offering
its own advantages. The polynomial representation is well suited for manual
calculation, while the representation as a tuple of coefficients corresponds well to
a computer’s binary representation of numbers. To demonstrate this, we notate
F23 as a sequence of eight polynomials and again as eight 3-tuples with their
associated numerical values (see Table 11-1).

Addition of polynomials proceeds by adding the coefficients in F2: If
f(x) := x2 + x and g(x) := x2 + x + 1, then f(x) + g(x) = 2x2 + 2x + 1 = 1,
since 1 + 1 = 0 in F2. We can carry out addition of 3-tuples in F23 column by
column. We see, then, for example, that the sum of (1 1 0) and (1 1 1) is (0 0 1):

1 1 0
⊕ 1 1 1

0 0 1

239

Chapter 11

Table 11-1. Elements of F23

Polynomials in F23 3-Tuples in F23 Numerical Value

0 0 0 0 ‘00’

1 0 0 1 ‘01’

x 0 1 0 ‘02’

x + 1 0 1 1 ‘03’

x2 1 0 0 ‘04’

x2 + 1 1 0 1 ‘05’

x2 + x 1 1 0 ‘06’

x2 + x + 1 1 1 1 ‘07’

The addition of digits takes place in Z2 and is not to be confused with binary
addition, which can involve a carry. This process is reminiscent of our XOR
function in Section 7.2, which executes the same operation in Zn for large n.

Multiplication in F23 is accomplished by multiplying each term of the first
polynomial by each term of the second and then summing the partial products.
The sum is then reduced by an irreducible polynomial of degree 3 (in our example
modulo m(x) := x3 + x + 1):3

f(x) · g(x) =
(
x2 + x

)
·
(
x2 + x + 1

)
mod

(
x3 + x + 1

)
= x4 + 2x3 + 2x2 + x mod

(
x3 + x + 1

)
= x4 + x mod

(
x3 + x + 1

)
= x2.

This corresponds to the product of 3-tuples (1 1 0) • (1 1 1) = (1 0 0), or,
expressed numerically, ‘06’ • ‘07’ = ‘04’.

The abelian group laws hold in F23 with respect to addition and in F23 \ {0}
with respect to multiplication (cf. Chapter 5). The distributive law holds as well.

The structure and arithmetic of F23 can be carried over directly to the field
F28 , which is the field that is actually of interest in studying Rijndael. Addition and
multiplication are carried out as in our above example, the only differences being
that F28 has 256 elements and that an irreducible polynomial of degree 8 will be
used for reduction. For Rijndael this polynomial is m(x) := x8 +x4 +x3 +x+1,
which in tuple representation is (1 0 0 0 1 1 0 1 1), corresponding to the
hexadecimal number ‘011B’.

Multiplication of a polynomial

f(x) = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

3 A polynomial is said to be irreducible if it divisible (without remainder) only by itself and 1.

240

Rijndael: A Successor to the Data Encryption Standard

by x (corresponding to a multiplication • ‘02’) is particularly simple:

f(x) ·x = a7x
8 +a6x

7 +a5x
6 +a4x

5 +a3x
4 +a2x

3 +a1x
2 +a0x mod m(x),

where the reduction modulo m(x) is required only in the case a7 �= 0, and
then it can be carried out by subtracting m(x), that is, by a simple XOR of the
coefficients.

For programming one therefore regards the coefficients of a polynomial
as binary digits of integers and executes a multiplication by x by a left shift
of one bit, followed by, if a7 = 1, a reduction by an XOR operation with the
eight least-significant digits ‘1B’ of the number ‘011B’ corresponding to m(x)

(whereby a7 is simply “forgotten”). The operation a • ‘02’ for a polynomial f ,
or its numerical value a, is denoted by Daemen and Rijmen by b = xtime(a).
Multiplication by powers of x can be executed by successive applications of
xtime().

For example, multiplication of f(x) by x + 1 (or ‘03’) is carried out by shifting
the binary digits of the numerical value a of f one place to the left and XOR-ing
the result with a. Reduction modulo m(x) proceeds exactly as with xtime. Two
lines of C code demonstrate the procedure:

f ˆ= f << 1; /* multiplication of f by (x + 1) */

if (f & 0x100) f ˆ= 0x11B; /* reduction modulo m(x) */

Multiplication of two polynomials f and h in F28 \ {0} can be speeded up by
using logarithms: Let g(x) be a generating polynomial4 of F28 \ {0}. Then there
exist m and n such that f ≡ gm and h ≡ gn. Thus f · h ≡ gm+n mod m(x).

From a programming point of view this can be transposed with the help of
two tables, into one of which we place the 255 powers of the generator polynomial
g(x) := x + 1 and into the other the logarithms to the base g(x) (see Tables
11-2 and 11-3). The product f · h is now determined by three accesses to these
tables: From the logarithm table are taken values m and n for which gm = f and
gn = h. From the table of powers the value g((n+m)mod255) is taken (note that
gord(g) = 1). Table 11-2 contains the powers of g twice in succession, and so one
can avoid having to reduce the exponent of g in f · h = gn+m.

With the help of this mechanism we can also carry out polynomial division in
F28 . Thus for f, g ∈ F28 \ {0},

f

h
= fh−1 = gm (gn)−1 = gm−n = g(m−n)mod255.

This procedure for polynomial multiplication in F28 is illustrated in the
function polymul():

4 g generates F28 \ {0} if g has order 255. That is, the powers of g run through all the elements
of F28 \ {0}.

241

Chapter 11

Table 11-2. Powers of g(x) = x + 1, ascending left to right

01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35

5F E1 38 48 D8 73 95 A4 F7 02 06 0A 1E 22 66 AA

E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31

53 F5 04 0C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD

4C D4 67 A9 E0 3B 4D D7 62 A6 F1 08 18 28 78 88

83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A

B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3

FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0

FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41

C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75

9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80

9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54

FC 1F 21 63 A5 F4 07 09 1B 2D 77 99 B0 CB 46 CA

45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E

12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17

39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 01

03 05 0F 11 33 55 FF 1A 2E 72 F6

Function: multiplication of polynomials in F28

Syntax: UCHAR polymul (unsigned int f, unsigned int h);

Input: unsigned int f (summand), unsigned int h (summand)

Return: the product f · h

UCHAR

polymul (unsigned int f, unsigned int h)

{

if ((f != 0) && (h != 0))

{

242

Rijndael: A Successor to the Data Encryption Standard

Note that for the following access to the table of powers of g, the reduction of the
exponent m + n = LogTable[f] + LogTable[h] is unnecessary.

return (AntiLogTable[LogTable[f] + LogTable[h]]);

}

else

{

return 0;

}

}

Table 11-3. Logarithms to base g(x) = x + 1 (e.g., logg(x) 2 = 25 = 19 in hexadecimal,
logg(x) 255 = 7).

00 19 01 32 02 1A C6 4B C7 1B 68 33 EE DF 03

64 04 E0 0E 34 8D 81 EF 4C 71 08 C8 F8 69 1C C1

7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78

65 2F 8A 05 21 0F E1 24 12 F0 82 45 35 93 DA 8E

96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38

66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10

7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA

2B 79 0A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57

AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8

2C D7 75 7A EB 16 0B F5 59 CB 5F B0 9C A9 51 A0

7F 0C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7

CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D

97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1

53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB

44 11 92 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5

67 4A ED DE C5 31 FE 18 0D 63 8C 80 C0 F7 70 07

243

Chapter 11

We now ratchet the complexity level up one notch and consider arithmetic
with polynomials of the form f(x) = f3x

3 + f2x
2 + f1x + f0 with coefficients

fi in F28 , that is, coefficients that are themselves polynomials. The coefficients
of such polynomials can be represented as fields of four bytes each. Now things
begin to get interesting: While addition of such polynomials f(x) and g(x)

again takes place by means of a bitwise XOR of the coefficients, the product
h(x) = f(x)g(x) is calculated to be

h(x) = h6x
6 + h5x

5 + h4x
4 + h3x

3 + h2x
2 + h1x + h0,

with coefficients hk :=
∑k

i+j=0 fi • gj , where the summation sign indicates
addition ⊕ in F28 .

After reduction of h(x) by a polynomial of degree 4, one again obtains a
polynomial of degree 3 over F28 .

For this Rijndael uses the polynomial M(x) := x4 + 1. Usefully, xj mod

M(x) = xjmod4, so that h(x) mod M(x) can be easily computed as

d(x) := f(x) ⊗ g(x) := h(x) mod M(x) = d3x
3 + d2x

2 + d1x + d0,

with

d0 = a0 • b0 ⊕ a3 • b1 ⊕ a2 • b2 ⊕ a1 • b3,

d1 = a1 • b0 ⊕ a0 • b1 ⊕ a3 • b2 ⊕ a2 • b3,

d2 = a2 • b0 ⊕ a1 • b1 ⊕ a0 • b2 ⊕ a3 • b3,

d3 = a3 • b0 ⊕ a2 • b1 ⊕ a1 • b2 ⊕ a0 • b3.

From this one concludes that the coefficients di can be computed by matrix
multiplication over F28 :⎡

⎢⎢⎣
d0

d1

d2

d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦ . (11.1)

It is precisely this operation with the constant, invertible modulo M(x),
polynomial a(x) := a3x

3 + a2x
2 + a1x + a0 over F28 , with coefficients

a0(x) = x, a1(x) = 1, a2(x) = 1, and a3(x) = x + 1, that is executed in the
so-called MixColumns transformation, which constitutes a principal component
of the round transformations of Rijndael.

11.2 The Rijndael Algorithm

Rijndael is a symmetric block encryption algorithm with variable block and key
lengths. It can process blocks of 128, 192, and 256 bits and keys of the same
lengths, where all combinations of block and key lengths are possible. The
accepted key lengths correspond to the guidelines for AES, though the “official”

244

Rijndael: A Successor to the Data Encryption Standard

block length is only 128 bits. Each block of plain text is encrypted several times
with a repeating sequence of various functions, in so-called rounds. The number
of rounds is dependent on the block and key lengths (see Table 11-4).

Rijndael is not a Feistel algorithm, whose essential characteristic is that
blocks are divided into left and right halves, the round transformations applied
to one half, and the result XOR-ed with the other half, after which the two halves
are exchanged. DES is the best-known block algorithm built along these lines.
Rijndael, on the other hand, is built up of separate layers, which successively
apply various effects to an entire block. For the encryption of a block the following
transformations are sequentially applied:

1. The first round key is XOR-ed with the block.

2. Lr − 1 regular rounds are executed.

3. A terminal round is executed, in which the MixColumns transformation of the
regular rounds is omitted.

Table 11-4. Number of Rijndael rounds as a function of block and key length

Block Length (Bits)

Key Length (Bits) 128 192 256

128 10 12 14

192 12 12 14

256 14 14 14

Each regular round of step 2 consists of four individual steps, which we shall
now examine:

1. Substitution: Each byte of a block is replaced by application of an S-box.

2. Permutation: The bytes of the block are permuted in a ShiftRows
transformation.

3. Diffusion: The MixColumns transformation is executed.

4. Round key addition: The current round key is XOR-ed with the block.

The layering of transformations within a round is shown schematically in
Figure 11-1.

Each layer exercises a particular effect within a round and thus on each block
of plain text:

245

Chapter 11

1. Influence of the key
XOR-ing with the round key before the first round and as the last step within
each round has an effect on every bit of the round result. In the course of
encryption of a block there is no step whose result is not dependent in every
bit on the key.

2. Nonlinear layer
The substitution effected via the S-box is a nonlinear operation. The
construction of the S-box provides almost ideal protection against
differential and linear cryptanalysis (see [BiSh] and [NIST]).

3. Linear layer
The ShiftRows and MixColumns transformations ensure an optimal mixing
up of the bits of a block.

In the following description of the internal Rijndael functions Lb will denote
the block length in 4-byte words, Lk the length of the user key in 4-byte words
(that is, Lb, Lk ∈ { 4, 6, 8 }), and Lr the number of rounds as indicated in
Table 11-4.

Plain text and encrypted text are input, respectively output, as fields of bytes.
A block of plain text, passed as a field m0, . . . , m4Lb−1, will be regarded in the
following as a two-dimensional structure B as depicted in Table 11-5,

Table 11-5. Representation of message blocks

b0,0 b0,1 b0,2 b0,3 b0,4 . . . b0,Lb−1

b1,0 b1,1 b1, 2 b1,3 b1,4 . . . b1,Lb−1

b2,0 b2,1 b2,2 b2,3 b2,4 . . . b2,Lb−1

b3,0 b3,1 b3,2 b3,3 b3,4 . . . b3,Lb−1

S S S S S S S SS S S S S S S S

Add Round Key

S-Box-Substitution

ShiftRows

MixColumns

Figure 11-1. Layering of transformations in the Rijndael rounds

246

Rijndael: A Successor to the Data Encryption Standard

where the bytes of plain text are sorted according to the following ordering:

m0 → b0,0, m1 → b1,0, m2 → b2,0, m3 → b3,0,

m4 → b0,1, m5 → b1,1, . . . mn → bi,j , . . .

with i = n mod 4 and j = �n/4�.
Access to B within the Rijndael functions takes place in different ways

according to the operation. The S-box transformation operates bytewise,
ShiftRows operates on rows

(
bi,0, bi,1, bi,2, . . . , bi,Lb−1

)
of B, and the functions

AddRoundKey and MixColumns operate on 4-byte words and access the values of B

by columns (b0,j , b1,j , b2,j , b3,j).

11.3 Calculating the Round Key

Encryption and decryption each require the generation of Lr round keys, called
collectively the key schedule. This occurs through expansion of the secret user key
by attaching recursively derived 4-byte words ki = (k0,i, k1,i, k2,i, k3,i) to the
user key.

The first Lk words k0, . . . , kLk−1 of the key schedule are formed from the
secret user key itself. For Lk ∈ { 4, 6 } the next 4-byte word ki is determined by
XOR-ing the preceding word ki−1 with ki−Lk

. If i ≡ 0 mod Lk, then a function
FLk

(k, i) is applied before the XOR operation, which is composed of a cyclic left
shift (left rotation) r(k) of k bytes, a substitution S(r(k)) from the Rijndael S-box
(we shall return to this later), and an XOR with a constant c (�i/Lk�), so that
altogether the function F is given by FLk

(k, i) := S(r(k)) ⊕ c (�i/Lk�).
The constants c(j) are defined by c(j) := (rc(j), 0, 0, 0), where rc(j) are

recursively determined elements from F28 : rc(1) := 1, rc(j) := rc(j − 1) · x =

xj−1. Expressed in numerical values, this is equivalent to rc(1) := ‘01’,
rc(j) := rc(j−1)• ‘02’. From the standpoint of programming, rc(j) is computed
by a (j − 1)-fold execution of the function xtime described above, beginning with
the argument 1, or more rapidly by access to a table (Tables 11-6 and 11-7).

Table 11-6. rc(j) constants (hexadecimal)

‘01’ ‘02’ ‘04’ ‘08’ ‘10’ ‘20’ ‘40’ ‘80’ ‘1B’ ‘36’

‘6C’ ‘D8’ ‘AB’ ‘4D’ ‘9A’ ‘2F’ ‘5E’ ‘BC’ ‘63’ ‘C6’

‘97’ ‘35’ ‘6A’ ‘D4’ ‘B3’ ‘7D’ ‘FA’ ‘EF’ ‘C5’ ‘91’

For keys of length 256 bits (that is, Lk = 8) an additional S-box operation is
inserted: If i ≡ 4 mod Lk, then before the XOR operation ki−1 is replaced by
S (ki−1).

247

Chapter 11

Table 11-7. rc(j) constants (binary)

00000001 00000010 00000100 00001000 00010000

00100000 01000000 10000000 00011011 00110110

01101100 11011000 10101011 01001101 10011010

00101111 01011110 10111100 01100011 11000110

10010111 00110101 01101010 11010100 10110011

01111101 11111010 11101111 11000101 10010001

Thus a key schedule is built up of Lb · (Lr + 1) 4-byte words, including the
secret user key. At each round i = 0, . . . , Lr − 1 the next Lb 4-byte words kLb·i
through kLb·(i+1) are taken as round keys from the key schedule. The round
keys are conceptualized, in analogy to the structuring of the message blocks, as a
two-dimensional structure of the form depicted in Table 11-8.

Table 11-8. Representation of the round keys

k0,0 k0,1 k0,2 k0,3 k0,4 . . . k0,Lb−1

k1,0 k1,1 k1,2 k1,3 k1,4 . . . k1,Lb−1

k2,0 k2,1 k2,2 k2,3 k2,4 . . . k2,Lb−1

k3,0 k3,1 k3,2 k3,3 k3,4 . . . k3,Lb−1

For key lengths of 128 bits key generation can be understood from an
examination of Figure 11-2.

F F F F

Secret Key of User

Figure 11-2. Diagram for round keys for Lk = 4

There are no weak keys known, those whose use would weaken the procedure.

11.4 The S-Box

The substitution box, or S-box, of the Rijndael algorithm specifies how in each
round each byte of a block is to be replaced by another value.

248

Rijndael: A Successor to the Data Encryption Standard

The S-box has the task of minimizing the susceptibility of the algorithm
to methods of linear and differential cryptanalysis and to algebraic attacks. To
accomplish this, the S-box operation should possess a high algebraic complexity
in F28 and thus create a good extension to the ShiftRows and MixColumns

operations. Not having such a function would support attacks within F28 and
thereby decisively weaken the procedure.

In addition to the requirement of complexity, the S-box function must of
course be invertible; it must have no fixed points S(a) = a or complementary
fixed points S(a) = ā; and it must also execute rapidly and be easy to implement.

All these desiderata were achieved through a combination of multiplicative
inversion in F28 and the previously mentioned affine mapping from F28 to
itself. The S-box consists of a list of 256 bytes, which are constructed by first
thinking of each nonzero byte as a representative of F28 and replacing it with its
multiplicative inverse (zero remains unchanged). Then an affine transformation
over F2 is calculated as a matrix multiplication and addition of (1 1 0 0 0 1 1 0):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

0

0

0

1

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.2)

In this representation x0 and y0 denote the least-significant, and x7 and
y7 the most-significant, bits of a byte, where the 8-tuple (1 1 0 0 0 1 1 0)

corresponds to the hexadecimal value ‘63’.
Through this construction, all of the requisite design criteria were satisfied.

The substitution is thereby an ideal strengthening of the algorithm. Successive
application of the construction plan to the values 0 to 255 leads to Table 11-9 (in
hexadecimal form; read horizontally from left to right).

For decryption the S-box must be used backwards: The affine inverse
transformation is used, followed by multiplicative inversion in F28 . The inverted
S-box appears in Table 11-10.

11.5 The ShiftRows Transformation

The next step in the cycle of a round consists in the permutation of a block at
the byte level. To this end the bytes are exchanged within the individual lines
(bi,0, bi,1, bi,2, . . . , bi,Lb−1) of a block according to the schemata depicted in
Tables 11-11 through 11-13.

249

Chapter 11

Table 11-9. The values of the S-box

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

In each first row (row index i = 0) no exchange takes place. In lines
i = 1, 2, 3 the bytes are rotated left by cLb,i positions, from position j to position
j − cLb,i mod Lb, where cLb,i is taken from Table 11-14.

For inverting this step, positions j in rows i = 1, 2, 3 are shifted to positions
j + cLb,i mod Lb.

11.6 The MixColumns Transformation

After the rowwise permutation in the last step, in this step each column (bi,j),
i = 0, . . . , 3, j = 0, . . . , Lb of a block is taken to be a polynomial over F28 and
multiplied by the constant polynomial a(x) := a3x

3 + a2x
2 + a1x + a0, with

coefficients a0(x) = x, a1(x) = 1, a2(x) = 1, a3(x) = x + 1, and reduced
modulo M(x) := x4 + 1. Each byte of a column thus interacts with every other
byte of the column. The rowwise operating ShiftRows transformation has the
effect that in each round, other bytes are mixed with one another, resulting in
strong diffusion.

250

Rijndael: A Successor to the Data Encryption Standard

Table 11-10. The values of the inverted S-box

52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Table 11-11. ShiftRows for blocks of length 128 bits (Lb = 4)

Before ShiftRows

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

After ShiftRows

0 4 8 12

5 9 13 1

10 14 2 6

15 3 7 11

We have already seen (see page 244) how this step can be reduced to a matrix
multiplication ⎡

⎢⎢⎣
b0,j

b1,j

b2,j

b3,j

⎤
⎥⎥⎦ ←

⎡
⎢⎢⎣
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0,j

b1,j

b2,j

b3,j

⎤
⎥⎥⎦ , (11.3)

with multiplication and addition carried out over F28 . For multiplication by ‘02’
(respectively x) the function xtime() has already been defined; multiplication by
‘03’ (respectively x + 1) has already been handled similarly (cf. page 247).

For inverting the MixColumns transformation every column (bi,j) of a block is
multiplied by the polynomial r(x) := r3x

3 + r2x
2 + r1x + r0 with coefficients

251

Chapter 11

Table 11-12. ShiftRows for blocks of length 192 bits (Lb = 6)

Before ShiftRows

0 4 8 12 16 20

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

After ShiftRows

0 4 8 12 16 20

5 9 13 17 21 1

10 14 18 22 2 6

15 19 23 3 7 11

Table 11-13. ShiftRows for blocks of length 256 bits (Lb = 8)

Before ShiftRows

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

After ShiftRows

0 4 8 12 16 20 24 28

5 9 13 17 21 25 29 1

14 18 22 26 30 2 6 10

19 23 27 31 3 7 11 15

Table 11-14. Distances of line rotations in ShiftRows

Lb cLb,1 cLb,2 cLb,3

4 1 2 3

6 1 2 3

8 1 3 4

r0(x) = x3+x2+x, r1(x) = x3+1, r2(x) = x3+x2+1, and r3(x) = x3+x+1

and reduced modulo M(x) := x4 + 1. The corresponding matrix is⎡
⎢⎢⎣

‘0E’ ‘0B’ ‘0D’ ‘09’
‘09’ ‘0E’ ‘0B’ ‘0D’
‘0D’ ‘09’ ‘0E’ ‘0B’
‘0B’ ‘0D’ ‘09’ ‘0E’

⎤
⎥⎥⎦ . (11.4)

11.7 The AddRoundKey Step

The last step of a round carries out an XOR of the round key with the block:

(b0,j , b1,j , b2,j , b3,j) ← (b0,j , b1,j , b2,j , b3,j) ⊕ (k0,j , k1,j , k2,j , k3,j) ,

for j = 0, . . . , Lb − 1. In this way, every bit of the result of a round is made
dependent on every key bit.

252

Rijndael: A Successor to the Data Encryption Standard

11.8 Encryption as a Complete Process

Encryption with Rijndael is encapsulated in the following pseudocode according
to [DaRi], Sections 4.2–4.4. The arguments are passed as pointers to fields of
bytes or 4-byte words. The interpretation of the fields, variables, and functions
employed is provided in Tables 11-15 through 11-17.

Table 11-15. Interpretation of variables

Variable Interpretation

Nk length Lk of the secret user key in 4-byte words

Nb block length Lb in 4-byte words

Nr round number Lr according to the table above

Table 11-16. Interpretation of fields

Variables Size in bytes Interpretation

CipherKey 4*Nk secret user key

ExpandedKey 4*Nb * (Nr+1) field of 4-byte words to hold the round key

Rcon �4*Nb * (Nr+1)/Nk� field of 4-byte words as constant
c(j) := (rc(j), 0, 0, 0)a

State 4*Nb field for input and output of plain text
and encrypted blocks

RoundKey 4*Nb round key, segment of ExpandedKey

a. It suffices to store the constants rc(j) in a field of size �Nb * (Nr+1)/Nk� ≤ 30 bytes. If the field
begins with 0, this byte is unoccupied, since the index j begins with 1. It then is then 31 bytes long.

Table 11-17. Interpretation of functions

Function Interpretation

KeyExpansion generation of round key

RotBytes left rotation of a 4-byte word by 1 byte: (abcd) → (bcda)

SubBytes S-box substitution S of all bytes of the passed field

Round regular round

FinalRound last round without MixColumns

ShiftRows ShiftRows transformation

MixColumns MixColumns transformation

AddRoundKey addition of a round key

253

Chapter 11

Key generation:

KeyExpansion (byte CipherKey, word ExpandedKey)

{

for (i = 0; i < Nk; i++)

ExpandedKey[i] = (CipherKey[4*i], CipherKey[4*i + 1],

CipherKey[4*i + 2], CipherKey[4*i + 3]);

for (i = Nk; i < Nb * (Nr + 1); i++)

{

temp = ExpandedKey[i - 1];

if (i % Nk == 0)

temp = SubBytes (RotBytes (temp)) ˆ Rcon[i/Nk];

else if ((Nk == 8) && (i % Nk == 4))

temp = SubBytes (temp);

ExpandedKey[i] = ExpandedKey[i - Nk] ˆ temp;

}

}

Round functions:

Round (word State, word RoundKey)

{

SubBytes (State);

ShiftRows (State);

MixColumns (State);

AddRoundKey (State, RoundKey)

}

FinalRound (word State, word RoundKey)

{

SubBytes (State);

ShiftRows (State);

AddRoundKey (State, RoundKey)

}

Entire operation for encrypting a block:

Rijndael (byte State, byte CipherKey)

{

KeyExpansion (CipherKey, ExpandedKey);

AddRoundKey (State, ExpandedKey);

for (i = 1; i < Nr; i++)

Round (State, ExpandedKey + Nb*i);

FinalRound (State, ExpandedKey + Nb*Nr);

}

254

Rijndael: A Successor to the Data Encryption Standard

There exists the possibility of preparing the round key outside of the function
Rijndael and to pass the key schedule ExpandedKey instead of the user key
CipherKey. This is advantageous when it is necessary in the encryption of texts
that are longer than a block to make several calls to Rijndael with the same user
key.

Rijndael (byte State, byte ExpandedKey)

{

AddRoundKey (State, ExpandedKey);

for (i = 1; i < Nr; i++)

Round (State, ExpandedKey + Nb*i);

FinalRound (State, ExpandedKey + Nb*Nr);

}

Especially for 32-bit processors it is advantageous to precompute the round
transformation and to store the results in tables. By replacing the permutation
and matrix operations by accesses to tables, a great deal of CPU time is saved,
yielding improved results for encryption, and, as we shall see, for decryption as
well. With the help of four tables each of 256 4-byte words of the form

T0[w] :=

⎡
⎢⎢⎣

S[w] • ‘02’
S[w]

S[w]

S[w] • ‘03’

⎤
⎥⎥⎦ , T1[w] :=

⎡
⎢⎢⎣

S[w] • ‘03’
S[w] • ‘02’

S[w]

S[w]

⎤
⎥⎥⎦ ,

T2[w] :=

⎡
⎢⎢⎣

S[w]

S[w] • ‘03’
S[w] • ‘02’

S[w]

⎤
⎥⎥⎦ , T3[w] :=

⎡
⎢⎢⎣

S[w]

S[w]

S[w] • ‘03’
S[w] • ‘02’

⎤
⎥⎥⎦

(11.5)

(for w = 0, . . . , 255, S(w) denotes, as above, the S-box replacement), the
transformation of a block b = (b0,j , b1,j , b2,j , b3,j), j = 0, . . . , Lb − 1, can be
determined quickly for each round by the substitution

bj := (b0,j , b1,j , b2,j , b3,j) ←T0 [b0,j] ⊕ T1

[
b1,d(1,j)

]⊕ T2

[
b2,d(2,j)

]
⊕ T3

[
b3,d(3,j)

]⊕ kj ,

with d(i, j) := j + cLb,i mod Lb (cf. ShiftRows, Table 11-14) and kj =

(k0,j , k1,j , k2,j , k3,j) as the jth column of the round key.
For the derivation of this result, see [DaRi], Section 5.2.1. In the last round the

MixColumns transformation is omitted, and thus the result is determined by

bj ← (
S (b0,j) , S

(
b1,d(1,j)

)
, S

(
b2,d(2,j)

)
, S

(
b3,d(3,j)

))⊕ kj .

Clearly, it is also possible to use a table of 256 4-byte words, in which

bj ← T0 [b0,j] ⊕ r
(
T0

[
b1,d(1,j)

]⊕ r
(
T0

[
b2,d(2,j)

]⊕ r
(
T0

[
b3,d(3,j)

])))⊕ kj ,

255

Chapter 11

with a right rotation r(a, b, c, d) = (d, a, b, c) by one byte. For environments with
limited memory this can be a useful compromise, the price being only a slightly
increased calculation time for the three rotations.

11.9 Decryption

For Rijndael decryption one runs the encryption process in reverse order with
the inverse transformations. We have already considered the inverses of the
transformations SubBytes, ShiftRows, and MixColumns, which in the following
are represented in pseudocode by the functions InvSubBytes, InvShiftRows, and
InvMixColumns. The inverted S-box, the distances for inversion, the ShiftRows

transformation, and the inverted matrix for the inversion of the MixColumns

transformation are given on pages 251–252. The inverse round functions are the
following:

InvFinalRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvShiftRows (State);

InvSubBytes (State);

}

InvRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvMixColumns (State);

InvShiftRows (State);

InvSubBytes (State);

}

The entire operation for decryption of a block is as follows:

InvRijndael (byte State, byte CipherKey)

{

KeyExpansion (CipherKey, ExpandedKey);

InvFinalRound (State, ExpandedKey + Nb*Nr);

for (i = Nr - 1; i > 0; i--)

InvRound (State, ExpandedKey + Nb*i);

AddRoundKey (State, ExpandedKey);

}

256

Rijndael: A Successor to the Data Encryption Standard

The algebraic structure of Rijndael makes it possible to arrange the
transformations for encryption in such a way that here, too, tables can be
employed. Here one must note that the substitution S and the InvShiftRows

transformation commute, so that within a round their order can be switched.
Because of the homomorphism property f(x + y) = f(x) + f(y) of linear
transformations the InvMixColumns transformation and addition of the round key
can be exchanged when InvMixColumns was used previously on the round key.
Within a round the following course is taken:

InvFinalRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvSubBytes (State);

InvShiftRows (State);

}

InvRound (word State, word RoundKey)

{

InvMixColumns (State);

AddRoundKey (State, InvMixColumns (RoundKey));

InvSubBytes (State);

InvShiftRows (State);

}

Without changing the sequence of transformations over both functions
ordered one after the other, they can be redefined as follows:

AddRoundKey (State, RoundKey);

InvRound (word State, word RoundKey)

{

InvSubBytes (State);

InvShiftRows (State);

InvMixColumns (State);

AddRoundKey (State, InvMixColumns (RoundKey));

}

InvFinalRound (word State, word RoundKey)

{

InvSubBytes (State);

InvShiftRows (State);

AddRoundKey (State, RoundKey);

}

257

Chapter 11

With this is created the analogous structure to that for encryption. For reasons
of efficiency the application of InvMixColumns to the round key in InvRound()

is postponed until the key expansion, where the first and last round keys of
InvMixColumns are left untouched. The “inverse” round keys are generated with

InvKeyExpansion (byte CipherKey, word InvEpandedKey)

{

KeyExpansion (CipherKey, InvExpandedKey);

for (i = 1; i < Nr; i++)

InvMixColumns (InvExpandedKey + Nb*i);

}

The entire decryption operation of a block is now as follows:

InvRijndael (byte State, byte CipherKey)

{

InvKeyExpansion (CipherKey, InvExpandedKey);

AddRoundKey (State, InvExpandedKey + Nb*Nr);

for (i = Nr - 1; i > 0; i--)

InvRound (State, InvExpandedKey + Nb*i);

InvFinalRound (State, InvExpandedKey);

}

In analogy to encryption, tables can be precomputed for this form of
decryption. With

T0
−1[w] :=

⎡
⎢⎢⎣

S−1[w] • ‘0E’
S−1[w] • ‘09’
S−1[w] • ‘0D’
S−1[w] • ‘0B’

⎤
⎥⎥⎦ , T1

−1[w] :=

⎡
⎢⎢⎣

S−1[w] • ‘0B’
S−1[w] • ‘0E’
S−1[w] • ‘09’
S−1[w] • ‘0D’

⎤
⎥⎥⎦ ,

T2
−1[w] :=

⎡
⎢⎢⎣

S−1[w] • ‘0D’
S−1[w] • ‘0B’
S−1[w] • ‘0E’
S−1[w] • ‘09’

⎤
⎥⎥⎦ , T3

−1[w] :=

⎡
⎢⎢⎣

S−1[w] • ‘09’
S−1[w] • ‘0D’
S−1[w] • ‘0B’
S−1[w] • ‘0E’

⎤
⎥⎥⎦

(11.6)

(for w = 0, . . . , 255, S−1(w) denotes the inverse S-box replacement) the
result of an inverse round operation on a block b = (b0,j , b1,j , b2,j , b3,j),
j = 0, . . . , Lb − 1, can be determined by

bj ←T−1
0 [b0,j] ⊕ T−1

1

[
b1,d−1(1,j)

]⊕ T−1
2

[
b2,d−1(2,j)

]⊕ T−1
3

[
b3,d−1(3,j)

]
⊕ k−1

j

258

Rijndael: A Successor to the Data Encryption Standard

for j = 0, . . . , Lb − 1 with d−1(i, j) := j − cLb,i mod Lb (cf. page 250) and the
jth column k−1

j the “inverse” round key.
Again in the last round the MixColumns transformation is omitted, and thus

the result of the last round is given by

bj ←
(
S−1 (b0,j) , S−1 (b1,d−1(1,j)

)
, S−1 (b2,d−1(2,j)

)
, S−1 (b3,d−1(3,j)

))
⊕ k−1

j

for j = 0, . . . , Lb − 1.
To save memory one can also make do in decryption with a table of only 256

4-byte words, in which

bj ← T−1
0 [b0,j] ⊕ r

(
T−1

0

[
b1,d−1(1,j)

]
⊕ r

(
T−1

0

[
b2,d−1(2,j)

]⊕ r
(
T−1

0

[
b3,d−1(3,j)

])))⊕ k−1
j ,

with a right rotation r(a, b, c, d) = (d, a, b, c) of one byte.

11.10 Performance

Implementations for various platforms have verified the superior performance
of Rijndael. The bandwidth suffices for realizations for small 8-bit controllers
with small amounts of memory and key generation on the fly up through current
32-bit processors. For purposes of comparison, Table 11-18 provides encryption
rates for the candidates RC6, Rijndael, and Twofish, as well as for the older 8051
controller and the Advanced Risc Machine (ARM) as a modern 32-bit chip card
controller.

Table 11-18. Comparative Rijndael performance in bytes per second, after [Koeu]

8051 (3.57 MHz) ARM (28.56 MHz)

RC6 165 151 260

Rijndael 3005 311 492

Twofish 525 56 289

259

Chapter 11

Because of the more complex InvMixColumns operation, the times for
decryption and encryption can diverge, depending on the implementation,
though this effect can be completely compensated by using the tables described
previously. Of course, the times depend on, in addition to the key length, the block
length and the number of rounds (see Table 11-4). For comparison, on a Pentium
III/200 MHz, throughput of about 8 MByte per second for a key of length 128 bits,
about 7 Mbyte per second for 192-bit keys, and about 6 MByte per second for
256-bit keys for blocks of length 128 bits is achievable in both directions. On the
same platform, the DES in C can encrypt and decrypt about 3.8 MByte per second
(see [Gldm], http://fp.gladman.plus.com).

11.11 Modes of Operation

The classical operating modes Electronic Code Book (ECB), Cipher Block
Chaining (CBC), Cipher Feedback (CFB), and Output Feedback (OFB) for block
ciphers were updated by NIST for use with AES and provided with appropriate
test vectors (see [FI81, N38A]). Consideration of additional operating modes,
which had begun already in the framework of standardization of AES and which
relates to the use of modes of operation in Internet communication, has resulted
in the following operating modes:

• Counter Mode (CTR): A block keystream is generated and joined to the
plain text blocks using XOR.

• CCM Mode: To ensure the reliability and integrity of a message, the counter
mode is combined with a message authentication code (MAC) based on
cipher block chaining (see [N38C]).

• RMAC: Using a randomized message authentication code, which is still in
development, the validity of a message can be checked with respect to both
its content and its source (see [N38B]).

For further details, investigations into security and cryptanalysis, computa-
tional times, and current information on AES and Rijndael the reader is referred to
the literature cited above as well as the Internet sites of NIST and Vincent Rijmen,
which in turn contain many links to further sources of information:

http://csrc.nist.gov/CryptoToolkit/tkencryption.html

http://csrc.nist.gov/CryptoToolkit/modes

http://www.esat.kuleuven.ac.be/ ˜ rijmen/rijndael

In the downloadable source code to this book there is an implementation
of AES in the file aes.c, which can be used to deepen an understanding of the
procedure and to do some experimentation.

260

CHAPTER 12

Large Random Numbers

Mathematics is full of pseudorandomness—plenty enough to supply all
would-be creators for all time.

—D. R. Hofstadter, Gödel, Escher, Bach

Anyone who considers arithmetical methods of producing random digits is,
of course, in a state of sin.

—John von Neumann,

SEQUENCES OF “RANDOM” NUMERICAL VALUES are used in many statistical
procedures, in numerical mathematics, in physics, and also in number-theoretic
applications to replace statistical observations or to automate the input of
variable quantities. Random numbers are used:

• to select random samples from a larger set,

• in cryptography to generate keys and in running security protocols,

• as initial values in procedures to generate prime numbers,

• to test computer programs (a topic to which we shall return),

• for fun,

as well as in many additional applications. In computer simulations of natural
phenomena random numbers can be used to represent measured values, thereby
representing a natural process (Monte Carlo methods). Random numbers are
useful even when numbers are required that can be selected arbitrarily. Before
we set out in this chapter to produce some functions for the generation of
large random numbers, which will be required, in particular, for cryptographic
applications, we should take care of some methodological preparations.

There are many sources of random numbers, but we should be sure to
differentiate between genuine random numbers, which arise as the result
of random experiments, and pseudorandom numbers, which are generated
algorithmically. Genuine random numbers arise from such processes as the
tossing of coins or dice, spinning a (fair) roulette wheel, observing processes of
radioactive decay with the aid of suitable measuring equipment, and evaluating
the output of electronic components. In contrast to these, pseudorandom

261

Chapter 12

numbers are computed by algorithms, generated with the aid of pseudorandom
number generators, which are deterministic, in that they depend only on an initial
state and initial value (seed), and therefore are both predictable and reproducible.
Pseudorandom numbers thus do not arise randomly in the strict sense of the
word. The reason that this situation can frequently be ignored is that we are in
possession of algorithms that are able to produce pseudorandom numbers of
“high quality,” where we shall have to explain what we mean by this term.

The first thing that we establish is that in fact, it makes no sense to talk
about a single number being “random,” but that mathematical requirements
for randomness are always satisfied by sequences of numbers. Knuth speaks of a
sequence of independent random numbers with a particular distribution, in which
every number is produced randomly and independently of all other numbers of the
sequence, and every number assumes a value within a certain range of values with
a certain probability (see [Knut], Section 3.1). We use the terms “random” and
“independent” here to mean that the events leading to the selection of concrete
numbers are too complex in their formation and interaction to be detected by
statistical or other tests.

This ideal is theoretically unachievable by generating numbers using
deterministic procedures. Yet the goal of many different algorithmic techniques is
to approach this ideal as closely as possible. The logical structure of deterministic
random number generators can be described by a quintuple (S, R, φ, ψ, Pstart),
where S denotes the finite set of internal states of the generator, R is the set of
possible output values, φ : S → S is the state function, ψ : S → R is the output
function, and Pstart is a probability measure for the distribution of the initial
state s0. After initialization, at each step n ≥ 1, first the new state sn := φ(sn−1)

is computed, and from this state, the output value rn := ψ(sn) (see [BSI2]). For
the evaluation of the random number generators that we are considering here,
we begin with the assumption that the start state is uniformly distributed in the
set S, and this is indicated with the notation µS (for Pstart). In the next chapter
we will be concerned with testing the FLINT/C functions. For this, we will be
using large random numbers that do not yet need to satisfy any of the demands of
cryptographic security.

Therefore, we first select from the many possibilities at hand a proven and
frequently used procedure for generating pseudorandom numbers (for the sake
of brevity we shall frequently drop the “pseudo” and speak simply of random
numbers, random sequences, and random number generators) and spend some
time with the method of linear congruences. Beginning with an initial value X0

the elements of a sequence are generated by the linear recursion

Xi+1 = (Xia + b) mod m. (12.1)

This procedure was developed in 1951 by D. Lehmer, and it has enjoyed
considerable popularity since that time, since despite their simplicity, linear
congruences can produce random sequences with excellent statistical properties,

262

Large Random Numbers

where their quality, as one might expect, depends on the choice of parameters
a, b, and m. In [Knut] it is shown that linear congruences with carefully chosen
parameters can pass through the hoops of statistical tests with flying colors, but
that on the other hand, a random selection of parameters almost always leads to
a poor generator. The moral is this: Be careful in your choice of parameters!

The choice of m as a power of two has at once the advantage that forming
the residue modulo m can be accomplished with a mathematical AND. An
accompanying disadvantage is that the least-significant binary digits of numbers
thus generated demonstrate less random behavior than the most-significant
digits, and thus one must be careful in working with such numbers. In general,
one must look out for poor random properties of such numbers formed from
sequential values of a linear congruence generator modulo a prime divisor of the
modulus m, so that the choice of m as a prime number should also be considered,
since in this case individual binary digits are no worse than any others.

The choice of a and m has influence on the periodic behavior of the sequence:
Since only finitely many, namely at most m, distinct sequence values can appear,
the sequence begins to repeat at the latest with the generation of the (m + 1)st
number. That is, the sequence is periodic. (One says also that the sequence enters
a period or a cycle.) The entry point into a cycle need not be the initial value X0,
but can be some later value Xµ. The numbers X0, X1, X2, . . . , Xµ−1 are called
the nonrecurring elements. We may thus indicate the periodic behavior of the
sequence as shown in Figure 12-1.

Xµ

X
0

Nonrecurring
Elements

Period

Figure 12-1. Periodic behavior of a pseudorandom sequence

Since the regular repetition of numbers in short cycles represents poor
random behavior according to all reasonable criteria, we must strive to maximize
the length of the cycles or indeed to find generators that possess only cycles
of maximum length. We can establish criteria by which a linear congruence
sequence with parameters a, b, and m possesses exactly the maximal period
length. Namely, the following conditions should be fulfilled:

(i) gcd(b, m) = 1.

(ii) For all primes p one has p | m ⇒ p | (a − 1).

(iii) 4 | m ⇒ 4 | (a − 1).

263

Chapter 12

For a proof and additional details see [Knut], Section 3.2.1.2.
As an example of parameters that fulfill these criteria let us consider the linear

congruence that the ISO-C standard recommends as exemplary for the function
rand():

Xi+1 = (Xi · 1103515245 + 12345) mod m, (12.2)

where m = 2k, with k determined by 2k − 1 being the largest number
representable by the type unsigned int. The number Xi+1 is not returned as the
value of rand(), but rather Xi+1/216 mod (RAND_MAX + 1), so that the function
rand() generates all values between 0 and RAND_MAX. The macro RAND_MAX is
defined in stdio.h and should have a value of at least 32267 (see [Pla1], p. 337).
Here the recommendation of Knuth to do without the least-significant binary
digits in the case of power-of-two moduli has apparently been taken into account.
We easily determine that the above requirements (i)–(iii) are satisfied and that
therefore a sequence produced by this generator possesses the maximum period
length 2k.

Whether this happens to be the case for a particular implementation of the C
library, whose source code is usually unavailable,1 can be tested under favorable
circumstances with the aid of the following algorithm by R. P. Brent. The Brent
algorithm determines the period length λ of a sequence that is computed by the
recursion Xi+1 = F (Xi) on a set of values D using the generating function
F : D → D and an initial value X0 ∈ D. One needs at most 2 · max {µ, λ }
calculations of the function F (cf.[HKW], 4.2).

Algorithm of Brent for determining the period length λ of a sequence generated
by X0, Xi+1 = F (Xi)

1. Set y ← X0, r ← 1, and k ← 0.

2. Set x ← y, j ← k, and r ← r + r.

3. Set k ← k + 1 and y ← F (y); repeat this step until x = y or k ≥ r.

4. If x �= y, go to step 2. Otherwise, output λ = k − j.

This process is successful only if in step 3 one actually sees the actual
sequence values F (y) and not, as in the above ISO recommendation, only their
most-significant parts.

We turn first to the actual subject of this chapter and supply ourselves with
functions for generating random numbers in CLINT integer format. As our starting

1 The GNU-C library, of the Free Software Foundation, and the EMX-C library, by Eberhard
Mattes, are excellent exceptions. The rand() function of the EMX library uses the parameters
a = 69069, b = 5, and m = 232. The multiplier a = 69069 suggested by G. Marsaglia
produces, together with the modulus m = 232, good statistical results and a maximal period
length (see [Knut], pp. 102–104).

264

Large Random Numbers

point for the generation of prime numbers, we would like to be able to create
large numbers with a specified number of binary digits; for these, the highest bit
should be set to 1, and the remaining bits should be randomly generated.

12.1 A Simple Random Number Generator

First we construct a linear congruence generator from whose sequential
values we will take the digits of a CLINT random number. The parameters
a = 6364136223846793005 and m = 264 for our generator are taken from
the table with results of the spectral test in Knuth ([Knut], pages 102–104). The
sequence Xi+1 = (Xi · a + 1) mod m thus generated possesses a maximal
period length λ = m as well as good statistical properties, as we conclude from
the test results presented in the table. The generator is implemented in the
following function rand64_l(). On each call to rand64_l() the next number in the
sequence is generated and then stored in the global CLINT object SEED64, declared
as static. The parameter a is stored in the global variable A64. The function
returns a pointer to SEED64.

