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Preface

All models are lies. “The Earth orbits the sun in an ellipse with the sun at
one focus” is false, but accurate enough for almost all purposes. This book
describes the current state of the art of telling useful lies about time-varying
systems in the real world. Specifically, it is about trying to “understand”
(that is, tell useful lies about) dynamical systems directly from observa-
tions, either because they are too complex to model in the conventional
way or because they are simply ill-understood.

Because it overlaps with conventional time-series analysis, building mod-
els of nonlinear dynamical systems directly from data has been seen by
some observers as a somewhat ill-informed attempt to reinvent time-series
analysis. The truth is distinctly less trivial. It is surely impossible, except
in a few special cases, to re-create Newton’s astonishing feat of writing a
short equation that is an excellent description of real-world phenomena.
Real systems are connected to the rest of the world; they are noisy, non-
stationary, and have high-dimensional dynamics; even when the dynamics
contains lower-dimensional attractors there is almost never a coordinate
system available in which these attractors have a conventionally simple
description.

Instead of describing the dynamics with the concise, powerful equations
beloved of classical physics and applied mathematics, we have to be content
with a reconstruction of the dynamics from data. That is, we represent
the dynamics with computational algorithms, which (contrary to popular
belief) can be used in most of the same ways as conventional models, but
can seldom be written in a simple closed form that is pleasing to the eye.

The name “reconstruction” is, of course, a pun on “deconstruction”: the
non-scientist’s view of science is often that it is excessively prone to isolate
what it studies and to reduce everything to meaninglessness at worst, clock-
work at best. However unfair this view, it is true that we choose to study
what we can hope to model. Reconstruction theory tries to expand what we
can hope to model by starting out from the axiom that, because the world
is interconnected, we can only make approximate models of isolated parts
of it, and there is no reason to suppose they will be as simple as Newton’s
equation. Instead of striving for simplistic descriptions, it concentrates on
powerful algorithms; instead of writing equations, it tries to grasp the ge-
ometry of phase space. The idea is to have simple gqualitative descriptions
but to rely on computers for quantitative predictions and estimates. This
point is made right from our first chapter, where Abarbanel compares a
conventionally built model with a reconstructed geometric model.
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We see that reconstructing dynamics is not, in fact, trying to emulate
Newton; it is Kepler whose shoulders we are standing on. Kepler reduced
the huge body of data collected by Tycho Brahe to stunningly simple ge-
ometry: the planets orbit the sun in ellipses, and follow certain other simple
laws. Kepler’s dynamical invariants, like the rate at which the radius vector
sweeps out area, have their counterparts in today’s dynamical invariants
like Lyapunov exponents, entropies, and dimensions. Today we are drown-
ing in data, and we need insights; we have immensely powerful but stupid
assistants, in the form of computers, so we can perhaps try to automate
something of what Kepler did. It may be that another Newton will discover
how to neatly encapsulate our current geometric descriptions, but it seems
unlikely, and in the meantime, there are huge numbers of questions to be
answered.

Many of the questions are statistical, because we are after all analyzing
data. Others involve learning to build different sorts of models: control the-
orists have long realized that one can often treat some of the non-modeled
variability in terms of known inputs from the world to the system. It is time
dynamicists started to listen to statisticians, control systems engineers, in-
formation theorists, and signal processors. This book represents an attempt
to get these groups together.

The chapters are based on some of the papers presented at a workshop on
Nonlinear Dynamics and Statistics, which took place in September 1998,
at the Isaac Newton Institute, Cambridge University, as part of the pro-
gramme “Nonlinear and Non-stationary Signal Processing”.

The aim of the workshop was to bring together workers in theoretical
and applied nonlinear dynamics, statistics, signal processing, and systems
engineering. For about a decade there had been a very exciting and rapidly
growing body of work in dynamical reconstruction: It was clear that the
work had matured to the extent that the nonlinear dynamics community
had a lot to offer practitioners, but it was also clear that it now needed
to take on board the insights and experience of statisticians and engi-
neers. It was also hoped that the statisticians and engineers would find
the reconstruction work interesting and inspiring. The consensus was that
the workshop was extremely successful, with the famous Newton Institute
blackboards—they are everywhere, even in the lifts—being in constant use.
This book should be thought of as no more than a sampling from the many
outstanding and thought-provoking presentations at the workshop.

The chapters were all written with the benefit of hindsight, so they in-
corporate some of what was learned from the very lively discussions that
took place. By request of the editor, some of the papers (notably those
by Froyland, by Andrieu et al. and by Young) are partly tutorial in na-
ture, because they describe work that needs to be better known among the
applied dynamics community. All of the papers are targeted at a broad
audience of the kind at the conference, and the book should be useful to
anyone interested in nonlinear dynamics and time-series analysis. At the
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same time, I believe the contributions in this book are representative of the
best that can be done in nonlinear dynamical reconstruction at the turn of
the millennium.

The book has three parts: Issues in Reconstructing Dynamics, Funda-
mentals, and Methods and Applications. The divisions and the classifica-
tions of the papers are, of course, arbitrary: the chapters in each part have
a great deal to say about the topics of the other parts. The division may,
however, help the reader know where to start.

The first part sets the scene, illustrating some of the problems we face
when we try to reconstruct nonlinear dynamics from observed data.

e Abarbanel describes the situation as seen by the dynamics commu-
nity: he shows what we want to know and what we do know, and he
analyzes a data set in a way that will be familiar to most dynamicists,
but less familiarly, he discusses what is good and bad about this way
of doing things.

e Smith discusses a number of fundamental issues in the interaction
between observational uncertainty and model error in reconstructed
dynamics. Given that all models tell lies, the perfection we seek is
beyond our grasp, and it is not easy to decide which model gives
the most understanding. Perhaps we should keep many? The idea
of keeping many models reappears later, when Kennel and Mees use
weighted models based on work in data compression.

e Judd et al. point out that modeling dynamics usefully is more than
just a question of getting good short-term predictions—an insight
that is also a theme of Schoner and Gershenfeld’s contribution later
in the book—indeed, it is being increasingly recognized as a key ques-
tion. They also emphasize the importance of separating noise from
signal and the consequent usefulness of information theoretic ideas.

e Stark makes it clear that the standard embedding process is fraught
with danger and should be subject to careful scrutiny. In the process,
he mentions many successful extensions: the take-home lesson is per-
haps that embedding is even more powerful than is often supposed,
but that it needs far more care than is usually exercised.

e Guegan takes the bull by the horns and discusses the statistical mod-
eling of chaotic time series and its perils and rewards. This is, of
course, the theme of the book: reconstruction requires both dynamics
and statistics to be considered, and Guegan speaks from the informed
statistician’s viewpoint.

e Young speaks from the point of view of a systems engineer and points
out that most practical dynamical problems are best posed as input-
output systems, yet they are modeled as autonomous systems in the
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dynamics community. A merger of his methods with the advances in
nonlinear dynamics is long overdue.

Chapters in the second part examine fundamental questions related to
modeling nonlinear time series (or reconstructing dynamics). The point of
view varies from chapter to chapter, with some taking a more statistical
approach, others considering fundamental questions of ergodic theory, oth-
ers looking at basic questions in dynamical reconstruction, and still others
describing modeling methods. As set out herein, there is a certain drift

from

statistics to dynamics as we progress through the chapters, but of

course this drift is highly stochastic.

Andrieu et al. present a survey of the modern theory of Monte Carlo
methods; the great advances made in the past few years mean that
many dynamical modeling problems, which are often representable in
Bayesian terms, are now relatively tractable: something that should
improve nonlinear dynamical models immensely.

Schreiber and Schmitz deal with nonlinearity tests, which have been
significant in recent years as a precaution against claiming nonlinear-
ity in the absence of strong evidence.

Lalley shows that a chaotic system with unbounded noise cannot be
de-noised (at least in the conventional sense), and then he shows how
bounded noise can be tackled successfully.

Cutler discusses definitions of deterministic and stochastic for time-
series and relates these to dynamical systems. She shows that it is
not difficult to produce simple examples where the system cannot be
reconstructed owing to poor choice of observable, The Grassberger-
Procaccia algorithm converges in these cases even though embedding
is never achieved.

Nobel investigates how to approximate dynamics and contrasts de-
terministic models with models that include dynamic noise, while
taking into account the oft-neglected issue of statistical consistency.
The investigation sheds light on the question of distinguishing deter-
ministic systems from stochastic systems, a question also considered
in Guegan’s chapter.

Froyland estimates a system’s invariant density via Markov models,
which is often a superior way to compute statistical properties. Know-
ing the invariant density is arguably both the best that can be done
and the best thing to do. His chapter is a detailed review of the latest
results in the area.

Sauer shows us that a calculation that is implicit in a great deal of
dynamical analysis—estimation of a local derivative—is more subtle
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than was thought and has surprising (perhaps pleasantly surprising)
properties in the presence of noise.

The final part of the book is devoted to modeling methods and nontrivial
applications.

Dixon et al. discuss a successful fisheries model and describe the mod-
eling approach that they used, the S-map method. They add more
weight to one of the familiar themes of this book, the need to under-
stand the interplay between noise and nonlinearity.

Schoner and Gershenfeld discuss another successful reconstruction
method, cluster-weighted modeling, and apply it to an exception-
ally challenging problem in synthesis of audio signals: the “digital
Stradivarius”.

Kennel and Mees borrow work from the data compression literature
and demonstrate that it has a lot to offer the dynamics community;
they show an application to stationarity testing of fluidized-bed re-
actors. The models that are produced are inherently probabilistic,
and predictions are conditioned on a discrete analogue of variable
embeddings.

Voss uses nonlinear non-parametric regression for the analysis of ex-
perimental data, which can greatly simplify the modeling process if
there is a certain amount of knowledge available about the system’s
structure.

Albano et al. show how estimation of average mutual information,
applied in an unusual way, can be useful in analysis of EEG signals,
with specific application to early warning of epileptic seizures.

