THE EXPERT’S VOICE® IN ORACLE

Beginning

Oracle SQL

Build a solid foundation for success in Oracle

Lex de Haan, Daniel Fink, Tim Gorman,

Inger Jorgensen, Karen Morton

Apress’

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Lex de Haan, author of: . .
Mastering Oracle SQL & B 0 I SQL
o eginning Oracle

Dear Reader,

The letters S, Q, and L are possibly the three most important letters in the world
of relational databases. Together, they spell “SQL” — the name of the query lan-
guage governing just about all interaction with a database, and especially with
an Oracle database. We can’t begin to overstate the importance of SQL to our
respective careers. We use SQL every day in our work. We think in SQL. We prob-
ably even dream in it. We could not succeed in our jobs without knowing it.
Expert Oracle Practices SQL seems like such a simple language to learn. It takes only a few sec-
onds to learn to type the words “SELECT * FROM” followed by a table name
in order to retrieve data from a database. But that power and expressiveness
can be deceiving. It is surprisingly easy to make mistakes in SQL. And when
you make a mistake while still getting plausible results, how do you know that
you've missed the mark? The answer is in this book. We cover the language. We
also lay the correct foundation for using the language, helping you to avoid
pitfalls from nulls in your data, helping you to understand that NOT IN and
NOT EXISTS do not really ask the same question, helping you to understand
the underlying operations so that you can be known among your colleagues as
one who does good work that produces correct results.

We believe the book you are holding in your hands is one of the best ever
on the topic. It was originally written by our good friend, Lex de Haan. Lex was
involved in creating the ISO SQL standard, and was a member of the OakTable
Network. Sadly, Lex passed away some years ago. We are pleased and honored
to revise his work to cover Oracle Database 11g.

Tim Gorman, author of:
Oracle Insights

Karen Morton, author of:

Daniel Fink, Tim Gorman, Inger Jorgensen, Karen Morton

HE APRESS ROADMAP

Beginning Oracle SQL
Oracle SQL Recipes
Beginning Oracle

Database 11g

Administration
Beginning Linux Recipes
PL/SQL for Oracle DBAs

Companion eBook
R

"z
14 “ l%
eBookshop

See last page for details
on $10 eBook version

Apress:

www.apress.com ISBN 978-1-4302-7197-0
53999

US $39.99

Shelve in

Databases / Oracle

User level: 9781430127197
Beginner

Beginning Oracle SQL

Lex de Haan
Daniel Fink

Tim Gorman
Inger Jargensen
Karen Morton

Apress*

Beginning Oracle SQL
Copyright © 2009 by Lex de Haan, Daniel Fink, Tim Gorman, Inger Jorgensen, Karen Morton

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-7197-0
ISBN-13 (electronic): 978-1-4302-7196-3
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning

Lead Editor: Jonathan Gennick

Technical Reviewers: Tim Gorman, Daniel Fink

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham

Copy Editor: Seth Kline

Compositor: Bytheway Publishing Services

Indexer: Brenda Miller

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers from this book’s catalog page at
http://www.apress.com. The exact link as of this writing is:
http://apress.com/book/view/1430271970.

Contents at a Glance

Contents at @ GIANCE...........cccervvesrrmsmssmmm s s s s ili
Contents........cccunmmismmmssmme s ———————————————_————— iv
About the Authors.........coiinm s —————————— xvii
Acknowledgmentsccccmmmnmme s ——————— Xix
INtroductionccovvmimnimmmnes s —————————————————— Xxi
Chapter 1: Relational Database Systems and Oracle...........ccouvesmmsmsmssmsssssssnssssnsnnns 1
Chapter 2: Introduction to SQL, AQL*Plus, and SQL Developer.........cccccrrrrrssssnnnes 25
Chapter 3: Data Definition, Part I...........cccunnmmmmmmmmnnnnmnsssssssnnnnnssssssssssssnmmmns il
Chapter 4: Retrieval: The BasiCS.......cuumsmsmmssmmssmsssmsssmsssmssssssssssssssssssssnssssssasssnsnns 83
Chapter 5: Retrieval: FUNCLiONSccounmmismmimmmmmmss s s s sssssssnsssnas 117
Chapter 6: Data Manipulation........ccccouiinnnmsssssssnmmmmmsss s ————- 145
Chapter 7: Data Definition, Part Il............ccccnismmnnsmmmnsnsmmsmsmmssssmssssssssssssssssssnnns 163
Chapter 8: Retrieval: Multiple Tables and Aggregation........c...cccmmnssseanmmssssnannnns 195
Chapter 9: Retrieval: Some Advanced Featuresoummmmmmmmsmmsmsmane 233
Chapter 10: VIieWS......cccummmsmimmismmsmmsmms s s s sssssssssssssssssssssssssssnsssnsssnnss 265
Chapter 11: Writing and Automating SQL*Plus SCriptsccccuneemmmnsssennsnssssnnnnnns 287
Chapter 12: Object-Relational Features.......ueeemmimmmmmmmmsssssssnnmmmssssssssssssssssssnnes 329
Appendix A: The Seven Case Tablesccciuusemmmmmssssssmmmsssssnmmssssssmmssssssssssssssnns 349
Appendix B: Answers 10 the EXErciSesccccuummssmmmsmmmmmmssssssssssssssssssssssssssssssssssnnss 359
T 405

Contents

Contents at @ GIANCE..........ccvcesmsmmssesmssnsmsnsssasssssssssssssmssssnssssnssssssssnsssansssasnssnnnsannns il

[T iv
About the AUhOrS.........ccuvmmmssmiss s ———————— Xvii
Acknowledgmentscccuvemmmmmmssmmsssmmssmmsssmss s s s s Xix

INtroductioncccccsnismmmsmmmenmnnms s assassassasssass XXI

Chapter 1: Relational Database Systems and Oracle...........ccccussemnnnssssnnnssssssnnssenans 1
1.1 Information Needs and Information Systems ... 1
1.2 Database DeSIgN........cccccrrrrmrrrnisr s 2
Entities and ALDULES ..o ————————— 2
GENEIIC VS. SPBCITIC ...cueuereciereririrese e 3
3T T o T T 4
Consistency, Integrity, and Integrity CONSIIAINTS.........cccceeerierrrerrierrrerrre e s sessesesaes 5
Data Modeling Approach, Methods, and TEChNIQUESc.coeeeeerereiceirreecre s 6
SBMANTICS....uerirrrecrerrr et s R e e R e R e e e E R e Re e R R e Re e R A e Re e e R R e e R R e e R Rns 7
Information SyStems TErMS REVIEW ... s 7
1.3 Database Management SYStEMS..........ccccocrrrrrrnsnss s 7
DBIMS COMPONENTS......cceeeeeeseseseese e e 8
5] 1 8

DAt DICHONAIYcvcvceeerreecseris et e s ne e pnn e nnnnans 8
QUETY LANGUAGESvvreeirereresesesese e e se e e e e e e e se e e e e e sese e e e e e s s s sssssessssssssssssssssssnsssssssssssnssnsnes 8
DBIMIS TOOIS ...eucerireueessssesesessssssesesssssss e s e e e s e e s ess e e a s s s e b s R e e e s Re e e s R e e e b e R e e e e nneae e e nnens 9

CONTENTS

L L 10T e A o] 0] T2 4 9
DBMS TEIMS REVIBWcveeieciieeries st e s s s s st s s bbb s ae s p e n e e nennnnas 9
1.4 Relational Database Management SyStEmScccvvrrrrnnnrs s e 10
1.5 Relational Data Structures............cocvvvnicnnnr 10
Tables, ColumNS, ANA ROWScccuciiiriiiiiienssesssssssssssssssssessnens 11
The INformation PHNCIPIEcee et 12
D L F2 1§ TSRS 12
KBYS .t 12
Missing Information and NUll VAIUES ... 13
ConSEraint CRECKINGc.coceeeeeeercrereee e 14
Predicates and PropOSItIONS..........cociccririreicsirerse st sss e s e 14
Relational Data Structure TErms REVIEW........ccovrninnnnsssss s 14
1.6 Relational OPeratorsceevveenieiessnse s se s s ens 15
1.7 How Relational Is My DBMS?............coiiierrcnnrece e sn s 16
1.8 The Oracle Software EnVironment............ccccoceeniiennsnnsnnsssssssssse s ssssessens 17
1.9 CaSE TADIEScceeeeerirrerrre e se e r s sn e s n s 19
The ERM Diagram Of the CaSE........c.cevererererererereresssesssssssesssssesenes 19
Table DESCHPLIONSccciviricererrseere s e se s esr s e s e s e e s Re e e e r e e e na e e e n e e 21
Chapter 2: Introduction to SQL, AQL*Plus, and SQL Developercussueeeennnnrssssns 25
2.1 OVEIVIEW Of SQAL ... s 25
Data DEfiNItIONccererrccre s 26
Data Manipulation and TranSaClioNS ... 26
L3 TC] (1= | 27
LT 11 OSSR PSR 29
Privileges and ROIES ... s 29
GRANT @Nd REVOKEcocoereeeeeeeeseeseesesesesese e s e e ssssssss s s s s s s ssssss s s s s s s s s s s s sssssssssssssneas A
2.2 Basic SQL Concepts and TErminologycooucveeerserresessessssessssssessssesssssssessssssssssssens 32
L] 153 2T S () (=T 1) 32
)

CONTENTS

VANADIES.....ecveeecreriesee e e e e R AR AR e Re R R e AR R R e R e R R e e EnE e 34
Operators, Operands, Conditions, and EXPreSSiONS.........ccvvvverrernersessessessessessessessessessessessesessessessessesaes 34
AFtNMELIC OPEIALOFScoveeererererere s 35
The Alphanumeric Operator: CoNCateNatioN...........ccovvveerereresesire s 35
COMPAISON OPEIALOIS.....ccveerereerrerrerterte e ree e ste e saesaesaesaesaesaesaesa s e e sa e s e sa e e s e e s s e e seese e e e e e e e s enaessennnns 35
LT [Tz 0 LT L0 36
(0] LTS T0] L PP 36
FUNCLIONS ... s 37
L L Lo T2 T 0] o] F= o 1 T o 38
COMIMENIS ..o 39
RESEIVEA WOKUS......ccciiiiiiiisssss s s 39
2.3 Introduction t0 SAL*PIUS.........ccererrmnerniri e 39
ENtering COMMANGScocvererererererererese s s s s 40
USING the SQL BUFTEEcccoceeeiirirerercre s 41
Using an EXTErNal EAITON ...ttt 42
USing the SQL*PIUS EAITOFccceeerrieceerrseese s sssssss s ssssssesessssssssesssssssssssssssssssssssssnes 43
Using SQL Buffer Line NUMDEIScovrerrrererirenerese e sesesesesesesesesesesenes 46
USING The EIlPSIS ..vevveruerierererese sttt s s s s s s s s s en e e nn s nn et 48
SQL*Plus Editor Command REVIEW...........ccueeerrrrmesesenrssssesesssssssesessans 48
SAVING COMMEANGS.........coeiereiueeeerieee e se s se s e e s se e s s sesae e e e se s e e e e s Re e e e sas e e s b e e e nnnnans 49
RUNNING SAL*PIUS SCHPLS ...civeereererereerereererereseses e rsesersssessesessesasesassessssessesassessssessssessssssssssssesassesssnsnaes 51
Specifying Directory Path SPecifiCations...........coveveeerrnicsenernescre e 52
Adjusting SAL*PIUS SENGS.......cccieeererrierre e s n s p e e b s aese s s p e n e e 53
SPO0ING @ SAL*PIUS SESSION.....cceuerererererrerererersereresessessesessesessessssessssessssessssersesssssssssessssessssesssserassesaes 56
Describing Database ODJECTS. ..o s 57
Executing Commands from the Operating SYStEM.......c.cccvvevrierrrerniern s sae e saesesseens 57
Clearing the Buffer and the SCIEEN ... s 57
SQL*PIUS COMMANG RBVIBWc.eeeceriricceressee e se s se s se s se s s ss s sa s nnsnns 57

CONTENTS

2.4 Introduction t0 SQL DEVEIOPENcocrerererereerereseressssesesse s sesssseses 58
Installing and Configuring SQL DEVEIOPETcccveeerrereriererreraseresessesessesessesassessssesssssssesssssssssessssessenssses 58
Connecting 10 @ DALADASE.........cccererrirerrerrreese e e e 61
EXPIOFNG ODJECTS......cuciriciecre ettt r e s e bt s s R b e e e n e e nnan 62
ENtering COMMANGScocoeeerererererererese e s s 63

RUN STAEBMENL.......c.ce e s 64
10T IS o 1 0 TSP 65
Saving Commands 10 @ SCHPLccvrerrrer e e s ra e e ae e e e s ne e nae e naen 66
RUNNING @ SCHIPL ...t sas e e s ae e n e p e 67

Chapter 3: Data Definition, Part L..........ccccccinsmmnsmmssmmmsnmmssmssmmssmsssssssssssssasssas Al

3.1 SChemMas and USEIS ... s s s s s sasnes n

3.2 Table Creation..........cccecveenserresriesensesessse s sse s sse s sss s s s ssesss e sss s s s snssnnns 72

3.3 DAtALYPES...civiirrrriirr i ———————————————————— 73

3.4 Commands for Creating the Case TabIesccccvrrmnrnennssssse s 75

3.5 The Data DICHONArYcccvrerrmmnii s 77

Chapter 4: Retrieval: The BaSiCS......cccusmmssmmmsansssansssassssnsssansssansssnsssassssassssnsssansssans 83

4.1 Overview of the SELECT COMMANcccoerermmnemmnmnsmnmssssess s ssssssesens 83

4.2 The SELECT ClAUSEcceerreeererrnseiesessessesessesss s ssessssessssssssssssssssssssssssssssssssssnsnsnnees 85
COIUMIN ATIBSEScucecrereeeeeseseseseseseseseseseessss s s s e s s s e e s s s s s s s s s s s ss snanas 86
THE DISTINCT KEYWOIccceererererererererereseseseseseresenes 87
L0 T T 0 (LT o] 87

THE DUAL TaDIE ...ttt 88
NUll ValUES iN EXPrESSIONS.......cccverererererisesisisesesese s sesenes 90

4.3 The WHERE ClAUSEccoeeririirrisinsssesssss s s s s s 90

4.4 The ORDER BY ClAUSE......cccvciiiiiiiiemsireisiesssessssssssssssesssessssssssessssssssssssesssssssssssssssssans 91

4.5 AND, OR, and NOT.......coceerircrrrcre e sse s sse e s s s ne e s sns e sne e s 94
THE OR OPEIALOL ...t s a e e e e s e s R e e 94
The AND Operator and Operator PreCEAENCE ISSUESuueueeeeeesresresserseessessessesssessessessssssessessssssssens 95

Vil

CONTENTS

viii

THE NOT OPEIALOFcceverrreereresseseseressse e sss e e e r s s s s e e e s e e sas e nrsp s e e e e s e e nanp e e e nnnnns 96
4.6 BETWEEN, IN, @nd LIKE.............ooo e s s s s e s s sn s s snsnn e s 98
The BETWEEN OPEIALOFcccvvireeeerersseseresssseesesssssssessssssssesssnsnsssssssssssnns 98
LTI LA 0 6T (0 T 99
THE LIKE OPEIALOLcoeeererererereseesesssssssssssssssssssssssssasssssssssssnsnsesnes 100
4.7 CASE EXPreSSIONScoeruiueersssessssesssssssesssssssssssssssssssssssssssssssssssssss s sssss s sassssesasnes 101
4.8 SUDGUETIES......eecerererersessessersessessessessessessesses e s e sses e sses e s sesses e s s s s s s ssessessassssnssnssnens 104
The JOiNiNG CONGITIONcoereieiee e 105
When a Subquery Returns T00 Many ValUESccccvvererrererrerereriesessesessesessessssessssessesessessssessssesassesasnes 106
Comparison Operators in the Joining CONditionccceieieenrnieccnrse s 107
When a Single-Row Subquery Returns More Than 0ne ROWccocecevevrenenennesnsesessessssessesessesennes 108
4.9 NUILVAIUES ...ttt se e sn s e e e e nn s e e e s sn e e s e s e nnnnnns 109
NUIVAIUE DISPIAYceevreeueuerererneesesssseesesessse e ssssss e e sssss e s e s s e e s sa s e sess s e e e sesae e e sse s e e snnnsas 109
The Nature of NUIL VAIUESccccceerercreresnesse e sesss e sssssssssssssssssssessssssssssssssssnsnsns 109
THE IS NULL OPEIALOFcoeeieieririrerisesesesesese e sesssenenes 111
Null Values and the Equality OPEIator...........ccoeveeereriererseresserseseresesesessessssessssessesessessssessssessssessssssansens 112
NUIEVAIUE PItfallS.....cccovireeeceerisecsersse e sssss e se s s s s s ss s s s s s ssssesessssssssnsnsnsnns 113
4.10 Truth TaDIES.....ccere e ———————— 114
B =T (LN 116
Chapter 5: Retrieval: FUNCLIONSccccnsemmsmmmsnnmssenmssnssssnmsssssssnssssssssnsssansssanssnns 117
5.1 Overview of FUNCHIONS ... 117
5.2 Arithmetic FUNCHONS..........cccoirir s 119
9.3 TeXt FUNCHONS ...t e s snsssssn s n e snssnesnesnesnssnesnennnnnnnnnns 121
5.4 Regular EXPreSSIONScccceeeerereresessessessessessessesssessens 125
Regular Expression Operators and MetasymbolSc.ocereurerenrersenesnesressesesesessessessessessessssessessesens 126
Regular Expression FUNCHON SYNTAX ... s snssesnesansens 127
Influencing Matching BERAVIOLcccveriniiene s 127
REGEXP_INSTR REUIN VAIUE........ccovereeerreeeire e se e 128

CONTENTS

REGEXP_LIKE........oooeveusseesssseessssseesssssesssssessssssesssssssssssesssssssssssssessssssssssssessssssssssssssssssssssssssesssssessssans 128
REGEXP_INSTRouovueusmreesssmeesssssessssssssssesessssesesssnssssssssssssssssssssssssns 129
REGEXP_SUBSTR.......couumreussmessssmsessssssessssssesssssessssssssssesssssssssssssessssssessssssesesssssssssssessssssssssssssssssssssssans 130
REGEXP_REPLAGEoovvvuumnessssnsesssssessssssssssssssssssssssssssssssasssssssssssssssssssesssssensssssssssssssssssssssssssssssans 130
5.5 Date FUNCLIONS.......ccoiiriiri s 131
EXTRACT ...ovvvvuoresssseesssssssssssnsssssssssssssnsssssssssssssssssssenssssssssssssassssssssssssssssssssessssssmsssssssssssssssssssssssssssnssssns 132
ROUND @NG TRUNGoovoveessmreessssesssssesssssessssssessssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssans 133
MONTHS_BETWEEN and ADD_MONTHS...........eeueumreesnmeessseesssnssssns 133
NEXT_DAY AN0 LAST_DAYcovuuurerssmsesssmessessssssssssssssssssssssssns 134
5.6 General FUNCLIONS...........ccoeeicresire s sn s sns s e 134
GREATEST @GN0 LEASTovuuerreessessans 135
NVL 1o eeeusseessseesssseessssesessssesess s sss st R R 136
DECODEcvvuueeeeessseesssseesssseessssesessssesssssesessssesessssessssssesess e ess e sss e sss e esssessssssesssssssssssssesssssessssans 136
5.7 Conversion FUNCHIONS ... s 137
TO_NUMBER @N0 TO_CHARcouuureussresssseesssssesssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssnnaes 138
Conversion FUNCHION FOIMALS ..o s 139
DatatyPe CONVEISION.......coecereerereerereresersesersesessesessesassesassesaesessesassesassesassesassesasssssessssesassesseessssensenansens 141
CAST w.rvveseeessseessssesssssssssssenssssseesssssesssssssesssssesssssseessssseesss s nesssssensssssessssssensssssasssssesssssnsssssssssssssnssssns 141
5.8 Stored FUNCLIONS.........ccviiirir s 142
o T T N 143

Chapter 6: Data Manipulationccciusmmnsmmnmmmenmmmmmsmesmsssssessssssnne: 149

6.1 The INSERT COMMANccoocerueemrirresererns e sn s n s s sn s sne e ss s 146
Standard INSERT COMMANGS ..o 146
INSERT USING SUDQUEKIEScveereerereererereecriesessesesaesessessssessssessesessssssssssssessssessssssssssssssssensssesssnesssnanaens 149

6.2 The UPDATE COMMANGccceeerrermrerrenessersnsessesessesssssssesssssssssssssssssssssssssessssssnsssansns 151

6.3 The DELETE COMMAN........cccecerueeererrenererssse e e sss e sse s s e s e sse s sssssssessssens 154

6.4 The MERGE COMMANcccocvirencirnncesessissss s s 157

6.5 TranSaction PrOCESSINGcccucerrerererrmsersessssessesessessssessssessessssessessssessssssssssssesssssssenns 159

CONTENTS

6.6 Locking and Read CONSISTENCYcccvverrerrerrerrersessesssssss s s ssssssssssessesssssssssssssssssens 160
0T 4 T 160
REAU CONSISIENCYccrvrriueererriseesesssse et a s s psr s e s s e e s s p e s e e pn s s 161

Chapter 7: Data Definition, Part Il...........cccnvmnismnissmmnsnmss s s s sssss s s 163

7.1 The CREATE TABLE CommMaAN.........cccoovnermrmirennmsesssse e sssssss s ssssssesasnes 163

7.2 More on Datatypes........ccoveierrerirnerer e 165
LT T e (g L 1A L 166

CoOMPAriSON SEMANTICS........cecrerererererereseseseseresese s se s es e sesesesesesesesesesesesesesesesenenes 167
Column Data INterpretation ... 167
NUMDErS REVISIHEM ... s 167

7.3 The ALTER TABLE and RENAME Commands...........ccoumvmnesemmssmsssssssssesessssssssssssens 167

7.4 CONSErAINES.....cccicriccri i —————— 170
Out-0f-Line CONSTIAINTSccceererererirererire e s 170
INHINE CONSIIAINTS........cieieiciee e p s p e e n s 172
Constraint Definitions in the Data DICtONArY........c.ccuvvevnnnesnnnsessr e s 173
Case Table Definitions with CONSIraints. ... s 174
A Solution for Foreign Key References: CREATE SCHEMAL............cccoorverrrerenerenersenesesessessssessssessenenas 176
Deferrable CONSIFAINTS........cocoieeceerre s s ne s 177

7.5 INABXES ..ottt 178
INAEX CrEALION.c.ccecccicee e 179

UNIQUE INUBXES ...ttt se e psa s e e e e e n e 180
Bitmap INABXES......cueeeererreererrseee e s e s se e e e e ne e p e pnpnnn s 180
FUNCEION-BASEA INUEXESccovrererererererirere e e 180
INAEX MANAGEMENT..... .. 181

7.6 Performance Monitoring with SQL Developer AUTOTRACE............ccccoovoeinniencrennnnes 182

7.7 SEUUBNCESeeveeeruerreessessssessesessesssessessssesss e ssessssesss s ssesss e ssessssessssessessssesssnssnsnssnsens 185

TS 1107 137 1 N 186

7.9 The CURRENT_SCHEMA Settingcccoviermreressernsesesessesss s ssesesseses e snsssssens 188

CONTENTS

7.10 The DROP TABLE COMMANccvuiriiimmninsnssssssssssssess s s ssssssssssssssenes 189
7.11 The TRUNCATE COMMAN........cccrierreerernnerresese s e sss e e s sse s e ssssssnssssnens 191
7.12 The COMMENT COMMANG.......cocremrernereseereseessss s ss s sssasaes 191
T A3 EXEICISES ..voueiveerserserssessssessesessessssessessssesss s sssssssessesssssssssssssssssesssnsssensssesssnsssssnnsens 193
Chapter 8: Retrieval: Multiple Tables and Aggregationcccusssssmsssnsssassnnns 195
8.1 Tuple VariabIes ... 195
8.2 JOINS ...t a e e e R R e R e R nrn e 197
CartesSian PrOUUCTScococeererereresesesesesesesesesese s ss s s s s s s s ss s s s ss s s s 198
EQUIJOINS ...vveereeereererereseraeerae e saesesaesessesassesse e sae e sassesas e saesassesassesassssasnssasssssesansesansesassansensenesssssasananns 198
(0T TH T o] 199
Joins of Three or MOre TaDIES ..o snsnnnnnas 200
R TC] L] 201
8.3 The JOIN ClaUSE........cccrurerermreiriseerssss s s s s 202
NALUFAI JOINS ...t 203
Equijoins on Columns with the Same Name...........ccecierninnrninn e senaens 204
8.4 QULEI JOINScoveereeercrreseseses e e s se s a s e s sr e nn s ne e e 205
0ld Oracle-Specific QUter JOIN SYNTAX........cccoeiieiererrece e 206
NeW OQULEr JOIN SYNTAX.....cccoiieererieererese s sa s s rsa s r e e e nnnnn s s 207
Outer Joins and PErfOrMAaNCe..........c.oveeererirenenirenesisese s 208
8.5 The GROUP BY COMPONENLcooverreeerernnseresessesss e e e sss e sse s sns e snssssneens 208
Multiple-Column GrOUPING........ccoceerereerererreesesesssesessssssssesesssssssesesssssessssssssssssssssnssssssssssssssssssssassaes 210
GROUP BY @nd NUII VAIUEScocirreriiisiresmsssisesisssssssesss s ssssssss s s sasssssssssasssssssssens 210
8.6 Group FUNCTIONS........cceieerrerresisersse s sn s n s s sns s sn s s 211
Group Functions and DUPIICAte VAIUESceeveererverererenererereressersssessesessesessessssessssessssessssesssssssssansens 212
Group FUnctions and NUIl VAIUES..........covrreererrirsesesssssesesesssssessssssssssessssssssssssssssssssssssssessssssssssssssssnes 213
Grouping the ReSUILS Of @ JOIN ... s 214
The COUNT(¥) FUNCHIONcoveeeeerereresereecreesesaesesaesessesessesassesessessssessssesssssssensssensssessssesssnssasssnsesssnesssnsnaes 214
Valid SELECT and GROUP BY Clause COmBINALONS..........cocverererererereresenes 216

.

