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Preface

Toss a symmetric coin twice. What is the probability that both tosses will
yield a head?

This is a well-known problem that anyone can solve. Namely, the proba-
bility of a head in each toss is 1/2, so the probability of two consecutive heads
is1/2-1/2=1/4.

BUT! What did we do? What is involved in the solution? What are the
arguments behind our computations? Why did we multiply the two halves
connected with each toss?

This is reminiscent of the centipede! who was asked by another animal
how he walks; he who has so many legs, in which order does he move them
as he is walking? The centipede contemplated the question for a while, but
found no answer. However, from that moment on he could no longer walk.

This book is written with the hope that we are not centipedes.

There exist two kinds of probabilists. One of them is the mathematician
who views probability theory as a purely mathematical discipline, like algebra,
topology, differential equations, and so on. The other kind views probability
theory as the mathematical modeling of random phenomena, that is with a
view toward applications, and as a companion to statistics, which aims at
finding methods, principles and criteria in order to analyze data emanating
from experiments involving random phenomena and other observations from
the real world, with the ultimate goal of making wise decisions. I would like
to think of myself as both.

What kind of a random process describes the arrival of claims at an in-
surance company? Is it one process or should one rather think of different
processes, such as one for claims concerning stolen bikes and one for houses
that have burnt down? How well should the DNA sequences of an accused
offender and a piece of evidence match each other in order for a conviction? A

!Cent is 100, so it means an animal with 100 legs. In Swedish the name of the
animal is tusenfoting, where “tusen” means 1000 and “fot” is foot; thus an animal
with 1000 legs or feet.
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milder version is how to order different species in a phylogenetic tree. What
are the arrival rates of customers to a grocery store? How long are the service
times? How do the clapidemia cells split? Will they create a new epidemic or
can we expect them to die out? A classical application has been the arrivals
of telephone calls to a switchboard and the duration of calls. Recent research
and model testing concerning the Internet traffic has shown that the classical
models break down completely and new thinking has become necessary. And,
last but (not?) least, there are many games and lotteries.

The aim of this book is to provide the reader with a fairly thorough treat-
ment of the main body of basic and classical probability theory, preceded by
an introduction to the mathematics which is necessary for a solid treatment
of the material. This means that we begin with basics from measure theory,
such as o-algebras, set theory, measurability (random variables) and Lebesgue
integration (expectation), after which we turn to the Borel-Cantelli lemmas,
inequalities, transforms and the three classical limit theorems: the law of large
numbers, the central limit theorem and the law of the iterated logarithm. A
final chapter on martingales — one of the most efficient, important, and useful
tools in probability theory — is preceded by a chapter on topics that could
have been included with the hope that the reader will be tempted to look fur-
ther into the literature. The reason that these topics did not get a chapter of
their own is that beyond a certain number of pages a book becomes deterring
rather than tempting (or, as somebody said with respect to an earlier book
of mine: “It is a nice format for bedside reading”).

One thing that is not included in this book is a philosophical discussion
of whether or not chance exist, whether or not randomness exists. On the
other hand, probabilistic modeling is a wonderful, realistic, and efficient way
to model phenomena containing uncertainties and ambiguities, regardless of
whether or not the answer to the philosophical question is yes or no.

I remember having read somewhere a sentence like “There exist already so
many textbooks [of the current kind], so, why do I write another one?” This
sentence could equally well serve as an opening for the present book.

Luckily, I can provide an answer to that question. The answer is the short
version of the story of the mathematician who was asked how one realizes that
the fact he presented in his lecture (because this was really a he) was trivial.
After 2 minutes of complete silence he mumbled

I know it’s trivial, but I have forgotten why.

I strongly dislike the arrogance and snobbism that encompasses mathematics
and many mathematicians. Books and papers are filled with expressions such
as “it is easily seen”, “it is trivial”, “routine computations yield”, and so on.
The last example is sometimes modified into “routine, but tedious, computa-
tions yield”. And we all know that behind things that are easily seen there
may be years of thinking and/or huge piles of scrap notes that lead nowhere,
and one sheet where everything finally worked out nicely.



Preface VII

Clearly, things become routine after many years. Clearly, facts become, at
least intuitively, obvious after some decades. But in writing papers and books
we try to help those who do not know yet, those who want to learn. We wish
to attract people to this fascinating part of the world. Unfortunately though,
phrases like the above ones are repellent, rather than being attractive. If a
reader understands immediately that’s fine. However, it is more likely that he
or she starts off with something that either results in a pile of scrap notes or in
frustration. Or both. And nobody is made happier, certainly not the reader. I
have therefore avoided, or, at least, tried to avoid, expressions like the above
unless they are adequate.

The main aim of a book is to be helpful to the reader, to help her or him
to understand, to inform, to educate, and to attract (and not for the author
to prove himself to the world). It is therefore essential to keep the flow, not
only in the writing, but also in the reading. In the writing it is therefore of
great importance to be rather extensive and not to leave too much to the
(interested) reader.

A related aspect concerns the style of writing. Most textbooks introduce
the reader to a number of topics in such a way that further insights are gained
through exercises and problems, some of which are not at all easy to solve,
let alone trivial. We take a somewhat different approach in that several such
“would have been” exercises are given, together with their solutions as part
of the ordinary text — which, as a side effect, reduces the number of exercises
and problems at the end of each chapter. We also provide, at times, results
for which the proofs consist of variations of earlier ones, and therefore are
left as an exercise, with the motivation that doing almost the same thing as
somebody else has done provides a much better understanding than reading,
nodding and agreeing. I also hope that this approach creates the atmosphere
of a dialogue rather than of the more traditional monologue (or sermon).

The ultimate dream is, of course, that this book contains no errors, no
slips, no misprints. Henrik Wanntorp has gone over a substantial part of
the manuscript with a magnifying glass, thereby contributing immensely to
making that dream come true. My heartfelt thanks, Henrik. I also wish to
thank Raimundas Gaigalas for several perspicacious remarks and suggestions
concerning his favorite sections, and a number of reviewers for their helpful
comments and valuable advice. As always, I owe a lot to Svante Janson for
being available for any question at all times, and, more particularly, for always
providing me with an answer. John Kimmel of Springer-Verlag has seen me
through the process with a unique combination of professionalism, efficiency,
enthusiasm and care, for which I am most grateful.

Finally, my hope is that the reader who has digested this book is ready and
capable to attack any other text, for which a solid probabilistic foundation is
necessary or, at least, desirable.

Uppsala Allan Gut
November 2004
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Outline of Contents

In this extended list of contents, we provide a short expansion of the headings
into a quick overview of the contents of the book.

Chapter 1. Introductory Measure Theory

The mathematical foundation of probability theory is measure theory and the
theory of Lebesgue integration. The bulk of the introductory chapter is de-
voted to measure theory: sets, measurability, o-algebras, and so on. We do not
aim at a full course in measure theory, rather to provide enough background
for a solid treatment of what follows.

Chapter 2. Random Variables

Having set the scene, the first thing to do is to forget probability spaces (!).
More precisely, for modeling random experiments one is interested in cer-
tain specific quantities, called random wvariables, rather than in the underly-
ing probability space itself. In Chapter 2 we introduce random variables and
present the basic concepts, as well as concrete applications and examples of
probability models. In particular, Lebesgue integration is developed in terms
of expectation of random variables.

Chapter 3. Inequalities

Some of the most useful tools in probability theory and mathematics for prov-
ing finiteness or convergence of sums and integrals are inequalities. There exist
many useful ones spread out in books and papers. In Chapter 3 we make an
attempt to present a sizable amount of the most important inequalities.

Chapter 4. Characteristic Functions

Just as there are i.a. Fourier transforms that transform convolution of func-
tions into multiplication of their corresponding transforms, there exist proba-
bilistic transforms that “map” addition of independent random variables into
multiplication of their transforms, the most prominent one being the charac-
teristic function.
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Chapter 5. Convergence

Once we know how to add random variables the natural problem is to in-
vestigate asymptotics. We begin by introducing some convergence concepts,
prove uniqueness, after which we investigate how and when they imply each
other. Other important problems are when, and to what extent, limits and
expectations (limits and integrals) can be interchanged, and when, and to
what extent, functions of convergent sequences converge to the function of
the limit.

Chapter 6. The Law of Large Numbers

The law of large numbers states that (the distribution of) the arithmetic mean
of a sequence of independent trials stabilizes around the center of gravity of
the underlying distribution (under suitable conditions). There exist weak and
strong laws and several variations and extensions of them. We shall meet some
of them as well as some applications.

Chapter 7. The Central Limit Theorem

The central limit theorem, which (in its simplest form) states that if the vari-
ance is finite, then the arithmetic mean, properly rescaled, of a sequence of
independent trials approaches a normal distribution as the number of ob-
servations increases. There exist many variations and generalizations, of the
theorem, the central one being the Lindeberg-Lévy-Feller theorem. We also
prove results on moment convergence, and rate results, the foremost one being
the celebrated Berry-Esseen theorem.

Chapter 8. The Law of the Iterated Logarithm

This is a special, rather delicate and technical, and very beautiful, result,
which provides precise bounds on the oscillations of sums of the above kind.
The name obviously stems from the iterated logarithm that appears in the
expression of the parabolic bound.

Chapter 9. Limit Theorems; Extensions and Generalizations

There are a number of additional topics that would fit well into a text like
the present one, but for which there is no room. In this chapter we shall
meet a number of them — stable distributions, domain of attraction, infinite
divisibility, sums of dependent random variables, extreme value theory, the
Stein-Chen method — in a somewhat more sketchy or introductory style. The
reader who gets hooked on such a topic will be advised to some relevant
literature (more can be found via the Internet).

Chapter 10. Martingales

This final chapter is devoted to one of the most central topics, not only in
probability theory, but also in more traditional mathematics. Following some
introductory material on conditional expectations and the definition of a mar-
tingale, we present several examples, convergence results, results for stopped
martingales, regular martingales, uniformly integrable martingales, stopped
random walks, and reversed martingales.
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In Addition

A list of notation and symbols precedes the main body of text, and an ap-
pendix with some mathematical tools and facts, a bibliography, and an index
conclude the book. References are provided for more recent results, for more
nontraditional material, and to some of the historic sources, but in general
not to the more traditional material. In addition to cited material, the list of
references contains references to papers and books that are relevant without
having been specifically cited.

Suggestions for a Course Curriculum

One aim with the book is that it should serve as a graduate probability course
— as the title suggests. In the same way as the sections in Chapter 9 contain
materials that no doubt would have deserved chapters of their own, Chapters
6,7, and 8 contain sections entitled “Some Additional Results and Remarks”,
in which a number of additional results and remarks are presented, results
that are not as central and basic as earlier ones in those chapters.

An adequate course would, in my opinion, consist of Chapters 1-8, and
10, except for the sections “Some Additional Results and Remarks”, plus a
skimming through Chapter 9 at the level of the instructor’s preferences.
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random variables

distribution function (of X)

X has distribution (function) F

the continuity set of Fx

probability function (of X)

density (function) (of X)

random (column) vectors

the transpose of the vectors

joint distribution function (of X and Y)
joint probability function (of X and Y)
joint density (function) (of X and Y)
expectation (mean), expected value of X
variance, variance of X

covariance of X and Y

correlation coefficient (between X and Y)
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(probability) generating function (of X)
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characteristic function (of X)

X and Y are equivalent random variables
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X, converges almost surely (a.s.) to X
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X,, converges in distribution to X
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X,, does not converge in distribution

standard normal distribution function
standard normal density (function)

F belongs to the domain of attraction of G
g varies regularly at infinity with exponent p
g varies slowly at infinity
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Bernoulli distribution

beta distribution

binomial distribution

Cauchy distribution

chi-square distribution

one-point distribution

exponential distribution

(Fisher’s) F-distribution

first success distribution
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hypergeometric distribution

Laplace distribution
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negative binomial distribution
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almost everywhere

almost surely
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infinitely often
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without loss of generality

hint for solving a problem

bonus remark in connection with a problem
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Introductory Measure Theory

1 Probability Theory: An Introduction

The object of probability theory is to describe and investigate mathematical
models of random phenomena, primarily from a theoretical point of view.
Closely related to probability theory is statistics, which is concerned with
creating principles, methods, and criteria in order to treat data pertaining to
such (random) phenomena or data from experiments and other observations
of the real world, by using, for example, the theories and knowledge available
from the theory of probability.

Probability models thus aim at describing random experiments, that is,
experiments that can be repeated (indefinitely) and where future outcomes
cannot be exactly predicted — due to randomness — even if the experimental
situation can be fully controlled.

The basis of probability theory is the probability space. The key idea behind
probability spaces is the stabilization of the relative frequencies. Suppose that
we perform “independent” repetitions of a random experiment and that we
record each time if some “event” A occurs or not (although we have not yet
mathematically defined what we mean by independence or by an event). Let
fn(A) denote the number of occurrences of A in the first n trials, and r,(A)
the relative frequency, r,(A) = f,(A)/n. Since the dawn of history one has
observed the stabilization of the relative frequencies, that is, one has observed
that (it seems that)

rn(A)  converges to some real number as n — oo.

The intuitive interpretation of the probability concept is that if the probability
of some event A is 0.6, one should expect that by performing the random
experiment “many times” the relative frequency of occurrences of A should
be approximately 0.6.

The next step is to axiomatize the theory, to make it mathematically rig-
orous. Although games of chance have been performed for thousands of years,
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a mathematically rigorous treatment of the theory of probability only came
about in the 1930’s by the Soviet/Russian mathematician A.N. Kolmogorov
(1903-1987) in his fundamental monograph Grundbegriffe der Wahrschein-
lichkeitsrechnung [163], which appeared in 1933.

The first observation is that a number of rules that hold for relative fre-
quencies should also hold for probabilities. This immediately calls for the
question “which is the minimal set of rules?”

In order to answer this question one introduces the probability space or
probability triple (2, F, P), where

e (2 is the sample space;
e F is the collection of events;
e P is a probability measure.

The fact that P is a probability measure means that it satisfies the three
Kolmogorov azioms (to be specified ahead).
In a first course in probability theory one learns that

“the collection of events = the subsets of 27,

maybe with an additional remark that this is not quite true, but true enough
for the purpose of that course.

To clarify the situation we need some definitions and facts from measure
theory in order to answer questions such as

“What does it mean for a set to be measurable?”

After this we shall return to a proper definition of the probability space.

2 Basics from Measure Theory

In addition, to straighten out the problems raised by such questions, we need
rules for how to operate on what we shall define as events. More precisely,
a problem may consist of finding the probability of one or the other of two
things happening, or for something not to happen, and so on. We thus need
rules and conventions for how to handle events, how we can combine them or
not combine them. This means i.a. that we need to define collections of sets
with a certain structure. For example, a collection such that the intersection
of two events is an event, or the collection of sets such that the complement of
an event is an event, and also rules for how various collections connect. This
means that we have to confront ourselves with some notions from measure
theory. Since this is rather a tool than a central theme of this book we confine
ourselves to an overview of the most important parts of the topic, leaving
some of the “routine but tedious calculations” as exercises.
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2.1 Sets
Definitions; Notation

A set is a collection of “objects”, concrete or abstract, called elements. A set
is finite if the number of elements is finite, and it is countable if the number of
elements is countable, that is, if one can label them by the positive integers in
such a manner that no element remains unlabeled. Sets are usually denoted
by capitals from the early part of the alphabet, A, B, C, and so on. If several
sets are related, “of the same kind”, it is convenient to use the same letter for
them, but to add indices; Ay, As, As, .. ..

The set A = {1,2,...,n} is finite; |[A] = n. The natural numbers, N
constitute a countable set, and so do the set of rationals, @, whereas the
set of irrationals and the set of reals, R, are uncountable, as is commonly
verified by Cantor’s diagonal method. Although the natural numbers and
the reals belong to different collections of sets they are both infinite in the
sense that the number of elements is infinite in both sets, but the infinities are
different. The same distinction holds true for the rationals and the irrationals.
Infinities are distinguished with the aid of the cardinal numbers, which came
about after Cantor’s proof of the fact that the infinity of the reals is larger
than that of the natural numbers, that there are “more” reals than natural
numbers. Cardinal numbers are denoted by the Hebrew letter alef, where the
successively larger cardinal numbers have increasing indices. The first cardinal
number is Ry = |N|, the cardinality of N. Moreover, |R| = 2%o.

Let us mention in passing that a long-standing question, in fact, one of
Hilbert’s famous problems, has been whether or not there exist infinities be-
tween |N| and |R|. The famous continuum hypothesis states that this is not the
case, a claim that can be formulated as R; = 2%, The interesting fact is that
it has been proved that this claim can neither be proved nor disproved within
the usual axiomatic framework of mathematics. Moreover, one may assume
it to be true or false, and neither assumption will lead to any contradictory
results. The continuum hypothesis is said to be undecidable. For more, see
[51].

Set Operations

Just as real (or complex) numbers can be added or multiplied, there exist
operations on sets. Let A, Ay, Ao, ... and B, By, Bs, ... be sets.

Union: AUB={x:2 € Aorx e B}

Intersection: ANB = {x:x € A and x € B},
Complement: A ={x:xz ¢ A};

Difference: A~ B = AN B¢

Symmetric difference: A A B = (AN B)U (B \ A).



4 1 Introductory Measure Theory

We also use standard notations such as Up_; Ay and N32, B; for unions and
intersections of finitely or countably many sets.

Exercise 2.1. Check to what extent the associative and distributive rules for these
operations are valid. O

Some additional terminology:

e the empty set: (;

e subset: Ais a subset of B, AC B,ifxr € A=z € B,

e disjoint: A and B are disjoint if AN B = (J;

e power set: P(2) ={A:AcC 2};

o {A,, n>1}is non-decreasing, A, /,if Ay C Ay C---;
o {A,, n>1}is non-increasing, A, N\, if Ay DAy D---.

The de Morgan formulas,
(UAk)C: N 45 and (ﬂAk)C: U 45, (2.1)
k=1 k=1 k=1 k=1

can be verified by picking w € 2 belonging to the set made up by the left-
hand side and then show that it also belongs to the right-hand side, after which
one does the same the other way around (please do that!). Alternatively one
realizes that both members express the same fact. In the first case, this is the
fact that an element that does not belong to any A whatsoever belongs to
all complements, and therefore to their intersection. In the second case this is
the fact that an element that does not belong to every Aj belongs to at least
one of the complements.

Limits of Sets

It is also possible to define limits of sets. However, not every sequence of sets
has a limit.

Definition 2.1. Let {A4,,, n > 1} be a sequence of subsets of 2. We define

A, =liminf A,, = G ﬁ A,

n—00
n=1m=n

A* = li7rzn_>sol(1)p A, = Ql mL:Jn A,,.

If the sets A, and A* agree, then

A=A, = A* = lim A,. O

n—roo

One instance when a limit exists is when the sequence of sets is monotone.
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Proposition 2.1. Let {A,, n > 1} be a sequence of subsets of (2.
(1) If Al C Ay CAg, then

o0
lim A, = U A,.
n=1

n—roo

(ll)If AlDAQDAS"‘, then

n—oo

o0
lim A, =[] An.
n=1
Exercise 2.2. Prove the proposition. a

2.2 Collections of Sets

Collections of sets, are defined according to a setup of rules. Different rules
yield different collections. Certain collections are more easy to deal with than
others depending on the property or theorem to prove. We now present a
number of rules and collections, as well as results on how they connect. Since
much of this is more or less well known to a mathematics student we leave
essentially all proofs, which consist of longer or shorter, sometimes routine
but tedious, manipulations, as exercises.

Let A be a non-empty collection of subsets of {2, and consider the following
set relations:

a) Ae A= A°c 4

g) A,eAn>1, =, A, €A
h) A, eAn>1 A4, N = UL, A, €A
() ApceAn>1A,\ =, 4, €A

(

(b) A\ Be A= AUBe A4

(c) AABe A= ANBe A,

(d A BeA BCA= A~BeA

() ApeAn>1, = J A, €A

() A,eAn>1,A4NA=0i#j=U,_ A €A
(

(

 ~—

A number of relations among these rules and extensions of them can be estab-
lished. For example (a) and one of (b) and (c), together with the de Morgan
formulas, yield the other; (a) and one of (e) and (g), together with the de
Morgan formulas, yield the other; (b) and induction shows that (b) can be
extended to any finite union of sets; (¢) and induction shows that (c) can be
extended to any finite intersection of sets, and so on.

Exercise 2.3. Check these statements, and verify some more. a
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Here are now definitions of some collections of sets.
Definition 2.2. Let A be a collection of subsets of (2.

A is an algebra or a field if 2 € A and properties (a) and (b) hold;

A is a o-algebra or a o-field if 2 € A and properties (a) and (e) hold;
A is a monotone class if properties (h) and (j) hold;

A is a w-system if property (c) holds;

A is a Dynkin system if 2 € A, and properties (d) and (h) hold. ]

Remark 2.1. Dynkin systems are also called \-systems.

Remark 2.2. The definition of a Dynkin system varies. One alternative, in
addition to the assumption that {2 € A, is that (a) and (f) hold. O

Exercise 2.4. The obvious exercise is to show that the two definitions of a Dynkin
system are equivalent. a

The definitions of the different collections of sets are obviously based on
minimal requirements. By manipulating the different properties (a)—(j), for
example together with the de Morgan formulas, other properties can be de-
rived. The following relations between different collections of sets are obtained
by such manipulations.

Theorem 2.1. The following connections hold:

1.  FEwvery algebra is a w-system.
2. Fvery o-algebra is an algebra.
3.  An algebra is a o-algebra if and only if it is a monotone class.
4.  Fvery o-algebra is a Dynkin system.
5. A Dynkin system is a o-algebra if and only if it is w-system.
6. FEvery Dynkin system is a monotone class.
7. Every o-algebra is a monotone class.
8. The power set of any subset of {2 is a o-algebra on that subset.
9.  The intersection of any number of o-algebras, countable or uncountable,
18, again, a o-algebra.
10.  The countable union of a non-decreasing sequence of o-algebras is an

algebra, but not necessarily a o-algebra.

11.  If Ais a o-algebra, and B C 2, then BN A={BNA:Ac A} isa
o-algebra on B.

12.  If 2 and §2' are sets, A’ a o-algebra in ' and T : 2 — ' a mapping,
then T=H(A') = {T~Y(A") : A’ € A’} is a o-algebra on 2.

Exercise 2.5. (a) Prove the above statements.

(b) Find two o-algebras, the union of which is not an algebra (only very few elements
in each suffice).

(¢) Prove that if, for the infinite set {2, A consists of all A C (2, such that either A
or A€ is finite, then A is an algebra, but not a o-algebra. a
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2.3 Generators

Let A be a collection of subsets of (2. Since the power set, PB(£2), is a o-
algebra, it follows that there exists at least one o-algebra containing A. Since,
moreover, the intersection of any number of o-algebras is, again, a o-algebra,
there exists a smallest o-algebra containing A. In fact, let

F* = {o-algebras D A}.

The smallest o-algebra containing 4 equals

N ¢

GeF*

and is unique since we have intersected all o-algebras containing A.

Definition 2.3. Let A be a collection of subsets of £2. The smallest o-algebra
containing A, o{A}, is called the o-algebra generated by A. Similarly, the
smallest Dynkin system containing A, D{A}, is called the Dynkin system gen-
erated by A, and the smallest monotone class containing A, M{ A}, is called
the monotone class generated by A. In each case A is called the generator of
the actual collection. O

Remark 2.3. The o-algebra generated by A is also called “the minimal o-
algebra containing A”. Similarly for the other collections.

Remark 2.4. Let {A,, n > 1} be g-algebras. Even though the union need not
be a o-algebra, o{{J,—, A, }, that is, the o-algebra generated by {A4,,, n > 1},
always exists. O

Exercise 2.6. Prove that

(i) If A= A, a single set, then o{A} = c{A} = {0, A, A°, 2}.
(ii) If A is a o-algebra, then o{A} = A. |

The importance and usefulness of generators is demonstrated by the following
two results.

Theorem 2.2. Let A be an algebra. Then
M{A} = o {A}.

Proof. Since every o-algebra is a monotone class (Theorem 2.1) and 9{A}
is the minimal monotone class containing A, we know from the outset that
M{A} C o{A}. To prove the opposite inclusion we must, due to the mini-
mality of o{A}, prove that M{A} is a o-algebra, for which it is sufficient to
prove that 9M{A} is an algebra (Theorem 2.1 once more). This means that
we have to verify that properties (a) and (b) hold;
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{ BeM{A} = B°eM{A}, and 22)

B,Ce mM{A} = BUCeM{A}.
Toward this end, let
& ={BeM{A}: BUC € M{A} for all C € A},
& = {B e M{A}: B € M{A}}.
We first note that £; is a monotone class via the identities
(ﬂ Bk) uC=()(BrUC) and (U Bk.) uc=JBruo), (23)
k=1 k=1 k=1 k=1
and that &; is a monotone class via the de Morgan formulas, (2.1).
Secondly, by definition, A C M{.A}, and by construction,
AcC &, cMm{A}, k=12
so that, in view of minimality of 9M{A},
M{A} =& =&s.
To finish off, let
E={BeM{A}: BUC € M{A} for all C € M{A}}.

Looking at & = 9M{A} from another angle, we have shown that for every
B € M{A} we know that if C' € A, then BU C € 9M{ A}, which means that

A C &s.