Function: linear congruence generator with period length 264

Syntax: clint * rand64_l (void);

Return: pointer to SEED64 with calculated random number

clint *

rand64_l (void)

{

mul_l (SEED64, A64, SEED64);

inc_l (SEED64);

The reduction modulo 264 proceeds simply by setting the length field of SEED64
and costs almost no computational time.

SETDIGITS_L (SEED64, MIN (DIGITS_L (SEED64), 4));

return ((clint *)SEED64);

}

Next, we require a function for setting the initial values for rand64_l(). This
function is called seed64_l(), and it accepts a CLINT object as input, from which
it takes at most four of the most-significant digits as initial values in SEED64.
The previous value of SEED64 is copied into the static CLINT object BUFF64, and a
pointer to BUFF64 is returned.

265

Chapter 12

Function: set an initial value for rand64_l()

Syntax: clint * seed64_l (CLINT seed_l);

Input: seed_l (initial value)

Return: pointer to BUFF64 with previous value of SEED64

The next function returns random numbers of type ULONG. All numbers are
generated with a call to rand64_l(), where the most-significant digits of SEED64
are used to build a number of the requested type.

Function: generation of a random number of type
unsigned long

Syntax: unsigned long ulrand64_l (void);

Return: random number of type unsigned long

ULONG

ulrand64_l (void)

{

ULONG val;

USHORT l;

rand64_l();

l = DIGITS_L (SEED64);

switch (l)

{

case 4:

case 3:

case 2:

val = (ULONG)SEED64[l-1];

val += ((ULONG)SEED64[l] << BITPERDGT);

break;

case 1:

val = (ULONG)SEED64[l];

break;

default:

val = 0;

}

return val;

}

266

Large Random Numbers

The FLINT/C package contains the additional functions ucrand64_l(void)

and usrand64_l(void), which generate random numbers of types UCHAR and
USHORT, respectively. However, we shall not discuss them here. We now present the
function rand_l(), which generates large random numbers of CLINT type, with the
number of binary digits to be specified.

Function: generation of a random number of type CLINT

Syntax: void rand_l (CLINT r_l, int l);

Input: l (number of binary digits of the number to be
generated)

Output: r_l (random number in the interval 2l−1 ≤ r_l ≤ 2l − 1)

void

rand_l (CLINT r_l, int l)

{

USHORT i, j, ls, lr;

The requested number of binary digits l is first bounded by the maximum permit-
ted value for CLINT objects. Then the number ls of required USHORT digits and the
position lr of the most-significant binary digit of the most-significant USHORT are
determined.

l = MIN (l, CLINTMAXBIT);

ls = (USHORT)l >> LDBITPERDGT;

lr = (USHORT)l & (BITPERDGT - 1UL);

Now the digits of r_l are generated by successive calls to the function
usrand64_l(). The least-significant binary digits of SEED64 are therefore not used
for the construction of CLINT digits.

for (i = 1; i <= ls; i++)

{

r_l[i] = usrand64_l ();

}

Now follows the precise manufacture of r_l by setting the most-significant bit in
position lr − 1 of the (ls + 1)st USHORT digit to 1 and the most-significant bits to
0. If lr == 0, then the most-significant bit of the USHORT digit ls is set to 1.

267

Chapter 12

if (lr > 0)

{

r_l[++ls] = usrand64_l ();

j = 1U << (lr - 1); /* j <- 2 ˆ (lr - 1) */

r_l[ls] = (r_l[ls] | j) & ((j << 1) - 1);

}

else

{

r_l[ls] |= BASEDIV2;

}

SETDIGITS_L (r_l, ls);

}

12.2 Cryptographic Random Number Generators

We now come to the cryptographic number generators that can be used for
sensitive purposes based on their properties, on the assumption that they have
been properly implemented and secret start values are used (more on this later).
We will first construct the BBS generator, then a random number generator
based on the symmetric algorithm AES, and then another that rests on a chain
of the cryptographic hash functions RIPEMD-160 and SHA-1. With the use of
AES, we build on the previous chapter; with hash functions, whose properties are
collected in Chapter 17, we are somewhat anticipating things.

We will realize random number generators in such a way that they are
reentrant, so that they can be simultaneously and independently used by several
functions without their interfering with one another. That this is a good idea will
become immediately clear when one considers how a function calls a random
number generator whose internal state has just been deleted by another function.
In this case, the second function will not obtain useful results. This scenario is
heightened when the functions are executed in parallel processes or threads.

For example, if cryptographic keys are generated within a process or thread,
and during this process the status of the random number generator being used
is deleted by another process (that is, set to zero), then the random number
generator will thereafter no longer produce reliable values, which could lead to
sharply reduced quality of the keys produced by the affected process.

A way out of this problem is provided by the reentrant property, which
we achieve by storing the internal states of the random number generators in
separate buffers, which are managed individually and used exclusively by the
calling functions.

268

Large Random Numbers

12.2.1 The Generation of Start Values

For the derivation of start values for cryptographic random number generators,
so-called entropy sources are required, which while observable, are neither
predictable nor able to be influenced. Every sequence of pseudorandom numbers
that proceeds deterministically is at most as secure as its start value. An attacker
who knows or can guess the start value of a pseudorandom sequence thereby
knows the entire random sequence or the keys or passwords derived from it.
The notion of entropy is borrowed from physics, where it is used as a measure
of disorder in closed systems. The idea that good start values are achieved from
the observation of the greatest possible disorder seems to be more intuitive and
compelling than to speak of the “randomness of start values.”

For our purposes, we will use primarily artificial sources of entropy, in
particular, certain system statistics such as the number of clock ticks for certain
processes, measures of external events such as mouse movements or the times
between keyboard events or mouse clicks by users.

Such parameters are best combined with one another in a mixture, such as
through the use of hash functions.

Functions for obtaining entropy are also offered by various operating systems,
for example, by Linux and by the Win32 CryptoAPI under Windows. The Win32
CryptoAPI offers the function CryptGenRandom(), which takes entropy from a
variety of sources available to the operating system. Here it is necessary to bind
the link library ADVAPI32.LIB in order to use the Win32 DLL ADVAPI32.DLL
(see [HoLe]).

Linux and FreeBSD offer entropy via the virtual devices /dev/random and
/dev/urandom. The associated driver manages a 512-byte entropy pool, which is
filled with the results of a variety of continuously monitored unpredictable events.
The most productive source of these random events is the keyboard: The last digit
of the microsecond-precise time measurement between two keyboard events
can be neither predicted nor reproduced. Further sources are times associated
with mouse movements, hardware interrupts, and block devices from the kernel.
When the entropy pool is queried, 64-byte blocks from the pool are processed
sequentially with the hash function SHA-1, and the result of this operation is
played back into the pool. The hash function is then applied again to the first
64 bytes of the pool, and the result is finally returned to the calling function as a
random value. The process is repeated as often as necessary until the required
number of bytes is returned, and read access is terminated. The device file
/dev/random always outputs only as many bits as corresponds to the available
entropy in the pool. If the requests exceed this amount, then the virtual device is
blocked, and it returns additional random bytes only after a sufficient number of
events have occurred that can be observed for the production of entropy.

269

Chapter 12

In contrast to /dev/random, the device file /dev/urandom returns values
continuously even when the entropy pool is exhausted. In this case, the device
returns random values determined in the manner described previously (see [Tso]).

The following function uses, depending on platform and availability, both
sources for generating start values. Under Windows, in addition, the 64 result
bytes of the WIN32 function QueryPerformanceCounter() are used for collecting
entropy. Moreover, the system time is queried, and optionally, a character string
of the calling function is accepted so that a user entry, such as input from the
keyboard, can be considered in the generation of the start value. The values thus
obtained are once more compressed with the hash function RIPEMD-160 to a
20-byte result, which is returned in this form and also as a large integer in CLINT

format.

Function: Generation of entropy for the initialization of pseudorandom
number generators. In addition to an optional user-defined
character string, entropy bytes are read from system-specific
sources:
For Win32: Value from QueryPerformanceCounter (64 byte),
values from CryptGenRandom.
For Linux: Entropy is read from /dev/urandom if this source
is available.
Altogether, LenRndStr + AddEntropy bytes go into the result.
This is output as a CLINT integer.
Additionally, a hash value is generated from the entropy data.

Syntax: int

GetEntropy_l (CLINT Seed_l, char *Hashres,

int AddEntropy, char *RndStr, int LenRndStr);

Input: AddEntropy (number of entropy bytes to be generated)
RndStr (optional user-defined string, NULL is possible)
LenRndStr (length of RndStr in bytes)

Output: Seed_l (entropy as CLINT integer. If Seed_l == NULL,
output is suppressed)
Hashres (entropy as RIPEMD-160 hash value, length 20 bytes
If Hashres == NULL, output suppressed)

Return: 0 if all O.K.
n > 0 if n is less than the required number of entropy bytes
that could be read
E_CLINT_MAL in case of error in memory location

270

Large Random Numbers

int

GetEntropy_l (CLINT Seed_l, UCHAR *Hashres, int AddEntropy,

char *RndStr, int LenRndStr)

{

unsigned i, j, nextfree = 0;

unsigned MissingEntropy = MAX(AddEntropy, sizeof (time_t));

UCHAR *Seedbytes;

int BytesRead;

int LenSeedbytes = LenRndStr + MissingEntropy +

sizeof (time_t) + 2*sizeof (ULONG);

RMDSTAT hws;

time_t SeedTime;

FILE *fp;

#if defined _WIN32 && defined _MSC_VER

LARGE_INTEGER PCountBuff;

HCRYPTPROV hProvider = 0;

#endif /* defined _WIN32 && defined _MSC_VER? */

if ((Seedbytes = (UCHAR*)malloc(LenSeedbytes)) == NULL)

{

return E_CLINT_MAL;

}

if (RndStr != NULL && LenRndStr > 0)

{

memcpy (Seedbytes, RndStr, LenRndStr);

nextfree = LenRndStr;

}

Bring system time into the buffer Seedbytes.

SeedTime = (time_t)time(NULL);

for (i = 0; i < sizeof(time_t); i++)

{

j = i << 3;

Seedbytes[nextfree+i] = (UCHAR)((SeedTime >> j) & (time_t)0xff);

}

nextfree += sizeof (time_t);

MissingEntropy -= sizeof (time_t);

Entropy from WIN32 API (link to ADVAPI32.LIB is required.

#if defined _WIN32 && defined _MSC_VER

if (MissingEntropy)

{

271

Chapter 12

Chain with 64-bit value from QueryPerformanceCounter()

QueryPerformanceCounter (&PCountBuff);

for (i = 0; i < sizeof (DWORD); i++)

{

j = i << 3;

Seedbytes[nextfree + i] =

(char)((PCountBuff.HighPart >> j) & (DWORD)0xff);

Seedbytes[nextfree + sizeof (DWORD) + i] =

(char)((PCountBuff.LowPart >> j) & (DWORD)0xff);

}

nextfree += 2*sizeof (DWORD);

MissingEntropy -= 2*sizeof (DWORD);

}

Chain with values from CryptGenRandom():

if (CryptAcquireContext(&hProvider, NULL, NULL, PROV_RSA_FULL,

CRYPT_VERIFYCONTEXT))

{

if (CryptGenRandom (hProvider, MissingEntropy, &Seedbytes[nextfree]))

{

nextfree += MissingEntropy;

MissingEntropy = 0;

}

}

if (hProvider)

{

CryptReleaseContext (hProvider, 0);

}

#endif /* defined _WIN32 && _MSC_VER */

Fetch entropy from /dev/urandom if this source is available.

if ((fp = fopen("/dev/urandom", "r")) != NULL)

{

BytesRead = fread(&Seedbytes[nextfree], sizeof (UCHAR), MissingEntropy, fp);

nextfree += BytesRead;

MissingEntropy -= BytesRead;

fclose (fp);

}

272

Large Random Numbers

Hash the chained entropy values.

if (Hashres != NULL)

{

ripeinit (&hws);

ripefinish (Hashres, &hws, Seedbytes, nextfree);

}

Seed as an integer in CLINT format.

if (Seed_l != NULL)

{

byte2clint_l (Seed_l, Seedbytes, nextfree);

}

Overwrite and deallocate seed.

SeedTime = 0;

local_memset (Seedbytes, 0, LenSeedbytes);

local_memset (&hws, 0, sizeof (hws));

free (Seedbytes);

return MissingEntropy;

}

For an extensive discussion and ideas for obtaining start values, see [Gut1],
[Gut2], [East], [Matt].2

12.2.2 The BBS Random Number Generator

A random number generator that has been well researched with regard to its
cryptographic properties is the BBS bit generator of L. Blum, M. Blum, and M.
Shub, which is based on results of complexity theory. We would like now to
describe the process and then implement it, although without getting into the
theoretical details, for which see [Blum] or [HKW], Chapter IV and Section VI.5.

We require two prime numbers p, q congruent to 3 modulo 4, which we
multiply together to obtain a modulus n, as well as a number X that is relatively

2 For highly sensitive applications, the generation of start values or even entire random se-
quences of genuine random numbers using suitable hardware components is always to be
preferred.

273

Chapter 12

prime to n. From X0 := X2 (mod n), we obtain the start value X0 for a sequence
of integers that we calculate by successive squaring modulo n:

Xi+1 = X2
i mod n. (12.3)

As random numbers we remove from each value Xi the least-significant bit.
We may thus make a formal description of the generator: The state set is denoted
by S := { 0, 1, . . . , n − 1 }, the random values are defined by R := { 0, 1 }, the
state transitions are described by the function φ : S → S, φ(x) = x2 mod n, and
the output function is ψ : S → R, with ψ(x) := x (mod 2).

A random sequence constructed of binary digits thus obtained can be
considered secure in the cryptographic sense: The ability to predict previous or
future binary digits from a portion of those that have already been calculated
is possible only if the factors p and q of the modulus are known. If these are
kept secret, then according to current knowledge, the modulus n must be
factored for one to be able to predict further bits of a BBS random sequence
with probability greater than 1

2 or to reconstruct unknown parts of the sequence.
The security of the BBS generator thus rests on the same principle as the RSA
procedure. The cost of such derived trust in the quality of the BBS generator
lies in the expense of generating random bits; for each bit, the squaring of a
number modulo a large integer is required, which is reflected in a large amount
of computation time for long sequences. This is of little consequence, however,
in the development of shorter sequences of random bits, such as for the creation
of a single cryptographic key. In such a case, the sole criterion is security, and in
evaluating security, one must take into account the procedure for obtaining start
values. Since the BBS generator is also a deterministic procedure, “fresh chance”
can be included only as described in the previous section via suitably obtained
start values.

With the aid of the function prime_l, prime numbers p ≡ q ≡ 3 (mod 4)

are determined, both with approximately the same number of binary digits (this
results in the modulus being as difficult as possible to factor, and the security of
the BBS generator depends on this), and the modulus n = pq is created.3

Beginning with the start value X0, the next numbers in the sequence
Xi+1 = Xi (mod n) are computed using the function SwitchRandBBS_l(), which
outputs as random bit the least-significant bit of Xi+1. The value Xi+1 is stored
in a buffer as the current state of the generator, which is managed by the calling
function. We will return to the question of how this buffer is to be initialized
with a suitable start value with the first call to SwitchRandBBS_l(). But first let us
implement the function.

3 Several such moduli of various lengths are contained in the FLINT/C package, though without
the associated factors, which are known only to the author ;-).

274

Large Random Numbers

Function: deterministic random number generator, after Blum–Blum–Shub

Syntax: int

SwitchRandBBS_l (STATEBBS *rstate);

Input: rstate (pointer to state memory)

Output: rstate (pointer to updated state memory)

Return: value from {0, 1}

int

SwitchRandBBS_l (STATEBBS *rstate)

{

Continue the generator with modular squaring.

msqr_l (rstate->XBBS, rstate->XBBS, rstate->MODBBS);

Output the least-significant bit of rstate->XBBS.

return (*LSDPTR_L (rstate->XBBS) & 1);

}

The initialization of the BBS generator is accomplished with the help of
the function InitRandBBS_l(), which in turn calls two additional functions: The
function GetEntropy_l generates a start value seed_l, from which using the
second function, seedBBS_l(), the initial state of the generator is calculated. The
place where fresh chance comes into play in GetEntropy_l and how a start value
is processed have already been discussed in the previous section.

275

Chapter 12

Function: initialization of the Blum–Blum–Shub pseudorandom
number generator including obtaining entropy

Syntax: int

InitRandBBS_l (STATEBBS *rstate, char * UsrStr,

int LenUsrStr, int AddEntropy);

Input: rstate (pointer to state memory)
UsrStr (pointer to user character string)
LenUsrStr (length of the user string in bytes)
AddEntropy (number of additional requested entropy bytes)

Output: rstate (pointer to initialized state memory)

Return: 0 if all O.K.
n > 0: number of requested but not generated bytes

int

InitRandBBS_l (STATEBBS *rstate, char *UsrStr, int LenUsrStr, int AddEntropy)

{

CLINT Seed_l;

int MissingEntropy;

Generation of the requested entropy and from that the start value

MissingEntropy = GetEntropy_l (Seed_l, NULL, AddEntropy, UsrStr, LenUsrStr);

Generation of the internal start state

SeedBBS_l (rstate, Seed_l);

Deletion of the start value by overwriting

local_memset (Seed_l, 0, sizeof (CLINT));

return MissingEntropy;

}

The actual initialization of the generator is accomplished by the function
seedBBS_l:

276

Large Random Numbers

Function: set initial values for randbit_l()and randBBS_l()

Syntax: int seedBBS_l (STATEBBS *rstate, CLINT seed_l);

Input: rstate (pointer to state memory)
seed_l (initial value)

Output: rstate (pointer to initialized state memory)

Return: E_CLINT_OK if all O.K.
E_CLINT_RCP: start value and modulus not relatively prime

int

seedBBS_l (STATEBBS *rstate CLINT seed_l)

{

CLINT g_l;

str2clint_l (rstate->MODBBS, (char *)MODBBSSTR, 16);

gcd_l (rstate->MODBBS, seed_l, g_l);

if (!EQONE_L (g_l))

{

return E_CLINT_RCP;

}

msqr_l (seed_l, rstate->XBBS, rstate->MODBBS);

Set the flag: PRNG is initialized.

rstate->RadBBSInit = 1;

return E_CLINT_OK;

}

Random numbers of type UCHAR are generated by the function bRandBBS_l(),
the analogue of the function ucrand64_l():

Function: generation of a random number of type UCHAR

Syntax: UCHAR bRandBBS_l (STATEBBS *rstate);

Input: rstate (pointer to initialized state memory)

Ouput: rstate (pointer to updated state memory)

Return: random number of type UCHAR

277

Chapter 12

UCHAR

bRandBBS_l (STATEBBS *rstate)

{

int i;

UCHAR r = SwitchRandBBS_l (rstate);

for (i = 1; i < (sizeof (UCHAR) << 3); i++)

{

r = (r << 1) + SwitchRandBBS_l (rstate);

}

return r;

}

For completeness, we should mention the functions sRandBBS_l() and
lRandBBS_l(), which generate random numbers of types USHORT and ULONG.

We still lack the function RandBBS_l, which generates random numbers r_l

with exactly l binary digits r_l in the interval 2l−1 ≤ r_l ≤ 2l − 1. Since
this corresponds to a great extent to the function rand_l(), we shall omit an
extensive description, instead presenting only the function header. Of course,
these functions are contained in the FLINT/C package. To delete state buffers, the
function PurgeRandBBS_l() is available.

Function: generation of a random number of type CLINT

Syntax: int

RandBBS_l (CLINT r_l, STATEBBS *rstate, int l);

Input: rstate (internal state of the pseudorandom
number generator)
l (number of binary digits of the number to be generated

Ouput: r_l (random number in the interval 2l−1 ≤ r_l ≤ 2l − 1)

Return: E_CLINT_OK if all OK
E_CLINT_RIN if generator is not initialized

278

Large Random Numbers

Function: deletion of the internal state of RandBBS

Syntax: void

PurgeRandBBS_l (STATEBBS *rstate);

Input: rstate (internal state of the pseudorandom number generator)

Ouput: rstate (internal state of the generator, deleted by overwriting)

12.2.3 The AES Generator

An additional possibility for constructing random number generators is offered
by symmetric block encryption systems, whose statistical and cryptographic
properties have been shown to be well suited to the generation of pseudorandom
numbers. We can clarify this with the help of the Advanced Encryption Standard,
which as representative of modern block encryption systems stands out in
relation to security and speed.4

With the code space K, the space D of clear text blocks, and the set
C := { 0, . . . , c − 1 } for a constant c, state sets are defined by RandAES via
S := K × D × C. The state function is described by

φ : S → S, φ(k, x, i) :=
(
ξ(k, x, i), AESk(x), i + 1 (mod c)

)
, (12.4)

with

ξ(k, x, i) :=

{
k if i �≡ 0 (mod c) ,

k ⊕ AESk(x) if i ≡ 0 (mod c) ,

and the output function via

ψ : S → R, ψ(k, x, i) := x/28·(23−(i mod 16)) mod 28. (12.5)

The constant c specifies how frequently the key is updated, to prevent a
conclusion from being drawn about one state from the previous state. The price
for more security is the time it takes to initialize the key. The most secure, but
slowest, variant of the generator is obtained with c = 1.

The output of the generator is varied using the counter i in such a way that in
sequential steps, various byte positions are selected from the output values.

The initialization of the AES-based pseudorandom number generator
RandAES is accomplished via the function InitRandAES_l:

4 AES is used in an extended form with a block length of 192 bits. The standard requires 128 bits,
while the underlying algorithm Rijndael is designed for block lengths of 256 bits.

279

Chapter 12

Function: initialization of the AES pseudorandom number generator
and production of entropy

Syntax: int

InitRandAES_l (STATEAES *rstate, char *UsrStr,

int LenUsrStr, int AddEntropy, int update);

Input: rstate (pointer to state memory)
UsrStr (pointer to user character string)
LenUsrStr (length of user string in bytes)
AddEntropy (number of additional requested entropy bytes)
update (frequency of the AES key update)

Ouput: rstate (pointer to initialized state memory)

Return: 0 if all O.K.
n > 0: number of requested but not generated entropy bytes

int

InitRandAES_l (STATEAES *rstate, char *UsrStr, int LenUsrStr,

int AddEntropy, int update)

{

int MissingEntropy, i;

Generation of the start value. In MissingEntropy is stored how many of the
requested entropy bytes were unavailable.

MissingEntropy = GetEntropy_l (NULL, rstate->XAES, AddEntropy,

UsrStr, LenUsrStr);

Initialization of AES.

for (i = 0; i < 32; i++)

{

rstate->RandAESKey[i] ˆ= RandAESKey[i];

}

AESInit_l (&rstate->RandAESWorksp, AES_ECB, 192, NULL,

&rstate->RandAESSched, rstate->RandAESKey, 256, AES_ENC);

First state change, creation of start state

280

Large Random Numbers

AESCrypt_l (rstate->XAES, &rstate->RandAESWorksp,

&rstate->RandAESSched, rstate->XAES, 24);

Set frequency of key update as parameter

rstate->UpdateKeyAES = update;

Initialization of the step counter

rstate->RoundAES = 1;

Set the initialization flag.

rstate->RandAESInit = 1;

return MissingEntropy;

}

The state function SwitchRandAES_l() is realized as follows:

Function: Deterministic random number generator
based on the Advanced Encryption Standard (AES)

Syntax: int SwitchRandAES_l (StateAES *rstate);

Input: rstate (pointer to state memory)

Ouput: rstate (pointer to updated state memory)

Return: random value of length one byte

UCHAR

SwitchRandAES_l (STATEAES *rstate)

{

int i;

UCHAR rbyte;

State change via application of the function

φ : S → S, φ(k, x, i) :=
(
ξ(k, x, i), AESk(x), i + 1 mod c

)
.

The content of the buffer rstate->XAES corresponds to the function argument x.

281

Chapter 12

AESCrypt_l (rstate->XAES, &rstate->RandAESWorksp,

&rstate->RandAESSched, rstate->XAES, 24);

Generation of a random value via application of the function

ψ : S → S, ψ(k, x, i) := x/28·(23−(i mod 16)) mod 28

rbyte = rstate->XAES[(rstate->RoundAES)++ & 15];

Key update if the parameter is set and the prescribed number of rounds is reached

if (rstate->UpdateKeyAES)

{

if (0 == (rstate->RoundAES % rstate->UpdateKeyAES))

{

for (i = 0; i < 32; i++)

{

rstate->RandAESKey[i] ˆ= rstate->XAES[i];

}

AESInit_l (&rstate->RandAESWorksp, AES_ECB, 192, NULL,

&rstate->RandAESSched, rstate->RandAESKey, 256, AES_ENC);

}

}

return rbyte;

}

Random values r_l in the interval 2l−1 ≤ r_l ≤ 2l − 1 are specified with the
function RandAES_l(), whose function header is given here:

Function: generation of a random number of type CLINT

Syntax: int

RandAES_1 (CLINT r_l, STATEAES *rstate, int l);

Input: rstate (internal state of the pseudorandom number generator)
l (number of binary digits of the number to be generated)

Ouput: r_l (random number in the interval 2l−1 ≤ r_l ≤ 2l − 1)

Return: E_CLINT_OK if all O.K.
E_CLING_RIN if the generator is not initialized

282

Large Random Numbers

Additionally, in random.h are defined the macros bRandAES_l(), sRandAES_l(),
and lRandAES_l(), each of which expects an initialized state buffer as argument,
and they generate random numbers of types UCHAR, USHORT, and ULONG from these
buffers.

The deletion of the generator takes place in analogy to RandBBS with the
following function:

Function: deletion of the internal state of RandAES

Syntax: void

PurgeRandAES_1 (STATEAES *rstate);

Input: rstate (internal state of the pseudorandom number generator)

Ouput: rstate (internal state of the pseudorandom number generator,
deleted by overwriting)

12.2.4 The RMDSHA-1 Generator

The following pseudorandom number generator will be built from the hash
functions SHA-1 and RIPEMD-160. Both functions can be calculated extremely
quickly, which leads to a generator with excellent performance.

With the definitions D :=
{

0, . . . , 2160 − 1
}

, C := { 0, . . . , c − 1 },
S := D × C, and R :=

{
0, . . . , 28 − 1

}
for input values, counters, states, and

output values, the state function is described by

φ : S → S, φ(x, i) :=
(
RIPEMD-160(x), i + 1 mod c

)
, (12.6)

and the output function determined by

ψ : S → R, ψ(x, i) := SHA-1(x)/28·(19−(i mod 16)) mod 28. (12.7)

As in the case of RandAES, the output is varied with the help of the counter i

in such a way that in successive steps, varying byte positions are selected as
output values. The initialization of the generator takes place via the function
InitRandRMDSHA1_l():

283

Chapter 12

Function: initialization of the RIPEMD-160/SHA-1 pseudorandom
number generator together with entropy creation

Syntax: int

InitRandRMDSHA1_l (STATERMDSHA1 *rstate, char * UsrStr,

int LenUsrStr, int AddEntropy);

Input: rstate (pointer to state memory)
UsrStr (pointer to user character string)
LenUsrStr (length of the user character string in bytes)
AddEntropy (number of additional requested entropy bytes)

Output: rstate (pointer to initialized state memory)

Return: 0 if all O.K.
n > 0: number of requested but not generated entropy bytes

int

InitRandRMDSHA1_l (STATERMDSHA1 *rstate, char *UsrStr,

int LenUsrStr, int AddEntropy)

{

int MissingEntropy;

Generation of start value. In MissingEntropy is stored the number of requested
entropy bytes that were not available.

MissingEntropy = GetEntropy_l (NULL, rstate->XRMDSHA1, AddEntropy,

UsrStr, LenUsrStr);

First state transition, creation of start state.

ripemd160_l (rstate->XRMDSHA1, rstate->XRMDSHA1, 20);

Initialization of the step counter i.

rstate->RoundRMDSHA1 = 1;

Set the initialization flag.

284

Large Random Numbers

rstate->RandRMDSHA1Init = 1;

return MissingEntropy;

}

The state function SwitchRandRMDSHA1_l() outputs a random byte each time
it is called:

Function: Deterministic random number generator based
on the hash functions SHA-1 and RIPEMD-160

Syntax: int SwitchRandRMDSHA1_l (STATERMDSHA1 *rstate);

Input: rstate (pointer to state memory)

Output: rstate (pointer to updated state memory)

Return: random value of length one byte

UCHAR

SwitchRandRMDSHA1_l (STATERMDSHA1 *rstate)

{

UCHAR rbyte;

Generation of a random value by application of the function

ψ : S → R, ψ(x, i) := SHA-1(x)/28·(19−(i mod 16)) mod 28.

sha1_l (rstate->SRMDSHA1, rstate->XRMDSHA1, 20);

rbyte = rstate->SRMDSHA1[(rstate->RoundRMDSHA1)++ & 15];

State change via application of the function

φ : S → S, φ(x, i) :=
(
RIPEMD-160(x), i + 1 mod 232

)
.

ripemd160_l (rstate->XRMDSHA1, rstate->XRMDSHA1, 20);

return rbyte;

}

Random numbers r_l in the interval 2l−1 ≤ r_l ≤ 2l − 1 are generated via
the function RandRMDHSA1_l(), whose function header is given here:

285

Chapter 12

Function: Generation of a random number of type CLINT

Syntax: int

RandRMDSAH1_l (CLINT r_l, STATERMDSHA1 *rstate, int l);

Input: rstate (internal state of the pseudorandom number generator)
l (number of binary digits of the number to be generated)

Output: r_l (random number in the interval 2l−1 ≤ r_l ≤ 2l − 1)

Return: E_CLINT_OK if all O.K.
E_CLINT_RIN if the generator is uninitialized

For this generator as well there are associated macros bRandRMDSHA1_l(),
sRandRMDSHA1_l(), and lRandRMDSHA1_l() in the module random.h, which expect
as argument the appropriate initialized buffer from which random integers of
types UCHAR, USHORT, and ULONG are generated.

Finally, for sensitive applications, one needs a function for deleting the
internal state of the random number generator:

Function: deletion of the internal state of RandRMDSHA-1

Syntax: void

PurgeRandSHA_l (STATERMDSHA1 *rstate);

Input: rstate (internal state of the pseudorandom number generator)

Ouput: rstate (internal state of the generator, deleted by overwriting)

12.3 Quality Testing

For investigating the quality of random number generators, a large number of
theoretical and empirical tests have been developed that are suitable for detecting
the structural properties of sequences of random numbers.

Depending on the area of application, in addition to the statistical require-
ments on such sequences, one must also consider that random sequences that
are to be used in cryptographic applications must not be predictable without the
knowledge of secret information or reproducible from a small number of repre-
sentatives, so as to keep attackers from being able to reconstruct a cryptographic
key or sequence of keys derived from the sequence.

As an example, the German Institute for Security in Information Technology
has specified in [BSI2] functionality classes and quality criteria for evaluating

286

Large Random Numbers

deterministic random number generators. The specification establishes four
classes of increasing security:

K1: A sequence of random vectors composed of random numbers should
with high probability contain no identical consecutive elements. Statistical
properties of the generated random numbers are unimportant. The length of
the random vectors and the probability of error depend on the application.

K2: The generated random numbers should be indistinguishable from true
random numbers based on statistical tests. The tests to be applied are the
monobit test, poker test, runs and longruns tests from [BSI2] and [FIPS], as
well as the additional statistical test of autocorrelation. Altogether, what is
checked is how well a given sequence of bits (or a part of such a sequence)
satisfies the following conditions:

• Zeros and ones appear equally often.
• After a sequence of n zeros (respectively ones), the next bit will be a

one (zero) with probability one-half.
• A given output contains no information about the next output.

K3: It should be impossible for all practical purposes for an attacker to be able
to calculate or guess from a known sequence of generated random numbers
any previous or future random numbers or an inner state of the generator.

K4: It should be impossible for all practical purposes for an attacker to calculate
or guess from an inner state of the generator previous random numbers or
states.

12.3.1 Chi-Squared Test

As motivation for dealing with tests for evaluation of property K2, we look first at
the chi-squared test (also written “χ2 test”), which with the Kolmogorov–Smirnov
test is among the most important tests of goodness of fit. The chi-squared test
gives information on how well an empirically obtained probability distribution
corresponds to a theoretically expected distribution. The chi-squared test
computes the statistic

χ2 =
t∑

i=1

(H (Xi) − n pr (Xi))
2

n pr (Xi)
, (12.8)

where for t distinct events Xi we designate H (Xi) the observed frequency of the
event Xi, pr (Xi) the probability for the occurrence of Xi, and n the number of
observations. For the case to which these distributions correspond, the statistic
χ2, viewed as a random variable, has the expected value E

(
χ2
)

= t − 1. The
threshold values that lead to the rejection of the test hypothesis of equality of

287

Chapter 12

the distributions for given error probabilities can be read from tables of the
chi-squared distribution for t − 1 degrees of freedom (cf. [Bos1], Section 4.1).

The chi-squared test is employed in connection with many empirical tests
to measure their results for correspondence with the theoretically calculated test
distributions. The test is particularly simple to apply for sequences of uniformly
distributed (which is our test hypothesis!) random numbers Xi in a range of
values W = { 0, . . . , ω − 1 }: We assume that each of the numbers in W is
taken with the same probability p = 1/ω and thus expect that among n random
numbers Xi each number from W appears approximately n/ω times (where
we assume n > ω). However, this should not be exactly the case, because the
probability Pk that among n random numbers Xi a specific value w ∈ W

appears k times is given by

Pk =

(
n

k

)
pk (1 − p)n−k =

n!

k! (n − k)!
pk (1 − p)n−k . (12.9)

This binomial distribution indeed has the largest values for k ≈ n/ω, but the
probabilities P0 = (1 − p)n and Pn = pn are not equal to zero. Under the
assumption of random behavior we therefore expect to observe in the sequence
of the Xi frequencies hw of individual values w ∈ W according to the binomial
distribution. Whether this actually occurs is established by the chi-squared test in
calculating

χ2 =

ω−1∑
i=0

(hj − n/ω)2

n/ω
=

ω

n

ω−1∑
i=0

h2
i − n. (12.10)

The test is repeated for several random samples (partial sequences of Xi). A
rough approximation to the chi-squared distribution allows us to deduce that
in most cases the test result χ2 must lie in the interval

[
ω − 2

√
ω, ω + 2

√
ω
]

.
Otherwise, the given sequence would attest to a lack of randomness. Based on
this, the probability of an error, namely, that an actually “good” random sequence
is declared “bad” based on the result of the chi-squared test, is about two percent.
It is in this sense that the error probability of 10−6 that results from the given
bounds is to be interpreted in the following tests. The bounds are set such that
a “halfway reasonable” probability generator would almost always pass the test,
so that known attacks against cryptographic algorithms based on statistical
weaknesses in random number generators would fail (see [BSI2], page 7).5

The linear congruence generator in the ISO-C standard that we considered
above passes this simple test, as do the pseudorandom number generators that
we shall implement below for the FLINT/C package.

5 Take note that the test is valid only for a sufficiently large number of samples: This number
must be at least n = 5ω (see [Bos2], Section 6.1), with an even larger number to be preferred.

288

Large Random Numbers

12.3.2 Monobit Test

For a random sequence of 2500 bytes, or 20 000 bits, a test is made whether
approximately the same number of zeros and ones occurs. The test is passed with
error probability 10−6 if the number of ones (that is, set bits) in a sequence of
20 000 bits lies in the interval [9 654, 10 346] (see [BSI2] and [FIPS]).

12.3.3 Poker Test

The poker test is a special case of the chi-squared test with ω = 16 and n = 5000.
A generated sequence of random numbers is divided into segments of four bits,
and the frequencies of the sixteen possible sequences of zeros and ones are
counted.

For an execution of the test, a sequence of 20 000 bits is divided into 5000
segments of four bits each. The frequencies hi, 0 ≤ i ≤ 15, of the sixteen four-bit
arrangements are counted. For the test to be passed, the value

X =
16

5000

15∑
i=0

h2
i − 5000 (12.11)

must lie, according to the specifications in [BSI2] and [FIPS], in the interval
[1.03, 57.40], which corresponds to an error probability of 10−6. Measured values
outside the previously mentioned interval

[
ω − 2

√
ω, ω + 2

√
ω
]

= [8, 24], on
the other hand, are rejected with the higher error probability 0.02.

12.3.4 Runs Test

A run is a sequence of identical bits (zeros or ones). The test counts the
frequencies of runs of various lengths and checks for deviations from expected
values. In a sequence of 20 000 bits, all runs of the same type (length and bit
value, e.g., runs of 2 ones) are counted. The test is passed if the numbers lie in the
intervals shown in Table 12-1 (error probability of 10−6).

12.3.5 Longruns Test

As an extension of the runs test, the longruns test checks whether there exists a
sequence of identical bits longer than a given length. The test is passed if there is
no run of length 34 or longer in a sequence of 20 000 bits.

289

Chapter 12

Table 12-1. Tolerance intervals for runs of various lengths, after [BSI2] and [FIPS]

Run Length Interval

1 [2267,2733]

2 [1079,1421]

3 [502,748]

4 [233,402]

5 [90,223]

6 [90,233]

12.3.6 Autocorrelation Test

The autocorrelation test provides information about possible existing dependen-
cies within a generated bit sequence. For a sequence of 10 000 bits, b1, . . . , b10000,
and for t in the range 1 ≤ t ≤ 5000, the values

Zt =

5000∑
i=1

bi ⊕ bi+1 (12.12)

are computed. The test is passed with probability of error 10−6 if all the Zt lie in
the interval [2327, 2673] (see [BSI2] and [FIPS]).

12.3.7 Quality of the FLINT/C Random Number
Generators

To demonstrate the properties K2, the required statistical tests for the output
width of 8 bits for the random number generators presented here were carried
out. In 2313 individual tests, over 20 000 random bits were calculated. All test
results lay within the required bounds. The average values were calculated, and
they are presented in Table 12-2. Therefore, the generators presented here can be
placed in class K2.

Class K3 requires that it be impossible for an attacker to determine
predecessors or successors of a given subsequence ri, ri+1, . . . , ri+j , nor to
determine any internal state. For the generator RandAES, this would be equivalent
to serious attack possibilities against the encryption procedure AES, which would
lead to being able to take ciphered text and produce bits of clear text or of a key.
No such attacks are known. Furthermore, the AES is considered a high-strength
cryptographic mechanism, so that the generator can be placed in class K3.

If the parameter c is set to the value 1, then in each round, a new key
ki := ξ(ki−1, x, i − 1) = ki−1 ⊕ AESki−1(x) is established. Due to this
operation, it is impossible to determine a previous internal state (or key) si−j

290

Large Random Numbers

Table 12-2. Test results of the FLINT/C random number generators

Test Rand64 RandRMDSHA-1 RandBBS RandAES Tolerance Interval

Monobit 9997.29 10000.11 9999.15 9998.66 [9654, 10346]

Poker 15.11 14.70 15.19 15.01 [1.03, 57.40]

Runs length 1 2499.55 2501.69 2500.02 2499.86 [2267, 2733]

Runs length 2 1250.29 1249.31 1249.38 1249.48 [1079, 1421]

Runs length 3 625.05 624.95 625.07 625.22 [502, 748]

Runs length 4 312.16 312.32 312.87 312.59 [233, 402]

Runs length 5 156.29 156.22 156.15 156.11 [90, 223]

Runs length 6 156.36 156.34 156.23 156.41 [90, 233]

Longruns 0.00 0.00 0.00 0.00 [0, 0]

Autocorrelation 2500.79 2500.06 2501.00 2500.10 [2327, 2673]

from knowledge of the internal state si, and therefore, with knowledge of the
internal state of RandAES, it is even impossible to determine from a subsequence
any predecessors of that subsequence. For c = 1, then, RandAES can be placed in
class K4.

The argumentation for RandRMDSHA1 is similar. Because of the unidirec-
tional properties of SHA-1, one cannot draw conclusions about the internal
state of the generator from a subsequence, and therefore, no predecessors or
successors can be determined. This ensures membership in class K3. Because
of the same property in RIPEMD-160, no previous states can be derived from
an internal state of the generator, without which again no predecessors can be
determined. Thus the random number generator RandRMDSHA-1 can be placed
in class K4.

For RandBBS an argument has already been presented that supports placing
the generator in class K4.

An extensive overview of this field can be found in [Knut]. In particular, a
comprehensive presentation of the theoretical evaluation of random number
generators is provided in [Nied]. Ideas for constructing random number
generators presented in this chapter have been taken from [Sali], as well as the
type of representation of the test results in Table 12-2. Some pragmatic ideas for
testing random sequences are contained in [FIPS].

12.4 More Complex Functions

In this section we will prepare several functions for generating random numbers
and random prime numbers with additional boundary conditions that are not

291

Chapter 12

specialized to a specific random number generator. Rather, the choice of the
generator to use is supported by a parameter. Here it is necessary to pass the
appropriate state memory as parameter. The structure

struct InternalStatePRNG

{

STATERMDSHA1 StateRMDSHA1;

STATEAES StateAES;

STATEBBS StateBBS;

int Generator;

};

extended by setting

typedef struct InternalStatePRNG STATEPRNG;

contains the state memory of the individual random number generators
previously presented as well as the status variable Generator, which specifies for
which random number generator the structure was initialized.

With this definition, the functions InitRand_l(), Rand_l(), lRand_l(),
sRand_l(), bRand_l(), and PurgeRand_l() were created. With InitRand_l() a
generator is initialized that is then used for subsequent calls of the random
functions. The random functions themselves require as parameter a pointer to
the initialized structure STATEPRNG.

292

Large Random Numbers

Function: Initialization of a yet to be specified random generator with
generation of entropy

Syntax: int

InitRand_l (STATEPRNG *xrstate, char *UsrStr,

int LenUsrStr, int AddEntropy, int Generator);

Input: UsrStr (byte vector for initializing the pseudorandom
number generator)
LenUsrStr (length of UsrStr in bytes)
AddEntropy (number of requested entropy bytes)
Generator (pseudorandom number generator to be initialized:

FLINT_RND64

FLINT_RNDRMDSHA1

FLINT_RNDAES

FLINT_RNDBBS)
Output: xrstate (new internal state of the pseudorandom

number generator)

Return: 0: OK
n > 0: number of requested but not generated entropy bytes
n < 0 : specified generator does not exist; RND64 was
initialized by default, or |n| requested but not generated
entropy bytes

293

Chapter 12

int

InitRand_l (STATEPRNG *xrstate, char *UsrStr, int LenUsrStr,

int AddEntropy, int Generator)

{

int error;

switch (Generator)

{

case FLINT_RNDBBS:

error = InitRandBBS_l (&xrstate->StateBBS, (char*)UsrStr,

LenUsrStr, AddEntropy);

xrstate->Generator = FLINT_RNDBBS;

break;

case FLINT_RNDRMDSHA1:

error = InitRandRMDSHA1_l (&xrstate->StateRMDSHA1, (char*)UsrStr,

LenUsrStr, AddEntropy);

xrstate->Generator = FLINT_RNDRMDSHA1;

break;

case FLINT_RNDAES:

error = InitRandAES_l (&xrstate->StateAES, (char*)UsrStr,

LenUsrStr, AddEntropy, 10);

xrstate->Generator = FLINT_RNDAES;

break;

case FLINT_RND64:

error = InitRand64_l ((char*)UsrStr, LenUsrStr, AddEntropy);

xrstate->Generator = FLINT_RND64;

break;

default:

InitRand64_l ((char*)UsrStr, LenUsrStr, AddEntropy);

xrstate->Generator = FLINT_RND64;

error = -AddEntropy;

}

return error;

}

294

Large Random Numbers

Function: Generation of a pseudorandom number r_l of type CLINT

with 2l−1 ≤ r_l < 2l using the FLINT/C pseudorandom
number generators, previous initialization via call to the
initialization function InitRand_l with suitable parameters
is required

Syntax: int

Rand_l (CLINT r_l, STATEPRNG *xrstate, int l;)

Input: xrstate (initialized internal state of the pseudorandom
number generator)
rmin_l (lower limit for r_l)
rmax_l (upper limit for r_l)

Output: r_l (pseudorandom number)
xrstate (new internal state of the pseudorandom number
generator)

Return: E_CLINT_OK if all O.K.
E_CLINT_RGE if pmin_l > pmax_l

E_CLINT_RNG error in specification of generator in xrstate

E_CLINT_RIN if specified random number generator
uninitialized or nonexistent

int

Rand_l (CLINT r_l, STATEPRNG *xrstate, int l)

{

int error = E_CLINT_OK;

switch (xrstate->Generator)

{

case FLINT_RNDBBS:

error = RandBBS_l (r_l, &xrstate->StateBBS,

MIN (l, (int)CLINTMAXBIT));

break;

case FLINT_RNDAES:

error = RandAES_l (r_l, &xrstate->StateAES,

MIN (l, (int)CLINTMAXBIT));

break;

295

Chapter 12

case FLINT_RNDRMDSHA1:

error = RandRMDSHA1_l (r_l, &xrstate->StateRMDSHA1,

MIN (l, (int)CLINTMAXBIT));

break;

case FLINT_RND64:

rand_l (r_l, MIN (l, (int)CLINTMAXBIT));

break;

default:

rand_l (r_l, MIN (l, (int)CLINTMAXBIT));

error = E_CLINT_RIN;

}

return error;

}

The remaining random functions should be executed only with their
associated signatures.

Function: generation of a pseudorandom number of types UCHAR,
USHORT, ULONG; previous initialization via call to
initialization function InitRand_l with suitable
parameters necessary

Syntax: UCHAR

bRand_l (STATEPRNG *xrstate);

USHORT

sRand_l (STATEPRNG *xrstate);

ULONG

lRand_l (STATEPRNG *xrstate);

Input: xrstate (initialized internal state of pseudorandom
number generator)

Output: xrstate (new internal state of pseudorandom
number generator)

Return: pseudorandom number of type UCHAR, USHORT, ULONG.