CONTENTS

8.7 The HAVING ClAUSEcoverrerrrrerrssersessssessessssessssesssssssessssssssssssesssssssssssssssssssnssssnsns 217
The Difference Between WHERE and HAVINGcocovrererererereseresenes 218
HAVING Clauses Without Group FUNCHONS...........cccvineennnsescsessssesessssse s sesssssssssssssssssssssssssnes 218
A CIaSSiC SAL MISTAKEcoerererereresisisisisisesisisisesesisess s es 219
Grouping on Additional COIUMNSccecererererererereresersesessesessesessessssessssessesesssssssessssesassessesesssssssssansens 220

8.8 Advanced GROUP BY FEAtUIES...........ccocrererierirncsininssissss s 222
GROUP BY ROLLUP.......ccoeeeeeeeeseseseeeesesssnssssssssssssssssssssssssssssasasasas 222
GROUP BY CUBE..........couiuieirerensessesssseesesss e s ssssesss s sesss s sessssssssessssesssssssssssssssssssssssssessasssssssaes 223
CUBE, ROLLUP, and NUIl VAIUES.......cccoiiriiiriiinirisiniiisssssssssesssssssssessssssssssesssssssssssssssssssssssssssssssssssnssnns 224

The GROUPING FUNCLIONcoueuiecresrsseesesssseesessssesesssss s sessssssssessssssssssesssssssssssssssssssssssssnssssssnsnnns 224
The GROUPING_ID FUNCTIONceoererieeererisecseses e se s ss s sssssssssssssssssennns 225

8.9 Partitioned OULEr JOINS ... 226

8.10 Set OPErators.........ccorereirerei s 228

811 EXEICISES ...ouerveerserrerrsesssessesessesssesse s s e sss e ssesss e sse e s sss e ssessssesssessessssessssssnsnsnnsens 231

Chapter 9: Retrieval: Some Advanced Features...........ccvesmmsmsmssnsmssssmsmsssssssnssnans 233

9.1 Subqueries CONtINUEAcccvremrernire s 233
The ANY and ALL OPEIAtOrS........ccceerrrrereserssssesessssssessans 234

Defining ANY @nd ALL.........cco o s s sp s 235
Rewriting SQL Statements Containing ANY and ALLccccocveverreresrererereesersesesesessessssessssessssessens 236
Correlated SUDQUETIEScovrerereririerere s 237
The EXISTS OPEIALOFcccereieceiri et e s 238
Subqueries Following an EXISTS OPErator..........cccvccevverrreriererererererersssessesessesessesessessssessssessesesaes 239
EXISTS, IN, OF JOIN? ...ttt ss g 239
NULLS with NOT EXISTS @nd NOT INccooorererererereresssesssesesssnenes 242

9.2 Subqueries in the SELECT ClIAUSE.........c.ccorvrmrerssersennsesessesessssesssssssessssesssssssesssnens 243

9.3 Subqueries in the FROM ClaUSEccccvverrerrerrerseererssssesssssessessssssssssssssssssssssssssssses 244

9.4 The WITH ClaUSE.......cccrurcirereiriseisesss s s s s s 245

Xii

CONTENTS

9.5 Hierarchical QUENIESccverererermreresiresese s se s s 247
START WITH and CONNECT BYccevurererererereresesesesesesesesesssssssssssessasasas 248
LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY _ISLEAFcccooeeeeereereeee e 249
CONNECT_BY_ROOT and SYS_CONNECT_BY_PATHooeeeeere et 250
Hierarchical Query ReSUIt SOMtINGcccovrerernninenirnsesesss e ss s sessssssssesnssssens 251

9.6 Analytical FUNCHIONS.........ccvieiriinirsss s 252
PArTIEIONS ... 254
FUNCLION PrOCESSINGvvceecereesecerise s se s espe e ne s nnns 257

9.7 FIashbaCK FEAUIESccervirmriirnssisins s 259
AS OF ..ttt R AR e AR Re AR e R e AR e A e Re e e e R e e e Enrans 260
VERSIONS BETWEEN..........ccooiieieeiresseese e et se s se s e s s s ssas b e ns s nn s 262
FLASHBACK TABLE ... se e s s s 262

0.8 EXEICISES ...ecuvreiueirisieisiseess st s 264

Chapter 10: VIeWS......ccucuuemmsmmmsssmssssmsssasssssssssssssassnsas 209

10.1 WHat Are VIBWS?......cceeerceetreres s se s sss s s sns s sns s sn s sns s 265

10.2 VIEW Creation.........ccvicnericnennei s s ss s 266
Creating @ View from @ QUETY.......cccceerereerererererererereressesaesersesessesessessssessssessssssssssssesassessesessssesassanaens 267
Getting Information About Views from the Data Dictionary ... 269
Replacing and Dropping VIBWS.......c.ccucivrririninsinsessessesse s ssessessessessessessessesasssesasssssssssssssssssassssssens 271

10.3 What Can You Do With VIBWS? ..o 271
Simplifying Data REIHEVALccocvevererrerere s reserss e sesse e s e ses e sse e sss e sas e ssesesesasesassesaesassesssnsnans 271
Maintaining Logical Data INdePeNdENCEccccererrieninersnesine s es 273
Implementing Data SECUNLY ..o e r s e 274

10.4 Data Manipulation Via VIEWSccccevrerrmnriernsesesssessssessessssesssssssessssesssssssessssssnes 274
Updatable JOin VIBWS ...ttt 276
NONUPAALADIE VIBWSeccererecerrse s sss e e se s e s sn s sasss s e nsssnsnns 277
The WITH CHECK OPTION ClAUSEcvcoeeererrrueerersssesesessssesssesessssssesessans 278

Disappearing Updated ROWS ...t se s s s s s s s s 278

CONTENTS

xiv

Inserting INVISiDIE ROWScccouieceiriiccscrrssse s sss e e e sns e ssssssn s 279
Preventing These TWO SCENATIOSccccrrrcrmrmrreene e se s e 280
ConStraint CRECKINGcccvvrerererererereresereseresesesese s sese s se s seesssesesssssssssssssesesenenes 280

10.5 Data Manipulation via Inline VIEWS...........ccovvrenrnncnnnsnnssess s 281
10.6 Views and Performance..........c.ccuourernernessessessessessssssssesssssssssssssssssssssssssssssssssssssnsnns 282
10.7 Materialized VIBWS........c.vvererienirisinsi s s s s 283
Properties of Materialized VIBWScccevurerererriesenerssss s sssessssssssessssssssssssssssssssssssssssssssssnes 284
0T T S 284
10.8 EXEICISES ..uvrviucrrrrssisrsisessssssss sttt s s s s s e 286
Chapter 11: Writing and Automating SQL*Plus Scriptscccivmmmsemmmmmsssnansnsssnnans 287
11.1 SQL*PIUS VArADIEScovreiiirriirisesi s 288
SQL*Plus SUDSHEULION VariaDIEScceeeeeeeeeeerereessisssessesssssss s e e e e e e e e sesesesesessssssasnsns 288
SQL*Plus User-Defined Vari@bles ... sssssssssnsnas 290
Implicit SQL*Plus User-Defined Variables ... 291
User-Friendly ProMPLingccccccceererrierrrereseresereseresessessssessesessssessessssesssssssssssssssssessssessssessssasaens 292
SQL*Plus System VariabIes ... 293
11.2 Bind VariabIs.........cccovirrerrrrsersensessssssssssssssss s s ssssesssssesssssssssssessnsssssssssssssssssssnenns 298
Bind Variable DECIArationccoeeeeererecnerirseesi e 299
Bind Variables in SQL STAteMENTScccoceeeerererererererese e s 300
11.3 SAL*PIUS SCHIPLS ...cvieictrisir et 301
SCHIPE EXECULION......ceeeeeeeeeceeeesesesesesess s s s s s s s sssssesnsssnsnsssssnsnsnsnsnsnsnsnsas 301

R Te T s 1111 L1] P 302
SQL*Plus COMMANMS iN SCHPTS......cuceeerereeerireeree e 304
L8 L T | S 1 305
11.4 Report Generation with SAL*PIUS ..o 306
The SQL*Plus COLUMN COMMANG.........ccccermrmererersssesesessssssssessans 307
The SQL*Plus TTITLE and BTITLE COMMANGS..........c.corurerererererereres 311
The SQL*Plus BREAK COMMANcrurerinrririsisnsssiessss s sss st s sssassssss s ssssessnsans 312

CONTENTS

The SQL*Plus COMPUTE COMMANccceuireerererrnresesesssssesessnssssssssssssssans 315
The Finishing TOUCH: SPOOL.........ccou e se e 317
11.5 HTML in SQL¥PIUScveereeretreces e sss s e sns s sns e sne s s 318
o T T 318
11.6 Building SQL*Plus Scripts for Automation..........ccccceceemireenicnnssnessse e 321
What IS @ SQL*PIUS SCHPLY ...t 321
Capturing and Using Input Parameter VAIUES..........cvoecvrerrrererseresseresesesesessssessssessssessssessessssessssesassens 322
Passing Data Values from One SQL Statement to ANOTher ... 323
Mechanism 1: The NEW_VALUE CIAUSE.........c.cocorrrmrnmsininisnisisisisisisssisssssesesssssssssssssssssssssssssssssenes 323
Mechanism 2: Bind VariabIescccueeeeernemnnsisesessss s sessssssesssssssssssssssssssesssssssses 324
Handling Error CONditions..........coocvrrrnnnnnrrsrs s 325

LI A0 = (T 326
Chapter 12: Object-Relational Features........c.ucccmmnnmmmmmnnssnnnmnssssssnmmssssssnnssssnnnn 329
12.1 More Datatypes........cccveeremrnernersmrsessessessessessessessessessessessessessessessessessessssssssssssssssnenns 329
0 L= (T D 4] R 330
IVIEENOUS ..vvvvvvvveeeveesseessessesessessssssssssessessessesssssssesssssessess s e s s s e e s R s s s s s e s e s st e s s 330
LA 1 T 331
Creating the AITaY......c..cccceerreierirre e e s s e e e s e e s e s e s e e nrn s s 331
Populating the Array With VAIUES ..o 333
QUErYING ATy COIUMNScoveereecerertrerereraeserseseraesessesas e saesessesessssessessssesssserassessessssesassensesessssssassanaens 334
12.3 NeSted TaDIEScccveriririrci s 336
Creating TabIE TYPES ...ccivieeererererer st s s e r e re s ras e rae e sae e s e ses e sa s e sae e sae e sae e saesesaesansenansesasnenannanaens 336
Creating the Nested TabIe ... s 336
Populating the Nested TabIe...........cccvvriininirn e s s sr s saesaesnen 337
Querying the Nested TaDIE ..ot sae e ae e ae e saesas e e e saenesaenanaens 338
12.4 User-Defined TYPESccvcreerreriersiresssssessss s s ses s e s e s s s e snssnssnssnssnssnssnsssssnannnns 339
Creating USEr-DEfiNEU TYPES....cccvrrerereriererrererererserassersesessesersessssessssessssessessssssssssssassassensssessssesassasaens 339
Showing More Information with DESCRIBEcco e 340

|

CONTENTS

12.5 MUItISET OPEIaAtOrScveveereereere s e e e s e ra e e sa e s n e sa e s nesaesnennes 3
Which SQL Multiset Operators Are AVailable? ... 3
Preparing for the EXAMPIESccevererereerererereserereresessesassessssessesssasssssessssessssessssssssessensssessssessssansens 342
Using IS NOT EMPTY @nd CARDINALITYcvvvueusumresssssmssssssssesssnns 343
USING POWERMULTISETccvvvuusmmeesssssnsessssssmssmsssssssessssssssesssssssens 344
USING MULTISET UNIONcvvvvuemnreesssssssssssssesssssssssssssssssssssssssessssssssssssssssnsssssssssessssssssssssssssnsssssssnes 345
Converting Arrays into Nested TaDIESc.ccovevniinnnennernerr e se e e 346

12.6 EXEICISES ...ueeveerrererirresesessstsesss s sse s s sss e ssesss e sse e s sas e sse s s e sss s ssesnssesnsssssensnnsnnes 346

Appendix A: The Seven Case Tablesccciumsmmmmmmmsssssmmmmssssnmsmsssssnmsssssssnsesssnnns 349

oS D 10 2 349

Table Structure DeSCrIPLIONScceeeirerriererrnsere e sn e sn e 350

Columns and Foreign Key Constraints..........ccccceeeernssessssessssses s ses s sessessennens 351

Contents of the Seven TabIes ... ——— 352

Hierarchical EMPIOYEESs OVEIVIEWccccvereneiernnseresesessssessessssessesessessssesssssssessssssnes 357

Course Offerings OVEIVIBWcucveriesmsssessssssss s s s s s e sasnas 357

Appendix B: Answers t0 the EXerciSesccciuusssmmmmssssssmmsssssssssssssssssssssssssssssssnns 359

CAPTEr 4 EXEICISES ..c.vvuerreerserrsersesssessssessesssesssssssesssssssessssesssssssssssssssssssssssessssesssnssnenns 359

Chapter 5 EXEICISEScouuireriirsseirssssess s s s s s s 369

Chapter 7 EXEICISEScouuirereiressire s sa s s s s s s 374

CaPTEr 8 EXEICISESecuerreeruersrsersesessersesessessssessesassessssessesss e ssssssssssessssesssssssessssesssnssnenns 376

Chapter 9 EXEICISES.....couuireriirisiirs s s s s s 386

Chapter 10 EXEICISES.......cuucrurmmrereireses s s s s s s s 395

Chapter 11 EXEICISES.....coueererreirrererse e sss e s sss e ssesss e sss e s sss s sse s s sse s s snssnsnesssnens 397

Chapter 12 EXEICISES......ucuirrrmersseirssse s s s s s s s 401

INA@X ueeeiissnnssssanssssannmssansssssnnssssnsssssnnssssnnssssnnssssnnssssanssssannsssansessannsssannsssnnnssssnnnssnns 405

About the Author

Lex de Haan studied applied mathematics at the Technical University in Delft,
The Netherlands. His experience with Oracle goes back to the mid-1980s, version
4. He worked for Oracle Corporation from 1990 until 2004, in various education-
related roles, ending up in Server Technologies (product development) as senior
curriculum manager for the advanced DBA curriculum. In that role, he was
involved in the development of Oracle9i Database and Oracle Databsae 10g. In
March 2004, he decided to go independent and founded Natural Join B.V. In 1999,
he became involved in the ISO SQL language standardization process, as a
member of the Dutch national body. Lex passed away on February 1, 2006.

Daniel Fink has been working with Oracle since 1995, starting as a
developer/dba on Oracle7 Parallel Server on OpenVMS, and then moving to
database administration. Currently working as a consultant, he focuses on
diagnosis, optimization, and data recovery. He is also a highly regarded trainer
and presenter, speaking at user group conferences in the United States and
Europe. When not working with technology, he enjoys the mountains of Colorado
on foot, on skis, or from the seat of a bicycle.

Tim Gorman has worked in IT with relational databases since 1984, as an Oracle
application developer since 1990, and as an Oracle database administrator since
1993. He is an independent consultant (http://www.EvDBT.com) specializing in
data warehousing, performance tuning, database administration (particularly
availability). He has been an active member of the Rocky Mountain Oracle Users
Group (http://www.rmoug.org). He has co-authored three previous books and
taught classes and presented at conferences all over the US, Canada, Latin
America, Europe, and Asia. Tim lives in Colorado with his wife Lori and their four
teenage children. He still can't believe that he gets paid for doing this and is
officially one very happy guy.

xvii

ABOUT THE AUTHOR

xviii

=

After a Languages Master degree (English and French) Inger Jorgensen started
teaching SQL and PL/SQL as well as database administration from Oracle version
6 onwards with a five-year period in between of teaching developers Forms,
Reports, and Graphics. Inger spent 18 years at Oracle Corporation, and is presently
at Oracle partner Miracle in Denmark.

Karen Morton is an Oracle performance optimization specialist with nearly 20
years experience working with the Oracle database. She works with companies
around the world teaching application optimization in both classroom settings
and shoulder-to-shoulder consulting engagements. She is a frequent speaker at
conferences and user groups, an Oracle ACE, and a member of the OakTable
network. She blogs at http://karenmorton.blogspot.com.

Acknowledgments

I want to thank many friends who contributed to the quality of this book by reviewing it and providing
their feedback. Cary Millsap and Jocke Treugut, two good friends and members of the OakTable
network, were my main reviewers. Cary helped me with his constant focus on “doing things right” from
the very beginning, and Jocke helped me find the right balance between theory and practice. Martin
Jensen, one of my good old friends inside Oracle and an Oakie as well, provided precisely the feedback I
needed from his impressive Oracle consulting background. Stephen Cannan, my colleague in the Dutch
national body for the SQL Standardization and the convenor of the international ISO / IEC / JTC1 / SC32
/ WG3 committee, commented on my draft chapters based on his vast experience in the SQL
standardization area.

Kristina Youso, a former colleague and good friend from my years in Global Curriculum
Development in Oracle and one of the best content editors I have ever worked with, was so kind to check
and improve my English language.

Last, but not least, must mention the professionalism and enthusiasm of all the Apress folks
involved in the production of this book: Tony Davis, Beckie Stones, Marilyn Smith, and Kelly Winquist.
Thanks folks . . .

My two daughters are too old to be mentioned here, the cat was not involved in any way, and I leave
it up to Mogens Norgaard to say something nice about my wife, Juliette.

Lex de Haan from first edition

I am honored to be part of the team to update this book and maintain Lex's legacy. Thank you
Juliette for your support in this project and for my last visit with Lex. Lex was a professional colleague
and friend. I cherish the all too brief times we spent together at conferences and our email
conversations. I want to thank Jonathan Gennick and James Markham with Apress who worked very
hard to make this book possible and were very tolerant and understanding of the trials and tribulations
of a first time author. Your patience and perseverance were invaluable. This project would not have been
possible without Inger, Karen and Tim. Thank you for your time and energy. The discussions, reviews,
last minute emails have been so very important and are greatly appreciated. Over the years, many
people have supported, enlightened, educated and challenged me. Thank you to Tim, Vincent, Kirti,
Rachel, Mogens, Cary, Jonathan, Carol, Craig, Lex, Kurt, Robyn, and fellow members of the Oak Table.
Thanks to BD for encouraging me to make the leap to Oracle.

Family and friends make everything possible. Thanks Mom and Dad for all you have done and
continue to do. The constant support of E, Janet, Sujeeva, and Roberta is invaluable. Thank you Beverly
for all your support, understanding, and love over these months.

Daniel Fink

Xix

ACKNOWLEDGMENTS

I would like to acknowledge his gratitude to Gary Dodge my friend and mentor, Mogens Norgaard
for opportunity and motivation, Jonathan Gennick for patience and wisdom, Abdul Ebadi for
encouragement and inspiration, and Lori Shine for hope, love, spirit, and fun. There are so many more,
family, friends and colleagues alike, and I love the world in which I live.

Tim Gorman

I'would like to thank Lex for his friendship and his great ability to teach in a clear, awsome,
pedagogical way.

Inger Jorgensen

The first, and perhaps most important, acknowledgement I make goes to Lex de Haan for creating the
original version of this book. I am very honored to follow in his footsteps and to enliven his work.

There have been so many enthusiastic people in the Oracle community that I've met in classes,
consulting engagements, and conferences over the last 20 years. These connections are my favorite part
of what I do. It is my hope that this book makes a positive contribution back to the community that has
given me so much.

Finally, thanks to my family for all the support and encouragement not only to complete this work,
but every single day. It's coming home to you that makes everything complete.

Karen Morton

Introduction

This book was born from a translation of a book originally written by Lex de Haan in Dutch. That book
was first published in 1993, and went through several revisions in its native Dutch before Lex decided to
produce an English version. Apress published that English version in 2005 under the title “Mastering
Oracle SQL and SQL*Plus”. The book has since earned respect as excellent, accurate, and concise
tutorial on Oracle’s implementation of SQL.

While SQL is a fairly stable language, there have been changes to Oracle’s implementation of it over
the years. The book you are holding now is a revision of Lex’s original, English-language work. The book
has been revised to cover new developments in Oracle SQL since 2005, especially those in Oracle
Database 11g Release 1 and Release 2. The book has also been given the title “Beginning Oracle SQL”.
The new title better positions the book in Apress’s line, better refects the content, fits better with
branding and marketing efforts, and marks the book as a foundational title that Apress intends to
continue revising and publishing in the long term.

About this Book

This is nota book about advanced SQL. It is not a book about the Oracle optimizer and diagnostic tools.
And it is nota book about relational calculus, predicate logic, or set theory. This book is a SQL primer. It
is meant to help you learn Oracle SQL by yourself. It is ideal for self-study, but it can also be used as a
guide for SQL workshops and instructor-led classroom training.

This is a practical book; therefore, you need access to an Oracle environment for hands-on
exercises. All the software that you need to install Oracle Database on either Windows or Linux for
learning purposes is available free of charge from the Oracle Technology Network (OTN). Begin your
journey with a visit to the OTN website at:

http://www.oracle.com/technology/index.html

From the OTN home page, you can navigate to product information, to documentation and manual
sets, and to free downloads that you can install on your own PC for learning purposes.

This edition of the book is current with Oracle Database 11g Release 2. However, Oracle SQL has
been reasonable stable over the years. All the examples should also run under Release 1. And most will
still run under Oracle Database 10g, under Oracle Database 9i, and even under Oracle Database 8i, if
you're running software that old. Of course, as you go further back in release-time, you will find more
syntax that is not supported in each successively older release. Oracle Corporation does tend to add a
few new SQL features with each new release of their database product.

Oracle Corporation has shown great respect for SQL standards over the past decade. We agree with
supporting standards, and we follow the ANSI/ISO standard SQL syntax as much as possible in this
book. Only in cases of useful, Oracle-specific SQL extensions do we deviate from the international
standard. Therefore, most SQL examples given in this book are probably also valid for other database
maagement system (DBMS) implementations supporting the SQL language.

INTRODUCTION

xxii

SQL statements discussed in this book are explained with concrete examples. We focus on th emain
points, avoiding peripheral and arcane side-issues as much as possible. The examples are presented
clearly in a listing format, as in the example shown here in Listing I-1.

1. Listing I-1. A SQL SELECT Statement

SELECT ‘Hello world!’
FROM dual;

One difference between this edition and its predecessor is that we omit the “SQL>" prompt from
most of our examples. That prompt comes from SQL*Plus, the command-line interface that old-guard
database administrators and developers have used for years. We now omit SQL*Plus promts from all
examples that are not specific to SQL*Plus. We do that out of respect for the growing use of graphical
interfaces such as Oracle SQL Developer.

This book does not intend (nor pretend) to be complete; the SQL language is too voluminous and
the Oracle environment is much too complex. Oracle’s SQL referenc e manual, named Oracle SQL
Reference, comes in at just over 1500 pages for the Oracle Database 11g Release 2 edition. Moreover, the
current ISO SQL standard documentation has grown to a size that is simply not feasible anymore to print
on paper.

The main objective of this book is the combination of usability and affordability. The official Oracle
documentation offers detailed information in case you need it. Therefore, it is a good idea to have the
Oracle manuals available while working through the examples and exercises in this book. The Oracle
documentation is available online from the OTN website mentioned earlier in this introduction. You can
access that documentation in html from, or you can download PDF copies of selected manuals.

The focus of this book is using SQL for data retrieval. Data definition and data manipulation are
covered in less detail. Security, authorization, and database administration are mentioned only for the
sake of completeness in the “Overview of SQL” section of Chapter 2.

Throughout the book, we use a case consisting of seven tables. These seven tables contain
information about employees, departments, and courses. As Chris Date, a well-known guru in the
professional database world, said during one of his seminars, “There are only three databases:
employees and departments, orders and line items, and suppliers and shipments.”

The amount of data (i.e., the cardinality) in the case tables is deliberately kept low. This enables you
to check the results of your SQL commands manually, which is nice while you're learning to master the
SQL language. In general, checking your results manually is impossible in real information systems due
to the volume of data in such systems.

It is not the data volume or query response time that matters in this book. What’s important is the
database structure complexity and SQL statement correctness. After all, it does no good for a statement
to be fast, or to perform well, if all it does in the end is produce incorrect results. Accuracy first! That’s
true in many aspects of life, including in SQL.

About the Chapters of this Book

Chapter 1 provides a concise introduction to the theoretical background of information systems and
some popular database terminology, and then continues with a global overview of the Oracle software
and an introduction to the seven case tables. It is an important, foundational chapter that will help you
get the most from the rest of the book.

Chapter 2 starts with a high-level overview of the SQL language. We follow that with an introduction
to SQL*Plus and SQL Developer. The first — SQL*Plus - is a command-line tool that you can use to send a
SQL statement to the database and get results back. Many database administrators use SQL*Plus
routinely, and you can rely upon it to be present in any Oracle Database installation. SQL Developer is

INTRODUCTION

also a tool for testing and executing SQL. It comes with a graphical user interface, and it is a tool that has
gained much ground and momentum with developers.

Data definition is covered in two nonconsecutive chapters: Chapter 3 and Chapter 7. This is done to
allow you to start with SQL retrieval as soon as possible. Therefore, Chapter 3 covers only the most basic
data-definition concepts (tables, datatypes, and the data dictionary).

Retrieval is also spread over multiple chapters—four chapters, to be precise. Chapter 4 focuses on
the SELECT, WHERE, and ORDER BY clauses of the SELECT statement. The most important SQL functions are
covered in Chapter 5, which also covers null values and subqueries. In Chapter 8, we start accessing
multiple tables at the same time (joining tables) and aggregating query results; in other words, the FROM,
the GROUP BY, and the HAVING clauses get our attention in that chapter. To finish the coverage of data
retrieval with SQL, Chapter 9 revisits subqueries to show some more advanced subquery constructs.
That chapter also introduces windows and analytical functions, hierarchical queries, and flashback
features.

Chapter 6 discusses data manipulation with SQL. The commands INSERT, UPDATE, DELETE, and
MERGE are introduced. This chapter also pays attention to some topics related to data manipulation:
transaction processing, read consistency, and locking.

In Chapter 7, we revisit data definition, to drill down into constraints, indexes, sequences, and
performance. Synonyms are explained in the same chapter. Chapters 8 and 9 continue coverage of data
retrieval with SQL.

Chapter 10 introduces views. What are views, when should you use them, and what are their
restrictions? This chapter explores the possibilities of data manipulation via views, discusses views and
performance, and introduces materialized views.

Chapter 11 is about automation. SQL statements can be long, and sometimes you want to execute
several in succession. Chapter 11 shows you how to develop automated scripts that you can run via
SQL*Plus. Many, many Oracle databases are kept alive and healthy by automated SQL*Plus scripts
written by savvy database administrators.

Oracle is an object-relational database management system. Since Oracle Database 8, many object-
oriented features have been added to the SQL language. As an introduction to these features, Chapter 12
provides a high-level overview of user-defined datatypes, arrays, nested tables, and multiset operators.

Finally, the book ends with two appendixes. Appendix A at the end of this book provides a detailed
look into the example tables used in this book’s examples. Appendix B gives the exercise solutions.

About the Case Tables

Chapter 1 describes the case tables used in the book’s examples. Appendix A goes into even more detail,
should you want it. The book’s catalog page on the Apress.com website contains a link to a SQL*Plus
script that you can use to create and populate the example tables. The direct link to that page is:
http://apress.com/book/view/1430271970. When you get there, look on the left side of the page for a
section entitled “Book Resources”. You should find a “Source Code” link within that section. Click on
that link to download the script.

xxiii

CHAPTER 1

Relational Database Systems
and Oracle

The focus of this book is writing SQL in Oracle, which is a relational database management system. This
first chapter provides a brief introduction to relational database systems in general, followed by an
introduction to the Oracle software environment. The main objective of this chapter is to help you find
your way in the relational database jungle and to get acquainted with the most important database
terminology.

The first three sections discuss the main reasons for automating information systems using
databases, what needs to be done to design and build relational database systems, and the various
components of a relational database management system. The following sections go into more depth
about the theoretical foundation of relational database management systems.

This chapter also gives a brief overview of the Oracle software environment: the components of such
an environment, the characteristics of those components, and what can you do with those components.

The last section of this chapter introduces seven sample tables, which are used in the examples and
exercises throughout this book to help you develop your SQL skills. In order to be able to formulate and
execute the correct SQL statements, you'll need to understand the structures and relationships of these
tables.

This chapter does not cover any object-relational database features. Chapter 12 discusses the
various Oracle features in that area.

1.1 Information Needs and Information Systems

Organizations have business objectives. In order to realize those business objectives, many decisions
must be made on a daily basis. Typically, a lot of information is needed to make the right decisions;
however, this information is not always available in the appropriate format. Therefore, organizations
need formal systems that will allow them to produce the required information, in the right format, at the
right time. Such systems are called information systems. An information system is a simplified reflection
(a model) of the real world within the organization.

Information systems don’t necessarily need to be automated—the data might reside in card files,
cabinets, or other physical storage mechanisms. This data can be converted into the desired information
using certain procedures or actions. In general, there are two main reasons to automate information
systems:

e Complexity: The data structures or the data processing procedures become too
complicated.

¢ Volume: The volume of the data to be administered becomes too large.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

If an organization decides to automate an information system because of complexity or volume (or
both), it typically will need to use some database technology.
The main advantages of using database technology are the following:

e Accessibility: Ad hoc data-retrieval functionality, data-entry and data-reporting
facilities, and concurrency handling in a multiuser environment

e Availability: Recovery facilities in case of system crashes and human errors
e Security: Data access control, privileges, and auditing
e Manageability: Utilities to efficiently manage large volumes of data

When specifying or modeling information needs, it is a good idea to maintain a clear separation
between information and application. In other words, we separate the following two aspects:

¢ What: The information content needed. This is the logicallevel.

o How: The desired format of the information, the way that the results can be
derived from the data stored in the information system, the minimum
performance requirements, and so on. This is the physicallevel.

Database systems such as Oracle enable us to maintain this separation between the “what” and the
“how” aspects, allowing us to concentrate on the first one. This is because their implementation is based
on the relational model. The relational model is explained later in this chapter, in Sections 1.4 through
1.7.

1.2 Database Design

One of the problems with using traditional third-generation programming languages (such as COBOL,
Pascal, Fortran, and C) is the ongoing maintenance of existing code, because these languages don’t
separate the “what” and the “how” aspects of information needs. That’s why programmers using those
languages sometimes spend more than 75% of their precious time on maintenance of existing programs,
leaving little time for them to build new programs.

When using database technology, organizations usually need many database applications to
process the data residing in the database. These database applications are typically developed using
fourth- or fifth-generation application development environments, which significantly enhance
productivity by enabling users to develop database applications faster while producing applications with
lower maintenance costs. However, in order to be successful using these fourth- and fifth-generation
application development tools, developers must start thinking about the structure of their data first.

It is veryimportant to spend enough time on designing the data model before you start coding your
applications. Data model mistakes discovered in a later stage, when the system is already in production,
are very difficult and expensive to fix.

Entities and Attributes

In a database, we store facts about certain objects. In database jargon, such objects are commonly
referred to as entities. For each entity, we are typically interested in a set of observable and relevant
properties, commonly referred to as attributes.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

When designing a data model for your information system, you begin with two questions:

1.
2.

Which entities are relevant for the information system?

Which attributes are relevant for each entity, and which values are allowed for

those attributes?

We’ll add a third question to this list before the end of this chapter, to make the list complete.

For example, consider a company in the information technology training business. Examples of
relevant entities for the information system of this company could be course attendee, classroom,
instructor, registration, confirmation, invoice, course, and so on. An example of a partial list of relevant
attributes for the entity ATTENDEE could be the following:

Registration number
Name

Address

City

Date of birth

Blood group

Age

Gender

For the COURSE entity, the attribute list could look as follows:

Title

Duration (in days)
Price

Frequency

Maximum number of attendees

Note There are many different terminology conventions for entities and attributes, such as objects, object types,
types, object occurrences, and so on. The terminology itself is not important, but once you have made a choice,
you should use it consistently.