Moreover, &3 is a monotone class via (2.3), so that, by minimality again, we
must have M{A} = &s.
We have thus shown that 9{.A} obeys properties (a) and (b). O

By suppressing the minimality of the monotone class, the following corol-
lary emerges (because an arbitrary monotone class contains the minimal one).

Corollary 2.1. If A is an algebra and G a monotone class containing A, then
G D o{A}.

A related theorem, the monotone class theorem, concerns the equality between

the Dynkin system and the o-algebra generated by the same 7-system.

Theorem 2.3. (The monotone class theorem)
If A is a w-system on (2, then

D{A} = o{A}.

Proof. The proof runs along the same lines as the previous one. Namely, one
first observes that ©{A} C o{A}, since every o-algebra is a Dynkin system
(Theorem 2.1) and D{A} is the minimal Dynkin system containing A.
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For the converse we must show that D{A} is a m-system (Theorem 2.1).
In order to achieve this, let

Dec={BCR:BNCecD{A}} for CeD{A}.

We claim that D¢ is a Dynkin system.

To prove this we check the requirements for a collection of sets to constitute
a Dynkin system. In this case we use the following alternative (recall Remark
2.2), namely, we show that 2 € D¢, and that (a) and (f) hold.

Let C € ®{A}.
e Since 2NC = C, it follows that 2 € D¢.
e If B € D¢, then

BCNC=(2~B)NC=(2nC)~ (BNC),

which shows that B¢ € Dg.
e Finally, if {B,, n > 1} are disjoint sets in D¢, then

(DBn>OC: G(Bnﬁc*),

n=1

which proves that |07, B, € Dc.

n=1

The requirements for D¢ to be a Dynkin system are thus fulfilled. And,
since C' was arbitrarily chosen, this is true for any C € D{A}.
Now, since, by definition, A C Dy for every A € A, it follows that

D{A} C Dy forevery Aec A

For C € ®{A} we now have CNA € ©{A} for every A € A, which implies that
A C D¢, and, hence, that D{A} C D¢ for every C € D{A}. Consequently,

B,Ce®D{A} = BNCeD{A}
that is, D{A} is a 7-system. O

By combining Theorems 2.2 and 2.3 (and the exercise preceding the for-
mer) the following result emerges.

Corollary 2.2. If A is a o-algebra, then
M{A} =D{A} =c{A} = A.

2.4 A Metatheorem and Some Consequences

A frequent proof technique is to establish some kind of reduction from an
infinite setting to a finite one; simple functions, rectangles, and so on. Such
proofs can often be identified in that they open by statements such as

“it suffices to check rectangles”,

“it suffices to check step functions”.
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The basic idea behind such statements is that there either exists some
approximation theorem that “takes care of the rest”, or that some convenient
part of Theorem 2.1 can be exploited for the remaining part of the proof.
Our next result puts this device into a more stringent form, although in a
somewhat metaphoric sense.

Theorem 2.4. (A Metatheorem)

(i) Suppose that some property holds for some monotone class € of subsets. If
A is an algebra that generates the o-algebra G and A C €, then £ D G.

(ii) Suppose that some property holds for some Dynkin system £ of subsets. If
A is a w-system that generates the o-algebra G and A C &€, then € D G.

Proof. Let
& = {FE : the property is satisfied}.

(i): Tt follows from the assumptions and Theorem 2.2, respectively, that
EDM{A} =c{A} =4G.
(ii): Apply Theorem 2.3 to obtain

EDD{A} =c{A}=G. -

Remark 2.5. As the reader may have discovered, the proofs of Theorems 2.2
and 2.3 are of this kind.

Remark 2.6. The second half of the theorem is called Dynkin’s w-A theorem.O

3 The Probability Space

We now have sufficient mathematics at our disposal for a formal definition of
the probability space or probability triple, (2, F, P).

Definition 3.1. The triple (£2,F, P) is a probability (measure) space if

e (2 is the sample space, that is, some (possibly abstract) set;

e F is a o-algebra of sets (events) — the measurable subsets of (2.
The “atoms”, {w}, of §2, are called elementary events;

e P is a probability measure,

that is, P satisfies the following Kolmogorov axioms:

1. For any A € F, there exists a number P(A) > 0; the probability of A.
2. P(2)=1.
3. Let {A,, n> 1} be disjoint. Then

P(UAH)ZZP(An) O
n=1

n=1
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Remark 3.1. Axiom 3 is called countable additivity (in contrast to finite addi-
tivity). O

Departing from the axioms (only!) one can now derive various relations be-
tween probabilities of unions, subsets, complements and so on. Following is a
list of some of them:

Let A, A1, Ao, ... be measurable sets. Then

e P(A°)=1- P(A);

o P(0)=0;

o P(AjUAy) < P(A)) + P(As);

e A CAy = P(A;) < P(Ay);
o P(Upoy 4Ak) + PNz A7) = 1.

Exercise 3.1. Prove these relations. O
Remark 3.2. There exist non-empty sets which have probability 0. |

From now on we assume, unless otherwise stated, that all sets are measurable.

3.1 Limits and Completeness

One of the basic questions in mathematics is to what extent limits of objects
carry over to limits of functions of objects. In the present context the question
amounts to whether or not probabilities of converging sets converge.

Theorem 3.1. Suppose that A and {A,, n > 1} are subsets of {2, such that
An SA (A N\ A) asn — co. Then

P(A,) S P(A) (P(A,)\(P(A)) as n— oco.

Proof. Suppose that A,, A, let By = A; and set B,, = A, NAS_, n > 2.
Then {B,,, n > 1} are disjoint sets, and

An:LnJB;C forall n>1, and DA”:GB”’
k=1 n=1 n=1

so that by Proposition 2.1 (and o-additivity)
P(4n) =3 PB) A3 P8 = P(U Be) = P(U A) = P(4).
- k=1 k=1 k=1

k=1 =

The case A, \, 4 follows similarly, or, alternatively, by considering comple-
ments (since A% 7 A® as n — o0). O

A slight extension of this result yields the following one.
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Theorem 3.2. Let A and {A,, n > 1} be subsets of §2, and set, as before,
A, =liminf,,_, A,,, and A* = limsup,,_,., A,. Then

(i)  P(Ay) <liminf,, . P(4,) <limsup,,_, ., P(A,) < P(4*);
(i) A, —=>Aasn—-00 = P(A4,)— P(A4) asn — oo.

Proof. (i): By definition, for any n, we obtain, recalling Proposition 2.1, that

AN () Am CAn C | Am A7,

m=n m=n

where the limits are taken as n — co. Joining this with Theorem 3.1, yields

P(A,) <liminf P(4,) < limsup P(A,) < P(4"),
n—00 n—00
which proves (i), from which (ii) is immediate, since the extreme members
coincide under the additional assumption of set convergence. m

As a corollary we obtain the following intuitively reasonable result.

Corollary 3.1. Suppose that A, — 0 as n — co. Then
P(A,) =0 as n— oo.
Proof. Immediate from the previous theorem with A = (. O

To prepare for the next two results we introduce the notion of a null set.

Definition 3.2. A set A is a null set if there exists B € F, such that B D A
with P(B) = 0. |
In normal prose this means that a set is a null set if it is contained in a
measurable set which has probability 0. In particular, null sets need not be
measurable. The concept of completeness takes care of that problem.

Definition 3.3. A probability space (£2,F, P) is complete if every null set is
measurable, that is, if

ACBEeF, P(B)=0 = A€cF, (and, hence, P(A)=0). "

One can show that it is always possible to enlarge a given o-algebra, and
extend the given probability measure to make the, thus, extended probabil-
ity space complete; one completes the probability space. It is therefore no
restriction really to assume from the outset that a given probability space is
complete. In order to avoid being distracted from the main path, we assume
from now on, without further explicit mentioning, that all probability spaces
are complete. Completeness is important in the theory of stochastic processes
and for stochastic integration.

We close this subsection by showing that the union of a countable number
of null sets remains a null set, and that the intersection of countably many
sets with probability 1 also has probability 1. The meaning of the latter is that
peeling off sets of probability 0 countably many times still does not reduce
the intersection with more than a null set.
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Theorem 3.3. Suppose that {A,, n > 1} are subsets of 2 with P(A,) =0

for alln. Then .
P(nL:Jl 4,) =0.

Proof. By o-sub-additivity,

P(GA,L) giP(An):O. 0

n=1

Theorem 3.4. Suppose that {B,, n > 1} are subsets of 2 with P(B,) =1

for alln. Then .
P( N Bn> —1.

n=1

Proof. Using the de Morgan formulas (2.1) and Theorem 3.3,

P(ﬁan):l—P<ng§):1. -

Having defined the probability space, we prove, as a first result that for
two probability measures to coincide it suffices that they agree on a suitable
generator. The proof is a nice illustration of the Metatheorem, Theorem 2.4.

Theorem 3.5. Suppose that P and Q are probability measures defined on
the same probability space (2, F), and that F is generated by a m-system A.
If P(A) = Q(A) for all A€ A, then P =Q, i.e., P(A) = Q(A) for all A€ F.

Proof. Define
E={AeF:P(A)=Q(A)}.
Since

e €&,
o ABel, ACB = B~NAE€g,
o A, eén>1,4A, " = U,4A. €€,

where we used Theorem 3.1 in the final step, it follows that £ is a Dynkin
system. An application of Theorem 2.4 finishes the proof. a

3.2 An Approximation Lemma

The following result states that any set in a o-algebra can be arbitrary well
approximated by another set that belongs to an algebra that generates the o-
algebra. The need for this result is the fact that the infinite union of o-algebras
is not necessarily a o-algebra (recall Theorem 2.1.10).

The general description of the result reveals that it reduces an infinite set-
ting to a finite one, which suggests that the proof builds on the metatheorem
technique.
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Lemma 3.1. Suppose that Fy is an algebra that generates the o-algebra F,
that is, F = o{Fo}. For any set A € F and any € > 0 there exists a set
A, € Fy, such that

P(AAA)<e.

Proof. Let € > 0, and define
G={AceF:PArA)<e forsome A€ Fy}.
(i): If A€ G, then A° € G, since A° A (A:)°=A A A..

(ii): If A, € G, n > 1, then so does the union. Namely, set A = [J,2 | A,, let
€ be given and choose n,, such that

P(A \ ;@1 Ak) <e. (3.1)

Next, let {Ag . C Fo, 1 <k < n,} be such that

P(Ak A Ak75) <e for 1<k <n,. (32)
Since . . .
(U Ak) A (U Ak,5> C U(Ak‘ A Ago),
k=1 k=1 k=1

it follows that
P(( U Ak) A ( U Ak,5)> < ZP(Ak A Ak),g) < N4E,
k=1 k=1 k=1
so that, finally,

P(A A (Ql Akﬁ)) < (n.+ 1e.

This proves the second claim — the claim would have followed with an approx-
imation error € instead of (n, + 1)e if we had chosen € to be €/2 in (3.1) and
as €/(2n,) in (3.2). But that’s cheating.

To summarize: G is non-empty, since G O Fy by construction (choose
A. = A whenever A € Fy), and G obeys properties (a) and (e), so that G is a
o-algebra. Moreover, G D F, since F is the minimal o-algebra containing Fy,
and, since, trivially, G C F, it finally follows that G = F. ]

3.3 The Borel Sets on R

Definition 3.4. A set {2 together with an associated o-algebra, A, i.e., the
pair (£2,A), is called a measurable space. O
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In this subsection we shall find out what the terminology we have introduced
above means for {2 = R, and characterize R, the o-algebra of Borel sets on
the real line.

A set F'is open if, for every point = € F', there exists an e-ball, B(x,¢) C F.
This means that the boundary points do not belong to the set; OF ¢ F. A set
G is closed if its complement G€ is open. If GG is closed, then 0G C G.

The sets in R are called Borel sets, and the space (R, R) is called the Borel
space. The o-algebra of Borel sets, or the Borel-o-algebra, is defined as the
o-algebra generated by the open subsets of R;

R = of{F : F is open}. (3.3)
An important fact is that the Borel sets can, equivalently, be generated by
intervals as follows.
Theorem 3.6. We have
R =o0{(a,b], —c0<a<b< oo}
= o{[a,b), —co < a < b < o0}
= o{(a,b), —00 < a < b< oo}

= o{[a,b], —o0o < a <b< o0}
= o{(—00,b], —00 < b < x0}.

Proof. We confine ourselves by providing a sketch. The equivalences build on
relations such as

(a,b)@(a,bi} and (a,b]ﬁ(a,bJri),

and so on, or, more generally, by choosing a sequence {x,, n > 1}, such that,
if z,, L 0 as n — oo, then

= U(a,b—xn] and (a,b] = ﬂ(a,b+xn).

Once these relations have been established one shows that a given o-algebra
is contained in another one and vice versa (which proves that they coincide),
after which one of them is proven to be equivalent to (3.3). We leave the
(boring?) details to the reader. O

For probability measures on the real line Theorem 3.5 becomes

Theorem 3.7. Suppose that P and Q are probability measures on (R, R) that
agree on all intervals (a,b], —oo < a < b < oo, say. Then P = Q.

Proof. The collection of intervals constitutes a m-system, that generates R. O
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Remark 3.3. The theorem obviously remains true for all kinds of intervals
mentioned in Theorem 3.6. a

The statement of Theorem 3.7 amounts to the fact that, if we know a prob-
ability measure on all intervals (of one kind) we know it on any Borel set.
Knowledge on the intervals thus determines the measure. The intervals are
said to form a determining class.

For comparison with higher dimensions we interpret intervals as one-
dimensional rectangles.

3.4 The Borel Sets on R™

For Borel sets in higher (finite) dimensions one extends Theorem 3.6 to higher-
dimensional rectangles. The extension of Theorem 3.7 tells us that two prob-
ability measures on (R™, R™) agree if and only if they agree on the rectangles.
In infinite dimensions things become much harder. Existence follows from
the famous Kolmogorov extension theorem. Moreover, by using the metatheo-
rem technique one can show that if the finite-dimensional distributions of two
probability measures agree, then the measures agree. The finite-dimensional
distributions constitute a determining class. We omit all details.

4 Independence; Conditional Probabilities

One of the most central concepts of probability theory is independence, which
means that successive experiments do not influence each other, that the future
does not depend on the past, that knowledge of the outcomes so far does not
provide any information about future experiments.

Definition 4.1. The events {Ax, 1 <k < n} are independent iff

P((N4:) = [T P4,

where intersections and products, respectively, are to be taken over all subsets

of {1,2,...,n}.
The events {A,, n > 1} are independent if {Ax, 1 <k < n} are indepen-
dent for all n. a

Exercise 4.1. How many equations does one have to check in order to establish
that {Ak, 1 <k < n} are independent? O

The classical examples are coin-tossing and throwing dice where successive
outcomes are independent, and sampling without replacement from a finite
population, where this is not the case, the typical example being drawing
cards from a card deck.
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Exercise 4.2. Prove that, if A and B are independent, then so are A and B°, A°
and B, and A° and B°. O

A suggestive way to illustrate independence is to introduce conditional prob-
abilities.

Definition 4.2. Let A and B be two events, and suppose that P(A) > 0. The
conditional probability of B given A is defined as

P(ANDB)

PB|A) = =55

O
The conditional probability thus measures the probability of B given that
we know that A has occurred. The numerator is the probability that both of
them occur, and the denominator rescales this number in order for conditional
probabilities to satisfy the Kolmogorov axioms.

Exercise 4.3. Prove that, given A with P(4) > 0, P(- | A) satisfies the Kol-
mogorov axioms, and, hence, is a bona fide probability measure. O

If, in particular, A and B are independent, then

P(A)- P(B)

P(B|A) = =55

= P(B),
which means that knowing that A has occurred does not change the proba-
bility of B occurring. As expected.

Remark 4.1. 1t is also possible to begin by defining conditional probabilities,
after which one “discovers” that for events satisfying P(ANB) = P(A)-P(B)
one has P(B | A) = P(B), which implies that for such events, the fact that
A has occurred does not change the probability of B occurring, after which
one introduces the notion of independence. In order to take care of sets with
measure 0 one observes that

0< P(ANB) < P(A) =0,

i.e., null sets are independent of everything.
Note, in particular, that a null set is independent of itself. O

4.1 The Law of Total Probability; Bayes’ Formula

Having introduced conditional probabilities, the following facts are just around
the corner.

Definition 4.3. A partition of 2 is a collection of disjoint sets, the union of
which equals 2. Technically, {Hy, 1 < k < n} is a partition of (2 if

QzUHk, where H;NH; =0 for 1<4,j<mn,i#j. 0
k=1
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Proposition 4.1. (The law of total probability)
Let {Hy, 1 < k < n} be a partition of £2. Then, for any event A C (2,

P(A) = zn:P(A | Hy) - P(Hg).
k=1

Proposition 4.2. (Bayes’ formula)
Let {Hy, 1 < k < n} be a partition of 2. Then, for any event A C {2, such
that P(A) > 0,

P(A| Hy) - P(Hy) P(A| Hy) - P(Hy)
P(H, | A) = = =n :
P(A) Zi=1 P(A | Hl) ' P(Hl)
Exercise 4.4. Prove these two results. O

4.2 Independence of Collections of Events

Next we extend the definition of independence to independence between col-
lections, in particular o-algebras, of events.

Definition 4.4. Let { Ay} be a finite or infinite collection. The collections are
independent iff, for any k € N, and non-empty subset of indices i1, 12, ..., ik,
the events {A;; € Ai;, j=1,2,...,k} are independent. O

Remark 4.2. Tt follows from the definition that:

e If every collection of events contains exactly one event, the definition re-
duces to Definition 4.1.

e An infinite collection of events is independent if and only if every finite
sub-collection is independent.

e Fvery sub-collection of independent events is independent.
Disjoint sub-collections of independent events are independent. ]

Exercise 4.5. Check the statements of the remark. m|

From the metatheorem and some of its consequences we already know that
it frequently suffices to “check rectangles”, which, more stringently speaking,
amounts to the fact that it suffices to check some generator. This is also true
for independence.

Theorem 4.1. (i) If {A,,n > 1} are independent non-empty collections
of events, then so are {D{A,}, n > 1}, the Dynkin systems generated by
{A,, n>1}.

(ii) If, in addition, {A,, n > 1} are m-systems, then {o{A,}, n > 1}, the
o-algebras generated by {A,, n > 1}, are independent. O

Proof. Since, as was noticed before, an infinite collection is independent if
and only if every finite subcollection is independent, it is no restriction to
depart from a finite collection {Ag, 1 < k < n}. Moreover, once the result is
established for n = 2, the general case follows by induction.
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(i): Let n = 2, and define
Sc={Be®{A}:P(BNC)=P(B)-P(C)} for C € As.

We claim that E¢ is a Dynkin system for every C € As.

To see this we argue as in the proof of Theorem 2.3:

Let C € As.

Since P(2NC) = P(C) = P(2) - P(C), we have {2 € &c.

For B € ¢, we have B¢ € Eg, since

PB°NC)=P(2~B)NC)=P(N2nNnC)~ (B ne))

— P(C~ (BNC)) = P(C)— P(BNC)
= P(C) - P(B)P(C) = (1*P(B))P(C)
= P(B°) - P(C).

o If B, € &, n > 1, are disjoint sets, then (J,- | B, € £, because

P(( G Bn) mc) - P( G(BnﬂC)) - iP(BnﬂO)
n=1 n=1 n=1

= iP(Bn) - P(C) = P( [_j Bn) - P(C)

This concludes the proof of the fact that £~ is a Dynkin system for every
C e As,.

Next, since A; C E¢ for every C' € A, it follows that, D{A;} C ¢ for
every C' € Ay, which, by definition, means that ®{A;} and A are indepen-
dent.

Repeating the same arguments with

Fo={Be®{A): P(BNC)=P(B) - P(C)} for CeD{A},

that is, with ©{As} and D{A;} playing the roles of D{A;} and Aj, respec-
tively, shows that ®{A;} and ©{ A3} are independent as desired.

This completes the proof of the first part of the theorem.
(ii): The second half is immediate from the first part and Theorem 2.3, ac-
cording to which the o-algebras and Dynkin systems coincide because of the
assumption that {A4,, n > 1} are m-systems. 0

4.3 Pair-wise Independence

This is an independence concept which is slightly weaker than independence
as defined in Definition 4.1.

Definition 4.5. The events {Ax, 1 < k < n} are pair-wise independent iff

P(A;NA;)=P(A;)-P(A;)  forall 1<i#j<n. =
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Exercise 4.6. How many equations does one have to check? O

Having defined pair-wise independence the obvious request at this point is an
example which shows that this is something different from independence as
defined earlier.

Ezample 4.1. Pick one of the four points (1,0, 0), (0,1,0), (0,0,1), and (1,1,1)
at random, that is, with probability 1/4 each, and let

Ayj, = {the kth coordinate equals 1}, k=1,2,3.

An easy calculation shows that

P(Ay) = for k=1,2,3,
P(A;NAj) = for i,j=1,2,3, i j,
P(A;))P(4A;) = for 4,7=1,2,3,i#j,

P(A1NAyNA;) =

CO| = x| = x| = ] = N =

P(A1)P(A2)P(A3) =

The sets Ay, Ay, Az are thus pair-wise independent, but not independent. O

5 The Kolmogorov Zero-one Law

One magic result in probability theory concerns situations in which the prob-
ability of an event can only be 0 or 1. Theorems that provide criteria for such
situations are called zero-one laws. We shall encounter one such result here,
another one in Section 2.18, and then reprove the first one in Chapter 10.

In order to state the theorem we need to define the o-algebra that contains
information about “what happens at infinity”.

Let {A,, n > 1} be arbitrary events and, set

A, =0{Ay,As, ..., As} for n>1,
Al =c{Ani1,Ania, ...} for n>0.

Definition 5.1. The tail-o-field is defined as
oo
T = m A;L O
n=0

Remark 5.1. Since T is defined as an intersection of o-algebras it is, indeed,
itself a o-algebra. O
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If we think of n as time, then A/ contains the information beyond time n
and 7 contains the information “beyond time n for all n”, that is, loosely
speaking, the information at infinity. Another name for the tail-o-field is the
o-algebra of remote events.

The famous Kolmogorov zero-one law states that if {A,, n > 1} are in-
dependent events, then the tail-o-field is trivial, which means that it only
contains sets of probability measure 0 or 1.

Theorem 5.1. (The Kolmogorov zero-one law)
Suppose that {An, n > 1} are independent events. If A € T, then

P(A)=0 or 1.

There exist several proofs of this theorem. We shall provide one “proof” and
one proof.

“Proof”. This is only a sketch which has to be rectified. The essential idea is
that if A € T, then A € A!, for all n and, hence, is independent of A,, for all
n. This implies, on the one hand, that

AEO’{Al,A27A3,...}, (51)
and, on the other hand, that
A is independent of 0{A1, Ag, A3, ...}. (5.2)

By combining the two it follows that A is independent of itself, which leads
to the very special equation,
P(A) = P(ANA) = P(A) - P(A) = (P(4))?, (5:3)

the solutions of which are P(A) =0 and P(A) = 1. “0”

This is not completely stringent; the passages to infinity have to be per-
formed with greater care, remember, for example, that the infinite union of
o-algebras need not be a o-algebra.

Proof. Suppose that A € T. This means that A € A/, for every n, and, hence,
that A and A,, are independent for every n.

To turn the “proof” into a proof we need to rectify the transition to (5.2).
This is achieved by the following slight elaboration of Lemma 3.1, namely,
that there exists a sequence F, € A,, such that

PE,ANA)—0 as n— oo.
This tells us that
P(E,NA)— P(A) as n— oo, (5.4)
P(E,) — P(A) as n— oo. (5.5)
Moreover, since A € A/, for all n, it follows that A is independent of every
E,, so that (5.4) can be rewritten as

P(A)-P(E,) = P(A) as n— oo. (5.6)
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However, by (5.5) we also have
P(A)-P(E,) — (P(A)? as n— oo, (5.7)

which, in view of (5.6) forces the equation P(A) = (P(A))?, and we rediscover
(5.3) once again. O

Exercise 5.1. Write down the details of the elaboration of Lemma 3.1 that was
used in the section proof. O

We shall return to the theorem in Chapter 10 and provide another, very
elegant, proof (which, admittedly, rests on a lot more background theory).

6 Problems
Throughout, A, B, {A,, n > 1}, and {B,, n > 1} are subsets of (2.
1. Show that

AAB=(ANBY U (BNAY) = (AUB)~ (AN B),
A°A B = AA B,
{Al UAQ} A {B]_UB2} C {Al ABl}U{Ag ABQ}.

2. Which of the following statements are (not) true?

limsup{4,, UB,} = limsup 4, Ulimsup B, ;

n—oo n— o0 n—oo
limsup{A, N B,} = limsup A, Nlimsup B, ;
n— oo n— oo n— oo
liminf{A, UB,} = liminf A, Uliminf B, ;
n—oo n—oo n—oo

liminf{A, N B,} = liminf A, Nliminf B, ;
n—o00 n—oo n—oo

A, —A, B,—-B=—A,UB, —+AUB as n—o0;
A, —~A B,—-B—A,NB,—+>ANB as n—o0.

3. Let 2 =R, set Iy = [k—1,k) for k > 1, and let A, = o{lx, k =
1,2,...,n}. Show that | J7—; A, is not a o-algebra.
4. Suppose that By = U?:1 Aj for k=1,2,...,n. Prove that

U{Bl7B2,...7Bn} = U{Al,AQ,...,An}.

