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Preface 
All models are lies. "The Earth orbits the sun in an ellipse with the sun at 
one focus" is false, but accurate enough for almost all purposes. This book 
describes the current state of the art of telling useful lies about time-varying 
systems in the real world. Specifically, it is about trying to "understand" 
(that is, tell useful lies about) dynamical systems directly from observa­
tions, either because they are too complex to model in the conventional 
way or because they are simply ill-understood. 

B(:cause it overlaps with conventional time-series analysis, building mod­
els of nonlinear dynamical systems directly from data has been seen by 
some observers as a somewhat ill-informed attempt to reinvent time-series 
analysis. The truth is distinctly less trivial. It is surely impossible, except 
in a few special cases, to re-create Newton's astonishing feat of writing a 
short equation that is an excellent description of real-world phenomena. 
Real systems are connected to the rest of the world; they are noisy, non­
stationary, and have high-dimensional dynamics; even when the dynamics 
contains lower-dimensional attractors there is almost never a coordinate 
system available in which these at tractors have a conventionally simple 
description. 

Instead of describing the dynamics with the concise, powerful equations 
beloved of classical physics and applied mathematics, we have to be content 
with a reconstruction of the dynamics from data. That is, we represent 
the dynamics with computational algorithms, which (contrary to popular 
belief) can be used in most of the same ways as conventional models, but 
can seldom be written in a simple closed form that is pleasing to the eye. 

The name "reconstruction" is, of course, a pun on "deconstruction": the 
non-scientist's view of science is often that it is excessively prone to isolate 
what it studies and to reduce everything to meaninglessness at worst, clock­
work at best. However unfair this view, it is true that we choose to study 
what we can hope to model. Reconstruction theory tries to expand what we 
can hope to model by starting out from the axiom that, because the world 
is interconnected, we can only make approximate models of isolated parts 
of it, and there is no reason to suppose they will be as simple as Newton's 
equation. Instead of striving for simplistic descriptions, it concentrates on 
powerful algorithms; instead of writing equations, it tries to grasp the ge­
ometry of phase space. The idea is to have simple qualitative descriptions 
but to rely on computers for quantitative predictions and estimates. This 
point is made right from our first chapter, where Abarbanel compares a 
conventionally built model with a reconstructed geometric model. 
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We see that reconstructing dynamics is not, in fact, trying to emulate 
Newton; it is Kepler whose shoulders we are standing on. Kepler reduced 
the huge body of data collected by Tycho Brahe to stunningly simple ge­
ometry: the planets orbit the sun in ellipses, and follow certain other simple 
laws. Kepler's dynamical invariants, like the rate at which the radius vector 
sweeps out area, have their counterparts in today's dynamical invariants 
like Lyapunov exponents, entropies, and dimensions. Today we are drown­
ing in data, and we need insights; we have immensely powerful but stupid 
assistants, in the form of computers, so we can perhaps try to automate 
something of what Kepler did. It may be that another Newton will discover 
how to neatly encapsulate our current geometric descriptions, but it seems 
unlikely, and in the meantime, there are huge numbers of questions to be 
answerecl. 

Many of the questions are statistical, because we are after all analyzing 
data. Others involve learning to build different sorts of models: control the­
orists have long realized that one can often treat some of the non-modeled 
variability in terms of known inputs from the world to the system. It is time 
dynamicists started to listen to statisticians, control systems engineers, in­
formation theorists, and signal processors. This book represents an attempt 
to get these groups together. 

The chapters are based on some of the papers presented at a workshop on 
Nonlinear Dynamics and Statistics, which took place in September 1998, 
at the Isaac Newton Institute, Cambridge University, as part of the pro­
gramme "Nonlinear and Non-stationary Signal Processing". 

The aim of the workshop was to bring together workers in theoretical 
and applied nonlinear dynamics, statistics, signal processing, and systems 
engineering. For about a decade there had been a very exciting and rapidly 
growing body of work in dynamical reconstruction: It was clear that the 
work had matured to the extent that the nonlinear dynamics community 
had a lot to offer practitioners, but it was also clear that it now needed 
to take on board the insights and experience of statisticians and engi­
neers. It was also hoped that the statisticians and engineers would find 
the reconstruction work interesting and inspiring. The consensus was that 
the workshop was extremely successful, with the famous Newton Institute 
blackboards-they are everywhere, even in the lifts-being in constant use. 
This book should be thought of as no more than a sampling from the many 
outstanding and thought-provoking presentations at the workshop. 

The chapters were all written with the benefit of hindsight, so they in­
corporate some of what was learned from the very lively discussions that 
took place. By request of the editor, some of the papers (notably those 
by Froyland, by Andrieu et al. and by Young) are partly tutorial in na­
ture, because they describe work that needs to be better known among the 
applied dynamics community. All of the papers are targeted at a broad 
audience of the kind at the conference, and the book should be useful to 
anyone interested in nonlinear dynamics and time-series analysis. At the 
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same time, I believe the contributions in this book are representative of the 
best that can be done in nonlinear dynamical reconstruction at the turn of 
the millennium. 

The book has three parts: Issues in Reconstructing Dynamics, Funda­
mentals, and Methods and Applications. The divisions and the classifica­
tions of the papers are, of course, arbitrary: the chapters in each part have 
a great deal to say about the topics of the other parts. The division may, 
however, help the reader know where to start. 

The first part sets the scene, illustrating some of the problems we face 
when we try to reconstruct nonlinear dynamics from observed data. 

• Abarbanel describes the situation as seen by the dynamics commu­
nity: he shows what we want to know and what we do know, and he 
analyzes a data set in a way that will be familiar to most dynamicists, 
but less familiarly, he discusses what is good and bad about this way 
of doing things. 

• Smith discusses a number of fundamental issues in the interaction 
between observational uncertainty and model error in reconstructed 
dynamics. Given that all models tell lies, the perfection we seek is 
beyond our grasp, and it is not easy to decide which model gives 
the most understanding. Perhaps we should keep many? The idea 
of keeping many models reappears later, when Kennel and Mees use 
weighted models based on work in data compression. 

• Judd et al. point out that modeling dynamics usefully is more than 
just a question of getting good short-term predictions-an insight 
that is also a theme of Schoner and Gershenfeld's contribution later 
in the book-indeed, it is being increasingly recognized as a key ques­
tion. They also emphasize the importance of separating noise from 
signal and the consequent usefulness of information theoretic ideas. 

• Stark makes it clear that the standard embedding process is fraught 
with danger and should be subject to careful scrutiny. In the process, 
he mentions many successful extensions: the take-home lesson is per­
haps that embedding is even more powerful than is often supposed, 
but that it needs far more care than is usually exercised. 

• Guegan takes the bull by the horns and discusses the statistical mod­
eling of chaotic time series and its perils and rewards. This is, of 
course, the theme of the book: reconstruction requires both dynamics 
and statistics to be considered, and Guegan speaks from the informed 
statistician's viewpoint. 

• Young speaks from the point of view of a systems engineer and points 
out that most practical dynamical problems are best posed as input­
output systems, yet they are modeled as autonomous systems in the 
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dynamics community. A merger of his methods with the advances in 
nonlinear dynamics is long overdue. 

Chapters in the second part examine fundamental questions related to 
modeling nonlinear time series (or reconstructing dynamics). The point of 
view varies from chapter to chapter, with some taking a more statistical 
approach, others considering fundamental questions of ergodic theory, oth­
ers looking at basic questions in dynamical reconstruction, and still others 
describing modeling methods. As set out herein, there is a certain drift 
from statistics to dynamics as we progress through the chapters, but of 
course this drift is highly stochastic. 

• Andrieu et al. present a survey of the modern theory of Monte Carlo 
methods; the great advances made in the past few years mean that 
many dynamical modeling problems, which are often representable in 
Bayesian terms, are now relatively tractable: something that should 
improve nonlinear dynamical models immensely. 

• Schreiber and Schmitz deal with nonlinearity tests, which have been 
significant in recent years as a precaution against claiming nonlinear­
ity in the absence of strong evidence. 

• Lalley shows that a chaotic system with unbounded noise cannot be 
de-noised (at least in the conventional sense), and then he shows how 
bounded noise can be tackled successfully. 

• Cutler discusses definitions of deterministic and stochastic for time­
series and relates these to dynamical systems. She shows that it is 
not difficult to produce simple examples where the system cannot be 
reconstructed owing to poor choice of observable, The Grassberger­
Procaccia algorithm converges in these cases even though embedding 
is never achieved. 

• Nobel investigates how to approximate dynamics and contrasts de­
terministic models with models that include dynamic noise, while 
taking into account the oft-neglected issue of statistical consistency. 
The investigation sheds light on the question of distinguishing deter­
ministic systems from stochastic systems, a question also considered 
in Guegan's chapter. 

• Froyland estimates a system's invariant density via Markov models, 
which is often a superior way to compute statistical properties. Know­
ing the invariant density is arguably both the best that can be done 
and the best thing to do. His chapter is a detailed review of the latest 
results in the area. 

• Sauer shows us that a calculation that is implicit in a great deal of 
dynamical analysis-estimation of a local derivative-is more subtle 
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than was thought and has surprising (perhaps pleasantly surprising) 
properties in the presence of noise. 

The final part of the book is devoted to modeling methods and nontrivial 
applications. 

• Dixon et al. discuss a successful fisheries model and describe the mod­
eling approach that they used, the S-map method. They add more 
weight to one of the familiar themes of this book, the need to under­
stand the interplay between noise and nonlinearity. 

• Schoner and Gershenfeld discuss another successful reconstruction 
method, cluster-weighted modeling, and apply it to an exception­
ally challenging problem in synthesis of audio signals: the "digital 
Stradivarius" . 

• Kennel and Mees borrow work from the data compression literature 
and demonstrate that it has a lot to offer the dynamics community; 
they show an application to stationarity testing of fluidized-bed re­
actors. The models that are produced are inherently probabilistic, 
and predictions are conditioned on a discrete analogue of variable 
embeddings. 

• Voss uses nonlinear non-parametric regression for the analysis of ex­
perimental data, which can greatly simplify the modeling process if 
there is a certain amount of knowledge available about the system's 
structure. 

• Albano et al. show how estimation of average mutual information, 
applied in an unusual way, can be useful in analysis of EEG signals, 
with specific application to early warning of epileptic seizures. 

• Palus uses a deep understanding of both dynamical and statistical 
fundamentals to examine the well-known sunspot data series and con­
cludes that it is indeed most likely generated by a nonlinear dynamical 
system in spite of the fact that previously the best linear stochastic 
models seemed to be as good as the best nonlinear ones. 

All of the chapters have been refereed anonymously; I thank the referees 
for this essential and underappreciated service: you know who you are. 

The statement about useful lies that opened this preface is paraphrased 
from Richard Bandler. I thank Lenny Smith and Paul Rapp for valuable 
feedback on the rest of the preface; any useless lies that remain are my own 
responsibility. 

This volume and the workshop that inspired it would not have been pos­
sible without the generous support of the Isaac Newton Institute and its 
sponsors; I am particularly grateful to Bill Fitzgerald and Richard Smith, 
who invited me to participate in the Nonlinear and Non-stationary Signal 
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Processing Programmme. The programme has its own official proceedings 
volume, edited by Fitzgerald, Smith, and Young, to be published by Cam­
bridge University Press in 2000. 

I thank the Australian Research Council for partial financial support, and 
the University of Western Australia for leave to attend the programme. I 
also thank the Department of Sytems Engineering and Engineering Man­
agement at The Chinese University of Hong Kong for hospitality. 

Perth, Western Australia 
New Year's Day, 2000. 

Alistair I. Mees 
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Issues in Reconstructing 
Dynamics 



Chapter 1 

Challenges in Modeling 
Nonlinear Systems: 
A Worked Example 
Henry D. I. Abarbanel 

ABSTRACT 
The interaction between nonlinear dynamics and statistics has been rather 
limited over the two decades of concentrated work in nonlinear systems by 
phy,~ical and biological scientists, This chapter is meant to be a contribution 
to stimulating that interaction by presenting a discussion of a problem in 
biology which is addressed by tools of nonlinear dynamics and by posing, 
along the way, issues of sta,tistical re_levance not answered by the community 
of nonlinear dynamicists. . 
The overall issue is that of characterizing and modeling nonlinear systems 
using observed data. Typically this is in the initial absence of a model for 
the source of the data, but that often is the goal of the analysis, Models 
derived from these data can be black box or analytic. Black box models 
typically consist of a set of numerical rules for prediction or control of 
the system in the absence of any fundamental knowledge of the physics or 
biology of the system. Analytic models attempt to incorporate knowledge 
from the observations and their analysis into sets of differential equations 
or maps embodying the properties oj- the measured processes. 
In this chapter we focus on the analysis of membrane voltage data from 
identified neurons of the stomatogastric ganglion of the California spiny 
lobster with the goal of modeling individual neurons and their oscillatory 
behavior in a variety of environmental circumstances, The membrane volt­
age dynamics of these neurons is typically low dimensional and chaotic. 
Hodgkin-Huxley models describing the ion currents which flow through the 
membrane are not sufficient to capture this behavior, but the addition of a 
slow background dynamics, which we attribute to the storage and release of 
calcium in the cell, permits an excellent description of the observations. 
We will describe the experiments, the analysis of the data, and the model 
building connected with these statements, and hopefully we 'lileave the reader 
with the sense that much has been done, but much more is required to trans­
form what seems to be a working set of usable implements into a scientifi­
cally sharp collection of tools. 

A. I. Mees (ed.), Nonlinear Dynamics and Statistics
© Birkhäuser Boston 2001
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1.1 Summary and Preview 

We begin with a summary of the issues, and then we turn to details of the 
experimental system at hand. 

In the biological observations, as in a wide class of measurements, we 
observe a single scalar time series of signals s(t) = s(to + nTs) = s(n) 
measured each Ts seconds stating at some time to. If the signal source is 
stationary in the statistical sense, to is not important. The actual state of 
the dynamical system producing the signals is not scalar but is composed 
of many variables collected in a f:tate vector x( n) which follows a dynamical 
rule 

x(n + 1) = F(x(n)), (1.1) 

and the observations are given by another rule 

s(n) = h(x(n)). (1.2) 

The rules F(.) and h(.) are generally unknown to us. Nonetheless, we 
wish to characterize the system by statistical quantities associated with the 
observed states x(n)j n = 1,2, ... , N. 

We are led to ask the following questions: 

How, and with what accuracy, can we determine nonlinear sta­
tistical properties associated with the states x(n) from observa­
tions of the {s(n)} alone? 

The kind of statistical quantity we can determine which is a characteristic 
of the system, not of any individual orbit x(n) of the system includes: 

• various dimensions Dq which classify the way in which local moments 
of the x(n) vary on the average over the set of observations. This set 
constitutes the attractor for the source of the observations, 

• the spectrum of Lyapunov exponents Aa a = 1,2, ... , dL associated 
with the dynamics, 

• topological properties of the attractor, 

• unstable periodic orbits which form the backbone of the attractor, 

• and perhaps many more not currently being studied or pursued. 

There are clearly some questions here for statisticians. The identification 
of which statistical quantities, such as Dq and Aa are important have long 
been addressed in the nonlinear dynamics literature. We want to know the 
rate at which an algorithm converges to Dq or Aa. The rate of convergence is 
not only in terms of number of data but also in terms of sampling time. One 
must not only have a sufficient number of data, but more critically the data 
must represent a full sampling of the properties of the system attractor, 
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and one should have a criterion for proper sampling times-oversampling 
allows the acquisition of lots of irrelevant data. 

We want the expected error as well as the variance in the estimation of 
these quantities, but this is not enough. The harder question, without a 
definite answer to this date, concerns the main goal which is model verifi­
cation. Suppose on the basis of various considerations we develop a model 
of the evolution of the state x(n) -t x(n + 1) = G(x(n)). This could be a 
"black box" model built on the data and the properties of the attractor, 
or it could be a set of differential equations built on some reasoning about 
the physical or biological processes acting in the system. 

How do we verify this model? 

Clearly we need to make sure the values of the Dq or the Aa are the same 
from the model as from the data. Is this sufficient? What constitutes an 
acceptable error !J.D q or !J.Aa? Is there a complete set of invariants such as 
the Aa which we should use to compare our model x(n + 1) = G(x(n)) to 
observations {s(n)}? 

And once we have established good relations among the global quantities, 
what about local properties on the attractor? Are there local things such 
as a Dq(x) which we should evaluate and compare? 

Finally, while we have developed some sense of a reliable technology for 
many of these activities for dimensions up to seven or ten, what do we do 
about the many interesting systems with d > 1O? 

We are almost ready to begin the actual work. I do not know the answers 
to all the questions I just posed, but hopefully research will answer them 
over the coming years. 

1.2 Small Neural Assemblies: What We Did 

In many animals, including humans, there are a number of small neural 
assemblies responsible for generating rhythmic behavior for appropriate 
functions. These systems, called central pattern generators (CPGs) [1] by 
biologists, produce rhythmic electrical outputs to drive muscles for partic­
ular purposes. At the base of our spines is a CPG which aids in our ability 
to walk regularly. 

In our laboratory at UCSD we have extensively studied a CPG in the 
stomatogastric ganglion of the California spiny lobster Panrulis interrup­
tus. This CPG, the pyloric CPG, governs the passage of shredded food 
from the stomach region where it is shredded to the digestive tract where 
its nutrients are transferred into the lobster's system. The pyloric CPG 
consists of fourteen neurons corresponding to six different individuals. One 
of these neurons, the lateral pyloric neuron or LP, has been a focus of our 
work. We are able to isolate the LP from its environment and measure long 
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time series of the electric potential across its cellular membrane. The mea­
surements are performed by inserting a fine electrode of diameter about 
1 micron at its tip through the cell wall. The resistance at the electrode 
is of order 107 ohm, and with voltage differences of about a millivolt, we 
measure currents of a nanoamp. A typical time trace from the LP neuron 
is shown in Figure 1.1 where Ts = 0.5ms, and we are able to routinely take 
samples of many minutes resulting in a data set of N >::i 107 samples. 

Isolated LP Neuron 

-1.7 
65000 

~-----'-------" 

67000 69000 71000 73000 75000 
Time (unils 0.5 ms) 

FIGURE 1.1. Time series of membrane voltage from an isolated LP 
neuron from the lobster stomatogastric ganglion; Ts = 0.5 ms. 

The two essential features here are the slow oscillations, the bursts at 
about 1 Hz and the rapid spiking oscillations on the top of each burst. The 
time scale for a spike is about 10 ms. The spikes are the high-frequency 
oscillations which are transmitted down axons connecting neurons, and 
they are responsible for communication among connected neurons. 

This chapter tells how we analyzed {s (t)} from these data, and created 
and tested a model for the isolated LP neuron. The challenge is to under­
stand: 

• how accurate our analysis was, 

• how meaningful our analysis was, 

• how we should do this in the future; and 

• how we get there. 
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1.3 General Outlook 

The methods of analysis we use are based in the time domain. Fourier 
methods, so widely and productively used in analysis of linear systems, are 
inappropriate for nonlinear dynamical systems. We start from s(n); n = 
1,2, ... , N; from this data set we 

• create a d-dimensional state space of vectors which are a dynamical 
proxy for the motion of the observed system in its actual (unknown) 
space of states. These vectors 

y(n) = [s(n), s(n - T), s(n - 2T), ... , s(n - T(d - 1))], (1.3) 

replace the scalar data s(n) as the object of our investigations. 

• determine the integer time lag T (in units of Ts) which makes the 
components of y(n) independent in a nonlinear sense-this uses the 
statistical quantity average mutual information. 

• determine the number (integer) d = dE of components of y(n) re­
quired by the data to unambiguously represent the trajectories of the 
system in state space-this uses the statistical quantity global false 
nearest neighbors. 

• determine the number (integer) d = dL of dynamical degrees of free­
dom acting locally in the state space to evolve the system forward in 
time-this uses the statistical quantity local false nearest neighbors. 

• determine the spectrum of Lyapunov exponents Aa; a = 1,2, ... , dL 

which establish the predictability of the source of our observations 
and permit an estimation of the fractional dimension of the attractor 
in state space. 

• use the geometrical structure of the attractor to create black box mod­
els of for prediction of future states of the system in the proxy state 
space. 

We will take data from the pyloric CPG of lobster as well as data from 
a three-degree-of-freedom nonlinear electrical circuit built at UCSD1 for 
testing many of the ideas we discuss. 

1 N.F. Rulkov, private communication 
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Voltage from Three Degree of Freedom Circuit 

2.0 I 

1.0 

" OJ 
)! 
'0 

0.0 

> 

-1.0 

-2foo-o-'--o ~-3:-:-20:-:0-'--0 ~-3"--40.'-:0-'-0 ~-3:-:-6.'-:00-'-0 --3:-:-8.'-:00-'-0 ~-40-,-,J000 
Time (Units 20 )..Is) 

FIGURE 1.2. Time series of voltage from a three-degree-of-freedom 
chaotic electrical circuit; sampling time is 20 I-'s. 
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FIGURE 1.3. Average mutual information for data in Figure 1.2. 
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Let's start with data from the nonlinear circuit. In Figure 1.2 we show 
a section of a time series of a voltage from this circuit. These data are 
collected with a sampling time of 78 = 20JL s. In Figure 1.3 we show the 
average mutual information for this data set. It shows a clear first minimum 
at T = 15. We will have more to say about minima of average mutual 
information in a bit. 

The key idea in the analysis is that signals which show complex temporal 
waveforms are likely to have originated in a multidimensional source when 
their Fourier spectra are not a set of sharp lines; in that case they are quasi­
periodic and possibly linear sources. We need to reconstruct the state space 
for these systems from their scalar observations {s (n)}. We achieve this by 
recognizing that s(n) and S(n + T) for some integer T are independent 
samplings of the state of the nonlinear system. During time T7s the system 
evolves under the influence of all dynamical variables and the unobserved 
variables are now reflected in s(n + T) in some unknown and nonlinear 
fashion. In constructing the data vectors 

y(n) = [s(n), s(n - T), s(n - 2T), . .. , s(n - T(d - 1))], (1.4) 

we are guaranteed by a geometrical theorem that (1) when we have an 
infinite amount of infinitely accurate data, the actual value of T is not 
important, and (2) when d is large enough, the attractor is unfolded from 
its projection on the observation s(n) axis. This first fact is not useful, so 
we need some method for selecting aT. 

1.4 The Neuron Model 

For completeness, but not in its entirety, we present the model we devel­
oped for describing the oscillations of an individual neuron in the lobster 
pyloric CPG [2]. It is a model of Hodgkin-Huxley type. It consists of el­
ementary circuit equations relating the circuit voltages in two sections of 
the neuron, the variables V (t) and Vi (t), to the currents flowing through 
the cell membrane. In addition to these currents, widely discussed over the 
past forty years, we add a slower dynamics for the intracellular concentra­
tion of calcium. The net result is the following detailed, but slightly ugly, 
model. 
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1·4·1 Ca2+ Dynamics 

() = jrel - jfil - jout (1.5) 

(}er = -(jrel - jfil)/a (1.6) 

h hoo - h 
(1.7) = Th 

jfil 
C2 

(1.8) = VerP C2 + K2 
erp 

jrel = (~eak + PIP3aooboodooh) (Cer - C) (1.9) 

jout 
C2 C4 

= v +v pmp C2 + K2 pmex C4 + K4 
pmp pmex 

+a(ICal + Ica2 ) (1.10) 

r(x,y, z) 
1 

(1.11) = '£=1l. 
1 + e z 

aoo = f(Oa,C, ka) (1.12) 

boo f(Ob, IP3 , kb) (1.13) 

doo = 0.2(1 + 4f(Cer , Od, kd)) (1.14) 

hoo = f(C,Oh,kh) (1.15) 

ka = k (08 IP3 0.152 ) 
a . + IP3 + 0.2 0.152 + (IP3 - 0.4)2 

60 
(1.16) X 

60 + Cer 

kh - ( 1Pl) (1.17) = kh 0.05 + 180 
IP;+I+ C er 

Th 
(1.18) Th b d cosh c-o, 

00 00 k, 

1·4·2 Voltage Dynamics 

V = (-ICal - ICa2 - II - h(Ca) - h - Iv,vt}/cm (1.19) 

VI = (-INa - III - hd + IV,VI)/Cml (1.20) 

Ii = gim~i.m h~i.h Ti(V) (1.21) 

ni = (ei,n - ni)/Ti,n, (n = m,h) (1.22) 
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1.4.3 Parameters 

Table 1.1 shows the parameters of the model. The voltage values are in mV 
and the gi in j.LS. The parameter values are as follows: a=0.6, Vceu=2.671nl, 
fcyt =O.Ol, ()a =0.4 j.LM, ()b =0.6 j.LM, ()d =20 j.LM, ()h =0.36 j.LM,()t=0.35 
j.LM, kb =0.2 j.LM, kd =10 j.LM, kt =0.18 j.LM, ka =0.14 j.LM, kh =0.46 j.LM, 
KK(Ca) = 0.5 j.LM, Kerp = 0.2 j.LM, Kpmp = 0.1 j.LM, Kpmex = 0.9 j.LM, vpmp 
= 0.0145 j.LMs-l, vpmex=0.145j.LMs-I, P'eak=0.0286 S-l, P[P3=3.571 S-l, 
Verp=3.762 j.LMs-1 , Th=1.25 s, a=0.0194 j.LM (nAs)-l, Cm = 0.5 nF, Cm 1 

= 0.33 nF, f=2 Vj.LM-l, F/RT=0.04095 my-I, T = 283K. 

1.4.4 Comment on This Model 

From a physicist's point of view, this model is strikingly unpleasant. It is 
complex and has many remarkably accurately stated constants which are 
probably unknown to the stated accuracy. It assumes detailed forms of the 
vector field for the differential equation. Its virtue is that it tries to identify 
the particular ion currents which are responsible for the various aspects 
of the bursting (slow oscillations of about 1 Hz) and rapid spikes (fast 
oscillations of about 100 Hz) seen in the wave forms of Figure 1.1. Many 
of us, including this author, would prefer to see significantly simplified 
models, perhaps starting from this level of description. At present, we do 
not have a workable projection algorithm which would take this thirteen 
dimensional model and reduce it to a few dimensional model with much 
the same membrane voltage characteristics. We do, fortunately, have a 
systematic way to determine the dimension of that simplified model, if it 
exists, and to establish some of the properties it must have to correspond 
to the data [3]. We now turn to this. 

1.5 Choosing T 

Our task is to establish a criterion which selects the time delay T so that 
the signal at time to + nTs s(n) is independent enough of the signal at time 
to + (n + T)Ts s(n + T). We want this independence to be such that the 
role of the other dynamical variables in the signal source, the ones we do 
not observe, is significantly reflected in the value of s(n + T). 

A standard linear criterion for this is to evaluate the autocorrelation 
function of the data and select that T where it first vanishes. This yields 
a criterion for the linear independence of the data at nand n + T. It is 
questionable what value this linear independence may be. 

A standard estimator of nonlinear dependence comes from the answer 
to the question how much in bits do we learn about s(n + T) from mea­
surements of s(n), on average over the data? This is given by the average 
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mutual information J(T) introduced by Shannon fifty years ago: 

'" [ P(s(n), s(n + T)) ] 
J(T) = ~ P(s(n), s(n + T)) log2 P(s(n))P(s(n + T)) , 

{s(n)},{s(n+T)} 

(1.23) 
where P(s(n)) is the normalized histogram of values taken by the signal 
s( n), and P( s( n), s( n + T)) is the normalized joint histogram of the signals 
s(n) and s(n + T). J(T) serves as a nonlinear correlation function for the 
data which can replace the standard linear autocorrelation function. 

As a useful criterion for selecting T from this nonlinear correlation func­
tion, we follow Fraser and Swinney [4] who suggested that the first mini­
mum of J(T) would serve well. This is not an optimum in any sense, just 
a useful heuristic criterion. It serves our purpose as it provides a time lag 
not too long when numerical or measurement inaccuracies dominate the 
observations or too short when the other dynamical variables have not had 
a chance to act significantly. 

For the nonlinear circuit J(T) was shown in Figure 1.3, and our criterion 
selects T = 15 as a useful time lag for creating data vectors. Because the 
theorem we are using suggests that any T will do, one should use several 
Ts in the vicinity of the one selected to verify that subsequent quantities 
are independent of this choice. 

13 

11 

f 9 

• • • • • • • 
• • • • • • • • • • • • • • • • • • • • 

Time delay (T) 

FIGURE 1.4. Average mutual information for the data from an iso­
lated LP neuron; T. = 0.5 ms. 
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For the data from our isolated LP neuron and from our model of this 
neuron, we have J(T) in Figures 1.4 and 1.5. 

12 

10 

~ 

• 
• • • • • • 

• • • • • • • • • • . . . . . . . . . , 
5 10 15 20 25 30 

Time delay (T) 

FIG URE 1.5. Average mutual information from our detailed 
Hodgkin-Huxley conductance model of the isolated LP neuron; 
T. = O.5ms. 

1.6 Choosing d: Global Dimension dE 

Our measured data s(n) are points projected down from a larger dimen­
sional space onto the axis of observations. Can we hope to "un project" 
these data? Without knowledge of the full state of the system, we cannot 
really find the original point in state space from which our observation 
came. However, we can make a proxy space from the data vectors y(n) 
and ask when points in that space are determined in an unambiguous fash­
ion. We assume that our data come from a statistically stationary source; 
namely, we say there are no external forces acting on this source and that 
during the time over which we make the observations all system param­
eters, conductances, resistances, inductances, capacitances, temperatures, 
and so on are constant. Then we have a set of differential equations which 
determine the signal, and the solutions to those differential equations are 
unique. This means the trajectories in state space do not overlap, and by 
choosing enough coordinates we can "unoverlap" the observations. 

When two points on the attractor, the time asymptotic representation 
of the signal in state space, are in fact far apart but they appear close be­
cause of projection, these are false neighbors in the projected space. When 
two points on the attractor are close because of dynamics, they, too, will 
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appear close in the observation space, but they will be true neighbors. To 
distinguish between these, we construct our data vector y(n) in some di­
mension d and identify the nearest neighbor of each point in this space. 
Call the nearest neighbor of y (n) yN N (n). The time index on this nearest 
neighbor could be far away from n, but in state space in dimension d they 
are closest. Now add a dimension and ask the same question of y(n) and 
yNN (n) as seen in d + 1. In going from d -+ d + 1 

y(n) -+ [y(n) + s(n + dT)] 
yNN (n) -+ [yNN (n), sNN (n + dT)]. (1.24) 

So if Is(n + dT) - sNN(n + dT)1 is small, the two nearest neighbors in 
dimension d are close in dimension d + 1. They are true neighbors; if not, 
they are false neighbors. When the number of false neighbors drops to zero, 
in principle, we have identified the dimension in which one has unfolded 
the attractor. In practice, if the percentage of false nearest neighbors drops 
below some threshold, say 1 %, then we accept that dimension. We call this 
dimension dE; it represents the global integer dimension required to unfold 
the attractor of the signal source. 

What is wrong with working in too Iowa dimension? For some things, 
such as the calculation of the Dq it doesn't matter. However, if one wants 
to make predictive models, the two false neighbors will move into different 
domains of state space in time, so we would make serious mistakes in creat­
ing a model that moved them ahead more or less in the same way. Similarly 
if one wants to evaluate the spectrum of Lyapunov exponents, choosing d 
too small is sure to lead to errors. 

In Figure 1.6 we have the plot of false nearest neighbors versus dimen­
sion for the data from our circuit. it is clear that dE = 3 is selected. In 
Figures 1.7 and 1.8, we have the same plot for observed data from the iso­
lated LP neuron and for model output for the membrane voltage. Each of 
these is compatible with dE = 5. This is actually quite a striking result. 
The model has thirteen degrees of freedom and the actual neuron at least 
that many. Yet, in measurements or calculations of the membrane voltage 
fewer dimensions playa dynamical role. Models that wish to reproduce all 
thirteen (or more) degrees of freedom are, in some sense, too complicated 
or, perhaps better said, have more information in them than required for 
the role membrane voltage plays in the neural dynamics. The impetus for 
simplified modeling is quite strong. 

Because dE is small enough, we may learn something (visual at least) by 
plotting the three-dimensional vectors [s(n), s(n + T), s(n + 2T)] for each 
data set. We do this in Figures 1.9, 1.10 and 1.11. 

1.7 Dynamical Dimension 

The global dimension dE tells us how many coordinates we need to unfold 
the attractor from its projection onto the observations. This may not be 
the number of integer dimensions dL required in the dynamical equations 
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FIGURE 1.6. Global false nearest neighbors for data from the nonlin­
ear electrical circuit. 

to produce the observed time evolution of the system: dL ~ dE. As an 
example, suppose we have a map of the plane to itself, so (xn, Yn) ~ 
(xn+1,Yn+1) = F(xn.Yn), but the global motion lies on a torus. To unfold 
the torus requires dE = 3 while dL = 2 for the dynamics. 

To find dL, we search through local rules (maps) in state space which 
take yen) ~ F(y(n» = yen + 1). We do not know these maps, so we 
use the neighbors of yen) : y(1)(n),y(2), ... ,y(NB)(n) to define a spatial 
region. We then represent the maps as 

M 

y(r)(n + 1) = F(y(r)(n» = I: e(l)4>I(y(r)(n», (1.25) 
1=1 

where 4>1(X) is any convenient set of basis functions in the state space. 
We typically use polynomials, but radial basis functions are also a useful 
choice. This representation is essentially a local Taylor series expansion of 
the unknown F(x) using our knowledge of how neighbors move into one 
another under action of the dynamics. The coefficients eel) are found by a 
least squares minimization of 

NB M 
I: Iy(r)(n + 1) - I: e(I)4>I(y(r) (n»12 . (1.26) 
r=1 1=1 

We now use these local maps to test the quality of local predictions as a 
function of N B and d ~ dE until the predictions are independent of these 
two quantities. 
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In Figure 1.12 we show the percentage of bad predictions as a function 
of d and for N B = 40,60,80, and 100 for data from our three degree of 
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FIGURE 1.12. Local false nearest neighbors for data from the three 
degree of freedom nonlinear electrical circuit. dL = 3. 

freedom nonlinear circuit. dL = 3 is clearly selected. In Figure 1.13 we 
do the same for data from the isolated LP neuron, and in Figure 1.14 we 
do this for data from our Calcium dynamics model for this neuron. In the 
latter two cases dL = 3 is also selected, although one could live with dL = 4 
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from the experimental data. 

1.8 Lyapunov Exponents; Predictability 

The key estimate in determining whether a measured signal is from a 
chaotic oscillator is to establish whether there is at least one positive global 
Lyapunov exponent for motions on its attractor. These exponents, and 
there will be dL of them, are determined by the evolution under the dy­
namics of a small perturbation to an orbit y(I),y(2), ... ,y(N). When we 
perturb the orbit at time n y(n) -+ y(n) + ~(n) we wish to know if ~(n) 
shrinks or grows in time. If it grows as 

(1.27) 

then the signal source is chaotic, and the allowed A are the Lyapunov 
exponents. 
~(n) satisfies the linearized evolution 

8F(x) 
~(n + 1) = ~Ix=y(n) . ~(n) = DF(y(n))· ~(n), (1.28) 

when y(n + 1) = f(y(n)). DF(x) is a dL x dL matrix. After L steps, 
~(n + L) is determined by the composition of matrices DFL(y(n)) = 
DF(y(n + L - 1)) . DF(y(n + 1- 2)) ... DF(y(n)). The eigenvalues of this 
composite matrix give us the dL Lyapunov exponents Ai, A2, ... , AdL. To 
evaluate these quantities it is convenient to form the orthogonal matrix due 
to Oseledec [5] 

OSL(y(n)) = lim [DFL(y(n))T. DFL(y(n))] ..ft. 
L-+oo 

(1.29) 

The eigenvalues we want are eA1 , eA2 , ••• , e AdL . 
Oseledec proves that this limit exists, is independent of y(n) within the 

basin of attraction for the orbit, and is independent of the coordinate sys­
tem in which it is evaluated when those coordinate systems are connected 
by smooth transformations. The last property means that we can evaluate 
these exponents in our time delay proxy space as it represents a smooth 
transformation of the original (unknown) state space. One only needs to be 
careful that the correct number dL of exponents are evaluated, not dE ~ dL. 
So a subspace of the dE-dimensional space where the attractor is unfolded 
needs to be identified. Using the local false neighbors statistic does this in 
an efficient practical sense. 

If any of the Aa ; a = 1,2, ... ,dL are positive, we have a chaotic system. 
If any of the Aa is zero, there is a high likelihood we have differential equa­
tions describing the dynamics. The latter is because in a flow, dynamics 
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described by a differential equation, one perturbation can always be dis­
placement along the orbit itself. This is just a phase change and does not 
grow in time; instead it follows the original orbit but is displaced in time. 
Because of dissipation, 

(1.30) 

If we know the Aa , we have several pieces of useful information: 

• because the perturbations on an orbit behave as 

(1.31) 

where Al is the largest exponent, this places a limit on the time over 
which any effective predictions can be made. When ~ r8aches the size 
of the attractor RA, prediction is definitely out of the question, so at 
times of order TpRED :::::; log( I~~)I we lose predictability. I~(O)I is 
an estimate of the size of an initial perturbation or error due to noise 
or whatever disturbs the system. 

• we can define a dimension, the so-called Lyapunov dimension associ­
ated with this spectrum of exponents. If 

(1.32) 
k=1 k=1 

then the Lyapunov dimension is defined as 

D K ~~=I 
L = + IAK+lI' 

(1.33) 

gives an estimate of the dimension of the attractor. 

• the Aa are invariants associated with the dynamical system producing 
the measured signal. They can be used to classify the system. 

To numerically determine the Aa we need accurate local estimates of the 
Jacobian matrices DF(x) at various locations on the attractor, then we 
require a systematic and accurate method for determining the eigenvalues of 
the product of Jacobians entering Oseledec's formula. The matrix involved 
is very ill conditioned, and we use a recursive QR decomposition technique 
pioneered by Eckmann and Ruelle [6]. 

To estimate the Jacobians, we once again make local maps on the at­
tractor, namely dL x dL maps 

M 

X -+ F(x) = L c(m)¢m(x), (1.34) 
m=1 
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FIGURE 1.15. Local Lyapunov exponents for voltage data from our 
three-degree-of-freedom electrical circuit. The local exponents are 
evaluated for L steps along the orbit following a perturbation. For 
L -+ 00 we arrive at the global exponents; here our maximum L is 210 

which is adequate. 

evaluate the coefficients by a least squares minimization over N B neighbors, 
and then our estimate for DF(x) is 

M 

DF(x) = L c(m) a¢m(x) 
ax 

(1.35) 
m=l 

In our evaluations we use local polynomials of second or third order, and 
then the linear term gives us the Jacobian. 

In Figure 1.15 we show the Lyapunov exponents for the three-degree-of­
freedom electrical circuit. Figures 1.16 and 1.17 show the same quantities 
for the observed isolated LP neuron and for our membrane voltage output 
from our calcium dynamics model for the LP neuron. 

1.9 "Black Box" Prediction in State Space 

In the case of the LP neuron, we have a model which does remarkably well 
in capturing both the time series and the nonlinear statistical quantities 
we have evaluated. This means we could use this model for prediction of 
the membrane voltage time course of a neuron, assuming we could know 
all the state variables at some time. This is likely to be unavailable for this 
system, as we cannot accurately measure those variables. 
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In the case of the low-dimensional electrical circuit, we have the dynam­
ical equations, or an excellent approximation to them, but even then to 
predict, for example, the circuit voltages, we require knowledge of the state 
variables at some time. It is likely that we will not have that information. 

Fortunately, from the data or from data generated by a model of our 
choosing which has been tested by comparison with the nonlinear statis­
tics from observations, we can construct "black box" models which allow 
prediction within the horizon set by the largest Lyapunov exponent AI. 

To make this kind of model, we once again rely on the information we 
have in phase space to help us see forward in time. The idea is that if we 
know how a whole neighborhood of observed points near y(n) move forward 
to a whole neighborhood near y(n + 1), we can model that region in the 
usual way 

M 

y(n) ~ y(n + 1) = F(y(n)) = L c(m)¢(y(n)). (1.36) 
m=l 

Using NB neighbors of the points y(n), we can determine the coefficients 
c(m) locally near y(n). This we can do with each neighborhood on the 
attractor, and we can then create what amounts to a huge lookup table. 

Prediction proceeds in the following fashion: Suppose from another sam­
ple of the data, a new point is given and it results in the data vector Zo in 
dE-dimensional space. We take the original data set-the one on which we 
learned the local maps; we call this the training set-and we look for the 
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FIGURE 1.16. Local Lyapunov exponents for membrane voltage data 
from an isolated LP neuron. The local exponents are evaluated for L 
steps along the orbit following a perturbation. For L ~ 00 we arrive at 
the global exponents; here our maximum L is 210 which is adequate. 
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FIGURE 1.17. Local Lyapunov exponents for membrane voltage out­
put from our calcium dynamics model of an isolated LP neuron. The 
local exponents are evaluated for L steps along the orbit following a 
perturbation. For L -+ 00 we arrive at the global exponents; here our 
maximum L is 210 which is adequate. 

nearest neighbor of Zo in that set; call it y(Q). Now take the local map 
associated with the neighborhood of y( Q) and use that map to predict 
where Zo will go; call that Zl: 

M 

Zl = L cQ(m)4>m(ZO). (1.37) 
m=l 

This moves us one step in time (one sampling time 7 8 ) along the orbit start­
ing from Zo. To proceed to the next step, determine the nearest neighbor 
of Zl in the learning set, call it y(P), and we determine Z2 to which Zl goes 
as 

M 

Z2 = L cp(m)4>m(zt}. (1.38) 
m=l 

We can now construct an orbit Zo -+ Zl -t Z2 -t . .. which should give us 
good predictions up to the prediction horizon-on average over the attrac­
tor. 

Figure 1.18 shows this prediction process in action. We took 20,000 data 
points from the nonlinear circuit, and with those made local maps of dimen­
sion dL = 3 in dE = 3. Then we used these models to predict L steps ahead 
from point 31000 through point 36000. The predictions were then com­
pared to the actual values L steps ahead of each starting location for these 
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FIGURE 1.18. Prediction for the nonlinear electrical circuit; 20,000 
points were used to 'train' the maps to capture the dynamics of the 
circuit in reconstructed state space. Predictions were made five steps 
in Ts ahead using these maps. We show the predictions, the actual 
values of the circuit voltage and the errors. 

5000 locations on the attractor. Shown in Figure 1.18 are the actual, the 
predicted, and the error of predictions for L = 5T8 • Figures 1.19 and 1.20 
show this for L = 1278 and L = 257s respectively. Clearly the accuracy of 
prediction degrades, as it must, for larger L, yet one can clearly see that 
the method works quite well for most regions of phase space. Where the 
local Lyapunov exponents are large, the prediction horizon is, naturally, 
smaller, and in those regions the method will not work as well. 

1.10 Summary and Challenges 

The "worked example" of analysis of membrane potential activity of an 
isolated neuron from a small assembly is instructive both for what it does 
and what it does not do. What is has done is provide a framework within 
which one can decide on the number of degrees of freedom required to 
describe a signal source and some quantitative statistical quantities with 
which that comparison can be made. What is not done here is to provide 
a "complete" set of comparison statistics nor do we suggest how to make 
models of the appropriate dimension to capture the dynamics seen. These 
latter two items are quite important and have no clear answer known to 
me. The former, a larger set of statistical quantities for exploring nonlinear 
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FIGURE 1.19. Prediction for the nonlinear electrical circuit; 20,000 
points were used to 'train' the maps to capture the dynamics of the cir­
cuit in reconstructed state space. Predictions were made twelve steps 
in T. ahead using these maps. We show the predictions, the actual 
values of the circuit voltage and the errors. 

signal sources, is amenable to existing technology and approaches; the lat­
ter is much more elusive. As an example of the latter, let me note that the 
complicated equations for the Hodgkin-Huxley models presented here can 
surely be replaced by three or four simplified equations of motion. We have 
done this in our work at UCSD where we used equations from Hindmarsh 
and Rose's work in 1983 arising from a fit of the current-voltage character­
istics of a large class of neurons without regard for the details of their ion 
channels. This leads to three-dimensional equations for most processes and 
four dimensions, if one wishes to include slow calcium dynamics as well . 

This underlines the critical role of experiment and observation in work­
ing with models of nonlinear systems. Mathematics and theory are use­
ful, but in my opinion somewhat sterile, when pursued in the absence of 
experiment- at least in this arena. The surprises we see which make this 
such a delightful area to work in come from how physical and biological 
systems have solved problems using capabilities of nonlinear systems we 
have just begun to uncover. 
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FIGURE 1.20. Prediction for the nonlinear electrical circuit. 20,000 
points were used to 'train' the maps to capture the dynamics of the 
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Chapter 2 

Disentangling Uncertainty 
and Error: 
On the Predictability of 
Nonlinear Systems 
Leonard A. Smith 

ABSTRACT 
Chaos places no a priori restrictions on predictability: Any uncertainty in 
the initial condition can be evolved and then quantified as a function of fore­
cast time. If a specified accuracy at a given future time is desired, a perfect 
model can specify the initial accuracy required to obtain it, and account­
able ensemble forecasts can be obtained for each unknown initial condition. 
Statistics which reflect the global properties of infinitesimals, such as Lya­
punov exponents which define "chaos", limit predictability only in the sim­
plest mathematical examples. Model error, on the other hand, makes fore­
casting a dubious endeavor. Forecasting with uncertain initial conditions in 
the perfect model scenario is contrasted with the case where a perfect model 
is unavailable, perhaps nonexistent. Applications to both low (2 to 400) di­
mensional models and high (107 ) dimensional models are discussed. For 
real physical systems no perfect model exists; the limitations of near-perfect 
models are considered, as is the relevance of the recurrence time of the sys­
tem in terms of the likely duration of observations. It is argued that in the 
absence of a perfect model, a perfect ensemble does not exist and hence 
no accountable forecast scheme exists: Accurate probabilistic forecasts can­
not be made even when the statistics of the observational uncertainty are 
known exactly. Nevertheless, ensemble forecasts are required when initial 
conditions are uncertain; returning to single best guess forecasts is not an 
option. Both the relevance of these observations to operational forecasts and 
alternatives to aiming for exact probabilistic forecasts are discussed. 

2.1 Introduction 

All my means are sane, my motive and my object mad. 
Captain Ahab [42] 

This chapter discusses the limits that uncertainty in the initial condition 
and error in the model place on both individual forecasts and predictability 
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in general. The systems of interest will be nonlinear, potentially chaotic. 
The methods of analysis and means of computation are sane and may be 
assumed exact without altering the limits discussed herein. The issue is 
whether our questions are well posed: Is the object of our search unobtain­
able even in the best of circumstances? 

It has long been known (see, for example, Brillouin [12]) that even in 
a well-understood and accurately examined physical system, the combi­
nation of observational uncertainty and model error places severe limits 
on what we can say about the future of the system. While the following 
remarks hold for systems as simple as an analog circuit, they will be in­
terpreted in the jargon of weather forecasting, even though the Earth's 
atmosphere/ocean system is not particularly well observed, nor are current 
models near-perfect. Nevertheless, numerical weather prediction (NWP) is 
an appropriate choice because, due to its economic importance, operational 
forecasts must be made every day and a great deal of thought has gone into 
attempting to improve the forecasts using any means available. Unlike the 
armchair forecasts of nonlinear dynamics or theoretical economics, opera­
tional weather forecasters must face their failures daily. This led Thomp­
son [63] to contrast the relative contributions of uncertainty in the initial 
condition and model error in the 1950s. In 1965, variations in the reliability 
of individual forecasts led Lorenz [38] to suggest one (now operational) ap­
proach to quantifying the likely impact of uncertainty in initial condition 
on each particular forecast. Shortly thereafter, Epstein [16] and Leith [32] 
investigated both computational and analytic limits to maintaining initial 
uncertainty throughout a forecast. Many issues of current interest to non­
linear dynamicists are old chestnuts of the weather forecasting community. 

For many years now, operational centers have made ensemble forecasts: a 
collection of initial conditions, each consistent with the observational uncer­
tainty, are integrated forward in time. The role of uncertainty is introduced 
in Section 2.2. In Section 2.3, ensemble forecasting is explored within the 
perfect model scenario, and some jargon normalization is provided. The 
ensemble approach to forecasting deterministic systems replaces the single 
"best guess" initial condition of the traditional approach with a relatively 
small ensemble of different initial conditions, each member of the ensem­
ble being consistent with the observational uncertainty in the initial state 
of the system. The idea here is that any initial uncertainty in the initial 
condition is reflected in the evolution of the ensemble, which in turn re­
flects the importance of that uncertainty in today's forecast. By observing 
how quickly the ensemble spreads out (or shrinks), one obtains a local es­
timate of the stability of forecasts made in this region of the system's state 
space; global measures like Lyapunov exponents are useless here [59, 57] 
except in the most simple, uniform systems. Even localized Lyapunov ex­
ponents [38, 3, 67] are misleading [70, 60], because they are based on the 
linearized dynamics over a pre-defined period of time, while the ensemble 
members may well sample the relevant nonlinearities and indicate when it 
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is that they appear. Indeed, chaos places no a priori limits on predictabil­
ity: Given a perfect model, ensembles can accurately reflect the likelihood 
of observing various future conditions (Le., provide a series of accountable 
probability forecasts). Such ensembles will slowly evolve toward the invari­
ant measure of the system; but the time scale on which this happens is 
independent of the measures used to define chaos which are, in turn, based 
on the statistics of infinitesimals. Because there is always uncertainty in 
the initial condition, all nonlinear forecasts should be ensemble forecasts, 
and the issues discussed herein should find application to low-dimensional 
chaotic systems and high-dimensional weather forecasts. 

The stated aim of ensemble forecasts ranges from estimating the ideal 
forecast probability density function (PDF) to simply obtaining a rough 
guide to the reliability of today's "best guess" or the control forecast. While 
the second aim remains in sight, the first cannot be fully realized. A major 
conclusion of this chapter is that just as uncertainty in the initial condition 
severely limits the utility of a single forecast even in a perfect model, so 
model error severely limits attempts to obtain "the" forecast PDF. This 
clarifies the limited applicability of results drawn from within the perfect 
model scenario. All models are wrong but some are more useful than others. 
If imperfect models are judged by a standard they cannot achieve, then the 
more useful models may be discarded. A similar situation holds when judg­
ing between single forecast models by using forecast error: Even a perfect 
model of a chaotic system will have a larger forecast error than a model 
which predicts the observed mean, at least in the far future. Predicting 
the mean may be desirable, if one really wants to minimize single forecast 
error, but this approach is obviously a poor guide to improving the physics 
of the model. 

A basic difficulty in evaluating ensemble forecasts comes from the fact 
that the ensemble forecast estimates a probability density function in state 
space, while the verification (the true state of the system at the forecast 
time) is a point in state spacel . It is not possible to verify a single proba­
bility forecast, and each forecast involves a different initial condition. Fur­
ther, no two initial conditions will ever be close in a dynamical system 
where the time required for the system to return to a point near the cur­
rent state (Le., the recurrence time) is longer than the likely duration of 
observations; thus the details of each PDF will differ for each forecast. The 
evaluation of a series of probability forecasts, given that each forecast PDF 
is different and that only a single realization of each forecast exists, is dis­
cussed in Section 2.4, where the one-dimensional method due to Talagrand 
is generalized to higher-dimensional spaces. But once it is accepted that 

1 Worse still, there are at least three relevant spaces here: Forecasts lie in the model­
state space, the system lies in the ''true'' state space, and observations explore yet 
another. 
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an accurate forecast PDF cannot be obtained even in near-perfect mod­
els, then new methods both of inter-model comparison and multi-model 
forecasts are called for; this may prove especially important in guiding 
model development. After a realistic look at the ambiguities introduced 
by model error in Section 2.5, two alternatives to computing a forecast 
PDF are introduced: (i) aiming for a bounding box and (ii) aiming for a 
q,..shadowing orbit. Each of these can be used to determine admissible pre­
dictability times. Fully embracing the limitations discussed herein suggests 
a new method for combining (rather than selecting the best of) imperfect 
models: The cross pollination in time (CPT) ensemble strategies introduced 
in Section 2.6 can outperform all the models available in terms of the two 
aims stated earlier. Standard multiple-model inter comparisons search for 
the best model in the same way that standard data assimilation routines 
search for the true state of the system; if no unique state can be identified 
empirically even under ideal conditions, then there is no "true" state, and 
each of these standard approaches may hinder the resulting forecast. This 
holds regardless of how sane and sophisticated the techniques used in the 
endeavor may be. 

2.2 Uncertainty 

Consider an intelligence which knew all the laws of nature precisely and 
had accurately (but not exactly) observed an isolated chaotic system for an 
arbitrarily long time. Such an agent - even if sufficiently vast to subject 
all this data to computationally exact analysis - could not determine the 
current state of the system, and thus the present, as well as the future, 
would remain uncertain. While our agent could not predict the future pre­
cisely, the future would hold no surprises: The predictability of the current 
"state" that could be seen [28, 56]. By forming an ensemble forecast from 
the plausible initial conditions consistent with both the system and the' 
observations, could be estimated the probability density function (PDF) of 
future states to any desired accuracy. And these ensemble forecasts would 
be accountable: As the number of members in the ensemble grew, the accu­
racy of the PDF would improve proportionately. Further, for each particular 
initial state, the accuracy of observation required to allow a desired level 
of accuracy in the final state could be seen [53, 56, 57]. It is not only a 
perfect model, but also a perfect ensemble: a set of initial conditions both 
consistent with all observations and "on the attractor." The true trajectory 
can be viewed as just another member of the distribution that is sampled 
to form the ensemble. 

Operational forecasters at major weather centers in both Europe and 
North America, attempt an impersonation of this intelligence daily when 
they perform ensemble forecasts (see Palmer et al. [50], Toth and Kalnay [65], 
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and references therein). The predictability of the atmosphere varies from 
day to day, and a single "best guess" forecast is incomplete without a daily 
estimate of its likely accuracy. Ensemble forecasts aim to foresee variations 
in predictability by quantifying the time required for a given day's ensem­
ble members to splay out along significantly different trajectories, thereby 
quantifying the point at which that day's "best guess" forecast is unlikely 
to be accurate. Ideally, one could also use the ensemble to quantify the 
probability of various events. But no physical model is perfect, and as we 
shall see, model error may make accountable probability forecasts unreach­
able, just as observational uncertainty makes a single forecast of little value. 
Our agent achieves an accountable forecast by evolving a perfect ensemble 
under a perfect model; once imperfect models are in use, no perfect ensem­
ble exists. Accepting this forces us to change the interpretation and goals 
of forecasts. In fact, it calls into question what is meant by the state of a 
physical system. 

Traditionally, the current state of a deterministic system is regarded as 
a point in state space, the exact location of which is obscured by observa­
tional uncertainty. This scenario only arises in computer experiments where 
we determine a trajectory and then pretend to forget where it was after 
adding some simulated observational noise. Even in that case, given only 
the noisy observations it would not be possible to identify a true state if we 
did not already know the answer: There would be a range of initial condi­
tions, parameter values, and even distinct model structures which provided 
equally valid descriptions of the data. Clearly the traditional notion of "the 
state" of the system must be empirically suspect if even our idealized agent 
could not identify this "state" given a perfect model. In reality, of course, 
all models are wrong. It is our models which have states; there is no need 
for the hypothesis that physical systems have them. 

2.3 The Perfect Model Scenario 

What is the perfect model scenario? Let the role of the physical system be 
played by a set of equations proposed by Lorenz [37J as a parody of some 
atmospheric variable. As shown schematically in Figure 2.1, the system 
consists of m slow large-scale variables (the Xi) and m x n fast small-scale 
variables (the Yi,j) and thus has a state space dimension of m( n + 1). The 
notation X is used to distinguish variables in the system state space from 
those in the model-state space, which will be denoted as x. Details can be 
found in Lorenz[37], Hansen [24], Orrell [48], Hansen and Smith [25J and 
the references therein. The equations are: 

dXi - - - - - F hxe ~ -dt = -Xi-2Xi-l + Xi-lXi+l - Xi + - -b-~ Yj,i 
j=l 

(2.1) 

dy-· he 
---.l.i!:.- b- (- -) - fJ -dt e Yj+l,i Yj-l,i - Yj+2,i - eYj,i + z;-Xi. (2.2) 
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where i = 1, ... , m and j = 1, ... , n and with cyclic boundary conditions 
on both the Xi and the Yj,i (that is Xm+1 = Xl, Y(n+1,i) = Y(1,i) and so 
on). In the computations that follows F = 10, m = 8 and n = 4. The 
constants band c are both equal to 10, so the small-scale dynamics are 
10 times faster (and a factor of 10 smaller) than the large-scale dynamics, 
while the coupling coefficients hi and yare both set to unity. 

FIGURE 2.1. Schematic of the Lorenz two-scale system. 

Now I'll introduce some jargon. 
When the forecast model is used to generate the observations which are 

to be forecast, one is in the perfect model scenario. The actual state of the 
system will be called truth, while our best estimate of that state, given only 
limited, noisy observations, is commonly referred to as the analysis. To test 
our model, the forecast is contrasted with the verification, which is in prac­
tice a future analysis; in (and only in) a perfect model experiment can the 
verification be truth itself. For a single set of simultaneous observations, 
the uncertainty in the analysis is related to the observational uncertainty. 
Given a time series of observations, the analysis corresponds to our best 
guess at the state, because this uses all the available observations (and 
a model), the analysis uncertainty in this case may be much lower than 
the observational uncertainty in the individual measurements. In the per­
fect model scenario, the analysis uncertainty is less than the observational 
uncertainty. 
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Operationally, an analysis may be generated via a four-dimensional varia­
tional assimilation (4DVAR) technique [62, 52]. 4DVAR attempts to locate 
the free running model trajectory which minimizes the difference between 
the model trajectory and the observations over a given duration (called the 
assimilation window), while allowing the observations to be spread out in 
both space (3-D fields) and time (+1-D). Achieving this in real-time with 
disparate data sources, each of which has different observational uncertain­
ties and intermittently vanishes, is nontrivial. The search for a solution is 
also hampered by local minima in a 107 -dimensional space, but the key 
point here is that the resulting analysis can be much more accurate than 
the measurement uncertainty in a single set of simultaneous observations as 
long as the model is sufficiently accurate. We shall quantify "sufficiently ac­
curate" later; here we note that this approach searches for "the" true state; 
this is somewhat troubling if we have accepted that there is no unique so­
lution even within the perfect model scenario. An alternative approach to 
generating a best guess analysis and then creating ensemble members by 
adding perturbations is to generate an ensemble directly. This approach has 
been illustrated in simple low-dimensional models [28] and an operational 
method based on multiple analyses has been investigated by Houtekamer 
et al. [26]. Issues surrounding what makes the best analysis or the best op­
erational ensemble are widely debated within the atmospheric community; 
many other options exist [7,9, 22, 23, 43]. 

Traditionally, a weather forecast consisted of a single trajectory, started 
at the analysis and run at the highest available resolution. Such a tradi­
tional "best guess" is often run alongside an ensemble forecast, but be­
cause it is run at higher resolution, it lies in a different model-state space 
from that of the ensemble members. The control forecast is the ensemble 
member starting at the current analysis. Typically, roughly equal computa­
tional resources are invested in constructing the analysis and running the 
ensemble, with the high resolution run taking up most of the remainder 
(~ 10%). Open questions include the issue of whether additional computa­
tional resources should go to increasing the model resolution at which the 
ensemble members are run (Le., obtaining a better PDF), running more 
ensemble members at the current resolution (Le., a better approximation 
of an inferior PDF), or running the current system further into the future. 
Alternatively, resources could be directed to obtaining a better analysis. 
This could be approached through either a more computationally intensive 
assimilation technique or obtaining additional observations, the locations 
of which may change2 daily [24, 25, 34]. 

2The idea being to take data at locations where the current level of uncertainty most 
hinders the forecast at some future time. 
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2.3.1 Forecasting with a Perfect Model 

Figure 2.2 shows three ensemble forecasts in the perfect model scenario: A 
new ensemble is initiated every four time units (as denoted by the circle 
superimposed upon truth). Although the initial condition is not known 
exactly, we will assume a perfect model in this section; that is, the equations 
and parameter values are known exactly and the same integration scheme 
is used by the model and the system. We also assume that the system is 
chaotic, although this assumption is not necessary if we have only a finite 
duration of observations. 

Brillouin [12] clearly showed how observational uncertainty limits our 
knowledge of both the current state and of the future; general arguments [28] 
establish that the current state is often not uniquely defined given uncertain 
observations over any duration. A simple way to see that this is true is to 
consider a special case of a chaotic dynamical system for which stable and 
unstable manifolds of the current state exist where the observational un­
certainty is due only to quantization (Le., truncation error). Clearly, there 
are portions of the unstable manifold within the current quantization box, 
which are also in the same series of previously observed boxes; that is, a 
set of trajectories which agree with all previous observations exactly, say, 
equal in the first three digits. This implies an infinity of states consistent 
with the observations. Thus no unique current state is defined by the ob­
servations, and therefore there can be no unique future state. Accountable 
forecasts must consider this infinity of states and attempt to maintain the 
initial uncertainty, quantifying its evolution during the forecast. 

The forecast approach shown in Figure 2.2 will fail in this aim. The 
perfect model is used, and the initial conditions used are consistent with 
the uncertainty in the current observation. Because the model is perfect, 
the ensemble may contain trajectories which remain indistinguishable from 
the observations arbitrarily far into the future; such a model is said to t­
shadow the system [20, 56, 58]. Further the forecast PDF is a valid Monte 
Carlo approximation of the Fokker-Plank equations, given the observational 
uncertainty. In what way then is the forecast PDF incorrect? 

When making ensemble forecasts we can estimate the probability of fu­
ture events simply by counting the number of ensemble members in which 
the event occurs; for example, counting the number of ensemble members 
in which there are clear skies over Oxford for a 24-hour period of interest. 
By grouping together various forecasts (made on different days) which hap­
pen to have the same predicted probability, we can determine the relative 
frequency with which the event occurred on the days where the predicted 
probability was, say, about 10%. Ideally, this relative frequency should be 
near 0.10. To achieve this ideal requires a model capable of producing a 
realistic trajectory and an initial ensemble which gives the correct relative 
weight to physically relevant points consistent with the observational un­
certainty. Of course, evaluating the accuracy of extremely low probability 
events, like the preceding example, may require extremely long data sets 
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FIGURE 2.2. Perfect model ensemble forecasts for the Lorenz system 
of Equations 2.1 and 2.2 showing an Xi component the true trajectory 
(solid) and of the forecast trajectories (dashed) from three perfect 
model ensembles. The members of each ensemble are consistent with 
the initial observational uncertainty. In this case the model and the 
system are identical but the values of the Xi are imperfectly known; 
for convenience, the true ii values are used in each case. Every four 
steps an ensemble of initial conditions is forecast (each initiation is 
denoted by a circle). Visually, one can identify the time at which any 
one best guess forecast is likely to become unreliable. Yet one cannot 
obtain an accurate probability forecast from these ensembles, because 
the probability that an initial state is mistaken of the true state differs 
from the probability that that state is the true state. 

to collect enough statistics to obtain a reliable estimate of the relative fre­
quencies (see Murphy [44, 45] and references therein; Smith [57] provides 
a low dimensional dynamicist's point of view and examples). 

Obviously a perfect model contains initial conditions consistent with the 
observational uncertainty which t-shadows for an arbitrarily long time. This 
is not the question, however. The difficulty lies in determining the subset 
of initial conditions which are physically relevant. Suppose that the system 
evolves on a manifold with dimension less than that of the system state 
space. Physically relevant points are restricted to the manifold, while the 
observational uncertainty will, in general, extend into the full state space: 
We are required to select only initial conditions from a set of zero measure 
on a manifold we do not know a priori . In this case the probability that 
a state y cannot be distinguished from the true state is not equal to the 
probability that it is the true state; the true state will lie on the manifold, 
but y need not, as illustrated in Figure 2.3. If we do not restrict our en­
semble members to this manifold, then the predicted probabilities will not 
match the relative frequencies; this is nicely demonstrated by an example 
due to Gilmour [20], shown in Figure 2.4. The evolving probability distri-
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butions in the left column (Figure 2.4 a) reflect ensembles consistent with 
the analysis uncertainty but not constrained to lie On the attractor, as in 
Figure 2.2. Contrast the unconstrained ensembles in the left column for 
1 < t < 2 and 2 < t < 3, with the corresponding perfect ensembles in the 
right column; in each case the unconstrained forecast grows much too wide, 
due to including initial conditions which cannot be distinguished from the 
true state given the observations, but also cannot be the true state since 
they are inconsistent with the (unknown) long-term dynamics (i.e., they 
are not On the attractor). Interpreted in terms of the schematic in the right 
panel of Figure 2.3, the unconstrained ensembles choose members from the 
two-dimensional plane weighted by the isopleths, while the perfect ensem­
ble only admits points On the attractor (the dots), again weighted by their 
relative likelihood given the isopleths of uncertainty. The unconstrained en­
sembles succeed in giving a general estimate of when the (unconstrained) 
analysis will become unreliable, but unlike the perfect ensemble these un­
constrained ensembles cannot yield accountable probability forecasts. 
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FIGURE 2.3. Left: Isopleths of the probability of an observation, given 
that the true state (+) is (1.0818408, 0.28764392), note that (+) lies 
on the attractor. Right: Isopleths of the probability that a state would 
give rise to the observation (+) given the observational uncertainty; 
but without knowing whether a point in state space is on the attractor, 
one cannot compute the probability of its being the true state. In this 
panel, the observation (+) is not on the attractor. 

As indicated On the left panel of Figure 2.3, we can compute the prob­
ability of an observation Xobs given the true state and the statistics of 
observational uncertainty (or the analysis uncertainty if any noise reduc­
tion is attempted). As indicated On the right panel, we can compute the 
probability that a given point x could give rise to the observation Xobs, but 
we cannot compute the probability that a given x is the true state given 
only the observation and the noise process if the system evolves on a lower­
dimensional manifold. To obtain the probability that x is the true state 
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requires3 additional information (the manifold or the invariant measure in 
the case of a strange attractor). Without this additional information, the 
initial PDF will assign positive probability to points in state space which 
cannot correspond to the true state, and thus the initial PDF will be in­
correct. If the initial PDF is wrong, then the final PDF is almost certainly 
wrong. We may be able to state approximately the probability of falling 
outside a region of state space, but we cannot obtain an accurate prob­
ability forecast. This again emphasizes that it is misleading to think of 
"uncertainty in the initial condition" in terms of a single well-defined state 
to which a random variable is added to yield the analysis. It is often better 
to think of "truth" as a random choice from the physical states consistent 
with the observations. To obtain a perfect ensemble (one with accurate 
predicted probabilities) one must choose ensemble members from the same 
distribution with the same relative weighting. In general, if the system 
is evolving on a lower-dimensional manifold (or attractor) this cannot be 
done, at least not without a perfect model and a huge computational effort. 

We will return to that point in a moment; but first we stress that there 
is nothing "low dimensional" about this manifold: In the 107 -dimensional 
systems common in NWP, a 107 - I-dimensional manifold counts as lower 
dimensional. Further, many practical forecasting systems (including NWP) 
are likely to fall into a Catch 22: If the system evolves on a lower-dimensional 
manifold, then obtaining perfect ensembles may prove intractable; but if 
the number of active degrees of freedom is equal to the dimension of the 
state space, then there is an insufficient number of observations to initialize 
the model in the first place. In practice, models can be initialized given the 
observations, so physical constraints implicit in the equations of the model 
must lower the effective number of degrees of freedom; but if the system 
evolves on a lower-dimensional manifold then .... 

Of course, high-dimensional modeling (e.g., those with high spatial reso­
lution) assumes that "the physics" restricts the effective number of active 
degrees of freedom. In practice, weather models tend to evolve the equa­
tions of motion of a fluid in a three-dimensional space (either in a grid point 
form, a spectral form, or both); given this restriction on model structure a 
high-resolution model may be required to obtain a good representation of 
a low-order manifold. Ideally we might use a (lower-order) model structure 
whose model-state space consisted only of the manifold, but currently our 
understanding of the physics is based on a spatial representation of atmo­
spheric fields, and there is not yet sufficient data to construct the desired 
manifold empirically. We cannot formulate (much less integrate) the phys­
ical equations restricted to this manifold. Good low-order behavior may 

3The extent to which this is relevant to NWP is discussed in Section 2.4.2, it is clearly 
relevant to forecasting systems whenever the projection of the attractor (or manifold) 
into the model-state space is lacunar on the length-scales defined by the observational 
uncertainty. Stephenson [61] notes implications this holds for quantifying analysis error. 
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FIGURE 2.4. Comparison of (a) unconstrained ensembles and (b) per­
fect ensembles based on the same observations. Each 64 member en­
semble is evolved under a perfect model of the Marzec Spiegel sys­
tem [40] and projected onto x E [-1,1.5]. Time increases upwards. The 
gaps in the vertical indicate when new ensembles have been formed 
about the corresponding observation. Note that the distributions of 
the perfect ensembles just prior to the gaps tend to be tighter and 
more closely aligned with the distribution just after the gap (i.e., in 
closer agreement with the verifying observations). The distribution of 
the observational uncertainty was U3(O.01). Figure from Gilmour [20] 
by permission. 
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require high-resolution models4 . 

There is something of a symmetry here between NWP forecasts and 
forecasting on strange at tractors via delay embedding, as is common in 
nonlinear dynamics [54]. A major aim of the dynamic reconstruction in 
delay space is to model only the manifold or only the lowest-dimensional 
space within which the manifold can be embedded. But once in this low­
dimensional space, there is no simple way to return to the physical state 
space of the system, that is, there is no method for interpreting model 
states in terms of physical variables other than those observed. Even though 
the dynamics of the reconstruction are diffeomorphic to dynamics in the 
full state space (on the attractor), an interpretation in terms of physical 
variables is much simpler in the full state space. In NWP the difficulty is 
in restricting the "physical variable" model to the manifold, while in delay 
reconstructions it lies in interpreting points on the manifold in terms of 
physical variables. 

The existence of the right-hand column of Figure 2.4 indicates that per­
fect ensembles are not always unobtainable. Given a perfect model, the 
issue is one of computational expense which is, in turn, determined by 
the resolution of the observations and the recurrence time of the system. 
To build a perfect ensemble, we simply wait for an analog. The relevant 
question is: How long must we evolve the model before we obtain two 
states which are indistinguishable given our observational uncertainties? 
The sixty-four-member perfect ensembles of Figure 2.4 were obtained by 
collecting analogs in this way [56]. For third-order chaotic systems, this 
is often computationally feasible; for the Earth's atmosphere, however, a 
single return to within the current observational accuracy over a large area 
like the northern hemisphere has been estimated to require 1030 years [66]; 
this is significantly longer than the lifetime of the atmosphere (and likely to 
exceed that of the Universe, for that matter). The model must be perfect: 
An arbitrarily good weather model can have a horrid climate, and it is the 
climate (the attractor) we must sample to obtain good probability weather 
forecasts. Our agent can do this because it is a perfect model and has un­
limited computational power. In Section 2.5 we note that if the model is 
imperfect, no perfect ensembles exist (almost certainly). 

We close this section with an epistemological question. In a recurrent 
system, perfect ensembles can be constructed with an analog approach 
(assuming that the successive returns are completely decorrelated!); in a 
non-recurrent system, or a system whose recurrence time is long compared 
to its likely lifetime, what meaning can be given to an ensemble forecast? 
Taking uncertainty in the initial condition seriously also raises a practical 
question: if we hold "truth" to be a point in state space, then we are 

41 am grateful to P. Young and A. Lorenc for persuasively arguing the merits of the 
low-order approach and of the high-resolution approach, respectively. 
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forecasting a probability distribution in state space which we must verify 
with a single point. How might we do this? 

2.4 Ensemble Verification 

For each initial condition, an ensemble of initial states is forecast but only 
a single state exists with which to verify the forecast5 . How might we 
evaluate that ensemble forecast? An individual ensemble forecast cannot 
be verified, but the consistency of a series of ensemble forecasts can be 
verified. For forecasts of scalar quantities the standard approach is to use 
rank histograms [5, 6, 21] commonly referred to as Talagrand diagrams. 
Assume for the moment that we have a perfect ensemble: Our ensemble 
was chosen from the same distribution as "truth"; in this case nothing can 
distinguish "truth", it is just another ensemble member. This fact may 
be exploited, for example, by counting the number of forecasts which are 
greater than "truth". This is illustrated in Figure 2.5 which shows the 
evolution of some scalar quantity; time runs from left to right and we have 
adopted the meteorological technique of denoting the "true" trajectory as 
a straight horizontal line. Eight-member ensembles of model trajectories 
appear at regular intervals and diverge from "truth" at a rate that depends 
on the local nonlinear structure of the model. Given a perfect ensemble, the 
number of ensemble members above "truth", Nove ... should be uniformly 
distributed between 0 and N; better still the variance of anyone bin in 
such a histogram is easily estimated. In operational NWP, the first and 
last bins tend to be overpopulated: Truth falls outside of the ensemble too 
often. 

For the imperfect ensembles in the left-hand column of Figure 2.4, which 
are consistent with the observational uncertainty but not constrained to 
lie on the attractor, the Talagrand diagrams are under-populated at the 
extremes; this is to be expected when the ensemble regularly contains initial 
conditions not on the attractor and which diverge rapidly. For the perfect 
ensembles in the right column of Figure 2.4, the Talagrand diagrams are 
consistent. 

Note that the Talagrand diagram can only be used for scalar forecasts 
since it relies on the rank ordering of the forecast values. Attempting to 
combine diagrams of different forecast values (say the temperature in Lon­
don, Berlin, and Paris; or the geopotential height at each grid point in some 
region of interest) is ill-advised unless the predictands are truly indepen­
dent, an unlikely case. Given a perfect ensemble, these combined diagrams 
would still be flat asymptotically, but we could no longer compute the 
expected rate of convergence (Le., the variance), and hence we could not 

50ne might treat the verification as a PDF consistent with the observational uncer­
tainty and centered upon the analysis, but the results below are easily generalized to 
that case. 
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FIGURE 2.5. A schematic of ensemble evaluation in one dimension: 
count N over , the number of forecasts greater than truth for each lead 
time. If perfect ensembles are used, then N over should be uniformly 
distributed; in N exp experiments, we expect the relative frequency 
of a particular value of N over to have mean Nexp/Nbins and variance 
Nexp(Nbins -l)/N'I;ins, where Nbins is just the number of members in the 
ensemble plus one. 

determine whether diagrams based on a finite amount of data were consis­
tent with those expected from perfect ensembles. 

2.4.1 Minimum Spanning Trees 
The essence of the one-dimensional approach can be generalized to high­
dimensional spaces by using minimum spanning trees (MST) [4] to detect 
whether the ensemble members are simply additional draws from the dis­
tribution that generated "truth". The idea is shown in Figure 2.6. Consider 
a finite set of points in any metric space. A spanning tree is a collection of 
line segments which connects all the points in a set with no closed loops. 
The minimal spanning tree is that spanning tree in which the sum of the 
lengths of the segments is smallest. The MST test then, is to take all N 
member subsets of the N + 1 points (the N ensemble members and the 
control). If "truth" and the ensemble members are drawn from the same 
distribution, then no computation can distinguish the spanning tree from 
which "truth" was omitted [68]: we simply count Nover , now the number of 
the N spanning trees where an ensemble member was omitted whose length 
is longer than that of the MST where "truth" was omitted. It is not possible 
to evaluate a single ensemble in this way, but given a collection of n en­
semble forecasts, a wide variety of systematic errors in ensemble formation 
could be identified. Histograms of Nover should follow the same statistics 
as the histograms of the Talagrand diagram, with a relative frequency ap-
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proaching N~l for each of the (N + 1) possible results (0,1,2, ... , N) and 
• 2 _ 1 N l' 6 vanance a - n (N+l)2' as ear ler. . 

FIGURE 2.6. A minimal spanning tree from the combined set of eight 
ensemble members (dark dots) and the verification (light dot) which 
is also on the attractor (and in this experiment "truth"). 

Four examples are shown in Figure 2.7. The upper-left panel shows an ac­
ceptably flat distribution when both the verification and ensemble members 
are chosen from the distribution in Figure 2.6. The upper-right distribution 
reflects that when the verification is randomly distributed within the frame 
of the figure, it is often too far from its nearest neighbor, leading to a small 
MST when it is omitted and thus an increasing histogram as shown. The 
lower-left panel shows the histogram which results when each verification 

6Note that this is the variance in a given bin over many realizations, because the 
relative frequency in each bin is not independent (they must sum one), the variance of 
the different bins in a single realization will differ from this, particularly when only a 
small number of bins are used. 
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FIGURE 2.7. Each panel shows a histogram of Nover , the number 
of MSTs omitting one ensemble member which were longer than the 
tree omitting the verification. In every case, the ensemble members 
were taken from the distribution shown in Figure 2.6. Histograms 
reflect when the verification was taken from: the same distribution 
(top left panel), a uniform distribution in two-dimensions (top right), 
a uniform distribution in one-dimension (lower left), and with inde­
pendently chosen x and y components, where the distribution of each 
component matched that shown in Figure 2.6 (lower right). 

is taken from a line lying near the attractor; this graph is easy to reject 
but its shape is less easy to interpret: Again the verification is too often 
too far from its nearest neighbor, but on those occasions when an ensemble 
member is chosen from that part of the attractor near the line on which the 
verification must lie, then the MST length of the tree omitting the verifica­
tion tends to fall in the middle range. Finally the lower-right panel shows 
the result when the variables are chosen independently, but each from the 
corresponding correct distribution: The x-component of the verification is 
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taken from a correct distribution of x values and the y-component of the 
verification is taken from the correct distribution of y values. In this case, 
both the Talagrand diagram for x and the Talagrand diagram for y would 
have been acceptable, but the MST test rejects it because the conditional 
distribution of x given y is incorrect. 

2.4.2 Relevance to Operational Forecasting 

Hopefully, the last few sections have made clear the difficulty of obtain­
ing perfect ensembles, even given a perfect model. This is without a doubt 
a concern when forecasting low-dimensional systems described by strange 
attractors; if the perfect ensemble is lacunar and the operational ensemble 
is not, then accurate probability forecasts will not be obtained. But is this 
really an issue in operational weather forecasting? In operational forecasts 
where the system is evolving on a lower-dimensional manifold or attractor 
(not low, just lower) and the structure of the manifold is not isotropic on 
the length scales resolved by the uncertainty in the analysis, these issues 
are important. For example, let the true state lie on a line and the analysis 
uncertainty correspond to a uniform distribution on a disk the line inter­
sects. In that case sampling the disk to form an ensemble consistent with 
the analysis uncertainty yields an ensemble very different from the perfect 
ensemble, which will only contain points from on both the disk and the 
line. Alternatively, if the manifold consisted of many parallel lines, effec­
tively filling the plane on length-scale defined by the radius of the disk, 
then the unconstrained ensembles might prove similar to perfect ensem­
bles, as long as they did not contain too many members. In general, these 
difficulties may prove less important in systems where the invariant mea­
sure is smooth and slowly varying in state space (or its projection into the 
model-state space is uniform), or where the manifold is so contorted on the 
scale of the observational uncertainty that it can be treated as uniform. 
There may also be cases where the resolution of the model is so coarse it 
makes the variations un-resolvable. 

Of course, it is also possible that the model error is so large that the 
forecasts are very wrong before the effects come into play. But in the lim­
its of accurate short-term prediction models and small uncertainty in the 
initial condition, these issues will prove relevant for both low-dimensional 
dynamical systems and high-dimensional weather models of NWP. 

Meteorologists tend to distinguish forecasts made with large models 
(NWP) from those made using less complicated empirical models and per­
sonal insight. While the NWP models get the most press, the simpler meth­
ods are sometimes quite good. This is most often true on small spatial scales 
and short forecast times (hours) at locations for which there are long his­
torical records [71], and on very long time scales (seasonal or greater) where 
the biases of NWP models may become evident [11,51]. It would be inter­
esting to contrast the performance of ensembles in these empirical models 
with those under NWP for, say, seasonal time scales. 
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2.5 Imperfect Model Scenarios 

Only hypothetical agents are allowed perfect models; we must deal with 
realistic models. This fact alters the philosophy of nonlinear forecasting 
as fundamentally as the acceptance of uncertainty in the initial condition. 
To see this, we introduce a model for the two-level system of the previous 
section which will playa role analogous to that played by weather models 
in relation to the Earth's atmosphere/ocean system. Keeping equations 2.1 
and 2.2 as the system, we will consider models of the form: 

dXi dt = -Xi-2Xi-i + Xi-iXi+i - Xi + Pi (x, t), i=1, m (2.3) 

These equations for the model variables x are structurally similar to 2.1 
and 2.2 which determined the large-scale x dynamics of the system, they 
differ in that the dynamics of the small-scale fast variables, the y, have 
been parameterized by the function P. A wide range of parameterizations 
may be entertained; options we have explored for Pi (x, t) include: 

ll!o 
ll!o + ll!lXi 
ll!o+a·x 

Hi (x) 
H2 (x, i~) 

LLDobs 
'Yi Pi (x, t - 1) + N(O, 'Yo) 

constant 
linear 

m-linear 
nonlocal1 
nonlocal2 

lID 
AR(1) 

These parameterizations range from simple variations on linear models 
(a constant, a linear parameterization based on only the local variable Xi, 

a linearization based on all m components7 of x) through nonlinear vari­
ations suggested by prediction studies in low-dimensional nonlinear dy­
namical systems [55, 17, 13, 27, 2, 1] (here Hi is nonlinear and nonlocal 
in physical space, while H2 is also nonlocal in time) and finally to simple 
stochastic parameterizations (either choosing a value for Pi at random from 
the observed historical forcing or fitting an autoregressive model to those 
observations and using that AR model). 

One property each of these various parameterizations share is that they 
are wrong: Given that x E Rm while (x, y) E Rm(n+1) , there is, in generals, 

7If the XiS are interpreted as being distributed in physical space, then this last model 
is nonlocal in physical space because it requires input from other grid points; it is a 
serious complication given the computational structure of current weather models, but 
it may prove worth the difficulty of implementation as the spatial resolution of those 
models improves. 

BOfcourse the inclusion ofparameterizations HI and H2 was motivated by our knowl­
edge [54] that if the attractor is restricted to a manifold of dimension Q and the param­
eterization is evaluated only for states on the attractor, then perfect parameterizations 
of the form HI and H2 (almost certainly) exist if 2Q < m or Q < m, respectively. 
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no perfect model with the form of Equations 2.3 and thus no perfect en­
semble. Each model will have one distribution from which ensembles may 
be drawn which will verify at one day; and a different distribution yielding 
ensembles which will verify at two days, and so on. Even these distribu­
tions will vary from model to model. The forecast quality of each of these 
models will be discussed elsewhere; the point of introducing them here is to 
consider the question of what to do with them: Should one search for the 
best model? Consider an ensemble over models? Or something even more 
radical? And what is the aim of ensemble forecasting in this context? 

We start with an easier question: What is the correct value for 0:0 in the 
constant parameterization? An obvious choice is 0:0 = a where 

( J) _ hxc_ 
0:= F--"y·· - b L...J J,' , 

;=1 it 

(2.4) 

that is, the average value of the forcing term where the average is taken 
over the invariant measure of the true system. But in a nonlinear system, 
this value has no special claim to optimality; why not take the value which 
minimizes the one-step forecast error? Or that minimizes the two-step fore­
cast error? Or that yields the longest mean t-shadowing time? Or that best 
reproduces the invariant measure of the true attractor projected into the 
model-state space [41]? The model-state space differs from the state space, 
x # x even if both variables are called x. Thus the correct method for 
determining the free parameters in the imperfect models depends on the 
goal of the forecaster. There need be no unique set of "true" parameter 
values; standing water need not at freeze at exactly zero degrees C in a 
good weather model. 

In a perfect model, there is a unique perfect ensemble corresponding to 
all potential states of the system, each weighted by its probability given 
the observations. In an imperfect model no perfect ensembles exist, and 
it is doubtful whether a unique optimal ensemble is well-defined for the 
same reasons that optimal parameters are not. None of these models will 
t-shadow indefinitely; as we get more data we will find (almost certainly) 
that the probability of the data given the model goes to zero; not just for 
these particular models, but for every model in the model class(es) under 
consideration. Although it is not clear if there is a natural definition of the 
best model, at least on time scales much less than the recurrence time, it 
does seem likely that an ensemble over models will outperform the best 
model for most reasonable definitions of "best." 

There is no simple stochastic fix. While adding a random component to 
a deterministic model may imply that a trajectory which stays near the 
verification exists, such a trajectory cannot be said to t-shadow unless the 
random innovations required are consistent with the source of stochasticity 
specified by the model. For the AR parameterization, the innovations must 
be consistent (at some confidence level) with Ll.D. drawn from an a priori 
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specified Gaussian distribution. When model trajectories are restricted to 
remain on an unspecified manifold, the construction of stochastic terms 
which respect this constraint appears nontrivial. In practice, the stochastic 
models we have explored in this context are consistently over-dispersive in 
model-state space. 

x,(t) 

-8 '----'-----'--
32 36 40 44 

FIGURE 2.8. The trajectory of Figure 2.2, this time showing truth 
(solid) and three forecasts of four imperfect models: Linear (dark 
dotted), constant (light dotted), lID (dark dashed), and ARl (light 
dashed). At each of the circles an ensemble of model trajectories is 
initiated using the exact values of X, one trajectory for each model. 

Forecast ensembles over models are shown in Figure 2.8; here there is no 
observational uncertainty when the model is initialized: each initial condi­
tion is exact (i.e., the analysis corresponds to the true state projected into 
the model's state space). Because each of the individual models is wrong, 
the PDF will be incorrect; furthermore there need be no initial condition for 
any imperfect model which will t-shadow for the duration of the forecast. 
Finally, no analog of the perfect ensemble exists because an arbitrarily good 
weather model can have a horrid climatology. No model ensemble scheme 
will verify accountably, nor can a level of accuracy can be determined a 
priori which will guarantee a bound on the uncertainty of the forecast at a 
fixed future time. The only option for an accountable ensemble is to wait for 
physical analogs, as suggested by Lorenz [35] in terms of a single forecast; 
for daily weather, that may take some time. 

Of course, a forecast trajectory in the future need not be held to the 
same standards as analysis trajectory of the past. While an t-shadowing 
trajectory must exist for coherent variational assimilation, forecast models 
unable to produce an t-shadow trajectory may still be of great value. A less 
constrained notion of shadowing is required: ¢-shadowing. 
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2.5.1 ¢-Shadowing 

A model 4>-shadows for a time T.p if the model contains an initial condition, 
consistent with the initial observational uncertainty, which resembles the 
future closely enough for a forecaster: A ¢-shadow need only be useful. 
This differs from t-shadowing, for example, in that relatively large errors 
in the time of onset of a rain storm may be accepted (as long as a storm 
is forecast), or relatively small variations in the strength and location of 
spatially coherent structures may be acceptable (although these errors often 
result in huge contributions to the RMS error of a predicted field). The idea 
is to adopt an operationally relevant definition of what constitutes a useful 
forecast trajectory (see Murphy [44] for a discussion of what constitutes a 
good forecast); determining the median of the distribution of times T.p(X) 
over which a given model can 4>-shadow provides a bound on predictability 
beyond which the use of Monte Carlo ensembles is, at best, questionable. 
It is difficult to conceive of a useful purpose for ensemble forecasts beyond 
the time horizon over which the model can 4>-shadow: if there is no initial 
condition which will reflect the future even roughly, what can be gained 
from a distribution of such model-error-dominated trajectories? This only 
argues for the existence of a 4>-shadow; ideally the higher the probability 
of finding them, the more useful the model. 

Requiring a 4>-shadowing trajectory to exist is a much looser constraint 
than requiring a model to t-shadow. A moqel t-shadows for a time T£ if it 
contains a trajectory which is consistent with the observational uncertainty 
at all times t, 0 :s; t :s; T£. The tolerance is set by the uncertainty in the ob­
servations9 , and will be much more restrictive than just requiring a useful 
forecast [20, 56, 58]. If the observations are limited only by quantization 
uncertainty due to truncation, then to t-shadow a trajectory must fall into 
the quantization box corresponding to the observation at each observation 
time. For Gaussian uncertainties, some confidence level a must be cho­
sen. Experience indicates that shadowing time is not very sensitive to this 
choice; at least in low-dimensional systems, once things go wrong, they go 
badly wrong rather quicklylO. Given two diffeomorphisms, Anosov [8] and 
Bowen [10] determined sufficient conditions to guarantee the existence of 
another type of shadowing, but this f-shadowing contrasts the trajectories 
of two well-defined mathematical systems; it is based on assumptions which 
make it irrelevant (although nevertheless comforting) when contrasting im-

9In real applications, of course, the real measurements are rarely equivalent to the 
variables in the model-state space; there is an entire field of endeavor dedicated to 
relating point wise physical measurements to grid point model variables and the relation 
of both to the three-dimensional fields they are taken to represent. On which natural 
length scale can one coherently define wind or identify it with the velocity variables 
evolved within a model? 

lONote, however, that the sci-fi models of Judd Small and Mees [27] in this volume 
address this problem explicitly. 
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perfect models and real data (see Gilmour [20] for additional discussion). 
In practice, what we require are more vague but still quantifiable shadows, 
more along the lines of Eddington's use of the term [15]. Finding shadows 
is not so enlightening as realizing when they do not exist. 

2.5.2 Bounding Boxes 
Examining worst-case scenarios is another common goal in weather fore­
casting. One approach would be to use the ensemble to define a region of 
model-state space within which the future is likely to falll!. The obvious 
method (see Figure 2.9) is to construct a convex hull from the ensemble 
members, and this is very useful in low-dimensional models. But inasmuch 
as it requires m + 1 points to define a convex hull in m dimensions, this 
approach is untenable with ensembles of about 102 members in a typical 
model where m ~ 107 . 

An alternative to the convex hull is the bounding box, which has the 
advantage that it requires only two points and a coordinate system, re­
gardless of the dimension of the model-state space. Consider a model on a 
spatial grid; at each grid point (for each variable) take the maximum value 
over all ensemble members; this co-dimension one plane is one "side" of 
the box, while the plane corresponding to minimum value forms the side 
opposite. Repeating this for all variables defines a volume of state space. 
Figure 2.9 uses the ensemble of Figure 2.6 to show both the convex hull 
(solid boundary) and bounding box (dotted boundary) defined by this en­
semble. Note that the verification (which is truth, in this case) falls just 
outside the bounding box, but because the ensemble members were drawn 
from the same distribution as truth, truth is no more likely to fall outside 
than any member of the ensemble. In cases where both are defined, the 
bounding box always has a greater volume than the convex hull, of course, 
and hence it provides a larger (Le., easier) net with which to bag the veri­
fication. We have not found this advantage to result in over-confidence in 
the model when the bounding box test is applied to forecasts of real data. 

In this scenario, it is straightforward to estimate the number of ensem­
ble members required to have, say, a 95% chance that truth falls within 
the bounding box defined by the ensemble. This can be done analytically 
when the distributions are Gaussian as a function of standard deviation 
and bias [29]. Indeed, we plan to use this result to estimate bias of oper­
ational NWP ensembles. Of course, adopting the spatial grid carries the 
added bonus that so long as the verification is within the bounding box 
of the ensemble forecast, nothing unexpected can happen. The target here 
contains much less information than an accurate PDF forecast, but in the 
imperfect model scenario there is no accurate PDF to be had. 

11 More precisely, to define a region which will contain the verification at the Q level of 
confidence; ideally Q is 100% but finite ensembles make this unlikely even in the perfect 
model scenario. 
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FIGURE 2.9. The convex hull (solid boundary) and bounding box 
(dotted boundary) for the ensemble of Figure 2.6. 

2.5.3 Applications to Climate 
Bounding boxes may also be of use in climate modeling. Typically one does 
not expect to find a cfrshadow in the climate model context where the goal 
is to reproduce the general statistics of likely states rather than a particular 
forecast trajectory. Lorenz [36] refers to this goal of climate modeling as 
predictions of the second kind. Yet the atmospheres of climate models may 
still be quite sensitive to initial condition, even when forced by observed sea 
surface temperatures (SST). Further, climate models are often run in an 
ensemble mode over historical periods, say, an ensemble of fifty-year runs 
where each member is started from the analysis corresponding to a different 
day in 1950. While one should not expect to run large enough ensembles 
to produce even a cfrshadow over a fifty-year period, it is reasonable to ask 
how large an ensemble would be required so that the analysis (or reanaly-
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sis [30]) for January 15, 1970 falls within the bounding box of all climate 
states of all ensemble members taken on all days between, say, January 1 
and January 31, 1970. The point is that if reality (or even the analysis) 
consistently falls outside this bounding box, then the (dynamical) statistics 
of the climate model would be placed in doubt. Identifying specific histor­
ical periods where the model consistently fell outside the bounding box 
might aid in the identification of physical processes (active during those 
periods) which were insufficiently reproduced in the model. Over the his­
torical record, one might hope for return of skill in the climate ensemble, 
inasmuch as each member is guided by the observed SSTs; in a free-running 
fully coupled model the minimum size of the ensemble required to obtain a 
bounding box would again be of interest in estimating the additional length 
of time (or number of ensemble members) that would have to be run to 
explore the additional degrees of freedom released. 

Both the MST and the bounding box can be used to investigate natural 
variability of the climate system, either over time or in establishing whether 
the January 1 anomalies, variance adjusted, are the same in distribution 
as those of August 1. Given the short duration of many climate records, it 
is not uncommon to combine data from different seasons, once each data 
point has been adjusted to "remove seasonality." Examining the relative 
frequency with which the data from one calendar day fall into the bounding 
box defined by data from a day some months later, or the MST equivalent, 
would provide a useful check on whether simply adjusting the mean and 
variance is sufficient. 

2.6 Multimodel CPT Ensembles 

In this section a new method of truly multi-model ensemble forecasting is 
presented which attempts to take the limitations discussed earlier seriously. 
If we accept that each of our models is incorrect, that the "correct initial 
PDF" is as ill-defined as the "true initial state", then we can construct a 
multi-model forecasting scheme which will outperform any individual model 
in terms of both ¢-shadowing and the duration for which the verification 
remains within the bounding box defined by the ensemble members, at 
least in the limit of huge ensembles. 

The simplest reaction to having M models is to identify the best one, 
discard the others, and compute M x N member ensembles under this 
single "best" model. If the models are of comparable quality, then it is 
likely that different models will tend to do better in different regions of 
state space (i.e., on different days), due to variations in the particular 
processes that are important locally. In practice, there is rarely enough 
data to identify which will be the best on a given day, and a reasonable 
alternative is to compute M, N-member ensembles, one ensemble under 
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each model. Note that neither approach can produce a ¢-shadow longer 
than the longest ¢-shadow found within the individual models. If the M 
models really do have independent shortcomings (ideally, if they fail to 
t-shadow in different regions of state space), then it is possible to cross 
pollinate trajectories between models in order to obtain truly multi-model 
trajectories that explore important regions of state space the individual 
models just can't reach. This cross pollination in time (CPT) approach 
can outperform both of the proceeding methods. 

The basic CPT approach first takes the M N-member ensemble forecasts 
made under each model and combines them to form one large set of N x M 
points in the model-state space. This large ensemble is then pruned back 
to N member states, attempting to maintain a large bounding box while 
deleting one member in each pair of relatively close ensemble members 
(the details of the PDF are wrong anyway). These N conditions are then 
propagated forward under each of the M models and so on. 

Inasmuch as the CPT ensemble model implicitly contains all trajectories 
of each of its constituent models, CPT can ¢-shadow as long as or longer 
than any of the individual models. Similarly, in the limit of large ensembles, 
or in the absence of pruning, a CPT bounding box will contain the bounding 
box of the best model; it is expected that given a good pruning scheme, 
the bounding box of the CPT ensemble will be more likely to contain 
the verification over a longer duration than those of an M x N member 
ensemble under the "best" model. While the optimal pruning scheme is 
still an object of research, the simple approach of taking the nearest pair 
of points and deleting the point with the smallest second nearest neighbor 
distance, has been found to work fairly well in some simple examples. Note 
that the aim of pruning is quite different from that of resampling from an 
estimated PDF [9]. 

This approach assumes that either all the models share the same model­
state space, or the one-to-one maps that link their individual state spaces 
exist; neither needs to be the case in weather forecasting. And, of course, 
when parameterizations of physical processes are involved one must con­
sider the time scale of pruning; for example, we would wish not to switch 
between parameterizations in the midst of growing a cloud. But at least the 
preliminary step of being able to run a collection of operational models on 
the same computer system has been achieved at the European Centre for 
Medium-Range Weather Forecasting (ECMWF). Switching between mod­
els is a nontrivial process, and some may find it objectionable in principle 
as there is no longer a "set of equations" being solved, although one might 
argue that the process is, in fact, solving a rather large iterated function 
system. Ideally, future research will resolve these issues while retaining a 
closed form for the model if not for the solutions. But it is interesting to 
note that physics of late has gotten along rather well without always build­
ing the mechanical model Lord Kelvin [33] held to be the prerequisite for 
understanding a hundred years ago. Perchance the twentieth century will 
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be remembered as the "Century of the Equation." 

2.7 Discussion 

Chaotic systems are often thought to be unpredictable because they have 
the property of on-average exponential growth of infinitesimal uncertain­
ties, at least when the (geometric) average is taken over a trajectory which 
explores the entire attractor. Yet this "exponential on-average" growth 
places no bounds on (i) the growth of a finite uncertainty, or (ii) predictabil­
ity over any finite time horizon, or (iii) the average uncertainty doubling 
time. The dynamics of uncertainty are much richer than simple uniform 
exponential growth [47, 60]. Lyapunov exponents are only effective rates, 
nothing need actually grow like 100 eAt . 

Of course simple mathematical models of chaos, designed with tractabil­
ity in mind, tend to have fairly uniform growth rates (by construction); this 
can yield a very biased picture of predictability. In the Baker's Map [49] 
for example, the fastest uncertainty doubling time of each initial condition 
is one iteration and the Lyapunov exponent is equal to one bit per itera­
tion. Yet within the family of Baker's Apprentice Maps [59], all of which 
have a Lyapunov exponent greater than one, there are maps with arbi­
trarily large average doubling times [57]. Even in the Lorenz 1963 model, 
there are regions within which all perturbations must shrink for a (finite) 
time [60, 46]. Vannitsem and Nicolis [67] investigate these inhomogeneities 
in an atmospheric model. 