With the following function, the internal state of a random number generator
is deleted:

296

Large Random Numbers

Function: deletion of the internal state of a pseudorandom
number generator

Syntax: int

PurgeRand_l (STATEPRNG *xrstate);

Input: xrstate (internal state of the pseudorandom
number generator)

Output: xrstate (internal state, deleted by overwriting)

Return: E_CLINT_OK if all OK
E_CLINT_RIN if no FLINT/C generator is specified in xrstate

There follow some interesting functions with whose help we can determine
large random prime numbers. We begin with the search for random numbers
that lie within a prescribed interval [rmin, rmax]. This is a generalization of our
function Rand_l().

Function: determination of a pseudorandom number r_l of type CLINT

with rmin_l ≤ r_l ≤ rmax_l using the FLINT/C
pseudorandom number generators; previous initialization
by calling initialization function InitRand_l with suitable
parameters required

Syntax: int

RandlMinMax_l (CLINT r_l, STATEPRNG *xrstate,

CLINT rmin_l,CLINT rmax_l);

Input: xrstate (Initialized internal state of a pseudorandom
number generator)
rmin_l (lower bound for r_l)
rmax_l (upper bound for r_l)

Output: r_l (random number)
xrstate (new internal state of generator)

Return: E_CLINT_OK if all O.K.
E_CLINT_RGE if rmin_l > rmax_l

E_CLINT_RNG if error in specifying generator in xrstate

E_CLINT_RIN if random number generator uninitialized

297

Chapter 12

int

RandMinMax_l (CLINT r_l, STATEPRNG *xrstate, CLINT rmin_l, CLINT rmax_l)

{

CLINT t_l;

int error = E_CLINT_OK;

USHORT l = ld_l (rmax_l);

Plausibility: Is rmin_l ≤ rmax_l?

if (GT_L (rmin_l, rmax_l))

{

return E_CLINT_RGE;

}

Form auxiliary variable t_l := rmax_l - rmin_l + 1.

sub_l (rmax_l, rmin_l, t_l);

inc_l (t_l);

Search for random number less than or equal to 2�ld(rmax_l�.

switch (xrstate->Generator)

{

case FLINT_RNDAES:

error = RandAES_l (r_l, &xrstate->StateAES,

MIN (l, (int)CLINTMAXBIT));

break;

case FLINT_RNDRMDSHA1:

error = RandRMDSHA1_l (r_l, &xrstate->StateRMDSHA1,

MIN (l, (int)CLINTMAXBIT));

break;

case FLINT_RNDBBS:

error = RandBBS_l (r_l, &xrstate->StateBBS,

MIN (l, (int)CLINTMAXBIT));

break;

298

Large Random Numbers

case FLINT_RND64:

rand_l (r_l, MIN (l, (int)CLINTMAXBIT));

error = rand_l (r_l, MIN (l, (int)CLINTMAXBIT));

break;

default:

return E_CLINT_RNG;

}

if (E_CLINT_OK != error)

{

return error;

}

Calculate r_l mod t_l + rmin_l.

mod_l (r_l, t_l, r_l);

add_l (r_l, rmin_l, r_l);

return error;

}

With the help of the function RandMinMax_l(), we can begin our search for
prime numbers p that lie within the interval [rmin, rmax] and that satisfy the
additional condition that p − 1 is relatively prime to a specified number f . We
search for these numbers with the following algorithm and associated function
FindPrimeMinMaxGcd_l():

Algorithm for determining a random prime number p with rmin ≤ p ≤ rmax

that satisfies the additional condition gcd(p − 1, f) = 1, after [IEEE]

1. Set kmin ← �(rmin − 1)/2� and kmax ← �(rmax − 1)/2�.

2. Generate randomly an integer k satisfying kmin ≤ k ≤ kmax.

3. Set p ← 2k + 1.

4. Compute d ← gcd(p − 1, f).

5. If d = 1, test p for primality. If p is prime, set d ← gcd(p − 1, f). Otherwise,
go to step 2.

299

Chapter 12

Function: Determine a prime p_l of type CLINT with rmin_l ≤
p_l ≤ rmax_l and gcd(p_l− 1, f_l) = 1 using the FLINT/C
pseudorandom number generators; previous initialization
required via call to the initialization function InitRand_l with
suitable parameters.

Syntax: int

FindPrimeMinMaxGcd_l (CLINT p_l, STATEPRNG *xrstate,

CLINT rmin_l, CLINT rmax_l, CLINT f_l);

Input: xrstate (initialized internal state of a pseudorandom
number generator)
rmin_l (lower bound for p_l)
rmax_l (upper bound for p_l)
f_l (integer that should be relatively prime to p_l−1)

Output: p_l (random, probabilistically determined prime number)
xrstate (new internal state of the pseudorandom
number generator)

Return: E_CLINT_OK if all OK
E_CLINT_RGE if rmin_l > rmax_l or f_l is even, or if no prime
number can be found satisfying the given boundary conditions
E_CLINT_RNG if error in specifying the generator in xrstate

E_CLINT_RIN if pseudorandom number generator uninitialized

int

FindPrimeMinMaxGcd_l (CLINT p_l, STATEPRNG *xrstate, CLINT rmin_l,

CLINT rmax_l, CLINT f_l)

{

CLINT t_l, rmin1_l, g_l;

CLINT Pi_rmin_l, Pi_rmax_l, NoofCandidates_l, junk_l;

int error;

Check whether f_l is odd.

if (ISEVEN_L (f_l))

{

return E_CLINT_RGE;

}

300

Large Random Numbers

Estimate the number of prime numbers in the interval [rmin_l, rmax_l], and store
the result in NoofCandidates_l.

udiv_l (rmin_l, ld_l (rmin_l), Pi_rmin_l, junk_l);

udiv_l (rmax_l, ld_l (rmax_l), Pi_rmax_l, junk_l);

sub_l (Pi_rmax_l, Pi_rmin_l, NoofCandidates_l);

Set rmin_l ← �(rmin_l− 1)/2�.

dec_l (rmin_l);

div_l (rmin_l, two_l, rmin_l, junk_l);

if (GTZ_L (junk_l))

{

inc_l (rmin_l);

}

Set rmax_l ← �(rmax_l− 1)/2�.

dec_l (rmax_l);

shr_l (rmax_l);

do

{

Test the breakoff condition for whether number of prime candidates has been re-
duced to zero. If this is the case, then no prime will be found within the given
boundary conditions. This is indicated by the error code E_CLINT_RGE.

if (EQZ_L (NoofCandidates_l))

{

return (E_CLINT_RGE);

}

Determination of a random number.

if (E_CLINT_OK != (error = RandMinMax_l (p_l, xrstate, rmin_l, rmax_l)))

{

return error;

301

Chapter 12

}

Set the prime number candidate p_l ← 2*p_l + 1; thus p_l is odd.

shl_l (p_l);

inc_l (p_l);

cpy_l (rmin1_l, p_l);

dec_l (rmin1_l);

gcd_l (rmin1_l, f_l, g_l);

dec_l (NoofCandidates_l);

}

while (!(EQONE_L (g_l) && ISPRIME_L (p_l)));

return error;

}

The following two functions are by-products, so to speak, of the previous
function. We first generate pseudorandom prime numbers with a specified
number of binary digits and with the additional property of being relatively prime
to a specified integer. For this we use the function FindPrimeMinMaxGcd_l():

302

Large Random Numbers

Function: Determination of a pseudorandom prime number p_l

of type CLINT with 2l−1 ≤ p_l < 2l and
gcd(p_l− 1, f_l) = 1 using the FLINT/C pseudorandom
number generators; required is previous initialization
via a call to the function InitRand_l with suitable parameters

Syntax: int

FindPrime_l (CLINT p_l, STATEPRNG *xrstate,

USHORT l, CLINT f_l);

Input: xrstate (initialized internal state of a pseudorandom
number generator)
l (number of binary digits of p_l)
f_l (number that should be relatively prime to p_l−1

Output: p_l (probabilistically determined prime number)
xrstate (new internal state of pseudorandom number generator)

Return: E_CLINT_OK if all OK
E_CLINT_RNG if error in specifying the generator in xrstate

E_CLINT_RGE if l = 0 or f_l odd
E_CLINT_RIN if random number generator is uninitialized

int

FindPrimeGcd_l (CLINT p_l, STATEPRNG *xrstate, USHORT l, CLINT f_l)

{

CLINT pmin_l;

clint pmax_l[CLINTMAXSHORT + 1]; int error;

if (0 == l)

{

return E_CLINT_RGE;

}

SETZERO_L (pmin_l);

SETZERO_L (pmax_l);

setbit_l (pmin_l, l - 1);

setbit_l (pmax_l, l);

dec_l (pmax_l);

error = FindPrimeMinMaxGcd_l (p_l, xrstate, pmin_l, pmax_l, f_l);

return error;

}

In the last step we wish to avoid the condition of relative primality by passing
one as a parameter in the call FindPrimeGcd_l (p_l, xrstate, l, one_l):

303

Chapter 12

Function: Determination of a pseudorandom prime number p_l of type

CLINT with 2l−1 ≤ p_l < 2l using the FLINT/C pseudorandom
number generators; previous initialization via a call to the
appropriate initialization function is required

Syntax: int

FindPrime_l (CLINT p_l, STATEPRNG *xrstate, USHORT l);

Input: xrstate (initialized internal state of a pseudorandom number generator)
l (number of binary digits of p_l)

Output: p_l (probabilistically determined prime number)
xrstate (new internal state of the pseudorandom number generator)

Return: E_CLINT_OK if all OK
E_CLINT_RNG if error in specifying the generator in xrstate

E_CLINT_RGEif l = 0

E_CLINT_RIN if random number generator uninitialized

int

FindPrime_l (CLINT p_l, STATEPRNG *xrstate, USHORT l)

{

return (FindPrimeGcd_l (p_l, xrstate, l, one_l));

}

304

CHAPTER 13

Strategies for

Testing LINT

Don’t blame the Compiler.

—David A. Spuler: C++ and C Debugging, Testing, and Code Reliability

IN THE PREVIOUS CHAPTERS WE have encountered here and there hints for testing
individual functions. Without meaningful tests to ensure the quality of our
package, all of our work would be for naught, for on what else are we to base our
confidence in the reliability of our functions? Therefore, we are now going to give
our full attention to this important topic, and to this end we ask two questions
that every software developer should ask:

1. How can we be certain that our software functions behave according
to their specifications, which in our case means first of all that they are
mathematically correct?

2. How can we achieve stability and reliability in the functioning of our
software?

Although these two questions are closely related, they are actually concerned
with two different problem areas. A function can be mathematically incorrect,
for example if the underlying algorithm has been incorrectly implemented, yet it
can reliably and stably reproduce this error and consistently give the same false
output for a given input. On the other hand, functions that apparently return
correct results can be plagued by other sorts of errors, for example an overflow
of the length of a vector or the use of incorrectly initialized variables, leading
to undefined behavior that remains undetected due to favorable (or should we
rather say unfavorable?) test conditions.

We thus must be concerned with both of these aspects and institute
development and test methods that can provide us sufficient trust in both the
correctness and reliability of our programs. There are numerous publications that
discuss the significance and consequences of these wide-ranging requirements
for the entire software development process and delve deeply into the issues of
software quality. Considered attention to this topic has found expression not
least in the international trend to institute the ISO 9000 standard in software

305

Chapter 13

production. In this regard one no longer speaks merely of “testing” or “quality
assurance,” but instead one hears talk of “quality management” or “total quality
management,” which in part are simply the result of effective marketing, but
which nonetheless cast the issue in the proper light, namely, to consider the
process of software creation in its multifaceted entirety and thereby improve it.
The frequently employed expression “software engineering” cannot blind us to
the fact that this process, as it relates to predictability and precision, as a rule can
scarcely compete with the classical discipline of engineering.

The comparison may be characterized aptly by the following joke: A
mechanical engineer, an electrical engineer, and a software engineer have
decided to take an automobile trip together. They seat themselves in the car, but
it refuses to start. The mechanical engineer says at once, “The problem is with
the motor. The injection nozzle is clogged.” “Nonsense,” retorts the electrical
engineer. “The electronics are to blame. The ignition system has certainly failed.”
Whereupon the software engineer makes the following suggestion: “Let’s all get
out of the car and climb back in. Perhaps then it will start.”

Without pursuing the further conversations and adventures of the three
intrepid engineers, let us proceed to consider some of the options that were
implemented in the creation and testing of the FLINT/C package. Above all,
the following references were consulted, which do not exhaust the reader with
abstract considerations and guidelines but get down to concrete assistance in
solving concrete problems, without in the process losing sight of the big picture.1

Each of these books contains numerous references to further important literature
on this topic:

• [Dene] is a standard work that deals with the entire process of software
development. The book contains many methodological pointers based
on the practical experience of the author as well as many clear and useful
examples. The theme of testing is attacked again and again in connection
with the various phases of programming and system integration, where the
conceptual and methodological fundamentals are discussed together with
the practical point of view, all in conjunction with a thoroughly worked out
example project.

• [Harb] contains a complete description of the programming language C and
the C standard library, and it gives many valuable pointers and comments
on the prescriptions of the ISO standard. This is an indispensable reference
work to be consulted at every turn.

• [Hatt] goes into great detail on the creation of security-critical software
systems in C. Typical experience and sources of error are demonstrated

1 The titles named here represent the author’s personal, subjective selection. There are many
other books and publications that could as well have been listed here but that have been
omitted for lack of space and time.

306

Strategies for Testing LINT

by means of concrete examples and statistics—and C certainly offers
many opportunities for error. There is also comprehensive methodological
advice, which if heeded would lead to increased trust in software products.

• [Lind] is an excellent and humorous book, which reveals a deep under-
standing of the C programming language. Moreover, the author knows how
to transmit this understanding to the reader. Many of the topics considered
could be supplied the subtitle, “Did you know that . . . ?” and only a very
few readers could honestly—hand on heart—reply in the affirmative.

• [Magu] deals with the design of subsystems and is therefore of particular
interest to us. Here are discussed the interpretation of interfaces and
the principles of dealing with functions with input parameters. The
differences between risky and defensive programming are elucidated as
well. The effective use of assertions (see page 153) as testing aids and for
the avoidance of undefined program states is a further strong point of this
book.

• [Murp] contains a host of testing tools that can be put to use in testing
programs with little effort and that yield immediate useful results. Among
its other features the book offers libraries on an accompanying diskette
for the implementation of assertions, testing the processing of dynamic
memory objects, and reporting the degree of coverage of tests, which were
also used for testing the FLINT/C functions.

• [Spul] offers a broad view of methods and tools for testing programs in the
C and C++ languages and gives numerous pointers for their effective use.
The book contains an extensive overview of programming errors typical in
C and C++ and discusses techniques for recognizing and eliminating them.

13.1 Static Analysis

The methodological approaches to testing can be divided into two categories:
static testing and dynamic testing. In the first category are to be found code
inspection, whereby the source code is carefully examined and inspected line
by line for such problems as deviations from specifications (in our case these
are the selected algorithms), errors in reasoning, inaccuracies with respect to the
arrangement of code lines or the style guide, doubtful constructions, and the
presence of unnecessary code sequences.

Code inspection is supported by the use of analytic tools, such as the well-
known Unix lint tools, that largely automate this laborious task. Originally, one of
the main applications of lint was to compensate for earlier existing deficits in C
in consistency checking of parameters that were passed to functions in separately
compiled modules. Meanwhile, there have appeared more convenient products

307

Chapter 13

than the classical lint, products that are capable of discovering an enormous
bandwidth of potential problems in program code, represented only in small part
by syntax errors that definitively prevent a compiler from effecting a translation
of the code. A few examples of the problem domains that can be uncovered by
static analysis are as follows:

• syntax errors,

• missing or inconsistent function prototypes,

• inconsistencies in the passing of parameters to functions,

• references to or joining of incompatible types,

• use of uninitialized variables,

• nonportable constructs,

• unusual or implausible use of particular language constructs,

• unreachable code sequences,

An imperative condition for stringent type-checking by automated tools is
the use of function prototypes. With the help of prototypes an ISO-conforming
C compiler is capable of checking, across all modules, the types of arguments
passed to functions and detecting inconsistencies. Many compilers can also
be set to analyze the source code, as they recognize many problems when the
appropriate warning levels are turned on. The C/C++ compiler gcc of the GNU
project of the Free Software Foundation, for example, possesses above-average
analysis functions, which can be activated with the options -Wall -ansi and
-pedantic.2

For static testing in setting up the FLINT/C functions, in addition to tests
being performed on a number of different compilers (see page 8), there were
employed primarily the products PC-lint from Gimpel Software (version 7.5; see
[Gimp]) and Splint from the Secure Programming Group at the University of
Virginia (version 3.1.1; see [Evan]).3

PC-lint has proved itself to be a very useful tool for testing both C and C++
programs. It knows about approximately two thousand separate problems and
uses mechanisms that in a limited way derive from the code the values loaded
into automatic variables at run time and include this in the diagnosis. In this way
many problems, such as exceeding the limits of vectors, that are usually, if at all,
detected only at run time (which is to say during testing, it is to be hoped, and not
afterwards) can be uncovered already during static analysis.

2 The compiler is included in the various Linux distributions and can also be obtained from
http://www.leo.org.

3 Splint is the successor to the tool LCLint, which was developed in cooperation with the Mas-
sachusetts Institute of Technology and Digital Equipment Corporation (DEC). Splint can be
found at the address http://splint.cs.virginia.edu/.

308

Strategies for Testing LINT

In addition to these tools, the freely obtainable Splint has been adapted
to run under Linux. Splint distinguishes four modes (weak, standard, check,
strict), each connected with certain presets, and which carry out tests of varying
degrees of rigorousness. In addition to the typical lint functions, Splint offers
possibilities to test programs for the presence of particular specifications, which
are inserted as specially formatted comments in the source code. In this way
boundary conditions for the implementation of functions and their invocation
can be formulated and their conformity to specifications checked, and there are
additional possible semantic controls.

For programs not equipped with supplementary specifications the mode
set with the option -weak is recommended as standard. However, according
to the manual a special reward will be presented to the first person who can
produce a “real program” that produces no errors with Splint in -strict mode.
As a precondition for using these two tools in a reasonable manner it proved to
be useful in testing the FLINT/C functions to test precisely which options are
used and to create corresponding profile files so as to configure the tools for
individual use.

After extensive revisions of the FLINT/C code, at the end of the test phase
neither of the two products produced any warnings that on close examination
could be considered serious. With this goes the hope that we have come a long
way in fulfilling the conditions set above for the quality of the FLINT/C functions.

13.2 Run-Time Tests

The goal of run-time tests should be to prove that a building block of a piece of
software fulfills its specifications. To give the tests sufficient expressive power
so as to justify the expense of time and money that goes into their development
and execution, we must make of them the same demands that we do of scientific
experiments: They must be completely documented, and their results must
be reproducible and able to be checked by outsiders. It is useful to distinguish
between testing individual modules and integrated system tests, though here the
boundaries are fluid (see [Dene], Section 16.1).

To achieve this goal in testing modules the test cases must be so constructed
that functions can be exhaustively tested to the extent possible, or in other words,
that as large a coverage as possible be achieved of the functions being tested.
To establish test coverage various metrics can be employed. For example, for C0
coverage what is measured is the portion of instructions of a function or module
that are actually run through, or, concretely, which instructions are not run
through. There are more powerful measurements than C0 coverage, which take
note of the portion of branches that are taken (C1 coverage), or even the portion of
paths of a function that are run through. The last of these is a considerably more
complex measure then the first two.

309

Chapter 13

In each case the goal is to achieve maximal coverage with test cases that
completely check the behavior of the interface of the software. This covers two
aspects that are only loosely connected one with the other: A test driver that
runs through all the branches of a function can still leave errors undetected. On
the other hand, one can construct cases in which all the properties of a function
are tested, even though some branches of the function are not considered. The
quality of a test can thus be measured in at least two dimensions.

If to achieve a high degree of test coverage it does not suffice to establish
the test cases based simply on knowledge of the specification, which leads to
so-called black box tests, it is necessary to take into consideration the details
of the implementation in the construction of test cases, a modus operandi that
leads to so-called white box tests. An example where we have created test cases
for a special branch of a function based only on the specification is the division
algorithm on page 53: To test step 5 the special test data on page 65 were specified,
which have the effect that the associated code is executed. On the other hand, the
necessity of special test data for division by smaller divisors becomes clear only
when one considers that this process is passed off to a special part of the function
div_l(). What is involved here is an implementation detail that cannot be derived
from the algorithm.

In practice, one usually ends up with a mixture of black box and white
box methods, which in [Dene] are aptly called gray box tests. However, it can
never be expected that one hundred percent coverage is to be achieved, as the
following considerations demonstrate: Let us assume that we are generating
prime numbers with the Miller–Rabin test with a large number of iterations (50,
say) and a corresponding low probability of error

(
1
4

)−50 ≈ 10−30 (cf. Section
10.5) and then testing the prime numbers that are found with a further, definitive,
primality test. Since the flow of control leads to one or the other branch of the
program, depending on the outcome of this second test, we have no practically
relevant chance to reach the branch that is followed exclusively after a negative
test outcome. However, the probability that the doubtful branch will be executed
when the program is actually used is just as irrelevant, so that possibly one can
more easily live with doing without this aspect of the test than to alter the code
semantically in order to create the test possibility artificially. In practice, there are
thus always situations to be expected that require the abandonment of the goal of
one hundred percent test coverage, however that is measured.

The testing of the arithmetic functions in the FLINT/C package, which
is carried out primarily from a mathematical viewpoint, is quite a challenge.
How can we establish whether addition, multiplication, division, or even
exponentiation of large numbers produces the correct results? Pocket calculators
can generally compute only on an order of magnitude equivalent to that of the
standard arithmetic functions of the C compiler, and so both of these are of
limited value in testing.

310

Strategies for Testing LINT

To be sure, one has the option of employing as a test vehicle another arith-
metic software package by creating the necessary interface and transformations
of the number formats and letting the functions compete against each other.
However, there are two strikes against such an approach: First, this is not sporting,
and second, one must ask oneself why one should have faith in someone else’s
implementation, about which one knows considerably less than about one’s own
product. We shall therefore seek other possibilities for testing and to this end
employ mathematical structures and laws that embody sufficient redundancy
to be able to recognize computational errors in the software. Discovered errors
can then be attacked with the aid of additional test output and modern symbolic
debuggers.

We shall therefore follow selectively a black box approach, and in the rest of
this chapter we shall hope to work out a serviceable test plan for the run-time
tests that follows essentially the actual course of testing that was used on the
FLINT/C functions. In this process we had the goal of achieving high C1 coverage,
although no measurements in this regard were employed.

The list of properties of the FLINT/C functions to be tested is not especially
long, but it is not without substance. In particular, we must convince ourselves of
the following:

• All calculational results are generated correctly over the entire range of
definition of all functions.

• In particular, all input values for which special code sequences are supplied
within a function are correctly processed.

• Overflow and underflow are correctly handled. That is, all arithmetic
operations are carried out modulo Nmax + 1.

• Leading zeros are accepted without influencing the result.

• Function calls in accumulator mode with identical memory objects as
arguments, such as, add_l(n_l, n_l, n_l), return correct results.

• All divisions by zero are recognized and generate the appropriate error
message.

There are many individual test functions necessary for the processing of
this list, functions that call the FLINT/C operations to be tested and check
their results. The test functions are collected in test modules and themselves
individually tested before they are set loose on the FLINT/C functions. For testing
the test functions the same criteria and the same means for static analysis are
employed as for the FLINT/C functions, and furthermore, the test functions
should be run through at least on a spot-check basis with the help of a symbolic
debugger in single-step mode in order to check whether they test the right thing.
In order to determine whether the test functions truly respond properly to errors,

311

Chapter 13

it is helpful deliberately to build errors into the arithmetic functions that lead to
false results (and then after the test phase to remove these errors without a trace!).

Since we cannot test every value in the range of definition for CLINT objects,
we need, in addition to fixed preset test values, randomly generated input values
that are uniformly distributed across the range of definition [0, Nmax]. To this end
we use our function rand_l(r_l, bitlen), where we select the number of binary
digits to be set in the variable bitlen with the help of the function usrand64_l()

modulo (MAX2 + 1) randomly from the interval [0, MAX2]. The first pass at
testing must be the functions for generating pseudorandom numbers, which were
discussed in Chapter 12, where among other things we employ the chi-squared
test described there for testing the statistical quality of the functions usrand64_l()
and usrandBBS_l(). Additionally, we must convince ourselves that the functions
rand_l() and randBBS_l() properly generate the CLINT number format and return
numbers of precisely the predetermined length. This test is also required for all
other functions that output CLINT objects. For recognizing erroneous formats of
CLINT arguments we have the function vcheck_l(), which is therefore to be placed
at the beginning of the sequence of tests.

A further condition for most of the tests is the possibility of determining
the equality or inequality and size comparison of integers represented by CLINT

objects. We must also test the functions ld_l(), equ_l(), mequ_l(), and cmp_l().
This can be accomplished with the use of both predefined and random numbers,
where all cases—equality as well as inequality with the corresponding size
relations—are to be tested.

The input of predefined values proceeds optimally, depending on the
purpose, by means of the function str2clint_l() or as an unsigned type with the
conversion function u2clint_l() or ul2clint_l(). The function xclint2str_l(),
complementary to str2clint_l(), is used for the generation of test output. These
functions are therefore the next to appear on our list of functions to be tested.
For the testing of string functions we exploit their complementarity and check
whether executing one function after the other produces the original character
string or, for the other order, the output value in CLINT format. We shall return to
this principle repeatedly below.

All that now remains to test are the dynamic registers and their control
mechanisms from Chapter 9, which in general we would like to include in the
test functions. The use of registers as dynamically allocated memory supports us
in our efforts to test the FLINT/C functions, where we additionally implement
a debug library for the malloc() functions for allocation of memory. A typical
function in such a package, of which there are to be found both public-domain
and commercial products (cf. [Spul], Chapter 11), is checking for maintenance of
the bounds of dynamically allocated memory. With access to the CLINT registers
we can keep close tabs on our FLINT/C functions: Every penetration of the border
into foreign memory territory will be reported.

312

Strategies for Testing LINT

A typical mechanism that enables this redirects calls to malloc() to a
special test function that receives the memory requests, in turn calls malloc(),
and thereby allocates a somewhat greater amount of memory than is actually
requested. The block of memory is registered in an internal data structure, and
a frame of a few bytes is constructed “right” and “left” of the memory originally
requested, which is filled with a redundant pattern such as alternating binary
zeros and ones. Then a pointer is returned to the free memory within the frame. A
call to free() now in turn goes first to the debug shell of this function. Before the
allocated block is released a check is made as to whether the frame has been left
unharmed or whether the pattern has been destroyed by overwriting, in which
case an appropriate message is generated and the memory is stricken from the
registration list. Only then is the function free() actually called. At the end of the
application one can check using the internal registration list whether, or which,
areas of memory were not released. The orchestrating of the code for rerouting
the calls to malloc() and free() to their debug shells is accomplished with macros
that are usually defined in #include files.

For the test of the FLINT/C functions the ResTrack package from [Murp] is
employed. This enables the detection, in certain cases, of subtle instances of
exceeding the vector bounds of CLINT variables, which otherwise might have
remained undetected during testing.

We have now completed the basic preparations and consider next the
functions for basic calculation (cf. Chapter 4)

add_l(), sub_l(), mul_l(), sqr_l(), div_l(), mod_l(), inc_l(),
dec_l(), shl_l(), shr_l(), shift_l(),

including the kernel functions

add(), sub(), mult(), umul(), sqr(),

the mixed arithmetic functions with a USHORT argument

uadd_l(), usub_l(), umul_l(), udiv_l(), umod_l(), mod2_l(),

and finally the functions for modular arithmetic (cf. Chapters 5 and 6)

madd_l(), msub_l(), mmul_l(), msqr_l(),

and the exponentiation function

*mexp*_l().

The calculational rules that we shall employ in testing these functions arise
from the group laws of the integers, which have been introduced already in
Chapter 5 for the residue class rings Zn. The applicable rules for the natural
numbers are again collected here, where we find an opportunity for testing
wherever an equal sign stands between two expressions (see Table 13-1).

313

Chapter 13

Table 13-1. Group law for the integers to help in testing

Addition Multiplication

Identity a + 0 = a a · 1 = a

Commutative Law a + b = b + a a · b = b · a
Associative Law (a + b) + c = a + (b + c) (a · b) · c = a · (b · c)

Addition and multiplication can be tested one against the other by making
use of the definition

ka :=
k∑

j=1

a,

at least for small values of k. Further relations amenable to testing are the
distributive law and the first binomial formula:

Distributive law : a · (b + c) = a · b + a · c,
Binomial formula : (a + b)2 = a2 + 2ab + b2.

The cancellation laws for addition and multiplication provide the following
test possibilities for addition and subtraction, as well as for multiplication and
division:

a + b = c ⇒ c − a = b and c − b = a

and

a · b = c ⇒ c ÷ a = b and c ÷ b = a.

Division with remainder can be tested against multiplication and addition by
using the division function to compute, for a dividend a and divisor b, first the
quotient q and remainder r. Then multiplication and addition are brought into
play to test whether

a = b · q + r.

For testing modular exponentiation against multiplication for small k we fall
back on the definition:

ak :=

k∏
i=1

a.

From here we can move on to the exponentiation laws (cf. Chapter 1)

ars = (ar)s ,

ar+s = ar · as,

which are likewise a basis for testing exponentiation in relation to multiplication
and addition.

314

Strategies for Testing LINT

In addition to these and other tests based on the rules of arithmetic
calculation we make use of special test routines that check the remaining points
of our above list, in particular the behavior of the functions on the boundaries of
the intervals of definition of CLINT objects or in other special situations, which for
certain functions are particularly critical. Some of these tests are contained in the
FLINT/C test suite, which is included in the downloadable source code. The test
suite contains the modules listed in Table 13-2.

Table 13-2. FLINT/C test functions

Module Name Content of Test
testrand.c linear congruences, pseudorandom number

generator
testbbs.c Blum–Blum–Shub pseudorandom number

generator
testreg.c register management
testbas.c basic functions cpy_l(), ld_l(),

equ_l(), mequ_l(), cmp_l(), u2clint_l(),
ul2clint_l(), str2clint_l(), xclint2str_l()

testadd.c addition, including inc_l()
testsub.c subtraction, including dec_l()
testmul.c multiplication
testkar.c Karatsuba multiplication
testsqr.c squaring
testdiv.c division with remainder
testmadd.c modular addition
testmsub.c modular subtraction
testmmul.c modular multiplication
testmsqr.c modular squaring
testmexp.c modular exponentiation
testset.c bit access functions
testshft.c shift operations
testbool.c Boolean operations
testiroo.c integer square root
testgcd.c greatest common divisor and

least common multiple

We shall return to the tests of our number-theoretic functions at the end of
Part 2, where they are presented as exercises for the especially interested reader
(see Chapter 18).

315

Part II

Arithmetic in C++

with the Class LINT

The use of anatomic finds as ornamentation in the construction of objects
is widespread in different geographical areas and in different ethno-
anthropological groups. The human find, usually the bone, becomes a
functional part in the construction of objects. The bone seems to lose, at least
in part, its actual anatomic identity, in that it is worked and manipulated
so that it becomes an integral part of an object thus acquiring a symbolic
meaning which goes beyond its bodily essence.

— Sign at the National Museum of Anthropology and Ethnology,
Florence, Italy

CHAPTER 14

Let C++ Simplify

Your Life

Our life is frittered away by detail . . . Simplify, simplify.

—H. D. Thoreau, Walden

THE PROGRAMMING LANGUAGE C++, UNDER development since 1979 by Bjarne
Stroustrup1 at Bell Laboratories, is an extension of C that promises to dominate
the field of software development. C++ supports the principles of object-oriented
programming, which is based on the tenet that programs, or, better, processes,
comprise a set of objects that interact exclusively through their interfaces. That
is, they exchange information or accept certain external commands and process
them as a task. In this the methods by which an object carries out a task are
an internal affair “decided upon” autonomously by the object alone. The data
structures and functions that represent the internal state of an object and effect
transitions between states are the private affair of the object and should not
be detectable from the outside. This principle, known as information hiding,
assists software developers in concentrating on the tasks that an object has
to fulfill within the framework of a program without having to worry about
implementation details. (Another way of saying this is that the focus is on “what,”
not on “how.”)

The structural designs for what goes on in the “internal affairs” of objects,
containing complete information on the organization of data structures and
functions, are the classes. With these the external interface of an object is
established, and this is decisive for the suite of behaviors that an object can
perform. Since all objects of a class reflect the same structural design, they also

1 The following, from Bjarne Stroustrup’s Internet home page (http://www.research.
att.com/ ˜ bs/), may help to answer the question, How do you pronounce “Bjarne Strous-
trup”?: “It can be difficult for non-Scandinavians. The best suggestion I have heard yet was
‘start by saying it a few times in Norwegian, then stuff a potato down your throat and do it
again’ :-). Both of my names are pronounced with two syllables: Bjar-ne Strou-strup. Neither
the B nor the J in my first name are stressed and the NE is rather weak so maybe Be-ar-neh
or By-ar-ne would give an idea. The first U in my second name really should have been a V
making the first syllable end far down the throat: Strov-strup. The second U is a bit like the OO
in OOP, but still short; maybe Strov-stroop will give an idea.”

319

Chapter 14

possess the same interface. But once they have been created (computer scientists
say that classes are instantiated by objects), they lead independent lives. Their
internal states are changed independently of one another and they execute
different tasks corresponding to their respective roles in the program.

Object-oriented programming propagates the use of classes as the building
blocks of larger structures, which can again be classes or groups of classes,
into complete programs, just as houses or automobiles are constructed of
prefabricated modules. In the ideal case programs can be cobbled together
from libraries of preexisting classes without the necessity for the creation of a
significant amount of new code, at least not on the order of magnitude as is
typical in conventional program development. As a result it is easier to orient
program development to reflect the actual situation, to model directly the actual
processes, and thereby to achieve successive refinement until the result is a
collection of objects of particular classes and their interrelations, in which the
underlying real-world model can still be recognized.

Such a way of proceeding is well known to us from many aspects of our lives,
for we do not generally operate directly with raw materials if we wish to build
something, but we use, rather, completed modules about whose construction
or inner workings we have no detailed knowledge, nor the necessity of such
knowledge. By standing on the shoulders of those who built before us, it becomes
possible for us to create more and more complex structures with a manageable
amount of effort. In the creation of software this natural state of affairs has
not previously found its true expression, as software developers turn again and
again to the raw materials themselves: Programs are constructed out of atomic
elements of a programming language (this constructive process is commonly
called coding). The use of run-time libraries such as the C standard library does
not improve this situation to any great degree, since the functions contained in
such libraries are too primitive to permit a direct connection to a more complex
application.

Every programmer knows that data structures and functions that provide
acceptable solutions for particular problems only seldom can be used for similar
but different tasks without modification. The result is a reduction in the advantage
of being able to rely on fully tested and trusted components, since any alteration
contains the risk of new errors—as much in the design as in programming. (One
is reminded of the notification in manuals that accompany various consumer
products: “Any alteration by other than an authorized service provider voids the
warranty.”)

In order that the reusability of software in the form of prefabricated
building blocks not founder on the rocks of insufficient flexibility, the concept
of inheritance, among a number of other concepts, has been developed. This
makes it possible to modify classes to meet new requirements without actually
altering them. Instead, the necessary changes are packaged in an extension layer.

320

Let C++ Simplify Your Life

The objects that thus arise take on, in addition to their new properties, all the
properties of the old objects. One might say that they inherit these properties. The
principle of information hiding remains intact. The chances of error are greatly
reduced, and productivity is increased. It is like a dream come true.

As an object-oriented programming language C++ possesses the requisite
mechanisms for the support of these principles of abstraction.2 These, however,
represent only a potential, but not a guarantee, of being used in the sense of
object-oriented programming. To the contrary, the switch from conventional
to object-oriented software development requires a considerable intellectual
retooling. This is particularly apparent in two respects: On the one hand, the
developer who has hitherto achieved good results is forced to devote considerably
more attention to the modeling and design phases than what was usually required
in traditional methods of software development. On the other hand, in the
development and testing of new classes the greatest care is required to obtain
error-free building blocks, since they will go on to be used in a great variety of
future applications. Information hiding can also mean bug hiding, since it defeats
the purpose of the idea of object-oriented programming if the user of a class must
become familiar with its inner workings in order to find a bug. The result is that
errors contained in a class implementation are inherited together with the class,
so that all subclasses will be infected with the same “hereditary disease.” On the
other hand, the analysis of errors that occur with the objects of a class can be
restricted to the implementation of the class, which can greatly reduce the scope
of the search for the error.

All in all, we must say that while there are strong trends in the direction
of using C++ and Java as programming languages, nonetheless, the principles
of object-oriented programming beyond an understanding of the essentially
complex elements of these languages are multifaceted, and it will be a long time
before they are used as a standard method of software development. However,
in the meantime, there are powerful and robust tools available that strongly
support the development process, from modeling up through the generation of
executable code.

Thus the title of this chapter refers not to object-oriented programming
and the use of C++ in general, but to the mechanisms offered therein and
their significance for our project. These enable the formulation of arithmetic
operations with large numbers in a way that is so natural that it is as if they
belonged to the standard operations of the programming language. In the
following sections, therefore, we will not be presenting an introduction to C++,
but a discussion of the development of classes that represent large natural
numbers and that export functions to work with these numbers as abstract

2 C++ is not the only object-oriented language. Others are Simula (the precursor of all object-
oriented languages), Smalltalk, Eiffel, Oberon, and Java.

321

Chapter 14

methods.3 The (few) details of the data structures will be hidden both from the
user and the client of the class, as will the implementation of the numerous
arithmetic and number-theoretic functions. However, before we can use the
classes they must be developed, and in this regard we shall have to get our hands
dirty with the internal details. Nonetheless, it will surprise no one that we are not
going to begin from scratch, but rather make use of the implementation work that
we accomplished in the first part of the book and formulate the arithmetic class
as an abstract layer, or shell, around our C library.

We shall give the name LINT (Large INTegers) to our class. It will contain
data structures and functions as components with the attribute public, which
determine the possibilities for external access. Access to the structures of the
class declared as private, on the other hand, can be accomplished only with
functions that have been declared either a member or friend of the class. Member
functions of the class LINT can access the functions and data elements of
LINT objects by name and are required for servicing the external interface, for
processing instructions to the class, and serving as fundamental routines and
auxiliary functions for managing and processing internal data structures. Member
functions of the class LINT always possess a LINT object as implied left argument,
which does not appear in its parameter list. Friend functions of the class do not
belong to the class, but they can nonetheless access the internal structure of
the class. Unlike the member functions, the friend functions do not possess an
implicit argument.

Objects are generated as instances of a class by means of constructors,
which complete the allocation of memory, the initialization of data, and other
management tasks before an object is ready for action. We shall require several
such constructors in order to generate our LINT objects from various contexts.
Complementary to the constructors we have destructors, which serve the purpose
of removing objects that are no longer needed and releasing the resources that
have been bound to them.

The elements of C++ that we shall particularly use for our class development
are the following:

• the overloading of operators and functions;

• the improved possibilities, vis à vis C, for input and output.

The following sections are devoted to the application of these two principles
in the framework of our LINT class. To give the reader an idea of the form that the
LINT class will assume, we show a small segment of its declaration:

3 The reader is referred to several works in the standard literature for an introduction to C++ and
discussions about it, namely [ElSt], [Str1], [Str2], [Deit], [Lipp], just to name a few of the more
important titles. In particular, [ElSt] was taken as the basis for the standardization by the ISO.

322

Let C++ Simplify Your Life

class LINT

{

public:

LINT (void); // constructor

˜LINT (); // destructor

const LINT& operator= (const LINT&);

const LINT& operator+= (const LINT&);

const LINT& operator-= (const LINT&);

const LINT& operator*= (const LINT&);

const LINT& operator/= (const LINT&);

const LINT& operator LINT gcd (const LINT&);

LINT lcm (const LINT&);

int jacobi (const LINT&);

friend const LINT operator + (const LINT&, const LINT&);

friend const LINT operator - (const LINT&, const LINT&);

friend const LINT operator * (const LINT&, const LINT&);

friend const LINT operator / (const LINT&, const LINT&);

friend const LINT operator

friend LINT mexp (const LINT&, const LINT&, const LINT&);

friend LINT mexp (const USHORT, const LINT&, const LINT&);

friend LINT mexp (const LINT&, USHORT, const LINT&);

friend LINT gcd (const LINT&, const LINT&);

friend LINT lcm (const LINT&, const LINT&);

friend int jacobi (const LINT&, const LINT&);

private:

clint *n_l;

int status;

};

One may recognize the typical subdivision into two blocks: First the public
block is declared with a constructor, a destructor, arithmetic operators, and
member functions as well as the friend functions of the class. A short block of
private data elements is joined to the public interface, identified by the label
private. It is an aid to clarity and is considered good style to place the public
interface before the private block and to use the labels “public” and “private” only
once each within a class declaration.

The list of operators appearing in the section of the class declaration shown
here is by no means complete. It is missing some arithmetic functions that cannot
be represented as operators as well as most of the number-theoretic functions,
which we know already as C functions. Furthermore, the announced constructors
are as little represented as the functions for input and output of LINT objects.

In the following parameter lists of the operators and functions the address
operator & appears, which has the effect that objects of the class LINT are passed

323

Chapter 14

not by value, but by reference, that is, as pointers to the object. The same holds
for the return value of LINT objects. This use of & is unknown in C. On close
inspection, however, one recognizes that only certain of the member functions
return a pointer to a LINT object, while most of the others return their results by
value. The basic rule that determines which of these two methods is followed
is this: Functions that alter one or more of the arguments passed to them can
return this result as a reference, while other functions, those that do not alter
their arguments, return their results by value. As we proceed we shall see which
method goes with which of the LINT functions.

Classes in C++ are an extension of the complex data type struct in C, and
access to an element x of a class is accomplished syntactically in the same way as
access to an element of a structure, that is, by A.x, where A denotes an object and
x an element of the class.

One should note that in the parameter list of a member function an argument
is less completely named than in a like-named friend function, as the following
example illustrates:

friend LINT gcd (const LINT&, const LINT&);

versus

LINT LINT::gcd (const LINT&);

Since the function gcd() as a member function of the class LINT belongs to an
object A of type LINT, a call to gcd() must be in the form A.gcd(b) without A
appearing in the parameter list of gcd(). In contrast, the friend function gcd()

belongs to no object and thus possesses no implicit argument.
We shall fill in the above sketch of our LINT class in the following chapters

and work out many of the details, so that eventually we shall have a complete
implementation of the LINT class. The reader who is also interested in a general
discussion of C++ is referred to the standard references [Deit], [ElSt], [Lipp], and
especially [Mey1] and [Mey2].

14.1 Not a Public Affair: The Representation of
Numbers in LINT

And if my ways are not as theirs
Let them mind their own affairs.

—A. E. Housman, Last Poems IX

324

Let C++ Simplify Your Life

The representation of large numbers that has been chosen for our class is an
extension of the representation presented in Part I for the C language. We take
from there the arrangement of the digits of a natural number as a vector of
clint values, where more-significant digits occupy the places of higher index
(cf. Chapter 2). The memory required for this is automatically allocated when an
object is generated. This is carried out by the constructors, which are invoked
either explicitly by the program or implicitly by the compiler using the allocation
function new(). In the class declaration we therefore require a variable of type
clint *n_l, to which is associated within one of the constructor functions a
pointer to the memory allocated there.

The variable status is used to keep track of various states that can be taken
by LINT objects. For example, with status, an overflow or underflow (cf. page 20)
can be reported if such an event occurs as a result of operations on LINT objects
that would result in the status variable being assigned the value E_LINT_OFL or
E_LINT_UFL. Furthermore, we would like to determine whether a LINT object has
been initialized, that is, whether any numerical value at all has been assigned to
it, before it is used in a numerical expression on the right side of the equal sign.
If a LINT object does not possess a numerical value, then status contains the
value E_LINT_INV, which all functions must check before an operation is executed.
We shall organize our LINT functions and operators in such a way that an error
message results if the value of a LINT object, and consequently the value of an
expression, is undefined.

The variable status is, strictly speaking, not an element of our numerical
representation. It serves rather for reporting and handling error states. The types
and mechanisms of error handling are discussed in detail in Chapter 16.

The class LINT defines the following two elements for representing numbers
and storing the states of objects:

clint* n_l;

int status;

Since we are dealing here with private elements, access to these class elements is
possible only by means of member or friend functions or operators. In particular,
there is no possibility of direct access to the individual digits of a number
represented by a LINT object.

14.2 Constructors

Constructors are functions for the generation of objects of a particular class. For
the LINT class this can occur with or without initialization, where in the latter case
an object is created and the required memory for the storage of the number is
allocated, but no value is assigned to the object. The constructor required for this

325

Chapter 14

takes no argument and thus takes on the role of the default constructor of the
class LINT (cf. [Str1], Section 10.4.2). The following default constructor LINT(void)
in flintpp.cpp creates a LINT object without assigning it a value:

LINT::LINT (void)

{

n_l = new CLINT;

if (NULL == n_l)

{

panic (E_LINT_NHP, "constructor 1", 0, __LINE__);

}

status = E_LINT_INV;

}

If a newly generated object is also to be initialized with a numerical value,
then a suitable constructor must be invoked to generate a LINT object and
then assign to it a predefined argument as the value. Depending on the type
of argument various overloaded constructors must be provided. The class LINT

contains the constructor functions as shown in Table 14-1.
We would now like to consider a further example for the LINT construction of

the function LINT (const char*), which generates a LINT object and associates
to it a value taken from a character string with ASCII digits. A prefix can be given
to the digits contained in the string that contains information about the base of
the numerical representation. If a character string is prefixed with 0x or 0X, then
hexadecimal digits from the domains {0,1,. . . ,9} and {a,b,. . . ,f}, respectively
{A,B,. . . ,F}, are expected. If the prefix is 0b or 0B, then binary digits from the set
{ 0, 1 } are expected. If there is no prefix at all, then the digits are interpreted as
decimal digits. The constructor employs the function str2clint_l() to transform
the character string into an object of type CLINT, from which then in the second
step a LINT object is created:

LINT:: LINT (const char* str)

n_l = new CLINT;

if (NULL == n_l) // error with new?