Palus uses a deep understanding of both dynamical and statistical
fundamentals to examine the well-known sunspot data series and con-
cludes that it is indeed most likely generated by a nonlinear dynamical
system in spite of the fact that previously the best linear stochastic
models seemed to be as good as the best nonlinear ones.

All of the chapters have been refereed anonymously; I thank the referees
for this essential and underappreciated service: you know who you are.

The statement about useful lies that opened this preface is paraphrased
from Richard Bandler. I thank Lenny Smith and Paul Rapp for valuable
feedback on the rest of the preface; any useless lies that remain are my own
responsibility.

This volume and the workshop that inspired it would not have been pos-
sible without the generous support of the Isaac Newton Institute and its
sponsors; I am particularly grateful to Bill Fitzgerald and Richard Smith,
who invited me to participate in the Nonlinear and Non-stationary Signal
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Processing Programmme. The programme has its own official proceedings
volume, edited by Fitzgerald, Smith, and Young, to be published by Cam-
bridge University Press in 2000.

I thank the Australian Research Council for partial financial support, and
the University of Western Australia for leave to attend the programme. I
also thank the Department of Sytems Engineering and Engineering Man-
agement at The Chinese University of Hong Kong for hospitality.

Perth, Western Australia Alistair I. Mees
New Year’s Day, 2000.
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Issues in Reconstructing
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Chapter 1

Challenges in Modeling
Nonlinear Systems:
A Worked Example

Henry D. I. Abarbanel

ABSTRACT

The interaction between nonlinear dynamics and statistics has been rather
limited over the two decades of concentrated work in nonlinear systems by
physical and biological scientists. This chapter is meant to be a contribution
to stimuiating that interaction by presenting a discussion of a problem in
biology which is addressed by tools of nonlinear dynamics and by posing,
along the way, issues of statistical relevance not answered by the community
of nonlinear dynamicists. ’

The overall issue is that of characterizing and modeling nonlinear systems
using observed data. Typically this is in the initial absence of a model for
the source of the data, but that often is the goal of the analysis. Models
derived from these data can be black box or analytic. Black box models
typically consist of a set of numerical rules for prediction or control of
the system in the absence of any fundamental knowledge of the physics or
biology of the system. Analytic models attempt to incorporate knowledge
from the observations and their analysis into sets of differential equations
or mabs embodying the properties of the measured processes.

In this chapter we focus on the analysis of membrane voltage data from
identified neurons of the stomatogastric ganglion of the California spiny
lobster with the goal of modeling individual neurons and their oscillatory
behavior in a variety of environmental circumstances. The membrane volt-
age dynamics of these neurons is typically low dimensional and chaotic.
Hodgkin-Huzley models describing the ion currents which flow through the
membrane are not sufficient to capture this behavior, but the addition of a
slow background dynamics, which we attribute to the storage and release of
calcium in the cell, permits an excellent description of the observations.
We will describe the experiments, the analysis of the data, and the model
building connected with these statements, and hopefully we’ll leave the reader
with the sense that much has been done, but much more is required to trans-
form what seems to be a working set of usable implements into a scientifi-
cally sharp collection of tools.

A. 1. Mees (ed.), Nonlinear Dynamics and Statistics
© Birkhiuser Boston 2001
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1.1 Summary and Preview

We begin with a summary of the issues, and then we turn to details of the
experimental system at hand.

In the biological observations, as in a wide class of measurements, we
observe a single scalar time series of signals s(t) = s(to + nrs) = s(n)
measured each 7, seconds stating at some time to. If the signal source is
stationary in the statistical sense, ¢y is not important. The actual state of
the dynamical system producing the signals is not scalar but is composed
of many variables collected in a state vector x(n) which follows a dynamical
rule

x(n + 1) = F(x(n)), (1.1)
and the observations are given by another rule
s(n) = h(x(n)). (1.2)

The rules F(e) and h(e) are generally unknown to us. Nonetheless, we
wish to characterize the system by statistical quantities associated with the
observed states x(n); n =1,2,...,N.

We are led to ask the following questions:

How, and with what accuracy, can we determine nonlinear sta-
tistical properties associated with the states x(n) from observa-
tions of the {s(n)} alone?

The kind of statistical quantity we can determine which is a characteristic
of the system, not of any individual orbit x(n) of the system includes:

e various dimensions D4 which classify the way in which local moments
of the x(n) vary on the average over the set of observations. This set
constitutes the attractor for the source of the observations,

e the spectrum of Lyapunov exponents A\, a = 1,2,...,d associated
with the dynamics,

e topological properties of the attractor,
e unstable periodic orbits which form the backbone of the attractor,

and perhaps many more not currently being studied or pursued.

There are clearly some questions here for statisticians. The identification
of which statistical quantities, such as D, and A, are important have long
been addressed in the nonlinear dynamics literature. We want to know the
rate at which an algorithm converges to D, or A,. The rate of convergence is
not only in terms of number of data but also in terms of sampling time. One
must not only have a sufficient number of data, but more critically the data
must represent a full sampling of the properties of the system attractor,
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and one should have a criterion for proper sampling times—oversampling
allows the acquisition of lots of irrelevant data.

We want the expected error as well as the variance in the estimation of
these quantities, but this is not enough. The harder question, without a
definite answer to this date, concerns the main goal which is model verifi-
cation. Suppose on the basis of various considerations we develop a model
of the evolution of the state x(n) — x(n + 1) = G(x(n)). This could be a
“black box” model built on the data and the properties of the attractor,
or it could be a set of differential equations built on some reasoning about
the physical or biological processes acting in the system.

How do we verify this model?

Clearly we need to make sure the values of the D, or the A, are the same
from the model as from the data. Is this sufficient? What constitutes an
acceptable error AD, or A)X,? Is there a complete set of invariants such as
the A, which we should use to compare our model x(n + 1) = G(x(n)) to
observations {s(n)}?

And once we have established good relations among the global quantities,
what about local properties on the attractor? Are there local things such
as a Dy(x) which we should evaluate and compare?

Finally, while we have developed some sense of a reliable technology for
many of these activities for dimensions up to seven or ten, what do we do
about the many interesting systems with d > 10?7

We are almost ready to begin the actual work. I do not know the answers
to all the questions I just posed, but hopefully research will answer them
over the coming years.

1.2 Small Neural Assemblies: What We Did

In many animals, including humans, there are a number of small neural
assemblies responsible for generating rhythmic behavior for appropriate
functions. These systems, called central pattern generators (CPGs) [1] by
biologists, produce rhythmic electrical outputs to drive muscles for partic-
ular purposes. At the base of our spines is a CPG which aids in our ability
to walk regularly.

In our laboratory at UCSD we have extensively studied a CPG in the
stomatogastric ganglion of the California spiny lobster Panrulis interrup-
tus. This CPG, the pyloric CPG, governs the passage of shredded food
from the stomach region where it is shredded to the digestive tract where
its nutrients are transferred into the lobster’s system. The pyloric CPG
consists of fourteen neurons corresponding to six different individuals. One
of these neurons, the lateral pyloric neuron or LP, has been a focus of our
work. We are able to isolate the LP from its environment and measure long
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time series of the electric potential across its cellular membrane. The mea-
surements are performed by inserting a fine electrode of diameter about
1 micron at its tip through the cell wall. The resistance at the electrode
is of order 107 ohm, and with voltage differences of about a millivolt, we
measure currents of a nanoamp. A typical time trace from the LP neuron
is shown in Figure 1.1 where 7, = 0.5ms, and we are able to routinely take
samples of many minutes resulting in a data set of N = 107 samples.

Isolated LP Neuron

— T T

AN

o |
I AR
‘1 l |
|
|

17 - . - \
65000 67000 69000 71000 73000 75000
Time {units 0.5 ms)

Membrane Voltage

FIGURE 1.1. Time series of membrane voltage from an isolated LP
neuron from the lobster stomatogastric ganglion; 7, = 0.5 ms.

The two essential features here are the slow oscillations, the bursts at
about 1 Hz and the rapid spiking oscillations on the top of each burst. The
time scale for a spike is about 10 ms. The spikes are the high-frequency
oscillations which are transmitted down axons connecting neurons, and
they are responsible for communication among connected neurons.

This chapter tells how we analyzed {s(t)} from these data, and created
and tested a model for the isolated LP neuron. The challenge is to under-
stand:

e how accurate our analysis was,
e how meaningful our analysis was,
e how we should do this in the future; and

e how we get there.
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General Outlook

The methods of analysis we use are based in the time domain. Fourier
methods, so widely and productively used in analysis of linear systems, are
inappropriate for nonlinear dynamical systems. We start from s(n);n =

1,2,.

.., N; from this data set we

create a d-dimensional state space of vectors which are a dynamical
proxy for the motion of the observed system in its actual (unknown)
space of states. These vectors

y('ﬂ) = [s(n), s(n - T)a s(n - 2T)’ ey s(n - T(d - 1))]’ (13)
replace the scalar data s(n) as the object of our investigations.

determine the integer time lag T (in units of 7,) which makes the
components of y(n) independent in a nonlinear sense—this uses the
statistical quantity average mutual information.

determine the number (integer) d = dg of components of y(n) re-
quired by the data to unambiguously represent the trajectories of the
system in state space—this uses the statistical quantity global false
nearest neighbors.

determine the number (integer) d = dy of dynamical degrees of free-
dom acting locally in the state space to evolve the system forward in
time—this uses the statistical quantity local false nearest neighbors.

determine the spectrum of Lyapunov exponents A\, ; a = 1,2,...,d,
which establish the predictability of the source of our observations
and permit an estimation of the fractional dimension of the attractor

in state space.

use the geometrical structure of the attractor to create black boxz mod-
els of for prediction of future states of the system in the proxy state
space.

We will take data from the pyloric CPG of lobster as well as data from
a three-degree-of-freedom nonlinear electrical circuit built at UCSD! for
testing many of the ideas we discuss.

IN.F. Rulkov, private communication
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Voltage from Three Degree of Freedom Circuit
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FIGURE 1.2. Time series of voltage from a three-degree-of-freedom
chaotic electrical circuit; sampling time is 20 us.