Only in systems where the dynamics linearized about a trajectory accu­
rately reflect the true nonlinear dynamics at macroscopic scales of interest 
do Lyapunov exponents have any impact on predictability. As long as uncer­
tainty stays infinitesimal, it cannot limit predictability, and once it is finite 
the Lyapunov exponents need not provide a reliable guide for uncertainty 
growth. Whether locally defined [3, 70] or global [14], Lyapunovexponents 
are only effective rates, and even when infinitesimal perturbations really 
do grow exponentially in time, the uncertainty growth may saturate at an 
amplitude much less than the diameter of the attractor. This is clear from 
the macroscopic structure visible in Figure 2.4. In general, there need not 
be a "Lyapunov horizon" . 

Orrell contrasts forecast uncertainty growth due to chaos with that due 
to model error [48]. Assume for the moment that the model is perfect and 
that forecast error does grow as 

(2.5) 

In this case, the value of (€(t)) at any fixed t can be made small by taking 
a sufficiently small 100. If the model is not perfect, however, there will be a 
difference between the velocity of the model trajectory in the model-state 
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space and that of the system trajectory (projected into the model-state 
space). This difference remains even when EO = 0 lead to an initial error 
growth which is linear in time and thus (initially) greater than EoeAt . Thus 
for an imperfect model 

(E(t))=iJt (2.6) 

where the value iJ is the magnitude of this velocity difference averaged 
over the projection of the system's invariant measure into the model-state 
space12 . For an imperfect model, iJ > 0 and therefore the forecast uncer­
tainty due to model error will always dominate the forecast uncertainty due 
to chaos for sufficiently small EO. While "chaos" can make the error growth 
greater still, as EO -t 0, model error will dominate. Worse, it is not clear 
how to correct this with ensemble forecasts. 

Given a perfect model, one might construct a perfect ensemble; but even 
if the model structure is correct and only the values of model parameters 
are uncertain, accurate PDF forecasts seem beyond reach. One may sample 
the parameter space in a sensible way and construct a perfect ensemble for 
each realization, but the resulting ensemble PDF will not accurately reflect 
the likelihood of finding the properties of the future trajectory which will 
be observed. It is not obvious how to construct ensembles over a model 
class. 

Is the model class of deterministic systems too small? Perhaps [64], but it 
is not clear how to best introduce stochastic dynamics in structures where 
a strong deterministic nonlinear component is easily extracted; this is par­
ticularly the case when the deterministic dynamics are known to lie on a 
lower-dimensional manifold, the details of which are not known. Other con­
tributions in this volume [18, 19, 69] suggest a number of avenues. The op­
erative question is how to best model the phenomenon: the issue of whether 
a real system "really is" deterministic or stochastic cannot be resolved from 
real data [39, 57]. Determining how to best model a phenomenon turns on 
the issue of how we decide to evaluate our models. This paper is intended 
to stimulate debate on sane methods of model evaluation; there may be no 
best. 

Is an accountable probability forecast a viable goal? Perhaps not. The 
rank histogram evaluation techniques of Section 2.4 assume that "truth" is 
indistinguishable from the members of the ensemble and that all are drawn 
from the same distribution. This is never the case in practice, where we 
begin with uncertainty over the initial condition, the boundary condition, 
the parameter, and even the model structure. The verification is never "just 
another member" drawn from this distribution. Perhaps the one thing we 
are certain of is that our model class is incorrect: The very structure of 
our models will change with additional observations. This eventuality need 

120rrell (48) illustrates this relationship in the Lorenz 1996 system, deriving the vari­
ation in vasa function of the parameter F in equation 2.1. 
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not stop us from decreasing our uncertainty and refining our probability 
forecasts, but it will prevent our forecast PDF from producing flat rank 
histograms. 

2.8 Summary 

Chaos poses no difficulties for LaPlace's demon [31], whose abilities were 
such that given one exact snapshot of a dynamical system, a perfect fore­
cast of the future can be calculated. Such a forecast is beyond the powers 
of a modern incarnation with the same abilities but without access to ex­
act observations; even given imperfect measurements which stretch back 
into the distant past, our agent cannot determine the current state of the 
system from among a set of indistinguishable states. It can, however, fore­
see the probability of any eventuality. For mortals with imperfect models, 
even the foresight of exact relative probabilities is lost; we must expect to 
be surprised, occasionally, as there will be events which cannot even be 
foreshadowed. 

As has long been recognized, uncertainty in the initial condition limits 
the utility of single deterministic forecasts of nonlinear systems like the 
Earth's atmosphere. If this uncertainty is accepted, then internal consis­
tency requires that an ensemble of initial conditions, each consistent with 
the observations, be evolved forward under the model. Methods for se­
lecting these initial conditions [38] were advanced by Lorenz in 1965 and 
competing operational approaches dating back to the early 90's are used 
in European and American weather forecasting centers. Assuming that the 
model physics is perfect, these methods aim at a weighted selection of the 
perfect ensemble [56, 57], where the weighting scheme depends on the aim 
of the forecaster. 

Even under ideal conditions, uncertainty in the initial condition also lim­
its the utility of single deterministic predictions of deterministic nonlinear 
systems; in practice ensembles of initial conditions are forecast with the 
dual aims of (1) estimating the reliability of that forecast and (2) esti­
mating some aspects of the probability density function (PDF). Current 
rank histogram verification techniques are limited to scalar forecasts; Sec­
tion 2.4.1 introduced a method using minimum spanning trees to allow 
computationally efficient verification in higher-dimensional spaces, includ­
ing the 107 -dimensional weather model forecasts. Given a perfect model, 
one may construct an accountable ensemble forecast system by sampling 
from a perfect ensemble; this scheme can yield accurate probability den­
sity estimates. In general, no perfect ensembles exist for imperfect models. 
If accountable estimates of the forecast PDF are unobtainable, we should 
question whether current skill scores provide a reliable guide for model 
improvement. 

Ensemble prediction systems can consider Monte Carlo ensembles over 
initial conditions, parameters and model structure. If accurate probability 
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forecasts prove untenable, what viable aims exist? Two were discussed in 
Section 2.5: obtaining at least one good forecast trajectory (a ¢-shadow) 
and constructing an ensemble whose bounding box is likely to contain the 
verification. In the long term, the bounding box of a large ensemble will 
evolve toward that of the climatology, containing all the observations and 
hence almost certainly containing whatever it is we are attempting to fore­
cast; ideally we wish the box to grow as slowly as possible, but no slower. 

Several shades of shadowing trajectory have been distinguished, and each 
has applications in operational forecasting. The distribution of t-shadowing 
times reflects the longest time scales over which there exists a model trajec­
tory consistent with the observational uncertainties. How long can opera­
tional weather models t-shadow? Inasmuch as variational data assimilation 
assumes t-shadows exist and may degrade the analysis if there is no t­

shadow over the entire assimilation window, knowledge of these time scales 
is of operational value, because t-shadowing times would reveal limits to 
variational assimilation. ¢-shadows need not stay so near the verification; 
indeed some practitioners at ECMWF already look for something similar to 
a ¢-shadow when evaluating operational forecasts (Tim Palmer, personal 
communication). Their real value may come from examining historical data: 
If due to model error no useful forecast exists beyond some time scale, then 
what can model forecasts (ensemble or otherwise) possibly tell us regarding 
times beyond that horizon? This predictability horizon, the time scales at 
which the contribution of model error to the forecast is large compared 
to the natural variability of the system, is independent of time scales de­
rived from Lyapunov exponents. Sometimes greater, sometimes not. But 
the question is no longer the classic issue of not being able to find the 
correct initial condition; it is now an issue of there being no correct initial 
condition to find. 

Accepting the fact that an accurate PDF cannot be obtained allows con­
sideration of other methods of evaluation. Two options are to examine the 
distribution of ¢-shadowing times of each model and to estimate the en­
semble sizes required to obtain an ensemble bounding box which contains 
the verification at various lead times. A somewhat more drastic result fol­
lows from accepting the ensemble paradigm completely and considering 
not only ensembles over trajectories from different models, but even in­
dividual trajectories which are evaluated using multiple models, the CPT 
approach introduced in Section 2.6 being a naive first step in this direction. 
Nevertheless, CPT multi-model ensembles can outperform any individual 
model in terms of both ¢-shadowing and producing a good bounding box, 
while unashamedly producing an ensemble mean that does not resemble 
the verification, and an MST rank histogram that is inconsistent with an 
accurate probability forecast. Accepting the limits which exist even in ideal 
scenarios will force us to reevaluate the aims and evaluation of operational 
forecasting. Failure to do so is madness: There is no sane approach to an 
ill-posed goal other than to alter the object of the exercise. 
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Chapter 3 

Achieving Good Nonlinear 
Models: 
Keep It Simple, Vary the 
Embedding, 
and Get the Dynamics Right 
Kevin Judd! 
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Alistair I. Mees 

ABSTRACT This chapter presents an overview of three fundamental no­
tions in modeling nonlinear dynamical systems from time series. They are 
the use of the minimum description length (MDL) principle in model se­
lection; the use of variable embedding and cylindrical basis models to build 
models that better capture the dynamics; and the use of 1J1<J>-models to elim­
inate systematic error when making long-term prediction. Their purposes 
are to separate what can be modeled ("determinism") from what cannot 
("noise"); to capture varying time-scales and different geometric features 
in embedding space; and to make models that have good long-term dynamical 
behavior as well as short-term predictive ability. 

3.1 Introduction 

If William of Ockham were alive today and were asked what to keep in 
mind when constructing a mathematical model of a dynamical system, he 
might answer, "Keep it simple ... " . The danger of having an overly complex 
model is that it might display dynamical behavior totally unlike the behav­
ior displayed by the system. One needs to adjust the complexity of a model 
so it can display most of the observed behavior of the system, while mini­
mizing the potential of the model misbehaving. Our suggested method for 
doing this is to apply the principle of minimum description length (MDL), 
which is derived from information theory. We have found that MDL mod­
els capture dynamics better than models built without taking account of 
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information theoretic aspects. 
Constructing or fitting a model also implies working within some re­

stricted model class. So another related issue is what class of models has 
sufficient complexity to capture the dynamical behavior of a large variety 
of systems. What we suggest is unusual. For some time it has been stan­
dard practice to first embed a time series (a Takens embedding), then to 
build a model (say, a radial basis model) in the embedded space. We in­
troduce the notion of a variable embedding, which can be thought of as an 
embedding that changes with the state of the system. The equivalent of 
a radial basis model in a variable embedding scheme is a cylindrical basis 
model. The authors have found that variable embedding and cylindrical 
basis models capture dynamics better than standard uniform embedding 
and radial basis models. In short, cylinders stack up better than spheres. 

A main focus in this chapter is the capturing of the dynamics of the sys­
tem in a model, since this is a better measure of success than just prediction 
error. However, despite one's best efforts, a model will not be perfect and 
may still make systematic errors. The most likely cause of systematic er­
rors (assuming everything else is done well) is that the "true" system does 
not lie in the model class one has chosen; that is, there is no model in the 
model class that has exactly the dynamics of the system. This most clearly 
shows itself when making long-term predictions. Even here there is some­
thing to be done; we suggest a simple technique of stacking models (called 
lI1cJ>-models [6]) that correct systematic errors and allow better long-term 
prediction with little additional effort. 

3.2 Minimum Description Length Models: 
Keep It Simple 

The minimum description length principle is an application of Ockham's 
Razor in a modeling context. It defines the best model for a time series to 
be the one that achieves the most concise description of the data. To under­
stand how the principle works, suppose you (the "sender") have collected 
an experimental time series x(t), t = 1, ... ,n measured to an accuracy 
of (say) 12 bits and you wish to communicate this data to a colleague 
(the "recipient"). You could send the raw data. Alternatively, you could 
construct a dynamical model from the data that enables the recipient to 
predict a value of x(t) from earlier values. If you and your colleague have 
previously agreed on a class of models, then you could communicate the 
data by sending the parameters of a model, enough initial data to start 
predicting future values of the time series, and the errors between the true 
time series and the values predicted by the model. Given this information, 
the recipient can reconstruct the experimental data to its full measured 
accuracy. An important point is that the parameters and errors need only 
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be specified to finite accuracy. Furthermore, if the model is good, then the 
total number of bits required to transmit parameters, initial values and 
errors will be less than the number of bits of raw data. 

In practice the minimum description length principle requires calculating 
an approximation to the description length of the time series and model, 
which is effectively the number of bits required to transmit the model plus 
the number of bits required to transmit the errors. (The initial conditions 
are included in the parameter count, although their effect only matters 
when we are comparing different embedding dimensions.) Under fairly gen­
eral assumptions one can write: 

(Description length) ~ 

(number of data) x log (mean square prediction error) 

+ (penalty for number and accuracy of parameters) . 

As the number of parameters in a model increases the (in-sample) predic­
tion errors decrease, but eventually, the penalty for introducing another 
parameter outweighs the benefit it has in reducing (the in-sample) predic­
tion errors. The model that attains the minimum description length is the 
optimal model within the class of models considered. We do not have space 
here to discuss in detail why this is successful; extensive discussions are to 
be found elsewhere [10, 4, 14]. 

In special model classes, explicit approximations to the description length 
can be calculated. A particularly useful class of parameterized nonlinear 
autoregressive model consists of those we call pseudo-linear models, also 
called general linear models, which have the form 

m 

x(t + 1) (3.1) 
i=l 

v(t) (x(t),x(t - 1), ... ,x(t - d)) (3.2) 

for some selection of nonlinear functions Ii, unknown parameters Ai and 
unknown independent and identically distributed random variates ft. (Ob­
serve in passing that choosing v(t) amounts to using a particular embed­
ding.) Define 

y 

A 

(h(v(l)), ... ,h(v(n)))T,i = 1, ... ,m, 

(x(l), ... ,x(n))T, 

(Al, ... ,Amf, 

(3.3) 

(3.4) 

(3.5) 

and let V be the matrix whose columns are Vi, i = 1, ... , m. If the ft are 
assumed to be Gaussian and A has been chosen to minimize the sum of 
squares of the prediction errors e = Y - VA, then [4] the description length 
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is bounded by 

(3.6) 

where k is the number of non-zero components of A, 'Y is related to the 
scale of the data (for example, a constant used to scale the observations to 
lie in the unit interval) and 8 solves [Q8]j = 1/8j where 

Q = VTV/eTe 

and V is composed of just those columns of V that correspond to nonzero 
elements of A. The variables 8 can be interpreted as the relative precision 
to which the parameters A are specified. 

The attraction of pseudo-linear models is that the parameters A are easily 
calculated, because the sum of squares of the prediction errors e = y - V A 
can be minimized efficiently using singular value decomposition or any of its 
many equivalents. What makes general pseudo-linear models different from, 
and more powerful than, special cases such as linear or global polynomial 
models, is that the basis functions Ii can be chosen in many ways. 

The critical problem is how to select the basis functions Ii- In general 
these will be nonlinear functions depending on various additional param­
eters that should be optimized over. Unfortunately, this optimization is 
nonlinear and so is in general difficult, slow and prone to capture by local 
minima. (This problem is well known in modeling via single-layer neural 
nets, a particular pseudo-linear approach.) Instead of optimizing the param­
eters of a few basis functions, we can generate many fixed basis functions, 
not only at the start but also adaptively as the model building progresses, 
and select a subset of them that optimizes the description length. 

This alternative scheme requires an efficient combinatorial optimization 
method to select an optimal subset of the basis functions. It would appear 
that we have made the problem worse, because combinatorial optimization 
is notoriously hard, but in fact the following subset selection algorithm, 
described in detail elsewhere [4] is very successful in most of the appli­
cations we have considered. The algorithm selects subsets that are near­
optimal according to the description length criterion and hence produces 
good pseudo-linear models. It operates by adding and removing candidate 
functions from a given basis set according to a local optimality criterion, 
and accepting a set of given size as optimal if the same candidate is re­
moved as was just added. The size of the basis set is increased until the 
description length criterion says it has become too large, and then the best 
set found so far is selected as the overall optimum. 

In the algorithm, B represents any set of k < m indices in {I, ... , m}. We 
write VB for the n x k matrix formed from the columns of V with indices 
in B, AB for the least squares solution to y = VBA, and eB = Y - VBAB. 
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Algorithm 1 

1. Normalize the columns of V to have unit length. 

2. Let So = (~ - 1) In(yT y / n ) + ! + In')' (the description length of the 
raw data). 

3. Let B = {j} where Vj is the column of V such that Ilt? yl is maxi­
mum (this selects as the first basis function the one that most closely 
matches the data y; note that AB = ~Ty/VIVj in this case). 

4. Let J.t = VT eB and i be the index of the component of J.t with maxi­
mum absolute value. Let B' = B U {i} (the components ofthe vector 
J.t measure how closely each of the basis functions not currently in use 
will match the error of the current model; extend the current model 
with the basis function that best matches the current error). 

5. Calculate AB', Let 0 be the index in B' corresponding to the compo­
nent of AB' with smallest absolute value (here 0 is the index of the 
basis function that makes the smallest contribution to the current 
extended model). 

6. If i =F 0, then put B = B' \ {o} and go to step 4. Otherwise, set 
B = B'. (Throw out the "worst" basis function 0 if it is not i, the 
last one we brought in; then go back and try again. Otherwise, the 
extended basis B' is taken to be the "locally" optimal basis.) 

7. Define Bk = B, where k = IBI. Find 8 such that (VlvB8)j = I/8j for 

each j = {I, ... , k} and calculate Sk = (~ - 1) In e:e + (k + I)(! + 
k ~ 

lwy) - L:j =1In8j . (At this stage we have found the best model of 
size k that can be built from the best model of size k - 1 by "bringing 
in the best and throwing out the worst.") 

8. If Sk < Sk-l, then go to step 4. (Continue until the description length 
stops decreasing.) 

9. Take the basis Bk such that Sk is minimum as the optimal model. 

3.3 Variable Embedding: Cylinders Stack Up 
Better than Spheres 

For some time it has been a standard practice to embed a time series (a 
Takens embedding by delay reconstruction), then build a model (say, a 
radial basis model) in the embedded space. Unfortunately, there are many 
types of dynamical behavior that are not modeled well by this technique. 
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3.3.1 Uniform Embedding 

Given a time series x(t) E IR one might form an embedded time series 

z(t) = (x(t), x(t - i), ... , x(t - (d - 1)£)) E IRd 

where £ is called the lag. In anticipation of our discussion we will refer to this 
embedding as a uniform embedding. The lag is introduced to improve the 
observability, for example, of noisy time series. The lag is chosen to optimize 
the spread of the embedded time series without confusing the dynamics 
and to obtain an embedding that is independent of the sampling rate (of an 
oversampled continuous time system, for example). There are two principal 
methods of choosing the lag: the first zero of the autocorrelation function [1] 
and the minimum of the mutual information [3]. 

Uniform embeddings for modeling purposes are at their most effective 
when embedding a time series with a single dominant periodicity or recur­
rence time. Both of the above mentioned methods for calculating lags give 
similar lags for such time series and the lag is approximately one-quarter of 
the dominant period. For this lag the embedded time series is ring-shaped; 
shorter and longer lags result in elliptical rings, or-if the lags are too far 
from a good value-a scrambled mess. A good lag in this case keeps states 
that correspond to similar phases close together and anti-phase states as 
far apart as possible. Uniform embeddings are quite suitable for classic 
chaotic systems such the Rossler and Lorenz systems, which have a single 
dominant periodicity or recurrence time. 

3.3.2 Nonuniform Embedding 

Uniform embeddings can fail when there are multiple strong periodicities 
with differing time scales. For example, consider a quasi-periodic time se­
ries with differing frequency components or with very close frequencies that 
lead to a "carrier" frequency and a "modulation" of differing period. Fig­
ure 3.1 shows three time series, from different systems, that all possess 
short and long period recurrences. Uniform embedding fails for such time 
series because a short lag would be optimal for the high-frequency compo­
nent and a long lag would be optimal for the low-frequency components 
and modulation, while a compromise lag is inadequate for both time scales. 

One way to avoid this problem is to use nonuniform embedding strategies. 
For example, with the sunspot time series one would most likely choose 
to use the uniform embedding (x(t),x(t - 3),x(t - 6)), but the authors 
find that the embedding (x(t), x(t - 2), x(t - 8)) gives better results when 
constructing radial basis models [4, 5]. Note how compared to the uniform 
embedding the nonuniform embedding has two components that are more 
closely spaced and yet a broader window overall; alternatively, one could 
say the uniform embedding is a compromise between a shorter lag and a 
wider window. 
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FIGURE 3.1. Three time series that have multiple, strong periodici­
ties: (a) the average annual sunspot number; (b) a sampling at 50Hz of 
a measurement that is proportional to the cross-sectional area of the 
abdomen of a child during quiet sleep: the phenomenon observed here 
is called "periodic breathing"; (c) a 12kHz recording of the Japanese 
vowel [a]. 

One can use a nonuniform embedding in any situation where one uses a 
uniform embedding; there is just a little additional bookkeeping required 
to ensure enough of the past time series is retained and that correct ob­
servations are used to make each forward prediction. Of course, to make 
long-term predictions or simulations of the dynamics, the prediction step 
must be a divisor of all the lags. 

3.3.3 Variable Embedding 

Going a step further, we suggest it is often advantageous to vary the em­
bedding strategy with the state of the system. To visualize why it is useful 
to do this, consider modeling the Lorenz system with its butterfly-shaped 
attractor. When the system state is out on the "wings" of the attractor, 
a two-dimensional embedding is sufficient to model and predict motions­
one would require a lot of very high-quality data to discern the thickness 
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of these wings. However, near the origin where the crossover of the wings 
occurs, a three-dimensional embedding is essential. One could imagine con­
structing a perfectly adequate model that does not use a global embedding 
but rather uses appropriate local embeddings as the system state varies. 

If one uses a variable embedding, then the processes of embedding and 
modeling are merged into one process with a single optimization goal of 
finding a compact and accurate model. An example of this, and more gener­
ally how variable embedding can be implemented, is the class of cylindrical 
basis models. 

3.3.4 Cylindrical Basis Models 

The standard radial basis model [8, 2, 7] is pseudo-linear, with each of the 
nonlinear functions depending only on the radial distance from a certain 
point called a center. That is, in the standard pseudo-linear model of equa­
tion 3.1, the functions have the form h(z) = ¢(Iz - cil/ri) for suitably 
chosen centers Ci, radii ri and function ¢. If the function ¢ is decreasing, 
we can think of the action of each fi localized on a ball. If we ignore some 
coordinates (as a result of a local nonuniform embedding) then the func­
tions act locally on cylinders, instead of radially symmetric spheres, so a 
reasonable name is cylindrical basis models. To construct such models we 
must define the various cylinders. 

A cylinder is defined by a center Ci, a radius ri and a lag vector U\, £2, ... , 
£k). The lag vector corresponds to a projection P such that 

The basis functions 
(3.7) 

with decreasing ¢, have the effect of localizing the embedding in a cylin­
drical neighborhood of Ci, where the axis of the cylinder is parallel to the 
components of v(t) that have been projected out, that is, the lags that are 
missing in P(v(t)). To simplify the notation we have introduced a redun­
dancy in (3.7), because the center Ci is unique only up to the projection Pi. 
A very simple example of a cylindrical basis function given (x, y, z) E 1R3 a 
Gaussian radial basis function with center (2, -1,5) and radius 3 would be 

Whereas given a projection P(x,y,z) = (x,z) there is a cylindrical basis 
function 

f(x, y, z) = e((x-2)2+(Z-5)2)/18. 

To construct a cylindrical basis model using the selection methods we 
have described, one would generate a large set of basis functions (3.7), with 
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decreasing function ¢, having different centers Ci, radii ri and projections Pi 

(which define the lag vectors). There is an obvious combinatorial explosion 
here because for each potential center there are 2d - 1 possible lag vectors. 
This could be tackled using genetic algorithms or simulated annealing, but 
we have found that a relatively simple adaptation of our earlier algorithms 
appears to avoid the worst of this explosion. 

Algorithm 2 

1. Let S represent an initial set of candidate basis functions. These 
functions are likely to be generated randomly but possibly using some 
additional information to choose likely candidates for selection, for 
example, a selection weighted by the errors of the current best model. 
One good way to start is to generate centers and radii as usual and 
then apply the reduced autoregressive method locally in the region 
around each center to get a local lag vector. This lag vector is only 
an initial guess; it will typically be thinned later in the process. 

2. Apply Algorithm 1 to determine the best model using the basis func­
tions of S. Let S* be the selected basis functions. 

3. If desired, locally optimize S* by tuning its parameters using some 
standard method such as the Levenberg-Marquardt algorithm [9]. 

4. Generate a new set of candidate basis functions S that includes S*. 
The new candidate functions might be chosen with additional knowl­
edge gained from the selection of S*. (For example, we might try 
simplifying cylinders by applying addition projections, randomly per­
turbing selected cylinders, or putting new cylinders near where the 
model makes its worst predictions.) 

5. Return to step 2, and continue to do so while S* is changing (signif­
icantly). 

The authors have found that cylindrical basis models are much more 
successful at capturing the dynamics of a system than radial basis mod­
els [5, 11, 12]. 

3.4 Systematic Errors: w<I>-Models 

One of the important reasons for wanting to model the dynamics correctly 
is for making long-term predictions. One can obtain longer-term predictions 
from a short-term predictor by simply iterating the predictor. Such longer­
term predictions are limited in their accuracy by observational and dynamic 
noise and the sensitivity to initial conditions of the dynamical system, but 
iterated predictors are also limited by systematic errors in the short-term 
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predictor, which can arise from under- or overfitting data, or from the 
model class not containing the system under study. 

There are many reasons why a model can have systematic errors. The 
model may have been derived from physical or chemical principles but var­
ious assumptions may not hold in practice, or a dynamic model may lack 
sufficient resolution, or the exact nature of the noise may be unknown. For 
example, even an analogue circuit or mechanical device [13] designed to in­
stantiate the Lorenz equations would not be modeled exactly by the Lorenz 
equations, because the diodes and capacitors, or mechanical devices, will 
have slightly different nonlinearities. Indeed it is likely that there is no easily 
described transcendental functions that model the apparatus exactly. This 
implies that there would not be any reasonable model class that exactly 
describes the system; the system is outside all reasonable model classes and 
any reasonable model will display some systematic error. 

In principle, with black box and other models, one could make a model 
increasingly more complex to account for the systematic errors, but there 
comes a point when it is more productive to abandon this adaptive ap­
proach that merely adds more components of similar type and try some­
thing entirely different in character. What we suggest here is not to throw 
out a reasonably good model, but to apply a method that augments and 
corrects it cheaply and effectively [6]. The just cited paper discusses in 
more detail how the method we are about to introduce has the effect of 
greatly expanding the general linear model class in a way that is useful for 
modeling dynamical systems. Another way of looking at the method is that 
it tries to rearrange and present the information in a time series in a more 
useful or accessible way. 

It is an important observation that, from an information theory per­
spective, iterated predictors have a fundamental flaw. Given a time series 
Xl, ••. , Xt, we can think of a one-step predictor cp as attempting to add an 
additional datum XtH to the end of the time series, where 

Iterated prediction to obtain further Xt+m requires shifting the arguments 
of cp one place to the right (removing Xt-dH) and substituting the pre­
dicted XtH into the first position, and so on. Observe that each subsequent 
iterated prediction uses no more information than was used in the first 
one-step prediction. From an information theory point of view there is a 
mistake here, the longer-term predictions ought to use more information. 
The 'li4>-method proposed in this chapter attempts to correct this failure 
by exploiting information retained in the systemic errors of iterated pre­
dictions. 
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t 

FIGURE 3.2. Schematic of a time series (solid line) and the sections 
of the time series that comprise the history vector ht and the future 
vector It. The dotted line represents an iterated predictions Zt with 
systematic error. 

Referring to Figure 3.2, define 

ht (Xt,Xt-l, ... ,Xt-d+1) E JRd, 

it = (Xt+1,'" ,XHP) E JRP, 

Zt = {Xt+1, •. "XHq)EJRq, 

where XHm is the mth iterated prediction of cp, using the predict, shift, 
substitute method. The vector ht represents the important recent history 
of the time series at time t, and it is the next p steps of future after time t. 
The vector Zt is our predictIons of the next q steps obtained by iterated 
prediction with cpo 2 

Ideally we want a mapping ht I-t it, but we only have a map 

(3.9) 

which gives an estimate Zt of h; if p = q, then 

it = Zt + errors. 

If there is observational or dynamic noise, or if there is overfitting or under­
fitting, or if the system is not in our model class, then the predictions Zt 
of the future it may be inaccurate or even erroneous. Also the predictions 
are incomplete when q < p. 

2How we obtained the predictions is not important: they could be obtained from 
a physical model, a black-box model, or a multi-step predictor, or they could even be 
predictions from several different models. 
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To correct the errors and inaccuracies of the predictor () we propose 
finding a corrector \)!, 

It = \)!(Zt) + smaller errors. (3.10) 

The essential point here is that if the errors of () are systematic, then \)! 
can exploit this information to produce a better prediction of ft. We shall 
see that () can be quite a poor predictor, but provided it is consistent, a \)! 
mapping can improve it greatly. 

We will refer to the method just described as the \)!{)-method3 • The 
surprising thing is that this method works well, even for simple \)!, yielding 
consistently good results for both artificial and experimental systems using 
cubic polynomial maps for \)!. Radial basis models have also been used to 
obtain marginally better results than we show here, but on occasions even 
a linear or quadratic \)! can work well. 

Figure 3.3 shows long-term predictions obtained for the Lorenz system 
with ~15% observational noise using the \)!{)-method; a detailed discussion 
of this figure and other experimental results can be found elsewhere [6]. 

\)!(Zt) can best be thought of as a prediction of the mean long-term be­
havior of the system. This can be seen in Figure 3.3 where it can sometimes 
happen that so much critical information about the system has been lost 
that it is no longer possible to predict which "wing" of the Lorenz attractor 
the system will be on, and consequently \)!(Zt) predicts that the system's 
mean behavior is zero. This is, of course, the correct prediction, as disap­
pointing as it may seem. On the other hand, in Figure 3.3 it can be seen 
that the estimated prediction error (upper and lower solid lines) of this 
conservative estimate may vary in a way that demonstrates that not all 
dynamic information has been lost. 

Determining the Corrector W 

We now describe how to determine a suitable corrector \)! and how to 
estimate prediction errors of the \)!{)-map. We will only consider the case 
where \)! is linear in its parameters, for example, linear, polynomial, radial 
basis, pseudo-linear and general linear, because such mappings are easy to 
work with and appear to be adequate in all cases we have examined. 

The length p of the future vector It may be greater than the length q of 
the iterated prediction vector Zt, so that \)! extrapolates beyond the end of 
Zt; indeed \)! could also interpolate by using an alternative definition 

where 0 < 81 < ... < 8k ~ q. This "thinned out" alternative for Zt is 

3111~ is pronounced sci fl, in the "To boldly go ... " sense. 
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FIG URE 3.3. Three indicative long-term predictions obtained for the 
Lorenz system with ~15% observational noise using the W~-method. 
The model was built from 4000 points sampled at 0.05 second. The test 
data was a distinct trajectory. The left panels show ht ; the right panels 
show the future It (dash-dotted line); the iterated ~-model predictions 
(dotted line) with components of ~(ht) used in Zt indicated by stars, 
i.e. a thinned prediction vector was used; the w~-model predictions 
(central solid line) and the e predictions of absolute deviations (upper 
and lower solid lines). 

useful to reduce the effort involved in computing w. Assume, without loss 
of generality that k ~ q ~ p, which is the natural thing to do. 

Given a time series x = {Xt : -d + 1 ~ t ~ n + p} one can construct vec-
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tors ht and ft for t = 1, ... ,n. Then for each ht one can calculate a Zt that 
is an in-sample long-term prediction of the ft. Any discrepancies between Zt 

and the corresponding components of ft are clues to the systematic errors 
of cP at ht ; see Figure 3.2. 

Given n vectors Zt and ft the construction and estimation of the map­
ping IJ! is easily achieved when IJ! is linear in its parameters. If, for example, 
IJ! is also linear in the components of Zt, then IJ! can be defined by a p x q 
matrix A (or p x k for the alternative definition of Zt) such that, 

(3.11) 

In general, if IJ! is a linear combination of m basis functions gi(Z), i = 
1, ... ,m, then 

(3.12) 

where (t = (g1, ... , gm)( Zt) E ]Rm and A is some p x m matrix. For example, 
a polynomial IJ! has as basis functions the constant function, projections 
onto each component of Zt, and the products of powers of the components 
of Zt up to the order of the polynomial. 

Estimation of the parameter matrix A is straightforward using least 
squares. If one chooses to minimize the sum of squares of prediction er­
rors 11ft - IJ!(Zt)ll, then this corresponds to solving the following matrix 
equation in the least squares sense (by singular value decomposition, for 
example) 

F=AZ, (3.13) 

where F is the p x n matrix having the future vector ft as the tth column, 
and Z is the m x n matrix whose tth column is (t. One could conceivably 
want to use a weighted norm when calculating 11ft - lJ!(zdll, since the 
standard Euclidean norm weights all prediction errors equally, regardless 
of how far into the future; however, we have used the simple length norm. 

The procedure is summarized in the following algorithm. 

Algorithm 3 

1. From a given time series, form the vector time series ht and ft. 

2. For each "initial condition" ht iterate the model cP (whatever that 
model might be) to form the predictions vector Zt. 

3. Extend the vector Zt to include powers and products of the compo­
nents (optionally, use some other set of basis function). 

4. Pack the column vectors ft and Zt into matrices F and Z. 

5. Solve F = AZ. 

6. To make a long-term prediction, iterate the cP model from an initial 
condition and multiply this vector of predictions into A. 
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Estimating Prediction Errors 
It is desirable to predict how good the qs~-predictions are, because this 
essentially estimates the prediction horizon in advance. Because we do not 
anticipate a necessarily Gaussian distribution of prediction errors, and be­
cause it is easier to calculate, we will attempt to predict the robust estimator 
of spread given by the mean absolute differences, rather than attempting 
to predict the variance of the prediction errors. 

Define the absolute prediction error vector et by 

(3.14) 

where I . I applies componentwise. 
We now propose to estimate a mapping e: Rq -t W (or from Rk for the 

alternative definition of Zt) such that e(Zt) estimates et. There is no reason 
to estimate this map any differently from how we proposed estimating qs, 
that is, choose e to be linear in its parameters and so 

(3.15) 

where (t is the basis functions evaluations as before, although possibly a 
different set of basis functions, and B is some p x m matrix. Estimating e 
by least squares as before requires solving the matrix equation in the least 
squares sense 

E=BZ (3.16) 

where the tth column of E is et the error given in (3.14). 

3.5 Conclusions 

The focus of this chapter has been the development of reliable methods of 
modeling nonlinear dynamical systems from time series, so that the model 
captures the dynamics. This involves using the minimum description length 
principle to ensure that models neither underfit nor overfit data, using 
variable embeddings to locally optimize models to the dynamics, and using 
qs~-models to correct any residual systematic errors when making long­
term predictions. 
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Chapter 4 

Delay Reconstruction: 
Dynamics versus Statistics 
Jaroslav Stark 

ABSTRACT Traditionally delay reconstruction has been seen as lying in 
the realm of dynamics or differential topology. It is thus perceived to be a 
largely automatic procedure that reconstructs an existing dynamical system. 
In this chapter we argue that it is as imprecise as all other parts of time 
series analysis and it should be subject to as much statistical scrutiny as 
procedures such as modeling, prediction and noise reduction. 

4.1 Introduction 

Most of the developments in the field of nonlinear dynamics over the past 
century have assumed that one had a complete description of the dynam­
ical system under consideration. In principle the practical application of 
these results thus requires the simultaneous measurement of all the state 
variables. Unfortunately, in many real problems one has only the sketchiest 
information about what these variables are, and one certainly has no hope 
of observing them all. Instead, one typically has a time series of one or 
more observables of the system, whose relationship to the state variables 
is at best uncertain. 

The study of time series has traditionally been within the realm of statis­
tics. This has developed a large body of both theory and practical algo­
rithms for characterizing, modeling, predicting and filtering such data. Such 
techniques are widely and successfully used in a broad range of applications, 
including communications, epidemiology and finance. Until very recently, 
however, this approach largely made use of linear models, and hence it was 
unable to take advantage of recent developments in nonlinear dynamics. 
In particular, it is now widely accepted that even simple nonlinear mech­
anisms can give rise to complex temporal behavior (Le., chaos) and hence 
to complex time series. Conventional statistical time series approaches can 
have considerable problems with such time series and can fail to model or 
predict them with any degree of accuracy. This is because they have no way 
of using the fact that the time series was generated by a completely de­
terministic process, and hence they have to ascribe most of the complexity 
to random noise. Furthermore, such approaches cannot yield much useful 
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information about the properties of the original dynamical system. 
Fortunately, a remarkable result due to Takens some twenty years ago 

shows that typically one can reconstruct the dynamics of an unknown de­
terministic finite-dimensional system from a scalar time series generated 
by that system ([Takens, 1980); see also Aeyels [1981)). Over the last two 
decades this has given rise to a huge range of applications throughout sci­
ence and engineering, has stimulated the reexamination of old data sets and 
has motivated the development of a variety of new experiments (for good 
overviews see Ott et al. [1994], Abarbanel [1995) and Kantz and Schreiber 
[1999)). Even today, this one theorem underpins all known approaches to 
chaotic time series (Le., time series presumed to be generated by chaotic 
dynamical systems). 

Takens' Theorem is actually a result in differential topology which is 
an extension of a classical theorem due to Whitney in the 1930's. It is 
thus concerned with purely deterministic autonomous dynamical systems 
and the framework that it provides for time series analysis is unable to 
incorporate any notion of random behavior. This means that the process of 
reconstruction is outside the scope of statistical analysis because any such 
analysis requires a stochastic model of one kind or another as its starting 
point. This is reflected in common practice, where reconstruction is seen as 
a straightforward algorithmic procedure that aims to recover properties of 
an existing, but hidden, system. It is thus expected that there is a "correct" 
value for quantities such as the (minimal) embedding dimension (i.e., the 
number of state variables in the reconstructed system). 

On the other hand, no real system and no real data set are entirely free 
of noise or external influence. Thus strictly speaking we can never appeal 
to Takens' theorem to justify reconstruction. This raises the question of 
what exactly delay reconstruction is doing when it is applied to real data 
and what kind of answers we can expect to obtain from it. This is implic­
itly acknowledged in most work in this area, where there is an increasing 
trend to incorporate statistical methods in those procedures that follow 
reconstruction (such as characterization using fractal dimensions or Lya­
punov exponents, modeling, prediction and noise reduction). The situation 
is thus as shown in Figure 4.1. Note that all the procedures in the shaded 
region have analogues in the realm of traditional statistical time series anal­
ysis. Thus characterization has a close relationship with hypothesis testing, 
while modeling, prediction and filtering all correspond to various types of 
estimation. It is thus completely natural that an increasing level of statisti­
cal sophistication is incorporated in these tasks in the context of processing 
delay reconstructed nonlinear time series. 

Progress in this direction is, however, hampered by the lack of a proper 
probabilistic basis for the upper part of the diagram. If we assume that our 
dynamics and observations are deterministic, so that we can apply Takens' 
theorem, then we end up with a deterministic reconstructed system. In 
such a case, from where does the randomness that we require to apply the 
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statistical methods in the shaded region come? Alternatively if we accept 
that our system and observations are noisy, then we have little insight into 
how much information is preserved by the delay reconstruction process and 
little indication of how to properly set up statistical models for subsequent 
analysis. The aim of this chapter is therefore to introduce a framework 
for the delay reconstruction of random dynamical systems that has been 
developed by the author and his collaborators over the last few years and 
to discuss some of its applications and consequences. Like the standard 
Takens' theorem, this framework is presented from a dynamical systems 
perspective and in itself has little statistical context. However, because it 
allows for uncertainty to be incorporated in the reconstruction process, 
we hope that it will encourage statisticians to explore its implications and 
develop appropriate statistical tools for this vital part of nonlinear time 
series analysis. 

4.2 Conventional Delay Reconstruction 

Although Takens' theorem will be familiar to most readers, we begin by 
giving a brief summary. This is to both introduce the notation we shall 
need throughout the chapter, and remind the reader of a number of im­
portant aspects of the Theorem that will be relevant to our extension to 
random systems. We denote the state space of our dynamical system as M, 
which is assumed to be a finite-dimensional compact manifold. Extensions 
to non-compact manifolds (e.g., ]Rm) or to compact invariant sets that are 
not manifolds (e.g., attractors) do exist [Takens, 1980; Sauer et al. 1991; 
Huke, 1993]. However, these all introduce additional technical complica­
tions which are irrelevant to the main theme of this chapter and hence we 
shall not consider them further. We assume that the state of the system 
at time n, denoted Xn E M evolves according to Xn+l = f(xn) for some 
smooth invertible map f : M ---t M (note that the invertibility of f is 
essential). The system is observed using a smooth measurement function 
<P: M ---t ]R giving a scalar time series <Pn = <p(xn). The aim ofthe so-called 
method of delays is to reconstruct the state space M and the dynamics f 
from the time series <Pn. because M is high-dimensional and each compo­
nent of <Pn is only one-dimensional, it is clear that to obtain a suitable state 
space we need to somehow group different elements of the time series. The 
most natural (but not the only) way of doing this is to take successive <Pn 
to create a vector: 

(4.1) 

The number of components d that we use is usually referred to as the 
embedding dimension. There is an obvious generalization to multivariate 
time series obtained from a measurement function <P : M ---t IRk . Although 
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no published statement of a corresponding extension of Takens' theorem 
exists, it is clear from the proof of the existing theorem that such an ex­
tension holds. 

The set of possible Yn E ]Rd obtained from (4.1) provides a candidate 
for the state space of our reconstructed system. The natural dynamics to 
impose on this is one that sends Yn to Yn+1, i.e., it attempts to define a 
map F by F(Yn) = Yn+!' This raises two questions: Is F well defined, and 
if so, does it have anything to do with the original dynamical system I? 
The first question is not as trivial as it might seem because it requires that 
Yn+! = YP+! whenever Yn = YP' which is far from obvious. In terms of 
the time series this condition amounts to CPn+d = CPp+d whenever CPn = 
tpp, ... ,CPn+d-1 = CPp+d-1 and is thus equivalent to the time series being 
perfectly predictable. In this context one might also ask about the regularity 
of F, i.e., is it continuous, smooth, etc, or if CPn, ... ,CPn+d-1 is close to 
CPP"'" CPp+d-1 is the same true for CPn+d and CPp+d? This will obviously 
have a profound effect on the sensitivity of our predictions to noise or 
numerical inaccuracies. 

While a positive answer to this question may be sufficient if all we want 
to do is predict the time series, the second question becomes paramount if 
we also want to characterize the time series using quantities such as fractal 
dimensions or Lyapunov exponents or if we want to deduce something 
about the mechanisms that created the time series. It also arises if we want 
to compare two time series generated by the same system, but observed 
through two different measurement functions. 

Fortunately, both questions are answered in the affirmative by Takens' 
so-called embedding theorem. Informally, this ensures that for typical sys­
tems and observations, and for d ~ 2m + 1, the reconstructed dynamics F 
is well defined and as smooth as the original dynamics f and F is equiva­
lent to 1 under a smooth (but unknown) coordinate change. Because most 
of nonlinear dynamics is concerned with coordinate free properties (such 
as fractal dimensions or Lyapunov exponents) this ensures that these are 
the same for both the original and reconstructed systems. The coordinate 
change between 1 and F is given by the delay map <I> : M -+ ]Rd defined by 

<I> (x) = (cp(x),cP(f(x)), ... ,cp(fd-1(x))). (4.2) 

Note that this ensures that <I>(xn) = Yn. Stated precisely, Takens' Theo­
rem says that for a dense open set of (f, cp) (in the standard topology on 
the space of all such maps and measurement functions) the delay map <I> 

is a smooth embedding, that is it is 1 - 1 and an immersion. This means 
that <I>(x) i <I>(x' ) for all x i x' and Dx<l>.v i 0 for all v E TxM such that 
v i 0, and implies that F is invertible on its image <I>(M), and its inverse 
is smooth. Note that the Sauer et al. [1991] version of the theorem gives 
merely a topological embedding of the attractor (with <I> smooth by defini­
tion, but <1>-1 not necessarily so in all directions) but has the benefit that 
d need only be greater than twice the fractal dimension of the attractor. 
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Because ~ is invertible on ~(M), we may define the smooth dynamical 
system ~ofo~-l : ~(M) ~ ~(M) on ~(M) C ]Rd. A simple unraveling of 
the definitions shows that 4"> 0 f 0 4"> -1 (Yn) = Yn+ 1 and hence ~ 0 f 0 4"> -1 is 
precisely the reconstructed map F described earlier. In the theory of non­
linear dynamics a relation of the form ~ 0 f 0 ~-1 = F is called a (smooth) 
conjugacy and is a formal way of stating that F is equivalent to f under a 
smooth coordinate change. The whole process of delay reconstruction can 
thus be represented graphically as in Figure 4.2. Somewhat incorrectly, this 

Observation 

./ 

<I> 

Delay 
Reconstruction 

FIGURE 4.2. Overview of delay embedding for deterministic systems 

has come to be known as delay embedding, even when ~ might not actually 
be an embedding in the mathematical sense. We prefer to avoid this here 
and use the expression delay reconstruction, thereby retaining the rigorous 
topological meaning for the term embedding. 

Finally, observe that F consists of d components, so that F(Yn) = 
(Fl(Yn), ... , Fd(Yn)), with Fi : ~(M) ~ lit Writing Fi in terms of the 
time series, we obtain Fi (CPn , ... , CPn+d-d = CPn+i. Thus the first d - 1 
components F1 , •.• ,Fd - 1 are trivial and simply consist of copying an ar­
gument. The only nontrivial part of F is the last component Fd , which for 
convenience we will denote by G, so that 

(4.3) 

This simply formalizes the statement that if F is well defined for a given d 
then the time series is predictable in terms of its d previous values. Although 
in principle the relation F = 4"> 0 f 0 ~-1 gives an explicit formula for G, 
this is in terms of f and cP, which in most practical applications will not 
be known. However, the last two decades have seen the development of a 
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number of algorithms for computing an approximation to G from a sample 
of the time series (see other chapters in this volume, or Ott et al. [1994], 
Abarbanel [1995], Kantz and Schreiber, [1999]). 

4.3 Delay Reconstruction for Stochastic Systems 

4- 3.1 Random Dynamical Systems 
In order to extend the preceding framework to stochastic systems we first 
need to decide how to incorporate noise in our original unknown system f. 
A convenient formalism for this, which encompasses a wide class of noisy 
systems, is that of random dynamical systems (see, e.g., Arnold [1998]) 
which we can think of as deterministic systems driven by a random process 
Wn . For simplicity we shall assume that this process is Bernoulli, so that 
successive Wn at each time step n are chosen independently with respect to 
some probability measure J.t. The state Xn then evolves according to 

(4.4) 

If we think of Wn as a parameter then we can interpret this as a standard 
dynamical system with noise on the parameters. It can also be helpful to 
write fW n (xn) instead of f(xn, wn). This suggests the interpretation that 
instead of applying the same function f every time, we choose a different 
function fW n at random at each time step, so that in the most general setting 
J.t can be thought of as a measure on the space of all dynamical systems 
on M. If this measure consists of a finite number of atoms, so that fW n is 
chosen from a finite set of maps, we obtain a so called iterated function 
system (see, e.g., Norman [1968], Barnsley [1988]). On the other hand, the 
case of a single deterministic system f subject to additive (dynamical) noise 
can be included in this formalism by setting fw n (Xn) = f(xn) + Wn. It is 
also possible to add noise to the observations by making the measurement 
function <p depend on either the same noise process W n , or an independent 
process en. Because this merely adds technical and notational complexity 
without introducing any significantly new concepts, we shall not explore 
this further in this chapter. 

From a dynamical systems point of view the best approach to the study 
of (4.4) is to expand the state space sufficiently to give an autonomous 
deterministic dynamical system on (xn, wn). This is analogous to the way 
that periodically forced differential equations can be treated as autonomous 
systems by the addition of a dummy variable to represent time, thereby 
increasing the state space dimension by 1. In our case we end up with 
an infinite-dimensional state space. Thus suppose that Wn is drawn from 
a space N and let E = NZ be the space of bi-infinite sequences W = 
( ••. ,W-bWO,Wl, ••• ) of elements of N. Define the usual shift operator a: 
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f 

FIGURE 4.3. Graphical representation ofa random dynamical system. 

E -t E by [(7(w))n = Wn+1' Then the evolution of Xn given by (4.4) can 
be represented by the skew product T : M x E -t M x E (see Figure 4.3) 
defined by 

T(x,w) = (f(x,wo),(7(w)). (4.5) 

Note that the product measure J.LE on E derived from J.L is (7-invariant. 
We can also consider general a-invariant measures to take account of cor­
relations in the choice of successive Wn (so that, for example, w is a Markov 
process), but for simplicity we shall restrict ourselves to the Bernoulli case. 
If we dispense with the measure J.L the same formalism can also be used to 
model a deterministic system driven by an arbitrary input sequence w. This 
arises frequently in communications systems where the sequence w would 
represent the information being transmitted (see, e.g., Broomhead et al. 
[1999)). Another application is to irregularly sampled time series where Wn 

denotes the time between sample nand n + 1 [Martin, 1998). 

4.3.2 Conjugacy for Random Dynamical Systems 

As before, we assume that the observed time series is generated by CPn = 
cp(xn ) for some measurement function cP : M -t lit The crucial question we 
then need to address in order to develop an analogue of Takens' theorem 
is what we mean by a delay reconstruction of T. As we saw in Section 4.2 
the fundamental property of a reconstruction is that F and f should be 
equivalent under a coordinate change, in other words that F = <I> 0 f 0 <1>-1. 

We thus need to ask what it means for two random dynamical systems T 
and T' to be equivalent in this way. The most general concept is simply 
to require T' = HoT 0 H-1 for some (invertible) coordinate change H : 
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M X ~ -+ M x~. Because we are in a probabilistic setting, we only require 
this relationship to hold for JLr:-almost every w. 

It turns out, however, to be convenient to place some further restrictions 
on H. The space M X ~ is infinite-dimensional, and hence we have little hope 
of reconstructing it with a finite-dimensional delay space IRd • Furthermore 
'P is a function of M only and attempting to reconstruct ~ using 'P seems 
foolhardy (but note that in the case of deterministic forcing, this is in fact 
possible [Stark, 1999]). In some sense we therefore want to restrict the 
reconstruction procedure to M. A reasonable interpretation of this idea is 
to require that the ~ component of H is the identity, that is, H(x,w) = 
(h(x,w)),w) for some map h : M x ~ -+ M. If H is to be invertible for 
JLr:-almost every w then hw = h(., w) : M -+ M has to be invertible for 
JLr:-almost every w. Coordinate changes of this form are common in the 
theory of random dynamical systems (see, e.g., Arnold [1998]). 

For convenience define j : M x ~ -+ M by j(x,w) = !(x,wo) so that 
T = (f,a). If similarly T' = (f',a) then writing T' = HoT 0 H- 1 in 
component form gives 

(f',a) (h,Id) 0 (f,a) 0 (h,Id)-l (4.6) 

If we denote jw = j(.,w): M -+ M we have 

(h,Id) 0 (j,a) 0 (h,Id)-l(.,W) (h,Id) 0 (fw 0 h;;/ ,a(w)) 
- 1 (hu(w) o!w 0 h: ,a(w)) 

Thus the first component of equation (4.6) is 

j~ - 1 hu(w) 0 !w 0 h: (4.7) 

where as usual j~ = i'(.,w) : M -+ M. Note the similarity of this to the 
deterministic conjugacy f' = h 0 ! 0 h -1. Essentially all we do in the random 
case is index both the dynamics and the coordinate change with w. The 
only slightly delicate point is the a appearing in hu(w)' The reason for this 
is that by the time we come to apply h in equation (4.7) we have carried 
out one time step of the dynamics, and hence w has moved to a(w). (See 
Figure 4.4). 

4.3.3 Stochastic Takens Embedding Theorem 

Given such a definition it seems reasonable to attempt to generalize Takens' 
theorem to random dynamical systems by requiring that the delay map 
be an invertible coordinate transformation in the preceding sense for JLr:­
almost every w. To formulate an appropriate theorem it thus only remains 
to give a rigorous definition of the delay map. From (4.7) it is clear that this 
will depend on w, and by analogy with the deterministic case (i.e., equation 
4.1) it should satisfy cI>(xn' an(w)) = Yn = ('Pn, 'Pn+l, ... , 'Pn+d-l)' Note 
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FIGURE 4.4. Coordinate change (conjugacy) for random dynamical 
systems. 
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that an(w) is the correct argument of <P because this corresponds to the 
choice of noise at time n. This yields (cf equation 4.2) 

where fWi ... WO = fWi 0··· 0 fwo' We see that <Pw does not just depend on Wo, 

which is the case with fw, but on d-l successive values Wo, .• · ,Wd-2. This 
is entirely reasonable because the delay reconstruction process requires the 
dynamical system to evolve over d - 1 time steps and hence to be subject 
to the effects of d - 1 values of the noise. It causes us no difficulty, and 
in particular equations (4.6) and (4.7) do not need any modification. The 
reconstructed map is defined by 

(4.9) 

for all those w such that <Pw is invertible. Note that fw : <pw(M) --+ 
<P O'(w) (M) and hence it is not just the map Fw itself that is random, but 
its domain and range also. From equation (4.6) we have 

or in other words, 

(h,Jd) 0 (f,a) 0 (h,Jd)-l(Yn,an(w)) 
(h,Id) 0 (f,a)(xn,an(w)) 

(h, J d) (xn+1' an+1 (w)) 
(Yn+1, an+1 (w)) 

4.3.4 The Time Series Model 

In terms of the time series this can be written as 

As in the derivation of equation (4.3), the first d - 1 components of Fw 

are trivial, while the last, which we shall denote Gw , gives the time series 
model 

(4.10) 

At an informal level, therefore, a reconstruction framework for random dy­
namical systems is virtually identical to the standard deterministic one, 
apart from the fact that all its constituent objects are random, i.e., in­
dexed by w. This is a particularly appealing point of view if we regard fw 
as a parameterized family of deterministic systems with noise on the pa­
rameters. In such a case the reconstructed map Fw is an equivalent family, 
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with the same realization of the same stochastic process on its parameters 
Fw. Note however one subtle difference between Fw and fw that is not ap­
parent from the notation. Because <I>w depends on Wo, ... ,Wd-2 and hence 
<I>".(w) depends on WI, ... ,Wd-I, equation (4.9) implies that Fw depends on 
Wo,··· ,Wd-I· Thus F"'n(w) and G"'n(W) depend on Wn ,··· ,Wn+d-I and the 
time series model in equation (4.10) can also be written as 

'Pn+d = G('Pn, 'Pn+l, ... ,'Pn+d-I; Wn , ... ,Wn+d-I). (4.11) 

From a time series point of view this equation is the main outcome of our 
stochastic delay reconstruction framework. It suggests the kinds of models 
that should be used as starting points for a statistical analysis of a time 
series believed to have been generated by a stochastic nonlinear system. 
Although some authors (e.g., Chen and Billings [1989]) have already used 
models of the form (4.11) (with Wn restricted to one dimension), more com­
monly it is assumed that there is only a single additive random component: 

'Pn+d = G ('Pn, 'Pn+ I, ... , 'Pn+d-I) + Wn+d-I 

It is clear that estimating both G and W in a model of the form (4.11) is 
a major challenge. Note that Wn , ... ,Wn+d-2 have all been determined by 
time n + d - 1, and so there is at least some hope of estimating them from 
previous values of the time series. By contrast Wn+d-I corresponds to new 
uncertainty entering the system in the time step from n + d - 1 to n + d. 
The special case 

'Pn+d = G('Pn - Wn-I, 'Pn+1 - Wn ,···, 'Pn+d-I - Wn+d-2) + Wn+d-I 

is essentially equivalent to so-called shadowing or noise reduction for chaotic 
systems (e.g., see Ott et al. [1994]). Note that the appearance of the ad­
ditional term Wn-I in this equation makes little fundamental difference, it 
would, for example, arise in (4.11) ifin our original dynamics (4.4) the map 
f depended on Wn-I rather than just Wn . While a variety of well-developed 
techniques exist to carry out shadowing, extending these to more general 
systems of the form (4.11) seems difficult. 

4.3.5 Technical Conditions 
The whole of this framework relies on <I>w being invertible for IlE-almost 
every w. Stark et al. [1999] show that if d ~ 2m + 1 this is indeed the 
case for generic random dynamical systems and observations under suitable 
technical conditions on W (see also Stark et al. [1997]). These require N (the 
space from which the Wn are drawn) to be a compact smooth manifold, for 
f Wn to depend on Wn smoothly and for the marginal measure on N d to be 
absolutely continuous with respect to Lebesgue measure. In the Bernoulli 
case, the latter amounts to Il being absolutely continuous with respect to 
Lebesgue measure on N. 
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We can motivate such a condition as follows: We know from the de­
terministic embedding theory that there are maps f for which the delay 
map ~ is not an embedding. Suppose that such a map corresponded to a 
Wo E N and Jl({wo}) > O. The probability of choosing fwo On d successive 
occasions would then be nonzero. The corresponding ~w would thus occur 
with nonzero probability with respect to JlE. But such a ~w is identical to 
the deterministic ~ obtained from fwo, and hence is not an embedding. The 
same argument applies if Jl assigns a nOnzero probability to the set of fwo 
that fails to give a delay embedding. Because the generic part of Takens 
theorem ultimately relies on Smale's generalization of Sard's theorem it is 
not difficult to see that this set has Lebesgue measure zero [Stark, 1999]. 
Hence, if we want ~w to be an embedding for JlE-almost every W we need 
Jl to assign measure zero to the set of such fwo, and the most elegant hy­
pothesis that achieves this is to assume absolute continuity with respect 
to Lebesgue. The same underlying idea generalizes to the case where we 
choose a different fwo at each time step. It is thus intuitively reasonable 
that we need some condition that ensures that JlE is not too singular. 

By contrast, the conditions On N and the smooth dependence On W are 
technical ones, imposed by the method of proof (which uses differential 
topological methods developed by Stark [1999]). Both conditions are re­
strictive. In particular, the former requires the noise in our system to be 
bounded and hence excludes the most commOn case, namely that of Gaus­
sian noise. On the other hand there are nOw beginning to be some sug­
gestions that time series with unbounded noise have significantly different 
properties to those with bounded noise (e.g., the papers by Lalley and by 
Guegan in this volume). Turning to the issue of smoothness, most of the 
theory of random dynamical systems assumes far weaker regularity for W 

(see, e.g., Arnold [1998]), though in fact most concrete examples of ran­
dom maps (as opposed to stochastic differential equations) do satisfy this 
condition. 

4.4 Trading-Off Noise and Complexity 

Up to nOW we have treated the unknown system f as a predetermined 
object in the real world whose properties are fixed. This implies that there 
is a "correct" outcome of any reconstruction procedure and a "correct" 
value for quantities such as the minimal embedding dimension. If, however, 
we allow ourselves to speculatively extend the stochastic reconstruction 
framework from the last section we arrive at an entirely different point of 
view which permits us to trade off the complexity of f against the amount 
of noise in the system. The "correct" unknown system is thus replaced by a 
spectrum of possible models of increasing complexity and our task becomes 
choosing the one that is most appropriate for our application. There is 
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thus, for example, no longer a "correct" embedding dimension, but rather 
we may choose between a small dimension giving a very noisy system or a 
large dimension and a much less noisy system. Such a perspective is a much 
better starting point for a proper statistical analysis of delay reconstruction 
and is already implicit in much of the recent work of Mees and his group 
on using complexity measures to choose good nonlinear time series models 
(see, e.g., Mees [1993], [Judd and Mees, 1995], [Judd and Mees, 1998] and 
the chapter by Judd et al. in this volume). In the context of spatio-temporal 
systems, a formal framework of this kind was first described by 0rstavik 
and Stark [1998], although something similar was hinted at in the last two 
sentences of Kantz and Olbrich [1997]. 

We begin with the informal idea that chaotic behavior, particularly if it is 
high-dimensional, can be virtually indistinguishable from genuine stochas­
ticity. Thus, if we have a system such as (4.4) for which x exhibits complex 
dynamics, it should be possible to ascribe part, or even all, of its behavior 
to the random part of the model w. For simplicity, let us first consider 
this in a purely deterministic model. Suppose we can decompose the state 
space of this into a product M x L, so that the state variables are (x, z) 
with x EM, z E L. If we use standard deterministic delay reconstruction, 
as in Section 4.2, then Takens theorem requires us to have an embedding 
dimension of 2m + 21 + 1, where m = dim M and I = dim L. On the other 
hand, if we can somehow regard z as a random variable and perform a 
reconstruction in the sense of Section 4.3, then an embedding dimension 
of 2m + 1 will suffice. The trade-off is of course that we now have a noisy 
model and have to use (4.11) instead of (4.3). 

Let us suppose that the dynamics on M x L are given by 

(4.12) 

In order to treat Zn as a random variable, we have to replace 9 by the shift 
a on an appropriate space and obtain a map of the form (4.5). This can be 
done by defining 

X = {(x,1]) EM x LZ : 1]n = g(n) (x, 1]0) for all n E Z}, 

where g(n) is the second component of (f,g)n. If we define T: M x LZ---+ 
M x L Z the same way as in (4.5), that is 

T(x,1]) = (f(x, 1]0), a(1])), ( 4.13) 

then we claim that X is a T-invariant subset of M x LZ. To see this, let 
h: M x L ---+ M x LZ be the map h = (Id,( ... ,g(n-l},g(n),g(n+l}, ... )), 
so that h(x,z) = (x,1]) with 1]n = g(n)(x,z). Thus X = h(M x L) and 
since h is obviously 1 - 1, it is invertible on X. In fact, taking the prod­
uct topology on M x LZ, h is a homeomorphism between M x Land 
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X, though we do not need to use this here. Now observe that if we de­
note the first component of (f,g)n by f(n) , so that (f(n),g(n») = (f,g)n, 
then (f(n)(f(x,z),g(x,z)),g(n)(f(x,z),g(x,z))) = (f,g)n 0 (f,g)(x,z) = 
(f,g)n+1(x,z) = (f(n+1)(x,z),g(n+I)(x,z)). Thus g(n)(f(x,z),g(x,z)) = 
g(n+I)(x,z) and hence 

ho(f,g)oh-l(x,'fJ) = ho(f,g)(x,'fJo) 

h(f(x,'fJo),g(x,'fJo)) 
(f(x, 'fJo), ( ... ,g(n)(f(x, 'fJo), g(x, 'fJo)), ... )) 
(f(x, 'fJo), ( ... ,g(n+1)(x, 'fJo), ... )) 

(f(x, 'fJo), 17('fJ)). 

Therefore 
T = ho (f,g) oh-I, 

so that not only is T(X) c X, but in fact T and (f,g) are conjugate, so 
that there is a 1 - 1 correspondence between their orbits. Thus if we have 
a measurement function r.p : M x L -+ lR. on our original system (4.12) 
and a resulting time series r.pn = r.p«(f,g)n(x,z)), then we get an identical 
time series from an orbit of the skew product (4.13) with initial condition 
h(x, z). More precisely if we define the observable cp : M x LZ -+ lR. by 
cp(x, 'fJ) = r.p(x, 'fJo) then cp(x, 'fJ) = r.p(h- I (x, 'fJ)) and thus cp(Tn(h(x, z)) = 
r.p(h- I 0 Tn 0 h(x, z)) = r.p«(f, g)n(x, z)). The only difference compared to 
Section 4.3 is that cp depends on 'fJ, but as indicated there, this causes no 
difficulties. If the original system also has a genuine stochastic component 
w we can group 'fJ and w together and regard x as the deterministic part of 
the system and ('fJ,w) as the random part. 

We thus see that we can take a deterministic system, treat some of its 
degrees of freedom as a stochastic process and arrive at a framework that 
is outwardly very similar to the one developed for random systems in Sec­
tion 4.3. The only significant change is that instead of iterating T on the 
whole of M x LZ we restrict ourselves to a closed invariant set X. Un­
fortunately, this apparently innocuous modification is potentially rather 
problematical. This is because for points in X there is an implicit depen­
dence of'fJ on x: once we know x and 'fJo, we know the whole of 'fJ. Thus, for 
example, if we again define a delay map <1>'1 using (4.8), then <I>'I(x) depends 
on x both explicitly via its argument, and indirectly through 'fJ. The same 
holds for the reconstructed map (4.9) and the time series model (4.11). 
FUrthermore, because 'fJ is no longer an autonomous stochastic process it 
is not clear what a reconstruction like (4.9) actually means. Nevertheless 
there does seem to be some numerical evidence, described in the next sec­
tion, that the speculative framework presented here offers some insight into 
time series obtained from high-dimensional deterministic systems. 

Of course, the ideas presented in this section are purely conjectural; there 
is no embedding theorem for this case analogous to those in Sections 4.2 
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and 4.3. The only exception is where 9 is independent of x, where the 
Bundle Delay Embedding Theorem (Theorem 3.2) of Stark [1999] gives 
exactly the required result. However, such a situation is much simpler since 
11 then no longer depends on x. It seems plausible that the techniques 
developed by Stark [1999] could be used to prove an embedding theorem 
for general 9 but the technical calculations required are daunting. It is 
therefore probably not worth attempting such a proof, until more numerical 
evidence for the usefulness of the approach outlined in this section has been 
accumulated. 

4.5 Reconstruction for Spatio-Temporal Systems 

One class of systems where it is now clear that there is scope for trading 
off noise against complexity is that of spatio-temporal systems. By this 
we mean systems in which spatially distinct parts can evolve in time in 
distinct ways. We can thus think of such systems as consisting of many lo­
cal dynamical systems, one at each spatial location, coupled into one large 
system. They arise in many applications throughout science and engineer­
ing including most types of fluid flow, pattern formation in chemical and 
biological systems, dynamics of ecosystems, road traffic, vibration of struc­
tures such as beams, plates and shells, and many others. In some cases 
(e.g., weather prediction) there is a reasonable understanding of the un­
derlying deterministic mechanisms governing the evolution of the system, 
and we can use this to construct an a priori state space model to which 
observations can be fitted. In many other situations this is not possible 
and we need to reconstruct the unknown dynamics from observed data in 
a similar fashion to that described in Section 4.2. 

This immediately leads to a number of problems, both theoretical and 
practical. Spatio-temporal dynamical systems often exhibit various symme­
tries; typically they are transitionally invariant. As a result they may fail to 
satisfy the genericity assumptions of Takens theorem. More seriously, ob­
servables often depend on a single spatial location or at best a small spatial 
neighborhood. They are thus very atypical in the space of all measurement 
functions on the state space and any appeal to Takens theorem to jus­
tify reconstruction is therefore highly suspect. Common sense also suggests 
that it is unreasonable to expect to reconstruct such a system by using a 
sufficient number of delays of a single observable. The amount and quality 
of data obtained by observing a single spatial location will almost certainly 
be insufficient to reconstruct the behavior of the whole spatially extended 
system. Any serious approach to the reconstruction of spatio-temporal sys­
tems will therefore inevitably use multiple measurements, distributed in an 
appropriate way around the system. Delay reconstruction techniques are 
increasingly being applied to such data (see, e.g., Muldoon et al. [1994], 
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Little et al. [1996], Rand and Wilson [1997], 0rstavik and Stark, [1998]). 
However, simply taking a large number of measurement functions is not 

a complete solution. Unless the dynamics of the system asymptotically 
collapses down to a low-dimensional attract or (for example, if there is an 
inertial manifold) we will need to use a high-dimensional reconstruction 
space, that is a high embedding dimension. This leads to the so-called curse 
of dimensionality. Whatever method offunction approximation (e.g., local 
polynomial, radial basis function, neural network, kernel density etc) we use 
to approximate the reconstructed dynamics, we need to have a reasonable 
spread of data in the region of interest. Thus, for instance, a local linear or 
quadratic approach estimates the value of a function at a point y E ]Rd by 
performing a linear least squares regression in a neighborhood of y. Such 
a neighborhood must contain a sufficient number of data points to yield a 
meaningful estimate and yet not be so large that the function is no longer 
linear (or quadratic respectively). As d grows, more data is necessary to 
ensure that sufficient numbers of neighbors can be found. Similar problems 
plague other approximation methods and for d much larger than 10 or so 
it becomes almost completely impractical to obtain meaningful estimates 
for the reconstructed dynamics. 

Despite this, in many circumstances it turns out to be possible to make 
useful predictions for time series from genuinely high-dimensional spatio­
temporal systems. A particularly relevant example, which ultimately moti­
vated the discussion in Section 4.4, is given by 0rstavik and Stark [1998]. 
This investigated the predictability, using various reconstruction schemes, 
of time series from a coupled map lattice. This consists of a collection of 
maps coupled together on a lattice (Figure 4.5a) and provides perh'aps the 
simplest context in which to study complex spatio-temporal dynamics. In 
this case N = 100 lattice sites were used with periodic boundary condi­
tions. The local state space at each site was one-dimensional giving an 
overall state space dimension m = 100. The dynamics at each site was 
given by the usual logistic map and the coupling was nearest-neighbor. If 
we denote the state of lattice site i at time n by x~) (this is consistent with 
the remainder of this chapter but is the exact opposite of the notation used 
by 0rstavik and Stark [1998]) then the dynamics at each site is given by 

X~~l = (1 - €)f(x~)) + ~€f(X~-l)) + ~€f(x~+1)), 

where € is a coupling parameter and f : [0,1] -+ [0,1] is the logistic map 
f(x) = 1 - ax2. This system is known to exhibit spatia-temporal chaos 
for wide ranges of parameters, and at the particular parameters used for 
this study the attractor was estimated to have a Lyapunov dimension of 
approximately 70. Thus Takens' original criterion d ;::: 2m + 1 gives a mini­
mal embedding dimension of d = 201, while even Sauer et al. [1991] require 
d ~ 140. As indicated earlier, embedding dimensions that large are com­
pletely impractical. 
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Rather surprisingly, however, 0rstavik and Stark [1998] found that it was 
possible to make useful predictions in low embedding dimensions, and in 
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FIGURE 4.5. a) Coupled map lattice; b) truncated coupled map lat­
tice. 

fact the best predictions were obtained in d = 4. The false nearest neighbor 
algorithm for determining an embedding dimension (see Abarbanel [1995] 
or Kantz and Schreiber [1999]) also indicated a value of 4. This is not sur­
prising given that this technique essentially looks for optimal prediction 
using a locally constant predictor and illustrates the dangers of relying too 
heavily on such algorithms. On the other hand, the scaling behavior for 
the prediction error was more reminiscent of a stochastic system than a 
deterministic one. This suggests that from a time series perspective this 
system looks more like a low-dimensional deterministic system driven by 
noise than the high-dimensional noise-free system that it really is. This is 
consistent with the folklore view that high-dimensional chaos is indistin­
guishable from "genuinely" random behavior. 

Additional evidence for such a point of view is provided by the fact that 
it is possible to obtain extremely good estimates of the Lyapunov spectrum 
of the whole lattice by appropriately rescaling the spectrum computed from 
even quite a small sub-system (Carretero-Gonzalez et al. [1999a], and ref­
erences therein). The explanation for this is that the whole lattice is acting 
as if it were made up of a number of weakly interacting smaller systems. 
Thus if our observations are local we shall primarily see just one such small 
system, and all the remaining ones appear as a broad global background. 
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This is the structure that we had in mind in Section 4.4; if the specula­
tive framework outlined there is indeed correct then we can reconstruct the 
lattice as a low-dimensional stochastically driven system, using a small em­
bedding dimension. This would explain the prediction results of 0rstavik 
and Stark [1998]. 

A more direct test of such a viewpoint can be obtained by studying trun­
cated lattices. This is done by Carretero-Gonzruez et al. [1999b]), where ob­
servations obtained from a small stochastically driven lattice (Figure 4.5b) 
are compared with those from the full deterministic lattice of size N = 100. 
This shows that even for large coupling, time series from lattices as small 

a 
3.5 

2.5 

1.5 

0.5 

0.2 0.4 

.~~ Iklerminislic 
-Truncated (N = 4) 

0.6 0.8 

3.5 

2.5 
~ 
.~ 

~ 2 

1.5 

0.5 

b 

0.2 0.4 

=~~ Deterministic 
-TrtlllCaled (N = 10) 

0.6 0.8 
x 

FIG URE 4.6. Invariant probability density at a central site for full 
(N = 100) and truncated lattices; a) e = 0.2, b) e = 0.8. The truncated 
lattice was driven at each boundary by independent i.i.d. processes 
with uniform density in [0,1]. 

as ten sites or so are indistinguishable from those generated by the full 
lattice. Thus, for example, if we compare invariant probability densities we 
find that small truncated lattices gives remarkably good approximations 
to the invariant density for the full lattice (Figure 4.6). This is despite the 
fact that the processes driving the boundaries were given by simple white 
noise with uniform distribution in [0,1] and no attempt to reproduce the 
correct statistics of these processes was made. If this is done, even better 
fits can be obtained. 

The difference between the densities for the truncated and full lattices de­
cays exponentially with the truncation size (Figure 4. 7a), reaching a plateau 
determined by the discretization and finite data size used to estimate the 
density. Similar behavior occurs with the power spectrum (Figure 4. 7b) and 
with two-point correlation functions [Carretero-Gonzruez et al. 1999b]. Of 
course such measures only evaluate linear relationships in the data and so 
it is perhaps not that surprising that they fail to distinguish between very 
high dimensional dynamics and stochastic behavior. A more serious test is 
provided by predictability (Figure 4.8). Once again, it turns out that as the 
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prediction error for full and truncated lattices; a) e = 0.2, b) e = 0.8. 
In all cases local linear fits were made to a data set of 20,000 points 
using a spatia-temporal reconstruction in embedding dimension 4, and 
errors were calculated for a further out-of-sample 5000 points. 
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lattice size grows the time series from the stochastically driven truncated 
lattice rapidly reach the same degree of prediction error as the full deter­
ministic lattice. Indeed, for low coupling (c: = 0.2), a stochastically driven 
lattice of size 3 is indistinguishable in this context from the full lattice, and 
even for very high coupling parameters (c: = 0.8) truncated lattices of size 
15 are sufficient. 

These results strongly suggest that from a time series perspective many 
large spatia-temporal systems should not be viewed as a single determin­
istic system, but rather as a collection of loosely coupled low-dimensional 
systems. When making localized observations the effects of the other un­
seen local systems can be effectively described by a simple stochastic term. 
This allows us to build relatively simple effective models, rather than work­
ing in impracticably large embedding dimensions. If we are able to observe 
the system at many spatial locations, then we should attempt to model 
the resulting multivariate time series by a collection of more or less inde­
pendent low-dimensional systems, with perhaps some allowance for weak 
correlations. Where we have good reason to believe that the system is spa­
tial homogeneous, we can fit one such local model using data obtained 
from many spatially locations, thereby significantly increasing the amount 
of data available to fit the model. 

4.6 Conclusions 

In this chapter we have described a framework and an associated embedding 
theorem, for the delay reconstruction of random dynamical systems. By 
only attempting to reconstruct the deterministic part of the dynamics, 
this allows us to obtain a full reconstruction using the same embedding 
dimension as for a deterministic system, despite the fact that a stochastic 
system is in a sense infinite-dimensional. 

We have then gone on to speculate that we may have a substantial 
amount of choice in which parts of the original unknown system we regard 
as deterministic and which parts as stochastic. Emphasizing the determin­
istic part leads to a less noisy system at the cost of a higher embedding 
dimension and vice versa. Numerical evidence that such a framework may 
be useful is provided by recent studies of simple coupled map lattices, 
where it has been observed that a large-dimensional deterministic lattice 
is indistinguishable from a small truncated lattice driven by noise at its 
boundaries. 

We therefore believe that rather than being seen as a procedure to recre­
ate a single "correct" system, delay reconstruction should be regarded as 
a method of choosing from among a spectrum of noisy systems of differing 
dimensions and noise levels. The choice is a statistical one, trading off com­
plexity against levels of noise. Developing appropriate statistical methods 
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to embody such a philosophy is a major challenge and will require close co­
operation between statisticians and those working in nonlinear dynamics. 
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Chapter 5 

Some Remarks on the 
Statistical Modeling 
of Chaotic Systems 
Dominique Guegan 

ABSTRACT Many of the issues in modeling nonlinear systems are statis­
tical ones. In this chapter we give a statistician's viewpoint of the problems 
of studying and understanding data from real-world dynamical systems. We 
present some new insights into the possibilities of obtaining consistent es­
timates for the invariants of a dynamical system, and some new results 
concerning noise-removal. 

5 .1 Introduction 

In this chapter we would like to address some questions that arise when we 
want to study real data from a statistical modeling point of view. 

Assume we observe such real data Y1 , Y2 , ••• ,Yn which come from ex­
perimental systems, various kinds of recordings (electrocardiogram, en­
cephalogram, ... ), observational phenomena (meteorology, astrophysics, 
economics, finance, ... ) and so on. We are interested in providing some 
statistical information about this sample set. Of course, this set has a fi­
nite size, and we will assume that the size is sufficiently large to avoid 
technical problems in the following. Our purpose is to have a better under­
standing of the evolution of this observational trajectory, for instance with 
a view to making predictions. We are going to assume that there exists a 
process (Yt)tEZ which explains the data set. We work in discrete time and 
we suppose that the observations are made with a constant time interval. 

One of the first problems we want to solve is to determine in which class 
this process evolves: is it a stochastic process or a deterministic process? 
This means that we have to decide if the process (Yt)tEZ is generated by 
one of the two following equations: 

(5.1) 

where X t is some deterministic process that we will specify precisely later, 
or 

(5.2) 

A. I. Mees (ed.), Nonlinear Dynamics and Statistics
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In these equations, an underlined variable represents a vector. The pro­
cess (ct)tEZ is white noise, i.e., it is a sequence of independent identi­
cally distributed random variables (i.i.d.r.v.), and we assume this for (cd 
throughout the chapter. 

Equation 5.1 means that in the evolution process, (cdtEZ is present; thus 
we say that (Yt)tEZ is a stochastic process. In equation 5.2 no noise appears 
in the dynamics of the system and we say that (Yt)tEZ is a deterministic 
process. The functions 'IjJ and <p are assumed to be nonlinear and defined 
on ffi.d. Answering this first question is fundamental to deciding what tech­
niques and what statistics we are going to use to study this observational 
set of data. We will discuss this question in Section 5.2. In Section 5.3 
we will present the main features that we will able to capture with the 
stochastic approach 5.2. The presentation of these characteristics could be 
one possible way to try to answer certain questions arising in Section 5.2. 
In Section 5.4 we assume that we observe a deterministic system 5.1 and 
we are interested in ergodic theory and estimation for such models. We will 
present some new insights into the mixing properties of certain classical 
well-known chaotic systems, and we will specify how it is possible to obtain 
consistent estimates for the invariants of a chaotic system. In Section 5.5, 
we will assume that the chaotic system can be polluted in different ways by 
different classes of noise; this is generally what we observe in reality. Then 
we will present new contributions concerning the deconvolution problem 
and possible new developments on this subject. Section 5.6 will be devoted 
to further remarks on statistical modeling for chaotic processes in the con­
text of prediction theory. The main results of this chapter are contained in 
Sections 5.4 and ,5.5. 

We would like to emphasize that the approach developed in this chapter is 
neither exhaustive nor complete. It corresponds to a personal point of view 
on the different problems arising in this type of analysis. This approach is 
complementary to many others, particularly those developed by physicists, 
chemists, astrophysicists, controllers and dynamicists. Through this work 
we hope to make a small contribution to the great developments that we 
can actually observe in chaos theory. 

5.2 How Do We Decide If a Process Is Generated 
by a Stochastic or a Deterministic System 
Based on Observed Data? 

Let us try to see how this problem can be considered from a statistical 
approach. One answer lies in the construction of a consistent test. What 
does this mean? Building a consistent test requires five steps: let a level 
0: be chosen which corresponds to the first order risk of the test; thus we 
must: 
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• precisely state the null hypothesis denoted H o, 

• similarly state the alternative denoted HI (if this is not known, the 
test is not complete), 

• determine the statistic Tn that characterizes the test, 

• compute the asymptotic law of Tn under Ho, and 

• compute the corresponding law under HI. 

The knowledge of the asymptotic distribution of Tn under HI is fundamen­
tal to obtaining the power of the test. We can only be sure of our decision 
when using the test (Tn) for an observational sample if this power is quite 
good. To my knowledge, no such test exists. Some steps are very difficult 
to solve: the choice of the statistic Tn for which we need to have different 
behaviors for stochastic or deterministic models and the definition of the 
alternative. Indeed, if we choose Ho: the process (yt) is stochastic (then we 
can consider different well-known processes to characterize (yt)); against 
the alternative HI: the process (yt) is chaotic, then the problem is: How 
are we going to quantify this assumption? 

Until now three approaches to solving this problem could be found in 
the literature: the predictive approach, the use of Lyapunov exponents and 
the study of the dimensions. 

Concerning the predictive approach, a body of work exists. We refer, 
for instance, to Farmer and Sidorowich (1987), Casdagli (1989), Smith 
(1992), Stokbro and Umberger (1992), Michel and Hero (1995), Guegan 
and Mercier (1997, 1998b) and Mercier (1998) and some earlier references 
therein. These works propose different approaches to making predictions, 
most of which use processes such as 5.1, with the main aim of minimizing 
the noise. No formal test has been proposed with this approach. 

Concerning the use of Lyapunov exponents, there is some work which 
attempts to discriminate between stochastic and chaotic systems: see, for 
instance, Eckmann and Ruelle (1985), McCaffrey et al. (1992), Abarbanel 
et al. (1993), Wolff (1992). Nevertheless, the great difficulty is the con­
struction of the statistic Tn. To have discriminating behavior of Tn based 
on Lyapunov exponents, we need to have a precise definition of Lyapunov 
exponents for dynamical systems polluted by noise. The recent work of 
Sauer (1998) presented at the Cambridge workshop seems really promising 
in this respect; see also Lu and Smith (1998). Thus, from this approach the 
problem is still open. 

Finally, concerning the work using the notion of dimension, there exists 
the so-called BDS test, see Brock, Dechert and Scheinkman (1996). It uses 
a statistic Tn based on the correlation dimension. The test assumes that 
under Ho the process (yt) is white noise and the alternative HI is free. Thus 
we can only detect, in the more favorable cases, whether the process is white 
noise or not. We are unable to compute the power of this test and thus it 
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is difficult to make a decision based on observed data. Some later works 
have studied the empirical power of this test proposing under HI some 
well-known nonlinear stochastic processes. Here the statistic Tn seems to 
identify the existence of large nonlinearities in the data (see Pesaran and 
Potter, (1993), Ashley and Patterson, (1998) and Chauveau, Damon and 
Guegan, (1999)). Nevertheless the test does not permit the detection of 
chaos; thus the problem is still open. Recent work tries to develop the 
problem using new insights: see, for instance, Cutler (1998). 

Even if this problem is still not solved, some new developments, particu­
larly those presented at the workshop, provide the beginnings of responses 
to these different questions. 

5.3 What Features Are Captured by Stochastic 
Processes? 

In this section we are going to assume that we observe real data generated 
by a system such as 5.2. We assume that the underlying process (Yt)tEZ is 
a nonlinear stochastic process and we are interested in describing, in that 
context, what kinds of characteristics of the data we are able to capture 
using such stochastic models. This means that we work with parametric 
models: thus when we reconstruct a dynamic from the data using these 
specific models, we only consider the properties provided by these models. 

The main characteristics that we are able to actually capture with this 
approach are: some trends, seasonality, different cycles, heteroscedastic­
ity, long memory, intermittencies, explosions and persistence. Some models 
permit just one of these properties, others permit several. In any case, the 
approach can appear very partial in the reconstruction of the dynamics. We 
briefly describe the most popular models and how we are able to recognize 
them. We denote in the following the a-algebra generated by Ys , s < t, by 
It-I. First, we will assume when we model stochastic processes for (YthEZ 
that this process is ergodic; this means that when we retain one model 
we may verify specific conditions to be sure that the ergodic assumption is 
verified. We discuss this point at the end of this section. To choose between 
different classes of models, we mainly study the properties of the empirical 
moments and the empirical distribution of the observed data. 

From 5.2, we concentrate on two classes of stochastic processes that we 
describe in the following ways: 

Yt = ht • E:t (5.3) 

where ht is a measurable time-varying function of the information set It-I, 
or: 

(5.4) 
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Now we will describe in detail some of these functions h and 1f;. 
From the study of second-order moments and conditional second-order 

moments, we can detect the existence of trend, cycles and variability in the 
variance which leads us to choose between different classes of models: the 
heteroscedastic models and the long memory processes. The heteroscedastic 
models take into account the great variability of the conditional variance. 
This interesting feature was first used to model the existence of volatility in 
financial data. The earliest model is due to Engle (1982), followed by other 
models: see, for instance, BOllerslev (1986), Taylor (1986), Dingh, Granger 
and Engle (1993), Diebolt and Guegan (1991, 1993), among others. In 
the case of a GARCH process (Generalized Heteroscedastic Autoregressive 
model), the function ht in 5.3 has the following representation: 

p q 

h~ = ao + L ailt~i + L bjhLj . 
i=l j=l 

This representation also permits us to take into account persistence in the 
data, i.e., the fact that the data stay above a certain value (for instance, the 
mean), for a long time before decreasing below the threshold. As a matter of 
fact, this latter behavior is better modeled by long memory processes which 
are characterized by a slow decay of the autocorrelation function with some­
times seasonality, or by specific behavior of the spectral density exhibiting 
infinite values in different frequencies. This behavior has been modeled by 
the FARMA processes introduced by Granger and Joyeux (1980) and Hosk­
ing (1981), and by the k-factor GARMA process introduced respectively 
by Andel (1986), Gray, Zhang and Woodward (1989), Giraitis and Leipus 
(1995) and Wayne, Woodward, Cheng and Gray (1998). For the k-factor 
GARMA model, the right hand side of equation 5.3 becomes: 

k 

yt = II (1 - 2UiB + B 2 )-)..iCt 

i=l 

with 0 < Ui ~ 1, -! ~ Ai < ! and B the backshift operator such that 
Bct = Ct-1' With the parameters Ui and Ai, we can model at the same time 
presence of seasonality and long memory in the data. We can find examples 
and theory in Ferrara and Guegan (1999, 2000a, b) for these models. If we 
also observe variability in the variance of observed data, a new model pro­
posed by Guegan (2000) which combines GARCH and k-GARMA models 
may be appropriate since it permits all the above properties together. Other 
approaches have been also proposed by Baillie, Bollerslev and Mikkelsen 
(1996) and Dingh and Granger (1996). 

From the study of empirical higher models and empirical distributions, it 
is also possible to detect specific behavior of the data: existence of extreme 
values, explosions, fat tails in the empirical distribution. In this case we 
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can use bilinear models, see Subba Rao and Gabr (1984) or Guegan (1994) 
for a review. Thus, the function 'I/J in 5.4 has the following form: 

p q P,Q 

'I/J(Y,c) = LaiYt-i + Lbjct-j + L CklYt-kct-l· 
i=l j=l k,l=l 

Here we mainly model the existence of bursts inside the data. We might also 
prefer to study the graph of the distribution function and use its properties: 
In that case we can use a-stable models characterized by fat tails; for these 
models we refer to Samorodnisky and Taqqu (1994). There are also models 
that allow hidden cycles or different cycles in the data. Recently a new 
class of models has been proposed which permits the existence of different 
cycles and passage from one cycle to another. This model is not very far 
from the behavior of certain chaos in the sense that we are close to the 
notion of existence of several attractors for the data. Here, this model is 
defined by a stochastic equation, and Yt follows the recursive scheme 

for all j, k, 1 ::; j ::; h and 1 ::; k ::; l2; {c~j,k); n ~ I} is white noise such 
that c~it,kt} is not correlated with c~i2,k2) for all (it, kl ) f; (h, k2). The 
constants {ap,k); 0 ::; i ::; p; 1 ::; j ::; h; 1 ::; k ::; l2} belong to R. Finally for 
all j = 1, ... , h and k = 1, ... ,12, we have R} = [r}_l' r}) and R% = [r%_l' r%) 

·th 1 2 R h· h·fy 1 1 1 d WI rj' r k E w 1C verI : -00 < rl < r2 < ... < r lt < +00 an 
-00 < r~ < r~ < ... < r?2 < +00. The constants 11, 12 ,p and dl ::; p, d2 ::; p 
are positive integer and represent, respectively, the number of thresholds, 
the order and the delays of the model. This model is called COMTAR and is 
studied and illustrated in two papers by Guegan and Nguyen (1998, 1999). 
It appears as a generalization of the SETAR model introduced by Lim and 
Tong (1980). 

We recalled briefly some of the most important stochastic models which 
take into account specific features such as trend, cycles, seasonality, het­
eroscedasticity, persistence and long memory. The question now is the fol­
lowing: Do these features also exist in systems generated by chaotic equa­
tions if The investigation of this question can provide an interesting way of 
discriminating between these two classes of models. 

In the beginning of this section we stated that we need to verify, for all 
the models we use whether, with respect to the observed data, the cho­
sen process is ergodic. We can now give some indication of how to assess 
this condition for the models we have presented. Generally, we will need 
to obtain the Markovian representation for these models with a view to 
using the well-known criteria established by Tweedie, of which a complete 
description is given in the interesting book of Meyn and Tweedie (1994). 
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For most of the previous models such criteria have been established; never­
theless this problem is not solved in all contexts and a lot of works remains. 
For bilinear models some conditions obtained are often difficult to verify, 
we refer to Guegan (1983) and Pham (1986). For SETAR models, we refer 
to Petrucelli and Woodward (1984), Chan and Tong (1985, 1991) and Chan 
(1989), and for the COMTAR models to Guegan and Nguyen (1999). For 
ARCH models we refer to Diebold and Guegan (1991) and Guegan and 
Diebolt (1994). 

Finally before dosing this section we want to emphasize the fact that all 
the developments using these models are parametric. Some non-parametric 
techniques have been also used to study some of the previous cited behav­
iors, particularly semi-parametric methods developed by Robinson (1983, 
1991). 

5.4 Recent Developments in the Statistical Study 
of Chaotic Systems 

When statisticians work in the stochastic modeling domain, a large part 
of their research concerns the construction of specific models with a view 
to taking into account particular features of the data: thus, this approach 
is mainly parametric as we have seen in the previous section. If we are 
interested in working with deterministic models, it is not reasonable to 
try to reconstruct specific chaotic systems from the data. Thus, the meth­
ods statisticians are going to use are mainly non-parametric. The choice 
of methods will depend on the kinds of results we want to obtain. To this 
end, we might distinguish different purposes: Probabilistic properties, re­
construction of the chaotic map, estimation of several invariants of the 
chaotic systems such as Lyapunov exponents, dimension of the attractor, 
embedding dimension, predictions and tests. In this section we present some 
results based on a specific approach; we do not attempt to be exhaustive 
in our presentation. This is a particular point of view on the statistical 
approach for chaotic systems. 

Now we assume that we observe real data denoted by Xl, X 2, . .. ,X n, 

which are generated by the (ideal) following system: 

(5.5) 

where cp is a nonlinear function defined on a compact subset D of IRd to IRd. 
We assume that cp is sensitive to initial conditions and that it possesses an 
attractor in the state space D, see Devaney (1989) and Smale (1967) for 
precise definitions of these notions. This will be our basic condition for cp to 
be chaotic. In this section we will discuss some results concerning ergodic 
theory and estimation theory of chaos. The ergodic property of a process 
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such as 5.5 is an important consideration. Indeed, we know that the grow­
ing interest in deterministic dynamical systems comes from the fact that 
their trajectories show highly complex behavior, and a common feature of 
all these models is that they show very different kinds of asymptotic behav­
ior (stable points, limit cycles, sensitivity to initial conditions). Although 
these concepts are of a topological nature, the behavior of chaotic systems 
is considered random and it is in that sense that their comparison with 
stochastic processes is interesting. In a rigorous way this randomness or 
stochasticity is provided by the ergodic theoretical approach. With respect 
to the measure associated with the state space of a chaotic system, it is the 
study of the mixing properties of the dynamics with respect to this mea­
sure which specifies the degree of chaos of a dynamical system. Existence or 
otherwise of an invariant probability measure absolutely continuous with 
respect to this canonical measure is closely related to this problem. In this 
sense the study of deterministic dynamical systems is not different to that 
of stochastic processes. Finally, before describing results concerning spe­
cific systems, we will note that few systems, apart from one-dimensional 
ones will have an invariant measure absolutely continuous with respect to 
Lebesgue measure. On the other hand, as long as the system has some 
bounded behavior, it is guaranteed to have an ergodic invariant measure 
(e.g., Katok and Hasselblatt, (1995). Typically (in an informal sense) if it 
is chaotic it will have an infinite number of such measures. The important 
ergodic property is thus the existence of a so called "natural measure" , and 
this has been proved to occur in hyperbolic systems, as well as an increas­
ing number of more interesting systems, such as the Henon map, for a set 
of positive measure of parameters. 

5.4-1 Invariance and Mixing Properties in Chaotic Systems 
In this part we consider maps defined on [0, l]d -+ [0, l]d. First, if we assume 
d = 1, we can describe two well known classes of families of two branch 
map models. The type of maps to be studied take the general form 5.5 
where ° :S X t- 1 < c 

c :S X t - 1 :S 1. 

It thus has two branches <PI (x) and <P2 (x): each branch will be continuous 
and monotone, with ° :S <Pl(X), <P2(X) :S 1. We consider two families of 
maps: 

• the generalized tent map defined by 

x _ { 1 - (1 - 2Xt_d V 

t - 1 - (2Xt - 1 - It 
° :S X t - 1 < ! 
! :S X t - 1 :S 1 

(5.6) 

where ° < v :S 2. The family 5.6 contains the tent map for v = 1 and 
the logistic map for v = 2. 
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• the generalized binary-shift map defined by 

o ~ X t - l < ~ 
~ ~ X t - l ~ 1 

(5.7) 

where 0 < v ~ 2. The family 5.7 contains the 2-adic map for v = l. 
No other special cases of maps are known. The invariant distributions 
of these two families 5.6 and 5.7 are known only in special cases we 
will discuss and they cannot be obtained analytically, although the 
methods developed by Kohda and Murao (1990), for instance, should 
be able to give numerical approximations. 

1 - First we consider the generalized binary shift map family. 
a. When v = 1, we have the analytical form for the invariant distribution 

which is the uniform density. The general form of the r-adic map defined 
by 

(mod 1), r > 1, r E N 

also admits this invariant measure. We can obtain this result using the 
theory of Markov operators (see Lasota and Mackay, (1994)) or from an 
infinite moving average representation of white noise or from a coarse grain­
ing representation. We state here the representation by moving average of 
white noise that we can use for other systems. We suppose that r = 2 
(but the method is true for any integer value of r). Fix an initial value Xo, 
then Xn = cpn(xo). The map cp associated with Xo is a sequence of digits 
ao, al, a2,··· (which is its trajectory) which satisfied the following rule 

By the way, ao, al, a2,··· is the binary expansion of Xo, thus: 

00 

Xo = L ai 2-(i+ l ) . 

i=O 

Endowed with the Lebesgue measure, [0, 1] is a probability space and, 
through their dependence on Xo, the ai become independent identically 
distributed random variables, with P[ai = 0] = P[ai = 1] = ~. Then 

00 

Xn = cpn(xo) = L an+i2-(i+l) 
i=O 

and the deterministic sequence (cpn(Xo))n>o is realized as a functional of 
the Ll.D. process (an)n>O. Then we can derive that there exists an invariant 
measure for the proces~ (Xt ) and also obtain its density with respect to 
Lebesgue measure, see Denker and Keller (1986) for other applications. 
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Another approach consists of mapping the deterministic model in an 
exact manner into a stochastic process governed by a Master equation. 
The basic idea is to perform finite coarse graining by choosing a suit­
able partition in the state space, to project the fine-grained evolution de­
scribed by the Pearson-Frobenius equation onto the partition and to re­
quire that the evolution of the resulting probability vector be generated by 
a time-independent transition matrix. One obtains in this way a Chapman­
Kolmogorov condition imposing constraints on the partition to be chosen 
and on the type of dynamical systems amenable to such a description. 
When the Master equation is obtained, on the basis of the Lasota-Yorke 
theorem (1973), we derive that the transform !P possesses a smooth invari­
ant probability measure. In the case of the r-adic map, the partition has 
two cells [O,!] and [!, 1], and the sequence (an) permits determination of 
the transition matrix, and we get density of this distribution with respect 
to Lebesgue measure. 

b. A map called bimodal, defined by 

!p(x) = !PI (x) 
!p(x) = 1-!PI(X) 

o::;x::;! 
!::;x::;l, 

with !PI (x) = (1 + J)x, 0 ::; x ::; a < !, J < < 1 is close in its behavior 
to the previous map. A coarse graining partition can be obtained, given 0, 
!p(a), !, !p(1 - a), thus we can show the existence of an invariant measure 
absolutely continuous with respect to Lebesgue measure, see Nicolis, Nicolis 
and MacKernan (1993). 

c. When d = 2, we can consider two two-dimensional maps, the Baker 
map defined by 

o ::; x <!, 0 < y < 1 
~ ::; x < 1, 0::; Y ::; 1 

and the Anosov - Diffeomorphism defined by 

{ (!x,2y) 
!p(x,y) = (! + !x,2y -1) 

o ::; x < 1, 
0::; x < 1, 

o::;y::;! 
! ::; y ::; 1. 

These two transformations are invertible and it can be shown that they 
admit the Borel measure as an invariant measure, see Lasota and Mackey 
(1994), and Katok and Hasselblatt (1995). 

d. For d > 1, we can consider the class of locally expanding maps of 
Shub (1969), and of Mayer (1984). These classes of maps contain the r­
adic (d = 1), with r E Nand r E Q. They also contain the continued 
fractional transformation defined by (d = 1): 

!p(x) = ~ - [~] . 
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The locally expanding maps possess invariant measures, even if the analyt­
ical form is not always known and they are characterized by the existence 
of a Markov partition associated with them, see Krzyzewski and Szlenk 
(1969) and Mayer (1984). 