{

panic (E_LINT _NHP, "constructor 4", 0, __LINE__);

}

if (strncmp (str, "0x", 2) == 0 || strncmp (str, "0X", 2) == 0)

{

int error = str2clint_l (n_l, (char*)str+2, 16);

}

else

326

Let C++ Simplify Your Life

{

if (strncmp (str, "0b", 2) == 0 || strncmp (str, "0B", 2) == 0)

{

error = str2clint_l (n_l, (char*)str+2, 2);

}

else

{

error = str2clint_l (n_l, (char*)str, 10);

}

}

switch (error) {

case E_CLINT_OK:

status = E_LINT_OK;

break;

case E_CLINT_NPT:

status = E_LINT_INV;

panic (E_LINT_NPT, "constructor 4", 1, __LINE__);

break;

case E_CLINT_OFL:

status = E_LINT_OFL;

panic (E_LINT_OFL, "constructor 4", 1, __LINE__);

break;

default:

status = E_LINT_INV;

panic (E_LINT_ERR, "constructor 4", error, __LINE__);

}

}

Constructors make possible the initialization of LINT objects among
themselves as well as LINT objects with standard types, constants, and character
strings, as the following examples demonstrate:

LINT a;

LINT one (1);

int i = 2147483647;

LINT b (i);

LINT c (one);

LINT d ("0x123456789abcdef0");

The constructor functions are called explicitly to generate objects of type LINT

from the specified arguments. The LINT constructor, which, for example, changes
unsigned long values into LINT objects, is embodied in the following function:

327

Chapter 14

LINT::LINT (USHORT ul)

{

n_l = new CLINT;

if (NULL == n_l)

{

panic (E_LINT_NHP, "constructor 11", 0, __LINE__);

}

ul2clint_l (n_l, ul);

status = E_LINT_OK;

}

Table 14-1. LINT constructors

Constructor Semantics: Generation of a LINT Object

LINT (void); without initialization (default constructor)

LINT (const char* const,
char);

from a character string, with the basis of the
numerical representation given in the second
argument

LINT (const UCHAR*, int) from a byte vector with the length given in the
second argument

LINT (const char*); from a character string, optionally with
prefix 0X for hex numbers or 0B for binary digits

LINT (const LINT&); from another LINT object (copy constructor)

LINT (int); from a value of type char, short, or integer

LINT (long int); from a value of type long integer

LINT (UCHAR); from a value of type UCHAR

LINT (USHORT); from a value of type USHORT

LINT (unsigned int); from a value of type unsigned integer

LINT (ULONG); from a value of type ULONG

LINT (const CLINT); from a CLINT object

Now we must provide a destructor function to go with the constructors of
the class LINT, which enable the release of objects and, in particular, the memory
bound to them. To be sure, the compiler would gladly make a default destructor
available to us, but this would release only the memory that the elements of a
LINT object possess. The additional memory allocated by the constructors would
not be released, and memory leakage would result. The following short destructor
fulfills the important tasks of releasing memory occupied by LINT objects:

328

Let C++ Simplify Your Life

˜LINT()

{

delete [] n_l;

}

14.3 Overloaded Operators

The overloading of operators represents a powerful mechanism that makes it
possible to define functions with the same name but with different parameter
lists, functions that can then carry out differing operations. The compiler uses the
specified parameter list to determine which function is actually meant. To make
this possible C++ employs strong type-checking, which tolerates no ambiguity or
inconsistency.

The overloading of operator functions makes it possible to use the “normal”
way of expressing a sum c = a + b with LINT objects a, b, and c instead of having
to invoke a function like, for example, add_l(a_l, b_l, c_l). This enables the
seamless integration of our class into the programming language and significantly
improves the readability of programs. For this example it is necessary to overload
both the operator “+” and the assignment “=”.

There are only a few operators in C++ that cannot be overloaded. Even the
operator “[]”, which is used for access to vectors, can be overloaded, for example
by a function that simultaneously checks whether the access to a vector oversteps
the vector’s bounds. However, please note that the overloading of operators opens
the door to all possible mischief. To be sure, the effect of the operators of C++ on
the standard data types cannot be altered; nor can the predefined precedence
order of the operators (cf. [Str1], Section 6.2) be changed or new operators
“created.” But for individual classes it is fully possible to define operator functions
that have nothing in common with what one traditionally has associated with the
operator as it is normally employed. In the interest of maintainability of programs
one is well advised to stick close to the meaning of the standard operators in C++
when overloading operators if one is to avoid unnecessary confusion.

One should note in the above outline of the LINT class that certain operators
have been implemented as friend functions and others as member functions. The
reason for this is that we would like, for example, to use “+” or “*” as two-position
operators that can not only process two equivalent LINT objects but accept
alternatively one LINT object and one of the built-in C++ integer types, and
moreover, accept the arguments in either order, since addition is commutative. To
this end we require the above-described constructors, which create LINT objects
of out integer types. Mixed expressions such as in

LINT a, b, c;

int number;

329

Chapter 14

// Initialize a, b, and number and calculate something or other

// . . .

c = number * (a + b / 2)

are thus possible. The compiler takes care of calling the appropriate constructor
functions automatically and sees to it that the transformation of the integer type
number and the constant 2 into LINT objects takes place at run time, before the
operators + and * are invoked. We thereby obtain the greatest possible flexibility in
the application of the operators, with the restriction that expressions containing
objects of type LINT are themselves of type LINT and can thereafter be assigned
only to objects of type LINT.

Before we get ourselves involved in the details of the individual operators,
we would like to give an overview of the operators defined by the class LINT, for
which the reader is referred to Tables 14-2 through 14-5,

Table 14-2. LINT arithmetic operators

+ addition

++ increment (prefix and postfix operators)

- subtraction

-- decrement (prefix and postfix operators)

* multiplication

/ division (quotient)

% remainder

Table 14-3. LINT bitwise operators

& bitwise AND

| bitwise OR

ˆ bitwise exclusive OR (XOR)

<< shift left

>> shift right

We now would like to deal with the implementation of the operator functions
“*”, “=”, “*=”, and “==”, which may serve as examples of the implementation
of the LINT operators. First, with the help of the operator “*=” we see how
multiplication of LINT objects is carried out by the C function mul_l(). The
operator is implemented as a friend function, to which both factors associated

330

Let C++ Simplify Your Life

Table 14-4. LINT logical operators

== equality

!= inequality

<, <= less than, less than or equal to

>, >= greater than, greater than or equal to

Table 14-5. LINT assignment operators

= simple assignment

+= assignment after addition

-= assignment after subtraction

*= assignment after multiplication

/= assignment after division

%= assignment after remainder

&= assignment after bitwise AND

|= assignment after bitwise OR

=̂ assignment after bitwise XOR

<<= assignment after left shift

>>= assignment after right shift

with the operation are passed as references. Since the operator functions do not
change their arguments, the references are declared as const:

const LINT operator* (const LINT& lm, const LINT& ln)

{

LINT prd;

int error;

The first step is to query the operator function as to whether the arguments lm

and ln passed by reference have been initialized. If this is not the case for both ar-
guments, then error handling goes into effect, and the member function panic(),
declared as static, is called (cf. Chapter 15).

if (lm.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "*", 1, __LINE__);

if (ln.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "*", 2, __LINE__);

331

Chapter 14

The C function mul_l() is called, to which are passed as arguments the vectors
lm.n_l, ln.n_l as factors, as well as prd.n_l for storing the product.

error = mul_l (lm.n_l, ln.n_l, prd.n_l);

The evaluation of the error code stored in error distinguishes three cases: If error
== 0, then all is right with the world, and the object prd can be marked as ini-
tialized. This takes place by setting the variable prd.status to a value unequal to
E_LINT_INV, which in normal cases (error == 0) is E_LINT_OK. If an overflow oc-
curred with mul_l(), then error contains the value E_CLINT_OFL. Since the vector
prd.n_l contains in this case a valid CLINT integer, the status variable prd.status is
simply set to E_LINT_OFL, though without a call to error handling. If error has nei-
ther of these two values after the call to mul_l(), then something has gone awry in
these functions without our being able to identify more precisely what error has
occurred. Therefore, the function panic() is called for further error handling.

switch (error)

{

case 0:

prd.status = E_LINT_OK;

break;

case E_CLINT_OFL:

prd.status = E_LINT_OFL;

break;

default:

lint::panic (E_LINT_ERR, "*", error, __LINE__);

}

If the error cannot be repaired by panic(), there would be no point in returning to
this location. The mechanism for error recognition leads here to a defined termi-
nation, which in principle is better than continuing the program in an undefined
state. As a final step we have the elementwise return of the product prd.

return prd;

}

Since the object prd exists only within the context of the function, the
compiler makes sure that a temporary object is created automatically, which
represents the value of prd outside the function. This temporary object is
generated with the aid of the copy constructor LINT(const LINT&) (cf. page 328)
and exists until the expression within which the operator was used has been

332

Let C++ Simplify Your Life

processed, that is, until the closing semicolon has been reached. Due to the
declaration of the function value as const such nonsensical constructs as (a * b)

= c; will not get past the compiler. The goal is to treat LINT objects in exactly the
same way as the built-in integer types.

We can extend the operator functions by the following detail: If the factors to
be multiplied are equal, then the multiplication can be replaced by squaring, so
that the advantage in efficiency associated with this changeover can be utilized
automatically (cf. Section 4.2.2). However, since in general it costs an elementwise
comparison of the arguments to determine whether they are equal, which is
too expensive for us, we shall be satisfied with a compromise: Squaring will be
brought into play only if both factors refer to one and the same object. Thus
we test whether ln and lm point to the same object and in this case execute the
squaring function instead of multiplication. Here is the relevant code:

if (&lm == &ln)

{

error = sqr_l (lm.n_l, prd.n_l);

}

else

{

error = mul_l (lm.n_l, ln.n_l, prd.n_l);

}

This falling back on the functions implemented in C from Part I is a model
for all of the remaining functions of the class LINT, which is formed like a shell
around the kernel of C functions and protects it from the user of the class.

Before we turn our attention to the more complex assignment operator “*=”,
it seems a good idea to take a closer look at the simple assignment operator “=”.
Already in Part I we established that assignment of objects requires particular
attention (cf. Chapter 8). Therefore, just as in the C implementation we had to
pay heed that in assigning one CLINT object to another the content and not the
address of the object was assigned, we must likewise for our LINT class define a
special version of the assignment operator “=” that does more than simply copy
elements of the class: For the same reasons as were introduced in Chapter 8 we
must therefore take care that it is not the address of the numerical vector n_l that
is copied, but the digits of the numerical representation pointed to by n_l.

Once one has understood the fundamental necessity for proceeding thus,
the implementation is no longer particularly complicated. The operator “=” is
implemented as a member function, which returns as a result of the assignment
a reference to the implicit left argument. Of course, we use internally the C
function cpy_l() to move digits from one object into the other. For executing
the assignment a = b the compiler calls the operator function “=” in the context
of a, where a takes over the role of an implicit argument that is not given in the

333

Chapter 14

parameter list of the operator function. Within the member function reference to
the elements of the implicit argument is made simply by naming them without
context. Furthermore, a reference to the implicit object can be made via the
special pointer this, as in the following implementation of the operator “=”:

const LINT& LINT::operator= (const LINT& ln)

{

if (ln.status == E_LINT_INV)

panic (E_LINT_VAL "=", 2 __LINE__);

First, a check is made as to whether the references to the right and left arguments
are identical, since in this case copying is unnecessary. Otherwise, the digits of
the numerical representation of ln are copied into those of the implied left argu-
ment *this, just as the value of status, and with *this the reference to the implicit
argument is returned.

if (&ln != this)

{

cpy_l (n_l, ln.n_l);

status = ln.status;

}

return *this;

}

One might ask whether the assignment operator must necessarily return any
value at all, since after LINT::operator =(const LINT&) is called the intended
assignment appears to have been accomplished. However, the answer to the
question is clear if one recalls that expressions of the form

f (a = b);

are allowed. According to the semantics of C++, such an expression would result
in a call to the function f with the result of the assignment a = b as argument.
Thus is it imperative that the assignment operator return the assigned value as
result, and for reasons of efficiency this is done by reference. A special case of
such an expression is

a = b = c;

where the assignment operator is called two times, one after the other. At the
second call the result of the first assignment b = c is assigned to a.

In contrast to the operator “*”, the operator “*=” changes the leftmost of the
two passed factors by overwriting it with the value of the product. The meaning
of the expression a *= b as an abbreviated form of a = a * b should, of course,
remain true for LINT objects. Therefore, the operator “*=” can, like the operator

334

Let C++ Simplify Your Life

“=”, be set up as a member function that for the reasons given above returns a
reference to the result:

const LINT& LINT::operator*= (const LINT& ln)

{

int error;

if (status == E_LINT_INV)

panic (E_LINT_VAL, "*=", 0, __LINE__);

if (ln.(status == E_LINT_INV)

panic (E_LINT_VAL, "*=", 1, __LINE__);

if (&ln == this)

error = sqr_l (n_l, n_l);

else

error = mul_l (n_l, ln.n_l, n_l);

switch (error)

{

case 0:

status = E_LINT_OK;

break;

case E_CLINT_OFL:

status = E_LINT_OFL;

break;

default:

panic (E_LINT_ERR, "*=", error, __LINE__);

}

return *this;

}

As our last example of a LINT operator we shall describe the function “==”,
which tests for the equality of two LINT objects: As result the value 1 is returned
in the case of equality, and otherwise 0. The operator == also illustrates the
implementation of other logical operators.

const int operator == (const LINT& lm, const LINT& ln)

{

if (lm.(status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "==", 1, __LINE__);

if (ln.(status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "==", 2, __LINE__);

if (&ln == &lm)

return 1;

else

return equ_l (lm.n_l, ln.n_l);

}

335

CHAPTER 15

The LINT Public

Interface: Members

and Friends

Please accept my resignation. I don’t want to belong to any club that will
accept me as a member.

—Groucho Marx

Every time I paint a portrait I lose a friend

—John Singer Sargent

IN ADDITION TO THE CONSTRUCTOR functions and operators already discussed,
there exist further LINT functions that make the C functions developed in Part I
available to LINT objects. In the following discussion we make a rough separation
of the functions into the categories “arithmetic” and “number-theoretic.” The
implementation of the functions will be discussed together with examples;
otherwise, we shall restrict ourselves to a table of information needed for their
proper use. We shall give more extensive treatment in the following sections to
the functions for the formatted output of LINT objects, for which we shall make
use of the properties of the stream classes contained in the C++ standard library.
Possible applications, in particular for formatted output of objects of user-defined
classes, are given rather short shrift in many C++ textbooks, and we are going
to take the opportunity to explicate the construction of the functions needed to
output our LINT objects.

15.1 Arithmetic

The following member functions implement the fundamental arithmetic
operations as well as modular operations for calculation in residue class rings
over the integers as accumulator operations: The object to which a called function
belongs contains the function result as implicit argument after its termination.
Accumulator functions are efficient, since they operate to the greatest extent

337

Chapter 15

without internal auxiliary objects and thus save unnecessary assignments and
calls to constructors.

For the cases in which a free assignment of the results of calculations is
unavoidable, or in which the automatic overwriting of the implicit argument
of the member functions with the result is not desired, the member functions
were extended by means of like-named analogous friend functions together with
additional friend functions. These are not discussed further here, but are recorded
in Appendix B. The treatment of possible error situations in LINT functions that
can arise from the use of CLINT functions will be discussed in full in Chapter 16.

Before we list the public member functions, we consider first as an example
of their implementation the functions

LINT& LINT::mexp (const LINT& e, const LINT& m);

and

LINT& LINT::mexp (USHORT e, const LINT& m);

for exponentiation, an operation for which C++, alas, offers no operator. The
functions mexp() were constructed in such a way that the functions used are,
according to the type of the operands, the C functions mexpk_l(), mexpkm_l(),
umexp_l(), and umexpm_l(), optimized for this purpose (with the corresponding
arithmetic friend functions we are likewise dealing with the exponentiation
functions wmexp_l() and wmexpm_l() with USHORT base).

Function: Modular exponentiation with automatic use of
Montgomery exponentiation if the modulus is odd.

Syntax: const LINT&

LINT::mexp (const LINT& e, const LINT& m);

Input: implicit argument (base)
e (exponent)
m (modulus)

Return: pointer to the remainder

Example: a.mexp (e, m);

const LINT& LINT::mexp (const LINT& e, const LINT& m)

{

int error;

if (status == E_LINT_INV) panic (E_LINT_VAL, "mexp", 0, __LINE__);

338

The LINT Public Interface: Members and Friends

if (status == E_LINT_INV) panic (E_LINT_VAL, "mexp", 1, __LINE__);

if (status == E_LINT_INV) panic (E_LINT_VAL, "mexp", 2, __LINE__);

err = mexp_l (n_l, e.n_l, n_l, m.n_l);

/* mexp_l() uses mexpk_l() or mexpkm_l() */

switch (error)

{

case 0:

status = E_LINT_OK;

break;

case E_CLINT_DBZ:

panic (E_LINT_DBZ, "mexp", 2, __LINE__);

break;

default:

panic (E_LINT_ERR, "mexp", error, __LINE__);

}

return *this;

}

Function: Modular exponentiation

Syntax: const LINT&

LINT::mexp (USHORT e, const LINT& m);

Example: a.mexp (e, m);

const LINT& LINT::mexp (USHORT e, const LINT& m)

{

int err;

if (status == E_LINT_INV) panic (E_LINT_VAL, "mexp", 0, __LINE__);

if (status == E_LINT_INV) panic (E_LINT_VAL, "mexp", 1, __LINE__);

err = umexp_l (n_l, e, n_l, m.n_l);

switch (err)

{

// Code as above with mexp (const LINT& e, const LINT& m)

}

return *this;

}

339

Chapter 15

We now present a collection of additional arithmetic and number-theoretic
member functions.

Function: addition

Syntax: const LINT&

LINT::add(const LINT& s);

Input: implicit argument (summand)
s (summand)

Return: pointer to the sum

Example: a.add (s); executes the operation a += s;

Function: subtraction

Syntax: const LINT&

LINT::sub (const LINT& s);

Input: implicit argument (minuend)
s (subtrahend)

Return: pointer to the difference

Example: a.sub (s); executes the operation a -= s;

Function: multiplication

Syntax: const LINT&

LINT::mul (const LINT& s);

Input: implicit argument (factor)
s (factor)

Return: pointer to the product

Example: a.mul (s); executes the operation a *= s;

340

The LINT Public Interface: Members and Friends

Function: squaring

Syntax: const LINT&

LINT::sqr (void);

Input: implicit argument (factor)

Return: pointer to the implicit argument, which
contains the square

Example: a.sqr (); executes the operation a *= a;

Function: division with remainder

Syntax: const LINT&

LINT::divr(const LINT& d, LINT& r);

Input: implicit argument (dividend)
d (divisor)

Output r (remainder of the division modulo d)

Return: pointer to the implicit argument, which contains
the quotient

Example: a.divr (d, r); executes the operation
a /= d; r = a % d;

Function: residue

Syntax: const LINT&

LINT::mod(const LINT& d);

Input: implicit argument (dividend)
d (divisor)

Return: pointer to the implicit argument, which contains
the remainder of the division modulo d

Example: a.mod (d); executes the operation a %= d;

341

Chapter 15

Function: residue modulo a power of 2

Syntax: const LINT&

LINT::mod2 (USHORT e)

Input: implicit argument (dividend)
e (exponent of the power of 2 divisor)

Return: pointer to the implicit argument, which contains the
remainder of the division modulo 2e

Example: a.mod 2(e); executes the operation a %= d;,
where d = 2e

Note: mod2 cannot be created by overloading the
previously presented function mod(), since mod() also
accepts a USHORT argument, which is changed
automatically into a LINT object by means of the
appropriate constructor. Since it cannot be
determined from the arguments which function
is meant, mod2() is given its own name.

Function: test for equality modulo m

Syntax: int

LINT::mequ (const LINT& b, const LINT& m);

Input: implicit argument a
second argument b
modulus m

Return: 1 if a ≡ b mod m, 0 otherwise

Example: if (a.mequ (b, m)) // . . .

342

The LINT Public Interface: Members and Friends

Function: modular addition

Syntax: const LINT&

LINT::madd(const LINT& s, const LINT& m);

Input: implicit argument (summand)
s (summand)
m (modulus)

Return: pointer to the implicit argument, which contains
the sum modulo m

Example: a.madd (s, m);

Function: modular subtraction

Syntax: const LINT& LINT::msub(const LINT& s,

const LINT& m);

Input: implicit argument (minuend)
s (subtrahend)
m (modulus)

Return: pointer to the implicit argument, which contains
the difference modulo m

Example: a.msub (s, m);

Function: modular multiplication

Syntax: const LINT& LINT::mmul (const LINT& s,

const LINT& m);

Input: implicit argument (factor)
s (factor)
m (modulus)

Return: pointer to the implicit argument, which contains
the product modulo m

Example: a.mmul (s, m);

343

Chapter 15

Function: modular squaring

Syntax: const LINT& LINT::msqr (const LINT& m);

Input: implicit argument (factor)
m (modulus)

Return: pointer to the implicit argument, which contains
the square modulo m

Example: a.msqr (m);

Function: modular exponentiation with exponent a power of 2

Syntax: const LINT& LINT::mexp2 (USHORT e,

const LINT& m);

Input: implicit argument (base)
e (power to which 2 is to be raised)
m (modulus)

Return: pointer to the implicit argument, which contains
the power modulo m

Example: a.mexp2 (e, m);

Function: modular exponentiation

(2k-ary method, Montgomery reduction)

Syntax: const LINT& LINT::mexpkm (const LINT& e,

const LINT& m);

Input: implicit argument (base)
e (exponent)
m (odd modulus)

Return: pointer to the implicit argument, which contains
the power modulo m

Example: a.mexpkm (e, m);

344

The LINT Public Interface: Members and Friends

Function: modular exponentiation
(25-ary method, Montgomery reduction)

Syntax: const LINT& LINT::mexp5m (const LINT& e,

const LINT& m);

Input: implicit argument (base)
e (exponent)
m (odd modulus)

Return: pointer to the implicit argument, which contains
the power modulo m

Example: a.mexp5m (e, m);

Function: left/right shift

Syntax: const LINT& LINT::shift (int noofbits);

Input: implicit argument (multiplicand/dividend)
(+/-) noofbits (number of bit positions to be
shifted)

Return: pointer to the implicit argument, which contains
the result of the shift operation

Example: a.shift (512); executes the operation a <<= 512;

Function: test for divisibility by 2 of a LINT object

Syntax: int

LINT::iseven (void);

Input: test candidate a as implicit argument

Return: 1 if a is odd, 0 otherwise

Example: if(a.iseven ()) // . . .

345

Chapter 15

Function: set a binary digit of a LINT object to 1

Syntax: const LINT&

LINT::setbit (unsigned int pos);

Input: implicit argument a
position pos of the bit to be set (counted from 0)

Return: pointer to a with the set bit at position pos

Example: a.setbit (512);

Function: test a binary digit of a LINT object

Syntax: int

LINT::testbit (unsigned int pos);

Input: implicit argument a
position pos of the bit to be tested (counted from 0)

Return: 1 if the bit at position pos is set, 0 otherwise

Example: if(a.testbit (512)) // . . .

Function: set a binary digit of a LINT object to 0

Syntax: const LINT&

LINT::clearbit (unsigned int pos);

Input: implicit argument a
position pos of the bit to be cleared (counted from 0)

Return: pointer to a with the cleared bit at position pos

Example: a.clearbit (512);

346

The LINT Public Interface: Members and Friends

Function: exchange values of two LINT objects

Syntax: const LINT&

LINT::fswap (LINT& b);

Input: implicit argument a
position b (the value to be swapped for a)

Return: pointer to the implicit argument with the value b

Example: a.fswap (b); exchanges the values a and b

15.2 Number Theory

In contrast to the arithmetic functions, the following number-theoretic member
functions do not overwrite the implicit first argument with the result. The reason
for this is that with more complex functions it has been shown in practice not
to be practical to overwrite, as is the case with simple arithmetic functions.
The results of the following functions are thus returned as values rather than as
pointers.

Function: calculate the greatest integer less than or equal to the
base-2 logarithm of a LINT object

Syntax: unsigned int

LINT::ld (void);

Input: implicit argument a

Return: integer part of the base-2 logarithm of a

Example: i = a.ld ();

347

Chapter 15

Function: calculate the greatest common divisor of two
LINT objects

Syntax: LINT

LINT::gcd (const LINT& b);

Input: implicit argument a
second argument b

Return: gcd (a, b) of the input values

Example: c = a.gcd (b);

Function: calculate the multiplicative inverse modulo n

Syntax: LINT

LINT::inv (const LINT& n);

Input: implicit argument a
modulus n

Return: multiplicative inverse of a modulo n (if the result
is equal to zero, then gcd(a, n) > 1 and the inverse does not exist)

Example: c = a.inv (n);

Function: calculate the greatest common divisor of a and b

as well as its representation g = ua+vb as a linear
combination of a and b

Syntax: LINT

LINT::xgcd(const LINT& b,

LINT& u, int& sign_u,

LINT& v, int& sign_v);

Input: implicit argument a, second argument b

Output: Factor u of the representation of gcd (a, b)

sign of u in sign_u

factor v of the representation of gcd (a, b)

sign of v in sign_v

Return: gcd(a, b) of the input values

Example: g = a.xgcd (b, u, sign_u, v, sign_v);

348

The LINT Public Interface: Members and Friends

Function: calculate the least common multiple (lcm) of two
LINT objects

Syntax: LINT

LINT::lcm (const LINT& b);

Input: implicit argument a
factor b

Return: lcm(a, b) of the input values

Example: c = a.lcm (b);

Function: solution of a system of linear congruences
x ≡ a mod m, x ≡ b mod n,

Syntax: LINT

LINT::chinrem(const LINT& m, const LINT& b,

const LINT& n);

Input: implicit argument a, modulus m,
argument b, modulus n

Return: solution x of the congruence system if all is ok
(Get_Warning_Status() == E_LINT_ERR indicates
that an overflow has occurred or that the
congruences have no common solution)

Example: x = a.chinrem (m, b, n);

The friend function chinrem(int noofeq, LINT** coeff) accepts a
vector coeff of pointers to LINT objects, which are passed as coefficients
a1, m1, a2, m2, a3, m3, . . . of a system of linear congruences with “arbitrarily”
many equations x ≡ ai mod mi, i = 1, . . . , noofeq (see Appendix B).

Function: calculation of the Jacobi symbol of two LINT objects

Syntax: int

LINT::jacobi (const LINT& b);

Input: implicit argument a, second argument b

Return: Jacobi symbol of the input values

Example: i = a.jacobi (b);

349

Chapter 15

Function: calculation of the integer part of the square root
of a LINT object

Syntax: LINT

LINT::introot (void);

Input: implicit argument a

Return: integer part of the square root of the input value

Example: c = a.root ();

Function: calculation of the integer part of the bth root
of a LINT object

Syntax: LINT

LINT::introot (const USHORT b);

Input: implicit argument a, root exponent b

Return: integer part of the bth root of the input value

Example: c = a.root (b);

Function: calculation of the square root modulo a prime p

of a LINT object

Syntax: LINT

LINT::root (const LINT& p);

Input: implicit argument a, prime modulus p > 2

Return: square root of a if a is a quadratic residue modulo p

otherwise 0 (Get_Warning_Status() == E_LINT_ERR

indicates that a is not a quadratic residue modulo p)

Example: c = a.root (p);

350

The LINT Public Interface: Members and Friends

Function: calculation of the square root of a LINT object
modulo a prime product p · q

Syntax: LINT

LINT::root (const LINT& p, const LINT& q);

Input: implicit argument a
prime modulus p > 2, prime modulus q > 2

Return: square root of a if a is a quadratic residue modulo pq

otherwise 0 (Get_Warning_Status() == E_LINT_ERR

indicates that a is not a quadratic residue modulo p*q)

Example: c = a.root (p, q);

Function: test of whether a LINT object is a square

Syntax: int

LINT::issqr(void);,

Input: test candidate a as implicit argument

Return: square root of a if a is a square
otherwise 0 if a == 0 or a not a square

Example: if(0 == (r = a.issqr ())) // . . .

Function: probabilistic primality test of a LINT object

Syntax: int

LINT::isprime (int nsp, int rnds);

Input: test candidate p as implicit argument
nsp (number of primes for the division test;
default is 302)
rnds (number of passes through test;
default is zero for automatic optimization
via the function prime_l())

Return: 1 if p is a “probable” prime
0 otherwise

Example: if(p.isprime ()) // . . .

351

Chapter 15

Function: calculate the two-part of a LINT object

Syntax: int

LINT::twofact (LINT& b);

Input: implicit argument a

Output: b (odd part of a)

Return: exponent of the even part of a

Example: e = a.twofact (b);

15.3 Stream I/O of LINT Objects

The classes contained in the C++ standard library such as istream and ostream

are abstractions of input and output devices derived from the base class ios. The
class iostream is in turn derived from istream and ostream, and it enables both
writing and reading of its objects.1 Input and output take place with the help of
the insert and extract operators “<<” and “>>” (cf. [Teal], Chapter 8). These arise
through overloading the shift operators, for example in the form

ostream& ostream::operator<< (int i);

istream& istream::operator>> (int& i);

in which they enable output, respectively input, of integer values through
expressions of the form

cout << i;

cin >> i;

As special objects of the classes ostream and istream, cout and cin represent the
same abstract files as the objects stdout and stdin of the standard C library.

The use of the stream operators “<<” and “>>” for input and output makes
it unnecessary to consider particular properties of the hardware in use. In and
of itself this is nothing new, for the C function printf() behaves the same way:
A printf() instruction should always, regardless of platform, lead to the same
result. However, above and beyond the altered syntax, which is oriented to the
metaphorical image of the insertion of objects into a stream, the advantages of
the C++ implementation of streams lie in the strict type checking, which in the
case of printf() is possible only to a limited degree, and in its extensibility. In
particular, we make use of the latter property by overloading the insert and extract

1 We use this name of the stream classes as a synonym for the terms now used in the C++
standard library, with which the class names known up to now are prefixed with basic_. The
justification for this comes from the standard library itself, where the class names known
hitherto are provided with corresponding typedefs (cf. [KSch], Chapter 12).

352

The LINT Public Interface: Members and Friends

operators so that they support input and output of LINT objects. To this end the
class LINT defines the following stream operators:

friend ostream& operator<< (ostream& s, const LINT& ln);

friend fstream& operator<< (fstream& s, const LINT& ln);

friend ofstream& operator<< (ofstream& s, const LINT& ln);

friend fstream& operator>> (fstream& s, LINT& ln);

friend ifstream& operator>> (ifstream& s, LINT& ln);

A simple formulation of the overloaded insert operators for the output of LINT
objects might look something like the following:

#include <iostream.h>

ostream& operator<< (ostream& s, const LINT& ln)

{

if (ln.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "ostream operator <<", 0, __LINE__);

s << xclint2str (ln.n_l, 16, 0) << endl;

s << ld (ln) << " bit" << endl;

return s;

}

The operator << thus defined outputs the digits of a LINTobject as hexadecimal
values and adds the binary length of the number in a separate line. In the next
section we shall consider the possibilities of improving the appearance of the
output of LINT objects with the aid of formatting functions, and we shall also use
manipulators to make the output customizable.

15.3.1 Formatted Output of LINT Objects
In this section we shall make use of the base class ios of the C++ standard library
and of its member functions to define our own LINT-specific formatting functions
for the purpose of controlling the output format of LINT objects. Furthermore, we
shall create manipulators that will make the customization of the output format
for LINT objects as simple as it is for the standard types defined in C++.

The crucial point in the creation of formatted output of LINT objects is the
possibility of setting formatting specifications that will be handled by the insert
operator. To this end we shall consider the mechanism provided for the class ios
(for details see [Teal], Chapter 6, and [Pla2], Chapter 6), whose member function
xalloc() in the objects of the classes derived from ios allocates a status variable
of type long and returns an index to this status variable also of type long. We store
this index in the long variable flagsindex. By means of this index the member
function ios::iword() can be used to access reading and writing to the allocated
status variable (cf. [Pla2], page 125).

353

Chapter 15

To ensure that this takes place before a LINT object is output, we define, in the
file flintpp.h, the class LintInit as follows:

class LintInit

{

public:

LintInit (void);

};

LintInit::LintInit (void)

{

// get index to long status variable in class ios

LINT::flagsindex = ios::xalloc();

// set the default status in cout and in cerr

cout.iword (LINT::flagsindex) =

cerr.iword (LINT::flagsindex) =

LINT::lintshowlength|LINT::linthex|LINT::lintshowbase;

}

The class LintInit has as its only element the constructor
LintInit::LintInit(). Furthermore, in the class LINT we define a mem-
ber datum setup of type LintInit, which is initialized via the constructor
LintInit::LintInit(). The call to xalloc() takes place within this initialization,
and the status variable thereby allocated is given the established standard output
format for LINT objects. In the following we shall show a section of the LINT class
declaration, which contains the declaration of LintInit() as a friend of LINT, the
declaration of the variables flagsindex and setup, and various status values as
enum types:

class LINT

{

public:

// ...

enum {

lintdec = 0x10,

lintoct = 0x20,

linthex = 0x40,

lintshowbase = 0x80,

lintuppercase = 0x100,

lintbin = 0x200,

lintshowlength = 0x400

};

// ...

friend LintInit::LintInit (void);

354

The LINT Public Interface: Members and Friends

// ...

private:

// ...

static long flagsindex;

static LintInit setup;

// ...

};

Setting the variable setup as static has the effect that this variable exists only
once for all LINT objects and thus the associated constructor LintInit() is called
only once.

We would like now to pause for a moment and consider what all this effort
nets us. Setting the output format could just as well be managed via a status
variable, which as a member of LINT would be much simpler to deal with. The
decisive advantage of the method that we have chosen is that the output format
can be set for each output stream separately and independently of the others (cf.
[Pla2], page 125), which could not be accomplished with an internal LINT status
variable. This is done through the power of the class ios, whose mechanisms we
employ for such purposes.

Now that the preliminaries have been taken care of, we can define the status
functions as member functions of LINT. These are displayed in Table 15-1.

We shall consider as an example of the implementation of the status functions
the function LINT::setf(), which returns the current value of the status variable
as a long with reference to an output stream:

long LINT::setf (ostream& s, long flag)

{

long t = s.iword (flagsindex);

// the flags for the basis of the numerical representation

// are mutually exclusive

if (flag & LINT::lintdec)

{

s.iword (flagsindex) = (t & ˜LINT::linthex & ˜LINT::lintoct

& ˜LINT::lintbin) | LINT::lintdec;

flag =̂ LINT::lintdec;

}

if (flag & LINT::linthex)

{

s.iword (flagsindex) = (t & ˜LINT::lintdec & ˜LINT::lintoct

& ˜LINT::lintbin) | LINT::linthex;

flag =̂ LINT::linthex;

}

if (flag & LINT::lintoct)

{

355

Chapter 15

s.iword (flagsindex) = (t & ˜LINT::lintdec & ˜LINT::linthex

& ˜LINT::lintbin) | LINT::lintoct;

flag =̂ LINT::lintoct;

}

if (flag & LINT::lintbin)

{

s.iword (flagsindex) = (t & ˜LINT::lintdec & ˜LINT::lintoct

& ˜LINT::linthex) | LINT::lintbin;

flag =̂ LINT::lintbin;

}

// all remaining flags are mutually compatible

s.iword (flagsindex) |= flag;

return t;

}

Table 15-1. LINT status functions and their effects

Status Function Explanation

static long
LINT::flags
(void);

read the status variable with reference
to cout

static long
LINT::flags
(ostream&);

read the status variable with reference
to an arbitrary output stream

static long
LINT::setf
(long);

set individual bits of the status variable with
reference to cout and return the previous value

static long
LINT::setf
(ostream&, long);

set individual bits of the status variable with
reference to an arbitrary output stream
and return the previous value

static long
LINT::unsetf
(long);

restore individual bits of the status variable with
reference with reference to cout and return
the previous value

static long
LINT::unsetf
(ostream&, long);

restore individual bits of the status variable with
reference to an arbitrary output stream
and return the previous value

static long
LINT::restoref
(long);

set the status variable with reference to
cout with a value and return the previous value

static long
LINT::restoref
(ostream&, long);

set the status variable with
reference to an arbitrary output stream with a
value and return the previous value

356

The LINT Public Interface: Members and Friends

With the help of these and the remaining functions of Table 15-1 we can
determine the output formats in the following. First, the standard output format
represents the value of a LINT object as a hexadecimal number in a character
string, where the output fills as many lines on the screen as required by the
number of digits of the LINT object. In an additional line the number of digits of
the LINT object is displayed flush left. The following additional modes for output
of a LINT object have been implemented:

1. Base for the representation of digits
The standard base for the representation of digits of LINT objects is 16, and
for the representation of the length it is 10. This default for LINT objects can
be set for the standard output stream cout to a specified base by a call to

LINT::setf (LINT::base);

and to

LINT::setf (ostream, LINT::base);

for an arbitrary output stream. Here base can assume any one of the values

linthex, lintdec, lintoct, lintbin,

which denote the corresponding output format. A call to
LINT::setf(lintdec), for example sets the output format to decimal
digits. The base for the representation of the length can be set with the
function

ios::setf (ios::iosbase);

with iosbase = hex, dec, oct.

2. Display of the prefix for the numerical representation
The default is for a LINT object to be displayed with a prefix indicating how
it is represented. A call to

LINT::unsetf(LINT::lintshowbase);

LINT::unsetf (ostream, LINT::lintshowbase);

changes this setting.

3. Display of hexadecimal digits in uppercase letters
The default is the display of hexadecimal digits and the display of the prefix
0x for a hexadecimal representation in lowercase letters a b c d e f. However,
a call to

LINT::setf (LINT::lintuppercase);

LINT::setf (ostream, LINT::lintuppercase);

changes this, so that the prefix 0X and uppercase letters A B C D E F are
displayed.

357

Chapter 15

4. Display of the length of a LINT object
The default is the display of the binary length of a LINT objects. This can be
changed by a call to

LINT::unsetf (LINT::lintshowlength);

LINT::unsetf (ostream, LINT::lintshowlength);

so that the length is not displayed.

5. Restoring the status variable for the numerical representation
The status variable for the formatting of a LINT object can be restored to a
previous value oldflags by a call to the two functions

LINT::unsetf (ostream, LINT::flags(ostream));

LINT::setf (ostream, oldflags);

Calls to these two functions are collected in the overloaded function
restoref():

LINT::restoref (flag);

LINT::restoref (ostream, flag);

Flags can be combined, as in the call

LINT::setf (LINT::bin | LINT::showbase);

This, however, is permitted only for flags that are not mutually exclusive.
The output function that finally generates the requested representational

format for LINT objects is an extension of the operator ostream& operator

<<(ostream& s, LINT ln) already sketched above, which evaluates the status
variables of the output stream and generates the appropriate output. For this the
operator uses the auxiliary function lint2str() contained in flintpp.cpp, which
in turn calls the function xclint2str_l() to represent the numerical value of a
LINT object in a character string:

ostream& operator << (ostream& s, const LINT& ln)

{

USHORT base = 16;

long flags = LINT::flags (s);

char* formatted_lint;

if (ln.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "ostream operator<<", 0, __LINE__);

if (flags & LINT::linthex)

{

base = 16;

}

else

358

The LINT Public Interface: Members and Friends

{

if (flags & LINT::lintdec)

{

base = 10;

}

else

{

if (flags & LINT::lintoct)

{

base = 8;

}

else

{

if (flags & LINT::lintbin)

{

base = 2;

}

}

}

}

if (flags & LINT::lintshowbase)

{

formatted_lint = lint2str (ln, base, 1);

}

else

{

formatted_lint = lint2str (ln, base, 0);

}

if (flags & LINT::lintuppercase)

{

strupr_l (formatted_lint);

}

s << formatted_lint << flush;

if (flags & LINT::lintshowlength)

{

long _flags = s.flags (); // get current status

s.setf (ios::dec);// set flag for decimal display

s << endl << ld (ln) << " bit" << endl;

s.setf (_flags); // restore previous status

}

return s;

}

359

Chapter 15

15.3.2 Manipulators

Building on the previous mechanisms, we would like in this section to obtain
more convenient possibilities for controlling the output format for LINT objects.
To this end we use manipulators, which are placed directly into the output stream
and thus display the same effects as occur in calling the above status functions.
Manipulators are addresses of functions for which there exist special insert
operators that on their part accept a pointer to a function as argument. As an
example we consider the following function:

ostream& LintHex (ostream& s)

{

LINT::setf (s, LINT::linthex);

return s;

}

This function calls the status function setf(s, LINT::linthex) in the context
of the specified output stream ostream& s and thereby effects the output of LINT
objects as hexadecimal numbers. The name LintHex of the function without
parentheses is viewed as a pointer to the function (cf. [Lipp], page 202) and can
be set in an output stream as a manipulator with the help of the insert operator

ostream& ostream::operator<< (ostream& (*pf)(ostream&))

{

return (*pf)(*this);

}

defined in the class ostream:

LINT a ("0x123456789abcdef0");

cout << LintHex << a;

ostream s;

s << LintDec << a;

The LINT manipulator functions operate according to the same pattern as
the standard manipulators in the C++ library, for example dec, hex, oct, flush,
and endl: The insert operator << simply calls the manipulator function LintHex()

or LintDec() at the appropriate place. The manipulators ensure that the status
flags belonging to the output streams cout, respectively s, are set. The overloaded
operator<< for the output of LINT objects takes over the representation of the LINT

object a in the requested form.

360

The LINT Public Interface: Members and Friends

The format settings for the output of LINT objects can all be carried out with
the help of the manipulators presented in Table 15-2.

Table 15-2. LINT manipulators and their effects

Manipulator Effect: Form of the Output of LINT Values

LintBin as binary numbers

LintDec as decimal numbers

LintHex as hexadecimal numbers

LintOct as octal numbers

LintLwr with lowercase letters a, b, c, d, e, f for hexadecimal
representation

LintUpr with uppercase letters A, B, C, D, E, F for hexadecimal
representation

LintShowbase with prefix for the numerical representation
(0x or 0X for hexadecimal, 0b for binary)

LintNobase without prefix for numerical representation

LintShowlength indicating the number of digits

LintNolength without indicating the number of digits

In addition to the manipulators of Table 15-2, which require no argument,
the manipulators

LINT_omanip<int> SetLintFlags (int flags)

and

LINT_omanip<int> ResetLintFlags (int flags)

are available, which can be used as alternatives to the status functions
LINT::setf() and LINT::unsetf():

cout << SetLintFlags (LINT::flag) << ...; // turn on

cout << ResetLintFlags (LINT::flag) << ...; // turn off

For the implementation of these manipulators the reader is referred to the
sources (flintpp.h and flintpp.cpp) in connection with the explanation of the
template class omanip<T> in [Pla2], Chapter 10. The LINT flags are shown once
again in Table 15-3.

361

Chapter 15

Table 15-3. LINT flags for output formatting and their effects

Flag Value

lintdec 0x010

lintoct 0x020

linthex 0x040

lintshowbase 0x080

lintuppercase 0x100

lintbin 0x200

lintshowlength 0x400

We shall now clarify the use of the format functions and manipulators by
means of the following example:

#include "flintpp.h"

#include <iostream.h>

#include <iomanip.h>

main()

{

LINT n ("0x0123456789abcdef"); // LINT number with base 16

long deflags = LINT::flags(); // store flags

cout << "Default representation: " << n << endl;

LINT::setf (LINT::linthex | LINT::lintuppercase);

cout << "hex representation with uppercase letters: " << n << endl;

cout << LintLwr << "hex representation with lowercase letters: " << n << endl;

cout << LintDec << "decimal representation: " << n << endl;

cout << LintBin << "binary representation: " << n << endl;

cout << LintNobase << LintHex;

cout << "representation without prefix: " << n << endl;

cerr << "Default representation Stream cerr: " << n << endl;

LINT::restoref (deflags);

cout << "default representation: " << n << endl;

return;

}

15.3.3 File I/O for LINT Objects

Functions for the output of LINT objects to files and functions for reading them
are unavoidable for practical applications. The input and output classes of the

362

The LINT Public Interface: Members and Friends

C++ standard library contain member functions that permit the setting of objects
into an input or output stream for file operations, so we are fortunate in that we
can use the same syntax as we used above. The operators needed for output to
files are similar to those of the last section, where, however, we can do without the
formatting.