T

0 . . —
0 10 20 30
Time delay (T) in units of 7,

FIGURE 1.3. Average mutual information for data in Figure 1.2.
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Let’s start with data from the nonlinear circuit. In Figure 1.2 we show
a section of a time series of a voltage from this circuit. These data are
collected with a sampling time of 7, = 20us. In Figure 1.3 we show the
average mutual information for this data set. It shows a clear first minimum
at T = 15. We will have more to say about minima of average mutual
information in a bit.

The key idea in the analysis is that signals which show complex temporal
waveforms are likely to have originated in a multidimensional source when
their Fourier spectra are not a set of sharp lines; in that case they are quasi-
periodic and possibly linear sources. We need to reconstruct the state space
for these systems from their scalar observations {s(n)}. We achieve this by
recognizing that s(n) and S(n + T') for some integer T are independent
samplings of the state of the nonlinear system. During time 775 the system
evolves under the influence of all dynamical variables and the unobserved
variables are now reflected in s(n + T') in some unknown and nonlinear
fashion. In constructing the data vectors

we are guaranteed by a geometrical theorem that (1) when we have an
infinite amount of infinitely accurate data, the actual value of T is not
important, and (2) when d is large enough, the attractor is unfolded from
its projection on the observation s(n) axis. This first fact is not useful, so
we need some method for selecting a T'.

1.4 The Neuron Model

For completeness, but not in its entirety, we present the model we devel-
oped for describing the oscillations of an individual neuron in the lobster
pyloric CPG [2]. It is a model of Hodgkin-Huxley type. It consists of el-
ementary circuit equations relating the circuit voltages in two sections of
the neuron, the variables V(t) and V;(t), to the currents flowing through
the cell membrane. In addition to these currents, widely discussed over the
past forty years, we add a slower dynamics for the intracellular concentra-
tion of calcium. The net result is the following detailed, but slightly ugly,
model.
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1.4.3 Parameters

Table 1.1 shows the parameters of the model. The voltage values are in mV
and the g; in uS. The parameter values are as follows: 0=0.6, Venn=2.671nl,
fey:=0.01, 8, =0.4 pM, 6, =0.6 uM, 63 =20 uM, 6, =0.36 uM,0;=0.35
uM, ky =0.2 uM, kg =10 pM, k; =0.18 uM, k, =0.14 uM, k;, =0.46 uM,
Kk(ca) = 0.5 uM, Kerp = 0.2 uM, Kpmp = 0.1 uM, Kpmex = 0.9 uM, vpmp
= 0.0145 puMs™, Vpmex=0.145uMs !, Piea=0.0286 s, P;p,=3.571 571,
Verp=3.762 uMs™1, 77,=1.25 s, @=0.0194 upM (nAs)~!, ¢y, = 0.5 nF, cpmy
= 0.33 nF, f=2 VuM~!, F/RT=0.04095 mV~!, T = 283K.

1.4.4 Comment on This Model

From a physicist’s point of view, this model is strikingly unpleasant. It is
complex and has many remarkably accurately stated constants which are
probably unknown to the stated accuracy. It assumes detailed forms of the
vector field for the differential equation. Its virtue is that it tries to identify
the particular ion currents which are responsible for the various aspects
of the bursting (slow oscillations of about 1 Hz) and rapid spikes (fast
oscillations of about 100 Hz) seen in the wave forms of Figure 1.1. Many
of us, including this author, would prefer to see significantly simplified
models, perhaps starting from this level of description. At present, we do
not have a workable projection algorithm which would take this thirteen
dimensional model and reduce it to a few dimensional model with much
the same membrane voltage characteristics. We do, fortunately, have a
systematic way to determine the dimension of that simplified model, if it
exists, and to establish some of the properties it must have to correspond
to the data [3]. We now turn to this.

1.5 Choosing T

Our task is to establish a criterion which selects the time delay T so that
the signal at time to + n7s s(n) is independent enough of the signal at time
to + (n + T)1s s(n + T'). We want this independence to be such that the
role of the other dynamical variables in the signal source, the ones we do
not observe, is significantly reflected in the value of s(n + T).

A standard linear criterion for this is to evaluate the autocorrelation
function of the data and select that T where it first vanishes. This yields
a criterion for the linear independence of the data at n and n + T It is
questionable what value this linear independence may be.

A standard estimator of nonlinear dependence comes from the answer
to the question how much in bits do we learn about s(n + T') from mea-
surements of s(n), on average over the data? This is given by the average
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mutual information I(T') introduced by Shannon fifty years ago:

= s P(s(n),s(n+T))
= {s(n)},{zs%nw)} Plotm st + 1) log, P(s(n))P(s(n + T))( |
1.23)

where P(s(n)) is the normalized histogram of values taken by the signal
s(n), and P(s(n), s(n+T)) is the normalized joint histogram of the signals
s(n) and s(n + T'). I(T) serves as a nonlinear correlation function for the
data which can replace the standard linear autocorrelation function.

As a useful criterion for selecting T from this nonlinear correlation func-
tion, we follow Fraser and Swinney [4] who suggested that the first mini-
mum of I(T) would serve well. This is not an optimum in any sense, just
a useful heuristic criterion. It serves our purpose as it provides a time lag
not too long when numerical or measurement inaccuracies dominate the
observations or too short when the other dynamical variables have not had
a chance to act significantly.

For the nonlinear circuit I(T') was shown in Figure 1.3, and our criterion
selects T' = 15 as a useful time lag for creating data vectors. Because the
theorem we are using suggests that any T will do, one should use several
T's in the vicinity of the one selected to verify that subsequent quantities
are independent of this choice.

...."°00.
see®0 0440004

0 10 2 30

Time delay (T)
FIGURE 1.4. Average mutual information for the data from an iso-
lated LP neuron; 7, = 0.5 ms.
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For the data from our isolated LP neuron and from our model of this
neuron, we have I(T') in Figures 1.4 and 1.5.

.
. LY
LITIPE

L]
* . Teves,

0 5 10 5 2 % 30
Time delay (T)

FIGURE 1.5. Average mutual information from our detailed
Hodgkin-Huxley conductance model of the isolated LP neuron;
75 = 0.5 ms.

1.6 Choosing d: Global Dimension dg

Our measured data s(n) are points projected down from a larger dimen-
sional space onto the axis of observations. Can we hope to “unproject”
these data? Without knowledge of the full state of the system, we cannot
really find the original point in state space from which our observation
came. However, we can make a proxy space from the data vectors y(n)
and ask when points in that space are determined in an unambiguous fash-
ion. We assume that our data come from a statistically stationary source;
namely, we say there are no external forces acting on this source and that
during the time over which we make the observations all system param-
eters, conductances, resistances, inductances, capacitances, temperatures,
and so on are constant. Then we have a set of differential equations which
determine the signal, and the solutions to those differential equations are
unique. This means the trajectories in state space do not overlap, and by
choosing enough coordinates we can “unoverlap” the observations.

When two points on the attractor, the time asymptotic representation
of the signal in state space, are in fact far apart but they appear close be-
cause of projection, these are false neighbors in the projected space. When
two points on the attractor are close because of dynamics, they, too, will
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appear close in the observation space, but they will be true neighbors. To
distinguish between these, we construct our data vector y(n) in some di-
mension d and identify the nearest neighbor of each point in this space.
Call the nearest neighbor of y(n) yV(n). The time index on this nearest
neighbor could be far away from n, but in state space in dimension d they
are closest. Now add a dimension and ask the same question of y(n) and
yV¥(n) as seen in d + 1. In going from d — d + 1

y(n) = [y(n)+s(n+dT)]
y"Nm) = [y"N(n),s"N(n +dT)). (1.24)

So if |s(n + dT) — sN¥N(n + dT)| is small, the two nearest neighbors in
dimension d are close in dimension d + 1. They are true neighbors; if not,
they are false neighbors. When the number of false neighbors drops to zero,
in principle, we have identified the dimension in which one has unfolded
the attractor. In practice, if the percentage of false nearest neighbors drops
below some threshold, say 1%, then we accept that dimension. We call this
dimension dg; it represents the global integer dimension required to unfold
the attractor of the signal source.

What is wrong with working in too low a dimension? For some things,
such as the calculation of the Dy it doesn’t matter. However, if one wants
to make predictive models, the two false neighbors will move into different
domains of state space in time, so we would make serious mistakes in creat-
ing a model that moved them ahead more or less in the same way. Similarly
if one wants to evaluate the spectrum of Lyapunov exponents, choosing d
too small is sure to lead to errors.

In Figure 1.6 we have the plot of false nearest neighbors versus dimen-
sion for the data from our circuit. it is clear that dg = 3 is selected. In
Figures 1.7 and 1.8, we have the same plot for observed data from the iso-
lated LP neuron and for model output for the membrane voltage. Each of
these is compatible with dg = 5. This is actually quite a striking result.
The model has thirteen degrees of freedom and the actual neuron at least
that many. Yet, in measurements or calculations of the membrane voltage
fewer dimensions play a dynamical role. Models that wish to reproduce all
thirteen (or more) degrees of freedom are, in some sense, too complicated
or, perhaps better said, have more information in them than required for
the role membrane voltage plays in the neural dynamics. The impetus for
simplified modeling is quite strong.

Because dg is small enough, we may learn something (visual at least) by
plotting the three-dimensional vectors [s(n), s(n + T), s(n + 2T')] for each
data set. We do this in Figures 1.9, 1.10 and 1.11.

1.7 Dynamical Dimension
The global dimension dg tells us how many coordinates we need to unfold

the attractor from its projection onto the observations. This may not be
the number of integer dimensions dj required in the dynamical equations
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FIGURE 1.6. Global false nearest neighbors for data from the nonlin-
ear electrical circuit.

to produce the observed time evolution of the system: d; < dg. As an
example, suppose we have a map of the plane to itself, so (z,,y,) —
(Znt1,Yn+1) = F(zn.yn), but the global motion lies on a torus. To unfold
the torus requires dg = 3 while d;, = 2 for the dynamics.