2. Now we consider the family of generalized tent maps: The analytical 
form of the invariant distributions is known to be the uniform density for 
the tent map (v = 1 in 5.6), and the beta (!,!) density for the logistic 
map (v = 2 in 5.6). Proofs can be found in Ulam and von Neumann (1947), 
Bowen (1978), Ho,Bbauer and Keller (1982), Lasota and Mackey (1994). If 
we consider the general representation of the logistic map given by 

Xt = o:Xt - 1 (1 - Xt-d ° ~ X t - 1 ~ 1, (5.8) 

the existence of the beta (1/2, 1/2) density for the logistic map applies 
to the unique case 0: = 4. For other values of 0:, the invariant measure 
is not known. For 3.57 < 0: < 4, iterative simulated histograms have been 
provided by Hall and Wolff (1995) and Ladoucette (1999), but no analytical 
expression is provided and theoretical results need to be given. Lawrance 
and Spencer (1996) also give simulated histograms for equation 5.6 for 
different values of v "# 1, 2. An approach for these maps can be also 
developed by the coarse graining method. 

3. Finally, important chaotic systems are those introduced by Smale 
(1967) which verify the Axiom-A. Ruelle (1977) and Bowen (1978) have 
been able to show existence of an asymptotic measure for these systems, 
whose support is often a complicated Cantor-like set. But these measures 
are not absolutely continuous with respect to ordinary Lebesgue measure. 
Nevertheless all Axiom A basic sets support an ergodic invariant measure 
and possess such measures with nice properties, particularly if they have 
attractors they have the SBR measure, and hence a natural measure. It is 
interesting to note that for certain non Axiom-A systems invariant mea­
sures can be derived, see Meyer and Roepstorff (1983). Standard results 
show that continuous maps on a compact set always have ergodic invariant 
measure. 

Even if the existence of invariant measure can be ascertained for most of 
the maps defined from [0, Ijd ~ [0, Ijd, d ~ 1, the properties of mixing for 
these systems are much more difficult to obtain. Actually most of the results 
concern the r-adic map. Lasota and Mackey (1994) prove its exactness 
which implies that this map is strong mixing and geometrically ergodic. 
See also Denker and Keller (1986) for another approach. No proof has been 
proposed concerning mixing properties, for instance, for the Anosov and 
Baker systems. 

Recently, Gayraud and Guegan (1999) established the geometric ergod­
icity of the tent map (v = 2 in 5.6) using a Master equation. To obtain the 
latter they follow the work of Nicolis and Nicolis (1988). They first focus 
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on the two-cell partition of [0, 1] for the tent map: 

C1 = {x : 0 ~ x ~ xc}, C2 = {x : Xc < x ~ I} (5.9) 

where Xc = 2/3 is the position of the unstable fixed point. Using two states 
denoted by 1 and 2, it is possible to get the transition matrix, 

w = (~/2 1/~) 

for the partition 5.9. The Master equation obtained with this transition 
matrix describes a Markovian process. It is thus possible to apply to this 
representation the approach developed by Denker and Keller (1986) for 
the r-adic map using the Lasota Yorke (1973) theorem. The tent map can 
be represented as a functional of an Ll.D. process. The stationarity of the 
function ip is due to the ip invariance of the Lebesgue measure on [0,1], 
while the independence of the sequence which defines the transition matrix 
reflects the mixing property of the tent map ip. This method can be easily 
extended to another class of generalized tent maps represented by: 

ip(x) = ax if 0 ~ x ~ 1/2 

ip(x) = a(1 - x) if 1/2 < x ~ 1, 

where a is greater than 2, see MacKernan (1997). Furthermore, the logistic 
map can be derived from the tent map by a invertible transformation, so 
the same properties can be obtained in the same way. It is also possible to 
get the exact Master equation associated with the logistic map using the 
coarse graining method, see MacKernan (1997). In his thesis MacKernan 
considered other non-hyperbolic chaotic maps but computing the Markov­
ian matrix is much more difficult. For such maps, for which the dynamics 
are highly non uniform as in intermittent systems, it is necessary to define 
partitions containing an infinite but countable number of cells. Another 
possible extension is a piecewise expression over each cell of a minimal 
partition as a polynomial of order N. The method was developed by Mac­
Kernan and Nicolis (1993) using a generalized Markov coarse graining on 
a piecewise monomial basis. By this approach, it may be possible to derive 
mixing conditions for some deterministic systems as soon as the existence of 
the invariant measure is established, even if we do not know the analytical 
form of the distribution function. 

5.4.2 Nonparametric Methods for an Estimation Theory in 
Chaotic Systems 

First we present approaches belonging to the class of kernel methods to con­
struct estimates of the invariant measure of a system and the embedding 
dimension. This class of methods provides consistent estimates without 
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using stronger assumptions for the function 'P than ergodicity and Lips­
chitz conditions. For a review of these non-parametric methods, we refer 
to Silverman (1993) and Guegan (1997). 

The first classical method is the kernel method used to obtain a consistent 
estimate for the invariant measure. If we denote this estimate by In, it is 
defined by: 

1 ~ X-Xi 
In(x) = nh LJ K(-h-)' 

n i=l n 

(5.10) 

where K is a kernel function on a compact support and (hn ) is a sequence 
which tends to zero as n tends to infinity. The estimate permits determina­
tion of the window around x. With this approach, the rate of convergence 
for the estimate In of the density (when it exists) of the distribution func­
tion associated with the system defined in 5.5, is O( h\h) when nh;,h -t 00 

n n 

as n -t 00, see Bosq and Guegan (1995). Other approaches have been also 
considered by Hall and Wolff (1995) and Guegan and Wolff (1999). 

Another interesting method is the so-called zero-one explosive method 
introduced first by Bosq (1989) using the notion of singularity for the den­
sity of a vector. We present this method to estimate the chaotic map 'P 
defined in 5.5. The estimate of 'P is denoted 'Pn(x). To obtain rates of 
convergence for this estimate, we consider the following function 

n-l 
1 '"' x - X t Y - X t - 1 

gn(x,y) = h? LJ K(-h-) K( h ), 
n n t=l n n 

with the same notation as before and with (x, y) E I~.2, so that 'Pn (x) is 
such that: 

9n(X,'Pn) ~ SUPyElR k 9n(x,y) - (n 

where (n -t 0+, as n -t 00. See Bosq and Guegan (1995) for details and 
theoretical results of this approach. 

With this last method it is also possible to obtain a consistent estimate 
of the embedding dimension with a good rate of convergence under only 
ergodic assumptions, see Bosq, Guegan and Leorat (1999) for a theoretical 
approach and Guegan and Leorat (1997) for applications. There exist other 
works on the estimation of the embedding dimension with more classical 
approaches, see, for instance, Grassberger and Procaccia (1983) and Cutler 
(1997). 

Another method which can also be used to estimate 'P is the regressogram 
method. Gayraud and Guegan (1999) used this method in a recent paper. 
The estimate 'Pn is defined by 

,,~ XK(X-x;) 
() L.n=l • h 

'Pn x = ,,~ K(X-X:) ' 
L...=l h n 
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with same notation as before. Gayraud and Guegan were able to obtain a 
rate of convergence for i.pn similar to those obtained for mixing processes. 
The method is close to that developed by HardIe and Tsybakov (1997) for 
stochastic processes. This estimate is easy to use and gives very nice results 
for reconstructing the dynamics of a chaotic system such that 5.5. 

Besides kernel methods, there exist many non-parametric methods which 
permit solution of the problems in estimation and prediction theory for 
chaotic systems; we refer in particular to spline functions, nearest neighbor 
methods, regression trees, radial basis function methods, neural networks 
and wavelets. Concerning regression trees we refer in particular to Flandrin 
and Michel (1993) and Badel, Hero and Michel (1997). For radial basis 
functions and neural networks a lot of work exists, see, for instance, Girosi 
and Anzelotti (1993). In his thesis Mercier (1998) gives a rate of convergence 
for the reconstruction of i.p using a radial basis function improving on known 
results. Concerning nearest neighbor methods, we refer, for instance, to 
Abarbanel et al. (1993) and Finkenstadt and Kuhbier (1995). One of the 
problems of interest concerning all of these methods concerns the influence 
of the initial conditions on the estimates. For new thoughts on this problem 
we refer to Guegan and Tchernig (2000) and references therein. 

5.5 The Deconvolution Problem 

When we observe real data Yl, Y2 ,··· ,Yn ,···, even if we assume that a 
chaotic behavior characterizes these data, it is reasonable to assume that 
there exists some noise which pollutes these data. Two situations can arise 
in that context. The more general situation is the following 

{ Yt= 
Xt = 

(5.11) 

where (Xt)tEZ is assumed to be a chaotic process. The choice of the function 
'¢ is the first problem to solve. Until now, most of the research has assumed 
that we have the following decomposition for yt: 

(5.12) 

We know that this decomposition is not unique and we have until now no 
tools to split (5.11) correctly, so (5.12) is only an arbitrary choice. One 
of the first problems in this situation is to estimate non-parametrically the 
density f (when it exists) of the invariant measure J.L associated with the 
process (Xt ) using the observations described by (yt). Two particular but 
important cases can be considered: 

• Suppose that we observe a dynamical system such 5.11 but with 
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errors-in-variables, thus, we obtain the following model: 

X t + ct, 

= <p(Xt - 1), 
(5.13) 

Models such 5.13 can appear, for instance, when one wants to sim­
ulate systems, in particular aperiodic ones (like chaotic systems, see 
Guegan and Mercier, 1997). Now, if in 5.13, ct is independent of X t 
and Ct has an invariant measure v, t 2:: 1, the existence of an invari­
ant measure, say J.L for (Xt ) implies the same property for (yt) and 
the invariant measure associated with (yt) is J.L * v where * denotes 
the convolution product. If the characteristic function of v does not 
vanish, then J.L * v determines J.L: in that case one deals with a decon­
volution problem. 

• A general model corresponds to propagation of errors. We consider 
model 5.11 with 'l/J(x,y) = <p(x) +y: 

yt = <p(yt-d + Ct· (5.14) 

Assume Yo is observed. For a general t, the relation between yt and Yo 
is intricate. However, this representation may be simplified by using 
successive approximations, so that 

t 2:: 1 (5.15) 

where 

with 
f t = (<p'O<p(t))(yo) , 

where <p', the derivative of <p, is supposed to exist except in a count­
able set of points and where 0 represents the composition of functions. 
Notice that if <p is linear, the models given by 5.14 and 5.15 coincide. 
Models such as 5.15 can be easily found in experimental situations. 
For example we refer to the Couette-Taylor fluid flow experiment de­
scribed in Brandstiiter and Swinney (1987) and other examples of 
deterministic noise amplifiers can be found in Deissler and Farmer 
(1992). In all of these experimental systems, the smallness of the 
noise is fundamental. 

In a recent paper, Blanke, Bosq and Guegan (1999) give the convergence 
of a kernel estimate for the invariant density (when it exists) of processes 
such 5.11, for different classes of noise. 

In the case of models with errors in variables 5.13, it can be proven that 
the variance of the estimate in is of O(1/nh~2f3+1)d) when nht;f3+1)d -+ 00 
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as n -+ 00. This result is established for ordinary smooth noises such as 
Laplacian and Gamma densities. Another class of noise called the super­
smooth noises, which includes Gaussian noise or a Cauchy law, have slower 
rates of convergence for in. The nonparametric kernel-type density estima­
tor used here is defined by: 

with 

where <PK is the Fourier transform of a kernel K and <Po is the characteristic 
function of the noise c. This is a classical deconvolution kernel developed, 
for instance, for mixing processes by Masry (1991). 

Models with small noise may also be represented in the following way: 

with (Xt ) satisfying relation 5.5. Hence the variance of the estimate in 
converges to zero in O(n-4/ 5 ) as n tends to +00, when we choose hn = 
n-1/ 5 . Since we no longer follow a deconvolution approach for this last 
model, the estimate used for in is the classical estimate defined in 5.10. 

Based on this work, Blanke, Bosq and Guegan (1999) show that it is 
possible to adapt theoretical results obtained for chaotic systems to systems 
with noise. Nevertheless, it appears that the presence of Gaussian noise 
gives poor result, and, for instance, unbounded noise such as beta(1/2, 1/2) 
noise give the worst. This seems to confirm some of the results presented 
elsewhere in this workshop, see Sauer (1998) and Stark et al. (1998), for 
instance. 

The reconstruction of the chaotic map cp of 5.5 in the state space D, with 
only the observational data Y1 , Y2 ,··· ,Yn , belongs also to the deconvolu­
tion problem. Some proposed solutions exist already in the literature, see, 
for instance, Broomhead and King (1986), Farmer and Sidorowitch (1988), 
Lisi, Nicolis and Sandri (1995). Nevertheless, until now no theoretical work 
strengthens the consistency of the reconstruction. To solve this problem, 
we need to establish what kind of noise is possible; we can use the previous 
developments to try to answer this question. 

Some work also exists on estimation of other characteristics for the pro­
cess (XthEZ obtained from (Yt)tEZ. They concern the construction of Lya­
punov exponents,(see Sauer, (1998)), the estimation of embedding dimen­
sion, (see Cutler (1998)) and the extension to Takens' theorem, (see Stark 
et al. (1998)). All show that the choice of the noise is fundamental. Given 
this, the way in which the noise pollutes the original system is also very 
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important. From the published results, we can see that the rates of con­
vergence are completely different observing whether we have errors in vari­
ables or propagation errors. Thus, further development is required in order 
to understand all the effects of noise on a chaotic system. 

5.6 Further Developments and Remarks 

In order to describe a theory of identification of chaotic systems many 
problems need to be solved. Different approaches to building such a theory 
might be considered. We list a selection of these and give some idea of 
possible developments from a statistical point of view: 

• Whenever we discuss modeling of chaos, we need to state the char­
acteristics we want to take into account. In the literature there are 
different definitions for a chaotic system and before attempting to 
unify these (which may not be realistic from a modeling point of 
view), it is important to specify the domain in which we will work. 

• Until now, detecting chaos from observational data has been very 
difficult, unless there has been the opportunity of directly finding 
an attractor from the data. Most of the time, this is the preference 
of physicists, but econometricians and people working in the finance 
area generally cannot achieve this because their data are extremely 
polluted. This can also be the case in meteorology and astrophysics. 
Thus, we generally work under the assumption of chaotic behavior 
within the data or very complex behavior that is not close to that 
generally known and described by stochastic processes. This means 
that the construction of the statistic Tn or different statistics per­
mitting discrimination in a consistent way of stochastic behavior and 
deterministic behavior must be in accordance with the a priori as­
sumption. In my opinion, it seems that the work of Sauer (1998) 
could be an important contribution in this way. 

• The theoretical properties of characteristics of a chaotic system are 
well known. We need to estimate them in a consistent way with knowl­
edge of the asymptotic laws of their estimates. The non-parametric 
approaches based on kernel methods developed, for instance, by the 
works of Bosq and Guegan (1995) and Bosq, Guegan and Leorat 
(1997), are also promising and give interesting results. It seems that 
these works need to be extended to other statistics which characterize 
the deterministic dynamical systems. 

• Making predictions with chaotic dynamical system seems a joke be­
cause generally we think that such a system is unpredictable-in a 
certain sense, like random walks. Nevertheless, if we can reconstruct 



122 Dominique Guegan 

the chaotic map in a consistent way, then short term prediction can 
be obtained, see, for instance, Guegan and Lisi (1997) and Guegan 
and Mercier (1998 a). Indeed, predictions with chaotic systems are 
better than those obtained with complex stochastic systems because 
in the latter case we mainly predict noise whereas with the former 
approach it is the complex structure of the systems which provides 
the predictions. We can also consider medium and long-term horizons 
for predictions. In these cases we need to have a better understanding 
of Lyapunov exponents and of the distribution of the predictions . 

• Concerning the deconvolution problem, very little work exists and the 
problem needs further development. We again postulate that kernel 
methods and wavelets may provide useful results. 

We see by this short review that the problem of statistical modeling of 
chaotic systems still requires much work, but there has been some progress 
toward its solution in recent years. 
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Chapter 6 

The Identification and 
Estimation of 
Nonlinear Stochastic Systems 
Peter Young 

ABSTRACT This chapter describes what might be called the system theo­
rist's approach to understanding dynamics of nonlinear stochastic systems. 
The method uses so-called state-dependent parameters, and is able to han­
dle non-stationarity, as long as the state-dependent parameters vary slowly 
compared to the significant dynamics. One of the main points made here 
is that most realistic systems have time-varying inputs which can be mea­
sured; models must take this into account, and indeed modeling often be­
comes easier rather than harder when this is done. We describe the methods 
used, based on recursive fixed-interval smoothing, and present applications 
to some realistic problems. 

6.1 Introduction 

Previous publications (e.g., Young, 1978, 1983, 1993a,b, 1996, 1998a,b, 
1999a,b; Young and Runkle, 1989; Young and Minchin, 1991; Young et 
al, 1991; Young and Lees, 1993; Young and Beven, 1994; Young and Pe­
dregal, 1997, 1998, 1999) have discussed an approach to non-stationary 
and nonlinear signal processing based on the identification and estimation 
of stochastic models with time variable (TVP) or state dependent (SDP) 
parameters. Here the term 'non-stationarity' is assumed to mean that the 
statistical properties of the signal, as defined by the parameters in an as­
sociated stochastic model, are changing over time at a rate which is "slow" 
in relation to the rates of change of the stochastic state variables in the 
system under study. Although such non-stationary systems exhibit nonlin­
ear behavior, this can often be approximated well by TVP (or piece-wise 
linear) models, the parameters of which can be estimated using recursive 
methods of estimation in which the parameters are assumed to evolve in a 
simple stochastic manner (e.g., Young, 1984, 1999a). On the other hand, if 
the changes in the parameters are functions of the state or input variables 
(Le., they actually constitute stochastic state variables), then the system is 
truly nonlinear and likely to exhibit severe nonlinear behavior. Normally, 
this cannot be approximated in a simple TVP manner; in which case, re-
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course must be made to the alternative, and more powerful SDP modeling 
methods that are the main topic of this chapter. 

As far as the author is aware, the idea of SDP modeling originated in 
his 1978 paper on the modeling of badly defined dynamic systems (Young, 
1978) and was then taken up by Priestley, in a series of papers and a book 
on the subject (Priestley, 1988). These earlier publications do not, how­
ever, exploit the power of recursive fixed interval smoothing (FIS), which 
provides the main engine for the developments described in this chapter. In 
particular, the presently proposed approach involves two statistical stages . 

• First, the non-parametric identification of the state dependency using 
recursive methods of time-variable parameter estimation based on 
FIS which allow for rapid (state-dependent) parametric change. As 
we shall see, the standard methods of TVP estimation developed 
previously for non-stationary time series analysis need to be modified 
considerably in this SDP setting to allow for the much more rapid 
temporal changes that arise from the state dependency . 

• Second, the parameterization of the identified non-parametric rela­
tionships, followed by the statistically more efficient estimation of 
the (now normally constant) parameters that characterize these SDP 
nonlinearities. . 

The first identification stage in this process exploits FIS algorithms, com­
bined with special data re-ordering and back-fitting procedures, to obtain 
estimates of any state-dependent parameter variations. These state depen­
dencies are estimated in the form of non-parametric relationships (graphs) 
between the estimated rapid parameter variation and the associated state 
or input variable ( s). Parameterization of these non-parametric relationships 
can be accomplished in various ways, from simple curve fitting based on 
weighted least squares methods (Young, 1993a; Young and Beven, 1994) to 
the use of neural networks or radial basis functions. 

Having identified a structural form for the nonlinear model of the sys­
tem based on the parameterized nonlinear relationships, the (normally con­
stant) parameters of this model are then re-estimated using some form of 
statistical parameter estimation. This can take various forms: for example, 
at one extreme, it could be based on simple, nonlinear least squares es­
timation; while at the other it could exploit a maximum likelihood (ML) 
approach, based on Gaussian assumptions for the stochastic disturbances 
and the application of prediction error decomposition (see later and also 
Schweppe, 1965). The resulting model should then provide a parametri­
cally efficient representation of the stochastic, nonlinear system that has 
considerable potential for use in subsequent signal processing, time series 
analysis and automatic control system design. For example, the method­
ology described in this chapter exploits recursive estimation in an off-line 
manner, but this sequential processing of the data facilitates the develop­
ment of related on-line adaptive methods of signal processing, forecasting 
and control. 
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Although primarily concerned with nonlinear state dependent parameter 
models, as outlined earlier, this chapter also provides a sequel to a previous 
paper (Young, 1999a) that discusses the simpler class of "linear" TVP 
regression relationships. As a prelude to our discussion of SDP estimation, 
therefore, it is instructive to consider the simpler Time Varying Parameter 
Regression (TVPR) modell, since the major algorithmic aspects of the 
estimation are very similar to those used in the SDP situation. 

6.2 Time Varying Parameter Regression (TVPR) 
Models 

The TVPR model can be written in the following vector equation form: 

T Yt = u t Pt + e 

where 
= 

t = 1,2, ... ,N 

[UI,t U2,t ... Un,t) 
[al,t a2,t .,. an,t)T 

(6.1a) 

(6.1b) 

Here, the subscript t denotes the value of the associated variable at the tth 
instant oftime; Ui,t, i = 1,2, ... , n are the regression variables (regressors or 
input variables), assumed here to be functions of t; and ai,t, i = 1,2, ... , n 
are the associated parameters, assumed to be slowly variable junctions of 
time. 

In order to estimate the assumed time variable model parameters in Pt, it 
is necessary to make some assumptions about the nature of their temporal 
variability. Reflecting the statistical setting of the analysis and referring to 
previous research on this topic, it seems desirable if this is characterized in 
some stochastic manner. Normally, when little is known about the nature 
of the time variability, this model needs to be both simple but flexible. One 
of the simplest and most generally useful class of stochastic, state space 
models involves the assumption the ith parameter, Pi,t, i = 1,2, ... , n, in 
Pt is defined by a two-dimensional stochastic state vector Xi,t = [li,t di,tV, 
where li,t and di,t are, respectively, the changing level and slope of the 
associated TVP. This selection of a two-dimensional state representation 
of the TVPs is based on practical experience over a number of years. Initial 
research by the author and others in the 1960s (e.g., Young, 1969, 1970) 
tended to use a simple scalar random walk (RW) model for the parameter 
variations. However, later work in the 1980s (see above references) showed 
the value of modeling not only the level changes in the TVPs but also their 
rates of change. 

1 For historical reasons, this model has also been called the dynamic linear regression 
(DLR) model (see Young, 1991a and the references therein), which can be misleading 
since the model is not necessarily dynamic in a systems sense. 
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The stochastic evolution of each Xi,t (and, therefore, of each of the n 
parameters in Pt) is assumed to be described by a generalized random 
walk (GRW) process defined in the following state space (88) terms: 

i = 1,2, ... ,m (6.1c) 

where 

and 'f/i,t = ['f/li,t 'f/2i,t]T is a 2 x 1, zero mean, white noise vector that 
allows for stochastic variability in the parameters and is assumed to be 
characterized by a (normally diagonal) covariance matrix Q1)i. Omitting 
the i subscript for convenience, this general model comprises as special 
cases: the integrated random walk (IRW:a = {j = "I = c = 1; 8 = 0); 
the scalar random walk (scalar but equivalent to (6.1c) with {j = "I = 
c = 0; a = 8 = 1, and the first order auto regressive, AR(1) model with 
{j = "I = c = 0; 0 < a < 1; 8 = 1 : i.e., both just relating to the first 
equation in (6.1c), see below); the intermediate case of smoothed random 
walk (8RW: 0 < a < 1; {j = "I = c = 1; and 8 = 0); and, finally, both 
the local linear trend (LLT: a = {j = "I = C = 1; 8 = 1) 2 and damped 
trend (DT: a = {j = 8 = C = 1; 0 < "I < 1): see Harvey, 1984, 1989. The 
various, normally constant, parameters in this GRW model (a, {j, "I, 8, c, 
and the elements of Q1)i) are often referred to as hyper-parameters. This 
is to differentiate them from the TVPs that are the main object of the 
estimation analysis. However, the hyper-parameters are also assumed to be 
unknown a priori and need to be estimated from the data, as we shall see 
in the subsequent discussion. 

The full GRW model (6.1c) was introduced in Jakeman and Young (1979, 
1984): further discussion and practical examples appear in Young (1988), 
Young et al. (1989), Young and Ng (1989), Ng and Young (1990). Note 
that, in the case of the RW model, i.e., 

li,t = li,t-l + 'f/li,t ; li,t = Pi,t (6.2) 

each parameter can be assumed to be time-invariant if the variance of 
the white noise input 'f/lit is set to zero. Then the stochastic TVP setting 
reverts to the more normal, constant parameter regression situation. In 
other words, the recursive estimation algorithms described later for the 
general stochastic TVP case will provide constant parameter estimates, 
identical to the normal en-bloc regression, if RW models with zero variance 
white noise inputs are specified. Of course, there is some added value to 
the recursive solution even in this situation, since the user is provided 

2Interestingly, the LLT model can be considered simply as the combination of the 
simpler RW and IRW models. 
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with the recursive estimates over the whole interval t = 1,2, ... , N. These 
can provide additional useful information on the model: for example, they 
show how the estimates are converging and can be used (see Brown et ai, 
1975; Young, 1984) to detect both the presence of potential parametric 
change and possible over-parameterization (i.e., the model contains too 
many parameters to provide unambiguous estimation results). 

Clearly other, more general and higher order stochastic processes could 
be used to model the stochastic TVPs, provided such models can be identi­
fied satisfactorily from the data. For example the higher order IRW s (double 
and triple integrated random walk (DIRW, TIRW), etc.), the integrated or 
double integrated auto regressive (IAR, DIAR: see Young, 1994) model, 
and even more general processes (e.g., Pedregal and Young, 1996, 1998). 
However, the more complex models introduce additional hyper-parameters 
that would have to be well identified from the data and optimized, thus 
introducing potential practical difficulties. 

The idea of assuming that the model parameters evolve over time as 
non-stationary stochastic variables may seem complex at first sight but it 
is, in fact, just a statistical device to allow for the estimation of paramet­
ric change. After all, the assumption of the RW model is simply a means 
of introducing into the estimation problem the freedom for the associated 
parameter to vary at each sample in time by a small random amount de­
fined by the variance of the white noise input 'Tlli,t. And the more complex 
GRW models in (6.1c) are just a way of refining and adding to this free­
dom. In fact, it can be shown (Young and Pedregal, 1998) that the GRW 
assumptions on the parameter variations have an implicit but physically 
interpretable effect: They make the recursive parameter estimates, at any 
sample time t, depend only on the local data in the vicinity of this sample, 
with the selected GRW model defining the local weighting effect. In the 
case of the RW model, for instance, this weighting effect or "kernel' has a 
Gaussian-like shape that applies maximum weight to the current data with 
declining weight on each side. And the "bandwidth" of the kernel is defined 
by the ratio of the variance of the white noise input 'Tllit to the residual vari­
ance a2 (the noise variance ratio (NVR)). This can be related to the more 
explicit use of localized data weighting in methods such as locally weighted 
kernel regression (e.g., Holst et ai, 1996; Young and Pedregal, 1996) and 
'wavelet' methods (e.g., Daubechies, 1988) that are currently receiving so 
much attention in the statistical and signal processing literature. 

Having introduced the GRW models for the parameter variations, an 
overall SS model can be constructed straightforwardly by the aggregation 
of the subsystem matrices defined in (6.1c), with the "observation" equation 
defined by the model equation (6.1a): i.e., 

Observation equation 
State equations 

Yt HtXt + et (i) 
Xt = FXt-l + G'Tlt. (ii) 

(6.3a) 

If p = 2n, then F is a p x p block diagonal with blocks defined by 



132 Peter Young 

the Fi matrices in (6.1c); G is a p x p block diagonal matrix with blocks 
defined by the corresponding sub-system matrices G i in (6.1c); and 'f/t is a 
p dimensional vector containing, in appropriate locations, the white noise 
input vectors 'f/i,t ('system disturbances' in normal SS terminology) to each 
of the GRW models in (6.1c). These white noise inputs, which provide the 
stochastic stimulus for parametric change in the model, are assumed to be 
independent of the observation noise et and have a covariance matrix Q 
formed from the combination of the individual covariance matrices Q'I,i. 

Finally, H t is a 1 x p vector of the following form, 

Un,t 0] (6.3b) 

that relates the scalar observation Yt to the state variables which are defined 
by (6.3a)(ii), so that it represents the TVPR model (6.1a) with each pa­
rameter defined as a GRW process. In the case of the scalar RW and AR(I) 
models for parameter variation, the alternate zeros are simply omitted. 

The SS formulation in (6.3a) is particularly well suited to estimation 
based on optimal, time variable parameter, recursive estimation, in which 
the time variable parameters (acting as surrogate states in this SS for­
mulation) are estimated sequentially while working through the data in 
temporal order (usually termed forward-pass filtering). In the off-line situ­
ation, where all the time series data are available for analysis, this filtering 
operation is accompanied by optimal recursive smoothing (see e.g. Young, 
1984, 1999a). Here the estimates obtained from the forward-pass filter­
ing algorithm are updated sequentially while working through the data in 
reverse temporal order (usually termed backward-pass smoothing) using 
a backward-recursive fixed interval smoothing (FIS) algorithm, where the 
fixed interval is the interval covered by the total sample size N. 3 

The reason for this two-pass approach is easy to understand. The for­
ward pass filtering estimate of Xt, which defines the estimated TVPs, can be 
denoted by xtit (or simply xt, for convenience) since it represents the esti­
mate at sample t given only the data up to and including sampling instant 
t. However, under our assumption that the parameters evolve stochasti­
cally according to the equation (6.1c), a superior smoothed estimate XtlN 
exists and can be generated by the FIS algorithm, in which the estimate 
at t is based on all the data over the sampling interval t = 1,2, ... ,N. As 
a result, the phase lag associated with the forward pass filtering estimate 
(since it cannot anticipate any change until the evidence for change in the 
series has been processed) is eliminated on the backward smoothing pass. 
Thus, any variation in the parameters is estimated as it occurs, without 
any lag effect (indeed, it may even be anticipated if the smoothing effect is 

30n-line 'fixed lag smoothing' is also possible, where the recursive estimation works in 
a forward-pass, filtering mode but with smoothed estimates provided at every sampling 
instant t over a finite interval of I samples into the past (i.e., over the interval t - I to 
t), but this is not discussed here. 
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substantial, as it can be in high noise situations). This proves particularly 
useful in operations such as interpolation over gaps in the data, estimation 
and removal of individual components from the data (signal extraction), 
and seasonal adjustment. 

The complete recursive filtering-smoothing algorithm takes the following 
form: 

Forward Pass Filtering Equations 

Prediction: 

= FXt-l 

= FPt_1FT + GQrGT 

Correction: 

~t = Xtlt-l + Ptlt-lH~[1 + HtPtlt-lHQ~~{yt - HtXtlt-d (6.4a) 
P t = Ptlt- 1 - Ptlt-1Ht [1 + HtPtlt-lHt 1 HtPtlt- 1 

The FIS algorithm is in the form of a backward recursion operating from 
the end of the sample set to the beginning. 

Backward Pass Fixed Interval Smoothing Equations 

XIN = F-1[Xt+1IN + GQrGTLtl 
Lt = [I - Pt+lHT+lHt+11T[FTLt+1 - HT+1 {Yt+l - H t+1 Xt+1}] 

PtlN = P t + PtFTp;=:llt[Pt+1IN - Pt+1ltlP;-';lltFPt 
(6.4b) 

with LN = O. Note that other formulations of FIS are available and can 
have advantages in certain cases (see e.g. Young, 1984): e.g., the recursive 
update equation for XtlN can provide an update to the forward pass, filtered 
estimate Xt. 

In these algorithms, the p x p noise variance ratio (NVR) matrix Qr and 
the p x p matrix P t are defined as follows: 

Q A Pi 
Qr = - j Pt =-

0-2 0-2 
(6.4c) 

where Pi is the error covariance matrix associated with the state estimates 
which, in the current TVP context, defines the estimated uncertainty in the 
parameters. For simplicity, it is normally assumed that the NVR matrix 
Qr is diagonal, although this is not essential. The NVR parameters that 
characterize Qr (and any other hyper-parameters in the SS model (6.3a)) 
are unknown prior to the analysis and dearly need to be estimated on the 
basis of the time series data Yt and Ui,t, i = 1,2 ... , n before the filtering 
and smoothing algorithms can be utilized. The optimization of these 'hyper­
parameters' is discussed in the next sub-section. 
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6.2.1 Maximum Likelihood (ML) Optimization of 
llyperparameters 

The approach to ML optimization based on prediction error decomposition 
is derived from the work of Schweppe (1965), who showed how to generate 
likelihood functions for Gaussian signals using the Kalman filter (see also 
Bryson and Ho, 1969; page 389). Its importance in the present UC context 
was probably first recognized by Harvey (1981) and Kitagawa (1981). Since 
then, it has become one of the two standard approaches to the problem (the 
other being the expectation and minimization (EM) algorithm: Dempster 
et ai, 1977). 

If n is the number of TVPs being estimated, then the recursive TVP 
least squares estimation algorithm (6.4a), with given values for the hyper­
parameters, will yield the one-step-ahead prediction errors (also termed the 
innovations or recursive residuals), ct, where 

Ct = Yt - HtXtlt-l t = 1,2, ... ,N. (6.5) 

If the first n observations are regarded as fixed, the log-likelihood function 
of Yn+!, ... ,YN can be defined in terms of the prediction error decomposi­
tion, i.e., 

-(N -n) 1 1 ~ 
10gL = 2 log(27r) - "2log(0-2) -"2 L..J 10g(1 + HtPtlt-lHf) 

t=n+l 

N 2 
1 L Ct 

- 20-2 t=n+! 1 + HtP tltHl' 
(6.6) 

where it can be shown that 0-2 (1 + HtPtlt-1Hl') is the variance of Ct, so 
that the last term in (6.6) is based on the sum of squares of the normalized 
one-step-ahead prediction errors. Now the ML estimate of 0-2 , conditional 
on the hyper-parameters, is given by 

(6.7) 

so that it can be estimated in this manner and 'concentrated out' of the 
expression (6.6) by substituting (6.7) into (6.6), to yield the following ex­
pression for the 'concentrated likelihood': 

N 
N-n 1 '" T N-n A2 10g(Lc) = --2- log(27r+l)-"2 L..J 10g(I+HtPtlt-lHt )--2- log(0- ) 

t=n+l 
(6.8) 

which needs to be maximized with respect to the unknown hyper-parameters 
in order to obtain their ML estimates. 
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Since (6.8) is nonlinear in the hyper-parameters, the likelihood max­
imization needs to be carried out numerically. Consequently, it is more 
convenient to remove the constant term (since it will play no part in the 
optimization) and multiply (6.8) by -2, to yield 

N 

log(Lc) = L log(l + HtPtlt-1Hi) + (N - n) log(a-2 ), (6.9) 
t=n+l 

which then needs to be minimized. This minimization is accomplished by 
initiating the optimization with the hyper-parameter estimates either se­
lected by the user or set to some default values (in both cases, ensuring 
that the resulting optimization does not converge on a local minimum). The 
recursive TVP estimation algorithm (6.4a) is used repeatedly to generate 
the one step ahead prediction errors and, thence, the log-likelihood value 
in (6.9) associated with the latest selection of hyper-parameter estimates 
made by the optimization algorithm. The optimization algorithm then ad­
justs its selection of hyper-parameter estimates in order to converge on 
those estimates that minimize (6.9). Further details of this and alternative 
ML optimization procedures are given, for example, in Harvey and Peters 
(1990). Typical methods that can be used for numerical optimization are 
the 'fmins' and 'fminu' functions available in the Matlab software system, 
or their equivalents, although more complex and efficient procedures are 
available. 

6.3 State Dependent Parameter Regression Models 

The approach to TVPR estimation discussed in the last section works very 
well in situations where the parameters ai,t are slowly varying when com­
pared to the observed temporal variation in the measured regression vari­
ables Ui,t (see e.g., Young, 1999a). If the ai,t are functions of the Ui,t, 
however, then the recursive algorithm 4(a)-4(c) is, in general, unable to 
track the potentially much more rapid variations in the parameters, and a 
modified approach is necessary. This SDR model takes the following form: 

Yt = uTpt +et, et = N(0,(72) t = 1,2, ... ,N (6.10a) 

or 
h - T Yt = Xt + et, were Xt - u t Pt 

is the noise free output. Here, 

[Ul,t U2,t··· un,tl 
[al(ul,t) a2(u2,t) ... an(un,t)]T 

(6.lOb) 

and the nomenclature ai(ui,t) denotes that each parameter is potentially a 
function of its associated regression variable. 
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Since the parameter vector Pt is potentially state-dependent, it may vary 
at a rate commensurate with the temporal variations in the regression 
variables, and so it cannot be assumed that the simple GRW model (6.1c) 
is appropriate to describe the parametric variation over time. In particular, 
it would appear at first sight that the stochastic state space model should 
include prior information on the nature of the parameter variation if the 
TVP estimation methodology discussed in previous sections is to work 
satisfactorily. Fortunately, it is possible to remove this requirement if we 
resort to the rather unusual procedure, at least within a time series context, 
of sorting the data in a non-temporal order. Then, if the ordering is chosen 
so that the SDP variations associated with the sorted series are smoother 
and less rapid, it is more likely that a simple GRW process can be utilized 
to describe their evolution. 

For example, if the time series are sorted in some common ascending­
order-of-magnitude manner (Le., the sort operation in Matlab), then the 
rapid natural variations in Yt and the Ui,t can be effectively eliminated 
from the data and replaced, in the sorted data space, by much smoother 
and less rapid variations. And if the SDPs are, indeed, related to these 
variables, then they will be similarly affected by the sorting. Following FIS 
estimation, however, these SDP estimates can be unsorted (a trivial unsort 
operation to reverse Matlab's sort) and their true, rapid variation will be­
come apparent. Of course, the nature of the sorting will affect the efficacy 
of this approach and it seems likely that there will be an optimum sort­
ing which results in minimum variance estimates. However, such optimum 
sorting will naturally depend on the nature of the state dependency and 
its definition would require some sort of iterative estimation procedure. In 
practical terms, therefore, the common ascending order sorting and unsort­
ing operations seem the most straightforward and will be used here. 

One obvious requirement with this new approach to SDP estimation is 
that the sorting of data, prior to FIS estimation, must be common to all of 
the variables in the relationship (6.lOa). If an ascending order strategy is se­
lected, therefore, it is necessary to decide upon which variable in the model 
the sorting should be based. The simplest strategy is to sort according to 
the ascending order of the dependent variable Yt. Depending on the nature 
of each SDP in the vector Pi> however, a single variable sorting strategy 
such as this does not often produce satisfactory results; indeed, it will only 
work well if the state dependency is associated with the variations in Yt or 
some related variable. If this is not the case, then a more complicated, but 
still straightforward, back-fitting procedure can be exploited. Here, each 
parameter is estimated in turn, based on the partial residual series ob­
tained by subtracting all the other terms on the right hand side of (6.lOa) 
from Yt. At each such back-fitting iteration, the sorting can then be based 
on the single variable associated with the current SDP being estimated (in 
the current SDR context, each Ui,t in turn). 

Since the SDP estimates resulting from this back-fitting algorithm are 
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themselves time series, it will be noted that the algorithm constitutes a 
special form of non-parametric estimation and, as such, can be compared 
with other non-parametric methods, such as the generalized additive mod­
eling (GAM) approach of Hastie and Tibshirani (1996). However, in both 
conceptual and algorithmic terms, the SDP approach described here is sig­
nificantly different from this earlier approach and seems more appropriate 
to the estimation of nonlinear, stochastic, dynamic models. Moreover, the 
recursive methodology, on which SDP estimation is based, is couched in 
optimal maximum likelihood terms that seem more elegant and flexible 
than the 'scatter-plot smoothing' procedures suggested by Hastie and Tib­
shirani. 

The back-fitting algorithm for the SDP model (6.10) takes the following 
form: 

1. Assume that FIA estimation4 has yielded prior TVP estimates ai,tIN, 
i = 1,2, ... ,n of the SDPs. 

2. Iterate: i = 1,2, ... , n; k = 1,2, ... ke 

(a) form the partial residual Y; = Yt - EJ#iUj,ta1,tIN; 

(b) sort both Y; and Ui,t according to the ascending order of Ui,t; 

(c) obtain an FIS estimate attlN of ai,t in the partial residual rela-

tionship Y; = ai,tUi,t· 

3. Continue 2 (each time forming the partial residual and then sorting 
according to the current right-hand side variable Ui,t, prior to FIS es­
timation), until iteration ke, when the individual SDPs (which is each 
a time-series of length N) have not changed significantly according to 
some chosen criterion. The smoothing hyperparameters required for 
FIS estimation at each stage are optimized by maximum likelihood, 
as explained in Section 6.2 and discussed further later. 

Note that the ML optimization can be carried out in various ways: after 
every complete iteration (each involving n FIS operations) until conver­
gence is achieved; only at the initial complete iteration, with the hyper­
parameters maintained at these values for the rest of the back-fitting; or 
just on the first two iterations. The last choice seems most satisfactory in 
practice, since very little improvement in convergence occurs if optimiza­
tion is continued after this stage. Normally, convergence is completed after 
only a few iterations, although it can be more lengthy in some circum­
stances (see Simulation Example 1 and the discussion on this topic in the 

4 As a default, these can be simply the constant least squares parameter estimates, 
since the convergence of the back-fitting procedure is not too sensitive to the prior 
estimates, provided they are reasonable: see simulation example 1 below. 
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Conclusions). 

Simulation Example 1 

This example used data generated by the following fourth order SDR 
relationship: 

t = 1,2, ... ,N 
(6.11) 

or 

Yt = al {Ul,t}.Ul,t + a2{u2,t}.U2,t + aa{ua,t}.ua,t + a4{u4,t}.U4,t + et (6.12) 

where N = 1000 and the Ui,t, i = 1,2,3,4 are the following random vari­
ables 

Ul,t = N(O, 1); U2,t = U(O, 1); Ua,t = U(O, 1); U4,t = U(O, 1); (6.13) 

in which N(a, b) denotes a normal distribution with mean a and variance 
b; while U(a, b) denotes a uniform distribution in the range a to b. The 
nonlinear functions of these variables It, i = 1,2,3,4 are defined as follows: 

It {Ul,t} 

!2{U2,t} 
h{U3,t} 

!4{U4,t} 

{ 
Ul,t for -0.5 ~ Ui,t ~ 0.5, 
-0.5 for Ul,t < -0.5, 
0.5 for Ul,t > 0.5; 

= U2t 
3' 

= u{a'~tt 
0.4 

for utt ~ 0.4, 
for u1 t > 0.4. , 

(6.14) 

Finally, the observational noise et = g.N(O, 1), with the noise gain 9 = 0.12, 
yields a noise level of approximately 20% by standard deviation. 

In the back-fitting iterations, optimization is carried out at the first and 
second iterations: thereafter, the NVR hyper-parameters are maintained 
constant for the thirty-five iterations required for convergence in this case, 
at the following optimized values: 

NVR{al(Xl,t)} = 0.0153; 

NV R{ a3(x3,t)} = 0.0087; 

NVR{a2(X2,t)} = 0.00562 

NVR{a4(x4,t)} = 0.00596. 

Convergence in terms of the model fit appears virtually complete after 
only a few iterations; however, this leaves some biases in the estimates and 
these are only removed after the full thirty-five iterations. The resulting FIS 
estimates of the four nonlinear functions are shown in Figures. 6.1 to 6.4, 
where JdUi,t} = lti,tIN.Ui,t is plotted as a full line against the regression 
variable Ui,t in each case, i = 1,2,3,4; the dashed lines are the estimated 
standard error (se) bounds (95% confidence intervals); and the dotted line 
is the true nonlinear function. It is clear that the nonlinear functions have 
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FIGURE 6.2. FIS estimated (solid) and actual (dotted) quadratic func­
tion. Error bounds dashed. 

all been estimated well, with the true nonlinearity lying well within the se 
bounds. As a result, the model also explains the dependent variable Yt very 
well, as shown in Figure 6.5, which compares the model output Xt with Yt, 
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h A TA d were, Xl = ut PtlN an 

PtlN = [aI,tIN a2,tlN an,tINf· (6.15) 

The error €t = Yt - Xt (full line, +70) provides an excellent FIS estimate 
of the actual noise et. The coefficient of determination based on €t is R2 = 
0.968; and that based on the error between Xt {the noise-free output, i.e., 
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FIGURE 6.5. SDPR model output (solid) compared with noisy depen­
dent variable (dotted). 
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FIGURE 6.6. FIS estimates of SDPs in the sorted space. 

Yt - et) and Xt is R2 = 0.997; i.e., the model can reconstruct 99.7% of the 
unobserved noise-free signal, Xt. 

Finally, it is interesting to compare the FIS estimates of the SDPs in 
the sorted space and the natural observation (original unsorted) space, 
respectively, as shown in Figures 6.6 and 6.7. Here, the slow movement 
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FIGURE 6.7. FIS estimates of SDPs in the observation space. 

of the estimated SDPs in the sorted space (Fig. 6.6) contrasts with the 
very rapid, real variations in the observation space (Fig. 6.7). It is clear 
how effectively the sorting operations have modified the natural changes 
in the state-dependent parameters so that, in the sorted space, the RW 
model is able to characterize their much slower variations for the purposes 
of FIS estimation. Without these sorting operations and the associated 
back-fitting algorithm, the SDPs change much too rapidly to be estimated, 
unless prior knowledge of state dependency is available. 

Before moving on to the estimation of SDP models for stochastic dy­
namic systems, it should be noted that, although the SDR model (lOa,b) 
is formulated so that each SDP is considered primarily as a function of 
its associated regression variable, this does not preclude the investigation 
of models in which the SDP is a function of another known (state) vari­
able, except that then the sorting will relate to this other variable. This is 
discussed further in subsequent sections of the chapter. 

6.4 State-Dependent Parameter Dynamic Models 

Although the TVP regression model has been referred to as a dynamic 
linear regression (DLR) model (see footnote 1 and Young, 1999a), it is not 
really dynamic in a systems sense. Similarly, while the SDR model can be 
used very effectively in the processing and modeling of time series data, it is 
also basically static in form. In this section, we move on to models that are 
able to describe truly dynamic system behavior, namely SDP versions of 
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two well-known stochastic, dynamic models: the state-dependent parameter 
auto-regressive exogenous variables (SDARX) input-output model; and its 
simpler univariate relative, the state-dependent parameter auto regressive 
(SDAR) univariate model. 

6.4.1 The SDARX Mod,el 

The SDARX model is a transfer function model with a rather simple signal 
topology: It relates one or more measured input signals Ui,ti = 1,2, ... ,p 
to a single measured output signal Yt. In the case of a single input signal 
(denoted here as Ut for simplicity) and using nomenclature similar to that 
used in Equation (lOa-b), the model equation takes the following form5 , 

Yt = zi Pt + et (6.16a) 

where, 

zT [Yt-l Yt-2 ... Yt-n Ut-O··· Ut-o-ml 
Pt [al(Yt-l) a2(Yt-2) ... an(Yt-n) bO(Ut-o) ... bm(Ut-o-m)jT 

(6.16b) 
and 8 is a pure time delay, measured in sampling intervals, which is intro­
duced to allow for any temporal delay that may occur between the incidence 
of a change in Ut and its first effect on Yt. 

As in the case of its constant parameter progenitor, the SDARX model 
can be considered in estimation terms from a least squares recursive esti­
mation standpoint. Consequently, the FIS estimation of the SDPs in the 
model can follow the same algorithmic procedures described in the previ­
ous section. Thus, to allow, once again, for the estimation ofthe potentially 
rapid variation in the parameters, the data are sorted prior to estimation 
and, in the case of a SDARX model with more than one state dependency, 
the iterative back-fitting algorithm has to be introduced. The following 
simulation example demonstrates the efficacy of this approach for a first 
order (n = 1, m = 1,8 = 0) SDARX model containing nonlinearities in 
both the Yt-l (feedback) and Ut (input) pathways. 

Simulation Example 2 

This example used data generated by the following first order SDARX 
relationship: 

Yt = al(Yt-t)·Yt-l +bo(Ut).Ut +e et = N(O, 0.000025) Ut = N(0,0.0064) 
(6.17) 

where 

5The extension to more than one input variable is obvious and presents no difficulties. 
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When written in the nonlinear functional form 

or 
Yt = 2.0Yt-1 - 2.0yZ-1 + lOu: + et, (6.18) 

this is revealed as the SDP formulation of the forced logistic growth equa­
tion with a measured input forcing signal in the form of a normally dis­
tributed white noise sequence passed through a cubic law nonlinearity. A 
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FIGURE 6.S. Typical response of first order SDARX nonlinear 
stochastic system. 

typical 500-sample response of this system is shown in Figure 6.8, where 
the output Yt is in the top panel and the input Ut in the lower panel. 
Here, the percentage noise/signal, based on standard deviations (Le., 100 x 
{sd(et)/ sd(lOu~)}), is approximately 30%. The results of the SDARX anal­
ysis for a total sample size of N = 2000 are shown in the two graphs in the 
top panels of Figures 6.9 and 6.10. As in the previous simulation example, 
the hyper-parameter optimization is carried out at the first and second it­
erations; thereafter, the NVR hyper-parameters are maintained constant, 
for the four iterations required for convergence in this case, at the following 
optimized values: 

NVR{bo(Ut)} = 6.24. 

The top panel of Figure 6.9 shows the estimated SDPs obtained using 
these optimized NVR values, with &1 (Yt-11 N) in the left graph and bo (Ut IN) 
in the right. The dotted lines are the actual SDP relationships and it is clear 
that the state dependency has been estimated well in both cases. 
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The response of the estimated SDARX model fit can be generated in two 
ways. First, directly from the equation, 

(6.19a), 

in the usual, regression-like manner, where it will be noted that the Yt-l on 
the right-hand side is based on the actual measurements Yt-l and not the 
modeled ones. This suggests that the model explains 95.7% of the output 
Yt; i.e., R2 = 0.957. However, since the SDARX model is truly dynamic, 
this coefficient of determination (COD) is a little misleading. It is more 
sensible to base the COD on the simulated model output generated from 
the equation, 

(6.19b) 

This is easily generated by a Simulink simulation model using lookup 
tables based on the non-parametric SDP estimation results. Here, the time 
vector and white noise from the workspace (t, e) are passed through two 
SDP models; the true model with actual nonlinearities and the estimated 
model. The middle panel of Figure 6.10 shows the simulated model output 
fit obtained in this manner. The COD obtained in relation to the actual 
output Yt, including the effects of the noise et, is R} = 0.935, where the 
subscript T is introduced to differentiate this simulation-based COD from 
the more normal regression-based COD R2. However, if this simulation 
model output is compared with the noise-free output (Le., et = 0, '<It), 
as shown in the top panel of Figure 6.10, then the error (bottom panel) 
is very small and the COD is R} = 0.980. Clearly, on all measures, the 
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FIGURE 6.10. Simulink realizations of actual (top) and SDP model 
(middle) outputs. The bottom graph shows the error. 

estimated SDARX model (6.19b) provides an excellent representation of 
the system (6.18). 

The model (6.19b) is non-parametric, in the sense that the nonlinearities 
are in the form of graphs defined by the FIS-estimated SDPs. However, 
as pointed out previously, the FIS-based estimation can also be considered 
an identification stage in the analysis, with the non-parametric estimates 
of the nonlinearities providing the basis for final parametric estimation, 
based on some specific parameterization of these identified nonlinearities. 
Even without our prior knowledge in this simulation example, it is fairly 
obvious from Figure 6.9 that the input and feedback SDPs are linear and 
quadratic functions of the associated variables (i.e., the nonlinearities are 
quadratic and cubic functions, respectively). Thus, it is straightforward to 
obtain these parametric estimates, either by least squares (LS) or weighted 
least squares (WLS) estimation based on the SDP estimation results, as 
discussed in Young (1993a) and Young and Beven (1994); or, preferably, 
by direct estimation from the data using the identified model structure, 

_ by2 3 
Yt - aYt-l - t-l + CUt + et· (6.20) 

In this case, the two sets of estimation results are given, respectively, by 

a = 1.991(0.004); b = 1.981(0.008); C = 10.02(0.028); 

a = 1.999(0.011); b = 1.998(0.022);c = 10.01(0.123). 

(6.21a) 

(6.21b) 

Although the standard errors on the initial SDP-based estimates (6.21a) 
tend to be too optimistic, the parametric estimates themselves are very 
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close to the true values, showing the efficacy of the SDP estimation stage 
in identifying the nature of the nonlinearities. Indeed, the SDP estimates 
obtained for only N = 200 samples, as shown by the two graphs in the lower 
panel of Figure 6.9, are good enough to identify the form of the nonlinear 
functions and they yield the following estimates (c.f. (6.21)) 

(i) a = 2.046(0.066); b = -2.085(0.132); C = 8.31(0.433); 

(ii) a = 2.044(0.070); b = 2.088(0.140); C = 9.902(0.721). (6.22) 

More statistically efficient ML estimates could be obtained in this case 
but this seems hardly necessary since the results in (6.21) and (6.22) are 
both satisfactory. 

Real Example 1: Modeling Rainfall-Flow Dynamics 

One successful practical application of SDARX modeling is in the charac­
terization the nonlinear relationship between rainfall and flow (discharge) 
in a river catchment (see e.g. Young, 1993a; Young and Beven, 1994; Young 
et al, 1998; Young, 1999c). Fig. 6.11 is a plot of a typical, daily rainfall-flow 
data set from a catchment in the United States. It is well known that the 
primary nonlinearity between the occurrence of rainfall in the catchment 
area and the subsequent increase of flow in the river occurs because of soil 
moisture and evapo-transpiration effects. These effects reduce the effec-

~30 

~ 
~20 

~ 
10 

~ 80 
e 
..§.60 

~ 
~ 

800 900 1000 

FIGURE 6.11. Coweeta data: flow (top) and rainfall (bottom). 

tive level of the rainfall and the relationship between the measured rainfall 
and this effective rainfall (or rainfall excess) is quite nonlinear. In the case 
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of soil moisture, for example, if the catchment is very dry because little 
rain has fallen for some time, then most new rainfall will be absorbed by 
the dry soil and little, if any, will be effective in promoting increases in 
river flow. Subsequently, however, if the soil moisture increases because of 
further rainfall, the run-off of excess water from the catchment rises and 
the flow increases because of this. In other words, the effect of rainfall on 
flow depends on the antecedent conditions in the catchment and a similar 
rainfall event occurring at different times and under different soil-moisture 
conditions can yield markedly different changes in river flow. 

The previous studies cited have shown that the simplest model that can 
reproduce these kind of effects and characterize the relationship between 
rainfall and flow, such as that illustrated in Figure 6.11, is the following 
first order SDARX model 

(6.23) 

where now Ut is the measured rainfall in mm; Yt is the flow measured in 
mm equivalent 6; and 8 is introduced to account for any purely advective 
time delay effects between the occurrence of rainfall and its first effect on 
flow in the river. In (6.23) it will be noted that, in contrast to previous 
examples, the state dependency is not in terms of the rainfall Ut but of 
the flow Yt. This rather paradoxical aspect of the model and its physical 
explanation, are discussed briefly later. For the moment, let us consider the 
results obtained from SDARX estimation. 

For the data in Figure 6.11,8 = 0 and, since the state dependency being 
investigated is in terms of the flow variable Yt, all the variables in (6.23) are 
sorted in relation to the sorted order of Yt (again based on the ascending 
order of magnitude). Since this is the dependent variable, only a single 
initial sorting operation is necessary and back-fitting is not required. The 
NVR hyper-parameters are optimized as follows, under the assumption that 
a1(Yt) and bO(Yt) vary as RW and IRW processes, respectively: 

NVR{a1(yd} = 2.43 x 10-15 ; NVR{bo(yd} = 7.13 x 10-9 

The RW process is selected for a1 (Yt) because initial analysis shows that 
it does not vary much and may well be constant, in which case the RW 
model is more appropriate (since it defaults on a constant estimate if the 
NVR = 0). As we see, this is confirmed by the optimized NVR{a1(Yt)}, 
which is very small, resulting in an FIS estimate of a1 that hardly changes 
over the observation interval. This is consistent with the hydrological inter­
pretation of the model: the parameter mainly affects the recession in the 
level of river flow following the completion of a rainfall event and, since 

6i.e., the equivalent depth is the flow volume was distributed over the whole catchment 
area. 
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this recession pattern does not appear to change much over time, it is sen­
sible that the parameter should be constant. Indeed, if the NVR for this 
parameter is set to zero, thus constraining the estimate of al to be exactly 
constant, then the other optimized NVR{bo(Yt)} does not change at all, so 
the FIS estimate bO(YtIN) of the input parameter bo(Yt) remains virtually 
the same. 

In this situation, the constant al estimate is obtained as a1 = 0.769(0.007). 
In contrast to al, however, the SDP estimate bO(YtIN), as shown in Fig­
ure 6.12 as a function of Yt, reveals a significant nonlinearity between 
the rainfall input and its effect on flow. In particular, bo(YtlN) increases 
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FIGURE 6.12. FIS estimate of SDP: SE bounds (dashed); polynomial 
approximation (dash-dot). 

steadily with flow, with this increase tending to get less at higher flows and 
eventually leveling out, at approximately 0.3, for flows greater than 30mm. 
Note that the flow dependent steady-state gain of the SDARX model, de­
fined as G = bo(YtlN)/(1 - ad is less than unity most of the time; it is 
only greater than unity for the twenty-two highest flow measures in excess 
of 19.5mm. In other words, the model suggests that, most of the time, the 
physical processes between rainfall and river flow involve losses of water to 
the catchment. During these highest flow events however, the flow output 
is transiently larger than the rainfall input. 

Having identified the form of the parametric state dependency and, thus, 
the nonlinearity in the rainfall-flow process, it is straightforward to define 
the effective rainfall Ue,t in the following manner: 

Urn,t 
Ue,t C.Urn,t, 

(6.24a) 
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where c = ~ yt/ ~ Um,t is introduced, for convenience, so that the total 
effective rainfall is the same as the total flow. 

If most of the nonlinearity in the system has been removed by the def­
inition of this effective rainfall measure, then the dynamic characteristics 
between Ue,t and Yt should be linear. This is indeed the case, and the fol­
lowing linear TF model is identified and estimated well from the Ue,t '" Yt 
data, 

(6.24b) 

where e is a colored noise process (fourth-order autoregressive) and the 
estimates of the parameters in the TF polynomials are 

0.1 = -1.545(0.036); 0.2 = 0.560(0.034); 

b1 = 0.162(0.005); b2 = -0.142(0.012); b3 = -0.0053(0.008); 

with the standard errors shown in parentheses. Note that once the nonlin­
earity has been identified and accounted for in the model, the remaining 
transient dynamics are revealed to be of second order, rather than the 
first-order form used in the initial SDARX modeling phase. The physical 
significance of this is discussed later. 

The model (6.24b) provides a rather good explanation the rainfall-flow 
data: the deterministic model output Xt, defined as 

A bo + b1z-1 + b2Z-2 
Xt = 1 + ihz-1 + a2z - 2 Ue,t 

explains 92.3% of the flow Yt (Le., 14 = 0.923), and the comparison of Xt 
and Yt is presented in the upper panel of Figure 6.13, with the error shown 
above (+60mm). The estimation method used to obtain these results is the 
SRIV algorithm (see Young, 1984, 1985 and the references therein). This is 
an algorithm based on the optimal instrumental variable (IV) approach to 
stochastic estimation and it is particularly effective in TF modeling of this 
kind. The superiority of the nonlinear model (6.24b), in comparison with 
a purely linear TF model, is illustrated in the lower panel of Figure 6.13, 
where the linear TF model output is compared with Yt, again with the 
error shown above (+60mm). The R} in this case is only 0.76. 

The model (24a-b) is based on the effective rainfall Ue,t obtained by refer­
ence to the non-parametric FIS estimate bO(YtIN). An alternative, constant 
parameter model can be obtained by parameterizing the bo(YtIN) '" Yt re­
lationship in some manner. Here, two possibilities have been examined: 
first, approximating the relationship by a simple polynomial in Yt; and sec­
ond, using a more powerful approximation based on radial basis functions. 
Both of these approaches work well but a simple, second-order, polynomial 
representation of the form 

A 2 
bO(YtIN ) = P2Yt + P1Yt + Po 
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FIGURE 6.13. SDARX model (top) and linear model (bottom) out­
puts compared with flow data. 

produces the approximation shown as the dash-dot line in Figure 6.12, with 
a COD of R2 = 0.992. This is perfectly adequate in this case and yields 
the following, fully parametric model: 

bo + b1z- 1 + b2 z- 2 

Yt = 1 + a1z-1 + a2 z - 2 Ue,t + ~t 

with the parameter estimates 

al -1.552(0.037); a2 
1,1 = 0.162(0.005); 1,2 
P2 -0.000169(2.8'10- 6 ); fit 

0.467(0.035); 
-0.145(0.013); 1,3 
0.0145(7.1'10- 5 ); Po 

-0.0032(0.008); 
0.00745(2.7'10- 4 ). 

This model explains 92.2% of the flow Yt (Le., R} = 0.922), only margin­
ally less than the non-parametric SDARX model (6.24b). Note, however, 
that this polynomial representation, while very good for the measured flows 
up to 37mm, is not adequate if higher flows are encountered, since the 
polynomial curve reduces the effective rainfall for these higher flows. Con­
sequently, it would be best to introduce a superior parameterization that 
levels out for higher flows if the model is to be used for forecasting pur­
poses where higher flows might be encountered. Nevertheless, the simple 
polynomial law suffices for the present illustrative purposes. 

At this point, the model (6.25) could form the basis for a final stage 
of estimation in which all of the parameters, including the parameters in 
the AR(4) model for the noise~, are estimated concurrently by some more 
efficient estimation method (e.g., ML by prediction error decomposition, 
as mentioned in the Introduction: see also the blow-fly modeling example 
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in Young, 1999d). However, the model (6.25) is adequate for the present 
illustrative purposes and, in any case, it performs rather well in a validation 
sense. For example, when this same model is applied to the later rainfall­
flow data from samples 13001-14000, without any re-estimation, it explains 
89.1% of the flow (R} = 0.891), even though this data set occurs some 
thirty three years later. This is only increased to R} = 0.903 if the model 
is re-estimated against the new data. In this case, the purely linear model 
has an R} = 0.761, so the nonlinear model remains clearly superior. 

An important aspect of modeling real systems is the physical interpreta­
tion of the model in terms that are acceptable to other scientists working in 
the area of study (here, hydrology). In previous publications (e.g., Young, 
1998a and the references therein), the author has stressed the need for such 
a data-based mechanistic (DBM) method of modeling in which the model is 
not only satisfactory in statistical terms but has a credible and clear phys­
ical interpretation. This is well illustrated by the present example, where 
the hydrological interpretation of the model (6.25) is straightforward. 

1. First, the linear TF part of the model conforms with the classical unit 
hydrograph theory of rainfall-flow dynamics. Indeed, its unit impulse 
response is, by definition, the unit hydrograph; and the TF model 
itself can be seen as a parametrically efficient method of quantifying 
this unit hydrograph. 

2. Second, the TF model can be decomposed by partial fraction ex­
pansion into a parallel pathway form which has a clear hydrological 
interpretation; the three parallel pathways in this case (as defined by 
the instantaneous response and eigenvalues of the TF model) have 
residence times of 0 (the instantaneous effect), 1.9 and 26.4 days. It 
is reasonable to assume that these represent the dominant physical 
pathways (above and below ground) in which the rainfall eventually 
reaches the river (for a more detailed explanation and other exam­
ples, see Young, 1992, 1993a, 1998a, 1999b,c; Young and Beven, 1994; 
Young et aI, 1997, 1998). 

3. Third, the SDP relationship suggests that the parameter is a function 
of flow. Of course, this is physically impossible but the analysis pro­
duces such a clearly defined relationship of this sort that it must have 
some physical connotations. The most hydrologically reasonable ex­
planation is that the flow is acting as a surrogate for soil moisture. Of 
course, it would be better to investigate this relationship directly by 
measuring the soil moisture and incorporating these measurements in 
the SDP analysis. Unfortunately, it is much more difficult to obtain 
soil moisture measures and these were not available in the present 
example. However, Fawcett (1999) has used the SDP approach re­
cently to analyze data from another, smaller catchment, including 
soil moisture measurements, and this has confirmed the close rela­
tionship between the variations in soil moisture variables and flow. 
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Finally, it should be noted that the present example has been analyzed more 
fully, but a little differently, in Young (1998a, 1999c), where the effects of 
temperature are also considered and where the explanation of the data by 
the SDP model is better than that provided by the present, simpler model. 

6.4.2 The SDAR Model 

The state-dependent parameter autoregressive (SDAR) model is simply a 
special example of the SDARX model without deterministic inputs; and it 
represents an SDP (Le., nonlinear) form of the well-known linear AR model 
mentioned in the last section. The model takes the form: 

Yt = zi Pt + et, (6.26a) 

where 

Pt 
[Yt-l Yt-2 Yt-n] 
[al(Yt-d a2(Yt-2) an(Yt-n)]T 

(6.26b) 

Clearly, the same estimation methods discussed for the SDARX model 
can be applied to this model, a simple, first order simulation example 
of which the chaotic version of the logistic equation where al (Yt-l) = 
-4(1 - Yt-l), as discussed in Young (1999d). An example based on the 
SDP analysis of real data is discussed later. 

Real Example 1: Analysis of Signals from the Axon of a Squid 

This example is based on the analysis of the signal shown in Figure 6.14, 
which was obtained by Kazu Aihara and Gen Matsumoto from experiments 
on the giant axon of a squid (Mees et al. 1992). The signal comprises volt­
age measurements made from a micro-pipette inserted into a giant axon. 
Squid are used for such experiments because they have large diameter ax­
ons; this is because the nerves are not myelinated (insulated), so they need 
to have large diameter to reduce ion leakage and so maintain the transmis­
sion speed. The experiment is done in vitro (Le., the nerves are chopped 
out of the squid), with the membrane voltage clamped. This is normally 
referred to as the forced response. However, the forcing is periodic and the 
response is not; in effect, Figure 6.14 shows a putative chaotic response 
to a periodic signal. It is analyzed here, however, as a purely stochastic, 
unforced dynamic process. 

First-Order SDAR Model 

The simplest SDAR model that could produce the dynamics shown in Fig­
ure 6.14 is the following first order SDAR 

(6.27) 

The FIS estimate of the SDP is shown in Figure 6.15 and the associated 
nonlinear function in Figure 6.16. These results were obtained with the 
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FIGURE 6.14. Electrical signal obtained from experimental measure­
ments from a squid giant axon. 
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FIGURE 6.15. The SDP as a function of the delayed output. 

single NVR hyper-parameter optimized at NV R{ al (Yt-d} = 5.01 X 10-6 , 

under the assumption of an RW model for the SDP parameter variation 
(an IRW assumption provides a slightly more smoothed estimate but does 
not make a significant difference) _ Once again, the standard error band is 
shown as the dashed lines on both plots. This model explains 92.2% of the 
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FIGURE 6.17. SDAR model output compared with measured output: 
error-70 at top. 

squid data (R2 = 0.922) and the model output is compared with the data 
in Figure 6.17. 

Figure 6.18 provides a more qualitative but more discerning comparison 
of the model behavior and the squid data (shown in the lower panel): here, 
the upper panel shows a random realization of the model (6.27) generated 
by a Simulink simulation model using a look-up table for the nonlinearity 
based on the SDP estimation results in Figure 6.16 (cf. Simulation Exam-
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pIe 2). It is clear that the general nature of the response visually matches 
the actual squid signal rather well and this is confirmed by the similarity in 
the statistical properties of the two signals. As in the rainfall-flow example, 
the estimated non-parametric nonlinearity can be parameterized in various 
ways. Here, a nine function RBF model, designed using the Matlab Neural 
Network Toolbox function solverb, can reproduce the nonlinearity with an 
R2 = 0.997, and the Simulink-simulated behavior of the resulting parame­
terized model closely resembles that of both the non-parametric model and 
the squid data. 

The dots shown in Figure 6.16 represent the phase-plane or embedding 
graph of the squid data, with Yt plotted versus Yt-l. This is interesting 
because it draws a comparison between the present SDP approach to mod­
eling nonlinear systems and existing methods used by nonlinear systems 
theorists, where smooth curves are often fitted to the embedding graphs 
in order to model the nonlinear system (see e.g. Mees, 1991, 1993). The 
advantage of the SDP approach is that the smoothing is optimal in a ML 
sense and is carried out within a stochastic, dynamic systems setting. Also, 
the smoothing is applied to the estimation of the SDP parameter, rather 
than the nonlinear function as a whole, and so it provides a more flexible 
and informative result. For instance, the SDP in the model (6.27) can be 
considered, in an approximate sense, as the changing eigenvalue of a first 
order, discrete-time dynamic system (we might refer to this as a virtual­
eigenvalue) and this gives us some additional insight into the nature of the 
system. 

By reference to Figure 6.15, for example, we see that for Yt less than 
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about -120, this eigenvalue is approximately constant at a value of about 
0.75, suggesting that the underlying behavior over this part of the state 
space is quite stable, with a (virtual) time constant r::::J 3.5 sampling inter­
vals. Between Yt values of about -120 and -105, however, the eigenvalue 
increases steadily to unity, where the system is at a point of neutral stabil­
ity (i.e., the system is acting transiently as an integrator). Thereafter, for 
Yt values greater than -105, the eigenvalue rises sharply to around 1.5 and 
the underlying system is clearly exponentially unstable. However, if we now 
consider the temporal variation of the SDP in Figure 6.19, it is clear that 
every time that the SDP exceeds unity, the instability of the system drives 
it immediately back to a location where the SDP is in the region where 
the eigenvalue is about 0.75 and the system is stabilized. This is also well 
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FIGURE 6.19. SDP variation as a function of time. 

illustrated by a stacked plot of the changing impulse response associated 
with the AR model defined by the SDAR model at each instant of time. 

Second-Order SDAR Model 

Although the first order SDAR model provides a good explanation of the 
data and produces simulated behavior that closely resembles the actual 
squid data, it is interesting to consider whether worthwhile improvement 
is obtained with a second-order model, that is 

(6.28) 

In this case, the NVR hyper-parameters optimized at: 
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again under the assumption of RW models for the SDP parameter varia­
tions. 

The resulting FIS estimates of the SDPs are shown in Figure 6.20, with 
the associated nonlinearities in Figure 6.21. The dots shown in Fig. 6.21 
are the partial residuals, as mentioned in Section 6.2. Although this SDAR 
model explains 93.6% of the squid data (R} = 0.936) and so is a little 
better, in this regard, than the first-order model, the improvement is not all 
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that great and the back-fitting takes rather long (twenty-six iterations) to 
converge, suggesting that the SDPs are not all that well defined. Moreover, 
as we see in Figure 6.22, the contribution to the explanation of the output 
Yt by the second term in the equation is very small when compared with 
that contributed by the first term; in Figure 6.21, the second nonlinearity 
and partial residual are not showing very significant changes with Yt-2. 
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FIGURE 6.22. Contributions of the two nonlinear terms in the sec­
ond-order SDAR model. 

Finally, the interpretation of the state-dependent changes in the virtual 
eigenvalues in this second-order model is also very similar to that in the 
first-order case. Although there are now two such eigenvalues, the first 
behaves very similarly to that in the first-order model. The second, on the 
other hand, varies rather insignificantly between -0.4287 and -0.6040, so 
contributing a small amount of higher-frequency, oscillatory behavior which 
does not radically affect the primary chaotic mechanism contributed by the 
first virtual eigenvalue. Once again, this is confirmed by the stacked impulse 
response plot mentioned earlier this changes only a little (minor oscillations 
are introduced) in comparison with the same plot for the first order model. 
To conclude, it would appear that the first-order SDAR model provides 
a reasonable mechanism for characterizing the behavior of the electrical 
activity in the axon of the squid and that, although the second-order SDAR 
model provides a slightly better explanation of the squid data, this does 
not seem sufficient to justify the increased complexity of the model. 

6.4.3 SnTF Estimation 
In the SDTF model, in contrast to the SDARX model, it is assumed that 
noise can enter as either system or measurement noise, or both. For exam-
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pIe, in the case of the following forced logistic equation, 

Yt = 2.0Yt-l - 2.0Y~_1 + Ut + et Ut = N(O, 0.08) 

it could take the form: 

et = N(O, 0.008) 
(6.29a) 

Xt = 2.0Xt-l - 2.0xLl + Ut + et, Ut = N(O, 0.08), et = N(O, 0.008) 
Yt = Xt + et, et = N(O, 0.08) 

or, 
Yt = 2.0Yt-l - 2.0yLl + Ut + (t 

(6.29b) 

(6.29c) 
where the noise (t is a complex nonlinear function of et, et and Yt. In this 
situation, estimates obtained under the assumption that the model is of 
the simpler SDARX form are nominally biased to a level dependent on 
the noise/signal ratio. Fortunately, however, this bias is often fairly small, 
even for quite high noise levels and, in consequence, it does not interfere 
substantially with the identification of any state dependency. For example, 
in the above example, the estimation results for a measurement noise level 
of 69% by standard deviation (48% by variance) are quite acceptable. It 
should be remembered also that the SDP analysis is aimed at identifying 
the form of the nonlinearity and more efficient statistical estimation follows 
this identification step. Consequently, provided the biased estimation is 
sufficient to identify the nature of the nonlinearity, it can be acceptable. 

Nevertheless, it would be advantageous if a truly bias free estimation 
method was available in the SDTF model case and research continues on the 
development of an IV back-fitting algorithm which exploits the methodol­
ogy discussed above and, as in the constant parameter case (see e.g. Young, 
1984), is asymptotically bias-free. Such an algorithm has been developed 
in the slowly variable parameter (TVP) case (Young, 1999d) but has not 
yet been extended, in a completely successful manner, to the more difficult 
SDP situation considered here, although promising results have been ob­
tained. The main problems with such an approach are two-fold. First, the 
IV approach is largely restricted to input-output systems since the auxiliary 
model that generates the instrumental variables is normally generated from 
the input signal(s). Second, the stability of the adaptive auxiliary model 
has to be maintained and this can be difficult in the nonlinear situation. 
In the case of nonlinear models with chaotic properties, for example, only 
small uncertainties can lead to wide differences in response and possible in­
stability. Consequently, other approaches that extend the model to include 
concurrently estimated (SDP) noise terms are also being investigated. 

6.5 Conclusions 

This chapter has introduced a new approach to the statistical identification 
and estimation of nonlinear static and dynamic stochastic systems based 
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on state-dependent parameter (SDP) estimation. In particular, the SDPs 
in a nonlinear, state-dependent parameter transfer function model are es­
timated by a recursive fixed interval smoothing algorithm, involving special 
data sorting and back-fitting operations. The data have to be sorted in 
some defined (normally ascending magnitude) order so that the state de­
pendent parameter variations in the sorted space are sufficiently slow to 
allow for statistical estimation using existing FIS algorithms developed for 
time-variable parameter estimation. The sorting operations normally relate 
to the state variable primarily responsible for the state dependency, so es­
timation is straightforward if all the SDPs in the model are dependent on 
the same state variable, as in the rainfall-flow example discussed in Sec­
tion 6.4.1. Normally, however, this is not the case and each SDP will be 
functionally dependent on a different state variable (normally the variable 
associated with the parameter in the SDP model). In this situation, back­
fitting iterations are required so that appropriate sorting can take place 
prior to the estimation of each SDP in turn. 

Within the overall data-based mechanistic modeling procedure proposed 
by the author in previous publications, SDP estimation can be considered 
as the initial, non-parametric identification stage in the modeling process 
(although, even in this non-parametric form, the SDP model is often suf­
ficient for many practical purposes). Having identified the nature of the 
principal nonlinearities in the system, however, they can then be parame­
terized in a finite parametric form; and the (normally constant) parameters 
of this parametric model can then be re-estimated using some more statis­
tically efficient, form of parameter estimation, such as maximum likelihood 
optimization. Whatever final estimation approach is used, however, the re­
sulting model should provide a parametrically efficient representation of 
the stochastic, nonlinear system that has considerable potential for use in 
various application areas, such as signal processing, time series analysis, 
forecasting and automatic control system design. For example, the SDP 
estimation methodology exploits recursive estimation in an off-line man­
ner, but this sequential processing of the data facilitates the development 
of related on-line adaptive methods of signal processing, forecasting and 
control. 

The simulated and real examples presented in the chapter, combined 
with those discussed in other cited references, demonstrate the efficacy of 
the proposed SDP approach to modeling a fairly wide and practically use­
ful class of nonlinear stochastic systems. However, the proposed technique 
is new and it raises a variety of interesting theoretical questions and pos­
sibilities for extending the approach to an even richer class of nonlinear 
stochastic systems. For example: 

• How can the approach be extended to handle multi variable state de­
pendencies, where the SDPs may be functions of several state vari­
ables? 
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• What is the best method of handling the errors-in-variables problem 
and the estimation bias that occurs when the proposed SDP mod­
eling approach is applied to errors-in-variables TF models? It seems 
likely that an instrumental variable method, such as that used suc­
cessfully in the case of TVP models (Young, 1999d), can be devised 
to handle this problem in the case of well-behaved nonlinear models, 
but alternative approaches will be required in the case of sensitive 
chaotic models. 

• Although no convergence problems have been encountered so far in 
the evaluation of the proposed SDP estimation procedure, what con­
ditions are required for convergence of the back-fitting procedure? 
Hastie and Tibshirani (1996) use a similar back-fitting procedure for 
estimation of their generalized additive model. We need to establish 
whether their conclusions regarding convergence (which are not en­
tirely persuasive, in any case) are applicable to the models and back­
fitting procedure described in this chapter. Unlike the GAM, for in­
stance, the nonlinear functions in the SDP models are factorized into 
the product of the SDP and the model variable; and the SDP is esti­
mated by optimal FIS smoothing (rather than the more conventional 
scatter-plot smoothing used by Hastie and Tibshirani). 

• The back-fitting procedure does not provide complete covariance in­
formation on the SDP estimates. In more general terms, therefore, 
what are full theoretical statistical properties of the SDP estimates 
obtained by back-fitting? 

• What are the identifiability conditions on the SDP models? It is clear 
that problems analogous to collinearity in constant parameter model 
estimation can occur and that back-fitting convergence will be af­
fected by such problems. Also, in the case of input-output models, 
the nature of the input signals will affect the identifiability of the 
model parameters. It is necessary to explore these factors further 
and establish what other factors may affect the identifiability of the 
model. 

Regardless of the answers to these questions, however, the SD P approach 
to the identification of nonlinearities in stochastic systems appears to hold 
great promise. In contrast to other approaches, such as neural networks 
and N ARMAX models, it attempts to identify the type of nonlinearity 
and, therefore, the form of the nonlinear model prior to the estimation of 
the parameters in the finally identified model. This helps to ensure that 
the final nonlinear model is efficiently parameterized (parsimonious) and it 
should avoid the over-parameterization that normally accompanies neural 
network and, to a lesser extent, NARMAX models. It also provides a non­
parametric model that can be useful in its own right. As we have seen, 
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the SDP model can be simulated easily in programs such as Simulink, thus 
removing the need for the final parametric estimation in some applications, 
such as simulation, forecasting and automatic control. In the latter case, for 
instance, it is clearly possible to develop state estimation and control system 
design methods based on this new class of nonlinear models. Research on 
such developments is continuing and has so far led to encouraging initial 
results. 
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Chapter 7 

An Introduction to 
Monte Carlo Methods 
for Bayesian Data Analysis 
Christophe Andrieu 
Arnaud Doucet 
William J. Fitzgerald! 

ABSTRA CT Often it is natural to describe a signal processing or dynami­
cal modeling problem in terms of probability distributions, and in particular 
in Bayesian terms, where the unknown parameters are taken to be random 
variables and their distributions are updated by applying Bayes' theorem 
to give the distributions of the parameters conditional on the data. In the 
past, it W •. !.9 not possible to handle many non-trivial problems in this way 
because the distributions seldom took tractable forms. Considerable progress 
has been made in recent years in applying Monte Carlo methods to over­
come this, and in this chapter we describe some of the new results that 
have made a full Bayesian approach to signal processing tractable as well 
as powerful. 

7.1 Introduction 

In many problems encountered in statistical signal processing, it is possible 
to describe accurately the underlying statistical model using probability 
distributions. A natural framework that allows one to take into account 
both the information given by the observations and prior information is the 
Bayesian framework. We will adopt here a (fully) Bayesian approach which 
consists of considering all unknown parameters to be random variables. 
This approach is now widespread in the applied statistics community but 
not common in many other fields related to data analysis. In this chapter, 
we will not enter into the debate between orthodox statistics and Bayesian 
statistics. We simply point out that the Bayesian framework is a unifying 
statistical framework; see [9] and [50] for many reasons to be Bayesian. 

Apart from these considerations, the Bayesian approach suffered for a 
long time from severe practical limitations. That is, except for a few simple 
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cases, Bayesian inference cannot be performed analytically as it requires 
integration and/or maximization of complex multidimensional functions. 

Most problems encountered in applied research (speech processing, com­
munications, spectral analysis, target tracking etc.) require non-Gaussianity 
and nonlinearity to correctly account for the observed data. In such sit­
uations it is not possible to develop closed-form estimators based on the 
standard criteria of maximum a posteriori (MAP) or minimum mean square 
error (MMSE). One approach to solve this problem is either to make model 
simplifications or analytic approximations to obtain algorithms that can be 
implemented in closed form (this is the basis of the extended Kalman filter, 
for example). However, with the recent availability of high power comput­
ers, numerical-simulation based approaches can now be considered and the 
full complexity of real problems can be addressed. 

Before the 1990s, these integration and optimization problems were often 
tackled using analytic approximation techniques or deterministic numerical 
integration or optimization methods. These classical methods are either not 
precise and robust enough or are too complex to implement. An alternative 
set of methods is simulation-based Monte Carlo methods. The basic idea of 
these methods is to draw a large number of samples distributed according to 
the posterior distributions of interest or weighted such that it is possible to 
estimate simulation-based consistent estimates. We underline that the basic 
ideas of these methods were introduced in the 1950s but that they became 
popular in applied statistics only at the beginning of the 1990s mainly 
because of the great increases in computational power. The development 
of these methods is at the origin of the Bayesian revolution in applied 
statistics [13], [55], [57], [58] and related fields including econometrics [19] 
and biometrics [31]. The methods are not yet well-known in many other 
fields related to data analysis, such as signal processing, despite their ability 
to allow statistical estimation to be performed for highly complex models, 
which may be non-Gaussian, non-linear, non-stationary or any combination 
of the three. They can also be used for Bayesian model selection and model 
mixing, which account for the model structure uncertainty inherent in any 
real-world problem. 

This chapter attempts to provide a simple tutorial review of these Monte 
Carlo methods. We illustrate the potential applications of these methods by 
applying them to various complex nonlinear or non-Gaussian data analysis 
(target tracking, blind deconvolution of impulsive processes and robust 
spectral analysis) that appear difficult to tackle using other methods. 

In Section 7.2, a basic introduction to Bayesian inference is given. In Sec­
tion 7.3, the most popular Monte Carlo approaches, importance sampling 
(IS) and Markov chain Monte Carlo (MCMC) methods, are described. In 
Section 7.5, we present the application of these simulation-based meth­
ods to several data analysis problems. Various other applications of these 
methods are also discussed. Finally, in Section 7.6, we briefly discuss the 
methods themselves. Notation is summarised in an addendum. 
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7.2 The Bayesian Approach 

7.2.1 Bayesian Model and Posterior Distribution 
A Bayesian model is described by the prior distribution2 P (0) of a random 
parameter 0 E e and by the likelihood p (y I 0) of the observations y. 

In this framework, all information on 0 based on the observations y is 
included in the posterior distribution p (01 y) which one can obtain using 
Bayes' theorem 

p(Oly) = p(YIO)p(O) 
p(y) 

where the normalizing constant p (y) is obtained by integration 

p(y) = Lp(Y10)p(O)dO. 

(7.1) 

(7.2) 

The information given by the posterior distribution (7.1) might be too 
complicated to analyze directly when one is confronted with a decision 
problem. This can, however, be handled naturally in a Bayesian framework. 

7.2.2 Bayesian Decision 
When one wants to make a decision, the main goal is to minimize the risk 
of being wrong. In order to quantify the degree of error committed one 
introduces a cost function that penalizes the values of 0 which we think 
are not satisfactory. This technique, well known in the orthodox statistical 
community, takes the following form in a Bayesian framework. 

Definition 7.1. Let L (.,.) : 9 2 -+ R+ be a cost function and p (81 y) be the 
posterior distribution of 8. The expected posterior cost function is defined as 

p (8.) ~ L L (8., 8) p (81 y) d8 = JF,,( Illy) (L (8., 8». (7.3) 

Definition 7.2. Given a cost function L (.,.) : 9 2 -+ R+, the associated 
Bayesian estimator is defined as 

9(y) ~ arg min p«(J.). 
lI.e8 

(7.4) 

Obtaining a Bayesian estimator is thus in general a problem simultaneously 

2Many readers may be tempted to stop reading at this point, arguing that they do 
not have any prior distribution for the unknown parameters. We argue that when this 
is the case, it is in most cases possible to use uninformative priors that do not affect 
the peaks of the likelihood; see [9) or [50) for examples. This will be illustrated in the 
Application section. 
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involving integration and optimization, which takes simpler forms in the 
following two very important cases: 

• the quadratic cost function, L1 (fJ*, (J) = (fJ* - fJ) T Q (fJ* - fJ), for any 
positive definite matrix Q leads to the posterior mean, also known as 
the MMSE estimate for fJ 

OMMSE (y) = Ie fJp (fJl y) dfJ (7.5) 

which is an integration problem . 

• the cost function L2 (fJ* - fJj 8) = 1 - ][{o;lIo.-olb:::;o} (fJ* - fJ) which 
gives as 8 -+ 0 the MAP estimator, that is 

OuAP (y) = arg max P (fJl y) P (fJ) 
OEe 

(7.6) 

which is an optimization problem. 

Assume here3 that fJ = (fJ1 , ..• , (Jn9) E e c IRn9. Then the evaluation of 
marginal distributions, such as 

for i = 1, ... , no, also requires integration. Similarly the evaluation of any 
marginal estimator (e.g., lE[fJily] or arg max p((JiIY) for i = 1, ... ,no) 

0; 
involves extra-integration steps over the parameters that one wants to in­
tegrate out. Other quantities can be of interest to qualify the estimatorj 
these include the conditional covariance 

(7.8) 

which again involves integrations. 

7.2.3 Model Choice 
Assume that we are analyzing data y and we believe that the data arise 
from one of a set of possible models M o, ... , Mkmax , where under model 
M i , y has density Pi (yl fJi ), conditional on fJi E e i. The parameter vectors 
fJi are unknown and are typically of different dimension. Let Pi (fJi ) denote 
the prior density for fJi , and let Pi denote the prior probability of the model 
Mi. For the sake of convenience, we introduce a random variable k E 
{O, ... , kmax } such that Pr (k = i) = Pr (Mi) = Pi. The prior probability 

3In the case of model selection typically e c Ui {i} x ei . 
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distribution for the random parameters (k, B) is defined on a space of the 
form E> ~ U~:ox {i} x Si and can be written 

kmax 

P (k, dB) = L pdi, dBi) lI{i}x<">i (k, B), (7.9) 
i=O 

where 
(7.10) 

(we assume that Pi (dBi) admits a dominating measure dBi, usually the 
Lebesgue measure) and 

II . (k B) = {I, if(k, B) E {i} X E>i 
{.} x <">i' 0 otherwise , (7.11) 

that is, (k, B) is in one of the spaces {i} x Si, and the prior probability of 
k being equal to i and for B being in an infinitesimal set centered around 
Bi is Pi (i,Bi) dBi· 

After observing y, one obtains the posterior distribution using Bayes' 
theorem 

kmax 

P (k, dBI y) = L P (il y) p;( dBil y) lI{i}X<">i (k, B) (7.12) 
i=O 

where Pi (dBil y) P (il y) is the posterior probability of model Mi and is 
given by 

( i I ) ~ ( M .1 ) = mi (y) Pi 
P Y P • Y ",kmax () , 

6i=0 mi Y Pi 
(7.13) 

where 

(7.14) 

is called the marginal distribution of y under model Mi. Assuming Mi is 
the true model, P (YI i) is the density according to which y will actually 
occur. For this reason, mi (.) is also called the predictive density of y. Under 
a 0-1 loss function, the optimal model is that Mi which maximizes the 
posterior model probability P (il y), i = 1, ... ,kmax • 

Note that P (il y) can be written as 

where the factor 

P (il y) = (1 + L Pj Bji) -1 , 

#i P. 
(7.15) 

(7.16) 

is called the Bayes factor of model M j against Mi. Intuitively, the Bayes 
factor can be interpreted as the odds of M j against Mi given by the 
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observations. Note that Bayes factors can be used to summarize the analysis 
independently of the model prior beliefs, Pi. 

The Bayesian approach to model selection can be applied to a wide va­
riety of problems, including multiple comparisons and the testing of non­
nested hypotheses. The results are easily interpreted (as opposed to fre­
quentist P-values) and automatically penalize over-parametrizations [10], 
[56]. For a detailed discussion of the advantages and applications of Bayes 
factors see [11] and [40]. 

7.2.4 Discussion 

Bayesian statistics involves integration and/or optimization steps, see ex­
pressions (7.2), (7.4), (7.7) and (7.14) for example. Except in certain special 
cases, Bayesian inference cannot be performed analytically, and this will be 
illustrated on several applications in Section 7.5. The ability to integrate or 
maximize complex multidimensional functions is thus extremely important 
in Bayesian statistics. This problem has severely limited the development 
of the Bayesian approach in statistics and related fields. Monte Carlo meth­
ods are a set of powerful numerical methods which allow to partly solve 
it. 

7.3 Basics of Monte Carlo Methods 

With the exception of certain cases it is impossible to analytically evaluate 
the integrals involving P (01 y) (or marginals of P (01 y)) or to estimate the 
maxima of P ( 01 y) (or marginals of P ( 01 y)). As soon as the dimension of 
the space, n8 if e c IRns , is large, classical numerical integration meth­
ods are difficult to implement and require a huge computational burden 
(typically the complexity increases exponentially with n8). Moreover, tak­
ing into account constraints of integration can be quite complex. Similarly, 
classical optimization methods (gradient, Newton-Raphson) need good ini­
tialization and are very sensitive to local maxima. An attractive approach 
to solve, at least partially, these problems consists of using Monte Carlo 
methods for integration and optimization. 

In this section, we first show that, using a large number of random sam­
ples distributed according to p (01 y), it is possible to obtain simple esti­
mates of lEp( 81Y) [/ (0)] and of the maxima of p (01 y). Thus if we are able 
to simulate samples according to p (01 y), then we can solve the problems 
of integration and optimization. These simulation problems are quite com­
plex to solve, since p (91 y) is typically a complex non-standard multivariate 
probability distribution which is known only up to a proportionality con­
stant. We will describe two classes of methods to solve them. The first is 
the importance sampling method and the other is Markov chain Monte 
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Carlo methods. 
In Subsection 7.3.5, the IS method is presented and some results using 

this simple method are reviewed. In Subsection 7.3.6, the basic idea of 
MCMC methods is described. These methods are based on the simulation 
of a Markov chain whose limiting distribution is the posterior distribution 
of interest, p ( 01 y). After giving a few definitions and results related to 
Markov chains, we will present the classical algorithms. Important practical 
considerations will be briefly discussed. 

7.3.1 Monte Carlo Integration 

Let us assume that N » 1 samples {O(i)} i=l, ... ,N distributed according 
to the posterior distribution p (01 y) are available. Then a Monte Carlo 
approximation PN ( dOl y) of this posterior distribution is given by the em­
pirical estimate 

1 N 
PN (dOl y) = N L t5(J(i) (dO) . 

i=l 
(7.17) 

That is, the concentration of the samples in a given zone of the space 8 
is assumed to be representative of the probability of this zone under the 
distribution p (01 y). 

Using this approximation for p (01 y), one can propose the following esti­
mate iN of Ep( (Jly) [i (0)] where i : 8 -+ IR is a p (01 y)-integrable function 

(7.18) 

This estimate is unbiased and if the samples {()( i) ; i = 1, ... , N} are statis­
tically independent, then 

lim iN~' Ep( (Jly) (f (0)) 
N--t+oo 

from the strong law of large numbers. Moreover if 

var [IN] = ~ [Ep( (JIY)(P (0)) - ~«(JIY) (f (0))] 

uf2 
~ N <00, 

then the central limit theorem yields 

(7.19) 

(7.20) 

(7.21) 

In the case where the samples {O(i)} i=l,oo.,N are not statistically inde­
pendent, it remains possible to obtain a law of large numbers under weak 
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(mixing) conditions and under stronger conditions a central limit theo­
rem [58]. 

A good approximation of the integrals will require a large number N of 
samples. However, this approach has two major advantages. Contrary to 
classical numerical integration methods, the empirical distribution (7.17) 
enables estimates of 1Ep( Oly) [J (0)] to be obtained easily for any function j. 
Moreover, when the samples are statistically independent, the dimension 
of the integration space does not appear in the convergence rate of the esti­
mate towards its theoretical value. This stems from the fact that contrary 
to deterministic methods, which mainly rely on a regular discretization 
and exploration of the space e, Monte Carlo methods cleverly explore the 
space, according to the importance of the different areas. This principle of 
concentration on relevant areas of the posterior distribution can be applied 
to the optimization problem. 

7.3.2 Monte Carlo Optimization for MAP Estimation 

To obtain the MAP estimate 

OMAP~ argmaxp (01 y) o 
one can adopt the following estimate 

OMAP = arg .:r.nax p (yl O(i)) p (O(i)) . 
o(·);.=l, ... ,N 

(7.22) 

(7.23) 

The samples {O(i)} i=l, ... ,N being marginally distributed according to p (01 y), 
have a high probability of being in the areas where p (01 y) is large. Conse­
quently, it can be a good strategy to estimate ~AP based on {O(i)} i=l, ... ,N. 

However it would be preferable to sample directly from a distribution whose 
support is the set of global maxima of the distribution to maximize. This 
is what is done approximately by the simulated annealing (SA) method 
which uses the same principle, but reinforces this concentration effect at 
each iteration of the algorithm. 

In order to obtain marginal MAP (MMAP) estimates, for example, the 
MMAP of the component OJ, 1 :S j :S no 

OJ,MMAP~arg ~axp(Ojl y) 
J 

(7.24) 

we can adopt 

(7.25) 

Practically, these estimates cannot always be computed as it is necessary 
to be able to evaluate, up to a normalizing constant, the functions to max­
imize. In cases where it is not possible, one can use a graphical method 
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by monitoring the Monte Carlo approximation of the distribution to max­
imize, i.e., the histogram of the simulated samples. However, it involves 
discretizing e and this is inefficient for high-dimensional parameter space. 
A Monte Carlo method related to SA, beyond the scope of this tutorial, 
has been proposed to solve this problem [53]. 

7.3.3 Simulation Problems 

We have shown that based on a large set of samples {9(i)} i=l, ... ,N dis­
tributed according to the posterior distribution p (91 y), one can usually 
easily estimate the distribution p (91 y), its maxima and integrals with re­
spect to it. Until now, we have assumed that this set of samples is available. 
In practice, it is necessary to simulate these samples. Simulating samples 
from nonstandard probability distributions known only up to a proportion­
ality factor is a complex problem but there are ways to solve it. We first 
describe some classical and universal methods that can be used in sim­
ple cases and then describe the importance sampling method and Markov 
chain Monte Carlo methods. 

In what follows we present the general case where 71" (9) is a probability 
distribution known up to a normalizing constant. In our applications, 71" (9) 
is a posterior distribution, i.e., 71" (9) = p (91 y), but of course these meth­
ods can also be applied in a non-Bayesian framework, where 71" (9) is any 
distribution from which we wish to sample. 

7.3.4 Classical Methods 
Procedures for simulation according to standard distributions (e.g., Gaus­
sian, gamma, student) are given in [21] and [49]. Most classical methods 
are based on the inversion of the cumulative distribution function or on 
mixtures and compositions of basic distributions. 

To sample according to a distribution which is known only up to a pro­
portionality constant, the most well-known method is the accept/reject 
procedure detailed later. Let us assume that 71"(9) ~ Mq(9) (M < +00) 
for any 9 E e, where q (9) is any probability distribution termed the can­
didate distribution selected so that it is possible and easy to sample from. 
Then the accept/reject procedure works as follows: 

Accept /Reject procedure 

1. Sample 9 "'q (.) and u '" U(O,l)' 

2. If u < ;~~~) then return 9; otherwise return to step 1. 

_________________________________________________ 1. 
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The returned value () is distributed according to 7r «()). Indeed for 0 E 9 (we 
present the scalar case for the sake of simplicity, the extension is straight­
forward) 

( ) f e 7r «()) 
Pr ()..:;.O and () accepted = -00 M q «()) q «()) d() (7.26) 

f~oo 7r «()) d() 
= 

M 
and the probability for the "candidate" to be accepted is equal to 

= ( 7r«())) r 7r«()) 
Pr«() accepted) Pr u < Mq«()) = le Mq «())q«()) d() (7.27) 

1 
M 

so 

Pr (():SOI () accepted) = i~ 7r «()) d(), (7.28) 

i.e., () is exactly drawn from 7r «()). This method suffers from several severe 
limitations. It is necessary to be able to bound 7r «()) / q «()) from above by 
a constant M over the whole space 9. This is not always possible or the 
constant M we obtain is such that the acceptance probability 1 « 1 and 
the algorithm is impractical. Moreover in a Bayesian framework, one can 
often not find this acceptance probability, since 7r «()) is known only up to 
a constant of proportionality. 

Example 7.1. Let us assume that one wants to simulate samples from 
11"(0) ~ p(Oly) ()( p(YIO)p(O). We assume that p(ylO) is known analytically 
and p(ylO) ~ C for any 0, where C is known. We also assume that; we can 
simulate from P (0). Thus one can choose q (0) = p (0) and use the accept/reject 
procedure to sample from P (01 y). Indeed 

p(Oly) = p(ylO) < ~ = M 
p(O) p(y) - p(y) 

(7.29) 

is bounded and 
11"(0) p(Oly) p(yIO) 

Mq(O) = p&)p(O) = -C-
(7.30) 

can be evaluated analytically. However, the acceptance rate 1/ M is usually un­
known as it involves p (y) which is itself usually unknown. 