We define the two operators

friend ofstream& operator<< (ofstream& s, const LINT& ln);

friend fstream& operator<< (fstream& s, const LINT& ln);

for output streams of the class ofstream and for streams of the class fstream,
which supports both directions, that is, both input and output. Since the class
ofstream is derived from the class ostream, we can use its member function
ostream::write() to write unformatted data to a file. Since only the digits of
a LINT object that are actually used are stored, we can deal sparingly with the
storage space of the data medium. Here the USHORT digits of the LINT object are
actually written as a sequence of UCHAR values. To ensure that this always occurs
in the correct order, independent of the numerical representation scheme of a
particular platform, an auxiliary function is defined that writes a USHORT value as
a sequence of two UCHAR types. This function neutralizes the platform-specific
ordering of the digits to base 256 in memory and thereby allows data that were
written on one computer type to be read on another that possibly orders the digits
of a number differently or perhaps interprets them differently when they are read
from mass storage. Relevant examples in this connection are the little-endian and
big-endian architectures of various processors, which in the former case order
consecutive increasing memory addresses in increasing order, and in the latter
case do so in decreasing order.2

template <class T>

int write_ind_ushort (T& s, clint src)

{

UCHAR buff[sizeof(clint)];

unsigned i, j;

for (i = 0, j = 0; i < sizeof(clint); i++, j = i << 3)

{

buff[i] = (UCHAR)((src & (0xff << j)) >> j);

}

s.write (buff, sizeof(clint));

2 Two bytes Bi and Bi+1 with addresses i and i + 1 are interpreted in the little-endian rep-
resentation as USHORT value w = 28Bi+1 + Bi and in the big-endian representation as
w = 28Bi + Bi+1. The analogous situation holds for the interpretation of ULONG values.

363

Chapter 15

if (!s)

{

return -1;

}

else

{

return 0;

}

}

The function write_ind_ushort() returns in the case of error the value −1,
while it returns 0 if the operation is successful. It is implemented as a template, so
that it can be used with both ofstream objects and fstream objects. The function
read_ind_ushort() is created as its counterpart:

template <class T>

int read_ind_ushort (T& s, clint *dest)

{

UCHAR buff[sizeof(clint)];

unsigned i; s.read (buff, sizeof(clint));

if (!s)

{

return -1;

}

else

{

*dest = 0;

for (i = 0; i < sizeof(clint); i++)

{

*dest |= ((clint)buff[i]) << (i << 3);

}

return 0;

}

}

The output operators now use this neutral format to write from a LINT object
to a file. To elucidate the situation we shall present the implementation of the
operator for the class ofstream.

ofstream& operator<< (ofstream& s, const LINT& ln)

{

if (ln.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "ofstream operator<<", 0, __LINE__);

364

The LINT Public Interface: Members and Friends

for (int i = 0; i <= DIGITS_L (ln.n_l); i++)

{

if (write_ind_ushort (s, ln.n_l[i]))

{

LINT::panic (E_LINT_EOF, "ofstream operator<<", 0, __LINE__);

}

}

return s;

}

Before a LINT object is written to a file, the file must be opened for writing, for
which one could use the constructor

ofstream::ofstream (const char *, openmode)

or the member function

ofstream::open (const char *, openmode)

In each case the ios flag ios::binary must be set, as in the following example:

LINT r ("0x0123456789abcdef");

// ...

ofstream fout ("test.io", ios::out | ios::binary);

fout << r << r*r;

// ...

fout.close();

The importation of a LINT object from a file is effected in a complementary
way, with analogous operators, to that of output of a LINT object to a file.

friend ifstream& operator >> (ifstream& s, LINT& ln);

friend fstream& operator >> (fstream& s, LINT& ln);

Both operators first read a single value, which specifies the number of digits
of the stored LINT object. Then the corresponding number of digits are read in.
The USHORT values are read according to the above description under the action of
the function read_ind_ushort():

ifstream& operator>> (ifstream& s, LINT& ln)

{

if (read_ind_ushort (s, ln.n_l))

{

365

Chapter 15

LINT::panic (E_LINT_EOF, "ifstream operator>>", 0, __LINE__);

}

if (DIGITS_L (ln.n_l) < CLINTMAXSHORT)

{

for (int i = 1; i <= DIGITS_L (ln.n_l); i++)

{

if (read_ind_ushort (s, &ln.n_l[i]))

{

LINT::panic (E_LINT_EOF, "ifstream operator>>", 0, __LINE__);

}

}

}

// No paranoia! Check the imported value!

if (vcheck_l (ln.n_l) == 0)

{

ln.status = E_LINT_OK;

}

else

{

ln.status = E_LINT_INV;

}

return s;

}

To open a file from which the LINT object is to be read it is again necessary to
set the ios flag ios::binary:

LINT r, s;

// ...

ifstream fin;

fin.open ("test.io", ios::in | ios::binary);

fin >> r >> s;

// ...

fin.close();

In the importation of LINT objects the insert operator >> checks whether the
values read represent the numerical representation of a valid LINT object. If this
is not the case, the member datum status is set to E_LINT_INV, and the specified
target object is thereby marked as “uninitialized.” On the next operation on this
object the LINT error handler is invoked, which is what we shall study in more
detail in the next chapter.

366

CHAPTER 16

Error Handling

O hateful error, melancholy’s child!

—Shakespeare, Julius Caesar

16.1 (Don’t) Panic . . .

The C++ functions presented in the foregoing chapters embody mechanisms for
analyzing whether during the execution of a called C function an error or other
situation has occurred that requires a particular response or at least a warning.
The functions test whether the passed variables have been initialized and evaluate
the return value of the called C functions:

LINT f (LINT arg1, LINT arg2)

{

LINT result;

int err;

if (arg1.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "f", 1, __LINE__);

if (arg2.status == E_LINT_INV)

LINT::panic (E_LINT_VAL, "f", 2, __LINE__);

// Call C function to execute operation; error code is stored in err

err = f_l (arg1.n_l, arg2.n_l, result.n_l);

switch (err)

{

case 0:

result.status = E_LINT_OK;

break;

case E_CLINT_OFL:

result.status = E_LINT_OFL;

break;

case E_CLINT_UFL:

result.status = E_LINT_UFL;

break;

default:

LINT::panic (E_LINT_ERR, "f", err, __LINE__);

}

return result;

}

367

Chapter 16

If the variable status contains the value E_LINT_OK, then this is the optimal
case. In less happy situations, in which overflow or underflow has occurred in
a C function, the variable status is set to the appropriate value E_LINT_OFL or
E_LINT_UFL. Since our C functions already react to an overflow or underflow with
a reduction modulo Nmax + 1 (cf. page 20), in such cases the functions terminate
normally. The value of the variable status can then be queried with the member
function

LINT_ERRORS LINT::Get_Warning_Status (void);

Furthermore, we have seen that the LINT functions always call a function with
the well-chosen name panic() when the situation gets too hot to handle. The task
of this member function is first of all to output error messages, so that the user of
the program is made aware that something has gone awry, and secondly to ensure
a controlled termination of the program. The LINT error messages are output
via the stream cerr, and they contain information about the nature of the error
that has occurred, about the function that has detected the error, and about the
arguments that have triggered the error. In order that panic() be able to output all
of this information, such information arriving from the calling function must be
delivered, as in the following example:

LINT::panic (E_LINT_DBZ, "%", 2, __LINE__);

Here it is announced that a division by zero in the operator “%” has appeared in
the line specified by the ANSI macro __LINE__, caused by the operator’s argument
number 2. The arguments are indicated as follows: 0 always denotes the implicit
argument of a member function, and all other arguments are numbered from left
to right, beginning with 1. The LINT error routine panic() outputs error messages
of the following type:

Example 1: Use of an uninitialized LINT object as argument.

critical run-time error detected by class LINT:

Argument 0 in Operator *= uninitialized, line 1997

ABNORMAL TERMINATION

Example 2: Division by a LINT object with the value 0.

critical run-time error detected by class LINT:

Division by zero, operator/function/, line 2000

ABNORMAL TERMINATION

The functions and operators of the LINT class recognize the situations listed
in Table 16-1.

368

Error Handling

Table 16-1. LINT function error codes

Code Value Explanation
E_LINT_OK 0x0000 everything ok
E_LINT_EOF 0x0010 file I/O error in the stream operator <<

or >>

E_LINT_DBZ 0x0020 division by zero
E_LINT_NHP 0x0040 Heap error: new returns the NULL pointer
E_LINT_OFL 0x0080 overflow in function or operator
E_LINT_UFL 0x0100 underflow in function or operator
E_LINT_VAL 0x0200 an argument of a function is uninitialized

or has an illegal value

E_LINT_BOR 0x0400 incorrect base passed as argument to a
constructor

E_LINT_MOD 0x0800 even modulus in mexpkm()
E_LINT_NPT 0x1000 NULL pointer passed as argument
E_LINT_RIN 0x2000 call to an uninitialized pseudorandom number generator

16.2 User-Defined Error Handling

As a rule, it is necessary to adapt error handling to particular requirements. The
LINT class offers support in this regard in that the LINT error function panic()

can be replaced by user-defined functions. Additionally, the following function is
called, which takes as argument a pointer to a function:

void

LINT::Set_LINT_Error_Handler (void (*Error_Handler)

(LINT_ERRORS, const char*, int, int, const, char*))

{

LINT_User_Error_Handler = Error_Handler;

}

The variable LINT_User_Error_Handler is defined and initialized in
flintpp.cpp as

static void (*LINT_User_Error_Handler)

(LINT_ERRORS, const char*, int, int, const char*) = NULL;

If this pointer has a value other than NULL, then the specified function is called
instead of panic(), and it contains the same information as panic() would have.
With respect to the implementation of a user-defined error-handling routine
one has a great deal of freedom. But one must realize that the errors reported by
the class LINT usually signal program errors, which are irreparable at run time. It

369

Chapter 16

would make no sense to return to the program segment in which such an error
has occurred, and in general, in such cases the only reasonable course of action is
to terminate the program.

The return to the LINT error routine panic() is effected by a call to

LINT::Set_LINT_Error_Handler(NULL);

The following example demonstrates the integration of a user-defined
function for error handling:

#include "flintpp.h"

void my_error_handler (LINT_ERRORS err, const char* func,

int arg, int line, const char* file)

{

//... Code

}

main()

{

// activation of the user-defined error handler:

LINT::Set_LINT_Error_Handler (my_error_handler);

// ... Code

// reactivate the LINT error handler:

LINT::Set_LINT_Error_Handler (NULL);

// ... Code

}

16.3 LINT Exceptions

The exception mechanism of C++ is an instrument that is easier to utilize and
thereby more effective for error handling than the methods offered by C. The
error routine LINT::panic() described previously is limited to the output of
error messages and the controlled termination of a program. In general, we are
less interested in the division function in which a division by zero has occurred
than the function that has called the division and thereby precipitated the error,
information that LINT::panic() does not contain and thus cannot pass along.
In particular, it is impossible with LINT::panic() to return to this function in
order to remove an error there or to react in a way specific to the function. Such
possibilities, on the other hand, are offered by the exception mechanism of C++,
and we would like here to create the conditions that will make this mechanism
usable for the LINT class.

370

Error Handling

Exceptions in C++ are based principally on three types of constructs: the
try block, the catch block, and the instruction throw, by means of which a
function signals an error. The first, the catch block, has the function of a local
error-handling routine for the try block: Errors that occur within a try block
and are announced by means of throw will be caught by the catch block, which
follows the try block. Further instructions of the try block are then ignored. The
type of error is indicated by the value of the throw instruction as parameter of the
accompanying expression.

The connection between try and catch blocks can be sketched as follows:

try

{

. . . // If an error is signaled within an operation with

. . . // throw, then it can be

. . . // caught by the following catch block.

}

. . .

catch (argument)

{

. . . // here follows the error handling routine.

}

If an error does not occur directly within a try block but in a function that is
called from there, then this function is terminated, and control is returned to the
calling function until, by following the chain of calls in reverse order, a function
within a try block is reached. From there control is passed to the appropriate
catch block. If no try block is found, then the generic error routine appended
by the compiler is called, which then terminates the program, usually with some
nonspecific output.

It is clear what the errors are in the LINT class, and it would be a simple
possibility to call throw with the error codes, which are provided to the panic()

routine by the LINT functions and operators. However, the following solution
offers a bit more comfort: We define an abstract base class

class LINT_Error

{

public:

char* function, *module;

int argno, lineno;

virtual void debug_print (void) const = 0; // pure virtual

virtual ˜LINT_Error() {function = 0; module = 0;};

};

371

Chapter 16

as well as classes of the following type that build on it:

// division by zero

class LINT_DivByZero : public LINT_Error

{

public:

LINT_DivByZero (const char* func, int line, const char* file);

void debug_print (void) const;

};

LINT_DivByZero::LINT_DivByZero (const char* func, int line, const char* file)

{

module = file;

function = func;

lineno = line;

argno = 0;

}

void LINT_DivByZero::debug_print (void) const

{

cerr << "LINT-Exception:" << endl;

cerr << "division by zero in function "

<< function << endl;

cerr << "module: " << module << ", line: "

<< lineno << endl;

}

For every type of error there exists such a class that like the example shown
here can be used with

throw LINT_DivByZero(function, line);

to report this particular error. Among others, the following subclasses of the base
class LINT_Error are defined:

class LINT_Base : public LINT_Error // invalid basis

{ . . . };

class LINT_DivByZero : public LINT_Error // division by zero

{ . . . };

class LINT_EMod : public LINT_Error // even modulus for mexpkm

{ . . . };

class LINT_File : public LINT_Error // error with file I/O

{ . . . };

class LINT_Heap : public LINT_Error // heap error with new

{ . . . };

372

Error Handling

class LINT_Init : public LINT_Error // function argument illegal or uninitialized

{ . . . };

class LINT_Nullptr : public LINT_Error // null pointer passed as argument

{ . . . };

class LINT_OFL : public LINT_Error // overflow in function

{ . . . };

class LINT_UFL : public LINT_Error // underflow in function

{ . . . };

With this we are in a position, on the one hand, to catch LINT errors without
distinguishing specifically which error has occurred by inserting a catch block

catch (LINT_Error const &err) // notice: LINT_Error is abstract

{

// . . .

err.debug_print();

// . . .

}

after a try block, while on the other hand we can carry on a goal-directed search
for an individual error by specifying the appropriate error class as argument in
the catch instruction.

One should note that as an abstract base class LINT_Error is not instantiatable
as an object, for which reason the argument err can be passed only by reference
and not by value. Although all the LINT functions have been equipped with the
panic() instruction for error handling, the use of exceptions does not mean
that we must alter all the functions. Rather, we integrate the appropriate throw

instructions into the panic() routine, where they are called in conjunction with
the error that has been reported. Control is then transferred to the catch block,
which belongs to the try block of the calling function. The following code segment
of the function panic() clarifies the modus operandi:

void LINT::panic (LINT_ERRORS error, const char* func,

int arg, int line, const char* file)

{

if (LINT_User_Error_Handler)

{

LINT_User_Error_Handler (error, func, arg, line, file);

}

373

Chapter 16

else

{

cerr << "critical run-time error detected by the

class LINT:\n";
switch (error)

{

case E_LINT_DBZ:

cerr << "division by zero, function " << func;

cerr << ", line " << line << ", module " << file << endl;

#ifdef LINT_EX

throw LINT_DivByZero (func, line, file);

#endif

break;

// . . .

}

}

}

The behavior that results in the case of an error can be completely controlled
by user-defined routines for error handling without the necessity of intervention
into the LINT implementation. Moreover, the exception handling can be
completely turned off, which is necessary when this mechanism is not supported
by a C++ compiler that is to be used. In the case of the present panic() function
the exceptions must be turned on explicitly via the definition of the macro
LINT_EX, such as with the compiler option -DLINT_EX. Some compilers require the
specification of additional options for exception handling to be activated.

To close, we present a small demonstration of the LINT exceptions:

#include "flintpp.h"

main(void)

{

LINT a = 1, b = 0;

try

{

b = a / b;// error: division by 0

}

catch (LINT_DivByZero error) // error handling for division by 0

{

error.debug_print ();

cerr << "division by zero in the module" << __FILE__

<< ", line " << __LINE__;

}

}

374

Error Handling

Translated with GNU gcc by a call to

gcc -fhandle-exceptions -DLINT_EX divex.cpp flintpp.cpp flint.c -lstdc++

the program produces, in addition to the error message of the function panic(),
the following output:

LINT-Exception:

division by zero in operator/function /

module: flintpp.cpp, line: 402

division by zero in module divex.cpp, line 17

The significant difference between this and standard error handling without
exceptions is that we discover by means of the catch routine where the error
was actually caused, namely in line 17 of the module divex.cpp, even though it
was discovered somewhere else entirely, namely in the module flintpp.cpp. For
debugging large programs this is an extremely helpful source of information.

375

CHAPTER 17

An Application Example:

The RSA Cryptosystem

The next question was the obvious one, “Can this be done with ordinary
encipherment? Can we produce a secure encrypted message, readable by the
authorised recipient without any prior secret exchange of the key etc?” . . . I
published the existence theorem in 1970.

—J. H. Ellis, “The Story of Non-Secret Encryption”

AS WE APPROACH THE END of our story we would like to investigate the possibility of
testing what we have labored over chapter by chapter against a realistic and cur-
rent example, one that clearly demonstrates the connection between the theme
of cryptographic application and the deployment of our programmed functions.
We shall make a brief excursion into the principle of asymmetric cryptosystems
and then turn our attention to the RSA algorithm as the classic example of such a
system, which was published in 1978 by its inventors/discoverers, Ronald Rivest,
Adi Shamir, and Leonard Adleman (see [Rive], [Elli]), and which by now has been
implemented worldwide.1 The RSA algorithm is patented in the United States
of America, but the patent expired on 20 September 2000. Against the free use
of the RSA algorithm stood the claims of RSA Security, who possessed rights
to the trade name “RSA,” which triggered vehement discussion in connection
with work on the standard P1363 [IEEE], with in some cases rather grotesque
results, for example, the suggestion of rechristening the RSA procedure “biprime
cryptography.” There have also appeared less serious suggestions, such as FRA
(former RSA algorithm), RAL (Ron, Adi, Leonard), and QRZ (RSA−1). Upon expiry
of their patent RSA Security weighed in with its opinion:

Clearly, the terms “RSA algorithm,” “RSA public-key algorithm,”
“RSA cryptosystem,” and “RSA public-key cryptosystem” are well
established in standards and open academic literature. RSA Security
does not intend to prohibit the use of these terms by individuals
or organizations that are implementing the RSA algorithm (“RSA-
Security—Behind the Patent,” September 2000).2

1 According to http://www.rsasecurity.com by 1999 over three hundred million products
containing RSA functions had been sold.

2 http://www.rsasecurity.com/solutions/developers/total-solution/faq.html.

377

Chapter 17

17.1 Asymmetric Cryptosystems

The fundamental idea behind asymmetric cryptosystems was published in 1976
by Whitfield Diffie and Martin Hellman in the groundbreaking article “New
Directions in Cryptography” (see [Diff]). Asymmetric cryptosystems, in contrast
to symmetric algorithms, do not use a secret key employed both for encryption
and decryption of a message, but a pair of keys for each participant consisting
of a public key E for encryption and a different, secret, key D for decryption.
If the keys are applied to a message M one after another in sequence, then the
following relation must hold:

D (E (M)) = M. (17.1)

One might picture this arrangement as a lock that can be closed with one key but
for which one needs a second key to unlock it.

For the sake of security of such a procedure it is necessary that a secret key
D not be able to be derived from the public key E, or that such a derivation be
infeasible on the basis of time and cost constraints.

In contrast to symmetric systems, asymmetric systems enable certain
simplifications in working with keys, since only the public key of a participant
A need be transmitted to a communication partner B for the latter to be in
a position to encrypt a message that only participant A, as possessor of the
secret key, can decrypt. This principle contributes decisively to the openness
of communication: For two partners to communicate securely it suffices to
agree on an asymmetric encryption procedure and exchange public keys. No
secret key information needs to be transmitted. However, before our euphoria
gets out of hand we should note that in general, one cannot avoid some form
of key management even for asymmetric cryptosystems. As a participant in a
supposedly secure communication one would like to be certain that the public
keys of other participants are authentic, so that an attacker, with the nefarious
goal of intercepting secret information, cannot undetected interpose him- or
herself and give out his or her key as the public key under the guise of its being
that of the trusted partner. To ensure the authenticity of public keys there have
appeared surprisingly complex procedures, and in fact, there are already laws on
the books that govern such matters. We shall go into this in more detail below.

The principle of asymmetric cryptosystems has even more far-reaching
consequences: It permits the generation of digital signatures in which the
function of the key is turned on its head. To generate a digital signature a message
is “encrypted” with a secret key, and the result of this operation is transmitted
together with the message. Now anyone who knows the associated public key
can “decrypt” the “encrypted” message and compare the result with the original
message. Only the possessor of the secret key can generate a digital signature that
can withstand such a comparison. We note that in the case of digital signatures

378

An Application Example: The RSA Cryptosystem

the terms “encryption” and “decryption” are not quite the correct ones, so that we
shall speak rather of “generation” and “verification” of a digital signature.

A requirement for the implementation of an asymmetric encryption system
for the generation of digital signatures is that the association of D (M) and
M can be reliably verified. The possibility of such a verification exists if the
mathematical operations of encryption and decryption are commutative, that is,
if their execution one after the other leads to the same, original, result regardless
of the order in which they are applied:

D (E (M)) = E (D (M)) = M. (17.2)

By application of the public key E to D (M) it can be checked in this case
whether D (M) is valid as a digital signature applied to the message M .

The principle of digital signatures has attained its present importance in two
important directions:

• The laws on digital and electronic signatures in Europe and the United
States create a basis for the future use of digital signatures in legal
transactions.

• The increasing use of the Internet for electronic commerce has generated a
strong demand for digital signatures for identification and authentication
of those taking part in commercial transactions, for authenticating digital
information, and for ensuring the security of financial transactions.

It is interesting to observe that the use of the terms “electronic signature” and
“digital signature” bring into focus the two different approaches to signature laws:
For an electronic signature all means of identification used by one party, such as
electronic characters, letters, symbols, and images, are employed to authenticate
a document. A digital signature, on the other hand, is realized as an electronic
authentication procedure based on information-technological processes that is
employed to verify the integrity and authenticity of a transmitted text. Confusion
arises because these two terms are frequently used interchangeably, thus mixing
up two different technical processes (see, for example, [Mied]).

While the laws on electronic signatures in general leave open just what algo-
rithms will be used for the implementation of digital signatures, most protocols
being discussed or already implemented for identification, authentication, and
authorization in the area of electronic transactions over the Internet are based
on the RSA algorithm, which suggests that it will continue to dominate the field.
The generation of digital signatures by means of the RSA algorithm is thus a
particularly current example of the application of our FLINT/C functions.

The author is aware that the following paragraphs represent a painfully brief
introduction to an enormously significant cryptographic principle. Nevertheless,
such brevity seems to be justified by the large number of extensive publications
on this topic. The reader wishing to know more is referred to [Beut], [Fumy],

379

Chapter 17

[Salo], and [Stin] as introductory sources, to the more comprehensive works
[MOV] and [Schn], and to the more mathematically oriented monographs [Kobl],
[Kran], and [HKW].

17.2 The RSA Algorithm

All that is merely probable is probably false.

—René Descartes

We shall now present a brief outline of the mathematical properties of the RSA
algorithm, and we shall see how the RSA procedure can be implemented both as
an asymmetric cryptosystem and an asymmetric signature scheme. Following the
mathematical principles of the RSA algorithm we shall develop C++ classes with
RSA functions for encryption and decryption as well as for the generation and
authentication of digital signatures. In this way we shall clarify the possibilities
offered for the implementation of the methods of our LINT class.

The most important aspect of the RSA algorithm is the pair of keys, which
have a particular mathematical form: An RSA key pair consists of three basic
components: the modulus n, the public key component e (encryption), and the
secret key component d (decryption). The pairs 〈e, n〉 and 〈d, n〉 then form a
public and private key.

We first generate the modulus n as the product n = pq of two prime numbers
p and q. If φ (n) = (p − 1) (q − 1) denotes the Euler phi function (cf. page 177),
then for a given n the public key component e can be chosen such that e < φ(n)

and gcd (e, φ(n)) = 1. The secret component d corresponding to n and e is
obtained by calculating the inverse d = e−1 mod φ(n) (cf. Section 10.2).

We illustrate this principle with the help of a small example: We choose p = 7

and q = 11. Then we have n = 77 and φ(n) = 22 · 3 · 5 = 60. Due to the
condition gcd (e, φ(n)) = 1, the least possible value for the key component
e is 7, from which we derive the value d = 43 for the key component d, since
7 · 43 ≡ 301 ≡ 1 mod 60. With these values we can apply the RSA algorithm
to a toy example, in which we calculate, say, that the “message” 5 is encrypted
to 57 mod 77 = 47 and the decryption 4743 mod 77 = 5 restores the original
message.

Equipped now with such keys (we shall soon discuss what constitutes
a realistic size for the various key components) and appropriate software,
communication partners can securely exchange information with each other. To
demonstrate the procedure we consider the process by which a participant Ms. A
sends an RSA-encoded message to a communication partner Mr. B:

1. B generates his RSA key with components nB, dB, and eB. He then gives the
public key 〈eB, nB〉 to A.

380

An Application Example: The RSA Cryptosystem

2. Now A would like to send an encrypted message M to B (0 ≤ M < nB).
Since A has received from B his public key 〈eB, nB〉, A calculates

C = MeB mod nB

and sends the encrypted value C to B.

3. After B has obtained the encrypted message C from A, then B decodes this
message by calculating

C = MdB mod nB

using his secret key 〈dB, nB〉. Now B possesses the plain text M of the
message.

It is not difficult to see why this works. Because d · e ≡ 1 mod φ(n), there
exists an integer k such that d · e = 1 + k · φ(n). We thus obtain

Cd ≡ Mde ≡ M1+k·φ(n) ≡ M ·
(
Mφ(n)

)k ≡ M mod n, (17.3)

where we have made use of the theorem of Euler quoted on page 177, from
which we deduce that Mφ(n) ≡ 1 mod n if gcd(M, n) = 1. For the more
theoretically interesting case that gcd(M, n) > 1, equation (17.3) holds as well:
For relatively prime p and q, we have the isomorphism Z � Zp × Zq . Since
ve ≡ 1 mod gcd(p − 1, q − 1), it follows that Mve = M in Zp and in Zq

(obviously for M = 0 as well), and therefore also in Zn.
An alternative to key generation is the use of univeral exponents λ :=

lcm(p − 1, q − 1) instead of φ(n). The basis for this is the following theorem
of Carmichael: Let λ() denote the Carmichael function, defined by λ(n) :=

lcm (λ (2a0) , φ (pa1
1) , . . . , φ (par

r)) for all n = 2a0φ (pa1
1) · · ·φ (par

r), where the
pi are distinct prime numbers and

λ
(
2t) :=

{
2t−1 if t < 3,

2t−2 if t ≥ 3.

Then for all a ∈ Z×
n , we have aλ(m) ≡ 1 mod n. For a proof, see page 15 of

[Kran]. As above, this can also be extended to the case gcd(M, n) = 1, since from
ev = 1 + kλ(n) we have ve ≡ 1 mod gcd(p − 1, q − 1), and so in Zp and Zq we
have Mve = M . On account of the isomorphism Z � Zp × Zq , this holds in Zn

as well. The advantage of using λ lies in a smaller exponent e, since λ is always a
proper divisor of (p − 1)(q − 1). In practice, this advantage is negligible, since
gcd(p − 1, q − 1) for random values of p and q is small with high probability.

It is clear that the security of the RSA algorithm depends on the ease of
factorability of n. If n can be factored into its components p and q, then the secret
key d can be determined from the public key e. Conversely, the factorization
of n can be easily accomplished if both key components d and e are known: If
k := de − 1, then k is a multiple of φ(n), and therefore we have k = r · 2t with

381

Chapter 17

odd r and t ≥ 1. For every g ∈ Zn we have gk ≡ gde−1 ≡ gg−1 ≡ 1 mod n, and
therefore gk/2 is a square root of 1 modulo n, of which there are four: In addition
to ±1 there are the roots ±x with x ≡ 1 mod p and x ≡ −1 mod q. Thus
p | (x − 1) and q | (x + 1) (cf. Section 10.4.3). By calculating p = gcd(x − 1, n)

one thus obtains the factorization of n (cf. page 212).
Possibilities for attacking the RSA algorithm other than factorization of the

modulus are either as expensive as this or rely on the special weaknesses of
individual protocols used in implementing the RSA cryptosystem, but do not rely
on the RSA algorithm itself. Based on the current state of knowledge the following
conditions lead to opportunities to attack the RSA algorithm:

1. Common modulus
The use of a common modulus for several participants leads to an obvious
weakness: Based on what we have just said, each participant can use his
or her own key components e and d to factorize the common modulus
n = pq. From a knowledge of the factors p and q as well as the public key
components of other participants with the same modulus their secret keys
can be calculated.

2. Small public exponents
Since the computational time for the RSA algorithm for a given modulus
depends directly on the size of the exponents e and d, it would appear
attractive to choose these as small as possible. For example, 3, as
the smallest possible exponent, requires only one squaring and one
multiplication modulo n, so why not save valuable computing time in this
way?

Let us assume that an attacker was able to capture three encoded messages
C1, C2, and C3, each of which encodes the same plain text M , encoded
with the keys 〈3, ni〉 of three different recipients:

C1 = M3 mod n1, C2 = M3 mod n2, C3 = M3 mod n3.

It is highly probable that gcd (ni, nj) = 1 for i �= j, so that the attacker
can use the Chinese remainder theorem (cf. page 203) to find a value C for
which

C ≡ M3 mod n1n2n3.

Since it is also true that M3 < n1n2n3, we have that C is actually equal
to M3, and the attacker can obtain M directly by calculating 3

√
C. Such

assaults, known as broadcast attacks, can always be carried out when the
number of cryptograms Ci is greater than the public exponent, and this
holds even if the plain texts to be encoded are not identical but are merely
linearly dependent on one another, that is, if relations like Mi = a + b · Mj

hold (cf. [Bone]). To avoid such an attack it is therefore necessary to choose
the public exponents not too small (in no case less than 216 + 1 = 65537)

382

An Application Example: The RSA Cryptosystem

and in addition to add random redundancy to broadcast messages before
their encryption. This can take place by filling in the message in some
appropriate way up to a suitable value less than the modulus. Such a process
is called padding (cf. page 396 and [Schn], Section 9.1).

3. Small secret exponents and small intervals between p and q

Even more problematic than small public exponents are small secret
exponents: M. Wiener [Wien] showed already in 1990 how, given a key
〈e, n〉 with e < φ(n), the associated private key component d can be
calculated if d is too small. Wiener’s result was further sharpened by D.
Boneh and G. Durfee [Bone], who showed that d can be computed from
〈e, n〉 if d < n0.292. However, it is conjectured that the result holds as well
for d < n0.5.

It is plausible that the modulus n can be easily factored when p ≈ q ≈ √
n,

by dividing by odd natural numbers close to
√

n. The situation is also
dangerous when the difference between p and q is less than n1/4, for then
the factorization method of Fermat can be applied: To factor n it suffices to
produce natural numbers x, y �∈ {n − 1, n + 1 } such that 4n = x2 − y2,
for then, the factors of n are 1

2(x + y) and 1
2(x − y). The search for x and y

runs over x = �2√n� , �2√n�+1, �2√n�+2, . . . until x2 − 4n is a square
(which can be checked with the aid of the function issqr_l). The cost of
factorization by this method is O

(
(p − q)2/

√
n
)

, and it is easy to manage

when |p − q| < cn1/4, with a constant c � n1/4.

Work of B. de Weger, extended with proven methods of attack by Wiener,
Boneh, and Durfee, shows how the security of the procedure depends on the
sizes of both the secret key and the difference of the prime factors |p−q|: Let
|p − q| = nβ and d = nδ. The modulus n = pq can be factored efficiently

if 2 − 4β < δ < 1 −
√

2β − 1
2 or δ < 1

6(4β + 5) − 1
3

√
(4β + 5)(4β − 1)

(see [deWe]).

As a consequence of his results, de Weger recommends choosing p, q, and
d such that δ + 2β > 7

4 . For δ ≥ 1
2 , as suggested in the previous result, β

must be chosen to be greater than 5
8 to follow this suggestion.

This is in accord with suggestions to be found elsewhere, according to which
0.5 < | log2 p − log2 q| < 30 should hold (see [EESSI]).

4. Encryption of small texts
Boneh, Joux, and Nguyen have presented a particularly efficient method
with which it is frequently possible to determine, for an arbitrary public key
〈e, n〉, the plain text M ≤ 2m from the cipher text C = Me. The necessary
time for this corresponds to 2 · 2m/2 modular exponentiations. Additionally,
2m/2m bits of memory are required (see[Bon2]). RSA encryption with
symmetric keys of length less than 128 bits without additional redundancy

383

Chapter 17

must therefore be considered completely insecure (see also the following
section).

5. Weaknesses in implementation
In addition to the weaknesses caused by the choice of parameters there
is a host of potential implementation problems that can adversely affect
the security of the RSA algorithm, as is the case with any encryption
procedure. Certainly, the greatest care must be taken with implementations
completely in software that are not protected from outside attack by
measures implemented in hardware. Reading from memory contents,
observation of bus activity or CPU states, can lead to the disclosure of secret
key information. At the minimum, all data in main memory that in any way
are correlated with the secret components of the RSA algorithm (or any
other cryptosystem) should be erased immediately after use with active
overwriting (for example, with the function purge_l(), which appears on
page 164).

The functions in the FLINT/C library are already equipped for this purpose.
In secure mode local variables and allocated memory are overwritten with
zeros before termination of the function and are thereby deleted. Here a
certain degree of care is necessary, since the optimization capabilities of the
compiler are so highly developed that a simple instruction at the end of a
function that can be seen to have no effect on the function’s termination
might simply be ignored. And there is more: One must take into account
that calls to the function memset() in the C standard library are ignored if the
compiler cannot recognize any useful purpose in calling it.

The following example illustrates these effects. The function f_l() uses
two automatic variables: CLINT key_l and USHORT secret. At the end of the
function, whose contents are of no further interest here, memory should be
overwritten by assigning 0 to secret and, respectively, by a call to memset()

in the case of key_l. The C code looks like this:

int

f_l (CLINT n_l)

{

CLINT key_l;

USHORT secret;

. . .

/* overwrite the variables */

secret = 0;

memset (key_l, 0, sizeof (key_l));

return 0;

}

384

An Application Example: The RSA Cryptosystem

And what does the compiler make of this (Microsoft Visual C/C++ 6.0,
compilation with cl -c -FAs -O2)?

PUBLIC _f

; COMDAT _f

_TEXT SEGMENT

_ key _l$ = -516

_ secret $ = -520

_f PROC NEAR ; COMDAT

; 5 : CLINT key _l;

; 6 : USHORT secret;

. . .

; 18 : /* overwrite the variables */

; 19 : secret = 0;

; 20 : memset (key_l, 0, sizeof (key _l));

; 21 : return 0;

xor eax, eax

; 22 : }

add esp, 532 ; 00000214H

ret 0

_f ENDP

_TEXT ENDS

The assembler code generated by the compiler documents that the
instructions to delete the variables key_l and secret are passed over without
effect. From the point of view of optimization this is a desirable result. Even
the inline version of the function memset() is simply optimized away. For
security-critical applications, however, this strategy is simply too clever.

The active deletion of security-critical variables by overwriting must
therefore be implemented in such a way that it is actually carried out.
One should note that in this case assertions can prevent the checking for
effectiveness, since the presence of the assertions forces the compiler to
execute the code. When the assertions are turned off, then optimization
again goes into effect.

For the FLINT/C package the following function is implemented, which
accepts a variable number of arguments and treats them according to their
size as standard integer types and sets them to 0, or for other data structures
calls memset() and lets it do the overwriting:

385

Chapter 17

static void purgevars_l (int noofvars, ...)

{

va_list ap;

size_t size;

va_start (ap, noofvars);

for (; noofvars > 0; -noofvars)

{

switch (size = va_arg (ap, size_t))

{

case 1: *va_arg (ap, char *) = 0;

break;

case 2: *va_arg (ap, short *) = 0;

break;

case 4: *va_arg (ap, long *) = 0;

break;

default: memset (va_arg(ap, char *), 0, size);

}

}

va_end (ap);

}

The function expects pairs of the form (byte length of the variable, pointer
to the variable) as arguments, prefixed in noofvars by the number of such
pairs.

As an extension of this function the macro PURGEVARS_L() is defined by

#ifdef FLINT_SECURE

#define PURGEVARS_L(X) purgevars_l X

#else

#define PURGEVARS_L(X) (void)0

#endif /* FLINT_SECURE */

so that security mode can be turned on and off as required. Deletion of the
variables in f() can take place as follows:

/* overwrite the variables */

PURGEVARS_L ((2, sizeof (secret), & secret,

sizeof (key_l), key_l));

The compiler cannot ignore the call to this function on the principle
of optimization strategy, which could be accomplished only by an
extraordinarily effective global optimization. In any case, the effect of such
security measures should be checked by means of code inspection:

386

An Application Example: The RSA Cryptosystem

PUBLIC _f

EXTRN _purgevars_l:NEAR

; COMDAT _f

_TEXT SEGMENT

_key_l$ = -516

_secret$ = -520

_f PROC NEAR ; COMDAT

; 9 : {

sub esp, 520 ; 00000208H

; 10 : CLINT key_l;

; 11 : USHORT secret;

. . .

; 18 : /* overwrite the variables */

; 19 : PURGEVARS_L ((2, sizeof (secret), &secret,

sizeof (key_l), key_l));

lea eax, DWORD PTR _key_l$[esp+532]

push eax

lea ecx, DWORD PTR _secret$[esp+536]

push 514 ; 00000202H

push ecx

push 2

push 2

call _purgevars_l

; 20 : return 0;

xor eax, eax

; 21 : }

add esp, 552 ; 00000228H

ret 0

_f ENDP

_TEXT ENDS

As a further protective measure in connection with the implementation
of security-critical applications we should mention a comprehensive
mechanism for error handling that sees to it that even in the case of invalid
arguments or other exceptional situations no sensitive information is
divulged. Likewise, suitable measures should be considered for establishing
the authenticity of the code of a cryptographic application, so that the
insertion of Trojan horses is prevented or at least detected before the code
can be executed. Taking a cue from the story of the Trojan War, Trojan horse
is the name given to software that has been altered in such a way that it
apparently functions correctly but has additional undesirable effects such

387

Chapter 17

as the transmittal of secret key information to an attacker via an Internet
connection.

To get a grip on such problems, frequently, in practice, for cryptographic
operations, “security boxes,” or “S-Boxes” for short, are implemented, whose
hardware is protected against attack by encapsulation in conjunction with
detectors or sensors.

If all these known traps are avoided, then there remains only the risk that the
modulus will be factored, and this risk can be effectively eliminated by choosing
sufficiently large prime numbers. To be sure, it has not been proved that there
is no easier method to break the RSA algorithm than factorization, and there is
also no proof that factorization of large integers is truly as difficult a problem as
it presently seems to be, but these issues have not adversely affected the practical
application of the algorithm to date: The RSA algorithm is the most commonly
implemented asymmetric cryptosystem worldwide, and its use in the generation
of digital signatures continues to increase.

There are many places in the literature where it is recommended that
so-called strong primes p and q be used in order to protect the modulus against
some of the simpler factorization methods. A prime p is called strong in this
connection if

(i) p − 1 has a large prime divisor r,

(ii) p + 1 has a large prime divisor s,

(iii) r − 1 has a large prime divisor t.

The importance of strong prime numbers to the security of the RSA algorithm
is not everywhere equally emphasized. Recently, there has been an increase in
the number of voices that assert that while the use of strong prime numbers is
not harmful, it also does not accomplish a great deal (cf. [MOV], Section 8.2.3,
Note 8.8, as well as [RegT], Appendix 1.4) or even that they should not be used
(see [Schn], Section 11.5). In the program example that follows we shall therefore
do without the generation of strong primes. For those who are nonetheless
interested, we sketch here a procedure for constructing such primes:

1. The first step in the construction of a strong prime p with
p binary digits
consists in the search for primes s and t satisfying log2(s) ≈ log2(t) ≈
1
2
p − log2
p. Then we search for a prime r for which r − 1 is divisible by t,
by testing sequentially numbers of the form r = k · 2t + 1, k = 1, 2, . . . , for
primality until we encounter a prime number. This almost always occurs in
at most �2 ln 2t� steps (cf. [HKW], page 418).

2. We now invoke the Chinese remainder theorem (see page 203) to
calculate a solution of the simultaneous congruences x ≡ 1 mod r and

388

An Application Example: The RSA Cryptosystem

x ≡ −1 mod s, by setting x0 := 1 − 2r−1s mod rs, where r−1 is the
multiplicative inverse of r modulo s.

3. For our prime number search we use an odd initial value: We generate
a random number z with a number of digits close to but less than
(sometimes denoted by �) the desired length of p, and set x0 ←
x0 + z + rs− (z mod rs). If x0 is even, then we set x0 ← x0 + rs. With x0

in hand we begin our determination of p. We test the values p = x0 +k ·2rs,
k = 0, 1, . . . , until the desired number of digits
p for p is reached and p

is prime. If an RSA key is to contain a specified public exponent e, then it
is worthwhile to ensure additionally that gcd(p − 1, e) = 1. The above
conditions on p have now been completely fulfilled. For the prime number
tests we use the Miller–Rabin test implemented in the function prime_l().

Whether or not strong primes are used for keys, in every case it is practical
to have available a function that generates primes of a specified length or
within a specified interval. A procedure for this that additionally ensures that a
prime p thus generated satisfies the further condition gcd(p − 1, f) = 1 for a
specified number f is given in [IEEE], page 73. Here is the algorithm in a slightly
altered form.

Algorithm to generate a prime p such that pmin ≤ p ≤ pmax

1. Generate a random number p, pmin ≤ p ≤ pmax.

2. If p is even, set p ← p + 1.

3. If p > pmax, set p ← pmin + p mod (pmax + 1) and go to step 2.

4. Compute d := gcd(p − 1, f) (cf. Section 10.1). If d = 1, test p for primality
(cf. Section 10.5). If p is prime, then output p and terminate the algorithm.
Otherwise, set p ← p + 2 and go to step 3.

A realization of this procedure as a C++ function is contained in the FLINT/C
package (source file flintpp.cpp).

389

Chapter 17

Function: generation of a prime number p within an interval
[pmin, pmax] satisfying the additional condition
gcd(p − 1, f) = 1, f an odd positive integer

Syntax: LINT

findprime(const LINT& pmin,

const LINT& pmax, const LINT& f);

Input: pmin: smallest permissible value
pmax: largest permissible value
f: odd positive integer, which should be relatively
prime to p − 1

Return: LINT prime p determined by a probabilistic test
(cf. Section 10.5) with gcd(p − 1, f)

LINT findprime (const LINT& pmin, const LINT& pmax, const LINT& f)

{

if (pmin.status == E_LINT_INV) LINT::panic (E_LINT_VAL, "findprime", 1, __LINE__);

if (pmax.status == E_LINT_INV) LINT::panic (E_LINT_VAL, "findprime", 2, __LINE__);

if (pmin > pmax) LINT::panic (E_LINT_VAL, "findprime", 1, __LINE__);

if (f.status == E_LINT_INV) LINT::panic (E_LINT_VAL, "findprime", 3, __LINE__);

if (f.iseven()) // 0 < f must be odd

LINT::panic (E_LINT_VAL, "findprime", 3, __LINE__);

LINT p = randBBS (pmin, pmax);

LINT t = pmax - pmin;

if (p.iseven())

{

++p;

}

if (p > pmax)

{

p = pmin + p % (t + 1);

}

while ((gcd (p - 1, f) != 1) || !p.isprime())

{

++p;

++p;

while (p > pmax)

{

p = pmin + p % (t + 1);

390

An Application Example: The RSA Cryptosystem

if (p.iseven())

{

++p;

}

}

}

return p;

}

Additionally, the function findprime() is overloaded so that instead of the
interval boundaries pmin and pmax a binary length can be set.

Function: generation of a prime number p within the interval[
2�−1, 2� − 1

]
satisfying the additional condition

gcd(p − 1, f) = 1, f an odd positive integer

Syntax: LINT

findprime(USHORT l, const LINT& f);

Input: l: desired binary length
f: odd positive integer, which should be relatively
prime to p − 1

Return: LINT prime p with gcd(p − 1, f)

With regard to the key length to be chosen, a look at the development
worldwide of attempts at factorization is most informative: In April 1996 after
months-long cooperative work at universities and research laboratories in the
USA and Europe under the direction of A.K. Lenstra3 the RSA modulus

RSA-130 = 18070820886874048059516561644059055662781025167694013

4917012702145005666254024404838734112759081

2303371781887966563182013214880557

with 130 decimal places was factored as

3 Lenstra: Arjen K.: Factorization of RSA-130 using the Number Field Sieve, http://
dbs.cwi.nl.herman.NFSrecords/RSA-130; see also [Cowi].

391

Chapter 17

RSA-130 = 39685999459597454290161126162883786067576449112810064

832555157243

× 4553449864673597218840368689727440886435630126320506

9600999044599.

Then in February 1999, RSA-140 was factored into its two 70-digit factors. This
success was accomplished under the direction of Herman J. J. te Riele of CWI
in the Netherlands with teams from the Netherlands, Australia, France, Great
Britain, and the USA.4 RSA-130 and RSA-140 came from a list of 42 RSA moduli
published in 1991 by the firm RSA Data Security, Inc. as encouragement to the
cryptographic research community.5 The calculations that led to the factorization
of RSA-130 and RSA-140 were divided among a large number of workstations and
the results collated. The calculational effort to factor RSA-140 was estimated to be
2000 MIPS years6 (for RSA-130 it was about 1000 MIPS years).

Only a short time later, namely at the end of August 1999, news of the
factorization of RSA-155 flashed across the globe. At a cost of about 8000 MIPS
years the next number in the list of RSA challenges had been laid to rest, again
under the direction of Herman te Riele with international participation. With the
factorization of

RSA-155 = 1094173864157052742180970732204035761200373294544920599

0913842131476349984288934784717997257891267332497

625752899781833797076537244027146743531593354333897

into the two 78-digit factors

RSA-155 = 10263959282974110577205419657399167590071656780803

8066803341933521790711307779

× 1066034883801684548209272203600128786792079585759

89291522270608237193062808643

the magical threshold of 512 was crossed, a length that for many years had been
considered safe for key lengths.