Generic vs. Specific

The difference between generic versus specific is very important in database design. For example,

common words in natural languages such as book and course have both generic and specific meanings.
In spoken language, the precise meaning of these words is normally obvious from the context in which
they are used.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

When designing data models, you must be very careful about the distinction between generic and
specific meanings of the same word. For example, a course has a title and a duration (generic), while a
specific course offering has a location, a certain number of attendees, and an instructor. A specific book
on the shelf might have your name and purchase date on the cover page, and it might be full of your
personal annotations. A generic book has a title, an author, a publisher, and an ISBN code. This means
that you should be careful when using words like course and book for database entities, because they
could be confusing and suggest the wrong meaning.

Moreover, we must maintain a clear separation between an entity itself at the generic level and a
specific occurrence of that entity. Along the same lines, there is a difference between an entity attribute
(at the generic level) and a specific attribute value for a particular entity occurrence.

Redundancy

There are two types of data: base data and derivable data. Base data is data that cannot be derived in any
way from other data residing in the information system. It is crucial that base data is stored in the
database. Derivable data can be deduced (for example, with a formula) from other data. For example, if
we store both the age and the date of birth of each course attendee in our database, these two attributes
are mutually derivable—assuming that the current date is available at any moment.

Actually, every question issued against a database results in derived data. In other words, it is both
undesirable and impossible to store all derivable data in an information system. Storage of derivable
data is referred to as redundancy. Another way of defining redundancy is storage of the same data more
than once.

Sometimes, it makes sense to store redundant data in a database; for example, in cases where
response time is crucial and in cases where repeated computation or derivation of the desired data
would be too time-consuming. But typically, storage of redundant data in a database should be avoided.
First of all, it is a waste of storage capacity. However, that’s not the biggest problem, since gigabytes of
disk capacity can be bought for relatively low prices these days. The challenge with redundant data
storage lies in its ongoing maintenance.

With redundant data in your database, it is difficult to process data manipulation correctly under all
circumstances. In case something goes wrong, you could end up with an information system containing
internal contradictions. In other words, you would have inconsistent data. Therefore, redundancy in an
information system results in ongoing consistency problems.

When considering the storage of redundant data in an information system, it is important to
distinguish two types of information systems:

¢ Online transaction processing (OLTP) systems, which typically have continuous
data changes and high volume

e Decision support (DSS) systems, which are mainly, or even exclusively, used for
data retrieval and reporting, and are loaded or refreshed at certain frequencies
with data from OLTP systems

In DSS systems, it is common practice to store a lot of redundant data to improve system response
times. Retrieval of stored data is typically faster than data derivation, and the risk of inconsistency,
although present for load and update of data, is less likely because most DSS systems are often read-only
from the end user’s perspective.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Consistency, Integrity, and Integrity Constraints

Obviously, consistency is a first requirement for any information system, ensuring that you can retrieve
reliable information from that system. In other words, you don’t want any contradictions in your
information system.

For example, suppose we derive the following information from our training business information
system:

e Attendee 6749 was born on February 13, 2093.
o The same attendee 6749 appears to have gender Z.
e There is another, different attendee with the same number 6749.

e We see a course registration for attendee 8462, but this number does not appear in
the administration records where we maintain a list of all persons.

In none of the above four cases is the consistency at stake; the information system is unambiguous
in its statements. Nevertheless, there is something wrong because these statements do not conform to
common sense.

This brings us to the second requirement for an information system: data integrity. We would
consider it more in accordance with our perception of reality if the following were true of our
information system:

o For any course attendee, the date of birth does not lie in the future.
e The gender attribute for any person has the value M or F.
e Every course attendee (or person in general) has a unique number.

e We have registration information only for existing attendees—that is, attendees
known to the information system.

These rules concerning database contents are called constraints. You should translate all your
business rules into formal integrity constraints. The third example—a unique number for each person—
is a primary key constraint, and it implements entity integrity. The fourth example—information for only
persons known to the system—is a foreign key constraint, implementing referential integrity. We will
revisit these concepts later in this chapter, in Section 1.5.

Constraints are often classified based on the lowest level at which they can be checked. The
following are four constraint types, each illustrated with an example:

e Attribute constraints: Checks attributes; for example, “Gender must be M or F.”

¢ Row constraints: Checks at the row level; for example, “For salesmen, commission
is a mandatory attribute.”

e Table constraints: Checks at the table level; for example, “Each employee has a
unique e-mail address.”

e Database constraints: Checks at the database level; for example, “Each employee
works for an existing department.”

In Chapter 7, we’ll revisit integrity constraints to see how you can formally specify them in the SQL
language.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

At the beginning of this section, you learned that information needs can be formalized by
identifying which entities are relevant for the information system, and then deciding which attributes
are relevant for each entity. Now we can add a third step to the information analysis list of steps to
produce a formal data model:

1. Which entities are relevant for the information system?
2. Which attributes are relevant for each entity?

3. Which integrity constraints should be enforced by the system?

Data Modeling Approach, Methods, and Techniques

Designing appropriate data models is not a sinecure, and it is typically a task for IT specialists. On the
other hand, it is almost impossible to design data models without the active participation of the future
end users of the system. End users usually have the most expertise in their professional area, and they
are also involved in the final system acceptance tests.

Over the years, many methods have been developed to support the system development process
itself, to generate system documentation, to communicate with project participants, and to manage
projects to control time and costs. Traditional methods typically show a strict phasing of the
development process and a description of what needs to be done in which order. That’s why these
methods are also referred to as waterfall methods. Roughly formulated, these methods distinguish the
following four phases in the system development process:

1. Analysis: Describing the information needs and determining the information
system boundaries

2. Logical design: Getting answers to the three questions about entities,
attributes, and constraints, which were presented in the previous section

3. Physical design: Translating the logical design into a real database structure
4. Build phase: Building database applications

Within the development methods, you can use various techniques to support your activities. For
example, you can use diagram techniques to represent data models graphically. Some well-known
examples of such diagram techniques are Entity Relationship Modeling (ERM) and Unified Modeling
Language (UML) In the last section of this chapter, which introduces the sample tables used throughout
this book, you will see an ERM diagram that corresponds with those tables.

Another example of a well-known technique is normalization, which allows you to remove
redundancy from a database design by following some strict rules.

Prototypingis also a quite popular technique. Using prototyping, you produce “quick and dirty”
pieces of functionality to simulate parts of a system, with the intention of evoking reactions from the end
users. This might result in time-savings during the analysis phase of the development process, and more
important, better-quality results, thus increasing the probability of system acceptance at the end of the
development process.

Rapid application development (RAD) is also a well-known term associated with data modeling.
Instead of the waterfall approach described earlier, you employ an iterative approach.

Some methods and techniques are supported by corresponding computer programs, which are
referred to as computer-aided systems engineering (CASE) tools. Various vendors offer complete and
integral support for system development, from analysis to system generation, while others provide basic
support for database design even though their products are general-purpose drawing tools (Microsoft
Visio is an example).

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Semantics

If you want to use information systems correctly, you must be aware of the semantics (the meaning of
things) of the underlying data model. A careful choice for table names and column names is a good
starting point, followed by applying those names as consistently as possible. For example, the attribute
“address” can have many different meanings: home address, work address, mailing address, and so on.
The meaning of attributes that might lead to this type of confusion can be stored explicitly in an
additional semantic explanation to the data model. Although such a semantic explanation is not part of
the formal data model itself, you can store it in a data dictionary—a term explained in the next section.

Information Systems Terms Review
In this section, the following terms were introduced:

o Entities and attributes

e Generic versus specific

e Occurrences and attribute values

e Base data and derivable data

¢ Redundancy and consistency

e Integrity and constraints

e Datamodeling

e Methods and techniques

e Logical and physical design

¢ Normalization

e Prototyping and RAD

e CASEtools

e Semantics

1.3 Database Management Systems

The preceding two sections defined the formal concept of an information system. You learned that if an
organization decides to automate an information system, it typically uses some database technology.
The term database can be defined as follows:

Definition A database is a set of data, needed to derive the desired information from an information system and
maintained by a separate software program.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

This separate software program is called the database management system (DBMS). There are many
types of database management systems available, varying in terms of the following characteristics:

e Price

e Ability to implement complex information systems
e Supported hardware environment

¢ Flexibility for application developers

e Flexibility for end users

e Ability to set up connections with other programs
e Speed

e Ongoing operational costs

e User-friendliness

DBMS Components

A DBMS has many components, including a kernel, data dictionary, query language, and tools.

Kernel

The core of any DBMS consists of the code that handles physical data storage, data transport (input and
output) between external and internal memory, integrity checking, and so on. This crucial part of the
DBMS is commonly referred to as the engine or kernel.

Data Dictionary

Another important task of the DBMS is the maintenance of a data dictionary, containing all data about
the data (the metadata). Here are some examples of information maintained in a data dictionary:

e Overview of all entities and attributes in the database
e Constraints (integrity)

e Accessrights to the data

e Additional semantic explanations

e Database user authorization data

Query Languages

Each DBMS vendor supports one or more languages to allow access to the data stored in the database.
These languages are commonly referred to as query languages, although this term is rather confusing.
SQL, the language this book is all about, has been the de facto market standard for many years.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Other Query Languages, Really?

SQL is such a common query language that very few realize that there were ever any others. In fact, few
even comprehend the concept that there can be other languages than SQL. But there are others. Oracle
Rdb supports SQL, but Rdb also supports a language called Relational Database Operator (RDO). (Yes,
you’'ve heard it here: there was an RDO long before Microsoft took up that abbreviation). RDO is a language
developed by Digital Equipment Corporation (DEC) for use in their own database management system.
Oracle bought that system, and continues to support the use of RDO to this day.The Ingres database, once
a competitor to Oracle, also had its own query language. Ingres originally supported a language known as
Quel. That language did not compete well with SQL, and Ingres Corporation was eventually forced to build
SQL support into their product.Today, SQL is the dominant database access language. All mainstream
relational databases claim to support it. And yet, no two databases support it in quite the same way.
Instead of completely different languages with dissimilar names, today we have “variations” that we refer
to as Oracle SQL, Microsoft SQL, DB2 SQL, and so forth. The world really hasn’t changed much.

DBMS Tools

Most DBMS vendors supply many secondary programs around their DBMS software. I refer to all these
programs with the generic term fools. These tools allow users to perform tasks such as the following:

e Generate reports
e Build standard data-entry and data-retrieval screens
e Process database data in text documents or in spreadsheets

e Administer the database

Database Applications

Database applications are application programs that use an underlying database to store their data.
Examples of such database applications are screen- and menu-driven data-entry programs,
spreadsheets, report generators, and so on.

Database applications are often developed using development tools from the DBMS vendor. In fact,
most of these development tools can be considered to be database applications themselves, because
they typically use the database not only to store regular data, but also to store their application
specifications. For example, consider tools such as Oracle JDeveloper and Oracle Application Express.
With these examples we are entering the relational world, which is introduced in the next section.

DBMS Terms Review

In this section, the following terms were introduced:
e Database
e Database management system (DBMS)

e Kernel

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

10

e Datadictionary
¢ Querylanguage
e Tool

e Database application

1.4 Relational Database Management Systems

The theoretical foundation for a relational database management system (RDBMS) was laid out in 1970
by Ted Codd in his famous article “A Relational Model of Data for Large Shared Data Banks” (Codd,
1970). He derived his revolutionary ideas from classical components of mathematics: set theory,
relational calculus, and relational algebra.

About ten years after Ted Codd published his article, around 1980, the first RDBMS systems
(Relational DBMS systems) aiming to translate Ted Codd’s ideas into real products became
commercially available. Among the first pioneering RDBMS vendors were Oracle and Ingres, followed a
few years later by IBM with SQL/DS and DB2.

We won'’t go into great detail about this formal foundation for relational databases, but we do need
to review the basics in order to explain the term relational. The essence of Ted Codd’s ideas was two
main requirements:

e (Clearly distinguish the logical task (the what) from the physical task (the how)
both while designing, developing, and using databases.

e Make sure that an RDBMS implementation fully takes care of the physical task, so
the system users need to worry only about executing the logical task.

These ideas, regardless of how evident they seem to be nowadays, were quite revolutionary in the
early 1970s. Most DBMS implementations in those days did not separate the logical and physical tasks at
all; did not have a solid theoretical foundation of any kind; and offered their users many surprises, ad
hoc solutions, and exceptions. Ted Codd’s article started a revolution and radically changed the way
people think about databases.

What makes a DBMS a relational DBMS? In other words: how can we determine how relational a
DBMS is? To answer this question, we must visit the theoretical foundation of the relational model. The
following two sections discuss two important aspects of the relational model: relational data structures
and relational operators. After these two sections, we will address another question: how relational is my
DBMS?

1.5 Relational Data Structures

This section introduces the most important relational data structures and concepts:
e Tables, columns, and rows
e The information principle
e Datatypes
e Keys

e Missing information and null values

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Tables, Columns, and Rows

The central concept in relational data structures is the table or relation (from which the relational model
derives its name). A table is defined as a set of rows, or tuples. The rows of a table share the same set of
attributes; a row consists of a set of (attribute name; attribute value) pairs. All data in a relational
database is represented as column values within table rows.

In summary, the basic relational data structures are as follows:

e A database, which is a set of tables
e Atable, which is a set of rows
e Arow, which is a set of column values

The definition of a row is a little sloppy. A row is not just a set of column values. A more precise
definition would be as follows:

A rowis a set of ordered pairs, where each ordered pair consists of an attribute name with an
associated attribute value.

For example, the following is a formal and precise way to represent a row from the DEPARTMENTS
table:

{(deptno;40), (dname;HR), (location;Boston), (mgr;7839)}

This row represents department 40: the HR department in Boston, managed by employee 7839. It
would become irritating to represent rows like this; therefore, this book will use less formal notations as
much as possible. After all, the concept of tables, rows, and columns is rather intuitive.

In most cases, there is a rather straightforward one-to-one mapping between the entities of the data
model and the tables in a relational database. The rows represent the occurrences of the corresponding
entity, and the column headings of the table correspond with the attributes of that entity. See Figure 1-1
for an illustration of the DEPARTMENTS table.

Table: DEPARTMENTS

columns
(attribute name, attribute value pair)

DEPTNO DNAME LOCATION MGR
10 ACCOUNTING NEW YORK 7782
rows |20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

Figure 1-1. The DEPARTMENTS table

11

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

12

The Information Principle

The only way you can associate data in a relational database is by comparing column values. This
principle, known as the information principle, is applied very strictly, and it is at the heart of the term
relational.

An important property of sets is the fact that the order of their elements is meaningless. Therefore,
the order of the rows in any relational table is meaningless, too, and the order of columns is also
meaningless.

Because this is both very fundamental and important, let’s rephrase this in another way: in a relational
database, there are no pointers to represent relationships. For example, the fact that an employee works
for a specific department can be derived only from the two corresponding tables by comparing column
values in the two department number columns. In other words, for every retrieval command, you must
explicitly specify which columns must be compared. As a consequence, the flexibility to formulate ad
hoc queries in a relational database has no limits. The flip side of the coin is the risk of (mental) errors
and the problem of the correctness of your results. Nearly every SQL query will return a result (as long as
you don’t make syntax errors), but is it really the answer to the question you had in mind?

Datatypes

One of the tasks during data modeling is also to decide which values are allowed for each attribute. As a
minimum, you could allow only numbers in a certain column, or allow only dates or text. You can
impose additional restrictions, such as by allowing only positive integers or text of a certain maximum
length.

A set of allowed attribute values is sometimes referred to as a domain. Another common term is
datatype (or just type). Each attribute is defined on a certain type. This can be a standard (built-in) type
or a user-defined type.

Keys

Each relational table must have at least one candidate key. A candidate key is an attribute (or attribute
combination) that uniquely identifies each row in that table, with one additional important property: as
soon as you remove any attribute from this candidate key attribute combination, the property of unique
identification is gone. In other words, a table cannot contain two rows with the same candidate key
values at any time.

For example, the attribute combination course code and start date is a candidate key for a table
containing information about course offerings. If you remove the start date attribute, the remaining
course code attribute is not a candidate key anymore; otherwise, you could offer courses only once. If
you remove the course code attribute, the remaining start date attribute is not a candidate key anymore;
otherwise, you would never be able to schedule two different courses to start on the same day.

In case a table has multiple candidate keys, it is normal practice to select one of them to become the
primary key. All components (attributes) of a primary key are mandatory; you must specify attribute
values for all of them. Primary keys enforce a very important table constraint: entity integrity.

Sometimes, the set of candidate keys doesn’t offer a convenient primary key. In such cases, you may
choose a surrogate key by adding a meaningless attribute with the sole purpose of being the primary key.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Note Using surrogate keys comes with advantages and disadvantages, and fierce debates between database
experts. This section is intended to only explain the terminology, without offering an opinion on the use of
surrogate keys.

A relational table can also have one or more foreign keys. Foreign key constraints are subset
requirements; the foreign key values must always be a subset of a corresponding set of primary key
values. Some typical examples of foreign key constraints are that an employee can work for only an
existing department and can report to only an existing manager. Foreign keys implement referential
integrity in a relational database.

Missing Information and Null Values

A relational DBMS is supposed to treat missing information in a systematic and context-insensitive
manner. If a value is missing for a specific attribute of a row, it is not always possible to decide whether a
certain condition evaluates to true or false. Missing information is represented by null values in the
relational world.

The term null value is actually misleading, because it does not represent a value; it represents the
fact that a value is missing. For example, null marker would be more appropriate. However, null value is
the term most commonly used, so this book uses that terminology. Figure 1-2 shows how null values
appear in a partial listing of the EMPLOYEES table.

Table: EMPLOYEES

EMPNO ENAME MSAL COMM
7369 SMITH 800

7499 ALLEN 1600 300
7521 WARD 1250 500
7566 JONES 2975

Figure 1-2. Nulls represent missing values.

Null values imply the need for a three-valued logic, such as implemented (more or less) in the SQL
language. The third logical value is unknown.

Note Null values have had strong opponents and defenders. For example, Chris Date is a well-known opponent
of null values and three-valued logic. His articles about this subject are highly readable, entertaining, and
clarifying.

13

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

14

Constraint Checking

Although most RDBMS vendors support integrity constraint checking in the database these days (Oracle
implemented this feature a number of years ago), it is sometimes also desirable to implement constraint
checking in client-side database applications. Suppose you have a network between a client-side data-
entry application and the database, and the network connection is a bottleneck. In that case, client-side
constraint checking probably results in much better response times, because there is no need to access
the database each time to check the constraints. Code-generating tools typically allow you to specify
whether constraints should be enforced at the database side, the client side, or both sides.

Caution If you implement certain constraints in your client-side applications only, you risk database users
bypassing the corresponding constraint checks by using alternative ways to connect to the database.

Predicates and Propositions

To finish this section about relational data structures, there is another interesting way to look at tables
and rows in a relational database from a completely different angle, as introduced by Hugh Darwen. This
approach is more advanced than the other topics addressed in this chapter, so you might want to revisit
this section later.

You can associate each relational table with a table predicate and all rows of a table with
corresponding propositions. Predicates are logical expressions, typically containing free variables, which
evaluate to true or false. For example, this is a predicate:

e There is a course with title T and duration D, price P, frequency F, and a maximum
number of attendees M.

If we replace the five variables in this predicate (T, D, P, F, and M) with actual values, the result is a
proposition. In logic, a proposition is a predicate without free variables; in other words, a proposition is
always true or false. This means that you can consider the rows of a relational table as the set of all
propositions that evaluate to true.

Relational Data Structure Terms Review
In this section, the following terms were introduced:
e Tables (or relations)
e Rows (or tuples)
¢ Columns and domains
e Candidate, primary, and foreign keys
e Integrity checking at the database level
e Missing information, null values, and three-valued logic

e Predicates and propositions

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

1.6 Relational Operators

To manipulate data, you need operators that can be applied to that data. Multiplication and addition are
typical examples of operators in mathematics; you specify two numbers as input, and the operator
produces one output value as a result. Multiplication and addition are examples of closed operators,
because they produce “things” of the same type you provided as input (numbers). For example, for
integers, addition is closed. Add any two integers, and you get another integer. Try it—you can’t find two
integers that add up to a noninteger. However, division over the integers is not closed; for example, 1
divided by 2 is not an integer. Closure is a nice operator property, because it allows you to (re)use the
operator results as input for a next operator.

In a database environment, you need operators to derive information from the data stored in the
database. In an RDBMS environment, all operators should operate at a high logical level. This means,
among other things, that they should not operate on individual rows, but rather on tables, and that the
results of these operators should be tables, too.

Because tables are defined as sets of rows, relational operators should operate on sets. That’s why
some operators from the classical set theory—such as the union, the difference, and the intersection—
also show up as relational operators. See Figure 1-3 for an illustration of these three set operators.

OFFERING COURSE SALGRADE
#begindate #code #grade
PY |
! b e e e oo - — o VRN
A | LA A
L -
REGISTRATION - 2ulALOVIEE
.- #empno
I
y | N
I
N o ! |
HISTORY 1
#begindate N DEPARTMENT
#deptno

Figure 1-3. The three most common set operators

Along with these generic operators from set theory that can be applied to any sets, there are some
additional relational operators specifically meant to operate on tables. You can define as many relational
operators as you like, but, in general, most of these operators can be reduced to (or built with) a limited
number of basic relational operators. The most common relational operators are the following:

e Restriction: This operator results in a subset of the rows of the input table, based
on a specified restriction condition. This operator is also referred to as selection.

15

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

16

e Projection: This operator results in a table with fewer columns, based on a
specified set of attributes you want to see in the result. In other words, the result is
a vertical subset of the input table.

e Union: This operator merges the rows of two input tables into a single output
table; the result contains all rows that occur in at least one of the input tables.

e Intersection: This operator also accepts two input tables; the result consists of all
rows that occur in both input tables.

e Minus: Again, based on two input tables, this operator produces a result that
consists of those rows that occur in the first table but do not occur in the second
table. Note that this operator is not symmetric; A MINUS B is not the same as B
MINUS A. This operator is also referred to as difference.

e (Cartesian) product: From two input tables, all possible combinations are
generated by concatenating a row from the first table with a row from the second
table.

e (Natural) Join: From two input tables, one result table is produced. The rows in
the result consist of all combinations of a row from the first table with a row from
the second table, provided both rows have identical values for the common
attributes.

The natural join is an example of an operator that is not strictly necessary, because the effect of this
operator can also be achieved by applying the combination of a Cartesian product, followed by a
restriction (to check for identical values on the common attributes), and then followed by a projection to
remove the duplicate columns.

1.7 How Relational Is My DBMS?

The term relational is used (and abused) by many DBMS vendors these days. If you want to determine
whether these vendors speak the truth, you are faced with the problem that relational is a theoretical
concept. There is no simple litmus test to check whether or not a DBMS is relational. Actually, to be
honest, there are no pure relational DBMS implementations. That’s why it is better to investigate the
relational degree of a certain DBMS implementation.

This problem was identified by Ted Codd, too; that’s why he published 12 rules (actually, there are
13 rules, if you count rule zero, too) for relational DBMS systems in 1986. Since then, these rules have
been an important yardstick for RDBMS vendors. Without going into too much detail, Codd’s rules are
listed here, with brief explanations:

0. Rule Zero: For any DBMS that claims to be relational, that system must be able
to manage databases entirely through its relational capabilities.

1. The Information Rule: All information in a relational database is represented
explicitly at the logical level and in exactly one way: by values in tables.

2. Guaranteed Access Rule: All data stored in a relational database is guaranteed
to be logically accessible by resorting to a combination of a table name,
primary key value, and column name.

10.

11.

12.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

Systematic Treatment of Missing Information: Null values (distinct from the
empty string, blanks, and zero) are supported for representing missing
information and inapplicable information in a systematic way, independent of
the datatype.

Dynamic Online Catalog: The database description is represented at the
logical level in the same way as ordinary data, so that authorized users can
apply the same relational language to its interrogation as they apply to the
regular data.

Comprehensive Data Sublanguage: There must be at least support for one
language whose statements are expressible by some well-defined syntax and
comprehensive in supporting all of the following: data definition, view
definition, data manipulation, integrity constraints, authorization, and
transaction boundaries handling.

Updatable Views: All views that are theoretically updatable are also updatable
by the system.

High-Level Insert, Update, and Delete: The capability of handling a table or a
view as a single operand applies not only to the retrieval of data, but also to the
insertion, updating, and deletion of data.

Physical Data Independence: Application programs remain logically
unimpaired whenever any changes are made in either storage representations
or access methods.

Logical Data Independence: Application programs remain logically
unimpaired when information-preserving changes that theoretically permit
unimpairment are made to the base tables.

Integrity Independence: Integrity constraints must be definable in the
relational data sublanguage and storable in the catalog, not in the application
programs.

Distribution Independence: Application programs remain logically
unimpaired when data distribution is first introduced or when data is
redistributed.

The Nonsubversion Rule: If a relational system also supports a low-level
language, that low-level language cannot be used to subvert or bypass the
integrity rules and constraints expressed in the higher-level language.

Rule 5 refers to transactions. Without going into too much detail here, a transaction is defined as a
number of changes that should be treated by the DBMS as a single unit of work; a transaction should
always succeed or fail completely. For further reading, please refer to Oracle Insights: Tales of the Oak
Table by Dave Ensor (Apress, 2004), especially Chapter 1.

1.8 The Oracle Software Environment

Oracle Corporation has its headquarters in Redwood Shores, California. It was founded in 1977, and it
was (in 1979) the first vendor to offer a commercial RDBMS.

17

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

18

The Oracle software environment is available for many different platforms, ranging from personal
computers (PCs) to large mainframes and massive parallel processing (MPP) systems. This is one of the
unique selling points of Oracle: it guarantees a high degree of independence from hardware vendors, as
well as various system growth scenarios, without losing the benefits of earlier investments, and it offers
extensive transport and communication possibilities in heterogeneous environments.

The Oracle software environment has many components and bundling options. The core
component is the DBMS itself: the kernel. The kernel has many important tasks, such as handling all
physical data transport between memory and external storage, managing concurrency, and providing
transaction isolation. Moreover, the kernel ensures that all stored data is represented at the logical level
as relational tables. An important component of the kernel is the optimizer, which decides how to access
the physical data structures in a time-efficient way and which algorithms to use to produce the results of
your SQL commands.

Application programs and users can communicate with the kernel by using the SQL language, the
main topic of this book. Oracle SQL is an almost fully complete implementation of the ANSI/ISO/IEC
SQL:2003 standard. Oracle plays an important role in the SQL standardization process and has done that
for many years.

Oracle also provides many tools with its DBMS, to render working with the DBMS more efficient
and pleasurable. Figure 1-4 illustrates the cooperation of these tools with the Oracle database, clearly
showing the central role of the SQL language as the communication layer between the kernel and the
tools, regardless of which tool is chosen.

DBMS Tools

SQL

Data represented in tabular format

Oracle kernel

Figure 1-4. Tools, SQL, and the Oracle database

Note Besides tools enabling you to build (or generate) application programs, Oracle also sells many ready-to-
use application programs, such as the Oracle E-Business Suite and PeopleSoft Enterprise.

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

The following are examples of Oracle software components:

¢ SQL Plus and SQL Developer: These two tools stay the closest to the SQL language
and are ideal for interactive, ad hoc SQL statement execution and database access.
These are the tools we will mainly use in this book. SQL Plus is a command line
tool while SQL Developer is a graphical database administration and development
tool.

Note Don’t confuse SQL with SQL Plus or SQL Developer. SQL is a /anguage, and SQL Plus and SQL Developer
are tools.

e Oracle Developer Suite: This is an integrated set of development tools, with the
main components Oracle JDeveloper, Oracle Forms, and Oracle Reports.

e Oracle Enterprise Manager: This graphical user interface (GUI), which runs in a
browser environment, supports Oracle database administrators in their daily
work. Regular tasks like startup, shutdown, backup, recovery, maintenance, and
performance management can be done with Enterprise Manager.

1.9 Case Tables

This section introduces the seven case tables used throughout this book for all examples and exercises.
Appendix A provides a complete description of the tables and also contains some helpful diagrams and
reports of the table contents. Chapters 3 and 7 contain the SQL commands to create the case tables
(without and with constraints, respectively).

You need some understanding of the structure of the case tables to be able to write SQL statements
against the contents of those tables. Otherwise, your SQL statements may be incorrect.

Note You can download a script to create the case tables used in this book. Visit the book’s catalog page at the
Apress website, at the following URI: http://apress.com/book/view/1430271970. Then look in the “Book
Resources” section on that page. You should see a download containing a script to create and populate the
example schema for the book.

The ERM Diagram of the Case

We start with an ERM diagram depicting the logical design of our case, which means that it does not
consider any physical (implementation-dependent) circumstances. A physical design is the next stage,
when the choice is made to implement the case in an RDBMS environment, typically resulting in a table
diagram or just a text file with the SQL statements to create the tables and their constraints.

19

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

20

Figure 1-5 shows the ERM diagram for the example used in this book. The ERM diagram shows
seven entities, represented by their names in rounded-corner boxes. To maintain readability, most
attributes are omitted in the diagram; only the key attributes are displayed.