7.3.5 Importance Sampling 

Classical Case 

The importance sampling method is based on the following simple remark. 
Let us consider any probability density q «()) such that the support of q «()) 
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includes that of 1f' (0). q (0) is called the importance function. It is chosen 
such that it is easy to obtain N » 1 statistically independent samples 
{O(i)} i=l, ... ,N distributed according to q (0). Then one can propose the 
following Monte Carlo approximation 1rN (dO) of this distribution 

N 

1rN (dO) = ~ LW (O(i») 150(0) (dO) 
i=l 

(7.31) 

if the so-called importance weights 

(7.32) 

can be evaluated analytically. 
Using this approximation of 1f' (0), one can propose the following estimate 

IN of lE.r(0) [1 (0)] where 1 : e --+ IR 

IN = I 1 (0) 1rN (dO) 

N 

= ~ LW (O(i») 1 (O(i»). 
i=l 

(7.33) 

Clearly this estimate is unbiased and by the strong law of large numbers 

lim IN ~·lE.r(0) (f (0)). 
N-++oo 

(7.34) 

Moreover if 

then the central limit theorem yields 

lim IN (J N - lE.r( 0) (f (0))) dW· N (0, aJ) . 
N-++oo 

(7.35) 

In IS, the simulated samples {O(i)ji = 1, ... ,N} are independent but they 
must be weighted to produce a simulation-consistent approximation of 
lE.r(0) (f (0)). 

Remark 7.1. Note that for a given function f (9), this method can be super­
efficient in the sense that it is possible to find a distribution q (9) that yields an 
estimate with a lower variance than using a perfect Monte Carlo method, i.e., 
q (9) = 1f' (9). This method is often used to evaluate the probability of rore events 
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for communication networks. In our applications, the aim is usually different 
in the sense that we want to have a good approximation of 1[' (8) and not of a 
particular integral with respect to 1[' (8), so we seek to have q (8) ~ 1[' (8). 

This method requires the ability to evaluate the importance weights 
w (O(i») for i = 1, ... , N. In a Bayesian framework where 7r (0) = p (01 y), 
we have 

w(O) = p(OIY) = p(yIO)p(O). 
q(O) q(O)p(y) 

(7.36) 

It is usually impossible to evaluate w (0) as the normalizing constant p (y) 
is unknown. It is necessary to use another method. 

Bayesian Importance Sampling 

Using N » 1 statistically independent samples {O(i)} i=l, ... ,N distributed 
according to q (0), Bayesian importance sampling constructs the following 
Monte Carlo approximation of 7rN (dO) 

N ((i») . 7r (dO) = Li=l w 0 158(,) (dO) 
N Lf=l w (O(i») , 

(7.37) 

where the importance weights are evaluated only up to a normalizing con­
stant 

(7.38) 

This general method is called Bayesian IS as it is mostly used in applications 
in a Bayesian framework. 

Using this approximation of 1[' (0), one can propose the following estimate 
IN of JE".(-) [I (0)] where I : e --t IR 

N ((i») ((i») 
I =! I (0) 7r (dO) = Li=l w 0 I O. (7.39) 

N N L~l w (O(i») 

When N is finite, this estimate is biased. However, it is asymptotically 
unbiased from the strong law of large numbers: 

(7.40) 

If w (0) is bounded above on e and Var1l"(8) (f (0)) < +00, then it is easily 
shown that a central limit theorem is valid, the asymptotic variance being 
given by the delta method, see [33], for example. 

Remark 7.2. In a Bayesian framework where 1[' (8) = p (81 y), one can select, 
for example, q (8) = p (8). Then we can compute the unnormalized importance 
weights 

w(8) ex p~~1)) exp(yI8), 
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and so evaluate the estimates given by this IS method. Of course, q (8) can depend 
on y. for example, q (8) could be a multivariate distribution of mean y and fixed 
covariance. 

This non-iterative method is typically very easy to implement and one 
can easily derive a version which is well adapted to online processing; see 
Subsection 7.5.1 and [24], [27] for more details. Unfortunately it is also 
often ineffective, i.e., the practical rate of convergence can be extremely 
slow if the importance function is not well chosen. In practice, it is usually 
never used if the dimension of the state space is high, say no > 10. 

Sampling Importance Resampling 

We conclude this part by presenting the sampling importance resampling 
(SIR) procedure introduced by Rubin [54], [57]. The IS or Bayesian IS 
methods yield the following weighted approximation of 7r (dO) 

N 

1rN (dO) = L Qi80(i) (dO) , (7.41) 
i=l 

where Qi = W (O(i)) in the case ofIS and Qi = [L:f=l W (OW) r1 
W (O(i)) 

in the case of Bayesian IS. If one is interested in obtaining say M (N) 
Ll.D. samples from 1rN (dO), then an asymptotically (NjM (N) ~ +00) 
valid method consists of resampling M (N) times according to the discrete 
distribution 1rN (dO). After this resampling step, we obtain M (N) samples 
(j(i), i = 1, ... , M (N) (with the possibility that (j(i) = (j(j) for i :I j), such 
that an alternative expression of the posterior distribution is 

~ 1 M(N) 

7rM(N) (dO) = M (N) ~ 8ij(i) (dO) . (7.42) 

The resampling scheme introduces some additional Monte Carlo variations 
with respect to (7.41), and it is then not clear to see if the SIR procedure 
is of any practical interest. It appears actually as a key step when one is 
interested in estimating a sequence of posterior distributions evolving over 
time using sequential Monte Carlo methods, see Subsection 7.5.1 and [35], 
[24], [27] for further details. 

1.3.6 Markov Chain Monte Carlo Methods 

The previous IS-based methods we have presented are typically inefficient 
when the dimension of the parameter space is large. In this section, we 
present a class of iterative simulation-based methods: Markov chain Monte 
Carlo methods. MCMC methods are a set of procedures that allow suc­
cessful solution of simulation problems for much more complex models and 
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are at the origin of the Bayesian revolution in applied statistics [13], [29], 
[12], [55], [52]. 

The basic idea of MCMC methods is to simulate an ergodic Markov chain 
whose samples are asymptotically distributed according to 7r (dB). In this 
section, we recall a few results in general, i.e., continuous or discrete, state­
space Markov chains that are sufficient to understand the main convergence 
results. For a much more complete and rigorous treatment of this theory, 
one can consult the excellent monograph by Meyn and Tweedie [46] and 
for articles or books devoted to Markov chains theory applied to MCMC 
see [34, 52] and [58]. The most classical MCMC methods are presented in 
7.3.6, as well as non-homogeneous MCMC methods for optimization, i.e., 
simulated annealing. 

A few results on general state-space Markov chains follow. 

First, let us introduce a few definitions concerning Markov chains. 

Definition 7.3. A Markov chain is a sequence of random variables {Bi; i E N} 
defined in the same space (8, £) which satisfies the following property, for any 
AE£ 

Pr (Bi E AI Bi- 1 , .•• , Bo) = Pr(Bi E AI Bi-d. (7.43) 

In many applications, we have 8 = ]Rn8 and [; = B (]Rn8) (Borel sets 
of ]Rn8). We will consider here only time-homogeneous Markov chains, i.e., 
the transition kernel of the Markov chain is fixed over the time. One can 
define for any i E Nand (B, A) E 8 x [;: 

P(O,A) ~ Pr(Bi+1 E AIBi = B). (7.44) 

P (0, A) is called the transition kernel of the Markov chain. We have P (B, A) = 
fA P (B, dB') where P (B, dB') is the probability to going to a "small" set 
dO' E [;, starting from B. 

A homogeneous Markov chain is defined by the probability distribution 
of its initial state J.l (dOo) (which can be deterministic, so that it is a delta­
Dirac measure) and its transition kernel. We obtain for the probability of 
any set Ao x Al X ••• x An: 

n 

P((Bo,BI, ... ,Bn)EAox ... xAn)= r ... r IIp(Bi-l,dBi)I.l(dBo). 
lAo lAni=1 

(7.45) 
By marginalizing, we obtain the distribution of Bi given the initial condi­
tion. The distribution pn (B, A) ~ Pr (Bn E AI Bo = B) is also defined by 
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the following recursion: 

p1 (8,A) 

pn (8, A) 

P(8,A) 

Ie p n - 1 (8, d8*) P (8*, A) for n > 1. 

We now give some other definitions. 

(7.46) 

(7.47) 

Definition 7.4. Invariance. Let 11' (d9) be a probability distribution. We say 
that 11' (d9) is an invariant or stationary distribution for the transition kernel P 
if for any A E £ 

1I'(A) = fa 1I'(d9)P(9,A) = Ie 1I'(d9) L P(9,d9*). (7.48) 

This notion is very important. It implies that if a state of the Markov chain 
8i is distributed according to 1r (d8) then 8iH and all the following states 
are distributed marginally according to 1r (d8). 

Remark 7.3. All MCMC algorithms are constructed to satisfy this funda­
mental property and thus it is not necessary to verify it in practice. 

To ensure that 1r is the invariant distribution of a Markov chain, a suf­
ficient condition is the so-called reversibility condition. This notion is very 
often used in the framework of MCMC algorithms. 

Definition 7.5. Reversibility. A transition kernel P is 1I'-reversible if it sat­
isfies for any (A, B) E £ x £: 

L 11' (dO) P (0, B) 

L 11' (d9) h P (9, d9*) 

h1l' (dO) P (9, A) 

= h1l' (d9) L P (9, d9*) . 

(7.49) 

This means that when 9 is distributed according to 11' (d9) then the probability 
of going to B from A is equal to the probability of going to A starting from B. 
This notion is important as it implies invariance of the distribution 11' (d9) for the 
transition kernel P. 

Let us assume that we have a transition kernel P with invariant distri­
bution 1r. Then we sample a realization of the Markov chain {80 , 81 ,,, .}. 

One can ask the following questions: 

• In practice, the initial state is usually not distributed according to 1r 

and thus, if the transition kernel is not trivial, i.e., P (8, dB') 11r (dB'), 
the following states of the Markov chain are not either. Under which 
conditions does the simulated Markov chain converge asymptotically 
towards its invariant distribution 1r? 
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• The simulated samples are not statistically independent. Under which 
conditions is it possible to obtain estimates k E~l f (Oi) which con­
verge asymptotically towards Ie f (0) 7r (dO)? 

We will see that the conditions required on the Markov transition kernel 
to ensure asymptotic convergence are very weak: irreducibility and aperi­
odicity. 

Definition 7.6. Irreducibility. Let ({J be a probability measure on (8, e). A 
Markov chain is ({J-irreducible if for any fJ E 8 and for any A E £ 

({J (A) > 0 => 3n E N" such that pn (fJ,A) > O. (7.50) 

This means that all sets of non-null cp measure can be reached with a non­
null probability in a finite number of iterations. A sufficient condition to 
verify the irreducibility of P with respect to Ip is that there exists n E fir 
such that pn has a strictly positive density pn (0,0*) > 0 with respect to 
cp, i.e., pn (O,A) = IA pn (O,dO*) cp (dO*) [34, p. 63]. 

Definition 7.7. Aperiodicity. A Markov chain is aperiodic if there does not 
exist a partition of 8 = (A1, ... , Ad) for d ~ 2 such that P (fJ,Ai+1 mod d) = 1 for 
any fJ EAi. 

The aperiodicity condition eliminates kernels which induce a periodic be­
havior in the trajectories of the Markov chain. If the transition kernel 
p (O,dO*) is such that the probability of staying at 0 is non-null or if this 
kernel has a positive density in the neighborhood of 0, then the chain is 
aperiodic [34, p. 63], [46], [52]. 

Before stating the main result of convergence, it is necessary to introduce 
a distance between two probability distributions J.ll and J.l2 on (8, c). 

Definition 7.B. The total variation norm is defined by 

111'10 - 1'2 OIlTV ~sup 11'1 (A) - 1'2 (A)I· 
AE£ 

(7.51) 

If 1'1 (dfJ) = 1'1 (fJ) dfJ and 1'2 (dfJ) = 1'2 (fJ) dfJ, then 

111'1 - 1'2 II TV = i L 11'1 (fJ) - 1'2 (fJ)1 dfJ. (7.52) 

We define 1En-(O) (f] £ Ie f (0) 7r (0) dO. The estimate of this quantity ob­
tained by averaging the N first simulated values of the Markov chain will 
be denoted f N: 

(7.53) 
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We are now able to state the main convergence result. 

Theorem 7.1. [58, theorem 1*, p. 1758} Let {B;ji E I'll} be a Markov chain 
with transition kernel P and invariant distribution 1r. Assume that the Markov 
chain is cp-irreducible, where cp is a probability distribution on (8, f). Let f : 
8 --t lR be such that JE.,.. [lfll < +00; then 

Plio [fN --t JE.,..[fl] = 1 (7.54) 
N-++oo 

for 7r-almost all initialization points Bo. Moreover, if P is aperiodic 

lim IlpN (Bo,') - 7r 011 = 0 
N-++oo TV 

(7.55) 

for 7r-almost all Bo. 

Remark 7.4. Typically, we set cp = 7r and verify the 7r-irreducibility of the 
kernel. 

Remark 7.5. The aperiodicity condition is not necessary if one is only in­
terested in estimates of JE.,.. [fl· 

The conditions on the transition kernel which lead to this theorem are 
weak and intuitive; the Markov chain must be able to explore the support of 
the target distribution and this exploration must not be periodic. Then the 
estimates obtained by averaging the simulated samples are asymptotically 
consistent and these samples are asymptotically distributed according to 
71' (d9). However, this theorem allows some starting points (of null 71' mea­
sure) for which convergence is not ensured. This theorem is valid for all 
starting points 90 if the Markov chain is also Harris recurrent [46, 58, 52]. 

This theorem validates theoretically under weak assumptions the basic 
principle of MCMC algorithms, that is, the idea of constructing a Markov 
chain of invariant distribution 71' (d9) when simulating directly from 71' (d9) is 
impossible. In fact, one must be careful because this theorem does not give 
any information on the rate of convergence of the Markov chain towards its 
invariant distribution. Practically, this convergence can be so slow that the 
approach is of no practical interest. It is possible to obtain under additional 
assumptions on the transition kernels better convergence results that ensure 
a geometric or even a uniform geometric convergence rate of the Markov 
chain [46, 58,52]; we do not detail these conditions here. 

MCMC Algorithms 

In this section, we first present some classical methods for constructing a 
Markov chain that admits as invariant distribution 71' (d9) = 71' (9) d9, when 
9 £ (91 , ... , 9ne ) E e c IRne. The more complex case, where 9 belongs 
to a union of subspaces of various dimensions, is discussed in Subsection 
7.3.6. 
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The Gibbs Sampler 

Given (J, the Gibbs sampler consists of first defining a partition of the com­
ponents of (J, say (Jl, ... ,(Jp (p ~ no) and to sample successively from the so­
called full conditional distributions 7r ((Jkl (J-k), where (J-k ~ ((Jl,'" ,(Jk-l, 

(Jk+l,"" (Jp). The algorithm proceeds as follows. 

Gibbs Sampling 

1. Initialization, i = O. Set randomly or deterministically (J(O) = (Jo. 

2. Iteration i, i ;::: 1. 

• Sample (J~i) '" 7r ( (Jpl (J~~), 

h (J(i) 6 ((J(i) (J(i) (J(i-l) (J(i-l») were -k = l' ... , k-l' k+l , •.. , p . 

----------------------------------------------------
This algorithm defines the following transition kernel: 

p 

K ((J(i-l) , (J(i») = II 7r ( (Jii) I (J~~) . (7.56) 
k=l 

It is straightforward to verify that this kernel admits 7r ((J) as invariant den­
sity. The algorithm is very general. In particular, there are many possible 
ways to partition the vector (J. In practice, it is recommended whenever 
possible to sample highly correlated variables together. This can improve 
dramatically the rate of convergence of the sampler, see [15] for an appli­
cation to time series. 

Remark 7.6. The version of the Gibbs sampler we have presented is the so­
called deterministic scan Gibbs sampler in which the order that the components 
are updated is fixed. One can also update these components in a random order. 

Remark 7.7. When p = 2, one obtains a special case of the so-called data 
augmentation algorithm introduced by Tanner and Wong in 1987 in the statis­
tical literature. Data augmentation is often presented as a stochastic Bayesian 
alternative to the EM algorithm [57}. 
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Remark 7.8. An (obvious) necessary condition to generate an ergodic Markov 
chain is that each component (}j has to appear in a subset (}I. However, one does 
not actually need «(}l, ... , (}p) to define a partition of (}, and a parameter (}j can 
appear in two subsets (}I and (}m with l #- m. This remark is of interest to build 
some so-called partial samplers [12}, [16}; see Subsection 7.5.2 for an application. 

M etropolis-Hastings Algorithm 

Another very popular MCMC algorithm is the Metropolis-Hastings (MH) 
algorithm [44], [38] which uses a candidate distribution q (8, 8') to sample 
from rr (8'). This algorithm proceeds as follows. 

Metropolis-Hastings Algorithm 

1. Initialization, i = O. Set randomly or deterministically 8(0) = 80• 

2. Iteration i, i ~ 1. 

• Sample a candidate 8 '" q (8(i-l), l 
• Evaluate the acceptance probability 

( (i-i) ) _ . { rr (8) /q (8(i-l), 8) } 
0: 8 ,8 -mm rr(8(i-l))/q(8,8(i-l)),1 (7.57) 

• Sample u '" U[O, 1] , if u ~ 0: (8(i-l),8) then 8(i) = 8 otherwise 
8(i) = 8(i-l). 

----------------------------------------------------
This algorithm defines the following transition kernel: 

KMH (8, d8') = 0: (8,8') q (8,8') d8' + 88 (d8') / [1 - 0: (8, u)] q (8, u) duo 

(7.58) 
To check that it has rr (dO) as its invariant distribution, one can easily verify 
that KMH (.,.) is rr-reversible. 

Remark 7.9. Note that this algorithm does not require knowledge of the 
normalizing constant of 7r (d(}) as only the ratio 7r «(}) /7r ((}(i-l») appears in the 
acceptance probability. 

A simple condition which ensures the irreducibility and the aperiodicity of 
the MH algorithm is that q (8,8') is continuous and strictly positive on the 
support of rr (8') for any 8. 
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Example 7.2. Let us assume that we want to simulate a set of samples from 
p ((}I y). Using Bayes' theorem we have p ((}I y) oc p (YI ()) p ((}). A MH procedure 
consists of simulating some candidates ()' according to q ((), (}'), evaluating some 

. . (() (}') . {I P( YI 6')P(6')q{6,.6)} d . h d'd t quantities a , = mm , p(YI6)p(6)q(6.6') , an acceptmg t ese can I a es 

with probability a ((), (}'). 

For the candidate distribution q (', .), there is an infinity of choices. 

Random Walk. A simple choice consists of proposing as candidate a pertur­
bation of the current state, i.e., 0' = 0 + z where z is a random increment 
of density cp (z) . 

• This algorithm corresponds to the particular case q (0, 0') = cp (0' - 0). 
We obtain the following acceptance probability: 

, . {7r(O')cp(O-Of) } 
0: (0,0) = mm 7r (0) cp (Of _ 0) ,1 . (7.59) 

• If q (0, 0') = cp (0 - 0') = cp (0' - 0) then we obtain 

( ') • { 7r (Of) } 
0: 0,0 = mm 7r (0) ,1 . (7.60) 

This algorithm is called the Metropolis algorithm [44]. 

Independent Metropolis-Hastings. In this case, we select the candidate in­
dependently of the current state according to a distribution cp (0'). Thus 
q (0, 0') = cp (0') and we obtain the following acceptance probability: 

, • {7r (0') cp(O) } 
0: (0,0) = mm 7r (0) cp (0'), 1 . (7.61) 

In the case where 7r (0) /cp (0) is bounded, i.e., we could also apply the 
accept/reject procedure, this procedure shows (fortunately) better asymp­
totic performance in terms of variance of ergodic averages [43]. 

Example 7.3. In a Bayesian framework, if we want to sample from p ((}I y) oc 
p (YI ()) p ((}) then one can take p ((}) as candidate distribution. Then the accep-
tance reduces to 

(() (}') . {p(YI (}') } 
a , =mm p(YI(}),1 . (7.62) 

One can also couple the MH algorithm with an accept/reject procedure or 
proposing a candidate distribution which is, for example, a discretization 
of the target distribution 7r (0) [58]. 
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Metropolis-Hastings One-at-a-Time 

In the case where B is high-dimensional, it becomes very difficult to select 
a good proposal distribution: either the acceptance probability is very low 
and thus the chain does not mix, or the chain explores only one mode 
of the distribution. To solve this problem one can define a partition of 
B, similarly to the Gibbs sampling algorithm. Then each component Bk is 
updated according to a MH step of proposal distributions admitting as 
invariant distribution the full conditional distribution 11' (Bk I B-k), using a 
set of proposal distribution qk (" .), k = 1, ... ,po 

MH One-at-a-Time 

1. Initialization, i = O. Set randomly or deterministically B(O) = Bo. 

2. Iteration i, i ~ 1. 

• - For k = 1 to p 

1. • - Sample Bii ) according to a MH step with proposal distribution 

(7.63) 

and invariant distribution 11' ( Bkl B~k). 
End For. 

h Il(i) ~ (Il(i) lI(i) lI(i-l) e(i-l)) were U_k - Ul , ... 'Uk_l'Uk+l , ... , p . 

_________________________________________________ 1. 
This algorithm includes the Gibbs sampler as a special case. Indeed, this 
corresponds to the particular case where the proposal distributions of the 
MH steps are equal to the full conditional distributions, i.e., 

( ( lI(i) lI(i-l)) 1I) (ll 11I(i)) qk u_k,uk ,Uk = 11' Uk u_k , 

so that the acceptance probabilities are equal to 1 and no candidate is 
rejected. 

Reversible Jump MCMC 

This section describes how to build MCMC algorithms for model selec­
tion, i.e., how to construct ergodic Markov chains admitting Pk (k, dBkl y), 
defined in equation (7.12), as their invariant distribution. In this case, 
8 ~U~;o" {i} x8 i · To ease notation in this section, we write Pk (k,dBk) 
for Pk (k, dBk I y). In the case of model selection, the main difficulty for the 
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Markov chain is to be able to jump from one subspace 8 n to another sub­
space em while preserving the correct invariant distribution. Green [36] 
has developed a general methodology that addresses this problem. 

We recall here that the MH algorithm is a method of constructing a 
reversible transition kernel for a Markov chain with a specified invari­
ant distribution Pk (k, dfh). The algorithm requires a proposal distribution 
qk,k> (k*, dOZ> I k , Ok) and an acceptance probability 0: (k, 0; k* , OZ> ). If the 
current state is (k,dOk), a candidate (k*,Ok) for the next state is proposed 
from qk,k' (k*, dOZ, I k, Ok) and accepted with probability 0: (k, 0; k*, OZ». 
Otherwise, the candidate is rejected and the process remains in the state 
(k,O). The transition kernel of the Markov chain can be written 

K (k, Ok; k*, dOZ,) = qk,k' (k*, dOZ, I k, Ok) 0: (k, Ok; k*, 0Z,) (7.64) 

+lI{k} (k*)8o k (dOZ,) { (l-o:(k,Ok;l,I'))qk,dl,dl'lk,Ok). Js 
Ensuring reversibility when the problem dimension is fixed, Pk> (k*, dOZ» 
and qk,k' (k*, dOZ, I k, Ok) admit densities Pk' (k*, 0Z» and qk,k' (k*, OZ,I k, Ok) 
with respect to the same dominating measure, which is well known, and 
the following choice for 0: (k, Ok; k* , 0Z, ) 

(k 0 ·k* 0*) - . {I Pk' (k*,OZ,)qk"dk,Oklk*,OZ»} 
0: , k, , k* -mm , pdk,Ok)qk,k,(k*,OZ,lk,Ok) (7.65) 

is satisfactory. 
Returning to the model selection problem, a Markov chain can be con­

structed using this methodology, where each state of the chain is proposed 
from the model spaces 8 m . However, any information common to the dif­
ferent subspaces might be discarded, leading to an inefficient algorithm. A 
scenario for which this seems to be crucial is that of nested models in which 
components need to be added or removed more or less independently. This 
type of approach raises measure theoretic problems, and Green [36] has 
described a very general methodology for solving this problem. It requires, 
for each pair of communicating spaces em and en; firstly the definition 
of extended versions of these subspaces into 8 m,n ~ 8 m X lJIm,n and 
en,m ~ en x lJIn,m; secondly the definition of a deterministic invertible 
mapping fn,m everywhere differentiable between em,n and 8 n,m 

fn,m (On' ipn,m) 
(J~,m (On' ipn,m) , It,,m (On, ipn,m)) (7.66) 

(we define fm,n such that fm,n (fn,m (On, ipn,m)) = (On, ipn,m)); and thirdly 
the choice of proposal densities for ipn,m and ip;",n, respectively qn,m (·1 n, On) 
and qm,n ( ·1 m, Om). The choice of the extended spaces, the deterministic 
transformation fm,n, and the proposal distributions for qn,m ( ·1 n, On) and 
qm,n (·1 m, Om) is problem dependent and needs to be addressed on a case­
by-case basis. 
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The proposal distribution can now be written 

N 

L 8/~.m(lJn''''n.m) (dOm) x 
m=l 

(7.67) 

xqn,m (m, d<pn,ml k, Okk) lI{m}xE>m (k*, OZ.)· 

With the assumption that all probability distributions admit a density with 
respect to the Lebesgue measure, the acceptance probability of a move from 
en to em satisfies 

r ((n, On), (m, 0:;')) (7.68) 

Pm (m, /~,m (On, <Pn,m)) qm,n U;f,m (On, <Pn,m) I m,O;,J 
Pn (n, dOn) qn,m (<Pn,ml n, On) X Jln.m' 

where Jln.m is the Jacobian of the transformation /n,m, when only contin­
uous variables are involved in the transformation, of the invertible mapping 
/n,m between the spaces en and em, 

J = Idet a/n,m (Om, <Pm,n) I. 
Im,n a (0 If') ) m,.,....m,n 

(7.69) 

The procedure can be summarized with the following pseudo-code 

Reversible Jump MCMC Algorithm 

1. Initialization, i = O. Set randomly or deterministically (k(O), Ok(O»). 

2. Iteration i, i ~ 1. 

• Sample m from the discrete distribution qk(i-I) ,m (ml k(i-l), 0k(i-I»). 

• Sample <Pk(i-I) ,m '" qk(i-I) ,m (d<Pk(i-I) ,m 1m, k(i-l), 0k(i-I») and 
perform the invertible transformation 

(7.70) 

• Accept the move with probability 

0: ( (k(i-l), 0k(i-I) ) , (m, 0:;')) = min { 1, r ( (k(i-l), 0k(i-I) ) , (m, 0:;')) } 

(7.71) 
i.e., (k(i),Ok(i») = (m,O:;'), otherwise stay at (k(i-l),Ok(i-l»). 

--------------------------------------------------
Note that this algorithm is not guaranteed to produce, even asymptotically, 
samples from the correct distributions, as the two extra properties, namely, 
irreducibility and aperiodicity (see Subsection 7.3.6), of the Markov chain 
need to be checked. 
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Simulated Annealing for Global Optimization 

Let us assume that we want to find the global maximum of a complex 
multivariate probability distribution 7r (dB) = 7r (B) dO that we can evaluate 
pointwise up to a normalizing constant. In a Bayesian framework 7r (B) = 
p (BI y) and global maximization allows us to find the MAP estimate. As 
discussed briefly in 7.3.2, a solution consists of running a (homogeneous) 
ergodic Markov chain of invariant distribution 7r (B) and estimate the global 
mode by 

(7.72) 

This method is not efficient in the sense that random samples approxi­
mately distributed from 7r (B) only rarely explore the vicinity of the mode, 
unless the distribution has large probability mass around the mode; much 
computation is thus wasted exploring areas of no interest for global mode 
estimation. SA methods are a non-homogeneous variant of MCMC to per­
form global optimization where the invariant distribution at iteration i of 
the algorithm is the distribution proportional to 7r1'(i) (B), 7 (i) being a 
positive increasing function diverging at infinity. The basic idea is that as 
7 (i) goes to infinity then 7r1'{ i) (B) concent'rates itself upon the set of global 
modes [52], [59] of 7r (B). So all the previous MCMC algorithms discussed 
earlier can be adapted to perform global optimization; the only necessary 
modification consists of replacing, at iteration i, the invariant distribution 
7r (B) by 

'if1'(i) (0) ex 7r'Y(i) (0) , (7.73) 

where 7 (i) ~ 0, 7 (i + 1) ~ 7 (i) and .1i+m 7 (i) = +00. 
1004 00 

SA algorithms simulate non-homogeneous Markov chains. Convergence 
results available in the literature mainly state that, if for a given 7 (i) the 
homogeneous Markov transition kernel mixes quickly enough, then con­
vergence to the set of global maxima of 7r (B) is ensured for a sequence 
7 (i) = GIn (i + 70), where G and 70 are problem-dependent. Most of the 
results have been obtained for finite spaces [28], [32], [52], [59] or compact 
continuous spaces [37]. Some results for non-compact spaces can be found 
in [4], [8]. 

7.4 An Example: The Autoregressive Model 

In this section we address the problem of Bayesian estimation and model 
order selection of autoregressive (AR) models. The aim of this section is to 
illustrate in a simple example how MCMC methods can be used; for the sake 
of brevity the straightforward implementation of the IS methods is omitted 
here. We first address the Bayesian estimation of an autoregressive model. 
In Subsection 7.4.1 we propose several samplers. We emphasize that the 
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usefulness of these samplers to solve the problem addressed is questionable; 
the aim of this subsection is to help newcomers to the field understand how 
to construct MCMC algorithms for a simple problem. Then, in Subsection 
7.4.2, we address the more complex problem of model selection and present 
a reversible jump MCMC algorithm to perform Bayesian computation. 

7.4.1 Bayesian Estimation of AR Process 

Model and Estimation Objectives 

Let us consider an autoregressive model of order k 

k 

Xt + L ajXt-j = O'kVt, 

j=l 

(7.74) 

where Vt i.~d. N (0,1). We assume that T > k and that the initial conditions 
XI-k:O are equal to zero. We can rewrite this relation in a matrix form 

(7.75) 

where 
0 0 

Xl 0 0 

Xk~ 
X2 Xl 0 

(7.76) 

XT-2 XT-2-k+1 

XT-I XT-I-k+l 

ak = (al, ... ,ak)T and 0'2 are unknown parameters and we assume from 
now that they are random with improper prior distribution 

(7.77) 

Given the observations XI:T, our aim is to estimate the posterior distribu­
tion p ( ak ,O'~ I XI:T). We recall here that no Monte Carlo method is required 
to estimate this distribution as it can be obtained in dosed-form, as detailed 
later. However conditional expectations, quantiles or other characteristics 
cannot be obtained analytically; this can justify the use of Monte Carlo 
methods. 

Several Monte Carlo algorithms to sample from p ( ak ,O'~ I XI:T) are pre­
sented. 

Exact Sampler 

In this simple case, direct sampling from this distribution p (ak'O'~ I XI:T) 

is possible. Indeed, 

(7.78) 



194 Christophe Andrieu, Arnaud Doucet and William J. Fitzgerald 

After a few calculations one obtains 

where 

M-l k Xl;Xk 
Pk = IT - XkMkXl; 
mk = -MkXl;xl:T. 

Mil is assumed to be invertible. 

(7.79) 

(7.80) 

(7.81) 

(7.82) 

(7.83) 

The following algorithm thus provides Ll.D. samples, distributed accord­
ing to p (ak,O"~1 Xl:T) . 

• Iteration i, i ~ o. 

1. • Sample 0"2(i) '" P (O"~ I Xl:T). 

• Sample aii ) '" p ( ak I Xl:T, O"~(i»). 
_________________________________________________ 1. 
Sampling from those two distributions is standard [21]. 

Metropolis Algorithm 

We adopt the Metropolis algorithm with random Gaussian increment of co­
variance matrix O"hwIk+l > o. An MCMC algorithm to obtain (non Ll.D.) 
samples asymptotically distributed according to p ( ak ,O"~ I Xl:T) proceeds 
as follows: 

1. Initialization, i = 0: set randomly or deterministically (aiO) ,O"~(O»). 

2. Iteration i, i ~ 1. 

• Sample z ",N (0, O"hwIk+1) and then evaluate the candidate 

( T 2) _ (( (i_l»)T 2(i-l») + T a k , 0" k - ak , 0" k z . 

• Evaluate the acceptance probability 
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S I 11 'f < (i-I) 2(i-l) 2) h • ampeUf'VUI[O,l]; I U_ll! ak 'Uk jak,Uk ten 

(a(i) u2(i») - (ak ( 2) else (a(i) u2(i») _ (a(i-l) u2(i-l») k'k - 'k k'k - k 'k . 

-------------------------------------------------. 
Note that the choice of uhw will have a strong influence on the conver-
gence and mixing properties of the Markov chain. A tradeoff between good 
exploration of the total posterior distribution and a good "average" accep­
tance probability is required. Some theoretical results on this problem are 
summarized in [52]. 

Independent Metropolis-Hastings Algorithm 

We adopt as a proposal distribution 
<p(ak,Un = N(akjOkxl'U;kIk)I9(u~j~,~) (vo'Yo > 0). The MCMC 
algorithm proceeds as follows. 

1. Initialization, i = 0: set randomly or deterministically (aiO) ,ui(O»). 

2. Iteration i, i ~ 1. 

• Sample a candidate ak",N (OkXl,U;/)k) and u~ f'V I9 (~, ~). 

• Evaluate the acceptance probability 

S I U 'f < (i-I) 2(i-l) 2) h • ampe U '" [0,1]; I U _ ll! ak 'Uk jak,Uk, t en 

( i) 2(i») _ ( 2) I (i) 2(i») _ (i-I) 2(i-l») ak , Uk - ak 'Uk e se ak , Uk - ak , Uk . 

------------------------------------------------------_1. 
Here again the choice of the parameters of <p (ak ,u~) will have a strong 
influence on the convergence properties of the Markov chain. The closer 
<p (ak,Un is to the target distribution p (ak'u~ I XI:T), the more likely the 
algorithm is to be efficient as the acceptance probability will be close to 1 
on the average. Note that the support of the target has to be included in 
the support of the proposal distribution to ensure that the whole posterior 
distribution is explored. 

MH Sampler One-at-a-Time 

In this sampler, we update ak using a Metropolis step with a random 
increment uhwIk > 0 and u~ using an independent MH step with proposal 
distribution I9 (u~j~, ~) (vo'Yo > 0). The algorithm proceeds as follows. 
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1. Initialization, i = 0: set randomly or deterministically (akO) ,a~(O)) . 

2. Iteration i, i ~ 1. 

Metropolis Step 

• Sample z ",N (0, ahwIk) and evaluate the candidate ak = aki-l) + 
z. 

• Evaluate the acceptance probability 

( i-I) 2(i-I). 2(i-I))_. { p( x1'Tlak,u~('-1») I} 
Oi a k ,ak ,ak,ak -mm ( (.1) 2(,1»)' 

P X1,Tlak 'Uk 

(7.86) 

• Sample u '" U[O,I]; if u ~ Oi (aki-I),a~(i-I);ak,a~(i-I)), then 

aki) = ak else aki) = aki - I). 

Independent MH Step 

• Sample a candidate a~ '" Ig (~, 1f). 
• Evaluate the acceptance probability 

S I 1 J·f (i) 2(i-l) (i) 2) h 2(i) 2 • ampeU"'''''[O,I],1 U~Oi a k ,ak ;ak ,ak t enak =ak; 
I 2(i) 2(i-l) eseak =ak . 

_________________________________________________ 1. 
Metropolis/Gibbs Sampler 

In this sampler, we first update ak using a Gibbs step and a~ using an 
independent step with proposal distribution Ig (a~;~, 1f) (vo'Yo > 0). 
The algorithm proceeds as follows. 

1. Initialization, i = 0: set randomly or deterministically (akO) ,a~(O)). 

2. Iteration i, i ~ 1. 

Gibbs Step 
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Independent MH Step 

• Sample a candidate C7~ '" Ig ( ~, ~ ). 
• Evaluate the acceptance probability 

S I ? J·f (i) 2(i-1) (i) 2) h 2(i) 2 • ampeu"''''[O,11,1 u~a a k ,17k jak ,17k t en 17k =C7kj 

I 2(i) 2(i-1) 
eseC7k = 17k . 

------------------------------------------------------

Gibbs Sampler 

Finally, we present a Gibbs sampler algorithm to sample from p ( ak ,C7~ 1 X1:T). 

1. Initialization, i = 0: set randomly or deterministically (akO) ,C7~(O»). 

2. Iteration i, i ~ 1. 

S I 2(i) (21 (i») • ampeC7k "'P 17k X1:T,ak . 

• 
The expression of p (aklx1:T,C7~(i») is given by (7.80) and one obtains 

p(C7~1 x1:T,ak) from Bayes theorem 

(7.89) 

We have illustrated in a simple example the different strategies existing 
to sample from the posterior distribution p ( ak ,C7Z 1 X1:T). The problem of 
the choice of the strategy is of course easily solved. Indeed it is possible 
to exactly draw Ll.D. samples from the target distribution with a low 
computational cost using standard methods. For more complex models, 
such as those described in Section 7.5, the design of a "good" sampler 
relies more or less on heuristic considerations and experience. 
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7.4-2 Bayesian Model Selection of AR Process 

Model and Estimation Objectives 

We now assume that the model order of the AR process is part of the 
unknown parameters of the problem, i.e., we assume that the data can be 
represented by one of the following models Mk, k E {O, ... ,kmax } (kmax < 
T) 

k 

Mk : Xt + L aiXt-i = O'kVt· 
i=l 

(7.90) 

The unknown parameters (k, ak, O'~) are assumed random with a given 
prior distribution. We recall here that in a Bayesian framework, the choice 
of an improper prior for model selection purposes can lead to Lindley's 
paradox [9], that is the systematic choice of the simplest model. In this tu­
torial, we use a proper but vague hierarchical prior such as the one proposed 
in [48]. The following prior distribution is selected 

p (k, ak, O'~, 82 ) = P (akl k, 0'~,82) P (O'~) P (82 ) p (k). (7.91) 

For the autoregressive coefficients we chose a data-dependent prior 

( 2 2) 1 XkXk 11/2 [akXkXkak]· 
p aklk'O'k,8 = 211"820'~ exp - 2820'~ , (7.92) 

and we assume that 

2 (YO 'YO) 2 (YO,62 'YO,6 2 ) O'k '" 1:9 2' 2 ,8 '" 1:9 -2-' -2- ,k '" U{O, ... ,kmax}· (7.93) 

Given the observations Xl:T, our aim is to estimate the posterior distribu­
tion p ( k, ak, O'~, 82 1 Xl:T ). This distribution does not admit any analytical 
expression. Bayesian computation is performed by developing a reversible 
jump MCMC sampler. 

Reversible Jump MCMC Algorithm 

We propose a reversible jump MCMC sampler that makes the most of 
the analytical properties of the probabilistic model to estimate the joint 
posterior distribution p ( k, ak, O'~, 82 1 Xl:T). For our problem, the following 
moves have been selected: 

1. birth of a new AR coefficient. 

2. death of an existing AR coefficient. 

3. update of the parameters. 
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The birth and death moves perform dimension changes from respectively 
k to k + 1 and k to k - 1. These moves are defined by heuristic considera­
tions, the only condition to be fulfilled being to maintain the correct invari­
ant distribution. The resulting transition kernel of the simulated Markov 
chain is then a mixture of the different transition kernels associated with 
the moves described earlier. This means that at each iteration one of the 
candidate moves: birth, death or update is randomly chosen. The proba­
bilities for choosing these moves are bk, d k and Uk respectively, such that 
bk + dk + Uk = 1 for all 0 ~ k ~ kmax . The move is performed if the algo­
rithm accepts it. For k = 0 the death move is impossible, so that do ~ O. 
For k = kmax the birth move is impossible and thus bkmax ~ O. Except in 
these cases, we take the following probabilities bk = dk = Uk. The algorithm 
proceeds as follows: 

Algorithm for AR Model Order Estimation 

1. Initialization, i = 0: set (k(O), ak~~)' O'~~~; ,82(0) ), randomly or determin­
istically. 

2. Iteration i, i ~ 1. 

• If (u "" U[O,I)) < Uk(i-l) 

Update move 

- Set k(i) = k(i-I) and sample 

Else if U < (Uk(i-l) + bk(i-lJ) 

Birth move 

(7.94) 

- Evaluate abirth (k(i-I),k(i-I) + 1), see (7.103), and sample 
Ubirth "" U[O,I)' 

- Ifubirth < abirth (k(i-I),k(i-I) + 1) set k(i) = k(i-I)+l and 
sample 

(7.95) 

Else set (k(i) , aki(i) , O'~~:?) = (k(i-l), ak~-;-!;)l O'~~:=-N). 

Else 
Death move 

- Evaluate adeath (k(i-l),k(i-I) -1), see (7.104), and sample 
Udeath "" U[O,I)' 
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- If Udeath < Qdeath (k(i-I), k(i-I) - 1) Set k(i) = k(i-I) - 1 
and sample 

(7.96) 

EI (k (i) (i) 2(i)) (k(i-I) (i-I) 2(i-I)) seset ,ak(i)lO"k(i) = ,ak(i-l)lO"k(i-l). 

S I >:2 (>:21 k(i) (i) 2(i)) • amp e u '" p u ,ak(i)' 0" k(i) . 

--------------------------------------------------------
The conditional distributions p (ak' O"~ 1 XI:T, k, 82) andp (82 1 Xl:T, k, ak, O"n 
satisfy 

akl (XI:T,k,0"~,82) 

82
1 (XI:T,k,ak'O"~) 

Ig (T ~ vo, 'Yo + xI,;PkXI:T) 

N (mk' O"~Mk) 

where we have defined the following quantities 

Mr;1 = (1 + 8-2 ) XkXk 

mk -MkXkXl:T 
Pk IT - XkMkXk. 

(7.97) 

(7.98) 

(7.100) 

(7.101) 

(7.102) 

The acceptance probabilities of the birth and death moves are equal to 

with 

Qbirth (k, k + 1) 
Qdeath (k + 1, k) 

min {I, rbirth (k, k + I)} 

min {I, rbi~th (k, k + I)} 
(7.103) 

(7.104) 

It is worth noticing that the acceptance probabilities of this algorithm for 
the dimension changes do not depend on the current value of the variance 
of the noise or on the value of the current parameters. 

7.5 Applications 

In this section, we show how to successfully apply some Monte Carlo meth­
ods to solve complex nonlinear and non Gaussian data analysis problems. 
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7.5.1 Sequential Importance Sampling for Optimal Filtering 

We show in this section how to apply Monte Carlo methods to solve sequen­
tial optimal estimation problems for non-linear non-Gaussian problems; 
see [39], [60] for many potential applications. For the sake of simplicity, we 
focus on an important application for Radar: bearings-only tracking. 

Problem Formulation and Estimation Objectives 

Consider the following problem. A target is moving in a two-dimensional 
plane. The target is located by the parameters (Xt, Yt)t=l, ... and moves 

at speed (Xt, ilt) . The system fluctuations bt', 'YntEN are independent 
tEN 

zero-mean Gaussian white noise, 

(7.105) 

Discretization of the classical mechanics equation leads to the following 
state-space representation of the dynamic system 

z,+, = U 1 0 0) C5 0:5 ) v'H, 
1 0 

: z,+ ~ (7.106) 
0 1 
0 0 

where Zt ~ ( Xt Xt Yt Yt ) T. The observations are a sequence (¢Jt)tEN 

of bearings 

<Pt = arctan (~:) + nt, (7.107) 

where nt i.~d. N (O,a;) is a white Gaussian noise accounting for measure­
ment errors. The prior distribution for the initial state Zo is assumed to 
be Gaussian with known covariance. The parameters a;, a; and a; are as­
sumed known. Equations (7.106)-(7.107) define a Bayesian model as (7.106) 
defines a prior distribution and (7.107) defines the likelihood. 

Our objective is to estimate on-line the configuration Zt of the object 
from the observations <Pl:t and more precisely the filtering distribution 
P (Zt I <Pl:t) and its associated features. This is an optimal filtering prob­
lem which does not admit any closed-form analytical solution. A subopti­
mal solution would consist of using the Extended Kalman filter (EKF) [39]. 
However, it does not yield, in this case, satisfactory results while simulation­
based methods perform very well [35], [27]. 

In this sequential framework, the iterative MCMC methods cannot be 
used. We show here how a sequential version of Bayesian importance sam­
pling can be used to solve this problem and more generally any optimal 
filtering problems; see [35], [24], [27] for additional details on sequential 
Monte Carlo methods. 



202 Christophe Andrieu, Arnaud Doucet and William J. Fitzgerald 

Bayesian Computation via Sequential Importance Sampling 

Let us consider the joint distribution of the states p ( zo:t I <Pl:t). We can ap­
proximate this distribution using the Bayesian importance sampling method 
described in 7.3.5, i.e., we select an arbitrary importance function q (zo:tl <Pl:t) 
from which it is easy to sample (we emphasize here that the importance 
function q (.) can depend on the observations <Pl:t). Then having obtained 
N» 1 samples from q (zo:tl <Pl:t), one straightforwardly obtains an approx­
imation fiN (zo:tl <Pl:t) of p(dzo:tl <Pl:t) 

N (i») L:i=l W zo:t 8 (i) (dzo:t ) 
fiN (dzo:tl<Pl:t) = N (~;;) , 

L:j=l W zO:t 
(7.108) 

where the importance weights satisfy 

( i») p (z~~~1 <Pl:t) 
W ZO:t ex: (i) 1 ) . 

q ZO:t <Pl:t 
(7.109) 

This method is not a sequential method. However, if one restricts the im­
portance function to have the following form 

n 

q (zo:tl <Pl:t) = q (zo) II q (ztl ZO:t-l, <Pl:t), (7.110) 
t=l 

then we are able to simulate the trajectories z~~~ and to evaluate the asso­

ciated importance weights W ( z~~~) sequentially in time. This specialized 
version of importance sampling is named sequential importance sampling 
(SIS). 

Algorithms 

At time t -1, assume that we have N samples with their associated weights 

( z~~L l' W ( z~~L 1) ; i = 1, ... , N). Then SIS proceeds as follows at time t 

to obtain (Z~~Ll' W (Z~~~) ; i = 1, ... , N). 

SIS for Optimal Filtering 

• For i = 1, ... ,N, sample z~i) '" q(ztlz~~Ll'<PO:t) d (i) ~ an set Zo:t 

( i) (i») 
ZO:t-l' Zt . 

• For i = 1, ... , N, evaluate the importance weights up to a normalizing 
constant 

( 0) (01 (')) ( i») (i») p <ptl Z/ P Z/ Zt~l 
W ZO:t ex: W ZO:t-l (i) 1 (i) (7.111) 

q( Zt ZO:t-l' <Po:t) 
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• For i = 1, ... , N, normalize the importance weights 

( 0) ~(i) _ W ZO~t 
wt - N ((j))' 

~j=l W ZOot 
(7.112) 

----------------------------------------------------
This algorithm is very general and it is of interest to note that it can 
be straightforwardly implemented on a parallel computer. Unfortunately, 
it can be shown that it is inefficient in the sense that the variance of the 
importance weights can only increase (stochastically) over time. In practice, 
after a few time steps, all but one of the normalized importance weights are 
very close to zero and a large computational effort is devoted to updating 
trajectories whose contribution to the final estimate is almost zero. The 
key step to make this algorithm work in practice consists of introducing a 
resampling step at each time t. This idea was first proposed by Gordon et 
al. [35] and is based on the SIR algorithm. The modified algorithm proceeds 
as follows at time t. 

SIS /Resampling for Optimal Filtering 

Sampling Step 

• For i = 1, ... ,N, sample z~i) ,...., q(ztlz~~Ll'<PO:t) and 

( z~~L 1 , z~ i) ) . 

~(i) ~ 
set ZOot 

• For i = 1, ... , N, evaluate the importance weights up to a normalizing 
constant 

( 0) (°1 0) (i) P <ptl Z/ P z/ Zt~l 
wt ex (') I ° q( z/ ZO~t-l' <Po:t) 

• For i = 1, ... , N, normalize the importance weights 
( i) 

~(i) _ W t 
W t - N (j)' 

~j=l W t 

Resampling Step 

(7.113) 

(7.114) 

• For i = 1, ... , N, sample an index j (i) distributed according to the dis­

crete distribution Pr {j (i) = I} = w~i) for I = 1, ... ,N. 

• For i = 1, ... , N, set z~~~ = z~~2 and reset the weights w~i) = liN. 

--------------------------------------------------
One obtains at time t the following approximation of p ( ZOot I <P1:t) 

1 N 
fiN (dzo:tl <Pl:t) = N L 8z~:~ (dzo:t ). (7.115) 

i=1 
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Simulations 

The parameters of the model are identical to those in [35]. To run the 

algorithm, it is necessary to chose the importance function q( Ztl Z~21' <Po:t). 
We select here q( Zt I Z~21 , <Po:t) = p( Zt I Z~21)' that is the prior distribution. 
Other choices are presented in [24], [27]. We present an application of the 
SIS/SIR algorithm for N = 1000 samples. The results are displayed in 
Figure 7.1. 

..•....... 

FIGURE 7.1. Left: noisy observations of bearings - Right: true trajec­
tory (solid line) / IE ( Zt I y t), estimated trajectory (dotted line) 

For this problem, it appears that the EKF algorithm diverges if it is 
not well initialized, whereas the sequential Monte Carlo method performs 
remarkably well. Many other developments and applications of sequential 
Monte Carlo methods can be found in [27]. 

7.5.2 Blind Deconvolution of Impulsive Process 

Numerous phenomena arising in a variety of fields of science are composed 
of isolated time events occurring at random instants. This is the case in the 
study of neuronal electrical activity, seismic phenomena, radioactivity etc. 
Particularly well adapted and frequently used models for such highly dis­
continuous phenomena are point processes. In many cases the point process 
cannot be directly observed as it is filtered and corrupted by observation 
noise [14], [18], [22], [45]limited propagation medium. This medium even­
tually includes the measurement sensor. 

Problem Formulation and Estimation Objectives 

The observed signal Yt is modeled as the convolution of the sequence Vt by 
an AR model a = [al,"" ak]T observed in white Gaussian noise, i.e., 

Yt 

Xt 

Xt + Wt 

k 

Laixk-i + Vt 
i=l 

(7.116) 

(7.117) 
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where Wt i'!.:.,d. N (0, a!), the initial values of the AR process are assumed 
equal to zero. In this model Vt is an Ll.D. sequence of marginal distribution 

(7.118) 

with (t2 < 1 being assumed known, typically (t2 « 1. The sequence Vt 

and the parameters f) = (a, 0';, a!, A) are unknown. It is convenient from 
an algorithmical point of view to introduce the latent Bernoulli process 
rt E {O, 1} so that Pr(rt = 1) = A and 

(7.119) 

We assign a prior distribution to the unknown parameters f) so that 

(7.120) 

For the AR model and excitation noise variance, a normal-inverse gamma 
prior distribution is selected, i.e., 

2 N ( 2) 2 ( Vo 'Yo ) alO'v '" Okxl'O'v~O andO'v",IQ 2'2 (7.121) 

with ~o a regular matrix and 

0'; '" IQ ( ~o , ~o) and A '" U[O,I]' (7.122) 

The hyperparameters (~o, Vo, 'Yo, (to, (30) can be set so that this distribution 
is uninformative. 

Given the set of observations YI:T ~ {YI,' .. , YT}, our aim is to estimate 
the joint posterior distribution p (f), rl:T, XI:TI YI:T). This distribution does 
not admit an analytical expression. We propose different MCMC samplers 
to perform Bayesian computation. 

Bayesian Computation Using MCMC 

We propose two MCMC samplers to compute p(f),rl:T,xI:TIYI:T). The 
first sampler is a simple Gibbs sampler. We show that this sampler is un­
fortunately totally inefficient and can not even converge in important cases. 
We then propose an alternative Gibbs sampler which solves this problem. 

A Gibbs Sampler 

A Gibbs sampler to sample from p (f), rl:T, Xl:TI YI:T) proceeds as follows. 

Gibbs Sampler for Blind Deconvolution 

1. Initialization, i = 0: set randomly or deterministically (f)(0) , r~~~, x~~~ ). 
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2. Iteration i, i 2: l. 

• Sample ()(i) '" p (()I Yl:T, r~~~l), X~~~l)). 

• Sample r~~~ '" p (rl:TI Yl:T, ()(i), X~~~l)) . 

• Sample x~~~ '" P ( Xl:TI Yl:T, ()(i), r~~~ ). 

_________________________________________________ 1. 
Sampling from p (()I Yl:T, rl:T, Xl:T) is straightforward as 

p (a, a;, a!, AI Yl:T, rl:T, Xl:T) (7.123) 

p (a, a; I Yl:T, rl:T, Xl:T) P (a! I Yl,T, Xl:T) P (AI rl:T) 

and all these conditional distributions can be evaluated analytically and are 
easy to sample. Sampling from p (rl:TI Yl:T,(), Xl:T) = P (rl:TI a, A,Xl:T) is 
easily done as (a, Xl:T) allows us to evaluate Vl:T and 

T 

p(rl:Tla;,A,vl:T) = IIp(rtla;,A,Vt), (7.124) 
t=l 

where p ( rt I a~, A, Vt) is a discrete distribution from which it is easy to 
sample: 

Pr(rt=1Ia;,A,Vt) = 1-Pr(rt=0Ia;,A,Vt) 

AN (Vt; 0, a~) 
AN (Vt; 0, a;) + (1- A)N (Vt; 0, 02a;). 

(7.125) 

Finally sampling from p (Xl:TI Yl:T, (), rl:T) = P (Xl:TI Yl:T, a, a~, a~, rl:T) 
is a more complex task. This distribution is clearly a Gaussian distribution 
of mean /L (Yl:T, a, a~, a~, rl:T) and covariance ~ (Yl:T, a, a~, a~, rl:T). 
However, evaluating this TxT covariance matrix is very computationally 
intensive. Fortunately, it is not necessary to evaluate it in order to sample 
Xl:T. By using a state-space representation of the data, it is possible to use 
the efficient forward filtering/backward sampling procedure to sample from 
this distribution, see [15]. An alternative more computationally efficient 
method is the simulation smoother [20]. The complexity ofthese procedures 
is of 0 (T). 

The resulting Gibbs sampler algorithm is somewhat elegant. Neverthe­
less, it can be highly inefficient. Indeed, in most practical applications the 
mixture model for Vt has a component with a very small variance, i.e., 
o « 1 [14], [22], [45]. In this case, there is a very strong correlation be­
tween rt and Vt. Consequently the resulting MCMC converges very slowly 
towards its invariant distribution [22]. When 0 = 0, i.e., Vt is a Bernoulli­
Gaussian (BG) process and p ( dVt I r t = 0) = <50 (dvt}, then the Markov 
chain simulated by the Gibbs sampler is not even irreducible! 
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An Alternative Gibbs Sampler 

We present here an alternative Gibbs sampler that circumvents the prob­
lemsjust described. It samples from p (0, rl:T' XI:TI YI:T). Contrary to what 
happens in the previous algorithm, the latent Bernoulli process rl:T is not 
sampled conditionally on XI:T. This so-called partial sampler proceeds as 
follows. 

A Partial Sampler for Blind Deconvolution 

1. Initialization, i = 0: set randomly or deterministically (0(0), r~~t, X~~~). 

2. Iteration i, i ~ 1. 

• Sample O(i) rv p ( 01 YI:T, r~:TI) , X~~TI)). 

• For t = 1 to T 

- Sample r~i) '" p (rtl YI:T, O(i), r~~) where 

(i) ~ ( (i) (i) (i-I) (i-I)) r_ t - r l , ... ,rt-l,rt+1 , ... ,rT . 

End For. 

• Sample X~~~ '" P ( XI:TI YI:T, O(i), r~~~ ). 

----------------------------------------------------
The only modification of this algorithm with respect to the previous one 

is the sampling step of the latent process rl:T. We sample the indicator 
variables rt one-at-a-time, the continuous state Xl:T being integrated out. 
Sampling from p (rtl Yl:T, 0, r -t) can be done in 0 (T) iterations using a 
clever backward/forward recursion introduced in [16], see [26] for an exten­
sion of this recursion to more general state-space models. 

Remark 7.10. One can check that this partial sampler has p (8, r 1:T, Xl:TI Yl:T) 
as invariant distribution using Remark 7.B. 

Remark 7.11. One could also sample the parameters 8 ,...., p(8IYl:T,rl:T) 
using an MH step, the parameters Xl:T being integrated out. Nevertheless, it is 
not easy to get a "good" proposal for 8, so we have chosen here to sample them 
conditional on Xl:T. 

Application to Bernoulli-Gauss Processes 

We address the problem of blind deconvolution of a Bernoulli-Gaussian 
sequence, i.e. 0: = O. T = 500 data are simulated with the following param­
eters: a = (-1.51,0.55)T, (Tv = 0.3, A = 0.05 and (Tw = 0.25. This is a good 
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model of a neutron sensor [22]. The hyperparameters (Eo, vo, 'Yo, 0:0, (30) = 
(10012,0.01,0.01,0.01,0.01). 

We are interested in obtaining a point estimate of the filtered point 
process Vl:T. The MMSE estimate is usually of no practical interest in such 
problems as the posterior distribution p (vl:TI Yl:T) is multimodal [22]. 
We propose to perform instead a two-step procedure. In the first step, 
we run the proposed partial sampler algorithm to estimate the posterior 
distribution p ( 81 Yl:T). We deduce the MMAP pointwise estimates of the 
parameters 8. Then, these parameters now assumed known, we perform a 
classical detection/estimation procedure [45] to estimate the sequence rl:T 

and the dynamic noise Vl:T. This second step is easily implemented using 
a simulated annealing version of the efficient method to sample the latent 
process rl:T; see [26] for details. 

In Figure 7.2 we present the observation and real filtered point process. 
In Figure 7.3 we present the real and estimated point process. 

FIGURE 7.2. Signal Xt and observations Yt (dotted lines). 

" 
Ii or 

.I.' 1 O( r r I I 
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"" " ... " ".n ,." .. ,", .. .... , "." " ... 

FIGURE 7.3. Simulated sequence dynamic noise (solid line, circle 0) 
and reconstructed sequence (dotted line, cross x) 

7.5.3 Robust Bayesian Spectral Analysis 

In this subsection, we address the problem of parameter estimation of si­
nusoids in non-Gaussian noise. This problem is of great interest in many 
fields, including seismology, nuclear magnetic resonance and radar. Several 
algorithms have been proposed in the literature to obtain the maximum 
likelihood frequency estimator in the case of a white Gaussian observa­
tion noise. However, in practice, there are numerous applications where 
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this noise is non-Gaussian. We develop a Bayesian model and an MCMC 
sampler to solve this problem. The problem of joint Bayesian detection 
and estimation of sinusoids in white Gaussian noise as well as the prob­
lem of estimation of sinusoids in presence of clipped data are addressed 
elsewhere [6, 7]. 

Problem Formulation and Objectives 

Let YO:T-l be an observed vector of T real data samples where 

k 

Yt = L (ac; cos [Wjt] + as; sin [Wjt]) + nt 
j=l 

(7.126) 

with wit 'I- wh for jl 'I- h· aCt, as;, Wj are respectively the amplitudes and 
the radial frequency of the jt sinusoid. In vector-matrix form, we have 

YO:T-l= D (w) a + nO:T-l, (7.127) 

where a £ (acu asu ... ,aCk ' aSk)T, W £ (WI, ... ,Wk)T and the T x 2k matrix 
D (w) is defined as 

= cos[Wjt], (t=0, ... ,T-1,j=1, ... ,k) [D (w)]Hl,2j-l 

[D (w)]Hl,2j sin [wji], (t = 0, ... , T - 1, j = 1, ... , k). (7.128) 

The elements of YO:T-l correspond to the superposition of k (k ~ 1) sinu­
soids corrupted by a non-Gaussian Ll.D. noise nt. This noise is modeled as 
a two-component Gaussian mixture 

(7.129) 

where .oX E (0,1) and a 2 E (0,1). Similarly to the blind deconvolution 
problem, it is convenient from an algorithmical point of view to introduce 
the latent Bernoulli process rt E {O, I} so that Pr(rt = 1) =.oX and 

(7.130) 

The parameter of the sinusoids (a, w) and the parameters of the noise 
(.oX, 0"2, a 2 ) are assumed to be unknown and random with the following 
prior distribution, see [3] for a detailed justification 

p (a, w,.oX, 0"2, a 2 , rO:T-d = 

p (a, wi 0"2, a2 , rO:T-d P (0"2) P (a2 ) p (ro:T-ll.oX) p (.oX) , 
(7.131) 

where 
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with E defined as 

E-l £ 8-2 n T (w).A -In (w), .A £ diag (io, ... , iT-d (7.133) 

where it = ][{r,=l} + a 2][{r,=0}. The other prior distributions are equal to 

(7.134) 

Given the observations YO:T-l, our aim is to estimate the posterior distri­
bution p (a, W,A, (]'2, a 2 , rO:T-ll YO:T-t). We propose an MCMC sampler to 
perform Bayesian computation. This MCMC sampler uses the fact that one 
can evaluate the marginal posterior distribution p (W,A, a 2 , rO:T-ll YO:T-t) 
analytically 

p (W,A, a 2 , rO:T-ll YO:T-l) = 
T+ .. o 1 

[-yo + Y~:T-l P (w, E) YO:T-d - 2 trk ][(O,1r)k (w) 
(7.135) 

with 

P (w, E) = E-l - E-ln (w) [nT (w) E-ln (w)r l nT (w) E-l . (7.136) 

Bayesian Computation Using MCMC 

In this subsection we first present the main steps of the MCMC algorithm, 
give some details about these different steps and finally present simulation 
results. 

MCMC Algorithm for Spectral Analysis in Impulsive Noise 

1. Initialization. i = 0: set 0(0) = {a(O), w(O), r~?~_l ,(],2(0), A(O), a 2(0) } and 

i = 1. 

2. Iteration i, i ~ 1. 

• For j = 1, ... , k 

- Perform an MH step with p ( Wj,k I YO:T-l, r~~T~l' a 2(i-l), w~n 
as invariant distribution. 

End_For 
h (i) I::. ( (i) (i) (i-l) (i-l») were W_j = Wl , •• • Wj_l,Wj+l , ••• 'Wk • 

• For t = 1, ... , T 

- Sample r~i) '" P (rtIYo:T_l,a2(i-1),w(i),r~LA(i-l»). 
End_For 

h (i) I::. ( (i) (i) (i-l) (i-l») were r_t = ro , ... ,rt-l,Tt+l , ... ,rT - l • 

• Sample (a(i),a2(i») '" p (a,a21 YO:T_l,r~~~_l,w(i),a2(i»). 
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• Sample 

(a2(i) A(i») '" P (a2 1 Yo T 1 r(i) W(i) a(i) a2(i») P (AI r(i) ) , : - , O:T-l' " O:T-l . 

(7.137) 

--------------------------------------------------
The details ofthe different sampling steps are described in [3], [25], however 
we outline here the specifics of these steps: 

• sampling from Wj relies on a mixture of two MH transition kernels 
which aim at exploring rapidly the posterior distribution of interest 
and the modes of this distribution, 

• sampling from Tt is standard as it is a discrete probability distribu­
tion, 

• sampling from a, a2 is standard as it amounts to drawing a2 from an 
inverted gamma distribution and a from a normal distribution. 

• sampling from a 2 , A is also easy as it amounts to draw A from a beta 
distribution and a 2 from a truncated inverted gamma distribution; 
and 

Simulations 

We have applied the algorithm to synthetic data, whose parameters were 
T = 128, k = 2, A = 0.02 and a 2 = 0.01. The parameters for the two 
sinusoids are given in Table 7.1 (Ei ~ a~; + a~J. 

1 20 
2 18 

- arctan ( as; / aCi ) 

o 
7r/4 

0.2 
0.3 

TABLE 7.1. Parameters of the two sinusoids for robust spectral anal­
ysis. 

We applied our algorithm to the data and ran it for 20,000 iterations. 
We present in Figure 7.4 the periodogram of the observed data. Note that 
the second frequency is not visible on the periodogram. In Figure 7.5 we 
present the time series (truncated to facilitate visualization), the estimates 
of the probabilities P (Tt = 11 YO:T-t) (for t = 0, ... ,127) and the true se­
quence of Tt such that Tt = 1. In Figure 7.6 we present the estimates of 
P (wd 27r1 YO:T-t) and p (W2/ 27r1 YO:T-l). In Figure 7.7 we present an es­
timate of the posterior distribution of A, the parameter of the Gaussian 
mixture, whose true value is 0.02. 

7.6 Conclusion 

In this chapter, our aim was to provide a simple tutorial review of Monte 
Carlo methods and their applications to Bayesian data analysis. These 
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,I 
II 

FIGURE 7.4. Periodograrn of the data 

FIGURE 7.5. Top: time series (threshold). Bottom: probability 
pCei = 11 y) (circles) and the original sequence (squares at height 0.5). 

--~~----~---

FIGURE 7.6. Estimates of the posterior distribution of the two fre­
quencies. 
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FIGURE 7.7. Estimation of the posterior distribution of A. 

methods provide powerful statistical tools as they allow one to tackle com­
plex non-linear and non-Gaussian real world problems. However, it must 
be understood that these methods are not free from drawbacks: 

• Simulation-based methods are not black boxes and they require some 
degree of expertise in order to work well in practice. 

• They are computationally intensive and cannot be used in many on­
line applications of interest. 

• Many theoretical questions remain open, in particular the questions 
related to practical convergence assessments, even if some progress 
has been made in this direction (see [51] and references therein). 

Despite these drawbacks it is the belief of the authors that the revolution 
that has occurred over the last few years, where MCMC methods have been 
applied to many problems that could not have been previously addressed 
is now undergoing a further revolution, sequential Monte Carlo methods. 

Indeed, whereas standard MCMC algorithms have been extensively ap­
plied in "batch mode" to data problems, only little attention has been paid 
to real time applications typically met in data analysis or signal processing, 
and the next few years will show how this can be achieved efficiently by 
the use of new algorithms and faster computers. 
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Notation 

• A: matrix. 

• [A]i,j: ith line, lh column of matrix A. 

• AT: transpose matrix. 

• A-I: inverse. 

• IAI: determinant. 

• Zi:j,k:l : 

( 

Zi,k 
tJ. • 

Zi:j,k:l = : 
Zj,k 

• Onxp: null matrix of dimensions n x p. 

• In: identity matrix of dimensions n x n. 

• ][E (z): indicator function of the set E (1 if z EE, 0 else). 

• L Z J: highest integer strictly less than z. 

• Z I'VP (z): Z is distributed according to p (z). 

• zi Y I'Vp (z): z is conditional upon y distributed according to p (z). 

Name 
Inv.-Gamma 

Gaussian 

Uniform 
Poisson 
Gamma 

Ig (a, (3) 

N(m,~) 

UA 
'P (>.) 

g (a, (3) 

i:J=O 
lfuz-a-1 exp (-(3/ z) H[o,+oo) (z) 

127rEI- 1/2 exp (-! (z - m)T E-1 (z - m») 

[fA dz] -1 ][A (z) 
Q exp (->.) ~; HN (z) 

ifu za-1 exp (-(3z) H[o,+oo) (z) 

• In (.) is the natural logarithm. 

• loga (.) is the base a logarithm. 

• dx (d·) is the Dirac delta measure. 
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Chapter 8 

Constrained Randomization of 
Time Series for Nonlinearity 
Tests 
Thomas Schreiber! 
Andreas Schmitz 

ABSTRACT We discuss the problem of generating time sequences that 
fulfill given constraints but are random otherwise. This is an important in­
gredient for generalized nonlinearity tests that use Monte Carlo resampling. 
We briefly discuss standard methods available for a limited range of prob­
lems. Then we put forth a novel scheme in which one can define arbitrary 
sets of observables and test if these observables give a complete account of 
the serial correlation structure in the data. The most immediate application 
is the detection of correlations beyond the two-point autocovariance, even 
in a non-Gaussian setting. More general constraints, also including mul­
tivariate, nonlinear, and nonstationary properties, can be implemented in 
the form of a cost function to be minimized. 

8.1 Introduction 

In the statistical evaluation of empirical observations, randomization of 
data is an important means to obtain probability distributions and confi­
dence intervals in cases where assumptions on the normality of an estimated 
quantity cannot be made. If the data consist of a time series exhibiting serial 
correlations, unconditional randomization is not usually desired. Typically, 
the serial correlations are to some extent explained by the two-point func­
tion, while the quantity of interest is meant to probe nonlinear structure. 
In cases like this, it is desirable to condition the randomization procedure 
on a given set of observables. For example, in a nonlinearity test, we would 
like to perform constrained randomization that preserves the second-order 
autocorrelation function in order to isolate and assess the significance of 
nonlinear correlations. In the dynamical systems community, Monte Carlo 
resampling is known as the method of surrogate data, a term introduced by 
Theiler et al. [18]. Theiler and Prichard [19] give a readable introduction to 
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the concept of constrained realizations of a process, as opposed to typical 
realizations generated by a bootstrap method [2]. 

The background and motivation for this work lie in the need to justify 
by the data the use of advanced nonlinear time series methods. Many au­
thors have applied methods derived from nonlinear dynamics or even the 
paradigm of deterministic chaos to signals of supposedly nonlinear origin. 
However, no matter how certain we may be that a given system consti­
tutes a nonlinear device, take the human brain as an example, nonlinear 
structure may not be evident in a particular variable recorded with some 
finite quality. Thus, the supposed nonlinearity in the brain is not in itself a 
justification for the analysis of electro-encephalographic (EEG) recordings 
with nonlinear techniques. 

Although the proper choice of observable will be essential for the amount 
of information that can be extracted from a given data set, this is only a side 
issue here, and it will be discussed only briefly. We will focus on methods for 
the generation of surrogate data, starting with Fourier-based approaches. 
After pointing out their merits and limitations, we will proceed to the main 
topic of this chapter and introduce a general constrained randomization 
scheme. Its use will be illustrated by a number of examples. Finally, we 
will discuss the utility of this approach for practical work. 

Most of the code to generate surrogate data and measure nonlinearity 
mentioned in this chapter has been implemented as part of the TISEAN 
free software package [6]. A review paper containing many technical details 
on the generation of surrogate data will be published elsewhere [17). 

8.2 Probing Nonlinearity 

Several quantities have been discussed that can be used to characterize 
nonlinear time series. For the purpose of nonlinearity testing, we need such 
quantities that are particularly powerful in discriminating linear dynam­
ics and weakly nonlinear signatures. Traditional measures of nonlinear­
ity are derived from generalizations of the two-point autocovariance func­
tion or the power spectrum. One particularly useful third-order quantity 
is L:~=r+l (sn - sn_r)3 since it measures the asymmetry of a series under 
time reversal. (We have dropped all normalization here since the values 
will only be used in relative comparisons.) When a nonlinearity test is per­
formed with the question in mind if nonlinear deterministic modeling of 
the signal may be useful, it seems most appropriate to use a test statis­
tic related to a nonlinear deterministic approach [7]. Widely used are test 
statistics which in some way quantify the nonlinear predictability of the 
signal. Let xn = (Sn-(m-l)Tl"" sn) be the sequence of time delay em­
bedding vectors obtained from the scalar time series {sn}. The nonlinear 
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prediction error can then be defined (again dropping normalization) by 

(8.1) 

The prediction by F over One time step can, in the simplest case, be per­
formed by averaging over the future values of all neighboring delay vectors 
in' closer to in than € in m embedding dimensions. 

In Ref [16], several quantities are compared quantitatively with respect 
to their power to detect small deviations from linear behavior. Choices 
that have been made in the literature include concepts like false nearest 
neighbors [8], measures for the continuity of a dynamical system [12], gen­
eralized redundancies [10], symbolic descriptions [5], and a fair number of 
coarse-grained versions of dimensions, entropies, and Lyapunov exponents. 

Almost all measures of nonlinearity have in commOn that their prob­
ability distribution on finite data sets is not known analytically. In fact, 
there are many examples of nonlinearity measures that aren't even approx­
imately normal. It has therefore been advocated since the early days [18] to 
use robust statistics rather than parametric methods for the actual statisti­
cal test. In other words, we discourage the commOn practice of representing 
the distribution of the nonlinearity measure by an error bar and deriving 
the significance from the number of "sigmas" the data lies outside these 
bounds. Such reasoning implicitly assumes a Gaussian distribution. 

Instead, we follow Theiler et al. [18] by using a rank-order test. First, 
we select a residual probability a of a false rejection, corresponding to a 
level of significance (1- a) x 100%. Then, for a one-sided test (e.g., looking 
for small prediction errors only), we generate l/a - 1 surrogate sequences. 
Thus, including the data itself, we have l/a sets. Therefore, the probability 
that the data by coincidence has, say, the smallest prediction error is exactly 
a, as desired. For a two-sided test (e.g., for time asymmetry, which can go 
both ways), we would generate 2/a-1 surrogates, resulting in a probability 
a that the data give either the smallest or the largest value. 

8.3 Generating Constrained Realizations 

Traditional bootstrap methods [2] use explicit model equations that have 
to be extracted from the data. This typical realizations approach can be 
very powerful for the computation of confidence intervals, provided the 
model equations can be extracted successfully. As discussed by Theiler and 
Prichard [19], the alternative approach of constrained realizations is more 
suitable for the hypothesis testing we are interested in here. It avoids the 
fitting of model equations by directly imposing the desired structures onto 
the randomized time series. However, the choice of possible null hypotheses 
is limited by the difficulty of imposing arbitrary structures on otherwise 
random sequences. 
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It is essential for the validity of the statistical test that the surrogate 
series are created properly. If they contain spurious differences to the mea­
sured data, these may be detected by the test and interpreted as signatures 
of nonlinearity. A simple case is the null hypothesis that the data consist 
of independent draws from a fixed probability distribution. Surrogate time 
series can be obtained by randomly shuffling the measured data. If we find 
significantly different serial correlations in the data and the shuffles, we can 
reject the hypothesis of independence. 

8.3.1 Fourier-Based Methods 

A step toward more interesting null hypotheses is to incorporate the struc­
tures reflected by linear two-point autocorrelations. A corresponding null 
hypothesis is that the data have been generated by some linear stochas­
tic process with Gaussian increments. The statistical test is complicated 
by the fact that we don't want to test against one particular linear pro­
cess only (one specific choice of ARMA coefficients), but against a whole 
class of processes. This is called a composite null hypothesis. The unknown 
coefficients are sometimes referred to as nuisance parameters. There are 
basically three directions we can take in this situation. First, we could try 
to make the discriminating statistic independent of the nuisance parame­
ters. This approach has not been demonstrated to be viable for any but 
very simple statistics. Second, we could determine which linear model is 
most likely realized in the data by a fit for the coefficients, and then test 
against the hypothesis that the data has been generated by this particu­
lar model. Surrogates are simply created by running the fitted model. The 
main drawback is that we cannot recover the true underlying process by 
any fit procedure. 

The null hypothesis of an underlying Gaussian linear stochastic process 
can also be formulated by stating that all structure to be found in a time se­
ries is exhausted by computing first- and second-order quantities, the mean, 
the variance, and the auto covariance function. (There is a one-to-one corre­
spondence between the coefficients of an ARMA model, the autocovariance 
function, and the power spectrum.) This means that a randomized sample 
can be obtained by creating sequences with the same second-order prop­
erties as the measured data but are otherwise random. When the linear 
properties are specified by the squared amplitudes of the Fourier transform 
(that is, the periodogram estimator of the power spectrum), surrogate time 
series are readily created by multiplying the (complex) Fourier coefficients 
of the data by random phases - preserving their moduli - and then 
transforming back to the time domain. The resulting randomized series are 
referred to as phase-randomized surrogates. 

The most obvious deviation from the Gaussian linear process is usually 
that the data don't follow a Gaussian distribution. There is a simple gen­
eralization of the null hypothesis that explains deviations from the normal 
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distribution by the action of an invertible, static measurement function: 
Sn = s(xn) where {xn} is a realization of an ARMA process. We want to 
regard a time series from such a process as essentially linear since the only 
nonlinearity is contained in the - in principle invertible - measurement 
function s(·). 

The most commonly used method to create surrogate data sets for this 
null hypothesis essentially attempts to invert s(·) by rescaling the time se­
ries {sn} to conform with a Gaussian distribution. The rescaled version 
is then phase-randomized (conserving Gaussianity on average), and the 
result is rescaled to the empirical distribution of {sn}. This procedure is 
referred to as the amplitude-adjusted Fourier transform (AAFT) method. 
In Ref. [15] we argue that for short and strongly correlated sequences this 
algorithm can yield an incorrect test due to a bias toward a flat spec­
trum. There, we propose a method which iteratively corrects deviations 
in spectrum and distribution. In an alternating fashion, the surrogate is 
filtered toward the correct Fourier amplitudes and rank-ordered to the cor­
rect distribution. The accuracy that can be reached depends on the size and 
structure of the data and is generally more than sufficient for hypothesis 
testing. 

An Example: Southern Oscillation Index 

As an illustration, let us perform a statistical test for nonlinearity on a 
monthly time series of the Southern Oscillation Index (SOl) from 1866 
to 1994 (1560 samples). For a reference on analysis of Southern Oscillation 
data see Graham et al. [3,4]. Since a discussion of this climatic phenomenon 
is not relevant to the issue at hand, let us just consider the time series as an 
isolated data item. Our null hypothesis is that the data are adequately de­
scribed by its single time probability distribution and its power spectrum. 
This corresponds to the assumption that an autoregressive moving aver­
age (ARMA) process is generating a sequence measured through a static 
invertible, possibly nonlinear observation function. 

For a test at the 99% level of significance (O! = 0.01), we generate a 
collection of I/O! -1 = 99 surrogate time series, which share the single time 
sample probability distribution and the periodogram estimator with the 
data. This is carried out using the iterative method described by Schreiber 
and Schmitz [15]. Figure 8.1 shows the data with one of the ninety-nine 
surrogates. 

As a discriminating statistic we use a locally constant predictor in em­
bedding space, using three-dimensional delay coordinates at a delay time 
of one month. Neighborhoods were selected at 0.2 times the rms ampli­
tude of the data. The test is set up in such a way that the null hypothesis 
may be rejected when the prediction error is smaller for the data than for 
all of the ninety-nine surrogates. But, as we can see in Figure. 8.2, this 
is not the case. Predictability is not significantly reduced by destroying 
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FIGURE 8.1. Monthly values of the Southern Oscillation Index (SOl) 
from 1866 to 1994 (upper trace) and a surrogate time series exhibiting 
the same auto-covariance function (lower trace). All linear properties 
of the fluctuations and oscillations are the same between both tracings. 
However, any possible nonlinear structure except for a static rescaling 
of the data is destroyed in the lower tracing by the randomization 
procedure. 

possible nonlinear structure. This negative result can mean several things. 
The prediction error statistics may just not have any power to detect the 
kind of nonlinearity present. Alternatively, the underlying process may be 
linear and the null hypothesis true. It could also be, and this seems the 
most likely option after all we know about the equations governing climate 
phenomena, that the process is nonlinear but the single time series at this 
sampling covers such a poor fraction of the rich dynamics that it must 
appear linear stochastic to the analysis. 

Of course, our test has been carried out disregarding any knowledge of the 
SOl situation. It is very likely that more informed measures of nonlinearity 
may be more successful in detecting structure. We would like to point 
out, however, that if such information is derived from the same data, or 
literature published on it, a bias is likely to occur. Similarly to the situation 
of multiple tests on the same sample, the level of significance has to be 
adjusted properly. Otherwise, if many people try, someone will eventually, 
and maybe accidentally, find a measure that indicates nonlinear structure. 

8.3.2 A General Randomization Scheme 

Randomization schemes based on the Fourier amplitudes of the data are ap­
propriate in many cases. However, there remain some flaws, the strongest 
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FIGURE 8.2. Nonlinear prediction error measured for the SOl data 
set (see Fig. 8.1) and 99 surrogates. The value for the original data is 
plotted with a longer impulse. It is evident that the data is not singled 
out by this property and we are unable to reject the null hypothesis of 
a linear stochastic stationary process, possibly rescaled by a nonlinear 
measurement function. 

being the severely restricted class of testable null hypotheses. The peri­
odogram estimator of the power spectrum is about the only interesting 
observable that allows for the solution of the inverse problem of generating 
random sequences under the condition of its given value. 

In the general approach of Ref. [14], constraints (e.g., auto correlations) 
on the surrogate data are implemented by a cost function E({sn}) which 
has a global minimum when the constraints are fulfilled. Any set of con­
straints that can be written in the form 

(8.2) 

can be turned into a cost function 

(8.3) 

The fact that E( {sn}) has a global minimum when the constraints are 
fulfilled is unaffected by the choice of the weights Wi and the order q of the 
average. The least squares or £2 average is obtained at q = 2, £1 at q = 1, 
and the maximum distance at q = 00. Geometric averaging is also possible. 
We have experimented with different choices of q but we haven't found 
a choice that is uniformly superior to others. It seems plausible to either 
give uniform weights or to enhance those constraints which are particularly 
difficult to fulfill. Again, conclusive empirical results are still lacking. 

Carrying out the minimization numerically is complicated by the omni­
presence of false minima - a typical situation for minimization tasks de­
rived from root-finding problems. One common method to deal with local 
minima is the method of simulated annealing [20]. Starting with a ran­
dom permutation of the original time series, the surrogate is modified by 
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exchanging two points chosen at random. The modification will be ac­
cepted if it yields a lower value for the cost function or with a probability 
p = exp( - tJ.E IT). The "system temperature" T will be lowered slowly 
to let the system settle down to a minimum. With an appropriate cooling 
scheme, the annealing procedure can reach any desired accuracy. 

Of course, the data itself constitute a formal solution of the minimization 
procedure. However, except for very short sequences or extremely over­
specified constraints, it is very unlikely to ever arrive at this absolute mini­
mum. If it does become a problem, closeness to the original data and trivial 
transformations of it can be explicitly penalized by extra terms in the cost 
function. 

The particular constraint that the autocovariances of the surrogate C' ( r ) 
should be the same as those of the data C (r) can be realized by specifying 
the discrepancy as a cost function, for example, 

N-l 

E = L IC'(r) - C(r)l· (8.4) 
r=O 

E( {sn}) is minimized among all permutations {sn} of the original time se­
ries {8n }. Even for the null hypothesis underlying the Fourier-based meth­
ods (A AFT and iterative), the cost function approach is superior in two 
respects. First, any desired accuracy can be specified and reached at the 
expense of computer time. Second, the definition of linear correlations is 
not restricted to the periodogram spectral estimator. The most dangerous 
caveat using Fourier transforms here is that they silently assume that the 
data is one full cycle of a periodic function. If that were the case, the null 
hypothesis would be inadequate right away. 

Constrained randomization using combinatorial minimization is a very 
flexible method since, in principle, it can realize arbitrary constraints of 
the form F( {8n }) = O. It can be quite useful to be able to incorporate into 
the surrogates any feature of the data that is understood already or that is 
considered uninteresting. The price for the accuracy and generality of the 
method is its high computational cost. Rather than dwelling more on theo­
retical aspects, let us give a few instructive examples of the use of annealed 
surrogates. The superiority of the method in terms of higher accuracy for 
the case of a standard null hypothesis has been demonstrated in Ref. [14], 
where multivariate and nonstationary examples are also presented. 

The SOl data discussed earlier are rather well behaved with little end­
to-end mismatch and small deviation from Gaussianity. Therefore, the it­
erative Fourier- based scheme is completely satisfactory, and we don't have 
to redo the analysis with the more time-consuming annealing method. 

Example: Unevenly Sampled Data 

Let us show how the constrained randomization method can be used to test 
for nonlinearity in time series taken at time intervals of different length. 
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Unevenly sampled data are quite common; examples include drill core data, 
astronomical observations, and stock price notations. Most observables and 
algorithms cannot easily be generalized to this case, which is particularly 
true for nonlinear time series methods. (See [11] for material on irregularly 
sampled time series.) Interpolating the data to equally spaced sampling 
times is not recommendable for a test for nonlinearity since one could 
not a posteriori distinguish between genuine structure and nonlinearity 
introduced spuriously by the interpolation process. 

For data that are evenly sampled except for a moderate number of gaps, 
surrogate sequences can be simply produced by assuming the value zero 
during the gaps and minimizing the standard cost function Eq.(8.4) while 
excluding the gaps from the permutations tried. The error made in esti­
mating correlations would then be identical for the data and surrogates 
and could not affect the validity of the test. For data sampled at incom­
mensurate times, such a strategy can no longer be adopted. We then need 
different means to specify the linear correlation structure. 

Consider a time series sampled at times {tn } that need not be equally 
spaced. The power spectrum can then be estimated by the Lomb peri­
odogram P(w), as discussed, for example, in Ref. [13]. Here we give the 
final formula: 

P(w) = _1_ {[En(Yn - y) sinw(tn - r)]2 + [En(Yn - y) cosw(tn - r)]2} 
2a2 En sin2 w(tn - r) En cos2 w(tn - r) 

(8.5) 
where r is defined by tan(2wr) = En sin 2wtn/En cos 2wtn and y, a2 are 
the mean and variance of the data, respectively. The result can be derived 
by fitting a least squares model Yn = a cos wtn + b sin wtn to the data for 
each given frequency w. Therefore, Lomb periodograms are often referred 
to as least squares periodograms. 

For time series sampled at constant time intervals, the Lomb periodogram 
yields the standard squared Fourier transformation. Except for this partic­
ular case, it does not have any inverse transformation, which makes it 
impossible to use the standard surrogate data algorithms mentioned in 
Section. 8.3.1. Therefore, we use the Lomb periodogram of the data as a 
constraint for the surrogates. It can be expressed as a cost function, for ex­
ample, by: E = E~~f IP'(kwo) - P(kwo)l. We use P at Nf equally spaced 
frequencies kwo; other choices are possible. Consider a series [1] of the time­
integrated intensity of light observed from a variable star; see Figure. 8.3. 
It consists of seventeen parts with different numbers of points, the time 
range of which may overlap or show gaps of up to 10,000 seconds. Between 
gaps, the (down-sampled) data are evenly sampled with ~ = 120 seconds, 
the total number of points is N = 2260. Since the length of the gaps is 
not a multiple of the sampling rate, we cannot use a simple estimator of 
autocorrelation. We use the Lomb periodogram (8.5) instead. The linear 
null hypothesis was not rejected by the time reversibility statistic. One 
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FIGURE 8.3. The down-sampled data set E with one corresponding 
surrogate. Gaps of different sizes prevents reasonable interpolation. 

surrogate is shown in Figure. 8.3. 
Imposing a given Lomb periodogram is very time-consuming because at 

each annealing step, the O{N) spectral estimator has to be computed at 
O{N,) frequencies with N, ex: N. We are currently developing a scheme 
that uses binned auto correlations instead. By limiting the range of lags 
involved, this is expected to lead to a dramatic reduction in computation 
time. Let us finally note that the very common situation that the data 
are given by event times, or interevent intervals, is different from the case 
studied here in that the sampling instances {tn } are not independent of 
the measured values. In fact, between these instances, the value of x{t) 
is undefined. Work in progress is concerned with methods for generating 
surrogates in this case. 

Example: Higher-Order Correlations 

As an example of a more exotic cost function, let us show the randomization 
of 500 iterates of the Henon map, Figure. 8.4 (a». Panel (b) shows a 
Fourier-based (iterated) surrogate data set having the same spectrum and 
distribution. Starting from a random permutation {Panel (c», the cost 
function 

C = (Xn-lXn ) + (Xn-2Xn) 

+ (X~_l xn) + (Xn-lX~) + (X~_2Xn) + (Xn-2 Xn-lXn) 

+ (X~_l x~) + (Xn-lX~) + (X~_l xn) (8.6) 

is minimized. It involves all the higher-order autocorrelations which would 
be needed for a least squares fit with the ansatz Xn = C - aX~_l + bXn-2 
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and in this sense fully specifies the quadratic structure of the data. In other 
words, we are testing the hypothesis that the Henon data can be faithfully 
represented by the preceding ansatz, but without ever fitting it explicitly. 
Of course, this is a highly contrived example that serves the sole purpose 
of demonstrating the flexibility of the approach. 

Figure. 8.4 shows the effect of minimizing the cost function Eq.(8.6) by 
simulated annealing. The random shuffle (Panel (c») yields C = 2400, pan­
els (d)-(f) correspond to C = 150, 15,andO.002, respectively. While the 
accuracy is increased by six orders of magnitude, the full fractal structure 
is not yet recovered. Small- scale structure is not represented very effi­
ciently by the higher-order autocorrelations. This example may serve as an 
illustration of why higher order correlations and poly-spectral methods are 
not very popular with researchers with a deterministic chaos background. 
While they formally give a full account of the nonlinearity in a time series, 
they are not particularly adequate to capture the characteristic structure 
emerging in the limiting case of pure determinism. Conversely, one can ar­
gue that this limiting case itself is not very relevant for field research where 
noise sources abound. 

8.4 Remaining Caveats 

Strictly speaking, the concept of constrained realizations requires the con­
straints to be fulfilled exactly, a practical impossibility. Most of the re­
search efforts reported in this chapter have their origin in the attempt to 
increase the accuracy with which the constraints are implemented, that 
is, to minimize the bias resulting from any remaining discrepancy. Since 
most measures of nonlinearity are also sensitive to linear correlations, a 
side effect of the reduced bias is a reduced variance of such estimators. 
Paradoxically, the enhanced accuracy may result in false rejections of the 
null hypothesis on the ground of tiny differences in some nonlinear char­
acteristics. This important point was recently put forth by Kugiumtzis [9]. 
He suggests testing the validity of the surrogate sample by performing a 
test using a linear statistic for normalization. Currently, this seems to be 
the only way around the problem, and we thus recommend following his 
suggestion. It may be possible, however, to generate unbiased ensembles of 
surrogates by specifying a cost function that explicitly minimizes the bias, 
involving the whole collection of surrogates at the same time. In any event, 
this will be a very cumbersome procedure, in terms of implementation and 
execution speed. 

The most severe caveat, in our point of view, remains the danger of spu­
rious interpretation of a test result. Often in the literature, rejection of 
a rather simple null hypothesis is taken as an indication for the validity 
of a particular alternative. For example, in the case of the rescaled linear 
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FIGURE 8.4. Randomization of 500 points generated by the Henon 
map. (a) Original data; (b) Same auto correlations and distribution; 
(c)-(f) Different stages of annealing with a cost function C involving 
three and four-point correlations. (c) A random shuffle, C = 2400; (d) 
C = 150; (e) C = 15; (f) C = 0.002. See text. 
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stationary process, any other static nonlinearity, for example, a nonlinear 
moving average, can lead to a rejection as well as nonstationarity or in­
adequate sampling. There is no immediate justification to conclude that 
nonlinear dynamics is acting in the system. 

8.5 Discussion 

We have set up a statistical hypothesis test of nonlinearity in a general 
sense. How interesting its outcome is depends on the specific null hypothesis 
chosen. The most meaningful test can be performed if the null hypothesis 
is plausible enough that we are prepared to believe it in the lack of evidence 
against it. In general, we will specify a set of observables we believe to be 
complete to describe the structure found in the data. The surrogates will 
then share these properties with the data and any significant discrepancy 
between data and surrogates can guide to a more complete understanding. 

Recent efforts on the generalization of randomization schemes try to 
broaden the repertoire of null hypotheses we can test against. The hope is 
that we can eventually choose one that is general enough to be acceptable 
if we fail to reject it with the methods we have. Still, we cannot prove 
that there isn't any structure in the data beyond what is covered by the 
null hypothesis. From a practical point of view, however, there is not much 
of a difference between structure that isn't there and structure that is 
undetectable with our observational means. 

We thank Dimitris Kugiumtzis and Holger Kantz for useful discussions. 
This work was supported by the SFB 237 of the Deutsche Forschungsge­
meinschaft. 
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Chapter 9 

Removing the Noise from 
Chaos Plus Noise 
Steven P. Lalley 

ABSTRACT The problem of extracting a "signal" Xn generated by a dy­
namical system from a time series Yn = Xn + en, where en is an observa­
tional error, is considered. It is shown that consistent signal extraction is 
impossible when the errors are distributed according to a density with un­
bounded support, and the underlying dynamical system admits homoclinic 
pairs. It is also shown that consistent signal extraction is possible when the 
errors are uniformly bounded by a suitable constant and the underlying dy­
namical system has the "weak orbit separation property". Simple algorithms 
for signal recovery are described in the latter case. 

9.1 Introduction 

Is it possible to consistently recover a "signal" {Xn}nEZ generated by a 
chaotic dynamical system from a time series of the form 

(9.1) 

where en is observational noise? This is the noise removal, or signal sepa­
mtion problem, and it has been discussed in a number of papers, including 
[4, 5, 8, 2, 1]. Various sophisticated methods for noise removal have been 
proposed, nearly all requiring a degree of smoothness in the underlying dy­
namical system, and some requiring rather detailed a priori knowledge of 
the dynamics. The issue of corivergence seems not to have been broached 
until now. The purpose of this paper is to state some general results con­
cerning the theoretical possibility of consistent filtering and to propose 
some fairly simple general-purpose filters for use in high- signal/noise ratio 
problems. 

In many circumstances, scalar measurements will be made on a dynam­
ical system at equally spaced times to produce the series X n , which is then 
observed with error. We shall assume here, however, that Xn is the actual 
state vector of the system at time n. This assumption is probably harmless, 
in view of the embedding theorem [9]. Moreover, we shall assume through­
out that the noise en consists of Ll.D. mean zero random vectors that are 
independent of the state vectors X n . Although we shall make only weak 
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assumptions about the dynamics, we shall limit our attention to dynami­
cal systems with compact invariant sets. Compactness will be essential in 
Theorems 9.2 and 9.3. 

Definition 9.1. A dynamical system is a homeomorphism F : A --t A of a 
compact subset A of a Euclidean space IRd . For any point x E A, the orbit of x 
is the doubly infinite sequence {Xn = Fn(x)}nez, where F n denotes the n =fold 
composition of F. 

Definition 9.2. A filter x is a collection of functions 

xn(YO, Yl, Y2, ... , Ym) = x~m)(yO' Y!' Y2, ... , Ym). 

A filter x is weakly consistent if for every orbit {Xn}nez and every e > 0, 

! t IXn - xnl ~ o. 
n=l 

(9.2) 

If I' is an F =invariant probability measure on A, then the filter x is I' =weakly 
consistent if {9.2} holds for I' =almost every orbit {xn}. 

Note that if a filter is weakly consistent, then it is I' =weakly consistent 
for any F =invariant probability measure 1'. Informally, a filter is weakly 
consistent if, for large m, most of the fitted values xn are close to the cor­
responding state vectors X n . Other notions of consistency are undoubtedly 
worthy of consideration. In certain situations one might regard the require­
ment in (9.2) that only "most" points on the orbit be well approximated 
as too weak. For a stronger notion of consistency, see [6], theorem 2. 

9.2 Homoclinic Pairs 

A common and important dynamical feature of many chaotic systems is the 
occurrence (or even abundance) of homoclinic pairs. Two distinct points 
x, x' are said to be homoclinic if their orbits {Xn}nEZ and {X~}nEZ satisfy 

lim IXn - x~1 = O. 
n--+±oo 

(9.3) 

In smooth systems, it is commonly (but not always) the case that if the con­
vergence (9.3) occurs then it is exponentially fast. Say that two homoclinic 
points x, x' are strongly homoclinic if their orbits satisfy 

00 

L IXn -x~1 < 00. (9.4) 
n=-oo 

In uniformly hyperbolic systems, most points are members of strongly ho­
moclinic pairs; if the stable and unstable manifolds through x intersect at 
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x', then (x, x') is a strongly homoclinic pair. In systems admitting "sym­
bolic dynamics" (that is, systems conjugate [or nearly conjugate] to sub­
shifts of finite type), all points will be members of homoclinic pairs. This 
class includes all mixing Axiom A diffeomorphisms; see [6]. 

The occurrence of strongly homo clinic pairs is a fundamental obstruction 
to the existence of consistent filters. For any error density </J on JRd, say that 
</J is in the class ~ if it is strictly positive, has mean zero, and satisfies 

. 1 / I </J(x + y) I h~-!~p iYf log </J(x) </J(x) dx < 00. (9.5) 

Note that all mean zero Gaussian densities are of class ~. 

Proposition 9.1. Let x, x' be a strongly homoclinic pair, with F-orbits 
{Xn}nEZ and {X~}nEZ' respectively. Assume that the noise density is of class 
.p. Then there is no sequence of (measurable) functions ~n(Y-n,y-n+l, ... ,yn) 
such that 

Proof Sketch. Define probability measures Q, Q' on the sequence space 
(JRd)Z to be the distributions of the doubly infinite sequence {Yn}nEZ when 
Yn is defined by 

Yn = Xn +en 
Yn = x~ +en 

(Q), 

(Q'), 

(9.7) 

(9.8) 

with the random vectors en LI.D. from a density </J in class ~. Then the 
measures Q, Q' are mutually absolutely continuous, because (9.4) and the 
assumption that </J E ~ guarantees the almost-sure convergence of the infi­
nite product 

dQ = :fi </J(Yn - xn) 
dQ' n=-oo </J(Yn - x~) 

(9.9) 

to a strictly positive limit. But if Q and Q' are mutually a.c., then there 
can be no sequence of functions ~m(Y-m, ... ,Ym) such that as m ---+ 00, 

and 
Q' 

~m(Y-m, ... , Ym) -"-t x'. (9.10) 

o 

Although Proposition 9.1 does not by itself preclude the existence of 
weakly consistent filters, it indicates that consistent orbit identification is 
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impossible when there are strongly homo clinic pairs. Moreover, if homo­
clinic pairs are sufficiently common, as in the case of an Axiom A diffeo­
morphism, then there may not be weakly consistent filters. 

Theorem 9.1. Let P be an ergodic, P =invariant probability measure P on A 
such that on some probability space there are A =valued random variables X, X' 
satisfying the following (a) the marginal distributions of X and X' are both p; 
(b) X and X' are either equal or strongly homoclinic, with probability one; and 
(c) with positive probability, X and X' are strongly homoclinic. 
If the noise density is of class <P, then there is no p =weakly consistent jilter. 

Proof: We may assume that the error random variables {en}nEz are defined 
on the same probability space as X and X'. Set 

Xn = pn(X) 

X~ = pn(X') 

Yn = Xn +en , 

Y~ =X~ +en . 

Each of the sequences {Xn }, {X~}, {Yn }, {Y~} is stationary, and the random 
variables X n, X~ have distribution Pi moreover, the random variables Xn and 
X~ are bounded (since A is compact). 