5. Let {A,, n > 1} be a sequence of sets.
(a) Suppose that P(A,) — 1 as n — oco. Prove that there exists a subse-
quence {ng, k > 1}, such that
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(b) Show that this is not true if we only assume that
P(A,) >« forall n. (6.1)

(c) Show that, if A,, n > 1, are non-decreasing and such that (6.1) holds
for some « € (0,1), then

P( ﬂ An) > a.
n=1
(d) Show that, if A,,, n > 1, are non-increasing and

P(A,)<a forall n

for some « € (0,1), then

. Show that

I{AU B} = max{I{A}, I{B}} = I{A} + I{B} — I{A} - I{B} ;
I{AN B} = min{I{A},I{B}} = I{A} - I{B};
I{A a B} = I{A} + I{B} — 2I{A} - I{B} = (I{A} — I{B}).

. Show that

Ap = Aasn—>o00 < I[{A4,} - I{A} asn — co.
. Let, forn>1,0<a, ~1,and 1 < b, \(1 as n — co. Show that
sup[0,a,) =[0,1) and/but supl0,a,] # [0, 1];
;%f[O,bn] =1[0,1] and igf[(),l:l) =[0,1].

. The Bonferroni inequalities. Show that

k=1 k=1

P( U Ak) >3 Py - Y P(ANA);
k=1 k=1 1<i<j<n

P(UJ4) <Y Py - Y PAin4)
k=1 k=1 1<i<j<n

+ ) PANA;NAL).

1<i<j<k<n
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10.

11.

12.

13.

14.
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The inclusion-exclusion formula. Show that

P( U Ak) =Y P(Ax)— Y. P(AinA))
k=1 k=1 1<i<j<n
1<i<j<k<n

+o = (=1)"P(A1NAyN---NA,).

Suppose that the events {A,, n > 1} are independent. Show that the
inclusion-exclusion formula reduces to

n

P( CJ Ak> —1-J[ (1 - P(4w).

k=1

Show, in the setup of the previous problem, that
P(UJa) = 1-en{-Y Pan},
k=1 k=1

iP(An) —0 — P( G An) —1.
n=1 n=1

Let A,, n > 1, be Borel sets on the Lebesgue space ([0, 1], F(0,1),\).
Show that, if there exists n > 0, such that A(A;) > n for all n, then there
exists at least one point that belongs to infinitely many sets A,,.

At the end of a busy day n fathers arrive at kindergarten to pick up their
kids. Each father picks a child to take home uniformly at random. Use the
inclusion-exclusion formula to show that the probability that at least one
father picks his own child equals

and that this probability tends to 1 — 1/e ~ 0.6321 as n — co.

& The mathematical formulation of this problem, which is called the rencontre
problem or the mathcing problem, is that we seek the probability that a
random permutation of the numbers 1,2,...,n leaves at least one position
unchanged. The traditional (outdated) formulation is that n men pick a hat
at random from the hat rack when they leave a party, and one seeks the
probability that at least one of them picks his own hat.
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Random Variables

The standard situation in the modeling of a random phenomenon is that the
quantities of interest, rather than being defined on the underlying probability
space, are functions from the probability space to some other (measurable)
space. These functions are called random variables. Strictly speaking, one uses
the term random variable when they are functions from the probability space
to R. If the image is in R™ for some n > 2 one talks about n-dimensional
random variables or simply random vectors. If the image space is a general
abstract one, one talks about random elements.

1 Definition and Basic Properties

Let (£2, F, P) be a probability space.

Definition 1.1. A random variable X is a measurable function from the sam-
ple space §2 to R;
X:02—R,

that is, the inverse image of any Borel set is F-measurable:
X HA)={w: X(w)e Ay €F forall AcR.

We call X simple if, for some n,

X =) wpl{As},

k=1

< n} is a finite

where {xg, 1 < k < n} are real numbers, and {Ag, 1 < k
= (.

partition of 2, that is A, N A; =0 if i # j and Up_, Ay,
We call X elementary if

oo
X =)z, 0{A},
n=1
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where {xn, n > 1} are real numbers, and {A,, n > 1} is an infinite partition
of 12.
If X : 0 — [—00,+00] we call X an extended random variable. O

Random variables are traditionally denoted by large capitals toward the end
of the alphabet; X, Y, Z, U, V, W, .... For sequences of “similar kinds” it is
convenient to use indices; X7, X, ..., and so on.

We do not distinguish between random variables that differ on a null set.

Definition 1.2. Random variables which only differ on a null set are called
equivalent

The equivalence class of a random variable X is the collection of random
variables that differ from X on a null set.

If X and Y are equivalent random variables we write X ~Y . O

So far we have described the map from (§2,F) to (R,R). In order to
complete the picture we must find a third component in the triple — the
appropriate probability measure.

To each random variable X we associate an induced probability measure,
P, through the relation

P(A) = P(XY(A)) = P({w: X(w) € A}) forall AeR. (L1)

In words this means that we define the probability (on (R,R)) that the ran-
dom variable X falls into a Borel set as the probability (on (£2,F)) of the
inverse image of this Borel set. This is the motivation for the measurability
assumption.

That the definition actually works is justified by the following result.

Theorem 1.1. The induced space (R, R, P) with P defined by (1.1) is a prob-
ability space — the induced probability space.

Proof. The proof amounts to checking the Kolmogorov axioms, which, in turn,
amounts to going back and forth between the two probability spaces.

1. P(A)=P{w: X(w)e€ A}) >0 for any A € R.

2. PX)=PH{w:X(w)e 2})=1.

3. Suppose that {4,, n > 1} are disjoint subsets of R. Then
]P’( U An) = P({w X (w) € U An}> = P( U{w X (w) € An}>
n=1
Z ) € An}) = Z O

Remark 1.1. Once one gets used to the fact that only the random variables are
of interest one need no longer worry about the exact probability space behind
the random variables. In the remainder of this book we therefore refrain from
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distinguishing between the probability measures P and P, and we omit the
brackets { and } to emphasize that {X € A} actually is a set. So, instead
of writing P(A) we shall write P(X € A). There is absolutely no danger of
confusion! O

Definition 1.3. A degenerate random variable is constant with probability 1.
Thus, X is degenerate if, for some a € R, P(X = a) =1. A random variable
that is not degenerate is called non-degenerate. a

There are different ways to interpret the equality X = Y. The random vari-
ables X and Y are equal in distribution iff they are governed by the same
probability measure:

XLy <= P(XeA)=PYecA) forall AcR
and they are point-wise equal, iff they agree for almost all elementary events:
X2Y = PHw:X(w) =YW} =1,

i.e., X and Y are equivalent random variables, X ~ Y.

Next we provide an example to illustrate that there is a clear difference
between the two equality concepts. The following example shows that two
random variables, in fact, may well have the same distribution, and at the
same time there is no elementary event where they agree.

Ezxample 1.1. Toss a fair coin once and set

¥ = 1, if the outcome is heads,
B 0, if the outcome is tails,

and
1, if the outcome is tails,

Y =

{O, if the outcome is heads.
Clearly, P(X =1) =P(X =0)=P(Y =1) = P(Y =0) = 1/2, in particular,
X <Y, But X(w) and Y (w) differ for every w. O

Exercise 1.1. Prove that if X(w) = Y (w) for almost all w, then X Ly. O

For X to be a random variable one has to check that the set {w: X(w) €
A} € F for all A € R. However, as a consequence of Theorem 1.3.6 it suf-
fices to check measurability for (e.g.) all sets of the form (—oo, z]; why? This
important fact deserves a separate statement.

Theorem 1.2. X is a random variable iff

{w: X(w)<z}eF foral zeR.
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1.1 Functions of Random Variables

A random variable is, as we have seen, a function from one space ({2) to
another space (R). What can be said of a (real valued) function of a random
variable? Since, we know from analysis that a function of a function is a
function, the following result does not come to us as a surprise.

Theorem 1.3. A Borel measurable function of a random variable is a ran-
dom variable, viz., if g is a real, Borel measurable function and X a random
variable, then' Y = g(X) is a random variable.

Proof. The proof follows, in fact, from the verbal statement, since Y is a
composite mapping from (2 “via R” to R. A more detailed proof of this is
that, for any A € R,

{YeAl={w:Y(w) e A} ={w: g(X(w)) € A}

= {w: X(w)eg A} e F. H

By taking advantage of Theorem 1.2 we can prove measurability of the
following functions, that is, we can prove that the following objects are, indeed,
random variables.

Proposition 1.1. Suppose that X1, Xs, ... are random variables. The fol-
lowing quantities are random variables:

(a) max{X1, Xz} and min{X;y, Xo};

(b) sup, X, and inf,, X,,;

(¢) limsup,,_,. X, and liminf, . X,,.

(d) If X,(w) converges for every w as n — oo, then lim, 00 X, isa
random variable.

Proof. (a): For any «z,
{w: max{X;, Xo}Hw) < z} = {w : max{X; (w), X2(w)} < x}
={w: Xj(w) <z} N{w: Xo(w) <z}
and
{w: min{ X1, Xo}(w) < z} = {w : min{X; (w), Xo(w)} <z}
={w: Xj(w) <z} U{w: Xs(w) <z},

which proves (a), since an intersection and a union, respectively, of two mea-
surable sets are measurable.
(b): Similarly,

{w: st:len(w) <z}= ﬂ{w  Xp(w) <z} eF,

since a countable intersection of measurable sets is measurable, and

{w: i%an(w) <z}= U{w Xy (w) <z} eF,

since a countable union of measurable sets is measurable.
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(c): In this case,

{w : limsup X, (w) < z} = {w : inf sup X, (w) < z}

n—00 " m>n

I
(-
D
€
S
3
£
A
&
m
M

and

{w:liminf X, (w) < 2} = {w : sup igf Xm(w) <z}
n— 00 n m2z2n
= ﬂ U{w:Xm(w)<x}€.7:,
n=1m=n

since, once again, we have only performed legal operations.

Alternatively, since sup,,s,, X, (w) is a random variable by (b), it follows,
also by (b), that inf,, (sup,>,, Xn(w)) is a random variable. Similarly for
liminf,, o0 X (w).

(d): This is true, because in this case limsup and liminf coincide (and both
are measurable). Moreover, the limit exists and is equal to the common value
of lim sup and lim inf. O

Exercise 1.2. Prove that a continuous function of a random variable is a random
variable. O

The usual construction procedure for properties of functions, or for con-
structions of new (classes of) functions, is to proceed from non-negative simple
functions, sometimes via elementary functions, to non-negative functions, to
the general case. This works for random variables too. The following lemma
is closely related to Lemma A.9.3 which deals with the approximation of real
valued functions.

Lemma 1.1. (i) For every non-negative random variable X there ezists a
sequence {X,, n > 1} of non-negative simple variables, such that

Xp(w) 1t X(w) foral wef

(ii) For every random variable X there exists a sequence {X,,n > 1} of
stmple variables, such that

Xn(w) = X(w) forall we .

Proof. (i): Let n > 1, and set
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The sequence thus constructed has the desired property because of the dyadic
construction and since

1
X(w) —X,(w) < o for n sufficiently large.

The limit is a random variable by Proposition 1.1. This proves (i).
To prove (ii) we use the mirrored approximation and the fact that X =
Xt -X—. O

2 Distributions

In analogy with the arguments that preceded Theorem 1.2, the complete de-
scription of the distribution of a random variable X would require knowledge
about P(X € A) for all sets A € R. And, once again, the fact that the in-
tervals (—oo, 2] generate R comes to our rescue. This fact is manifested by
introducing the concept of distribution functions.

2.1 Distribution Functions

Definition 2.1. Let X be a real valued random wvariable. The distribution
function of X 1is
F(z)=P(X <z), zeR

The continuity set of F is

C(F) ={z: F(x) is continuous at z}. O
Whenever convenient we index a distribution function by the random variable
it refers to; Fx, Fy, and so on.

Definition 2.2. The distribution function of a degenerate random variable is
a degenerate distribution function. If F' is degenerate, then, for some a € R,

Pla) = {0, for = <a,

1, for = >a.
A distribution function that is not degenerate is called non-degenerate. O

In order to describe the properties of distribution functions it is convenient
to introduce the following class of functions.

Definition 2.3. The class D is defined as the set of right-continuous, real
valued functions with left-hand limits;

F(z—) = mlir;lm F(xy,).
Tp<T

The class DV is defined as the set of non-decreasing functions in DT . a
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Proposition 2.1. Let F' be a distribution function. Then
(a) FeD";

(b) limz—_oo F(z) =0 and lim,_, o F(x) =1;

(¢c) F has at most a countable number of discontinuities.

Proof. (a): Let X be a random variable associated with F. Boundedness fol-
lows from the fact that 0 < F(z) = P(X < z) <1 for all z. To see that F is
non-decreasing, let x < y. Then {X <z} C {X <y}, so that

F(z) = P(X <) < P(X <y) = F(y).

Next, let x,, n > 1, be reals, z, \yx as n — oo. Then {X < z,} \ {X <
x}, so that by monotonicity (Theorem 1.3.1)

F(z,) =P(X <x,) \( P(X <z)=F(x),

which establishes right-continuity.

In order to verify left-continuity, we let y,, n > 1, be reals, such that
Yn S x as n — oo. Then {X < y,} ~ {X < z}, so that by monotonicity
(Theorem 1.3.1),

This concludes the proof of the fact that F' € D+.

(b): This follows from the set convergences {X < z} \, 0 as x — —oo, and
{X <z} 7§ as x — 400, respectively, together with Theorem 1.3.1.

(¢c): Immediate from Lemma A.9.1(i). 0

Remark 2.1. We shall, at times, encounter non-negative functions in DT with
total mass at most equal to 1. We shall call such functions sub-probability
distribution functions. They can be described as distribution functions, except
for the fact that the total mass need not be equal to 1. O

To complement the proposition, we find that with z, and y, as given
there, we have

Py, < X <z,) — { i)(()((x):_mf‘)((x_) as n — oo.

Proposition 2.2. Let X be a random variable. Then
P(X =2x)=Fx(z) — Fx(x—).

In order to prove uniqueness it sometimes suffices to check a generator or
a dense set. Following are some results of this kind.

Proposition 2.3. Suppose that F' and G are distribution functions, and that
F =G on a dense subset of the reals. Then F = G for all reals.
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Proof. Combine Proposition 2.1 and Lemma A.9.1(ii). a

In Chapter 1 we discussed probability measures. In this chapter we have
introduced distribution functions of random variables. Now, to any given prob-
ability measure P on (R, R) we can associate a distribution function F' via the
relation

F(b) — F(a) =P((a,b]) for all a,b, —o00<a<b<oo,

and since P as well as F' is uniquely defined by their values on the rectangles
we have established the following equivalence.

Theorem 2.1. Every probability measure on (R,R) corresponds uniquely to
the distribution function (of some random variable(s)).

Remark 2.2. Recall from Example 1.1 that different random variables may
have coinciding distribution functions. O

Having defined distribution functions, a natural challenge is to determine
how many different kinds or types there may exist. For example, the number
of dots resulting after throwing dice, the number of trials until a first success,
the number of customers that visit a given store during one day, all those ex-
periments have non-negative integers as outcomes. Waiting times, durations,
weights, and so on are continuous quantities. So, there are at least two kinds
of random variables or distributions. Are there any others?

Well, there also exist mixtures. A simple mixture is the waiting time at
a traffic light. With some given probability the waiting time is 0, namely if
the light is green upon arrival. If the light is red the waiting time is some
continuous random quantity. So, there exist at least two kinds of random
variables and mixtures of them. Are there any others?

The main decomposition theorem states that there exist exactly three
kinds of random variables, and mixtures of them. However, before we turn to
that problem in Subsection 2.2.3 we need some additional terminology.

2.2 Integration: A Preview

The classical integral is the Riemann integral, which was later generalized
to the Riemann-Stieltjes integral. However, it turns out that the Riemann-
Stieltjes integral has certain deficiencies that are overcome by another integral,
the Lebesgue integral. The problem is that we need to be able to integrate
certain wild functions that the Riemann-Stieltjes integral cannot handle. After
having defined the Lebesgue integral we shall exhibit a perverse example that
is Lebesgue integrable, but not Riemann-Stieltjes integrable.

There exists a probabilistic analog to integration, called expectation, de-
noted by the letter E. Now, instead of describing and proving a number of
properties for functions and integrals and then translating them into state-
ments about random variables and expectations (which basically amounts to
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replacing f by X and [ by E), we shall develop the theory in a probabilistic
framework, beginning in Section 2.4. However, since we need some (not much)
terminology earlier, we present a few definitions and facts without proof in
the language of mathematics already here. The reader who is eager for proofs
is referred to standard books on measure theory and/or function theory. The
amount of details and the choice of which statements to prove and which to
“leave as exercises” varies between books.

The Riemann-Stieltjes Integral

From analysis we remember that the Riemann integral of a function g on a
bounded interval (a, b] is defined via a partition A of the interval into disjoint
subintervals;

a=Tg< T <Ty<---< T, =0,

and the Riemann sums

R(n) = _g(t;)4;,
j=1

where A; = x; —x;_1, and ¢; € (z;—1,2;]. The mesh of the partition is
IA]] = maxy<p<n{Ar}.
The integral exists iff there exists a number A, such that

lim |R(n)— Al — 0,
laf—o
for any partition and arbitrary intermediate points. The limit is denoted with
the aid of the integral sign:

A:/abg(:c)dx.

If the integral exists we may, in particular, select the ¢;’s so that g always
assumes its maximum in the subintervals, and also such that the minimum is
attained. As a consequence the actual value A is sandwiched between those
two special sums, the upper sum and the lower sum.

We also note that, for simple functions, the Riemann integral coincides
with the Riemann sum (let the partition coincide with the steps).

In the definition of the Riemann-Stieltjes integral of a function f on a
bounded interval one replaces the A-differences along the z-axis by differences
of a function. Thus, let, in addition, ¥ be a real valued function on the interval
(a,b], let the partition be defined as before, and (or but) set A; = y(z;) —
v(z;j—1). The Riemann-Stieltjes sum is

n n

RS(n) =D g(t;)A; =D 9(t;)((x5) = v(w;-1),

j=1
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and the Riemann-Stieltjes integral exists iff there exists a number A, such
that
lim |RS(n)—A|—0
laf—0

for any partition and arbitrary intermediate points. The notation is

b
A= [ g ).

Once again, we may select the points of the partition in such a way that the

actual value A can be sandwiched between an upper sum and a lower sum.
As for existence criteria we mention without proof that the Riemann-

Stieltjes integral exists if (for example) g is continuous and -+ is bounded

and non-decreasing. The integral is then suitably extended to all of R. The

interesting example is that distribution functions fit this requirement for ~.
An inspection of the definition and the limiting procedure shows that

o if v is discrete with point masses {z;}, then
[ o@)drta) = 3 glawn (o)
k
e if v is absolutely continuous with density f(z), then

[o@ @) = [ g s as.

For the latter conclusion we also lean on the mean value theorem.
In addition, by departing from the approximating Riemann-Stieltjes sum
and partial summation, one obtains a formula for partial integration:

b b
/g(x)dv(ﬂc):g(b)v(b)—g(a)%a)—/ ~(z)dg(x).

And, needless to say, if v(z) =  the Riemann-Stieltjes integral reduces to the
ordinary Riemann integral.

The Lebesgue Integral

Paralleling the notion of a simple random variable (Definition 1.1) we say that
f is simple real valued function if, for some n,

f= Zn:l“kf{AkL

k=1

where {z, 1 < k < n} are real numbers, and {Ag, 1 < k < n} is a finite
partition of R.
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We call f elementary if

= i xnI{An},
n=1

where {z,, n > 1} are real numbers, and {4,,, n > 1} is an infinite partition
of R.
The following lemma is a translation of Lemma 1.1; cf. also Lemma A.9.3.

Lemma 2.1. (i) For every non-negative function f there erists a sequence
{fn, n > 1} of non-negative simple functions, such that

T f  point-wise.

(ii) For every function f there exists a sequence {fn, n > 1} of simple func-
tions, such that
fn—f point-wise.

Proof. For (i) we set

k-l for L < k=1,2,...,n2"™
falz) =4 2 (z) <
n, for f( ) >n,
and for (ii) we add the mirrored version, and apply f = f* — f~. O

The Lebesgue integral is an integral with respect to Lebesgue measure.

Definition 2.4. The Lebesgue measure, \, is a measure on (R, R), satisfying
A(a,b]) =b—a forall a<b, a,beR.

Definition 2.5. For the simple function f = Y ,_, xxI{Ax} we define the
Lebesgue integral with respect to a probability measure A as

/fdA = 2 A(Ap). -
k=1

After proving several properties such as additivity and monotonicity one de-
fines the Lebesgue integral of arbitrary non-negative functions as the limit of
the integrals of the simple functions defined in the proof of Lemma 1.1:

fron- g SEI(E < < )

Since, as mentioned in the introduction of this section, we shall traverse the
theory in the probabilistic language in a moment, we close the discussion in
mathematical terms with some comments on how the Lebesgue integral and
the Riemann-Stieltjes integral relate to each other.
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Theorem 2.2. If the Riemann-Stieltjes integral of a function exists, then so
does the Lebesgue integral, and both agree.

We close this preview (i) by recalling that what has been stated so far will
soon be justified, and (ii) with an example of a function that is Lebesgue
integrable but not Riemann-Stieltjes integrable.

Ezample 2.1. Let f(x) be defined as follows on the unit interval:

1, for x€[0,1]\Q,
J@) = {0, for xe€0,1NQ,

that is, f equals 1 on the irrationals and 0 on the rationals.

This function is Lebesgue integrable — the integral equals 1 — but not
Riemann integrable, the reason for the latter being that the upper and lower
sums equal 1 and 0, respectively, for any partition of the unit interval.

The explanation for the difference in integrability is that the “slices” in
the definition of the Lebesgue integral are horizontal, whereas those of the
Riemann integral are vertical. |

As for a converse we mention without proof that any Lebesgue integrable
function can be arbitrarily well approximated by Riemann integrable func-
tions, and refer the reader, once again, to specialized literature.

Theorem 2.3. If f is Lebesgue integrable, then, for any € > 0, there exists,
(a) a simple function g, such that [%_|f(z) — g(z)|dz < e.

(b) a continuous, integrable function h, such that [_|f(z) — h(z)|dz <e.

2.3 Decomposition of Distributions

In this subsection we show that that every distribution function can be de-
composed into a convex combination of three “pure” kinds.

Definition 2.6. A distribution function F is

discrete iff for some countable set of numbers {x;} and point masses {p;},

F(z) = Z pj, forall zeR.

r;<x

The function p is called probability function.

continuous iff it is continuous for all x.

absolutely continuous iff there exists a mon-negative, Lebesque integrable
function f, such that

b
F(b)—F(a):/f(x)dx for all a <b.

The function f is called the density of F'.
e singular iff F'#0, F’' exists and equals 0 a.e. a



2 Distributions 37

The ultimate goal of this subsection is to prove the following decomposition
theorem.

Theorem 2.4. Fvery distribution function can be decomposed into a convex
combination of three pure types, a discrete one, an absolutely continuous one,
and a continuous singular one. Thus, if F is a distribution function, then

F =al,+ BFi+ vFes,

where o, 3,7 > 0 and a+ B+ v = 1. This means that

o Fulx)= [T fly)dy, where f(z) = F,.(z) a.e.;
e F, is a pure jump function with at most a countable number of jumps;
o F., is continuous and F! (z) =0 a.e.

For the proof we have to accept the following (rather natural) facts. For the
proof we refer the reader to his or her favourite book on measure theory or
function theory.

Lemma 2.2. Let F be a distribution function. Then

(a) F’(w) exists a.e., and is non-negative and finite.

(b) fF’ dm<F(b) F(a) for all a,b € R.

(c) Set Foelx) = [*  F'(y)dy, and Fy(z) = F(x) — Fac(x) for all z € R.
Then F’ ( )= F’( ) a.e. and F! =0 a.e. In particular, Fs =0 or F
s singular.

Remark 2.3. The components Fg.(x) and Fs(z) in Lemma 2.2 are, in contrast
to those of Theorem 2.4, sub-distribution functions in that the total mass is
only at most equal to 1. O

Discrete distributions are obviously singular. But, as we shall see, there also
exist continuous singular distributions. We shall exhibit one, the Cantor dis-
tribution, in Subsection 2.2.6 below, and later, in more detail, in Section 2.11.

The first step is the Lebesgue decomposition theorem, in which the distribu-
tion function is split into an absolutely continuous component and a singular
one.

Theorem 2.5. Fvery distribution function can be decomposed into a convex
combination of an absolutely continuous distribution function and a singular
one. Thus, if F' is a distribution function, then

F=aF,.+ (1 —a)Fs,
where 0 < a < 1.

Proof. Let f(xz) = F'(z), which, according to Lemma 2.2 exists a.e., and,
moreover, equals F¥.(z) a.e., where
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x
File) = [ fw)dy
— 00

In order to see that F. is a distribution function, except, possibly, for the
fact that F.(+00) < 1, we observe that F, is non-decreasing since f > 0
a.e., and that F,(—oo) = 0 since F}.(z) < F(x). Continuity is obvious, since
the integral is continuous.

Next, set Ff(z) = F(x) — F},. Then, F¥ is non-decreasing by Lemma
2.2, and F¥(—o0) = 0, since F¥(z) < F(x), which shows that Fr is also a
distribution function, except, possibly, for having total mass less than one.