To find dy, we search through local rules (maps) in state space which
take y(n) — F(y(n)) = y(n + 1). We do not know these maps, so we
use the neighbors of y(n) : y(U(n),y®,...,yB)(n) to define a spatial
region. We then represent the maps as

M
Y (n+1) =Fy"(n) =Y )iy (n)), (1.25)
=1
where ¢;(x) is any convenient set of basis functions in the state space.
We typically use polynomials, but radial basis functions are also a useful
choice. This representation is essentially a local Taylor series expansion of
the unknown F(x) using our knowledge of how neighbors move into one
another under action of the dynamics. The coefficients ¢(!) are found by a
least squares minimization of

NB M
My +1) =Y c@)aily™ @m). (1.26)
r=1 =1

We now use these local maps to test the quality of local predictions as a
function of NB and d < dg until the predictions are independent of these
two quantities.
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FIGURE 1.7. Global false nearest neighbors for data from an isolated
LP neuron.
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FIGURE 1.8. Global false nearest neighbors for data from our model
of an isolated LP neuron.
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FIGURE 1.9. Three-dimensional representation [s(n), s(n+T), s(n+2T)]
for data from our nonlinear electrical circuit.

FIGURE 1.10. Three dimensional representation [s(n), s(n + T),
s(n + 2T)] for data from our observations on an isolated LP neuron.

In Figure 1.12 we show the percentage of bad predictions as a function
of d and for NB = 40,60, 80, and 100 for data from our three degree of
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FIGURE 1.11. Three dimensional representation [s(n), s(n + T),
s(n + 2T)] for output of our model for an isolated LP neuron.

FIGURE 1.12. Local false nearest neighbors for data from the three
degree of freedom nonlinear electrical circuit. d; = 3.

freedom nonlinear circuit. d;, = 3 is clearly selected. In Figure 1.13 we
do the same for data from the isolated LP neuron, and in Figure 1.14 we
do this for data from our Calcium dynamics model for this neuron. In the
latter two cases di = 3 is also selected, although one could live with d;, = 4
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FIGURE 1.13. Local false nearest neighbors for observed data from
an isolated LP neuron. d; = 3.
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FIGURE 1.14. Local false nearest neighbors for membrane voltage
output for our calcium dynamics model of an isolated LP neuron.
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from the experimental data.

1.8 Lyapunov Exponents; Predictability

The key estimate in determining whether a measured signal is from a
chaotic oscillator is to establish whether there is at least one positive global
Lyapunov exponent for motions on its attractor. These exponents, and
there will be di of them, are determined by the evolution under the dy-
namics of a small perturbation to an orbit y(1),y(2),...,y(N). When we
perturb the orbit at time n y{n) — y(n) + A(n) we wish to know if A(n)
shrinks or grows in time. If it grows as

A(n + L) = A(n)el?, (1.27)

then the signal source is chaotic, and the allowed A are the Lyapunov
exponents.
A(n) satisfies the linearized evolution

OF (x)
ox

when y(n + 1) = f(y(n)). DF(x) is a di x dr matrix. After L steps,
A(n + L) is determined by the composition of matrices DFZ(y(n)) =
DF(y(n+ L —1))-DF(y(n+1—2))---DF(y(n)). The eigenvalues of this
composite matrix give us the dr, Lyapunov exponents A, Ag, ... ”\dL' To
evaluate these quantities it is convenient to form the orthogonal matrix due
to Oseledec [5]

An+1) = lx=y(n) - A(n) = DF(y(n)) - A(n), (1.28)

L
2L

OSL(y(n)) = lim |DF*(y(n))” -DF*(y(n))| . (1.29)
—00
The eigenvalues we want are e*,e*2,. .. ,e'\dL.

Oseledec proves that this limit exists, is independent of y(n) within the
basin of attraction for the orbit, and is independent of the coordinate sys-
tem in which it is evaluated when those coordinate systems are connected
by smooth transformations. The last property means that we can evaluate
these exponents in our time delay proxy space as it represents a smooth
transformation of the original (unknown) state space. One only needs to be
careful that the correct number dj, of exponents are evaluated, not dg > dj.
So a subspace of the dg-dimensional space where the attractor is unfolded
needs to be identified. Using the local false neighbors statistic does this in
an efficient practical sense.

If any of the A\, ; a = 1,2,...,d;, are positive, we have a chaotic system.
If any of the A, is zero, there is a high likelihood we have differential equa-
tions describing the dynamics. The latter is because in a flow, dynamics
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described by a differential equation, one perturbation can always be dis-
placement along the orbit itself. This is just a phase change and does not
grow in time; instead it follows the original orbit but is displaced in time.
Because of dissipation,

dr
> A <0 (1.30)
a=1

If we know the A,, we have several pieces of useful information:

e because the perturbations on an orbit behave as
A(n + L) ~ el M A(n), (1.31)

where J); is the largest exponent, this places a limit on the time over
which any effective predictions can be made. When A reaches the size
of the attractor R4, prediction is definitely out of the question, so at
times of order TpREp ~ log(l—f(ﬂoﬂ we lose predictability. |A(0)] is
an estimate of the size of an initial perturbation or error due to noise
or whatever disturbs the system.

e we can define a dimension, the so-called Lyapunov dimension associ-
ated with this spectrum of exponents. If

K K+1
S A>05 ) <0, (1.32)
k=1 k=1
then the Lyapunov dimension is defined as
K
Dy =K+ Lz : (1.33)
[Arc+1]

gives an estimate of the dimension of the attractor.

e the )\, are invariants associated with the dynamical system producing
the measured signal. They can be used to classify the system.

To numerically determine the A, we need accurate local estimates of the
Jacobian matrices DF(x) at various locations on the attractor, then we
require a systematic and accurate method for determining the eigenvalues of
the product of Jacobians entering Oseledec’s formula. The matrix involved
is very ill conditioned, and we use a recursive QR decomposition technique
pioneered by Eckmann and Ruelle [6].

To estimate the Jacobians, we once again make local maps on the at-
tractor, namely dj, x dr maps

M
x = F(x) =) c(m)m(x), (1.34)

m=1
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FIGURE 1.15. Local Lyapunov exponents for voltage data from our
three-degree-of-freedom electrical circuit. The local exponents are
evaluated for L steps along the orbit following a perturbation. For
L — oo we arrive at the global exponents; here our maximum L is 2!°
which is adequate.

evaluate the coeflicients by a least squares minimization over N B neighbors,
and then our estimate for DF(x) is

M
DF(x) = ) c(m)-a%’;f—x). (1.35)
m=1

In our evaluations we use local polynomials of second or third order, and
then the linear term gives us the Jacobian.

In Figure 1.15 we show the Lyapunov exponents for the three-degree-of-
freedom electrical circuit. Figures 1.16 and 1.17 show the same quantities
for the observed isolated LP neuron and for our membrane voltage output
from our calcium dynamics model for the LP neuron.

1.9 “Black Box” Prediction in State Space

In the case of the LP neuron, we have a model which does remarkably well
in capturing both the time series and the nonlinear statistical quantities
we have evaluated. This means we could use this model for prediction of
the membrane voltage time course of a neuron, assuming we could know
all the state variables at some time. This is likely to be unavailable for this
system, as we cannot accurately measure those variables.
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In the case of the low-dimensional electrical circuit, we have the dynam-
ical equations, or an excellent approximation to them, but even then to
predict, for example, the circuit voltages, we require knowledge of the state
variables at some time. It is likely that we will not have that information.

Fortunately, from the data or from data generated by a model of our
choosing which has been tested by comparison with the nonlinear statis-
tics from observations, we can construct “black box” models which allow
prediction within the horizon set by the largest Lyapunov exponent A;.

To make this kind of model, we once again rely on the information we
have in phase space to help us see forward in time. The idea is that if we
know how a whole neighborhood of observed points near y(n) move forward
to a whole neighborhood near y(n + 1), we can model that region in the
usual way

M
y(n) > y(n+1) =F(y(n)) = Y c(m)¢(y(n)). (1.36)
m=1
Using N B neighbors of the points y(n), we can determine the coefficients
¢(m) locally near y(n). This we can do with each neighborhood on the
attractor, and we can then create what amounts to a huge lookup table.

Prediction proceeds in the following fashion: Suppose from another sam-
ple of the data, a new point is given and it results in the data vector zg in
dg-dimensional space. We take the original data set—the one on which we
learned the local maps; we call this the training set—and we look for the
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FIGURE 1.16. Local Lyapunov exponents for membrane voltage data
from an isolated LP neuron. The local exponents are evaluated for L
steps along the orbit following a perturbation. For L — co we arrive at
the global exponents; here our maximum L is 2'° which is adequate.
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FIGURE 1.17. Local Lyapunov exponents for membrane voltage out-
put from our calcium dynamics model of an isolated LP neuron. The
local exponents are evaluated for L steps along the orbit following a
perturbation. For L — oo we arrive at the global exponents; here our
maximum L is 2!° which is adequate.

nearest neighbor of zp in that set; call it y(@). Now take the local map
associated with the neighborhood of y(Q) and use that map to predict
where zg will go; call that z;:
M
21 = ) cq(m)dm(20)- (1.37)
m=1
This moves us one step in time (one sampling time 7,) along the orbit start-
ing from zg. To proceed to the next step, determine the nearest neighbor
of z; in the learning set, call it y(P), and we determine 2, to which z; goes

as
M

22 =Y cp(m)pm(21). (1.38)
m=1
We can now construct an orbit zg — z; — 23 — --- which should give us
good predictions up to the prediction horizon—on average over the attrac-
tor.

Figure 1.18 shows this prediction process in action. We took 20,000 data
points from the nonlinear circuit, and with those made local maps of dimen-
sion dy = 3 in dg = 3. Then we used these models to predict L steps ahead
from point 31000 through point 36000. The predictions were then com-
pared to the actual values L steps ahead of each starting location for these
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FIGURE 1.18. Prediction for the nonlinear electrical circuit; 20,000
points were used to ‘train’ the maps to capture the dynamics of the
circuit in reconstructed state space. Predictions were made five steps
in 7, ahead using these maps. We show the predictions, the actual
values of the circuit voltage and the errors.