Suppose there were a p =weakly consistent filter {x~m)}. Without loss of gen­
erality, we may assume that the functions x~m) are bounded, since truncation 
does not affect the validity of (9.2). Hence, 

(9.11) 

This implies, by the triangle inequality for the L2 =norm and the stationarity 
of the sequences {Xn}{Yn}, that, for every n, the random variable Xn is in the 
closed L2 =span of the random variables {Yn}nEZ. Therefore, there is a sequence 
of measurable functions e(m) = e(m)(Y_m, Y-m+1, ... Ym) such that 

x = L2 -lime(m)(y_m , Y- m+1, ... Ym ) 

X I - L2 I· c<m)(yl y' yl) - - 1m., -m, -m+1,··· m , 

and (9.12) 

(9.13) 

the second convergence follows from the first because (X', {Y~}) has the same 
joint distribution as (X, {Yn}). But this contradicts Proposition 9.1, since with 
positive probability the random variables X, X' form a homoclinic pair. D 
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9.3 Sensitive Dependence on Initial Conditions 

Definition 9.3. The dynamical system F : A -+ A has sensitive dependence 
on initial conditions if there exists a constant ~ > 0, called a separation threshold, 
such that for any two distinct points x, x' E A, there exists n E Z such that 

(9.14) 

Dynamical systems with sensitive dependence on initial conditions often 
have homoclinic pairs; for example, topologically mixing Axiom A diffeo­
morphisms has both sensitive dependence and homo clinic pairs. For sys­
tems with sensitive dependence on initial conditions, consistent noise re­
moval is possible if the noise level is sufficiently low. Consistent filters are 
easily described and implemented. 

Smoothing Algorithm D: The algorithm takes as input a finite sequence 
{Yn}O<n<m and produces as output a sequence {xn}O<n<m of the same 
length-that will approximate the unobservable signal {xn}o:<Sn::;m. Let "'m 
be an increasing sequence of integers such that 

I· d I' "'m 0 1m "'m=OO an 1m --= ; 
m-+oo m-+oo log m 

(9.15) 

e.g., "'m = logm/loglogm. For each integer 1 :::; n :::; m, define An to be 
the set of indices v E {O, 1, ... , m} such that 

(9.16) 

with the convention that IYi - Yil = 00 if either i or j is not in the range 
[0, mJ. Observe thac n E An, so An is nonempty; and for n :::; "'m or 
n 2: m - "'m, the set An is the singleton {n}. In rough terms, An consists 
of the indices of those points in the time series whose orbits "shadow" the 
orbit of Xn for "'m time units. Now define 

AI" 
Xn = IAnl ~ YV' 

YEAn 

(9.17) 

Theorem 9.2. Suppose that the dynamical system f : A -+ A has sensitive 
dependence on initial conditions, with separation threshold ~. If the errors en 
have mean zero and are uniformly bounded in absolute value by 5, where 5 < ~/5, 
then Smoothing Algorithm D is weakly consistent. 

This is a generalization of Theorem 1 of [6), which applies only to smooth, 
uniformly hyperbolic systems, where sensitive dependence on initial con­
ditions can be "quantified". Theorem 9.2 requires no smoothness of the 
underlying dynamical system at all. Furthermore, the hypotheses may be 
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relaxed in several ways: (1) It is not necessary that the errors en be identi­
cally distributed. If, for example, the distribution of en is allowed to depend 
on the state vector X n , then weak consistency of Smoothing Algorithm 
D will still hold, provided that the errors are conditionally independent, 
given the orbit {Xn}nEZ, that they are uniformly bounded by 8, and that 
E(en I {Xn}nEZ) = O. (2) It is not necessary even that the errors be mu­
tually independent. If {en} is a mean zero, stationary sequence satisfying 
suitable mixing requirements, then the conclusion of Theorem 9.2 remains 
valid. 

Explanation of Theorem 9.2. A complete proof is given in [7]; here we 
shall give only a brief indication of the argument. Observe that the average 
(9.17) may be rewritten as 

AI" 1" 
Xn = IAnl L..J Xv + IAnl L..J ev· 

vEA" vEA" 
(9.18) 

Thus, to establish weak consistency, it suffices to show that for most of the 
indices n E [1, m], (a) the cardinality of An is large, and (b) if v E An then 
IXn -xvi is small. Property (b) will guarantee that the first average in (9.18) 
is close to X n , while property (a), together with the law of large numbers, 
will imply (with some work!) that with high probability the second average 
is near zero. 

Property (b) follows easily from sensitive dependence on initial condi­
tions. This implies that if x, x' are any two points whose orbits remain 
within distance 58 for all times -K- < n < K-, then Ix - x'I must be small, 
provided K- is large. Since the errors en are of magnitude less than 8, if 
v E An then, by the triangle inequality, the orbits of Xn and Xv must re­
main within distance 58 for all j E [-K-m' K-m]. Thus, v E An implies that 
IXn - Xv I is small. 

Property (a) follows from the assumption that K-m = o(1ogm). Let H be 
a finite subset of A that is 8-dense in A, and denote by H* the set of all 
H =valued sequences of length 2K-m + 1. For every F =orbit segment of 
length 2K-m + 1, there is at least one sequence in H* that 8 =shadows it. 
Since K-m = o(log m), the cardinality of H* is o( m). Thus, by the pigeonhole 
principle, for most indices n E [1, m] there will be many indices v such that 

max IXn+j - xv+j I < 28. 
lil~ltm 

All such indices v must be included in An. 

(9.19) 

D 

Note that this is not a complete proof, because the sets An are random, 
not fixed, and so the use of the law of large numbers is problematic. 
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9.4 Example: The Henan Mapping 

Smoothing Algorithm D is easily implemented, and simple variations of 
the algorithm can be made to run in O(mlogm) steps. In practical terms 
this means that, for simple low-dimensional systems, with m = 105 , the 
procedure can be run in "real time" (e.g., 10 to 20 seconds on a 200=MHz 
Power Macintosh). This implies that experimentation with the parameters 
K-m and 8 may be done in real time. In simple examples, choosing 8 to 
be one-fifth to one-tenth the apparent diameter of the attractor has been 
effective; for m ~ 105 , choosing K-m so that most bins An have 20 to 50 
points has provided the best results. 

Figures 9.1 to 9.2 show the results of using the filter for a noise-corrupted 
orbit of length 105 generated by the Henon mapping. The figures show (a) 
105 points on the orbit of a randomly chosen point in the basin of at­
traction of the attractor A; (b) the orbit corrupted by noise; and (c) the 
reconstructed orbit. The author is indebted to Jason Stover for coding the 
algorithm. Similar figures for a noise-corrupted orbit of Smale's solenoid 
mapping may be found on the author's Web page at 

http://galton.uchicago.edu/~lalley 

2,---r------,-----,r-----.------,------,------.--~ 

100,000 ~erations of the Henon map 

1.5 

0.5 

, 
o ........... _ ...... _...................................... . .......... _ ... _ ... _._ ... _ ...... _.-'-...... . 

-0.5 

-I 

-1.5 

-2~--_IL.5------_LI----~_OL.5----~------0~.5------~-----I~.5--~ 

FIGURE 9.1. A partial orbit (105 points) of a randomly chosen point 
in the basin of attraction of the attractor of the Henon map. 



240 Steven P. Lalley 

'.5--...... ~ 
Orbit Plus NOise. NOise Uniform B(. ') 

, -

0.5 

o -

·0.5 

., -

·1.5 

---------'~-.--

".5 ., ·0.5 a 0.5 '.5 

FIGURg 9.2. The orbit of Fig.9.1 contaminated by noise. 

Reconstructed Henon Omit. Kappa = 4 

, -

0.5 

a -

·0.5 

., -

·1.5 

.2 ___ ~ ______ ~ ________ ~ ______ -L _______ L-

·1.5 ., ·0.5 a 0.5 1.5 

FIGURE 9.3. The reconstructed orbit. 

l 
I 
I 



9. Chaos Out of Noise 241 

9.5 The Weak Orbit Separation Property 

Although sensitive dependence on initial conditions is sometimes taken to 
be a necessary condition for chaos (see, e.g., [3], section 1.8), there are 
important systems for which sensitive dependence does not hold, which 
nonetheless share many of the dynamical features of chaotic systems. Note­
worthy among these are the time-l mappings induced by smooth hyperbolic 
flows. IT (Pt : A -t A is a smooth flow, and if F = c/>1, then sensitive de­
pendence cannot hold, for an obvious and trivial reason: IT two points x, x' 
are on the same flow line (that is, if x' = c/>s(x) for some s :/; 0), then 
their orbits (under F) remain on the same flow line, at (roughly) the same 
distance, forever. However, if the flow c/>t is hyperbolic (see [10] for the def­
inition), then the orbits of all neighboring points not on a common flow 
line will eventually separate. Such systems satisfy a weak orbit sepamtion 
property, defined as follows. 

Definition 9.4. For any pair of points x, x' E A and any ~ > 0, define 

T.~(X,X') = min{n ~ 0 : IFn(x) - Fn(x')1 > ~}, (9.20) 

r:'(x,x' ) = max{n ~ 0 : IFn(x) - Fn(x')1 > ~}, (9.21) 

with the convention that rf' = 00 and/or r~ = -00 if there are no such integers 
n. The dynamical system F : A --+ A has the weak orbit separation property if 
there exist constants ~ > 0 (a separation threshold) and a> 0 such that for any 
two distinct points x, x' E A, the inequality 

holds for all integers n satisfying 

o ~n ~ rt(x, x') 

o ~n ~ r:'(x, x') 

-00 <n < 00 

if 

if 

if 

rt(x, x') < OOj 

r:'(x,x' ) > -OOj and 

rt(x, x') = -r:'(x, x') = 00. 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

Perhaps the simplest nontrivial dynamical systems satisfying the weak 
orbit separ~tion property are the rotations Ra of the unit circle. It is trivial 
to verify that the weak orbit separation property holds, because 

IR~x - R~yl = Ix - yl 'Vn E Z and Vx,y. (9.26) 

The weak orbit separation property holds not only for highly rigid, non­
chaotic systems such as rotations, but also for highly chaotic systems, such 
as topologically mixing, Axiom A diffeomorphisms restricted to their nOD­
wandering sets. This is not difficult to check. There are other examples that 
arise naturally, for example, when an Axiom A system is weakly coupled 
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with an almost-periodic system. In particular, the product 

of an Axiom A diffeomorphism S : X -t X restricted to its nonwandering 
set X with a system R : ']['d -t ']['d that is bi-Lipschitz conjugate to an 
ergodic rotation of the d =torus ']['d satisfies the weak orbit separation 
property. Finally, the most important dynamical systems satisfying the 
weak orbit separation property are the time-l mappings of smooth flows 
with compact, hyperbolic invariant sets A. 

Consistent noise removal is possible for dynamical systems satisfying the 
weak orbit separation property, provided the noise level is sufficiently low. A 
consistent filter is easily described, although it is not as easily implemented 
as Smoothing Algorithm D. 

Smoothing Algorithm W. The filter is defined by averaging, as in 
Smoothing Algorithm D, but the selection of indices over which to av­
erage is now done differently. Let /'l,m be a sequence of integers satisfying 
the conditions (9.15), and, for each 1 ~ n ~ m, let An again be the set 
of indices v E {O, 1, ... , m} for which inequality (9.16) is satisfied. Define 
Bn to be the subset of An consisting of those rlAnl/ log IAn 11 indices v for 
which the residual sums of squares 

SS(v,n;m) = L IYn+j - Yv+jl2 
Ijl~K~ 

are the smallest. Now define 

AI" 
xn = IBnl L...J Yv' 

vEBn 

(9.27) 

(9.28) 

Theorem 9.3. Suppose that the dynamical system F : A -+ A satisfies the 
weak orbit separation property, with separation threshold bo. If the errors en have 
mean zero and are uniformly bounded by 6 < bo/5, then Smoothing Algorithm W 
is weakly consistent. 

Explanation of Theorem 9.3. A complete proof is given in [7]; what follows 
is the skeleton of the argument. For dynamical systems that satisfy the 
weak orbit separation property, orbits of nearby points need not diverge 
to a fixed distance A, and so neighboring points cannot be identified in 
the same simple manner as in the case of dynamical systems with sensitive 
dependence on initial conditions. In particular, it is no longer necessarily 
the case that v E An (that is, IYn+j - Yv+jl < 38 for all Ijl < /'l,m) will 
guarantee that IXn -xvi is small, even for large m. However, the weak orbit 
separation property does imply that if two orbits fail to diverge in time /'l,m 
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(either forward in time or backward in time), and if Km is sufficiently large, 
then 

(9.29) 

for either all 0 ::; j ::; K m , all -Km ::; j ::; 0, or all -Km ::; j ::; Km. 

Now consider SS(n, II; m); since the random vectors en have mean zero, 
with high probability, 

SS(n, II; m) = L IYn+j - Yv+jl2 
Ijl~f<~ 

~ L IXn+j - x v+jl2 + L len+j - ev+jl2 
Ijl:'Sf<~ Ijl:'Sf<~ 

~ L IXn+j - xv+jl2 + 4KmEleol2. (9.30) 
Ijl~f<~ 

Thus, by (9.29), SS(II,n;m) is, with high probability, considerably smaller 
for those indices II such that IXn -xvi is small. Selection of indices according 
to the values of SS(II,n;m), will, therefore, tend to identify those II such 
that Xv is near Xn. Averaging over these indices will, with high probability, 
yield an estimate close to X n , by an argument like that used in the proof 
of Theorem 9.2. 0 

9.6 Concluding Remarks 

(1) Much of the published work on the signal separation problem (and, 
indeed, most work on statistical inference for chaotic dynamical systems) 
makes no distinction between discrete-time systems and continuous-time 
systems. However, the preceding results suggest that there may, in fact, be 
a significant difference, at least for the signal separation problem. This is 
certainly the case for hyperbolic systems; discrete-time hyperbolic systems 
have the sensitive dependence property, but continuous-time systems do 
not - they satisfy only the weak orbit separation property. 

(2) The case of hyperbolic flows deserves further attention. It may be 
shown that certain large classes of hyperbolic flows - including (a) mixing 
geodesic flows on compact, negatively curved manifolds and (b) ergodic 
suspensions of hyperbolic toral automorphisms - admit homo clinic pairs. 
However, it may also be shown that for such flows homo clinic pairs are rare, 
in the sense that the set of points x that belong to such pairs has SRB­
measure O. Thus, it may be possible to construct weakly consistent filters, 
or filters which, although not weakly consistent in the sense of Definition 
9.2, nevertheless satisfy the consistency relation (9.2) for almost every orbit. 
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(3) Practical aspects of the signal separation problem have not been 
systematically studied. Various authors have investigated the efficacy of 
various filtering schemes for one or two low-dimensional systems, but no 
comparative studies have been made of the relative merits of these schemes. 
Perhaps somewhere an enterprising graduate student will find this a worth­
while project. 
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Chapter 10 

Embedding Theorems, Scaling 
Structures, and Determinism 
in Time Series 
Colleen D. Cutler 

ABSTRA CT In this chapter we discuss specific definitions of deterministic 
and stochastic for stationary time series. Our main purpose in doing so is 
to create a convenient rigorous framework in which to examine the interplay 
between state-space reconstruction (embedding theorems), scaling or frac­
tal structures (the Grassberger-Procaccia algorithm), and the predictability 
properties of time series. Thus the definitions in and of themselves are not 
as important as the clarity and precision they provide within the context. 
In spite of the various pitfalls and limitations involved, choosing and ad­
hering to a specific appropriate definition of determinism provides a firm 
foundation for proving theorems and constructing examples in those areas 
of chaos theory and time series concerned with reconstruction of the un­
derlying source (or generating mechanism) of a time series. In this chapter 
we provide some examples where our approach enables us to show that such 
reconstruction cannot be done. 

10.1 Introduction 

The past few decades have seen considerable attention paid to the phe­
nomenon of erratic, apparently stochastic, time series arising from the sam­
pling oflow-dimensional deterministic systems-the phenomenon popularly 
known as chaos. To some extent chaos is surprising (perhaps intuitively we 
do not expect randomness, or even pseudo randomness, to arise from a de­
terministic rule with a few degrees of freedom) and this intuition is backed 
up by the knowledge that the long-run behavior of standard nonlinear sys­
tems cannot give rise to chaos. Fixed points and limit cycles, even quasi­
periodic motions, cannot produce erratic random-looking time series. On 
the other hand, most of us are comfortable with the use of pseudo random 
number generators, the majority of which attempt to generate a sequence 
of pseudo independent random variables based on a few deterministic rules. 
In fact it is not too difficult to coax a deterministic map into producing a 
truly stochastic sequence by choosing the correct functional. Consider the 
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binary shift map on the unit interval 

1](Y) = { 
2y 

2(y - 1/2) 

for 0 :s: y :s: 1/2 

for 1/2 < y :s: 1 
(10.1) 

and define the functional h : [0, 1) -+ IR by h(y) = 0 if 0 :s: y :s: 1/2 and 
h(y) = 1 if 1/2 < y :s: 1. Noting that the uniform distribution (that is, 
Lebesgue measure restricted to the unit interval) is invariant and ergodic 
for 1], choose an initial condition Y randomly from the uniform distri­
bution. Then the sampled time series Xn = h(1]n-l(y)), n = 1,2, ... ob­
tained by iterating Y under 1] will consist of an independent and identically­
distributed (l.l.D.) sequence of O's and l's. (It is not possible to actually 
carry out this iteration on the computer because we cannot store the initial 
condition to infinite precision, and finite decimals are attracted to the fixed 
point at 0 under the action of 1].) 

Of course 1] is a bounded nonlinear map. Moreover, it possesses the other 
necessary ingredient for chaos - it has a positive Lyapunov exponent and 
thus is sensitive to initial conditions (nearby points separate quickly under 
the action of 1]). So this is one part of the recipe for producing a stochastic 
time series. But the other part is the functional h itself, which in this 
case destroys the structural link between the deterministic source 1] and 
the resulting stochastic output X n , n = 1,2, .... It is not possible to work 
backward from the Xn series to 1]; the source of the Xn output could just as 
easily be a sequence of random coin tosses. Hence we say that reconstruction 
of 1] is not possible from the sampled time series. 

At this point we need to back up and clarify our terminology. The se­
quence of Os and Is produced by 1] and h is in fact l.l.D. and hence stochas­
tic by anyone's definition of the term. But this is not the case with the ma­
jority of time series resulting from sampling chaotic systems like 1]. These 
time series may appear erratic and may possess many stochastic proper­
ties (like decaying autocorrelations and a broadband spectrum) but often 
sufficient structural link exists between the deterministic source and the 
observed time series that the source can be reconstructed from the time 
series. Demonstrating the existence of this structural link (in the form of 
time-delay embeddings) is the purpose behind both the theorem of Tak­
ens (1981) and the theorems of Sauer et al. (1991). We will argue later that 
a time series from which a finite-dimensional deterministic mechanism can 
be reconstructed (in a manner to be made precise later) should properly be 
viewed as deterministic, regardless of any apparent stochastic properties it 
might also possess. 

Hence we believe it useful to have precise definitions of deterministic 
and stochastic in order to help us make distinctions between certain types 
of time series. It will also aid us in distinguishing, at least in some cases, 
between those sampled time series which permit system reconstruction and 
those which do not. 
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Our definitions of deterministic and stochastic (given here in Section 10.2 
and earlier in Cutler (1997)) are motivated in part by the desire to equate a 
deterministic time series with a finite-dimensional dynamical system evolv­
ing on an appropriate state space (in other words, we take the concept of 
finite-dimensional dynamical system as a starting point for our notion of 
deterministic). They are further motivated by the common intuition that 
"deterministic" translates to "perfectly predictable". However, our defini­
tions also fit seamlessly into the framework of time-delay embeddings and 
system reconstruction (discussed briefly earlier), and so they are ideally 
suited for that environment. 

Throughout the following we will be concerned with time series X n , 

n = 1,2, ... taking values in a closed subset K ~ IRu for some 1 ~ u < 
00. We will let P denote the distribution of the time series on the Borel 
sets BOO of the infinite product space Koo = x ~=1 K (equipped with the 
usual product topology) and let Pn denote the distribution of (Xl, ... , Xn) 
on the Borel sets Bn of K n = x~=IK. The collection Pn, n = 1,2, ... 
comprises the finite-dimensional or joint distributions of the time series. 
The time series is said to be stationary if, for each n ~ 1, the distribution 
of (Xk+1, XH2 , ... , X Hn ) coincides with Pn for each k ~ 1. Our attention 
will be confined to stationary time series. 

The remainder of the chapter is organized as follows: Section 10.2 presents 
definitions of deterministic and stochastic for stationary time series, pro­
vides added rationale for these definitions beyond those presented in Cut­
ler (1997), and describes the link with finite-dimensional and infinite-dimen­
sional dynamical systems. Section 10.3 makes the connection to time-delay 
embeddings and state-space reconstruction, and gives a small survey of 
the competing Takens (1981) and Sauer et al. (1991) methods. In Sec­
tion 10.4 we examine the relationship between scaling properties (frac­
tal dimensions), the Grassberger-Procaccia algorithm, and determinism in 
time series. Finally, Section 10.5 consists of some examples where we show 
that system reconstruction is not possible by proving that the sampled time 
series are stochastic. These examples also show that coordinate projections 
(the most natural of functionals) can be "bad" functionals in some cases. 

Discussions on the relationships between chaos, determinism, and time 
series analysis can be found in the papers by Packard et al. (1980), Cas­
dagli (1989, 1992), Kaplan (1992), Kennel et al. (1992), Abarbanel (1993), 
Cutler (1997), and in the collections of papers edited by Smith and Tong 
(1992) and by Cutler and Kaplan (1997). 

10.2 Dynamical Systems and Determinism 

As noted in the Introduction, we take as our starting point for a fun­
damental notion of determinism the finite-dimensional dynamical system 
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(f.d.d.s.) (defined later for discrete time). Part of the motivation for this 
comes from the physics literature, where such systems often appear to 
be informally equated with determinism. We are also motivated by the 
question of predictability - an f.d.d.s. can be said to be completely deter­
mined (and therefore predictable) after observation of only a finite number 
of coordinates (equivalently, after acquisition of only a finite amount of 
information). As such, a human observer can hope to acquire sufficient 
information within a finite length of time to completely determine and 
predict an f.d.d.s. Of course there is a distinction between theoretical and 
"real-world" observations; the latter are always contaminated by errors, 
and so actual predictability of the system will depend on continuity and 
smoothness properties of the f.d.d.s. We will also address this issue. We 
begin with general measure-preserving systems. 

Definition 10.1. (general dynamical system) Let y be a metric space, 
and let <p : y ---+ Y be a Borel-measurable mapping. For each y E Y the sequence 
of iterates y, <p(y), <p2(y), ... is called the orbit with initial condition y. The pair 
(y, <p) constitutes the dynamical system. If Q is a distribution on the Borel sets 
B of Y satisfying Q = Q<p-l (that is, Q is an invariant measure for <p) then the 
quadnmle (y, <p, B, Q) is called a measure-preserving dynamical system (m.p.d.s'). 

The inclusion of a measure Q introduces a kind of randomness into the 
dynamical system via the initial condition - the initial condition becomes 
a random variable Y with distribution Q. However, this randomness is 
only observable under repeated sampling of the initial condition; it cannot 
be seen from a single orbit of the system. In the future we will always 
assume the presence of a measure (generally invariant) which governs the 
distribution of the initial condition. 

Note also that if (y, <p) is a dynamical system and the initial condition Y 
is selected randomly according to some distribution Q then iterating Y un­
der <p produces a time series Yn = <pn-I(y), n = 1,2, ... with <p°(Y) = Y, 
called the time series corresponding to <p and Q. The joint distributions of 
this time series will be denoted by Qn, n = 1,2, ... where Qn is the dis­
tribution of (YI, ... , Yn). It follows that (y, <p, B, Q) is an m.p.d.s. (that is, 
Q is invariant) if and only if the corresponding time series Yn , n = 1,2 ... 
is stationary with QI = Q. Note also that the conditional distribution of 
(YI , ... , Yn ) given Y = y is a Dirac point mass with all probability concen­
trated at the point (y, <p(y), ... , <pn-I (y». See Lasota and Mackey (1994) 
for a discussion of the properties of an iterated m.p.d.s. 

There are two special cases of measure-preserving dynamical system in 
which we will be particularly interested, the one where Y = K and K is a 
closed subset of RU for 1 ~ U < 00, and the one where Y = K ~ Roo. 
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Definition 10.2. (finite-dimensional dynamical system) We say that a 
m.p.d.s. (K, <p, B, Q) is a finite-dimensional dynamical system (f.d.d.s.) if K is a 
closed subset ofRu where 1 ~ u < 00. 

Definition 10.3. (infinite-dimensional dynamical system) Here we re­
strict ourselves to the case where K ~ ROO and call this an infinite-dimensional 
dynamical system (i.d.d.s.}. However, we note that it will sometimes be possible 
to meaningfully identify an i.d.d.s. with a system evolving on a finite-dimensional 
domain, in which case the process may be regarded as an f.d.d.s. 

Any reasonable definition of deterministic for a stationary time series 
should, at the very least, always result in the conclusion that the station­
ary time series Yn = <pn-l (Y), n = 1, 2, . .. corresponding to a measure­
preserving f.d.d.s. is deterministic. The approach we take below does just 
that - the preceding Yn series becomes a special case of a deterministic 
time series. Some aspects of this approach and the definitions below were 
given earlier in Cutler (1997). 

Definition 10.4. (predictive dimension) Let X n , n = 1,2, ... be a strictly 
stationary time series taking values in a closed subset K ~ RU , 1 ~ u < 00. We 
define the predictive dimension p of the time series to be 

p = min{n ~ Ilthere existsT: K n ~ Ksuch thatXn +! = T(Xl, ... ,Xn ) w. p.l}. 

If no such function T exists for any n ~ 1, we set p = 00. In the case that p < 00 

the function T corresponding to n = p is called the predictor function of the time 
series. If a predictor function T exists then X p+! = T(X1 , ••• , Xp) w. p.l. and 
clearly T is Pp-a.s. unique. Moreover, as a consequence of stationarity we also 
have 

(10.2) 

for all m ~ O. 

The notion of predictive dimension leads to precise definitions of the 
terms deterministic and stochastic for stationary time series, as well as to 
a precise notion of predictability: 

Definition 10.5. We say that a stationary time series X n , n = 1,2, ... 
taking values in RU , 1 ~ U < 00, is deterministic if p < 00 and stochastic if 
p = 00, where p is the predictive dimension. Moreover, in the deterministic case, 
we say that the time series is also predictable if the predictor function T is Pp-a.s. 
continuous. 

Thus a deterministic time series is one which can predict itself perfectly 
based on a fixed finite number of past (error-free) observations. There is no 
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assumption made or inferred about the nature of the underlying generating 
mechanism (or source) of the time series - the time series is evaluated only 
in reference to itself. It will be a point of later interest to consider whether 
a time series and its underlying source need share common determinis­
tic/stochastic properties. (The example in the Introduction indicates that 
they need not.) Moreover, a predictable time series is a deterministic one in 
which the predictor function is continuous. This allows for some degree of 
prediction even in the case of observational error. Thus "predictable" might 
also be called "real-world deterministic". Note also that a stochastic time 
series is one which cannot predict itself based Dn a fixed finite number of 
past observations; this constitutes a very large class of processes. For some 
comments on the meaning of stochastic, see points 5), 6), 7), and 8) later 
in this section. 

We note that under Definition 10.5, the time series Yn = cpn-l(y), n = 
1,2, ... corresponding to cp is always deterministic with p = 1 and T = cpo 
Conversely, if X n , n = 1,2, ... , is a time series with p = 1 and predictor 
function T, then the time series must correspond to the f.d.d.s. cp = T. Thus 
it follows that a deterministic time series with p ~ 2 cannot correspond to 
a measure-preserving f.d.d.s. However, it is possible to identify such a time 
series with a coordinate projection of a measure-preserving f.d.d.s. evolving 
on the finite product space KP; we call this system the canonical f.d.d.s. 
associated with the time series. 

Theorelll 10.1. (canonical r.d.d.s.) Let X n , n = 1,2, ... be a stationary 
time series taking values in K ~ JRu, 1 :$ u < 00, and having joint distributions 
Pn , n = 1,2, ... , finite predictive dimension p, and predictor function T. Then 
the mapping CPT : KP -+ KP defined by 

CPT(X) = T(x) 

CPT(Xl, ... , xp) (X2, . .. , Xp, T(Xl, ... , xp» 

ifp = 1 

if p 2: 2 
(10.3) 

defines a measure-preserving f.d.d.s. on KP with invariant distribution Q = Pp. 
Taking the initial condition to be Y = (Xl, ... , Xp) and defining the coordinate 
projection 11" : (JRU)P -+ JRu by 1I"(Xl, . .. , xp) = Xl, the original time series is then 
recovered as the projection Xn = 1I"(cp;'.-1(y» for n = 1,2, .... 

If p = 1, the canonical f.d.d.s. coincides with the measure-preserving 
f.d.d.s. generating the time series. If p ~ 2, Theorem 10.1 exhibits a dy­
namic correspondence between the points (Xl' ... ' Xp) of KP (and their 
evolution) and the realizations of the time series (and their evolution). In 
order to see the significance of this, we first note that every stationary time 
series can be represented as a coordinate projection of a dynamical system 
if we make the state space large enough - specifically, if we take the state 
space to be the infinite product space K oo = x~=IK. This construction 
leads to an Ld.d.s. 
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Definition 10.6. (left-shift dynamical system) We let L be the left-shift 
operator L ; K oo -+ K oo given by 

(10.4) 

Stationarity of the time series is equivalent to P being invariant under L, so 
(Koo, L, Boo, P) is a measure-preserving dynamical system. The time series 
X1,X2, ... can be represented as Xn = 7l"(Ln-1(z» where Z = (X1,X2, ... ) 
is the initial condition (selected according to P) and 7l" is the projection onto the 
first coordinate; that is, 7l"(X1, X2, X3, . .. ) = Xl. We note that the left-shift operator 
defines an infinite-dimensional dynamical system as discussed in Definition 10.3. 

It follows from the preceding discussion and Theorem 10.1 that in the 
case of finite predictive dimension p we obtain two representations of our 
time series, one as a coordinate projection of an f.d.d.s. and the other 
as a coordinate projection of an Ld.d.s. However, it is straightforward to 
establish that these two representations are dynamically equivalent in the 
following sense. 

Definition 10.7. (dynamical equivalence) M.p.d.s. (y, rp,B1 , Q) and (X, 
tf;, B2, V) are called measure conjugate or dynamically equivalent if there exists 
a mapping W ; Y -+ X satisfying the following: 

1. W is a measurable mapping and V = Qw- 1 • 

2. There exist sets Fo E B1 and Go E B2 such that Q(Fo) = V(Go) = 1 and 
W is 1-1 and onto between Fo and Go. 

3. tf; 0 W = W 0 'I' (conjugacy property). 

W is called a measure conjugacy between the two m.p.d.s. 

Billingsley (1978, p. 53) uses the term isomorphism for what we have 
called measure conjugacy. We chose a more explicit descriptive term be­
cause it is often necessary to impose further structure (e.g., topological 
and/or differential) on the dynamical systems and conjugacies in order to 
preserve desired properties. In the absence of such additional structure, 
measure conjugacy is a rather weak relation which may identify many (ap­
parently dissimilar) systems. 

In the case of our two representations for finite predictive dimension p, 
it is easy to establish a measure conjugacy between them: 

(10.5) 

The mapping lJ! : K oo -+ KP defined by lJ!(XI,X2, . .. ) = (Xl, .. . ,xp) has 
the property that Pp = PlJ! -1 and also that lJ! 0 L (Xl, X2, ... ) = CPT 0 
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~ (Xl, X2, • •• ) w. p.1 using (10.2). It also follows from (10.2) that ~ is one­
to-one on a set of P-measure one. Consequently (10.5) defines a measure 
conjugacy and the two dynamical systems may be regarded as dynamically 
equivalent. Additionally, we see that ~ is a bi-Lipschitz mapping provided 
T itself is Lipschitz continuous. This preserves metric properties between 
the two spaces. 

We are now in a position to discuss several points: 

1) First note that the preceding paragraphs illustrate the fact that a time 
series may arise as a functional of more than one dynamical system (in fact 
there will generally be several possible sources for a given time series). The 
two different sources for a deterministic time series given in Theorem 10.1 
and Definition 10.6 were shown to be dynamically equivalent, but we may 
ask whether this is always, or almost always, the case. Moreover, dynamical 
equivalence can be a very weak relation which does not necessarily imply 
equivalence of other properties of interest which may be determined by 
topological and metric structures on the spaces. Scaling quantities such as 
fractal dimensions, for example, may not be preserved between the systems 
unless the conjugacy is bi-Lipschitz. 

2) Definition 10.6 shows that every stationary time series can be identi­
fied with a measure-preserving dynamical system (an Ld.d.s.)j hence such 
an identification in and of itself is not useful in arriving at a definition of 
determinism. The appropriate distinguishing criterion appears to be finite­
ness. Can it be identified with an f.d.d.s.? 

3) The preceding question brings us back to an important point noted 
prior to Definition 10.1- the problem of observational error and continuity 
of the predictor function T. We have chosen to use the word "predictable" 
in the case where T is a.s. continuous, since for any desired level of pre­
diction accuracy we can find a level of observational accuracy which will 
provide that wished-for prediction accuracy. From the point of view of pre­
diction in nonlinear chaotic systems, there seems to be no advantage in 
imposing a great deal more in the way of smoothness. The study of chaos 
has shown us that arbitrarily smooth nonlinear systems can produce orbits 
which diverge very rapidly, so that minor errors in the initial conditions 
are quickly magnified and predictability is lost (to the observer) within a 
few iterations. However we note that the embedding theorems of the next 
section, and the scaling results of the section following it, require some addi­
tional smoothness (at least Lipschitz continuous) on the predictor function 
T. 

We might also comment on the related problem of estimating T from 
data in the more typical situation where T is unknown. Such estimation 
methods generally rely on some smoothness properties of T as well as on 
ergodicity of the time series. 
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4) We retain the notion of "deterministic" along with "predictable" be­
cause at this point it seems good, in principle, to have a definition which 
is separate from questions of smoothness and problems of observational or 
system error. (It remains to be seen if one can in fact separate these two 
notions.) Moreover, sufficiently interesting phenomena can be found even 
in the idealized case of exact error-free observations. 

5) Note that our definition of deterministic was carefully restricted to 
time series taking values in jRU for finite u. Any dynamical system obviously 
has p = 1, and we wanted to exclude the case where the domain was jR=, 

on the assumption that this required information on an infinite number 
of coordinates (and, in any case, would render all stationary time series 
deterministic by identification with the left-shift Ld.d.s.). However, some 
i.d.d.s. might properly be considered deterministic (that is, as f.d.d.s.) by 
an identification such as given in (10.5). 

6) We also note that the introduction of observational or other types 
of noise (for example, system noise) creates added sources of randomness 
beyond that contained in the initial condition. The dynamics are no longer 
the same. In the case of system noise, the result may even be a time se­
ries whose q1lalitative behavior is very different from that of the noise-frf'(' 
version. We consider these to be "higher-level" problems where the rele­
vant question becomes one of quantifying the degree of noise or stochastic 
component present rather than a question of deterministic vs. stochastic ~ 
they are clearly stochastic by Definition 10.5. Another approach, deviating 
somewhat from Definition 10.5, would be to consider several different levels 
or grades of "deterministic" that allow for some kinds of noise. For results 
on stochastic dynamical systems of the form 

Xn = T(Xn_p , .•. , Xn-d + En (10.6) 

(that is, deterministic systems plus system noise) see Cheng and Tong (1992, 
1995). Also see the last three chapters of Lasota and Mackey (1994) as well 
as Stark et al. (1996). 

7) It has been pointed out that, in practice, a deterministic time series 
with a very large predictive dimension p (in other words, a very high­
dimensional system) behaves for all intents and purposes like a stochastic 
process. Of course this is due to limitations on observational accuracy and, 
especially, sample size. Stochastic models may be more useful for predicting 
such systems from limited data, but this does not affect the theoretical 
validity of our definitions. 

8) Finally, we have been discussing Definition 10.5 almost exclusively 
from the point of view of what "deterministic" should mean. But it is 
also worth considering what we want "stochastic" to mean. Models such 
as (10.6) are generally considered stochastic by everyone ~ frequently the 
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noise sequence tn, n = 1,2, ... is l.l.D. or, at the very least, involves a great 
deal of independence. The sequence of D's and l's generated by the binary 
shift in (10.1) is l.l.D. and also certainly regarded as stochastic by all. 
However Definition 10.5 allows for stochastic time series which involve far 
less randomness than we might normally consider; some of these time series 
might bridge the gap between what we regard as truly deterministic and 
what we regard as truly stochastic. The examples in Section 10.5 should 
be viewed at least once from this perspective. 

10.3 Time-Delay Embeddings and Determinism 

In the previous section we considered an arbitrary stationary time series 
X n , n = 1,2, .... In this section we want to focus on those time series 
resulting from sampling an f.d.d.s. as discussed following (10.1). The basic 
situation is this: we are interested in the evolution of a measure-preserving 
f.d.d.s. rp (as given in Definition 10.2) and, ideally, would like to record 
the corresponding time series Yn = rpn-l (Y), n = 1,2, .... In practice, 
however, we are often unable to view the complete system evolving on 
its state space K ~ ~v but rathel observe a functional or projection h : 
K -+ ~u of the system (typically u < v, often u = 1). This produces 
an observed or sampled time series X n , n = 1,2, ... taking values ip ~u, 
where Xn = h(Yn) = h(rpn-l(y)) and Y is the random initial condition of 
rp chosen according to an invariant distribution Q. The assumption that rp 
is measure-preserving ensures that X n , n = 1,2, ... is stationary. 

The sampled time series is generally less predictable (or, if you like, more 
stochastic) than the underlying f.d.d.s. because h almost always condenses 
information by collapsing several pre-images to a common value. If we 
observe YI = y in the f.d.d.s. then Y2 is uniquely determined by Y2 = 
rp(y). However, if we observe Xl = x in the sampled time series, we only 
obtain the information that YI E {y I h(y) = x} and hence that X 2 E 
{h(rp(y)) I h(y) = x}. Thus the conditional distribution of X 2 given Xl = x 
is not a Dirac point mass and the predictive dimension of the sampled time 
series exceeds 1. Another way of saying this is that X I does not uniquely 
determine the initial condition YI and so the future evolution of the system 
is still uncertain to the observer. Abarbanel et al. (1993) point out that this 
feature often contributes to the erratic chaotic appearance of the sampled 
time series. The idea behind the method of time-delay embeddings is that 
while observation of a single value Xl = x will not pin down the underlying 
initial condition YI , observation of a sufficiently long string, say Xl = 
Xl, ... , Xd = Xd, may do so. (This is essentially equivalent to obtaining 
a unique solution to a system of d equations.) Moreover, the sequence of 
delay vectors (Xk, X k+1,' .. ,Xk+d-t), k = 1,2, ... may then sketch out in 
(~u)d a "copy" of the evolution of Yl , Y2, . .. making it possible to study 
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the hidden underlying system via the sampled time series. Abarbanel et al. 
(1993) refer to this process as unfolding the attmctor; it is also known as 
reconstructing the state space. We describe this formally in the following: 

Definition 10.8. The delay coordinate mapping <I>d : K ~ RV -7 (Ru)d with 
embedding dimension d is defined by 

<I>d(Y) = (h(y),h(cp(y)), ... ,h(cpd-1(y))). (10.7) 

For d = 1 we have <I>1 (Y) = heY) = X which has distribution H. For d ~ 
2 we have <I>d(Y) = (X1, ... ,Xd) which has distribution Pd. Note also that 
<I>d(cpk-1(y)) = <I>d(Yk) = (Xk,Xk+1, ... ,Xk+d-d so this is the method ofgener­
ating the delay vectors discussed in the preceding paragraph. 

We now make the link with the material in Section 10.2. 

Theorem 10.2. Suppose for some d ~ 1 the delay coordinate mapping <I>d 
is one-to-one on a set of Q-measure one. Then the sampled time series X n , 

n = 1,2, ... is deterministic with predictive dimension p ~ d and predictor func­
tion T = <I>p 0 cp 0 <I>;1. Furthermore, <I>p is a measure conjugacy between the two 
measure-preserving f.d.d.s. (K, cp, B, Q) and (Ko, CPT, BP, Pp); that is, the canon­
ical f.d.d.s. of the sampled time series is dynamically equivalent to the original 
underlying f.d.d.s. 

Proof: Since Pp is the distribution of (Xl, ... , Xp), it follows from Defini­
tion 10.8 that Pp = Q<I>;l. Now, assuming that <I>d is an embedding for some d, 
it follows that the predictive dimension p of the sampled time series will be the 
smallest value of d for which <I>d is one-to-one w. p. 1; hence <I>p will be one-to­
one on a set of Q-measure one. It is then easy to see that T = <I>p 0 'P 0 <I>;1 and 
<I>p 0 cp = CPT 0 <I>p. Thus <I>p is a measure conjugacy. D 

It is worth stating explicitly that state-space reconstruction via delay co­
ordinates leads directly to creation of the canonical f.d.d.s. (Ko, <PT, BP, Pp); 
it is this dynamical system which is being sketched out by the delay vectors. 
Theorem 10.2 shows that this system is, under certain circumstances, dy­
namically equivalent to the underlying f.d.d.s. of interest, so we can learn 
about the latter from the former. However, the delay coordinate space 
Ko ~ (JRu)d may not be the natural coordinate system for <P and interpre­
tation of the canonical f.d.d.s. in terms of a physical model can be difficult. 
Very often when the approach taken is to estimate T directly from time 
series data we are engaging in "black box" modeling; the predictor T is 
estimated as closely as possible by some statistical criterion and method 
but there is no physics involved. The alternative (one which makes physi­
cists happier) is to use knowledge of the physical system, when possible, 
to develop a meaningful dynamical model, a set of difference equations or 
differential equations, back on the original state space K. 
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It is natural now to wonder when the delay coordinate mapping c:Pd will 
be one-to-one for some d ~ 1. In fact we often require additional structural 
properties on c:Pd beyond one-to-one; for example, we might require that c:Pd 
be bi-Lipschitz in order that metric properties, such as fractal dimensions, 
are preserved. This leads to the following definition: 

Definition 10.9. (embedding) A mapping cI> : K ~ RV --+ Ko S;; RW is 
called a (diffeomorphic) embedding if cI> is one-to-one and bi-Lipschitz, and both 
cI> and its inverse cI>-1 are diffeomorphisms. 

The bi-Lipschitz property ensures that metric properties, such as scaling 
properties, are preserved between K and Ko. The diffeomorphism property 
preserves local differential structure between the spaces; see Sauer et al. 
(1991) and Cutler (1997). 

Takens (1981) and Sauer et al. (1991) provide theorems which basically 
state that the delay coordinate mapping will, in most cases, yield an em­
bedding for sufficiently large d. That is, given a smooth f.d.d.s. cp under 
certain mild technical conditions, "almost all" smooth functionals h result 
in the delay coordinate mapping c:P d being an embedding for sufficiently 
large d. Here "smooth" means twice-differentiable, sometimes only con­
tinuously differentiable. We will not supply other technical conditions of 
the theorems here. The most interesting difference between the Takens ap­
proach and the Sauer et al. approach lies in the interpretation of "almost 
all". Takens (1981) interprets this topologically, and the set of h for which 
an embedding is obtained (the set of good h) is generic; that is, it is an 
open dense subset of the space of all smooth h. Hunt et al. (1992) and 
Sauer et al. (1991) point out that open dense sets can often be very small 
in terms of measure, and so they prefer a measure-theoretic approach. They 
show that the collection of good h forms a prevalent subset of the set of 
all smooth h; that is, the complementary set consisting of all bad h is a 
shy set. A shy set is the equivalent of a set of zero Lebesgue measure in 
an infinite-dimensional space (in this case the space of all smooth h). We 
close this section with the following points: 

1) One difficulty with the theorems of Takens (1981) and Sauer et al. 
(1991) is that there is no criterion for determining whether a specific func­
tional h is good or bad. Moreover, being good or bad is not a property 
of the functional h in isolation; it is a property of h and cp together. A 
functional may be good for one f.d.d.s. but bad for another. We should 
add that, genericity and prevalence properties notwithstanding, it is not 
difficult to construct pairs (cp, h) where no embedding results. 

2) A functional can be bad in more than one way. It may be that an em­
bedding is achieved between the canonical f.d.d.s. and only one component 
(a subsystem) of the underlying f.d.d.s. In this case the sampled time series 
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has finite predictive dimension but there is no measure conjugacy with the 
desired original f.d.d.s. Some examples of this are provided in Section 10.5. 
It may also happen that the functional h produces a sampled time series 
which is actually stochastic and hence no embedding is possible with <p or 
any other f .d.d.s. In fact if one can prove that a time series is stochastic 
according to Definition 10.5 then it always follows that no embedding can 
exist with any f.d.d.s. Examples of this are also given in Section 10.5. 

3) We also note that Stark et al. (1996) develop embedding theorems, 
based on Takens' genericity approach, for certain stochastic time series 
arising from both forced and noisy systems. This is a new and important 
direction which needs to be integrated with ours. 

4) Finally we note again that a time series can arise mathematically as a 
functional of many different systems. If the time series has finite predictive 
dimension then an embedding will exist between the canonical f.d.d.s. and 
some of these systems but not others. It would be of interest to keep the 
sampled time series fixed and examine the collection of all theoretically 
possible or potential generating mechanisms. This is the "inverse problem" 
to the Takens and Sauer et al. embedding theorems. 

IDA Scaling Structures and Determinism 

One of the first techniques for searching for determinism in observed time 
series was the Gmssberger-Procaccia (GP) algorithm; see Grassberger and 
Procaccia (1983) and the discussion of the algorithm and estimation meth­
ods in Smith (1992). This technique was predicated on the assumption, or 
rule-of-thumb, that in a deterministic time series the fractal dimensions 
associated with the joint distributions Pn would level off at fixed finite val­
ues once n ~ d, where d is the correct embedding dimension, whereas in a 
stochastic time series the fractal dimensions would grow without bound as 
n ~ 00. Experimentalists would estimate the fractal dimension Dn of the 
joint distribution Pn then plot Dn vs. n. If the plotted values approached 
a finite asymptote as n ~ 00, this was taken as evidence of determinism 
or low-dimensional dynamics. If, in addition, the limiting asymptote was 
fractional in value, this was taken as evidence of chaos. We will not discuss 
this latter aspect of the algorithm here. 

The definitions of deterministic and stochastic were not quite clear in the 
GP algorithm. Moreover, it was not certain what distinction, if any, was 
made between determinism in the sampled time series and determinism in 
the underlying generating mechanism, or how these related to the scaling 
properties of the joint distributions of the sampled time series. Using our 
terminology and the results obtained so far, it is possible to obtain a com­
plete picture of the theoretical GP algorithm (by theoretical we mean that 
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we use the true values Dn rather than estimates). 
There are many possible choices for the fractal dimension Dn associated 

with Pn , and these different choices generally produce different values. The 
GP algorithm was initially developed in terms of the correlation dimension 
Vn , where 

and 

Vn = lim 10gCn(r) 
r-tO logr 

(10.8) 

(10.9) 

Cn(r) is the (spatial) correlation integral of Pn. In fact Cn(r) is the prob­
ability that two random independent points from Pn are within distance 
r of each other, and Vn describes how this probability scales as a power 
of r as r ~ O. The paper by Osborne and Provenzale (1989) purported to 
show a counterexample to the GP rule-of-thumb by exhibiting a stochastic 
process in which the sequence of correlation dimensions Vn converged to a 
finite value as n ~ 00. Theiler (1991) and Cutler (1994), taking different 
approaches, showed that this counterexample was false. In particular, Cut­
ler (1994) argued that this counterexample can be viewed as an artifact of 
the simulation method used by the authors. Wolff (1990) gives some results 
on the behavior of sample versions of the correlation integral in the time 
series setting. 

Another popular choice for fractal dimension is information dimension 
(Tn' There are several ways of defining (Tn. The following is one approach if 
Pn is supported on a compact subset Kn ~ (JRu)n. We first define the local 
scaling exponent or pointwise dimension at x E Kn by 

() 1. 10gPn(B(x,r» 
(J' n X = 1m --.:::'-----'--'--'--'-"-

r-tO logr 
(10.10) 

where B(x, r) is the ball of radius r centered at x, and then set 

(10.11) 

Thus information dimension is the average pointwise dimension of Pn . In 
many cases of interest the pointwise dimension will be constant almost 
surely, and the information dimension will coincide with this constant. We 
always have the inequality (Tn ~ Vn and this inequality can be strict. We 
have argued elsewhere (Cutler (1998» that information dimension is gen­
erally a more informative quantity than correlation dimension. However, it 
is often useful to look at both quantities, and yet other fractal dimensions 
simultaneously. 

The following is our basic result concerning the GP algorithm. While the 
rule-of-thumb is not strictly correct, in many ways it is very close to being 
correct. 
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Theorem 10.3. Let Pn , n = 1,2, ... be the joint distributions of a stationary 
time series X n , n = 1,2, ... taking values in a compact set Ko ~ R". Let Dn be 
the fractal dimension of Pn, where Dn = Vn or Dn = Un. Then the following are 
true: 

1. The sequence Dn is increasing in n; that is, Dn ~ Dn+l for every n. 

2. If the time series arises as a functional of an f.d.d.s., where both the func­
tional and the f.d.d.s. are at least Lipschitz continuous, then the sequence 
Dn converges to a finite value Do. (This convergence occurs whether the 
sampled time series is deterministic or stochastic; it may be stochastic.) 

9. If limn-->oo Dn = 00 and the only possible predictor functions are Lipschitz 
continuous, then the time series is stochastic. Moreover, the time series 
cannot arise as a Lipschitz functional of a Lipschitz f.d.d.s. 

4. It is possible for a stochastic time series to yield limn-->oo Dn = Do < 00. 

Some of these time series can be represented as a Lipschitz functional of a 
Lipschitz f.d.d.s., others cannot. 

Remark 10.1. Proofs of the first two items are given in Cutler (1997). The 
third item is simply the contrapositive of the second. These first three items taken 
together comprise what is right about the rule-of-thumb in the GP algorithm. 
It is the fourth item which deviates from the rule-of-thumb and constitutes a 
most interesting grey area. It includes stochastic time series which are Lipschitz 
functionals of smooth f.d.d.s. and might be regarded as almost deterministic (both 
examples in Section 10.5 are of this type). But it also includes other time series 
which involve so much independence that they must be regarded as truly stochastic. 
Examples of this type, such as randomly iterated function systems, are given in 
Cutler (1998). 

10.5 Examples 

The following are two examples of real-valued time series arising as smooth 
functionals of chaotic f.d.d.s. evolving on the unit square. In each case the 
plotted time series appears random and erratic, and we will show that 
both are in fact stochastic by our definition. However, it follows from The­
orem 10.3 that the GP algorithm would yield a finite fractal dimension Do 
for each of these time series. Also in each of these cases we find that any 
function of either coordinate projection 11'1 (x, y) = x or 11'2 (x, y) = Y will 
fail to result in an embedding with the f.d.d.s. This does not contradict 
any of the embedding theorems - the set of all smooth functions of the 
coordinate mappings is a shy subset in the space of all smooth functionals 
h : [0,1]2 -+ III However, coordinate projections are common choices for 
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functionals, and we see that if we keep the functional fixed (choose a co­
ordinate projection) then obtaining a good or bad result depends on the 
coordinate system we choose for our f.d.d.s. 

Example 10.1. Define"p: [0,1]2 --+ [0,1]2 by "p(x,y) = ("p(x),,,p(y)) where 
"p is the tent map 

{ 
2x 

"p(x) = 
2(1 -x) 

for 0 ~ x ~ 1/2 

for 1/2 ~ x ~ 1 
(10.12) 

Lebesgue measure, restricted to the unit interval, is an ergodic invariant measure 
for"p, and it follows that two-dimensional Lebesgue measure, confined to the unit 
square, is ergodic and invariant for "p. Note that this latter f.d.d.s. is uncoupled 
as the x and y coordinates iterate independently of one another. 

Suppose now we define f : [0,1] --+ [0,1] by 

{
I 

f(x) = 
2(1 -x) 

for 0::; x ~ 1/2 

for 1/2 ~ x ::; 1 
(10.13) 

and then define the functional h: [0,1]2 --+ [0,1] by h(x,y) = f(x)y. We will 
denote the deterministic time series resulting from iterating the ~·.d.d.s."p (with a 
random initial condition) by (Xl, Yl ), (X2 , Y2 ), •••• Applying h produces the sta­
tionary time series Zl, Z2, ... where Zn = h(Xn, Yn). A plot of 300 points of the 
Z series is given in Figure 10.1. We note that the functional h is Lipschitz con­
tinuous but not differentiable because of the behavior of f at the point x = 1/2. 
We could modify f, even make it infinitely differentiable, without affecting the 
relevant qualitative behavior of the Z series. However, to do so would complicate 
our analysis and we prefer to leave f as it is. 

Time-delay embeddings, applied to the Z series, will fail to reconstruct the 
underlying system "p. In other words, h is a bad functional. We can prove this 
by showing that the Z series is stochastic. Let n ~ 2 and suppose the initial 
condition Xl of the x-coordinate satisfies 0 < Xl ::; 2- n . (This event occurs 
with probability 2-n.) Then Xl, X2, ... , Xn all lie in the interval (0,1/2] and so 
f(Xk) = 1 for k = 1, ... , n. Thus Zk = Yk for k = 1, ... , n (and no additional 
information is obtained about the x coordinate during this run of observed Y's). 
We can detect the occurrence of such a run in the Z series by noting that it 
corresponds to Zk = "p(Zk-d for k = 2, ... , n. Now if f(Xk) = 1 for k = 1, ... , n 
(equivalently, if Zk = "p(Zk-d for k = 2, ... , n) then, using Lebesgue measure, 
there is a 50% probability that 0 < Xn ~ 1/4 and a 50% probability that 
1/4 < Xn ~ 1/2. In the first case we get f(Xn+d = 1 and Zn+l = "p(Zn) (that is, 
the run continues) and in the second case the outcome is Zn+l = 2(1-2Xn)"p(Zn). 
The variable 2(1-2Xn) is uniformly distributed over [0,1] and its value cannot be 
predicted by an observer based on the knowledge Zk = "p(Zk-l) for k = 2, ... , n. 
This shows that, for each n ~ 2, there are particular choices of (Zl, ... , Zn) (which 
constitute a set of positive probability) for which the conditional distributions 
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FIGURE 10.1. Plot of 300 points of the Z series. 

P(Zn+1 E . jZn = Zn, ... , Zl = zI) are not Dirac point masses, and hence an 
embedding of dimension n cannot exist with the underlying f.d.d.s. ¢. Moreover, 
due to ergodicity of the system ¢, arbitrarily lung runs of !(Xk+j) = I, j = 
1, ... , m will occur infinitely often in the output sequence. Figure 10.2 shows a 
lag plot of Zn+1 vs. Zn; note that some of the underlying deterministic structure 
can be detected in the plot. 
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FIGURE 10.2. Lag Plot of Zn+1 vs. Zn. 

Let us add that had we chosen either of the coordinate projections 11"1 (x, y) = x 
or 11"2 (x, y) = y as our functionals, then we would also have been unable to 



262 Colleen D. Cutler 

reconstruct our f.d.d.s. but for a different reason. Each functional time series 
would have been deterministic but of predictive dimension p = 1, picking up only 
the one-dimensional system 'Ij; evolving in the corresponding coordinate. This is 
a consequence of the coordinates of -¢ being uncoupled. 

Example 10.2. In this example we construct an f.d.d.s. where the coor-
dinates are coupled but nonetheless one of the coordinate projections produces 
a stochastic time series and thus fails to reconstruct the f.d.d.s. Moreover, the 
f.d.d.s. is a type of threshold model commonly considered in nonlinear modeling; 
see Tong (1990). We define <p : [0,1]2 -t [0,1]2 by <p(x, y) = (S(x, y), L(y)), where 
L is the standard logistic map L(y) = 4y(1 - y) and S is defined by 

S(x,y) { 
L(x) 

(1 - c(y))L(x) + c(y)x 

if y :::; 1/2 

if y > 1/2 
(10.14) 

and c(y) = 2(y - 1/2). The basic idea is to switch back and forth between two 
regimes: L(x) for y :::; 1/2 and x for y > 1/2. The factor c(y) is introduced to 
create a smooth linear transition between the two regimes. It is not nl'-.:essary to 
select the function x for the second regime; it could be replaced by some other 
function Vex). However, choosing x produces some interesting behavior; it shares 
the fixed point x = 3/4 with the logistic map but of course is not repelling-the 
result is that the x-coordinate series Xn = 11"1 (<pn-1 (Xl, YI)) tends to gravitate 
around x = 3/4 for stretches of time before being driven away by a change in 
regime and the repelling behavior of the logistic map. Figure 10.3 shows a plot 
of 700 points of the X series. The horizontal line corresponds to the fixed point 
x = 3/4. 

Although we do not know the stationary ergodic behavior of the overall system 
<p, it is well known that the logistic map has the arcsine (or beta( ~, ~)) distribu­
tion as ergodic invariant measure. If the initial condition Y1 of the y-coordinate 
is close to 0 (and hence several subsequent iterates of L(Y!) fall below 1/2), then 
the 1st coordinate of the system spends several iterations in the first regime; that 
is, S(x,y) = L(x) or Xn = L(Xn-l). When the Y coordinate finally exits to 
the second regime Y > 1/2, the value of Y (and hence of SeX, Y)) cannot be 
predicted based on the observed X series up to that point; this is very similar in 
spirit to Example 10.1. Consequently the X-coordinate series is stochastic, and 
an embedding with <p cannot be constructed from it. Figure 10.4 shows a lag plot 
of X n +1 vs. Xn; the "angel wings" illustrate the two boundaries L(x) = 4x(1- x) 
and y = x as well as the stochastic region in between. The dark crossover point 
corresponds to the fixed point x = 3/4. 

We also note that <p cannot be reconstructed from the y-coordinate projec­
tion, since lack of coupling in that direction (x has no influence on y) results in 
predictive dimension p = 1 and reconstruction only of L(y). 
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FIGURE 10.3. Plot of 700 points of x coordinate of the threshold 
model. 
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FIGURE 10.4. Lag plot of threshold model showing "angel wings". 
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Chapter 11 

Consistent Estimation of a 
Dynamical Map 
Andrew Nobel 

ABSTRACT Estimation of a nonlinear map F governing the evolution of 
an observed dynamical system is considered in two specific models. In the 
first model, F is successively applied to a fixed initial vector in the absence 
of noise, so that the the observed states of the system constitute a trajectory 
of F. In the second, dynamical noise model, the system is perturbed by in­
dependent noise between each application of F. Estimates of F are proposed 
for each model, and are shown to be consistent under general conditions. 
No assumptions are made regarding mixing rates of the observations. Both 
continuous and general measurable maps F are considered. 

11.1 Introduction 

The advent of modern computing and the recent interest in chaos have 
focused increasing attention on deterministic systems that exhibit random 
behavior. While there is no universally accepted definition of chaos, phe­
nomena termed "chaotic" have frequently been studied in the context of 
dynamical systems. Dynamical systems are mathematical models in which 
a physical system of interest is described by a family of differential equa­
tions. The solution of the equations describes the time evolution of the 
dynamical system, starting from any initial condition. 

In many situations, the data arising from measurements of a physical sys­
tem are obtained at discrete, equally spaced instants of time. In some cases 
direct measurement of the state of the system is possible. More commonly, 
one makes periodic measurements of some scalar function ¢ of the state of 
the system. It is known from Takens's embedding theorem [35, 3, 34] that, 
for generic functions ¢ and suitable integers d, one may study the dynamics 
of the system by means of time-delay vectors that consist of d successive 
scalar measurements. Thus, when it is in a steady state and no noise is 
present, observations of the physical system can be modeled by iteration 
of a fixed, nonlinear map F : ]Rd -+ ]Rd. 

The statistical analysis of measurements from dynamical systems is com­
plicated by the fact that such measurements can exhibit very long range 
dependence. Even when a system is perturbed by independent noise, its 
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measurements may fail to satisfy standard mixing assumptions, and ex­
isting statistical estimation theory may not apply to the analysis of these 
measurements. Nevertheless, it is often reasonable to assume that mea­
surements of a dynamical system are stationary and ergodic, or when this 
assumption fails, that the system converges asymptotically to an ergodic 
steady state. 

11.1.1 Overview 

The subject of this chapter is estimation of a nonlinear map F governing 
an observed dynamical system. Two dynamical models are considered. In 
the first, F is successively applied to a fixed initial vector in the absence 
of noise, so that the measured states of the system constitute a trajectory 
of F. In the second, often referred to as a dynamical noise model, the 
system is perturbed by independent noise between each application of F. 
Histogram estimates of F are proposed and analyzed for each model. The 
primary goal of the chapter is to describe estimates of F that are consistent 
under general conditions. Throughout, no assumptions are made regarding 
the mixing rates of the observations. Both continuous and more general 
measurable maps F are considered. Although in many cases the proposed 
estimates can be implemented on a computer, we have not attempted to 
assess their empirical performance. 

The problem of estimating an iterated map governing a dynamical sys­
tem has previously been considered by a number of authors, working in 
several fields. Most often F is estimated with the ultimate goal of predic­
tion, estimating Lyapunov exponents, or estimating the dimension of an 
attractor. Representative work and additional references can be found in 
the papers of Farmer and Sidorowich [14], Casdagli [8, 9], Kostelich and 
Yorke [21], Nychka et al. [31], Lu and Smith [24], and the book by Tong [36]. 
See also the surveys by Eckmann and Ruelle [13], Jensen [20], and Isham 
[19]. In most of this work iterates of the map are perturbed by observational 
or dynamical noise. Bosq and Guegan [7J studied kernel estimates of uni­
formly mixing transformations in the absence of noise. Lalley [23J describes 
a general means of reconstructing the orbit of a smooth diffeomorphism F, 
acting on a hyperbolic attractor, when the iterates of F are corrupted by 
observation noise. 

In these references it is commonly assumed that the map under study 
is continuous or differentiable. Hofbauer and Keller [18J, Mayer [25J, and 
Denker and Keller [12] established central limit theorems for U-statistics 
and smooth functionals of noiseless dynamical systems that are generated 
by piecewise-monotone maps. More irregular transformations· are of interest 
to ergodic theorists and may arise, for example, when one considers the 
Poincare return map of a smooth flow to a low-dimensional set A <;; jRd. 
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11.1.2 Outline 

The two noise models studied in the chapter are defined in the next sec­
tion. A description of the multivariate histograms used to define the esti­
mates is given in Section 11.3. In Section 11.4 the problem of estimating 
a JL-preserving ergodic map F : IRd ~ IRd from one of its trajectories is 
considered. It is shown in Proposition 11.1 that consistent estimation of F 
is possible if JL is comparable to a known reference measure with compact 
support. 

In Section 11.5 the problem of estimating a map F in the presence of 
dynamical noise is considered. Theorem 11.1 gives a general consistency 
result for continuous maps. Density estimates of Gyorfi and Masry [16] 
are briefly discussed, and consistent estimates of the noise variance are 
described. It is shown in Theorem 11.3 that one may estimate a measurable 
map F in the dynamical noise model provided only that the observations 
are bounded and ergodic and that the distribution of the noise has a density. 

11.2 Two Models for Dynamical Data 

Let F : IRd ~ IRd be a fixed nonlinear map governing the one-step evolution 
of a dynamical system under study. Let B denote the Borel subsets of 
IRd • Here and in what follows it is assumed that F is measurable, so that 
F-IA E B for every A E B. 

Model I: No Noise 
In the simplest model of a dynamical system, the evolution of the system 
is determined by repeated application of F, in the absence of observational 
or dynamical noise. Starting from an initial vector x E IRd successive ob­
servations of the system are described by the trajectory 

(11.1) 

Here Fi denotes the i-fold composition of F with itself. In this case the 
system evolves in a purely deterministic fashion. Thus, from (complete) 
knowledge of F and any single observation one can, in principle, reconstruct 
every subsequent measurement. In analyzing the model (11.1) it is typically 
assumed that the map F is measure preserving and ergodic. 

Definition 11.1. A Borel-measurable map F : IRd ~ IRd is said to preserve 
a probability measure JL on (lRd , B) if 

JL(F-l A) = JL(A) for every' A E B, (11.2) 

and is said to be ergodic if F-l A = A implies JL(A) = 0 or 1. Equivalently, 
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F is ergodic if and only if 

1 n . - L JL(A n F-a B) -t JL(A)JL(B) for every A, B E B. 
n i=l 

(11.3) 

The books of Petersen [32] and Walters [37] give comprehensive introduc­
tions to ergodic theory. 

Model II: Dynamical Noise 

When the evolution of a system is mediated by independent noise, its state 
may be represented by a simple nonlinear autoregression. The resulting 
dynamical noise model has applications in the analysis of chaotic data. 

Definition 11.2 A system is said to obey a dynamical noise model if its 
state evolves according to the recursion 

(11.4) 

where Xo E ~d is the (random) initial state of the system, F : IRd -t IRd 

is a fixed map, and Zl, Z2, ... E IRd are U.D., independent of Xo, and 
such that EZi = O. The map F describes the deterministic component 
of the dynamics, while {Zi} are random perturbations whose influence on 
subsequent measurements is mediated by the action of F. 

Definition 11.3 A stationary process Xo, Xl, ... E lR.d is said to be ergodic 
if for every I ~ 1, and every pair of Borel sets A, B ~ JRld, 

~ :tJP>{X~-l E A,Xt+I - 1 E B} -t JP>{X~-l E A}JP>{X~-l E B} (11.5) 
i=l 

as n tends to infinity, where xl = (Xi, ... , Xj) for i ~ j. 

For example, if F : IRd -t IRd preserves a measure JL and is ergodic, and 
if Xo is a random vector with distribution JL, then (11.2) and (11.3) imply 
that the process Xo, F Xo, F2 Xo, ... is stationary and ergodic. By contrast, 
due to the presence of the perturbations Zi, ergodicity of the dynamical 
noise process (11.4) does not require that F preserve the distribution of 
the measurements Xi, or that F be ergodic. (To take a trivial example, 
let F : IR -t IR be identically zero, and let {Zi} be any real valued U.D. 
sequence taking more than one value.) 

The dynamical noise process (11.4) is a discrete time Markov chain. Re­
sults such as those in Nummelin [30], and Meyn and Tweedie [26], provide 
general conditions under which such chains are ergodic, or converge to an 
ergodic steady state. Dynamical noise models are also a special case of 
random dynamical systems. Many of the theoretical properties of such sys­
tems, e.g., topological dynamics, the existence of invariant measures, and 
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Lyapunov exponents, have been studied. See Kifer [22] or Arnold [4] for 
more details. 

11.3 Multivariate Histograms 

Let X o, Xl, ... E Rd be a stationary ergodic sequence of random vectors. 
The one-step autoregression of {Xi} is the (vector-valued) conditional ex­
pectation 

G(x) = E(X1IXo = x), 

which minimizes EIIX1 - Go(Xo)112 over all measurable functions Go 
Rd -+ Rd. It may readily be verified that in both the dynamical noise model 
(11.4) and the deterministic model with Xi = Fi X o, the map F of interest 
is equal to the one-step autoregression function G of the available measure­
ments. Thus the problem of estimating F is equivalent to the problem of 
estimating an autoregression function. Proposition 11.1 and Theorem 11.3 
are based on recent results of Nobel and Adams [28] concerning regression 
estimation from ergodic processes. Related work can be found in the papers 
of Delecroix [10], Yakowitz [38, 39], Delecroix and Rosa [11], Yakowitz et 
at. [40] and Morvai et at. [29]. For reviews of regression estimation from 
dependep.t processes, see Gyorfi, HardIe, Sarda and Vieu [17], Rosenblatt 
[33], Beran [5], and Bosq [6]. 

It has recently been shown by Adams [1], Nobel [27], and Yakowitz 
and Heyde [41] that no regression estimation scheme can be consistent 
for every stationary ergodic process, so restrictions must be placed on the 
observations in order to establish the consistency of a regression scheme 
under study. Most work to date places assumptions on the dependence 
(mixing) structure of the observations, on the regularity of the unknown 
(auto)regression function, or on both. For the models studied here it is 
sufficient to place assumptions on the one-dimensional distribution of the 
observations. 

Each of the estimates proposed herein is based on a multivariate his­
togram, which is obtained by dividing the measurements Xi into disjoint 
cells and then averaging the corresponding values Xi+! within each cell. 
The family of histograms employed here will be defined later. 

Partitions. Fix a nested sequence 11"0,11"1, ••• of finite partitions of Rd such 
that 11"0 = {Rd }, and such that for each vector x E Rd , 

lim diam(1I"k[x]) = O. 
k-too 

(11.6) 

Here 1I"k [xl is the unique cell of 1I"k containing x, and we denote by diam(A) = 
sUPu,vEA Ilu - vii the maximum Euclidean distance between any two points 
in A. Condition (11.6) allows the partitions 1I"k to have unbounded cells, 
provided the sequence of cells containing each fixed vector x eventually 
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shrinks down to x. The partitions 7r, may be obtained, for example, by 
dividing [-l,l)d into cubes of side-length 2- l , and letting the complement 
of [-I, l)d comprise a single cell. 

Candidate Histograms and Empirical Error 
Let measurements Xo, ... , X n- 1 be given. For each k ~ 1 define a multi­
variate histogram based on the,Partition 'Irk, 

G (u) = L~-=-; Xi+lJ{Xi E 'lrk[U]} (11.7) 
k,n L~==-02 J{Xi E 'lrk[U]} 

If a cell 'lrk[uj contains no vector Xi, then set Gk,n(U) = O. Furthermore, 
let 

n-2 

A~,n = ~ 12: IIGk,n(Xi ) - X i+1W 
n i=O 

(11.8) 

denote the empirical error of the histogram Gk,n on Xo, ... ,Xn-l. An 
estimate of F is chosen from among the candidates {Gk,n : k ~ 1} by 
selecting a suitable partition index k. Selection of k is based on the available 
measurements Xo, ... ,Xn - 1 , and on information about the distribution of 
Xo. 

11.4 Ergodic Systems without Noise 

Consider the problem of estimating a It-preserving ergodic map F : lRd ~ 
lRd in the noiseless model, in which the available measurements form a 
trajectory 

x, Fx, F 2 x,... (11.9) 

of F starting from an initial value x E lRd • In this case, the measurements 
are purely deterministic and will usually fail to satisfy standard mixing 
assumptions: the rate at which the sample average n-1 L~==-Ol h(Fix) of a 
bounded function h : lRd ~ lR converges to J hdJ.t is typically unknown, 
and may be arbitrarily slow. 

If the measurements are grouped into pairs (x, Fx), (Fx, F 2 x), ... , then 
each pair is a point on the graph of F. When F is continuous and d = 1, 
connecting neighboring points with straight lines will give pointwise consis­
tent estimates of F on the support of 1'. Similar piecewise linear estimates 
may be used in higher dimensions. Of interest here is the case when F 
may be highly irregular, so that some sort of local averaging is necessary 
to obtain good estimates. 

11.4.1 Estimation of Irregular Maps 

It will be shown that consistent estimation of an ergodic J.t-preserving map 
F is possible, provided only that I' is comparable to a known reference 
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measure. Recall that the support of a distribution /-t on ~d is the smallest 
closed set A ~ IRa such that /-t(A) = 1. 

Definition 11.4. Let /-to be a reference measure on (IRa, B) with compact 
support, and let M ~ 1 be a constant. Let V(/-to, M) be the family of all 
probability measures J-L on (IRa, B) such that /-t == /-to and 

(11.10) 

The condition J-L == /-to means that /-t(A) = 0 if and only if I-to(A) = O. This 
implies that the densities d/-t/dl-to and d/-to/d/-t exist, and that /-t and J-Lo share 
the same support set. The constant M controls the deviation of J-L from /-to. 
As M increases the measures in V (/-to , M) can differ more substantially 
from /-to. 

Example 11.1. Let A be a compact subset of IRa with Lebesgue measure 
"\(A) > 0, and let /-to (A) = "\(AnA)/"\(A) be normalized Lebesgue measure 
on A. The family V(/-to, M) contains every probability measure J-L having 
a density f = d/-t/d..\ such that {x : f(x) > O} = A and fA (1/ f)dx ~ 
M2 "\(A). The latter condition says that f is suitably bounded away from 
zero on A, and is satisfied, for example, if f(x) ~ M-2 for x E A. In general 
the reference measure need not be absolutely continuous. For example, /-to 
might be Hausdorff measure on a known compact manifold of dimension 
less than d, or on some other bounded low-dimensional subset of IRa. 

Description of the Estimate. Suppose that a measure /-to with com­
pact support and a constant M ~ 1 have been fixed. Let £1, £2,··· be any 
sequence of positive numbers tending monotonically to zero. Given mea­
surements x, Fx, ... , Fn-1 x with initial vector x, define the estimate 

(11.11) 

where k(n) is the largest integer k ~ 1 such that 

Here Gi,n and ~i,n are defined as in Equations (11.7) and (11.8) above, with 
Xi = Fix. Each of the quantities appearing in (11.12) is either specified in 
advance of the measurements or may be evaluated once the measurements 
are obtained. Thus FA1) is well defined. A key feature of FA1) and other 
estimates in the chapter, is the adaptive, data-dependent choice of the 
partition index kn . A version of the following result appears in Nobel and 
Adams [28]. 
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Proposition 11.1. For every p, E V(p,o, M) and every p,-preserving ergodic 
transformation F : ad -+ ad, the estimates F~l) defined in {11.11}-{11.12} are 
such that ! IIF~l) - FI12 dp, -+ 0 as n -+ 00 

for p,-almost every initial vector x E ad. 

Overview of Proof. The proof of Proposition 11.1 proceeds roughly as 
follows. It is first shown, using the ergodic theorem and some elementary 
approximation arguments, that the partition index k(n) chosen according 
to (11.12) will tend to infinity with n, if p E V(Po, M). Then inequal­
ity (11.12) is used to show that the estimates {p~l) : n ~ I} form, with 
probability one, a Cauchy sequence in L1 (Po). As L1 (Po) is complete, the 
estimates must converge in L1 (Po) (and hence also in L1 (p» to some in­
tegrable limit F*. Finally, it is shown that F* = F with probability one. 
Note that, in contrast with standard histogram estimates, the partition in­
dex k(n) may not increase monotonically with n, nor need it grow at any 
pre-specified rate. It is precisely this flexibility that enables the estimates 
to perform effectively under very weak assumptions. 

11.4.2 Remarks and a Corollary 

The estimates P~l) of Proposition 11.1 are multivariate histograms. In some 
cases kernel type estimates with similar properties can be defined, but we 
have not pursued this line of inquiry. Note that both Po and M must be 
known before the estimate P~l) can be computed. 

Bosq and Guegan [7] consider the estimation of uniform mixing continu­
ous maps F using kernel density estimators. The assumptions here concern 
the measure preserved by F; no conditions are placed on the regularity of 
F or on its mixing properties. 

Under additional conditions on the derivative dp/ dpo, one can strengthen 
the mode of convergence in Proposition 11.1 and obtain estimates con­
sistent for individual sequences and non-ergodic transformations. See [2] 
for more details. When consistent estimates of the invariant density f = 
dp/dpo are available, the assumption that p E V(f.Lo, M) can be dropped. 
In the special case when d = 1 and Po is equal to Lebesgue measure, the 
density estimates of Nobel, Morvai, and Kulkarni [29] can be used to ob­
tain consistent estimates of every ergodic transformation F : IR -+ IR which 
preserves a measure f.L having compact support and a density f = dp/dx 
whose variation is less than a known constant. 

The family of transformations F for which the estimates P~l) are consis­
tent may be quite large. To illustrate this, let d = 1 and let Po be Lebesgue 
measure on [0,1]. Setting M = 1, the following corollary of Proposition 
11.1 is immediate. 
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Corollary 11.1. For every ergodic Lebesgue measure preserving map F : 
[0,1] --t [0,1] the estimates defined in {11.11}-{11.12} are such that J; JF~l) -
FJ 2du --t ° as n --t 00 for almost every initial value x E [0,1]. 

Among the ergodic Lebesgue measure preserving transformations of [0, 1] 
there is an uncountable sub-family S with the property that no two trans­
formations in S are isomorphic. The histograms F~l) give consistent esti­
mates of each transformation in S from almost everyone of its trajectories. 

11.5 Ergodic Systems with Dynamical Noise 

Recall that a system is said to obey a dynamical noise model if its state 
evolves according to the recursion 

(11.13) 

where Xo E lR.d is the initial state of the system, F : lR.d --t lR.d is a fixed 
map, and 

Z1, Z2,'" E lR.d are Ll.D., independent of Xo, and EZi = O. (11.14) 

Estimation of F from ergodic measurements obeying the dynamical noise 
model (11.13)-(11.14) is considered later, first for continuous maps, and 
then for arbitrary maps with absolutely continuous noise. 

11.5.1 Continuous Maps 
When F is assumed to be continuous, smoothing the measurements with 
a suitable histogram and then employing a nearest-neighbor-type rule will 
give uniformly consistent estimates of F. 

Description of the estimate: Let 11'1, 11'2, ••• be nested, finite partitions 
of lR.d satisfying (11.6). Let In be the largest l ~ 0 such that L~=o 11I'd ~ n, 
where 11I'd denotes the number of cells in 11'1. Given measurements Xo, ... , 
X n - 1 , define 

F,- ( ) _ L~:d Xi+1I{Xi E 1I'1(n)[Uj} 
n U - n-1 , 

Li=O I{Xi E 1I'1(n)[Uj} 

where l(n) is the largest l ~ In such that for each cell A E 11'1 either 

n-1 
LI{Xi E A} = o. 
i=O 

Define the estimate 
~ (2) -Fn (u) = Fn(X1'(u») where 'Y(u) argmin Ilu - Xiii· 

O::;i::;n-1 
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Thus F~2) is a nearest-neighbor estimate based on the histogram Fn. 

Theorem 11.1. Let {Xi: i ~ O} be a stationary ergodic sequence obeying 
the dynamical noise model {11.13}-{11.14}, and let I-' be the distribution of Xi. 
If F is continuous and Zi is bounded, then for every compact set A contained in 
the support of 1-', 

sup Ili~2)(U) - F(u)11 -t 0 
uEA 

with probability one as n -t 00. In particular, J IliP) - FW dl-' -t 0 with proba­
bility one as n -t 00 if F is bounded. 

Remark 11.1. The assumption that the noise Zi is bounded may be re­
placed by suitable tail conditions. When the distribution of Zi has a con­
tinuous density, a similar result can be deduced from work of Delecroix [10] 
(see Gyorfi et al. [17], Theorem 3.5.1). 

11.5.2 Absolutely Continuous Noise 

When the map F in (11.13) is not continuous, the estimates F~2) may 
fail to be consistent. However, if Xi has a density I, then it is possible to 
estimate irregular maps F when both I and the noise variance EZ2 are 
estimable. As is shown below, estimating these quantities is possible under 
very general conditions. 

Density Estimation 

Suppose that {Xi: i ~ O} is a stationary ergodic sequence obeying the 
dynamical noise model (11.13)-(11.14). Let /L be the distribution of the 
observed Xi and let v be the distribution of the perturbations Zi. Equation 
(11.13) implies that 

(11.15) 

where * denotes convolution. It follows from (11.15) that if the noise dis­
tribution v has a density with respect to Lebesgue measure A on IRd , then 
the same is true ofthe distribution /L of Xi. In other words, if dv/dA exists, 
so does I = d/L/dA. 

Gyorfi [15] and later Gyorfi and Masry [16] proposed and studied re­
cursive kernel density estimates that can be used to estimate I = d/L/dA. 
Their estimates are of the form 

(11.16) 

where K : IRd -+ IR is a non-negative kernel such that J Kdx = 1, and such 
that for each x E IRd the function K(cx) is non-increasing in 0 < c < 00. 
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Suppose the bandwidth sequence is of the form hi = i-b for some fixed 
b E (O,l/d). It is shown in Theorem 3.2 of Gy6rfi and Masry [16] that 
the estimates in are Ll-consistent for every ergodic process {Xi: -00 < 
i < oo} such that the conditional distribution of Xl given XO,X- I , ... 

is absolutely continuous with probability one. The next theorem follows 
directly from this result. 

Theorem 11.2. Let {Xi: i ~ O} be a stationary ergodic sequence obeying the 
dynamical noise model (11.13}-(11.14), and let p, be the distribution oj Xi. IJ the 
distribution v oj Zi has a density, then J = dp,/d)" exists and J lin - Jldx --+ 0 
with probability one. 

Estimation of Noise Variance 

Although the problems appear to be unrelated, it turns out that consistent 
estimates of the noise variance EIIZI1 2 can be used to obtain consistent 
estimates of the map F governing a dynamical noise model. Indeed, esti­
mating the noise variance may be of independent interest. Let 11"1, 11"2, ... 
be nested, finite partitions of Rd satisfying (11.6). Let m(n) be the largest 
integer m such that 111" m I ~ log n, and define 

(11.17) 

where Gk,n is the multivariate histogram defined in equation (11.7). 

Proposition 11.2. For every bounded stationary ergodic sequence {Xi 
i ~ O} obeying the dynamical noise model {11.13}-{11.14} the estimates rn --+ 
EIIZW = Var(Z) with probability one. 

Remark 11.2. If measurements X o, Xl, ... are generated by a dynamical 
noise model then the variance ratio 

K, = Var(Z)/ Var(X) = Var(Z)/(Var(F(X)) + Var(Z)) 

measures the size of the noise in relation to the overall variability of the 
dynamics. It indicates (in a rough sense) the extent to which the measure­
ments are deterministic or random. If K, = 0, then each Zi is identically zero 
and the measurements constitute a trajectory of F. On the other hand, if 
K, = 1 then F(Xi) is constant, and Xo, Xl, ... are Ll.D. with mean F(Xo). 
It is interesting then that one can estimate K, directly from the measure­
ments. In particular, if S;_l is the empirical variance of X o, ... , Xn- l , then 
r n/S;_l is a consistent estimate of K,. 
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Estimation of General Maps 

Using the estimates in and t n defined earlier to select a suitable partition, 
one may obtain histogram estimates consistent for general measurable maps 
F. 

Description of the Estimate. Let t1, t2, ... be any sequence of positive 
numbers tending monotonically to zero. Given measurements X o, ... ,Xn - 1 , 

let the density estimate in and variance estimate t n be defined as in (11.16) 
and (11.17), respectively. Define the multivariate histogram 

FA(3)( ) = E~:Ol X i+1 I {Xi E 1fr(n)[u]} 
n U n-1 ' 

Ei=o I {Xi E 1f r(n) [u]} 

where r( n) is the largest integer r 2:: 1 such that 

Here Gi,n and Lli,n are defined as in equations (11.7) and (11.8), and the 
integral is taken with respect to d-dimensional Lebesgue measure. Each of 
the quantities appearing in (11.18) may be evaluated once the measure­
ments are obtained, so F~3) is well defined. By combining Theorem 11.2 
and Proposition 11.2 with a modification of Theorem 1 in Nobel and Adams 
[28], one obtains the following result. 

Theorem 11.3. Let {Xi : i ~ O} be a stationary ergodic sequence obey­
ing the dynamical noise model {11.13}-{11.14}, where F is assumed only to be 
measurable. If Xi is bounded and the distribution of Zi has a density, then 

with probability one, where J1, is the distribution of Xi. 

Remark: The proof of Theorem 11.3 follows the same sequence of steps 
as the proof of Proposition 11.1. Under the conditions of the theorem the 
partition index r(n) used to define F~3) will tend to infinity with the sample 
size n. However the index r(n) may not increase monotonically with n, nor 
will it necessarily grow at a pre-specified rate. 
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Chapter 12 

Extracting Dynamical Behavior 
via Markov Models 
Gary Froyland 

ABSTRACT Statistical properties of chaotic dynamical systems are dif­
ficult to estimate reliably. Using long trajectories as data sets sometimes 
produces misleading results. It has been recognized for some time that sta­
tistical properties are often stable under the addition of a small amount 
of noise. Rather than analyzing the dynamical system directly, we slightly 
perturb it to create a Markov model. The analogous statistical properties 
of the Markov model often have "closed forms" and are easily computed 
numerically. The Markov construction is observed to provide extremely ro­
bust estimates and has the theoretical advantage of allowing one to prove 
convergence in the noise -+ 0 limit and produce rigorous error bounds for 
statistical quantities. We review the latest results and techniques in this 
area. 

12.1 Introduction and Basic Constructions 

Suppose that we find ourselves presented with a discrete time! dynami­
cal system, and we would like to perform some (mainly ergodic-theoretic) 
analysis of the dynamics. We are not concerned with the problem of em­
bedding, nor with the extraction of a system from time series. We assume 
that we have been presented with a dynamical system and do not question 
its validity. 

Any analysis of a dynamical system involving average quantities requires 
a reference measure with which to average contributions from different 
regions of phase space. Often the measure that one wishes to use is the 
probability measure described by the distribution of a typical long trajec­
tory of the system; it is commonly called the natural measure or physical 
measure of the system. 

lSimilar constructions for flows are possible by considering the "time-t" map. 

A. I. Mees (ed.), Nonlinear Dynamics and Statistics
© Birkhäuser Boston 2001
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12.1.1 What Do We Do? 

This chapter discusses a method of modeling the dynamics by a finite state 
Markov chain. Naturally such a model contains much less information than 
the original dynamical system. However, this simplification of the dynam­
ics allows the exact computation of many properties of the Markov chain 
which correspond to important indicators and properties of the original dy­
namics: for example, finding invariant sets, obtaining invariant measures, 
calculating rates of mixing and the spectrum of eigenvalues of transfer oper­
ators, computing means and variances of recurrence times, and estimating 
Lyapunov exponents; all of these calculations are exact? for the Markov 
chain. We hope that although we are throwing away a lot of information in 
our Markov model, we retain the essential properties of the original system. 
The questions then are: (i) Are these quantities computed for the Markov 
model good estimators of the corresponding quantities for the original sys­
tem, and (ii) how best to define these Markov models for various sorts of 
systems. 

12.1.2 How Do We Do This? 

We describe the fundamental construction of the modeling process. Con­
sider a dynamical system (M,T) defined by a map T : M~, where M is 
a compact subset of Rd. Partition the phase space into a finite number of 
connected sets {A l , . .. ,An} with nonempty interior. Usually, this partition 
will take the form of a regular grid covering the phase space M. We now 
completely ignore any dynamics that occurs inside each individual parti­
tion set, and focus only on the coarse-grained dynamics displayed by the 
evolution of whole partition sets. To form our Markov model, we identify 
each set Ai with a state i of our n-state Markov chain. We construct an 
n x n transition matrix P, where the entry Pij is to be interpreted as: 

Pij = the probability that a typical point in Ai moves into Aj 
(12.1) 

under one iteration of the map T. 

We now meet the notion of typicality and begin to impinge on ergodic­
theoretic ideas. Leaving formality for the moment, we shall assume that the 
trajectories {x, Tx, T 2 x, . .. } of Lebesgue-almost-all initial points x E M 
have the same distribution on M. This distribution may be represented 
as a probability measure, denoted by J.t. Now, in light of (12.1), the most 
natural definition of Pij is 

(12.2) 

2 A further approximation must be introduced for the calculation of Lyapunov expo­
nents. 
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since Fij = ProbJt{Tx E Ajlx E Ad. Unfortunately, the natural measure 
J.L is usually unknown and for want of a better alternative, we compute a 
(slightly) different transition matrix using normalized Lebesgue measure m 
instead of p,: 

E. _ m(Ai nT-1Aj ) 
>J - m(Ai) . (12.3) 

Several numerical techniques have been put forward regarding the compu­
tation of P; see Section 12.6.1. 

12.1.3 Why Do We Do This? 

The alternative to Markov modeling of the dynamics via some coarse grain­
ing is to simply simulate very long orbits of the dynamical system. For the 
purposes of this discussion, we restrict ourselves to the problem of approx­
imating the probability measure J.L that describes the asymptotic distribu­
tion of almost all trajectories. 

Given a long orbit {x,Tx, ... ,TN-1x}, one is implicitly approximat­
ing the long-term distribution J.L by the finite-time distribution J.LN(X) := 

tv L~~;/ r5T k x , where r5x is the delta-measure at x E M. This is certainly 
a simple way to compute an approximate invariant measure (or long-term 
distribution), as it does not involve any complicated matrix constructions; 
one just iterates one's map. There are however, drawbacks to this sim­
ple approach. It is possible that orbits display transient (nonequilibrium) 
behavior for lengthy periods of time before settling into a more regular 
(statistically speaking) mode. Thus, by following a simulated orbit for a 
finite time, there is the risk that one is only observing this transient behav­
ior and not the true asymptotic behavior of the system. There is also the 
problem of computer roundoff; try to find the long-term distribution of the 
tent map or the circle doubling map by iterative simulation (all trajectories 
are attracted to 0 in finite time). These are extreme cases, but the potential 
compounding inaccuracy of long computer-generated orbits should not be 
forgotten. Let's be generous though, and assume that our approximation 
J.LN(X) actually does (weakly) converge to J.L. How fast does this happen? 
What is the convergence rate with respect to the length of the orbit N? 
Can one produce rigorous error bounds for the difference between the dis­
tributions J.LN(X) and J.L? For the most part, the answer to each of these 
questions is "We don't know yet". In toy cases, one can produce extremely 
crude probabilistic lower bounds for the error, of the form C /.IN, but this 
is not really satisfactory. 

Our method of Markov modeling attempts to overcome all of these dif­
ficulties. Transient effects are completely removed as we model the system 
as a Markov chain and its asymptotic behavior may be computed exactly. 
Computer roundoff is not so much of a problem, as we are now only com­
puting a single iterate of the dynamics rather than a compounding sequence 
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of iterations. The constructions also permit a rigorous treatment of ques­
tions like rates of convergence, error bounds, and even just whether conver­
gence occurs at all. Finally, from the practical point of view, the method of 
Markov coarse graining is often very efficient computationally, producing 
better answers in less time. 

This discussion has primarily been aimed at the computation of invari­
ant measures, but it also applies to the computation of other dynamical 
indicators such as the rate of decay of correlations, Lyapunov exponents, 
and statistics of recurrence times. The rate of decay of correlations and 
the isolated spectrum of transfer operators in particular are notoriously 
difficult to estimate via iterative techniques. 

12.2 Objects and Behavior of Interest 

In this section we give a summary of the definitions and properties of 
the objects we wish to estimate. Additional applications are outlined in 
Section 12.5. 

12.2.1 Invariant Measures 
The fundamental object for ergodic-theoretic concepts is an ergodic invari­
ant probability measure p. One should think of p(B) as representing the 
proportion of "mass" that is contained in the subset B eM. The invari­
ance condition of f..t is f..t = f..t 0 T- 1 • This is a generalized "conservation of 
mass" equality; the mass distribution described by f..t is preserved under the 
action of T, in the same way that area-preserving maps preserve Lebesgue 
measure. Ergodicity is the measure-theoretic equivalent of topological tran­
sitivity. IT two sets A and B both have positive f..t-measure, then there is an 
N ~ 0 such that f..t(A n T- N B) > 0; in other words, any region of positive 
f..t-mass may be evolved forward to intersect any other region of positive 
f..t-mass, with the intersection also having positive mass. Ergodic systems 
are indecomposable in the sense that f..t-almost all starting points produce 
orbits with the Same asymptotic distribution. The Birkhoff theorem [4, 52] 
tells us that the frequency with which orbits of f..t-almost all starting points 
visit a set B is equal to the f..t-measure of Bj formally, 

Nlim (1/N)#{0 ~ k ~ N - 1 : Tkx E B} = f..t(B) 
--+00 

(12.4) 

for JL-almost all x EM. However, as in the case of dissipative systems, 
there may be a thin invariant attracting set A with f..t(A) = 1, but m(A) = 
O. Equation (12.4) gives us no information about orbits starting off this 
invariant set. 
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Definition 12.1. An ergodic invariant probability measure is called a natural 
or physical measure, if 

N-l 

lim ~ L f(Tk x ) ~ r fdJ.t 
N~oo k=O 1M 

(12.5) 

for all continuous f : M ~ lR and Lebesgue-almost-all x EM. 

An alternative way of phrasing the definition of a physical measure is 
to state that the measure JLN(X) of Section 12.1.3 converges weakly to JL 
as N -t 00 for Lebesgue-almost-all x EM. When talking about physical 
measures, Equation (12.4) may be strengthened to: 

Corollary 12.1. 

J~oo ~#{0:5 k:5 N -1: Tkx E B} = J.t(B) (12.6) 

for any subset B C M with J.t(aB) = 0, and for Lebesgue-almost-all x EM. 

Corollary 12.1 says that "randomly chosen" initial conditions will, with 
probability one, produce trajectories that distribute themselves according 
to the natural measure JL. Deterministic chaotic systems typically have 
infinitely many ergodic invariant measures (for example, a convex combi­
nation of 8 measures on a periodic orbit), but only one physical measure. 

Example 12.1. The linear mapping of the torus T : ']['2 ~ defined by 
T(x,y) = (2x+y,x+y) (mod 1) has infinitely many ergodic invariant measures. 
For example, 6(0,0) and m = Lebesgue measure. Of all the ergodic invariant 
probability measures, only m satisfies (12.5). 

12.2.2 Invariant Sets 
We approach invariant sets in a rather roundabout way; we will describe 
them as the support of the physical measure, supp JL, where supp JL is the 
smallest closed set having JL measure of 1 (equivalently, x E supp JL iff every 
open neighborhood of x has positive JL measure). It is easy to show that 
T(suppJL) = sUPPJL and sUPPJL C T-l(SUppJL). 

The reason for choosing supp JL as the distinguished invariant set, rather 
than some invariant set defined via topological conditions is as follows. Let 
x be an arbitrary point in supp JL, and B,(x) be an open neighborhood of 
size € about x. By (12.5), orbits of Lebesgue-almost-all initial points visit 
B,(x) infinitely often and with a positive frequency of visitation. Mean­
while regions away from supp JL are visited with frequency O. As we wish to 
find the invariant set which appears on computer simulations of trajecto­
ries, it makes sense to consider only the support of JL and not some larger 
topologically invariant set. 
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12.2.3 Decay of Correlations 

The measure-theoretic analogy of topological mixing is (measure-theoretic) 
mixing. We say that a system (T, J.t) is mixing if J.t(AnT-N B) -+ J.t(A)J.t(B) 
as N -+ 00 for any pair of measurable subsets A, B eM. This condition 
says that the probability that a point x lies in a set B at time t = 0 
and then moves to a set A at time t = N (for large N) is roughly the 
product of the measures of the sets A and B. That is, for large N, the 
two events {x E B} and {TN x E A} become statistically independent, or 
decorrelated. For dynamical systems with some degree of smoothness, this 
loss of dependence is often studied via the formula: 

C"g(N) := II f 0 TN. 9 dJ.t - I f dJ.t· I 9 dJ.tI' (12.7) 

where f E DXJ(M, m) and 9 : M -+ lR has some smoothness properties. If 
one thinks of the functions f, 9 : M -+ lR as "physical observables" (out­
put functions giving numerical information on some physical quantities of 
the system), then C"g(N) quantifies the correlation between observing gat 
time t and f at time t+N. If f = g, we obtain what is commonly known as 
the autocorrelation function. For many chaotic systems, it is observed that 
C"g(N) -+ 0 at a geometric rate, and it is of interest to estimate this rate. 
The rate of decay can be interpreted variously as providing information 
on how quickly the system settles into statistically regular behavior, how 
quickly transient behavior disappears, and how quickly physical observables 
become decorrelated. For all of these interpretations, the physical measure 
J.t is central as it provides the reference measure that describes statisti­
cal equilibrium for the system. Correlation decay has strong connections 
with transfer operators (or Perron-Frobenius operators) and the spectrum 
and corresponding eigenfunctions of these operators. We postpone further 
discussion of these objects until Section 12.3.3. 

12.2.4 Lyapunov Exponents 

The Lyapunov exponents of a (piecewise differentiable) dynamical system 
describe the average local rates of expansion and contraction in phase space 
that are felt along typical trajectories. We may define them as the various 
values of .x that are observed3 in the following expression, as v is varied 
over lRd 

(12.8) 

As our dynamical system satisfies Equation (12.5), it is immediate that 
Lebesgue-almost-all trajectories will produce the same d values of .x, and 

3For a d-dimensional system, >. may only take on at most d different values. 
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these values will be called the Lyapunov exponents4 of T. 
Later we will be discussing Lyapunov exponents of random matrix prod­

ucts. These can be defined in an analogous way. 

12.2.5 Mean and Variance of Return Times 

The statistics of return times of orbits to subsets of phase space have not 
received a great deal of attention in the dynamical systems literature. A 
recent exception is [59], where regularity properties of return times are used 
to prove existence of physical measures and characterize rates of decay of 
correlations as exponential or algebraic. Suppose that one is given a subset 
Be M with JL(B) > O. Every time a typical trajectory enters B, we note 
the number of iterations since the orbit last entered B. In this way, we 
obtain a sequence of times to, It, ... such that Ttix E B, i ~ O. We may 
now ask what the mean and variance of this sequence of times are. Formally, 
we define a function R : M --+ ~+ by R(x) = inf{k ~ 1 : Tkx E B}, and use 
this return time function to define an induced map Tx = TR(x)x, where 
T : B~. It is straightforward to show that JLIB (defined by JLIB(C) = 
JL(C)/JL(B) for C C B) is T-invariant. Therefore, we can define the mean 
return time 

lE"IB (R) = L R(x) dJLIB(x), (12.9) 

and the variance of the return times as 

(12.10) 

By Kac's theorem [34, 52), lE"IB (R) = 1/ JL(B) provided JL is ergodic. A 
corresponding simple formula for the variance is not known. 

12.3 Deterministic Systems 

In the first of two parts, we focus on deterministic systems. We show how 
each of the objects outlined in Section 12.2 will be approximated using 
the Markov model. We begin each subsection by simply outlining the con­
structions and computations one performs in practice. At the end of each 
subsection, we state situations where rigorous results are obtained. While 
the Markov systems appear to retain many of the salient features of the 
original system, the smooth dynamics is completely lost, so it is not at all 
straightforward to prove strong approximation results. 

4Lyapunov exponents depend very much on a reference measure (in this case the 
physical measure) in order to be defined. 
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12.3.1 Basic Constructions 

The region M is covered with a collection of connected sets '.Pn = {An,l, 
... , An,n} with nonempty interiors. This covering has the properties that 
(i) U~=I An,i = M and (ii) Int An,i n Int An,j = 0 for i ¥- j, where Int A 
denotes the interior of A. We think of each Ai as being a closed set, so that 
we do not have a partition in the strict sense, as the sets in the covering 
share boundaries. 