If « =0 or 1 we are done. Otherwise, set

Fac(m) = F% and Fg(m) = Fm O

The following theorem provides a decomposition of a distribution function
into a discrete component and a continuous component.

Theorem 2.6. Every distribution function F' can be written as a convex com-
bination of a discrete distribution function and a continuous one:

F:ﬂFd‘i’(l*ﬂ)Fc,
where 0 < 6 < 1.

Proof. By Proposition 2.1 we know that F' may have at most a countable
number of jumps. Let {z;} be those jumps (if they exist), let p(j) = F(z;+)—
F(z;—) = F(z;) — F(x;—) for all j (recall that F' is right-continuous), and
define

Fi(x)= Z pj, = €R.

z;<x

By construction, £}, being equal to the sum of all jumps to the left of z, is
discrete, and has all properties of a distribution function, except that we only
know that lim,_, F(z) < 1.

Next, let F¥(z) = F(z)— Fj(x) for all z. Since Fj(z) increases at x; by p;
and stays constant between jumps, and since F' is non-decreasing, it follows
that F*(x) must be non-negative and non-decreasing. Moreover,

lim F}(z)= lim (F(z)—-Fj(z))=0—-0=0,

Tr— — 00 Tr— — 00
and

0< lim F)(z) = lim (F(z) — Fj(z))=1-— lim Fj(z) <1,

T—r0o0 Tr—r 00 Tr—r 00

so that F(z) also has all properties of a distribution function, except that
the total mass may be less than 1. In particular, F} € DT.



2 Distributions 39

The next thing to prove is that F*(z) is continuous, which seems rather
obvious, since we have reduced F' by its jumps. Nevertheless,

Fo(x) = Fi(z—) = F(z) = Fi(z) = (F(z—) = Fj(z-))
= F(z) = F(z—) = (Fg () — Fg(z—))
_Jpj—p; =0, when z = z; for some j,
B 0, otherwise,
which shows that F is left-continuous. This tells us that F is continuous,

since, as we have already seen, F¥ € DT. A final rescaling, if necessary, finishes
the proof. |

Proof of Theorem 2.4. Let F be a distribution function. Then, by the Lebesgue
decomposition theorem, we know that

F=aF,.+ (1 —a)Fs,
and by Theorem 2.6 applied to the singular part we know that

O
Fs :ﬁFd'i_(l_ﬁ)ch
Theorem 2.7. The decompositions are unique.
Exercise 2.1. Prove the uniqueness (by contradiction). O

2.4 Some Standard Discrete Distributions

Following is a list of some of the most common discrete distributions. The
domains of the parameters below are a e R, 0 <p=1—-¢<1,n €N, and
m > 0.

Distribution | Notation | Probability function| Domain

One point d(a) pla) =1

Symmetric Bernoulli p(-1)=p(1) =3

Bernoulli Be(p) p(0)=¢,p(1)=p

Binomial Bin(n,p)|p(k) = (}. pPq"F |k=0,1,...,n
Geometric Ge(p p(k) = pg® ke NUO0
First success Fs(p) p(k) = pg"~! keN

Poisson Po(m) |p(k)= efm%!k keNUO

Table 2.1. Some discrete distributions

The Be(p)-distribution describes the outcome of one “coin-tossing” exper-
iment, and the Bin(n, p)-distribution the number of successes in n trials. The
Ge(p)-distribution describes the number of failures prior to the first success,
and the Fs(p)-distribution the number of trails required to succeed once.
Finally, the typical experiment for a Poisson distribution is a coin-tossing
experiment where the probability of success is “small”. Vaguely speaking,
Bin(n,p) = Po(np) if p is small (typically “small” means < 0.1). This can, of
course, be rigorously demonstrated.



40 2 Random Variables
2.5 Some Standard Absolutely Continuous Distributions

In this subsection we list some of the most common absolutely continuous
distributions. The parameters p, 6, o, r, s, a, 3 below are all non-negative, and
a,b, € R.

Distribution | Notation | Density function | Domain
Uniform Ul(a,b) f@) =+ a<z<b
U(0,1) flx)y=1 0<z<l1
UC-1,1) | f(z) =} 2l < 1
Triangular | Tri(—1,1) | f(x) =1 — |z| lz] <1
Exponential | Exp(6) flz) = %efz/g x>0
Gamma I'(p,0) flz) = F%p) Pt e /? x>0
Beta B(r, s) flz) = Fi%?fz) 1l -z o<z <1
Normal N(p, %) | f(z) = %\/ﬂe_%(z_“ﬂ/“z zeR
NO1) | f@) = e sER
Log-normal | LN (u,c?)| f(z) = M\l/ﬁefé(log7”7“)2/‘72 x>0
Cauchy C(0,1) NHOEEE le,z zcR
Pareto Pa(8,a) |f(x)= ;;Lfl x>0

Table 2.2. Some absolutely continuous distributions

We have listed two special uniform distributions and the standard nor-
mal distribution because of their frequent occurrences, and confined ourselves
to the special triangular distribution which has support on [—1,1] and the
standard Cauchy distribution for convenience.

Uniform distributions typically describe phenomena such as picking a point
“at random” in the sense that the probability that the resulting point belongs
to an interval only depends on the length of the interval and not on its position.

Exponential and gamma distributed random variables typically are used
to model waiting times, life lengths, and so on, in particular in connection
with the so-called Poisson process.

The normal distribution, also called the Gaussian distribution, models
cumulative or average results of “many” repetitions of an experiment; the
formal result is the central limit theorem, which we shall meet in Chapter 7.
The multivariate normal distribution, that we shall encounter in Subsection
4.5.1, plays, i.a., an important role in many statistical applications.

2.6 The Cantor Distribution

The third kind of distributions, the continuous singular ones, are the most spe-
cial or delicate ones. In this subsection we shall define the Cantor distribution
and prove that it belongs to that class.
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The standard Cantor set is constructed on the interval [0, 1] as follows.
One successively removes the open middle third of each subinterval of the
previous set. The Cantor set itself is the infinite intersection of all remaining
sets. More precisely, let Cy = [0, 1], and, successively,

a=pglofz] e=glufzElvGalv G

and so on.

0 1/3 2/3 1

Figure 2.1. The Cantor set on [0, 1]

The Cantor set is -
C=()Cn
n=0

and the Cantor distribution is the distribution that is uniform on the Cantor
set.

Having thus defined the distribution we now show that it is continuous
singular.
(i): The Lebesgue measure of the Cantor set equals 0, since C C C,, for all
n, so that

2\ "
A(C) < A(Cy) = (g) for every n = A(C) = 0.

Alternatively, in each step we remove the middle thirds. The Lebesgue

measure of the pieces we remove thus equals

1 12 13 - 1\»
ool l) e S ) o
3 + 3 + 3 + ; 3

The Cantor set is the complement, hence A(C) = 0.

(ii): The Cantor distribution is singular, since its support is a Lebesgue null
set.
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(iii): The distribution function is continuous. Namely, let F,, be the distri-
bution function corresponding to the distribution that is uniform on C,,. This
means that F,(0) = 0, F,, is piecewise constant with 2" jumps of size 27"
and F,,(1) = 1. Moreover, F}, (z) = 0 for all 2 except for the end-points of the
2™ intervals.
The distribution function of the Cantor distribution is
F(z) = lim F,(z).

n— oo

Now, let x,y € C),. Every subinterval of C,, has length 37". Therefore,

1
0<m—y<3—n:>
F(y)—F(x){

=0, when z,y are in the same subinterval,

< 2% when z,y are in adjacent subintervals.

This proves that F', in fact, is uniformly continuous on C.

(iv) F'(z) =0 for almost all x, because F’'(z) = 0 for all z € C,, for all n.
This finishes the proof of the fact that the Cantor distribution is continuous

singular. We shall return to this distribution in Section 2.11, where an elegant

representation in terms of an infinite sum will be given.

2.7 Two Perverse Examples

In Example 2.1 we met the function on the unit interval, which was equal to
1 on the irrationals and 0 on the rationals:

1, for x€[0,1]\Q,
J@) = {0, for ze0,1]NQ.

Probabilistically this function can be interpreted as the density of a random
variable, X, which is uniformly distributed on the irrationals in [0, 1].
Note that, if U € U(0, 1), then the probability that the two random vari-
ables differ equals
P(X #U)=PX Q) =0,

so that X ~ U.
An extreme variation of this example is the following:

Ezample 2.2. Let {ry, k > 1} be an enumeration of the rationals in the unit
interval, and define

S for r,€(0,1)NQ
— 7T2k}27 v 7 )
p(re) { 0, otherwise.

Since Y p-, 1/k? = w%/6, this is a bona fide discrete distribution.
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This may seem as a somewhat pathological distribution, since it is defined
along an enumeration of the rationals, which by no means is neither unique
nor “chronological”. O

3 Random Vectors; Random Elements

Random vectors are the same as multivariate random variables. Random ele-
ments are “random variables” in (more) abstract spaces.
3.1 Random Vectors

Random vectors are elements in the Euclidean spaces R™ for some n € N.

Definition 3.1. An n-dimensional random vector X is a measurable function
from the sample space {2 to R";

X: 02— R
that is, the inverse image of any Borel set is F-measurable:
X HA) ={w: X(w)e Ay € F forall AcR"
Random vectors are considered column vectors;
X = (X1, Xo, ..., Xp),

where " denotes transpose (i.e., X' is a row vector).
The joint distribution function of X is

Fx, x,,. . x,(@1,22,...,2n) = P(X1 <21, X0 < z9,..., X,y < zp),
forxpy e R, k=1,2,..., n. |
Remark 3.1. A more compact way to express the distribution function is

Fx(x)=P(X<x), xeR"

where the event {X < x} is to be interpreted component-wise, that is,

n
(X<xp={Xi<a,Xo<m,.. ., Xp<mp}= [ {Xp <} O
For discrete distributions the joint probability function Ifs: éleﬁned by
px(x) =P(X=x), xeR™
In the absolutely continuous case we have a joint density;

" Fx (x)
X)=—F7""—
Fx(x) 0x10x9 - - Oz,
The following example illuminates a situation where a problem intrinsically is
defined in a “high” dimension, but the object of interest is “low-dimensional”
(in the example, high = 2 and low = 1).

x € R".
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Ezample 3.1. Let (X,Y) be a point that is uniformly distributed on the unit
disc, that is,

1 for 22 4+9y? <1
z, _ ) =4
fxy(@y) {O, otherwise.
Determine the distribution of the z-coordinate. O

In order to solve this problem we consider, as a preparation, the discrete
analog, which is easier to handle. Let (X,Y’) be a given two-dimensional ran-
dom variable whose joint probability function is px,y(x,y) and that we are
interested in finding px (). By the law of total probability, Proposition 1.4.1,

px(e) = P(x =) = P(1x =apn {Ur =)}

P(U{{X :x}ﬁ{Yzy}})
ZP(X =z,Y=y)= ZPX7Y($7y)~

The distribution of one of the random variables thus is obtained by adding
the joint probabilities along “the other” variable.
Distributions thus obtained are called marginal distributions, and the cor-
responding probability functions are called marginal probability functions.
The marginal distribution function of X at the point x is obtained by
adding the values of the marginal probabilities to the left of x:

Fx(x) = ZPX(U) = Z ZPX,Y(UW)~

ulx ulzr v

Alternatively,

Fx(z)=P(X <z,Y < 0) = ZZpr(u,v).

ulzr v

In the absolutely continuous case we depart from the distribution function
xr o0
Fx(@) =P <Y <o) = [ [ fruo)duds
— 00 —0o0
and differentiate to obtain the marginal density function,
o0
fx(z) :/ fxv(z,y)dy,
— 00

that is, this time we integrate along “the other” variable.
Marginal distribution functions are integrals of the marginal densities.
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Analogous formulas hold in higher dimensions, and for more general dis-
tributions. Generally speaking, marginal distributions are obtained by inte-
grating in the generalized sense (“getting rid of”) those components that are
not relevant for the problem at hand.

Let us now solve the problem posed in Example 3.1. The joint density was
given by

Fey(@,y) %, for 22+ <1,
x? = .
XYi%Y 0, otherwise,
from which we obtain
oo vV 17262 1 2
@ = [ pood= [ Sa= Vs @y
o VI=2 T m

for =1 <z <1 (and fx(z) = 0 otherwise).

Exercise 3.1. Let (X,Y, Z) be a point chosen uniformly within the three-dimen-
sional unit sphere. Find the marginal distributions of (X,Y) and X. O

We have seen how a problem might naturally be formulated in a higher
dimension than that of interest. The converse concerns to what extent the
marginal distributions determine the joint distribution. Interesting applica-
tions are computer tomography and satellite pictures; in both cases one de-
parts from two-dimensional pictures from which one wishes to make conclu-
sions about three-dimensional objects (the brain and the Earth).

A multivariate distribution of special importance is the normal one, for
which some facts and results will be presented in Chapter 4.

3.2 Random Elements

Random elements are random variables on abstract spaces.

Definition 3.2. A random element is a measurable mapping from a measur-
able space (£2,F) to a measurable, metric space (S,S):

X : (2,F) = (5,8). =

In this setting measurability thus means that
XY A)={w:X(w)cAycF forall AcS.

The meaning thus is the same as for ordinary random variables. With a slight
exaggeration one may say that the difference is “notational”.

The distribution of a random element is “the usual one”, namely the in-
duced one, P=Po X1

P(A)=P{w: X(w) € A}) for A€S.
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A typical example is the space C]0,1] of continuous functions on the unit
interval, endowed with the uniform topology or metric

dw.y) = swp fa(t) = y(®)] for w.yeC.1]

For more on this and on the analog for the space D[0,1] of right-continuous
functions with left-hand limits on the unit interval, endowed with the Skoro-
hod J;- or M;-topologies [224], see also [20, 188].

4 Expectation; Definitions and Basics

Just as random variables are “compressed versions” of events from a probabil-
ity space, one might be interested in compressed versions of random variables.
The typical one is the expected value, which is the probabilistic version of the
center of gravity of a physical body. Another name for expectation is mean.

Mathematically, expectations are integrals with respect to distribution
functions or probability measures. We must therefore develop the theory of
integration, more precisely, the theory of Lebesgue integration. However, since
this is a book on probability theory we prefer to develop the theory of Lebesgue
integration in terms of expectations. We also alert the reader to the small in-
tegration preview in Subsection 2.2.2, and recommend a translation of what is
to come into the traditional mathematics language — remember that rewriting
is much more profitable than rereading.

Much of what follows next may seem like we are proving facts that are
“completely obvious” or well known (or both). For example, the fact that the
tails of convergent integrals tend to 0 just as the terms in a convergent series
do. We must, however, remember that we are introducing a new integral con-
cept, namely the Lebesgue integral, and for that concept we “do not yet know”
that the results are “trivial”. So, proofs and some care are required. Along the
way we also obtain the promised justifications of facts from Subsection 2.2.2.

4.1 Definitions

We begin with the simple case.

Simple Random Variables

We remember from Definition 1.1 that a random variable X is simple if, for
some n,

X = Zl‘kI{Ak},
k=1

where {z, 1 < k < n} are real numbers, and {A;, 1 < k < n} is a finite
partition of {2.
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Definition 4.1. For the simple random variable X =% ;_, xxI{ Ay}, we de-

fine the expected value as

EX =) x;P(Ap). -
k=1

Non-negative Random Variables

In the first section of this chapter we found that if X is a non-negative random
variable, then the sequence of simple non-negative random variables X,,, n >
1, defined by

k—1 k—1 & . n
Xn(W): on for on SX(W)< on k—1,2,...,’ﬂ2 s
n, for X(w) >mn,

converges monotonically from below to X as n — oo. With this in mind we
make the following definition of the expected value of arbitrary, non-negative
random variables.

Definition 4.2. Suppose that X is a non-negative random variable. The ex-
pected value of X is defined as

nan
k—1_rk—1 k
EX = li P(i—<x<o).
Jim > PGS X <
k=1
Note that the limit may be infinite. O

The definition is particularly appealing for bounded random variables. Namely,
suppose that X is a non-negative random variable, such that

X< M<oo, forsome M >0,

and set,
k k—1 k B n
Yp(w) =4 27 for T < X(w) < g, k=1,2,...,n2",
n, for X(w)>n,

for n > M, where we pretend, for simplicity only, that M is an integer. Then
Y, \\ X as n — oo, and moreover,

1
X, <X <Y, and Y, - X, =g

Thus, by the consistency property that we shall prove in Theorem 4.2 below,

EX,<EX<FEY,, and E(Yann):QinHO as n — oo.
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The General Case

Definition 4.3. For an arbitrary random variable X we define
EX=EXt-EX",

provided at least one of EX™T and E X~ is finite (thus prohibiting oo — 00 ).
We write

EX = X(w)dP(w) or, simply, /X dP.
7}

If both values are finite, that is, if E|X| < oo, we say that X is integrable.O

Throughout our treatment, P is a probability measure, and assumptions
about integrability are with respect to P. Recall that a.s. means almost surely,
that is, if a property holds a.s. then the set where it does not hold is a null
set. If X and Y are random variables, such that X =Y a.s., this means that
P(X =Y) =1, or, equivalently, that P(X #Y) = 0.

During the process of constructing the concept of expectated values, we
shall need the concept of almost sure convergence, which means that we shall
meet situations where we consider sequences X1, Xs, ... of random variables
such that X, (w) - X(w) as n — oo, not for every w, but for almost all w.
This, as it turns out, is sufficient, (due to equivalence; Definition 1.2), since
integrals over sets of measure 0 are equal to 0.

As a, somewhat unfortunate, consequence, the introduction of the concept
of almost sure convergence cannot wait until Chapter 5.

Definition 4.4. Let X, X1, X5, ... be random wvariables. We say thathn
converges almost surely (a.s.) to the random variable X asn — oo, X,, “3 X
as n — oo, iff

P{w: X, (w) = X(w) as n — o0}) =1,
or, equivalently, iff

P({w: X, (w) A X(w) asn — oo}) = 0. U

4.2 Basic Properties

The first thing to prove is that the definition of expectation is consistent, after
which we turn our attention to a number of properties, such as additivity,
linearity, domination, and so on.

Simple Random Variables

We thus begin with a lemma proving that the expected value of a random
variable is independent of the partition.
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Lemma 4.1. If {A;, 1 <k <n} and {B;j, 1 < j < m} are partitions of 12,
such that

X =Y aI{Ay} and X =) y;I{B;},
k=1 j=1
Then

> anP(Ap) =Y y;P(B
k=1 j=1

Proof. The fact that {Ag, 1 < k < n} and {Bg, 1 < k < m} are partitions
implies that

m n
P(Ax) =) P(AxNB;) and P(B;) =Y P(AxNBy),
Jj=1 k=1
and, hence, that
k=1j=1

and . o
> y;P(B)) ZZ%P (Ax N Bj)
j=1

k
Since the sets {4, NB;,1<k<n,1<j
follows that zj, = y; whenever Ay N B; #

} also form a partition of 2 it
which proves the conclusion. O

Next we show that intuitively obvious operations are permitted.
Theorem 4.1. Let X, Y be non-negative simple random variables. Then:

If X =0 a.s., then EX =0;

EX >0;

If EX =0, then X =0 a.s.;

If EX >0, then P(X >0) > 0;

Linearity: E(aX +bY) =aE X +bEY for any a,b € RT;
EXI{X >0} =FEX;

Equivalence: If X =Y a.s., then EY = E X;
Domination: If Y < X a.s., then FY < EF X.

\_/\/

b

(a
(
(c
(d
(e
(f
(g
(h

~_ — O —

Proof. (a): If X(w) = 0 for all w € §2, then, with 4; = {X = 0} (= 2), we
have X =0-I{A;},sothat EX =0-P(A;)=0-1=0.

If X =0 a.s., then X =>")_, a,I{Ax}, where z1 = 0, and 2o, 23, ..., 2,
are finite numbers, A; = {X = 0}, and Ag, A3, ..., A, are null sets. It follows
that

EX=0-P(A)+ Y z-0=0.
k=2
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(b): Immediate, since the sum of non-negative terms is non-negative.
(¢c): By assumption,

n

Z ijP(Ak) =0.

k=1
The fact that the sum of non-negative terms can be equal to 0 if and only if
all terms are equal to 0, forces one of 23 and P(Ay) to be equal to 0 for every
k> 2 (A; = {X = 0} again). In particular, we must have P(A4;) = 0 for any
nonzero x, which shows that P(X = 0) =
(d): The assumption implies that at least one of the terms zpP(Ax), and
therefore both factors of this term must be positive.

(e): With X =370, I{Ay} and Y = 377" | y;I{B;}, we have

n m

X+Y=ZZ($k+yj)I{AkmBj}7
k=1j=1
so that
E(aX +bY) = izm:akayy P(Ax N B;)
k=1j=1
- ZZ 2, P(A}, N B;) +bZZyy (Ar N Bj)

k=1j5=1

H
M: i

0 A) 0 Bj)

k=1

x>
I
—

kP<Ak N (]QBj)) +b§;yjp((

2xP(Ay) + 0 y;P(B;) = aE X + bEY.
j=1

I
Mz

E
I
—

(f): Joining (a) and (e) yields
EX=FEXI{X>0+EXI{X=0}=FXI{X>0}+0=FEXI{X > 0}.

(g): If X =Y as., then X —Y =0 a.s., so that, by (a), E(X —Y) =0, and
by (e),

EX=E(X-Y)+Y)=E(X-Y)+EY =0+EY.

(h): The proof is similar to that of (g). By assumption, X —Y > 0 a.s., so
that, by (b), E(X —Y) > 0, and by linearity,

EY=EX-EX-Y)<EX. O

Non-negative Random Variables

Once again, the first thing to prove is consistency.
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Theorem 4.2. (Consistency)
Let X be a non-negative random variable, and suppose that {Y,, n > 1} and
{Z,, n > 1} are sequences of simple random variables, such that

Y, /"X and Z, /X as n— oo.

Then
lim FY,= lim £Z, (=FEX).

n—oo n—oo
Proof. The first remark is that if the limits are equal, then they must be
equal to E' X because of the definition of the expected value for non-negative
random variables (Definition 4.2).
To prove equality between the limits it suffices to show that if 0 <Y,, 4 X
asn — oo, and X > Z,,, then

lim EY, > E Zn,, (4.1)

n—oo

because by switching roles between the two sequences, we similarly obtain

lim EZ, > EY,,

m—o0
and the desired equality follows.
To prove (4.1) we first suppose that
Zm >c> 0.

Next we note that there exists M < oo, such that Z,, < M (because Z,, is
simple, and therefore has only a finite number of supporting points).

Let e < M, set A, = {Y,, > Z,, — ¢}, and observe that, by assumption,
A, 7 (2 as. as n — oo. Moreover,

Y, > Y, I{A.} > (Z,, — e)I{A,}.
By domination we therefore obtain (all random variables are simple)

EY, > EY,I{A,} > E(Zn — e)I{A,} = E Z,,]1{A,)} — cP(A,)
=EZy — EZ,J{A%} —¢>E Z,, — MP(AS) —¢,

so that,
liminf £Y,, > E Z,, — ¢,

n—oo
since P(A¢) — 0 as n — oo. The arbitrariness of ¢ concludes the proof for
that case. Since ¢ was arbitrary, (4.1) has been verified for Z,, strictly positive.
If ¢ = 0, then, by domination, and what has already been shown,
liminf EY,, > liminf EY, I{Z,, >0} > EZ,I{Z,, >0} = EZ,,

n—oo n—oo

where, to be precise, we used Theorem 4.1(f) in the last step. O

We have thus shown consistency and thereby that the definition of the
expected value is in order.
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A slight variation to prove consistency runs as follows.

Theorem 4.3. Suppose that X is a non-negative random variable, and that
{Y,, n > 1} are non-negative simple random variables, such that 0 <Y, /X
as n — o0o. Suppose further, that Y is a simple random variable, such that
0<Y <X. Then

lim EY, > EY.

n—oo
Exercise 4.1. Prove the theorem by showing that it suffices to consider indicator
functions, Y = I{A} for A € F.
Hint: Think metatheorem. O

The next point in the program is to show that the basic properties we
have provided for simple random variables carry over to general non-negative
random variables.

Theorem 4.4. Let X, Y be non-negative random variables. Then

If X =0 a.s., then EX =0;

EX >0;

If EX =0, then X =0 a.s.;

If EX >0, then P(X >0) > 0;

Linearity: E(aX +bY) =aE X +bEY for any a,b € RT;
EXI{X >0} =EX;

Equivalence: If X =Y a.s., then EY = E X;
Domination: If ¥ < X a.s., then EY < EX;

If EX < o0, then X < 00 a.s., that is, P(X < o0) = 1.

&
Ny

—EFErzeaelZ

.

Remark 4.1. Note that infinite expected values are allowed. |

Proof. The properties are listed in the same order as for simple random vari-
ables, but verified in a different order (property (j) is new).

The basic idea is that there exist sequences {X,,, n > 1} and {Y,,, n > 1}
of non-negative simple random variables converging monotonically to X and
Y, respectively, as n — oo, and which obey the basic rules for each n. The
conclusions then follow by letting n — oo.

For (a) there is nothing new to prove.

To prove linearity, we know from Theorem 4.1(e) that

E(aX, +bY,)=aFE X, +bEY, forany a,bcR",
which, by letting n — co, shows that
E(aX +bY)=aEX +bEY forany a,beR".