OFFERING COURSE SALGRADE
#begindate #code #grade
Y |
! - VAERRN
s | LA
L -
REGISTRATION - SHIALIVIEE
.- #empno
I
R} ! N |
N o |
HISTORY 4
#begindate N DEPARTMENT
#deptno

Figure 1-5. ERM diagram of the case

We have several relationships between these entities. The ten crow’s feet connectors in the diagram
represent one-to-many relationships. Each relationship can be read in two directions. For example, the
relationship between OFFERING and REGISTRATION should be interpreted as follows:

e Each registration is always for exactly one course offering.
e Acourse offering may have zero, one, or more registrations.

Course offerings without registrations are allowed. All one-to-many relationships in our case have
this property, which is indicated in this type of diagram with a dotted line at the optional side of the
relationship.

Notice that we have two different relationships between EMPLOYEE and DEPARTMENT: each employee
works for precisely one department, and each employee can be the manager of zero, one, or more
departments. The EMPLOYEE entity also shows a recursive relationship (a relationship of an entity with
itself) that implements the hierarchy within the company.

Each entity in the ERM diagram has a unique identifier, allowing us to uniquely identify all
occurrences of the corresponding entities. This may be a single attribute (for example, EMPNO for the
EMPLOYEE entity) or a combination of attributes, optionally combined with relationships. Each attribute
that is part of a unique identifier is preceded with a hash symbol (#); relationships that are part of a
unique identifier are denoted with a small crossbar. For example, the unique identifier of the OFFERING
entity consists of a combination of the BEGINDATE attribute and the relationship with the COURSE entity,
and the unique identifier of the entity REGISTRATION consists of the two relationships to the EMPLOYEE and
OFFERING entities. By the way, entities like REGISTRATION are often referred to as intersection entities;
REGISTRATION effectively implements a many-to-many relationship between EMPLOYEE and OFFERING.

An ERM diagram can be transformed into a relational table design with the following steps:

4,

CHAPTER 1

Each entity becomes a table.
Each attribute becomes a column.

Each relationship is transformed into a foreign key (FK) constraint at the
crow’s foot side.

Each unique identifier becomes a component of the primary key (PK).

RELATIONAL DATABASE SYSTEMS AND ORACLE

This mapping results in seven tables: EMPLOYEES, DEPARTMENTS, SALGRADES, COURSES, OFFERINGS,
REGISTRATION, and HISTORY.

Table Descriptions

Tables 1-1 through 1-7 describe the structures of the case tables.

Table 1-1. The EMPLOYEES Table

Column Description Key
EMPNO Number, unique for every employee PK
ENAME Last name --
INIT Initials (without punctuation) --
JoB Job description of the employee --
MGR The employee number of the employee’s manager FK
BDATE Date of birth --
MSAL Monthly salary (excluding bonus or commission) --
COMM Commission component of the yearly salary (only relevant for sales reps) --
DEPTNO The number of the department for which the employee works FK

21

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

22

Table 1-2. The DEPARTMENTS Table

Column Description Key
DEPTNO Unique department number PK
DNAME Department name --
LOCATION Department location (city) --
MGR Employee number of the manager of the department FK
Table 1-3. The SALGRADES Table

Column Description Key
GRADE Unique salary grade number PK
LOWNERLIMIT Lowest salary that belongs to the grade --
UPPERLIMIT Highest salary that belongs to the grade --
BONUS Optional (tax-free) bonus on top of the monthly salary --
Table 1-4. The COURSES Table

Column Description Key
CODE Course code; unique for each course PK

DESCRIPTION Short description of the course contents
CATEGORY Course type indicator (allowed values: GEN, BLD, and DSG)

DURATION Course duration, expressed in days

CHAPTER 1

Table 1-5. The OFFERINGS Table

RELATIONAL DATABASE SYSTEMS AND ORACLE

Column Description Key
COURSE Course code PK, FK
BEGINDATE Start date of the course offering PK
TRAINER Employee number of the employee teaching the course FK
LOCATION Location (city) where the course is offered --
Table 1-6. The REGISTRATIONS Table

Column Description Key
ATTENDEE Employee number of the course attendee PK, FK1
COURSE Course code PK, FK2
BEGINDATE Start date of the course offering PK, FK2
EVALUATION Evaluation of the course by the attendee (positive integer on the scale 1-5) --
Table 1-7. The HISTORY Table

Column Description Key
EMPNO Employee number PK, FK1
BEGINYEAR Year component (4 digits) of BEGINDATE --
BEGINDATE Begin date of the time interval PK
ENDDATE End date of the time interval --
DEPTNO The number of the department worked for during the interval FK2
MSAL Monthly salary during the interval --
COMMENTS Allows for free text style comments --

23

CHAPTER 1 = RELATIONAL DATABASE SYSTEMS AND ORACLE

24

In the description of the EMPLOYEES table, the COMM column deserves some special attention. This
commission attribute is relevant only for sales representatives, and therefore contains structurally
missing information (for all other employees). We could have created a separate SALESREPS table (with
two columns: EMPNO and COMM) to avoid this problem, but for the purpose of this book, the table structure
is kept simple.

The structure of the DEPARTMENTS table is straightforward. Note the two foreign key constraints
between this table and the EMPLOYEES table: an employee can “work for” a department or “be the
manager” of a department. Note also that we don’t insist that the manager of a department actually
works for that department, and it is not forbidden for any employee to manage more than one
department.

The salary grades in the SALGRADES table do not overlap, although in salary systems in the real world,
most grades are overlapping. In this table, simplicity rules. This way, every salary always falls into exactly
one grade. Moreover, the actual monetary unit (currency) for salaries, commission, and bonuses is left
undefined. The optional tax-free bonus is paid monthly, just like the regular monthly salaries.

In the COURSES table, three CATEGORY values are allowed:

e GEN (general), for introductory courses
e BLD (build), for building applications
e DSG (design), for system analysis and design

This means that these three values are the only values allowed for the CATEGORY column; this is an
example of an attribute constraint. This would also have been an opportunity to design an additional
entity (and thus another relational table) to implement course types. In that case, the CATEGORY column
would have become a foreign key to this additional table. But again, simplicity was the main goal for this
set of case tables.

In all database systems, you need procedures to describe how to handle historical datain an
information system. This is a very important—and, in practice, far from trivial—component of system
design. In our case tables, it is particularly interesting to consider course offerings and course
registrations in this respect.

If a scheduled course offering is canceled at some point in time (for example, due to lack of
registrations), the course offering is not removed from the OFFERINGS table, for statistical/historical
reasons. Therefore, it is possible that the TRAINER and/or LOCATION columns are left empty; these two
attributes are (of course) relevant only as soon as a scheduled course is going to happen. By the way, this
brings up the valid question whether scheduled course offerings and “real” course offerings might be
two different entities. Again, an opportunity to end up with more tables; and again, simplicity was the
main goal here.

Course registrations are considered synonymous with course attendance in our example database.
This becomes obvious from the EVALUATION column in the REGISTRATIONS table, where the attendee’s
appreciation of the course is stored at the end of the course, expressed on a scale from 1 to 5; the
meaning of these numbers ranges from bad (1) to excellent (5). In case a registration is canceled before a
course takes place, we remove the corresponding row from the REGISTRATIONS table. In other words, if
the BEGINDATE value of a course registration falls in the past, this means (by definition) that the
corresponding course offering took place and was attended.

The HISTORY table maintains information about the working history of all employees. More
specifically, it holds data about the departments they have been working for and the salaries they made
over the years, starting from the day they were hired. Every change of department and/or monthly salary
is recorded in this table. The current values for DEPTNO and MSAL can be stored in this table, too, by
keeping the ENDDATE attribute empty until the next change. The COMMENTS column offers room for free text
comments, for example, to justify or clarify certain changes.

CHAPTER 2

Introduction to SQL, SQL*Plus,
and SQL Developer

This chapter provides an introduction to the SQL language and two tools for working with it. The first
section presents a high-level overview of the SQL language, which will give you an idea of the capabilities
of this language. Then some important basic concepts of the SQL language are introduced in the second
section, such as constants, literals, variables, expressions, conditions, functions, operators, operands,
and so on. Finally, this chapter provides a tour of SQL*Plus and SQL Developer, the two main tools we
will use throughout this book to learn the SQL language. In order to maximize the benefits of any tool,
you first must learn how to use it and to identify the main features available in that tool.

This is the first chapter with real SQL statement examples. It thus would be beneficial for you to
have access to an Oracle database and a schema with the seven case tables introduced in Chapter 1, and
described in detail in Appendix A. You can find the scripts to create that schema in the download hosted
from this book’s catalog page or the Source Code page on the Apresswebsite (www.apress.com).

We assume that Oracle is running; database (instance) startup and shutdown are normally tasks of a
system or database administrator. Specific startup and shutdown procedures might be in place in your
environment. However, if you are working with a stand-alone Oracle environment, and you have enough
privileges, you can try the SQL*Plus STARTUP command or use the GUI offered by Oracle Enterprise
Manager to start up the database.

2.1 Overview of SQL

SQL (the abbreviation stands for Structured Query Language) is a language you can use in (at least) two
different ways: interactively or embedded. Using SQL interactively means that you enter SQL commands
via a keyboard, and you get the command results displayed on a terminal or computer screen. Using
embedded SQL involves incorporating SQL commands within a program in a different programming
language (such as Java or C). This book deals solely with interactive SQL usage.

Although SQL is called a query language, its possibilities go far beyond simply data retrieval.
Normally, the SQL language is divided into the following four command categories:

e Data definition (Data Definition Language, or DDL)
e Datamanipulation (Data Manipulation Language, or DML)
e Retrieval

e Security and authorization

25

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

26

Data Definition

The SQL data definition commands allow you to create, modify, and remove components of a database
structure. Typical database structure components are tables, views, indexes, constraints, synonyms,
sequences, and so on. Chapter 1 introduced tables, columns, and constraints; other database object
types (such as views, indexes, synonyms, and sequences) will be introduced in later chapters.

Almost all SQL data definition commands start with one of the following three keywords:

e CREATE, to create a new database object
e ALTER, to change an aspect of the structure of an existing database object

e DROP, to drop (remove) a database object

For example, with the CREATE VIEW command, you can create views. With the ALTER TABLE command,
you can change the structure of a table (for example, by adding, renaming, or dropping a column). With
the DROP INDEX command, you can drop an index.

One of the strengths of an RDBMS is the fact that you can change the structure of a table without
needing to change anything in your existing database application programs. For example, you can easily
add a column or change its width with the ALTER TABLE command. In modern DBMSs such as Oracle, you
can even do this while other database users or applications are connected and working on the
database—like changing the wheels of a train at full speed. This property of an RDBMS is known as
logical data independence (see Ted Codd’s rule 9, discussed in Chapter 1).

Data definition is covered in more detail in Chapters 3 and 7.

Data Manipulation and Transactions

Just as SQL data definition commands allow you to change the structure of a database, SQL data
manipulation commands allow you to change the contents of your database. For this purpose, SQL offers
three basic data manipulation commands:

e INSERT, to add rows to a table
e UPDATE, to change column values of existing rows
e DELETE, to remove rows from a table

You can add rows to a table with the INSERT command in two ways. One way is to add rows one by
one by specifying a list of column values in the VALUES clause of the INSERT statement. The other is to add
one or more rows to a table based on a selection (and manipulation) of existing data in the database
(called a subquery).

Note You can also load data into an Oracle database with various tools specifically developed for this purpose—
such as Data Pump in Oracle Database 10g, Export and Import in previous Oracle releases, and SQL*Loader.
These tools are often used for high-volume data loads.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Data manipulation commands are always treated as being part of a transaction. This means (among
other things) that all database changes caused by SQL data manipulation commands get a pending
status, until you confirm (commit) or cancel (roll back) the transaction. No one (except the transaction
itself) can see the pending changes of a transaction before it is committed. That’s why a transaction is
often labeled atomic: it is impossible for other database users to see parts of a transaction in the
database. It is “all or nothing,” no matter how many DML operations the transaction comprises.

SQL offers two commands to control your transactions explicitly:

e COMMIT, to confirm all pending changes of the current transaction
e ROLLBACK, to cancel all pending changes and restore the original situation

Sometimes, transactions are committed implicitly; that is, without any explicit request from a user.
For example, every data definition command implicitly commits your current transaction.
Note the following important differences between data manipulation and data definition:

e DELETE empties a table; DROP removes a table. TRUNCATE allows you to delete all the
rows in a table in an efficient (but irrevocable) way.

e UPDATE changes the contents of a table; ALTER changes its structure.

¢ You can undo the consequences of data manipulation with ROLLBACK; data
definition commands are irrevocable.

Chapter 6 will revisit data manipulation in more detail. Chapter 7 discusses the TRUNCATE command,
which is considered a data definition command.

Retrieval

The only SQL command used to query database data is SELECT. This command acts at the set (or table)
level, and always produces a set (or table) as its result. If a certain query returns exactly one row, or no
rows at all, the result is still a set: a table with one row or the empty table, respectively.

The SELECT command (as defined in the ANSI/ISO SQL standard) has six main components, which
implement all SQL retrieval. Figure 2-1 shows a diagram with these six main components of the SELECT
command.

l»—[SELECT]—[FROM]—D
’—[WHERE]—‘ ’—[GROUP BY]—‘

b >
’—[HAVING]—‘ ’—[ORDER BY]—‘

D >

Figure 2-1. The six main components of the SELECT command

27

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

28

The lines in this diagram represent all possibilities of the SELECT command, like a railroad map. You
can deduce the following three syntax rules from Figure 2-1:

e The order of these six command components is fixed.
e The SELECT and FROM components are mandatory.
¢ Theremaining components (WHERE, GROUP BY, HAVING, and ORDER BY) are optional.

Table 2-1 gives a high-level description of the roles of these six components of the SELECT command.

Table 2-1. The Six Main Components of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?

HAVING What is the condition to filter the aggregated groups?
SELECT Which columns do you want to see in the result?
ORDER BY In which order do you want to see the resulting rows?

Tip The order of the SELECT command components as displayed in Table 2-1 is also a good order to think about
them when writing SQL statements. Notice that the SELECT clause is almost the last one.

Components of the SELECT command implement three of the relational operators introduced in
Chapter 1 (Section 1.6) as follows:

e The SELECT component acts as the projection operator.
e The FROM component implements the join operator.
o The restriction operator corresponds to the WHERE component.

Now that we are on the subject of relational operators, note that the union, intersection, and
difference (minus) operators are also implemented in SQL. You can use these three set operators to
combine the results of multiple SELECT commands into a single result table, as illustrated in Figure 2-2.
We will revisit these operators in Chapter 8.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

-ALL
(owton | ——

SELECT... L{ MINUS >

INTERSECT]—

l>—| SELECT... >

Figure 2-2. A SQL set operators syntax diagram

Security

SQL offers several commands to implement data security and to restrict data access.

First of all, access to the database must be defined. User authorization is implemented by providing
database users a login name and a password, together with some database-wide privileges. These are the
most important commands in this area:

e CREATE USER, to define new database users

e ALTERUSER, to change properties (privileges and passwords) of existing database
users

e DROP USER, to remove user definitions from the database

Privileges and Roles

If users are authorized to access the database, you can implement fine-grained data access by granting
specific privileges. The Oracle DBMS offers two types of privileges: system privileges and object
privileges.

System privileges pertain to the right to perform certain (nonobject-related) actions; for example,
you can have the CREATE SESSION privilege (allows you to log on to the database) and the CREATE TABLE
privilege. Oracle supports approximately 140 different system privileges.

Object privileges involve the right to access a specific database object in a specific way; for example,
the right to issue SELECT, INSERT, and UPDATE commands against the EMPLOYEES table. Table 2-2 lists the
most important Oracle object privileges.

Note Granting and revoking system privileges is typically a task for database administrators. See Oracle SQL
Reference, part of the official documentation set for the Oracle Database, for more details on both system and
object privileges.

29

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

30

Table 2-2. Important Oracle Object Privileges

Object Privilege Allowable Action

ALTER Change the table structure (with ALTER TABLE)
DELETE Delete rows

EXECUTE Execute stored functions or procedures
FLASHBACK Go back in time (with FLASHBACK TABLE)

INDEX Create indexes on the table

INSERT Insert new rows

REFERENCES Create foreign key constraints to the table
SELECT Query the table (or view)

UPDATE Change column values of existing rows

The Oracle DBMS allows you to group privileges into roles. Roles make user management much
easier, more flexible, and also more manageable. The following are the corresponding SQL commands
used to administer these privileges and roles:

e GRANT, to grant certain privileges or roles to users or roles
e REVOKE, to revoke certain privileges or roles from users or roles

A typical scenario is the following:

CREATE ROLE <role name>
GRANT privileges TO <role name>
GRANT <role name> TO user(s)

The first step creates a new (empty) role. The second step (which can be repeated as many times as
you like) populates the role with a mix of object and system privileges. The third step grants the role (and
thereby all its privileges) to a user in a single step.

Roles have several useful and powerful properties:

¢ Roles are dynamic; further changes to the role contents automatically affect all
users previously granted that role.

¢ Roles can be enabled or disabled during a session.

e You can protect roles with a password. In that case, only users who know the role
password can enable the role.

¢ The most important advantage of roles is their manageability.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

GRANT and REVOKE

Each table has an owner, the user who created the table. Table owners are able to grant privileges on
their tables to other database users using the GRANT command. As soon as you create a table, you
implicitly get all object privileges on that table, WITH GRANT OPTION, as illustrated in Figure 2-3, which
shows the syntax of the GRANT command.

Note System privileges and roles are not considered in Figure 2-3, so the syntax diagram is incomplete.

V4

@ # lobject privilege | | b
ALL PRIVILEGES }———
=
p—{?ﬁgﬁ W
WITH
PUBLIC GRANT OPTION

Figure 2-3. The GRANT command syntax diagram

schema —I

object name—)

Here are some comments about the GRANT command:

e Table owners cannot grant the right to remove a table (DROP TABLE) to other
database users. Note, however, that Oracle supports a (rather dangerous) DROP ANY
TABLE system privilege.

e Ifyouwant to grant all object privileges to someone else, you can use the keyword
ALL (see Figure 2-3). (Instead of ALL PRIVILEGES, the Oracle DBMS also allows you
to specify ALL.)

e With a single GRANT command, you can grant privileges to a single user, a list of
users, a role, or all database users. You can address all database users with the
pseudo-user PUBLIC (see Figure 2-3).

o The UPDATE privilege supports an optional refinement: this privilege can also be
granted for specific columns, by specifying column names between parentheses.

e In principle, there is no difference between tables and views when granting object
privileges; however, the privileges ALTER, INDEX, and REFERENCES are meaningless in
the context of views.

e The GRANT OPTION not only grants certain object privileges, but also grants the right
to the grantee to spread these privileges further.

31

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

32

The counterpart of GRANT is the REVOKE command. Figure 2-4 shows the syntax diagram for REVOKE.

) ¥ (ohject privitege] |
—[ALL PRIVILEGES]—

schema.
r T object name ——)

FROM user P
L‘ PUBLIC '—‘

F

0

i

Figure 2-4. The REVOKE command syntax diagram

Besides the two standard SQL commands mentioned in this section (GRANT and REVOKE), Oracle
supports several additional commands in the security and data access area; for example, to influence the
locking behavior of the DBMS, to implement auditing, and to set up more detailed user authorization.

2.2 Basic SQL Concepts and Terminology

This section discusses the following topics:
e Constants (literals)
e Variables
e Operators, operands, conditions, and expressions
e Functions
e Database object names
e Comments

e Reserved words

Constants (Literals)

A constant (or literal) is something with a fixed value. We distinguish numbers (numeric constants) and
text (alphanumeric constants). In database jargon, alphanumeric constants are also referred to as
strings.

In the SQL language, alphanumeric constants (strings) must be placed between single quotation
marks (quotes). Numbers are also relatively straightforward in SQL; however, don’t put them between
quotes or they will be interpreted as strings. If you like, you can explicitly indicate that you want SQL to
interpret numeric values as floating point numbers by adding the suffixes f or d to indicate single (float)
or double precision, respectively. Be careful with the decimal period and group separators ((commas) in

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

numbers, because the correct interpretation of these characters depends on the value of a session
parameter (NLS_NUMERIC_CHARACTERS), and there are some cultural differences in this area.

In SQL, dates and time durations (intervals) are special cases. They are typically specified and
represented as alphanumeric constants, but they need something else to distinguish them from regular
strings. In other words, you must help the DBMS to interpret the strings correctly as date or time-interval
constants. Probably the most straightforward (and elegant) method is to prefix the strings with a
keyword (DATE, TIMESTAMP, or INTERVAL) and to adhere to a well-defined notation convention. (See the
examples in Table 2-3 and the third option in the following list.) These are the three options to specify
date and time-related constants in SQL:

e Specify them as alphanumeric constants (strings) and rely on implicit
interpretation and conversion by the Oracle DBMS. This is dangerous, because
things can go wrong if the actual format parameter for that session is different
from the format of the string.

e Specify them as alphanumeric constants (strings) and use a CAST or TO_DATE
conversion function to specify explicitly how the strings must be interpreted (see
Chapter 5).

e Specify them as alphanumeric constants (strings), prefixed with DATE, TIMESTAMP,
or INTERVAL. If you use INTERVAL, you also need a suffix to indicate a dimension,
such as DAY, MONTH, or YEAR.

Table 2-3 shows examples of using SQL constants.

Table 2-3. Examples of SQL Constants (Literals)

Type Example

Numeric 42
8.75
8.75F
132

Alphanumeric "I0neS’
"GEN'
1 132 1

Dates and intervals DATE '2004-02-09'
TIMESTAMP '2004-09-05 11.42.59.00000'
INTERVAL '2' SECOND
INTERVAL '1-3' YEAR TO MONTH

Note the subtle difference between 132 and '132". The difference between numbers and strings
becomes apparent when considering the operators they support. For example, numbers can be added or
multiplied, but you cannot do that with strings. The only operator you can apply to strings is the
concatenation operator.

In general, the SQL language is case-insensitive. However, there is one important exception:
alphanumeric constants (strings) are case-sensitive. For example, 'JOneS" is not equal to 'Jones'. This is
sometimes the explanation of getting the message “no rows selected” in cases where you were expecting
to see rows in the result.

33

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

34

Variables

A variable is something that may have a varying value over time, or even an unknown value. A variable
always has a name, so you can refer to it.
SQL supports two types of variables:

¢ Column name variables: The name of a column stays the same, but its value
typically varies from row to row while scanning a table.

e System variables: These have nothing to do with tables; nevertheless, they can
play an important role in SQL. They are commonly referred to as pseudo columns.
See Table 2-4 for some examples of Oracle system variables.

Table 2-4. Examples of Oracle System Variables (Pseudo columns)

Variable Description

SYSDATE The current system date in the database

CURRENT_DATE The current date at the client application side

SYSTIMESTAMP The system date and exact time, with time zone information

LOCALTIMESTAMP The system date and exact time, with time zone information, at the client
application side

USER The name used to connect to the database

The difference between dates (and timestamps) at the database side and those at the client
application side can be relevant if you are connected over a network connection with a database in a
remote location.

Users commonly make mistakes by forgetting to include quotes in SQL statements. Consider the
following SQL statement fragment:

...WHERE LOCATION = UTRECHT...

LOCATION and UTRECHT are both interpreted by Oracle as variable names (column names), although
the following was probably the real intention:

...WHERE LOCATION = 'UTRECHT'...

Operators, Operands, Conditions, and Expressions

An operator does something. Operands are the “victims” of operations; that is, operands serve as input
for operators. Sometimes, operators need only a single operand (in which case, they are also referred to
as monadic operators), but most operators need two or more operands.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

The SQL operators are divided in four categories, where the differentiating factor is the operand
datatype:

e Arithmetic operators
e Alphanumeric operators
e Comparison operators

e Logical operators

Arithmetic Operators

The SQL language supports four arithmetic operators, as shown in Table 2-5.

Table 2-5. SQL Arithmetic Operators

Operator Description

¥ Addition

- Subtraction

* Multiplication
/ Division

You can apply arithmetic operators only on NUMBER values; however, there are some exceptions:

o Ifyou subtract two DATE values, you get the difference between those two dates,
expressed in days.

e You can add a DATE and an INTERVAL value, which results in another date.

e Ifyou add aDATE and a NUMBER, the number is interpreted as an interval expressed
in days.

The Alphanumeric Operator: Concatenation

SQL offers only one alphanumeric operator, allowing you to concatenate string expressions: | |. This
modest number of operators is compensated for by the overwhelming number of alphanumeric
functionsin SQL, which are discussed in Chapter 5. For an example of the use of the concatenation
operator, see Table 2-8, later in this chapter.

Comparison Operators

The comparison operators allow you to formulate conditions in SQL. Table 2-6 shows the comparison
operators available in SQL.

35

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

36

Table 2-6. SQL Comparison Operators

Operator Description

< Less than

> Greater than

= Equal to

<= Less than or equal to

>= Greater than or equal to
<>orl= Not equal to

Expressions with comparison operators are also referred to as predicates or Boolean expressions.
These expressions evaluate to TRUE or FALSE. Sometimes, the outcome is UNKNOWN, such as when you have
rows with missing information. We will revisit this topic in more detail in Chapter 4, when we discuss
null values.

Logical Operators

SQL also offers three operators whose operands are conditions: the logical (or Boolean) operators. Table
2-7 lists these operators.

Table 2-7. SQL Logical Operators

Operator Description

AND Logical AND

OR Logical OR (the inclusive OR)
NOT Logical negation
Expressions

An expression is a well-formed string containing variables, constants, operators, or functions. Just like
constants, expressions always have a certain datatype. See Table 2-8 for some examples of expressions.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-8. SQL Expression Examples

Expression Datatype
3+4 Numeric
ENAME || ', ' || INIT Alphanumeric
LOCATION = 'Utrecht' Boolean
12*MSAL > 20000 AND COMM >= 100 Boolean
BDATE + INTERVAL '16"' YEAR Date

999 Numeric

The last example in Table 2-8 shows that the simplest expression is just a constant.

When SQL expressions get more complex, operator precedence can become an issue; in other words:
what are the operator priority rules? Of course, SQL has some precedence rules. For example, arithmetic
operators always have precedence over comparison operators, and comparison operators have
precedence over logical operators. However, it is highly recommended that you use parentheses in your
complex SQL expressions to force a certain expression evaluation order, just as you would do in regular
mathematics.

Functions

Oracle has added a lot of functionality to the SQL standard in the area of functions. This is definitely one
of the reasons why Oracle SQL is so powerful. You can recognize SQL functions by their signature: they
have a name, followed by one or more arguments (between parentheses) in a comma-separated list. You
can use functions in expressions, in the same way that you can use operators.

These are the six SQL function categories, based on their operand types:

e Numeric functions

e Alphanumeric functions
¢ Group functions

e Date functions

e Conversion functions

e Other functions

Table 2-9 shows some examples of SQL functions.

37

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

38

Table 2-9. Examples of SQL Functions

Function Explanation

AVG(MSAL) The average monthly salary

SQRT(16) The square root of 16

LENGTH(INIT) The number of characters in the INIT column value
LOWER (ENAME) ENAME column value, in lowercase

SUBSTR(ENDDATE, 4,3) Three characters of the ENDDATE column value, from the fourth position

Oracle even allows you to create your own SQL functions by using the PL/SQL or Java languages.
Chapter 5 will show a simple example of a user-defined function.

Database Object Naming

All objects in a database need names. This applies to tables, columns, views, indexes, synonymes,
sequences, users, roles, constraints, functions, and so on. In general, to enhance the readability of your
SQL code, it is highly recommended that you restrict yourself to using the characters A through Z, the
digits 0 through 9, and optionally the underscore ().

Note In Oracle, object names are case-insensitive; that is, internally all database object names are converted to
uppercase, regardless of how you enter those names.

You may use digits in database object names; however, database object names should always start
with a letter. Oracle object names have a maximum length of 30 characters.

Database objects need different names to be able to distinguish them, obviously. To be more
precise, database objects need unique names within their namespace. On the other hand, different
database users may use the same names for their own objects if they like, because the owner/object
name combination is used to uniquely identify an object in the database.

If you insist on creating your own object names in Oracle SQL using any characters you like
(including, for example, spaces and other strange characters), and you also want your object names to
be case-sensitive, you can include those names within double quotes. The only restriction that remains
is the maximum name length: 30 characters. Using this “feature” is discouraged, because you will always
need to include those names in double quotes again in every interactive SQL statement you want to
execute against those objects. On the other hand, you can use this technique in written applications to
prevent conflicts with reserved words, including reserved words of future DBMS versions not known to
you at application development time. Actually, several Oracle database utilities use this technique under
the hood for precisely this reason.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Comments

You can add comments to SQL commands in order to clarify their intent or to enhance their
maintainability. In other words, you can add text that does not formally belong to the SQL statements
themselves, and as such should be ignored by the Oracle DBMS. You can add such comments in two
ways: between /* and */ or after two consecutive minus signs. Comments after two minus signs are
implicitly ended by a newline character; comments between /* and */ can span multiple lines. See
Listing 2-1 for two examples.