5000 locations on the attractor. Shown in Figure 1.18 are the actual, the
predicted, and the error of predictions for L = 57,. Figures 1.19 and 1.20
show this for L = 127, and L = 257, respectively. Clearly the accuracy of
prediction degrades, as it must, for larger L, yet one can clearly see that
the method works quite well for most regions of phase space. Where the
local Lyapunov exponents are large, the prediction horizon is, naturally,
smaller, and in those regions the method will not work as well.

1.10 Summary and Challenges

The “worked example” of analysis of membrane potential activity of an
isolated neuron from a small assembly is instructive both for what it does
and what it does not do. What is has done is provide a framework within
which one can decide on the number of degrees of freedom required to
describe a signal source and some quantitative statistical quantities with
which that comparison can be made. What is not done here is to provide
a “complete” set of comparison statistics nor do we suggest how to make
models of the appropriate dimension to capture the dynamics seen. These
latter two items are quite important and have no clear answer known to
me. The former, a larger set of statistical quantities for exploring nonlinear
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FIGURE 1.19. Prediction for the nonlinear electrical circuit; 20,000
points were used to ‘train’ the maps to capture the dynamics of the cir-
cuit in reconstructed state space. Predictions were made twelve steps
in 7, ahead using these maps. We show the predictions, the actual
values of the circuit voltage and the errors.

signal sources, is amenable to existing technology and approaches; the lat-
ter is much more elusive. As an example of the latter, let me note that the
complicated equations for the Hodgkin-Huxley models presented here can
surely be replaced by three or four simplified equations of motion. We have
done this in our work at UCSD where we used equations from Hindmarsh
and Rose’s work in 1983 arising from a fit of the current-voltage character-
istics of a large class of neurons without regard for the details of their ion
channels. This leads to three-dimensional equations for most processes and
four dimensions, if one wishes to include slow calcium dynamics as well.

This underlines the critical role of experiment and observation in work-
ing with models of nonlinear systems. Mathematics and theory are use-
ful, but in my opinion somewhat sterile, when pursued in the absence of
experiment—at least in this arena. The surprises we see which make this
such a delightful area to work in come from how physical and biological
systems have solved problems using capabilities of nonlinear systems we
have just begun to uncover.
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FIGURE 1.20. Prediction for the nonlinear electrical circuit. 20,000
points were used to ‘train’ the maps to capture the dynamics of the
circuit in reconstructed state space. Predictions were made 25 steps in
7, ahead using these maps. We show the predictions, the actual values
of the circuit voltage and the errors.
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Chapter 2

Disentangling Uncertainty

and Error:
On the Predictability of
Nonlinear Systems

Leonard A. Smith

ABSTRACT

Chaos places no a priori restrictions on predictability: Any uncertainty in
the initial condition can be evolved and then quantified as a function of fore-
cast time. If a specified accuracy at a given future time is desired, a perfect
model can specify the initial accuracy required to obtain it, and account-
able ensemble forecasts can be obtained for each unknown initial condition.
Statistics which reflect the global properties of infinitesimals, such as Lya-
punov exponents which define “chaos”, limit predictability only in the sim-
plest mathematical examples. Model error, on the other hand, makes fore-
casting a dubious endeavor. Forecasting with uncertain initial conditions in
the perfect model scenario is contrasted with the case where a perfect model
1s unavailable, perhaps nonezistent. Applications to both low (2 to 400) di-
mensional models and high (107) dimensional models are discussed. For
real physical systems no perfect model exists; the limitations of near-perfect
models are considered, as is the relevance of the recurrence time of the sys-
tem in terms of the likely duration of observations. It is argued that in the
absence of a perfect model, a perfect ensemble does not exist and hence
no accountable forecast scheme exists: Accurate probabilistic forecasts can-
not be made even when the statistics of the observational uncertainty are
known ezactly. Nevertheless, ensemble forecasts are required when initial
conditions are uncertain; returning to single best guess forecasts is not an
option. Both the relevance of these observations to operational forecasts and
alternatives to aiming for ezxact probabilistic forecasts are discussed.

2.1 Introduction

All my means are sane, my motive and my object mad.
Captain Ahab [42]

This chapter discusses the limits that uncertainty in the initial condition
and error in the model place on both individual forecasts and predictability

A. I. Mees (ed.), Nonlinear Dynamics and Statistics
© Birkhiuser Boston 2001
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in general. The systems of interest will be nonlinear, potentially chaotic.
The methods of analysis and means of computation are sane and may be
assumed exact without altering the limits discussed herein. The issue is
whether our questions are well posed: Is the object of our search unobtain-
able even in the best of circumstances?

It has long been known (see, for example, Brillouin [12]) that even in
a well-understood and accurately examined physical system, the combi-
nation of observational uncertainty and model error places severe limits
on what we can say about the future of the system. While the following
remarks hold for systems as simple as an analog circuit, they will be in-
terpreted in the jargon of weather forecasting, even though the Earth’s
atmosphere/ocean system is not particularly well observed, nor are current
models near-perfect. Nevertheless, numerical weather prediction (NWP) is
an appropriate choice because, due to its economic importance, operational
forecasts must be made every day and a great deal of thought has gone into
attempting to improve the forecasts using any means available. Unlike the
armchair forecasts of nonlinear dynamics or theoretical economics, opera-
tional weather forecasters must face their failures daily. This led Thomp-
son [63] to contrast the relative contributions of uncertainty in the initial
condition and model error in the 1950s. In 1965, variations in the reliability
of individual forecasts led Lorenz [38] to suggest one (now operational) ap-
proach to quantifying the likely impact of uncertainty in initial condition
on each particular forecast. Shortly thereafter, Epstein [16] and Leith [32]
investigated both computational and analytic limits to maintaining initial
uncertainty throughout a forecast. Many issues of current interest to non-
linear dynamicists are old chestnuts of the weather forecasting community.

For many years now, operational centers have made ensemble forecasts: a
collection of initial conditions, each consistent with the observational uncer-
tainty, are integrated forward in time. The role of uncertainty is introduced
in Section 2.2. In Section 2.3, ensemble forecasting is explored within the
perfect model scenario, and some jargon normalization is provided. The
ensemble approach to forecasting deterministic systems replaces the single
“best guess” initial condition of the traditional approach with a relatively
small ensemble of different initial conditions, each member of the ensem-
ble being consistent with the observational uncertainty in the initial state
of the system. The idea here is that any initial uncertainty in the initial
condition is reflected in the evolution of the ensemble, which in turn re-
flects the importance of that uncertainty in today’s forecast. By observing
how quickly the ensemble spreads out (or shrinks), one obtains a local es-
timate of the stability of forecasts made in this region of the system’s state
space; global measures like Lyapunov exponents are useless here [59, 57]
except in the most simple, uniform systems. Even localized Lyapunov ex-
ponents [38, 3, 67] are misleading [70, 60], because they are based on the
linearized dynamics over a pre-defined period of time, while the ensemble
members may well sample the relevant nonlinearities and indicate when it
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is that they appear. Indeed, chaos places no a priori limits on predictabil-
ity: Given a perfect model, ensembles can accurately reflect the likelihood
of observing various future conditions (i.e., provide a series of accountable
probability forecasts). Such ensembles will slowly evolve toward the invari-
ant measure of the system; but the time scale on which this happens is
independent of the measures used to define chaos which are, in turn, based
on the statistics of infinitesimals. Because there is always uncertainty in
the initial condition, all nonlinear forecasts should be ensemble forecasts,
and the issues discussed herein should find application to low-dimensional
chaotic systems and high-dimensional weather forecasts.

The stated aim of ensemble forecasts ranges from estimating the ideal
forecast probability density function (PDF) to simply obtaining a rough
guide to the reliability of today’s “best guess” or the control forecast. While
the second aim remains in sight, the first cannot be fully realized. A major
conclusion of this chapter is that just as uncertainty in the initial condition
severely limits the utility of a single forecast even in a perfect model, so
model error severely limits attempts to obtain “the” forecast PDF. This
clarifies the limited applicability of results drawn from within the perfect
model scenario. All models are wrong but some are more useful than others.
If imperfect models are judged by a standard they cannot achieve, then the
more useful models may be discarded. A similar situation holds when judg-
ing between single forecast models by using forecast error: Even a perfect
model of a chaotic system will have a larger forecast error than a model
which predicts the observed mean, at least in the far future. Predicting
the mean may be desirable, if one really wants to minimize single forecast
error, but this approach is obviously a poor guide to improving the physics
of the model. _

A basic difficulty in evaluating ensemble forecasts comes from the fact
that the ensemble forecast estimates a probability density function in state
space, while the verification (the true state of the system at the forecast
time) is a point in state space!. It is not possible to verify a single proba-
bility forecast, and each forecast involves a different initial condition. Fur-
ther, no two initial conditions will ever be close in a dynamical system
where the time required for the system to return to a point near the cur-
rent state (i.e., the recurrence time) is longer than the likely duration of
observations; thus the details of each PDF will differ for each forecast. The
evaluation of a series of probability forecasts, given that each forecast PDF
is different and that only a single realization of each forecast exists, is dis-
cussed in Section 2.4, where the one-dimensional method due to Talagrand
is generalized to higher-dimensional spaces. But once it is accepted that

1'Worse still, there are at least three relevant spaces here: Forecasts lie in the model-
state space, the system lies in the “true” state space, and observations explore yet
another.
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an accurate forecast PDF cannot be obtained even in near-perfect mod-
els, then new methods both of inter-model comparison and multi-model
forecasts are called for; this may prove especially important in guiding
model development. After a realistic look at the ambiguities introduced
by model error in Section 2.5, two alternatives to computing a forecast
PDF are introduced: (i) aiming for a bounding box and (ii) aiming for a
¢-shadowing orbit. Each of these can be used to determine admissible pre-
dictability times. Fully embracing the limitations discussed herein suggests
a new method for combining (rather than selecting the best of) imperfect
models: The cross pollination in time (CPT) ensemble strategies introduced
in Section 2.6 can outperform all the models available in terms of the two
aims stated earlier. Standard multiple-model inter comparisons search for
the best model in the same way that standard data assimilation routines
search for the true state of the system; if no unique state can be identified
empirically even under ideal conditions, then there is no “true” state, and
each of these standard approaches may hinder the resulting forecast. This
holds regardless of how sane and sophisticated the techniques used in the
endeavor may be.