The proof of (h), domination, follows exactly the same pattern. Next, (b)
follows from (h) and (a): Since X > 0, we obtain £ X > E0 = 0. In order to
prove (c), let A, = {w: X(w) > L}. Then
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1
SI{A,) < X, I{A,)} < X,
n

so that 1
—P(A,) <EX,J{A,} <EX =0,
n

which forces P(A,) = 0 for all n, that is P(X < ) =1 for all n.
Moreover, (d) follows from (a), and (f) follows from (e) and (a), since

EX=FEXI{X=0}+EXI{X>0}=0+FEXI{X >0}.
Equivalence follows as in Theorem 4.1, and (j), finally, by linearity,
x0>FEX=FEX{X <oo}+EXI{X =00} >EXI{X =0},

from which there is no escape except P(X = oc0) = 0. O

The General Case

Recall that the expected value of a random variable X is defined as the
difference between the expected values of the positive and negative parts,
EX = EXT — E X, provided at least one of them is finite, and that the
expected value is finite if and only if E|X| < oo, in which case we call the
random variable integrable.

By reviewing the basic properties we find that (a) remains (nothing is
added), that (b) disappears, and that (c) is no longer true, since, e.g., sym-
metric random variables whose mean exists have mean 0 — one such example
is P(X = 1) = P(X = —1) = 1/2. The remaining properties remain with
minor modifications.

Theorem 4.5. Let X,Y be integrable random variables. Then

If X=0 a.s., then EX =0;

|X| < 00 a.s., that is, P(|X| < o0) =1;

If EX >0, then P(X > 0) > 0;

Linearity: E(aX +bY) =aE X +bEY for any a,b € R;
EXI{X#0}=EX;

Equivalence: If X =Y a.s., then EY = EX;
Domination: If Y < X a.s., then EY < EX;
Domination: If |Y| < X a.s., then E|Y| < EX.

b

DRSNS AN AN

(a)
(
(c
(d
(e
(f
(g
(h

o —

Proof. For the proofs one considers the two tails separately. Let us illustrate
this by proving linearity.

Since, by the triangle inequality, |[aX + bY| < |a||X| + |b]|Y] it follows, by
domination and linearity for non-negative random variables, Theorem 4.4(h)
and (e), that

ElaX +bY| < Ela||X| + Eb||Y| = |a|E|X]| + [b|E|Y] < oo,
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so that the sum is integrable. Next we split the sum in two different ways:

(aX +bY)T — (aX +bY)™,

m¥+mf{ (aX)* — (aX)~ + (BY)* — (b))

Because of linearity it suffices to prove additivity.
Since all random variables to the right are non-negative we use linearity
to conclude that

EX+Y)V"+EBEX )+EY ) =EX+Y) +EXT)+EY™),
which shows that
EX+Y)=EX+Y)" —EX+Y)~

=B(XY)-EX )+EYY -EY )=EX+EY. -

Exercise 4.2. Complete the proof of the theorem. O

5 Expectation; Convergence

In addition to the basic properties one is frequently faced with an infinite
sequence of functions and desires information about the limit. A well-known
fact is that it is not permitted in general to reverse the order of taking a
limit and computing an integral; in technical probabilistic terms the problem
amounts to the question

lim £X,? =7 F lim X,,. (5.1)

n—oo n—oo

We shall encounter this problem in greater detail in Chapter 5 which is devoted
to various convergence modes. We therefore provide just one illustration here,
the full impact of which will be clearer later.

Ezxample 5.1. Let a > 0, and set

P(Xn:()):lf% and P(Xn:na):%, n>1.
Taking only two different values these are certainly simple random variables,
but we immediately observe that one of the points slides away toward infinity
as n increases.

One can show (this will be done in Chapter 5) that X,,(w) = 0 as n — o
for almost every w, which means that P(lim, . X,, = 0) =1 — at this point
we may at least observe that P(X,, =0) — 1 as n — oo.

As for the limit of the expected values,

. ) 0, for 0<a <2,
EX7L:0'(1_72)+na'72:na72_> 17 fOI‘ 04227
n n
00, for a>2.

The answer to the question addressed in (5.1) thus may vary. O
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Typical conditions that yield positive results are uniformity, monotonicity
or domination conditions. All of these are tailored in order to prevent masses
to escape, “to pop up elsewhere”.

A first positive result concerns random variables that converge monotoni-
cally.

Theorem 5.1. (Monotone convergence)
Let {X,, n > 1} be non-negative random variables. If X,, /' X as n — oo,
then

EX, "EX as n— oco.

Remark 5.1. The limit may be infinite. ]

Proof. From the consistency proof we know that the theorem holds if {X,,, n >
1} are non-negative simple random variables. For the general case we there-
fore introduce non-negative, simple random variables {Yj ,, n > 1} for every
k, such that

Yin /X as n— oo

Such sequences exist by definition and consistency.
In addition, we introduce the non-negative simple random variables

Zn= max Yp,, n=>1.
1<k<n

By construction, and domination, respectively,
Yin<Z,<X, and EY,,<EZ,<EX,. (5.2)
Letting n — oo and then k£ — oo in the point-wise inequality yields

X< lim Z, < lim X,, =X andthen X < lim Z, <X,

n—0o0 n—oo n—oo

respectively, so that,

lim £Z,=EX =F lim Z,, (5.3)
n—roo n—oo
where the first equality holds by definition (and consistency), and the second
one by equivalence (Theorem 4.4(g)).
The same procedure in the inequality between the expectations in (5.2)
yields
EX, < lim EZ, < lim FX,,

n— oo n—oo

and then
lm FX, < lim FZ, < lim FX,.

k— o0 n—oo n—oo

Combining the latter one with (5.3) finally shows that

lim FX, = lim EZ, =F lim Z, = E X. O

n—oo n—oo n—oo
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The following variation for non-increasing sequences immediately suggests
itself.

Corollary 5.1. Let {X,,, n > 1} be non-negative random variables and sup-
pose that X is integrable. If X, \ X as n — oo, then

EX,N\EFX as n— oo

Proof. Since 0 < 2X — X,, 7 X as n — 00, the conclusion is, indeed, a
corollary of the monotone convergence theorem. |

A particular case of importance is when the random variables X,, are
partial sums of other random variables. The monotone convergence theorem
then translates as follows:

Corollary 5.2. Suppose that {Y,,, n > 1} are non-negative random variables.

Then
oo oo
E(ZYH> = ZEYH.
n=1 n=1
Exercise 5.1. Please write out the details of the translation. O

In Example 5.1 we found that the limit of the expected values coincided
with the expected value in some cases and was larger in others. This is a
common behavior.

Theorem 5.2. (Fatou’s lemma)
(i) If {X,, n > 1} are non-negative random variables, then

F liminf X,, <liminf F X,,.

n—oo n— oo

(ii) If, in addition, Y and Z are integrable random variables, such that Y <
X, < Z a.s. for all n, then

FE liminf X,, <liminf £X,, < limsup F X,, < F limsup X,,.

n—0o0 n—00 n—00 n—00

Proof. (i): Set Y;, = infy>,, Xy, n > 1. Since
Y, = inf X, Mliminf X,, as n — oo,
k>n n— 00
the monotone convergence theorem yields

EY, /FE liminf X,,.

n—oQ

Moreover, since Y,, < X,,, Theorem 4.4(h) tells us that
EY,<FX, forall n.

Combining the two proves (i).
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To prove (ii) we begin by noticing that
liminf(X,, = Y) =liminf X,, - Y and liminf(Z — X,) = Z — limsup X,,

n—oo n—oo n—oo n—oo
after which (ii) follows from (i) and additivity, since {X,, — Y, n > 1} and
{Z — X,,, n > 1} are non-negative random variables. a

Remark 5.2. The right-hand side of (i) may be infinite.

Remark 5.8. If the random variables are are indicators, the result transforms
into an inequality for probabilities and we rediscover Theorem 1.3.2. Tech-
nically, if X,, = I{A,}, n > 1, then (i) reduces to P(liminf,, o A,) <
liminf, . P(A;), and so on.

A typical use of Fatou’s lemma is in cases where one knows that a point-
wise limit exists, and it is enough to assert that the expected value of the
limit is finite. This situation will be commonplace in Chapter 5. However,
if, in addition, the sequence of random variables is dominated by another,
integrable, random variable, we obtain another celebrated result.

Theorem 5.3. (The Lebesgue dominated convergence theorem)
Suppose that | X,| <Y, for all n, where EY < oo, and that X,, — X a.s. as
n — 0o. Then

E|X,—X|—=0 as n— oo,

In particular,
EX,—-FEX as n— oo.

Proof. Since also | X| <Y it follows that | X,, — X| < 2Y, so that by replacing
X, by | X, — X, we find that the proof reduces to showing that if 0 < X,, <
Y € L', and X,, — 0 almost surely as n — oo, then EX,, — 0 as n — oo.
This, however, follows from Theorem 5.2(ii). O

Remark 5.4. If, in particular, Y is constant, that is, if the random variables
are uniformly bounded, | X, | < C, for all n and some constant C, the result
is sometimes called the bounded convergence theorem.

Remark 5.5. In the special case when the random variables are indicators of
measurable sets we rediscover the last statement in Theorem 1.3.2:

A, —-A = P(A,) — P(A) as n— oo .

The following corollary, the verification of which we leave as an exercise,
parallels Corollary 5.2.

Corollary 5.3. Suppose that {Y,,, n > 1} are random wvariables, such that
| Ziozl Yn| < X, where X is integrable. If 2211 Y, converges a.s. asn — oo,
then 7 | 'Y,, as well as every Yy, are integrable, and

E<§:Yn> = iEYn.

n=1 n=1
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This concludes our presentation of expected values. Looking back we find
that the development is rather sensitive in the sense that after having traversed
elementary random variables, the sequence of results, that is, extensions, con-
vergence results, uniqueness, and so on, have to be pursued in the correct
order. Although many things, such as linearity, say, are intuitively “obvious”
we must remember that when the previous section began we knew nothing
about expected values — everything had to be verified.

Let us also mention that one can define expected values in different, albeit
equivalent ways. Which way one chooses is mainly a matter of taste.

Exercise 5.2. Prove that the definition

EX = sup {EY :Y is a simple random variable}
0<Y<X

is equivalent to Definition 4.2.

Exercise 5.3. Review the last two sections in the language of Subsection 2.2.2,
i.e., “translate” the results (and the proofs) into the language of mathematics. O

6 Indefinite Expectations

In mathematical terminology one integrates over sets. In probabilistic terms
we suppose that X is an integrable random variable, and consider expressions
of the form

uX(A):EXI{A}:/XdP:/ XI{A}dP, where Ac F.
A 2

In other words, ux(-) is an “ordinary” expectation applied to the random
variable XT{-}. In order to justify the definition and the equalities it there-
fore suffices to consider indicator variables, for which the equalities reduce to
equalities between probabilities — note that pu;43(A) = P(ANA) for A € F -,
after which one proceeds via non-negative simple random variables, monotone
convergence, and X = X+ — X~ according to the usual procedure.

The notation px (-) suggests that we are confronted with a signed measure
with respect to the random variable X, that is, a measure that obeys the
properties of a probability measure except that it can take negative values,
and that the total mass need not be equal to 1. If X is non-negative and
integrable the expression suggests that p is a non-negative, finite measure,
and if £ X =1 a probability measure.

Theorem 6.1. Suppose that X is a non-negative, integrable random variable.
Then:

(a)  px ()=
(b)  px(£2 )_

() ( )=0 = MX(A) 0.
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(d) If ux(A) =0 forall A€ F, then X =0 a.s.
) If {A,, n> 1} are disjoint sets, then px(Ur—y An) = > one ) ix(Ay).
) If ux(A) =0 for all A € A, where A is a w-system that generates F,

then X =0 a.s.
(¢) If ux(A) =0 for all A€ A, where A is an algebra that generates F,
then X =0 a.s.

Proof. The conclusions follow, essentially, from the definition and the different
equivalent forms of pux(-). For (a)—(e) we also need to exploit some of the
earlier results from this chapter, and for (f) and (g) we additionally need
Theorems 1.2.3 and 1.2.2, respectively.

Exercise 6.1. Spell out the details. m]

Remark 6.1. The theorem thus verifies that px is a finite measure whenever
X is a non-negative integrable random variable. O

It is now possible to extend the theorem to arbitrary integrable random
variables by considering positive and negative parts separately, and to com-
pare measures, corresponding to different random variables, by paralleling the
development for ordinary expectations.

Theorem 6.2. Suppose that X andY are integrable random variables. Then:

(i)  If ux(A) =puy(A) forall A€ F, then X =Y a.s.

(il) If px(A) = py(A4) for all A € A, where A is a w-system that generates
F, then X =Y a.s.

(i) If ux(A) = py(A) for all A € A, where A is an algebra that generates
F, then X =Y a.s.

Exercise 6.2. Once again we urge the reader to fill in the proof. m]

The following result is useful for integrals over tails or small, shrinking
sets of integrable random variables.

Theorem 6.3. Let X be a random variable with finite mean, and A and A,
n > 1, be arbitrary measurable sets (events). Then:

() [ux({1X] > )] < s ({1X] > 1)) > 0 as 0 oo.

(i) If P(An) — 0 asn — oo, then |pux(An)| < pyx|(An) = 0 as n — oo.

Proof. Since the inequalities are consequences of the basic properties it suffices
to prove the conclusion for non-negative random variables.

Thus, suppose that X > 0. The first claim follows from monotone conver-
gence, Theorem 5.1(i) and linearity. Namely, since XI{X < n} X, which
is integrable, it follows that

EXI{X<n} /EX <oco as n— o0,
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so that

px{X >n})=EXI{X>n}=EX-EXI{X<n}\0 as n— oo
As for (ii), let M > 0. Then

px(An) = EXI{A,} = EXI{A, N {X < M}} + EXI{A, N {X > M}}
< MP(A,)+ EXI{X > M},

so that
limsup F XI{A,} < EXI{X > M}.
n—oo
The conclusion now follows from (i), since E XI{X > M} can be made arbi-
trarily small by choosing M large enough. |

Remark 6.2. Note the idea in (ii) to split the set A,, into a “nice” part which
can be handled in more detail, and a “bad” part which is small. This device
is used abundantly in probability theory (and in analysis in general) and will
be exploited several times as we go on. O

7 A Change of Variables Formula

We have seen that random variables are functions from the sample space to
the real line, and we have defined expectations of random variables in terms
of integrals over the sample space. Just as the probability space behind the
random variables sinks into the background, once they have been properly
defined by the induced measure (Theorem 1.1), one would, in the same vein,
prefer to compute an integral on the real line rather than over the probability
space. Similarly, since measurable functions of random variables are new ran-
dom variables (Theorem 1.3), one would also like to find the relevant integral
corresponding to expectations of functions of random variables. The following
theorem, which we might view as the establishing of “induced expectations”,
settles the problem.

Theorem 7.1. (i) Suppose that X is integrable. Then

EX:/XdP:/xdFX(a:).
2 R

(ii) Let X be a random variable, and suppose that g is a measurable function,
such that g(X) is an integrable random variable. Then

Fg(X) = /Q g(X)dP = / o) dFx ().

R
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Proof. We follow the usual procedure.

(i) If X is an indicator random variable, X = I{A} for some A € F, then
the three members all reduce to P(X € A). If X is a simple random variable,
X =31 wpl{Ag}, where {Ag, 1 < k < n} is a partition of {2, then the three
members reduce to > _;_, P(Ax). If X is non-negative, the conclusion follows
by monotone convergence, and for the general case we use X = X+ — X~ and
additivity.

(ii) We proceed as in (i) with g playing the role of X. If g(z) = I4(x), then

fw:g(X(w) =1} = {w: X(w) € A},

so that
Bo(X) = P(X € 4) = [ aFx(a) = [ gle)aPx(o).

If g is simple, the conclusion follows by linearity, if g is non-negative by mono-
tone convergence, and, finally, in the general case by decomposition into pos-
itive and negative parts. |

Exercise 7.1. As always, write out the details. m]

By analyzing the proof we notice that if X is discrete, then X is, in fact,
an elementary random variable (recall Definition 1.1), that is, an infinite sum
S opey wkI{Ag}. If X is non-negative, then, by monotonicity,

EX = Z z,P(Ag),
k=1

and in the general case this holds by the usual decomposition. This, and
the analogous argument for g(X), where g is measurable proves the following
variation of the previous result in the discrete and absolutely continuous cases,
respectively.

Theorem 7.2. If X is a discrete random variable with probability function
px(x), g is a measurable function, and E|g(X)| < oo, then

Eg(X) = / g(X)dP =" glapx(an) = 3 glan) POX = ).
2 k=1 k=1

Proof. We use the decomposition Ay = {X =z}, k = 1,2,..., and Ay =
(Uzofl A;g)c’ observing that P(Ag) = 0. -

Theorem 7.3. If X is an absolutely continuous random variable, with den-
sity function fx(x), g is a measurable function, and E|g(X)| < oo, then

B9(x) = [ gx)aP= [ @) ().

— 00
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Proof. Tf g(x) = I4(x) is an indicator, of A € R, say, then
Po(X) = [ HApP = P = [ fx(a)da
~ [ @@= [ g@fs@a

—oo —0o0
after which one proceeds along the usual scheme. |

In addition to being a computational vehicle, the formula for computing
E g(X) shows that we do not need to know the distribution of g(X) in order
to find its mean.

Ezample 7.1. Let X € U(0,1), and suppose, for example, that g(z) = sinx.
Then

1
FE sin X :/ sinzdxr =1—cosl,
0

whereas one has to turn to the arcsin function in order to find the density of
sin X. And, ironically, if one then computes E sin X, one obtains the same
integral as three lines ago after a change of variable. |

8 Moments, Mean, Variance

Expected values measure the center of gravity of a distribution; they are
measures of location. In order to describe a distribution in brief terms there
exist additional measures, such as the variance which measures the dispersion
or spread, and moments.

Definition 8.1. Let X be a random variable. The

e moments are E X", n=1,2,...;

e central moments are E(X — EX)", n=1,2,...;

e absolute moments are E|X|*, n=1,2,...;

e absolute central moments are E|X — EX|", n=1,2,....

The first moment, E X, is the mean. The second central moment is called
variance:

Var X = B(X - EX)? (=EX?—(EX)?%.
All of this, provided the relevant quantities exist. |

Following are tables which provide mean and variance for the standard
discrete and absolutely continuous distributions listed earlier in this chapter.
The reader is advised to check that the entries have been correctly inserted
in both tables.

Mean and variance for the Cantor distribution will be given in Section
2.11 ahead.
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Distribution \ Notation \Mean\ Variance
One point 0(a) a 0
Symmetric Bernoulli 0 1
Bernoulli Be(p) p pq
Binomial Bin(n,p)| np npq
Geometric Ge(p) z &
First success Fs(p) % o
Poisson Po(m) m m

Table 2.3. Mean and variance for some discrete distributions

Distribution | Notation | Mean |  Variance
Uniform U(a,b) atb (bI;)Q
i i
U(0,1) 5 15
U(-1,1) 0 z
Triangular | Tri(—1,1) 0 z
Exponential | Exp(0) 0 6°
Gamma I'(p,0) pb p6?
Beta B(r,s) P Gy oy
Normal N(u,o?) 1 a?
N(0,1) 0 1
1
Log-normal | LN (p,0?%) Nasta 62'u(6202 — e°2)
Cauchy C(0,1) — —
« (23 2
Pareto Pa(f, ) T_ﬁ1 W

Table 2.4. Mean and variance for some absolutely continuous distributions

The Cauchy distribution possesses neither mean nor variance. The ex-
pected value and variance for the Pareto distribution only exist for a > 1 and
a > 2, respectively (as is suggested by the formulas).

If we think of the physical interpretation of mean and variance it is rea-
sonable to expect that a linear transformation of a random variable changes
the center of gravity linearly, and that a translation does not change the dis-
persion. The following exercise puts these observations into formulas.

Exercise 8.1. Prove the following properties for linear transformations: Let X be
a random variable with EX = p and Var X = o2, and set Y = aX + b, where

a,b € R. Prove that
EY =au+b and that VarY = a’c°. o

Two Special Examples Revisited

In Subsection 2.2.7 we presented two examples, the first of which was a random
variable X which was uniformly distributed on the irrationals in [0,1], that
is, with density
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RS for x€[0,1]\Q,
) = {0, for x€[0,1]NQ.

The random variable was there seen to be equivalent to a standard U(0,1)-
distributed random variable, so that a direct computation shows that £ X =
1/2 and that Var X = 1/12.
The other example was a discrete random variable with probability func-
tion
p(re) = {TFQGkQ, for rk.e (0,1)NQ,
0, otherwise,

where {ry, k > 1} was an enumeration of the rationals in the unit interval.
We also pointed out that this is a somewhat pathological situation, since the
enumeration of the rationals is not unique. This means that all moments, in
particular the expected value and the variance, are ambiguous quantities in
that they depend on the actual enumeration of Q.

9 Product Spaces; Fubini’s Theorem

Expectations of functions of random vectors are defined in the natural way
as the relevant multidimensional integral. The results from Section 2.7 carry
over, more or less by notation, that is, by replacing appropriate roman letters
by boldface ones.

For example, if (X,Y")’ is a random vector and g a measurable function,
then

Eg(xX.Y) = [ gx.Y)aP = [ glo)dFry(a)
0 R2

In the discrete case,

Eg(Xa Y) = Zzg(zj,zj)pX,Y(xi,xj)7
i=1 j=1

and in the absolutely continuous case

Eg(X7Y):/

- g(l‘,y)fx,y(fﬂ, y) dmdy

In each case the proviso is absolute convergence.

Expectations of functions of random variables take special and useful forms
when the probability spaces are product spaces.

9.1 Finite-dimensional Product Measures

Let (2%, Fr, Pr), 1 < k < n, be probability spaces. We introduce the notation
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FixFax - XFp=0{Fi XFo X+ XF,:F,€Fr, k=1,2,...,n}.

Given this setup one can now construct a product space, (X7_; 2k, X}_1 Fr),
with an associated probability measure P, such that

P(A; x Ay x -+ x Ap) = [[ Pe(Ax) for Ap € Fip, 1<k <n.
k=1

Note that the probability measure has a built-in independence.

Moreover, the probability space (X7 _; 2%, X7, Fr, X}_, Pr) thus obtained
is unique. We refer to the literature on measure theory for details.

As for infinite dimensions we confine ourselves to mentioning the existence
of a theory. A prominent example is the space of continuous functions on the
unit interval and the associated o-algebra — (C[0, 1],C[0, 1]). For this and more
we recommend [20].

9.2 Fubini’s Theorem

Fubini’s theorem is a result on integration, which amounts to the fact that an
expectation, which in its general form is a double integral, can be evaluated
as iterated single integrals.

Theorem 9.1. Let (£21,F1, P1) and ((22, F2, P2) be probability spaces, and
consider the product space (21 X 25, F1 X Fo,P), where P = P, x Py is
the product measure as defined above, suppose that X = (X1, X3)" is a two-
dimensional random variable, and that g is F1 X Fa-measurable, and (i) non-
negative or (ii) integrable. Then

_ /{Z (/QQQ(X)dPQ)dPl :/02 (/ng(X)dpl)d&.

Proof. For indicators the theorem reduces to the construction of product mea-
sure, after which one proceeds via simple functions, monotone convergence and
non-negative functions and the usual decomposition. We omit all details. O

A change of variables (recall Section 2.7) applied to Fubini’s theorem yields
the following computationally more suitable variant.

Theorem 9.2. Suppose that (X,Y) is a two-dimensional random variable,
and g is R?* = R x R-measurable, and non-negative or integrable. Then

oY) = [[ atenars@ary )

= [ ([ stw)arv)arx(a)

_ /R ( /}R 9(z,y) dFx () )dFy (y).
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Exercise 9.1. Write down the analogous formulas in the absolutely continuous
and discrete cases, respectively. O

9.3 Partial Integration

A first application of Fubini’s theorem is to show that the usual formula for
partial integration carries over to the present context.

Theorem 9.3. Let a < b € R, and suppose that F,G € DT have no common
points of discontinuity on (a,b]. Then

b b
/G@mﬂmzc@ﬂm—m@m@—/pmma@

If, in addition, G is absolutely continuous with density g, then

b b
/G@mmwza@ﬂw—m@ﬂ@—/F@Mmm

Proof. We first note that if the formula holds for F' and G, then, by linearity,
it also holds for linear transformations; aF' + 3 and vG + 9§, since then

b
[ 26t daF@) = / G(x)dF ()
:’ya(G(b)F(b) /F dG(z )
— (4G(B) (aF b)) — (+G(@)) (aF(a)) - / (aF (2)) d(1C ().

and
b b
/ (G(x) +8) A(F(x) + B) = / G(x)dF(z) + 6(F(b) - F(a))
b
:G@mm—qwm@—/Fummm+anw—n@)

= (Gb)+)F(®b) — (G(a) +6)F(a) — / F(z)d(G(x) +9).

It is therefore no restriction to assume that F' and G are true distribution func-
tions, which we associate with the random variables X and Y, respectively,
the point being that we can express the integrals as probabilities. Namely, by
an appeal to Fubini’s theorem, we obtain, on the one hand, that

Pla<X <ba<Y <b) = // d(F x G)(z,y) //dF )dG(y

/dF /dG F(b) — F(a)(G() — Gla)),
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and, by splitting the probability that the point (X,Y) lies inside the square
(a,b] x (a,b] into three pieces, on the other hand (via product measure and
Fubini), that

Pla<X<ba<Y<b)=Pla<X<Y<b+Pla<Y<X<D)
+Pla<Y =X <b)

// (F x G)(z,y) // (G x F)(z,y) +
le ([; F(y))dG(2) + LL ([;dG())dF()

b b
:/(ﬂ@—F@mm@+/(a@—G@mﬂm

b b
= / F(z)dG(z) + / G(z)dF(z) — F(a)(G(b) — G(a))
—G(a)(F(b) — F(a)).