Listing 2-1. SQL Comments Examples

/* this text will be considered a comment,
so the Oracle DBMS will ignore it ... */
-- and this text too, until the end of this line.

Listing 2-1 shows how you can add comments to SQL commands. Note that you can also add
comments to database objects with the COMMENT command. See Chapter 7 for details.

Reserved Words

Just like any other language, SQL has a list of reserved words. These are words you are not allowed to use,
for example, as database object names. If you insist on using a reserved word as an object name, you
must enclose the name within double quotes, as explained earlier in the “Database Object Naming”
section.

These are some examples of SQL reserved words: AND, CREATE, DROP, FROM, GRANT, HAVING, INDEX,
INSERT, MODIFY, NOT, NULL, NUMBER, OR, ORDER, RENAME, REVOKE, SELECT, SYNONYM, SYSDATE, TABLE, UPDATE, USER,
VALUES, VIEW, and WHERE.

Tip The Oracle data dictionary contains a V$RESERVED_WORDS view. You can check your object names against
this view to avoid using reserved words.

See Appendix A of this book, and also the Oracle SQL Reference for more details about naming rules
for database objects and a more complete listing of SQL reserved words.

2.3 Introduction to SQL*Plus

SQL*Plus is a tool used to enter SQL commands and display the output. It is provided with every Oracle
installation, whether on Windows or Unix. It is a command line interface and supports editing, user
input, and report formatting.

39

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

40

Note In 11g, SQL*Plus for Windows (sqlplusw.exe) is no longer part of the client or database install. The
command line version (sqlplus.exe) is still available. You can use an older version of SQL*Plus for Windows to
connect to an 11g database, but some functionality may not be supported. SQL Developer, which we will cover
later in this chapter, is a GUI interface that is shipped with 11g and should be considered the replacement for
SQL*Plus for Windows.

To start SQL*Plus, simply type ‘sqlplus’ at the command prompt or after starting a DOS command
session in Windows. Under normal circumstances, SQL*Plus prompts you for a username and
corresponding password. If you are able to provide a valid username/password combination, the SQL>
prompt appears on your screen to indicate that you have successfully established a session.

You can also start SQL*Plus with the username and password at the command line, as shown in
Figure 2-5. In this case, if the username/password are valid, the SQL> prompt will appear. If not, you will
be asked to enter a valid username and password.

mmand Prompt - sglplus

osoft Windows P [Version 5.1.26881
{C> Copyright 1985-2801 Microsoft Corp.

c:xhome »sglplus

SQL=Plus: Release 18.2.8.1.8 — Production on Fri Oct 9 15:41:58 2889

Copyright (c> 1982, 2885, Oracle. All rights reserved.

Enter user—name: hook

Enter password:

Connected to:

Oracle Database 1Bg Enterprise Edition Release 18.2.8.1.8 - Production
With the Partitioning,. OLAF and Data Mining options

BOOK@dwf 18gr2 >

Figure 2-5. SQL*Plus screen after a successful connection using the username/password at the command

line

You can leave SQL*Plus with the commands EXIT or QUIT.

Entering Commands

SQL*Plus not only “understands” the SQL language, but it also supports and recognizes several tool-
specific SQL*Plus commands. You must make sure to distinguish these SQL*Plus commands from SQL
commands, because SQL*Plus treats these two command types differently, as you will see.

Let’s start by entering an arbitrary (and rather simple) SQL command in SQL*Plus, as shown in
Listing 2-2.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-2. A Basic SQL SELECT Command

SQL> select *
2 from employees;

Notice that SQL commands are often spread over multiple lines and, by default, SQL*Plus
automatically displays line numbers during SQL command entry. If your SQL command is fully entered
and you want SQL*Plus to execute it for you, you should finish the last line with a semicolon (;) as a
delimiter. If you forget the semicolon (this will probably happen quite often, initially), you can still enter
that semicolon on the next (empty) line, as shown here:

SQL> select *
2 from employees
3

Either way, the command will execute. SQL*Plus will return all columns and all rows of the
EMPLOYEES table, since the asterisk character (¥*) means to show all columns of this table.

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
7369 SMITH N TRAINER 7902 17-DEC-65 800 20
7499 ALLEN JAM SALESREP 7698 20-FEB-61 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-62 1250 500 30

7566 JONES M MANAGER 7839 02-APR-67 2975 20
7654 MARTIN P SALESREP 7698 28-SEP-56 1250 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-63 2850 30
7782 CLARK AB MANAGER 7839 09-JUN-65 2450 10
7788 SCOTT SCJ TRAINER 7566 26-NOV-59 3000 20
7839 KING cc DIRECTOR 17-NOV-52 5000 10
7844 TURNER]3] SALESREP 7698 28-SEP-68 1500 0 30
7876 ADAMS AA TRAINER 7788 30-DEC-66 1100 20
7900 JONES R ADMIN 7698 03-DEC-69 800 30
7902 FORD MG TRAINER 7566 13-FEB-59 3000 20
7934 MILLER TJA ADMIN 7782 23-JAN-62 1300 10
Using the SQL Buffer

SQL*Plus stores your most recent SQL command in an area called the SQL buffer. The SQL buffer is an
important SQL*Plus concept. You can display the contents of the SQL buffer using a SQL*Plus command
called LIST, as shown in Listing 2-3.

Listing 2-3. The SQL*Plus LIST Command
SQL> L

1 select *

2* from employees

SQL>

41

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

42

The ability to retrieve the last SQL statement from the SQL buffer is often very useful when you need
to correct errors and re-execute the SQL statement. You will see how to do this in the subsequent
sections, where we’ll also discuss some other SQL*Plus commands related to the SQL buffer.

If you enter a second SQL command, the SQL buffer is overwritten, and you lose the previous SQL
command. In the “Saving Commands” section later in this chapter, you will see an easy method to save
SQL commands for reuse in SQL*Plus.

Note from the example in Listing 2-3 that the SQL command returned from the SQL buffer did not
include a semicolon at the end of it. The semicolon is not part of the SQL command itself, and it does not
end up in the SQL buffer. If you enter a SQL command (or even a portion of a SQL command) and press
the Enter key twice, without first adding a semicolon, the command will not be executed, but it will be
saved in the SQL buffer.

The SQL*Plus commands you enter are not stored in the SQL buffer. You can run as many SQL*Plus
commands as you like, but another SQL*Plus LIST command will display the same SQL command.

From the example in Listing 2-3, you can also note several other things about SQL*Plus commands:

e They are normally executed on a single line, unlike most SQL commands.

¢ Youdon'tneed to enter a semicolon to execute SQL*Plus commands. They
execute immediately when you press the Enter key.

e SQL*Plus commands can be abbreviated (L stands for LIST), whereas SQL
commands cannot.

Rather than just see what is in the buffer, it is often useful to be able to edit its contents and then re-
execute the SQL, so let’s now move on to discuss how to do that.

Using an External Editor

You can edit the contents of the SQL buffer in two ways:
e Use an external editor of your choice
e Use the built-in SQL*Plus editor

The main advantage of the SQL*Plus editor is that its functionality is always available in SQL*Plus,
and the editor is totally independent of the underlying platform. The disadvantage of the SQL*Plus
editor is its lack of user-friendliness and its very limited capabilities. This section explains how to use an
external editor to edit your SQL commands. The next section will discuss the built-in SQL*Plus editor.

The default external editor under Microsoft Windows is Notepad.

You can also change or display the SQL*Plus external editor preference from the command line by
using the DEFINE command, as shown in Listing 2-4.

Listing 2-4. Displaying and Changing the External Editor Preference
SQL> define _editor=Notepad

SQL> define _editor
DEFINE _EDITOR = "Notepad" (CHAR)

SQL>

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Note The SQL*Plus variable that holds the name of the external editor is _editor, with a leading underscore in
its name.

You can invoke the external editor to change the contents of the SQL buffer. For this purpose, the
SQL*Plus command is EDIT. You can invoke the external editor only when your SQL buffer is not empty.
An empty buffer results in the error message “nothing to save.”

Invoking the external editor starts a subprocess, which means that you cannot return to SQL*Plus
until you have closed the external editor window. Alternatively, you may want to start a separate editor
session from the operating system (that is, not from SQL*Plus) so you can switch between two windows.
In that case, you must make sure to save the changes in your editor window before executing the
changed SQL command in SQL*Plus.

Using the SQL*Plus Editor

Learning to use the SQL*Plus editing commands is key to being more proficient and efficient in
scripting. Instead of starting over if you make a mistake entering a statement, you can make a quick edit
and then execute the statement. The editing commands are the same in all versions of SQL*Plus on all
platforms.

To explore the SQL*Plus editor, we begin with the same simple SQL SELECT command in the SQL
buffer (from the “Entering Commands” section earlier in the chapter):

SQL> select *
2 from employees;

Note Please follow all instructions in this section verbatim, even when you think there are some mistakes,
because any mistakes are intentional.

It is important to realize that the SQL*Plus editor is line-oriented; that is, there is only one current
line at any point in time. You can make changes only to that current line. (Perhaps you remember the
good old EDLIN editor under MS-DOS?)

SQL*Plus marks the current line on screen with an asterisk (*) after the line number. Normally, it is
the line you entered last; in our example, it is the second line.

If you want to change something on the first line, you must first activate that line with the L1
command. Let’s try to change the asterisk into two column names. C is an abbreviation for the SQL*Plus
command CHANGE. Listing 2-5 shows how to use the LIST and CHANGE commands to make this change.
SQL*Plus searches the current line for the first occurrence of an asterisk (¥) and changes that character
into eename, bdate.

43

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

44

Listing 2-5. Using the SQL*Plus LIST and CHANGE Commands

SQL> L
1 select *
2* from employees

SQL> L1
1* select *

SQL> c/*/eename, bdate/
1* select eename, bdate

SQL> L
1 select eename, bdate
2* from employees

SQL>

Instead of slashes (/), you can use any arbitrary character for the string delimiter (separator) in the
CHANGE command. Also, a space character between the C and the first separator is not mandatory, and
you can omit the last string delimiter too.

Now, let’s try to execute the SQL command in the buffer again. The SQL*Plus command to execute
the contents of the SQL buffer is RUN, abbreviated to R. Apparently we made a mistake; we get an Oracle
error message, as shown in Listing 2-6. Observe the error message. First, it shows a line number
indication (ERROR at line 1), and within that line, an asterisk (¥) indicates the position where the error
was detected. Listing 2-6 also shows a first attempt to correct the error and the erroneous result of our
CHANGE command.

Listing 2-6. Fixing Typos with the SQL*Plus CHANGE Command

SoL> R
1 select eename, bdate
2* from employees
select eename, bdate
*

ERROR at line 1:
ORA-00904: "EENAME": invalid identifier

SQL> c/e//
1* slect eename, bdate

SQL>

We removed the first occurrence of an e on the first line, instead of the e in eename. This is the default
(and only) way the CHANGE command works. This means that you must be careful with this command
and be sure to specify appropriate search strings for replacement. In this case, it would have been better
to issue the c/ee/e/ command instead.

You can also add text at the end of the current line using the SQL*Plus APPEND command, which is
abbreviated A. Listing 2-7 shows how we can first fix the mistake, and then add one more column to the
SELECT expression.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Listing 2-7. Appending Text with the SQL*Plus APPEND Command

SoL> L1
1* slect eename, bdate

SOL> c/slect ee/select e/
1* select ename, bdate

SQL> A , deptno
1* select ename, bdate, deptno

SQL> L
1 select ename, bdate, deptno
2* from employees

SQL>

Note that the SQL*Plus APPEND command does not insert a space by default. In this case, we don’t
need a space, but otherwise you should specify a second space character after the APPEND command.

You can also add one or more additional lines to the SQL buffer with the SQL*Plus INPUT command
(abbreviated I), as shown in Listing 2-8. The lines you enter are added below the current line. If the
current line is the last line in the buffer, the new lines are added at the end of the statement. This also
means you need a “special trick” to add lines before the first line, as you'll learn in the next section.
Notice the line numbering; SQL*Plus automatically generates appropriate line numbers while entering
text. You can stop entering additional lines by pressing the Enter key twice, or by entering a semicolon
when you are adding lines at the end of the buffer.

Listing 2-8. Inserting Text with the SQL*Plus INPUT Command

1 select ename, bdate, deptno
2* from employees

SOL> I
3 where deptno = 30;

ENAME BDATE DEPTNO
ALLEN 20-FEB-1961 30
WARD 22-FEB-1962 30
MARTIN 28-SEP-1956 30
BLAKE 01-NOV-1963 30
TURNER 28-SEP-1968 30
JONES 03-DEC-1969 30
SQL>

45

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

46

Note The I is an abbreviation for INPUT, not for INSERT. INSERT is a SQL command (to add rows to a table in
the database).

The SQL*Plus DEL command deletes the current line from the SQL buffer. You can optionally specify
aline number with the DEL command to remove a certain line from the SQL buffer without making that
line the current line first, or a range of line numbers to remove several lines with a single DEL command.
See Listing 2-9 for an example.

Listing 2-9. Deleting Lines with the SQL*Plus DEL Command

SQL> L
1 select ename, bdate, deptno
2 from employees
3* where deptno = 30

SQL> DEL

SQL> L
1 select ename, bdate, deptno
2* from employees

SQL>

Note DEL is not an abbreviation for DELETE, because DELETE is a SQL command (to remove rows from a table in
the database.)

Using SQL Buffer Line Numbers
You can make any line the current one by just entering the line number, without the L (LIST) command,

as shown in Listing 2-10.

Listing 2-10. Using Line Numbers to Change the Current Line

SOL> L
1 select code, description
2 from courses
3* where category = 'DSG'

SQL> 2
2* from courses

SQL> 42

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

SP2-0226: Invalid line number
SQL>

Using line numbers, you can also replace any line in the SQL buffer without needing to use the
SQL*Plus DEL command followed by a SQL*Plus INPUT command. Instead, simply enter the desired new
line preceded by its line number. Listing 2-11 shows how to replace the first line and add a line at the
end of the SQL buffer. Notice that the high line number (42) does not generate an error message, as it
does in the example in Listing 2-10.

Listing 2-11. Using Line Numbers to Change the SQL Buffer
SOL> 1 select *

SQL> L
1 select *
2 from courses
3* where category = 'DSG'

SQL> 42 order by code

SOL> L
1 select *
2 from courses
3 where category = 'DSG’
4* order by code

SQL>

As explained earlier, the SQL*Plus INPUT command always inserts lines below the current line. The
trick to insert extra lines before the first line is to “overwrite” the artificial line zero, as demonstrated in
Listing 2-12. This is a rather trivial example; however, this trick can be quite useful when creating views.
Views are discussed in Chapter 10.

Listing 2-12. Inserting Text Before the First Line of the SQL Buffer

select *

from courses

3 where category = ‘DSG’
4* order by code

N R

SQL> 0 /* this is just a comment */

SQL> L
1 /* this is just a comment */
2 select *
3 from courses
4 where category = 'DSG'
5* order by code

47

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

48

Using the Ellipsis

If you are using the SQL*Plus CHANGE command, you might benefit from using three consecutive period
characters, also known as the ellipsis. The examples in Listings 2-13 and 2-14 demonstrate the effect of
using the ellipsis. First, we enter a new SQL command into the buffer and deliberately make a mistake.

Listing 2-13. Entering a SQL Command with a Deliberate Error

SOL> select mgr, department_name
2 from departments
3 where location = 'SCHIERMONNIKOOG';
select mgr, department_name
*

ERROR at line 1:
ORA-00904: "DEPARTMENT NAME": invalid identifier

SQL>

Normally, the last command line you entered into the SQL buffer is automatically the current line.
However, if an error condition occurs (such as in Listing 2-13), the line where the error is found becomes
the current line. This allows you to correct any mistakes with the SQL*Plus CHANGE command
immediately, without activating any line with the SQL*Plus LIST command. Listing 2-14 shows this
phenomenon; the asterisk in the L*¥ command means to show the current line.

Listing 2-14. Using the SQL*Plus L* Command and the Ellipsis (.. .)

SQL> L*
1* select mgr, department_name

SQL> c/d.../dname
1* select mgr, dname

SQL> 3

3* where 1location = 'SCHIERMONNIKOOG'
SQL> ¢/s...g/BOSTON

3* where 1location = "BOSTON'

The last example in Listing 2-14 shows that all CHANGE command searches are case-insensitive. As
you can see, the ellipsis is powerful, but it’s also dangerous. For example, the command c/d. . ./dname
searches for the first occurrence of a d on the first line, and then replaces everything to the end of the
line.

SQL*Plus Editor Command Review

The SQL*Plus editor is a rather simple editor; nevertheless, it makes sense to spend some time to explore
its possibilities. It might come in handy when you need to work with the Oracle DBMS in an

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

environment that is completely unknown to you, or where you are not allowed to launch an external
editor from the underlying operating system. The SQL*Plus editor is always available, and it’s identical
on all platforms supported by Oracle.

Table 2-10 summarizes all the SQL*Plus editor commands covered in this chapter.

Table 2-10. Some SQL*Plus Editor-Related Commands

Command Description

LIST Show the complete SQL buffer

LIST n (or justn) Make line n the current line

CHANGE/o01d/new/ Change the first occurrence of 0ld into new on the current line

APPEND txt Append txt to the end of the current line

INPUT Insert line(s) below the current line

DEL [x [y]] Without arguments: remove current line. One argument: remove that line.
Two arguments: remove range of lines (x and y can be line numbers, *, or
LAST)

RUN (or /) Execute the contents of the SQL buffer

EDIT Start an external editor on the current buffer contents

DEFINE _EDITOR Define your preferred external editor

As Table 2-10 shows, you can use the slash (/) command as an alternative for the SQL*Plus RUN
command. The difference between the two is that RUN always displays the SQL command and the results,
whereas the slash (/) command shows the results only.

Saving Commands

As explained earlier in the chapter, the SQL buffer is overwritten with every new SQL command you
enter in SQL*Plus. If you want to save the contents of the SQL buffer, you can use the SQL*Plus SAVE
command. The SAVE command creates a script file containing the contents of the SQL buffer.

If a script file already exists, you can specify (with the options APPEND or REPLACE) what you want the
SAVE command to do in that case. The APPEND option is useful if you want to save all your SQL commands
in one single file; for example, to print that file later.

Under Microsoft Windows, the options for saving the contents of the SQL buffer are also available
via the File pull-down menu of SQL*Plus, as shown in Figure 2-6.

49

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

& Oracle SQL*Plus] 10l =l
File Edit Search Options Help

o 5

Save Create. ..

Save fs... Replace. ..

Append...

Spool [2

Run

Cancel

Exit
[-
K[, H

Figure 2-6. The SQL*Plus options for saving the SQL buffer contents

As an example of saving SQL commands, enter the commands shown in Listing 2-15.

Listing 2-15. The SQL*Plus SAVE Command
SQL> save BLA
SQL> select * from departments;

DEPTNO DNAME LOCATION MGR
10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SQL> save BLI
Created file BLI.sql

SQL> select * from courses;

CODE DESCRIPTION CAT DURATION
SQL Introduction to SOL GEN 4
OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

50

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

SQL> save BLA
SP2-0540: File "BLA.sql" already exists.
Use "SAVE filename[.ext] REPLACE".

SQL> save BLA replace
Created file BLA.sql

SQL>

Note the error message after the second SAVE BLA attempt; REPLACE (or APPEND) is mandatory if a file
already exists.

We have created two script files. These script files get the extension .SQL by default. If you prefer to
use a different file name extension, you can change it with the SQL*Plus SUFFIX setting.

Running SQL*Plus Scripts

You can load script files saved with the SAVE command back into the SQL buffer with the GET command,
followed by the name of the script. For example, you might reload a script and then edit it. If you want to
load a script file and immediately execute it, you can use the START command (to get and run the script),
as shown in Listing 2-16.

Listing 2-16. Using the SQL*Plus GET and START Commands

SQL> GET BLA
1* select * from courses

SQL> START BLI
DEPTNO DNAME LOCATION MGR

10 ACCOUNTING NEW YORK 7782

20 TRAINING DALLAS 7566

30 SALES CHICAGO 7698

40 HR BOSTON 7839
SQL>

Listing 2-17 shows that you can also use the @ shortcut for the SQL*Plus START command.

Listing 2-17. Using the SQL*Plus @ Command

SOL> L
1* select * from departments
SOL> @BLA
CODE DESCRIPTION CAT DURATION
SO Introduction to SOL GN 4

51

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DsSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

SQL>

Specifying Directory Path Specifications

The SQL*Plus commands SAVE, GET, and START can handle full file name specifications, with directory
paths. In the absence of a directory path, these commands default to the current directory. In a
Microsoft Windows environment, it is relatively simple to define the directory (or folder) in which you
want SQL*Plus to start. This is one of the shortcut properties, which you can set in the Start In field of the
Properties dialog box, shown in Figure 2-7. Right-click the SQL*Plus icon and select Properties to open
this dialog box.

+ sqlplus10g Properties ﬂﬂ
o

= General Shortcut | Compatibility
sqlplusiig

g zqlplug10g

Target type: Application

Target location: BIM

Target: IE:\oracIe\ora‘I 0ghBIM zglpluzw.exe book/book

Start in: IE:\T mp

Shortcut key: INone

Bur: I Mormal window j

Comment: I

Find Target... | LChange lcon... Advanced... |

QK I Cancel | Lpply

Figure 2-7. SQL*Plus shortcut properties

52

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Through the Properties dialog box, you can also simplify the process to start SQL*Plus by specifying
your username and password (such as book/book) in the Target field. In that case, the standard log on
dialog will be skipped. However, this is a security risk, because anyone with access to your keyboard for
more than two seconds will find out your database name and password.

Tip Under Microsoft Windows, you can also set the SQLPATH Registry setting to define a default search path for
all files that cannot be found in the current directory. For example, you could have this Registry setting point to a
central directory where you maintain all your generic SQL scripts. Just open the Registry Editor with the REGEDIT
command and search for SQLPATH. Under other operating systems, check out the SQLPATH environment variable.

Adjusting SQL*Plus Settings

You can modify the behavior of SQL*Plus in numerous ways, based on SQL*Plus variables or settings.
This section provides some simple examples to give you an idea of how this works. Chapter 11 covers the
topic in more detail.

Listing 2-18 demonstrates using the SET command to change some SQL*Plus settings.

Listing 2-18. Changing SQL*Plus Settings with the SET Command

SQL> set pagesize 22
SQL> set pause "Hit [Enter]... "
SQL> set pause on

SQL> run
1* select * from courses

Hit [Enter]...
The effect of changing the PAUSE and PAGESIZE settings as shown in Listing 2-18 is that SQL*Plus now

produces screen output per page, in this case, 22 lines at a time. The PAUSE setting is useful if the results
of your SQL commands don’t fit on your screen.

Tip When using the PAUSE setting, don’t just switch it on or off; make sure to specify a prompt string, too.
Otherwise, SQL*Plus will just wait until you press the Enter key.

You can display the current values of SQL*Plus settings with the SHOW command, and you can revert
to the default behavior with the SET command. Listing 2-19 shows examples of using these commands.

53

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

54

Listing 2-19. Displaying SQL*Plus Settings with the SHOW Command

SQL> show pages
pagesize 22

SQL> show pause
PAUSE is ON and set to "Hit [Enter]... "

SOL> set pause off

SQL> show pause
PAUSE is OFF

SoL>
Although we are discussing the SQL*Plus tool in this section, there is also another (client tool-
independent) way to influence your database session behavior: by using the SQL command ALTER

SESSION. With this command, you can set several NLS (National Language Support) session parameters,
a selection of which are shown in Table 2-11.

Table 2-11. Examples of NLS Session Parameters

Parameter Description

NLS_DATE_FORMAT Default format to display dates

NLS_TIME_FORMAT Default format to display timestamps
NLS_LANGUAGE The language for SQL*Plus feedback and messages
NLS_NUMERIC_CHARACTERS The decimal point and group separator characters
NLS_CURRENCY The currency symbol

The most important parameter in this list is probably NLS_DATE_FORMAT, because this parameter
influences the way date values are interpreted and displayed by your session, which is often a source of
confusion. Listing 2-20 shows an example of using the ALTER SESSION command to set some NLS session
parameters.

Listing 2-20. Changing NLS Parameters with ALTER SESSION
SQL> alter session

2 set nls_date_format="'dd-mm-yyyy'

3 nls_language=Dutch

4 nls_currency="Eur';
Sessie is gewijzigd.

SQL>

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

If you change settings with the ALTER SESSION command, or if you change certain SQL*Plus settings
with the SQL*Plus SET command, you lose these changes as soon as you log off. On startup, SQL* Plus
will use the default values again. If you want to avoid the hassle of applying the same changes over and
over again, you can store these SQL and SQL*Plus commands in a file with the special name login.sql.
This file is automatically executed when you start SQL*Plus, or even when you change connections
within a SQL*Plus session with the CONNECT command. Note that SQL*Plus must be able to find this file
in the directory it starts in or via the SQLPATH Registry setting. Llogin.sql is an example of a SQL*Plus
script. We will revisit this type of file in more detail in Chapter 11.

If the rows of a result table don’t fit on a single line on your screen (and the line wrapping makes the
result rather ugly), a solution might be to narrow the display of one or more columns with the SQL*Plus
COLUMN command. By default, SQL*Plus displays all columns on the screen with a width derived from the
corresponding column definitions found in the data dictionary. Listing 2-21 shows how you can narrow
(or widen) the display of alphanumeric columns on your screen by using the FORMAT option of the COLUMN
command.

Listing 2-21. Changing the Width of Alphanumeric Columns

SQL> select * from courses
2 where category = 'BLD’';

CODE DESCRIPTION CAT DURATION

JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL> COLUMN description FORMAT a26
SQL> /

CODE DESCRIPTION CAT DURATION

JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL>
All SQL*Plus commands (and their optional components) can be abbreviated, as long as the
abbreviation is unique. For example, the COLUMN command can be abbreviated to COL, and FORMAT can be

abbreviated to FOR (see Listing 2-22).
You can influence the width of numeric columns in a similar way, as you can see in Listing 2-22.

Listing 2-22. Changing the Display of Numeric Columns

SOL> select * from salgrades
2 where grade > 3;

55

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

56

GRADE LOWERLIMIT UPPERLIMIT BONUS

4 2001 3000 200
5 3001 9999 500

SQL> COL bonus FOR 9999.99
sQL> /

GRADE LOWERLIMIT UPPERLIMIT BONUS

4 2001 3000 200.00
5 3001 9999 500.00

SQL>

If you want to save all your current SQL*Plus settings in a file (a SQL*Plus script file), use the STORE
SET command. See Listing 2-23 for the syntax of this command.

Listing 2-23. SQL*Plus STORE SET Command Syntax
SQL> STORE SET <filename>[.sql] [REPLACE|APPEND]

The brackets in Listing 2-23 (around .sql and REPLACE | APPEND) are part of a common syntax
notation convention to denote optional command clauses. This convention is also used in Appendix A of
this book. In this convention, a vertical bar (]|) can be used to separate optional choices, as in
[REPLACE | APPEND]. Uppercase components such as SET and APPEND should be entered verbatim;
lowercase components (such as <filename) should be replaced (in this case) by a file name of your own
choice. See Appendix A for more details.

If you have saved all SQL*Plus settings in a script file by using the STORE SET command, you can
restore those settings at any time using the START (or @ command. This allows you to write SQL*Plus
scripts that capture all SQL*Plus settings at the beginning, change various settings during script
execution, and then restore the original settings at the end of the script.

Spooling a SQL*Plus Session

You can record the complete results (as displayed on your screen) of a SQL*Plus session in an operating
system file, using the SQL*Plus SPOOL command. Listing 2-24 shows an example.

Listing 2-24. Using the SQL*Plus SPOOL Command

SQL> spool BLA.TXT [create|replace|append]
SOL> select * from employees;

SQL> select * from departments;
SQL> spool off

The BLA.TXT file, created in the same directory or folder where the SAVE command stores its script
files, now contains a complete copy of all screen output. As Listing 2-24 shows, you can influence the

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

behavior of the SPOOL command by specifying one of the following keywords: CREATE, REPLACE, or APPEND.
With these three options, you can specify which behavior you want in case the specified file already
exists. Just try these options for yourself; the error messages are self-explanatory.

Describing Database Objects

When formulating SQL commands, it is sometimes convenient to get a quick overview of the structure of
a table; for example, to see the column names and the datatypes. In such cases, the SQL*Plus DESCRIBE
command is what you need. See Listing 2-25 for an example.

Listing 2-25. The SQL*Plus DESCRIBE Command

SQL> descr employees

Name Null? Type

EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
JoB VARCHAR2(8)
MGR NUMBER (4)
BDATE NOT NULL DATE

MSAL NOT NULL NUMBER(6,2)
COMM NUMBER(6,2)
DEPTNO NUMBER (2)
SoL>

Executing Commands from the Operating System

The HOST command (most implementations support a platform-specific shortcut, such as $ or !) allows
you to execute commands at the underlying operating system; for example, on a Microsoft Windows
system, a command window is opened. Depending on the underlying operating system, you can finish
the subsession and return to your SQL*Plus session with EXIT, LOGOUT, or a similar command.