4 E-mail from Herman.te.Riele@cwi.nl in Number Theory Network of 4 February 1999. See also
http://www.rsasecurity.com.

5 http://www.rsasecurity.com.
6 MIPS = mega instructions per second measures the speed of a computer. A computer works at

1 MIPS if is can execute 700,000 additions and 300,000 multiplications per second.

392

An Application Example: The RSA Cryptosystem

After the factorization of the next RSA challenge, RSA-160, with the
participation of the Gernab Institute for Security in Information Technology (BSI)
in Bonn, in April 2003, it was in December 2003 that a consortium of the University
of Bonn; the Max Planck Institute for Mathematics, in Bonn; the Institute for
experimental Mathematics, in Essen; and the BSI factored the 174-digit number

RSA-576 = 18819881292060796383869723946165043980716356337941738

2700763356422988859715234665485319060606504743045

3173880113033967161996923212057340318795506569962

21305168759307650257059

into two 87-digit factors:

RSA-576 = 39807508642406493739712550055038649119906436234252670

8406385189575946388957261768583317

× 47277214610743530253622307197304822463291469530209711

6459852171130520711256363590397527.

The question of what key length is to be considered adequate for the RSA
algorithm is revised each time progress in factorization is made. A. K. Lenstra
and Eric R. Verheul [LeVe] provide some concrete advice in this regard in their
description of a model for the determination of recommended key lengths
for many types of cryptosystems. Beginning with a set of well-founded and
conservative assumptions, combined with current findings, they calculate some
prognoses as to minimum key lengths to recommend in the future and display
them in tabular form. The values shown in Table 17-1, which are valid for
asymmetric procedures like RSA, El-Gamal, and Diffie–Hellman, are taken from
their results.

Table 17-1. Recommended key lengths according to Lenstra and Verheul

Year Key Length (in Bits)

2001 990

2005 1149

2010 1369

2015 1613

2020 1881

2025 2174

393

Chapter 17

We may conclude that an RSA key should possess no fewer than 1024 binary
digits if it is to provide a comfortable margin of safety for critical applications.
We may conclude as well, however, that successes in factorization are gradually
approaching this value, and one must keep careful tabs on developments. It
is therefore worthwhile to distinguish different application purposes and for
sensitive applications to consider using 2048 or more binary digits (cf. [Schn],
Chapter 7, and [RegT], Appendix 1.4).7 With the FLINT/C package we are well
equipped to produce such key lengths. We need not be too concerned that the
expense of factorization decreases in proportion to the speed of new hardware,
since this same hardware allows us to create longer keys as required. The security
of the RSA algorithm can thus always be ensured by keeping sufficiently ahead of
the progress in factorization.

How many such keys are available? Are there enough so that every man,
woman, and child on the planet (and perhaps even their pet cats and dogs) can be
provided one or more RSA keys? To this the prime number theorem provides the
answer, according to which the number of prime numbers less than an integer x is
asymptotically approximated by x/ ln x (cf. page 220): Moduli of length 1024 bits
are generated as products of two prime numbers each of length approximately
512 bits. There are about 2512/512 such primes, that is, about 10151, each pair of
which forms a modulus. If we let N = 10151, then there are N(N − 1)/2 such
pairs, which comes to about 10300 different moduli for which additionally that
number again can be chosen for secret key components. This overwhelmingly
large number is difficult to grasp, but consider, for example, that the entire visible
universe contains “only” about 1080 elementary particles (cf. [Saga], Chapter 9).
To put it another way, if every person on Earth were given ten new moduli every
day, then the process could continue for 10287 years without a modulus being
reused, and to date Earth has existed “only” a few billion years.

Finally, that an arbitrary text can be represented as a positive integer is
obvious: By associating a unique integer to each letter of an alphabet texts can
be interpreted in any number of ways as integers. A common example is the
numerical representation of characters via ASCII code. An ASCII-encoded text
can be turned into a single integer by considering the code value of an individual
character as a digit to base 256. The probability that such a process would result
in an integer M for which gcd(M, n) > 1, that is, such that M contains as a
factor one of the factors p, q, of an RSA key n, is vanishingly small. If M is too
large for the modulus n of an RSA key, that is, larger than n − 1, then the text can
be divided into blocks whose numerical representations M1, M2, M3, . . . all are
less than n. These blocks must then be individually encrypted.

For texts of considerable length this becomes tiresome, and therefore one
seldom uses the RSA algorithm for the encryption of long texts. For this purpose

7 It is useful to choose RSA keys of binary length a multiple of 8, in conformity with the
convention that such keys should end at the end of a byte.

394

An Application Example: The RSA Cryptosystem

one may employ symmetric cryptosystems (such as Triple-DES, IDEA, or Rijndael;
see Chapter 11 and [Schn], Chapters 12, 13, 14), with which the process goes
much more quickly and with equivalent security. For an encrypted transmittal of
the necessary key, which must be kept secret with symmetric procedures, the RSA
algorithm is perfectly suited.

17.3 Digital RSA Signatures

“Please, your Majesty,” said the Knave, “I didn’t write it, and they can’t prove
that I did: there’s no name signed at the end.”

—Lewis Carroll, Alice’s Adventures in Wonderland

To clarify how the RSA algorithm is used for generating digital signatures we
consider the following process, by which a participant A sends a message M with
her digital signature to a participant B, upon which B checks the validity of the
signature.

1. A generates her RSA key with components nA, dA, and eA. She then
transmits her public key 〈eA, nA〉 to B.

2. A would now like to send a message M with her signature to B. To this end
A generates the redundancy R = µ(M) with R < nA using a redundancy
function µ (see below). Then A calculates the signature

S = RdA mod nA

and sends (M, S) to B.

3. B possesses the public key 〈eA, nA〉 of A. After B has received the message
M and the signature S from A, then B calculates

R = µ(M),

R′ = SeA mod nA,

with the public key 〈eA, nA〉 of A.

4. B now checks whether R′ = R. If this is the case, then B accepts the digital
signature of A . Otherwise, B rejects it.

Digital signatures that must be checked by a separate transmittal of the
signed message M are called digital signatures with appendix.

The signature procedures with appendix are used primarily for signing
messages of variable lengths whose numerical representation exceeds the
modulus, so that M ≥ n. In principle, one could, as we did above, divide the
message into blocks M1, M2, M3, . . . of suitable lengths Mi < n and encrypt
and sign each block separately. However, leaving aside the fact that in such a case

395

Chapter 17

a counterfeiting problem arises consisting in the possibility of mixing up the order
of the blocks and the signatures belonging to the blocks, there are two further
compelling reasons to employ, instead of construction of blocks, the function
µ that we named the redundancy function in the paragraph above in which we
discussed calculating a digital signature.

The first is that a redundancy function µ : M → Zn maps arbitrary messages
M from a message space M into the residue class ring Zn, whereby messages
typically are reduced by the application of hash functions (cf. page 398) to values
z � 2160, which then are linked with predefined sequences of characters. Since
the image of M under µ is signed in a single RSA step and hash functions can be
calculated quickly by design, the use of such a procedure represents great savings
in time over the number of RSA steps required for the individual blocks of M .

The second reason is that the RSA algorithm has an undesirable property for
creating signatures: For two messages M1 and M2 the multiplicative relation

(M1M2)
d mod n =

(
Md

1 Md
2

)
mod n (17.4)

holds, which supports the counterfeiting of signatures if no measures are taken
against it.

On account of this property, called homomorphism, of the RSA function
it would be possible without the inclusion of redundancy R to have messages
digitally signed with a “hidden” signature. To do this one could select a secret
message M and a harmless message M1, from which a further message
M2 := MM1 mod nA is formed. If one succeeded in getting a person or
authority A to digitally sign the messages M1 and M2, then one would obtain
the signatures S1 = MdA

1 mod nA and S2 = MdA
2 mod nA, from which one can

create the signature to M by calculating S2S
−1
1 mod nA, which was probably

not what A had in mind, though nonetheless A may not have noticed this when
generating the signatures S1 and S2: The message M would in this case be said
to have a hidden signature.

To be sure, one could counter that with high probability M2 does not
represent a meaningful text and that anyway, A would not be well advised to
sign M1 or M2 at a stranger’s request and without examining the contents with
care. Yet one should not rely on such assumptions of reasonableness when it
comes to human behavior in order to justify the weaknesses of a cryptographic
protocol, especially when such weaknesses can be eliminated, such as in this case
by including redundancy. In order to achieve this redundancy, the redundancy
function µ must satisfy the property

µ (M1M2) �= µ (M1) µ (M2) (17.5)

for all M1, M2 ∈ M and thus ensure that the signature function itself does not
possess the undesirable homomorphism property.

Supplementary to the signature procedures with appendix there are
additional methods known that make it possible to extract the signed message

396

An Application Example: The RSA Cryptosystem

from the signature itself, the so-called digital signatures with message recovery (cf.
[MOV], Chapter 11, [ISO2], and [ISO3]). Digital signatures with message recovery
based on the RSA algorithm are particularly suited for short messages with a
binary length less than one-half the binary length of the modulus.

However, in every case the security properties of redundancy functions
should be carefully examined, such as is demonstrated by the procedure
published in 1999 by Coron, Naccache, and Stern for attacking such schemes.
The procedure is based on an attacker having access to a large number of
RSA signatures attached to messages whose representation as an integer is
divisible exclusively by small primes. Based on such a makeup of the messages
it is possible under favorable conditions, without knowledge of the signature
key, to construct additional signatures to additional messages, which would
amount to counterfeiting these signatures (cf. [Coro]). The ISO has reacted to this
development: In October 1999 the workgroup SC 27 removed the standard [ISO2]
from circulation and published the following announcement:

Based on various attacks on RSA digital signature schemes . . . , it is the
consensus of ISO/IEC JTC 1/SC 27 that IS 9796:1991 no longer provides
sufficient security for application-independent digital signatures and
is recommended to be withdrawn.8

The withdrawn standard refers to digital signatures for which the RSA function is
applied directly to a short message. Signatures with appendix, which arise by way
of a hash function, are not included.

A widely distributed redundancy scheme for which the attack of Coron,
Naccache, and Stern has at best a theoretical significance and represents no real
threat is set by the PKCS #1 format of RSA laboratories (cf. [RDS1], [Coro], pages
11–13, and [RDS2]). The PKCS #1 format specifies how a so-called encryption
block EB should appear as input value to an encryption or signing operation:

EB = 00‖BT‖PS1‖ . . . ‖PS�‖00‖D1‖ . . . ‖Dn.

At the head, after the introductory 00 byte, is a byte BT that describes the block
type (01 for private key operations, that is, signatures; 02 for public key operations,
that is, encryption) and then at least eight filler bytes PS1 . . . PS�,
 ≥ 8, with
the value FF (hex) in the case of signing and nonzero random values in the case
of encryption. There follows 00 as separator byte, and then come finally the
data bytes D1 . . . Dn: the payload, so to speak. The number
 of filler bytes PSi

depends on the size of the modulus m and the number n of data bytes: If k is
defined by

28(k−1) ≤ m < 28k, (17.6)

8 ISO/IEC JTC 1/SC27: Recommendation on the withdrawal of IS 9796:1991, 6 October 1991.

397

Chapter 17

then

 = k − 3 − n, (17.7)

and for the number n of data bytes, it follows that

n ≤ k − 11. (17.8)

The minimum number 8 ≤
 of filler bytes is required for encryption for
reasons of security. It is thus possible to prevent an attacker from attaching a
catalog of encrypted messages to a public key and comparing the result with a
given encrypted text to determine the plain text without knowing the associated
secret key.9

In particular, when one and the same message is encrypted with several keys,
it is important that the PSi be random numbers that are determined anew for
each encryption operation.

In the signing case the data bytes Di are typically constructed from an
identifier for a hash function H and the value H(M) of this hash function (called
the hash value), which represents the text M to be signed. The resulting data
structure is called the DigestInfo. The number of data bytes depends in this
case on the constant length of the hash value, independent of the length of the
text. This is particularly advantageous when M is much longer than H(M). We
shall not go into the precise process for the construction of the data structure
DigestInfo, but simply assume that the data bytes correspond to the value H(M)

(but see in this connection [RDS1]).
From the cryptographic point of view there are several fundamental

requirements to place on hash functions so as not to diminish the security of
a redundancy scheme based on such a function and thereby call the entire
signing procedure into question. When we consider the use of hash and
redundancy functions in connection with digital signatures and the possibilities
for manipulating them that might arise, we observe the following:

In accordance with our considerations thus far, we start with the assumption
that a digital signature with appendix relates to a redundancy R = µ(M) whose
principal component is the hash value of the text to be signed. Two texts M and
M ′ for which H(M) = H(M ′), and consequently µ(M) = µ(M ′), possess
the same signature S = Rd = µ(M)d = µ(M ′)d mod n. The recipient of a
signature to the text M could now conclude that the signature actually refers
to the text M ′, which in general would be contrary to the intent of the sender.
Likewise, the sender could assume actually to have signed the text M ′. The point
here is that texts M �= M ′ with H(M) = H(M ′) always exist, due to the fact

9 We have already mentioned the attack of Boneh, Joux, and Nguyen.

398

An Application Example: The RSA Cryptosystem

that infinitely many texts are mapped to finitely many hash values. This is the
price to be paid for the convenience of hash values of fixed length.10

Since we must also assume the existence of texts that possess identical
signatures in relation to a particular hash or redundancy function (where we
assume that the same signature key has been used), then it is crucial that such
texts not be easy to find or to construct.

In sum, a hash function should be easy to compute, but this should not be
the case for the inverse mapping. That is, given a value H of a hash function it
should not be easy to find a preimage that is mapped to H . Functions with this
property are called one-way functions. Furthermore, a hash function must be
collision-free, meaning that it must not be easy to find two different preimages
of a given hash value. Until the present, these properties were satisfied by hash
functions such as the widely used functions RIPEMD-160 (cf. [DoBP]) and the
Secure Hash Algorithm SHA-1 (cf. [ISO1]). It now appears, however, that for digital
signatures in the near term (according to NIST and [RegT] from 2010 on), lengths
of hash values of 256 bits and greater will be required.

In recent months, reports of the discovery of collisions have provoked a
discussion about a requirement to migrate to new hash algorithms. In 2004,
results were published related to the hash functions MD4, MD5, HAVAL128,
RIPEMD, SHA-0,11 and a weak variant of SHA-1 with a reduced number of passes
(see [WFLY]). In the meantime, while all of these algorithms have come to be
considered broken, and in particular are considered unsuitable for use in creating
digital signatures, a similar development for SHA-1 seems to be in store, with
uncertainty reigning while the drama runs its course. Even if reports on this
issue in February 2005, whose sensational publication seems to have been more
for serving the interests of those bearing the tidings than of the situation itself,
have not led to the outright rejection of the algorithm, the noose seems to be
tightening. However, a panicked reaction based on vague suppositions should
be rejected, given its worldwide use and the significance of SHA-1 for countless
applications.

Given the many different uses to which SHA-1 is being put, it is not very
productive to debate what measures may need to be taken before the possible
consequences of new methods of attack for individual application areas and
thereby the actions to be taken are carefully analyzed. A closer look will show
that in most cases, no rush to action is required, and instead, the measures
already taken in the mid and long terms should suffice. New hash functions will
be needed that will meet security needs for the foreseeable future, given what
is known about the newest methods of attack, and these new functions should

10 In the language of mathematics we would say that hash functions H : M → Zn that map
texts of arbitrary length to values in Zn are not injective.

11 This was an earlier version of SHA-1 from 1993, which in 1995 was replaced by SHA-1, which
was designed to overcome specific weaknesses.

399

Chapter 17

not be finding themselves in the headlines every half year. Whether the answer
already exists in SHA-224, SHA-256, SHA-384, or SHA-512 (see [F180]) needs to
be investigated. An increase in the block length may not suffice to compensate
for possible weaknesses in the functional building blocks of a hash algorithm.
It is always possible that methods of attack will be developed whose effect is
independent of the block length, as has been discussed in relation to the hash
algorithms that we have mentioned.

How one finds suitable algorithms has been demonstrated by the European
Union in the development of RIPEMD in connection with the RIPE project,12

and in the USA with the competition for the development of the AES. Within
the framework of a public international competition, new candidates for hash
algorithms with the greatest possible transparency can be put to the test and the
most suitable algorithms adopted. The only disadvantage of such a process is that
it costs time: In the case of AES it was about three years from the announcement
of the competition until a victor was crowned, and four years altogether before
the standard was published in 2001. Given this experience, until 2010 is enough
time for the development and standardization of new hash functions, although
the migration to a new algorithm (or, better, two or three of them) will take time.

Whether in specific applications a switch to other transitional algorithms
might be necessary, and what consequences might be thereby associated, can be
evaluated only on a case by case basis.

We shall not go into further detail on this topic, which is very important to
cryptography. The interested reader is referred to [Pren] or [MOV], Chapter 9,
as well as the literature cited therein, above all literature on the current state of
affairs. Algorithms for transforming texts or hash values into natural numbers can
be found in [IEEE], Chapter 12: “Encoding Methods” (we already have available
the corresponding functions clint2byte_l() and byte2clint_l(); cf. page 152).
Implementations of RIPEMD-160, SHA-1, and SHA-256 can be found in ripemd.c,
sha1.c, and sha256.c in the downloadable source code.

In thinking about the signature protocol described above we are immediately
confronted with the following question: How can B know whether he is in
possession of the authentic public key of A? Without such certainty B cannot
trust the signature, even if it can be verified as described above. This becomes
critical when A and B do not know each other personally or when there has been
no personal exchange of public keys, which is the normal case in communication
over the Internet.

To make it possible for B nonetheless to trust in the authenticity of A’s
digital signature, A can present her communication partner a certificate from a
certification authority that attests to the authenticity of A’s public key. An informal

12 RIPEMD has been further developed to RIPEMD160 [DoBP]. Although RIPEMD160 has
meanwhile been rejected in favor of SHA-1, this algorithm in its current state remains
unbroken.

400

An Application Example: The RSA Cryptosystem

“receipt,” which one may believe or not, is, of course, inadequate. A certificate
is rather a data set that has been formatted according to some standard13 that
among other things speaks to the identity of A as well as her public key and that
itself has been digitally signed by the certification authority.

The genuineness of a participant’s key can be verified with the help of
the information contained in the certificate. Applications that support such
verification in software already exist. The future multiplicity of such applications,
whose technical and organizational basis will be based on so-called public key
infrastructures (PKI), can today only be guessed at. Concrete uses are emerging
in the digital signing of e-mail, the validation of commercial transactions,
e-commerce and m-commerce, electronic banking, document management, and
administrative procedures (see Figure 17-1).

Version
Serial Number
Signature
Issuer Name
Validity
Subject Name
Subject Public Key Info
Issuer Unique Identifier
Subject Unique Identifier
Extensions

(Identifies the Version of the Certificate, e.g., V3)
(Unique Integer Identifier for the Certificate)

(Algorithm ID Used to Sign the Certificate)
(X.500 Distinguished Name of the Issuer)

(Not Before and Not After Validity Times)
(X.500 Distinguished Name of the Owner)

(Public Key of the Owner)
(Opt. Unique ID of the Issuing CA)

(Opt. Unique ID of the Owner)
(Optional Extensions)

Digital Signature of the
Certification Authority

1101111100001 1101001001 1110...

Hashing

RSA

1001 11000101 111010101 110110...

Secret Key of the Certification Authority

Figure 17-1. Example of the construction of a certificate

On the assumption that B knows the public key of the certification authority,
B can now verify the certificate presented by A and thereafter A’s signature to
become convinced of the authenticity of the information.

13 Widely used is ISO 9594-8, which is equivalent to the ITU-T (formerly CCITT) recommenda-
tion X.509v3.

401

Chapter 17

The example presented in Figure 17-2, which shows a client’s digitally
signed bank statement together with the certificate of the bank presented by a
certification authority, demonstrates this process.

W3-Bank

Statement of Account

Name: Browser,
Bernard

Account: 12345 67890
Balance: $4286.3737
Date: 06/14/2000

Signature :
11101 01101 10100 11100 01
11010 01001 11001 11111 º

Version
Serial Number
Signature
Issuer Name
Validity

Subject Name
Issuer Identifier

10110 11110 11000 11110 0
01111 00000 11011 1001 º

Digitally Signed
Bank Statement

Public Key
of the Bank

Certificate of the Bank

B verifies the certificate presented by the bank and uses
the public key of the bank to verify the digital signature of the bank

Figure 17-2. Certification of a digital signature

Such a bank statement has the advantage that it can reach the client over any
electronic transmittal path, such as e-mail, in which it would be further encrypted
to protect the confidentiality of the information.

However, the problem of trust has not been hereby miraculously cleared up,
but merely shifted: Now B need no longer believe directly in the validity of A’s
key (in the above example that of the bank), but in exchange must check the
genuineness of the certificate presented by A. For certainty to be attained, the
validity of certificates must be verified anew for every occurrence, either from
the source that issued the certificate or an authority that represents it. Such a
procedure can succeed only if the following conditions are met:

• the public key of the certification authority is known;

• the certification authority takes the greatest care in the identification of the
receivers of certificates and in the protection of their private certification
keys.

To achieve the first of these desiderata the public key of the certification
authority can be certified by an additional, higher, authority, and so forth,
resulting in a hierarchy of certification authorities and certificates. However,
verification along such a hierarchy assumes that the public key of the highest
certification authority, the root certification authority, is known and can be
accepted as authentic. Trust in this key must thus be established by other means
through suitable technical or organizational measures.

402

An Application Example: The RSA Cryptosystem

The second condition holds, of course, for all authorities of a certification
hierarchy. A certification authority, in the sense of granting legal force to a
signature, must establish the organizational and technical processes for which
detailed requirements have been set in law or associated implementing orders.

At the end of 1999, a European Union directive was adopted that established
a framework for the use of electronic signatures in Europe (cf. [EU99]). The
guideline was enacted to avoid conflicting regulations among the individual
member states. In decisive points, it requires regulations that deviate from SigG
in its original 1997 version, in which it joins the “technical-legal approach,” which
is also followed by the SigG of 1997, with the “market-economy approach” to form
a “hybrid approach.” The technical-legal approach is represented by “advanced”
and “qualified electronic signatures,” and the market-economy approach by
“electronic signatures.”

In the area of the market-economy approach, no technical requirements
are made on the “electronic.” For qualified electronic signatures, the technical
and organizational requirements are regulated, which contributes to the actual
security of these signatures, as the basis for legal consequences being able to be
linked to qualified electronic signatures.

Important components of the regulations for guaranteeing the actual security
are, in addition to the liability of certification service providers, the requirements
for technical security of the components used and the security requirements for
the facilities and processes of the certification service providers, as well as their
supervision.

A corresponding revision of the German signature law was concluded in
the first quarter of 2001 (see [SigG]), in which the guidelines of the EU were
implemented. The significant change with respect to the old version of the law is
the acceptance of “qualified electronic signatures,” which now are permitted as a
substitute for written signatures and as admissible evidence in court.

The goal of this law is to create basic conditions for qualified electronic
signatures. The use of electronic signatures is optional, though certain regulations
could require them in specific instances. In particular, regulations could be
established regarding the use of qualified electronic signatures in the work of
public institutions.

We now leave this interesting topic, which can pursued further in [Bies],
[Glad], [Adam], [Mied], and [Fegh], and turn our attention, finally, to the
implementation of C++ classes that provide for encryption and the generation of
digital signatures.

17.4 RSA Classes in C++

In this section we develop a C++ class RSAkey that contains the functions

403

Chapter 17

• RSAkey::RSAkey() for RSA key generation;

• RSAkey::export() for exporting public keys;

• RSAkey::decrypt() for decryption;

• RSAkey::sign() for digital signing using the hash function RIPEMD-160;

as well as a class RSApub for the storage and application of public keys only with
the functions

• RSApub::RSApub() for importing a public key from an object of the class
RSAkey;

• RSApub::crypt() for encrypting a text;

• RSApub::authenticate() for authenticating a digital signature.

The idea is not merely to look at cryptographic keys as numbers with
particular cryptographic properties, but to consider them as objects that bring
with themselves the methods for their application and make them available to
the outside world but that nonetheless restrictively prevent unmediated access
to private key data. Objects of the class RSAkey thus contain, after the generation
of a key, a public and a private RSA key component as private elements, as well
as the public functions for encryption and signing. Alternatively, the constructor
functions enable the generation of keys

• with fixed length and internal initialization of the BBS random number
generator;

• with adjustable length and internal initialization of the BBS random
number generator;

• with adjustable length and passing of a LINT initialization value for the BBS
random number generator via the calling program.

Objects of the class RSApub contain only the public key, which they must
import from an RSAkey object, and the public functions for encryption and
verification of a signature. To generate an object of the RSApub class, then, an
initialized RSAkey object must already exist. In contrast to objects of type RSAkey,
RSApub objects are considered unreliable and can be more freely handled than
RSAkey objects, which in serious applications may be transmitted or stored in data
media only in encrypted form or protected by special hardware measures.

Before we realize these example classes we would like to set ourselves
some boundary conditions that will limit the implementation cost at something
appropriate for what is merely an example: For the sake of simplicity, input values
for RSA encryption will be accepted only if they are smaller than the modulus;
a subdivision of longer texts into blocks will not occur. Furthermore, we shall
leave aside the more costly functional and security-related features that would be

404

An Application Example: The RSA Cryptosystem

necessary in a full-fledged implementation of the RSA classes (see in this regard
the pointer on page 384).

However, we do not wish to do without an effective possibility of speeding
up the calculations for decryption or signing. By application of the Chinese
remainder theorem (see page 203) the RSA operations with the secret key d can
be made about four times as fast as with the usual method of calculating a single
power: Given a secret key 〈d, n〉 with n = pq we form dp := d mod (p − 1)

and dq := d mod (q − 1) and employ the extended Euclidean algorithm to
compute the representation 1 = rp + sq, from which we extract the value r as
the multiplicative inverse of p modulo q (cf. Section 10.2). We then employ the
components p, q, dp, dq, r to calculate c = md mod n as follows:

1. Calculate a1 ← mdp mod p and a2 ← mdq mod q.

2. Calculate c ← a1 + p ((a2 − a1) r mod q).

After step 1 we have a1 ≡ mdp ≡ md mod p and a2 ≡ mdq ≡ md mod q.
To see this, just use the little theorem of Fermat (cf. page 177), according to which
mp−1 ≡ 1 mod p, respectively mq−1 ≡ 1 mod q. From d =
(p − 1) + dp with
integral
 it follows that

md ≡ m�(p−1)+dp ≡
(
mp−1

)�
mdp ≡ mdp mod p, (17.9)

and analogously, we have the same for md mod q. An application of the Garner
algorithm (see page 207) with m1 := p, m2 := q, and r := 2 shows us at once
that c in step 2 represents the desired solution. Rapid decryption is implemented
in the auxiliary function RSAkey::fastdecrypt(). All exponents modulo p, q, or n

are calculated via Montgomery exponentiation with the LINT function (cf. page
344).

// Selection from the include file rsakey.h

. . .

#include "flintpp.h"

#include "ripemd.h"

#define BLOCKTYPE_SIGN 01

#define BLOCKTYPE_ENCR 02

// The RSA key structure with all key components

typedef struct

{

LINT pubexp, prvexp, mod, p, q, ep, eq, r;

USHORT bitlen_mod;// binary length of modulus

USHORT bytelen_mod; // length of modulus in bytes

} KEYSTRUCT;

405

Chapter 17

// the structure with the public key components

typedef struct

{

LINT pubexp, mod;

USHORT bitlen_mod;// binary length of the modulus

USHORT bytelen_mod; // length of modulus in bytes

} PKEYSTRUCT;

class RSAkey

{

public:

inline RSAkey (void) {};

RSAkey (int);

RSAkey (int, const LINT&);

PKEYSTRUCT export_public (void) const;

UCHAR* decrypt (const LINT&, int*);

LINT sign (const UCHAR*, int);

private:

KEYSTRUCT key;

// auxiliary functions

int makekey (int, const LINT& = 1);

int testkey (void);

LINT fastdecrypt (const LINT&);

};

class RSApub

{

public:

inline RSApub (void) {};

RSApub (const RSAkey&);

LINT crypt (const UCHAR*, int);

int verify (const UCHAR*,ž int, const LINT&);

private:

PKEYSTRUCT pkey;

};

// selection from module rsakey.cpp

. . .

#include "rsakey.h"

//

// member functions of the class RSAkey

// constructor generates RSA keys of specified binary length

RSAkey::RSAkey (int bitlen)

{

406

An Application Example: The RSA Cryptosystem

int done;

seedBBS ((unsigned long)time (NULL));

do

{

done = RSAkey::makekey (bitlen);

}

while (!done);

}

// constructor, generates RSA keys of specified binary length to the

// optional public exponent PubExp. The initialization of random number

// generator randBBS() is carried out with the specified LINT argument rnd.

// If PubExp == 1 or it is absent, then the public exponent is chosen

// randomly. If PubExp is even, then an error status is generated

// via makekey(), which can be caught by try() and catch() if

// error handling is activated using Exceptions.

RSAkey::RSAkey (int bitlen, const LINT& rand, const LINT& PubExp)

{

int done;

seedBBS (rand);

do

{

done = RSAkey::makekey (bitlen, PubExp);

}

while (!done);

}

// export function for public key components

PKEYSTRUCT RSAkey::export_public (void) const

{

PKEYSTRUCT pktmp;

pktmp.pubexp = key.pubexp;

pktmp.mod = key.mod;

pktmp.bitlen_mod = key.bitlen_mod;

pktmp.bytelen_mod = key.bytelen_mod;

return pktmp;

}

// RSA decryption

UCHAR* RSAkey::decrypt (const LINT& Ciph, int* LenMess)

{

UCHAR* EB = lint2byte (fastdecrypt (Ciph), LenEB);

UCHAR* Mess = NULL;

// Parse decrypted encryption block, PKCS#1 formatted

if (BLOCKTYPE_ENCR != parse_pkcs1 (Mess, EB, LenEB, key.bytelen_mod))

{

407

Chapter 17

// wrong block type or incorrect format

return (UCHAR*)NULL;

}

else

{

return Mess; // return pointer to message

}

}

// RSA signing

LINT RSAkey::sign (const UCHAR* Mess, int LenMess)

{

int LenEncryptionBlock = key.bytelen_mod - 1;

UCHAR HashRes[RMDVER>>3];

UCHAR* EncryptionBlock = new UCHAR[LenEncryptionBlock];

ripemd160 (HashRes, (UCHAR*)Mess, (ULONG)LenMess);

if (NULL == format_pkcs1 (EncryptionBlock, LenEncryptionBLock,

BLOCKTYPE_SIGN, HashRes, RMDVER >> 3))

{

delete [] EncryptionBlock;

return LINT (0);// error in formatting: message too long

}

// change encryption block into LINT number (constructor 3)

LINT m = LINT (EncryptionBlock, LenEncryptionBlock);

delete [] EncryptionBlock;

return fastdecrypt (m);

}

//

// private auxiliary functions of the class RSAkey

// . . . among other things: RSA key generation according to IEEE P1363, Annex A

// If parameter PubExp == 1 or is absent, a public exponent

// of length half the modulus is determined randomly.

int RSAkey::makekey (int length, const LINT& PubExp)

{

// generate prime p such that 2 ˆ (m - r - 1) <= p < 2 ˆ (m - r), where

// m = �(length + 1)/2� and r random in interval 2 <= r < 15

USHORT m = ((length + 1) >> 1) - 2 - usrandBBS_l () % 13;

key.p = findprime (m, PubExp);

// determine interval bounds qmin and qmax for prime q

// set qmin = �(2 ˆ (length - 1))/p + 1�
LINT qmin = LINT(0).setbit (length - 1)/key.p + 1;

// set qmax = �(2 ˆ length - 1)/p)�
LINT qmax = (((LINT(0).setbit (length - 1) - 1) << 1) + 1)/key.p;

408

An Application Example: The RSA Cryptosystem

// generate prime q > p with length qmin <= q <= qmax

key.q = findprime (qmin, qmax, PubExp);

// generate modulus mod = p*q such that 2 ˆ (length - 1) <= mod < 2 ˆ length

key.mod = key.p * key.q;

// calculate Euler phi function

LINT phi_n = key.mod - key.p - key.q + 1;

// generate public exponent if not specified in PubExp

if (1 == PubExp)

{

key.pubexp = randBBS (length/2) | 1; // half the length of the modulus

while (gcd (key.pubexp, phi_n) != 1)

{

++key.pubexp;

++key.pubexp;

}

}

else

{

key.pubexp = PubExp;

}

// generate secret exponent

key.prvexp = key.pubexp.inv (phi_n);

// generate secret components for rapid decryption

key.ep = key.prvexp % (key.p - 1);

key.eq = key.prvexp % (key.q - 1);

key.r = inv (key.p, key.q);

return testkey();

}

// test function for RSA-key

int RSAkey::testkey (void)

{

LINT mess = randBBS (ld (key.mod) >> 1);

return (mess == fastdecrypt (mexpkm (mess, key.pubexp, key.mod)));

}

// rapid RSA decryption

LINT RSAkey::fastdecrypt (const LINT& mess)

{

LINT m, w;

m = mexpkm (mess, key.ep, key.p);

w = mexpkm (mess, key.eq, key.q);

w.msub (m, key.q);

w = w.mmul (key.r, key.q) * key.p;

409

Chapter 17

return (w + m);

}

//

// member functions of the class RSApub

// constructor RSApub()

RSApub::RSApub (const RSAkey& k)

{

pkey = k.export();// import public key from k

}

// RSA encryption

LINT RSApub::crypt (const UCHAR* Mess, int LenMess)

{

int LenEncryptionBlock = key.bytelen_mod - 1;

UCHAR* EncryptionBlock = new UCHAR[LenEncryptionBlock];

// format encryption block according to PKCS #1

if (NULL == format_pkcs1 (EncryptionBlock, LenEncryptionBlock,

BLOCKTYPE_ENCR, Mess, (ULONG)LenMess))

{

delete [] EncryptionBlock;

return LINT (0); // formatting error: message too long

}

// transform encryption block into LINT number (constructor 3)

LINT m = LINT (EncryptionBlock, LenEncryptionBlock);

delete [] EncryptionBlock;

return (mexpkm (m, pkey.pubexp, pkey.mod));

}

// verification of RSA signature

int RSApub::verify (const UCHAR* Mess, int LenMess, const LINT& Signature)

{

int length, BlockType verification = 0;

UCHAR m H1[RMDVER>>3];

UCHAR* H2 = NULL;

UCHAR* EB = lint2byte (mexpkm (Signature, pkey.pubexp, pkey.mod), &length);

ripemd160 (H1 (UCHAR*)Mess, (ULONG)LenMess);

// take data from decrypted PKCS #1 encryption block

BlockType = parse_pkcs1 (H2, EB, &length, pkey.bytelen_mod);

if ((BlockType == 0 || BlockType == 1) && // Block Type Signature

(HashRes2 > NULL) && (length == (RMDVER >> 3)))

{

verification = !memcmp ((char *)H1, (char *)H2, RMDVER >> 3);

}

410

An Application Example: The RSA Cryptosystem

return verification;

}

The class implementations RSAkey and RSApub contain in addition the following
operators, which are not discussed further here:

RSAkey& operator= (const RSAkey&);

friend int operator== (const RSAkey&, const RSAkey&);

friend int operator!= (const RSAkey&, const RSAkey&);

friend fstream& operator<< (fstream&, const RSAkey&);

friend fstream& operator>> (fstream&, RSAkey&);

and

RSApub& operator= (const RSApub&);

friend int operator== (const RSApub&, const RSApub&);

friend int operator!= (const RSApub&, const RSApub&);

friend fstream& operator<< (fstream&, const RSApub&);

friend fstream& operator>> (fstream&, RSApub&);

These are for elementwise allocation, tests for equality and inequality, as well
as reading and writing of keys to and from mass storage. However, one must note
that the private key components are stored in plain text, just as the public key is.
For a real application the secret keys must be stored in encrypted form and in a
secure environment.

There are also the member functions

RSAkey::purge (void),

RSApub::purge (void),

which delete keys by overwriting their LINT components with zeros. The
formatting of message blocks for encryption or signing corresponding to the
PKCS #1 specification is taken over by the function

UCHAR* format_pkcs1 (const UCHAR* EB, int LenEB,

UCHAR BlockType, const UCHAR* Data, int LenData);

The analysis of decrypted message blocks for verifying the format and for the
extraction of useful data is handled by the function

int parse_pkcs1 (UCHAR*& PayLoad, const UCHAR* EB, int* LenData);

411

Chapter 17

The classes RSAkey and RSApub are extendable in a number of ways. For
example, one could imagine a constructor that accepts a public key as parameter
and generates a suitable modulus and secret key. For a practical implementation
the inclusion of additional hash functions may be necessary. Message blocking
is also required. The list of worthwhile extensions is long, and a full discussion
would break the bounds and the binding of this book.

An example test application of the classes RSAkey and RSApub is to be found
in the module rsademo.cpp contained in the FLINT/C package. The program is
translated with

gcc -O2 -DFLINT_ASM -o rsademo rsademo.cpp rsakey.cpp

flintpp.cpp randompp.cpp flint.c aes.c ripemd.c sha256.c entropy.c random.c

-lflint -lstdc++

if one implements, for example, the GNU C/C++ compiler gcc under Linux and
uses the assembler functions in libflint.a.

412

CHAPTER 18

Do It Yourself:

Test LINT

90% of the time is spent in 10% of the code.

—Robert Sedgewick, Algorithms

WE HAVE ALREADY DISCUSSED THE topic of testing in Chapter 13, where we subjected
the basic arithmetic functions of the first part of the book to extensive static and
dynamic tests. We now require a similar treatment for the validation of the C++
class LINT, and furthermore, we still must provide tests of the number-theoretic C
functions.

The approach of the static tests can be carried over directly to the LINT class,
where the tool PC-lint (see [Gimp]) used for the static analysis of C functions will
stand us here in good stead as well, since we can use it for checking the syntactic
correctness and (within certain bounds) the semantic plausibility of the LINT class
and its elements.

We are also interested in the functional aspects of our class implementation:
We must demonstrate that the methods contained in LINT return correct results.
The process that we used earlier, where the results of equivalent or mutually
inverse operations were used to establish correctness, can also, of course, be
used on C++ functions. In the following example this process is embodied in
the function testdist(), which links addition and multiplication by way of the
distributive law. Even here one can see how much less syntactic complication
is needed in comparison with the test functions in C. The test function consists
principally of two lines of code!

#include <stdio.h>

#include <stdlib.h>

#include "flintpp.h"

void report_error (LINT&, LINT&, LINT&, int);

void testdist (int);

#define MAXTESTLEN CLINTMAXBIT

#define CLINTRNDLN (ulrand64_l()% (MAXTESTLEN + 1))

413

Chapter 18

main()

{

testdist (1000000);

}

void testdist (int nooftests)

{

LINT a;

LINT b;

LINT c;

int i;

for (i = 1; i < nooftests; i++)

{

a = randl (CLINTRNDLN);

b = randl (CLINTRNDLN);

c = randl (CLINTRNDLN);

// test of + and * by application of the distributive law

if ((a + b)*c != (a*c + b*c))

report_error (a, b, c, __LINE__);

}

}

void report_error (LINT& a, LINT& b, LINT& c, int line)

{

LINT d = (a + b) * c;

LINT e = a * c + b * c;

cerr << "error in distributive law before line " << line << endl;

cerr << "a = " << a << endl;

cerr << "b = " << b << endl;

cerr << "(a + b) * c = " << d << endl;

cerr << "a * c + b * c = " << e << endl;

abort();

}

We now leave it to the reader as an exercise to test all the LINT operators in
this or a similar manner. For orientation, one may look at the test routines for the
C functions. However, there are some new aspects to consider, such as the prefix
and postfix operators ++ and --, as well as the fact that == is also an operator that
must be tested. Here are some additional program notes:

• Tests of the error routine panic() with all defined errors, with and without
exceptions;

• Tests of the I/O functions, stream operators, and manipulators;

• Tests of the arithmetic and number-theoretic functions.

414

Do It Yourself: Test LINT

The number-theoretic functions can be tested according to the same
principles as the arithmetic functions. To examine the function to be tested
one is well advised to use inverse functions, equivalent functions, or different
implementations of the same function that are as independent as possible from
one another. We have examples of each of these variants:

• If the Jacobi symbol indicates that an element of a finite ring is a square,
this can be verified by calculating the square root. Conversely, a calculated
square root can be verified as such by a simple modular squaring.

• The function inv() for calculating the multiplicative inverse i of an integer
a modulo n can be tested with the condition ai ≡ 1 mod n.

• For calculating the greatest common divisor of two integers one may make
use of the two FLINT/C functions gcd_l() and xgcd_l(), where the latter
returns the representation of the greatest common divisor as a linear
combination of the arguments. The results can be compared one with the
other, and the linear combination can be constructed, which in turn must
agree with the greatest common divisor.

• Redundance is also to be found in the relation between the greatest
common divisor and the least common multiple: For integers a, b one has
the relation

lcm(a, b) =
|ab|

gcd(a, b)
,

a fruitful relation that can also easily be checked. Additional useful formulas
that relate the greatest common divisor and least common multiple are
presented in Section 10.1.

• Finally, the RSA procedure can be invoked for testing the primality test: If p

or q is not prime, then φ(n) �= (p− 1)(q − 1). The RSA procedure will work
correctly only if the Fermat test for p and q states that p and q are probably
prime. Thus some mutually inverse RSA operations and a comparison of
the decrypted messages with the original messages will certainly reveal
whether the primality test has been implemented correctly.

There are thus sufficiently many and varied approaches to effective testing of
the LINT functions. The reader is encouraged to develop and implement at least
one such test for each LINT function. It is highly effective both as a test and as an
exercise and will develop in the user of the LINT class familiarity with how the
class works and the uses to which it might be put.

415

CHAPTER 19

Approaches for

Further Extensions

ALTHOUGH WE NOW HAVE AT our disposal a software package with a well-founded
and well-rounded suite of functions, we confront now the question of in what
directions our work might be continued. There are possibilities for work in the
areas of functionality and performance.

With regard to functionality, one can imagine the application of the basic
functions in FLINT/C to areas that have been only touched upon or not even
mentioned at all, such as factorization or elliptic curves, which have properties
that have led to increasing interest in them for application to cryptography. The
interested reader can find detailed explications in [Bres], [Kobl], and [Mene],
but also in the standard works [Cohe], [Schn], and [MOV], which we have cited
frequently and which contain many references to the literature.

A second area for development is that of measures for improving throughput,
first and foremost the increase in digit length from 16 to 32 bits (B = 232), as well
as through the use of assembler functions and, for platforms that support it, the
C/C++ implementation.

The work in development and testing for this last approach could be carried
out independent of platform, such as with the help of the GNU compiler gcc,
using the gcc type unsigned long long: The type CLINT would be defined by
typedef ULONG CLINT[CLINTMAXLONG];. Furthermore, certain constants would
have to be adjusted that relate to the base of the internal representation of
integers.

In the functions of the FLINT/C package all explicit casts and other references
to USHORT must be replaced by ULONG and those to ULONG by unsigned long long (or
after a suitable typedef by, say, ULLONG. A few functions that make assumptions
about the length of a digit in the data type used must be ported. After an extensive
test and debugging phase including static syntax checking (cf. Chapter 13) the
FLINT/C package would then be ready for CPUs with 64-bit word length.

The inclusion of assembler functions also makes it possible to operate with
digits of 32 bits and results of 64 bits, and to do so on processors that themselves
have only a 32-bit word length but that nonetheless support a 64-bit result of an
arithmetic operation.

417

Chapter 19

Since with the use of assembler functions we are abandoning our previous
strategy of independence of special platforms, it is useful to implement such
functions in a narrowly targeted way. We must therefore identify those FLINT/C
functions that would most profit in speedup from assembler support. It is
not difficult to determine which are the functions in question. They are those
arithmetic functions with quadratic run-time behavior: multiplication, squaring,
and division. Since the basic operations occupy the principal portion of time
taken up by most of the number-theoretic functions, time improvements in
those functions would be linear, without directly changing the implementation
of the algorithms. To benefit from such a potential, for the FLINT/C package the
functions

mult(), umul(), sqr(), div_l(),

are implemented in 80x86 assembler. The functions mult(), umul(), and sqr()

form the respective kernels of the functions mult_l(), umul_l(), and sqr_l() (see
page 72). The functions support arguments up to length 4096 binary digits, which
is 256 (= MAXB) digits of a CLINT number, and results of double that length.
The assembler functions are, like the corresponding C functions, implemented
according to the algorithms given in Chapter 4, where access to the CPU register
allows processing of 32-bit arguments and 64-bit results with the arithmetic
machine commands (cf. Chapter 2).

The modules mult.asm, mult.s, umul.asm, umul.s, sqr.asm, sqr.s, as well as
div.asm and div.s, are contained in the FLINT/C package as assembler code.
They can be assembled using Microsoft MASM (call: ml /Cx /c /Gd <filename>),
Watcom WASM,1 or GNU GAS, and these replace the corresponding C functions
when the module flint.c is translated with -DFLINT_ASM.2 The calculation times
given again in Appendix D permit a direct comparison of some of the important
functions with and without assembler support.

Montgomery exponentiation (see Chapter 6) offers additional savings
potential, and also the two auxiliary functions mulmon_l() and sqrmon_l() (cf.
page 111) can be implemented profitably as assembler functions with 32-bit
digits. A starting point for this is offered by the modules mul.asm and sqr.asm. As
the interested reader can see, there is a very large sandbox out there to play in.