The formula for partial integration now follows by equating the two expres-
sions for P(a < X <b,a <Y <b).
The conclusion for the special case when G is absolutely continuous follows

from the fact that
b b
/ F(z)dG(z) = / F(z)g(x)dz. O

Remark 9.1. The interval (a,b] can be replaced by infinite intervals provided
enough integrability is available. O

9.4 The Convolution Formula

Consider once again the usual product space (21 X (29, F1 X Fa, P x Py), and
suppose that (X1, X5)’ is a two-dimensional random variable whose marginal
distribution functions are F; and Fb, respectively. The convolution formula
provides the distribution of X; + Xo.

Theorem 9.4. In the above setting
Frixa( = [ Fitu=y)dFay)

If, in addition, X5 is absolutely continuous with density fo, then
Frexa( = [ Fitu= i) dy

If X, is absolutely continuous with density f1, the density of the sum equals
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o0
fxi4x, (u) = / fi(u—y) dF(y).
—o0

If both are absolutely continuous, then

frox(w) = [ T i ) faly) dy.

Proof. Once again, an application of Fubini’s theorem does the job for us.

Fxax() = PO+ Xe <) = [[ AR x P)x)

= /Z /:y d(F, x By)(x,y) = /O:o (/7;?/ dFl(m))ng(y)
:/_O;Fl(u—y)ng(y).

The remaining parts are immediate. O

10 Independence

One of the central concepts in probability theory is independence. The out-
comes of repeated tosses of coins and throws of dice are “independent” in a
sense of normal language, meaning that coins and dice do not have a mem-
ory. The successive outcomes of draws without replacements of cards from a
deck are not independent, since a card that has been drawn cannot be drawn
again. The mathematical definition of independence differs from source to
source. Luckily the two following ones are equivalent.

Definition 10.1. The random variables X1, Xo, ..., X, are independent ff,
for arbitrary Borel measurable sets Ay, As, ..., Ay,

P< ﬁ{Xk S Ak}> = ﬁP(Xk c Ak)
k=1 k=1

Definition 10.2. The random variables X1, Xo, ..., X, or, equivalently, the
components of the random vector X are independent iff

Fx(x) = H Fx,(zr) forall x€R™ -
k=1

Independence according to the first definition thus means that all possible
joint events are independent, and according to the second definition that the
joint distribution function equals the product of the marginal ones.
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Theorem 10.1. The two definitions are equivalent.

Proof. The second definition obviously is implied by the first one, since the
half-open infinite sets are a subclass of all measurable sets. For the converse
we note that this subclass is a m-system that generates the o-algebra of Borel
measurable sets (Theorem 1.3.6). An application of Theorem 1.3.5 finishes the
proof. |

Remark 10.1. Independence implies that the joint measure is product measure
(due to uniqueness). O

Exercise 10.1. Prove that it is, in fact, enough to check any class of sets that
generates the Borel sets to assert independence. O

For discrete and absolutely continuous distributions independence is equiv-
alent to the factorization of joint probability functions and joint densities,
respectively.

Theorem 10.2. (i) If X and Y are discrete, then X and Y are independent
iff the joint probability function is equal to the product of the marginal ones,
that is iff

pxy(2,y) =px(x) -py(y) foral z,yeR.
(ii) If X and Y are absolutely continuous, then X and Y are independent iff
the joint density is equal to the product of the marginal ones, that is iff

Ixy(zy) = fx(@)- fy(y) forall z,yeR.

Proof. The discrete case follows immediately by taking differences.
As for the absolutely the continuous case, if factorization holds, then, via
Fubini’s Theorem, Theorem 9.1,

v = [ [ ettt = [ [ pep du
—/;me)du/: fy(v) dv = Fx(z) - Fy(y).

To prove the converse, we use the metatheorem approach. Suppose that X
and Y are independent and define, for C' = A x B, where A, B € R,

&= {C : //C fxv(u,v)dudv = //C fx(u)fy(v) dudv.}

Let, for z,y € R, A = (—o0,z] and B = (—o00,y]. Then, by definition, the
independence assumption, and Fubini’s theorem,

//C fx,y(u,v)dudv = P(AN B) = P(A)P(B)

:/AfX(U)du/BfY(U)dv://AxBfX(u)‘fY(v)dUdU
://Cfx(u)fy(v)dudv.
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This shows that £ contains all rectangles. Since the class of rectangles con-
stitutes a m-system and generate the Borel o-algebra, Theorem 1.2.3 tells us
that £ =R. a

A more modern (but less common) definition (which we state for n = 2)
is that X and Y are independent iff

EgX)h(Y)=FEg(X)-Eh(Y) forall g,heCp,

where Cp is the class of bounded continuous functions. For details and equiv-
alences, see [145], Chapter 10.

Exercise 10.2. Prove, via simple functions, non-negative functions, monotone
convergence, and differences of non-negative functions, that this definition is equiv-

alent to the other ones. O
Exercise 10.3. Prove that if X1, X5, ..., X,, are independent, then
n n
ET] 1xcl*s = T] BIXKI,

k=1 k=1

where s1, s2, ..., S, are positive reals, and that
n . n .
EJ] xi =] exi*,
k=1 k=1

where j1, jo,...,Jn are positive integers. O

Two of the basic properties of expectations were additivity and linearity.
A related question concerns variances; if X and Y are random variables with
finite variances, is it true that the variance of the sum equals the sum of
the variances? Do variances have the linearity property? These questions are
(partially) answered next.

Theorem 10.3. Let X and Y be independent random variables with finite
variances, and a,b € R. Then

VaraX = a*Var X,
Var (X +Y) = Var X 4+ Vary,
Var (aX +bY) = a*Var X + b*VarY.

Exercise 10.4. Prove the theorem. m]

Remark 10.2. Independence is sufficient for the variance of the sum to be equal
to the sum of the variances, but not necessary.

Remark 10.3. Linearity should not hold, since variance is a quadratic quantity.

Remark 10.4. Note, in particular, that Var (—X) = Var X. This is as expected,
since switching the sign should not alter the spread of the distribution. O
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10.1 Independence of Functions of Random Variables

The following theorem puts the natural result that functions of independent
random variables are independent into print.

Theorem 10.4. Let X1, X5, ..., X,, be random variables and hy, ho, ..., hy,,
be measurable functions. If X1, Xo, ..., X,, are independent, then so are
hi1(X1),ha(X2), ..., hn(X5).

Proof. Let Ay, As, ..., A, be Borel measurable sets. Then, by turning to in-
verse images and the Definition 10.1, we find that

n n

p( () {h(X) € Ak}) = P( N{X: e h,;l(Ak)})
k=1 k=1
= [T P(Xk € " (Aw)) = [ P(he(Xx) € Ag). -
k=1 k=1

10.2 Independence of o-Algebras

As an analog to Theorem 1.4.1, independence of random variables implies
independence of the o-algebras generated by them.

Theorem 10.5. If Xq, X5, ..., X,, are independent, then so are
o{X1}, o{Xa}, ..., o{Xn}.

Exercise 10.5. Write out the details of the proof. |

10.3 Pair-wise Independence

Recall the distinction between independence and pair-wise independence of
sets from Section 1.4. The same distinction exists for random variables.

Definition 10.3. The random variables X1, Xo, ..., X, are pair-wise inde-
pendent iff all pairs are independent. O

Independence obviously implies pair-wise independence, since there are several
additional relations to check in the former case. The following example shows
that there exist random variables that are pair-wise independent, but not
(completely) independent.

Ezample 10.1. Pick one of the points (1,0,0), (0,1,0), (0,0,1), and (1,1,1)

uniformly at random, and set, for k = 1,2, 3,

1, if coordinate k =1,
X = )
0, otherwise.
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Then, with Ay = {X} = 1}, we rediscover Example 1.4.1, which proves the
desired assertion. In addition,

=N

E X, , for k=123,

1
E(X1X2X3) = i 7é EXlEXQEX3 = g

However, since X;X; = 1 if the point (1,1, 1) is chosen, and X;X; = 0 other-
wise, we obtain

1
for all pairs (i, ), where (i # j), which implies that
1
EX;X;=-=EX;EX;.
4

In other words, moment factorization holds for pairs but not for triplets. O
Exercise 10.6. Prove that if X1, X», ..., X,, are pair-wise independent, then

Var (X1 + X + -+ X,,) = Var X; + Var Xa + - - - + Var X,,. =

10.4 The Kolmogorov Zero-one Law Revisited

The proof of the following Kolmogorov zero-one law for random variables
amounts to a translation of the proof of the zero-one law for events, Theorem
1.5.1.

Let {X,,, n > 1} be arbitrary random variables, and set

Fn=0{X1,Xa,..., Xn} for n>1,
Fl=0{Xni1, Xni2,.--} for n>0.

Then -
T=7F,
n=0
is the tail-o-field (with respect to {X,,, n > 1}).

Theorem 10.6. (The Kolmogorov zero-one law)
Suppose that {X,, n > 1} are independent random variables. If A € T, then

P(A)=0 or 1.

Exercise 10.7. Prove the theorem, that is, rewrite (e.g.) the second proof of The-
orem 1.5.1 into the language of random variables. O
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Corollary 10.1. If, in the setting of the Theorem 10.6, X is a T -measurable
random variable, then X is a.s. constant.

Proof. The event {X < x} € T for all x € R. Thus,
Fx(z)=P(X<z)=0 or 1 foral =zeR,

which, in view of the properties of distribution functions, implies that there
exists ¢ € R, such that

0, for x<eg,
1, for = >c.

A consequence of the corollary is that random variables, such as limits,
limit superior and limit inferior of sequences of independent random variables
must be constant a.s. if they converge at all.

11 The Cantor Distribution

A beautiful way to describe a random variable that has the Cantor distribu-
tion on the unit interval is the following: Let X, X3, X5, ... be independent
identically distributed random variables such that

1
P(X:O):P(X:2):§.
Then
oo
Z € Cantor(0,1).
Namely, the random variables X7, X5, ... are the successive decimals of a

number whose decimals in the base 3 expansion are 0 or 2, and never 1.
Moreover, since the decimals each time have a 50-50 chance of being 0 or 2,
the infinite sum that constitutes Y is uniformly distributed over the Cantor
set.

To compute the mean we use additivity and monotone convergence for
series to obtain

er-n(3 ) -2 e() - L5 - R s

which coincides with intuition.

To verify the result for the variance we also need the fact that the sum-
mands are independent (and an additional argument due to the fact that we
are faced with an infinite series) to obtain
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VarY:Var(i);:) :iVar(%) =
1

n=1 n= n=1

By letting X be equal to 0 with probability 1/2, and equal to some other
positive integer with probability 1/2, and by modifying Y accordingly, we can
construct other Cantor-type distributions. For example,

= X, 1
Z:Z4n, where P(X =0)=P(X =3) = =
n=1

is a random variable corresponding to a number that is uniform over the
subset of the interval [0, 1] which consists of the numbers whose base 4 decimal
expansion contains only 0’s and 3’s, no 1’s or 2’s.

We have thus exhibited two different Cantor-type distributions.

Exercise 11.1. We have not explicitly proved that the base 4 example produces
a continuous singular distribution. Please check that this is the case (although this
seems pretty clear since the constructions is the same as that of the Cantor distri-
bution). ]

Exercise 11.2. Compute £ Z and Var Z. O

Although Cantor sets have Lebesgue measure 0 they are, somehow, of
different “sizes” in the sense that some are more “nullish” than others. After
all, in the classical, first case, we delete one-third of the support in each step,
whereas, in the second case we delete halves. The null set in the first case
therefore seems larger than in the second case.

There exists, in fact, a means to classify such sets, namely the Hausdorff
dimension, which can be used to measure the dimension of sets (such as
fractals), whose topological dimension is not a natural number. One can show
that the Hausdorff dimension of the classical Cantor set on the unit interval
is log2/log 3, and that the Hausdorff dimension pertaining to our second
example is log2/log4 = 1/2 < log2/log 3 ~ 0.631, and, hence smaller than
the classical Cantor set.

We close by mentioning that the same argument with 3 (or 4) replaced by
2, and X} being 0 or 1 with equal probabilities for all k, generates a number
that is U(0, 1)-distributed (and, hence, an absolutely continuous distribution),
since it is the binary expansion of such a number. Its Hausdorff dimension
is, in fact, equal to log2/log2 = 1, (which coincides with the topological
dimension).

12 Tail Probabilities and Moments

The existence of an integral or a moment clearly depends on how quickly tails
decay. It is therefore not far-fetched to guess that there exist precise results
concerning this connection.
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Theorem 12.1. Let r > 0, and suppose that X is a non-negative random
variable. Then:

(i) EX=[7"(1-F()de=[~PX>z)dz,

where both members com;erge or diverge simultaneously;
(i) EX"=r [ 2" '(1-F(z)dz=r [ 2" 'P(X > z)dz,

where both members com;erge or diverge simultaneously;
(ili) EX<oo <= > 2, P(X>n)<oo.

More precisely,

ip(xzn)gEXgHiP(in).

n=1 n=1
iv) EX"<oo <<= > n'P(X>n)<oo.
More precisely,

> nrm 1PX>n)<EXT<1+ZnT P(X > n).

n=1 n=1

Proof. (i) and (ii): Let A > 0. By partial integration,

A A
/ 2" dF(z) = —-A"(1 - F(A)) —|—/ re" (1 - F(z))dx
0 0
A
=-A"P(X > A) + r/ 2" P(X > z)da.
0

If E X" < oo, then

A”"(l—F(A))g/ 2"dF(z) -0 as A — oo,
A

which shows that the integral on the right-hand side converges. If, on the
other hand, the latter converges, then so does the integral on the left-hand
side since it is smaller.

As for (iii),

EX = Z/ zdF(z gi Pn—1<|X|<n)
:ZZPn—1<\X|§n):ZZP(n71<|X|§n)

n=1k=1 k=1n=k

=Y P(X>k-1)<14+» P(X>k) <1+» P(X>k).
k=1 k=1 k=1

The other half follows similarly, since
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oo

Zn—l (n—1<|X| <n),
after which the computations are the same as before, and (iv) follows by
“slicing” the corresponding integral similarly. O

Remark 12.1. Alternatively, it suffices to prove (i), because
oo (oo}
EX" = / P(X" > z)dz = / P(X > zY/")dx,
0 0

after which the change of variable y = z'/" establishes the claim. a
If X is integer valued one can be a little more precise.
Theorem 12.2. If X is a non-negative, integer valued random variable, then
o0
EX =) P(X>n).
n=1

Proof. The conclusion can be obtained from Theorem 12.1, or, else, directly:

EX=Y nP(X=n)=)Y (Zl)P(X:n)
n=1 n=1 k=1
=3 N P(X=n)=) P(X >k
k=1n=k k=1

Interchanging the order of summation is no problem since all terms are non-
negative. a

Exercise 12.1. Let X and Y be random variables and suppose that E|Y| < co.
Show that, if there exists o > 0, such that

P(IX|>z) < P([Y|>=x) forall z> o,
then E|X| < oo. O

By modifying the proof of Theorem 12.1 one can obtain the following more
general results.

Theorem 12.3. Let X be a non-negative random wvariable, and g a non-
negative, strictly increasing, diﬁerentiable function. Then,

(i) Eg(X) =g(0) + [,° ¢'(z)P(X > x)da, where both members converge or
diverge szmultaneously,
{)Eg(X)<oo <<= > ,¢d(n)P(X >n)< .

Exercise 12.2. Prove the theorem. O
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Exercise 12.3. Let X be a non-negative random variable. Prove that

Elgt X <00 «— P(X >n) < oo;

gk
S|

3
Il
-

1
nlogn

M]3

E logTlogt X < > =

P(X > n) < oo;

3
Il
=

n " (logn)’P(X >n) < oo, r>1, p>0;

NgE

EX"(logm X)P <00 =

1

3
Il

(logn)"~*

E(logt X)? <00 <= -

P(X >n)<oo, p>1. O

L

1

3
Il

A common proof technique is to begin by proving a desired result for some
subsequence. In such cases one sometimes runs into sums of the above kind
for subsequences. The following results may then be useful.

Theorem 12.4. Let X be a non-negative random variable, and A > 1. Then,

EX<oo<:>/ AP X>/\‘”)dx<oo<:>2)\”PX>)\”)<oo

n=1

Proof. By a change of variable, y = \*,

/ APP(X > \%) dw—log)\/ P(X > y)dy,

which, together with Theorem 12.1 proves the conclusion. O

More general subsequences can be handled as follows.

Theorem 12.5. Suppose that {ny, k > 1} is a strictly increasing subsequence
of the positive integers, and set

m(z) =#{k:np <z} and M(z)= an, x> 0.
Finally, let X be a non-negative random variable. Then

> e P(X > i) = EM(m(X)),
k=1

where both sides converge and diverge together.

Proof. The conclusion follows from the fact that

{X >} = {m(X) > k},

partial summation and Theorem 12.1. |



78 2 Random Variables

Exercise 12.4. Verify the following special cases:

EX*? <00 = Y KPX>k)<oo;
k=1

EXTVD <00 = S K'P(X>k%)<oo for deN.
k=1
Exercise 12.5. Show that Theorem 12.5 reduces to Theorem 12.4 for ny = \*
where A > 1. O

The subsequences we have dealt with so far were at most geometrically increas-
ing. For more rapidly increasing subsequences we have the following special
case.

Theorem 12.6. Suppose that {ny, k > 1} is a strictly increasing subsequence
of the positive integers, such that

lim sup
k—oo Mk4+1

<1,

and let X be a non-negative random variable. Then

EFX<oo = anP(Xan)<oo
k=1

Proof. Set X =72, ngP(X > ny). A consequence of the growth condition
is that there exists A > 1, such that ngy1 > Any for all k, so that

WK

Y= (ne—1 + (i — ng—1)) P(X > ny,)

A~ nHZ Z P(X > j)

k=1j=nr_1+1

=
Il
—

HM8

< )\*12+ZP(X > ) =AY+ EX,
j=1
so that )
Yy<-2 EX .
Saoiva s

Remark 12.2. Combining this with Theorem 12.5 shows that

A
The last result is, in general, weaker than the previous one, although frequently
sufficient. If, in particular, M(m(z)) > Cz as ¥ — oo, the results coincide.

One such example is nj, = 22", k > 1. O
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Another variation involves double sums.

Theorem 12.7. Let X be a non-negative random variable. Then

EXlogt X <00 <= ZZP(X>nm)<oo.

m=1n=1

Proof. By modifying the proof of Theorem 12.1(i) we find that the double

sum converges iff
/ / P(X > zy)dady < 0.

Changing variables v = x and v = xy transforms the double integral into

oo v 1 oo
/ / —P(X > v)dudv = / logvP(X > v)duv,
1 J1 U 1

and the conclusion follows from Theorem 12.3. O

13 Conditional Distributions

Conditional distributions in their complete generality involve some rather
delicate mathematical complications. In this section we introduce this con-
cept for pairs of purely discrete and purely absolutely continuous random
variables. Being an essential ingredient in the theory of martingales, condi-
tional expectations will be more thoroughly discussed in Chapter 10.

Definition 13.1. Let X and Y be discrete, jointly distributed random vari-
ables. For P(X = z) > 0, the conditional probability function of Y given
that X = = equals

_ bx, Y(ﬂU Y)

and the conditional distribution function of Y given that X =z s

Fy|x=.(y) = ZPY|X=9C('Z)' O

z<y

Exercise 13.1. Show that py|x—.(y) is a probability function of a true probability
distribution. m|

This definition presents no problems. It is validated by the definition of con-
ditional probability; just put A = {X =2} and B = {Y = y}. If, however, X
and Y are jointly absolutely continuous, expressions like P(Y =y | X = z)
have no meaning, since they are of the form %. However, a glance at the

previous definition suggests the following one.
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Definition 13.2. Let X and Y have a joint absolutely continuous distribu-
tion. For fx(x) > 0, the conditional density function of Y given that X = x
equals

_ fxy(z,y)

Tyix=2(y) = @)

and the conditional distribution function of Y given that X = x is
y
FY\X:az(y) :/ fY\X:m(Z)dZ- O

Exercise 13.2. Show that fy|x=.(y) is the density function of a true probability
distribution

Exercise 13.3. Prove that if X and Y are independent then the conditional dis-
tributions and the unconditional distributions are the same. Explain why this is
reasonable. m]

Remark 13.1. The definitions can (of course) be extended to situations with
more than two random variables. O

By combining the expression for the marginal density with the definition of
conditional density we obtain the following density version of the law of total
probability, Proposition 1.4.1:

)= [ frixealn)xo) . (13.1)

We also formulate, leaving the details to the reader, the following mixed ver-
sion, in which Y is discrete and X absolutely continuous:

PY =y)= /OO py|x=2(y) fx (2) dz. (13.2)

— 0o

Ezxample 13.1. In Example 3.1 a point was chosen uniformly on the unit disc.
The joint density was fx y(z,y) = %, for 22 + 32 < 1, and 0 otherwise, and
we found that the marginal densities were fx(z) = fy(z) = 2v/1— 2?2, for
|z| < 1 and 0 otherwise.

Using this we find that the conditional density of the y-coordinate given
the z-coordinate equals

Ixy(@,y) 1/m 1
e e =S e R

and 0 otherwise. This shows that the conditional distribution is uniform on
the interval (—v/1 — 22,v/1 — 22).

This should not be surprising, since we can view the joint distribution in
the three-dimensional space as a homogeneous, circular cake with a thickness




14 Distributions with Random Parameters 81

equal to 1/7. The conditional distributions can then be viewed as the profile
of a face after a vertical cut across the cake. And this face, which is a picture
of the marginal distribution is a rectangle.

Note also that the conditional density is a function of the z-coordinate,
which means that the coordinates are not independent (as they would have
been if the cake were a square and we make a cut parallel to one of the
coordinate axes).

The conditional density of the x-coordinate given the y-coordinate is the
same, by symmetry. |

A simple example involving discrete distributions is that we pick a digit
randomly among 0,1,2,...,9, and then a second one among those that are
smaller than the first one. The corresponding continuous analog is to break a
stick of length 1 randomly at some point, and then break one of the remaining
pieces randomly.

14 Distributions with Random Parameters

Random variables with random parameters are very natural objects. For ex-
ample, suppose that X follows a Poisson distribution, but in such a way that
the parameter itself is random. An example could be a particle counter that
emits particles of different kinds. For each kind the number of particles emitted
during one day, say, follows a Poisson distribution, However, the parameters
for the different kinds are different. Or the intensity depends on temperature
or air pressure, which, in themselves, are random. Another example could be
an insurance company that is subject to claims according to some distribution,
the parameter of which depends on the kind of claim: is it a house on fire?
a stolen bicycle? a car that has been broken into? Certainly, the intensities
with which these claims occur can be expected to be different.

It could also be that the parameter is unknown. The so-called Bayesian
approach is to consider the parameter as a random variable with a so-called
prior distribution.

Let us for computational convenience consider the following situation:

X € Po(M) where M € Exp(1).
This is an abusive way of writing that
X |M=me Po(m) with M e Exp(1).

What is the “real” (that is, the unconditional) distribution of X7 Is it a
Poisson distribution? Is it definitely not a Poisson distribution?

By use of the mixed version (13.2) of the law of total probability, the
following computation shows tells us that X is geometric; X € Ge(%). Namely,
for k=0,1,2,... we obtain
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P(X:k):/OOOP(X:kM:x)-fM(x)dx:/Oooexfj.ezdm

_ > 2t 02T [ 1 ok+1 pk+1-1,-2z .
o k! Tk I'k+1)

_ L Ly
T ookl _5'(§>’

which establishes the geometric distribution as claimed.

Exercise 14.1. Determine the distribution of X if

e M € Exp(a);
e Mel(pa). O

Suppose that a radioactive substance emits a-particles in such a way that
the number of particles emitted during one hour, N € Po()\). Unfortunately,
though, the particle counter is unreliable in the sense that an emitted particle
is registered with probability p € (0, 1), whereas it remains unregistered with
probability ¢ = 1 — p. All particles are registered independently of each other.
Let X be the number of particles that are registered during one hour.

This means that our model is

X | N=ne¢€ Bin(n,p) with N € Po()).

So, what is the unconditional distribution of X? The following computation
shows that X € Po(Ap). Namely, for £k =0,1,2,...,

ZP —kIN=n)P(N=n)=Y (Z)pkaneAz’;

7(A)’“°°(A)””“ 200 N _ )
B Z(nq—k)! e =

Note that the sum starts at n = k; there must be at least as many particles
emitted as there are registered ones.

The following two exercises may or may not have anything to do with
everyday life.

Exercise 14.2. Susan has a coin with P(head) = p; and John has a coin with
P(head) = p». Susan tosses her coin m times. Each time she obtains heads, John
tosses his coin (otherwise not). Find the distribution of the total number of heads
obtained by John.

Exercise 14.3. Toss a coin repeatedly, and let X,, be the number of heads after
n coin tosses, n > 1. Suppose now that the coin is completely unknown to us in
the sense that we have no idea of whether or not it is fair. Suppose, in fact, the
following, somewhat unusual situation, namely, that

X, | P=pé€ Bin(n,p) with P eU(0,1),
that is, we suppose that the probability of heads is U(0, 1)-distributed.
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Find the distribution of X,,.