Clearing the Buffer and the Screen

With the CLEAR BUFFER command, you can empty the SQL buffer in SQL*Plus. This is something you
won’t need to do too often, because the SQL buffer is overwritten each time by consecutive commands.
With the CLEAR SCREEN command, you can start at the top of a new, empty SQL*Plus screen.

SQL*Plus Command Review

Table 2-12 shows an overview of all SQL*Plus commands covered in this chapter (including the SQL*Plus
editor commands already listed in Table 2-10).

57

CHAPTER 2

58

INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Table 2-12. Some SQL*Plus Commands

Command Description

SAVE Save the SQL buffer contents in a script file

GET Read a saved script file back into the SQL buffer
START or @ Execute the contents of a script file

SPOOL Copy all screen output to a file

SET Change a SQL*Plus setting

SHOW Show the current value of SQL*Plus settings
COLUMN ... FORMAT Change screen display attributes of a column
STORE SET Save the current SQL*Plus settings in a script file
DESCRIBE Provide a description of a database object

HOST or $ Start a subsession at the operating system level

CLEAR BUFFER

CLEAR SCREEN

Empty the SQL buffer

Start with an empty SQL*Plus screen

We also introduced the following SQL command in this section:

e ALTER SESSION changes various settings for your session, such as NLS settings.

2.4 Introduction to SQL Developer

SQL Developer is the Graphical User Interface (GUI) tool that Oracle supplies to query the database,
explore objects, run reports, and run scripts. It runs on Windows, Linux and Mac OSX. It can be used to

access Oracle databases 9i, 10g, and 11g, as well as other databases such as Times Ten, Microsoft Access,

MySQL and SQL Server.

Installing and Configuring SQL Developer

SQL Developer is included as part of Oracle Database 11g. You can also download it from the following

URL:

http://www.oracle.com/technology/products/database/sql_developer/index.html.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Once you save the downloaded archive and extract it to a directory, double click on sqldeveloper.exe
to start SQL Developer.

Note SQL Developer for Windows does not create any menu shortcuts or icons on the desktop. You need to
create these manually if you want them. Create a desktop shortcut by right clicking on the file and selecting Send
To » Desktop (create shortcut). SQL Developer also does not create any registry entries. Thus, uninstalling SQL
Developer is as simple as deleting the SQL Developer directory that you created when you unpacked the archive.

One of the first tasks that you may be prompted to do when you start SQL Developer for the first
time is to locate the Java Development Kit (JDK). If you selected the option to download SQL Developer
with the JDK, then java.exe will be included. In this example, SQL Developer is installed in
C:\oracle\product\sqldeveloper and the location of the JDK will be in the subdirectory structure show in
Figure 2-8.

Figure 2-8. SQL Developer java.exe location

When SQL Developer first starts, the Start Page shown in Figure 2-9 opens. This page includes links
to documentation, to tutorials, and to the SQL Developer Forum.

59

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

60

Note As SQL Developer is a non-licensed (free) product, support is not obtained through Oracle’s Metalink site.
The SQL Developer Forum on Oracle Technet (http://www.oracle.com/technology/index.html) is the location
for support and questions. When you have questions or issues, look there for assistance.

Figure 2-9. The SQL Developer start page

There is not a great deal of basic configuration for SQL Developer that you need to do at this time.
The ‘out of the box’ settings are fairly good for most users, but there are a couple of items that are worth
considering: setting the default script file location and disabling default extensions.

It is usually a good idea to specify the default location for saving and running scripts. One minor
annoyance with SQL Developer is that the settings for the file locations are spread among several
different dialogs. Select Tools » Preferences to bring up the Preferences dialog box, as shown in Figure
2-10. To set the Script location, select Databases » Worksheet and enter the preferred location for scripts
in the ‘Select default path to look for scripts’ box.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

=
(@@ search)| Database: worksheet
Ll

[Environment
[Code Editor
----- Compare and Merge

[Autocammit in SOL Workshest
Open a Worksheet on connect

- Database [[] Clase all warksheets on disconnect
""" Advanced Prompt for Save file on Close,
----- Autotrace/Explain Plan
----- Drag And Drop Max Rows bo prink in a script |SDDD |
..... MLS) »
_____ Objctyiewer 50U Histary Limit [to |
""" PLSQL Compiler Select default path to look For scripts
----- Reports -
C\Homelscriptst SOl Browse
----- S0L Editor Code Templ | | script150) | [=]
[SCL Formatter This is the directory used when running a script using the @ synta,
Third Party JDEC Drive [] 5ave Bind variables ta disk on exit

User Defired Extersiory [] Automatically Fresze Result Tabs

[Debugger

----- Extensions

----- File Types

----- Global Ignore List
[Migration

----- Mouseover Popups

< >
=)[o=

Figure 2-10. Setting the default script location

A second task is to disable some of the extensions that you do not need at this time. The advantage
is reducing the start time for SQL Developer. For this book, you don’t need any of the extensions, so
unselect them all. You will be prompted for a restart. You should notice that SQL Developer restarts
considerably faster than it did when you first started it.

Connecting to a Database

Unlike SQL*Plus, you do not have to enter your username, password, and database name every time you
connect. With SQL Developer you can have multiple connections that can be saved and organized. If you
are using multiple accounts for a single database, you can have a connection created for each of those
accounts.

Note You can have multiple connections open at one time, but be careful when one of those connections is to a
production database. Two common problems leading to the need for database recovery are when a table is
accidently dropped and when data is mistakenly modified in production.

To create a new connection, click on the Connections tab to make it active and then click on the
large green cross (+) in the upper left corner. You can also right click on the Connections icon and select

61

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

62

New Connection. This will bring up the New / Select Database Connection dialog as seen in Figure 2-11.
In this example, the connection is the book user to a local database.

¥, New / Select Database Connection =]
Conneckion Mame Connection Detals | Coonection Mame ook
Username book,
Password .

Save Password

Oracle | Access

Role default = [] @S Authentication
Connection Type [kerberas Authentication

[] Proxy Cannectian

Hostname: localhost
Pork 1521

O sp xe

(3) Service name testngr2|

Status :

[Save] [Clear] [Test] [Conneck] [Cancel

|

Figure 2-11. Creating a database connection

To organize your connections, you can create folders and add them to folders. You could organize
by database name, type, and location, or any meaningful criteria. There is no option to create a new
folder, so you add a connection to a new folder. Right click on the connection, select Add to Folder, and
if there aren’t any folders defined you will only have the New Folder option. Enter a folder name in the
dialog box. If folders have already been defined, you have the option to add to an existing folder or create
a new folder. For existing folders, you can drag and drop the connection onto a folder name to assign it
to that folder.

Exploring Objects

SQL Developer includes an Object Browser, which enables you to see the tables, indexes, procedures
that you own and have access to query or execute. Figure 2-12 shows how to look at the table definition.

The tabs on the table object window enable you to see additional details about the object. There are
two tabs that deserve special mention, Data and SQL. The Data tab will display the actual data in the table,
which is like doing a select * from table_name. The Data tab is also part of the View object window. The
SQL tab, which is in every object window, displays the actual SQL calls to create the object. Figure 2-13
shows the data in the employees table that is displayed by clicking the Data tab.

You can also explore the objects owned by others that you are able to access. At the very bottom of
the object list, the Other Users entry can be expanded to show all of the objects you can access. All the
users in the database are displayed, even if you cannot see any of their objects.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-12. Browsing a table

Entering Commands

The SQL Worksheet is where you enter commands to query and modify data. Like SQL*Plus, you can
enter SQL and PL/SQL commands. Some SQL*Plus commands are supported, such as COLUMN, DESCRIBE
and SPOOL. For a full list of supported and unsupported SQL*Plus commands, please refer to the Oracle
SQL Developers User’s Guide.

The Worksheet is automatically opened when you connect to a database. If you need to open
another worksheet or have closed the only one open, click on the SQL Worksheet icon or select the Tools
»SQL Worksheet menu option.

Note If the Worksheet contains more than one statement, the statements must be terminated with a ; or / (on
a separate line). If they are not properly terminated, the session will return an error message “ORA-00933: SQL
command not properly ended”.

63

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

64

Figure 2-13. Browsing a table’s data

Run Statement

Unlike SQL*Plus, a statement is not automatically run when you enter a ; or /. The Run Statement (F9)
command or the large green triangle icon is used to run a single command. If the worksheet contains
more than one command, Run Statement will run the command immediately after the selected line,
assuming that the previous statement(s) have been terminated with a ; or /.

Let’s start by entering the following, simple statement:

SELECT * FROM EMPLOYEES;

There are two things worth noting: First, the SQL statement reserved words are highlighted; second,
EMPLOYEES is suggested as the table after you type FROM E. The syntax highlighting is handy when you
accidentally type FORM instead of FROM. The auto-complete feature is also a time saver as it can suggest
table or view and column names.

Click on the Run Statement button or press F9 to execute the query and display the data in the
Query Result window, as seen in Figure 2-14.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-14. Querying EMPLOYEES table

To change the sort order of the data, double click on a column heading in the Query Result window.

Run Script

The Run Script command will run all the statements and/or SQL*Plus commands in the worksheet. This
is the command to use when you have multiple statements or want to format the output using
supported SQL*Plus commands.

Below the SELECT * FROM EMPLOYEES; we entered in the worksheet, enter SELECT * FROM
DEPARTMENTS; and then click the Run Script button or press F5. The output will be displayed in the
Script Output window alongside the Query Result window. Notice that the output is almost identical to
what you have seen in SQL*Plus and is displayed below in Figure 2-15.

65

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

66

Figure 2-15. Querying EMPLOYEES and DEPARTMENTS tables

When running scripts, the output is appended to the Script Output window. To clear the window so
that only new output is displayed, click on the Clear button (the picture of the pencil eraser).

Note Not all supported SQL*Plus commands are properly interpreted for Run Script. For example, the COLUMN
command did not change the column headings, but SET FEEDBACK OFF worked as expected.

Saving Commands to a Script

After taking time to create a complex statement, it is wise to save that command to a script that you can
run later. After entering the commands and statement(s), select File » Save, press CTL+S, or click on the
disk button to bring up the File Save dialog box. The directory that it opens should be the same one you
set in the Configuration section. The File Save dialog box is shown in Figure 2-16.

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

Figure 2-16. Saving employees.sql

Running a Script

To run the script we just saved, there are two ways to load and run. The SQL*Plus standard of using @ is
supported. To use the @ command, type @employees.sql in the worksheet and select Run Script (F5).
This is demonstrated in Figure 2-17.

The second option is to select File » Open and pick the employees.sql file you just saved. The
commands contained in that file will be loaded into the worksheet. Select the database connection you
want to use in the Choose db Connection drop down box in the upper right of the employees.sql
window. Until you select the connection, the other buttons will remain grayed out. After you select the
connection, press the Run Script button to see the output, as seen in Figure 2-18.

67

CHAPTER 2 = INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

68

Figure 2-17. Running employees.sql using @

We have just touched on the features of SQL Developer. For further information, visit the SQL
Developer home page at:
http://www.oracle.com/technology/products/database/sql_developer/index.html.

In Chapter 11, we will revisit SQL*Plus to cover some more advanced features that are useful in
writing scripts to automate your work. In case you are curious about more SQL*Plus features, feel free to
visit the Oracle online documentation or refer to the quick reference in Appendix A of this book.

Figure 2-18. Running employees.sql using File Load

CHAPTER 2

INTRODUCTION TO SQL, SQL*PLUS, AND SQL DEVELOPER

69

CHAPTER 3

Data Definition, Part |

This short chapter is the first one about data definition with SQL. It’s intended to get you started using
SQL for data retrieval as soon as possible. Therefore, this chapter covers only the data definition basics,
such as how to create simple tables using standard datatypes. In Chapter 7, we will revisit data definition
with SQL and explore topics such as indexes, synonyms, and constraints.

This chapter is mainly theoretical in nature in that it still offers no hands-on exercises and only a few
examples. In the next chapter, you will start writing SQL commands yourself.

The first section introduces the concept of database schemas and database users. In an Oracle
database, tables always belong to a schema, and, in general, a schema has a database user as its owner.
The second section explains how you can create simple tables, and the most common Oracle datatypes
are covered in the third section. To illustrate the contents of the first three sections, the fourth section
shows the CREATE TABLE commands to create the sample tables used in the examples in this book
(introduced in the previous chapter), without bothering about constraints yet.

The last section of this chapter covers the Oracle data dictionary. It provides a global overview of the
data dictionary, lists some typical examples of data dictionary tables, and shows how to execute some
simple queries against some of those data dictionary tables.

3.1 Schemas and Users

Before you can start creating and populating tables with SQL, you need to understand how data stored
in an Oracle database is organized internally. In the previous chapter, you learned that you cannot do
anything in an Oracle database if you do not identify yourself first by specifying a username and a
password. This process identifies you as a certain database user.

In an Oracle database there is, in general, a one-to-one relationship between database users and
database schemas with the same name. Briefly, these are the differences between a database user and a
database schema:

e Adatabase userhas a password and certain database privileges.

e Adatabase schemais alogical collection of database objects (such as tables,
indexes, views, and so on) that is usually owned by the user of the same name.

Normally, when you log on to an Oracle database, you are automatically connected with the
corresponding database schema with the same name. However, it is also possible that certain database
users don’t have their own schema; in other words, they don’t have any database objects of their own,
and they don’t have the privileges to create them either. These “schema-less” users are, for example,
authorized only to retrieve or manipulate data in a different database schema.

For example, in SQL*Plus, you can use the CONNECT command to establish a new connection with a
different schema, provided you are able to enter a valid combination of a database name and a

71

CHAPTER 3 = DATA DEFINITION, PART |

72

corresponding password. With the ALTER SESSION SET CURRENT SCHEMA command, you can “visit” a
different schema in SQL*Plus without changing your identity as database user, and therefore without
changing any of your privileges.

All of the examples and exercises in this book assume the presence of a database user BOOK, with the
password BOOK, and a schema BOOK that contains the seven case tables introduced in the previous
chapter. You can find all of the scripts to create the BOOK schema, to create the seven tables, and to insert
the rows in the Book Resources section of this book’s catalog page on the Apress website
[http://apress.com/book/view/1430271970].

3.2 Table Creation

The SQL command to create tables is CREATE TABLE. If you create a table, you must specify a name for the
new table, followed by a specification of all table columns. The columns must be specified as a comma-
separated list between parentheses. You might also create a new table by inheriting properties from an
existing one.

Note The right to create tables in an Oracle database is not granted to everyone; you need some additional
system privileges. If you get error messages when you try to create tables, contact your database administrator or
check Oracle Database Administrator’s Guide in the online documentation.

The basic syntax of the CREATE TABLE command is shown in Figure 3-1.

[>{>—[CREATE TABLE]—table name—)

>— (i{ column spec }J—)—

Figure 3-1. A CREATE TABLE basic command syntax diagram

Note Figure 3-1 does not show the complete syntax of the CREATE TABLE command. Just for fun, check out
Oracle SQL Reference for the amount of documentation describing the CREATE TABLE command. Chapter 7 of this
book will revisit this command with the full syntax and more details.

Column specifications normally consist of several components. Figure 3-2 shows the column
specification syntax.

CHAPTER 3 = DATA DEFINITION, PART |

NOT NULL
>-column name—{datatypd] >

YP

Figure 3-2. Column specification syntax diagram

Each column specification starts with a column name, followed by the datatype (discussed in the
next section). If you add the optional expression NOT NULL to a column definition, each future row of the
table you are creating must have a value specified for this column, and you will not be able to update
future rows by removing a value for this column. In other words, you define the column to be a
mandatory attribute.

The NOT NULL addition is an example of a constraint. You can specify many additional constraints in
the CREATE TABLE command. The other types of constraints are UNIQUE, CHECK, PRIMARY KEY, and FOREIGN
KEY. Chapter 7 will discuss these options of the CREATE TABLE command.

3.3 Datatypes

Oracle supports many standard datatypes, as you will see if you take a look at the Oracle documentation.
Some Oracle datatypes look very similar; some are even synonyms for each other. These datatypes are
supported for compatibility purposes of Oracle with other DBMSs or with the ANSI/ISO SQL standard.
For example, INT and INTEGER are synonyms for NUMBER(38). Some datatypes are very specific in nature,
making them irrelevant for us at this point in time. This section covers only the most common and
widely used Oracle datatypes.

In general, there are three categories of column data: numbers (numeric data), text (alphanumeric
data), and time-related data. The most important corresponding Oracle datatypes are NUMBER, VARCHAR or
VARCHAR2, and DATE, respectively.

Table 3-1 shows some examples of the NUMBER datatype.

Table 3-1. NUMBER Datatype Examples

Example Description
NUMBER(4) An integer with a maximum length of four digits
NUMBER(6,2) A number with a maximum precision of six digits; at most two digits behind the

decimal point
NUMBER(7,-3) A multiple of thousand with at most seven digits
NUMBER Identical to NUMBER(38,*)

NUMBER (*,5) Identical to NUMBER(38,5)

Oracle offers a number of alphanumeric datatypes. Depending on the Oracle version you are using,
there are some differences due to the evolution of the ANSI/ISO SQL standard over the years. For
example, since Oracle7, the two datatypes VARCHAR and VARCHAR? are identical, but this could change in a

73

CHAPTER 3 = DATA DEFINITION, PART |

74

future Oracle release. If you create a table and you use the VARCHAR datatype, the Oracle DBMS translates
VARCHAR to VARCHAR2 on the fly. Therefore, this book refers to only the VARCHAR2 datatype. In cases where
the maximum size of the VARCHAR2 datatype (4000) is insufficient for a specific column, you can use the
CLOB (Character Large OBject) datatype.

Table 3-2 shows some simple examples of character datatypes.

Table 3-2. Character Datatype Examples

Example Description

VARCHAR2 (25) Alphanumeric, variablelength, up to 25 characters

CHAR (4) Alphanumeric, fixed length, four characters

CLOB Alphanumeric, larger than the maximum size of the VARCHAR2 datatype

Table 3-3 lists the maximum size values for the datatypes mentioned so far.

Note The actual units of measure used for the size of CHAR and VARCHAR2 datatypes depend on character
semantics (bytes or characters). See Chapter 7 for details.

Table 3-3. Maximum Datatype Sizes

Datatype Maximum Size
NUMBER 38 digits precision
CHAR 2000

VARCHAR2 4000

CLoB 4GB

Note The indicated maximum CLOB size (4GB) is not completely correct. Depending on some configuration
parameters, CLOB columns may contain much more than 4GB worth of data. Refer to Oracle SQL Reference for
details.

CHAPTER 3 = DATA DEFINITION, PART |

The basic datatype for time-related data is DATE. By default, date values are interpreted and
displayed according to a standard date format, typically showing only the day, the month, and the last
two digits of the year. You can change the default date format for your session or use conversion
functions in your SQL commands to display dates in different ways. Internally, Oracle stores dates in
such a way that DATE column values are allowed from the year 4712 BC until the year 9999. Oracle dates
are internally stored with much more precision than you might expect on first consideration.

Gaution DATE columns also contain a time indication (hours, minutes, and seconds), which may cause
problems when comparing two dates. For example, seemingly equal dates could be different due to their invisible
time components.

Apart from the DATE datatype, Oracle also supports the related datatypes TIMESTAMP (with or without
TIME ZONE) and INTERVAL to store other time-related data in table columns. Chapter 7 provides more
details on the time-related datatypes.

This book focuses on the usage of the three standard Oracle datatypes: NUMBER, VARCHAR2, and DATE.

3.4 Commands for Creating the Case Tables

This section lists the SQL commands to create the seven case tables introduced in Chapter 1, as an

illustration of the concepts covered in the previous three sections, without much additional explanation.

Since the BOOK schema consists of seven tables, this section also shows seven CREATE TABLE commands,
presented in Listings 3-1 through 3-7.

Note As mentioned earlier, constraint definition (and constraint checking) is not taken into consideration in this
chapter; therefore, the following listings do not show the complete commands to create the case tables.

Listing 3-1. The EMPLOYEES Table

create table EMPLOYEES

(empno number(4) not null
, €ename varchar2(8) not null
, init varchar2(5) not null
, Jjob varchar2(8)

, mgr number (4)

, bdate date not null
, msal number(6,2) not null
, comm number(6,2)

, deptno number (2));

75

CHAPTER 3 = DATA DEFINITION, PART |

76

Listing 3-2. The DEPARTMENTS Table

create table DEPARTMENTS

(deptno number(2) not
, dname varchar2(10) not
, location varchar2(8) not
s mgr number (4)

null
null
null

.
)

Listing 3-3. The SALGRADES Table

create table SALGRADES
(grade number(2) not

> lowerlimit number(6,2) not
, upperlimit number(6,2) not
, bonus number(6,2) not
Listing 3-4. The COURSES Table
create table COURSES

(code varchar2(6) not
, description varchar2(30) not
, category char(3) not
, duration number (2) not

Listing 3-5. The OFFERINGS Table

create table OFFERINGS

(course varchar2(6) not
, begindate date not
, trainer number (4)

» location varchar2(8)

null
null
null
null);

null
null
null
null);

null
null

)H

Listing 3-6. The REGISTRATIONS Table

create table REGISTRATIONS

(attendee number(4) not
, course varchar2(6) not
, begindate date not

, evaluation number(1)

Listing 3-7. The HISTORY Table
create table HISTORY

(empno number(4) not
, beginyear number(4) not
, begindate date not
, enddate date

, deptno number(2) not
, msal number(6,2) not
, comments varchar2(60)

null
null
null

)5

null
null
null

null
null

)5

CHAPTER 3 = DATA DEFINITION, PART |

3.5 The Data Dictionary

If you are interested in knowing which tables are present in your database, which columns they have,
whether or not those columns are indexed, which privileges are granted to you, and similar information,
you should query the data dictionary. Another common term for data dictionary is catalog. By the way,
we already queried the data dictionary implicitly before, in Chapter 2, when using the SQL*Plus DESCRIBE
command; this command queries the data dictionary under the hood.

The data dictionary is more or less the internal housekeeping administration of Oracle. The data
dictionary stores information about the data, also referred to as metadata. The data dictionary is
automatically maintained by Oracle; therefore, the data dictionary is always up-to-date.

DBMSs - like Oracle - store data dictionary data in precisely the same way as they store “regular”
data: in tables. This is in compliance with Ted Codd’s rule 4 (see Chapter 1). The big advantage of this
approach is that you can use the SQL language to query data dictionary data in the same way that you
query ordinary data. In other words, if you master the SQL language, you need to know only the names
of the data dictionary tables and the names of their columns.

Data dictionary access is a potential security risk. That’s why the Oracle DBMS offers system
privileges and roles to regulate and protect access to the data dictionary. For example, there is a role
SELECT_CATALOG_ROLE, which contains all privileges that you need to be able to access the data dictionary
data. Listing 3-8 demonstrates how Oracle controls data dictionary access. The listing was generated
from SQL*Plus.

Listing 3-8. Needing the SELECT_CATALOG_ROLE Role

SQL> describe dba_sys_privs

ERROR:

ORA-04043: object "SYS"."DBA_SYS_PRIVS" does not exist

SQL> connect / as sysdba
Connected.

SQL> grant select catalog_role to book;
Grant succeeded.

SQL> connect book/book
Connected.

SQL> desc dba_sys_privs

Name Null? Type
GRANTEE NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
ADMIN_OPTION VARCHAR2(3)
SoL>

Although the information is stored in data dictionary fables, most of the time, you access data
dictionary views instead. On the other hand, views are tables anyway. See Chapter 10 for details about
views.

77

CHAPTER 3 = DATA DEFINITION, PART |

78

You can refer to Oracle Database Reference in the Oracle documentation to get a complete overview
of the Oracle data dictionary. Fortunately, the Oracle data dictionary contains a view that lists all Oracle
data dictionary views, with a short description of their contents. This view is called DICTIONARY; DICT is a
shorter synonym for the same view. Listing 3-9 shows an abbreviated version of the query results. It’s
abbreviated for a practical reason: the DICT view contains more than 600 rows!

Listing 3-9. Using the DICT View

select * from dict order by table_ name;

TABLE_NAME COMMENTS

ALL_ALL_TABLES Description of all object and relational
tables accessible to the user

ALL_APPLY Details about each apply process that

dequeues from the queue visible to the
current user

USER_COL_COMMENTS Comments on columns of user's tables and
views

USER_COL_PRIVS Grants on columns for which the user is
the owner, grantor or grantee

V$TIMEZONE_NAMES Synonym for V_$TIMEZONE NAMES
V$VERSION Synonym for V_$VERSION

610 rows selected.

Data dictionary view names typically have prefixes that suggest the existence of four main
categories. In Listing 3-9, you can see the ALL, USER, and V$ prefixes. The fourth common prefix is DBA.
The idea behind this is that, most of the time, you are interested in information about a certain
subcategory of database objects. By using the appropriate views, you automatically suppress
information that is not of interest to you. Also, depending on your database privileges, you will not be
allowed to use certain categories of data dictionary views. Table 3-4 lists the most common data
dictionary view name prefixes. (Note that not all data dictionary views have one of these prefixes.)

Table 3-4. Common Data Dictionary View Prefixes

Prefix Description

USER_... Information about your own objects

ALL_... Information about all objects you can access

DBA ... All information in the database; for database administrators only
[G]vs... Dynamic performance views; for database administrators only

CHAPTER 3 = DATA DEFINITION, PART |

The dynamic performance views (those with a V$ or GV$ name prefix) are a special category. These
views are not based on database tables, but rather on information from other sources such as internal
memory structures. They are mainly relevant for, and accessible to, database administrators.

Most data dictionary view names give a clear indication of their contents; however, as a
consequence, some of these names are very long. That’s why some of the most popular data dictionary
views also have alternative (shorter) synonyms, such as CAT, 0BJ, IND, TABS, and COLS. The CAT view is an
especially useful one, because it lists the objects in the current schema. Listing 3-10 shows an example of
using the CAT view with our BOOK schema.

Listing 3-10. Using the CAT View

select * from cat;

TABLE_NAME TABLE_TYPE
EMPLOYEES TABLE
DEPARTMENTS TABLE
SALGRADES TABLE
COURSES TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
HISTORY TABLE

Suppose you want to query a specific data dictionary view, and you don’t know the actual column
names of that view. In that case, you can use the SQL*Plus command DESCRIBE, just as you would do for
regular tables. As you can see in Listing 3-11, you can use the DESCRIBE command, or you can query the
data dictionary view DICT_COLUMNS.

Listing 3-11. Using the DESCRIBE Command and the DICT_COLUMNS View

describe ALL_USERS

Name Null? Type
USERNAME NOT NULL VARCHAR2(30)
USER_ID NOT NULL NUMBER
CREATED NOT NULL DATE

select column_name, comments
from dict_columns
where table name = 'ALL_USERS';

COLUMN_NAME COMMENTS

USERNAME Name of the user
USER_ID ID number of the user
CREATED User creation date

Listing 3-12 shows a query against the NLS_SESSION_PARAMETERS view (NLS stands for National
Language Support). The result shows, for example, the NLS_DATE_FORMAT value used to display dates.

79

CHAPTER 3 = DATA DEFINITION, PART |

80

Listing 3-12. Using the NLS_SESSION_PARAMETERS View

select * from nls_session parameters;

PARAMETER VALUE
NLS_LANGUAGE AMERICAN

NLS_TERRITORY AMERTCA

NLS_CURRENCY $

NLS_ISO_CURRENCY AMERTCA
NLS_NUMERIC_CHARACTERS .,

NLS_CALENDAR GREGORTAN

NLS_DATE_FORMAT DD-MON-YYYY
NLS_DATE_LANGUAGE AMERTCAN

NLS_SORT BINARY

NLS_TIME_FORMAT HH.MI.SSXFF AM
NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR
NLS_TIMESTAMP_TZ FORMAT DD-MON-RR HH.MI.SSXFF AM TZR
NLS_DUAL_CURRENCY $

NLS_COMP BINARY

NLS_LENGTH_SEMANTICS BYTE
NLS_NCHAR_CONV_EXCP FALSE

The NLS features in Oracle are documented in great detail in the Globalization Support Guide in the

Oracle documentation set.
Table 3-5 lists a selection of useful Oracle data dictionary tables.

Table 3-5. Some Useful Oracle Data Dictionary Views

View Description

DICTIONARY Description of the data dictionary itself
DICT_COLUMNS Data dictionary column descriptions
ALL_USERS Information about all database users
ALL_INDEXES' All indexes

ALL_SEQUENCES' All sequences

ALL_OBJECTS' All objects

ALL_SYNONYMS' All synonyms

ALL_TABLES' All tables

CHAPTER 3

DATA DEFINITION, PART |

ALL_VIEWS'
USER_INDEXES®
USER_SEQUENCES’
USER_OBJECTS®
USER_SYNONYMS®
USER_TABLES®
USER_TAB_COLUMNS’
USER_VIEWS®
USER_RECYCLEBIN
CAT

coLs

DICT

DUAL

IND

0BJ

SYN

TABS

All views

Indexes

Sequences

Objects

Synonyms

Tables

Columns

Views

Dropped objects

Synonym for USER_CATALOG
Synonym for USER_TAB_COLUMNS
Synonym for DICTIONARY
Dummy table, with one row and one column
Synonym for USER_INDEXES
Synonym for USER_OBJECTS
Synonym for USER_SYNONYMS

Synonym for USER_TABLES

! Accessible to the user
?Owned by the user

Appendix A provides a more complete description of the data dictionary views, and Oracle Database
Reference provides all the details you need about the Oracle data dictionary.