2.2 Uncertainty

Consider an intelligence which knew all the laws of nature precisely and
had accurately (but not exactly) observed an isolated chaotic system for an
arbitrarily long time. Such an agent — even if sufficiently vast to subject
all this data to computationally exact analysis — could not determine the
current state of the system, and thus the present, as well as the future,
would remain uncertain. While our agent could not predict the future pre-
cisely, the future would hold no surprises: The predictability of the current
“state” that could be seen [28, 56]. By forming an ensemble forecast from
the plausible initial conditions consistent with both the system and the-
observations, could be estimated the probability density function (PDF) of
future states to any desired accuracy. And these ensemble forecasts would
be accountable: As the number of members in the ensemble grew, the accu-
racy of the PDF would improve proportionately. Further, for each particular
initial state, the accuracy of observation required to allow a desired level
of accuracy in the final state could be seen [53, 56, 57]. It is not only a
perfect model, but also a perfect ensemble: a set of initial conditions both
consistent with all observations and “on the attractor.” The true trajectory
can be viewed as just another member of the distribution that is sampled
to form the ensemble.

Operational forecasters at major weather centers in both Europe and
North America, attempt an impersonation of this intelligence daily when
they perform ensemble forecasts (see Palmer et al. [50], Toth and Kalnay [65],
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and references therein). The predictability of the atmosphere varies from
day to day, and a single “best guess” forecast is incomplete without a daily
estimate of its likely accuracy. Ensemble forecasts aim to foresee variations
in predictability by quantifying the time required for a given day’s ensem-
ble members to splay out along significantly different trajectories, thereby
quantifying the point at which that day’s “best guess” forecast is unlikely
to be accurate. Ideally, one could also use the ensemble to quantify the
probability of various events. But no physical model is perfect, and as we
shall see, model error may make accountable probability forecasts unreach-
able, just as observational uncertainty makes a single forecast of little value.
Our agent achieves an accountable forecast by evolving a perfect ensemble
under a perfect model; once imperfect models are in use, no perfect ensem-
ble exists. Accepting this forces us to change the interpretation and goals
of forecasts. In fact, it calls into question what is meant by the state of a
physical system.

Traditionally, the current state of a deterministic system is regarded as
a point in state space, the exact location of which is obscured by observa-
tional uncertainty. This scenario only arises in computer experiments where
we determine a trajectory and then pretend to forget where it was after
adding some simulated observational noise. Even in that case, given only
the noisy observations it would not be possible to identify a true state if we
did not already know the answer: There would be a range of initial condi-
tions, parameter values, and even distinct model structures which provided
equally valid descriptions of the data. Clearly the traditional notion of “the
state” of the system must be empirically suspect if even our idealized agent
could not identify this “state” given a perfect model. In reality, of course,
all models are wrong. It is our models which have states; there is no need
for the hypothesis that physical systems have them.

2.3 The Perfect Model Scenario

What is the perfect model scenario? Let the role of the physical system be
played by a set of equations proposed by Lorenz [37] as a parody of some
atmospheric variable. As shown schematically in Figure 2.1, the system
consists of m slow large-scale variables (the ;) and m x n fast small-scale
variables (the y; ;) and thus has a state space dimension of m(n + 1). The
notation # is used to distinguish variables in the system state space from
those in the model-state space, which will be denoted as z. Details can be
found in Lorenz[37], Hansen [24], Orrell [48], Hansen and Smith [25] and
the references therein. The equations are:

di; o L 5 hsC e .
—(Ez- ==Fi28i1 +TioZipy1 — &+ F - % jz_;yj,i (2.1)
dj; - . . . hic .
d;’l = cbfjtr,i (Fj-1,i — Gjt+2.i) — cfji + —Z—mi- (2.2)
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where i = 1,...,m and 5 = 1,...,n and with cyclic boundary conditions
on both the Z; and the §;; (that is Zp41 = #1, Ynt+1,5) = U(1,4) and so
on). In the computations that follows F' = 10, m = 8 and n = 4. The
constants b and ¢ are both equal to 10, so the small-scale dynamics are
10 times faster (and a factor of 10 smaller) than the large-scale dynamics,
while the coupling coeflicients h; and § are both set to unity.

FIGURE 2.1. Schematic of the Lorenz two-scale system.

Now I’ll introduce some jargon.

When the forecast model is used to generate the observations which are
to be forecast, one is in the perfect model scenario. The actual state of the
system will be called truth, while our best estimate of that state, given only
limited, noisy observations, is commonly referred to as the analysis. To test
our model, the forecast is contrasted with the verification, which is in prac-
tice a future analysis; in (and only in) a perfect model experiment can the
verification be truth itself. For a single set of simultaneous observations,
the uncertainty in the analysis is related to the observational uncertainty.
Given a time series of observations, the analysis corresponds to our best
guess at the state, because this uses all the available observations (and
a model), the analysis uncertainty in this case may be much lower than
the observational uncertainty in the individual measurements. In the per-
fect model scenario, the analysis uncertainty is less than the observational
uncertainty.
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Operationally, an analysis may be generated via a four-dimensional varia-
tional assimilation (4DVAR) technique [62, 52]. 4DVAR attempts to locate
the free running model trajectory which minimizes the difference between
the model trajectory and the observations over a given duration (called the
assimilation window), while allowing the observations to be spread out in
both space (3-D fields) and time (+1-D). Achieving this in real-time with
disparate data sources, each of which has different observational uncertain-
ties and intermittently vanishes, is nontrivial. The search for a solution is
also hampered by local minima in a 107-dimensional space, but the key
point here is that the resulting analysis can be much more accurate than
the measurement uncertainty in a single set of simultaneous observations as
long as the model is sufficiently accurate. We shall quantify “sufficiently ac-
curate” later; here we note that this approach searches for “the” true state;
this is somewhat troubling if we have accepted that there is no unique so-
lution even within the perfect model scenario. An alternative approach to
generating a best guess analysis and then creating ensemble members by
adding perturbations is to generate an ensemble directly. This approach has
been illustrated in simple low-dimensional models [28] and an operational
method based on multiple analyses has been investigated by Houtekamer
et al. [26]. Issues surrounding what makes the best analysis or the best op-
erational ensemble are widely debated within the atmospheric community;
many other options exist 7, 9, 22, 23, 43].

Traditionally, a weather forecast consisted of a single trajectory, started
at the analysis and run at the highest available resolution. Such a tradi-
tional “best guess” is often run alongside an ensemble forecast, but be-
cause it is run at higher resolution, it lies in a different model-state space
from that of the ensemble members. The control forecast is the ensemble
member starting at the current analysis. Typically, roughly equal computa-
tional resources are invested in constructing the analysis and running the
ensemble, with the high resolution run taking up most of the remainder
(=~ 10%). Open questions include the issue of whether additional computa-
tional resources should go to increasing the model resolution at which the
ensemble members are run (i.e., obtaining a better PDF), running more
ensemble members at the current resolution (i.e., a better approximation
of an inferior PDF), or running the current system further into the future.
Alternatively, resources could be directed to obtaining a better analysis.
This could be approached through either a more computationally intensive
assimilation technique or obtaining additional observations, the locations
of which may change? daily [24, 25, 34].

2The idea being to take data at locations where the current level of uncertainty most
hinders the forecast at some future time.
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2.3.1 Forecasting with a Perfect Model

Figure 2.2 shows three ensemble forecasts in the perfect model scenario: A
new ensemble is initiated every four time units (as denoted by the circle
superimposed upon truth). Although the initial condition is not known
exactly, we will assume a perfect model in this section; that is, the equations
and parameter values are known exactly and the same integration scheme
is used by the model and the system. We also assume that the system is
chaotic, although this assumption is not necessary if we have only a finite
duration of observations.

Brillouin [12] clearly showed how observational uncertainty limits our
knowledge of both the current state and of the future; general arguments [28]
establish that the current state is often not uniquely defined given uncertain
observations over any duration. A simple way to see that this is true is to
consider a special case of a chaotic dynamical system for which stable and
unstable manifolds of the current state exist where the observational un-
certainty is due only to quantization (i.e., truncation error). Clearly, there
are portions of the unstable manifold within the current quantization box,
which are also in the same series of previously observed boxes; that is, a
set of trajectories which agree with all previous observations exactly, say,
equal in the first three digits. This implies an infinity of states consistent
with the observations. Thus no unique current state is defined by the ob-
servations, and therefore there can be no unique future state. Accountable
forecasts must consider this infinity of states and attempt to maintain the
initial uncertainty, quantifying its evolution during the forecast.

The forecast approach shown in Figure 2.2 will fail in this aim. The
perfect model is used, and the initial conditions used are consistent with
the uncertainty in the current observation. Because the model is perfect,
the ensemble may contain trajectories which remain indistinguishable from
the observations arbitrarily far into the future; such a model is said to ¢-
shadow the system [20, 56, 58]. Further the forecast PDF is a valid Monte
Carlo approximation of the Fokker-Plank equations, given the observational
uncertainty. In what way then is the forecast PDF incorrect?