For now, this is all we know.

—Jon Hiseman, Colosseum

1 Depending on the compiler used the indicators mult, umul, sqr, and div_l of the assembler
procedures are to be provided with underscores (_mult, _umul, _sqr, and _div_l), since WASM
does not generate them.

2 With the modules mult.asm, sqr.asm, umul.asm, and div.asm this functions on 80x86
compatible platforms. For other platforms one must carry out the corresponding
implementations.

418

Part III

Appendices

And all the little girls cried, “Boohoo,
we want to have our appendix out too!”

—Ludwig Bemelmans, Madeline

APPENDIX A

Directory of C Functions

A.1 Input/Output, Assignment, Conversions,
Comparisons

int

byte2clint_l (CLINT n_l,

char *bytes, int len);

conversion of a byte vector to
CLINT (after IEEE, P1363, 5.5.1)

UCHAR*

clint2byte_l (CLINT n_l,

int *len);

convert CLINT to a byte vector
(according to IEEE, P1363, 5.5.1)

int

cmp_l (CLINT a_l, CLINT b_l);

size comparison of a_l and b_l

int

cpy_l (CLINT dest_l, CLINT src_l);

assignment of src_l to dest_l

int

equ_l (CLINT a_l, CLINT b_l);

test of equality of a_l and b_l

void

fswap_l (CLINT a_l, CLINT b_l);

exchange of a_l and b_l

clint*

setmax_l (CLINT n_l);

set n_l to the largest CLINT inte-
ger representable by the number
Nmax

int

str2clint_l (CLINT n_l,

char *N, USHORT b);

convert a character string to the
base b to CLINT

void

u2clint_l (CLINT num_l, USHORT ul);

convert USHORT to CLINT

void

ul2clint_l (CLINT num_l, ULONG ul);

convert ULONG to CLINT

421

Appendix A

unsigned int

vcheck_l (CLINT n_l);

CLINT format check

char*

verstr_l ();

output the version of the
FLINT/C library in a charac-
ter string, with identifiers ‘a’ for
assembler support and ‘s’ for
FLINT/C security mode

char*

xclint2str_l (CLINT n_l,

USHORT base, int showbase);

convert from CLINT into a charac-
ter string to the base base, with or
without prefix

A.2 Basic Calculations

int

add_l (CLINT a_l, CLINT b_l,

CLINT s_l)

addition: sum of a_l and b_l,
output in s_l

int

dec_l (CLINT a_l)

decrement a_l

int

div_l (CLINT a_l, CLINT b_l,

CLINT q_l, CLINT r_l)

division with remainder: division
of a_l by b_l, quotient in q_l,
remainder in r_l

int

inc_l (CLINT a_l)

increment a_l

int

mul_l (CLINT a_l, CLINT b_l,

CLINT p_l)

multiplication: product of a_l

and b_l, output in p_l

int

sqr_l (CLINT a_l, CLINT p_l)

square a_l, output in p_l

int

sub_l (CLINT a_l, CLINT b_l,

CLINT s_l)

subtraction: difference of a_l and
b_l, output in s_l

422

Directory of C Functions

int

uadd_l (CLINT a_l, USHORT b,

CLINT s_l)

mixed addition: sum of a_l and b,
output in s_l

int

udiv_l (CLINT a_l, USHORT b,

CLINT q_l, CLINT r_l)

mixed division with remainder:
division of a_l by b, quotient in
q_l, remainder in r_l

int

umul_l (CLINT a_l, USHORT b,

CLINT p_l)

mixed multiplication: product of
a_l and b, output in p_l

int

usub_l (CLINT a_l, USHORT b,

CLINT c_l)

mixed subtraction: difference of
a_l and b, output in s_l

A.3 Modular Arithmetic

int

madd_l (CLINT a_l, CLINT b_l,

CLINT c_l, CLINT m_l);

modular addition: addition of a_l
and b_l modulo m_l, output in
c_l

int

mequ_l (CLINT a_l, CLINT b_l,

CLINT m_l);

test for equality of a_l and b_l

modulo m_l

int

mexp_l (CLINT bas_l, CLINT e_l,

CLINT p_l,CLINT m_l);

modular exponentiation, auto-
matic use of mexpkm_l() if modu-
lus odd, otherwise mexpk_l()

int

mexp2_l (CLINT bas_l, USHORT e,

CLINT p_l, CLINT m_l);

modular exponentiation, expo-
nent e a power of 2

int

mexp5_l (CLINT bas_l, CLINT exp_l,

CLINT p_l,CLINT m_l);

modular exponentiation, 25-ary
method

423

Appendix A

int

mexp5m_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

Montgomery exponentiation,
25-ary method, odd modulus

int

mexpk_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

modular exponentiation,
2k-ary method,
dynamic memory with malloc()

int

mexpkm_l (CLINT bas_l, CLINT exp_l,

CLINT p_l, CLINT m_l);

Montgomery exponentiation,
2k-ary method with odd modu-
lus

int

mmul_l (CLINT a_l, CLINT b_l,

CLINT c_l, CLINT m_l);

modular multiplication: multipli-
cation of a_l and b_l mod m_l,
output in c_l

int

mod_l (CLINT d_l, CLINT n_l,

CLINT r_l);

residue of d_l mod n_l, output in
r_l

int

mod2_l (CLINT d_l, ULONG k,

CLINT r_l);

residue of d_l mod 2k

int

msqr_l (CLINT a_l, CLINT c_l,

CLINT m_l);

modular squaring of a_lmod n_l,
square in p_l

int

msub_l (CLINT a_l, CLINT b_l,

CLINT c_l, CLINT m_l);

modular subtraction: subtraction
of a_l and b_l mod m_l, output in
c_l

void

mulmon_l (CLINT a_l, CLINT b_l,

CLINT n_l, USHORT nprime,

USHORT log B_r, CLINT p_l);

modular multiplication of a_l

and b_l mod n_l, product in
p_l (Montgomery method,
Blog B_r-1 ≤ n_l < Blog B_r)

void

sqrmon_l (CLINT a_l, CLINT n_l,

USHORT nprime, USHORT logB_r,

CLINT p_l);

modular squaring of a_l mod
n_l, square in p_l (Montgomery
method, Blog B_r-1 ≤ n_l <

Blog B_r)

424

Directory of C Functions

int

umadd_l (CLINT a_l, USHORT b,

CLINT c_l, CLINT m_l);

mixed modular addition: addi-
tion of a_l and b mod m_l, output
in c_l

int

umexp_l (CLINT bas_l, USHORT e,

CLINT p_l, CLINT m_l);

modular exponentiation, USHORT

exponent

int

umexpm_l (CLINT bas_l, USHORT e,

CLINT p_l, CLINT m_l);

modular exponentiation, odd
modulus, USHORT exponent

int

ummul_l (CLINT a_l, USHORT b,

CLINT p_l, CLINT m_l);

mixed modular multiplication of
a_l and b_l mod n_l, product in
p_l

USHORT

umod_l (CLINT d_l, USHORT n);

residue of d_l mod n

int

umsub_l (CLINT a_l, USHORT b,

CLINT c_l, CLINT m_l);

mixed modular subtraction: sub-
traction of a_l and b mod m_l,
output in c_l

int

wmexp_l (USHORT bas, CLINT e_l,

CLINT p_l, CLINT m_l);

modular exponentiation, USHORT

base

int

wmexpm_l (USHORT bas, CLINT e_l,

CLINT p_l, CLINT m_l);

Montgomery exponentiation,
odd modulus, USHORT base

A.4 Bitwise Operations

void

and_l (CLINT a_l, CLINT b_l,

CLINT c_l)

bitwise AND of a_l and b_l,
output in c_l

int

clearbit_l (CLINT a_l,

unsigned int pos)

test and clear the bit of a_l in
position pos

425

Appendix A

void

or_l (CLINT a_l, CLINT b_l,

CLINT c_l)

bitwise OR of a_l and b_l, output
in c_l

int

setbit_l (CLINT a_l,

unsigned int pos)

test and set the bit of a_l in
position pos

int

shift_l (CLINT a_l,

long int noofbits)

left/right shift of a_l by noofbits

bits

int

shl_l (CLINT a_l)

right shift of a_l by 1 bit

int

shr_l (CLINT a_l)

left shift of a_l by 1 bit

int

testbit_l (CLINT a_l,

unsigned int pos)

test the bit of a_l in position pos

void

xor_l (CLINT a_l, CLINT b_l,

CLINT c_l)

bitwise exclusive OR (XOR) of a_l
and b_l, output in c_l

A.5 Number-Theoretic Functions

int

chinrem_l (unsigned noofeq,

clint** coeff_l, CLINT x_l)

solution of simultaneous linear
congruences, output in x_l

void

gcd_l (CLINT a_l, CLINT b_l,

CLINT g_l)

greatest common divisor of a_l

and b_l, output in g_l

int

introot_l (CLINT a_l, USHORT

b, CLINT r_l)

integer part of bth root of a_l,
output in r_l

void

inv_l (CLINT a_l, CLINT n_l,

CLINT g_l, CLINT i_l)

gcd of a_l and n_l and inverse of
a_l mod n_l

426

Directory of C Functions

unsigned

iroot_l (CLINT a_l, CLINT r_l)

integer part of square root of a_l,
output in r_l

int

jacobi_l (CLINT a_l, CLINT b_l)

Legendre/Jacobi symbol, a_l

over b_l

void

lcm_l (CLINT a_l, CLINT b_l,

CLINT v_l)

least common multiple of a_l

and b_l, output in v_l

int prime_l (CLINT n_l,

unsigned noofsmallprimes,

unsigned iterations)

Miller–Rabin primality test of n_l
with division sieve

int

primroot_l (CLINT x_l,

unsigned noofprimes,

clint** primes_l)

determine a primitive root mod-
ulo n, output in x_l

int

proot_l (CLINT a_l, CLINT p_l,

CLINT x_l)

square root of a_l mod p_l,
output in x_l

int

root_l (CLINT a_l, CLINT p_l,

CLINT q_l, CLINT x_l)

square root of a_l mod p_l*q_l,
output in x_l

USHORT

sieve_l (CLINT a_l,

unsigned noofsmallprimes)

division sieve, division of a_l by
small primes

void

xgcd_l (CLINT a_l, CLINT b_l,

CLINT g_l,

CLINT u_l, int *sign_u,

CLINT v_l, int *sign_v)

greatest common divisor of a_l

and b_l and representation of gcd
in u_l and v_l with sign in sign_u

and sign_v

A.6 Generation of Pseudorandom Numbers

UCHAR

bRand_l (STATEPRNG *xrstate)

generation of a pseudorandom
number of type UCHAR

427

Appendix A

UCHAR

bRandBBS_l (STATEBBS *xrstate)

generation of a pseudorandom
number of type UCHAR with the
BBS generator

int

FindPrime_l (CLINT p_l,

STATEPRNG *xrstate, USHORT l)

deterimine a pseudorandom
prime p_l of type CLINT with
2l−1 ≤ p_l < 2l

int

FindPrimeGcd_l (CLINT p_l,

STATEPRNG *xrstate,

USHORT l, CLINT f_l)

deterimine a pseudoran-
dom prime p_l of type CLINT

with 2l−1 ≤ p_l < 2l and
gcd(p_l− 1, f_l) = 1

int

FindPrimeMinMaxGcd_l (CLINT p_l,

STATEPRNG *xrstate,

CLINT rmin_l,

CLINT rmax_l, CLINT f_l)

deterimine a pseudorandom
prime p_l of type CLINT with
rmin_l ≤ p_l ≤ rmax_l and
gcd(p_l− 1, f_l) = 1

int

GetEntropy_l (CLINT Seed_l,

char *Hashres,int AddEntropy,

char *RndStr, int LenRndStr)

generate entropy for initializing
pseudorandom number genera-
tor

int

InitRand_l (STATEPRNG *xrstate,

char *UsrStr, int LenUsrStr,

int AddEntropy, int Generator)

initialize a yet to be specified
random number generator with
generation of entropy

int

InitRandAES_l (STATEAES *rstate,

char *UsrStr, int LenUsrStr,

int AddEntropy)

initialize the AES random num-
ber generator with generation of
entropy

int

InitRandBBS_l (STATEBBS *rstate,

char *UsrStr, int LenUsrStr,

int AddEntropy)

initialize the Blum–Blum–Shub
random number generator with
generation of entropy

int

InitRandRMDSHA1_l (

STATERMDSHA1 *rstate,

char * UsrStr, int LenUsrStr,

int AddEntropy)

initialize the RandRMDSHA-1
random number generator with
generation of entropy

428

Directory of C Functions

ULONG lRand_l (STATEPRNG *xrstate) generator for random numbers of
type ULONG

void PurgeRand_l (STATEPRNG *xrstate) delete internal state of a pseudo-
random generator

void PurgeRandAES_l (STATEAES *rstate) delete internal state of pseudo-
random generator RandAES

void PurgeRandBBS_l (STATEBBS *rstate) delete internal state of pseudo-
random generator RandBBS

void

PurgeRandRMDSHA1_l (STATERMDSHA1

*rstate)

delete internal state of
pseudorandom generator
RandRMDSHA1

int

Rand_l (CLINT r_l,

STATEPRNG *xrstate, int l)

generation of a pseudorandom
number r_l of type CLINT with
2l−1 ≤ r_l < 2l using the
FLINT/C pseudorandom number
generators

void rand_l (CLINT r_l, int l) CLINT random number with l

binary digits, linear congruences

clint* rand64_l (void) 64-bit random number generator

int

RandAES_l (CLINT r_l,

STATEAES *rstate, int l)

CLINT random numbers with l bi-
nary digits via AES random num-
ber generator using an individual
state buffer

int

RandBBS_l (CLINT r_l,

STATEBBS *rstate, int l)

CLINT random numbers with l bi-
nary digits via BBS random num-
ber generator using an individual
state buffer

clint* randBBS_l (CLINT r_l, int l) CLINT random numbers with l

binary digits using BBS bit gener-
ator

int

RandlMinMax_l (CLINT r_l,

STATEPRNG *xrstate, CLINT rmin_l,

CLINT rmax_l)

determine a CLINT random num-
ber r_l with rmin_l ≤ r_l ≤
rmax_l

429

Appendix A

int

RandRMDSHA1_l (CLINT r_l,

STATERMDSHA1 *rstate, int l)

CLINT random number with l

binary digits via the RMDSHA1
random number generator using
an individual state buffer

int randbit_l (void) BBS bit generator

clint* seed64_l (CLINT seed_l) initialization of rand64_l() with
CLINT value

void seedBBS_l (CLINT seed_l) initialization of randbit_l() with
CLINT value

USHORT sRand_l (STATEPRNG *xrstate) generate a pseudorandom num-
ber of type USHORT

int SwitchRandAES_l (STATEAES *rstate) deterministic random number
generator based on AES

int SwitchRandBBS_l (STATEBBS *rstate) deterministic random number
generator based on BBS

int

SwitchRandRMDSHA1_l

(STATERMDSHA1 *rstate)

deterministic random num-
ber generator based on
hash functions SHA-1 and
RIPEMD-160

UCHAR ucrand64_l (void) generator for random numbers of
type UCHAR

UCHAR ucrandBBS_l (void) BBS generator for random num-
ber of type UCHAR

ULONG ulrand64_l (void) generator for random numbers of
type ULONG

ULONG ulrandBBS_l (void) BBS generator for random num-
ber of type ULONG

clint* ulseed64_l (ULONG seed) initialization of rand64_l() with
ULONG value

430

Directory of C Functions

void ulseedBBS_l (ULONG seed) initialization of randbit_l() with
ULONG value

USHORT usrand64_l (void) generator for random numbers of
type USHORT

USHORT usrandBBS_l (void) BBS generator for random num-
ber of type USHORT

A.7 Register Management

clint* create_l (void) generate a CLINT register

int create_reg_l (void) generate the CLINT register bank

void free_l (CLINT n_l); clear a register by overwriting and
release memory

void free_reg_l (void) clear all registers of the register
bank by overwriting, then release
memory

clint* get_reg_l (unsigned int reg) generate reference to register reg
of the register bank

void purge_l (CLINT n_l) clear a CLINT object by overwrit-
ing

int purge_reg_l (unsigned int reg) clear a register of the register
bank by overwriting

int purgeall_reg_l (void) clear all registers of the register
bank by overwriting

void

set_noofregs_l (unsigned int nregs)

set number of registers

431

APPENDIX B

Directory of

C++ Functions

B.1 Input/Output, Conversion, Comparison: Member
Functions

LINT (void); Constructor 1:
an uninitialized LINT object is
generated

LINT (const char* str,

int base);

Constructor 2:
LINT is constructed from a string
of digits to base base

LINT (const UCHAR* byte,

int len);

Constructor 3:
LINT is constructed from a byte
vector with digits to base 28

according to IEEE P1363, signif-
icance of bits grows from left to
right

LINT (const char* str); Constructor 4:
LINT is constructed from an ASCII
string with C-Syntax

LINT (const LINT&); Constructor 5:
LINT is constructed from LINT

(copy constructor)

LINT (signed int); Constructor 6:
LINT is constructed from an inte-
ger of type int

LINT (signed long); Constructor 7:
LINT is constructed from an inte-
ger of type long

433

Appendix B

LINT (unsigned char); Constructor 8:
LINT is constructed from an inte-
ger of type unsigned char

LINT (USHORT); Constructor 9:
LINT is constructed from an inte-
ger of type unsigned short

LINT (unsigned int); Constructor 10:
LINT is constructed from an inte-
ger of type unsigned int

LINT (unsigned long); Constructor 11:
LINT is constructed from an inte-
ger of type unsigned long

LINT (const CLINT); Constructor 12:
LINT is constructed from an inte-
ger of type CLINT

inline char*

binstr (void) const;

representation of a LINT integer
as a binary number

inline char*

decstr (void) const;

representation of a LINT integer
as decimal number

inline void

disp (char* str);

display of a LINT integer with
previous output of str

Static long

flags (ostream& s);

read static LINT status variable
associated with ostream s

static long

flags (void);

read static LINT status variable
associated with ostream cout

LINT&

fswap (LINT& b);

exchange of implicit argument a

with argument b

inline char*

hexstr (void) const;

representation of a LINT integer
as a hexadecimal number

UCHAR*

lint2byte (int* len) const;

transformation of a LINT inte-
ger into a byte vector, output
of length in len, according to
IEEE P1363, significance of bytes
increasing from left to right

434

Directory of C++ Functions

char*

lint2str (USHORT base,

const int showbase = 0) const;

representation of a LINT integer
as character string to base base,
prefix 0x, or 0b if showbase > 0

inline char*

octstr (void) const;

representation of a LINT integer
as an octal number

const LINT&

operator = (const LINT& b);

assignment a← b

void

purge (void);

clear implicit argument a by over-
writing

static long

restoref (long int flags);

reset LINT status variable refer-
ring to ostream cout to the value
in flags

static long

restoref (ostream& s,

long int flags);

set the LINT status variable refer-
ring to ostream s to the value in
flags

static long

setf (long int flags);

set status bits in flags in LINT sta-
tus variable referring to ostream

cout

static long

setf (ostream& s, long int flags);

set status bits of value flags in
LINT status variable referring to
ostream s

static long

unsetf (long int flags);

unset status bits of flags in
LINT status variable referring to
ostream cout

static long

unsetf (ostream& s, long int flags);

unset status bits in flags in
LINT status variable referring to
ostream s

435

Appendix B

B.2 Input/Output, Conversion, Comparison: Friend
Functions

void

fswap (LINT& a, LINT& b);

exchange of a and b

UCHAR*

lint2byte (const LINT& a,

int* len);

transformation of a into a byte
vector, output of length in len,
according to IEEE P1363, signif-
icance of bytes increasing from
left to right

char*

lint2str (const LINT& a,

USHORT base,

int showbase);

representation of a as character
string to base base, with prefix 0x,
or 0b if showbase > 0

ostream&

LintBin (ostream& s);

ostream manipulator for binary
representation of LINT integers

ostream&

LintDec (ostream& s);

ostream manipulator for decimal
representation of LINT integers

ostream&

LintHex (ostream& s);

ostream manipulator for hex rep-
resentation of LINT integers

ostream&

LintLwr (ostream& s);

ostream manipulator for use of
lowercase letters in hex represen-
tation of LINT integers

ostream&

LintNobase (ostream& s);

ostream manipulator for omis-
sion of a prefix 0x or 0b in hex
or binary representation of LINT

integers

ostream&

LintNolength (ostream& s);

manipulator for the omission of
binary length in the output LINT

integers

ostream&

LintOct (ostream& s);

ostream manipulator for the octal
representation of LINT integers

436

Directory of C++ Functions

ostream&

LintShowbase (ostream& s);

ostream manipulator for the dis-
play of a prefix 0x (resp. 0b) in
hex (resp. binary) representation
of LINT integers

ostream&

LintShowlength (ostream& s);

ostream manipulator for display
of the binary length in the output
of LINT integers

ostream&

LintUpr (ostream& s);

ostream manipulator for use of
uppercase letters in the hex rep-
resentation of LINT integers

const int

operator != (const LINT& a,

const LINT& b);

test a != b

const int

operator < (const LINT& a,

const LINT& b);

comparison a < b

fstream&

operator << (fstream& s,

const LINT& ln);

overloaded insert operator for
writing LINT integers to files,
output stream of type fstream

ofstream&

operator << (ofstream& s,

const LINT& ln);

overloaded insert operator for
writing LINT integers to files,
output stream of type ofstream

ostream&

operator << (ostream& s,

const LINT& ln);

overloaded insert operator for
output of LINT integers, output
stream of type ostream

const int

operator <= (const LINT& a,

const LINT& b);

comparison a <= b

const int

operator == (const LINT& a,

const LINT& b);

test a == b

const int

operator > (const LINT& a,

const LINT& b);

comparison a > b

437

Appendix B

const int

operator >= (const LINT& a,

const LINT& b);

comparison a >= b

fstream&

operator >> (fstream& s,

LINT& ln);

overloaded extract operator for
reading LINT integers from files,
input/output stream of type
fstream

ifstream&

operator >> (ifstream& s,

LINT& ln);

overloaded extract operator for
reading LINT integers from files,
input stream of type ifstream

void

purge (LINT& a);

clear by overwriting

LINT_omanip<int>

ResetLintFlags (int flag);

manipulator to unset status bits
of value flag in the LINT status
variable

LINT_omanip<int>

SetLintFlags (int flag);

manipulator for setting status
bits of the value flag in the LINT

status variable

B.3 Basic Operations: Member Functions

const LINT&

add (const LINT& b);

addition c = a.add (b);

const LINT&

divr (const LINT& d, LINT& r);

division with remainder quotient
= dividend.div (divisor,

remainder);

const LINT&

mul (const LINT& b);

multiplication c = a.mul (b);

const LINT

operator -- (int);

decrement operator (postfix) a--;

const LINT& operator --

(void);

decrement operator (prefix) --a;

438

Directory of C++ Functions

const LINT&

operator %= (const LINT& b);

remainder and assignment a %= b;

const LINT&

operator *= (const LINT& b);

multiplication and assignment a *= b;

const LINT&

operator /= (const LINT& b);

division and assignment a /= b;

const LINT

operator ++ (int);

increment operator (postfix) a++;

const LINT&

operator ++ (void);

increment operator (prefix) ++a;

const LINT&

operator += (const LINT& b);

addition and assignment a += b;

const LINT&

operator -= (const LINT& b);

subtraction and assignment a -= b;

const LINT&

sqr (void);

squaring c = a.sqr (b);

const LINT&

sub (const LINT& b);

subtraction c = a.sub (b);

B.4 Basic Operations: Friend Functions

const LINT

add (const LINT& a, const LINT& b);

addition c = add (a, b);

const LINT

divr (const LINT& a,

const LINT& b, LINT& r);

division with remainder quotient
= div (dividend, divisor,

remainder);

const LINT

mul (const LINT& a, const LINT& b);

multiplication c = mul (a, b);

439

Appendix B

const LINT

operator - (const LINT& a,

const LINT& b);

subtraction c = a - b;

const LINT

operator % (const LINT& a,

const LINT& b);

remainder c = a % b;

const LINT

operator * (const LINT& a,

const LINT& b);

multiplication c = a * b;

const LINT

operator / (const LINT& a,

const LINT& b);

division c = a / b;

const LINT

operator + (const LINT& a,

const LINT& b);

addition c = a + b;

const LINT

sqr (const LINT& a);

squaring b = sqr (a);

const LINT

sub (const LINT& a, const LINT& b);

subtraction c = sub (a, b);

B.5 Modular Arithmetic: Member Functions

const LINT&

madd (const LINT& b, const LINT& m);

modular addition,
c = a.madd (b, m);

int

mequ (LINT& b, const LINT& m)

const;

comparison of a and b modulo m if (a.mequ
(b, m)) . . .

const LINT&

mexp (const LINT& e, const LINT& m);

modular exponentiation with
Montgomery reduction for odd
modulus m, c = a.mexp (e, m);

440

Directory of C++ Functions

const LINT&

mexp (USHORT u, const LINT& m);

modular exponentiation with
USHORT exponent, Montgomery
reduction for odd modulus m, c =

a.mexp (u, m);

const LINT&

mexp2 (USHORT u, const LINT& m);

modular exponentiation with power of two
exponent 2u, c = a.mexp2 (u, m);

const LINT&

mexp5m (const LINT& e,

const LINT& m);

modular exponentiation with
Montgomery reduction for odd
modulus m, c = a.mexp5m (e,

m);

const LINT&

mexpkm (const LINT& e,

const LINT& m);

modular exponentiation with
Montgomery reduction for odd
modulus m, c = a.mexpkm (e,

m);

const LINT&

mmul (const LINT& b,

const LINT& m);

modular multiplication,
c = a.mmul (b, m);

const LINT&

mod (const LINT& m);

remainder b = a.mod (m);

const LINT&

mod2 (USHORT u);

remainder modulo power of two
2u, b = a.mod (u);

const LINT&

msqr (const LINT& m);

modular squaring,
c = a.msqr (m);

const LINT&

msub (const LINT& b, const LINT& m);

modular subtraction,
c = a.msub(b, m);

441

Appendix B

B.6 Modular Arithmetic: Friend Functions

LINT

madd (const LINT& a,

const LINT& b,

const LINT& m);

modular addition, c = madd (a,

b, m);

int

mequ (const LINT& a,

const LINT& b,

const LINT& m);

comparison of a and b modulo m

if (mequ (a, b, m)) . . .

LINT

mexp (const LINT& a,

const LINT& e,

const LINT& m);

modular exponentiation with
Montgomery reduction for odd
modulus m, c = mexp (a, e, m);

LINT

mexp (const LINT& a,

USHORT u,

const LINT& m);

modular exponentiation with
USHORT exponent, Montgomery
reduction for odd modulus m, c =

mexp (a, u, m);

LINT

mexp (USHORT u,

const LINT& e,

const LINT& m);

modular exponentiation with
USHORT base, Montgomery reduc-
tion for odd modulus m, c = mexp

(u, e, m);

LINT

mexp2 (const LINT& a,

USHORT u,

const LINT& m);

modular exponentiation with
power of two exponent 2u, c =

mexp2 (a, u, m);

LINT

mexp5m (const LINT& a,

const LINT& e,

const LINT& m);

modular exponentiation with
Montgomery reduction, only for
odd modulus m, c = mexp5m (a,

e, m);

LINT

mexpkm (const LINT& a,

const LINT& b,

const LINT& m);

modular exponentiation with
Montgomery reduction, only for
odd modulus m, c = mexpkm (a,

e, m);

LINT

mmul (const LINT& a,

const LINT& b,

const LINT& m);

modular multiplication, c = mmul

(a, b, m);

442

Directory of C++ Functions

LINT

mod (const LINT& a,

const LINT& m);

remainder b = mod (a, m);

LINT

mod2 (const LINT& a,

USHORT u);

remainder modulo power of two
2u, b = mod (a, u);

LINT

msqr (const LINT& a,

const LINT& m);

modular squaring, c = msqr (a,

m);

LINT

msub (const LINT& a,

const LINT& b,

const LINT& m);

modular subtraction, c =

msub(a, b, m);

B.7 Bitwise Operations: Member Functions

const LINT&

clearbit (const unsigned int i);

clear a bit at position i, a.clearbit (i);

const LINT&

operator &= (const LINT& b);

AND and assignment, a &= b;

const LINT&

operator ˆ= (const LINT& b);

XOR and assignment, a ˆ= b;

const LINT&

operator |= (const LINT& b);

OR and assignment, a |= b;

const LINT&

operator <<= (int i);

left shift and assignment, a <<= i;

const LINT&

operator >>= (int i);

right shift and assignment, a >>= i;

443

Appendix B

const LINT&

setbit (unsigned int i);

set a bit at position i, a.setbit (i);

const LINT&

shift (int i);

shift (left and right) by i bit
positions, a.shift (i);

const int

testbit (unsigned int i) const;

test a bit at position i, a.testbit (i);

B.8 Bitwise Operations: Friend Functions

const LINT

operator & (const LINT& a,

const LINT& b);

AND, c = a & b;

const LINT

operator ˆ (const LINT& a,

const LINT& b);

XOR, c = a ˆ b;

const LINT

operator | (const LINT& a,

const LINT& b);

OR, c = a | b;

const LINT

operator << (const LINT& a,

int i);

left shift, b = a << i;

const LINT

operator >> (const LINT& a,

int i);

right shift, b = a >> i;

const LINT

shift (const LINT& a, int i);

shift (left and right) by i bit
positions, b = shift (a, i);

444

Directory of C++ Functions

B.9 Number-Theoretic Member Functions

LINT

chinrem (const LINT& m,

const LINT& b,

const LINT& n) const;

return a solution x of the system
of simultaneous congruences
x ≡ a mod m and x ≡ b mod n, if
a solution exists

LINT

gcd (const LINT& b);

return gcd of a and b

LINT

introot (void) const;

return integer part of the bth root
of a

LINT

introot (const USHORT b)

const;

return integer part of the bth root
of a

LINT

inv (const LINT& b) const;

return the multiplicative inverse
of a mod b

int

iseven (void) const;

test a for divisibility by 2: true if a
even

int

isodd (void) const;

test a for divisibility by 2: true if a
odd

int

isprime (int nsp = 302,

int rnds = 0) const;

test a for primality

LINT

issqr (void) const;

test a for being square

int

jacobi (const LINT& b) const;

return the Jacobi symbol
(
a
b

)

LINT

lcm (const LINT& b) const;

return the least common multi-
ple of a and b

unsigned int

ld (void) const;

return �log2(a)�

445

Appendix B

LINT

root (void) const;

return the integer part of the
square root of a

LINT

root (const LINT& p) const;

return the square root of a mod-
ulo an odd prime p

LINT

root (const LINT& p,

const LINT& q) const;

return the square root of a mod-
ulo p*q, where p and q are odd
primes

int

twofact (LINT& odd) const;

return the even part of a, odd

contains the odd part of a

LINT

xgcd (const LINT& b,

LINT& u, int& sign_u,

LINT& v, int& sign_v)

const;

extended Euclidean algorithm
with return of gcd of a and b,
u and v contain the absolute
values of the factors of the linear
combination g = sign_u*u*a +

sign_v*v*b

B.10 Number-Theoretic Friend Functions

LINT

chinrem (unsigned noofeq,

LINT** coeff);

return a solution of a system of si-
multaneous linear congruences.
In coeff is passed a vector of
pointers to LINT objects as coef-
ficients a1, m1, a2, m2, a3, m3, . . .

of the congruence system with
noofeq equations x ≡ ai mod mi

LINT

extendprime (const LINT& pmin,

const LINT& pmax,

const LINT& a,

const LINT& q,

const LINT& f);

return a prime p with pmin ≤
p ≤ pmax, with p ≡ a mod q and
gcd(p− 1, f) = 1, f odd

LINT

extendprime (USHORT l,

const LINT& a,

const LINT& q,

const LINT& f);

return a prime p of length l bits,
i.e., 2l−1 ≤ p < 2l, with p ≡
a mod q and gcd(p − 1, f) = 1,
f odd

446

Directory of C++ Functions

LINT

findprime (const LINT& pmin,

const LINT& pmax,

const LINT& f);

return a prime p with pmin ≤ p ≤
pmax and gcd(p−1, f) = 1, f odd

LINT

findprime (USHORT l);

return a prime p of length l bits,
i.e., 2l−1 ≤ p < 2l

LINT

findprime (USHORT l,

const LINT& f);

return a prime p of length l bits,
i.e., 2l−1 ≤ p < 2l and gcd(p −
1, f) = 1, f odd

LINT

gcd (const LINT& a,

const LINT& b);

return gcd of a and b

LINT

introot (const LINT& a);

return the integer part of a

LINT

introot (const LINT& a,

const USHORT b);

return the integer part of the bth
root of a

LINT

inv (const LINT& a,

const LINT& b);

return the multiplicative inverse
of a mod b

int

iseven (const LINT& a);

test a for divisibility by 2: true if a
even

int

isodd (const LINT& a);

test a for divisibility by 2: true if a
odd

int

isprime (const LINT& p

int nsp = 302, int rnds = 0);

test p for primality

LINT

issqr (const LINT& a);

test a for being a square

447

Appendix B

int

jacobi (const LINT& a,

const LINT& b);

return the Jacobi symbol
(
a
b

)

LINT

lcm (const LINT& a,

const LINT& b);

return the least common
multiple of a and b

unsigned int

ld (const LINT& a);

return �log2(a)�

LINT

nextprime (const LINT& a,

const LINT& f);

return the smallest prime p above
a with gcd(p− 1, f) = 1, f odd

LINT

primroot (unsigned noofprimes,

LINT** primes);

return a primitive root modulo
p. In noofprimes is passed the
number of distinct prime fac-
tors of the group order p − 1,
in primes a vector of pointers
to LINT objects, beginning with
p − 1, then come the prime divi-
sors p1, . . . , pk of the group order
p − 1 = pe1

1 · · · pek

k with k =

noofprimes

LINT

root (const LINT& a);

return the integer part of the
square root of a

LINT

root (const LINT& a,

const LINT& p);

return the square root of a mod-
ulo an odd prime p

LINT

root (const LINT& a,

const LINT& p,

const LINT& q);

return the square root of a mod-
ulo p*q for p and q odd primes

LINT

strongprime (const LINT& pmin,

const LINT& pmax,

const LINT& f);

return a strong prime p with
pmin ≤ p ≤ pmax, gcd(p−1, f) =

1, f odd, default lengths lr, lt, ls
of prime divisors r of p − 1, t of
r − 1, s of p + 1: lt � 1

4 , ls ≈
lr � 1

2 of the binary length of
pmin448

Directory of C++ Functions

LINT

strongprime (const LINT& pmin,

const LINT& pmax,

USHORT lt,

USHORT lr,

USHORT ls,

const LINT& f);

return a strong prime p with
pmin ≤ p ≤ pmax, gcd(p −
1, f) = 1, f odd, lengths lr, lt,
ls of prime divisors r of p − 1, t

of r − 1, s of p + 1

LINT

strongprime (USHORT l);

return a strong prime p of length
l bits, i.e., 2l−1 ≤ p < 2l

LINT

strongprime (USHORT l,

const LINT& f);

return a strong prime p of length
l bits, i.e., 2l−1 ≤ p < 2l, with
gcd(p − 1, f) = 1, f odd

LINT

strongprime (USHORT l,

USHORT lt,

USHORT lr,

USHORT ls,

LINT& f);

return a strong prime p of length
l bits, i.e., 2l−1 ≤ p < 2l, with
gcd(p − 1, f) = 1, f odd lt �
1
4 , ls ≈ lr � 1

2 of length of p

int

twofact (const LINT& even,

LINT& odd);

return the even part of a, odd

contains the odd part of a

LINT

xgcd (const LINT& a,

const LINT& b,

LINT& u, int& sign_u,

LINT& v, int& sign_v);

extended Euclidean algorithm
with return of gcd of a and b,
u and v contain the absolute
values of the factors of the linear
combination g = sign_u*u*a +

sign_v*v*b

449

Appendix B

B.11 Generation of Pseudorandom Numbers

LINT

randBBS (const LINT& rmin,

const LINT& rmax);

return a LINT random number r

with rmin ≤ r ≤ rmax

LINT

randBBS (int l);

return a LINT random number of
length l bits

LINT

randl (const LINT& rmin,

const LINT& rmax);

return a LINT random number r

with rmin ≤ r ≤ rmax

LINT

randl (const int l);

return a LINT random number of
length l bits

int

seedBBS (const LINT& seed);

initialization of BBS random
number generator with initial
value seed

void

seedl (const LINT& seed);

initialization of the 64-bit ran-
dom number generator based on
linear congruences with initial
value seed

B.12 Miscellaneous Functions

LINT_ERRORS

Get_Warning_Status (void);

query error status of a LINT object

static void

Set_LINT_Error_Handler

(void (*)(LINT_ERRORS err,

const char*, int, int));

activation of a user routine for
handling errors with LINT op-
erations. The registered routine
replaces the LINT standard er-
ror handler panic(); deactivation
of registration of user routine
and simultaneous reactivation of
use routine panic() managed by
the call Set_LINT_Error_Handler

(NULL);

450

APPENDIX C

Macros

C.1 Error Codes and Status Values

E_CLINT_DBZ −1 division by zero

E_CLINT_OFL −2 overflow

E_CLINT_UFL −3 underflow

E_CLINT_MAL −4 memory allocation error

E_CLINT_NOR −5 register not available

E_CLINT_BOR −6 invalid base in str2clint_l()

E_CLINT_MOD −7 even modulus in Montgomery reduction

E_CLINT_NPT −8 null pointer passed as argument

E_VCHECK_OFL 1 vcheck_l() warning: number too long

E_VCHECK_LDZ 2 vcheck_l() warning: leading zeros

E_VCHECK_MEM −1 vcheck_l() error: null pointer

C.2 Additional Constants

BASE 0x10000 base B = 216 of the CLINT

number format

BASEMINONE 0xffffU B − 1

DBASEMINONE 0xffffffffUL B2 − 1

BASEDIV2 0x8000U �B/2�

NOOFREGS 16U standard number of registers in
register bank

451

Appendix C

BITPERDGT 16UL number of binary digits per CLINT
digit

LDBITPERDGT 4U logarithm of BITPERDGT to base 2

CLINTMAXDIGIT 256U maximal number of digits to base
B of a CLINT object

CLINTMAXSHORT (CLINTMAXDIGIT + 1) USHORTs to be allocated for a CLINT

object

CLINTMAXBYTE (CLINTMAXSHORT << 1) number of allocated bytes for a
CLINT object

CLINTMAXBIT (CLINTMAXDIGIT << 4) maximal number of binary digits
of a CLINT object

r0_l, . . . , r15_l get_reg_l(0), . . . ,

get_reg_l(15)

pointer to CLINT registers
0, . . . , 15

FLINT_VERMAJ higher version number of the
FLINT/C library

FLINT_VERMIN lower version number of the
FLINT/C library

FLINT_VERSION ((FLINT_VERMAJ << 8)

+ FLINT_VERMIN)

version number of the FLINT/C
library

FLINT_SECURE 0x73, 0 identifier ‘s’ or ‘ ’ for the FLINT/C
security mode

452

Macros

C.3 Macros with Parameters

ANDMAX_L (a_l) SETDIGITS_L((a_l),

(MIN(DIGITS_L(a_l),

(USHORT)CLINTMAXDIGIT));

RMLDZRS_L((a_l))

reduction modulo
(Nmax + 1)

ASSIGN_L

(a_l, b_l)

cpy_l((a_l), (b_l)) assignment a_l ←
b_l

BINSTR_L (n_l) xclint2str_l((n_l), 2, 0) conversion of a CLINT

object into binary rep-
resentation

bRandAES_L (S) ((UCHAR)SwitchRandAES_l((S)) generation of a ran-
dom number of type
UCHAR

bRandRMDSHA1_L (S) ((UCHAR)SwitchRandAES_l((S)) generation of a ran-
dom number of type
UCHAR

clint2str_l

(n_l, base)

CLINT2STR_L

(n_l, base)

xclint2str_l((n_l),(base),0) representation of a
CLINT object as char-
acter string without
prefix

DECDIGITS_L (n_l) (--*(n_l)) reduce number of digits by 1

DECSTR_L (n) xclint2str_l((n), 10, 0) conversion of a CLINT

object into decimal
representation

DIGITS_L (n_l) (*(n_l)) read number of digits
of n_l to base B

DISP_L (S, A) printf("%s%s\n%u bit\n\n",
(S), HEXSTR_L(A), ld_l(A))

standard output of a
CLINT object

EQONE_L (a_l) (equ_l((a_l), one_l) == 1) comparison a_l == 1

453

Appendix C

EQZ_L (a_l) (equ_l((a_l), nul_l) == 1) comparison a_l == 0

GE_L (a_l, b_l) (cmp_l((a_l), (b_l)) > -1) comparison a_l ≥
b_l

GT_L (a_l, b_l) (cmp_l((a_l), (b_l)) == 1) comparison a_l >

b_l

GTZ_L (a_l) (cmp_l((a_l), nul_l) == 1) comparison a_l > 0

HEXSTR_L (n_l) xclint2str_l((n_l), 16, 0) conversion of a CLINT

object into hex repre-
sentation

INCDIGITS_L (n_l) (++*(n_l)) increase number of
digits by 1

INITRAND64_LT() seed64_l((unsigned long)

time(NULL)

initialization of ran-
dom number gener-
ator rand64_l() with
system clock

INITRANDBBS_LT() seedBBS_l((unsigned long)

time(NULL))

initialization of the
random bit generator
randbit_l() by means
of system clock

ISEVEN_L (n_l) (DIGITS_L(n_l) == 0 ||

(DIGITS_L(n_l) > 0 &&

(*(LSDPTR_L(n_l)) & 1U)

== 0))

test whether n_l is
odd

ISODD_L (n_l) (DIGITS_L(n_l) > 0 &&

(*(LSDPTR_L(n_l)) & 1U)

== 1)

test whether n_l is
odd

ISPRIME_L (n_l) prime_l((n_l), 302, 5) primality test with
fixed parameters

454

Macros

LE_L (a_l, b_l) (cmp_l((a_l), (b_l)) < 1) comparison a_l ≤
b_l

lRandAES_l (S) (((ULONG)\
SwitchRandAES_l((S))\
<< 24) | ((ULONG)\
SwitchRandAES_l((S))\
<< 16)|((ULONG)\
SwitchRandAES_l((S))\
<< 8) |((ULONG)\
SwitchRandAES_l((S)))

generate a random
number of type ULONG

lRandRMDSHA1_l (S)(((ULONG)\
SwitchRandRMDSHA1_l((S))\
<< 24) | ((ULONG)\
SwitchRandRMDSHA1_l((S))\
<< 16)|((ULONG)\
SwitchRandRMDSHA1_l((S))\
<< 8) |((ULONG)\
SwitchRandRMDSHA1_l((S)))

generate a random
number of type ULONG

LSDPTR_L (n_l) ((n_l) + 1) pointer to least-
significant digit of a
CLINT object

LT_L (a_l, b_l) (cmp_l((a_l), (b_l)) == -1) comparison a_l <

b_l

MAX_L (a_l, b_l) (GT_L((a_l), (b_l)) ? (a_l) :

(b_l))

maximum of two
CLINT values

MEXP_L (a_l, e_l,

p_l, n_l)

mexp5_l((a_l), (e_l),

(p_l), (n_l))

mexpkm_l((a_l), (e_l),

(p_l), (n_l))

mexp5m_l((a_l), (e_l),

(p_l), (n_l))

exponentiation, alter-
native

MEXP_L (a_l, e_l,

p_l, n_l)

mexpk_l((a_l), (e_l), (p_l),

(n_l))

exponentiation

455

Appendix C

MIN_L (a_l, b_l) (LT_L((a_l), (b_l))

? (a_l) : (b_l))

minimum of two
CLINT values

MSDPTR_L (n_l) ((n_l) + DIGITS_L(n_l)) pointer to most-
significant digit of a
CLINT object

OCTSTR_L (n_l) xclint2str_l((n_l), 8, 0) conversion of a CLINT

object into octal rep-
resentation

RMLDZRS_L (n_l) while((DIGITS_L(n_l) >

0)&& (*MSDPTR_L(n_l) == 0))

{DECDIGITS_L(n_l);}

remove leading zeros
from a CLINT object

SET_L(n_l, ul) ul2clint_l((n_l), (ul)) assignment n_l ←
ULONG ul

SETDIGITS_L

(n_l, l)

(*(n_l) = (USHORT)(l)) set number of digits
n_l to l

SETONE_L (n_l) u2clint_l((n_l), 1U) set n_l to 1

SETTWO_L (n_l) u2clint_l((n_l), 2U) set n_l to 2

SETZERO_L (n_l) (*(n_l) = 0) set n_l to 0

sRandAES_l (S) (((USHORT)\
SwitchRandAES_l((S))\
<< 8) | (USHORT)\
SwitchRandAES_l((S)))

generate a random
number of type
USHORT

456

Macros

sRandRMDSHA1_l (S)(((USHORT)\
sRandRMDSHA1_l((S))\
<< 8) | (USHORT)\
sRandRMDSHA1_l((S)))

generate a random
number of type
USHORT

SWAP (a, b) ((a)ˆ=(b),(b)ˆ=(a),(a)ˆ=(b)) exchange

SWAP_L (a_l, b_l) (xor_l((a_l),(b_l),(a_l)),

xor_l((b_l),(a_l),(b_l)),

xor_l((a_l),(b_l),(a_l)))

exchange two CLINT

values

ZEROCLINT_L (n_l) memset((A), 0, sizeof(A)) delete a CLINT variable
by overwriting

457

APPENDIX D

Calculation Times

CALCULATION TIMES FOR SEVERAL FLINT/C functions, calculated with a Pentium 3
processor running at 2.4 GHz and 1 Gbyte main memory under Linux with gcc
3.2.2, are given in Tables D-1 and D-2. The times for n operations were measured
and then divided by n. Depending on the functions, n ranged between 100 and 5
million. An additional table (Table D-3) shows, for comparison, calculation times
that were measured for several functions in the GNU Multi Precision Arithmetic
library (GMP, version 4.1.2); cf. page 464.