Explain why the answer is reasonable.

Compute P(Xn41 =n+1]| X, =n).

Are the outcomes of the tosses independent? O

A special family of distributions is the family of mized normal, or mized
Gaussian, distributions. These are normal distributions with a random vari-

ance, namely,
X|Y*=yeN(uy) with S?eF,

where F' is some distribution (on (0, 00)).

As an example, consider a production process where some measurement
of the product is normally distributed, and that the production process is
not perfect in that it is subject to rare disturbances. More specifically, the
observations might be N (0, 1)-distributed with probability 0.99 and N (0, 100)-
distributed with probability 0.01. We may write this as

X € N(0,%?), where P(X?=1)=0.99 and P(X? = 100) = 0.01.

What is the “real” distribution of X7 A close relative is the next section.

15 Sums of a Random Number of Random Variables

In many applications involving processes that evolve with time, one is inter-
ested in the state of affairs at some given, fixed, time rather than after a
given, fixed, number of steps, which therefore amounts to checking the ran-
dom process or sequence after a random number of events. With respect to
what we have discussed so far this means that we are interested in the state
of affairs of the sum of a random number of independent random variables. In
this section we shall always assume that the number of terms is independent
of the summands. More general random indices or “times” will be considered
in Chapter 10.

Apart from being a theory in its own right, there are several interesting
and important applications; let us, as an appetizer, mention branching pro-
cesses and insurance risk theory which we shall briefly discuss in a subsection
following the theory.

Thus, let X, X1, Xo, ... be independent, identically distributed random
variables with partial sums S, = 22:1 X, n > 1, and let N be a non-
negative, integer valued random variable which is independent of X7, X, ....
Throughout, Sy = 0.

The object of interest is Sy, that is, the sum of N X’s. We may thus
interpret N as a random index.

For any Borel set A C (—o0, 00),

P(Sy € A|N=n)=P(S, € A|N=n)=P(S, € 4),  (15.1)



84 2 Random Variables

where the last equality, being a consequence of the additional independence,
is the crucial one.
Here is an example in which the index is not independent of the summands.

Ezample 15.1. Let N = min{n : S, > 0}. Clearly, P(Sy > 0) = 1. This
implies that if the summands are allowed to assume negative values (with
positive probability) then so does S,,, whereas Sy is always positive. Hence,
N is not independent of the summands, on the contrary, N is, in fact, defined
in terms of the summands. O

By (15.1) and the law of total probability, Proposition 1.4.1, it follows that

(SNEA i SNEAlN—n)P(N n)

i P(S, € A)P(N =n), (15.2)

in particular,
(Sy <x)= Z (Sp <2)P(N =n), —oco<z< o0, (15.3)

so that, by changing the order of integration and summation,

=> E(h(Sn))P(N =n), (15.4)

provided the integrals are absolutely convergent.
By letting h(x) = o and h(x) = 2? we obtain expressions for the mean
and variance of Sy.

Theorem 15.1. Suppose that X, X1, Xa, ... are independent, identically
distributed random wvariables with partial sums S, = ZZ:1 X, n>1, and
that N is a non-negative, integer valued random variable which is independent
Ole, )(27 e

(i) 1f

EN<oo and FE|X|< oo,
then
ESy=EN-FEX.

(ii) If, in addition,
VarN < oo and VarX < oo,

then
Var Sy = EN - Var X + (E X)? - Var N.
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Proof. (i): From (15.4) we know that

ESy = iESnP(N =n)= inEXP(N =n)
n=1 n=1
=FX Z nP(N = EXEN.
(ii): Similarly
E(S?V):i E(S2)P( i Var S, + (E S,,)?)P(N = n)
n=1 n=1

tnqg

(nVar X +n*(E X)*)P(N =n)

3
I
—

rXZnP (E X) ZnQP =n)
n=1

= VarXEN+ (EX)*E N2,

By inserting the conclusion from (i) we find that

Var Sy = E(S%) — (ESy)? = ENVar X + (E X)?EN? — (ENE X)®

=ENVarX + (EX)?Var N.

15.1 Applications

85

d

Applications of this model are ubiquitous. In this subsection we first illustrate
the theory with what might be called a toy example, after which we mention
a few more serious applications. It should also be mentioned that in some of
the latter examples the random index is not necessarily independent of the

summands (but this is of no significance in the present context).

A “Toy” Example

Ezample 15.2. Suppose that the number of customers that arrive at a store
during one day is Po(\)-distributed and that the probability that a customer
buys something is p and just browses around without buying is ¢ = 1 —p
Then the number of customers that buy something can be described as Sy,

where N € Po()), and X = 1 if customer k shops and 0 otherwise.
Theorem 15.1 then tells us that

ESy=ENEX =\-p,

and that
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Var Sy = EN Var X + (E X)?>Var N = X - pg + p°\ = \p.

We have thus found that E Sy = Var Sy = Ap, which makes it tempting to
guess that, in fact Sy € Po(Ap). This may seem bold, but knowing that the
Poisson process has many “nice” features, this may seem reasonable. After
all, the new process can be viewed as the old process after having run through
a “filter”, which makes it seem like a thinner version of the old one. And, in
fact, there is a concept, the thinned Poisson process, which is precisely this,
and which is Poisson distributed with a parameter that is the product of the
old one and the thinning probability.
And, in fact, by (15.2), we have, for £k =10,1,2,...,

P(Sy=k) =) P(Sn=kK)P(N=n)=3 <Z>qu”’“eAM

n!
n=1 n=k
_ _x(Ap)¥ — (A\q)" " _ N CYILIN A (Ap)*
= TH Z@(n_k)!_e R

so that, indeed S,, € Po(Ap).

Remark 15.1. The computations for determining the distribution of Sy are
the same as in the previous section. The reason for this is that, instead of
introducing an indicator random variable to each customer, we may consider
the total number of customers as some random variable X, say, and note that
X | N =n € Bin(n, p), after which we proceed as before. This is no surprise,
since if we identify every customer with a particle, then a shopping customer
is identified with a registered particle. So, they are conceptually the same

problem, just modeled or interpreted somewhat differently. O
More Jgenerally, let Y}, be the amount spent by the kth customer. The sum
SN = ) _1—1 Y& then describes the total amount spent by the customers during
one day.
If, for example, Y7, Ya, ... € Exp(#), and N € Fs(p), then
1 1 62
ESy=--0 and VarSy=-6>+¢>L =2 =
p b p p
Exercise 15.1. Find the distribution of Sy and check that mean and variance
agree with the above ones. O

Branching Processes

The most basic kind of branching processes, the Galton- Watson process, can
be described as follows:

At time ¢ = 0 there exists one (or many) founding members X (0). During
its life span, every individual gives birth to a random number of children, who
during their life spans give birth to a random number of children, who during
their life spans .. ..

The reproduction rules in this model are the same for all individuals:
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e all individuals give birth according to the same probability law, indepen-
dently of each other;

e the number of children produced by an individual is independent of the
number of individuals in his or her generation.

Let, for n > 0, X(n) = # individuals in generation n, and {Y%, k > 1} and
Y be generic random variables denoting the number of children obtained by
individuals. We also suppose that X (0) = 1, and exclude the degenerate case
PYy=1 =1

It follows from the assumptions that

X(2)=Y1+ -+ Yxq),
and, recursively, that
X(TL+].) :Yl +"'+YX(n)~

Thus, by identifying Y7, Ys, ... with X3, X5, ... and X (n) with N it follows
that X (n + 1) is an “Sy-sum”.

One simple example is cells that split or die, in other words, with probabil-
ity p they get two children and with probability 1 —p they die. What happens
after many generations? Will the cells spread all over the universe or is the
cell culture going to die out? If the cells are antrax cells, say, this question
may be of some interest.

Insurance Risk Theory

Consider an insurance company whose business runs as follows:

Claims arrive at random time points according to some random process;
Claim sizes are (can be considered as being) independent, identically dis-
tributed random variables;

e The gross premium rate, that is, the premium paid by the policy holders,
arrive at a constant rate §/month (which is probably not realistic since
people pay their bills at the end of the month, just after payday).

Let us denote the number of claims during one year by NN, and the successive
claims by X7, X, .... If the initial capital, called the risk reserve, is v, then
the capital at the end of the first year equals

N
v+ 128 =) Xk

k=1

Relevant questions are probabilities of ruin, of ruin in 5 years, and so on.
Another important issue is the deciding of premiums, which means that one
wishes to estimate parameters from given data, and, for example, investigate
if parameters have changed or not.
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A Simple Queueing Model

Consider a store to which customers arrive, one at a time, according to some
random process (and that the service times, which are irrelevant here, are, say,
i.i.d. exponentially distributed random variables). If X7, X5, ... denotes the
amount of money spent by the customers and there are M customers during

one day, then
M
> X
k=1

depicts the amount of money in the cash register at the end of the day. The
toy example above falls into this category.

16 Random Walks; Renewal Theory

An important assumption in Theorem 15.1 was the independence of the ran-
dom index N and the random summands X1, Xa, .... There obviously exist
many situations where such an assumption is unrealistic. It suffices to imagine
examples where a process is observed until something “special” occurs. The
number of summands at that moment is random and, by construction, defined
via the summands. In this section we present some applications where more
general random indices are involved.

16.1 Random Walks

A random walk {S,, n > 0} is a sequence of random variables, starting at
So = 0, with independent, identically distributed increments Xq, Xo, .. ..

The classical example is the simple random walk, for which the increments,
or steps, assume the values +1 or —1. The standard notation is

P(X=1)=p, P(X=-1)=gq, where 0<p,¢<1, p+qg=1,

and where X is a generic random variable.
The following figure illustrates the situation.

a q q i s

-5 -4 -3 -2 -1 0 1 2 3 4 5
Figure 2.2. The simple random walk

If the values are assumed with equal probabilities, p = ¢ = 1/2, we call it
a symmetric simple random walk. Another example is the Bernoulli random
walk, where the steps are +1 or 0 with probabilities p and g, respectively.

Random walk theory is a classical topic. For an introduction and back-
ground we refer to the second edition of Spitzer’s legendary 1964 book, [234].
Applications are abundant: Sequential analysis, insurance risk theory, queue-
ing theory, reliability theory, just to name a few.
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16.2 Renewal Theory

Renewal processes are random walks with non-negative increments. The
canonical application is a light bulb that fails after a random time and is
instantly replaced by a new, identical one, which, upon failure is replaced by

another one, which, in turn, .... The central object of interest is the number
of replacements during a given time.
In order to model a renewal process we let X1, X5, ... be the individual

life times and set S,, = Y ,_; Xk, n > 1. The number of replacements in the
time interval (0,¢] then becomes

N(t) = max{n: S, <t}.
The following figure depicts a typical realization of a renewal process.

Sn

A

N(t)

Figure 2.3. The realization of a renewal process

The main process of interest is the renewal counting process,
{N (), t =0}

Some classical references are [53, 65, 201, 229, 230]. A summary of results can
be found in [110], Chapter II. A discrete version called recurrent events dates
back to [85] see also [87]. If, in particular, the life times are exponential, then
{N(t), t > 0}, is a Poisson process.

A more general model which allows for repair times is the alternating
renewal process, a generalization of which is a two-dimensional random walk,
stopped when the second component reaches a given level after which the first
component is evaluated at that time point. For more on this, see [118] and/or
[110], Chapter IV (and Problem 7.8.17).

Classical proofs for the renewal counting process are based on the inversion

(N(t) >n} = {S, <t}. (16.1)

The idea is that a limit theorem for one of the processes may be derived from
the corresponding limit theorem for the other one via inversion by letting ¢
and n tend to infinity jointly in a suitable manner.
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16.3 Renewal Theory for Random Walks

Instead of considering a random walk after a fixed number of steps, that is,
at a random time point, one would rather inspect or observe the process at
fixed time points, which means after a random number of steps. For example,
the closing time of a store is fixed, but the number of customers during a day
is random. The number of items produced by a machine during an 8-hour day
is random, and so on. A typical random index is “the first n, such that ...”.
With reference to renewal theory in the previous subsection, we also note that
it seems more natural to consider a random process at the first occurrence
of some kind rather than the last one, defined by the counting process, let
alone, how does one know that a given occurrence really is the last one before
having information about the future of the process?

For this model we let X, X7, X5, ... be independent, identically dis-
tributed random variables, with positive, finite, mean F X = pu, and set
S, = ZZ=1 Xk, n > 1. However, instead of the counting process we shall
devote ourselves to the first passage time process, {T(t), t > 0}, defined by

7(t) = min{n : S, >t}, t>0.

Although the counting process and the first passage time process are close on
average, they have somewhat different behaviors in other respects. In addition,
first passage times have, somewhat vaguely stated, “better” mathematical
properties than last exit times. Some of this vagueness will be clarified in
Section 10.14. A more extensive source is [110], Section II1.3. Here we confine
ourselves by remarking that

e whereas N(t) + 1 = 7(t) for renewal processes, this is not necessarily the
case for random walks;

o the inversion relation (16.1) does not hold for random walks, since the
random walk may well fall below the level ¢ after having crossed it.

Both facts may be observed in the next figure.

Sn
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T(t) N(t)

Figure 2.4. First passage times of a random walk

Proofs of subsequent limit theorems for first passage time processes will be
based on limit theorems for randomly indexed random walks, {Sn ), t > 0}.
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A special feature is that those proofs cover renewal processes as well as random
walks. In addition, no distinction is necessary between the continuous cases
and the discrete ones. A specialized reference on this topic is [110].

16.4 The Likelihood Ratio Test

Let X1, X5, ..., X,, be a sample from an absolutely continuous distribution
with a characterizing parameter 6 of interest, and suppose that we wish to
test the null hypothesis Hy : 6 = 6y against the alternative Hy : 6§ = 0. The
Neyman-Pearson lemma in statistics tells us that such a test should be based
on the likelihood ratio statistic

where fg, and fp, are the densities under the null and alternative hypotheses,
respectively.

The factors ;E X’“zl; are independent, identically distributed random vari-
ables, and, under the null hypothesis, the mean equals 1;

ka,Ql f$91 /
E _
O(ka,ao F@:60) f(@sbo)dw = | flz:01)d

so that L, equals a product of independent, identically distributed random
variables with mean 1.

For technical reasons it is sometimes more convenient to investigate the
log-likelihood, log L,,, which is a sum of independent, identically distributed
random variables, however, not with mean log1 = 0.

16.5 Sequential Analysis

This is one of the most important statistical applications within the renewal
theoretic framework. The idea is that, instead of basing a log-likelihood test
on a sample of a fized predetermined size, one performs the test sequentially.

The typical sequential procedure then would be to continue sampling until,
depending on the circumstances, the likelihood ratio L,, or the log-likelihood
ratio, log L,,, falls outside a given strip, at which time point one takes a
decision. Technically, this means that one defines

Top =min{n : L, ¢ (a,b)}, where 0<a<b< oo,
or, equivalently,
Ta,p = min{n :log L, ¢ (A,B)}, where —o00o< A< B < 0.

and continues sampling until the likelihood ratio (or, equivalently, the log-
likelihood ratio) escapes from the interval and rejects the null hypothesis
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if Lr,, > b (logL
(logLTA,B < A)

Although one can show that the procedure stops after a finite number
of steps, that is, that the sample size will be finite almost surely, one may
introduce a “time horizon”, m, and stop sampling at min{7,m} (and accept
H, if the (log)likelihood-ratio has not escaped from the strip at time m).

The classic here is the famous book by Wald [250]. A more recent one is
[223].

> B), and accepts the null hypothesis if L., , < a

TA,B

16.6 Replacement Based on Age

Let X7, X5, ... be the independent, identically distributed lifetimes of some
component in a larger machine. The simplest replacement policy is to change
a component as soon as it fails. In this case it may be necessary to call a
repairman at night, which might be costly. Another policy, called replacement
based on age, is to replace at failure or at some given age, a, say, whichever
comes first. The inter-replacement times are

W, =min{X,,a}, n>1,

in this case. A quantity of interest would be the number of replacements due
to failure during some given time unit.
In order to describe this quantity we define

7(t) :min{n : iWk > t}, t>0.
k=1

The quantity 7(¢) equals the number of components that have been in action
at time .
Next, let
Zn=IH{X, <a}, n>1,

that is, Z,, = 1 if the nth component is replaced because of failure, and
Zy, = 0 if replacement is due to age. The number of components that have
been replaced because of failure during the time span (0, ¢] is then described
by

7(t)

Z.

k=1
If we attach a cost ¢ to replacements due to failure and a cost ¢y to replace-
ments due to age, then

7(?)
Z (le{Xk < CL} + CQI{Xk > a})

k=1

provides information about the replacement cost during the time span (0, t].
For detailed results on this model, see [110, 118].
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Remark 16.1. Replacement based on age applied to humans is called retire-
ment, where a is the retirement age. O

17 Extremes; Records

The central results in probability theory are limit theorems for sums. How-
ever, in many applications, such as strength of materials, fatigue, flooding,
oceanography, and “shocks” of various kinds, extremes rather than sums are
of importance. A flooding is the result of one single extreme wave, rather than
the cumulative effect of many small ones.

In this section we provide a brief introduction to the concept of extremes
— “the largest observation so far” and a more extensive one to the theory of
records — “the extreme observations at their first appearance”.

17.1 Extremes

Let X1, X5, ... be independent, identically distributed random variables. The
quantities in focus are the partial mazima

Y, = max Xj or, at times, max |Xj]|.
1<k<n 1<k<n

Typical results are analogs to the law of large numbers and the central limit
theorem for sums. For the latter this means that we wish to find normalizing
sequences {a, > 0, n > 1}, {b, € R, n > 1}, such that

Y, — b,

QAn

possesses a limit distribution,

a problem that will be dealt with in Chapter 9.

17.2 Records

Let X, X1, X5, ... be independent, identically distributed, continuous ran-
dom variables. The record times are L(1) = 1 and, recursively,

L(n) = min{k : X, > Xp(—1)}, n>2,

and the record values are
Xrny, n=>1

The associated counting process {u(n), n > 1} is defined by
pu(n) = #records among X7, Xo, ..., X,, = max{k: L(k) <n}.

The reason for assuming continuity is that we wish to avoid ties. And, indeed,
in this case we obtain, by monotonicity (Lemma 1.3.1),
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P( G {X; :Xj}> :nlgrolop( 0 {X; :Xj})

i,j=1 i,j=1
7] i#j
n
n—o0
i,5=1
i#j

The pioneering paper in the area is [205]. For a more recent introduction and
survey of results, see [187, 207, 208|.

Whereas the sequence of partial maxima, Y,,, n > 1, describe “the largest
value so far”, the record values pick these values the first time they appear.
The sequence of record values thus constitutes a subsequence of the partial
maxima. Otherwise put, the sequence of record values behaves like a com-
pressed sequence of partial maxima, as is depicted in the following figure.

Xn L(4) = 10
A ®----0----@- -
L(3) =7
¢ -G ----
L(2) =3
®---G---0---C---- .

L L L L L L L L L L L L >

o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.5. Partial maxima o

A preliminary observation is that the record times and the number of
records are distribution independent. This is a consequence of the fact that
given X with distribution function F, then F(X) is U(0,1)-distributed, so
that there is a 1 — 1 map from every (absolutely continuous) random variable
to every other one. And, by monotonicity, record times are preserved under
this transformation — however, not the record values.

Next, set

I 1, if X} is a record,
b 0, otherwise,

so that pu(n) =Y 4_; Iy, n > 1.

By symmetry, all permutations between X7, Xo, ..., X,, are equally likely.
Taking advantage of this fact, we introduce ranks, so that X, has rank j if X,
is the jth largest among X, Xo, ..., X,,. Notationally, R,, = 7. This means,
in particular, that if X, is the largest among them, then R,, = 1, and if X,
is the smallest, then R,, = n. Moreover,

P(Rl:7"17R2:7"2,...,Rn:7"n):f,
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in particular,

1
P(Ik.:l)zl—P(Ik:O):E, k=1,2,...,n
The marginal probabilities are
P(Ry=r,)= Y  PRi=r,Ry=ra....Ry=ry,),
{7"177“2»-~77"n—1}
where the summation thus extends over all possible values of r1,ra,...,7,_1.

By symmetry, the summation involves (n — 1)! terms, all of which are the
same, namely 1/n!; so that
(n—=1)! 1

P(Ry =) = =~

Since the same argument is valid for all n, we have, in fact, shown that
P(R R R ) 1 Inl ! |”| P(R
=T = . n = n = —_ =
1 1, g =Tg,..., r ] i ] k= Tk)

which proves the independence of the ranks. Moreover, since {I,, = 1} =
{R,, = 1} it follows, in particular, that {I), k > 1} are independent random
variables.

Joining the above conclusions yields the following result.

Theorem 17.1. Let X, Xo, ..., X, be independent, identically distributed,
absolutely continuous, random variables, n > 1. Then

(i) The ranks Ry, Ra,..., R, are independent, and P(Ry, = j) = 1/k for
j=12,....k, where k=1,2,...,n

(ii) The indicators I, Ia, ..., I, are independent, and P(Iy = 1) = 1/k for
k=1,2,...,n

As a corollary it is now a simple task to compute the mean and the variance
of u(n), and their asymptotics.

Theorem 17.2. Let v = 0.5772... denote Euler’s constant. We have

1
mn:Eu(n)zzgzlogn—Fv—i-o(l) as m — oo;
k=1
1 1 L
Var,u(n)zzz(l—g)zlogn—l—v—g—l—o(l) as n — oo.
k=1

Proof. That E pu(n) = Y",_, 1, and that Var u(n) = >";_; 1(1 — 1), is clear.
The remaining claims follow from Remark A.3.1, and the (well-known) fact
that Y2, 1/n? = w2/6. O
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18 Borel-Cantelli Lemmas

This section is devoted to an important tool frequently used in connection
with questions concerning almost sure convergence — a concept that we shall
meet in detail in Chapter 5 — the Borel-Cantelli lemmas [26].

We begin by recalling the definitions of limsup and liminf of sets from
Chapter 1 and by interpreting them in somewhat greater detail.

Let {A,, n > 1} be a sequence of events, that is, measurable subsets of
{2. Then, recalling Definition 1.2.1,

A* — hnn;l)loréf An = 7©1 mﬁn flm7 and A* = llririsolip An = nf_ﬁl m@ﬂ Am

Thus, if w € {2 belongs to the set liminf,, ., A,, then w belongs to ﬂm nAm
for some n, that is, there exists an n such that w € A,, for all m > n. In
particular, if A,, is the event that something special occurs at “time” n, then
liminf,,_ . AS means that from some n on this property never occurs.
Similarly, if w € {2 belongs to the set limsup,,_, ., A, then w belongs to
U, _,, A for every n, that is, no matter how large we choose n there is always
some m > n such that w € A,,, or, equivalently, w € A,, for infinitely many
values of m or, equivalently, for arbitrarily large values of m. A convenient

way to express this is
weA” «— we{A,io}={A, infinitely often}.
If the upper and lower limits coincide the limit exists, and

A=A"=A, = lim A,.

n—oo

18.1 The Borel-Cantelli Lemmas 1 and 2

We now present the standard Borel-Cantelli lemmas, after which we prove
a zero-one law and provide an example to illustrate the applicability of the
results.

Theorem 18.1. (The first Borel-Cantelli lemma)
Let {A,, n > 1} be arbitrary events. Then

Z P(A,) <o = P(A,io0.)=0.
Proof. We have

P(A, i.0.) = P(limsup A,) :P(ﬁ @Am>

n— oo

<P<UA)§§P )—0 as n— oo O

m=n m=n
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The converse does not hold in general. The easiest accessible one is ob-
tained under the additional assumption of independence.

Theorem 18.2. (The second Borel-Cantelli lemma)
Let {A,, n > 1} be independent events. Then

iP(An) =00 = P(A,i0.)=1

Proof. By independence,

P(A, i.0.) (ﬂ UA>1 (ijAgn)

n=1m=n

~1- g () 45) =1 i, TT Pess

m=n

=1-lm J] (1-P@An))=1-0=1,

m=n

since, by Lemma A.4.1, the divergence of Y 2 P(A,) is equivalent to the
divergence of []°_,(1 — P(A.,)). O

By combining the two results we note, in particular, that if the events
{A,, n > 1} are independent, then P(A,, i.0.) can only assume the values 0
or 1, and that the convergence or divergence of > > | P(A,) is the decisive
factor.

Theorem 18.3. (A zero-one law)
If the events {A,, n > 1} are independent, then

0, when  >.07 . P(A,) < oo,

n=1

1, when  >.°7 P(A,) = . U

P(A, i0.) = {
n=1
A consequence of this zero-one law is that it suffices to prove that P(A,, i.0.) >
0 in order to conclude that the probability equals 1 (and that P(A,, i.0.) <1
in order to conclude that it equals 0).
Here is an example to illuminate the results.