When making ensemble forecasts we can estimate the probability of fu-
ture events simply by counting the number of ensemble members in which
the event occurs; for example, counting the number of ensemble members
in which there are clear skies over Oxford for a 24-hour period of interest.
By grouping together various forecasts (made on different days) which hap-
pen to have the same predicted probability, we can determine the relative
frequency with which the event occurred on the days where the predicted
probability was, say, about 10%. Ideally, this relative frequency should be
near 0.10. To achieve this ideal requires a model capable of producing a
realistic trajectory and an initial ensemble which gives the correct relative
weight to physically relevant points consistent with the observational un-
certainty. Of course, evaluating the accuracy of extremely low probability
events, like the preceding example, may require extremely long data sets
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FIGURE 2.2. Perfect model ensemble forecasts for the Lorenz system
of Equations 2.1 and 2.2 showing an #; component the true trajectory
(solid) and of the forecast trajectories (dashed) from three perfect
model ensembles. The members of each ensemble are consistent with
the initial observational uncertainty. In this case the model and the
system are identical but the values of the #; are imperfectly known;
for convenience, the true § values are used in each case. Every four
steps an ensemble of initial conditions is forecast (each initiation is
denoted by a circle). Visually, one can identify the time at which any
one best guess forecast is likely to become unreliable. Yet one cannot
obtain an accurate probability forecast from these ensembles, because
the probability that an initial state is mistaken of the true state differs
from the probability that that state is the true state.

to collect enough statistics to obtain a reliable estimate of the relative fre-
quencies (see Murphy [44, 45] and references therein; Smith [57] provides
a low dimensional dynamicist’s point of view and examples).

Obviously a perfect model contains initial conditions consistent with the
observational uncertainty which (-shadows for an arbitrarily long time. This
is not the question, however. The difficulty lies in determining the subset
of initial conditions which are physically relevant. Suppose that the system
evolves on a manifold with dimension less than that of the system state
space. Physically relevant points are restricted to the manifold, while the
observational uncertainty will, in general, extend into the full state space:
We are required to select only initial conditions from a set of zero measure
on a manifold we do not know a priori . In this case the probability that
a state y cannot be distinguished from the true state is not equal to the
probability that it is the true state; the true state will lie on the manifold,
but y need not, as illustrated in Figure 2.3. If we do not restrict our en-
semble members to this manifold, then the predicted probabilities will not
match the relative frequencies; this is nicely demonstrated by an example
due to Gilmour [20], shown in Figure 2.4. The evolving probability distri-
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butions in the left column (Figure 2.4 a) reflect ensembles consistent with
the analysis uncertainty but not constrained to lie on the attractor, as in
Figure 2.2. Contrast the unconstrained ensembles in the left column for
l1<t<2and2<t< 3, with the corresponding perfect ensembles in the
right column; in each case the unconstrained forecast grows much too wide,
due to including initial conditions which cannot be distinguished from the
true state given the observations, but also cannot be the true state since
they are inconsistent with the (unknown) long-term dynamics (i.e., they
are not on the attractor). Interpreted in terms of the schematic in the right
panel of Figure 2.3, the unconstrained ensembles choose members from the
two-dimensional plane weighted by the isopleths, while the perfect ensem-
ble only admits points on the attractor (the dots), again weighted by their
relative likelihood given the isopleths of uncertainty. The unconstrained en-
sembles succeed in giving a general estimate of when the (unconstrained)
analysis will become unreliable, but unlike the perfect ensemble these un-
constrained ensembles cannot yield accountable probability forecasts.
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FIGURE 2.3. Left: Isopleths of the probability of an observation, given
that the true state (+) is (1.0818408, 0.28764392), note that (+) lies
on the attractor. Right: Isopleths of the probability that a state would
give rise to the observation (4) given the observational uncertainty;
but without knowing whether a point in state space is on the attractor,
one cannot compute the probability of its being the true state. In this
panel, the observation (+) is not on the attractor.

As indicated on the left panel of Figure 2.3, we can compute the prob-
ability of an observation X,ps given the true state and the statistics of
observational uncertainty (or the analysis uncertainty if any noise reduc-
tion is attempted). As indicated on the right panel, we can compute the
probability that a given point x could give rise to the observation Xops, but
we cannot compute the probability that a given x is the true state given
only the observation and the noise process if the system evolves on a lower-
dimensional manifold. To obtain the probability that x is the true state
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requires® additional information (the manifold or the invariant measure in
the case of a strange attractor). Without this additional information, the
initial PDF will assign positive probability to points in state space which
cannot correspond to the true state, and thus the initial PDF will be in-
correct. If the initial PDF is wrong, then the final PDF is almost certainly
wrong. We may be able to state approximately the probability of falling
outside a region of state space, but we cannot obtain an accurate prob-
ability forecast. This again emphasizes that it is misleading to think of
“uncertainty in the initial condition” in terms of a single well-defined state
to which a random variable is added to yield the analysis. It is often better
to think of “truth” as a random choice from the physical states consistent
with the observations. To obtain a perfect ensemble (one with accurate
predicted probabilities) one must choose ensemble members from the same
distribution with the same relative weighting. In general, if the system
is evolving on a lower-dimensional manifold (or attractor) this cannot be
done, at least not without a perfect model and a huge computational effort.

We will return to that point in a moment; but first we stress that there
is nothing “low dimensional” about this manifold: In the 107-dimensional
systems common in NWP, a 107 — 1-dimensional manifold counts as lower
dimensional. Further, many practical forecasting systems (including NWP)
are likely to fall into a Catch 22: If the system evolves on a lower-dimensional
manifold, then obtaining perfect ensembles may prove intractable; but if
the number of active degrees of freedom is equal to the dimension of the
state space, then there is an insufficient number of observations to initialize
the model in the first place. In practice, models can be initialized given the
observations, so physical constraints implicit in the equations of the model
must lower the effective number of degrees of freedom; but if the system
evolves on a lower-dimensional manifold then ....

Of course, high-dimensional modeling (e.g., those with high spatial reso-
lution) dssumes that “the physics” restricts the effective number of active
degrees of freedom. In practice, weather models tend to evolve the equa-
tions of motion of a fluid in a three-dimensional space (either in a grid point
form, a spectral form, or both); given this restriction on model structure a
high-resolution model may be required to obtain a good representation of
a low-order manifold. Ideally we might use a (lower-order) model structure
whose model-state space consisted only of the manifold, but currently our
understanding of the physics is based on a spatial representation of atmo-
spheric fields, and there is not yet sufficient data to construct the desired
manifold empirically. We cannot formulate (much less integrate) the phys-
ical equations restricted to this manifold. Good low-order behavior may

3The extent to which this is relevant to NWP is discussed in Section 2.4.2, it is clearly
relevant to forecasting systems whenever the projection of the attractor (or manifold)
into the model-state space is lacunar on the length-scales defined by the observational
uncertainty. Stephenson [61] notes implications this holds for quantifying analysis error.
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FIGURE 2.4. Comparison of (a) unconstrained ensembles and (b) per-
fect ensembles based on the same observations. Each 64 member en-
semble is evolved under a perfect model of the Marzec Spiegel sys-
tem [40] and projected onto z € [—1,1.5]. Time increases upwards. The
gaps in the vertical indicate when new ensembles have been formed
about the corresponding observation. Note that the distributions of
the perfect ensembles just prior to the gaps tend to be tighter and
more closely aligned with the distribution just after the gap (i.e., in
closer agreement with the verifying observations). The distribution of
the observational uncertainty was U/3(0.01). Figure from Gilmour [20]
by permission.
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require high-resolution models*.

There is something of a symmetry here between NWP forecasts and
forecasting on strange attractors via delay embedding, as is common in
nonlinear dynamics [54]. A major aim of the dynamic reconstruction in
delay space is to model only the manifold or only the lowest-dimensional
space within which the manifold can be embedded. But once in this low-
dimensional space, there is no simple way to return to the physical state
space of the system, that is, there is no method for interpreting model
states in terms of physical variables other than those observed. Even though
the dynamics of the reconstruction are diffeomorphic to dynamics in the
full state space (on the attractor), an interpretation in terms of physical
variables is much simpler in the full state space. In NWP the difficulty is
in restricting the “physical variable” model to the manifold, while in delay
reconstructions it lies in interpreting points on the manifold in terms of
physical variables.

The existence of the right-hand column of Figure 2.4 indicates that per-
fect ensembles are not always unobtainable. Given a perfect model, the
issue is one of computational expense which is, in turn, determined by
the resolution of the observations and the recurrence time of the system.
To build a perfect ensemble, we simply wait for an analog. The relevant
question is: How long must we evolve the model before we obtain two
states which are indistinguishable given our observational uncertainties?
The sixty-four-member perfect ensembles of Figure 2.4 were obtained by
collecting analogs in this way [56]. For third-order chaotic systems, this
is often computationally feasible; for the Earth’s atmosphere, however, a
single return to within the current observational accuracy over a large area
like the northern hemisphere has been estimated to require 103° years [66];
this is significantly longer than the lifetime of the atmosphere (and likely to
exceed that of the Universe, for that matter). The model must be perfect:
An arbitrarily good weather model can have a horrid climate, and it is the
climate (the attractor) we must sample to obtain good probability weather
forecasts. Our agent can do this because it is a perfect model and has un-
limited computational power. In Section 2.5 we note that if the model is
imperfect, no perfect ensembles exist (almost certainly).

We close this section with an epistemological question. In a recurrent
system, perfect ensembles can be constructed with an analog approach
(assuming that the successive returns are completely decorrelated!); in a
non-recurrent system, or a system whose recurrence time is long compared
to its likely lifetime, what meaning can be given to an ensemble forecast?
Taking uncertainty in the initial condition seriously also raises a practical
question: if we hold “truth” to be a point in state space, then we are

4] am grateful to P. Young and A. Lorenc for persuasively arguing the merits of the
low-order approach and of the high-resolution approach, respectively.
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forecasting a probability distribution in state space which we must verify
with a single point. How might we do this?