We construct the matrix5 

P. .. _ m(An,i n T- I An,j) 
n,'] - (A .) 

m n,' 

as in (12.3). 
Clearly, the quality of our Markov model depends heavily on the choice 

of partition, and it stands to reason that finer partitions produce better 
models (this will soon be made more precise). We will frequently produce a 
sequence of Markov models, each constructed from successively finer parti­
tions, until we are satisfied with the accuracy of the estimates produced by 
the model. Sometimes one can produce better models by clever refinement 
strategies; these are discussed in Section 12.6.2. 

12.3.2 Invariant Measures and Invariant Sets 
ROUGH IDEA: The invariant density of the Markov chain approximates the 
physical invariant measure of T. 
REQUIRED COMPUTATION: Calculate the fixed left eigenvector of P. 

We fix our partition {An,I,"" An,n} and calculate Pn and Pn, normal­
izing Pn so that E~=I Pn,i = 1. The value Pn,i is the weight given to state i 
by the stationary distribution of the Markov chain. Since state i represents 
the set An,i in our smooth space, we define an approximate invariant mea­
sure /Ln by assigning /Ln(An,i) = Pn,i' Within the set An,i, we distribute 
the mass in any way we like. A common method is simply to spread the 
weight Pn,i uniformly over An,i, so that formally, 

~ )m(An,i n B) 
/Ln(B) := t;;: /Ln(An,i m(An,i) . (12.11) 

As we increase the number of partition sets n through refinement, some 
of these refined sets will be given zero measure by /Ln as an indication that 
trajectories spend no, or almost no, time in these regions. Thus we expect 

5This construction is often called Ulam's method, as it was first proposed in [56] to 
use the matrix Pn to approximate invariant densities of interval maps. 
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that supp /-Ln' C supp /-Ln for n' > n (this can be made rigorous if T is a 
topological attractor [46]). 

Further, since M is compact, the space of Borel probability measures 
on M (denoted M(M)) is compact with respect to the weak topology. We 
may therefore continue this refinement procedure "forever" and extract a 
limiting measure /-L* as 

/-L* = lim /-Ln, 
n-too 

(12.12) 

taking a convergent subsequence if necessary to define the limit. It is always 
assumed that maxl~i~n diam An,i -t O. 

We have the following results concerning these approximations. 

Theorem 12.1. Suppose that T : M~ is continuous and has a physical 
measure 1'. Let p.n denote the approximate invariant measures and 1'" a weak 
limit of this sequence. Denote by S the intersection n::'=no supp p.n. Then 

1. 1'" is T -invariant. 

2. suppp." C suppp.n for all n ~ 0, and therefore suppp." C S. 

3. suppp. C suppp.n for all n ~ 0, and therefore suppp. C S. 

Proof: 

1. By noticing that the Markov models are small random perturbations [39, 
41] of T, it is relatively simple to prove that 1'" is T-invariant [14, 26]. 

2. This is a straightforward consequence of weak convergence. 

3. This is proven in [45, 46]. 

o 

The first result of Theorem 12.1 says that weak limits of the sequence 
of numerically computed measures /-Ln are T-invariant. In other words, we 
are in fact approximating some T-invariant probability measure. However, 
there is the question of which invariant measure this is, as /-L* may be 
distinct from /-L, the physical measure we wish to approximate. In this very 
general formulation, it is (as yet6 ) not possible to say that /-L* = /-L. 

Parts (ii) and (iii) of Theorem 12.1 say that at least the supports of the 
computed measures /-Ln do contain the supports of both /-L* and /-L, so that 

6 A sign which may be taken as promise, or simply a state of ignorance, is that the 
author does not know of a continuous dynamical system T with physical measure I' for 
which 1'" i- I' (using reasonably "regular" partitions and refinements which keep the 
partition sets as approximate d-dimensional "cubes" of approximately the same shape 
and size). 
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by stopping our computation at some finite n, we are not "losing" regions 
that are given positive measure by the physical measure J-l. 

Example 12.2. (The stiletto map). We introduce the Stiletto map [54] 
T:IR?~. 

T(x, y) = ((x + 1/3) exp( -3x + 2) - 1/3 + y, 3x/1O). (12.13) 

This map seems to possess chaotic dynamics on a fractal attracting set; see Fig­
ure 12.1. By selecting M C 1R? to be a sufficiently small neighborhood of the 

0.8,----,----,---,----r----,---.... ----, 

0.6 

0.4 

0.2 

o 

-0.2 L-__ -l. ___ ...l... ___ -'--__ ---'L-__ -l. ___ ...l... __ ---l 

-0.5 o 0.5 1.5 2 2.5 3 

FIGURE 12.1. Trajectory of length 104 generated by the Stiletto map. 

observed attracting set, it numerically appears that Lebesgue-almost-all x E M 
exhibit the invariant distribution described by the density of points in Figure 12.1. 
It is assumed that this distribution of points (in the infinite limit) describes the 
physical measure J.L. We construct a Markov model using 1215 partition sets, 
where the sets are rectangles of equal size. The support of the resulting approxi­
mate invariant measure is shown in Figure 12.2, and the approximation itself is 
shown in Figure 12.3. We have used a relatively low number of partition sets for 
ease of viewing. Even for this crude model, there is good agreement between the 
distributions in Figures 12.1 and 12.3. 

Rigorous Results 

To state that J-l* = J-l, we require further restrictions on the map T and the 
partition ~n; in general, even the question of existence of a physical measure 
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0.8 

-0.2 '--__ --'---__ ----'-___ -'---__ --'-__ ---' ___ ...L.-__ ---' 

-0.5 o 0.5 1.5 2 2.5 3 

FIGURE 12.2. The support of an approximate invariant measure 
(SUpp 1-ll215) shown as boxes. 

for a given nonlinear system is still open. In one dimension, there is the 
classical existence result of Lasota and Yorke [43] that states that physical 
measures (probability measures with bounded densities) exist for piecewise 
C2 interval maps T : [0, 1] ~ with infx IT'(x)1 > 1. Li [44] first proved 
that under the additional constraint that infx IT'(x)1 > 2, these invariant 
densities could be approximated using Ulam's method in the sense that 
11J.l- J.lnllLl -+ 0 as n -+ 00. Since the publication of [44], there have been 
many variations of this basic result. In the setting of [44], Keller [36] proved 
11J.l-J.lnll£1 = O(logn/n). Recent results (often under additional "ontoness" 
assumptions) have focused on expllcit error bounds for the difference 11J.l­
J.lnll£1; [17,35,49]. 

For higher-dimensional uniformly expanding systems, very roughly speak­
ing, the papers of Boyarsky and Gora [27] and Ding [12] mirror those of [43] 
and [44]. There are several additional technical constraints on the map T 
and the partitions I.l3n that we do not discuss. Again under some ontoness 
conditions, Murray [48] applies the methods of [49] to provide error bounds 
for 11J.l - J.lnllLl. 

For uniformly hyperbolic systems, the author [14, 18] shows that J.ln -+ J.l 
weakly (resp. in £1) when the physical measure J.l is singular (resp. abso­
lutely continuous), provided that the partitions I.l3n are Markov partitions. 

A combination of theory and numerics [16] suggests that the convergence 
rate o (log n/n) holds in reasonable generality for systems with good mixing 
properties. 
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O.s· 
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0- ... 

-0.2 
-0.5 o 0.5 1.5 2.5 3 

FIGURE 12.3. Representation of an approximate invariant (physical) 
measure (1'1215) for the Stiletto map; darker regions indicate higher 
density and more mass. 

12.3.3 Decay of Correlations and Spectral Approximation 
ROUGH IDEA: The spectrum of the matrix P approximates the spectrum 
of the Perron-Frobenius operator. 
REQUIRED COMPUTATION: Calculate the eigenvalues of P. 

We begin by noting that we have an alternative formulation of (12.7) in 
terms of the Perron-Frobenius operator7 P : L1 (M, m) ~. 

Lemma 12.1. Let F be a class of real-valued functions preservetf by P. Let 
u(P) denote the spectrum of P when considered as an operator on F, and set 
r = sup{lzl : z E u(P) \ {I}}. Then there is a constant C < 00 such that 
C"g(N) ~ CrN if 9 E F and f E LOO • 

This result says that we may bound the rate of decay of correlations by 
the maximal nonunit spectral value for the operator Pj see Figure 12.4 (up­
per right) for the typical spectral plot we have in mind. The Ulam matrix 
Pn may be thought of as a projection of P onto a finite-dimensional space. 

7See [6, 42) for definitions and properties of the Perron-Frobenius operator. 
sFor example, if Tis C'Y, then C'Y- 1(M, JR.) is preserved by P, and if T : [0, 1)~ is 

a Lasota- Yorke map, then functions of bounded variation are preserved by P. 
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Naively, then, we may think that the spectrum of the matrix Pn will ap­
proximate the spectrum of the Perron-Frobenius operator. This would be 
very useful, as it is simple to compute the spectrum of Pn since the matrix 
is very sparse and there are numerical routines to compute only eigenval­
ues which are large in magnitude (these are the ones that are principally 
of interest). Furthermore, the eigenfunctions of P corresponding to large 
eigenvalues are also of interest, as they indicate the sorts of mass distri­
butions that approach the equilibrium distribution (the physical measure) 
at the slowest possible rate. Perhaps we can also approximate these slowly 
mixing distributions (eigenfunctions of P) as eigenvectors of the matrix P. 
If we can, there is the question of what these slowly mixing distributions 
represent. One generally thinks that the rate of mixing is determined by 
expansion properties of the dynamical system; that is, the more expansive 
(or more "chaotic"), the greater the rate of decay. But the existence of 
distributions which mix at a rate slower than that dictated by the minimal 
expansion rate of the system presents a seemingly paradoxical situation. 
Arguments in [7, 9, 11] suggest that these distributions describe "macro­
scopic structures" embedded within the dynamics, which exchange mass 
very slowly and work against the chaoticity. 

Rigorous Results 

There are two situations where these ideas can be made rigorous. First, for 
one-dimensional maps, there is the recent result of Keller and Liverani [37]. 

Theorem 12.2. Let BV denote the space of functions of bounded variation 
on [0, I]. Suppose T : [0, I] ~ is an expanding, piecewise C2 interval map, with 
inf",E[O,11IT'(x)1 = 0 > 1. Then isolated eigenvalues ofP : BV~ outside the disk 
{Izl ~ I/o} and the corresponding eigenfunctions are approximated by eigenval­
ues and the corresponding eigenvectors of Pn (eigenfunction convergence in the 
L1 sense). The convergence rote for the eigenvectors to the eigenfunctions for 
eigenvalues z E (0,1) is O(n- r ), where ° < r(z) < 1, while the eigenvector 
approximating the invariant density (z = I) converges like O(logn/n). 

Example 12.3. (The double wigwam map). We introduce the map T : 
[0, I] ~ defined by 

{ 

-2x + 1 - sin(411'x)/30, 

T(x) = 3(x -1/4) + 1/4 + sin (411' (x - 1/4»/10, 
3(x -1/2) - sin(411'(x - 1/2»/10, 

-2(x - 1) - sin( -411')/30, 

° ~ x < 1/4 
1/4 ~ x < 1/2 

1/2 ~ x < 3/4 

3/4 ~ x ~ 1, 

the graph of which is shown in the upper-left frame of Figure 12.4. Theorem 
12.2 will be used to show that the spectrum of P : BV ~ contains a non­
trivial isolated eigenvalue, and therefore a rate of decay slower than that 
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prescribed by the minimal expansion rate. As T is a Lasota- Yorke map, 
the classical result of [43] tells us that T possesses an invariant density 
(this is the density of the physical measure). The result of Li [44] tells us 
that this invariant density may be approximated by eigenvectors of the 
Ulam matrices. The bottom-left frame of Figure 12.4 shows a plot of an 
approximation of the invariant density using an equipartition of [0, 1] into 
512 sets. The upper-right frame shows the spectrum of the resulting 512 x 
512 matrix. The large dotted circle denotes {Izl = I}, and the dash-dot 
inner circle shows the upper bound for the essential spectral radius for 
this map {Izl = 0.6325}, 0.6325 = 1/ infzE[o,l]IT'(x)l. The cross shows an 
eigenvalue of PS12 that is clearly outside this inner region and therefore 
corresponds to a true isolated eigenvalue of P. The eigenfunction for this 
isolated eigenvalue is plotted in the lower-right frame. 

~ 

The double wigwam map 

0.6 

0.4 

0.2 

o~------~------~ o 0.5 
x 

Invariant density 
1.5 r-----------~------___, 
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0 0.2 0.4 0.6 0.8 
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0.5 
1: 
~ 
~ .. 0 c: 

:f 
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.... .-
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real part 

Eigenfunction for second eigenvalue 

0.2 0.4 0.6 0.8 
x 

FIGURE 12.4. (upper left): Graph of T; (upper right): Spectrum of 
512 x 512 transition matrix P512, the small circle represents the eigen­
value 1, the small cross represents another isolated eigenvalue; (lower 
left): Plot of the invariant density ofT (the eigenfunction for the eigen­
value 1); (lower right): Plot of the eigenfunction for the second isolated 
eigenvalue. 

What about higher-dimensional systems? For uniformly hyperbolic sys­
tems, a standard technique is to factor out the stable directions and con-
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sider only the action of T along unstable manifolds WU. This induces an 
expanding map TE : W U ~ with corresponding Perron-Frobenius operator 
PE. We have the following result. 

Theorem 12.3. ([15]). Let T: M~ be C"y+1 , 0 <, s: 1, uniformly hyper­
bolic, and possess a nice9 Markov partition. Construct Pn by setting \1Jn to be a 
refinement of this Markov partition, and consider PE to act on the function space 
C"y(wu,JR). Isolated eigenvalues ofPE : C"Y(wu,JR)~ and the corresponding 
eigenfunctions are approximated by eigenvalues and the corresponding eigenvec­
tors of Pn (eigenfunction convf;rgence in the smooth COY sense). The rate of con­
vergence of both the eigenvalues and the eigenvectors to the isolated eigenvalues 
and corresponding eigenfunctions of P is O(1/nT), where 0 < r < 1 depends10 

only on maximal and minimal values of the derivative of T in unstable direc­
tions, and convergence of the eigenfunctions (including the invariant density) is 
with respect to the stronger smooth norm. 

In the hyperbolic case, a bound for the rate of decay for the full map T 
may be extracted from the rate of decay for the induced expanding map 
TE (see [15]). The case of uniformly expanding T is a simple special case 
of Theorem 12.3. 

12.3.4 Lyapunov Exponents and Entropy 

ROUGH IDEA # 1: Lyapunov exponents may be calculated by averaging 
local rates of expansion according to the physical measure (a spatial aver­
age). 
ROUGH IDEA #2: The Lyapunov exponents of the Markov model approx­
imate the Lyapunov exponents of T. 
ROUGH IDEA #3: The local stretching rates and dynamics may be encoded 
in the matrix P to provide Lyapunov exponent and entropy estimates. 

We begin by recalling that for one-dimensional systems, the expression 
(12.8) may be rewritten as 

,\ = 1M log IT'(x)1 dJ-L(x) (12.14) 

by a straightforward application of (12.5) with f(x) = log IT'(x)l. Thus, 
once we have an estimate of the physical measure J-L, it is easy to compute 

9See [18] for a definition of nice. 
lOLet 1/1 (resp. l/L) denote the minimal (resp. maximal) stretching rate of Tin 

unstable directions. Then r = log(l)/2Iog(L) and convergence is in the 11·11"y/2 norm. 
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an approximation of .oX via 

(12.15) 

where Xn,i E An,i (for example, Xn,i could be the midpoint of the inter­
val An,i). The error bounds for IIIl - Ilnlll (when available) immediately 
translate into rigorous bounds for the error IA - Ani. We now turn to mul­
tidimensional systems. 

Approach #1 

The direct use of the physical measure for Lyapunov exponent computation 
may be extended to higher-dimensional systems by rewriting (12.8) as 

(12.16) 

where {WX}xEM is a family of unit vectors in Rd satisfying the identity 
DxT(wx) = WTx; different families yield the different Lyapunov expo­
nents (see [21, 22, 53] for details). For the remainder of this section, we 
consider the problem of finding the largest Lyapunov exponent Ai ; the 
remaining exponents may then be found via standard methods involv­
ing exterior products. We denote the vector field corresponding to Ai 
by {w;}. The vector w; is the eigenvector of the limiting matrix Ax := 
limN-+(X) ((DxT-N) T (DxT- N) )1/2N corresponding to the smallest eigen­
value (in magnitude) [53]. One may approximate the vector w; by comput­
ing the smallest eigenvector of the matrix AN,x := (DxT- N) T (DxT- N) 
for some small finite N. For N = 7, the approximate vector field {wJv x} 
for the Stiletto map is shown in Figure 12.5. Thus we may compute 'an 
approximation to (12.16) by 

n 

A;,N = L log IIDxn,iT(WTv,xn)11 . Pn,i (12.17) 
i=l 

where wTv,x denotes the eigenvector obtained from AN,x; see Table 12.1. 

TABLE 12.1. Lyapunov exponent estimates for the Stiletto map using 
the method of [22] and the approximate invariant measure of Figure 
12.3. 
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Approach #2 

Through our Markov modeling process, we have approximated the dynam­
ics of T as a large Markov chain governed by Pn . To each state i in the 
Markov chain, we may associate the Jacobian matrix DXn,iT, where Xn,i 

denotes the center point (for example) of the partition set An,i. We now 
consider the Lyapunov exponents of this Markov chain; as we move from 
state to state along a random orbit of the chain, we mUltiply together the 
matrices we have assigned to these states. This produces a random com­
position of matrices, and the theory of Lyapunov exponents for random 
matrix products is well developed (see Section 12.3.4 [1], for example). 
Continuing our theme of "the deterministic dynamics is well approximated 
by the Markov model", we compute the top Lyapunov exponent of the 
Markov model and use this as an approximation of A 1. The top Lyapunov 
exponent for this Markov chain is given by an equation of the form: 

A~ := t ( r log IIDxn,iT(V)1I ~;'i(V)) . Pn,i 
i=l JRPd-l 

(12.20) 

where ~;,i is a probability measure on IRPd- 1 (d - I-dimensional real pro­
jective space, or "the space of directions in Rd,,); see [20, 21] for details. 

TABLE 12.3. Lyapunov exponent estimates for the Stiletto map using 
the method of [21]. 

Whereas the vector wi . indicates a single direction in which to measure 
the stretching caused by nVxn,iT, the measure ~;,i indicates a distribution 
of directions in which to measure the stretching. This distribution is essen­
tial, as the vectors wi often vary within partition sets (for example, near 
the "toe" area of the Stiletto attractor where the unstable manifold bends 
sharply), so it is necessary to "average" these directions within partition 
sets, rather than take a single direction as in Approach #1. Roughly speak­
ing, the distribution ~; i can be thought of as a histogram of the vectors 
wi, x E An,i' For reaso~s of space, we refer the reader to [20, 21], in which 
the details of the calculation of A; are spelled out. 

Rigorous Results (Approach #3) 

The two preceding approaches are not rigorous. Approach #1 is not rig­
orous because we do not know that /In --+ /l (although numerically this 
appears to happen). Approach #2 additionally suffers from the possible 
sensitivity of the Lyapunov exponents to perturbations of the system - for 
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example, the perturbation we used to create the Markov model- however, 
this sensitivity is also rarely observed numerically. In the uniformly expand­
ing or uniformly hyperbolic case, if we use a Markov partition to construct 
our transition matrix, one can prove convergence of Lyapunov exponent 
estimates to the true value, and additionally, obtain rigorous estimates of 
the metric entropy and escape rate / pressure of the system. 

Theorem 12.4. ([18]). Construct Qn = m(An,i n T- 1 An,j)/m(An,j) using 
a nice Markov partition. Let (}n denote the largest eigenvalue of Qn, and Vn the 
corresponding right eigenvector. Construct the stochastic matrix 

and compute the fixed left eigenvector pn of Pn . Define /-tn as in {12.11} with 
/-tn(An,i) = pn,i. Define 

n 

An := - E Pn,iPn,ij log Qn,ij 
i,j=l 

hn := log (}n + An 

(12.21) 

(12.22) 

Then as n -t 00, /-tn -t /-t, An -t E>.(i»O A(i) (the sum of the positive Lya­
punov exponents), hn -t hp.(T) (the measure-theoretic entropy of T with respect 
to /-t), and (}n -t peT) (the topological pressure of T). Convergence rates are also 
available. 

12.3.5 Mean and Variance of Return Times 
ROUGH IDEA: The mean and variance of return times calculated for the 
Markov model approximate those of T. 
REQUIRED COMPUTATIONS: Calculate the fixed left eigenvector of P, and 
solve a linear equation of the form Ax = b. 

We have the following abstract result: 

Theorem 12.5. Let T : X ~ preserve an ergodic invariant measure /-t. Let 
Be X, with 0 < /-t(B) < 1, and set Be = X \ B. 

(i) 

lEP.IB (R) = 1/ /-t(B), (12.23) 

(ii) 

(12.24) 
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Part (i) is due to Kac [34] and (ii) to Blum and Rosenblatt [5] (though we 
have used the version given in [13]; see also [58]). Theorem 12.5 reduces the 
problem of calculating varl'lB (R) to a calculation of IEI'IBC (R), the expected 
first absorption time into B for points in Be. The calculation of first ab­
sorption times is simple to do when the dynamical system is a finite state 
Markov chain. 

Let B be a subset of the phase space M. This set will be covered by a 
collection of partition sets An,il' .. . , An,i.; in practice, one obtains more 
accurate results if it can be arranged so that B is exactly a union of some 
collection of partition sets. 

We now apply Theorem 12.5 to our Markov modelll , setting B to be the 
collection of states {it, ... ,iq }. Using (12.23) and (12.24) it is possible to 
calculate exact values for the mean and variance of the return times to the 
collection of states {i l , ... , iq }. Appealing then to our guiding principle that 
our Markov model approximates our original map T, we take the mean and 
variance of the return times to the states {i l , ... , i q } as the approximate 
mean and variance for the return times to the set B eM. 

We now outline the necessary computations for our Markov model. For 
simplicity, we assume that the states of our Markov chain have been re­
ordered, so that the states {i l , ... , iq} now have labels {n - q + 1, ... , n}; 
for the remainder of this section, the matrix Pn will denote this reordered 
matrix. To calculate the mean of the recurrence time (denoted Mn): 

1. Calculate the invariant density Pn for the Markov chain governed by 
Pn . 

2. Set Mn := 1/ E~=n-q+l Pn,i· 

To calculate the expected absorption time and the variance of the recur­
rence time (denoted An and Vn respectively): 

1. Write Pn in the block form 

(12.25) 

where the matrix Qn is an (n-q) x (n-q) matrix giving the transition 
probabilities between states in our Markov model not corresponding 
to the set B c M. 

2. Calculate the solution Tn to the linear equation (In - q is the (n - q) x 
(n - q) identity matrix) 

(12.26) 

llFormally, we set X = n = {(WQ,Wl, •.• ) : PWi,Wi+1 > a,Wi E {l, ... ,n},i ~ a}, 
T = CT : n~, the left shift on n, and j.I = M, the Markov measure defined on cylinder 
sets by M([Wi, ... ,WHt]) = PWiPWi,Wi+l ••• PWi+t-t>Wi+t. Then B = [will U··· U [wi.l. 
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3. Set An := (E~:lq Pn,iTn,i)/(E~:lq Pn,i)' 

4. Set Vn := (Mn -1)(2An - Mn). 

See [19] for further details. 
The number Tn,i is an approximation of the average time required for a 

point in An,i to move into B and is often of interes~ in itself. 

Example 12.4. (The bouncing ball). We study a two-dimensional map of 
a cylinder T : 8 1 x R~ that describes the evolution of a ball bouncing on a 
sinusoidally forced table. We set 

T(cP, v) = (cP + v, av - 'Y cos(cP + v» (12.27) 

where cP E [0, 211") represents the phase of the table at impact, v E R the velocity 
of the ball just after impact with the table, and T represents the evolution from 
one impact to the next; see [28] for details. We set a = 0.5 and 'Y = 10 for the 
remainder of this example. Figure 12.6 shows a typical orbit of the system, and 
Figure 12.7 shows an approximation of the "physical" invariant measure p,; again, 
there is good agreement between the two distributions. We suppose that we are 
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FIGURE 12.6. Plot of orbit of length 50,000 for the bouncing ball 
map. 

interested in the time between successive impacts where the velocity of the ball is 
very low; that is, we create a time series by counting the time intervals between 
instances when the ball leaves the table with a velocity of magnitude less than 
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20 ~ 

FIGURE 12.7. Approximate invariant measure for the bouncing ball 
map using 16,566 partition sets; darker regions indicate higher density. 

TABLE 12.4. Estimates of the mean and variance of return times to 
the set B = 8 1 x [-1.25,1.25]. 

N umber of partition sets n 1654 5086 16566 
Mean Mn 10.33 9.97 9.85 
Root Variance ffn 9.82 9.45 9.33 

1.25. Thus B = 8 1 x [-1.25,1.25] in the earlier notation. Performing the analysis 
described earlier, Table 12.4 shows the results for various partition refinements. 

Compare these values with 9.830 ± 0.021 and 9.373 ± 0.032, the mean and 
variance, respectively, obtained directly from ten orbits of length 106 (plus/minus 
one standard deviation of the ten values obtained). 

The result of the calculation of Tn is shown in Figure 12.8. It is clear that there 
is a sharp divide between areas which return to low velocities relatively quickly 
(the very dark strips in Figure 12.8) and those areas that take longer to return. 
A histogram plot of T reveals that if a point does not return very quickly to B, 
then it takes a much longer time. 
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FIGURE 12.8. Approximate absorption times into the set 
S1 x [-1.25,1.25]; faster absorption is indicated by darker shading. 

12.4 Random Systems 

We now discuss extensions of our Markov modeling process to random 
dynamical systems. Instead of having a single deterministic mapping T : 
M ~, we now have a collection of mappings {Tl' ... , Tr }, where Tk : M ~ 
for k = 1, ... , r. A random orbit {XN }N'=o is defined by setting 

XN = xN(kN-l, ... , ko, xo) := TkN _1 0"'0 Tkl 0 Tkoxo, N 2 1, (12.28) 

where the indices ko, kl , . .. E {1, ... , r} are generated by a stationary 
stochastic process. We will be considering two situations; namely where 
the indices are generated by Ll.D. processes and by Markov processes. 

The former case corresponds to the situation where at each time step, a 
map is selected at random (according to some fixed probability distribu­
tion on the numbers {1, ... , r } ), independently of any previously applied 
maps. We shall say that the probability of selecting the map Tk at any 
given time is Wk 2 0; naturally L~=l Wk = 1. The probability of the se­
quence TkN_l 0·· .oTko occurring is simply WkN_l ... Wko' By extending this 
product to infinite sequences of indices, we obtain a probability measure lP 
on {1, ... , r r£+. The monograph [40jlays down much of the basic theory 
concerning such dynamical systems, including generalizations of standard 
dynamical systems quantities to the random situation. 

In the Markov case, the probability with which a map is selected at each 
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time step depends only on the previously applied mapl2. We shall say that 
the probability of selecting a map T, given that the map Tk was selected at 
the last time step, is Wkl ~ OJ we require that E~=I Wkl = 1, and so W is 
a stochastic matrix governing the Markov chain that produces our random 
sequence of indices. The probability of the sequence TkN_l 0·', o Tko occur­
ring is Wko Wkokl ... WkN_2kN_l j by extending this to infinite sequences, we 
obtain a probability measure (a Markov measure) on {I, ... , r }z+, which 
we also denote by lP. 

Examples 12.5 

1. Consider the bouncing ball map of the last section. Suppose that our 
ball is nonuniform, and that one side is more "springy" than the 
other. Sometimes, the ball will land on the springy side, and some­
times it will land on the not-so-springy side. Which side the ball lands 
on determines the value of 0:, and so at each time step there is a ran­
dom choice of 0:, and therefore an application of either TaBPringy or 
Tanot-Bo-Springy' We'll return to this example later. 

2. A set of maps {Ti , .•. , Tr } could arise as perturbations of a single 
map T via TkX := Tx + fk, where fk E 1R,d is a perturbation. We 
choose a probability vector (WI, ... , wr ) where the value Wk represents 
the probability of our map T encountering the perturbation fk. A ran­
dom l.l.D. composition of the {Td models a deterministic system 
subjected to small l.l.D. perturbations. 

3. Random dynamical systems can also arise in the context of dynamical 
systems with inputs. The effect of an input is essentially to produce 
different dynamics (in other words, a different map Tk) at the time 
step in which it occurs. If the model is truly random, these inputs 
could occur according to an l.l.D. process or Markov process. How­
ever, more structured sets of inputs can also be modeled by Markov 
processes, for example, where a randomly selected input triggers a 
fixed sequence of inputs before another random input is selected. 

We now define what is meant by an invariant measure for our random 
system. 

Definition 12.2. Let n = {I, ... ,r}z+, and for w = (WO,Wl,W2, ... ) E n, 
define the left shift u : n~ by (uw); = Wi+!. The probability measure lP on 
n introduced earlier is u-invariant. Define the skew product r : n x M~ by 
r(w,x) = (uw,Twox); our random orbits {XN}N~O may be written as XN = 
ProjM(rN(w,xo)), where ProjM denotes the canonical projection onto M. 

12If one desires to treat Markov processes with longer memory, they may be written 
in terms of a first-order Markov chain in the standard way. 
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We will say that a probability measure p on M is an invariant measure for 
our random system, if there exists a r-invariant probability measure jl on 0 x M 
such that 

1. jl(E x M) = lP(E) for all measurable E C 0, and 

2. jl(O x B) = pCB) for all measurable B C M. 

Definition 12.3. A probability measure p is called a natural or physical mea­
sure for a random dynamical system if p is defined as pCB) = jl(O x B) where jl 
is a r-invariant probability measure satisfying 

N-l 

lim ~ L f(rk(w,x)) -t ( f(w,x) djl(w,x) 
N-->oo k=O 1nxM 

(12.29) 

for all continuous f: 0 x M -t lR, and lP x m almost all (w,x) E 0 x M. 

Remark 12.1. If we choose the continuous test function f in {12.29} to be 
independent of w, then we have the simple consequence that: 

N-l 

lim ~ L f(Tk· 0 ..• o Tkox) -t ( f dp 
N-->oo N j=O 1 1M 

(12.30) 

for Lebesgue-almost-all x E M and lP-almost-all random sequences of maps. 
By setting f(x) = XA(X), where A c M is such that p(aA) = 0, then 

~ card{O ~ j ~ N - 1 : Tkj 0 ... Tkl 0 Tkox E A} -t peA), 

again for Lebesgue almost all x E M and lP-almost-all random sequences. 

In rough terms, this says that if you plot the points in a random orbit 
defined by (12.28), then for Lebesgue-almost-all starting points Xo and IP­
almost-all random sequences of maps, one obtains the same distribution 
of points. From the point of view of analysing the average behavior of 
the random system, this is the correct distribution to approximate. The 
physical measure J.L is usually not invariant under any of the individual 
transformations Tk, in the sense that J.L 0 Ti: 1 ¥- J.L. However, J.L is "invariant 
on average" , which by heavily abusing notation may be written as IE(J.L 0 

Tk- 1) = J.L. In the LLD. case, this formula is entirely accurate, as there the 
invariance condition is simply L~=l WkJ.L 0 Tk- 1 = J.L. 

12.4.1 Basic Constructions 

We must construct a transition matrix 

(12.31) 



306 Gary Froyland 

for each of the maps Tk. 

Remark 12.2. An alternative definition of the matrix Pn(k) is as follows. 
Within each set An,i select a single point an,i' Then set 

P~(k) = {I, ifTkan,i E An,i, 
0, otherwise. 

(12.32) 

Clearly, the computational effort involved in the numerical construction of P~ (k) 
is less than that of Pn(k) in {12.31}, especially in higher dimensions (in the Tips 
and Tricks section, we discuss other numerical methods of computing Pn(k)}. 
We do not recommend using P~(k) for deterministic systems, as the results are 
usually very poor. However, for random systems, one can still obtain quite good 
results with the cruder approximation of {12.32}. 

How these matrices are combined depends on whether the stochastic 
process is Ll.D. or Markov. 

Ll.D. Case 

In the Ll.D. case, we set 

r 

Pn = L wkPn(k). (12.33) 
k=l 

Markov Case 

In the Markov case, let W be the transition matrix for the Markov process 
that generates the random sequence of indices for the maps {Tk }. 

Now set 

WI2 Pn (1) 
W22 Pn (2) 

WIr pn(I)) 
W2r Pn(2) 

. . 

Wrr Pn(r) 

(12.34) 

In both the Ll.D. and Markov cases, the matrices Pn and Sn may 
be thought of as finite-dimensional projections of an "averaged" Perron­
Frobenius operator; see [17] for details. With either of these two matrices, 
one may apply the methods described in Section 12.3 to estimate invariant 
objects such as invariant measures, invariant sets, Lyapunov exponents, 
and recurrence times. 
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12.4.2 Invariant Measures 
l.l.D. Case 

We calculate the fixed left eigenvector Pn of Pn as constructed in (12.33), 
and normalize so that 

n 

LPn,i = 1. (12.35) 
i=l 

Set Pn(An,i) = Pn,i and define the approximate invariant measure as in 
(12.11). 

Markov Case 

We calculate the fixed left eigenvector of Sn and denote this as Sn 

[S~1)ls~2)1···ls};)l where each s~k), k = 1, ... ,r is a vector of length n, 

and 2:~=1 2:~=1 s~~l = 1. Define the approximate invariant measure as 

(12.36) 

We now use (12.11) again to define a measure on all of M. 
Results parallel to those of Theorem 12.1 hold for our random systems. 

Proposition 12.1. Suppose that each Tk : M~ is continuous and the re­
sulting random dynamical system has a physical measure I" {in the weaker sense 
where only {12.30} need hold, rather than {12.29}}. Let {Pn} denote a sequence 
of approximate invariant measures as defined in either {12.35} or {12.36}, and let 
1"* be a weak limit of this sequence. Denote by S the intersection n:':"=no supp pn· 
Then the conclusions of Theorem 12.1 hold. 

Proof: One first requires the facts that the matrices (12.33) and (12.34) rep­
resent a finite-dimensional approximation of an appropriately averaged Perron­
Frobenius operator; this is detailed in [17]13. With this established, the proofs 
run along the same lines as the deterministic case. D 

Example 12.6. (The (nonuniform) bouncing ball) 
We now suppose that our bouncing ball has gone soft on one side, so that 

sometimes we register a value of Q = 0.1, rather than the original value of Q = 0.5. 
We assume that every time it lands on the soft side, it will surely land on the 
good side next time, while if it lands on the good side, it has a 50/50 chance of 
landing on the soft side next time. The situation we describe is a Markov random 

13The form of {12.34) is slightly different to the matrix given in [17] as we have per­
formed a similarity transformation on the latter to yield a more intuitive representation. 
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composition of two mappings T,,=O,5 and T,,=O,l, The transition matrix for this 
Markov chain is 

1/2) 
o ' 

where a = 0.5 is identified with state #1 and a = 0.1 with state #2. We construct 
Sn as in (12.34), and compute the approximate invariant measure as in (12.36); 
see Figure 12.10. Again, there is good agreement between the two figures. 
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FIGURE 12.9. Plot of orbit of length 50,000 for the random bouncing 
ball map 

Rigorous Results 

In certain situations, one is able to obtain rigorous upper bounds for the 
difference between Pn and p. 

The first of these is where the random system contracts phase space 
on average. Typical examples of such systems are the iterated function 
systems (IFS's) of Barnsley [3] and co-workers, where a finite number of 
mappings are selected using an Ll.D. law to create fractal images. Suppose 
that Tk is selected with probability Wk, and define Sk = max""yEM IITkX -
Tkyll/lix - yll as the Lipschitz constant for Tk; then set s = l:~=1 WkSk. 
It is straightforward to show that if S < I, then this random dynamical 
system has a unique invariant measure, the support of which is a fractal 



12. Extracting Dymimical Behavior via Markov Models 309 

20-

I 

::I 
I 

--"----
3 4 5 6 

FIGURE 12.10. Approximate invariant measure for the random bounc­
ing ball map using 18 512 partition sets. 

set. Furthermore, one has the boundl4 [20] (see also [55]) 

dH(P"P,n) :5 (11 + s) m~ diam(An,i), 
- S l::;,::;n 

(12.37) 

where dH is the natural metric generating the weak topology on measures, 
defined by 

dH(III, 112) = 

sup { 11M h dill - 1M h dll21 ; h : M -t lR has Lipschitz constant 1 } . 

IT a uniform grid is used, this bound may be improved by a factor of 2. 
Similar results hold for Markov compositions. Ulam-type methods of ap­
proximating invariant measures of IFS's are also discussed in [51]. 

The second situation is where the dynamical system is expanding on 
average. This setting is more complicated as the random system may have 
infinitely many invariant measures, and it is important to show that Ulam's 
method approximates the physical measure (in this expanding case, the 
physical measure will have a bounded density). In the case ofLLD. random 

14This rigorous result holds even when the crude approximation of Remark 12.2 is 
used. 
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dynamical systems on the interval [0, 1] where each map Tk is a Lasota­
Yorke map, it is known that a bounded invariant density exists provided 
that 2:~=1 wk/IT~(x)1 < 1; see [50]. Under some additional conditions, it is 
shown in [17] that (i) the random system (either Ll.D. or Markov) possesses 
a unique bounded invariant density, and (ii) that the Ulam estimates J-Ln 
converge to the physical measure J-L (which has a bounded density). In 
addition, convergence rates of O(logn/n) for the difference IIJ-L - J-LnllL' are 
proven, and if each Tk is a C2 map of the circle SI, rather than of the 
interval [0,1]' explicitly calculable numerical bounds for the error IIJ-L -
J-LnllLl are given. In the future, we will no doubt see extensions of these 
results to higher dimensions. 

12.4.3 Lyapnnov Exponents 

The random version of (12.8) is 

Often, the same value of A is obtained for JP-almost-all random sequences, 
Lebesgue-almost-all x E M, and for every v E Rd. We denote this value by 
AI. 

Things are very simple in the case of one-dimensional systems driven by 
an Ll.D. process. In this case, the expression (12.38) may be alternately 
expressed as 

(12.39) 

by a straightforward application of (12.29) with few, x) log IT~o (x)l. 
Thus, once we have an estimate of the physical measure J-L, it is easy to 
compute an approximation of A via 

r n 

~ L Wk ~)og IT~(xn,i)1 . Pn,i, (12.40) 
k=1 i=1 

where Xn,i E An,i (for example, the midpoint of the interval An,i). 

Rigorous Results 

For random systems, we adopt Approach #2 of Section 12.2.3, as the other 
two approaches are not so helpful in the random situation. Here we only 
briefly describe the calculation of Lyapunov exponents of Ll.D. random 
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dynamical systems where the Jacobian matrices are constant. This situa­
tion arises when each of the mappings Tk are affine (as with most IFS's). 
Equation (12.38) now becomes independent of the XO, ..• ,XN-l, and is a 
function only of the sequence ko, ... , kN-l; we are essentially dealing with 
an Ll.D. random matrix product. 

Suppose that M is two-dimensional so that our Jacobian matrices are 
2 x 2 matrices. We need to define a probability measure ~ on the angle 
space nw 1 ~ [0, 1T) (~ is a relative of the probability measure alluded to 
in Section 12.3.4). Each matrix DTk (note independence of x) defines a 
map from [0,1T) to itself via L(v) = L(DTk(V)), where L(v) is the angle 
between v and some fixed reference vector in lR.2. To simplify notation, 
we will identify a vector v E lR,2 and its angle with respect to some fixed 
reference vector. The Jacobian matrix DTk will then be thought of as an 
action on the space of angles [0,1T). 

Example 12.7. Suppose DTk = (~ ~) and v = (1,1). We identify v 

with the angle 1T/2 (this is the angle v makes with the reference vector (1,0)). 
Then DTk(V) = (1,3), and we identify this vector with the angle tan- 1 3. Bya 
slight abuse of notation, we may write DTk (7r/2) = tan- 1 (3), and in this way we 
consider DTk to be an action on the set of angles [0,7r). 

The probability measure ~ on nw1 that we seek should satisfy: 

r 

~(E) = L wkDTk-1(E) (12.41) 
k=l 

for every measurable subset E C [0, 7r). This is because of the following 
result. 

Theorem 12.6. ([25]). Suppose that each d x d matrix DTk, k = 1, ... , r is 
nonsingular, and that the only subspace of lRd that is invariant under all of the 
DTk is the trivial subspace. Then with probability one, 

for every v E lRd . Furthermore, 

where ~ is any probability measure satisfying {12.1,1}. 

We approximate a measure ~ satisfying (12.41) in essentially the same 
way that we have already used for measures on M. Partition [0,1T) into 
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a finite collection of intervals E1, . .. ,Em C [0, 7r), and define an m x m 
stochastic matrix by: 

D (k) = m(Eg n DTk1(Eh)) 
m,gh m(Eg)' (12.42) 

Alternatively (ala Remark 12.2), one could choose a collection of points 
e1, ... ,em such that eg E Eg and set 

D (k) = {I, if DTk(eg) E Eh 
m,gh 0 h . , ot erW1se, 

(12.43) 

or use the other suggestions in Section 12.6.1. One now computes the fixed 
left eigenvector of the matrix Dm = E~=1 WkDm(k); we denote this eigen­
vector by em. Selecting points e1,' .. ,em as before, we define an approxi­
mation of .x 1 as 

r m 

.x:n := L Wk L log II Dm(k)(eg)lI, (12.44) 
k=1 g=1 

where, in the expression IIDm(k)(eg)lI, eg is a unit vector in the direction 
represented by eg, and we measure the length ofthe vector Dm(k)(eg) (this 
is the factor by which Dm(k) stretches vectors in the direction of eg)' The 
preceding constructions may be generalized to higher dimensions; see [20] 
for details. We have summarized the simplest situation here; the treatment 
of Markov random matrix products, and I.I.D. random nonlinear dynamical 
systems may be found in [20]. 

12.4.4 Mean and Variance of Return Times 
To estimate the mean and variance of return times, we again construct a 
finite Markov model, and calculate the mean and variance of return times 
to a suitable set of states. In the I.I.D. case we can define a Markov model 
using (12.33), and proceed as for deterministic systems. 

In the Markov case, we use (12.34), and produce a left eigenvector Sn of 

Sn such that E~=1 E~=1 s~~~ = 1. When writing Sn in the block form of 
(12.25), recall that each partition set An,i corresponds to r states of the 
Markov chain governed by Sn. With this in mind, one may substitute Sn 
and Sn into the algorithm described in Section 12.3.5. It is also possible 
to consider situations where the set B depends on the map Tk which is 
currently applied [19]. 

Example 12.8. (The nonuniform bouncing ball (cont .•. » 
We return to the random dynamical system of Example 12.6 and compute the 

return times to low impact velocity configurations described by the set 8 1 x 
[-1.25,1.25]. 
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TABLE 12.5. Estimates of the mean and variance of return times to 
the set B = 8 1 x [-1.25,1.25]. 

Number of partition sets n 1738 5488 18512 
Mean Mn 11.18 10.93 10.98 
Root Variance .ffn 10.73 10.45 10.49 

Compare these values with 11.05±0.03 and 10.57±0.03, the mean and variance 
respectively, obtained directly from 10 simulated random orbits of length 106 

(plus/minus one standard deviation of the 10 values obtained). This example 
is one situation where we would benefit by using one of the alternate partition 
selection techniques described in Section 12.6.2. 

12.4.5 Advantages for Markov Modeling of Random 
Dynamical Systems 

To close this section, we discuss two further advantages of Markov modeling 
over trajectory simulation that are not present in the deterministic case. 

The first of these concerns the accuracy of the approximations. For de­
terministic systems, the two competing approaches (simulating long orbits 
and coarse graining) both have their inaccuracies. The iterative approach 
of following long orbits (let's assume that we can do perfect computations) 
has the problem of temporal deviation from equilibrium behavior. That 
is, we should really have orbits of infinite length, but instead we have or­
bits of finite length whose statistical behavior is not the same. In contrast, 
with the Markov modeling approach, we can exactly compute the long term 
behavior of our model, but we compute the long term behavior of an ap­
proximation of the system, rather than of the true system. Turning now 
to random systems, the iterative approach is fighting errors on two fronts: 
namely, the deviation from equilibrium in phase space mentioned earlier, 
and additionally, the deviation of the distribution of the finite length ran­
dom sequence of indices ko, ... , kN-l from its equilibrium distribution lP. 
On the other hand, the Markov modeling approach completely eliminates 
errors from the random fluctuations by averaging them out through the 
expectations performed in its construction. Thus our Markov models for 
random dynamical systeins do not suffer from the inaccuracies due to ran­
dom fluctuations, and are therefore (heuristically at least) more accurate; 
this is borne out numerically in Lyapunov exponent computations [20]. 

The second advantage lies in the flexibility of the Markov modeling ap­
proach regarding the underlying stochastic process. Suppose that we wish 
to study a family of systems which use the same maps T1 , . .• , Tr , but a 
different distribution lP (in the bouncing ball example, this would amount 
to varying the probabilities with which impacts occur on the soft and hard 



314 Gary Froyland 

sides). Most of the computational effort goes into constructing the (fixed) 
transition matrices Pn(k), k = 1, ... ,r, while the ancillary calculations in­
volving eigenvectors and so on, are relatively cheap. Thus, we may perform 
analyses on a whole family of systems very quickly, by reusing most of the 
original constructions. In contrast, if we were to use the direct method 
of simulating long orbits, then entirely new orbit calculations would be 
required for each new set of probabilities. 

12.5 Miscellany 

We briefly outline some other applications and techniques related to our 
approach of Markov modeling. Unless otherwise stated, we refer only to 
deterministic systems. 

Global Attractors 

Related partition-based methods may be used to approximate the global 
attractor for a given subset of phase space. If B eM, then the global 
attractor of B is defined by G = nk>o Tj (B). Methods of computing an (in 
principle15 ) rigorous box covering o{the global attractor are detailed in [8]. 
Bounds for the Hausdorff distance between the approximate covering and 
the global attractor are given for uniformly hyperbolic diffeomorphisms. 

Using similar techniques, box coverings for global attractors G(w) of 
individual sample paths w of random dynamical systems have been studied 
[38]. 

Work is in progress on covering "averaged" global attractors of random 
systems; such global attractors contain all possible random orbits so Gav = 
UwG(w). 

Noisy Systems 

A popular idea is to "noise up" a system by considering the transformation 
x f-t TX+f, where the perturbation f E IRd is chosen in a uniform distribu­
tion from some small ball centered around o. This may be viewed as defining 
a random dynamical system where the collection of maps T, = Tx + f is 
applied in an I.I.D. fashion with equal probability. The Perron-Frobenius 
operator p, : £2 (M, m) ~ for this random perturbation has the desirable 
property that it is a compact operator under very mild conditions on T, 
and this greatly simplifies the ergodic theoretic analysis. For example, it is 
relatively easy to show that this noisy system has a unique invariant prob­
ability density, in contrast to the purely deterministic case. The finite-state 
Markov modeling may now be applied to the perturbed system, and vari­
ous convergence results proven concerning the approximation of invariant 

15When combined with Lipschitz estimates for the map [33]. 
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measures and invariant sets; see [11]. This setting forms the basis of the 
thesis [32], where the merits of alternative partitioning methods are also 
considered. 

Rotation Numbers 

The approximation of rotation numbers of orientation preserving C2 circle 
diffeomorphisms using Ulam constructions is described in [57]. 

Topological Entropy 

It is possible to obtain rigorous upper bounds for the topological entropy 
of T with respect to a fixed (coarse) partition. All orbits of T are possible 
under the Markov model; however, the converse is not true. In this sense, 
the Markov model is more "complex" from the orbit-generating viewpoint. 
However, as the partitions are refined and our Markov model becomes more 
accurate, these extra orbits are successively eliminated, so that our upper 
bounds become increasingly sharp [24]. 

Spectra of "Averaged" Transfer Operators for Random Systems 

One may also attempt to garner dynamical information from the spectrum 
and eigenvectors of the matrices (12.33) and (12.34), in analogy to the 
deterministic case. This is work in progress. 

12.6 Numerical Tips and Tricks 

We discuss methods of computing the transition matrix and of partition 
selection. Most transition matrix computations in this chapter have used 
the GAIO software package, available on request from 

http://www.upb.de/math/~agdellnitz/gaio/ 

Algorithms 2 and 3 of Section 12.6.1 and 1-4 of Section 12.6.2 in this 
chapter have been coded in this software. 

12.6.1 Transition Matrix Construction 

Techniques for the computation of the transition matrix may be split into 
three main classes; namely "exact" methods, Monte-Carlo/Imaging meth­
ods, and an exhaustive method of approximation. 

1. "Exact" methods: For one-dimensional systems, it is often possible 
to construct the transition matrix exactly. If the map is locally one­
to-one on each partition set, then only the inverse images of the end­
points of each set need be calculated. 
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If the inverse images are difficult to obtain, an alternative is to com­
pute the matrix 

pi .. = m(T Ai n Aj) 
n,t) m(T Ai) , (12.45) 

which in one dimension again requires only the computation of for­
ward images of partition endpoints. 

The matrix P~ is not useful theoretically because (i) forward images 
of sets may not be measurable, while inverse images (T continuous) 
of Borel measurable sets are always measurable, and (ii) the standard 
form (12.3) arises as a discretization of the Perron-Frobenius operator 
for T, while (12.45) does not. If T is linear on each Ai, then Pij = 
Pfj for j = 1, ... , n; this forward-imaging exact computation was 
carried out for two-dimensional piecewise linear reconstructions in 
[23]. Otherwise, the difference between P and pi is governed by the 
second derivative of T and the diameter of the partition sets. We 
do not recommend using forward-imaging for maps with very large 
second derivatives. 

2. Monte-Carlo / Imaging of test points: The most popular method is 
the so-called Monte-Carlo approach [31]. To compute Pij , one ran­
domly selects a large number of points {al' ... ' aN} C Ai and sets 
Pij ~ #{a E {al' ... ' aN} : T(a) E Aj}/N. A similar approach is 
to choose a uniform grid of test points within each partition set and 
perform the same calculation. My personal feeling is that the latter 
approach is better as the uniform grid more reliably approximates 
Lebesgue measure. Any number of variations on the selection of test 
points can be used, though Monte-Carlo and uniform grids are the 
most common. 

3. Exhaustion: A recent approach [29] is to rigorously approximate the 
transition probability by a means of exhaustion akin to the exhaus­
tion methods of Eudoxus. To compute the Lebesgue measure of the 
portion of Ai that is mapped into Aj , one repeatedly refines the set 
Ai until it is known (via Lipschitz estimates on the map) that a re­
fined subset of Ai is mapped entirely inside Aj . In this way, the set Ai 
is repeated broken down into small pieces which map entirely inside 
Aj , with this process terminating at the desired level of precision. 

12.6.2 Partition Selection 

This section is devoted to suggesting methods of producing better Markov 
models via smarter partition selection. That is, how should one choose 
partitions to best capture the dynamics of the system. 

Of course, if a Markov partition is available, this is clearly the best choice. 
However, we are assuming that this is not the case, and we are left with 
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the decision of how to constlluct a suitable "grid". For the most part, we 
consider partition selection where the criteria for a good partition is that 
it produces a good estimate of the physical measure (at least a better esti­
mate than a uniform grid would produce). Of course, often we don't know 
what the physical measure is, so this mostly restricts rigorous numerical 
testing to one-dimensional systems. Nevertheless, we outline three main ap­
proaches, and suggest heuristically when they may be useful. In all cases, 
one selects an initial coarse partition, computes the invariant measure for 
the Markov model, and on the basis of information contained in the invari­
ant measure of the current model, a choice is made on which partition sets 
to refine and which to not refine. 

1. Standard approach: Refine any partition sets which are currently as­
signed nonzero measure. 

2. Equal mass approach: Refine any partition sets which are assigned a 
measure greater than lin, where n is the current number of partition 
sets; see [10]. 

The rationale behind this is that one should focus more finely on 
regions where there is large mass. In this sense, the method is not 
only targeted at obtaining more accurate estimates of the invariant 
measure, but also more accurate modeling of the dynamics of the 
system; this has been demonstrated for the estimation of return times 
in [19]. This method is particularly suited to systems which possess a 
singular physical measure, as in dissipative chaotic systems. However, 
because of the nonuniform refinement (the minimal ratio of cell sizes 
is almost always at least 2 if refinement is done by "halving" a set), 
it often performs worse than the standard method in cases where the 
physical measure is smooth. For this approach to be useful, the ratio 
sUPXESUPPl'n <Pn(x)1 infxEsuPPl'n <Pn(x) should be much larger than 2 
for all n ~ 0 (<Pn is the density of the approximate measure J.tn). 

3. High derivative approach: Let Ci denote the "center point" of a par­
tition set Ai. Refine partition sets where the value of 

is greater than (lin) L:~=1 Ei; [30]. 

The expression that is maximized is meant to be an approximation of 
the derivative of the invariant density cP on Ai in the "direction of" A j • 

In [30], one assumes that the physical measure is smooth; therefore, 
if the current estimate of the invariant measure has adjacent sets 
given very different measures, there must be an error in this region, 
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so one refines these sets to obtain better estimates. The number Ei is 
intended to approximate the error incurred on the partition set Ai' 

An alternative viewpoint is as follows. In [16], it is noted that the ma­
trix Pij := JL(Ai nT-1Aj)/JL(Ai ) is an optimal approximation in the 
sense that the fixed left eigenvector P of P assigns exactly the correct 
weights to the partition sets; that is, Pi = JL(Ai) (this approach is also 
followed in [35]). The difference between P and P is essentially given 
by how "non-Lebesgue-like" the measure JL is within each partition 
set; roughly speaking, how "non-constant" the distribution of JL is 
within partition sets. One may try to reduce16 the error IIJL - JLnlll by 
creating a partition which produces a transition matrix P similar to 
that of the special matrix P. Such an analysis also leads to the error 
minimization criterion (12.46). 

The high derivative method is targeted specifically toward more accu­
rate estimates of the physical measure. It often performs better than 
the equal mass approach for maps with smooth densities. 

4. Large difference approach [32]: One refines all partition sets and con­
structs a temporary transition matrix Ptemp and invariant measure 
Ptemp for the refined partition. This refined invariant measure is com­
pared with the invariant measure Paid and only sets in the old parti­
tion for which the measure according to Ptemp and Paid is very differ­
ent are split up. The transition matrix Ptemp is now discarded. This 
approach is based on a standard method of numerical analysis. 

Comparisons of the three alternative approaches are detailed in [32]. 
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Chapter 13 

Formulas for the 
Eckmann-Ruelle Matrix 
Timothy D. Sauer 

ABSTRACT Determination of the local linearization information from ex­
perimental dynamical data is a key step in the methodology of attractor re­
construction. Because the dimension of the reconstruction space is typically 
higher than the original phase space dimension, some of the information 
in the reconstructed Jacobian, which we call the Eckmann-Ruelle matrix, 
reflects details of the embedding rather than the underlying dynamics. We 
establish formulas for the expected values of the entries of the Eckmann­
Ruelle matrix, in both the presence and absence of observational noise. 

13.1 Introduction 

Mathematical modeling of a dynamical system from first principles can 
fail for many different reasons. In some situations basic principles are not 
sufficiently well known; in others the laws are known but there are too many 
free variables to analyze or simulate accurately. It has become standard 
practice in such cases to take dynamical measurements from the system 
and attempt to rebuild the system from these measured signals. For linear 
systems this is the goal of system identification methods in modern signal 
processing. For nonlinear systems, the geometry of the dynamics in the 
state space is no longer trivial, and plays a pronounced role. The fact that 
this geometry can be recovered from observations, and in some cases from 
a single scalar time series or spike train, is the focus of fundamental yet 
surprising theoretical work [10, 1, 19, 6, 15, 14]. 

Successful analysis of the original system in an alternate state space, 
often called the reconstruction or embedding space, is the basis of several 
techniques used for the exploitation of chaotic dynamics from measured 
data, including fixed point detection, noise reduction, control of chaos, and 
Lyapunov exponent calculation [8, 9]. These techniques share a crucial need 
for accurate first order descriptions of the reconstructed dynamics, which 
is represented by derivative information in the reconstruction space. 

The usual representation of this information is in the form of an m x m 
matrix corresponding to each reconstructed state, where m is the dimension 
of the reconstruction space. The integer m is commonly called the embed-
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ding dimension. This matrix is designed to be the best local approximation 
of the Jacobian of the time-T map in the m-dimensional reconstruction 
space. The time-T map represents the action of the reconstructed dynamics 
under a particular fixed time interval T. In most applications, the embed­
ding dimension is greater than the dimension of the underlying dynamics, 
and a significant problem arises with the definition of this matrix. Because 
the reconstructed map is defined only on a lower-dimensional subset of the 
reconstruction space, partial derivatives cannot be taken in all m direc­
tions, and the Jacobian as traditionally defined does not exist. This does 
not mean that an m x m "best linearization" matrix cannot be defined and 
determined by least squares or other means. However, the matrix may lack 
the usual properties of a Jacobian. 

There are two ways to work around the unfortunate fact that the lin­
earization matrix is not a Jacobian. First, one may try to restrict attention 
to the infinitesimal directions in reconstruction space that do come from 
the underlying measured dynamics. Second, one may choose a way to cal­
culate the m x m local linearization matrix and proceed as if it were a 
Jacobian, isolating and later discarding the computational artifacts that 
arise from this assumption. Which of the two approaches is more agreeable 
depends on the application. The first approach has been taken by many 
workers in the area [2, 18, 3, 13, 4, 20]. The second approach was originally 
suggested by Eckmann and Ruelle [6, 5] and Sano and Sawada [12] for the 
purpose of extracting Lyapunov exponents from experimental data. In this 
application, the m x m matrites representing local linearizations are succes­
sively multiplied together along the trajectory in reconstruction space, (as 
Jacobians would if the underlying dynamics were known) for the purpose 
of calculating the average stretching rates that Lyapunov exponents mea­
sure. Eckmann and Ruelle propose approximating the matrices from data 
using ordinary least squares. We will call the local linearization matrix de­
fined in this way the Eckmann-Ruelle matrix, or simply the ER-matrix. 
Computational artifacts are unavoidable when taking this approach. For 
example, if the goal is to extract Lyapunov exponents, the method returns 
m exponents even when the underlying dynamics has a lower dimension. 
These extra exponents are known in the literature as spurious Lyapunov 
exponents [11, 16]. 

This chapter investigates the consequences of the second approach and 
summarizes recent work on describing the ER matrix in terms of the orig­
inal dynamics and the properties of the reconstruction. The entries of the 
ER matrix also depend critically on the level of noise with which the mea­
surements are collected, so the description of the ER matrix will be in 
terms of the expected values of the matrix entries, averaged over typical 
noise realizations. In particular, there are two useful asymptotic formulas, 
which apply in the cases of "low" and "medium" noise, respectively. 



13. Formulas for the Eckmann-Ruelle Matrix 325 

13.2 Attractor Reconstruction 

Attractor reconstruction consists of observing the current state x of a 
system by a number m of measurements. Assume that we are trying to 
gather information on dynamics on an n-dimensional state space Rn. De­
note by f the map describing the dynamics, so that state x moves d~­
terministically to state f(x) during a fixed time interval. We will denote 
by P(x) = (Pi (x), ... ,Pm(x)) an m-dimensional vector, where Pi,··· ,Pm 
are measurement functions. Under certain genericity conditions (see for ex­
ample [15]) the image under P of the attractor states in m-dimensional 
Euclidean space can be shown to be topologically equivalent to the original 
dynamical phase space attractor. The set of image vectors can be studied 
for geometrical and dynamical properties, leading to a variety of method­
ologies for analyzing and exploiting the system, as mentioned earlier. 

Early studies treated the static properties of the dynamical attractor 
S, such as fractal dimension [7]. In the seminal article [6], Eckmann and 
Ruelle suggested reconstructing the dynamics on P(S). Assuming that Pis 
a one-to-one correspondence on S (that x i= y implies P(x) i= P(y)), there 
is an induced map F = Pfp- l on P(S) which maps P(x) to P(f(x)). This 
leads to the following commuting diagram of maps 

P(S) 
P t 

S 
(13.1) 

where F is defined on the subset P(S) of Rm. Then the map F on the re­
constructed phase space attractor P(S) is well-defined and can be learned 
from time-ordered measurements on the state space using statistical tech­
niques. A key goal of applications is to learn the dynamical reconstruction 
map F accurately enough that local linearization information can be as­
certained. In other words, we would like to ascertain the linear map A(x) 
which makes the diagram 

Rm 
DP(x) t 

A(x) 
-----+ Rm 

t DP(f(x)) (13.2) 

commute at the tangent space level, for each state x. If F were defined on an 
m-dimensional domain around P(x), the Jacobian DF at P(x) would exist, 
and setting A. = DF, (13.2) would follow immediately from (13.1) by the 
chain rule of calculus. However, in the common case that the domain P(S) 
of F has dimension less than m, a choice must be made in how to define 
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the replacement for the Jacobian DF to make (13.2) hold. The solution of 
[6] is to use the best local linear approximation to F at P(x), in the sense 
of least squares. Henceforth we will refer to this choice as the Eckmann­
Ruelle matrix at x (or at P(x)). (Strictly speaking, the "Eckmann-Ruelle 
matrix" is an abuse of terminology, since the matrix depends on the choices 
of bases in the domain and range tangent spaces. More properly, it is the 
"Eckmann-Ruelle linear function", which has a matrix representation in 
any given set of bases.) With the Eckmann-Ruelle matrix A(x) defined in 
the limit as the neighborhood over which the least squares optimization is 
done shrinks to x, and assuming m > n, it can be shown that the diagram 
(13.2) commutes. 

13.3 The Noiseless Case 

In the absence of noise, we can often explicitly determine the Eckmann­
Ruelle matrix. To simplify the analysis, first assume that the dynamical 
system I is a one-dimensional map and that the image under the measure­
ment function P is a curve in Rm. To model the local linear behavior of 
F at a typical P(x), note that any point on the curve near P(x) can be 
written as P(x + h) for some h. Since by definition FP = PI, the Taylor 
expansion of the nearby point 

h2 hm 
P(x+h) = P(x)+hP'(x)+-plI(x)+ .. . +-, p(m}(x)+O(hm+1 ) (13.3) 

2 m. 

must be mapped by F to 

PI(x + h) =PI(x) + h(Pf)'(x)+ 

h2 (Pf)"(X) + ... + h~ (pf)(m) (x) + O(hm+l). 
2 m. 

(13.4) 

Here we are using the notation p(m)(x) to denote the mth derivative of 
the vector-valued function P evaluated at x. The m-dimensional vectors 
P'(x), ... ,p(m}(x) will span Rm in generic situations. 

As shown in [16], because (13.3) and (13.4) hold for several different h, 
each power series term in (13.3) must map to the term of correspond­
ing degree in (13.4). In general, let A be an m x m matrix for which 
(l)A(L:j:l bijuj) = L:T=l bijvj for i = 1, ... , m and (2) B = (bij ) is a 
nonsingular matrix. Then AUj = Vj for j = 1, ... , m. Using this fact with 
B equal to the nonsingular matrix with rows [h, ~h2, ... , ~! hm] for m dis­
tinct nonzero values of h, we conclude that in the limit as h -t 0, the 
Eckmann-Ruelle matrix A(x) multiplies the vector p(i}(x) to (pf)(i}(x) 
for i = 1, ... , m. This fact motivates defining the m-dimensional basis 
Ui = p( i) (x), i = 1, ... , m as the canonical embedding coordinate basis at 
P(x), and the corresponding basis Vi = p(i}(f(x)) at PI(x). This choice 
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of basis simplifies the representation of the Eckmann-Ruelle matrix. For 
m = 2 the matrix M(x) maps 

iII --+ (Pf)'(x) 
iI2 --+ (Pf)"(X) 

P'(f(x))f'(x) = f'(X)Vl 
P'(f(x))f"(x) + p lI (f(x))f'(X)2 
f"(X)Vl + f'(X)2V2 

and so in this basis the Eckmann-Ruelle matrix is upper-triangular: 

A(x) = ( f'6x ) f"(x) ) 
f'(x)2 . 

(13.5) 

(13.6) 

In the low noise limit, attempts to reconstruct the best linear approxima­
tion of Fat P(x) will converge to a matrix that is equivalent (by similarity 
transformation) to the Eckmann-Ruelle matrix A(x) in (13.6), as the neigh­
borhood size goes to zero. 

8 

6 

~ - 4 c w 
x .;:: 

2 -ttl 
~ 

0 

-2 
1e-08 1e-06 0.0001 0.01 

Noise 

FIGURE 13.1. Matrix elements au (bottom trace) and a12 (top trace) 
of the ER matrix reconstructed from data in embedding dimension 2, 
at the fixed point (3/4,3/4) of the 3sinx map, plotted as a function ofthe 
measurement noise amplitude o. The two sides of the figure represent 
the two alternative formulas. The left side of the diagram corresponds 
to the noisefree formula (13.8), which predicts values au ~ 1.86 and 
a12 ~ 7.43. The right side shows a plateau over two noise decades for 
which the formula (13.23) predicts expected values -1.55 and 0.79. 
Error bars denote standard error. The neighborhood size is f = .01. 

Let us specialize to the one-dimensional map f (x) = 3 sin x to illus­
trate this result with a computer experiment. The map f has an unstable 
fixed point at approximately Xli = 2.2789. A simple delay-coordinate re­
construction function P can be defined by P(x) = (f(x), x). The 2 x 2 
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Eckmann-Ruelle matrix A(xo) in these coordinates is ofform 

A(xo) = (a~l a~2). (13.7) 

where all and al2 best fit j2(x) = allf(x) + al2X + c for x near Xo. 
Formula (13.6) gives the matrix A(xo) represented in the domain basis 
(P'(xo), P"(xo)) = ((J'(xo), 1), (J"(xo), 0)) and range basis (P'(XI), P"(XI)) 
= ((J'(XI), 1), (J"(xI) , 0)), where Xl = f(xo). In the case of a fixed point, 
Xl = f(xo) = Xo. Changing to the elementary basis ((1,0), (0, 1)) yields 

f"(xI} ) (f'(xo) f"(xo)) (0 1) 
O 0 f '()2 I ~ 

Xo /" (:l:o) - /" (xo) 

= ( f'(xo) + ~:~f:~~f'(xO)2 -~::f:~hf'(XO)3). (13.8) 

Evaluating at the fixed point Xo gives approximately 

( 1.8557 7.4274) 
1.0000 0.0000 . (13.9) 

Figure 13.1 shows the result of a computer experiment in which the 
standard least squares approach [6, 12] is applied to embedded data in a 
neighborhood of P(xo) to approximate the 2 x 2 Eckmann-Ruelle matrix 
A(xo) in elementary coordinates. The method of ordinary least squares is 
used to fit a first-order model of the map which moves the reconstructed 
state P(xo) to its reconstructed image. The entries all and al2 of A(xo) are 
plotted as a function of observational noise added to the embedded data. 
For very low noise, the derivation gives essentially the correct answer. For 
noise greater than 10-6 , the ER matrix entries are not well approximated 
by the formula. In this noise range, the calculations we did earlier with 
terms of size h2 are no longer valid and we must re-derive the matrix using 
the noise terms. 

13.4 The Medium Noise Case 

In the case of dynamics measured with observational noise, it is possible 
to carry out a direct analytic calculation of the expected values of the 
matrix entries that are reconstructed by the Eckmann-Ruelle procedure, 
as usually implemented using least squares fits. Although the formulas we 
derive for the ER matrix converge to the noiseless values determined earlier 
as the noise approaches zero, the convergence occurs only for extremely 
small noise (namely, significantly smaller than the square of the size of the 
neighborhood over which the least squares approximation is done). This is 
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shown in Figure 13.1. For noise of a more practical size, the expected value 
of the Jacobian entries plateau to values quite different from those for the 
noiseless case. 

We will call noise of variance 62 "low" if 6 « lO2 , "medium" if lO2 « 
6 « lo, and "high" if 6 ~ t:. Jacobian reconstruction in the low noise 
case was discussed earlier. The high noise case, with random fluctuations 
as large as the neighborhood size, is unlikely to reveal significant local 
linearization information. In [17] an explicit calculation of the expected 
values of the Eckmann-Ruelle matrix in the "medium noise" case was 
carried out for some representative cases. As above, denote the deter­
ministic m-dimensional embedding vector by P(x) = (PI (x), ... ,Pm (x)), 
where PI, ... ,Pm are measurement functions. A measurement with obser­
vational Gaussian noise is expressed as P(x) + 6N(O, 1), where 62 is the 
variance of the noise and N(O,l) denotes the standard normal distribu­
tion. The Eckmann-Ruelle matrix A(xo) at reconstructed state P(xo) is 
the linear part of the linear-plus-constant function which best fits the map­
ping (PI (x) + YI, ... ,Pm (x) +Ym) to (PI (f(X)) + Zl,· .. ,Pm(f(X)) + zm) in a 
small neighborhood N of P(xo), where the Yk, Zk are independent Gaussian 
random variables in 6N(O, 1). 

An ordinary least squares fit for the ith row (ail"'" aim) of the ER­
matrix A (xo) reduces to choosing parameters ail, ... , aim, Ci that minimize 

1 [f aik (Pk (x) + Yk) + Ci - Pi (f(x)) - Zi]2 dx 
It k=l 

(13.10) 

where f.-t denotes the natural measure of the attractor restricted to states x 
in a small neighborhood of Xo. A Taylor expansion around Xo allows us to 
write 

m 

L aik (Pk (x) + Yk) + Ci - Pi(f(X)) - Zi 
k=l 

m 

L aikPk (xo) + Ci - pd(xo) 
k=l 

m m 

+ [L aik V'Pk(XO) - V'(pd)(xo)]' (x - xo) + L aikYk - Zi 
k=l k=l 

+ O(lx - xoI 2 ). (13.11) 

According to the medium noise assumption lO2 « 6, we can neglect the last 
term of (13.11). The parameter Ci is a free variable in the first term, so that 
it remains to minimize the variance of the middle term of the right-hand 
side of (13.11), for x chosen from the probability distribution of points in 
the neighborhood of Xo. Assume that the distribution of x is uniform in a 
spherical neighborhood centered at Xo of radius lOll, where l is a Lipschitz 
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constant representing the expansiveness of P in the neighborhood of Xo. In 
most cases, we expect that deviations from uniformity will be on the order 
of other terms we have neglected. Defining h = x - Xo, to minimize the 
expectation 

E{II(A(DP) - D(Pf))h + Ay - z112} (13.12) 

from (13.11), we set the partial derivatives of (13.12) with respect to aij 
equal to zero. The derivatives pass inside the expectation integral, yielding 
the matrix equation 

o E{[(A(DP) - D(Pf))h + Ay - z][DPh + y]T} 

E{[(A(DP) - D(Pf))h][DPh]T} + E{AyyT} 

[A(DP) - D(P f)]E{ hhT}(DPf + 82 A (13.13) 

where all derivatives are evaluated at Xo. (Here we have used the fact that 
for a matrix C and vector w, the gradient of the dot product (Cw)T(Cw) 
with respect to the matrix entries Cij, 1::; i,j ::; m, is the matrix 2CwwT.) 
Using the uniformity assumption, we calculate E{hhT} = (t2 /3n1 2 )I, where 
I denotes the n x n identity matrix, and so 

0= [A(DP) - D(Pf)](DPf + 3n82
212 A. 

10 
(13.14) 

Therefore the expected values of the entries of the ER matrix are given as 
the solution A to the m x m matrix equation 

A[(DP)(DP)T + pI] = D(Pf)(DP)T, (13.15) 

where p = 3n12 (8/t)2. Equation (13.15) can be thought of as a set of 
"normal equations" for the ER matrix. The m2 scalar equations making 
up this matrix equation are 

m 

L aik Vpk(XO) . VPj(xo) + paij = V(Pd)(xo) . VPj(xo) (13.16) 
k=l 

for 1 ::; i, j ::; m. 
To illustrate the use of formula (13.15), we consider the case of a one­

dimensional map f. Then n = 1, (DP)T(DP) is a scalar, and one checks 
by direct substitution that 

A = [p + (DP)T (DP)r 1 D(P f)(DP)T (13.17) 

solves (13.15). The expected value of the ijth entry of the reconstructed 
Eckmann-Ruelle matrix A is therefore 

(pd)'(xo)pj(xo) 
(13.18) 
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In the medium noise case where 8 « f, we may neglect the first term in 
the denominator which leaves 

(Pd)'(xo)pj(xo) 
aij = "m , ( )2 L..,k=l Pk Xo 

(13.19) 

The important special case of time delay coordinates corresponds to Pk = 
gfm-k for a scalar observation function g. Here f m- k denotes the (m - k)­
fold composition of the map f. In this special case all but the top row of 
the reconstructed Jacobian is trivial (for i > 1, row i is all zeros except for 
ai,i-l = 1). For delay coordinates, (13.19) translates to 

(gfm), (xo)(gfm- j ), (xo) 
alj = L~=l (gfm-k)'(xo)2 ' 

which can be rewritten as 

g'(Xm)f'(xm-d'" f'(xo)g'(xm-j)f'(xm-j-d··· f'(xo) 
L~=l [g;(xm-k)f'(xm-k-d ... f'(xo)J2 

(13.20) 

(13.21) 

where we have denoted the f-trajectory of Xo by Xk = fk(xo) for all k. 
Formulas for the reconstructed Jacobian in the case where 8 = 0, the 

noiseless case, were given in the previous section. They differ from the 
equation (13.15), which is also a limit as 8 -t 0 but restricted to the case 
f2 < 8, which allowed us to neglect the higher-order terms of (13.11). In 
the development of the previous section, the absence of noise meant that 
the higher order terms could not be neglected, leading to a very different 
formula for the noiseless case. 

To clarify this difference, we compare the two noise cases for the ex­
ample of the previous section, the ER-matrix at the fixed point of the 
one-dimensional map f (x) = 3 sin x. Again assume delay coordinates are 
used with observation function g(x) = x and embedding dimension m = 2. 
Evaluating (13.8) in the noiseless case yielded (13.9). In the medium noise 
case, formula (13.21) results in the ER-matrix 

(13.22) 

At the fixed point Xo ~ 2.2789 of f(x) = 3 sin x, (13.22) evaluates to 

( -1.5452 0.7920) 
1.0000 0.0000 

(13.23) 

for the ER-matrix. Both formulas are consistent with the underlying dy­
namics. The matrices in (13.9) and (13.23) share the eigenvector (.8899, 
-.4561) corresponding to the eigenvalue -1.9511 coming from the under­
lying one-dimensional fixed point. However, they differ in the details of the 
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embedding, and therefore in the other, spurious, eigenvalue. Figure 13.1 
shows computational results of least squares fits for the entries of the ma­
trices in the zero noise limit, and medium noise range, respectively. The 
top rows of the two matrices in (13.9) and (13.23) can be verified in the 
left side, respectively right side of the figure. 

13.5 Spurious Lyapunov Exponents 

As discussed in the introduction, a side-effect of attractor reconstruction 
when the embedding dimension m is greater than the dimension n of the 
original dynamics is the production of m - n spurious Lyapunov exponents. 
With formulas for the Eckmann-Ruelle matrix we can hope to explain the 
origin of the spurious exponents. In the noiseless case, for some values of m 
and n, there are simple formulas for the spurious exponents; in the noisy 
case they are more complicated. 

Calculation of the Lyapunov exponents of the reconstruction map F 
on Rm is equivalent to computing the growth rates of the singular values 
of the Eckmann-Ruelle matrix for Fk. To find the best linear approxi­
mation of Fk at x, the Eckmann-Ruelle matrices are composed to yield 
A(Jk-1(X))'" A(J(x))A(x), the matrix representing local dynamics. We 
begin with noiseless observations. As an example, in the m = 2, n = 1 case 
of (13.6), there is a consistent set oftangent space bases along the trajectory 
for which the matrix representation of the ER-matrix is upper-triangular. 
This allows a simple derivation of the m growth rates of the m x m ER­
matrices, using the following well-known fact. Assume that Ak is an m x m 
upper triangular matrix for k = 1,2, ... , and define Sn = An ... A1. Assume 
that the magnitudes of the entries of Ak are bounded independent of k, and 
that the diagonal entries of Sn have geometric growth rates '1'1, ... ,'I'm as 
n -t 00. (The geometric growth rate of a sequence of real numbers {rd is 

'I' = lim lnkirki .) Then there exist vectors V1,'" ,vm such that IISnVili has 
k-too 

growth rate 'l'i for each i = 1, ... ,m. In our context, the Ak are Eckmann-
Ruelle matrices along an orbit, and the growth rates 'l'i are apparent (i.e., 
computed) Lyapunov exponents. It follows from (13.6) that calculation will 
yield the correct Lyapunov exponent A = limk-too -k In f' (x k) ... f' (Xl) as 
well as a spurious exponent 2A. This can be verified from numerical com­
putations shown on the left side of Figure 13.2. 

For n = 1 and larger m, the story is similar. Extending the calculation 
(13.5) to a reconstruction in m dimensions yields an m x m upper-triangular 
Eckmann-Ruelle matrix M (x) whose diagonal entries are I' (x), f' (x) 2 , ••• , 
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FIGURE 13.2. Lyapunov exponents from a reconstruction of the 
one-dimensional map f(x) = 3sinx in R2, with observation function 
P(x) = (f(x),x). We used the standard procedure for such a calcula­
tion, making least squares fits of the Eckmann-Ruelle matrices oveJ:' 
neighborhoods of constant size, and approximating the Lyapunov ex­
ponents on the basis of these reconstructed local linear dynamics us­
ing a running QR-factorization [6, 12,5]. As the level of observational 
noise approaches zero, the apparent Lyapunov exponents converge to 
0.46 and 0.92, consistent with (13.6). The medium range for noise cor­
responds to approximately 10-4 < ~ < 10-2 on the right side of the 
figure, where the Lyapunov exponents predicted by (13.25) are the 
original Lyapunov exponent 0.46 and the spurious exponent -1.06. 

f'(x)m. For example, the m = 3 analogue of the matrix in (13.6) is 

( 
f'(x) 

M(x) = ~ 
f"(x) 
f'(X)2 

° 
fill (x) ) 

3f'(x)f" (x) . 
f'(x)3 

(13.24) 

Due to the upper-triangular form of the matrices in canonical embedding 
coordinates, it is possible to see that Lyapunov exponents in this basis 
(and therefore in any basis) will be A, ... , rnA. Further examples of spurious 
Lyapunov exponents for larger n in the noiseless case are given in [16]. 

In order to study the spurious Lyapunov exponents that arise along a 
chaotic trajectory observed with noise, it is more convenient to change to a 
new coordinate system which for the linear mapping of (13.22) is given by 
the basis {(f'(xo), l)T, (l,O)T} in the domain and {(f'(Xl), l)T, (l,O)T} in 
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the range. The matrix in the new coordinates is in upper-triangular form: 

~ ) 

Since the range basis becomes the domain basis on the next iterate, we get 
the product of Eckmann-Ruelle matrices over several iterations by multi­
plying the upper-triangular matrices together. By the fact about growth 
rates mentioned above, the Lyapunov exponents formed by the Eckmann­
Ruelle matrices will be the trajectory averages of log absolute value of the 
two diagonal elements of the upper-triangular matrices. 
, The first Lyapunov exponent will be the trajectory average of log If' (x k) I, 
the Lyapunov exponent A of the current f trajectory. The second Lyapunov 
exponent will be the average over the trajectory of 

(13.26) 

The first part tends to A, so the second Lyapunov exponent is A minus the 
trajectory average of 

log(l + J'(X)2). (13.27) 

In particular, this shows that the spurious Lyapunov exponent is negative, 
and independent of the noise level c5 as long as c5 is in the medium range. 
Returning to the simple example of the 3 sin x map, one can determine 
the average of log(l + f'(x)2) over a typical trajectory as ~ 1.52, resulting 
in a predicted spurious Lyapunov exponent of 0.46 - 1.52 ~ -1.06. This 
prediction agrees with the standard Lyapunov exponent calculation using 
the Eckmann-Ruelle orthogonalization procedure, shown in Figure 13.2, 
over the medium noise range .0001 < c5 < .01. 

13.6 Concluding Remarks 

As mentioned in the introduction, the approach of this chapter is one way 
to acquire local linearization information, given the problem that the em­
bedding dimension is greater than the original dimension of the dynamics. 
The other approach is to try to determine the tangent directions of the 
dynamics in reconstruction space and try to avoid artifacts like spurious 
Lyapunov exponents in that way. Techniques exist to locally project the 
dynamical structure in embedding space to these special directions and de­
termine the appropriate linearizations there. Neither approach is foolproof. 
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The formulas given in this chapter for the Eckmann-Ruelle matrix are a 
beginning, but they need further work to yield easily computable formulas 
for all possible combinations of embedding dimension m and dynamics 
dimension n. Regarding the noisy case, formula (13.15) does apply for all 
m and n but writing explicit formulas like (13.19) for the entries has only 
been done for small n. More precise information may help decide the truth 
of the conjecture that if the ER-matrices are determined by least squares, in 
the noisy case (medium noise), spurious Lyapunov exponents are negative. 
For example, in the case n = 1, m = 2 this follows from (13.26). 

In the noiseless case, formulas for upper-triangular ER-matrices that 
allow the true and spurious Lyapunov exponents to be read easily are known 
only for pairs m, n where 

for some k. This includes all m if n = 1. If n = 2, it includes m = 2, 
m = 2 + 3, m = 2 + 3 + 4, etc. For example, it is shown in [16] that if we 
denote the true Lyapunov exponents by >'1 and >'2 in the case n = 2, m = 5, 
the spurious Lyapunov exponents will be 2>'1, >'1 + >'2, and 2>'2. 

Finally, it is clear, because of the error-in-variables problem and other 
reasons, that ordinary least squares is a suboptimal method for determining 
Eckmann-Ruelle matrices from data. However, it appears that practitioners 
will continue to use it until there is a demonstrably superior alternative. 
It is possible that the correct alternative will be specific to the application 
the user has in mind. 
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ABSTRACT In this chapter, a case study from marine ecology is presented 
in which the application of techniques from nonlinear time series analysis is 
shown to provide insight into the interplay between stochastic physical forc­
ing and nonlinear biological response in a natural system. Specifically, the 
replenishment of a population of reef fishes is analyzed in detail, and impor­
tant nonlinearities are demonstrated in the processes underlying variability 
in the supply of larval propagules to the reef. This information is used to 
guide the construction oj a series of models which attempt to forecast larval 
supply from readily measured physical variables. The most successful mod­
els are those that account for the nonlinearities in the response of larvae to 
their physical environment. Such models provide better forecasts than can be 
achieved with conventional linear techniques and identify processes hidden 
to linear analysis. The importance of understanding the interplay between 
noise and nonlinearity in ecological systems is discussed. 

14.1 Introduction 

A fundamental and largely unresolved problem in ecology is the relative 
contribution of exogenous and endogenous processes to temporal variabil­
ity in the size of natural populations. Motivations for solving this prob­
lem are case-specific and range from purely scientific interest to the need 
for sensible management decisions, but the ultimate goal is generally the 
same: To make predictions about future states of natural systems from 
measurable initial conditions. To do this requires information about the 
identities of both the biological and physical variables that comprise the 
system and the functions that describe their interactions. Broadly, there 
are two approaches to obtaining such information. One can proceed from 
the bottom-up by first writing equations believed to capture the essence of 
the system's dynamics and then fitting the free parameters of the resulting 

1 Autho~ for correspondence. 
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model from observational data. This necessitates sufficient prior knowl­
edge to choose appropriate state variables and the forms of the functions 
which relate them. The alternative is the top-down approach, for which is 
required the ability to identify relevant variables and their interrelations 
directly from observations, is required to deduce the underlying processes 
at work. In either case the exercise is closed and judged a success when sat­
isfactory predictions can be made and the ultimate limits to predictability 
are understood. 

The ubiquitous observation is that natural populations do not remain 
constant over time, but rather change in what often seems a random fash­
ion. The manner in which population biologists have thought about and 
attempted to explain this fact has also changed over time, in a pattern char­
acteristic of ecology as a whole: first one set of processes, external forcing, 
was thought of primary importance (e.g., Nicholson 1933[28], Andrewartha 
and Birch 1954[1), Lack 1954[16)) 2, followed by a shift in emphasis to a sec­
ond set,internal dynamics, (e.g., May 1974[23), Schaffer 1985[33), Schaffer 
and Kot 1986[34)), and finally, when neither exclusive view proved satis­
fying, it became fashionable to acknowledge that both must play a role 
(e.g., Ellner and Thrchin 1995[9)). However, tacit acknowledgement that 
a synthetic view is necessary is not the same as actually producing an 
effective synthesis. The aim here is to demonstrate that tools from non­
linear time series analysis, when applied judiciously, can help provide such 
a comprehensive understanding of the interplay between physical forcing 
and biological response, that is, between external and internal dynamics in 
ecological systems. 

This chapter will describe in detail a case study (Dixon et al. 1999[7)) 
that is representative of a broad problem in fisheries biology: understand­
ing and ultimately forecasting variability in fish stocks where population 
change is largely decoupled from population size. Fisheries assessors use 
various models to try to predict future replenishment from reproductive 
stock size (Rothschild 1986[31)), but such fitted curves have been plagued 
by extreme variance in recruitment, and explaining the scatter in these 
relationships has remained a largely unrealized goal throughout this cen­
tury. A useful metaphor for those unfamiliar with these issues is to think 
of the life history of marine fishes as an input-output system (Fig. 14.1). 
Many marine species are characterized by a bipartite life history, in which 
larval forms possess behavioral and morphological characteristics associ­
ated with the challenges of a planktonic existence that may be completely 

2In fact these authors were at the center of an earlier controversy in ecology, concern­
ing agents of population control; that is, whether climatic (external) or biotic (internal) 
factors kept populations bounded in spite of their propensity for exponential increase. 
While the authors referenced here disagreed on this point, ecologists of the era did in 
general agree that, left alone, a population's internal dynamics would lead to equilibrium 
behavior, and accordingly that variability was indicative of external forcing. 
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Marine Fish COITlplex Life History 

Input 1: 
Broadcast 
spavvning 

Input 2: 
Brooding 

Output: 

(SettielUent I Recruit.-nent) 

"Black Box" Processes 

FIGURE 14.1. The bipartite life history common to many marine or­
ganisms, viewed as an input-output system. Density-dependence be­
tween population size and population change - that is, the relationship 
between the inputs and outputs of the system - may be interrupted 
by processes affecting mortality of eggs, larvae, and (in some cases) 
juveniles during their time in the plankton. 

dissimilar from those of juveniles and adults. Investigating feedback con­
trol in a population is then equivalent to attempting to relate the system's 
output, recruitment 3, to its input, the magnitude of adult spawning. Un­
fortunately, the larval phase in this schematic, which has the potential to 
decouple the inputs and outputs, is an essentially unobservable black box. 
Thus, while some researchers have attributed the unexplained variability to 
sampling error and the misuse of analytical techniques (e.g., Caputi 1988[2], 
Hilborn and Walters 1992[12]), others have suggested that unpredictable 
and high levels of mortality during the intervening larval phase will nec­
essarily obscure the stock-recruitment relationship (e.g., Hjort 1914[13]' 
Lasker 1981,[17]' Cushing 1982[5]). Because an understanding of the fate 
of larval stages has remained elusive, it has proven difficult to evaluate the 
relative contributions of these sources of error. 

The next two sections will adopt a dynamical systems approach to ret­
rospectively investigate processes at work during the larval phase. The sys­
tem that will be considered is Lizard Island, Australia, part of the Northern 
Great Barrier Reef, and the focus will be on a common and abundant family 
of reef fishes, the pomacentrids or damselfishes. Section 14.2 will begin by 

3The term "recruitment" is often ambiguous and may be used in the literature to refer 
to anyone of several points in a species life history (Richards and Lindeman 1987[30]). 
This chapter will focus on a population of reef fishes, and will therefore equate recruit­
ment to settlement - the metamorphosis from a planktonic larval to a sedentary juvenile 
form. Many pelagic fish stocks possess a planktonic juvenile phase as well, which may be 
equally important in decoupling the relationship between population size and population 
change (Peterman et al. 1988[29]). 
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analyzing time series of spawning output, supply of mature larvae to the 
reef and subsequent juvenile abundance for one species of pomacentrids 
(boxes 2, 4, and 5 in Fig. 14.1) and will provide evidence for nonlinearity 
in the processes underlying variability in larval supply. This information 
will then be used in Section 14.3 to guide a search for the identities of the 
most important physical variables that drive this variability. After these 
variables have been identified, the functions which relate them to larval 
supply will be deduced. The result is a nonparametric, nonlinear model 
that affords better forecasts than linear models, and identifies the impor­
tance of events early in larval life which are hidden to linear analysis. This 
chapter will conclude by placing these results in the general context of un­
derstanding the interplay between stochastic physical forcing and nonlinear 
biological response in ecological systems. 

14.2 Univariate Analysis: Nonlinearity in the 
Larval Phase 

Pomacentrus amboinensis, the Ambon damsel, is a common shallow-water 
damselfish found in the eastern Indian and western Pacrfic Ocean, includ­
ing the Great Barrier Reef. A unique set of time series are available for 
this species which describe contemporaneous temporal variability at three 
stages in life history: spawning output, larval supply, and the abundance 
of newly settled juveniles (Milicich et al. 1992[26], Meekan et al. 1993[24]). 
Briefly, spawning was estimated from daily visual census of eggs in nests; 
observations were made for 168 days over two consecutive spawning sea­
sons. Juvenile abundance was monitored for 166 days over two seasons by 
scuba divers swimming visual transects over patch reefs. Larval supply was 
measured using two replicate light traps, which fished for three hours a 
night for 280 nights over three consecutive seasons. Raw data are given in 
Figure 14.2. 

Three forecasting tests will now be applied to these data. The first two 
result in distinct pieces of evidence for nonlinearity in the processes af­
fecting variability at the end of the larval phase: an enhanced success of 
nonlinear forecasting algorithms in predicting the data and the presence of 
structure in the residuals from linear forecasts of larval supply. Results of 
the third test, which examines the rate at which forecastability declines as 
a function of prediction time, give evidence for the stochastic nature of the 
processes underlying variability in larval supply. 

14.2.1 S-Map Analysis 

The first test for nonlinearity is an examination of the relative success of 
linear and nonlinear forecasting algorithms in predicting the data. For this, 
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FIGURE 14.2. The replenishment of P. amboinensis. Top panel gives 
spawning output measured by the number of eggs released from the 
nest, middle panel gives the supply of mature larvae to the reef, and 
bottom panel the number of juveniles on the reef. All measurements 
were made daily. 

S-maps were used to make predictions (Sugihara 1994[36]). The data were 
embedded using lagged coordinates 4. For the embedded time series X t E 
~m+l, where the constant term in Eq. 14.2 below is given by Xt(O) == 1, 
and the time series value Tp steps forward is X t+Tp (1) = Y t, forecasts at 
Tp were given by: 

m 

Y t = L Ct(j) Xt(j). (14.1) 
j=O 

For each predictee, X t. singular value decomposition was used to solve for 
C using the rest of the data set as follows: 

B=AC (14.2) 

where 

Bi w (11Xi - Xtll) Y i (14.3) 

Aij = w (11Xi - Xtll) Xi(j) (14.4) 

and 
w(d) = exp-Od/d. (14.5) 

The degree of nonlinearity in these maps is thus controlled by the tuning 
parameter e, where e = 0 gives a global linear map, and theta increasingly 
positive yields increasingly local, nonlinear forecasts. Forecasts were made 
out-of-sample through leave-one-out cross-validation (that is, all vectors 
whose coordinates included any of the coordinates of the predictee were 

4For the results given here, the time lag was held constant at one day; results were 
robust to the specific choice. 
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eliminated from model fitting) and were made one time step ahead, for the 
next day's value. Figure 14.3 plots forecast ability as a function of model 
nonlinearity and embedding dimension (number of reconstructed variables 
used). The abscissa gives model nonlinearity, and the ordinate forecast 
success measured both in terms of correlation coefficient between predicted 
and observed values and average arithmetic error of the predictions. 

Two features of this plot are readily apparent. First, regardless of which 
metric of model performance is used, nonlinear models with an embedding 
dimension of two or greater significantly (Z-test; P less than .05) outperform 
linear maps for the larval supply time series, whereas for the spawning and 
juvenile data this is not the case. The underlying philosophy here is that 
the characteristics of the model which gives the best out-of-sample fore­
casts most closely reflect the nature of the underlying dynamical processes; 
accordingly, these results may be taken as preliminary evidence that there 
are important nonlinearities underlying the variability in larval supply of 
this species at this particular location. Additionally, the overall level of pre­
dictability is different for the three time series; it is generally much harder 
to predict larval supply than spawning output or juvenile abundance. 

14.2.2 Residual Delay Maps 

A second piece of evidence for nonlinearity in larval supply results from 
examining the residuals from linear model forecasts, through the method 
of residual delay maps (RDMs) (Sugihara et al. 1999[37]). The basic idea is 
that if the variability in a time series arises strictly from linear, stochastic 
processes, then the residuals from linear model forecasts should be ran­
domly distributed around zero. Alternatively, if there is nonlinear struc­
ture of sufficiently low dimension to be detected with the available data, 
the functional form of the nonlinearity - the fashion in which the residu­
als depart from a random distribution centered around zero - will likely 
become apparent. To examine this, residual delay maps plot the average 
residual from a forecast at time t+ 1 as a function of the average value of 
the raw data at time t (hence the term "delay map," as tomorrow's error is 
plotted as a function of today's value). This technique for detecting nonlin­
earity in observed data has the advantage of computational simplicity and 
relatively modest data requirements. To reduce the variance and clarify any 
systematic structure in the residuals that may exist, the raw values of the 
time series are first sorted and binned. For each bin, the average residual 
from a linear forecast for the points in that bin is calculated and plotted 
against the mean value of the points in the bin. Residual delay maps thus 
employ a two-way averaging procedure. Figure 14.4 gives the results of this 
test. To facilitate comparison, raw data were first divided by their standard 
deviations; this normalizes the magnitudes of the residuals across the three 
data sets, but does not affect the relative position of the points in the fig­
ure. The residuals from linear (AR3; the choice of the number of lags was 
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FIGURE 14.3. S-map analysis of spawning output (top), larval sup­
ply (middle), and juvenile abundance (bottom) for P. amboinensis at 
Lizard Island. The left panels give prediction success as a function of 
model nonlinearity as measured by the correlation coefficient between 
predicted and observed values, the right panels success as measured 
by the average error of the predictions. Circles: embedding dimension 
= 2; stars: E = 3; pluses: E = 4. Model nonlinearity is controlled 
by the tuning parameter theta, where theta = 0 gives a global linear 
model, and theta increasingly positive gives increasingly nonlinear al­
gorithms. Only for the larval supply data is a significant increase in 
predictability observed with nonlinear models. 
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not critical) forecasts of adult spawning output fluctuate evenly around 
zero, whereas the residuals for larval supply seem to display a systematic 
trend, with high values of larval supply today leading systematically to 
an overestimation of larval supply tomorrow. When juvenile abundance is 
considered, these patterns have broken down; there is one outlier residual, 
but no evidence for a systematic trend. 

14.2.3 Prediction Decay 

The final forecasting characteristic of interest is the rate at which pre­
dictability decays with increasing forecast horizon. Figure 14.5 (top panel) 
gives the results of this test for the P. amboinensis data. Again, forecasts 
are given by S-maps. For the spawning output and juvenile abundance 
time series, predictability decays steadily, in linear fashion, to essentially 
zero over five time steps (days) into the future. By comparison, larval sup­
ply data become unpredictable three days into the future. Beyond this 
basic difference, the test is ambiguous. It is not possible to label the rate 
of prediction decay as exponential (as opposed to linear) for the larval sup­
ply data, as there are only three points and the location of the second one 
(time horizon = two days) is sensitive to exactly how nonlinear a model one 
chooses. Indeed, this difference in predictability as a function of prediction 
time seems to reflect little more than the autocorrelation spectrum of the 
three data sets (Fig. 14.5, bottom panel). Because such strong short-term 
autocorrelation can potentially confound forecasting results, the analysis 
will now be extended to include formal hypothesis testing through the use 
of surrogate data. 

14.2.4 Surrogate Analysis 
There are a number of possible explanations as to why data may appear 
nonlinear to forecasting algorithms and related analytical techniques, some 
of which are trivial (e.g., the non-normality of the data itself may be 
responsible), and some of which are of real biological interest. The ap­
proach to distinguishing among these that will be adopted here is to pro­
ceed through the use of surrogate data (Theiler et al. 1992[39), Kantz and 
Schreeber 1997[14)). The idea is to create a large number of surrogate real­
izations of the data, each of which corresponds to a specific null hypothesis 
pertaining to the origin of the nonlinearity, and then to reanalyze the sur­
rogates with the same forecasting techniques as were applied to the real 
data. By choosing a statistic which encapsulates the results of the analysis, 
a P-value can then be assigned to the null hypothesis from the percentage 
of the surrogates that yield a value of that statistic greater than or equal 
to that calculated from the original time series. Surrogate data techniques 
thus enable a transition from heuristic, descriptive evidence of nonlinearity 
to rigorous hypothesis testing. 
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FIGURE 14.4. Residual delay map analysis, for bin size = 10. Top 
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venile abundance. Only for the larval supply data is there a system­
atic departure from residuals evenly distributed around zero; following 
days of high larval supply, linear models consistently overestimate the 
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FIGURE 14.5. Prediction decay (top panel) for P. amboinensis data. 
Larval supply (stars) is unpredictable past two days into the future, 
whereas prediction decay is slower for spawning output (circles) and 
juvenile abundance (pluses). This prediction characteristic reflects the 
autocorrelation spectra (bottom panel) of the data. 
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Figure 14.6 gives a sample surrogate time series for supply of larval po­
macentrids to Lizard Island for each null hypothesis tested. In order of 
increasing complexity, these are: 

HoI The data arise from an identical, independently distributed (I.I.D.) 
noise process. 

Ho2 The data arise from a set of linear, stochastic processes. 

Ho3 The data arise from a static, monotonic, nonlinear filter of a set of 
underlying linear, stochastic processes. 