Ezxample 18.1. Let X1, X5, ... be a sequence of arbitrary random variables
and let A, = {|X,| >¢e}, n>1,e>0. Then w € liminf,,_,, A means that
w is such that | X, (w)| < e, for all sufficiently large n, and w € limsup,,_, ., Ax
means that w is such that there exist arbitrarily large values of n such that
| Xn(w)| > €. In particular, every w for which X, (w) — 0 as n — oo must
be such that, for every e > 0, only finitely many of the real numbers X, (w)
exceed € in absolute value. Hence,
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P{w: lim X,(w)=0})=1 <= P(|X,|>eio.)=0foralle>0.
n—oo

If convergence holds as in the left-hand side we recall from Definition 4.4 that
the conclusion may be rephrased as

X, % 0asn—00 <= P(|X,|>cio)=0forale>0. H

Summarizing our findings so far, we have seen that the first Borel-Cantelli
lemma tells us that if >°°7 | P(|X,| > €) < oo, then X,, “3 0 as n — oo,
and the second Borel-Cantelli lemma tells us that the converse holds if, in
addition, X1, Xo, ... are independent random variables. In the latter case we
obtain the following zero-one law, which we state for easy reference.

Corollary 18.1. Suppose that X1, Xo, ... are independent random variables.
Then

o0

X, 0asn— 00 <+ ZP(|Xn| >¢e) < oo foralle > 0.

n=1
Remark 18.1. Convergence is a tail event, since convergence or not is inde-
pendent of X, Xo, ..., X, for any n. The zero-one law therefore is also a
consequence of the Kolmogorov zero-one law, Theorem 1.5.1. However, the
present, alternative, derivation is more elementary and direct. |

A common method in probability theory is to begin by considering sub-
sequences. A typical case in the present context is when one wishes to prove
that P(A, i.0.) = 1 and the events are not independent, but a suitable sub-
sequence consists of independent events. In such cases the following rather
immediate result may be helpful.

Theorem 18.4. Let {A,, n > 1} be arbitrary events. If {A,,, k > 1} are
independent events for some subsequence {ny, k > 1}, and

> P(4,,) =,
k=1

then P(A,, i.0.) = 1.
Proof. This is immediate from the fact that {4, i.0.} D {4,, i.0.}, and the
second Borel-Cantelli lemma:

P(A, i.0.) > P(A,, io) =1 =

18.2 Some (Very) Elementary Examples

We first present a simple coin-tossing example, which is then expanded via a
monkey and a typewriter to the more serious problem of the so-called Bible
code, where serious is not to be interpreted mathematically, but as an example
of the dangerous impact of what is believed to be paranormal phenomena on
society. In a following subsection we provide examples related to records and
random walks.
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Coin Tossing
Toss a fair coin repeatedly (independent tosses) and let
A,, = {the nth toss yields a head}, n > 1.

Then
P(A, i0.)=1.

To prove this we note that > - | P(4,) = Y o, 3 = 0o, and the conclusion
follows from Theorem 18.2.

For an arbitrary coin, one could imagine that if the probability of obtaining
heads is “very small,” then it might happen that, with some “very small”
probability, only finitely many heads appear. However, set P(heads) = p,
where 0 < p < 1. Then ) 7, P(A,) = >0, p = o0, and we conclude, once
again, that P(A, i.0.) = 1.

Finally, suppose that the tosses are performed with different coins, let A,
be defined as before, and set p,, = P(A,). Then

P(A,i0)=1 <— an = +oo.

n=1

The following exercises can be solved similarly, but a little more care is re-
quired, since the corresponding events are no longer independent.

Exercise 18.1. Toss a coin repeatedly as before and let
A, = {the (n — 1)th and the nth toss both yield a head}, n > 2.

Show that

P(A, i0.) = 1.
In other words, the event “two heads in a row” will occur infinitely often with
probability 1. (Remember Theorem 18.4.)

Exercise 18.2. Toss another coin. Show that any finite pattern occurs infinitely
often with probability 1.

Exercise 18.3. Toss a fair die with one face for every letter from A to Z repeatedly.
Show that any finite word will appear infinitely often with probability 1. o

The Monkey and the Typewriter

A classical, more humorous, example states that if one puts a monkey at a
typewriter he (or she) will “some day” all of a sudden have produced the
complete works of Shakespeare, and, in fact, repeat this endeavor infinitely
many times. In between successes the monkey will also complete the Uppsala
telephone directory and lots of other texts.
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Let us prove that this is indeed the case. Suppose that the letters the mon-
key produces constitute an independent sequence of identically distributed
random variables. Then, by what we have just shown for coins, and extended
in the exercises, every finite sequence of letters will occur (infinitely often!)
with probability 1. And since the complete works of Shakespeare (as well as
the Uppsala telephone directory) are exactly that, a finite sequence of letters,
the proof is complete — under these model assumptions, which, of course, can
be debated. After all, it is not quite obvious that the letters the monkey will
produce are independent of each other .. ..

Finally, by the same argument it follows that the same texts also will
appear if we spell out only every second letter or every 25th letter or every
37,658th letter.

The Bible Code

Paranormal or supernatural phenomena and superstition have always been
an important ingredient in the lives of many persons. Unfortunately a lot of
people are fooled and conned by this kind of mumbo-jumbo or by others who
exploit their fellow human beings.

In 1997 there appeared a book, The Bible Code [67], which to a large extent
is based on the paper [254]. In the book it is claimed that the Hebrew Bible
contains a code that reveals events that will occur thousands of years later.
The idea is that one writes the 304,805 letters in an array, after which one
reads along lines backward or forward, up or down, and looks for a given word.
It is also permitted to follow every nth letter for any n. By doing so one finds
all sorts of future events. One example is that by checking every 4772nd letter
one finds the name of Yitzhak Rabin, which shows that one could already in
the Bible find a hint concerning his murder in November 1995. An additional
comment is that it is claimed that only the Hebrew version contains the code,
no translation of it.

Although the “problem” is not exactly the same as the problem with
the monkey and the typewriter, the probabilistic parallel is that one faces a
(random) very long list of letters, among which one looks for a given word.
Here we do not have an infinite sequence, but, on the other hand, we do not
require a given word to appear infinitely often either.

If we look for a word of, say, k letters in an alphabet of, say, N letters, the
probability of this word appearing at any given spot is p = 1/N*, under the
assumption that letters occur independently of each other and with the same
distribution at every site. Barring all model discussions, starting at letters
m(k 4+ 1), for m = 1,2,... (in order to make occurrences independent of
each other), the number of repetitions before a hit is geometric with mean
1/p = N*, which is a finite number.

With the Borel-Cantelli lemmas in our mind it is thus not surprising that
one can find almost anything one wishes with this program. More about the
book can be found in the article [244], where, among other things, results
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from the same search method applied to translations of the bible as well as
to other books are reported.

Apart from all of this one might wonder: If G-d really has put a code into
the Bible, wouldn’t one expect a more sophisticated one? And if the code
really is a code, why did nobody discover the WTC attack on September 11,
2001, ahead of time? And the subway bombing in Madrid 2-1/2 years later?

Admittedly these examples may seem a bit elementary. On the other hand,
they illustrate to what extent such examples are abundant in our daily lives;
one may wonder how many fewer copies of books of this kind would be sold
if everybody knew the Borel-Cantelli lemmas .. ..

18.3 Records

Recall the setting from Subsection 2.17.2: X7, X5, ... are independent, iden-
tically distributed, continuous random variables; the record times are

L(n) = min{k : X; > XL(nfl)}7 n>2 L(l)=1;

and the associated counting variables are
n
u(n) = #records among Xy, Xo, ..., X, = Zlk., n>1,
k=1

where P(I, = 1) = P(Xyisarecord) = 1 — P(I, = 0) = 1/k, and the
indicators are independent.

Our concern for now is the “intuitively obvious(?)” fact that, one should
obtain infinitely many records if we continue sampling indefinitely, the reason
being that there is always room for a larger value than the largest one so far.
But, intuition is not enough; we require a proof.

Mathematically we thus wish to prove that

P(I, =11i0)=1.

Now,

(oo} oo 1
Pl,=1) = — = 00,
; (I, =1) ; -
so that, the second Borel-Cantelli lemma tells us that our intuition was, in-
deed, a good one. Note that independence was important.

Let us also consider the number of double records, that is, two records
in a row. What about our intuition? Is it equally obvious that there will be
infinitely many double records? If there are infinitely many records, why not
infinitely many times two of them following immediately after each other?

Let D, =1 if X,, produces a double record, that is, if X,,_; and X, both
are records. Let D,, = 0 otherwise. Then, for n > 2,
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P(Dp=1)=P(Iy =111 =1)=P(I, =1) - P(I,_1 = 1) =

because of the independence of the indicators. Alternatively, by symmetry
and combinatorics, D,, = 1 precisely when X, is the largest and X,,_; is the
second largest among the first n observations. Thus,

. 1 N T 1
PD,=1)=Y — = 1 ( _7):1' - =) =1,
nz—:z ( ) Z:Q n(n —1) mgnoonz::2 n—1 n mgnoo( m)

so that by the first Borel-Cantelli lemma
P(D,, =11i.0.)=0,

that is, the probability of infinitely many double records is 0. Note that
{D,,, n > 2} are not independent, which, however, is no problem since the
sum was convergent.

The expected number of double records equals

o0 o0 o0
EZDn:ZEDn:ZP(Dnzl):L
n=2 n=2 n=2

in other words, we can expect one double record.

Moreover, since double records seem to be rare events, one might guess
that the total number of double records, Y, D,,, has a Poisson distribution,
and if so, with parameter 1. That this is a correct guess has been proved
independently in [125] and [42], Theorem 1.

18.4 Recurrence and Transience of Simple Random Walks

Consider a simple random walk, {S,,, n > 1}, starting at 0, and the probabil-
ities that

e the random walk eventually returns to 0;
e doing so infinitely often.

A return can only occur after an even number of steps, equally many to the
left and the right. It follows that

m\ , . | =Upg",  for p#q,
P(S3, =0) = <n>p q ~ {f

Jan’ for p=gq,

so that

[ee]

< f
S s, —o St brote
= = 400, for p=gq.

The first Borel-Cantelli lemma therefore tells us that
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P(S,=01i0.)=0 for p#q.

One can, in fact, show that the probability of returning eventually equals
min{p, ¢}/ max{p, ¢}, when p # ¢. In this case the random walk is called
transient.

The case p = ¢ = 1/2 is called the recurrent case, since the probability of
eventually returning to 0 equals 1. However, this is not a consequence of the
second Borel-Cantelli lemma, since the events {S,, = 0} are not independent.
So, in order to prove this we must use different arguments.

Thus, suppose that p = ¢ = 1/2, let a be the probability we seek, namely,
that a random walk starting at 0 eventually returns to 0, and let y be the
probability that a random walk starting at 0 eventually reaches the point
+1. By symmetry, y also equals the probability that a random walk starting
at 0 eventually reaches the point —1, and by translation invariance, y also
equals the probability of eventually being one step to the left (or right) of the
current state. Conditioning on the first step we obtain, with the aid of these
properties,

1+1
r = = =
2y 297
_1+12
y_2 2y7

which has the solution x =y = 1.

We have thus shown that the probability of eventually returning to 0 equals
1. Now, having returned once, the probability of returning again equals 1, and
so on, so that the probability of returning infinitely often equals 1, as claimed.

Remark 18.2. Note that the hard part is to show that the random walk returns
once; that it returns infinitely often follows as an immediate consequence! O

Exercise 18.4. If p # ¢ an analogous argument also requires z = the probability
that a random walk starting at 0 eventually reaches the point —1. In the symmetric
case y = z, but not here. Find the analogous system of (three) equations. O

Remark 18.3. A natural extension would be to consider the two-dimensional
variant, in which the random walk is performed in the plane in such a way
that transitions occur with probability 1/4 in each of the four directions.
The answer is that the probability of eventually returning to 0 equals 1 also
in this case. So, what about three dimensions? Well, in this case even the
symmetric random walk is transient. This is true for any dimension d > 3.
The mathematical reason is that

=/ 1\ = oo, for d=1,2,
n;l(\/ﬁ) {< ~+00, for d> 3.

Note that for d > 3 transience is a consequence of this and the first Borel-
Cantelli lemma. O



104 2 Random Variables
18.5 > >  P(A,) = oo and P(A, i.0.) =0

In the previous example with p = ¢ we found that P(A, i.0.) = 1, but
not because the Borel-Cantelli sum was divergent; the events were not in-
dependent, so we had to use a different argument. In the following example
the Borel-Cantelli sum diverges too, but in this case the conclusion is that
P(A,, i.0.) = 0. In other words, anything can happen for dependent events.

We ask the reader to trust the following claim, and be patient until Chapter
6 where everything will be verified.

Ezxample 18.2. Let X, X7, Xo, ... be a sequence of independent, identically
distributed random variables and set S, = X1 + Xo+---+ X,,, n > 1.
The two facts we shall prove in Chapter 6 are that

Sﬂ .
P(?—u >€1.0.):Ofora115>0 — E|X|<oand EX = u,

and that

(o)
Sn
ZP(‘Z—/L’>5)<ooforalla>O <— FX =pand Var X < oc.

n=1

This means that if the mean is finite, but the variance is infinite, then the
Borel-Cantelli sum diverges, and, yet, P( % —p| >eio)=0. O

The remainder of this section deals with how to handle cases without
(total) independence.

18.6 Pair-wise Independence

We know from Subsection 2.10.3 that independence is a more restrictive as-

sumption than pair-wise independence. However, if sums of random variables

are involved it frequently suffices to assume pair-wise independence; for ex-

ample, because the variance of a sum is equal to the sum of the variances.
Our first generalization is, basically, a consequence of that fact.

Theorem 18.5. Let {A,, n > 1} be pair-wise independent events. Then
Y P(A) =00 = P(A,io)=1.
n=1

Proof. 1t is convenient to introduce indicator random variables. Let
I, =1{A,}, n>1.

Then E I, = P(A,,), Var I, = P(A,)(1—P(A,)), the pair-wise independence
translates into
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and the statement of the theorem into

o0 o0
ZEIn:oo — P( In:oo>:1.
=1

n=1 n

Now, by Chebyshev’s inequality,

i n Var ( >p_, I
p((;(fk—mk)\ > QEP(A;C)) < 2221’;3(114:)))2

_ A3 P(AR (L = P(Ar)) _ 4
(X0, P(A))° Xk P(A)

Recalling that E I, = P(Ay), it follows, in particular, that

n 1 n
P(;Ik > Z;Elk) —1 as n— oo.

Since both sums increase with n we may let n tend to infinity in y_,_, I} and
then in >°;'_, E I, to conclude that

P(Sn-x)-1 ;
n=1

An immediate consequence is that the zero-one law, Theorem 18.3, remains
true for pair-wise independent random variables. For convenience we state this
fact as a theorem of its own.

—0 as n— oo.

Theorem 18.6. (A second zero-one law)
If {A,, n > 1} are pair-wise independent events, then

0, when Y07 | P(Ay) < oo,

n=1

1, when  >.°7  P(A,) = .

n=1

P(A, i0.) = {

18.7 Generalizations Without Independence

The following result is due to Barndorff-Nielsen, [10].
Theorem 18.7. Let {A,, n > 1} be arbitrary events satisfying

P(A,) =0 as n— oo, (18.1)
and
D P(A,NALL,) < oo (18.2)
n=1
Then

P(4, i.0.) =0.
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Remark 18.4. Note that >~ | P(A,) may be convergent as well as divergent
under the present assumptions. In particular, the convergence of the sum is
not necessary in order for P(A, i.0.) to equal 0. O

Proof. A glance at Theorem 18.1 shows that the second assumption alone
implies that P(A, N A7, i.0.) = 0, that is, that there are almost surely only
a finite number of switches between the sequences {A,} and {A%}, so that
one of them occurs only a finite number of times, after which the other one
takes over for ever. To prove the theorem it therefore suffices to prove that

Now,

P(AS i0) = lim P( U A;) > lim P(AS) > 1 as m— oo,
m—o0 nom m—o0

where the convergence to 1 follows from the first assumption. a

Continuing the discussion at the beginning of the proof we note that if
{A,, n > 1} are independent events, we may, in addition, conclude that one
of {A4,, i.0.} and {A¢ i.0.} has probability 1 and the other one has probability
0, since by the zero-one law in Theorem 18.3, the probabilities of these events
can only assume the values 0 or 1. For ease of future reference we collect these
facts separately. Note also that the conclusions are true whether (18.1) holds
or not.

Theorem 18.8. Let {A,, n > 1} be arbitrary events, and suppose (18.2)
holds.
(i) Then

P(A,NA;  i0.)=0.

(i) If, in addition, {An, n > 1} are independent, then
P(A,10)=0 and P(A;i0)=1 or vice versa.

To exploit the crossing concept further we formulate the following result.

Theorem 18.9. Let {A,, n > 1} and {B,, n > 1} be arbitrary events, and
suppose that the pairs A, and Byy1 are independent for all n. If

ZP(An N Bn+1) < o0,

n=1
then
P(A,i0.)=0 and P(B,io0.)=1 or vice versa.

Proof. The arguments for Theorem 18.8 were given prior to its statement,
and those for Theorem 18.9 are the same. O



18 Borel-Cantelli Lemmas 107

In his paper Barndorff-Nielsen applied this result in order to prove a the-
orem on the rate of growth of partial maxima of independent, identically
distributed random variables. In order to illustrate the efficiency of his re-
sult we apply the idea to the partial maxima of standard exponentials. The
computations are based on a more general result in [124].

18.8 Extremes

Suppose that X, Xo, ... are independent, standard exponential random vari-
ables, and set Y,, = max{Xy, Xo, ..., X}, n> 1.

We begin by considering the original sequence, after which we turn our
attention to the sequence of partial maxima.

Since

1
P(X, >¢clogn) = —,
nf

it follows that

> < f >1
Z P(X, >¢logn) oo o e
— = 400 for e<1.

An appeal to the Borel-Cantelli lemmas asserts that

0 for >1,

(18.3)
1 for <1,

P({X, >¢elogn} io.) = {

and, consequently, that

. X'”/
lim sup =1 as.
n—oo lOgn

Moreover, since

iP(Xn < elogn) —2 (1 - %) =400 forall &>0,

n=1
the second Borel-Cantelli lemma yields

. . n
lim inf = a.s.
n—oo logn

This means, roughly speaking, that the sequence {X,,/logn, n > 1} oscillates
between 0 and 1.

Since Y, = max{X, Xa, ..., X, } is non-decreasing in n (and, hence can-
not oscillate) it is tempting to guess that

lim " —1 as.
n—oo logn
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This is not only a guess as we shall show next.
The crucial observation is that

{YV, >clognio.} <<= {X,>clognio.},

since log n is increasing in n; although Y, exceeds ¢ logn more often that X,
the whole sequences do so infinitely often simultaneously. It follows that

P(Y, >¢clognio)=1 for <1,

and that

P(limsup Yo _ 1) =1. (18.4)

n—oo logn

In order to show that the limit actually equals 1 we have a problem, since
Y,, n > 1, are not independent, and this is where Theorem 18.9 comes to our
rescue.

Let 0 < e < 1, and set

A, ={Y, <celogn} and B, ={X, >clogn}, n>1.

Then

ZP(An mA%-&-l) = ZP(An mBn-ﬁ-l) = ZP(An) 'P(Bn-‘rl)

n=1 n=1
e

=3 () G E et

=1

1—e 1—¢
= exp{—n c—dz < exp{—=x - —dx
> / el pdes ) / I

e _ 1 —exp{—z17F}y° 1
1—¢
= - c—dx = [ } = < o0.
/0 exp{—z "} <z T2 . T2

Since P(B,, i.0.) =1 by (18.3), Theorem 18.9 tells us that we must have
P(A,i0)=0 for e<1,

which implies that

Y,
P(liminf n >1>:1. (18.5)

n—oo logn —

Joining this with (18.4) establishes that

P( lim Y :1> =1,
n—oo logn
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or, equivalently, that 10ann %1 as n — oo, as desired.
If, instead, the random variables have a standard normal distribution,
Mill’s ratio, Lemma A.2.1, yields

1
P(X > 1) ~ —— exp{—22/2 as x — 00,
(X > 2) ~ ——exp(-a?/2)

so that, for N large,

Z P(X,, >ey/2logn

n>N

) Z 1 1 < 40 for e>1,
= e2rlogn ne? | =+ for <1,

from which it similarly follows that

f 1
P({X, >ey/2logn} io.) = {0 o es

1 for <1,

and that

. n
lim sup

— = a.s.
n—oo V2logn

Since the standard normal distribution is symmetric around 0, it follows, by
considering the sequence {—X,,, n > 1}, that

Xn
liminf —— = -1 as.
n—oo 4/2logn

Exercise 18.5. Prove the analog for partial maxima of independent standard nor-
mal random variables. O

18.9 Further Generalizations
For notational convenience we set, throughout the remainder of this section,
pr = P(Ar) and Pij = P(A; N Aj), for all k1,7,

in particular, pgx = pi.
Inspecting the proof of Theorem 18.5, we find that the variance of the sum
of the indicator becomes

Var (Zlk> = Zpk(l —pr) + ZZ(Z)U — piD;)
k=1 k=1

i=1 j=1
i#j
n n n n n n n 2
DOV HIIESH I WY
i=1 j=1 =1 j=1 =1 j=1 k=1

so that, in this case, the computation turns into
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n n Var (>0, I
P(’ ;(Ik - EIk)‘ > ;’;pk) < —(% éz_klpk)];)

4 (Z?_l Z?:l Pij 1>
2 )
(Xhzipr)

which suggests the following strengthening.

Theorem 18.10. Let {A,, n > 1} be arbitrary events, such that
i 2 P(AIN Ay)
lim inf ~ 5 =
nee (ke P(AR))

Then
Y P(A,) =00 = P(4,i0)=1

Proof. By arguing as in the proof of Theorem 18.5, it follows from the com-
putations preceding the statement of Theorem 18.10 that

1ggng<Z[ ;ZEIk) =0.

k=1

We may therefore select a subsequence {n;, j > 1} of the integers in such a
way that

el n; 1 nj
ZP(ZIk < 22E1k> < oo,
j=1 k=1 k=1
which, by the first Borel-Cantelli lemma, shows that
nj 1 U )
P(ka < §ZEIk l.O.) =0,
k=1 k=1
so that,

n; n;
(ka > = ZEIk lo) =1.

Finally, since this is true for any j and the sum of the expectations diverges,
we may, as in the proof of Theorem 18.5, let j tend to infinity in the sum of
the indicators, and then in the sum of the expectations to conclude that

P<i[k—oo>—1 0O
k=1

With some additional work one can prove the following, stronger, result.
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Theorem 18.11. Let {A,, n > 1} be arbitrary events, such that

2
(Xhomi1 P(Ar))
lim sup — L > a,
n—>00 i=m+1 Zj:m+1 P(Ai n Aj)

for some a > 0 and m large. Then

Y P(A) =00 = P(A,io)>a.
n=1

An early related paper is [49], from which we borrow the following lemma,
which, in turn, is instrumental for the proof of the theorem. We also refer
to [234], P3, p. 317, where the result is used in connection with a three-
dimensional random walk, and to [195], Section 6.1 where also necessary and
sufficient conditions for ensuring that P(A,, i.0.) = « are given.

Lemma 18.1. Let {A,, n > 1} be arbitrary events. For m > 1,

P( LTLJ Ak> > s (X001 P(AR)?

k=m+1 i=m+1 Z;l:m+1 P(Az N Aj) ’

Proof. Set I, = I{A,}, n > 1. Then

n 2 n n n
E< > Ik> > ELLi= Y EL+ » 6 ELI

k=m+1 3,j=m-+1 k=m+1 i,j=m+1

i#]
n n n
= E pr+ E Pij = E Dij-
k=m-+1 i,j=m+1 i,j=m—+1
i7£]

Secondly, via Cauchy’s inequality,

< zn: pk>2—(E i Ik>2—(E zn: I - I{ i Ik>0}>2

k=m+1 k=m+1 k=m+1 k=m+1
<E< En: Ik)Q-E(I{ i I,€>0}>2
k=m+1 k=m+1
n n n 2 n
(3 ) B(f 3 wsof) e 3 ) p( U )
k=m+1 k=m+1 k=m+1 k=m+1

The conclusion follows by joining the extreme members from the two calcu-
lations. -

Proof of Theorem 18.11. Choosing m sufficiently large, and applying the
lemma, we obtain
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P(A, i.0.) = lim P( [j Ak> > lim limsupP( LTJ Ak)

m— o0 m—ro0
k=m+1 n—oo k=m+1
. . ( EZ:erl pk) ’
> lim limsup —5 o
M= n—oo Zi:erl Zj:erl Pij
Our final extension is a recent result in which the assumption about the

ratio of the sums is replaced by the same condition applied to the individual
terms; see [196]. For a further generalization we refer to [197].

e O

Theorem 18.12. Let {A,, n > 1} be arbitrary events, such that, for some
a>1,

P(A;NAj) <aP(A;))P(A;)  forall i,j>m, i#j. (18.6)
Then -
Y PA) =00 = P(4,1i0)>1/a
n=1

Proof. We first consider the denominator in right-hand side of Lemma 18.1.
Using the factorizing assumption and the fact that o > 1, we obtain

n n n n n
Yoopi= D, et Y, pi< > peta Y py

i,j=m+1 k=m+1 i,j=m+1 k=m+1 i,j=m+1
i#] i#]
n n n 2
2
< X om—a ) ptal Xom
k=m+1 k=m+1 k=m+1
n n
<a Y pk<1+ > Pk)7
k=m+1 k=m+1

so that, by the lemma,

n n 2 n
p U Ak) > (Zfzm—i-l pk) > Zk=m+1pk .
k=m+1 Zi,j:m-s-l Dij a(l + EZ:mH pk)

The divergence of the 