81

CHAPTER 4

Retrieval: The Basics

In this chapter, you will start to access the seven case tables with SQL. To be more precise, you will learn
how to retrieve data from your database. For data retrieval, the SQL language offers the SELECT
command. SELECT commands are commonly referred to as queries.

The SELECT command has six main clauses. Three of them—SELECT, WHERE, and ORDER BY—are
discussed in this chapter. Introduction of the remaining three clauses—FROM, GROUP BY, and HAVING—is
postponed until Chapter 8.

You can write queries as independent SQL statements, but queries can also occur inside other SQL
commands. These are called subqueries. This chapter introduces subqueries, and then in Chapter 9, we
will revisit subqueries to discuss some of their more advanced features.

Null values and their associated three-valued logic—SQL conditions have the three possible
outcomes of TRUE, FALSE, or UNKNOWN—are also covered in this chapter. A thorough understanding of null
values and three-valued logic is critical for anyone using the SQL language. Finally, this chapter presents

the truth tables of the AND, OR, and NOT operators, showing how these operators handle three-valued logic.

4.1 Qverview of the SELECT Command

We start this chapter with a short recap of what we already discussed in previous chapters. The six main
clauses of the SELECT command are shown in Figure 4-1.

l>t>—[SELECT]—[FROM]—D
’—[WHERE]—‘ ’—[GROUP BY]—‘

> >
’—[HAVING]—H—[ORDER BY]—‘

b »

Figure 4-1. The six main clauses of the SELECT command

83

CHAPTER 4 = RETRIEVAL: THE BASICS

Figure 4-1 is identical to Figure 2-1, and it illustrates the following main syntax rules of the SELECT
statement:

e There is a predefined mandatory order of these six clauses.
e The SELECT and FROM clauses are mandatory.
e WHERE, GROUP BY,HAVING, and ORDER BY are optional clauses.
Table 4-1 is identical to Table 2-1, and it shows high-level descriptions of the main SELECT command

clauses.

Table 4-1. The Six Main Clauses of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?
HAVING What is the condition to filter the aggregated groups?
SELECT Which columns do you want to see in the result?
ORDER BY In which order do you want to see the resulting rows?

According to the ANSI/ISO SQL standard, these six clauses must be processed in the following
order: FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY. Note that this is not the order in which you must
specify them in your queries.

As mentioned in the introduction to this chapter, SQL retrieval statements (SELECT commands) are
commonly referred to as queries. In this chapter, we will focus on queries using three SELECT command
clauses:

e SELECT: With the SELECT clause of the SELECT command, you specify the columns
that you want displayed in the query result and, optionally, which column
headings you prefer to see above the result table. This clause implements the
relational projection operator, explained in Chapter 1.

o WHERE: The WHERE clause allows you to formulate conditions that must be true in
order for a row to be retrieved. In other words, this clause allows you to filter rows
from the base tables; as such, it implements the relational restriction operator. You
can use various operators in your WHERE clause conditions—such as BETWEEN, LIKE,
IN, CASE, NOT, AND, and OR—and make them as complicated as you like.

e ORDER BY: With the ORDER BY clause, you specify the order in which you want to see
the rows in the result of your queries.

The FROM clause allows you to specify which tables you want to access. In this chapter, we will work
with queries that access only a single table, so the FROM clause in the examples in this chapter simply

84

CHAPTER 4 = RETRIEVAL: THE BASICS

specifies the table name. The FROM clause becomes more interesting when you want to access multiple
tables in a single query, as described in Chapter 8.

4.2 The SELECT Clause

Let’s start with a straightforward example of a SELECT command, shown in Listing 4-1.

Listing 4-1. Issuing a Simple SELECT Command

select * from departments;

DEPTNO DNAME LOCATION MGR
10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

The asterisk (*) means to show all columns of the DEPARTMENTS table. Listing 4-2 shows a slightly
more complicated query that selects specific columns from the EMPLOYEES table and uses a WHERE clause
to specify a condition for the rows retrieved.

Listing 4-2. Selecting Specific Columns

select ename, init, job, msal
from employees
where deptno = 30;

ENAME INIT JOB MSAL
ALLEN JAM SALESREP 1600
WARD TF SALESREP 1250
MARTIN P SALESREP 1250

BLAKE R MANAGER 2850
TURNER 13 SALESREP 1500
JONES R ADMIN 800

Let’s look at the syntax (the statement construction rules of a language) of this statement more
closely. You have a lot of freedom in this area. For example, you can enter an entire SQL command in a
single line, spread a SQL command over several lines, and use as many spaces and tabs as you like. New
lines, spaces, and tabs are commonly referred to as white space. The amount of white space in your SQL
statements is meaningless to the Oracle DBMS.

85

CHAPTER 4 = RETRIEVAL: THE BASICS

86

Tip Itis a good idea to define some SQL statement layout standards and stick to them. This increases both the
readability and the maintainability of your SQL statements. At this point, our SQL statements are short and simple,
but in real production database environments, SQL statements are sometimes several pages long.

In the SELECT clause, white space is mandatory after the keyword SELECT. The columns (or column
expressions) are separated by commas; therefore, white space is not mandatory. However, as you can see
in Listing 4-2, spaces after the commas enhance readability.

White space is also mandatory after the keywords FROM and WHERE. Again, any additional white space
is not mandatory, but it might enhance readability. For example, you can use spaces around the equal
sign in the WHERE clause.

Column Aliases

By default, the column names of the table are displayed above your query result. If you don’t like those
names—for example, because they do not adequately describe the meaning of the column in the specific
context of your query—you can specify different result column headings. You include the heading you
want to appear, called a column alias, in the SELECT clause of your query, as shown in the example in
Listing 4-3.

Listing 4-3. Changing Column Headings
select ename, init, msal salary
from employees

where deptno = 30;

ENAME INIT SALARY

ALLEN JAM 1600
WARD TF 1250
MARTIN P 1250
BLAKE R 2850
TURNER JJ 1500
JONES R 800

In this example, there is no comma between MSAL and SALARY. This small detail has a great effect, as
the result in Listing 4-3 shows: SALARY is used instead of MSAL as a column heading (compare this with the
result shown in Listing 4-2).

By the way, the ANSI/ISO SQL standard also supports the optional keyword AS between any column
name and its corresponding column heading (column alias). Using this keyword enhances readability.
In other words, you can also formulate the query in Listing 4-3 as follows:

select ename, init, msal AS salary
from employees
where deptno = 30;

CHAPTER 4 = RETRIEVAL: THE BASICS

The DISTINCT Keyword

Sometimes, your query results contain duplicate rows. You can eliminate such rows by adding the
keyword DISTINCT immediately after the keyword SELECT, as demonstrated in Listing 4-4.

Listing 4-4. Using DISTINCT to Eliminate Duplicate Rows

select DISTINCT job, deptno
from employees;

JoB DEPTNO
ADMIN 10
ADMIN 30
DIRECTOR 10
MANAGER 10
MANAGER 20
MANAGER 30
SALESREP 30
TRAINER 20

8 rows selected.

Without the addition of DISTINCT, this query would produce 14 rows, because the EMPLOYEES table
contains 14 rows. Remove the keyword DISTINCT from the first line of the query in Listing 4-4, and then
execute the query again to see the difference.

Note Using DISTINCT in the SELECT clause might incur some performance overhead, because the Oracle DBMS
must sort the result in order to eliminate the duplicate rows.

Column Expressions

Instead of column names, you can also specify column expressions in the SELECT clause. For example,
Listing 4-5 shows how you can derive the range of the salary grades in the SALGRADES table, by selecting
the difference between upper limits and lower limits.

Listing 4-5. Using a Simple Expression in a SELECT Clause

select grade, upperlimit - lowerlimit
from salgrades;

GRADE UPPERLIMIT-LOWERLIMIT

87

CHAPTER 4 = RETRIEVAL: THE BASICS

88

3 599
4 999
5 6998

In the next example, shown in Listing 4-6, we concatenate the employee names with their initials
into a single column, and also calculate the yearly salary by multiplying the monthly salary with 12.

Listing 4-6. Another Example of Using Expressions in a SELECT Clause

select init||' '||ename name

’ 12 * msal yearsal
from employees

where deptno = 10;

NAME YEARSAL
AB CLARK 29400
CC KING 60000
TJA MILLER 15600

Now take a look at the rather odd query shown in Listing 4-7.

Listing 4-7. Selecting an Expression with Literals

select 3 + 4 from departments;

The query result might look strange at first; however, it makes sense when you think about it. The
outcome of the expression 3+4 is calculated for each row of the DEPARTMENTS table. This is done four
times, because there are four departments and we did not specify a WHERE clause. Because the expression
3+4 does not contain any variables, the result (7) is obviously the same for every department row.

The DUAL Table

It makes more sense to execute queries

such as the one shown in Listing 4-7 against a dummy table, with only one row and one column. You
could create such a table yourself, but the Oracle DBMS supplies a standard dummy table for this
purpose, named DUAL, which is stored in the data dictionary. Because the Oracle DBMS knows that the
DUAL table contains only one single row, you usually get better performance results by using the DUAL
table rather than a dummy table that you created yourself.

CHAPTER 4 = RETRIEVAL: THE BASICS

Tip In 10g and above, the Oracle DBMS treats the use of DUAL like a function call that simply evaluates the
expression used in the column list. This provides even better performance results than directly accessing the DUAL
table.

Listing 4-8 shows two examples of DUAL table usage. Note that the contents of this DUAL table are
totally irrelevant; you use only the property that the DUAL table contains a single row.

Listing 4-8. Using the DUAL Table
select 123 * 456 from dual;

123*456

select sysdate from dual;

SYSDATE

05-SEP-2004

The second query in Listing 4-8 shows an example of using the system date. You can refer to the
system date in Oracle with the keyword SYSDATE. Actually, to be more precise, SYSDATE is a function that
returns the system date. These functions are also referred to as pseudo columns. See Appendix A of this
book for examples of other such pseudo columns.

Listing 4-9 shows an example of using SYSDATE to derive the age of an employee, based on the date of
birth stored in the BDATE column of the EMPLOYEES table.

Listing 4-9. Using the System Date

select ename, (sysdate-bdate)/365
from employees
where empno = 7839;

ENAME (SYSDATE-BDATE)/365

KING 51.83758

Note The results of your queries using SYSDATE depend on the precise moment the command was run;
therefore, when you execute the examples, the results will not be the same as those shown in Listings 4-8
and 4-9.

89

CHAPTER 4 = RETRIEVAL: THE BASICS

90

Null Values in Expressions

You should always consider the possibility of null values occurring in expressions. In case one or more
variables in an expression evaluate to a null value, the result of the expression as a whole becomes
unknown. We will discuss this area of concern in more detail later in this chapter, in Section 4.9. As an
appetizer, look at the result of the query in Listing 4-10.

Listing 4-10. The Effect of Null Values in Expressions

select ename, msal, comm, 12*msal + comm
from employees
where empno < 7600;

ENAME MSAL COMM 12*MSAL+COMM
SMITH 800
ALLEN 1600 300 19500
WARD 1250 500 15500
JONES 2975

As you can see, the total yearly salary (including commission) for two out of four employees is
unknown, because the commission column of those employees contains a null value.

4.3 The WHERE Clause

With the WHERE clause, you can specify a condition to filter the rows for the result. We distinguish simple
and compound conditions.
Simple conditions typically contain one of the SQL comparison operators listed in Table 4-2.

Table 4-2. SQL Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

< Not equal to (alternative syntax: !=)

Expressions containing comparison operators constitute statements that can evaluate to TRUE or
FALSE. At least, that’s how things are in mathematics (logic), as well as in our intuition. (In Section 4.9,

CHAPTER 4 = RETRIEVAL: THE BASICS

you will see that null values make things slightly more complicated in SQL, but for the moment, we
won’t worry about them.)
Listing 4-11 shows an example of a WHERE clause with a simple condition.

Listing 4-11. A WHERE Clause with a Simple Condition

select ename, init, msal
from employees
where msal >= 3000;

ENAME INIT MSAL
SCOTT Sl 3000
KING cC 5000
FORD MG 3000

Listing 4-12 shows another example of a WHERE clause with a simple condition, this time using the <>
(not equal to) operator.

Listing 4-12. Another Example of a WHERE Clause with a Simple Condition

select dname, location
from departments
where location <> 'CHICAGO';

DNAME LOCATION

ACCOUNTING NEW YORK
TRAINING DALLAS
HR BOSTON

Compound conditions consist of multiple subconditions, combined with logical operators. In
Section 4.5 of this chapter, you will see how to construct compound conditions by using the logical
operators AND, OR, and NOT.

4.4 The ORDER BY Clause

The result of a query is a table; that is, a set of rows. The order in which these rows appear in the result
typically depends on two aspects:

e The strategy chosen by the optimizer to access the data
¢ The operations chosen by the optimizer to produce the desired result

This means that it is sometimes difficult to predict the order of the rows in the result. In any case,
the order is not guaranteed to be the same under all circumstances.

If you insist on getting the resulting rows of your query back in a guaranteed order, you must use the
ORDER BY clause in your SELECT commands. Figure 4-2 shows the syntax of this clause.

91

CHAPTER 4 = RETRIEVAL: THE BASICS

92

D% ORDER BY >

ASC NULLS FIRST

DESC NULLS LAST

b column
spec »

Figure 4-2. ORDER BY clause syntax diagram

As Figure 4-2 shows, you can specify multiple sort specifications, separated by commas. Each sort
specification consists of a column specification (or column expression), optionally followed by keyword
DESC (descending), in case you want to sort in descending order. Without this addition, the default
sorting order is ASC (ascending). ASC is underlined in Figure 4-2 to denote that it is the default.

The column specification may consist of a single column name or a column expression. To refer to
columns in the ORDER BY clause, you can use any of the following:

e Regular column names

e Column aliases defined in the SELECT clause (especially useful in case of complex
expressions in the SELECT clause)

e Column ordinal numbers

Column ordinal numbers in the ORDER BY clause have no relationship with the order of the columns
in the database; they are dependent on only the SELECT clause of your query. Try to avoid using ordinal
numbers in the ORDER BY clause. Using column aliases instead increases SQL statement readability, and
your ORDER BY clauses also become independent of the SELECT clauses of your queries.

Listing 4-13 shows how you can sort query results on column combinations. As you can see, the
query result is sorted on department number, and then on employee name for each department.

Listing 4-13. Sorting Results with ORDER BY

select deptno, ename, init, msal
from employees

where msal < 1500

order by deptno, ename;

DEPTNO ENAME INIT MSAL

10 MILLER TIA 1300
20 ADAMS AA 1100
20 SMITH N 800
30 JONES R 800
30 MARTIN P 1250
30 WARD TF 1250

Listing 4-14 shows how you can reverse the default sorting order by adding the DESC keyword to your
ORDER BY clause.

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-14. Sorting in Descending Order with ORDER BY ... DESC

select ename, 12*msal+comm as yearsal
from employees

where job = 'SALESREP'

order by yearsal desc;

ENAME YEARSAL

ALLEN 19500
TURNER 18000
MARTIN 16400
WARD 15500

When sorting, null values cause trouble (when don’t they, by the way?). How should columns with
missing information be sorted? The rows need to go somewhere, so you need to decide. You have four
options as to how to treat null values when sorting:

e Always as first values (regardless of the sorting order)
e Always as last values (regardless of the sorting order)
e As lowvalues (lower than any existing value)

e As highvalues (higher than any existing value)

Figure 4-2 shows how you can explicitly indicate how to treat null values in the ORDER BY clause for
each individual column expression.
Let’s try to find out Oracle’s default behavior for sorting null values. See Listing 4-15 for a first test.

Listing 4-15. Investigating the Ordering of Null Values

select evaluation
from registrations
where attendee = 7788
order by evaluation;

EVALUATION

The null value in the result is tough to see; however, it is the third row. If you change the ORDER BY
clause to specify a descending sort, the result becomes as shown in Listing 4-16.

93

CHAPTER 4 = RETRIEVAL: THE BASICS

94

Listing 4-16. Testing the Ordering of Null Values

select evaluation

from registrations
where attendee = 7788
order by evaluation DESC;

EVALUATION

Listings 4-15 and 4-16 show that Oracle treats null values as high values. In other words, the default
behavior is as follows:

e NULLS LAST is the default for ASC.
e NULLS FIRST is the default for DESC.

4.5 AND, OR, and NOT

You can combine simple and compound conditions into more complicated compound conditions by
using the logical operators AND and OR. If you use AND, you indicate that each row should evaluate to TRUE
for both conditions. If you use OR, only one of the conditions needs to evaluate to TRUE. Sounds easy
enough, doesn’t it?

Well, the fact is that we use the words and and or in a rather sloppy way in spoken languages. The
listener easily understands our precise intentions from the context, intonation, or body language. This is
why there is a risk of making mistakes when translating questions from a natural language, such as
English, into queries in a formal language, such as SQL.

Tip It is not uncommon to see discussions (mostly after the event) about misunderstandings in the precise
wording of the original question in natural language. Therefore, you should always try to sharpen your question in
English as much as possible before trying to convert those questions into SQL statements. In cases of doubt, ask
clarifying questions for this purpose.

Therefore, in SQL, the meaning of the two keywords AND and OR must be defined very precisely,
without any chance for misinterpretation. You will see the formal truth tables of the AND, OR, and NOT
operators in Section 4.10 of this chapter, after the discussion of null values. First, let’s experiment with
these three operators and look at some examples.

The OR Operator

Consider the operator OR. We can make a distinction between the inclusive and the exclusive meaning of
the word. Is it okay if both conditions evaluate to TRUE, or should only one of the two be TRUE? In natural

CHAPTER 4 = RETRIEVAL: THE BASICS

languages, this distinction is almost always implicit. For example, suppose that you want to know when
someone can meet with you, and the answer you get is “next Thursday or Friday.” In this case, you
probably interpret the OR in its exclusive meaning.

What about SQL—is the OR operator inclusive or exclusive? Listing 4-17 shows the answer.

Listing 4-17. Combining Conditions with OR

select code, category, duration
from courses

where category = 'BLD’

or duration = 2;

CODE CAT DURATION

In this example, you can see that the OR operator in SQL is inclusive; otherwise, the third row
wouldn’t show up in the result. The XML course belongs to the BLD course category (so the first condition
evaluates to TRUE) and its duration is two days (so the second condition also evaluates to TRUE).

Another point of note regarding the evaluation order for an OR operator is that conditions are
evaluated in order until a TRUE condition is found. All subsequent conditions are ignored. This is due to
the fact that for an OR operator to be satisfied, only one condition must evaluate to TRUE. So, even if you
had many OR conditions, evaluation will stop as soon as the first TRUE occurs.

In the upcoming discussion of the NOT operator, you will see how to construct an exclusive OR.

The AND Operator and Operator Precedence Issues

There is a possible problem if your compound conditions contain a mixture of AND and OR operators. See
Listing 4-18 for an experiment with a query against the DUAL table.

Listing 4-18. Combining Conditions with OR and AND

select 'is true ' as condition
from dual

where 1=1 or 1=0 and 0=1;

CONDITION

is true

The compound condition in Listing 4-18 consists of three rather trivial, simple conditions,
evaluating to TRUE, FALSE, and FALSE, respectively. But what is the outcome of the compound predicate as
a whole, and why? Apparently, the compound predicate evaluates to TRUE; otherwise, Listing 4-18 would
have returned the message “no rows selected.”

In such cases, the result depends on the operator precedencerules. You can interpret the condition
of Listing 4-18 in two ways, as follows:

95

CHAPTER 4 = RETRIEVAL: THE BASICS

96

1=1 OR... If one of the operands of OR is true, the overall result is TRUE.

...AND 0=1 If one of the operands of AND is false, the overall result is FALSE.

Listing 4-18 obviously shows an overall result of TRUE. The Oracle DBMS evaluates the expressions in
the order that will require the fewest conditional checks. This decision is based on the demographics of
your data and is an advanced topic not covered in this book.

With compound conditions, it is always better to use parentheses to indicate the order in which you
want the operations to be performed, rather than relying on implicit language precedence rules. Listing
4-19 shows two variants of the query from Listing 4-18, using parentheses in the WHERE clause.

Listing 4-19. Using Parentheses to Force Operator Precedence

select 'is true ' as condition
from dual
where (1=1 or 1=0) and 0=1;

no rows selected

select 'is true as condition
from dual

where 1=1 or (1=0 and 0=1);

CONDITION

Caution Remember that you can use white space to beautify your SQL commands; however, never allow an
attractive SQL command layout (for example, with suggestive indentations) to confuse you. Tabs, spaces, and new
lines may increase statement readability, but they don’t change the meaning of your SQL statements in any way.

The NOT Operator

You can apply the NOT operator to any arbitrary condition to negate that condition. Listing 4-20 shows an
example.

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-20. Using the NOT Operator to Negate Conditions

select ename, job, deptno
from employees
where NOT deptno > 10;

ENAME JoB DEPTNO
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

In this simple case, you could achieve the same effect by removing the NOT operator and changing
the comparison operator > into <=, as shown in Listing 4-21.

Listing 4-21. Equivalent Query Without Using the NOT Operator

select ename, job, deptno
from employees
where deptno <= 10;

ENAME JoB DEPTNO
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

The NOT operator becomes more interesting and useful in cases where you have complex compound
predicates with AND, OR, and parentheses. In such cases, the NOT operator gives you more control over the
correctness of your commands.

In general, the NOT operator should be placed in front of the condition. Listing 4-22 shows an
example of illegal syntax and a typical error message when NOT is positioned incorrectly.

Listing 4-22. Using the NOT Operator in the Wrong Place

select ename, job, deptno
from employees
where deptno NOT > 10;
where deptno NOT > 10

*

ERROR at line 3:
ORA-00920: invalid relational operator

There are some exceptions to this rule. As you will see in Section 4.6, the SQL operators BETWEEN, IN,
and LIKE have their own built-in negation option.

97

CHAPTER 4 = RETRIEVAL: THE BASICS

98

Tip Just as you should use parentheses to avoid confusion with AND and OR operators in complex compound
conditions, it is also a good idea to use parentheses to specify the precise scope of the NOT operator explicitly. See
Listing 4-23 for an example.

By the way, do you remember the discussion about inclusive and exclusive OR? Listing 4-23 shows
how you can construct the exclusive OR in SQL by explicitly excluding the possibility that both conditions
evaluate to TRUE (on the fourth line). That’s why the XML course is now missing. Compare the result with
Listing 4-17.

Listing 4-23. Constructing the Exclusive OR Operator

select code, category, duration

from courses

where (category = 'BLD' or duration
and not (category = 'BLD' and duration

nn
N
~
-

CODE CAT DURATION

JAV BLD 4
PLS BLD 1
RSD DsG 2

Just as in mathematics, you can eliminate parentheses from SQL expressions. The following two
queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R")
select * from employees where ename <> 'BLAKE’' OR init <> 'R’

In the second version, the NOT operator disappeared, the negation is applied to the two comparison
operators, and last, but not least, the AND changes into an OR. You will look at this logical equivalence in
more detail in one of the exercises at the end of this chapter.

4.6 BETWEEN, IN, and LIKE

Section 4.3 introduced the WHERE clause, and Section 4.5 explained how you can combine simple and
compound conditions in the WHERE clause into more complicated compound conditions by using the
logical operators AND, OR, and NOT. This section introduces three new operators you can use in simple
conditions: BETWEEN, IN, and LIKE.

The BETWEEN Operator

The BETWEEN operator does not open up new possibilities; it only allows you to formulate certain
conditions a bit more easily and more readably. See Listing 4-24 for an example.

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-24. Using the BETWEEN Operator

select ename, init, msal
from employees
where msal between 1300 and 1600;

ENAME INIT MSAL
ALLEN JAM 1600
TURNER 1] 1500
MILLER TJA 1300

This example shows that the BETWEEN operator includes both border values (1300 and 1600) of the
interval.

The BETWEEN operator has its own built-in negation option. Therefore, the following three SQL
expressions are logically equivalent:

where msal NOT between 1000 and 2000
where NOT msal between 1000 and 2000
where msal < 1000 OR msal > 2000

The IN Operator

With the IN operator, you can compare a column or the outcome of a column expression against a list of
values. Using the IN operator is also a simpler way of writing a series of OR conditions. Instead of writing
empno = 7499 OR empno = 7566 OR empno = 7788, you simply use an IN-list. See Listing 4-25 for an
example.

Listing 4-25. Using the IN Operator

select empno, ename, init
from employees
where empno in (7499,7566,7788);

EMPNO ENAME INIT

7499 ALLEN JAM
7566 JONES M
7788 SCOTT SCJ

Just like BETWEEN, the IN operator also has its own built-in negation option. The example in Listing 4-
26 produces all course registrations that do nothave an evaluation value of 3, 4, or 5.

Listing 4-26. Using the NOT IN Operator

select * from registrations
where evaluation NOT IN (3,4,5);

99

CHAPTER 4 = RETRIEVAL: THE BASICS

ATTENDEE COUR BEGINDATE EVALUATION

7876 SQL 12-APR-99 2
7499 JAV 13-DEC-99 2

Check for yourself that the following four expressions are logically equivalent:

where evaluation NOT in (3,4,5)
where NOT evaluation in (3,4,5)
where NOT (evaluation=3 OR evaluation=4 OR evaluation=5)
where evaluation<>3 AND evaluation<>4 AND evaluation<>5

A rather obvious requirement for the IN operator is that all of the values you specify between the
parentheses must have the same (relevant) datatype.

The LIKE Operator

You typically use the LIKE operator in the WHERE clause of your queries in combination with a search
pattern. In the example shown in Listing 4-27, the query returns all courses that have something to do
with SQL, using the search pattern %SQL%.

Listing 4-27. Using the LIKE Operator with the Percent Character

select * from courses
where description LIKE '%SQL%';

CODE DESCRIPTION TYP DURATION
SQL Introduction to SQL GEN 4
PLS Introduction to PL/SQL BLD 1

Two characters have special meaning when you use them in a string (the search pattern) after the
LIKE operator. These two characters are commonly referred to as wildcards:

%: A percent sign after the LIKE operator means zero, one, or more arbitrary
characters (see Listing 4-27).

_:An underscore after the LIKE operator means exactly one arbitrary character.

Note If the LIKE operator (with its two wildcard characters) provides insufficient search possibilities, you can
use the REGEXP_LIKE function and regular expressions. See Chapter 5 for information about using regular
expressions.

The query shown in Listing 4-28 returns all employees with an uppercase A as the second character
in their name.

100

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-28. Using the LIKE Operator with the Percent and Underscore Characters

select empno, init, ename
from employees
where ename like '_A%';

EMPNO INIT ENAME
7521 TF WARD
7654 P MARTIN

Just like the BETWEEN and IN operators, the LIKE operator also features a built-in negation option; in
other words, you can use WHERE ... NOT LIKE

The following queries show two special cases: one using LIKE without wildcards and one using the %
character without the LIKE operator.

select * from employees where ename like 'BLAKE'
select * from employees where ename = 'BL%'

Both queries will be executed by Oracle, without any complaints or error messages. However, in the
first example, we could have used the equal sign (=) instead of the LIKE operator to get the same results.
In the second example, the percent sign (%) has no special meaning, since it doesn’t follow the LIKE
operator, so it is very likely we would get back the “no rows selected” message.

If you really want to search for actual percent sign or underscore characters with the LIKE operator,
you need to suppress the special meaning of those characters. You can do this with the ESCAPE option of
the LIKE operator, as demonstrated in Listing 4-29.

Listing 4-29. Using the ESCAPE Option of the LIKE Operator

select empno, begindate, comments
from history
where comments like '%0\%%' escape '\';

EMPNO BEGINDATE COMMENTS

7566 01-JUN-1989 From accounting to human resources; 0% salary change
7788 15-APR-1985 Transfer to human resources; 0% salary raise

The WHERE clause in Listing 4-29 searches for 0% in the COMMENTS column of the HISTORY table. The
backslash (\) suppresses the special meaning of the second percent sign in the search string. Note that
you can pick a character other than the backslash to use as the ESCAPE character.

4.7 CASE Expressions

You can tackle complicated procedural problems with CASE expressions. Oracle supports two CASE
expression types: simple CASE expressions and searched CASE expressions.

Figure 4-3 illustrates the syntax of the simple CASE expression. With this type of CASE expression, you
specify an input expression to be compared with the values in the WHEN ... THEN loop. The implicit

101

CHAPTER 4 = RETRIEVAL: THE BASICS

comparison operator is always the equal sign. The left operand is always the input expression, and the
right operand is the value from the WHEN clause.