Table D-1. Calculation times for several C functions (without assembler support)

Binary digits of the arguments; time in seconds

128 256 512 768 1024 2048 4096

add_l 1.0 · 10−7 1.4 · 10−7 2.4 · 10−7 3.2 · 10−7 4.9 · 10−7 7.4 · 10−7 1.2 · 10−6

mul_l 1.1 · 10−6 2.3 · 10−6 5.7 · 10−6 1.1 · 10−5 1.8 · 10−5 6.8 · 10−5 2.6 · 10−4

sqr_l 7.7 · 10−7 1.5 · 10−6 4.6 · 10−6 1.0 · 10−5 1.1 · 10−5 3.7 · 10−5 1.4 · 10−4

div_l∗ 1.1 · 10−6 1.9 · 10−6 4.6 · 10−6 8.5 · 10−6 1.7 · 10−5 6.3 · 10−5 2.4 · 10−4

mmul_l 3.2 · 10−6 6.8 · 10−6 2.2 · 10−5 4.6 · 10−5 8.1 · 10−5 3.1 · 10−4 1.2 · 10−3

msqr_l 2.9 · 10−6 6.3 · 10−6 2.1 · 10−5 4.2 · 10−5 7.4 · 10−5 2.8 · 10−4 1.1 · 10−3

mexpk_l 5.6 · 10−4 2.4 · 10−3 1.4 · 10−2 4.1 · 10−2 9.2 · 10−2 6.8 · 10−1 5.2

mexpkm_l 2.5 · 10−4 1.1 · 10−3 6.3 · 10−3 1.8 · 10−2 4.1 · 10−2 3.0 · 10−1 2.2

*For the function div_l the number of digits refers to the dividend, while the divisor has half that number of
digits.

One can see clearly the savings that squaring achieves over multiplication.
Even the advantage realized by Montgomery exponentiation in mexpkm_l()

can been seen, which requires only a little more than half the time needed for
exponentiation using mexpk_l(). An RSA step with a 2048-bit key can thereby
be computed in half a second, and with application of the Chinese remainder
theorem (cf. page 203), in only one-fourth of a second.

Table D-2 demonstrates the difference in time that results from the use of
assembler routines. Assembler support results in a speed advantage of about 70%
for the modular functions. The gap between multiplication and squaring remains
stable at about 50%.

Since the two functions mulmon_l() and sqrmon_l() do not exist as assembler
routines, in this comparison the exponentiation function mexpk_l() can catch
up significantly to the Montgomery exponentiation mexpm_l(). Both functions

459

Appendix D

are roughly equally fast. There exists here an interesting potential for further
improvement in performance (cf. Chapter 19) by means of suitable assembler
extensions.

In the comparison between the FLINT/C and GMP functions (see Table D-3)
one may see that the GMP multiplication and division are faster by 30% and 40%
than the corresponding FLINT/C functions. In comparison with GMP version
2.0.2 in the first edition of this book, the functions for modular exponentiation in
both libraries were about the same. Here GMP developers have achieved a speed
advantage of a factor of two for the GMP library.

Since the GMP library is the fastest of the available libraries for large-integer
arithmetic, we need not feel dissatisfied with this result. Rather, it can serve as
an impetus to the reader to plumb the possibilities of the FLINT/C library. What
would be required are assembler implementations of Montgomery multiplication
and squaring, a further development of the Karatsuba methods for multiplication
and squaring and their porting into assembler, and experiments for determining
the most advantageous combination of these methods.

Table D-2. Calculation times for several C functions (with 80x86 assembler support)

Binary digits of the arguments; time in seconds

128 256 512 768 1024 2048 4096

mul_l 1.5 · 10−6 2.2 · 10−6 4.6 · 10−6 9.1 · 10−6 1.4 · 10−5 4.9 · 10−5 1.9 · 10−4

sqr_l 1.2 · 10−6 1.8 · 10−6 3.6 · 10−6 5.8 · 10−6 9.1 · 10−6 2.8 · 10−5 9.9 · 10−5

div_l∗ 9.8 · 10−7 9.7 · 10−7 2.3 · 10−6 3.1 · 10−6 5.7 · 10−6 2.0 · 10−5 7.3 · 10−5

mmul_l 2.8 · 10−6 4.8 · 10−6 1.1 · 10−5 2.1 · 10−5 3.4 · 10−5 1.2 · 10−4 4.7 · 10−4

msqr_l 2.3 · 10−6 4.2 · 10−6 9.5 · 10−6 1.9 · 10−5 2.9 · 10−5 1.0 · 10−4 3.8 · 10−4

mexpk_l 4.1 · 10−4 1.3 · 10−3 6.1 · 10−3 1.7 · 10−2 3.6 · 10−2 2.5 · 10−1 1.9

mexpkm_l 2.8 · 10−4 1.1 · 10−3 5.9 · 10−3 1.7 · 10−2 3.7 · 10−2 2.7 · 10−1 2.1

*For the function div_l the number of digits refers to the dividend, while the divisor has half that number of digits.

Table D-3. Calculation times for several GMP functions (with 80x86 assembler support)

Binary digits of the arguments; time in seconds

128 256 512 768 1024 2048

mpz_add 4.3 · 10−8 5.4 · 10−8 7.8 · 10−8 1.0 · 10−7 1.4 · 10−7 2.2 · 10−7 4.1 · 10−7

mpz_mul 1.7 · 10−7 5.5 · 10−7 1.8 · 10−6 3.7 · 10−6 8.1 · 10−6 1.9 · 10−5 5.7 · 10−5

mpz_mod∗ 2.1 · 10−7 5.1 · 10−7 1.2 · 10−6 1.8 · 10−6 3.9 · 10−6 9.4 · 10−6 3.1 · 10−5

mpz_powm 5.6 · 10−5 4.0 · 10−4 2.4 · 10−3 6.7 · 10−3 2.5 · 10−2 1.0 · 10−1 6.5 · 10−1

*For the function mpz_mod the number of digits refers to the dividend, while the divisor has half that number of
digits.

460

APPENDIX E

Notation

N the set of nonnegative integers 0, 1, 2, 3, . . .

N+ the set of positive integers 1, 2, 3, . . .

Z the set of integers . . . ,−2,−1, 0, 1, 2, 3, . . .

Zn the residue class ring modulo n over the integers (Chapter 5)

Z×
n reduced residue system modulo n

Fpn finite field with pn elements

a the residue class a + nZ in Zn

a ≈ b a approximately equal to b

a � b a less than and approximately equal to b

a ← b assignment: the variable a is given the value b

|a| absolute value of a

a | b a divides b without remainder

a � b a does not divide b

a ≡ b mod n a is congruent to b modulo n, that is, n | (a − b)

a �≡ b mod n a is not congruent to b modulo n, that is, n � (a − b)

gcd(a, b) greatest common divisor of a and b (Section 10.1)

lcm(a, b) least common multiple of a and b (Section 10.1)

φ(n) Euler phi function (Section 10.2)

461

Appendix E

O() “Big-Oh.” For two real-valued functions f and g with g(x) ≥ 0

one writes f = O(g) and says “f is big-Oh of g” if there exists
a constant C such that f(x) ≤ Cg(x) for all x sufficiently large.

(a

b

)
Jacobi symbol (Section 10.4.1)

�x� greatest integer less than or equal to x

�x� least integer greater than or equal to x

P the set of computational problems that can be
solved in polynomial time

NP the set of computational problems that can be
solved nondeterministically in polynomial time

logb x logarithm of x to the base b

B B = 216, the base for the representation of objects
of type CLINT

MAXb maximal number of digits for a CLINT object to base B

MAX2 maximal number of digits for a CLINT object to base 2

Nmax largest natural number that can be represented
by a CLINT object

462

APPENDIX F

Arithmetic and

Number-Theoretic

Packages

IF THERE BE ANY LINGERING doubt in the mind of the reader as to the attractiveness
and utility of algorithmic number theory, a glance at the large number of web
sites that treat this topic should bring doubt to any such doubt at once, perhaps
even by overwriting the reader’s cerebral registers. Just punch the search string
“number theory” into your favorite Internet search engine, and up pop thousands
of entries, a few of which have already been cited in this book. Many of these web
sites contain links to available software packages or enable such packages to be
downloaded. Such offers encapsulate a large bandwidth of functions for large-
integer arithmetic, algebra, group theory, and number theory, demonstrating the
efforts of many able and enthusiastic developers.

An extensive list of sources for such software packages can be found on
the Number Theory Web Page, managed by Keith Matthews (University of
Queensland, Brisbane, Australia). The web site is located at

http://www.maths.uq.edu.au/˜krm/web.html.

The site also contains links to universities and research institutes as well as
pointers to publications on relevant topics. In sum, this site is a veritable treasure
trove. The following overview represents a small selection from the list of available
software packages:

• ARIBAS is an interpreter that executes arithmetic and number-
theoretic functions for large integers. ARIBAS implements the
algorithms from [Fors] in Pascal. ARIBAS can be obtained as a
supplement to that book, by anonymous ftp, from the directory
pub/forster/aribas under ftp.mathematik.uni-muenchen.de or from
http://www.mathematik.uni-muenchen.de/ forster.

• CALC, by Keith Matthews, is a calculation program for arbitrarily large
integers that takes commands on a command line, executes them, and
displays the results. CALC makes available about 60 number-theoretic

463

Appendix F

functions. The package is implemented in ANSI C and uses the parser
generator YACC or BISON for parsing the command line. CALC can be
obtained from http://www.numbertheory.org/calc/krm_calc.html.

• GNU MP, or GMP, from the GNU project, is a portable C library for
arithmetic with arbitrarily large integers, as well as rational and real
numbers. GMP achieves excellent performance due to the use of assembler
code for an impressive array of CPUs. GMP can be obtained via ftp from
www.gnu.org, prep.ai.mit.edu, as well as GNU mirror sites.

• LiDIA is one of the software libraries developed at the Technical University
Darmstadt for number-theoretic calculations. LiDIA contains an extensive
collection of highly optimized functions for calculating in Z, Q, R, C, F2n ,
Fpn , as well as for interval arithmetic. Current factorization algorithms are
also implemented, such as for lattice base reduction,
linear-algebraic algorithms, methods for calculating in number fields,
and polynomials. LiDIA supports interfaces to other arithmetic packages,
including the GMP package. LiDIA’s own interpreted language LC
facilitates, through its support of C++, the transition to translated
programs. All platforms are supported that permit the use of long file
names and for which a suitable C++ compiler is available, such as Linux
2.0.x, Windows NT 4.0, OS/2 Warp 4.0, HPUX-10.20, Sun Solaris 2.5.1/2.6.
A port to the Apple Macintosh is also available. LiDIA can be obtained at
http://www.informatik.tu-darmstadt.de/TI/LiDIA.

• Numbers, by Ivo Düntsch, is a library of object files that provide
basic number-theoretic functions for numbers with up to 150 dec-
imal digits. The functions, written in Pascal, and the interpreter,
contained in the package as well, were developed with the goal of
providing students with nontrivial examples and experiments in cal-
culation. The source for Numbers is http://archives.math.utk.edu/

software/msdos/number.theory/num202d/.html.

• PARI is a number-theoretic package by Henri Cohen et al. that implements
the algorithms presented in [Cohe]. PARI can be used as an interpreter
and as a function library that can be linked to programs. Through the
use of assembler code for various platforms (UNIX, Macintosh, PC, and
others) a high level of performance is achieved. PARI can be obtained at
www.parigp-home.de.

464

References

[Adam] Adams, Carlisle, Steve Lloyd: Understanding Public Key Infrastructure Con-
cepts, Standards & Deployment, Macmillan Technical Publishing, Indianapolis,
1999.

[AgKS] Agrawal, Maninda, Neeraj Kayal, Nitin Saxena: PRIMES is in P, Indian Institute
of Technology, 2003.

[BaSh] Bach, Eric, Jeffrey Shallit: Algorithmic Number Theory, Vol. 1, Efficient
Algorithms, MIT Press, Cambridge (MA), London, 1996.

[BCGP] Beauchemin, Pierre, Gilles Brassard, Claude Crépeau, Claude Goutier, Carl
Pomerance: The generation of random numbers that are probably prime, Journal
of Cryptology, Vol. 1, No. 1, pp. 53–64, 1988.

[Bern] Daniel J. Bernstein: Proving primality after Agrawal–Kayal–Saxena, Draft paper,
http://cr.yp.to/papers.html#aks, 2003.

[Beut] Beutelspacher, Albrecht: Kryptologie, 2. Auflage, Vieweg, 1991.

[Bies] Bieser, Wendelin, Heinrich Kersten: Elektronisch unterschreiben—die digitale
Signatur in der Praxis, 2. Auflage, Hüthig, 1999.

[BiSh] Biham, Eli, Adi Shamir: Differential cryptanalysis of DES-like cryptosystems,
Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3–72.

[Blum] Blum, L., M. Blum, M. Shub: A simple unpredictable pseudo-random number
generator, SIAM Journal on Computing, Vol. 15, No. 2, 1986, pp. 364–383.

[BMBF] Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie:
IUKDG—Informations- und Kommunikationsdienste-Gesetz—Umsetzung und
Evaluierung, Bonn, 1997.

[BMWT] Bundesministerium für Wirtschaft und Technologie: Entwurf eines Gesetzes
über Rahmenbedingungen für elektronische Signaturen—Diskussionsentwurf zur
Anhörung und Unterrichtung der beteiligten Fachkreise und Verbände, April 2000.

[Bone] Boneh, Dan: Twenty years of attacks on the RSA-cryptosystem, Proc. ECC,
1998.

[Bon2] Boneh, Dan, Antoine Joux, Phong Q. Nguyen: Why Textbook ElGamal and RSA
Encryption are Insecure, Advances in Cryptology, ASIACRYPT 2000, Lecture Notes
in Computer Science 1976, pp. 30–43, Springer-Verlag, 2000.

[Born] Bornemann, Folkmar: PRIMES Is in P: A Breakthrough for “Everyman,” Notices
of the AMS, May 2003.

[Bos1] Bosch, Karl: Elementare Einführung in die Wahrscheinlichkeitsrechnung,
Vieweg, 1984.

[Bos2] Bosch, Karl: Elementare Einführung in die angewandte Statistik, Vieweg, 1984.

[Boss] Bosselaers, Antoon, René Govaerts, Joos Vandewalle: Comparison of three
modular reduction functions, in Advances in Cryptology, CRYPTO 93, Lecture
Notes in Computer Science No. 773, pp. 175–186, Springer-Verlag, New York, 1994.

[Bres] Bressoud, David M.: Factorization and Primality Testing, Springer-Verlag, New
York, 1989.

465

References

[BSI1] Bundesamt für Sicherheit in der Informationstechnik: Geeignete Algorithmen
zur Erfüllung der Anforderungen nach §17 Abs. 1 through 3 SigG of 22 May
2001 in association with Anlage 1 Abschnitt I Nr. 2 SigV of 22 November 2001.
Published 13 February 2004 in Bundesanzeiger Nr. 30, pp. 2537–2538.

[BSI2] Bundesamt für Sicherheit in der Informationstechnik: Anwendungshinweise
und Interpretation zum Schema (AIS). Funktionalitätsklassen und Evaluations-
methodologie für deterministische Zufallszahlengeneratoren. AIS 20. Version 1.
Bonn, 1999.

[Burt] Burthe, R. J., Jr.: Further investigations with the strong probable prime test,
Mathematics of Computation, Volume 65, pp. 373–381, 1996.

[Bund] Bundschuh, Peter: Einführung in die Zahlentheorie, 3. Auflage, Springer-
Verlag, Berlin, Heidelberg, 1996.

[BuZi] Burnikel, Christoph, Joachim Ziegler: Fast recursive division, Forschungs-
bericht MPI-I-98-1-022, Max-Planck-Institut für Informatik, Saarbrücken,
1998.

[CJRR] Chari, Suresh, Charanjit Jutla, Josyula R. Rao, Pankaj Rohatgi: A Caution-
ary Note Regarding Evaluation of AES Candidates on Smart Cards, 1999,
http://csrc.nist.gov/encryption/aes/round1/conf2/papers/chari.pdf

[Cohe] Cohen, Henri: A Course in Computational Algebraic Number Theory,
Springer-Verlag, Berlin, Heidelberg, 1993.

[Coro] Coron, Jean-Sebastien, David Naccache, Julien P. Stern: On the security of RSA
padding, ed. M. Wiener, in Advances in Cryptology, CRYPTO ’99, Lecture Notes in
Computer Science No. 1666, pp. 1–17, Springer-Verlag, New York, 1999.

[Cowi] Cowie, James, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, Joerg Zayer: A world wide number field sieve factoring
record: on to 512 bits, ed. K. Kim and T. Matsumoto, in Advances in Cryptology,
ASIACRYPT ’96, Lecture Notes in Computer Science No. 1163, pp. 382–394,
Springer-Verlag, Berlin 1996.

[CrPa] Crandall, Richard E., Jason S. Papadopoulos: On the implementation of AKS-
class primality tests, http://developer.apple.com/hardware/ ve/pdf/aks3.pdf.

[DaLP] Damgard, Ivan, Peter Landrock, Carl Pomerance: Average case error estimates
for the strong probable prime test, Mathematics of Computation, Volume 61, pp.
177–194, 1993.

[DaRi] Daemen, Joan, Vincent Rijmen: AES-Proposal: Rijndael, Doc. Vers. 2.0,
September 1999, http://www.nist.gov/encryption/aes

[DR02] Daemen, Joan, Vincent Rijmen: The Design of Rijndael: AES: The Advanced
Encryption Standard, Springer-Verlag, Heidelberg, 2002.

[Deit] Deitel, H. M., P. J. Deitel: C++: How To Program, Prentice Hall, 1994.

[Dene] Denert, Ernst: Software-Engineering, Springer-Verlag, Heidelberg, 1991.

[deWe] De Weger, Benne: Cryptanalysis of RSA with small prime difference, Cryptology
ePrint Archive, Report 2000/016, 2000.

[Diff] Diffie, Whitfield, Martin E. Hellman: New Directions in Cryptography, IEEE
Trans. Information Theory, pp. 644–654, Vol. IT-22, 1976.

[DoBP] Dobbertin, Hans, Antoon Bosselaers, Bart Preneel: RIPEMD-160, a strength-
ened version of RIPEMD, ed. D. Gollman, in Fast Software Encryption, Third
International Workshop, Lecture Notes in Computer Science No. 1039,
pp. 71–82, Springer-Verlag, Berlin, Heidelberg, 1996.

466

References

[DuKa] Dussé, Stephen R., Burton. S. Kaliski: A cryptographic library for the Motorola
DSP56000, in Advances in Cryptology, EUROCRYPT ’90, Lecture Notes in Computer
Science No. 473, pp. 230–244, Springer-Verlag, New York, 1990.

[Dunc] Duncan, Ray: Advanced OS/2-Programming: The Microsoft Guide to the OS/2-
Kernel for Assembly Language and C Programmers, Microsoft Press, Redmond,
Washington, 1981.

[East] Eastlake, D., S. Crocker, J. Schiller: Randomness Recommendations for Security,
RFC1750, 1994.

[Elli] Ellis, J. H.: The Possibility of Non-Secret Encryption, 1970,
http://www.cesg.gov.uk/htmsite/publications/media/possnse.pdf.

[ElSt] Ellis, Margaret A., Bjarne Stroustrup: The Annotated C++ Reference Manual,
Addison-Wesley, Reading, MA, 1990.

[Endl] Endl, Kurth, Wolfgang Luh: Analysis I, Akademische Verlagsgesellschaft
Wiesbaden, 1977.

[Enge] Engel-Flechsig, Stefan, Alexander Roßnagel eds., Multimedia-Recht,
C. H. Beck, Munich, 1998.

[EESSI] European Electronic Signature Standardization Initiative: Algorithms and
Parameters for Secure Electronic Signatures, V.1.44 DRAFT, 2001.

[EU99] Richtlinie 1999/93/EG des Europäischen Parlaments und des Rates vom 13.
Dezember 1999 über gemeinschaftliche Rahmenbedingungen für elektronische
Signaturen.

[Evan] Evans, David: Splint Users Guide, Version 3.1.1-1, Secure Programming Group
University of Virginia Department of Computer Science, June 2003.

[Fegh] Feghhi, Jalal, Jalil Feghhi, Peter Williams: Digital Certificates: Applied Internet
Security, Addison-Wesley, Reading, MA, 1999.

[Fiat] Fiat, Amos, Adi Shamir: How to prove yourself: practical solutions to
identification and signature problems, in Advances in Cryptology, CRYPTO ’86,
Lecture Notes in Computer Science No. 263, pp. 186–194, Springer-Verlag, New
York, 1987.

[FIPS] Federal Information Processing Standard Publication 140 - 1: Security
requirements for cryptographic modules, US Department of Commerce/ National
Institute of Standards and Technology (NIST), 1994.

[F180] National Institute of Standards and Technology: Secure Hash Algorithm,
Federal Information Processing Standard 180-2, NIST, 2001.

[FI81] National Institute of Standards and Technology: DES Modes of Operation,
Federal Information Processing Standard 81, NIST, 1980.

[F197] National Institute of Standards and Technology: ADVANCED ENCRYPTION
STANDARD (AES), Federal Information Processing Standards Publication 197,
November 26, 2001

[Fisc] Fischer, Gerd, Reinhard Sacher: Einführung in die Algebra, Teubner, 1974.

[Fors] Forster, Otto: Algorithmische Zahlenthorie, Vieweg, Braunschweig,1996.

[Fumy] Fumy, Walter, Hans Peter Rieß: Kryptographie, 2. Auflage, Oldenbourg, 1994.

[Gimp] Gimpel Software: PC-lint, A Diagnostic Facility for C and C++.

[Glad] Glade, Albert, Helmut Reimer, Bruno Struif, editors: Digitale Signatur &
Sicherheitssensitive Anwendungen, DuD-Fachbeiträge, Vieweg, 1995.

[Gldm] Gladman, Brian: A Specification for Rijndael, the AES Algorithm,
http://fp.gladman.plus.com, 2001.

467

References

[GoPa] Goubin, Louis, Jacques Patarin DES and differential power analysis,
Proceedings of CHES’99, Lecture Notes in Computer Science, No. 1717,
Springer-Verlag, 1999.

[Gord] Gordon, J. A.: Strong primes are easy to find, Advances in Cryptology,
Proceedings of Eurocrypt ’84, pp. 216–223, Springer-Verlag, Berlin, Heidelberg,
1985.

[Gut1] Gutmann, Peter: Software generation of Practically Strong Random Numbers,
Usenix Security Symposium, 1998

[Gut2] Gutmann, Peter: Random Number Generation, www.cs.auckland.ac.nz/˜pgut001,
2000.

[Halm] Halmos, Paul, R.: Naive Set Theory, Springer-Verlag New York, 1987.

[Harb] Harbison, Samuel P, Guy L. Steele, Jr.: C: A Reference Manual, 4th Edition,
Prentice Hall, Englewood Cliffs, 1995.

[Hatt] Hatton, Les: Safer C: Developing Software for High-Integrity and Safety-Critical
Systems, McGraw-Hill, London, 1995.

[Heid] Heider, Franz-Peter: Quadratische Kongruenzen, unpublished manuscript,
Cologne, 1997.

[Henr] Henricson, Mats, Erik Nyquist: Industrial Strength C++, Prentice Hall,
New Jersey, 1997.

[HeQu] Heise, Werner, Pasquale Quattrocchi: Informations- und Codierungstheorie,
Springer-Verlag, Berlin, Heidelberg, 1983.

[HKW] Heider, Franz-Peter, Detlef Kraus, Michael Welschenbach: Mathematische
Methoden der Kryptoanalyse, DuD-Fachbeiträge, Vieweg, Braunschweig, 1985.

[Herk] Herkommer, Mark: Number Theory: A Programmer’s Guide, McGraw-Hill, 1999.

[HoLe] Howard, Michael, David LeBlanc: Writing Secure Code, Microsoft Press, 2002.

[IEEE] IEEE P1363 / D13: Standard Specifications for Public Key Cryptography, Draft
Version 13, November 1999.

[ISO1] ISO/IEC 10118-3: Information Technology—Security Techniques—Hash-
Functions. Part 3: Dedicated Hash-Functions, CD, 1996.

[ISO2] ISO/IEC 9796: Information Technology—Security Techniques—Digital
Signature Scheme giving Message Recovery, 1991.

[ISO3] ISO/IEC 9796-2: Information Technology—Security Techniques—Digital
Signature Scheme Giving Message Recovery, Part 2: Mechanisms Using a
Hash-Function, 1997.

[Koeu] Koeune, F., G. Hachez, J.-J. Quisquater: Implementation of Four AES Candidates
on Two Smart Cards, UCL Crypto Group, 2000.

[Knut] Knuth, Donald Ervin: The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 3rd Edition, Addison-Wesley, Reading, MA, 1998.

[Kobl] Koblitz, Neal: A Course in Number Theory and Cryptography, Springer-Verlag,
New York, 2nd Edition 1994.

[Kob2] Koblitz, Neal: Algebraic Aspects of Cryptography, Springer-Verlag, Berlin,
Heidelberg, 1998.

[KoJJ] Kocher, Paul, Joshua Jaffe, Benjamin Jun: Introduction to Differential Power
Analysis and Related Attacks, 1998,
http://www.cryptography.com/dpa/technical/

[Kran] Kranakis, Evangelos: Primality and Cryptography, Wiley-Teubner Series in
Computer Science, 1986.

468

References

[KSch] Kuhlins, Stefan, Martin Schader: Die C++-Standardbibliothek, Springer-Verlag,
1999.

[LeVe] Lenstra, Arjen K., Eric R. Verheul: Selecting Cryptographic Key Sizes, 1999,
http://www.cryptosavvy.com

[Lind] van der Linden, Peter: Expert C Programming, SunSoft/Prentice Hall, Mountain
View, CA, 1994.

[Lipp] Lippman, Stanley, B.: C++ Primer, 2nd Edition, Addison-Wesley, Reading, MA,
1993.

[Magu] Maguire, Stephen A.: Writing Solid Code, Microsoft Press, Redmond,
Washington, 1993.

[Matt] Matthews, Tim: Suggestions for Random Number Generation in Software, RSA
Data Security Engineering Report, December 1995.

[Mene] Menezes, Alfred J.: Elliptic Curve Public Key Cryptosystems, Kluwer Academic
Publishers, 1993.

[Mey1] Meyers, Scott D.: Effective C++, 2nd Edition, Addison-Wesley, Reading, Mass.,
1998.

[Mey2] Meyers, Scott D.: More Effective C++, 2nd Edition, Addison-Wesley, Reading,
Mass., 1998.

[Mied] Miedbrodt, Anja: Signaturregulierung im Rechtsvergleich, Der Elektronische
Rechtsverkehr 1, Nomos Verlagsgesellschaft Baden-Baden, 2000.

[Mont] Montgomery, Peter L.: Modular multiplication without trial division,
Mathematics of Computation, pp. 519–521, 44 (170), 1985.

[MOV] Menezes, Alfred J., Paul van Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

[Murp] Murphy, Mark L.: C/C++ Software Quality Tools, Prentice Hall, New Jersey,
1996.

[N38A] National Institute of Standards and Technology: Recommendation for Block
Cipher Modes of Operation, NIST Special Publication 800-38A, 2001.

[N38B] National Institute of Standards and Technology: DRAFT Recommendation for
Block Cipher Modes of Operation: The RMAC Authentication Mode, NIST Special
Publication 800-38B, 2002.

[N38C] National Institute of Standards and Technology: Recommendation for
Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality, NIST Special Publication 800-38C, 2004.

[Nied] Niederreiter, Harald: Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia, 1992.

[NIST] Nechvatal, James, Elaine Barker, Lawrence Bassham, William Burr, Morris
Dworkin, James Foti, Edward Roback: Report on the Development of the Advanced
Encryption Standard, National Institute of Standards and Technology, 2000.

[Nive] Niven, Ivan, Herbert S. Zuckerman: Einführung in die Zahlentheorie vols. I und
II, Bibliographisches Institut, Mannheim, 1972.

[Odly] Odlyzko, Andrew: Discrete Logarithms: The Past and the Future, AT&T Labs
Research, 1999.

[Petz] Petzold, Charles: Programming Windows: The Microsoft Guide to Writing
Applications for Windows 3.1, Microsoft Press, Redmond, Washington, 1992.

[Pla1] Plauger, P. J.: The Standard C Library, Prentice-Hall, Englewood Cliffs, New
Jersey, 1992.

469

References

[Pla2] Plauger, P. J.: The Draft Standard C++ Library, Prentice-Hall, Englewood Cliffs,
New Jersey, 1995.

[Pren] Preneel, Bart: Analysis and Design of Cryptographic Hash Functions,
Dissertation at the Katholieke Universiteit Leuven, 1993.

[Rabi] Rabin, Michael, O.: Digital Signatures and Public-Key Functions as Intractable
as Factorization, MIT Laboratory for Computer Science, Technical Report,
MIT/LCS/TR-212, 1979.

[RDS1] RSA Laboratories: Public Key Cryptography Standards, PKCS #1: RSA
Encryption, Version 2.1, RSA Security Inc., 2002.

[RDS2] RSA Security, Inc.: Recent Results on Signature Forgery, RSA Laboratories
Bulletin, 1999, http://www.rsasecurity.com/.

[RegT] Regulierungsbehörde für Telekommunikation und Post (RegTP): Bekannt-
machung zur elektronischen Signatur nach dem Signaturgesetz und
Signaturverordnung (Übersicht über geeignete Algorithmen), January 2, 2005.

[Rein] Reinhold, Arnold: P=?NP Doesn’t Affect Cryptography, May 1996,
http://world.std.com/_reinhold/p=np.txt

[Ries] Riesel, Hans: Prime Numbers and Computer Methods for Factorization,
Birkhäuser, Boston, 1994.

[Rive] Rivest, Ronald, Adi Shamir, Leonard Adleman: A method for obtaining digital
signatures, Communications of the ACM 21, pp. 120–126, 1978.

[Rose] Rose, H: E.: A Course in Number Theory, 2nd Edition, Oxford University Press,
Oxford, 1994.

[Saga] Sagan, Carl: Cosmos, Random House, New York, 1980.

[Sali] Saliger, Uwe: Sichere Implementierung und Integration kryptographischer
Softwarekomponenten am Beispiel der Zufallszahlengenerierung, Diplomarbeit
an der Universität Bonn, 2002.

[Salo] Salomaa, Arto: Public-Key Cryptography, 2nd Edition, Springer-Verlag, Berlin,
Heidelberg, 1996.

[Schn] Schneier, Bruce: Applied Cryptography, 2nd Edition, John Wiley & Sons, New
York, 1996.

[Scho] Schönhage, Arnold: A lower bound on the length of addition chains, Theoretical
Computer Science, pp. 229–242, Vol. 1, 1975.

[Schr] Schröder, Manfred R.: Number Theory in Science and Communications, 3rd
edition, Springer-Verlag, Berlin, Heidelberg, 1997.

[SigG] Gesetz über Rahmenbedingungen für elektronische Signaturen und zur
Änderung weiterer Vorschriften, at http://www.iid.de/iukdg, 2001.

[SigV] Verordnung zur elektronischen Signatur (Signaturverordnung, SigV) of 16
November 2001.

[Skal] Skaller, John Maxwell: Multiple precision arithmetic in C, edited by Dale
Schumacher, in Software Solutions in C, Academic Press, pp. 343–454, 1994.

[Spul] Spuler, David A.: C++ and C Debugging, Testing and Reliability, Prentice Hall,
New Jersey, 1994.

[Squa] Daemen, Joan, Lars Knudsen, Vincent Rijmen: The block cipher square, Fast
Software Encryption, Lecture Notes in Computer Science No. 1267, pp. 149–165,
Springer-Verlag, 1997.

[Stal] Stallings, William: Cryptography and Network Security, 2nd Edition,
Prentice Hall, New Jersey, 1999.

470

References

[Stin] Stinson, Douglas R.: Cryptography—Theory and Practice, Prentice Hall,
New Jersey, 1995.

[Stlm] Stallman, Richard M.: Using and Porting GNU CC, Free Software Foundation.

[Str1] Stroustrup, Bjarne: The C++ Programming Language, 3rd Edition, Addison-
Wesley, Reading, MA, 1997.

[Str2] Stroustrup, Bjarne: The Design and Evolution of C++, Addison-Wesley, Reading,
MA, 1994.

[Teal] Teale, Steve: C++ IOStreams Handbook, Addison-Wesley, Reading, MA, 1993.

[Tso] Ts’o, Theodore: random.c; Version 1.89, 1999

[WFLY] Wan, Xiaoyun, Dengguo Feng, Xuejia Lai, HongboYu: Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD, August 2004.

[Wien] Wiener, Michael: Cryptanalysis of short RSA secret exponents, in IEEE
Transactions on Information Theory, 36(3): pp. 553–558, 1990.

[Yaco] Yacobi, Y.: Exponentiating faster with addition chains, Advances in Cryptology,
EUROCRYPT ’90, Lecture Notes in Computer Science No. 473, pp. 222–229,
Springer-Verlag, New York, 1990.

[Zieg] Ziegler, Joachim: personal communication 1998, 1999.

471

Index

add, 72
addition, 19, 24, 27

of residue classes, 68, 69
additive identity, 69
add_l, 25, 72
Advanced Encryption Standard, 237, 268
ADVAPI32.DLL, 269
AES, see Advanced Encryption Standard
Agrawal, Maninda, 232
AKS algorithm, 233
AKS prime number test, 234
algorithm

addition, 24
AKS, 233
binary Euclidean, 170
binary exponentiation modulo m, 82
Brent, 264
division with remainder, 53
Euclidean, 169
Garner, 206
identifying squares, 188
integer part of a square root, 185
integer part of the bth root, 186
inverse modulo 2n, 114
Jacobi symbol, 194
key generation à la Fiat–Shamir, 212
key generation à la Rabin, 211
Legendre symbol, 192
M -ary exponentiation modulo m, 87,

89
multiplication, 36
period length of a sequence, 264
prime factorization, 389
solution of linear congruences, 207,

208
square root modulo p, 200
squaring, 41, 42
subtraction, 28
window method for exponentiation,

105
alphabet, 70
and_l, 133
ANDMAX_L, 453
assembler, 417, 418
ASSIGN_L, 453

associative law, 5
associativity, 69
authentication, 379
autocorrelation test, 290
axiom of infinity, 4

BBS generator, 268
big-endian, 363
binary Euclidean algorithm, 170
binomial distribution, 288
binomial formula, 314
BINSTR_L, 151, 453
biprime cryptography, 377
bit generator, 273
bRandAES_L, 453
bRandBBS_l, 277
bRand_l, 296
bRandRMDSHA1lbRandRMDSHA1_L, 453
Brent algorithm, 264
byte2clint_l, 152

Carmichael
function, 381
number, 220
theorem of, 381

carry, 25
catch block, 371
certificate, 400
certification authority, 400
chi-squared test, 287
Chinese remainder theorem, 203, 206,

208, 405
chinrem_l, 209
class

LINT, 322
RSAkey, 403
RSApub, 403

clearbit_l, 139
CLINT, 16, 20
clint2byte_l, 152
clint2str_l, 151, 453
closure, 69
cmp_l, 141
collisions, 399
commutative law, 5

473

Index

commutativity, 69
congruence, linear, 262
construction, strong primes, 388
constructor, 322, 325, 327
copy constructor, 328, 332
cpy_l, 145
Crandall, Richard E., 234
create_l, 163
create_reg_l, 159
CryptoAPI, 269
cryptosystem, asymmetric, 378
curve, elliptic, 417
cycle of a pseudoprime sequence, 263

data encryption standard, 237
dec_l, 33
DECDIGITS_L, 453
decrement, 33
DECSTR_L, 151, 453
/dev/random, 269
Diffie–Hellman

key exchange, 118
problem, 119

DigestInfo, 398
digital signature, see signature
DIGITS_L, 15, 26, 453
distributive law, 5, 69

for gcd and lcm, 175
div_l, 53
division

short, 61
with remainder, 50, 68, 126, 128

divisor, greatest common, 169, 173, 415
dynamic link library (DLL), 10

element, inverses, 69
encryption algorithm

RSA, 377
encryption block, 397
entropy, 269
entropy source, 269
equ_l, 143
equivalence relation, 67
EQZ_L, 454
Eratosthenes (276–195 B.C.E.), 3

sieve of Eratosthenes, 216
error codes, 369
error handling, 370
Euclid (third century B.C.E.), 3, 214

Euclidean algorithm, 169

Euler, Leonhard (1707–1783), 4
Euler criterion, 192, 221
Euler phi function, 177, 380
Euler pseudoprime, 221

exception, 371
exponentiation

laws, 81, 314
modular, 220

factorization, 203, 216, 382, 388, 391
Fermat, Pierre de (1601–1665), 4

factorization method, 383
Fermat test, 220
Fermat’s little theorem, 177, 220, 233

Fiat, Amos, 212
field, finite, 177
file, writing LINT objects, 362
findprime, 390, 391
FindPrime_l, 303, 304
FindPrimeMinMaxGcd_l, 300
FLINT/C, 417
free, 313
free_l, 164
friend function, 338
fswap_l, 147
function header, 19
function, mixed, 30

Garner algorithm, 206
Gauss, Carl Friedrich (1777–1855), 4, 67,

192
gcc, 308
gcd, 168, 169, 173, 415
gcd_l, 170
GE_L, 454
genprimes, 217
get_reg_l, 161
GNU, 308
goodness of fit, test of, 287
greatest common divisor, 168
group

abelian, 69
laws, 69

GT_L, 454
GTZ_L, 454

hash value, 398
hash function, 268, 396
HEXSTR_L, 151, 454

474

Index

identification, 379
à la Fiat–Shamir, 212

inc_l, 32
INCDIGITS_L, 454
increment, 32
induction, complete, 5
information hiding, 319
InitRandAES_l, 280
initRandBBS_l, 275
InitRand_l, 293
InitRandRMDSHA1_l, 284
integers, set of, 70
Internet, 379
introot_l, 186
inv_l, 181
invmon_l, 114
IPSec, 118
IPv, 118
iroot_l, 185
ISEVEN_L, 454
ISODD_L, 454
ISPRIME_L, 227, 454

Jacobi symbol, 193, 194, 196, 222, 349,
415

jacobi_l, 196

Karatsuba multiplication, 34, 45, 47, 49
Kayal, Neeraj, 232
kernel function, 47
key component

private, 380
public, 380

key length for RSA, 391
kmul_l, 47, 49
Kronecker symbol, 193

lcm, 173, 174, 415
lcm_l, 174
ld_l, 183
Legendre, Adrien Marie (1752–1833), 4

Legendre symbol, 192, 194
LE_L, 455
limits.h, 14
LINT

format flags, 362
manipulators, 361
operators, 330, 331

LINT, 322
lint2str, 358

LINT::
add, 340
chinrem, 349
clearbit, 346
divr, 341
fswap, 347
Get_Warning_Status, 349
gcd, 348
introot, 350
inv, 348
iseven, 345
isprime, 351
issqr, 351
jacobi, 349
lcm, 349
ld, 347
madd, 343
mequ, 342
mexp2, 344
mexp5m, 345
mexpkm, 344
mexp, 338, 339
mmul, 343
mod, 341
mod2, 342
msqr, 344
msub, 343
mul, 340
restoref, 356
root, 351
setbit, 346
shift, 345
sqr, 341
sub, 340
testbit, 346
twofact, 352
vroot, 350
xgcd, 348

LINT::
Get_Warning_Status, 368
mexpkm, 405
setf, 355
Set_LINT_Error_Handler, 369
unsetf, 357

LINT error codes, 228
LINT : : madd, 242
LINT_omanip<int>, 361
little-endian, 363
longruns test, 289
lRandBBS_l, 278

475

Index

lRand_l, 296
LSDPTR_L, 15, 26, 455
LT_L, 455

madd_l, 74
malloc(), 313
man-in-the-middle attack, 119
manipulator, 360, 361
MAX_L, 455
member function, 337
mequ_l, 78
Mersenne prime, 215
mexp2_l, 100
mexp5m_l, 114
mexpk_l, 93
MEXP_L, 455
Miller–Rabin test, 223
MIN_L, 456
mmul_l, 76
mod2_l, 63
modulus, 380, 404
mod_l, 62
monobit test, 289
Monte Carlo method, 261
Montgomery exponentiation, 405
MSDPTR_L, 15, 26, 456
msqr_l, 77
msub_l, 75
mul_l, 36, 72
mulmon_l, 111, 114
mult, 72
multiple, least common, 173, 174, 415
multiplication, 33, 126, 127

of residue classes, 68

nonrecurring elements of a
pseudorandom sequence, 263

nonresidue, quadratic, 191
NP, 191, 203
nul_l, 17
Number Theory Web Page, 463
number(s)

natural, 4
rational, 70

object, 319
object-oriented programming, 321
OCTSTR_L, 151, 456
one_l, 17
or_l, 134
order, of digits of a number, 15
output of a function, 19
overflow, arithmetic, 20, 28, 32

padding, 383
panic, 368, 370
partial product, 35, 42, 51
PC-lint, 308
Peano axioms, 5
period length, maximal, 263
period of a pseudoprime sequence, 263
PGP (pretty good privacy, 122
PKCS #1

format, 397
specification, 411

PKI, see public key infrastructures
poker test, 289
polynomial, 240

irreducible, 240
power, 6
predecessor, 4
primality test

deterministic, 232
Miller–Rabin, 223
Solvay–Strassen, 222

prime number(s), 214, 380
identification of, 216
stored in smallprimes, 224
strong, 388
theorem, 220

prime numbers
largest known, 215

prime_l, 229
primitive root modulo p, 120
primroot_l, 120
product, 5
proot_l, 200
protocol

authentication à la Fiat–Shamir, 213
digital signature with RSA, 395
Rabin encryption, 211

pseudoprime, 221
strong, 223

pseudorandom numbers, 261
public key cryptosystem, 118
public key infrastructures, 401
purge_l, 164
purgeall_reg_l, 162
purge_reg_l, 161
PurgeRandAES_1, 283
PurgeRandBBS_l, 279
PurgeRand_l, 297
PurgeRandRMDSHA_l, 286

quotient, 50, 52, 128

476

Index

Rabin encryption, 211
Rabin, Michael O., 211
rand64_l, 265
RandAES, 291
RandAES_1, 282
RandBBS, 291
RandBBS_l, 278
Rand_l, 295
rand_l, 267
RandlMinMax_l, 297
RandRMDSAH1_l, 286
RandRMDSHA1, 291
reciprocity law, 192
redundancy, 383

function, 396
scheme, PKCS#1, 397

reentrant, 268
remainder, 51, 52, 68
representative of a residue class, 68
ResetLintFlags, 361
residue

class, 68
system

absolute smallest complete, 70
complete, 70

residue, quadratic, 191
ResTrack, 313
return value of a function, 19
Riemann hypothesis, 200
ring, commutative, 69
RIPEMD-160, 268, 283
RMLDZRS_L, 456
root certification authority, 402
root_l, 205
RSA

algorithm, 377
attack, 382

class, 405
key length, 393
key pair, 380
procedure, 216
rapid decryption, 405

runs test, 289

S-box, 388
Saxena, Nitin, 232
secure mode, 384
secure socket layer, 118
security mode, 10
seed, 262
seed64_l, 266

seedBBS_l, 277
semaphore, 160
semigroup, 69, 175
set, empty, 4
setbit_l, 138
SETDIGITS_L, 15, 26, 456
SET_L, 456
SetLintFlags, 361
setmax_l, 29
SETZERO_L, 456
set_noofregs_l, 160
SFACTOR_L, 226
SHA-1, 268, 283
Shamir, Adi, 212
shift_l, 129
shl_l, 127
shr_l, 128
sieve of Eratosthenes, 216, 217
sieve_1, 225
signature

digital, 378, 379
laws on, 379

hidden, 396
with appendix, 395
with message recovery, 397

smallprimes, 224
Splint, 308
sqr, 72
sqr_l, 43, 72
sqrmon_l, 113, 114
squaring, 40–42, 45
sRandBBS_l, 278
sRand_l, 296
SSL, see secure socket layer
stack, 9
start value, 269
state memory, 292
str2clint_l, 147
Stroustrup, Bjarne, 319
sub, 72
sub_l, 29, 72
subsystem, 153
subtraction, 27, 51

of residue classes, 69
successor, 4

set, 4
sum, 5
SWAP_L, 457
SwitchRandAES_l, 281
SwitchRandBBS_l, 275
SwitchRandRMDSHA1_l, 285

477

Index

template, omanip<T>, 361
test plan, 311
test suite, 315
testbit_l, 139
throw, 371
Trojan horse, 387
try block, 371
twofact_l, 195
two-part of an integer, 195
two_l, 17

uadd_l, 31
udiv_l, 62
ul2clint_l, 152
ulrand64_l, 266
umadd_l, 78
umexpm_l, 116
umexp_l, 83
umod_l, 64

umul, 72
umul_l, 39
underflow, arithmetic, 20, 28, 32, 126
unit, 69
universal exponent, 381
usub_l, 31

vcheck_l, 154

wmexpm_l, 116
wmexp_l, 85

xclint2str_l, 150
xgcd_l, 179
xor_l, 136

zero, 15
zero knowledge process, 213
ZEROCLINT_L, 457
zeros, leading, xxi, 20

478