Creating surrogates is the most straightforward for the first null hypoth­
esis: the time series is simply randomly shuffled. This is of interest because 
it tests whether the frequency distribution of the data itself is responsible 
for the observed nonlinearity. As has been seen, larval supply time series 
are episodic; daily values are not normally distributed. Indeed, this is the 
case for most biological properties in the ocean (Cassie 1963[3]). Because 
larval reef fishes have been demonstrated to be spatially coherent on scales 
of tens of kilometers (Doherty and Williams 1988[8]), one possible explana­
tion for temporal variability in larval supply is that peaks in larval supply 
simply represent the chance advection of patches of larvae past the reef 
(Willianls and English 1992[41]). An obvious question is thus whether the 
frequency distribution of the data alone is all that the forecasting tests have 
really measured. However, as will be seen in the analysis of the surrogates 
corresponding to HoI and H03 (described later), this is an insufficient ex­
planation for the patterns observed. Variability alone does not necessarily 
imply nonlinearity. 

H02 offers a direct test of the idea that variability in larval supply does 
not arise solely from the action of linear, stochastic processes. Here, sur­
rogate data generation preserves the power spectrum of the data while 
randomizing the phases. Accordingly, the surrogates do not possess the 
same frequency distribution as the original time series. 

H03 combines the features of the first two by preserving both the Fourier 
spectra and the frequency distribution of the real data. Analyzing these 
surrogates tests the idea that the nonlinearity is consistent with a mono­
tonic, nonlinear transformation of an underlying set of linear, stochastic 
processes. This hypothesis is labeled "null" in deference to the dynami­
cal systems community from whence these methods come, and for whom 
such an explanation for nonlinearity in a time series is not usually of great 
interest. However, to the ecologist, this explanation for the nonlinearity ob­
served is a suggestive one, for a "nonlinear transformation of an underlying 
linear, stochastic process" is, as will be seen, a good starting point for a 
description of how biological entities respond to variability in their physical 
environment. 

Here, R, the statistic that encapsulates the forecasting analysis, will be 
given by the difference in forecasting success between the linear and best 
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FIGURE 14.6. Raw data for supply of all pomacentrids to Lizard Island 
(top panel), and sample surrogate realizations corresponding to HoI, 
Ho2, and Ho3 (top to bottom). 

nonlinear algorithm, measured by the square of the correlation coefficient 
between predicted and observed values (percent variance explained). In 
principle, the choice of statistics is not criticalj this particular R is intended 
to place the emphasis on successfully forecasting the times of greatest bi­
ological interest, the peaks in larval supply. The analysis to this point has 
centered on one species of pomacentridj here, however, to decrease the 
number of zero values, larval supply of all pomacentrids will be consid­
ered. There is a strong correlation (rho greater than 0.9) between supply 
of P. amboinensis and supply of all pomacentrids, so it seems unlikely that 
aggregating to a coarser degree of taxonomic resolution will create much 
difficulty. 

Figure 14.7 gives graphical portraits of the distribution of R values for 
HoI, H02, and H03, as a function of the embedding dimension. All three 
may be rejected for E greater than one. The non-normality of the data alone 
is not responsible for the improved forecasts seen with nonlinear models, 
and the data are not the result of a set of linear, stochastic processes. That 
H03 can also be rejected is intriguing, and, as will be seen in the next sec­
tion, is probably due to the fact that, while variability in larval supply may 
originate from biological responses acting as a nonlinear transformation of 
an underlying set of linear, stochastic (physical) processes, there is no a 
priori reason why the transformation shquld be a monotonic one. 

To this point, two suggestive pieces of evidence for nonlinearity of larval 
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FIGURE 14.7. Distribution of R-values corresponding to Ho1, Ho2, 
and Ho3 for supply of all larval pomacentrids to Lizard Island. All 
three hypotheses may be rejected with greater than 95% confidence 
for E ;,= 2. 
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supply time series have been presented: enhanced out-of-sample forecasting 
success of nonlinear algorithms, and structure in the residuals from linear 
model forecasts. Additionally, the stochastic nature of larval supply has 
been demonstrated, as it is impossible to make predictions more than two 
days into the future. The picture that is beginning to emerge is that there 
are important nonlinearities in the processes at work in the larval phase, 
which suggests that a strong relationship between spawning patterns and 
patterns of juvenile abundance can no longer be expected. The next sec­
tion will put this information to use in identifying the physical processes 
responsible for this variability in larval supply. 

14.3 Multivariate Analysis: Forecasting Larval 
Supply 

The discussion will now leave the confines of black-box modeling from re­
constructed dynamical variables and begin forecasting larval supply directly 
from observations of the physical environment. The analysis to this point 
has suggested that to succeed in this task, forecasting models will have to 
take into account the nonlinearities in ~he interaction between larval fishes 
and their fluctuating physical environment. There are two potential aspects 
to this nonlinearity: the forms of the functions relating the biology to the 
physics (which need not be linear), and a nonlinear coupling between key 
physical variables in their total impact on larval supply. Whenever this 
second aspect is important, as will be the case here, it will not be possible 
to deduce the action of different physical variables of larval supply by con­
sidering them in isolation. Accordingly, many conventional techniques for 
analyzing ecological data, such as multivariate linear regression or principal 
component analysis, will be inapplicable to this problem. What is needed 
is a nonlinear approach. 

14.3.1 Lunar Phase 
The most obvious property of pomacentrid larval supply is the cyclic na­
ture of the timing of supply peaks. This results from the entrainment of egg 
release from the nest to the lunar cycle, in conjunction with a relatively 
invariant larval duration, which otolith analysis indicates averages nine­
teen days (Wellington and Victor 1989[401, Meekan et al. 1993[24]). This 
deterministic feature of the data thus represents a logical place to begin 
constructing a model. The specific physical variable chosen here to repre­
sent the lunar phase is the percent illumination, calculated by multiplying 
the proportion of a full moon for each night by the elongation, or phase 
angle, for that night (KopalI971[15]). Statistics for all of the models that 
will be constructed in this section are summarized in Table 14.1. 
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..... -... 
FIGURE 14.8. Forecasting larval supply from lunar phase. Forecast 
success (Z-axis) is measured by the correlation coefficient between 
predicted and observed values, set to zero for negative values; it is 
shown as a function of lag and model nonlinearity. There is a peak 
in predictability at 19-20 days, in good agreement with the average 
age of the larvae, and there is little to be gained with nonlinear 
models. 

Because the relationship between pomacentrid larval supply and lunar 
phase is well-established at Lizard Island (Milicich 1994[25]), this variable 
provides an opportunity to test a technique that will be used again shortly 
for another variable where the situation is not so clear. One standard (and 
simple) method for detecting cycles in ecological data is to calculate the au­
tocorrelation at increasing time lags (Finerty 1980[10]); if a cycle is present, 
the autocorrelation will be a maximum when the time lag corresponds to 
the cycle's wavelength and a minimum at half the wavelength. A similar 
approach will be adopted here: Larval supply will be predicted from per­
cent illumination at increasing time lags, from one to thirty days in the 
past. The twist is that, in addition to exploring predictability as a function 
of lag time, it will be evaluated with respect to model nonlinearity. Adding 
this dimension to the analysis results in the surface plot in Figure 14.8. 
As before, forecasts were given by S-maps, and success was measured by 
the correlation coefficient between predicted and observed values. Forecasts 
again were made out of sample by removing each point for which a forecast 
was being made from the model fitting procedure. As these larvae aver­
age nineteen days in age, the expectation is that there should be a peak 
in predictability at a corresponding nineteen-day lag in lunar phase. Also, 
because the analysis of spawning output in the previous section indicated 
that egg release from the nest is well-described by a linear model, it seems 
likely that for this variable, linear models should perform about as well as 
nonlinear ones. Both of these expectations are met; there is indeed a peak 
in predictability at the appropriate time lag, and predictability remains 
essentially constant as the model is made more nonlinear. 
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Because of the deterministic nature of the lunar cycle, there is a second 
peak in predictability, centered at approximately five days and it appears 
that predictability begins to improve again as the lag approaches thirty 
days. If peaks in larval abundance are associated with a full moon nineteen 
days prior, it stands to reason that they will also be associated with a new 
moon five days and thirty-three days prior. To test that this is actually 
what these results are capturing, it is therefore necessary to extract the 
function relating larval supply to lunar phase at each of these two lags. 
In this case, where only one variable is being considered by each model, 
such an extraction is straightforward. However, the technique which will 
be used for this will be introduced in the most general terms, to allow an 
easy extension to the higher dimensional cases that will follow. 

To deduce the functional relationship between larval supply and the phys­
ical parameters of interest, a space is first constructed whose axes are given 
by the physical variables of interest, normalized by their standard devia­
tions (to normalize the ranges of each variable). Each point in the larval 
supply time series is then mapped to its corresponding physical coordi­
nates in this state space. A neighborhood average (of N neighbors) is then 
constructed for each point in the state space; that is, for every point, that 
point's N nearest neighbors in state space are identified, and the average 
value of each physical variable in the neighborhood calculated. The average 
value of larval supply for the points in the neighborhood is also determined, 
and, for each physical variable, a plot is made of the neighborhood averages 
of that variable against the neighborhood averages of larval supply (after 
multiplying by the appropriate standard deviations). The advantage of this 
technique is that, when more than one physical variable is considered, it 
becomes possible to smooth the data while preserving the non- additive 
sense of the interactions between the physical variables. 

Results for the five-and nineteen-day lags of lunar phase are given in Fig­
ure 14.9. As expected, maximum larval abundance is associated with a new 
moon (zero percent illumination) for the five-day lag, and the full moon 
(100 percent illumination) for the nineteen-day lag. The next question is 
the degree to which modeling larval supply from lunar phase captures the 
dynamics of the real data. The nineteen-day-Iag model gives a correlation 
coefficient of 0.3- (Table 14.1). Figure 14.10 gives another sense of model 
performance by plotting the actual predictions alongside the real values. 
In all four panels, the real data are plotted on the ordinate in the positive 
direction, and the forecasts (multiplied by minus one) in the negative. The 
upper-left panel gives the predictions from the linear model built on the 
five-day lag; the upper-right panel gives the same variable with a nonlin­
ear model. The bottom panels are from corresponding models (linear and 
nonlinear) constructed from the nineteen-day lag. In all four cases, the de­
terministic component of larval supply gives a sense of the timing of the 
peaks, but as expected, there is no information in the phase of the moon 
about the fate of the larvae after they are born. It is thus not possible to 
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FIGURE 14.9. Response of larvae to lunar phase (measured by per­
cent illumination). For the 19-day lag, larvae are positively associ­
ated with the full moon (percent illumination = 100); for the 5-day 
lag, the new moon (percent illumination = 0). 

distinguish strong peaks from weak ones or from no peak at all, with just 
this variable. 

14.3.2 Cross-Shelf Wind 
For this, additional variables corresponding to other events in larval life 
need to be incorporated into the analysis. The next process that will be con­
sidered was motivated by a prior analysis of this system (Milicich 1994[25]), 
which suggested that the transport environment experienced by mature lar­
vae returning to the reef might be of importance to the magnitude of larval 
supply. 5 As no current meter data are available from this system, a three­
day running average of recent cross-shelf wind speed (the onshore/offshore 
component of the wind) was selected as the physical variable most rep­
resentative of surface current speed and direction. Figure 14.11 gives the 
results of adding this variable and again constructing a series of forecasting 
algorithms, ranging from global to local fits of the data. The top panel 
demonstrates that, considered linearly, there is no evidence that this vari­
able is important, but when the models are made nonlinear, predictability 
begins to increase. This is as expected; these two effects occur at different 
times in larval life (the beginning and the end), and thus are coupled mul­
tiplicatively in their total impact. The middle panels give the predictions 

5 Indeed , exploring the transport of particles to and from reefs is a usual starting 
point in attempting to understand larval supply for vertebrates and invertebrates alike. 
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FIGURE 14.10. Predicting larval supply from the lunar phase. Up­
per panels: 5-day lag; lower panels: 19-day lag. Left panels: linear 
models; right panels: nonlinear models. Both linear and nonlinear 
models give a sense of the timing of larval supply peaks, but not the 
magnitude. 

from linear and nonlinear models based on these two variables. Only in the 
nonlinear case does it begin to become possible to distinguish strong peaks 
from weaker ones. The bottom panels give the results of extracting, in the 
fashion detailed earlier, the functions relating larval supply to these two 
variables. As before, larval supply peaks are associated with a full moon 
nineteen days prior; they may now also be seen to be associated with weak, 
onshore winds (positive values of cross-shelf wind speed are onshore; nega­
tive values offshore). This is contrary to what would be expected if mature 
larvae act as passive particles (in which case stronger onshore winds, and 
associated greater onshore transport of surface waters, would be expected 
to increase larval supply), but is consistent with recent findings concerning 
the abilities of mature larval fishes to swim, aggregate, and generally pro­
mote their own orientation (e.g., Stobutzki and Bellwood 1994[35], Leis et 
al. 1996[21], Leis and Carson-Ewart 1997[20]). 

14.3.3 Average Daily Wind 

The final process that will be considered is the potential importance of 
wind stress on the first-feeding success of young larval fishes. The sugges­
tion that such critical periods are important to subsequent recruitment 
has a long history in the fisheries literature (e.g., Hjort 1914[13]), and the 
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FIGURE 14.11. Modeling pomacentrid larval supply from lunar 
phase and recent cross-shelf (onshore) wind speed. Top panel: pre­
dictability improves as the model is made nonlinear (theta positive). 
Middle panels: functional responses. Larval supply is as before pos­
itively associated with a full moon 19 days prior, and also with 
weak, onshore winds (positive values = onshore; negative values = 
offshore). Bottom panels: model predictions, for linear (left) and 
nonlinear (right) algorithms. Adding in cross-shelf wind speed be­
gins to give a sense of the magnitude of the peaks. 
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FIGURE 14.12. Investigating the importance of wind events early 
in larval life. There is a peak in predictability when wind stress 
lagged 16 days is incorporated into nonlinear models. It appears that 
first-feeding success is indeed important to subsequent recruitment 
in this system. 

relationship between turbulence and feeding success has been the subject 
of much study over the past ten years, both theoretical and expprimental 
(e.g., Rothschild and Osborne 1988[32], Davies et al. 1991[6], l\II<:tcKenzie 
et al. 1994[22], Sundby and Fossum 1990[38], Cury and Roy 1990[4], Wrob­
lewski et al. 1989[42]). Detecting such lagged effects from time series taken 
at a fixed point in space is, however, problematic, as there is no guarantee 
that the local history of the physical environment will be the same as that 
experienced by the larvae themselves, given their planktonic lifestyle. How­
ever, it seems at least plausible that such events could be demonstrated at 
Lizard Island, given the suggestion that retention mechanisms may work to 
keep larvae local to their native reef (Leis 1986[19]) . The difficulty is that, 
because not all larvae are precisely the same age and because both the time 
required for yolk-sac resorption and the time to inevitable mortality in the 
absence of successful feeding are unknown, it is not obvious exactly which 
lag should be chosen. As a sanity check, and to be conservative, a wide 
range of lags (from one to thirty days) was therefore evaluated, each over a 
range of degrees of model nonlinearity. Clearly, if the modeling results in­
dicate that the best lag corresponds to a time (for example) before the fish 
were even born, something is amiss. Results are given in Fig. 14.12. Consid­
ered linearly, there is little to distinguish among the lag choices. However, 
as the models are made nonlinear, a single peak in predictability beyond 
that observed for the bivariate nonlinear model emerges. Strikingly, this 
peak coincides very well with the age of the larvae. The pomacentrid larval 
duration averaged nineteen days; the peak in predictability is centered at 
sixteen days, three days after release from the nest. 

The approach to variable selection seems to be yielding a reasonable re­
sult, but do the functional relationships contained in the model continue to 
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FIGURE 14.13. Functions relating larval supply to the physical en­
vironment extracted from the trivariate physical model. Top two 
panels are essentially as before; now (bottom panel) larval supply 
can be seen to be associated with intermediate wind speeds (cen­
tered on 6 meters per second) 16 days prior, when larvae are very 
young and presumably first-feeding. 

make biological sense? Figure 14.13 gives these, extracted as before. Larval 
supply peaks remain associated with the full moon nineteen days prior, and 
recent weak, onshore winds. Additionally, it now appears that there is an 
approximately dome-shaped response to the sixteen-day lag wind stress, 
centered on about 6 meters per second average daily wind speed. This is 
in good agreement with the results of the previously mentioned theoretical 
and experimental studies, and is the first demonstration from field obser­
vations that such events are important enough that they can be used to 
help predict subsequent recruitment. Figure 14.14 gives model forecasts, 
plotted with the real data. Clearly there is much variability as yet unex­
plained, but it is possible to at least begin to predict the magnitude of the 
peaks in larval supply. 
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FIGURE 14.14. Output of the trivariate nonlinear physical model: 
the best predictions made here for larval supply in this system. 

Variables Lag Model type p Err RMS 
Linear (out-of-sample) 0.29 100.5 241.4 
Nonlinear S-map (0 = 0.6) 0.30 103.1 241.0 

Cross-shelf wind 1 Linear (out-of-sample) 0.34 109.1 237.4 
Nonlinear S-map (0 = 0.6) 0.45 94.1 221.0 

Cross-shelf wind 1 Linear (out-of-sample) 0.38 114.8 233.9 
Daily wind 16 Nonlinear S-map (0 = 0.8) 0.55 88.2 211.5 

TABLE 14.1. Summary of model statistics. Lag in days; Rho gives 
correlation coefficient between predicted and observed values, Err 
is the average error of the predictions, and RMS is the root mean 
squared error from predictions. 
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FIGURE 14.15. Yearly resupply of larval pomacentrids simulated 
for ten years by running the nonlinear trivariate model on surro­
gate physical inputs. The 4-fold variability in replenishment during 
this time arises from stationary processes; there is no interannual 
variability in the physical forcing. It is the specific realizations of 
the stochastic environment that are important. 

14.4 Conclusions 

The goal of this chapter has been to explore in detail a case study where 
the application of nonlinear techniques leads to real gains in understanding 
the variability in a natural biological system. Although the forecast skill 
of the best model constructed in this example is still relatively weak, it is 
a good deal better than that which can be achieved with linear analysis. 
More importantly, the model identifies processes which have long been sus­
pected of being important in driving change in fish populations, but whose 
operation in nature has historically been very difficult to demonstrate. 

This work is part of an emerging trend in ecology to explore the in­
teractions between noise and nonlinearity in population dynamics (Leirs 
et al. 1997[18], Grenfell et al. 1998[11], Myers et al. 1998[27], Dixon et 
al. 1999[7], Zimmer 1999[43]), and the results presented here and elsewhere 
raise a host of new questions for ecologists to consider. One issue in partic­
ular that may need further consideration is how to think about interannual 
variability. In situations such as that presented here, it is entirely possi­
ble for the interplay between noise and nonlinearity to cause a population 
whose variability is a product of stationary processes to itself appear non­
stationary on interannual time scales. For example, Figure 14.15 gives the 
result of running the nonlinear trivariate physical model of larval supply for 
multiple years on surrogate physical inputs. Larval supply is summed over 
each year and plotted over time for ten years. Population replenishment 
varies by a factor of more than 3 from year to year, and yet this model 
is driven entirely by stationary physical processes. This is not to say that 
interannual variability in physical forcing is unimportant; the opposite is 



362 Paul A. Dixon, Maria J. Milicich and George Sugihara 

very often the case. Nevertheless, in this example, the tempting conclusion 
that interannual variability in the physical environment was underlying the 
observed variability in population resupply would have been premature. 

Some recent analyses of time series of natural populations have focused 
on understanding the density-dependent component of population change 
in the presence of environmental noise by exploring whether the internal 
dynamics themselves were chaotic or stable (Ellner and Turchin 1995[9]). 
The impact of external forcing was dealt with by subjecting nearby ini­
tial biological conditions to identical sequences of random shocks. In other 
words, the question that was asked was whether similar initial population 
states would diverge rapidly from each other if environmental variability 
was realized the same way each time. In the example given here, how­
ever, the biological variability results directly from different realizations of 
the stochastic forcing processes. If the goal is to predict variability from 
measurable initial conditions, the suggestion is that not only will the rele­
vant physical variables will have to be identified (along with which are the 
favorable and unfavorable conditions), but also the sensitivity of natural 
populations to the temporal sequences of physical events will need to be un­
derstood. And, of course, in many cases, such sensitivity may be a function 
of population size itself. Clearly, a full understanding of the interplay be­
tween noise and nonlinearity in natural systems is a difficult challenge. The 
potential rewards are great, however, and this is likely to be an area where 
the analytical approaches that are the focus of this book will make strong 
contributions to the understanding of ecological systems in the future. 
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Chapter 15 

Cluster-Weighted Modeling: 
Probabilistic Time Series 
Prediction, Characterization, 
and Synthesis 
Bernd Schoner1 

Neil Gershenfeld 

ABSTRACT Cluster-weighted modeling, a mixture density estimator around 
local models, is presented as a framework for the analysis, prediction and 
characterization of non-linear time series. First architecture, model estima­
tion and characterization formalisms are introduced. The characterization 
tools include estimator uncertainty, predictor uncertainty, and the corre­
lation dimension of the data set. In the second part of this chapter the 
framework is extended to synthesize audio signals and is applied to model 
a violin in a data-driven input-output approach. 

15.1 Introduction 

The list of time ser:es worth forecasting is about as long as the first un­
successful attempts to do so. It would be most helpful to know beforehand 
when a heart is about to stop beating, what the weather will be like to­
morrow and when the stock market is going to crash. Unfortunately, these 
examples share the one property that they have nothing in common and 
that they don't fit into any familiar categories of system dynamics theory. 
Not only are they non-linear, non-Gaussian and non-stationary, they are 
essentially non-everything. 

Linear systems theory has yielded a multitude of results that are widely 
applied in practically all engineering and scientific disciplines. The major­
ity of signal processing, system engineering, control and characterization 
techniques rely on linear assumptions and use a theory that has matured 
in decades of research and implementations. However, the limitations of 
linear theory are clear: Non-linear behavior of any kind cannot be handled. 

The reconstruction (embedding) theorem on the other hand provides 
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the theoretical means to handle highly non-linear behavior of arbitrary 
physical systems with hidden dynamics [22]. It shows that the system's 
state space can be mapped into a diffeomorphic space, constructed from 
any observable of the system, and that we can characterize the data with 
respect to dimensionality and dynamic behavior in the reconstructed space. 
The reconstruction theorem also detects low dimensional structure in a high 
dimensional data space, which lets us work in the space described by the 
effective degrees of freedom of a system, for example, a violin, rather than 
its countless mechanical degrees of freedom. 

Unfortunately it turns out to be rather difficult to use a reconstructed 
state space to predict the output of a complex system. While low-dimensional 
systems are tractable (Fig.I5.I), models become easily unstable given a 
complicated state space or an arbitrary prediction horizon. Driven systems 
should be easier to handle than autonomous systems. However, the model 
dimensionality of a driven system is significantly bigger, since input and 
output observables need to be considered at the same time[4]. The pres­
ence of noise in practically any real world system further complicates the 
embedding task. Due to these problems we end up with a fairly small num­
ber of examples where embedding, despite its theoretical promise, has been 
applied successfully to predict a signal. 

In between linear and highly non-linear systems there is a large class 
of systems that are not easily classified as one or the other but combine 
characteristics from both worlds. The bow string interaction of a violin, for 
example, is strongly non-linear, since it transforms the slow actions of the 
player into a fast audio signal. At the same time the effect of the violin 
body is most efficiently described by a linear filter since there is only little 
non-linear effects in the bridge and body dynamics2 [14]. Hence a violin 
combines linear and non-linear processing. 

This chapter introduces cluster-weighted modeling (CWM) as a model­
ing tool that allows one to characterize and predict systems of arbitrary 
dynamic character. The framework is based on density estimation around 
Gaussian kernels which contain simple local models describing the system 
dynamics of a data subspace. In the extreme case where only one kernel is 
used the framework collapses to a simple model that is linear in the coef­
ficients. In the opposite extreme it allows one to embed and forecast data 
that may be non-Gaussian, discontinuous, high-dimensional and chaotic. In 
between CWM covers a multitude of models, each of which is characterized 
by a different local model and state representation. We create globally non­
linear models with transparent local structures through the embedding of 
past practice and mature techniques in the general non-linear framework. 

2The exception from this is the famous Wolf tone, a tone that periodically collapses 
despite constant bowing. The phenomenon is particularly strong on the cello and is 
caused by a non-linear coupling between a string and a body mode [6]. 
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The limitations of artificial neural networks (ANNs) have become ap­
parent almost as quickly as their modeling power: Networks take long to 
converge, coefficients are only meaningful in the context of the entire model 
and failure and success of an architecture are unpredictable beforehand. 
More recently a new family of networks, which interpret data probabilist i­
cally, and are often represented in graphical networks, has been developed 
[3,9, 11]. As a meta-class of models, graphical models are conceptually un­
bounded. They unify existing network architectures, for example, classical 
ANNs in a single theory [15] provide new insights and extensions to conven­
tional networks and open up new application domains. Graphical models 
are also referred to as independence networks, since the graphical represen­
tation really describes dependence and independence among random vari­
ables. They are called Bayesian belief networks since dependencies between 
variables are expressed in terms of conditional probability functions that 
have implicit or explicit prior beliefs built into them. They are furthermore 
named influence diagrams since causal dependences between variables are 
clearly illustrated. "Influence" is meant probabilistically, which contains 
deterministic causality as a special case. Unfortunately graphical models 
lack a systematic search algorithm that maps a given problem into a net­
work architecture. Instead, before the network parameters can be trained 
on new data, the architecture needs to be redesigned node by node from 
scratch. 

Cluster-weighted modeling is a special case of a probabilistic model that 
gives up some of the generality of graphical models in favor of ease of use, 
a minimal number of hyper-parameters and a fast parameter search. It has 
been designed as an architecture that is as general as reasonably possi­
ble, but as specific to a particular application as necessary. We present a 
tool that allows us to do statistical time series analysis from a physicist's 
perspective and at the same time allows us to solve complicated engineer­
ing problems, for example, the design of a digital musical instruments. As 
opposed to ANNs it provides transparent local structures and meaning­
ful parameters, it allows one to identify and analyze data subspaces and 
converges quickly. 

The first part of this chapter provides the basic architecture, estimation, 
and characterization tools of CWM. The second part is concerned with the 
problem of building a data-driven input-output model of a violin. The violin 
is a complex driven device that in its socio-cultural, artistic and physical 
subtlety is hardly matched by any other human artifact. At the same time 
the violin provides a very clear error metric in that the model is just as 
good as it sounds. From a non-linear dynamics and statistics viewpoint 
the violin is a paradigmatic object, since it shows non-linear and linear, 
stochastic and deterministic behavior at the same time. 
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15.2 Cluster-Weighted Modeling 

15.2.1 Architecture 

Cluster-weighted modeling (CWM) is an input-output inference framework 
based on probability density estimation of a joint set of input features and 
output target data. It is similar to mixture-of-experts type architectures 
[10] and can be interpreted as a flexible and transparent technique to ap­
proximate an arbitrary function. Unlike conventional Kernel-based tech­
niques, CWM requires only one hyper-parameter to be fixed beforehand 
and provides data parameters such as the length scale (bandwidth) of the 
local approximation as an output rather than an input of the algorithm [5]. 

We start with a set of discrete or real-valued input features x which may 
be measured features or components in a time-lagged embedding space, and 
an discrete or real valued output target vector y. Given the joint input­
output set {yn,Xn}~=l' the most general model infers the joint density 
p(y, x) of the data set, from which conditional quantities such as the ex­
pected y given x, (ylx), and the expected covariance of y given x, (Pylx) 
can be derived. 

We expand this joint density in clusters labeled Cm, each of which con­
tains an input domain of influence, a local model, and an output distri­
bution. In a first step the joint density is separated into an unconditioned 
cluster probability and a conditional probability of a data given a cluster, 
which is then further expanded into an input domain of influence and an 
output distribution, 

M 

p(y, x) = L p(y,x,cm) (15.1) 
m=l 

M 

L p(y, xlcm} p(cm } 

m=l 
M 

= L p(ylx, Cm) p(xlem) p(cm }. 

m=l 

Many problems require a distinction between slowly varying state vari­
ables describing the global boundary conditions and state of the system 
and quickly-varying variables describing the fast dynamics of the system. 
If this is the case we decompose x into Xs and x/and obtain for the density 

M 

p(y, x) = L p(ylx/, cm) p(xslcm} p(cm ) , (15.2) 
m=l 

where Xs and x/may be identical, overlapping in some dimensions or com­
pletely distinct. 
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The input distribution is taken to be a Gaussian distribution, 

p(xlc ) = IP;;111/ 2 e-(x-I'",)T.p;;-/.(x-I'",)/2 
m (21l")D/2 ' (15.3) 

where Pm is the cluster-weighted covariance matrix in the feature space. 
It can be reduced to variances in each dimension, when computational 
complexity is an issue. 

The output distribution is taken to be 

Ip-1 11/ 2 
p(ylx C ) = m,Y e-(y-f(x,i3",))T·p;;:'~y·(Y-f(x,i3",))/2 

,m (21l")Dy /2 ' (15.4) 

where the mean value of the output Gaussian is replaced by the function 
f(x,f3m) with unknown parameters 13m. Again the off diagonal terms in the 
output covariance matrices P m,Y can be neglected if needed. 

To understand this form, consider the conditional forecast of the expected 
y given x: 

(ylx) / y p(ylx) dy 

= / p(y,x) d 
y p(x) Y 

= 

= 

"E~=1 J y p(ylx, cm) dy p(xlcm) p(cm) 

"E~=1 p(xlcm) p(cm ) 

"E~-1 f(x, 13m) p(xlcm) p(cm) 

"E~=1 p(xlcm) p(cm ) 

(15.5) 

We observe that the predicted y is a superposition of all the local func­
tionals, where the weight of each contribution depends on the posterior 
probability that an input point was generated by a particular cluster. The 
denominator ensures that the sum of the weights of all contributions equals 
unity. 

Likewise we compute the conditional error in terms of the expected co­
variance of y given x 

= /(y - (ylx})(y - (ylx}f p(ylx) dy 

= / (yyT _ (Ylx}(Ylxf) p(ylx) dy 

(15.6) 

= 

= 

"E~=1 J yyT~(Ylx, cm)dy p(xlcm) p(cm) _ (ylx}(ylx}T 
"Em=1 p(xlcm) p(cm) 

L~=l[Pm,y +f~,f3m)f(x,f3m)Tl p(xlcm) p(cm) _ (ylx}(ylx}T 

Lm=l p(xlcm) p(cm ) 
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which equals the expected variance if only a single output dimension is 
considered, 

There are two parameters to be determined beforehand: the number of 
clusters M and the form of the local models f which together control the 
model resources and hence under-fitting versus over-fitting. We trade off 
the complexity of the local models against the complexity of the global 
architecture, wh1ch is nicely illustrated in the case of a local polynomial 
expansion(Equ.15.8): If we use locally constant models together with a large 
number of clusters, the predictive power is determined by the number of 
Gaussian kernels. If, alternatively, we use a high-order polynomial model 
and a single kernel, the model reduces to a global polynomial model. 

The choice of local models depends on the application. In general f ex­
presses prior beliefs about the nature of the data or insights in the mechan­
ics of a system and thus functions as a regularizer of the model. Machine 
learning architectures and estimation algorithms typically depend on global 
regularizers that handle prior beliefs about what a good model is. This is 
problematic since global statements may not apply locally. For example, 
the maximum entropy principle is good at handling discontinuities, but it 
has no notion of local smoothness, whereas integrated curvature is good 
for enforcing local smoothness but rounds out discontinuities. In our ap­
proach the model is constrained only by the local architecture which may 
enforce local smoothness but at the same time allows for discontinuities 
where needed. 

15.2.2 Model Estimation 
Non-linear function fitting uses models with linear coefficients f3m and non­
linear basis functions f(x), 

M 

y(x) = L f3mfm(x) , (15.8) 
m=l 

for example, a polynomial expansion, or models that have the coefficients 
inside the nonlinearities, 

M 

y(x) = L fm(x,f3m) , (15.9) 
m=l 

for example, a neural network. In the case of a generalized linear model 
(Equ.15.8) only a single matrix pseudo-inverse is needed to find the set of 
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coefficients yielding the minimum mean-square error. However, the num­
ber of coefficients in Equation 15.8 is exponential in the dimension of x. A 
model with non-linear coefficients (Equ.15.9) has more expressive power, 
which can reduce the number of coefficients needed for a given approxima­
tion error to linear in the dimension ofx [2]. Yet, the non-linear parameters 
of Equ.15.9 require an iterative search [8]. 

CWM uses simple local models, which satisfy (15.8), to create globally 
powerful models as described by (15.9) and hence combines the efficient 
estimation of the former with the benefits of the latter models. We fit the 
local model parameters by a matrix inversion of the local covariance matrix 
and find the remaining cluster parameters in charge of the global weighting, 
using a variant of the expectation-maximization (EM) algorithm [7]. EM 
is an iterative search that maximizes the model likelihood given a data set 
and initial conditions [16, 1]. We pick a set of starting values for the cluster 
parameters and enter the iterations with the expectation step. 

In the E-step we assume the current cluster parameters are correct and 
evaluate the posterior probabilities that relate each cluster to each data 
point. These posteriors can be interpreted as the probability that a par­
ticular data was generated by a particular cluster or as the normalized 
responsibility of a cluster for a point: 

= 

p(y, xlcm ) p(cm) 
p(y, x) 

p(y, xlcm ) p(cm) 
M ' 2:/=1 p(y, xlC/) p(C,) 

(15.10) 

where the sum over clusters in the denominator causes clusters to interact, 
fight over points and specialize in data they best explain. 

In the M-step we assume the current data distribution is correct and 
find the cluster parameters that maximize the likelihood of the data. The 
new estimate for the unconditioned cluster probabilities is 

p(Cm) = f p(cmIY, x) p(y,x) dy dx 

1 N 
~ N Lp(cmIYn,xn) , 

n=1 

(15.11) 

Here the idea is that an integral over a density can be approximated by an 
average over variables drawn from the density. 

Next we compute the expected input mean of each cluster which is the 
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estimate of the new cluster means: 

(15.12) 

(15.13) 

The apparently formal introduction of Y into the density as a variable to be 
integrated over has the important result that cluster parameters are found 
with respect to the joint input-output space. Clusters get pulled based on 
both where there is data to be explained and how well their model explains 
the data. In a similar way we can define a cluster-weighted expectation of 
any function 9(x), 

(B(x)m I B(x) p(xlcm) dx (15.14) 

N 
~ L B(xn) p(cmIYn' x n) 
N n=l p(cm ) 

L:~=1 B(xn) p(cmIYn, x n) 

L:~=1 p(cmIYn, x n) 

which lets us update the cluster weighted covariance matrices: 

(15.15) 

It also lets us compute the matrices needed to update the local models. 
The model parameters are found by taking the derivative of the log of the 
total likelihood function with respect to the parameters: 

(15.16) 

Considering a single output dimension y and a single coefficient 13m, we 



15. Cluster-Weighted Modeling 373 

get: 

o (15.17) 

Plugging (15.8) into (15.17) we obtain an expression to update f3m, 

o = ([y - !(x,f3m)l!j(X))m (15.18) 
I 

= (yJ;(X))m - L f3m,i (fj(X)!i(X))m , 
---- i=l -------..---aj,m Bji,m 

=> f3m = B;;;l. am , 

where the matrix inverse should be done by a singular value decomposition 
to avoid numerical problems with singular covariance matrices. 

Considering the full set of model parameters we get 

with 

[Bmlij = (fi(X, f3m) . J;(x, f3m))m 
[Amlij = (Yi· J;(x, f3m))m . 

(15.19) 

(15.20) 

Finally the output covariance matrices associated with each model are 
estimated, 

Py,m = ([y - (Ylx)l2)m (15.21) 

= ([y - f(x, f3m)l . [y - f(x, f3m)f)m . 

Clusters should not be initialized arbitrarily because the algorithm is only 
guaranteed to terminate in a local likelihood maximum. Also, initializing 
clusters in places that are close to their final position saves time, since they 
don't have to walk their way through the data set. We use a method that 
performs well empirically: Choose liN as the initial cluster probabilities. 
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Randomly pick as many points from the traini~g set as there are clusters 
and initialize the cluster input means, and the cluster output mean with 
these points. Set the remaining output coefficients to zero. Use the size 
of the data set in each space dimension as the initial cluster variances. It 
is also a good idea to normalize the training data to zero mean and unit 
variance since arbitrary data values may cause probabilities to become too 
small. 

To summarize the model estimation process: (1) Pick some initial condi­
tions; (2) evaluate the probability of the datap(y, xlcm ); (3) from those find 
the posterior probability of the clusters p(cmly,x); (4) update the cluster 
weights p(cm ), the cluster-weighted expectations for the input means J.t~w 
and variances a~n:w or covariances p~w, the maximum likelihood model 

parameters /3~ew " and finally the output variances a~,y new; go back to (2) 
until the total data likelihood does not increase anymore [7]. 

15.2.3 Error Estimation and Characterization 
From the probability density of the training data set (15.1) several error es­
timates and statistics can be derived, each of which provides useful insights 
and a self-consistency check on the model. The density itself indicates the 
model uncertainty in that we can't expect to obtain a valid model where 
the data density is low. The certainty of the model estimate is proportional 
to the data density in a subspace. 

The conditional covariance (15.6) on the other hand indicates the pre­
diction uncertainty given an input x. It can be related to other charac­
terizations of uncertainty, such as entropy and Lyapunov exponents. The 
differential entropy of a Gaussian process is H = log2(271"ea2)/2. Because 
only differences in a differential entropy matter, we ignore the additive 
and consider H = log2(a). The asymptotic rate of growth of the entropy 
with time is equal to the source entropy h, which in turn is equal to the 
sum of positive Lyapunov exponents times the time lag T between samples, 
h = T E ). +. Therefore, assuming that the prediction errors are roughly 
Gaussian, the asymptotic value of the log of the output width as the input 
dimension is increased provides a local est"imate of the source entropy of 
the system. The sum of the negative exponents can similarly be found by 
analyzing the time series in reverse order (thereby exchanging positive and 
negative exponents). 

Because clusters find the subspace that is occupied by data, we can use 
the cluster parameters to find the dimension of the data set even in a 
high-dimensional space. Intuitively, the number of significant eigenvalues 
of the local covariance matrices provides an estimate of the dimensionality 
of the data manifold. For example, we obtain three significant eigenvalues 
for the Lorenz attractor embedded in 6 dimensions (Fig.15.2). To quantify 
this further we use the eigenvalues of the local covariance matrices Em = 
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FIGURE 15.1. The plot shows the Lorenz set, embedded in a three 
dimensional lag space. The dense dots show the embedded data. Be­
low it are the cluster means and covariances, and the derived input 
density estimate; above it is the forecasting surface shaded by the 
conditional uncertainty, showing the maxima associated with the or­
bit re-injection. 

{el,m, e2,m, .. . , e3,m} to evaluate the radial correlation integral 

(15.22) 
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FIGURE 15.2. Fitting the Lorenz set. Top: Data likelihood as a func­
tion of iterations. Middle: Mean square error as a function of iteration: 
Bottom: Sorted eigenvalues of the local covariance matrices. 

which in turn lets us compute the cluster's correlation dimension [8] as 

(15.23) 

In the limit r ---+ 0, this dimension is equal to the dimension of the space, 
because locally the curvature of the clustered space cannot be seen. If it 
is evaluated at r = O.IO"max, for the emax direction the contribution is still 
0.997, but for a direction with variance emax /100 the contribution drops to 
10-21 . The expected dimension of the whole data set is finally given by the 
expectation 

M 

(1/) = L 1/m p(cm }. (15.24) 
m=1 

Unlike a conventional O(N2} calculation of the dimension of a data set 
from all the inter-point pairs, the clusters find the significant places to 
evaluate the dimension, and the appropriate length scale at which to test 
the scaling. 
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15.3 Application: How to Build a Digital Strad 

Mimic synthesis of musical instruments tries to infer models that behave 
and sound like the original instrument ideally to the extent that original and 
model become indistinguishable. Given this general goal there have been 
a variety of different modeling approaches. Global sampling, for example, 
has been particularly successful in commercial keyboard synthesizers. Each 
single note of a piano is recorded at many different volume levels and with 
varying duration and these sounds are replayed during synthesis. Since 
memory is cheap, only very little interpolation between samples is required 
and the sound quality is close to the original recordings. However, the 
method works only for instruments with low dimensional control space, 
namely, keyboard instruments. Since the model does not know about the 
instrument's internal state, but only reuses what it has seen before, there 
is no notion of control on part of the player. 

Another successful synthesis technique is physical modeling [21]. It is 
based on first principles analysis of the acoustics of the instrument, which 
are implemented in numerical methods. This method provides a lot of flex­
ibility; for example, it allows one to create new instruments that are de­
rived from physical mechanisms but could not be implemented physically. 
However, the approach has also serious limitations. Current computers can 
barely run a full-scale model of the violin as can be shown in a simple 
calculation on a finite element approximation of a violin. Assuming ten 
body modes per body axis and ten finite element nodes per cycle, we get 
104 nodes per violin plate and in the order of 105 nodes per instrument. If 
we multiply this by a CD quality sample rate of 40 kHz, we end up with 
roughly 10 giga instructions per second needed to run a model in real time. 

As a further fundamental problem of physical models there is no sys­
tematic parameter search within a model structure and instrument family. 
Given a basic model of a violin there is no way to find the parameters 
that distinguish a Guanerius from a Stradivarius other than trying out 
combinations of parameters in a high-dimensional space. 

The method we are presenting here lies conceptually between the sam­
pling and the physical modeling approaches and hence is best described 
as a "physics-sampler". Although we infer our model from recorded data 
and even use stored samples, we create a model that has the flexibility of a 
physical model, since we synthesize the physics of the instrument, not the 
sound. At the same time we are doing computational compression on data, 
since the physical device is represented in an efficient description. 

It was mentioned earlier that the mechanics of violin playing involve 
stochastic behavior. The stochastic aspects become clear when one consid­
ers player and instrument jointly. The violinist only partially controls the 
instrument. While the player has an idea of the spectral characteristics de­
sired, he or she has no means to hear and control the phase of the produced 
signal. Naturally there is a causal relationship between the player action 
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and the spectral content of the sound, whereas the phase of the different 
partials is random and hence unpredictable. 

Fortunately, since phase is not perceived as a discriminating feature in 
a typical playing situation, we may pick it arbitrarily as long as we avoid 
discontinuities in the signal components. The general lesson to learn is 
that we need to model the process, not an instantiation of a particular 
process. While we can predict deterministic aspects of the signal, stochastic 
behavior needs to be summarized in appropriate statistics such as the power 
spectrum. 

The violin, like most musical instruments, is characterized by slowly vary­
ing boundary conditions that map into a fast audio signal. The non-linear 
interaction between bow and string causes the slow player motion to be 
turned into the famous Helmholtz motion which contains the frequency 
components of the final audio signal [6]. The slow and fast elements de­
scribe two different times scales which, if mixed, confuse each other. In­
stead, fast and slow dynamics and the corresponding state variables need 
to be treated differently. CWM provides the means to implement such dis­
tinction: The slowly varying boundary conditions are used to select the 
domain of operation (cluster) in the configuration space (Equ.15.3), while 
the fast dynamics are handled by the local models and the associated state 
variables (Equ.15.4). 

The previous section introduced CWM as a machine learning framework 
that allows one to predict and characterize arbitrary input-output data. 
Given this inference tool we need to consider a second important aspect of 
data analysis and prediction, which is data representation. Although linear 
transforms such as Fourier or wavelet transforms do not change the infor­
mation content of the data, they make a considerable difference in which 
domain we try to predict. CWM lets us embed a variety of specific local rep­
resentations. In this section we discuss cluster-weighted spectral modeling 
and cluster-weighted sampling as examples of two local implementations of 
CWM. We also introduce ways of higher order factorization and show how 
the CWM structure can be included in a hidden-Markov model to the end 
of explicitly encoding timing in the model. 

15.3.1 Cluster- Weighted Spectral Modeling 

It is our goal to build an input-output model of a violin given a data 
set that contains physical input features measured on the bow and the 
finger-board along with synchronized audio data. In the training process 
the network learns the mapping between the physical input and the sound. 
After training, the network knows how to generate appropriate audio, given 
new input. 

We decompose the audio training signals into spectral frames at a frame 
rate that equals the sampling rate of the slowly varying physical input. 
Each frame contains of the coefficients of a short-term Fourier transform 
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(STFT) applied to a fixed number of audio samples weighted by a Ham­
ming window. The underlying assumption is that the player operates on 
the spectral composition of the sound and that these spectral character­
istics do not change faster than the actual control. From those frames we 
retain only the harmonic partials of the violin signal. The amplitudes of the 
harmonic partials are taken to be the magnitude of the power spectrum in 
the frequency bin, while precise frequency estimates are obtained from the 
phase difference in closely spaced sample windows [13]. Given a total of P 
partials the output vector y has 2P components. 

The input vector x consists of physical input data, such as bow velocity, 
pressure, finger position, and bow-bridge position. Driven by the belief that 
past input conditions the current state of the instrument the input vector 
is augmented with respect to past input data. Adding time lagged input 
samples to x, we balance the need to include the past and the burden of a 
big input space. While the model scales linearly in the output dimension, it 
is very sensitive to large input spaces, since the required amount of training 
data exponentially increases the input data dimension. Also the model is 
more sensitive to over-fitting given a bigger input space. 

In training we use the set of vector pairs {Yn, Xn}~=l to train a CWM 
input-output model using simple linear local models of the form Y = Pm . x. 
In the synthesis process the vector of spectral information Y is predicted 
from new input data x. Given the spectral data we compute the time 
domain audio data by sinusoidal additive synthesis, where phase and am­
plitude of the partials are taken to be the predicted components, linearly 
interpolating between frames [19]. The final signal is obtained from sum­
ming the different components [18]. 

15.3.2 Cluster- Weighted Sampling 

Global sampling has been a successful synthesis technique for instruments 
with low-dimensional control space, such as the piano [12]. However, the 
technique is less appropriate for instruments with continuous complex con­
trol, such as the violin. In the case of the violin the amount of data required 
to cover all possible playing situations is prohibitive, since control possibil­
ities are essentially unlimited. To overcome this problem we parameterize 
the available sample material in an efficient way. CWM learns how to se­
lect the appropriate samples, but also to predict the parameters needed to 
reassemble the sound from the raw material. 

Clusters now have multiple output models covering sample selection, 
amplitude prediction and pitch prediction. The first expert is a pointer 
into sample space. The cluster that most likely generated a control data 
takes over and its sequence of samples stands in for the particular playing 
situation. The cluster is replayed until another cluster becomes more likely 
and takes over with its own samples. We will come back to the issue of 
sequencing time domain sound samples later. 
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FIGURE 15.3. Cluster-weighted sampling: a) overlapping samples of 
the string signal. b) input-output model, from the bottom: bow position; 
bow speed; finger position; predicted out-of-samples amplitude (solid) 
and given sampled amplitudes (dashed); predicted out-of-samples 
pitch (solid) and given sampled pitch (dashed); the doubled dashed 
lines indicate overlapping sample windows: the old window is slowly 
faded out while the new window is faded in, in such a way that the 
total weight of data adds up to unity at any given moment. 

The second output model is a pitch predictor. Given a control input that 
typically includes the left-hand finger position on the finger board a local 
linear model predicts the appropriate pitch at any moment in time. The 
samples selected for synthesis almost certainly won't match this desired 
pitch exactly. Therefore they are re-sampled with respect to the predicted 
target pitch. The resampling is done in real time according to 

n=N 

s(t) = L s(n· Ts) hs(t - n . Ts) (15.25) 
n=-N 

with 
(15.26) 

where Fs is the stored sampling frequency and F~ is the target sampling 
frequency [20]. Sample pitch and target should not differ too much, since 
big pitch shifts result in audible artifacts. However, resampling can easily 
compensate for effects such as vibrato. Since we cannot hope to record 
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any possible vibrato sequence and frequency, we choose to superpose the 
desired vibrato behavior on the sampled material. 

The third output model predicts the sound volume at any moment in 
time using, once again, simple locally linear predictors. The selected sam­
ples are re-scaled with respect to the target volume. Strong modifications 
of the sample volume should be avoided so that the correct timber is not 
altered. 

This approach requires a number of preprocessing steps that extract the 
high level properties from the audio data. We need both pitch and volume 
to label, parameterize and correct the audio data at any moment in time. 
These properties are easier to obtain than it may seem. Although pitch 
extraction is a problem that has not been solved in full generality, it turns 
out to be surprisingly simple in our approach. Since we are measuring 
physical input data, we have a rather good estimate of pitch to start with. 
Given a certain finger position, the possible pitch is within a very small 
frequency interval, which makes it practically impossible for a pitch tracker 
to get confused in the audio analysis. 

An important detail is the sequencing of pieces of audio when there is 
looping within a sample interval or when a change of cluster occurs. We 
choose to match samples by minimizing the least square error between the 
old and the new samples. Additionally we fade out the old sound and fade 
in the new sound using a Hamming window overlap-add. 

Because we re-sample the audio material anyway, we can increase the 
resolution of our fit, allowing for non-integer alignment of sounds with­
out increasing the complexity of the synthesis algorithm. The success of 
the overlap-add depends on the length of the permissible fading interval 
and on the character of the sound. Figure15.3 shows the overlap of two 
highly phase-coherent pieces of the string signal of a violin describing a 
Helmholtz motion. In that case the partials line up nicely with the funda­
mental and discontinuities are not a problem. However, the sound signal 
loses its regularity after the filtering by the bridge and the resonant body 
of the instrument, which makes it much harder to deal with. 

15.3.3 Higher Order Factorization: Hierarchical Mixture 
Models and Hidden-Markov Models 

We have demonstrated a flat network structure that is easily applied to 
many problems and sufficiently complex for most applications. However, 
there are cases where additional hierarchical structure is helpful if not cru­
cial. Identical models may want to be reused in different areas in the con­
figuration space or systems may have long-term temporal dependences. 
Jordan and Jacobs [10] introduce mixture models of arbitrary hierarchi­
cal depth. Similarly we can add higher level factorization describing global 
states of our system. For example, the top-level state of a violin model could 
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FIGURE 15.4. Hidden-Markov model, from bottom: cluster/model 
input space, two clusters per state; state probabilities; predicted 
out-of-samples amplitude (measured-dashed and predicted-line); pre­
dicted out-of-samples pitch (measured-dashed and predicted-line). Al­
though measured and predicted data are visibly different, the recon­
structed audio sounds very similar to the original audio data, since 
the spectral characteristics and the basic characteristics of the sound 
envelope are preserved. 

distinguish global playing conditions such as pizzicato and arco playing or 
the use of a particular string. The probability density is then expanded as 

p(y,x) = L LP(y,x,cm,Modelk) . (15.27) 
k m 

In the previous sections we used time lags of the input signal to encode 
temporal structure and memory of the system. Another way of stating this 
dependence is to say that the current state depends on the past state and 
the current input. Hidden-Markov-Models (HMMs) have been developed to 
precisely implement this dependence in a probabilistic framework [17]. If we 
embed CWM in an HMM structure, we obtain an input-output synthesis 
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model with an explicit time dependence built into it. 
HMMs are typically defined in terms of the number of distinct states 

ql,q2, ... ,qN; the state transition probability matrix A = {ai,j}, where 
ai,j denotes the probability that state i follows state j and the emission 
probability bj(k), which denotes the probability that the system generates 
observation k, given that it is in state j. We replace the discrete emission 
probabilities by a continuous probability density function of the form of 
p(x, ylqj), which means the cluster probabilities p( cm) become effectively 
time dependent, conditioned on past system states. 

A cluster (or more than one) now represents a specific state qj given a 
set of possible states ql .. . qN. The likelihood of a sequence of input-output 
observations (X,Y) = {Xl,Yl,X2,Y2, ... ,XT,YT} is 

with 

p(X, Y) = L p(X, YIQ) . p( Q) , 
Q 

(15.28) 

p(Q) 1C'QlaQlQ2aqlq2 ... aqT_lqT , (15.29) 

p(X, YIQ) = bqdxl,yd· bq2 (X2,Y2) ... bqT(XT,YT) . 
(15.30) 

bqi(X, y) is the emission probability of a pair (x, y) given the state qi. 
These probability densities may be simple clusters or themselves a sum 
over clusters, 

M 

bqi(X,y) = L p(Ylx,cm )· p(xlcm )· p(cm ) , (15.31) 
m=l 

where the probability distributions are identical to (15.3) and (15.4). 
The model estimation is more complicated but is based on the same prob­

abilistic ideas as shown earlier. HMMs are typically trained in a forward­
backward procedure which is a special implementation of EM and makes 
the estimation problem tractable. In synthesis the model is evaluated in 
a forward procedure since output has to be generated causally [17]. The 
output sequence at any moment in time is taken to be the expected value 
of Y given estimated past states and current observed input, 

( ) = E!lP(qi,t-d·aj,i·b(Xtlqj) 
p qj,t N N 

Ej=l Ei=lP(qi,t-l)· aj,i· b(Xtlqj) 
(15.32) 

N 

(YtIXt,qt-l) = L f(xt, {3j) . p(qj,t) . 
j=l 

A particular sequence of states now reflects a sequence of input gestures 
and internal states of the violin. Figurel5.4 illustrates a state sequence 
for simple detache bowing. We can follow a note from the attack, to the 
sustained part, to the next bow change. 
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15.4. Summary 

The valuable insights that are possible into signals from complex systems 
have not penetrated into routine data analysis and engineering practice 
because of algorithms with limited applicability or reliability. The cluster­
weighted modeling framework that we have presented cannot solve all 
problems, but it does handle nonlinearity and stochasticity in a transpar­
ent fashion that provides a clear connection to past practice in a domain 
(through the choice of the local models), with just a single hyper-parameter 
(the number of clusters). A natural extension exists for problems that re­
quire internal states in the model, without needing to incur the architec­
tural uncertainty of more general graphical probabilistic networks. 

One of the most valuable consequences of this probabilistic setting is the 
range of statistics that can be derived from the underlying model. Rather 
than imposing a cost function for a learning algorithm at the outset, pre­
diction questions can be answered directly from the density estimate. This 
is possible with reasonable amounts of data because the estimate is con­
strained by the local models. Further, the many possible kinds of character­
ization of the data are done more reliably in a context that can also make 
falsifiable predictions about the data, including internal consistency checks 
such as predicting the model's own errors. The resulting models are effi­
cient in storage and computation because the model resources are allocated 
only where there is data to describe, and the out-of-sample generalization 
is limited to the reasonable behavior of the local models. These features 
point to the possibility of broadly applicable "physics sampling," building 
phenomenological models of driven systems in the space of effective inter­
nal degrees of freedom, thereby enabling new applications that figuratively 
and literally sound great. 
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Chapter 16 

Data Compression, Dynamics, 
and Stationarity 
Matthew B. Kennell 
Alistair I. Mees 

ABSTRACT One of the main themes of this book is the considerable 
progress that has been made in modeling data from nonlinear systems that 
may be affected by noise. In this chapter, we describe a modeling method 
based on an idealization that gives fast algorithms with known properties 
based on rigorous results from data-compression theory. The idealization 
is that the system outputs symbols from a finite alphabet, rather than out­
putting a real number; we also make a reasonable assumption which is the 
discrete analogue of the standard embedding theorem. The models that re­
sult can be used to simulate and to estimate many of the usual dynamically 
interesting quantities such as topological entropy. They are also well-suited 
for a specific new application: testing the stationarity of time-series of dis­
crete symbols, whether two data streams appear to originate from the same 
underlying unknown dynamical system. 

16.1 Introduction 

A system with complicated temporal evolution may nevertheless be able 
to be modeled in a relatively simple way. When the model is constructed 
directly from data Yl, ... ,YT, the process is called reconstruction in the dy­
namical systems literature. Building a model may help in answering ques­
tions such as whether there is a degree of predictability, whether the system 
is stationary, and so on. Indeed, questions like stationarity cannot really 
be separated from the existence of a model. Ideally, reconstruction should 
settle these questions by selecting the most appropriate model from a wide 
range that includes elements of all the above classes: If, for example, the 
best model is non-stationary, then it is reasonable to declare the original 
system to be non-stationary, as long as we remember that we can never 
find the best model, only the best among those classes we have chosen to 
consider. 

The choice of classes of model will be guided by other knowledge about 

1 Author for correspondence. 
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the system, but there do exist "universal" classes which can in princi­
ple model any system. The modeling method described in this chapter 
is universal within the assumptions made. Likewise, more traditional dy­
namical reconstruction works with relatively general model classes, such as 
discontinuous local linear functions [1, 7, 28], continuous piecewise-linear 
models [19, 20], neural nets [32], radial basis functions [3, 21], and so on. 
Theoretical asymptotic guarantees of universality are only useful in prac­
tice if they give good quality models for finite amounts of data, and if they 
also give insights as well as high quality models. 

The embedding theorem [29], discussed elsewhere in this volume, applies 
to real-valued measurements from smooth dynamical systems; it allows 
system states to be represented by vectors of delayed output signals. The 
embedding theorem as originally stated does not allow for noise, and its 
implication for modeling is that if there is finite dimensional dynamics, the 
measured data can be written 

Yt = !(Yt-l, Yt-2, ... ,Yt-k) (16.1) 

for some unknown function! and integer k, the so-called embedding di­
mension. The value of k is determined by methods such as false nearest 
neighbors [14] and the function! is determined by one of the above approx­
imation methods. Realistic modeling of dynamical systems requires that ! 
be allowed to be nonlinear, and the emphasis on this is the distinguishing 
characteristic of dynamical systems reconstruction. 

All realistic methods allow for noise as well as for nonlinearity in the 
dynamics; generalizations of the embedding theorem to noisy systems now 
exist [27]. Usually, the model in (16.1) is modified to 

(16.2) 

where ct is the unknown noise (and fitting errors!) at time t. The question 
of how much variation to ascribe to noise and how much to nonlinearity is 
best answered using information-theoretic methods [21, 12]. Model (16.2) 
is not as general as it needs to be, but only rarely is it generalized because 
of the difficulty of combining nonlinear function fitting and explicit state 
error estimation. 

A considerable simplification is to assume the observed data consist only 
of a finite set of symbols. In return for this simplification, we gain power­
ful reconstruction methods which can have good qualities even with short 
data series. The reduction to symbols is realistic in that observed data are 
invariably digitized, but we shall allow for, and typically use, substantially 
coarser discretization than is inherent in the measuring process. Symbolic 
methods have been used in the study of dynamical systems from the ear­
liest days, but in contrast to most of the theory which has flowed from 
Kolmogorov and other mathematical dynamicists, we make no attempt to 
craft a special discretization to match known dynamics; we are not trying 
to make a Markov partition [17], even approximately. 
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For our purposes, symbolization is merely a reduction-possibly a con­
siderable reduction-in precision of the original data. Typically, we di­
vide the one-dimensional histogram of the observed data between a small 
number of bins, either by equal probability mass or by equal width, and 
then code each datum by the bin number, producing a symbol stream, 
81, 82, 83, ... 8 N, each symbol from some alphabet A re-expressed as inte­
gers 8 E {I, 2, ... , IAI}. There will typically be a trade-off between the 
alphabet size and the complexity of the model: the relationship between 
dynamics and shifts [17] suggests that a smaller alphabet may be acceptable 
if we are prepared to deal with longer histories (that is, longer multi-symbol 
words) when model-building. 

The distribution of multi-symbol words provides information about time­
dependent structure and correlation, just as, with continuous nonlinear 
data, time-delay embedding provides a vector space revealing dynamical 
information. The techniques introduced by Fraser [8, 9] to measure mutual 
information and related concepts are familiar to applied nonlinear dynam­
icists, but our aim is to make explicit the modeling step, which is implicit 
in Fraser's methods, A significant benefit is that, at least in principle, we 
can deliver guaranteed convergence and optimality, something that is rare 
in nonlinear reconstruction. 

The central payoff of symbolization is that we may exploit powerful con­
temporary methods taken from the field of data compression. It is apparent 
that useful data compression involves modeling: The better one's model, the 
better one may compress the data. In data compression there exists a class 
of compression algorithms known as "universal", which have been proven 
to be able to model any source with a non-pathological probability law. The 
metric of quality is, of course, a model good enough to compress data down 
to the Shannon entropy of the generating source2 • Universal compression 
methods "achieve entropy" in that their asymptotic code length per input 
symbol converges to the true entropy rate. We will exploit the modeling 
phase of such algorithms, rather than being interested in the literal output 
of compressed bits. 

There is more to time-series analysis than good prediction and modeling. 
Our application of data compression methods solves, in a fundamental way, 
a common problem in deriving valid statistical tests for complex dynami­
cal data: accounting for arbitrary correlation and dependence between the 
data. As a result, it allows calculation of dynamical invariants as well as 
application of other statistical tests. As an illustration, in this contribution 
we construct a direct test for dynamical stationarity. 

2The Shannon entropy is an average and is only a fundamental minimum in the 
asymptotic sense; however, if the data stream is more compressible than implied by the 
entropy of the source, then it is atypical of the source and any model we make from it 
will not be a good model of the source. 
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16.2 Symbolic Prediction and Coding 

From observed data one may estimate either absolute or conditional proba­
bilities. Statisticians call the first task "density estimation" and the second, 
"regression" . Many information theoretical quantities have equivalent for­
mulations using either absolute or conditional probabilities; however, there 
is a practical difference. Given finite observed data, especially from chaotic 
dynamics, it is usually easier to estimate conditional rather than absolute 
probabilities. For example, the invariant measure of a strange attractor is 
a complex geometric object with a difficult probability distribution, while 
it often arises from a simple and smooth dynamical evolution law which 
is easier to model parametrically. Additionally, modern powerful Bayesian 
numerical methods, such as Markov Chain Monte Carlo, rely on iterative 
estimation of marginal distributions to discover absolute distributions. 

Assume, then, that we have an observed symbol string Sl, ... , S N, which 
was output from a finite-memory source, so that 

(16.3) 

That is, the probability of the next symbol conditional on the entire past 
depends only on the previous k symbols, where again we have to somehow 
estimate k (which may depend on the "context", i.e., on the actual symbols 
observed), and we also have to estimate3 the conditional probability F. 

Notice the parallels between this model and the standard embedding 
models: Our context size k is like a "local" embedding dimension [13] and 
estimation of the conditional probability is equivalent to reconstructing the 
dynamics in more conventional models. Recasting the procedure in a more 
statistical way, our intention is to model serial correlations in the observed 
data by conditioning on past observations, choosing sufficient observations 
to ensure that, as far as can be detected from the data, successive observa­
tions are independent under the conditioning. That is, we split the problem 
into one of detecting the conditional structure, and another of estimating 
distributions of Ll.D. random variables. It is convenient to think of the 
structure determination as the deterministic part of the modeling process 
and the distribution estimation as the stochastic part. 

An obvious model is a simple finite-order Markov chain, estimating the 
histogram of future symbols St given every possible combination of the k 
past symbols. There are IAlk possible bins, each corresponding to a spe­
cific past history, and containing an estimate of the next symbol. Although 
not infrequently used by dynamicists doing symbolic time-series analysis, 
this is a very poor modeling technique. There is a global free parameter 

3If we restrict the choice of approximating functions P for F, then we may increase 
the uncertainty, which will show up in the model as transition probabilities which are 
more nearly uniform than they should be. We are, as in most dynamical modeling, 
confounding modeling error and stochasticity. 
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k which somehow must be selected, and there is an exponential explosion 
in the number of local parameters which must be estimated. Larger k lets 
one model higher-dimensional dynamical laws, but because of the expo­
nential explosion in the number of bins, the amount of data available to 
estimate the next symbol can be very small, producing a bad estimate. 
Furthermore, there are no guarantees that such an estimate even converges 
to the true answer given more and more data: the canonical "over-fitting" 
problem. Such a model is not remotely competitive in the data compression 
community. 

As a replacement, we build a so-called tree machine which acts like a 
stochastic dynamical system. In effect, this technique automatically dis­
cards or under-weights distant past histories when they have little discrim­
inatory benefit, but keeps them when they improve performance. 

What is the proper measure of performance? There are good reasons [16] 
to define "better" to mean "able to compress the data more" . The ultimate 
bound on performance is, of course, that one may not, averaging over real­
izations of the data source, compress data at a rate better than the Shannon 
entropy of the source. That is, if P were the true underlying probability 
law governing the source generating the data, the best compression rate 
achievable would be, assuming ergodicity and stationarity, 

1 N 
h = lim N 2: -log2 P(StI St-1 ... st} 

N-+oo 
t=l 

(16.4) 

bits per symbol. Any other probability law P :I P produces a larger code 
length when substituted in in (16.4), except for exponentially unlikely atyp­
ical strings. Thus, minimizing the code length 

L = 2: -log2 P(skl sk-1 ... st} 
k 

(16.5) 

is a good universal metric of performance for any modeling scheme which 
learns P from observed data. 

This code length is not just an impractical lower bound. Given a prob­
ability estimator P and subsequently the actual symbol s(t + 1), a con­
temporary coding scheme called arithmetic coding [4] produces a literal 
compressed bit string of length less than r L 1 + 2. There is an accompany­
ing decompresser that can reconstruct the same probability estimator and, 
given the compressed bit string, the actual symbol s(t + 1). The coding 
and decoding stages are not relevant for our current needs, but we mention 
them here to show the relationship between on-line modeling of symbolic 
dynamics and data compression. . 

For the decoding process to work, the encoder (and hence the esti­
mated code length) has to be causal: It cannot use information about the 
present or future symbols when it encodes the present symbol. This is the 
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information-theoretic version of the ubiquitous over-fitting problem: the 
statistical equivalent is that if a model has too many parameters, its error 
in "predicting" in-sample data will be smaller than when predicting previ­
ously unseen data. The more free parameters there are in the model, the 
more likely this problem is. A considerable statistical literature is devoted 
to schemes to regularize or validate models to prevent over-fitting or to add 
penalty terms for free parameters. 

The information theoretic version of the problem suggests a solution 
which is particularly easy to apply in the symbolic case. The idea is to 
include the cost (in bits) of specifying the values of the free parameters, in­
cluding any necessary to specify the model's structure, as well as the data 
set itself, denoting the sum as the "description length" (DL). Assuming 
the broad model class is known at both ends of a transmission link, it is 
possible to reconstruct the data set at the receiver using the number of 
bits specified by the DL. Rissanen's minimum description length (MDL) 
principle [24] tells us to select the specific model out of the class of mod­
els considered which gives the minimum description length on the dataset 
considered. This criterion is a practical analogue of the fundamental Kol­
mogorov complexity of a dataset: the minimum size of a program on a 
universal computing machine capable of reconstructing the data, a metric 
which is, unfortunately, non-computable [16]. 

The MDL principle can be applied either in a batch mode or sequen­
tially. The former is more familiar in the dynamical systems literature, 
having been used to prune regression models with radial basis [12, 21] and 
polynomial [2] functions. The description length is the sum of the regres­
sion errors plus a term which accounts for the number and size of non­
zero free parameters. Although the principle is legitimate, the calculations 
necessary to fairly account for the free parameters can be tricky and con­
ceptually obscure, especially in the continuous domain, requiring a number 
of approximations of varying quality. The sequential coding method, more 
common in traditional data compression, avoids these difficult problems. 
Here, we update the estimating model as appropriate after each observa­
tion has been processed. That is, the estimate for P(St) is generated using 
only knowledge of the previously occurring symbols, and the code length 
L in (16.5) is thus a true description length. The costs for the parameters 
are automatically included in L because the estimator is not as good in the 
beginning of the dataset, when few symbols have been observed, as toward 
the end. 

16.3 Context Trees 

A context tree is a model of dynamics which is a close symbolic-system 
analogue of the embedding theorem. It defines the conditional probabili-
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ties of the next symbol, given a number of preceding symbols. The number 
required may vary, just as, in the English language, the next-letter proba­
bilities are almost completely defined if the current letter is "q", whereas 
it is much more informative to condition on "th" than on "t". In general, 
we should choose sufficient past observations to ensure that, as far as can 
be detected from the data, successive observations are independent under 
the conditioning. 

One way to look at the context tree construction is that it splits the 
problem into one of detecting the conditional structure, and another of 
estimating distributions of Li.d. random variables. 

First, suppose we already know the conditional structure; that is, we are 
given a set of contexts Gi , i = 1, ... , IGI, such that P(yIGi ) is independent 
of P(yIGj ) for i "I j. Being past sequences of variables, the contexts may 
be conveniently represented as the leaves of a tree. Figure 16.1 shows a 

o 

p(l)=l 

p(l)=l p(1)=O 

FIGURE 16.1. A simple context tree which generates the periodic se­
quence 011011011 .... Each leaf is a contezt; it represents the most recent 
symbols seen, read backwards in time from the present and downwards 
from the root of the tree. Probabilities at the leaves are conditional 
probabilities for the next output symbol, given that context. 

possible context tree for the alphabet {O, I}, with conditioning contexts 0, 
01 and 11. In the tree, the most recent symbol is nearest the root so, for 
example, the leaf corresponding to context 01 is found by following the 
arc labeled 1 at the top level and the arc labeled 0 one level deeper. The 
context tree is a machine that outputs independent realizations given any 
context: in Figure 16.1 there is probability 1 that the next symbol will be a 
1 and probability 0 that the next symbol will be a 0, regardless of previous 
symbols before the two represented in the context. 

16.3.1 Zero-Memory Estimation 

If the context tree structure is given then we can estimate the future­
symbol conditional probabilities for any input string by recording at each 
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leaf the number Ci of times the ith symbol has been seen already at each 
leaf, then estimating the multinomial distribution of symbols there. One 
widely-used estimator in the binary case is the Krichevsky-Trofimov (KT) 
estimator [34], which has good asymptotic properties.4 It is 

P(O) = Co + 1/2 
Co + Cl + 1 

(16.6) 

where Co and Cl are the counts of observations of 0 and 1; that is, it is 
equivalent to dividing a "ballast" of one observation equally between the 
binomial bins before the start of observations. If we have prior knowledge 
or prejudices about the system, we may want to use a different amount of 
ballast; more if we believe we have a good estimate of the distribution, less 
if we do not have such an estimate but nevertheless believe the system to 
be nearly deterministic. The binary KT estimator is in fact the posterior 
for a Dirichlet(1/2, 1/2) prior. 

We need ballast (a zero ballast corresponds to the maximum likelihood 
estimator) because this probability estimate is used as input to a coder, or 
at least to estimate the code length that one would achieve. Unseen future 
symbols would lead to an estimated probability of zero, but if that symbol 
did actually occur (and this is likely in sequential coding) it would imply 
an infinite code length. In circumstances when an estimate is not used to 
compute a code length, the ballast can be zero. 

In accordance with our earlier discussion about estimation of description 
lengths, we estimate the distribution predictively; that is, the probability 
we ascribe to any symbol is the probability ascribed by the KT estimator 
based only on what has been seen in the past. In the binary case, the 
probability ascribed to an input sequence containing Co zeros and Clones 
is therefore 

P (Co, Cl) = ~ x ~ x . . . x (Co - ~) x ~ x ~ x . . . x (Cl - ~) . 
1 x 2 x ... x (eo + Cl) 

(16.7) 

In the general case, each node accumulates IAI integers which record the 
occurrences Ci of every symbol i E 1 ... IAI that occurred immediately after 
its particular context C, and estimate the conditional probability for the 
kth symbol using the Krichevsky-Trofimov [26] estimator, to give 

P(k) = (Ck + (3)/ :~::)Cj + (3). 
j 

(16.8) 

Here (3 is the ballast factor, which was 1/2 in (16.6). In this chapter we 
use a fixed ballast of l/IAI in each bin; we have found this to work well in 
practice over a wide range of problems. 

4The non-asymptotic properties of the KT estimator may not be so good, especially 
for larger alphabets. Other estimators may be more suitable for particular problems. 
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16.3.2 The Structure of the Tree Machine 

Unless there is some special knowledge available, we do not know the tree 
structure in advance and we will have to induce it from the data; this is, 
in effect, the deterministic part of our modeling procedure. It is possible, 
and common, to specify a maximum memory, and hence a maximum tree 
depth. This can be avoided by recording the entire past for every symbol. 
This means the maximal depth of the tree is equal to the length T of the 
input, but with efficient implementation which avoids explicit construction 
of unbranched chains of links, particularly at tails [33], the storage required 
is linear in T. 

Each leaf now represents just one observation, and the KT estimator is 
trivial there. We also find KT estimators for the internal nodes by scanning 
backward from the leaves and combining the counts of the children of every 
node: If we were to use the KT estimator at a particular node this would 
be equivalent to pruning its children, since we would be claiming that the 
context at that node is sufficient for conditioning in prediction of future 
symbols. The problem is to decide where to prune the tree. The critical issue 
is balancing between the more detailed dynamical reconstruction possible 
in deeper contexts and the increased quantity of observations at shallower 
contexts which gives greater robustness against statistical fluctuation. 

One must choose from or combine the estimates at different depths to 
make the best estimate. We discuss three alternatives: selecting a node 
for each new observation at each time step; weighting among all matching 
nodes; and batch pruning the tree after all observations have been seen. 

The question central to all these methods is "When is the model at 
a node better than the best model obtainable from its children?" Better 
performance here means better compression ability. Compression can be 
defined in terms of probability distributions: In fact, if Ps(x) is the prob­
ability ascribed to data sequence x as seen5 at node s by (16.7) then the 
code length required to encode x there is 

bits. So all of the alternatives need to recognize the data compression abili­
ties of each context; for example, we could define a rule that prunes off any 
nodes that jointly compress worse than their parents in the context tree. 

In each of the following implementations, we insert the symbol into the 
tree by adding branches and nodes as needed to store its entire history, 
with any required optimizations. One updates the histograms at all nodes 
whose counts have changed (Le., for every node which matches the current 
history) and recalculates corresponding description lengths. Usually one or 
more code-lengths will be stored at each node. We will not comment further 

5The sequence "seen" at a node is the subsequence of the original data for which the 
contexts match the node's context. 



396 Matthew B. Kennel and Alistair I. Mees 

on the insertion and update process; any reference to "inserting the new 
symbol" will assume that all of this is being done. 

On line Node Selection 

First we describe a method of selecting contexts as the tree is built; that is, 
we are defining optimal coding nodes predictively, in accordance with our 
guidelines for calculating description length. Our state-selecting algorithm 
is a version descended from Rissanen's original work introducing predictive 
context trees [23]. 

Given the existing tree at time t (before the insertion of the new symbol), 
the algorithm selects a particular node for encoding. In addition to the 
accumulators Ck used in (16.8), each node retains an internal code length 
Le, the cost of coding using that node's own local probability estimator all 
symbols which have occurred after histories matching that node's context. 
This is a measure of how good that node is at coding the future when 
the past matches its context, or, since Pe = 2-L ., the total probability of 
observing all futures after matching the current node. 

In this algorithm we insert the current symbol before any other computa­
tions, but keep the updated counts separate until the symbol's code-length 
has been computed. 

Given the current symbol, we traverse the nodes which match the current 
history from the root node down. If the tree is as in Figure 16.2, and the 

no history 

1 step history 

2 step history 

'" ,'1\ 
" : '" 

/'/ ' \ '. 

FIGURE 16.2. Example ofa small context tree for a 3 symbol alphabet. 
Internal nodes (nodes with deeper children) are the root node, A, C, 
and AC, and terminal nodes, AA,BA,CA,B,BC,CC. Descendents of 
AC continue off the figure. Each node accumulates counts of future 
symbols and two internal code lengths. 

recently seen symbols are ABBBC (C being the most recent), the nodes 
in the tree which match the current history are the root node (matches 
everything), C and BC. The current node n is the "encoding node" for the 
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next symbol (in the example, coming after the 'C') if it is a terminal node 
(i.e., if it has no deeper children whatsoever as one has hit the beginning 
of the data), or barring that, if 

(16.9) 
c 

with C summing over all extant children of n. Otherwise, one descends 
one level deeper to the matching child and repeats. The notion is that we 
wish to find nodes at the level where, until now, the current counts better 
predicted the future (measured via Le) versus descending to a deeper level. 

The third step is to increment Le at each node n which matches the 
history by the code length obtained with that node's estimator evaluated 
on the actual subsequent symbol: Le t- Le - log2 F(8t+t}. The total code 
length is incremented by the estimator at the chosen encoding node. Finally, 
the appropriate count is incremented, Ck t- Ck + 1, 8t+1, for every matching 
node. For the comparison to be fair, L:k ck(n) = L:c L:k Ck(C) must be 
maintained as an invariant of the tree. 

Weighted Contexts 

Willems and coworkers [34] introduced a universal coding scheme called 
context-tree weighting, which, instead of choosing between a node and its 
children, weights them according to a recursive formula. This method has 
excellent theoretical properties, with upper bounds on the coding redun­
dancy (code length above Shannon's limit) for individual strings, not just 
in probability. 

Here the code-length of the string up to time t always appears at the 
root node of the tree constructed up to that time. For any empty node the 
code-length is zero; otherwise, for any node n it is Lw(n) = -log2 Pw(n) 
where Pw(n) is the weighted probability, computed as follows. Let Pe(n) = 
2-Le (n) be the KT probability at the node (that is, the probability com­
puted assuming zero additional memory beyond that implied by the node's 
context). Define 

if n is a leaf; 

otherwise. 
(16.10) 

Thus Pi,w(n) is the probability ascribed to child i of 8 by the weighted 
estimator. 

We now insert the current symbol into the tree, updating Le and Lw 
at each node. The code-length for the symbol currently observed is the 
increment in Lw(root) on adding the symbol. 

Here no single node has been used to provide a probability estimator to 
an arithmetic coder which would encode 8tH; instead, all contexts which 
match the current history will contribute to some degree, weighted by their 
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past performance. In effect, the implicit source model of this method is a 
weighted blend of all possible tree topologies. Although it is not obvious 
from this description, the Willems method is in fact implementable as literal 
data compression with an arithmetic coder. 

Batch Pruning 

This blending of trees, though theoretically elegant, presents some prac­
tical difficulties for some of our desired applications. We would like to be 
able to assign every history to a particular node6 which best models its 
future evolution. We use the quantities accumulated by the weighted tree 
construction to extract a single tree and we use its leaves as states. This 
simplifies our statistical tests and allows a convenient conversion of a tree 
model to an equivalent Markov chain. 

To construct the single tree model, we build the weighted tree for all of 
the data, in exactly the same way as the Willems method. Then we examine 
the final code lengths by a depth-first scan of the tree, declaring a node n 
to be "terminal" by pruning off all children when Le ::; Lw. 

Given additional data from the same source, we would make a probability 
estimate by following the history as far as possible down the tree until 
a leaf has been reached, and using that node's estimator for the future 
distribution. We may also similarly re-run the original data back into this 
fixed tree thus finding distinct "encoding nodes" (the terminal matching 
contexts) for each datum, as the first algorithm provided. This is important 
for our stationarity test. 

Constructing a batch model for the data set via an intermediary of a 
weighted, sequential coding algorithm may seem to be a needless circum­
locution. We found it necessary, however, because direct batch estimators 
of the description length and application of an MDL principle did not pro­
vide stable or empirically satisfactory trees. The point is that the Le and 
Lw quantities were accumulated fairly by causal sequential estimation and 
thus implicitly include costs for parameters. We have post facto selected 
a model from the weighted tree, something that can certainly be done by 
the receiver at the end of the thought-experiment of transmitting the data 
using the Willems compressor, without any further communication from 
the transmitter. 

6Such a node plays the role of a state in normal dynamical modeling. Physicists and 
engineers tend to prefer such models, though Bayesian statisticians appear to be happy 
with weighted models having no identifiable states. 
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16.4 Using Tree Machine Models 

16.4.1 Compression 
Since the purpose of the original algorithm is to compress, we should check 
that it performs in that respect. In the first 5 rows of Table 16.1 we show 

Bits (uncomp) Bits (comp) 
Fair coin tosses 10,000 10,008 
Base 5 random 232,193 232,224 
Period 3 binary 57 12.9 
Period 4 binary 92 17.8 
Above 2 concatenated 149 31.1 
Lorenz 84, alphabet 10 132,877 57,234 
Shakespeare play, 128 symbol ASCII 1,082,952 383,558 
Same, lower case, no punctuation, 27 symbols 1,010,824 284,739 

TABLE 16.1. Compression performance of algorithm on various sim­
ple inputs: random and simple deterministic cases. Lorenz84 is a 3-di­
mensional chaotic dynamical system; the data came from integrating 
the differential equations and discretizing the x coordinate into 10 
equal-width bins. See the text for discussion of the Shakespeare play. 

results of applying the Willems method to inputs which are random, de­
terministic with short periodicity, and a concatenation of two determin­
istic series with different periods. In each case the expected results are 
obtained: we fail to compress the random data, with the overhead being 
approximately that expected from the known redundancy of the weighted 
tree method; we compress the simple deterministic data greatly (and the 
machines, which are not shown, are easily seen to be the simplest possible); 
and the code length for the concatenated deterministic sequences is slightly 
longer than the sum of the code lengths when the two are compressed sep­
arately, giving a weak indication of non-stationarity of this sequence. The 
6th row compresses very crudely discretized data from a chaotic dynamical 
system. The last two rows are discussed in Section 16.4.2. 

16.4.2 Simulation 
To produce a realization of the context tree machine, allow it to start 
in any context and emit a symbol according to the estimated probability 
distribution there. This, together with previous output symbols possibly as 
far back as the initial context, defines a new context, and we iterate the 
process. If we believe that the tree machine was built from a good sample 
of the process, it makes sense to estimate the conditional probabilities for 
simulation purposes only via the maximum likelihood estimator; that is, the 
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emission probability for the ith symbol is taken to be nd E nj rather than 
the KT estimate. This ensures that, for example, a deterministic system is 
not randomly noised-up. 

We already saw a deterministic example in Figure 16.1; it is clear that 
the tree there emits the sequence claimed. All ofthe examples in Table 16.1 

a dear her nature son 
ace deed here nay soon 
acknowledge demand hereafter never speak 
act denial high news speedily 
actiseriously devil him no stake 
admiringly diana himself noble stay 
afraid die his nobleman steal 
after digents hither noise stepone 
again direct holy nose steward 
against dischart home not stire 
aim disclown honest now strong 

TABLE 16.2. A test of the tree machine on some English text (Shake­
speare's As You. Like It). The text was preprocessed to replace all punc­
tuation by spaces and convert all upper case letters to lower case; 
multiple spaces were reduced to single spaces and the processed text 
was used as input data to a context tree building computer program, 
which was then used to generate simulation output. The resulting text 
was split on spaces and some of the "words" produced are shown 
above. In spite of a couple of nonsense words and a couple of plausible 
but incorrect English words, the machine has captured a remarkable 
amount of the structure of English words. In other tests without the 
input preprocessing (not shown) it also captured a great deal of the 
punctuation and layout of the original, and a little of the phrase and 
sentence structure. 

were tested in this way and produced good results. The compression per­
formance on a sample of English text was also shown in Table 16.1. In 
Table 16.2 we show some of the simulation output from the tree machine 
built from the same data, which has arguably performed very well. 

16.4.3 Converting Tree Machines to Markov Chains 

It is tempting to assume that because a tree machine is based on conditional 
probabilities, it is equivalent to a Markov chain with states corresponding 
to the leaves of the tree. This is not so; for example, the tree machine 
represented by solid lines in Figure 16.3 is not a Markov process because it 
requires additional memory outside the tree. If at leaf A a 1 is emitted, the 
context is now 01, corresponding to internal node E. But node E is not a 
leaf and so is not part of the machine as such: We need to know what came 
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(D) 

(G) 

p(1)=3/4 

o 

(H) 

p(1)=l 

(F) 

p(1)=113 

FIGURE 16.3. The solid lines show a tree machine which is not a 
Markov chain: that is, the contexts (leaves of the tree) cannot be used 
as states because they are incomplete. By extending the tree as shown 
by the dashed lines, we do obtain a Markov chain. This can be done 
in general. 

before the 0 so that we can choose between nodes G and H to determine 
the distribution for the next output symbol. 

By adding children C and D to node A as shown by the dashed lines, 
we do obtain a Markov chain. In general, we need to add children until the 
tree has the property that every subtree is also a subtree at the root. The 
probability distributions at added child nodes such as C and D are defined 
to be the same as at their parent A. 

Clearly, a simulation output from such a Markov chain will be identical to 
a simulation produced by the original tree machine. More usefully, we can 
easily compute the equilibrium probability distribution of the Markov chain 
and hence obtain an invariant probability distribution for the contexts. 
For a system which really is discretized, this allows immediate calculation 
of any of the standard dynamical invariants, which are averages over the 
equilibrium distribution. For a system assumed to have continuous states, 
which are merely approximated by symbols, there is further work to be 
done in proving convergence of the equilibrium probabilities to one of the 
invariant measures, most likely the SBR measure [10]. Our experience is 
that the equilibrium distribution is indeed a good approximation to the 
SBR measure. Applications will be described elsewhere. 
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16.4.4 Topological Entropy 

Topological entropy is a particularly important invariant in dynamical sys­
tems [36]. It gives the rate of generation of new information (or equivalently, 
the uncertainty per iterate) for the dynamical system. For a finite state ma­
chine, it can be calculated from the topological transition matrix T which is 
the same as the Markov chain transition matrix with all nonzero elements 
replaced by 1. The topological entropy in bits per iteration is then log2 A 
where A is the maximal eigenvalue of T. 

For example, the tree machines in Figures 16.1 and 16.3 have topological 
transition matrices 

and 

where in each case the states are the leaves of the (possibly augmented) 
tree read from left to right. The corresponding topological entropies are 0 
and 0.91 bits per iteration. The 0 for the first case reflects the fact that the 
machine is deterministic, so there is no uncertainty at all in the prediction. 
Again, we defer realistic applications to a later paper. 

16.5 Application: Simulating a Chaotic Laser 

We have already shown the results of simulations on toy examples, such as 
repeated short periodic sequences of symbols, and sequences produced by 
pseudo-random number generators. We now present one somewhat realistic 
simulation, output from a laboratory laser experiment where the electric 
field amplitude fluctuates in a complex manner. This complex dynamics 
is not easy to model by most methods. The most successful models are 
those produced by nonlinear reconstruction methods [1] but although they 
tend to predict well over the short term, they do not simulate well; that 
is, they get short-term predictions right but do not model the iterated 
dynamics in a fully satisfactory manner. We show here that a tree machine 
estimator does better on the dynamics and produces a good estimate of 
topological entropy, though the simple version considered in this chapter 
does not yet give an extremely high quality emulation of the dynamics. The 
best current continuous reconstruction methods [22] do somewhat better 
but ar~ enormously more computationally intensive. 

The original data were digitized to 8 bits. By experimenting with dis­
carding different numbers of low-order bits, we determined that the best 
overall compression of the data resulted when we truncated the data to 
5 bits accuracy, corresponding to an alphabet of size 32. We used 10,000 
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data as input to the the tree machine algorithm, which compressed the 
50,000 bit input to approximately 17,900 bits using a Willems weighted 
context tree in around one second on a 266M Hz Pentium-based computer. 
By construction, the tree machine has rather accurately captured all the 
simple statistics like mean and variance; it also has an RMS fitting error 
of around 2 percent which is less than the truncation error (one part in 
thirty two). Its one-step prediction accuracy, which is of the same order, is 
therefore near the limit of what is possible given the truncated data. 

The machine was used as a simulator and gave the results in Figure 16.4, 

Experimental laser data 
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FIGURE 16.4. Experimental data from an irregularly fluctuating laser, 
and output of a tree machine model made from 10,000 data, truncated 
to 5 bits precision. The model output is a "free run": at every instant, 
the output depends only on the model's current context without ref­
erence to the real data. The two graphs are simply typical segments, 
and do not refer to the same time or initial conditions. 

which shows a segment of the experimental data and a segment of the sim­
ulation . The simulation performance is very good but further examination 
(with much longer simulation runs) reveals that it is not as good as the very 
best recent dynamical modelers [22] can produce; there are well-understood 
reasons for this and further work may be able to improve this. In the mean­
time, we have an extremely rapid and entirely automatic modeler which 
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allows calculation of dynamical invariants, can predict accurately, and has 
useful simulation power. 

16.6 Application: Stationarity Testing 

Stationarity, the notion that the dynamical law describing the system does 
not change over long time-scales, is a prerequisite for the vast majority of 
nonlinear data analysis techniques and is an assumption we have implicitly 
made so far in this chapter. Only recently have hypothesis tests suitable for 
realistic chaotic and nonlinear dynamical data been proposed [15, 25, 35]. 
The symbolic approach of this chapter allows us to justify the statistical 
assumptions in a deeply principled way. 

A first attempt at a stationarity test might be to apply the classical 
x2-test to observed counts of distinct multi-symbol words of a fixed length 
observed in, say, the front and back halves of the data. Unfortunately, the 
assumption underlying this test-that each datum is randomly and inde­
pendently drawn from some distribution-is not true in realistic dynamical 
data. Short time correlations in physical data strongly couple symbols near 
in time; thus naive application of such tests fails miserably. Indeed, arbi­
trary dynamical dependence makes it difficult to construct a proper statis­
tical null test for any hypothesis which allows chaotic or general nonlinear 
data in the null class, and few examples of this sort exist. 

A better stationarity test is to construct a context tree from the entire 
data set and, instead of using the model to predict or emit a compressed 
binary stream, to examine the statistics observed in the model to discern 
stationarity. Answering the question "do two data sets appear to arise from 
the same underlying dynamical system" translates to combining hypothe­
sis tests performed at each encoding node regarding whether the distribu­
tion of future symbols actually encoded-whether from the first set or the 
second-could have come from a single underlying probability distribution 
and if any apparent difference is statistically significant. At encoding con­
texts, we may use standard tests because these events ought to be nearly 
independent; after all, a context tree model assumes that once the appro­
priate matching context has been found, the best model of the dynamics 
is that the next symbol is randomly drawn according to some distribution, 
which it estimates for that node. If there were more usefully extractable 
dependence in the data, then the context tree modeler would have gone to 
deeper nodes to distinguish them until the future looked random again. 

We modify the context tree construction by counting the two data sets 
separately. Every node records the frequency with which symbol k was 
encoded there, Ck;l in the first set and ek;2 in the second. (Note that ek ::J 
Ck, the latter accumulating frequencies whenever a context was excited.) 
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Assuming independence, the statistic 

IAI (Rl/2e _ R-1/2e )2 
2 '"' k;l k;2 
X=~ 

k=l ek;l + ek;2 
(16.11) 

with R = L ek;2j L ek;1 follows the standard X2 distribution with IAI- 1 
degrees of freedom under the null hypothesis that both empirical probabil­
ity distributions came from the same underlying distribution 7 . Given the 
value of X2 and the degrees of freedom, standard numerical algorithms pro­
vide a likelihood L asymptotically uniform L E (0,1) under the null. Small 
values of L reject the null at the given significance level, e.g. L < 0.01. 

It is known that the analytic approximation used for the asymptotic dis­
tribution of the X2 statistic becomes increasingly inaccurate as the number 
of observations decreases. Thus for L ek < 75 (a somewhat arbitrary cut­
off) we switch over to a combinatorial test for differences in proportions, 
called Fisher's exact test. The calculations for this test are easy only in 
the 2 x 2 case. \Ve coalesce bins by keeping the observation for the most 
frequent symbol (bin m which achieves max(em ;1 + em ;2)) and merging the 
others into eo ;1, eo ;2, resulting in four quantities conventionally expressed 
in a "contingency table", with cumulative row and column sums: 

em;1 eo;1 
em;2 eo;2 
nm no N 

Under the null that the difference in proportions between m and 0 counts is 
independent of being in set 1 and 2, the probability for seeing any particular 
table with the given marginal sums is: 

PT = nm!no!ndn2!j(em;1!em;2!eo;1!eo;2!N!). 

One directly enumerates all tables with the given observed marginals (only 
a one-dimensional sum for a 2 x 2 table) and sums PT for every table with 
a difference in proportions at least as great as that observed8 , resulting in 
a likelihood L for accepting the null hypothesis at this node. 

We combine these M likelihoods, each measuring some aspect of the same 
null hypothesis, into a single overall test. Under the null, the quantity 

M 

X2 = 2: -2lnLk 

k=1 
(16.12) 

7The x2 analytics degrade for small bin counts. For those bins, we merge any symbols 
whose expected count-for either set one or two-is less than five, reducing the degrees of 
freedom appropriately. If, after merging, there remain fewer than two symbols passing 
this criterion, then this node is wholly excluded. 

BIn this discrete case, the sum will encounter tables exactly as likely as the observed 
one (such as the observed table itself); the summed PT for these tables is weighted by a 
uniform random deviate r E [0, 1}. 
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is X2 distributed with 2M degrees of freedom, from which we compute our 
final L, again uniform in (0,1) under the null. Especially small values of L 
imply a small likelihood that this level of difference would have been ob­
served had the two symbol datasets been generated by the same underlying 
dynamical process. This completes our desired test procedure. In the fol­
lowing numerical examples, we use the state-selecting algorithm descended 
from Rissanen's method. We have not yet used the batch tree extraction 
method for this application yet. 

We first test the accuracy of the statistic under the null. We produced 
an ensemble of 1000 time series from the x coordinate of the "Lorenz 84" 
attractor: a tiny geophysical model with attractor dimension d::::i 2.5 [18). 
This system is higher dimensional and more complex (see Fig. 16.5) than 

x(I+0.8) 

x(U 

FIGURE 16.5. Sample orbit of Lorenz dynamical system in recon­
structed state space. 

the traditional Lorenz dataset, and is thus a somewhat more stringent 
test. Figure 16.6 shows the distribution of L comparing the first and sec­
ond halves of each set, demonstrating that L is close to uniform E (0,1). 
This is a stringent requirement and shows the success of our independence 
assumption, as it is difficult to get a high-quality null distribution with 
complicated arbitrarily correlated chaotic data in the null class. With this 
number of data, the test is also quite powerful. 

We demonstrate discrimination power with a set of pressure data from 
an experimental model of a "fluidized bed reactor" [6). This experimental 
system consists of a vertical cylindrical tube of granular particles excited 
from below by an externally input gaseous flow. In some regimes ("slug­
ging"), the particles exhibit a combination of collective low-dimensional 
bulk dynamics and small-scale high-dimensional turbulence of the individ­
ual particles [6). The observed variable was an azimuthally averaged pres­
sure difference between two vertically separated taps. Figure 16.7 shows 
portions of time-delay embedding of orbits sections of the dataset taken 
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FIGURE 16.6. Quantile-quantile plot of.c under the null hypothesis. 
The observed values of .c are sorted and plotted vs their normalized 
index (i+1)/1001. Asymptotically the curve should approach the diago­
nal under the null. Bars are ± two standard deviations for 100 samples 
of 1000 uniform deviates E [0,1] processed similarly. 

FIGURE 16.7. Phase space plots of the differential pressure signal 
from a fluidized bed reactor. Three are from the same parameters; 
one is different. 



408 Matthew B. Kennel and Alistair I. Mees 

at the same experimental parameters, and one when the flow was boosted 
by 5%. The change in the attractor is rather subtle and difficult to reli­
ably diagnose by eye. Figure 16.8 shows C on a data set whose flow was 

FIGURE 16.8. Non-stationary fluidized bed results with air flow al­
tered at the 50% mark. Plotted statistic C as a function of hypothesized 
breakpoint in time series and symbolic alphabet precision. Results for 
IAI > 2 numerically underflowed to C = 0 toward the center and are 
not plotted. Null hypothesis emphatically rejected on account of the 
very small values of C. 

increased at the midpoint. As the alphabet size increased and the hypoth­
esized breakpoint approached the true value of 50%, the strength of the 
rejection increased, C --t O. Even the binary alphabet case showed a sig­
nificant rejection of the null. On data taken in stationary conditions C 
fluctuates randomly in (0,1), as expected. We performed the same statis­
tical test, with qualitatively identical results, on an experimental system 
whose flow rate was ramped slowly by the same amount. Even with this 
sort of data, the greatest rejection tends to occur in the middle of the 
dataset because the statistical discrimination power is greatest when there 
are equal numbers in the two sets considered in the test. We saw qualita­
tively identical results on a dataset whose flow was adiabatically boosted by 
the same degree during the run. This is not surprising, even though the test 
assumes a discrete breakpoint in order to lump the symbols into one class 
or another, as even given a smooth change, front and back sets will have 
different characteristics, and the ability to detect this (strongest rejection) 
will peak with approximately equal quantity of data in each set. Using a 
break-point test on smoothly changing dynamics might result in a small loss 
of statistical power compared to an ideal test, but in our experience with 
the proposed method on experimental datasets of at least one thousand 
points, adequate power to detect physically significant non-stationarity is 
rarely a concern with this method in our experience. 

The Southern Oscillation Index, the normalized pressure difference be-
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tween Tahiti and Darwin, is a proxy for the EI Nino Southern Oscillation, 
as ocean temperature influences atmospheric dynamics. The period from 
mid-1990 to 1995 exhibited an anomalously sustained period of EI Nifio­
like conditions (Fig. 16.9), perhaps indicative of global climate change. One 
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FIGURE 16.9. Three month moving average of the Southern Oscil­
lation Index, the normalized pressure difference between Tahiti and 
Darwin, Australia. Strongly negative values correspond to EI Nino 
events. Is the extended negative period from mid-1990 through 1995 
especially anomalous? 

statistical analysis [31] found such an anomaly quite unlikely assuming sta­
tionarity, but another group [11] used a different analysis and found it 
significantly more likely to be a chance fluctuation. Both papers used tra­
ditional linear forecasting models, with the difference centered around an 
auto-correlation-based correction for serial correlation to arbitrarily reduce 
the degrees of freedom. We applied our algorithm to the three-month mov­
ing average SOl (binary symbolized) testing the 5A-year period in question 
against the rest ofthe series (starting from 1900), with a resulting C ~ 0.01, 
meaning that one would expect to see a region this anomalous by chance 
every 540 years. The result is closer to those of [11] than [31] but we cer­
tainly do not want to take any particular position regarding climate; rather, 
we wish to point out an application for our method where correcting for 
serial correlation automatically is useful. 

We point out that the proposed method is not exclusively limited to 
testing or finding a single break point-all that is needed is a sensible a 
priori hypothesized division of the dataset into discrete multiple classes. 
For instance, one might want to test for the presence of cyclo-stationarity, 
that the dynamics are externally modulated at some slow frequency n. 
In this case, one could choose elements of set 1 and set 2 depending on 
whether sin(nt + 0) is positive or negative, given fixed n and O. Here the 
hypothesis is that the dynamics are significantly different when trying to 
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predict symbols on one part of the cycle compared to the other. Testing 
against three or more classes would require an upgrade of the X2 or Fisher 
test of proportions procedures; there exist conventional methods in the 
statistical literature. 