2.4 Ensemble Verification

For each initial condition, an ensemble of initial states is forecast but only
a single state exists with which to verify the forecast®. How might we
evaluate that ensemble forecast? An individual ensemble forecast cannot
be verified, but the consistency of a series of ensemble forecasts can be
verified. For forecasts of scalar quantities the standard approach is to use
rank histograms [5, 6, 21] commonly referred to as Talagrand diagrams.
Assume for the moment that we have a perfect ensemble: Our ensemble
was chosen from the same distribution as “truth”; in this case nothing can
distinguish “truth”, it is just another ensemble member. This fact may
be exploited, for example, by counting the number of forecasts which are
greater than “truth”. This is illustrated in Figure 2.5 which shows the
evolution of some scalar quantity; time runs from left to right and we have
adopted the meteorological technique of denoting the “true” trajectory as
a straight horizontal line. Eight-member ensembles of model trajectories
appear at regular intervals and diverge from “truth” at a rate that depends
on the local nonlinear structure of the model. Given a perfect ensemble, the
number of ensemble members above “truth”, N,yer, should be uniformly
distributed between 0 and N; better still the variance of any one bin in
such a histogram is easily estimated. In operational NWP, the first and
last bins tend to be overpopulated: Truth falls outside of the ensemble too
often.

For the imperfect ensembles in the left-hand column of Figure 2.4, which
are consistent with the observational uncertainty but not constrained to
lie on the attractor, the Talagrand diagrams are under-populated at the
extremes; this is to be expected when the ensemble regularly contains initial
conditions not on the attractor and which diverge rapidly. For the perfect
ensembles in the right column of Figure 2.4, the Talagrand diagrams are
consistent.

Note that the Talagrand diagram can only be used for scalar forecasts
since it relies on the rank ordering of the forecast values. Attempting to
combine diagrams of different forecast values (say the temperature in Lon-
don, Berlin, and Paris; or the geopotential height at each grid point in some
region of interest) is ill-advised unless the predictands are truly indepen-
dent, an unlikely case. Given a perfect ensemble, these combined diagrams
would still be flat asymptotically, but we could no longer compute the
expected rate of convergence (i.e., the variance), and hence we could not

50ne might treat the verification as a PDF consistent with the observational uncer-
tainty and centered upon the analysis, but the results below are easily generalized to
that case.



2. Distinguishing Error from Uncertainty 45

FIGURE 2.5. A schematic of ensemble evaluation in one dimension:
count N,yer, the number of forecasts greater than truth for each lead
time. If perfect ensembles are used, then N,..r should be uniformly
distributed; in N.., experiments, we expect the relative frequency
of a particular value of N,.,..r to have mean Ne;p/Nyins and variance
Nezp(Noins — 1)/NI)2ins’ where Npin; is just the number of members in the
ensemble plus one.

determine whether diagrams based on a finite amount of data were consis-
tent with those expected from perfect ensembles.

2.4.1 Minimum Spanning Trees

The essence of the one-dimensional approach can be generalized to high-
dimensional spaces by using minimum spanning trees (MST) [4] to detect
whether the ensemble members are simply additional draws from the dis-
tribution that generated “truth”. The idea is shown in Figure 2.6. Consider
a finite set of points in any metric space. A spanning tree is a collection of
line segments which connects all the points in a set with no closed loops.
The minimal spanning tree is that spanning tree in which the sum of the
lengths of the segments is smallest. The MST test then, is to take all N
member subsets of the N + 1 points (the N ensemble members and the
control). If “truth” and the ensemble members are drawn from the same
distribution, then no computation can distinguish the spanning tree from
which “truth” was omitted [68]: we simply count Nyyer, now the number of
the N spanning trees where an ensemble member was omitted whose length
is longer than that of the MST where “truth” was omitted. It is not possible
to evaluate a single ensemble in this way, but given a collection of n en-
semble forecasts, a wide variety of systematic errors in ensemble formation
could be identified. Histograms of N,ye, should follow the same statistics
as the histograms of the Talagrand diagram, with a relative frequency ap-
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proaching N;H for each of the (N + 1) possible results (0,1,2,...,N) and

: 2_1_N s 6
variance 0° = oy, as earlier. °.

FIGURE 2.6. A minimal spanning tree from the combined set of eight
ensemble members (dark dots) and the verification (light dot) which
is also on the attractor (and in this experiment “truth”).

Four examples are shown in Figure 2.7. The upper-left panel shows an ac-
ceptably flat distribution when both the verification and ensemble members
are chosen from the distribution in Figure 2.6. The upper-right distribution
reflects that when the verification is randomly distributed within the frame
of the figure, it is often too far from its nearest neighbor, leading to a small
MST when it is omitted and thus an increasing histogram as shown. The
lower-left panel shows the histogram which results when each verification

6Note that this is the variance in a given bin over many realizations, because the
relative frequency in each bin is not independent (they must sum one), the variance of
the different bins in a single realization will differ from this, particularly when only a
small number of bins are used.
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FIGURE 2.7. Each panel shows a histogram of Nyyer, the number
of MSTs omitting one ensemble member which were longer than the
tree omitting the verification. In every case, the ensemble members
were taken from the distribution shown in Figure 2.6. Histograms
reflect when the verification was taken from: the same distribution
(top left panel), a uniform distribution in two-dimensions (top right),
a uniform distribution in one-dimension (lower left), and with inde-
pendently chosen z and y components, where the distribution of each
component matched that shown in Figure 2.6 (lower right).

is taken from a line lying near the attractor; this graph is easy to reject
but its shape is less easy to interpret: Again the verification is too often
too far from its nearest neighbor, but on those occasions when an ensemble
member is chosen from that part of the attractor near the line on which the
verification must lie, then the MST length of the tree omitting the verifica-
tion tends to fall in the middle range. Finally the lower-right panel shows
the result when the variables are chosen independently, but each from the
corresponding correct distribution: The z-component of the verification is
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taken from a correct distribution of z values and the y-component of the
verification is taken from the correct distribution of y values. In this case,
both the Talagrand diagram for z and the Talagrand diagram for y would
have been acceptable, but the MST test rejects it because the conditional
distribution of z given y is incorrect.

2.4.2  Relevance to Operational Forecasting

Hopefully, the last few sections have made clear the difficulty of obtain-
ing perfect ensembles, even given a perfect model. This is without a doubt
a concern when forecasting low-dimensional systems described by strange
attractors; if the perfect ensemble is lacunar and the operational ensemble
is not, then accurate probability forecasts will not be obtained. But is this
really an issue in operational weather forecasting? In operational forecasts
where the system is evolving on a lower-dimensional manifold or attractor
(not low, just lower) and the structure of the manifold is not isotropic on
the length scales resolved by the uncertainty in the analysis, these issues
are important. For example, let the true state lie on a line and the analysis
uncertainty correspond to a uniform distribution on a disk the line inter-
sects. In that case sampling the disk to form an ensemble consistent with
the analysis uncertainty yields an ensemble very different from the perfect
ensemble, which will only contain points from on both the disk and the
line. Alternatively, if the manifold consisted of many parallel lines, effec-
tively filling the plane on length-scale defined by the radius of the disk,
then the unconstrained ensembles might prove similar to perfect ensem-
bles, as long as they did not contain too many members. In general, these
difficulties may prove less important in systems where the invariant mea-
sure is smooth and slowly varying in state space (or its projection into the
model-state space is uniform), or where the manifold is so contorted on the
scale of the observational uncertainty that it can be treated as uniform.
There may also be cases where the resolution of the model is so coarse it
makes the variations un-resolvable.

Of course, it is also possible that the model error is so large that the
forecasts are very wrong before the effects-come into play. But in the lim-
its of accurate short-term prediction models and small uncertainty in the
initial condition, these issues will prove relevant for both low-dimensional
dynamical systems and high-dimensional weather models of NWP.

Meteorologists tend to distinguish forecasts made with large models
(NWP) from those made using less complicated empirical models and per-
sonal insight. While the NWP models get the most press, the simpler meth-
ods are sometimes quite good. This is most often true on small spatial scales
and short forecast times (hours) at locations for which there are long his-
torical records [71], and on very long time scales (seasonal or greater) where
the biases of NWP models may become evident [11, 51]. It would be inter-
esting to contrast the performance of ensembles in these empirical models
with those under NWP for, say, seasonal time scales.
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2.5 Imperfect Model Scenarios

Only hypothetical agents are allowed perfect models; we must deal with
realistic models. This fact alters the philosophy of nonlinear forecasting
as fundamentally as the acceptance of uncertainty in the initial condition.
To see this, we introduce a model for the two-level system of the previous
section which will play a role analogous to that played by weather models
in relation to the Earth’s atmosphere/ocean system. Keeping equations 2.1
and 2.2 as the system, we will consider models of the form:

d.’l?,'

dt
These equations for the model variables x are structurally similar to 2.1
and 2.2 which determined the large-scale x dynamics of the system, they
differ in that the dynamics of the small-scale fast variables, the ¥, have
been parameterized by the function P. A wide range of parameterizations
may be entertained; options we have explored for P;(x,t) include:
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These parameterizations range from simple variations on linear models
(a constant, a linear parameterization based on only the local variable z;,
a linearization based on all m components’ of x) through nonlinear vari-
ations suggested by prediction studies in low-dimensional nonlinear dy-
namical systems [55, 17, 13, 27, 2, 1] (here H; is nonlinear and nonlocal
in physical space, while Hs is also nonlocal in time) and finally to simple
stochastic parameterizations (either choosing a value for P; at random from
the observed historical forcing or fitting an autoregressive model to those
observations and using that AR model).

One property each of these various parameterizations share is that they
are wrong: Given that x € R™ while (%, §) € R™™t1) there is, in general®,

7If the z;s are interpreted as being distributed in physical space, then this last model
is nonlocal in physical space because it requires input from other grid points; it is a
serious complication given the computational structure of current weather models, but
it may prove worth the difficulty of implementation as the spatial resolution of those
models improves.

80f course the inclusion of parameterizations H; and Hy was motivated by our knowl-
edge [54] that if the attractor is restricted to a manifold of dimension @ and the param-
eterization is evaluated only for states on the attractor, then perfect parameterizations
of the form H; and Hs (almost certainly) exist if 2Q < m or Q < m, respectively.
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no perfect model with the form of Equations 2.3 and thus no perfect en-
semble. Each model will have one distribution from which ensembles may
be drawn which will verify at one day; and a differe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>