Recent work has successfully used a distance in the symbolic space to 
fit unknown parameters of a physically motivated continuous model to ob­
served data, including substantial observational and dynamic noise all in 
one framework. Tang et al [30] first proposed minimizing over free param­
eters the difference between an observed distribution of symbol words and 
that produced by discretizing some proposed model's output. Daw et al [5] 
successfully used this technique to fit experimental internal combustion 
engine measurements to a low-dimensional dynamical model. The opti­
mization target was a Euclidean norm in [30] and a chi-squared distance 
in [5]. Because of serial correlation, a true hypothesis test confirming the 
apparent compatibility of observed data to a well-fitting model was not 
possible in those works. We feel our current method could provide a less ad 
hoc optimization goal, e.g. maximizing average C or minimizing the code 
length of the physical model's output, encoded using the symbolic model 
learned from the observed data. 

16.7 Conclusions 

We have shown how to use a simple and rapid algorithm to model the dy­
namics of symbolic systems. The context tree weighting algorithm, and the 
proof that it is asymptotically optimal and has good finite-time properties, 
is well-known to workers in information technology but less so to workers 
in dynamics. The state selection algorithm is known to have some small 
flaws by comparison, but is still a high-quality symbolic modeler. These 
modeling methods are fast, deterministic, and mathematically sound, re­
quiring no iterative fitting or ad-hoc convergence tests, as is common in 
the "neural network" regression community. 

Specific contributions of this chapter, besides pointing out the usefulness 
to dynamics of the information-theoretic work, are that we have demon­
strated a new method for estimating invariant measure and topological 
entropy, two of the most fundamental quantities in nonlinear dynamics, as 
well as a test for dynamical stationarity. 
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Chapter 17 

Analyzing Nonlinear 
Dynamical Systems with 
Nonparametric Regression 
Henning u. Voss 

ABSTRACT The analysis of dynamical systems data often can be con­
siderably simplified using some knowledge of the system's structure rather 
than performing a general phase space reconstruction. For the common case 
when the evolution equations are given by a sum of functions of measure­
ments, the statistical problem of model estimation is reduced from a multidi­
mensional density estimation problem to several two-dimensional problems, 
connected by an in general nonlinear relationship. To recover this relation­
ship, we use the statistical approach of nonparametric nonlinear regression 
analysis. This allows (a) for the analysis of systems with high-dimensional 
dynamics, like spatially extended and time-delayed feedback systems, and 
(b) for the further investigation of the resulting models. To illustrate these 
points, we review the application of nonparametric regression analysis to 
two physical experiments and numerical examples of nonlinear dynamics. 

17.1 Introduction 

Many methods for the analysis of data from nonlinear dynamical systems 
can be traced back mainly to the proper estimation of a multidimensional 
probability density function, e.g., in phase space reconstruction and nonlin­
ear forecasting. The drawback of most of these methods is that already for 
small dimensions probability density functions are hard to estimate, i.e., 
the results have a large uncertainty. On the contrary, regression analysis 
is based on two-dimensional probability density estimations only, even in 
multivariate problems. The price one has to pay is that one is somewhat 
more restricted in the choice of a model, because one cannot rely on re­
construction theorems, and one needs to have some prior knowledge of the 
system's structure. 

However, as it will be shown, for a broad class of nonlinear dynamical 
systems this poses no real restriction to an analysis. Using nonparametric 
regression, it turns out that the models often can be estimated from very 
limited amounts of data which allows for the analysis of spatially extended 
systems and systems with a time delayed feedback which may possess a 
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high-dimensional state space. 
Rather than performing a least squares calculation in coefficient space in 

parametric regression analysis, in the non parametric approach one performs 
an optimization in function space, and the results are non-parametrically 
given functions. These can be further investigated for the search of possible 
explanations of the observed dynamics. 

In this chapter, these points will be elaborated on several experimen­
tal and numerical examples. For model selection, we use two distinct ap­
proaches: The statistical concept of maximal correlation and the elimina­
tion of redundant functions appearing in the results. 

After an introduction to nonparametric nonlinear regression analysis and 
the notion of maximal correlation in the second section these concepts are 
applied to model time-delayed feedback systems in the third section. In the 
fourth section the analysis of a passive laser resonator by fitting a map to 
a time series of experimental measurements is illustrated. The fifth section 
concerns the analysis of spatially extended systems. It will be applied to 
experimental data from a fluid convection experiment in the sixth section, 
and, finally, the results are discussed. 

17.2 Nonlinear Regression Analysis and Maximal 
Correlation 

In dynamical systems modeling a common task is to find a model 

(17.1) 

based on a time series Yt (t = 1, ... , N), where Xt+! E lR, Xt E IRK, for 
example, an embedding vector (Xt,Xt-Tl •.. ,Xt-(K-l)r), and c) : IRK -+ IR 
a function to be estimated from the time series. To let (17.1) be the model 
with the most optimal prediction performance, c)(Xt) has to be estimated 
from data as the conditional expectation value of Xt+! given Xt, E[Xt+!IXt]. 
Therefore, 

c)(X) = E[xlx] = / p(xlx) x dx , (17.2) 

where p(.I.) is a conditional probability density function (PDF) and the 
time index has been dropped; due to the relation p(xlx) = p(X, X)/p(X) , 
the estimation of c)(x) becomes equivalent to the estimation of a K + 1-
dimensional PDF. Already for small K this is generally a problematic task 
given only a finite amount of data [31], known sometimes as the "curse of 
dimensionality. " 

For many problems, however, it is not necessary to solve problem (17.2) 
in its most general form; the inclusion of prior knowledge about p(x, x) can 
help to simplify the problem considerably. In this contribution it will be 



17. Nonparametric Regression 415 

especially assumed that the model can be written as a linear combination 
of transformations «pi(xd, i.e., 

K 

«po(xo) = L «Pi (Xi) , (17.3) 
i=l 

with «Pi : JR -+ lit As will be shown in the examples, this ansatz applies for 
a broad class of problems, including spatiotemporal dynamics. 

To estimate model (17.3) from data we use nonlinear nonparametric 
regression analysis. In this case, the functions «Pi can be estimated based 
on the estimation of only two-dimensional PDFs. 

Let us start with K = 1, where the two functions «Po and «PI for the 
model «po(xo) = «PI (xd are searched for. To estimate these, one has to 
minimize the expression E[(<<po - «pd 2]. To exclude the trivial solution, the 
constraint of a finite variance of at least one of the functions is added, say, 
D2[«po] = 1, where D[.] is the standard deviation. The solution of this 
estimation problem for «Po and «PI becomes equivalent to the maximization 
of the correlation coefficient between «Po and «PI [3]; the linear correlation 
coefficient R is defined by 

the quantity 
w(xo,xd = sup IR(«po(xO),<<PI(xd)1 

4>0,4>1 

is called maximal correlation [25] between the two random variables Xo 
and Xl, and the solutions «Po and «PI for which the supremum is attained 
are called optimal transformations. By definition, W is restricted to the 
interval [0,1]. The maximal correlation has the important property that it 
is a statistical measure that captures any dependence between the variables 
Xo and Xl' For the case of complete dependence, the maximal correlation 
attains unity. 

Hence, the main idea is to transform Xo and Xl by suitable, generally 
nonlinear, transformations to a linear relationship between the new random 
variables «Po (xo) and «PI (Xl). In case of a linear dependence between Xo and 
Xl, the optimal transformations are linear functions, too. It has been shown 
that optimal transformations do exist quite generally [3]. 

Here, a generalization of the notion of maximal correlation for multivari­
ate regression problems will be used, i.e., 

(17.4) 

The problem of calculating the maximal correlation (17.4) is equivalent to 
estimating optimal transformations from data; the optimal transformations 
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can numerically be estimated in a non parametric way from data by the 
alternating conditional expectation algorithm (ACE), invented by Breiman 
and Friedman [3p. 

In the ACE-algorithm, which is an iterative algorithm, for K = 1 at 
each iteration step the quantities E[~o(xo)lxl] = J p(xolxd ~o(xo) dxo and 
E[~l (xl)lxo] = J p(xllxo) ~l (xt) dXl are non-parametrically estimated, 
thus involving only two-dimensional PDFs. This also holds for the mul­
tivariate case with K ~ 2. Therefore, "in general, the problem of nonpara­
metric regression is much easier than the problem of nonparametric density 
estimation" [31]. 

There are several possibilities to estimate conditional expectations from 
finite data sets. Here we use an efficient algorithm, in which the data are 
rank-ordered before the optimal transformations are estimated. This makes 
the result more insensitive to the data distribution which is often rather 
inhomogeneous. By definition, the maximal correlation is not affected by 
these monotonous transformations. The conditional expectation values are 
then estimated with local boxcar smoothing. 

In the following chapters this concept is applied to four different modeling 
problems, chosen to emphasize the different possibilities of application. 
Especially, the maximal correlation will be used for model selection, and 
we put stress on the applicability to real-world measurements. 

17.3 High-Dimensional Dynamics (I): 
Analysis of Delayed-Feedback Systems 

Time-delay induced dynamics, as described by univariate delay differential 
equations (DDEs), play an important role in modeling natural phenomena. 
Such models are used in many different scientific disciplines (see [13, 15,9] 
and references therein.) 

Dynamical systems given by a DDE have an infinite-dimensional state 
space, and attractors of the solutions can also be high-dimensional [11, 
10]. By evaluating a method for the identification of such systems, given 
only a single and finite solution, we demonstrate that these properties do 
not constitute severe limitations for a nonparametric regression analysis. 
(Another approach to this problem was first given by Biinner et al. [4].) 
Besides the estimation of the DDE, the method allows us to judge whether 
the data are in agreement with a description by a nonlinear feedback model. 
The DDE is estimated in a nonparametric way, such that the method covers 
a wide class of models. 

1 For a brief description of the algorithm see also [16], [33] or [34]. A C-program is 
available from the author or by http://www.agnld.uni-potsdam.derhv/ace.c. 
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We consider the reconstruction of DDEs of the form 

h(x(t)) = /(x(t)) + g(x(t - T)), (17.5) 

where the functions /, g, h and the delay time T are unknown. The functions 
are assumed to be continuous; usually, h is the identity. (For the estimation 
of models with more than one delay time, see [33).) 

In spite of that the dynamics of equation (17.5) has to be described in an 
infinite-dimensional phase space, the evolution of the triple (x(t), x(t), x(t­
T)) is restricted to a three-dimensional manifold. This is also reflected 
in each finite realization of the DDE, Yt (t = 1, ... , N), with an arbi­
trary initial condition: The evolution of the triple (Llyt. Yt, Yt-T)' where 
LlYt = (Yt+1 - Yt-I)/2 is an estimate of the time derivative, is also re­
stricted approximately to the same three-dimensional manifold via 

(17.6) 

The functions j, 9 and h are then approximations of /, 9 and h obtained 
from a finite realization of the process. Equation (17.6) expresses the inverse 
problem to equation (17.5), i.e., finding a DDE from a finite solution. 

The triple (LlYt, Yt, Yt-T) can be seen as a three-dimensional embedding 
vector where the first component comes from a differential-embedding and 
the second and third components come from a delay-embedding. Therefore, 
for the reconstruction of a univariate DDE (supposing, the measurement 
function is one-to-one), such a three-dimensional embedding always suffices, 
no matter how large the attractor dimension actually is. 

To estimate the functions in equation (17.6), we use nonparametric re­
gression analysis: If one solves equation (17.4) for Xo = LlYt, Xl = Yt and 
X2 = Yt-n the estimates for CPo, CPI and CP2 can serve as estimates for the 
functions 1, 9 and Ii in equation (17.6). As a quantitative criterion for how 
well the estimated functions fit equation (17.6), the maximal correlation is 
used: 

(17.7) 

Now, if the maximum of \J!(T) is close to one, its location points to the 
estimate for T. If none of the \J! (T) appears to be close to one, the time 
series is not likely to be the solution of a DDE of the form (17.5). What 
"close to one" means exactly depends of course on subjective judgment, 
taking all circumstances into account - like the length of the time series, 
the sampling rate, the quality of measurement and the used ACE imple­
mentation. 

As an example, we consider chaotic data produced by numerical integra­
tion of the passive optical resonator system of Ikeda and Matsumoto [19], 

x(t) = -x(t) + J.t sin(x(t - T) - xo) . (17.8) 

The parameters are chosen to be J.t = 20, T = 2 and Xo = 7r /3. For J.t » 1, 
as in this case, the data are high-dimensionally chaotic [19). The data set 
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FIGURE 17.1. The Ikeda model (17.8): (a) the data sample, (b) the 
ACF, (c) the regression plot as explained in the text, and (d) the delay 
estimation. 

consists of 2000 values (Fig. 17.1a) which were sampled with a time step of 
0.02. The small delay time leads to a mixing of the local correlations, corre­
sponding to the damping term on the right hand side of equation (17.8) and 
the nonlocal, delay-induced correlations, corresponding to the sinusoidal 
feedback term. This can be seen in the autocorrelation function (ACF), 
which is dominated by the damping term but not by the delayed-feedback 
term (Fig. 17.1b). 

Performing a nonparametric regression analysis on the variables f:::t.Yt, Yt 
and Yt-T using the ACE-algorithm to solve equation (17.6), one obtains a 
clear peak in the maximal correlation w(r) at the correct delay of r = 2.00 
(Fig. 17.1d). Figures 17.2a-c show the estimates for the three terms of 
equation (17.5) retrieving clearly the identity as the left-hand side of the 
Ikeda model, the linear damping term and the nonlinearity. 

It can be seen that the original, very complicated relationship between 
the three variables f:::t.Yt, Yt and Yt-T (Fig. 17 .1c) has been changed to a lin­
ear relation between the transformed variables h(f:::t.Yt), !(Yt) and g(Yt-T) 
(Fig. 17.2d). The remaining scatter is mainly due to an inaccurate estima­
tion of the time derivatives f:::t.Yt from the data. 

To summarize, both the delay time and the DDE have been estimated 
with high accuracy from a short time series; the system has been com­
pletely reconstructed. Since the optimal transformations are estimated in 
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FIGURE 17.2. The estimated optimal transformations for the l.h.s (a), 
the damping term (b) and the nonlinear feedback term (c) for T = 2.00. 
In (d) a regression plot of the transformed variables shows that the 
complicated statistical dependence in the time series (Fig. 17 .1c) has 
almost completely been transformed to a linear dependence. 

a non parametric way, even the very strong sinusoidal nonlinearity could 
be approximated well. This would not have been possible by an ansatz in 
which the feedback function is given by a parameterized Taylor expansion. 

The function estimates should be reliable provided that the data cover 
enough space of the manifold described by the DDE. This is not a restriction 
of the method itself but a general limitation due to the inverse nature of 
the problem. In the case of high-dimensional chaotic data this requirement 
should always be fulfilled, if a sufficient amount of data is given. For the 
behavior for noisy and very short time series, see [33] and [34]. 

17.4 Interpretation of Models (I): 
Analysis of a Fiber Ring Resonator System 

The explicitly given model (17.3) allows for an investigation of itself because 
the functions CPo, ... , cP K are known as the result of the regression analysis, 
whereas the model (17.1) in its most general form has to be considered to 
be a "black-box" model. The main reasons are that the embedding of the 
time series usually leads to a complicated nonlinear transformation of the 
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phase space, and multidimensional functions are difficult to visualize. 
However, in this section it is shown on experimental data of a system 

from nonlinear optics that using nonparametric regression analysis, it may 
still be possible to give the model a physical interpretation. 

The experiment consists of a passive optical fiber ring resonator contain­
ing 10 m of single mode optical fiber and a beam splitter to couple light 
in and out. This resonator is driven by a stream of pulses, about 1 ps wide 
and spaced out by t:..t = 12 ns, from a color center laser which in turn is 
synchronously pumped from a Nd:YAG laser. As light pulses travel around 
the ring cavity, they experience a phase shift 9(t) ()( n(t). The effective 
refractive index of the fiber n(t) is given as n(t) = no + n2I(t). The first 
term no denotes the familiar classical refract,ive index, and the term n2I(t) 
gives rise to the intensity-dependent phase known as the optical Kerr ef­
fect, with I(t) the temporal intensity profile of the pulses, and n2 the Kerr 
coefficient. The round trip time is made synchronous with the laser pulse 
repetition time t:..t so that after each round trip the pulse circulating in the 
cavity can interfere with the next incoming pulse. The combination of the 
stationary and the nonlinear cavity phase leads to complex modifications 
of the pulse structure on interference and can lead to chaotic dynamics for 
some parameter regimes. For more details of the experiment, see [29]. 

We analyze a time series of 6000 points of the light intensity. Return 
maps of the data are shown in Figs. 17.3a,b. Fitting models 

(17.9) 

with increasing order K = 1 ... 10 yields, as expected, a monotonic increase 
of the maximal correlation that saturates at about K = 4 (Fig. 17.4). 
Since the data are rather noisy, the maximal correlation remains somewhat 
smaller than unity. Truncating the model (17.9) at K = 4, one yields the 
optimal transformations as depicted in Figure 17.5. 

Next, the model given by the functions in Figure 17.5 is numerically 
iterated in a free run to compare its dynamics with the measurements. 
As a result, the over-all shape of the attractor is well reproduced by the 
model data (Figs. 17 .3c,d). However, one also observes a fine-structure 
of the attractor that is not visible in the original measurements. Since 
model (17.9) does not include noise, the measurement noise in the data 
cannot be reproduced by this approach, and the modeling result is expected 
to contain a lower amount of noise. The fine-structure of the attractor is also 
revealed after application of a simple nonlinear noise reduction scheme [26] 
to the data based on local averaging in embedding space (Figs. 17 .3e,f). 

Now we come to the interpretation of the estimated model functions, the 
optimal transformations. It has been shown [29] that for certain parameter 
regimes (which we consider here), the dynamics can be well approximated 
by the Ikeda equation [18]. The Ikeda equation is given as a map for the 
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light intensities (a,b), the model data for a model order of K = 4 in 
Eq. (17.9) (c,d), and the noise-reduced measured laser light intensities 
(e,f). Since for the nonlinear noise reduction the embedding space 
must have an odd dimension, here a five-dimensional embedding has 
been used. (From [36].) 
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FIGURE 17.4. The maximal correlation \fI for model (17.9) with order 
K from one to ten. (From [36].) 
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complex field amplitude Et in the cavity after the t-th round trip, 

(17.10) 

where a, band c are real coefficients. The measured data are the intensities 
It = IEtI2. Therefore, we transform the complex Ikeda equation (17.10) to 
a model for the intensities. That means, instead of the Ikeda equation for 
the complex field amplitudes, 

here we will use a map for the real intensities, 

where gl, ... ,gK : JR -+ JR. It can be shown [34] that this map is 

It+! = a2Io + b2 It + 2a2bIo cos(80 + cIt} + Tt- 1,t-2, ... , 

(17.11) 

(17.12) 

(17.13) 

where Tt- 1,t-2, ... denotes further lagged terms. Truncating this infinite se­
ries at a finite order K, one can compare the estimated optimal transfor­
mations in Figure 17.5 with the functions appearing in this model for the 
intensities: 
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FIGURE 17.6. The zero-lag estimated optimal transformation <Pl(It ) 

(bold line) and a numerical fit of Eq. (17.14). The static phase is esti­
mated to be 9 0 = -0.95. (From [36].) 

The zero-lag function <PI (It}, that can be seen as an estimate of the zero­
lag function in equation (17.13), resembles a superposition of a linear and a 
cosine-function, as expected from equation (17.13). The remaining function 
estimates for the right hand side of equation (17.13) show a doubling of 
the number of maxima with increasing time lag, as is also expected from a 
further expansion of equation (17.13). Furthermore, the first function <Po, 
corresponding to the estimate for the left-hand side of equation (17.13), is 
approximately the identity (not shown). 

As already noted, the zero-lag function estimate looks like a superposition 
of a linear and a cosine term (Fig. 17.5a). Therefore, next we try to retrieve 
the not directly measurable static phase eo of the Ikeda model from a 
parameterized fit to the zero-lag optimal transformation. That is, a function 

(17.14) 

is adjusted to the optimal transformation <PI (It} by numerically estimating 
the coefficients aO-a4. The coefficient a3 then yields the stationary phase 
eo. A comparison of the fitted function (17.14) to the zero-lag optimal 
transformation <PI (It) (Fig. 17.6) indicates that the optimal transformation 
can indeed be parameterized by a function of the form (17.14), at least up 
to minor imperfections. In [36] the analysis has been performed also for 
non-stationary data with a temporally linearly increasing phase, allowing 
for tracking the phase in the course of time. 

The inverse problem to yield equations of motion from measured data is 
usually ill-posed [14] in the sense that the solution cannot be expected to be 
unique or stable against small perturbations in the data. Considering the 
problem of uniqueness, here a pragmatic approach has been used; the model 
has been validated by comparing the numerical output of the model with 
the data. The problem of stability has been addressed by the application 
to a data set with a slowly changing bifurcation parameter [36], observing 
that the result follows that change smoothly, although the attractor changes 
qualitatively at certain values of the bifurcation parameter. 
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To sum up our results, we have shown on experimental data that in 
contrast to modeling this dynamical system with equation (17.1), it has 
been advantageous to use a more restricted model of the form (17.3). In 
the considered example, it was possible to give the estimated dynamical 
model a physical interpretation, thereby verifying the validity of the Ikeda 
equation. 

17.5 High-Dimensional Dynamics (II): 
Analysis of Spatially Extended Systems 

The unstable dynamics observed in spatially extended systems attracted 
huge experimental and theoretical research activity in the last decades 
(see [5, 24] and references therein). Due to the technical development of 
high-precision measurement techniques, it is now possible to resolve mea­
surements in space and time sufficiently to perform a quasi-continuous anal­
ysis of experimental data. Before this will be shown in the next section for 
a specific example, we illustrate how in the analysis of numerical data non­
parametric regression analysis can be used for model selection. Whereas in 
the previous two sections the maximal correlation was used for this purpose, 
here we will stress the elimination of redundant terms. 

We analyze data v(x, t) from the Swift-Hohenberg equation [30]: 

OtU [r - (\72 + k 2 )2] U - u3 

(r - k4)U - u 3 - 2k2 (8xx + 8yy )u 

- (8xxxx + 8yyyy + 28xxyy )u . (17.15) 

The parameters are r = 0.1 and k = 1. The global dynamics of the model 
can be derived from a potential, such that the asymptotic time dependence 
is trivial [24]. Therefore, a transient state is analyzed to have a sufficient 
variation in the time derivative. The field size is 100 x 100 points, i.e., 
the data set v(x, t) contains 3 x 104 values. The data for the central time 
point are shown in Fig. 17.7. Details about the numerical integration can 
be found in [32]. 

For spatially extended data the "natural" embedding is a differential 
embedding if the system is described by a partial differential equation. The 
differential operators can be estimated by symmetric differencing schemes, 
e.g., 8tv(x, t) ~ [v (x, t + ~t) - v(x, t - ~t)]/2~t, or by estimation in the 
frequency domain. In the former case, which is used in this section, to 
estimate the time derivatives of first order in each spatial data point, one 
needs at least three consecutive "pictures" of data. 

Suppose one does not know anything about the origin of the data. Then, 
to identify the unknown system, one would use as many independent input 
variables for the nonparametric regression analysis as possible. Here, an 
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ansatz of type (17.3) with all non-mixed terms (like 8x v) up to fourth 
order in the spatial derivatives is used. Additionally, the three product 
terms v8x v, v8yv and 8x v8yv are included: 

cIi1(v) + cIi2(8x v) + cIi3(8yv) + cIi4(8xxv) 
+cJ>5(8xyv) + cJ>6(8yyv) + cJ>7(8xxxv) + ... 
+cJ>1O(8yyyv) + cJ>1l(8xxxxv) + ... + cJ>15(8yyyyv) 
+cJ>16(v8x v) + cJ>17(v8yv) + cJ>18(8x v8yv) , (17.16) 

where the twelve terms cJ>2(8xv), cJ>3(8yv), cJ>5(8xyv), cJ>7(8xxxv), <P8(8xxyv), 
<P9(8xyyv), <P1O(8yyyv), <P12 (8xxxyv), <P14 (8xyyyv), <P16(v8xv), <P17(v8yv) 
and <P18(8x v8yv) are statistically independent from the others; these should 
vanish as a result of the nonparametric regression analysis, though the cor­
responding arguments, of course, do not vanish. Note that all functional 
dependencies on single arguments (like vQ , a E 1R) will be captured by the 
optimal transformations, making the ansatz (17.16) already a very general 
one. Comparing equation (17.15) with equation (17.16), one expects in par­
ticular the following for the solution of equation (17.3): Up to an arbitrary 
common factor, <Po should be the identity, <P1 should be a polynomial of 
third order, and for i = 4,6,11,13,15 the <Pi should be linear functions in 
their respective arguments. All other estimates should vanish. Furthermore, 
one expects that for the slopes of the linear functions, a4 = a6 = a13 = - 2 
and all = a15 = -1. 

Performing the nonparametric regression analysis, one finds a maximal 
correlation of 0.9993 and optimal transformations as shown in Figure 17.8. 
All functions approximate the expected shape and the terms that were 
expected to vanish are indeed very small compared to the others. This can 
be quantified using the relative variances D~ of the estimated functions, 
D~ = D2 [<Pi] / D2 [<Po] (i = 1, ... , K). For the six non-redundant terms one 
yields a relative variance of 0.06 to 0.50 and for the others 8 x 10-6 to 
3.8 X 10-5 , a difference of three orders of magnitude. Comparison of the 
slope of the linear functions yields the possibility of estimating parameters; 
we obtain a4 = a6 = -1.9, a13 = -2.0 and au = a15 = -1.0, in good 
coincidence with the expected values in equation (17.15). 

Finally, it is important to note that the estimation of the derivatives 
sensitively depends on the data quality, which has been more closely inves­
tigated in [32]. This can make an application to real-world data problem­
atic, especially if higher-order derivatives, like in the example, have to be 
incorporated. Nevertheless, in the next section this method is successfully 
applied to experimental measurements. 
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FIGURE 17.7. The data sample v(x,y,to) for the central time point to 
encoded in gray values (small values dark). 

17.6 Interpretation of Models (II): 
Analysis of a Convection Experiment 

In this last example nonparametric regression analysis is applied to extract 
dynamical equations that describe an experiment on traveling-wave con­
vection in a binary fluid. A fundamental problem in the study of spatially­
extended dynamical systems is the quantitative comparison of experimen­
tal data with models based on partial differential equations. In the study 
of nonlinear pattern-forming systems, theoretical models usually take the 
form of amplitude equations, and comparisons between data and models 
can only be performed qualitatively. In the case of traveling-wave con­
vection in binary fluids, the complex Ginzburg-Landau equation (CGLE) 
model has been derived directly from the Navier-Stokes equations (see ref­
erences in [22]), and a quantitative comparison of this model with data is 
warranted. 

We analyze data from an experiment on convection in an ethanol/water 
mixture in a long, narrow, annular container heated from below. The system 
can be considered approximately one-dimensional, with periodic boundary 
conditions. The convection pattern is visualized by a shadowgraph system 
which illuminates a circular array of photodiodes, whose signals are digi­
tized to provide data for analysis. The bifurcation parameter € is defined as 
the fractional distance above the temperature difference AT applied across 
the fluid layer at onset of convection. We analyses data obtained at seven 
different values of the bifurcation parameter €' = €T O- 1 X 103 (scaled by the 
characteristic time TO defined later): €' = 1.77, 4.22, 6.38, 9.32, 12.07, 14.03 
and 16.28. 

The first dynamical state observed above onset (c = 0) consists of pairs 
of weakly-nonlinear wave packets which propagate around the system in 
opposite directions, referred to as "left" and "right" [21] (see Fig. 17.9). 
The left- and right-going complex wave amplitudes Adx, t} and AR(x, t} 
are extracted from the shadowgraph data using complex demodulation [23]. 
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FIGURE 17.8. All estimates for the optimal transformations. As in 
the previous figures, the abscissae are the random variables estimated 
from the data, and the ordinates are the optimal transformation. The 
dotted lines mark the intervals on the abscissae in which 98% of the 
data points are located. Due to a very non-homogeneous distribution 
of the data, the optimal transformations outside the marked interval 
cannot be estimated reliably. 
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FIGURE 17.9. Space-time plots of the sum of the left- and right-going 
real amplitudes, given as gray values (small values dark) for a) c' = 1.77 
and b) c' = 12.07. The gray-scale contrast in (a) has been magnified by 
a factor 2.5 with respect to that in (b) to compensate for weaker 
amplitudes. Since the amplitudes for c' = 12.07 are about 2.5 times 
larger than the amplitudes for c' = 1.77, in (b) the waves are more 
pronounced and the signal-to-noise ratio is higher. (From [35].) 

In contrast to a reconstruction by embedding, this technique is based on a 
separation of different temporal and spatial scales. 

The actual data fields we analyze are the real amplitudes and phases 
adx, t), aR(x, t), (/JL(x, t), and <PR(X, t), defined by 

(17.17) 

These fields are sampled on a spacetime mesh of 180 spatial points by 760 
time steps. For each value of c:', the left- and right-wave fields are analyzed 
separately. 

For the first dynamical states above onset, theory proposes as a quanti­
tative description by amplitude equations two coupled CGLEs for left- and 
right-going traveling waves [21). For ease of notation, we consider only right­
going waves coupled to left-going ones and suppress the "R" -subscript. The 
equations for left-going waves follow symmetrically with a change of the sign 
of the velocity s from negative to positive values. The complex amplitude 
A(x, t) is described by the CGLE 

c:(1 + ico) A + ~5(1 + icd 8xxA (17.18) 

+ g(1 + iC2) IAI2 A + h(1 + iC3) IAL 12 A . 

The involved parameters are explained elsewhere [22); To is a characteristic 
time which can be determined experimentally. Inserting Eq. (17.17), two 
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equations for real amplitude and phase are obtained: 

8t a = -8 8z a + 6"Tol a 
+ ~5TOl {8zza - a(8z ¢)2 - Cl (28z a8z ¢ + a8zz¢)} 

+ gTol a3 + hTol aLa, (17.19) 

a8t ¢ = -8 a8x ¢ + 6"CoTol a 

+ ~5TOl {28xa8z ¢ + a8zz¢ + Cl (8xza - a(8z ¢)2)} 

+ gC2Tol a3 + hC3TOl a'ta. (17.20) 

First, the derivative fields 8ta, 8z a, 8z ¢, etc., that appear in Equa­
tions (17.19) and (17.20) are estimated from the experimental measure­
ments, using spectral estimators. Then, these variables are taken as inputs 
for the non parametric regression analysis. 

Since one can apply the method to Equations (17.19) and (17.20) inde­
pendently, we use two sets (I and II) of variables Vi (i = 0, ... , 5) as input for 
the regression analysis. Set I, corresponding to equation (17.19): Vo = 8t a, 
Vi = 8z a, V2 = a, V3 = 8zza - a(8z ¢)2, V4 = 28z a8x ¢ + a8zz¢, V5 = a'ta, 
and set II, corresponding to equation (17.20): Vo = a8t ¢, Vi = a8z ¢, 
V2 = a, V3 = 28z a8z ¢ + a8zx¢, V4 = 8xza - a(8x ¢)2 and V5 = a'ta. 

Numerical studies on several dynamical model equations [32] revealed 
that the CGLE could be estimated with high accuracy from noise-free data, 
leading to a maximal correlation of almost unity. 

As a first question, we want to check that the spatiotemporal evolution 
of the system can be described by the coupled CGLEs (17.19,17.20). In this 
case, One expects the following optimal transformations: The function il>o 
should be the identity, il>2 should be a third-order polynomial in a, and all 
the other functions should be linear, 'with slopes corresponding to the coef­
ficients in Equatione (17.19,17.20). As a check, we will compare our results 
with experimentally obtained coefficients from the same experiment as pre­
sented in [22]. There it was also shown that most ofthe experimental values 
agree reasonably well with the ones calculated from first principles. These 
experimental values are represented as smooth curves in Figure 17.10. Since 
the polynomials 6"TOl a+gTo 1 a3 and 6" Co TO 1 a+gc2To1 a3 have large Uncer­
tainties, curves representing their extremal values are shown in the upper 
and lower panels for il>2, respectively. The distribution of the amplitudes, 
phases, and derivatives are rather inhomogeneous with heavy tails. There­
fore, in Fig. 17.10 the range On the abscissa that is covered by 96 percent 
of the data values is marked by vertical dotted lines. Since the optimal 
transformations are harder to estimate for very sparse data, each 2 percent 
of the transformed data values at the edges are considered as outliers. 

For the seven data sets that were analyzed, One obtains the following 
results (see Fig. 17.10): 

For large bifurcation parameters (6"' ~ 12.07), the expected functions 
coincide very well with the coefficients found in [22]. In particular: Set 1 
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FIGURE 11.10. Estimated optimal transformations for the set of 
terms I and II, both for 6' = 12.07 (upper two rows) and for 6' = 1.77 
(lower two rows). The ordinates are the optimal transformations mul­
tiplied by 1000. They are the same for all plots in one row, except in 
the frames for ~s where they have been magnified by 2.5. The abscis­
sae are given by the terms Vo to Vs, respectively, and are not labelled 
for clarity. Additionally, smooth curves indicate the theoretically ex­
pected functions, and vertical dotted lines mark the ranges on the 
abscissae where 96 percent of the data values are located, as explained 
in the text. The results for 6' = 14.03 and 16.28 resemble the results 
for c;' = 12.07 and are therefore not shown; similarly, the results for 
6' = 4.22,6.38 and 9.32 resemble the results for 6' = 1.77. (From [35].) 

(top row of Fig. 17.10): The estimate for the left-hand side, <lio, turns out 
to be approximately the identity; the estimate for <li! is an approximately 
linear function in 8x a with a slope in good agreement with the wave velocity 
s measured in [22]; and the estimate for <li2 can be described by a cubic 
polynomial in aj the estimates for <li3 and <li 4 are approximately linear, also 
with correct slopes. The estimate for the coupling term, <li5, appears to be 
approximately linear in aLa with a clearly negative coupling coefficient. 

Set II (second row of Fig. 17.10) yields similar results, but obviously the 
estimates for <li3 and <li4 are worse. The reason is that due to the law of error 
propagation, the error of the phase </> is on average two orders of magnitude 
larger than the error of the amplitude, as explained in [35]. This leads to 
worse estimates for the derivatives and, consequently, to worse results for 
the optimal transformations of the set of terms II. (Note especially that 
<li3 depends on seeond-order derivatives of the phase.) This is also revealed 
in a smaller maximal correlation (17.4): IJ1(I) = 0.985 vs. 1J1(1I) = 0.945. 

For smaller bifurcation parameters (£" ~ 9.32), the results are much 
worse (bottom rows of Fig. 17.10) and give only a rough impression of the 
true equations. Here, owing to smaller complex amplitudes, the signal-to-
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noise ratio, given by the ratio of the standard deviations of signal and noise, 
changes by a factor of 2.7 as C;I is changed from 1.77 to 16.28. This leads 
again to bad estimates of the derivatives for small bifurcation parameters. 

Finally, for the three data sets with highest signal-to-noise ratio, one 
clearly finds that the coupling term is approximately of the form h(1 + 
iC3) IALI2 A. This allows one to fit linear functions to the optimal trans­
formations <P5 to yield estimates for the coupling coefficients: hTol = 
-13.7 ± 4.7 and hC3To1 = -142 ± 15. The negativity of the coupling co­
efficients is in agreement with the experimentally observed slight decrease 
in phase and group velocities measured during the interaction of the oppo­
sitely propagating wave packets [21]. 

To summarize, it has been shown from an analysis of the dynamics of 
a state of traveling-wave convection that it is possible to extract the gov­
erning amplitude equations from high-quality experimental spatiotemporal 
data, using nonparametric regression analysis. Limitations are mainly due 
to inaccurate estimates of spatial and temporal derivatives. 

17.7 Conclusions 

The practical analysis of complex nonlinear systems often requires solutions 
that are well-suited for certain problems. Especially for high-dimensional 
dynamics one has to find alternatives to common reconstruction methods 
(although considerable progress can be expected in this direction, as follows 
from recent results [27]). Often, even a well-performing phase-space model 
is not satisfying since it cannot be interpreted with respect to understand­
ing the physics behind it. 

In this chapter we have reviewed a method that stands in-between gen­
erally valid results, like reconstruction theorems, and specific problem solu­
tions. On the one hand, nonparametric regression analysis is a very general 
approach of nonlinear statistics (which is still under development); on the 
other hand one does not have strong theorems that ensure the validity of 
the results with respect to their uniqueness. 

Especially when the point is reached where the result of a nonparametric 
regression analysis is given a (physical) meaning, as we have done repeat­
edly in this chapter, one has to proceed with care; "As a practical matter, 
regression models, linear or nonlinear, should be considered exploratory de­
vices, to be replaced as soon as possible by theory based models supported 
by consideration of the mechanism underlying the process" [31]. In our 
case, the ill-posedness of the inverse problem of determining a differential 
equation from data is, of course, of crucial importance. Nevertheless, we 
have given some examples of a useful application of nonparametric regres­
sion analysis, and the results were consistent with theory. Sometimes, like 
in the analysis of the fluid convection experiment, we clearly came close to 
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the limit of what is possible with today's measurement accuracy. 
The applicability of nonparametric regression analysis has been elabo­

rated on four examples chosen to highlight different aspects of this method 
as applied to nonlinear dynamical systems. There are other applications; 
the ACE algorithm in particular has been applied to analyze nonlinear dif­
fusion processes [8, 20]. Monographs giving an overview of methods (but 
not directly considering nonlinear dynamical systems) are [16] and [31]. 
Properties of the maximal correlation, as compared to other measures of 
dependence, can be found in [1, 2, 6, 7, 12, 17] and [25]. The asymptotic 
distribution for a vanishing maximal correlation, which can be used for 
testing the hypothesis "lJ! :j:. 0," has been derived by Sethuraman [28]. 
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Chapter 18 

Optimization of Embedding 
Parameters for Prediction of 
Seizure Onset with Mutual 
Information 
Alfonso M. Albano! 
Christopher J. Cellucci 
Richard N. Harner 
Paul E. Rapp 

ABSTRACT Normal neurological function is characterized by a high vol­
ume of information transferred between different parts of the central ner­
vous system. An imperfect, but rtonetheless useful, assessment of this spa­
tially distributed transfer process can be obtained by examining multichannel 
EEG records that are measured with an array of scalp electrodes. A non­
linear quantitative measure of the transfer can be obtained by calculating 
the pairwise mutual information of each electrode pair. The average mu­
tual information of two time series is the amount of information of one 
that can be predicted by measuring the other. As suggested in our previous 
work, a reduction in information transfer, as estimated by this metric, can 
occur prior to clinically discernible seizure onset. In the case of the focal 
seizure examined here, this reduction first occurred in the area of the brain 
that was subsequently shown to contain the epileptogenic focus. Thus, the 
calculation contains two clinically valuable elements: a prediction of seizure 
onset and a preliminary localization of the epileptogenic focus. We predict 
that in the case of seizures that are generalized at onset, the initiation of a 
seizure will be preceded by a near-simultaneous reduction in cross-channel 
average mutual information for several electrode pairs. 

18.1 Introduction 

Mutual information has been used to study EEG data for at least two 
decades ([3, 6, 7, 8, 9, 10] and references quoted therein). Although it may 
have been the first nonlinear measure used for this purpose, some of the 
early works made use of linearizing assumptions in the course of their cal-

1 Author for correspondence. 
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culations, which kept them from detecting nonlinear correlations in the 
data. In their 1987 work, Mars and Lopes da Silva [9] showed clearly how 
mutual information, calculated without linearizing assumptions, could de­
tect correlations that were not detected by the correlation coefficient which 
was then, and now still is, widely used to seek correlations in multivariate 
data. Using techniques and terminology introduced earlier by Vastano and 
Swinney [11] in another context, Xu, et al. [12] used mutual information 
to assess the "information transfer" among various scalp EEG sites. Infor­
mation transfer between two EEG channels in this context is the average 
mutual information of a data segment from one channel and a segment 
from the other channel after some time delay 

In a recent work on multichannel EEG data that includes a well char­
acterized epileptic seizure [2], we found that even when using epochs with 
as few as 1000 data points, information transfer calculated using embed­
ded data yielded details of spatio-temporal structures not obtainable when 
unembedded data were used. For this data set, these spatio-temporal struc­
tures predicted the sites where the seizure will occur several seconds before 
expert visual detection of seizure onset in the raw EEG. 

In this contribution we investigate some higher-dimensional embeddings 
of the same dataset we studied earlier and further explore the effects of 
varying embedding dimension, embedding lag, and the time delay between 
epochs being compared. To determine embedding parameters, we use the 
method of "Global False Nearest Neighbors" [1] to find a value for the 
embedding dimension, Fraser's criterion using mutual information for de­
termining the embedding lag [5], and a variant of this criterion to determine 
the time delay during which to assess information transfer [2]. We find that 
provided one does not stray too much from the parameters so obtained, 
and provided one does some embedding, there is considerable robustness 
of the results relative to variations in the actual values of parameters used. 
Since mutual information calculations in high embedding spaces is costly 
in terms of computational resources and time, this flexibility makes it pos­
sible to choose those embedding parameters that are computationally more 
economical. 

18.2 Mutual Information 

Let X and Y be two sets of measurements. Let px(x) be the probabil­
ity density that measurement of X yields Xi py (y) the probability that 
measurement of Y yields Yi and PXy(x, y) the joint probability that mea­
surements of X and Y yield X and y. The average mutual information of 
X and Y is defined by [see, e.g., [1, 9, 11]]. 

"" ) [ PXy(x, y) ] Ixy = L...JPXY(x, y log (x) () . 
x,y Px py Y 

(18.1) 
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On average, Ixy gives the amount of information gained about x from a 
measurement of y. The quantities x and y could be either scalars - the 
values of the signals from different time series, or different segments of 
the same time series - or vectors obtained from a time-delay embedding 
of these data. Earlier work compared scalar time series (see, e.g., [9]). 
Working with data computed from a reaction-diffusion equation, Vastano 
and Swinney [11] used embedded data, obtaining values of the embedding 
dimension and embedding lag using mutual information-based criteria due 
to Fraser and Swinney [5]. Vastano and Swinney [11] argue that if x is 
a time series measured at location X of a spatially extended system and 
y is measured at location Y after some time delay, t, then Ixy(t) is a 
measure of the the information transferred from X to Y in time t, or of the 
communication between X and Y in that time. 

18.2.1 Embedding 

A scalar time series, {Xl, X2, ... , X N} may be embedded in ad-dimensional 
space by forming d-dimensional vectors, 

(Xi, Xi+L, ... , Xi+(d-l)L)j i = 1,2, ... , N - (d - I)L. 

There exists a large variety of techniques for determining appropriate val­
ues of the embedding parameters - i.e, the "embedding dimension," d, and 
the "embedding lag," L. These techniques are typically applicable to single­
channel, or univariate data, usually presumed to be stationary (see, e.g., 
[1]). There is growing awareness that an optimal embedding strategy may 
depend on both the time series and the applied measure. That is, the em­
bedding criterion that is optimal when studying fluid flow data may not be 
optimal in the analysis of a time series from an EEG. Similarly, a procedure 
for selecting embedding parameters when the correlation dimension is to be 
estimated may not be as successful when calculating Lyapunov exponents 
or entropy [4]. The calculation of mutual information using nonstation­
ary data from different locations in a spatially extended system introduces 
some further complications. Embedding parameters appropriate for a time 
series measured at one location may not be appropriate for one measured 
at another location. Parameters that may be optimal for one segment of a 
time series may not at all be appropriate for another segment if the time 
series is sufficiently nonstationary. If the same embedding parameters are 
to be used to study an entire multichannel data set, it may become nec­
essary to use, as a compromise, those values that work well enough for all 
pairs, but are not necessarily optimal for any pair. 
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Model Data Set 1 
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FIGURE 18.1. Model Data Set 1. Channell (top panel) consists of 
points 51-2050 of an EEG time series; Channels 2 and 3 (lower panels) 
are identical and consist of points 1-2000 of the same time series . 

. ;~'-------"----'----'-----'----'~ o 200 _ 000 800 1000 1200 1 ~ 1600 1800 2000 
Time (0.005 8) 

FIGURE 18.2. Model Data Set 2. The three channels are segments of 
the same EEG time series. Channell here (top panel) is the same as 
Channels 2 and 3 of Model Data Set 1. 
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18.2.2 Computationally Constructed Multivariate Data Sets 
To illustrate some of these issues, we consider two "three-channel model 
data sets." In the first (Model Data Set 1, Figure 18.1), Channell consists 
of points 51-2050 of an EEG time series sampled at 200 Hz and Channels 2 
and 3 are points 1-2000 of the same time series. That is, Channels 2 and 3 of 
this multichannel data set are identical not because they communicate with 
each other, but because both receive signals ("information") from Channel 
1 after some time delay. In the second (Model Data Set 2, Figure 18.2), 
the three channels come from widely separated segments of the same time 
series. Inspection of Figure 18.2 shows that Channels 1 and 2 are similar 
although not identical, but both are vastly different from Channel 3.2 • 

Model Data Set 1 

2.5 

i 2 

I 
~1.5 
:::E 

t 
~ 1 

0.5 
~~ 

~ 

0 
0 10 20 30 40 50 60 70 60 90 100 

llme (0.005 .) 

FIGURE 18.3. Model Data Set 1. Average mutual information of the 
first 1,000 points of Channel 1 and a time-delayed epoch of the same 
length as a function of time delay. 

One way of determining a value of the embedding lag is to calculate the 
average mutual information, Ixy(T) for which X is an epoch of a time 
series starting at time, t, say, and Y is an epoch of the same time series, 
of the same length as X, but starting at time, t + T. The value of the 
time delay, T, where the first minimum of Ixy(T) occurs is taken as the 
embedding lag [5]. Figure 18.3 shows average mutual information VS. time 
delay for the first 1,000 points of channell of Set 1. It has a first minimum 

2Both "model data sets" are derived from Channell of Fig. 18.8. Set 1 uses the 
first 2050 points (10.25 s) of the time series. Channell of Set 2 consists of the first 2000 
points, Channel 2 of points 1001-3000 (5-15 s), and Channel 3 of points 5001-7000 (25-35 
s). 
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Model Data Set 2 

2.5 

40 50 60 70 80 90 100 
Time (o.oos s) 

FIGURE 18.4. Model Data Set 2. Similar to Figure 18.5, showing 
results for Channel 1 (+), Channel 3 (0), and all channel pairs (x). 

in the neighborhood of fifteen time units. Since the other channels of this 
set are essentially the same as Channell, the results for the other channels 
are identical. This situation is not at all true for Set 2 ( Figure 18.4). The 
graph for Channel 1 is the same as that in Figure 18.3; that for Channel 3 
does not reach a minimum until about thirty time units. Yet another result 
emerges if the average mutual information of all channel pairs is computed. 
Rather surprisingly, the graph now has a first minimum at approximately 
six time units. 

To determine a value for the embedding dimension, we use the method of 
"Global False Nearest Neighbors" [1]. This method is based on the premise 
that if too small an embedding dimension is used, there would be points in 
the embedding space that are close to each other because the reconstructed 
attractor has not been sufficiently unfolded. These artificially clbse points 
- the false neighbors - would be separated in an embedding space of ap­
propriately high dimension. Figure 18.5 shows, for Channell of both data 
sets, the percentage of nearest neighbors that are false as a function of 
embedding dimension. It suggests an embedding dimension of around 5. 

Figure 18.6 shows the average mutual information between each of the 
channels of model data set 1 and channels of the same data set delayed by 
fifty time units. These calculations are done in embedding dimensions 1, 3, 
5, and 7. In each of the graphs, the value of AM I in the region bounded 
by "Reference Channel" values i and i + 1 and "Delayed Channel" values 
between j and j + 1 is the average mutual information of data from channel i 
and delayed data from channel j. All graphs indicate that, indeed, Channels 
2 and 3, delayed by fifty time units, are similar to ChannelL This is not 
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FIG URE 18.5. Model Data Set 1. Percentage of nearest neighbors that 
are "false" VB. embedding dimension. 
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FIGURE 18.6. Model Data Set 1. Average mutual information of all 
"reference channel" - "delayed channel" pairs. The delay (50) is equal 
to the time delay that was introduced in the construction of the time 
series. 



442 A. M. Albano, C. J. Cellucci, R. N. Harner and P. E. Rapp 

so for any other pairs. The results confirm the communication between 
Channel 1 and Channels 2 and 3 and is not affected by the identity of 
simultaneous epochs of the latter two channels. The maximum value of 
average mutual information increases with embedding dimension, but so 
does the minimum, so that the contrast between values for similar data 
and those for dissimilar data also deteriorates as embedding dimension 
increases. We investigate some consequences of this. 

Embeck:lng Dimension = 1 
.! ....... . . :" : ...... : ...... . 

,,':'" :,,< .... : ... .... : ....... . 

emboddng Dimension z 3 
. .. : ..... . ..... , 

to·-(: .;....; ... : ... 

:i 5 ). ... /: 
.. . 

. .... :. .. .... ; 

o 

o Reference Chamel o Reference Channel 
Delayed Channel Delayed Channel 

Embeddng Dimension _ 5 emboddng Dimension _ 7 

.:····1····:··· ... : ...... . ...... 
":'" 

Delayed Channel Delayed Channel 

FIGURE 18.7. Model Data Set 2. Average mutual information of all 
"reference channel" - "delayed channel" pairs using lag = 6, delay = 
8, and embedding dimensions 1, 3, 5, and 7. 

Figure 18.7 shows the average mutual information for all channel pairs 
of Set 2 using a lag of 6, a time delay between channels of 8 and embedding 
dimensions of 1,3,5, and 7. The results for embedding dimension 1 indicate 
the similarities of each channel with delayed versions of itself. The results, 
however, do not indicate the similarity between Channels 1 and 2 and the 
differences between these and Channel 3. In other words, use of embedding 
dimension 1 (or the raw data) does not provide sufficient contrast to distin­
guish the similarity between Channels 1 and 2 and the differences between 
these and Channel 3. Results for dimensions 3 - 7 all show such a contrast. 
Embedding dimension 3 shows distinctions between the average mutual in­
formation of Channel 2 VS. Channel 2 (delayed), and Channell VS. Channel 
2 (delayed) or Channel 2 VS. Channell (delayed). Embedding dimensions 5 
and 7 do not show such distinctions as clearly. These results indicate some 
robustness relative to changes in embedding dimension, provided one does 
not stray too far from values suggested by techniques such as Global False 
Nearest Neighbors. Indeed, in the case of Figure 18.7, using an embedding 
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dimension in which approximately 0.05% of the nearest neighbors are false 
gives better results than higher dimensions in which the number of near­
est neighbors is closer to zero. Since computational costs increase greatly 
with embedding dimension, and since there are well-known problems with 
scattering relatively few points in large embedding spaces, this might also 
justify using relatively small embedding spaces (but greater than one!). 
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There is also some robustness against changes in the time delay between 
channels. Figure 18.8 shows the average mutual information calculated in 
embedding dimension 3, with lag 7, and delays of 0, 8,16, and 20. All values 
of delay show the expected differences and similarities among all channel 
pairs. Figure 18.9 shows calculations similar to this but for different values 
of the lag. They are all done in dimension 3, with a delay of 8 and lags of 
1, 6, 9, and 12. All show the expected behavior. 

The results summarized in Figures 18.7-18.9 indicate that values of the 
embedding parameters and of the time delay can be obtained using the now 
familiar techniques--Global False Nearest Neighbors to determine embed­
ding dimension, and the average mutual information of unembedded data 
to get the embedding lag and time delay. More importantly, they show 
that calculations of information transfer, or average mutual information of 
time-delayed epochs, is not unduly sensitive to the values of these param­
eters. We therefore have some flexibility in choosing parameter values to 
take into account limitations imposed by the amount of data available or 
by considerations of computational economy. 

18.3 Multichannel EEG 

18.3.1 Data and Analysis 

110~~~~~----~~~~~~~~~~~ 
'6 

20L-__ L-~~~~~=--==--==--==--==--==-~ o 1 coo 2000 3000 4000 6000 6000 7COO 8000 8000 10000 
Tin. (0.005 0) 

FIGURE 1S.10. Nineteen-channel EEG time series. The sequence of 
channel numbers (1-19) corresponds to the sequence of electrode sites 
given in the text. 

Figure 18.10 shows our multichannel data set. The data were recorded 
from nineteen scalp sites, conventionally called Fpl, F3, F7, C3, T3, T5, P3, 
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01, Fp2, F4, F8, C4, T4, T6, P4, 02, Fz, Cz and Pz. Measurements were 
made with a sampling rate of 200 Hz and digitized at 10 bits. There were 
10,400 recorded values per channel. The seizure lasts from approximately 
t = 12 s to t = 52 s, with a focus near sites T3 and F7 (channels 3 
and 5), corresponding to the left temporal lobe. Figure 18.11 shows the 
signal from site T3, which is the electrode closest to the focus. The seizure 

eyeblinks 

seizure onset 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Time (0.005 s) 

FIGURE IS.11. Time series for site T3 (Channel 5). 

is preceded by interictal spikes, also at T3 and F7. The large amplitude 
signals extending from approximately t = 25 s to t = 42 s are eyeblink 
artifacts, and appear in most of the channels, maximal in Channels 1 and 
9 (Fp1 and Fp2) which are nearest the eyes. 

Our analysis of the model data sets in the previous section suggests 
that there is considerable leeway in the choice of embedding parameters 
and of the time delay between epochs whose average mutual information 
is being calculated. In this spirit, we will use calculated values of these 
parameters as starting points and investigate the effects of varying these 
values. A Global False Nearest Neighbor calculation such as that shown 
in Figure 18.5 suggests an embedding dimension of approximately 5. 
Figures 18.12 and 18.13 are similar to Figures 18.3 and 18.4 and show the 
average mutual information of all channel pairs for embedding dimensions 
1 (or no embedding at all) and 3, respectively. In the latter case, the lag was 
six time units or 30 ms. Figure 18.12 suggests a lag of seven units (35 ms) 
and a time delay of twelve units (60 ms). Figure 18.13 as well as a similar 
calculation in embedding dimension 5 (not shown) suggests a lag of four 
units (20 ms) and a time delay of six units (30 ms) between epochs. To the 
extent that these figures have some physiological basis unlike those obtained 



446 A. M. Albano, C. J. Cellucci, R. N. Harner and P. E. Rapp 

o.5,---.,..---,---,--....,-----,--.--....--..... ---,---, 

0.45 

0.4 

0.35 

f O~ 
i 
~ 0.25 
:Ii 

t 0.2 

~ 
0.15 

0.1 

0.05 

~L--~-~10--1~5-~20-~25~-~L--~35-~~~-45L-~50 

TIm. (0.005 0) 

FIGURE 18.12. Average mutual information for all channel pairs '118. 
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FIGURE 18.13. Average mutual information for all channel pairs '118. 

time delay. Embedding dimension 3, lag = 6, using the first 1000 data 
points. 

from Figure 18.4, they suggest a characteristic "information transfer" time 
on the order of a few tens on milliseconds, which is not unreasonable. 
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nine lOOO.point (5.0-s) epochs. TI~e sequence goes from left to right, 
top to bottom. The seizure starts in the top right panel. Unembedded 
data, delay = 12. 
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FIGURE 18.15. Similar to Figure 18.14 but in embedding dimension 
3, lag = 4, delay = 6. In the first two panels, which precede seizure 
onset, Channels 3 and 5, which are nearest the eventual seizure focus, 
have significantly lower values of average mutual information. In the 
third panel (top right) when the seizure occurs, the overall value of 
average mutual information is reduced. 
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FIGURE 18.16. Similar to Figure 18.14, but in embedding dimension 
5, lag = 20, delay = 20. 
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FIGURE 18.17. Similar to Figure 18.14 but in embedding dimension 
7, lag = 10, delay = 0. 

In Figures 18.14 to 18.17, we show the results of a number of calculations, 
some using parameters values at or close to those found earlier, others using 
very different values. In each of these figures, the top left panel shows the 
average mutual information for all channel pairs for points 1 - 1000 (0-
5 s). The succeeding panels, from left to right and top to bottom are for 
succeeding, non-overlapping WOO-point segments of nineteen-channel data. 
That is, the second panel covers points 1001-2000 (5-10 s), the third covers 
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points 2001-3000 (10-15 s), etc. In each of these figures, the seizure starts 
in the time interval covered by the third panel (top right). For each panel, 
with the bottom left corner as (0,0), the cell at column x, row y, is the 
average mutual information of Channel x and Channel y(delayed). 

Figure 18.14 uses unembedded data (embedding dimension = 1). As 
suggested by Figure 18.12, the time delay is set to 12 time units (lag is 
meaningless when the data are not embedded). There are some changes 
in patterns of the average mutual information, but there are no dramatic 
indications of an impending or actual seizure until the seventh panel which 
starts at t= 25.0 s at which time the seizure is well underway and the EEG 
signals from practically all channels are dominated by eyeblink artifacts. 
Figures 18.15 - 18.17, on the other hand, clearly indicate that Channels 3 
and 5, which are nearest the eventual seizure focus, are behaving differently 
from the rest. The low values of average mutual information between them 
and all other channels suggest that they are "not communicating" and this 
indication appears some 10 s before seizure onset. Figure 18.15 uses an 
embedding dimension of 3, and a lag of 4 and delay of 6 as suggested by 
Figure 18.13. In the interval that includes seizure onset (top right), the 
average mutual information of all channel pairs drops, recovering at the 
next epoch at which time values for Channels 1 and 9 drop, corresponding 
to the predominance of eye blink artifacts in these channels. Low levels of 
average mutual information characterize these two channels until the end 
ofthe time series. Figure 18.16 (embedding dimension = 5, lag = 20, delay 
= 20) and Figure 18.17 (embedding dimension = 7, lag 10, delay = 0) use 
values of embedding and delay parameters that are quite different from 
those calculated using the techniques discussed earlier. Nevertheless, they 
both mark Channels 3 and 5 from the beginning of the time series, show the 
drop in average mutual information at seizure onset, and mark the eyebink­
dominated channels until the end. Indeed, we have obtained similar results 
in embedding dimension 3 for lags from 5 to 200 (lower values of lag gave 
results similar to those found for unembedded data), and in embedding di­
mension 5 for delays from 0 to 100. In Figure 18.18, we summarize the time 
course of the "information transfer" to each channel by showing the average 
mutual information for each "delayed channel" averaged overall "reference 
channels." That is, for each of the panels in Figures 18.14- 18.17,we take the 
average of each row and then show how this average changes from one panel 
to the next, resulting in an "information transfer" vs. time plot. Showing 
similar data for each "reference channel" by averaging each column would 
give similar results because of the approximate symmetry of the panels in 
Figures 18.14- 18.17 about their main diagonals. Investigation of the actual 
values of the average mutual information, however, shows that the panels 
are not strictly symmetric, which must be so if these values really mean 
information transfer. 

The top left panel of Figure 18.18 shows the results for unembedded data 
(Figure 18.14); top right: embedding dimension 3 (Figure 18.15), bottom 
left:embedding dimension 5 (Figure 18.16) and bottom right: embedding 
dimension 7 (Figure 18.17). As before, for all but the unembedded data, 
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FIGURE 18.18. Average mutual information averaged over all refer­
ence channels vs. time. This shows the time dependence of the "in­
formation received" by each channel from all the rest, and how this 
changes in time. From left to right and top to bottom, these panels 
are for embedding dimensions 1, 3, 5, and 7. These were obtained by 
averaging the rows of Figures 18.14-18.17. 

Channels 3 and 5 which contain interictal spikes are characterized by low 
information transfers. The third epoch (10-15 s) in which the raw EEG 
shows minimal visual evidence of seizure onset in a single channel is char­
acterized by low information transfer in all channels. Channels 1 and 9 
similarly show low information transfers during those epochs when they 
are dominated by eyeblinks. Calculations using embedded data show lo­
calized events such as spikes and eyeblinks as well as more global events 
characterizing the seizure. This figure also has the advantage of showing 
more clearly how the patterns evolve in time. 

18.4 Concluding Remarks 

The average mutual information of non-simultaneous data segments mea­
sured from different locations in a spatially extended system promises to 
be a useful tool for probing the inter-relationships among different regions 
of the system and for studying the time evolution of these relationships. 
It could be helpful in the analysis of multichannel EEG's. If, for instance, 
it can provide a way of quantifying features of the EEG which clinicians 
use for diagnosis, it could become a useful diagnostic tool. We confirm a 
result we have reported elsewhere ([2]); that the average mutual informa-
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tion calculated using embedded data is able to mark the sites where an 
epileptic seizure will occur several seconds before seizure onset. To perform 
the calculation, embedding parameters may be obtained using some of the 
now familiar techniques ([1]). However, we find that provided one does 
not stray much from the parameters so obtained, and provided one does 
some embedding, there is considerable robustness of the results relative to 
variations in the actual values of parameters used. 
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Chapter 19 

Detection of a Nonlinear 
Oscillator Underlying 
Experimental Time Series: 
The Sunspot Cycle 
Milan PaIns 

ABSTRACT After a brief review of a nonlinearity test based on informa­
tion theoretic functionals (redundancies) and surrogate data technique, we 
discuss problems of this and similar tests for nonlinearity. In particular, we 
stress that a formal rejection of a linear stochastic null hypothesis does not 
automatically mean evidence for nonlinear dynamical origin of studied data. 
In an example we show how a variable variance could be mistaken for non­
linearity in a series of surface air pressures. Therefore we find a detection 
of nonlinearity in a series of sunspot numbers insufficient for an identifi­
cation of a mechanism underlying the sunspot cycle. As a solution in this 
case we propose to test for a property of nonlinear oscillators - mutual de­
pendence between their instantaneous amplitude and frequency. This behav­
ior is detected in yearly and monthly records of the sunspot numbers using 
histogram-adjusted isospectral surrogate data and Barnes model as ARMA 
surrogates. The instantaneous amplitudes and frequencies are obtained by 
means of the analytic signal approach using the discrete Hilbert transform. 
In several tests the amplitude-frequency correlation has been found signif­
icant on levels ranging from p < 0.03 to p < 0.07, which supports the 
hypothesis of a driven nonlinear oscillator as a mechanism underlying the 
sunspot cycle. 

19.1 Introduction 

Let {y(t)} be a time series, i.e., a series of measurements done on a system 
in consecutive instants of time t = 1,2, .... Can we identify a mechanism 
underlying temporal evolution of such a system? 

The time series {y(t)} can be considered as a realization of a stationary 
linear stochastic process {Y(t)}. Without loss of generality we can set its 
mean to zero. Then the linear stochastic process Y(t) can be written as: 

00 00 

Y(t) = Y(O) + L a(i)Y(t - i) + L b(i)N(t - i), (19.1) 
i=l i=O 

A. I. Mees (ed.), Nonlinear Dynamics and Statistics
© Birkhäuser Boston 2001
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where b(O) = 1, E:lla(i)1 < 00, E:o Ib(i)1 < 00, and {N(t)} is an 
independent, identically distributed (1.1.0.), normally distributed process 
with zero mean and finite (constant) variance. (For more details see [18].) 

Alternatively, the time series {y(t)} can be considered as a projected tra­
jectory of a dynamical system, evolving in some measurable d-dimensional 
state space. To be more specific, let X t denote a state vector in Rd. Then the 
measurements y(t) are obtained as y(t) = g(Xt ), where g(.) is a projection 
(measurement function), and temporal evolution of X t may be described 
by a discrete-time dynamical system (a difference equation): 

(19.2) 

with Xo E Rd and for t ~ 1. 
Due to ubiquity of noise, it is more realistic to replace the preceding 

states by random variables and the dynamics by a Markovian model such 
as 

(19.3) 

where t E Z+, F : R2d ~ R d, {etl is a sequence of independent and 
identically distributed d-dimensional random vectors and et is independent 
of X s , 0 ~ 8 < t. We call {etl the dynamic noise. Following [25], we refer 
to Equation (19.2) as the skeleton of model (19.3), considering F(X) = 
F(X,O). For convenience, it is frequently assumed that the dynamic noise 
is additive so that Equation (19.3) reduces to the model with additive noise 

X t = F(Xt-d + et· (19.4) 

Detection of nonlinearity in experimental time series, i.e., identification 
from experimental data of underlying mechanism such as the model (19.4) 
with a nonlinear function F is usually based on rejection of a linear null 
hypothesis by a statistical test. Typically, the considered null hypothesis 
is a linear Gaussian process such as (19.1) or a Gaussian process passed 
through a static nonlinear transformation, or a similar simple alternative. 
Rejection of such a null is frequently interpreted as a detection of a de­
terministic nonlinear relation (19.2 or 19.4) in data under study. This is, 
however, only one of possible alternatives. Other alternatives will be dis­
cussed in Sec. 19.3, in the following section we will briefly review a test for 
nonlinearity proposed in [12]. Then we will present an example of a spuri­
ous nonlinearity detection due to a variable variance in a case of air surface 
pressure data (Sec. 19.4). Nonlinearity in a series of sunspot numbers is 
tested in Sec. 19.5. Section 19.6 introduces the amplitude-frequency corre­
lation in nonlinear oscillators. Detection of such a behavior in the sunspbt 
cycles is presented in Sec. 19.7, and results are discussed in Sec. 19.8. 
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19.2 A Test for Nonlinearity Based on 
Redundancies and Surrogate Data 

Consider n discrete random variables Xl, ... ,Xn with sets of values 3 1 , ... , 

3 n, respectively. The probability distribution for an individual Xi is P(Xi) = 
Pr{Xi = xd, Xi E 3 i. We denote the probability distribution function by 
P(Xi), rather than PXi (Xi), for convenience. Analogously, the joint distri­
bution for the n variables Xl' ... ' X n is p( Xl, ... , xn). The redundancy 
R(Xl ; ... ; X n), in the case of two variables also known as mutual infor­
mation J(Xl; X 2 ), quantifies average amount of common information, con­
tained in the n variables Xl, ... , Xn: 

When the discrete variables X!, ... , Xn are obtained from continuous 
variables on a continuous probability space, then the redundancies depend 
on a partition ~ chosen to discretize the space. Various strategies have 
been proposed to define an optimal partition for estimating redundancies 
of continuous variables (see [12, 27] and references therein). Here we use 
the "marginal equiquantization" method described in detail in [11, 12]. 

Now, let the n variables Xl' ... ' Xn have zero means, unit variances and 
correlation matrix C. Then, we define the linear redundancy L(Xl ; ... ; Xn) 
of Xl ,X2 , •.. ,Xn as 

1 n 
L(Xl ; ... ; Xn) = -2 L 10g(O"i), 

i=l 

(19.6) 

where O"i are the eigenvalues of the n x n correlation matrix C. 
If X1, ... ,Xn have an n-dimensional Gaussian distribution, then L(Xl; 

... ; Xn) and R(X1; ... ; Xn) are theoretically equivalent. 
In practical applications one deals with a time series {y(t)}, considered 

as a realization of a stochastic process {Y(t)}, which is stationary and 
ergodic. Then, due to ergodicity, all the subsequent information-theoretic 
functionals are estimated using time averages instead of ensemble averages, 
and the variables Xi are substituted as 

Xi = y(t + (i - l)r). (19.7) 

Due to stationarity the redundancies 

Rn(r) == R(y(t); y(t + r); ... ; y(t + (n - l)r)) (19.8) 

and 
Ln(r) == L(y(t); y(t + r); ... ; y(t + (n - l)r)) (19.9) 
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are functions of n and T, independent of t. 

The surrogate-data based nonlinearity tests [23, 12] consist of computing 
a nonlinear statistic from data under study and from an ensemble of realiza­
tions of a linear stochastic process, which mimics "linear properties" of the 
studied data. If the computed statistic for the original data is significantly 
different from the values obtained for the surrogate set, one can infer that 
the data were not generated by a linear process; otherwise the null hypoth­
esis, that a linear model fully explains the data, cannot be rejected and the 
data can be analyzed and characterized and predictions can be obtained 
by using well-developed linear methods. For the purpose of such a test the 
surrogate data must preserve the spectrum and consequently, the autocor­
relation function of the series under study. An isospectrallinear stochastic 
process to a series can be constructed by computing the Fourier transform 
(FT) of the series, keeping unchanged the magnitudes of the Fourier coef­
ficients but randomizing their phases and computing the inverse FT into 
the time domain. Different realizations of the process are obtained using 
different sets of the random phases. 

The FT surrogates tend to have a Gaussian distribution which is not al­
ways the case with the tested data. To avoid a possible influence of different 
histograms of the data and of the surrogates, the histogram adjusted FT 
(HAFT) surrogates are constructed. (In [23] the term "amplitude-adjusted" 
- AAFT surrogates is used.) In this case, the raw data undergo a nonlinear 
transformation which leads to a Gaussian distribution of the transformed 
data (Gaussianization - see [12] and references within). The gaussianized 
data are used to generate the FT surrogates as described earlier, and the 
obtained surrogate data are transformed to have the same histogram as 
the original raw data. An application of the HAFT surrogates effectively 
means a reformulation of the null hypothesis of a Gaussian linear stochastic 
process (19.1) into a hypothesis of a process (19.1), realizations of which 
are passed through a static nonlinear transformation. 

To evaluate the test, usually, and in [12], the test statistic is defined as 
a difference between the redundancy obtained for the original data and 
the mean redundancy of a set of surrogates, in the number of standard 
deviations (SD's) of the latter. Such an approach requires a relative small 
number of surrogate replications, however, a normal distribution of the test 
statistic is considered. The latter is not always the case, and therefore, as a 
more reliable approach, in Sec. 19.5 we generate a large number of surrogate 
realizations and estimate percentiles (e.g., 2.5th and 97.5th percentile) of 
the surrogate distribution. Then redundancy values are simply compared 
with related percentile values. It is also possible to directly estimate the 
"significance", i.e., the p value of the test by counting the percentage of the 
surrogate realizations yielding redundancy values equal to or greater than 
the related redundancy obtained from analyzed data. 

Note that both the redundancies and redundancy-based statistics can be 
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evaluated as functions of lag r and embedding dimension n. Evaluating the 
redundancies and related statistics for broad ranges of lags (and several 
dimensions), however, can bring the problem of simultaneous statistical 
inference (see [12, 15] and references within for details). This approach, 
however, can be more reliable than single-valued tests, as was demonstrated 
in [12]. 

The redundancy Rn (r), based on probability distributions, measures gen­
eral dependences among the series {y(t)} and its lagged versions, whereas 
the linear redundancy Ln(r), based on correlations, reflects only their linear 
relations. Comparing the plots of Rn(r) and Ln(r) can provide an informal 
test for important nonlinearities in the studied data [14]. This approach, in 
[12] referred to as qualitative testing or qualitative comparison, can bring 
additional information to the results of the quantitative (surrogate data 
based) test. Moreover, one cannot always construct good surrogate data. 
That is, despite theoretical expectations, in numerical practice linear prop­
erties of the surrogates may differ from those of the data under study. 
Changes in linear properties are reflected in nonlinear statistics as well, 
and thus they may result in spurious detection of nonlinearity in linear 
data [12]. Therefore, we also evaluate a statistic based on the linear redun­
dancy Ln(r) (defined analogously to the statistic based on Rn(r)), which 
specifically reflects changes in linear properties. Then, only those signifi­
cant differences in the nonlinear statistic can reliably count for nonlinearity, 
which are not detected in the linear statistic [12]. 

19.3 The Null Hypothesis of Nonlinearity Tests 
and Its Negations 

Consider that the just-described test yielded a significant result, i.e., the 
null hypothesis was reliably rejected. The null hypothesis was equivalent! 
to a linear stochastic process such as that described by the ARMA model 
(19.1). It is very common in nonlinear dynamics literature to consider the 
rejection of the null (19.1) as an evidence for a process such as (19.4) 
with a nonlinear skeleton (19.2). This is, however, only one of the possible 
negations of (19.1). A number of different processes should be considered, 
which possess a linear deterministic skeleton2 , i.e., a linear AR part - the 
first sum in (19.1), or no deterministic skeleton at all (MA processes), 
however, their innovations {N(t)} do not fulfill the conditions given earlier. 
Generally, one or more of the following properties could reject the null 
(19.1): 

1 Principal equivalence and technical differences between the surrogate data con­
structed by using the Fourier transform and the ARMA modeling are discussed in 
[23,24]. 

20bviously, for a linear function F, the model (19.4) is a special case of (19.1). 
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1. The innovations {N(t)} are not Gaussian. 

2. The innovations {N(t)} are not an Ll.D. process, where Ll.D. means 
that the innovations should be not only uncorrelated, but generally 
independent. 

3. The variance of {N(t)} is not constant. 
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FIGURE 19.1. (a): Linear redundancy L(y(t)j yet + r» (solid line), (b): 
nonlinear (general) redundancy R(y(t)j yet + T» (solid line), for a series 
of differences from the long term averages of the surface air pressure 
(Prague-Klementinum station) and for its FT surrogates (thin solid 
and dashed lines present mean and mean±SD, respectively, of a set 
of 30 surrogate realizations); (c): linear (L-based), and d): nonlinear 
(R-based) statistics; as functions of the time lag T, measured in days. 

19.4 An Example of Surface Air Pressure Series 

A series of daily recordings of surface air pressure {pet)} (t = 1 - 65,536 
days; i.e., 180 years) was described and analyzed in [15]. Here we ana-
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FIGURE 19.2. Seasonality in mean (upper panel) and in variance 
(lower panel) of the surface air pressure series - long term means 
(upper panel) and standard deviations (square root of variance, lower 
panel) for each day in a year. The days are consecutively numbered, 
January 1 has the index 1, January 2 has the index 2, ••• , February 1 
has the index 32, etc. 

lyze differences from long-term daily averages. This transformation of data 
(almost entirely) removes the oscillations with the period of one year (sea­
sonality in mean). We ask the question about possible long-term nonlinear 
dependence and perform the linear redundancy - redundancy surrogate 
data test, described earlier. 

The results are presented in Fig. 19.1. For lags larger than a few days 
there is only a weak linear dependence, as measured by the linear redun­
dancy (Fig. 19.1a) and reflected in the surrogates, but the (nonlinear) 
redundancy detects a clear dependence as an oscillatory structure with 
a yearly periodicity. This difference is highly significant (10 - 30 SD's, 
Fig. 19.1d), while no significance in the linear statistic (Fig. 19.1c) confirm 
the quality of the surrogates, which reflect correctly "the linear properties" 
ofthe data (in the sense of the model (19.1)). Can this result be understood 
as an evidence for the model (19.4) with a nonlinear periodic skeleton F, 
which could provide predictability of the atmospheric pressure for several 



460 Milan PaIus 

>­
U z « 
Q 
Z 

0,01 

::::> 0.005 o 
w 
a: 

7ii' -1 b 
~ 
U -2 
t= en 
~ ~ 

-4 

(a): LINEAR 

o 500 1000 

(c): LINEAR 

o 500 1000 
LAG [DAYS] 

0.01 (b): NONLINEAR 

0.005 

o 500 1000 

(d): NONLINEAR 

-1 

-2 

-3 

-4 

o 500 1000 
LAG [DAYS] 

FIGURE 19.3. (a): Linear redundancy L(y(t)jy(t + T» (solid line), (b): 
nonlinear (general) redundancy R(y(t)j yet + T» (solid line), for a series 
of differences from the long term averages of the surface air pressure, 
rescaled in order to have a constant variance, and for its FT surrogates 
(thin solid and dashed lines present mean and mean±SD, respectively, 
of a set of 30 surrogate realizations); (c): linear (L-based), and d): 
nonlinear (R-based) statistics; as functions of the time lag T, measured 
in days. 

years in advance? 
The seasonality in mean present in this data (Fig. 19.2, upper panel) was 

mostly removed by considering differences from the long term averages. 3 

The problem is that also the variance of this data is not constant, but 
clearly seasonal (Fig. 19.2, lower panel, the standard deviation (SD) is 
the square root of variance). This property is "nonlinear" in the sense 
that the surrogate data and the model (19.1) possess a constant variance 
and cannot reproduce the seasonality in variance. After rescaling the data 

3The seasonality in mean can be entirely removed by filtration in spectral domain, 
as done in [15]. 
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in order to obtain a constant variance, the effect of the false long-term 
nonlinear dependence is lost (Fig. 19.3). In the rescaled data there is no 
long-term dependence except of weak linear link due to not entirely removed 
seasonality in mean. 

The preceding example of the surface air pressure clearly demonstrated 
the influence of variable variance on the redundancy - surrogate data non­
linearity test (introduced in Sec. 19.2 and in detail in [12]). The effect of 
non-Gaussian innovations {N(t)} was discussed in [12], and a possible influ­
ence of non-Ll.D. {N(t)} (i.e., innovations containing (nonlinear) temporal 
structures) is understandable. It is important to note that similar effects 
of "defective" innovations in a process under study would effect not only 
this particular test for nonlinearity, but all tests which use some type of 
FT/ARMA surrogates and any method which contains the process (19.1) 
at least implicitly in its construction. Also, all entropy-related statistics, 
that is, not only the preceding information-theoretic functionals, but also, 
for instance, statistics based on correlation integral [17], are extremely sen­
sitive to variable variance and/or to (non)Gaussianity of data/innovations. 
Therefore one must very carefully assess results of nonlinearity tests in or­
der to avoid confusing this kind of effect with actual nonlinear functional 
dependence in the data under study. 
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FIGURE 19.4. (a) The series of yearly sunspot numbers (1700 - 1997). 
(b) A realization of the HAFT surrogate data for the "last" 256 sam­
ples. (c) A 298-sample realization of the Barnes model. 
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19.5 Nonlinearity in the Sunspot Cycle 

An energy output of the sun as the main basis of life on Earth is nearly 
constant. However, the Sun is far from being uniform. The best observed 
solar inhomogeneities are spots on the solar surface in which the luminosity 
is diminished but magnetic fields appear which are stronger than usual 
magnetic fields on the rest of the solar surface. Appearance of the spots on 
the sun is quantified by so-called sunspot numbers, or index, which have 
been collected from the beginning of the eighteenth century. 

The historical data of the sunspot index have been attracting researchers 
for more than a century. The now well-known eleven-year cycle was reported 
in [30]. Of course, the sunspot cycle is not strictly periodic, but fluctuations 
in its amplitude and frequency (i.e., in the cycle duration) occur. Therefore 
researchers have turned to stochastic models in order to make predictions 
of a future behavior of the sunspot cycle (see [29] and references therein). 
On the other hand, development in nonlinear dynamics and theory of deter­
ministic chaos, namely methods and algorithms for analysis and prediction 
of (potentially) nonlinear and chaotic time series have naturally found their 
way into the analyses of the sunspot series. Several authors ([10, 8] and ref­
erences therein) have claimed an evidence for a deterministic chaotic origin 
of the sunspot cycle, based on estimations of correlation dimension, Lya-; 
punov exponents and an increase of a prediction error with a prediction 
horizon. The dimensional algorithms, however, have been found unreliable 
when applied to relatively short experimental data, and properties con­
sistent with stochastic processes (colored noises) such as autocorrelations 
can lead to a spurious convergence of dimensional estimates [22]. Similar 
behavior has been observed for Lyapunov exponent estimators [3, 13]. The 
increase of a prediction error with an increasing prediction horizon is not 
a property exclusive to chaos; it can also be observed in systems with a 
deterministic skeleton and an intrinsic stochastic component ("dynamical 
noise"). Therefore, such results cannot be considered convincing evidence 
for a nonlinear dynamical origin of the sunspot cycle. 

In this section we present results of the test for nonlinearity (Sec. 19.2) 
applied to the sunspot data. The series of yearly sunspot numbers from the 
period 1700 - 1997 was obtained from the Sunspot Index Data Center4 , 

and is illustrated in Fig. 19.4a. As test results, here we do not present 
differences from surrogate mean in number of standard deviations as in 
the previous section, but using 15,000 surrogate replications we estimate 
the 2.5th and 97.5th percentiles of distributions of redundancies computed 
from surrogate data. If values of related redundancy obtained from the 
studied data lie outside the range given by these two percentile values, the 

4Sunspot Index Data Center, Royal Observatory of Belgium, Av. Circulaire, 3, B-1180 
Brussels, Internet address: http://www.oma.be/KSB-ORB/SIDC, file yearssn.dat. 



19. Detecting a Nonlinear Oscillator 463 

null hypothesis is rejected since the test is significant with p < 0.05. It 
means that the probability of the null hypothesis (that the studied data 
can be explained by the surrogate model) is less than 5 percent. 
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FIGURE 19.5. (a): Linear redundancy L(y(t)j y(t+7» (solid line) for the 
series of sunspot numbers as a function of the lag 7; linear redundancy 
L(y(t)jy(t + 7» for the related HAFT surrogate set: dash-and-dotted 
line presents the mean, dashed lines illustrate the 2.5th and the 
97.5th (bottom and top line, respectively) percentile of the surro­
gate L(y(t)j y(t + 7» distribution. (b): Nonlinear (general) redundancy 
R(y(t)j y(t + 7» (solid line), for the series of sunspot numbers as a func­
tion of the lag 7; nonlinear redundancy R(y(t)jy(t + 7» for the related 
HAFT surrogate set, the same line codes as in (a). (c): Nonlinear re­
dundancy R(y(t)jy(t+7» (solid line), for the series of sunspot numbers 
as a function of the lag 7; nonlinear redundancy R(y(t)j y(t + 7» for 
the Barnes model surrogate set, the same line codes as in (a). (d): 
Nonlinear redundancy R(y(t)jy(t + 7» (solid line), for a realization of 
the Barnes model as a function of the lag 7; nonlinear redundancy 
R(y(t)jy(t+7» for the related HAFT surrogate set, the same line codes 
as in (a). 

The linear redundancy L(y(t)j y(t + T)) (solid line in Fig. 19.5a) lies 
clearly inside the 2.5th and 97.5th percentiles of the L(y(t)j y(t+T)) HAFT 
surrogate distribution (dashed lines in Fig. 19.5a). This test just checks 
the quality of the surrogate data: it says the linear properties (dependence 
structures) in the sunspot data do not differ from those of the HAFT 
surrogates (a realization presented in Fig. 19.4b), so the surrogates should 
not be a source of a spurious detection of nonlinearity. 

The nonlinearity test itself is presented in Fig. 19.5b, where the (non-



464 Milan Palui! 

linear) redundancy R(y(t)j y(t + T» (solid line in Fig. 19.5b) is, for the 
majority of studied lags, higher than the 97.5th percentile of the HAFT 
surrogate distribution (the upper dashed line in Fig. 19.5b). Thus the null 
hypothesis of a linear stochastic process (19.1), possibly passed through a 
static nonlinear transformation, is rejected. 

Does this rejection really mean that a nonlinear dynamical system such 
as (19.2) or (19.4) underlies the sunspot cycle, or can this rejection be ex­
plained by any of the reasons listed in Sec. 19.3 ? This question is hard to 
answer. For instance, we cannot evaluate properties of innovations (model 
residuals) without a-priory knowledge of a valid model. No direct connec­
tion of the sunspot data to any physically inspired nonlinear dynamical 
model is known. Physical models trying to explain the variation of the 
solar activity come from the dynamo theory (cf. [7, 19]). The principle of 
such a self-exciting dynamo is that the magnetic field is amplified and main­
tained by the interaction of mainly three types of hydrodynamic plasma 
motions, namely differential rotation, turbulent convection and helicity. 
It is interesting to mention that there are some rather simple conceptual 
dynamo models which show a rich dynamical behavior and can explain 
several facts known from observations [4]. Such models, however, are not 
fitted directly to the experimental data, and are evaluated only in a quali­
tative way. Therefore, we should also consider concurrent linear stochastic 
models, such as the Barnes model [1]: 

(19.10) 

(19.11) 

where 0:1 = 1.90693, U2 = -0.98751, fil = 0.78512, {32 = -0.40662, 
'Y = 0.03 and ai are Ll.D. Gaussian random variables with zero mean 
and standard deviation SD=O.4. 

The Barnes model (19.10, 19.11) is a rather simple but efficient model 
to mimic essential properties of the sunspot numbers. It incorporates the 
structure of an autoregressive moving average ARMA(2,2) model (19.10) 
with a nonlinear transformation (19.11) which ensures that the generated 
series remains asymmetric and positive and tends to increase more rapidly 
than it decreases. Moreover, the stochastic Barnes model can mimic some 
seemingly nonlinear properties such as behavior of correlation integrals [28] 
and phase portraits [21] obtained from the sunspot series. 

We can evaluate, in the sense ofthis nonlinearity test, whether the Barnes 
model can explain the sunspot data, by using realizations of the Barnes 
model as surrogate data. The result of such a test is presented in Fig. 19.5c. 

The nonlinear redundancy R(y(t)j y(t + T)) (solid line in Fig. 19.5c) only 
slightly exceeds the 97.5th percentile of the Barnes surrogate distribution 
in three of the thirty studied lags. The rejection of the Barnes model by 
this test is not very convincing. 
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On the other hand, when we test for nonlinearity in a realization of 
the Barnes model (Fig. 19.5d), the HAFT surrogates are rejected. (The 
rejection is clear only in the lags 21 and 22, however, R(y(t); yet + T)) of 
the tested series there exceeds the whole range of the surrogate values, 
i.e., p = 0 and the test is significant even considering the simultaneous 
statistical inference (see [12] and references therein). This result could be 
expected, since the nonlinear transformation (19.11) is not static; therefore 
the HAFT surrogates are rejected. 

To summarize the last two tests, the realization of the Barnes model 
appeared in the nonlinearity test as nonlinear, and the rejection of the 
Barnes model as the null hypothesis is not very convincing. Can we find 
any solid argument for a nonlinear dynamical origin of the sunspot cycle, 
or should we accept a linear stochastic explanation, such as the Barnes 
model? 

19.6 Amplitude-Frequency Correlation in 
Nonlinear Oscillators 

In this section we demonstrate a typical property of nonlinear oscillators 
(a class of nonlinear dynamical systems), namely, the correlation between 
instantaneous amplitude and frequency of signals (solutions) generated by 
such systems. 

2 (a) 

o 

-2 

0.5 

o 

-0.5 L~~~---,-~~=========~~~ 
o 1000 2000 

TEMPORAL INDEX 

FIGURE 19.6. (a) A solution of the nonlinear Duffing oscillator with­
out any external driving force, and (b) the related instantaneous am­
plitude (thick line) and frequency (thin line). 

As a demonstrative example of a nonlinear oscillator (not a model for 
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the sunspot cycle) we will consider the Duffing oscillator 

x+0.05x+x+x3 =F(t). (19.12) 

If F(t) = 0 and without the cubic member x3 , Equation (19.12) represents 
a damped linear oscillator with a constant frequency and an exponentially 
decreasing amplitude. The presence of the nonlinear (cubic) member x3 in 
Equation (19.12) leads to a time dependent frequency, considering again 
F(t) = 0, both the amplitude A(t) and frequency w(t) exponentially de­
crease and are correlated (Figs. 19.6a,b). 
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FIGURE 19.7. (a) A random driving force (a random walk with a 
few jumps). (b) A solution of the nonlinear Duffing oscillator with 
the random driving force F(t) plotted in panel (a); (c) instantaneous 
amplitude (thick line) and frequency (thin line) extracted from the 
solution in panel (b). 

Now, consider that the nonlinear oscillator (19.12) is driven by a random 
driving force F(t). In the numerical examples presented here we consider 
a simple random walk with a few jumps as the driving force F(t). 

The relation between A(t) and w(t) is a nonlinear function and may vary 
in time, however, the level of the correlation between A(t) and w(t) depends 
on the driving force: With a relatively weak driving (Fig. 19.7a), A(t) and 
w(t) are almost perfectly correlated (Fig. 19.7c), with a stronger driving 
force F(t) (Fig. 19.8a) some differences between A(t) and w(t) emerge; 
however, A(t) and w(t) are still correlated (Fig. 19.8c). 

The amplitude-frequency correlation just presented is a property which 
can be tested in experimental signals, even in scalar cases (single measured 
time series). The instantaneous amplitude and phase of a signal s(t) can 
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FIGURE 19.8. (a) Another example of a random driving force 
("stronger", i.e., with higher amplitude than in Fig. 19.7). (b) A solu­
tion of the nonlinear Duffing oscillator with the random driving force 
F(t) plotted in panel (a); (c) instantaneous amplitude (thick line) and 
frequency (thin line) extracted from the solution in panel (b). 

be determined by using the analytic signal concept of Gabor [5], recently 
introduced into the field of nonlinear dynamics within the context of chaotic 
synchronization in [20]. The analytic signal 'I/J(t) is a complex function of 
time defined as 

'I/J(t) = s(t) + js(t) = A(t)eit/>(t) , (19.13) 

where the function s(t) is the Hilbert transform of s(t) 

A 1 100 s(r) s(t) = - P.V. -dr. 
7r -00 t - r 

(19.14) 

(P.V. means that the integral is taken in the sense of the Cauchy principal 
value.) A(t) is the instantaneous amplitude and the instantaneous phase 
¢>(t) of the signal s(t) is 

s(t) 
¢>(t) = arctan s(t). (19.15) 

The instantaneous frequency w(t) is the temporal derivative ~(t) of the 
instantaneous phase ¢>(t). 
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19.7 Amplitude-Frequency Correlation in the 
Sunspot Cycle 

A possible amplitude-frequency correlation (AFC hereafter) in the sunspot 
cycle, in particular, the importance of the amplitude in determining the 
length of the related cycle was noted in the 1930s by [26] and recently dis­
cussed in [6]. In this section we demonstrate that the amplitude-frequency 
correlation found in the sunspot cycle is probably a non-random phe­
nomenon and we propose its explanation by an underlying nonlinear dy­
namical system. 
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FIGURE 19.9. The instantaneous amplitude (thick line) and frequency 
(thin line) of (a) the yearly sunspot numbers series, (b) a realization of 
the related HAFT surrogate data, and (c) a realization of the Barnes 
model. 

The series of yearly sunspot numbers from the period 1700 - 1997 (Fig. 
19.4a) has been filtered by a simple moving average (MA) band-pass filter: 
First, the MA's from a thirteen-sample window have been subtracted from 
the data to remove slow processes and trends, and then a three-sample MA 
smoothing has been used to remove high-frequency components and noise. 
Then the discrete version of the Hilbert transform (19.14) using the window 
length of twenty-five samples has been applied to obtain the instantaneous 
amplitude A(t) and the instantaneous phase 4J(t). For obtaining a more 
robust estimation ofthe instantaneous frequency w(t) than the one yielded 
by a simple differencing the phase 4J(t), the robust linear regression [16] in 
a seven-sample moving window has been used. Finally, the series of A(t) 
and w(t) have been smoothed using a thirteen-sample MA window. The 
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resulting series of the instantaneous amplitude and frequency of the yearly 
sunspot numbers, plotted in Fig. 19.9a, yield the crosscorrelation equal 
to 0.505. Does this value mean that the amplitude and frequency of the 
sunspot cycle are correlated as a consequence of an underlying dynamics, 
or could this correlation occur by chance? Searching for an answer, we 
test the statistical significance of this correlation using the surrogate data 
approach. 

In the first step we use the FT and HAFT surrogates, defined in Sec. 19.2, 
where these kinds of surrogates play the role of a linear stochastic process 
with the same spectrum and histogram as the studied data. Testing non­
linearity in general, it is stressed that the (HA)FT surrogates replicate the 
linear "properties" (more exactly, temporal dependences), while they do not 
contain any nonlinear dependence structure. Here, testing the significance 
of AFC, we consider the (HA)FT surrogates as data with cycles oscillating 
with the same frequencies as the sunspot cycles, but not possessing any sys­
tematic amplitude-frequency correlation. Since for generating the (HA)FT 
surrogates we use the Fast Fourier Transform (FFT) [16] which requires a 
number of samples equal to a power of two, we perform two tests, using the 
"first" and "last" 256 samples, Le., the subseries of the whole 298 sample 
series obtained by cutting away 42 samples at the end or at the begin­
ning, respectively, from the whole yearly sunspot number record. Thus, in 
each test, the surrogate data replicate the sample spectrum of the related 
256-sample subseries. 

The (HA)FT surrogates are generated from the raw (unfiltered) 256-
sample segments of the sunspot data. Also, the 256-sample subseries are 
used for estimating the amplitude-frequency correlation related to the par­
ticular subseries, applying the procedures described earlier. Then, each re­
alization of the (HA)FT surrogates, generated with respect to the raw data, 
undergoes the same processing as the raw data, Le., the MA bandpass fil­
tering, the Hilbert transform and the robust linear regression for the w(t) 
estimation, and the final A(t) and w(t) smoothing are performed before 
computing the AFC for each surrogate realization. Then the absolute val­
ues of the AFC's for 150,000 surrogate realizations are evaluated to assess 
the significance of the related AFC value found in the sunspot data. The 
first 256-sample subseries of the sunspot yearly number yields AFC equal 
to 0.605, while the mean value of the absolute AFC for the HAFT surrogate 
set is 0.26 with the standard deviation (SD) equal to 0.17. 

In usual surrogate tests the significance is derived from the difference 
between the data value and the surrogate mean, divided by the surrogate 
SD, provided normal distribution of the surrogate values. Having generated 
a large amount of the surrogate replications, here we directly estimate the p­
value of the test, i.e., the probability that the assessed correlation occurred 
by chance (randomly) within the chosen null hypothesis (surrogate model), 
by simply counting the occurrences in the surrogate set of absolute AFC 
values greater than or equal to the assessed raw data value, i.e., 0.605 in 
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this case. The number obtained is 3637, which is equal to 2.43 percent. 
Statistically speaking, the test result is significant on p < 0.03, or, in other 
words, the probability that the amplitude-frequency correlation found in 
studied segment of the sunspot data occurred by chance (as a random 
event) is smaller than 3 percent. 

Processing the "last" 256-sample segment of the yearly sunspot num­
ber, the obtained AFC is equal to 0.532, while the values from the HAFT 
surrogates are the same as earlier, however, the p-value in this case is 6.58 
percent. Still, we can conclude that the test result is significant on p < 0.07. 
An example of the HAFT surrogate realization is plotted in Fig. 19.4b, its 
instantaneous amplitude and frequency in Fig. 19.9b. 

The results from the tests using simple FT surrogates (i.e., without the 
histogram adjustment) are practically the same as those from the HAFT 
surrogates. Testing the monthly sunspot numbers5 , the segments of ("first" 
and "last") 2048 samples were used. The same data processing has been 
applied as described earlier in the case of the yearly data with the windows 
lengths equivalent in real time, i.e., multiplied 12 by the number of samples. 
The obtained results are perfectly equivalent to those yielded by the yearly 
data, i.e., p < 0.03 and p < 0.07 for the "first" and "last" 2048-sample 
segments, respectively. 

In the second step of testing the significance of the sunspot cycle AFC, 
we use realizations of the Barnes model as surrogate data. As noted earlier, 
the Barnes model mimics some important properties of the sunspot dataj 
it is hard to reject it by standard nonlinearity tests, however, realizations 
of the Barnes model do not have any systematic amplitude-frequency cor­
relation. A realization of the Barnes model is plotted in Fig. 19.4c, and its 
instantaneous amplitude and frequency are plotted in Fig. 19.9c. 

In the test, 150,000 298-sample realizations of the Barnes model have 
been generated and processed in the same way as the sunspot series. The 
mean absolute AFC is equal to 0.21, SD=0.15j comparison with the AFC 
obtained for the whole 298-sample yearly sunspot series (AFC=0.505) yields 
the p-value equal to 4.36 percent. Thus, considering the Barnes model, the 
probability that the whole yearly sunspot series AFC=0.505 occurred by 
chance is p < 0.05. 

19.8 Discussion 

Recent development in the art of identifying nonlinear dynamics underlying 
experimental time series has led several authors to find ways of prevent­
ing a spurious detection of nonlinearity due to flawed surrogate data. In 
[12] we proposed testing whether linear dependences contained in the data 

5Monthly sunspot numbers from the period 1749 - 1997 were also obtained from the 
Sunspot Index Data Center, http://wvw.oma.be/KSB-ORB/SIDC, file monthssn.dat. 
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under study were perfectly reproduced in the surrogates. Other authors 
have proposed sophisticated methods for constructing special constrained 
surrogate data. Nevertheless, we should be aware of the fact that a for­
mal rejection of a linear stochastic null hypothesis does not automatically 
mean evidence for nonlinear dynamical origin of studied data. Looking for 
a more concrete explanation of a process under study, we propose to test 
specific features of nonlinear dynamical systems. Such a feature, present 
in nonlinear oscillators, is their amplitude-frequency correlation. Using the 
analytic signal approach and the Hilbert transform we can estimate the 
instantaneous amplitude and frequency even from scalar signals and test 
significance of obtained amplitude-frequency correlation using a proper null 
model, as demonstrated here in the case of the sunspot index series. 

Using two different types of stochastic models (scaled isospectral surro­
gates and the Barnes model) which replicate some properties of the sunspot 
cycle, we have obtained a statistical support for the hypothesis that the 
amplitude-frequency correlation observed in the sunspot cycle did not oc­
cur by chance (as a random event) but is probably a property of an under­
lying dynamical mechanism. Well-known systems, possessing this property, 
are nonlinear oscillators, in which a significant AFC can be observed also 
in cases of external, even random, driving force. Therefore the presented 
results can be considered as a statistical evidence for a nonlinear oscillator 
(with an external, possibly random driving force) underlying the dynamics 
of the sunspot cycle, unless the amplitude-frequency relation is explained 
by a different mechanism. 

Although no particular model for the solar cycle has been proposed here, 
the presented statistical evidence for a nonlinear dynamical mechanism un­
derlying the sunspot cycle can be understood as a first step in bridging 
the gap between reliable statistical analyses of the experimental sunspot 
data (dominated by linear stochastic methods) and physical models such 
as nonlinear dynamo models [4, 9] (compared with data only on a qual­
itative level). In the next step, we can consider statistical comparison of 
the data with the dynamo models, with the aim of constructing a realis­
tic data-driven model for the solar cycle. Another interesting problem is 
identification of a force driving the sunspot cycle. 

In conclusion we state that the proposed method for identification in ex­
perimental time series of amplitude-frequency correlation, a feature of non­
linear oscillators, have brought interesting information about the sunspot 
cycle. The method can also be applied in different fields where time series 
generated by possibly nonlinear processes are registered and studied. 
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