P CASE input expression

value THEN result

END

F

i

ELSE result

;

Figure 4-3. Simple CASE expression syntax diagram

Figure 4-4 shows the syntax of the searched CASE expression. The power of this type of CASE
expression is that you don’t specify an input expression, but instead specify complete conditions in the
WHEN clause. Therefore, you have the freedom to use any logical operator in each individual WHEN clause.

CASE

»
condition THEN result J—D

E

L

'

ELSE result

;

Figure 4-4. Searched CASE expressions syntax diagram

CASE expressions are evaluated as follows:

e Oracle evaluates the WHEN expressions in the order in which you specified them,
and returns the THEN result of the first condition evaluating to TRUE. Note that
Oracle does not evaluate the remaining WHEN clauses; therefore, the order of the
WHEN expressions is important.

¢ Ifnone of the WHEN expressions evaluates to TRUE, Oracle returns the ELSE
expression.

e Ifyoudidn’t specify an ELSE expression, Oracle returns a null value.

Obviously, you must handle datatypes in a consistent way. The input expressions and the THEN
results in the simple CASE expression (Figure 4-3) must have the same datatype, and in both CASE
expression types (Figures 4-3 and 4-4), the THEN results should have the same datatype, too.

Listing 4-30 shows a straightforward example of a simple CASE expression, which doesn’t require any
explanation.

102

Listing 4-30. Simple CASE Expression Example

select attendee, begindate
R case evaluation

when 1 then 'bad’

when 2 then 'mediocre’

when 3 then 'ok'
when 4 then 'good’

when 5 then 'excellent'’
else 'not filled in'

end
from registrations
where course = 'S02';

ATTENDEE

Listing 4-31 shows an example of a searched CASE expression.

BEGINDATE CASEEVALUATIO
12-APR-99 good
12-APR-99 good
13-DEC-99 not filled in
04-0CT-99 not filled in
04-0CT-99 ok

12-APR-99 mediocre
04-0CT-99 good
13-DEC-99 not filled in
12-APR-99 excellent

Listing 4-31. Searched CASE Expression Example

select ename, job

, case when job

'"TRAINER'
when job = 'MANAGER'
when ename = 'SMITH'

end as raise
from employees
order by raise desc, ename;

JoB RAISE
MANAGER 20%
MANAGER 20%
MANAGER 20%

TRAINER 10%
TRAINER 10%
TRAINER 10%
TRAINER 10%
SALESREP 0%
ADMIN 0%
DIRECTOR 0%

then
then
then
else

10%"
20%"
30%"

0%'

CHAPTER 4 = RETRIEVAL: THE BASICS

103

CHAPTER 4 = RETRIEVAL: THE BASICS

104

MARTIN SALESREP 0%
MILLER ADMIN 0%
TURNER ~ SALESREP 0%
WARD SALESREP 0%

In Listing 4-31, note that SMITH gets only a 10% raise, despite the fourth line of the query. This is
because he is a trainer, which causes the second line to result in a match; therefore, the remaining WHEN
expressions are not considered.

Note CASE expressions may contain other CASE expressions. The only limitation is that a single CASE may have
a maximum of 255 conditional expressions. Even though you can create large CASE expressions, take care to not
use so many embedded conditions that your logic is hard to follow.

CASE expressions are very powerful and flexible; however, they sometimes become rather long.
That’s why Oracle offers several functions that you could interpret as abbreviations (or shorthand
notations) for CASE expressions, such as COALESCE and NULLIF (both of these functions are part of the
ANSI/ISO SQL standard), NVL, NVL2, and DECODE. We will look at some of these functions in the next
chapter.

4.8 Subqueries

Section 4.6 introduced the IN operator. This section introduces the concept of subqueries by starting
with an example of the IN operator.

Suppose you want to launch a targeted e-mail campaign, because you have a brand-new course that
you want to promote. The target audience for the new course is the developer community, so you want
to know who attended one or more build (BLD category) courses in the past. You could execute the
following query to get the desired result:

select attendee
from registrations
where course in ('JAV','PLS','XML")

This solution has at least two problems. To start with, you have looked at the COURSES table to check
which courses belong to the BLD course category, apparently (evidenced by the JAV, PLS, and XML in the
WHERE clause). However, the original question was not referring to any specific courses; it referred to BLD
courses. This lookup trick is easy in our demo database, which has a total of only ten courses, but this
might be problematic, or even impossible, in real information systems. Another problem is that the
solution is rather rigid. Suppose you want to repeat the e-mail promotion one year later for another new
course. In that case, you may need to revise the query to reflect the current set of BLD courses.

A much better solution to this problem is to use a subquery. This way, you leave it up to the Oracle
DBMS to query the COURSES table, by replacing the list of course codes between the parentheses (JAV, PLS,
and XML) with a query that retrieves the desired course codes for you. Listing 4-32 shows the subquery for
this example.

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-32. Using a Subquery to Retrieve All BLD Courses

select attendee
from registrations
where course in (select code
from courses
where category = 'BLD');

ATTENDEE

This eliminates both objections to the initial solution with the hard-coded course codes. Oracle first
substitutes the subquery between the parentheses with its result—a number of course codes—and then
executes the main query. (Consider “first substitutes ... and then executes ...” conceptually; the Oracle
optimizer could actually decide to execute the SQL statement in a different way.)

Apparently, 13 employees attended at least one build course in the past (see Listing 4-32). Is that
really true? Upon closer investigation, you can see that some employees apparently attended several
build courses, or maybe some employees even attended the same build course twice. In other words, the
conclusion about the number of employees (13) was too hasty. To retrieve the correct number of
employees, you should use SELECT DISTINCT in the main query to eliminate duplicates.

The Joining Condition

It is always your own responsibility to formulate subqueries in such a way that you are not comparing
apples with oranges. For example, the next variant of the query shown in Listing 4-33 does not result in
an error message; however, the result is rather strange.

Listing 4-33. Comparing Apples with Oranges

select attendee
from registrations
where EVALUATION in (select DURATION
from courses
where category = 'BLD');

105

CHAPTER 4 = RETRIEVAL: THE BASICS

106

ATTENDEE

This example compares evaluation numbers (from the main query) with course durations from the
subquery. Just try to translate this query into an English sentence...

Fortunately, the Oracle DBMS does not discriminate between meaningful and meaningless
questions. You have only two constraints:

e The datatypes must match, or the Oracle DBMS must be able to make them match
with implicit datatype conversion.

e The subquery should not select too many column values per row.

When a Subquery Returns Too Many Values

What happens when a subquery returns too many values? Look at the query in Listing 4-34 and the
resulting error message.

Listing 4-34. Error: Subquery Returns Too Many Values

select attendee

from registrations

where course in
(select course, begindate
from offerings
where location = 'CHICAGO');
(select course, begindate
*

ERROR at line 4:
ORA-00913: too many values

The subquery in Listing 4-34 returns (COURSE, BEGINDATE) value pairs, which cannot be compared
with COURSE values. However, it is certainly possible to compare attribute combinations with subqueries
in SQL. The query in Listing 4-34 was an attempt to find all employees who ever attended a course in
Chicago.

In our data model, course offerings are uniquely identified by the combination of the course code
and the begin date. Therefore, you can correct the query as shown in Listing 4-35.

CHAPTER 4 = RETRIEVAL: THE BASICS

Listing 4-35. Fixing the Error in Listing 4-34

select attendee

from registrations

where (course, begindate) in
(select course, begindate
from offerings
where location = 'CHICAGO');

ATTENDEE

Note Subqueries may, in turn, contain other subqueries. This principle is known as subquery nesting, and there
is no practical limit to the number of subquery levels you might want to create in Oracle SQL. But be aware that at
a certain level of nesting, you will probably lose the overview.

Comparison Operators in the Joining Condition

So far, we have explored subqueries with the IN operator. However, you can also establish a relationship
between a main query and its subquery by using one of the comparison operators (=, <, >, <=, >=,<>), as
demonstrated in Listing 4-36. In that case, there is one important difference: the subquery must return
precisely one row. This additional constraint makes sense if you take into consideration how these
comparison operators work: they are able to compare only a single left operand with a single right
operand.

Listing 4-36. Using a Comparison Operator in the Joining Condition

select ename, init, bdate

from employees

where bdate > (select bdate
from employees
where empno = 7876);

ENAME INIT BDATE

JONES M 02-APR-67
TURNER 33 28-SEP-68
JONES R 03-DEC-69

The query in Listing 4-36 shows all employees who are younger than employee 7876. The subquery
will never return more than one row, because EMPNO is the primary key of the EMPLOYEES table.

107

CHAPTER 4 = RETRIEVAL: THE BASICS

108

In case there is no employee with the employee number specified, you get the “no rows selected”
message. You might expect an error message like “single row subquery returns no rows” (actually, this
error message once existed in Oracle, many releases ago), but apparently there is no problem. See
Listing 4-37 for an example.

Listing 4-37. When the Subquery Returns No Rows

select ename, init, bdate

from employees

where bdate > (select bdate
from employees
where empno = 99999);

no rows selected

The subquery (returning no rows, or producing an empty set) is treated like a subquery returning
one row instead, containing a null value. In other words, SQL treats this situation as if there were an
employee 99999 with an unknown date of birth. This may sound strange; however, this behavior is fully
compliant with the ANSI/ISO SQL standard.

When a Single-Row Subquery Returns More Than One Row

In case the subquery happens to produce multiple rows, the Oracle DBMS reacts with the error message
shown in Listing 4-38.

Listing 4-38. Error: Single-Row Subquery Returns More Than One Row

select ename, init, bdate
from employees
where bdate > (select bdate
from employees
where ename = 'JONES');
where bdate > (select bdate
*

ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

In this example, the problem is that we have two employees with the same name (Jones). Note that
you always risk this outcome, unless you make sure to use an equality comparison against a unique
column of the table accessed in the subquery, as in the example in Listing 4-36.

So far, we have investigated subqueries only in the WHERE clause of the SELECT statement. Oracle SQL
also supports subqueries in other SELECT statement clauses, such as the FROM clause and the SELECT
clause. Chapter 9 will revisit subqueries.

CHAPTER 4 = RETRIEVAL: THE BASICS

4.9 Null Values

If a column (in a specific row of a table) contains no value, we say that such a column contains a null
value. The term null valueis actually slightly misleading, because it is an indicator of missing
information. Null marker would have been a better term, because a null value is not a value.

There can be many different reasons for missing information. Sometimes, an attribute is
inapplicable; for example, only sales representatives are eligible for commission. An attribute value can
also be unknown; for example, the person entering data did not know certain values when the data was
entered. And, sometimes, you don’t know whether an attribute is applicable or inapplicable; for
example, if you don’t know the job of a specific employee, you don’t know whether a commission value
is applicable. The REGISTRATIONS table provides another good example. A null value in the EVALUATION
column can mean several things: the course did not yet take place, the attendee had no opinion, the
attendee refused to provide her opinion, the evaluation forms are not yet processed, and so on.

It would be nice if you could represent the reason why information is missing, but SQL supports
only one null value, and according to Ted Codd’s rule 3 (see Chapter 1) null values can have only one
context-independent meaning.

Gaution Don’t confuse null values with the number zero (0), a series of one or more spaces, or even an empty
string. Although an empty string (*') is formally different from a null value, Oracle sometimes interprets empty
strings as null values (see Chapter 6 for some examples). However, you should never rely on this (debatable)
interpretation of empty strings. You should always use the reserved word NULL to refer to null values in your SQL
commands. Furthermore, the Oracle documentation states that empty strings may no longer be interpreted as
NULL at some point in the future.

Null Value Display

By default, null values are displayed on your computer screen as “nothing,” as shown earlier in Listings
4-15 and 4-16. You can change this behavior in SQL Developer at the session level.

You can specify how null values appear at the session level by modifying the Display NULL Value AS
environment setting, available in the SQL Developer Preferences dialog box, shown in Figure 4-5. Select
the Tools [l Preferences menu option to open this dialog box.

The Nature of Null Values

Null values sometimes behave counter-intuitively. Compare the results of the two queries in Listing 4-
39.

109

CHAPTER 4 = RETRIEVAL: THE BASICS

‘I. Preferences

& Enwiraniment Datahase: Advanced Parameters

Dockable Window s
S Log Sl Array Fetch Size |50 |
------ Acceleratars
[+ Code Editor Dizplay Mull Yalue As |(nul|) |
I:—]----E?atabase
T —— Display Mull Using Background Calor [NONE "']
-Autotrace Parameters o Ohiect on Single Click
~MLS Parameters e

~Ohjectviewer Parameters

~Third Party JOBC Drivers

r-Uzer Defined Extensions

E----Wnrksheet Parameters
Le-General Expott Parameters

[+ Debugger

------ Crocumentstion

------ Extensions

Atomatically append & '%' to search |:|

&

------ File Types

------ PLISGL Compiler Options
------ PLISGL Debugger

------ SQL*Plus

------ SGIL Formatter

------ Web Brovwser and Proxy

QI i ’ Cancel

Figure 4-5. The SQL Developer Preferences dialog box

Listing 4-39. Comparing Two “Complementary” Queries

select empno, ename, comm
from employees
where comm > 400;

EMPNO ENAME COMM
7521 WARD 500
7654 MARTIN 1400

select empno, ename, comm
from employees
where comm <= 400;

110

CHAPTER 4 = RETRIEVAL: THE BASICS

EMPNO ENAME comMm
7499 ALLEN 300
7844 TURNER 0

The first query in Listing 4-39 returns 2 employees, so you might expect to see the other 12
employees in the result of the second query, because the two WHERE clauses complement each other.
However, the two query results actually are not complementary.

If Oracle evaluates a condition, there are three possible outcomes: the result can be TRUE, FALSE, or
UNKNOWN. In other words, the SQL language is using three-valued logic.

Only those rows for which the condition evaluates to TRUE will appear in the result—no problem.
However, the EMPLOYEES table contains several rows for which both conditions in Listing 4-39 evaluate to
UNKNOWN. Therefore, these rows (ten, in this case) will not appear in either result.

Just to stress the nonintuitive nature of null values in SQL, you could say the following:

In SQL, NOT is not “not”

The explanation of this (case-sensitive) statement is that in three-valued logic, the NOT operator is
not the complement operator anymore:

NOT TRUE is equivalent with FALSE
not TRUE is equivalent with FALSE OR UNKNOWN

The IS NULL Operator

Suppose you are looking for all employees except the lucky ones with a commission greater than 400. In
that case, the second query in Listing 4-39 does not give you the correct answer, because you would
expect to see 12 employees instead of 2. To fix this query, you need the SQL IS NULL operator, as shown
in Listing 4-40.

Listing 4-40. Using the IS NULL Operator
select empno, ename, comm
from employees

where comm <= 400
or comm is null;

7902 FORD
7934 MILLER

111

CHAPTER 4 = RETRIEVAL: THE BASICS

112

Note Oracle SQL provides some functions with the specific purpose of handling null values in a flexible way
(such as NVL and NvVL2). These functions are covered in the next chapter.

The IS NULL operator—just like BETWEEN, IN, and LIKE—has its own built-in negation option. See
Listing 4-41 for an example.

Listing 4-41. Using the IS NOT NULL Operator

select ename, job, msal, comm
from employees
where comm is not null;

ENAME JoB MSAL COMM
ALLEN SALESREP 1600 300
WARD SALESREP 1250 500
MARTIN SALESREP 1250 1400
TURNER ~ SALESREP 1500 0

Note The IS NULL operator always evaluates to TRUE or FALSE. UNKNOWN is an impossible outcome.

Null Values and the Equality Operator

The IS NULL operator has only one operand: the preceding column name (or column expression).
Actually, it is a pity that this operator is not written as IS_NULL (with an underscore instead of a space) to
stress the fact that this operator has just a single operand. In contrast, the equality operator (=) has two
operands: a left operand and a right one.

Watch the rather subtle syntax difference between the following two queries:

select * from registrations where evaluation IS null
select * from registrations where evaluation = null

If you were to read both queries aloud, you might not even hear any difference. However, the
seemingly innocent syntax change has definite consequences for the query results. They don’t produce
error messages, because both queries are syntactically correct.

If one (or both) of the operands being compared by the equality comparison operator (=) evaluates
to a null value, the result is UNKNOWN. In other words, you cannot say that a null value is equal to a null
value. The following shows the conclusions:

CHAPTER 4 = RETRIEVAL: THE BASICS

Expression Evaluates to
NULL = NULL UNKNOWN
NULL IS NULL TRUE

This explains why the query in Listing 4-42 doesn’t return all 14 rows of the EMPLOYEES table.

Listing 4-42. Example of a Counterintuitive WHERE Clause

select ename, init
from employees
where comm = comm;

ENAME INIT
ALLEN JAM
WARD TF
MARTIN P
TURNER 33

In mathematical logic, we call expressions always evaluating to TRUE a tautology. The example in
Listing 4-42 shows that certain trivial tautologies from two-valued logic (such as COMM = COMM) don’t hold
true in SQL.

Null Value Pitfalls

Null values in SQL often cause trouble. You must be aware of their existence in the database and their
odds of being generated by Oracle in (intermediate) results, and you must continuously ask yourself how
you want them to be treated in the processing of your SQL statements. Otherwise, the correctness of
your queries will be debatable, to say the least.

You have already seen that null values in expressions generally cause those expressions to produce a
null value. In the next chapter, you will learn how the various SQL functions handle null values.

It is obvious that there are many pitfalls in the area of missing information. It may be possible to
circumvent at least some of these problems by properly designing your databases. In one of his books,
Ted Codd, the “inventor” of the relational model, even proposed introducing fwo types of null values:
applicable and inapplicable. This would imply the need for a four-valued logic (see Ted Codd, 1990).

Tip If you are interested in more details about the trouble of null values (or other theoretical information about
relational databases and pitfalls in SQL), the books written by Chris Date are the best starting point for further
exploration. In particular, his Selected Writings series is brilliant. Chris Date’s ability to write in an understandable,
entertaining, and fascinating way about these topics far exceeds others in the field.

113

CHAPTER 4 = RETRIEVAL: THE BASICS

114

Here’s a brain-twister to finish this section about null values: why does the query in Listing 4-43
produce “no rows selected”? There areregistrations with evaluation values 4 and 5, for sure...

Listing 4-43. A Brain-Twister

select * from registrations
where evaluation not in (1,2,3,NULL);

no rows selected
The following WHERE clause:
where evaluation not in (1,2,3,NULL)
is logically equivalent with the following “iterated AND” condition:

where evaluation <> 1
AND evaluation <> 2
AND evaluation <> 3
AND evaluation <> NULL

If you consider a row with an EVALUATION value of 1, 2, or 3, it is obvious that out of the first three
conditions, one of them returns FALSE, and the other two return TRUE. Therefore, the complete WHERE
clause returns FALSE.

If the EVALUATION value is NULL, all four conditions return UNKNOWN. Therefore, the end result is also
UNKNOWN. So far, there are no surprises.

If the EVALUATION value is 4 or 5 (the remaining two allowed values), the first three conditions all
return TRUE, but the last condition returns UNKNOWN. So you have the following expression:

(TRUE) and (TRUE) and (TRUE) and (UNKNOWN)

This is logically equivalent with UNKNOWN, so the complete WHERE clause returns UNKNOWN.

4.10 Truth Tables

Section 4.5 of this chapter showed how to use the AND, OR, and NOT operators to build compound
conditions. In that section, we didn’t worry too much about missing information and null values, but we
are now in a position to examine the combination of three-valued logic and compound conditions. This
is often a challenging subject, because three-valued logic is not always intuitive. The most reliable way to
investigate compound conditions is to use truth tables.

Table 4-3 shows the truth table of the NOT operator. In truth tables, UNK is commonly used as an
abbreviation for UNKNOWN.

Table 4-3. Truth Table of the NOT Operator

CHAPTER 4 = RETRIEVAL: THE BASICS

op1 NOT (Op1)
TRUE FALSE
FALSE TRUE

UNK UNK

In Table 4-3, Op1 stands for the operand. Since the NOT operator works on a single operand, the truth
table needs three rows to describe all possibilities. Note that the negation of UNK is UNK.

Table 4-4 shows the truth table of the AND and OR operators; Op1 and Op2 are the two operands, and
the truth table shows all nine possible combinations.

Table 4-4. Truth Table of the AND and OR Operators

Op1 Op2 Op1 AND Op2 Op1 OR Op2
TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNK UNK TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE
FALSE UNK FALSE UNK

UNK TRUE UNK TRUE

UNK FALSE FALSE UNK

UNK UNK UNK UNK

Note that the AND and OR operators are symmetric; that is, you can swap Op1 and 0p2 without

changing the operator outcome.

If you are facing complicated compound conditions, truth tables can be very useful to rewrite those
conditions into simpler, logically equivalent, expressions.

115

CHAPTER 4 = RETRIEVAL: THE BASICS

4.11 Exercises

These exercises assume you have access to a database schema with the seven case tables (see Appendix
A of this book). You can download the scripts to create this schema from this book’s catalog page on the
Apress website. The exact URL is: http://apress.com/book/view/1430271970. Look in the “Book
Resources” section of the catalog page for a link to the download.

When you'’re done with the exercises, check your answers against ours. We give our answers in
Appendix B.

1. Provide the code and description of all courses with an exact duration of four
days.

2. List all employees, sorted by job, and per job by age (from young to old).
3. Which courses have been held in Chicago and/or in Seattle?

4. Which employees attended both the Java course and the XML course? (Provide
their employee numbers.)

5. List the names and initials of all employees, except for R. Jones.

6. Find the number, job, and date of birth of all trainers and sales representatives
born before 1960.

7. List the numbers of all employees who do not work for the training
department.

8. List the numbers of all employees who did not attend the Java course.

9. Which employees have subordinates? Which employees don’thave
subordinates?

10. Produce an overview of all general course offerings (course category GEN) in
1999.

11. Provide the name and initials of all employees who have ever attended a
course taught by N. Smith. Hint: Use subqueries, and work “inside out” toward
the result; that is, retrieve the employee number of N. Smith, search for the
codes of all courses he ever taught, and so on.

12. How could you redesign the EMPLOYEES table to avoid the problem that the COMM
column contains null values meaning not applicable?

13. In Section 4.9, you saw the following statement: In SQL, NOT is not “not.”
What is this statement trying to say?

14. At the end of Section 4.5, you saw the following statement.
The following two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R")
select * from employees where ename <> 'BLAKE' OR init <> 'R’

Prove this, using a truth table. Hint: Use P as an abbreviation for ename =
'BLAKE', and use Q as an abbreviation for init = 'R'.

116

CHAPTER S5

Retrieval: Functions

This chapter is a logical continuation of the previous chapter. The main topic is still retrieval. It
introduces functions and regular expressions, which enable you to formulate more powerful and
complicated queries in an easy way.

Oracle supports an abundance of functions. Apart from the various ANSI/ISO SQL standard
functions, many Oracle-specific functions have been added to Oracle’s SQL implementation over the
years.

The chapter begins with an overview of the seven categories of functions: arithmetic, text, regular
expression, date, general, conversion, and group. The remaining sections discuss each type, with the
exception of group functions, which are introduced in Chapter 8. You will also learn about regular
expressions, which are used with some text functions to search for certain patterns in text. The last
section of this chapter briefly explains how you can define your own SQL functions in Oracle, using the
PL/SQL programming language.

5.1 Overview of Functions

In Chapter 2, you saw that SQL supports the following standard SQL operators:
e Arithmetic operators: +, -, *, and /
e Alphanumeric operator: | | (concatenation)

Besides using these operators, you can also perform many operations on your data using functions.
You can use functions virtually anywhere within queries: in the SELECT, WHERE, HAVING, and ORDER BY
clauses.

You can recognize functions as follows: they have a name, followed by one or more arguments
(between parentheses). In general, function arguments can be constants, variables, or expressions, and
sometimes function arguments contain functions themselves. Functions inside function arguments are
referred to as nested functions. In some cases, function arguments are optional. This means that you can
omit the optional argument and allow Oracle to use a standard (or default) value.

117

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

118

Note Oracle SQL Reference uses different terms for two similar concepts: functions without arguments and
pseudo columns. For example, SYSDATE and USER are listed as functions, and ROWNUM, LEVEL, and NEXTVAL are
listed as pseudo columns. If you check older versions of the documentation, you will see that Oracle changed
terminology over the years. In version 5.1, both SYSDATE and USER were pseudo columns; in version 6.0, SYSDATE
was promoted to a function, but USER was still a pseudo column; and in version 7.3, both SYSDATE and USER were
documented as functions. You could argue that SYSDATE and USER return the same value for every row, while
ROWNUM, LEVEL, and NEXTVAL normally return different values. According to the current Oracle SQL Reference,
functions take zero or more arguments. This book sometimes refers to items as pseudo columns where Oracle
SQL Reference refers to them as functions.

Obviously, the function arguments come with some constraints. For example, the datatype of the
function arguments must make some logical sense. The Oracle DBMS always tries to perform implicit
datatype conversion, and it will generate an error message only if such an attempt fails. In other words, if
you specify a number as an argument for a function that expects a string instead, the number will be
interpreted alphanumerically. However, if you ask for the square root of an employee name, you will get
the error message “ORA-01722: invalid number.”

Caution It is not a good idea to rely on implicit datatype conversion in your SQL statements. You should always
use explicit conversion functions instead. This improves SQL readability, robustness, and possibly performance.

As stated previously, Oracle supports many functions. You can categorize them based on the
datatype they expect in their arguments, as shown in Table 5-1.

Table 5-1. Function Types

Function Type Applicable To
Arithmetic functions Numerical data

Text functions Alphanumeric data
Regular expression functions Alphanumeric data
Date functions Date/time-related data
General functions Any datatype
Conversion functions Datatype conversion
Group functions Sets of values

CHAPTER 5 = RETRIEVAL: FUNCTIONS

The last category in Table 5-1, group functions, is covered in Chapter 8, where we discuss the group
BY and having clauses of the SELECT command, since that chapter is a more natural place to introduce
them. The other function types are discussed in the following sections.

5.2 Arithmetic Functions

The most popular arithmetic functions of Oracle are listed in Table 5-2.

Table 5-2. Common Oracle Arithmetic Functions

Function Description

ROUND(n[,m]) Round n on m decimal positions

TRUNC(n[,m]) Truncate n on m decimal positions
CEIL(n) Round n upwards to an integer

FLOOR(n) Round n downwards to an integer

ABS(n) Absolute value of n

SIGN(n) -1, 0, or 1 if n is negative, zero, or positive
SQRT(n) Square root of n

EXP(n) e (=2,7182813...) raised to the nth power

LN(n),LOG(m,n)
POWER(n,m)

MOD(n,m)

SIN(n), COS(n), TAN(n)
ASIN(n), ACOS(n), ATAN(n)

SINH(n), COSH(n), TANH(n)

Natural logarithm, and logarithm base m

nraised to the mth power

Remainder of n divided by m

Sine, cosine, and tangent of n (n expressed in radians)
Arcsine, arccosine, and arctangent of n

Hyperbolic sine, hyperbolic cosine, and hyperbolic tangent of n

As Table 5-2 shows, the ROUND and TRUNC functions have an optional argument m; the default value for
m is zero. Note that you can also use negative values for m, as you can see from the second example in

Listing 5-1.

Listings 5-1 through 5-4 show some self-explanatory examples of using the following arithmetic
functions: ROUND, CEIL, FLOOR, ABS, SIGN, POWER, and MOD.

119

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

Listing 5-1. Using the ROUND, CEIL, and FLOOR Functions

select round(345.678, 0), ceil(345.678), floor(345.678)
from dual;

ROUND(345.678) CEIL(345.678) FLOOR(345.678)

select round(345.678, 2)
, round(345.678,-1)
, round(345.678,-2)
from dual;

ROUND(345.678,2) ROUND(345.678,-1) ROUND(345.678,-2)

Listing 5-2. Using the ABS and SIGN Functions

select abs(-123), abs(0), abs(456)
, sign(-123), sign(0), sign(456)
from dual;

ABS(-123) ABS(0) ABS(456) SIGN(-123) SIGN(0) SIGN(456)

Listing 5-3. Using the POWER and MOD Functions

select power(2,3), power(-2,3)
, mod(8,3), mod(13,0)
from dual;

POWER(2,3) POWER(-2,3) MOD(8,3) MOD(13,0)

Listing 5-4. Using MOD in the WHERE Clause

select empno as odd_empno
, ename

from employees

where mod(empno,2) = 1;

120

CHAPTER 5 = RETRIEVAL: FUNCTIONS

ODD_EMPNO ENAME
7369 SMITH
7499 ALLEN
7521 WARD
7839 KING

The example in Listing 5-5 calculates the age (expressed in weeks and additional days) of all
employees working for department 10. In this example, we use the difference between the BDATE column
and the pseudo column Sysdate. Of course, your results will be different from the results in Listing 5-5,
because they depend on the point in time that you execute the query.

Listing 5-5. Using the FLOOR and MOD Functions

select ename

, floor((sysdate-bdate)/7) as weeks
s floor(mod(sysdate-bdate,7)) as days
from employees

where deptno = 10;

ENAME WEEKS DAYS
CLARK 2032 5
KING 2688 0
MILLER 2208 6

Listing 5-6 shows an example using the arithmetic functions SIN, TANH, EXP, LOG, and LN. You
probably recognize the number 3.14159265 as an approximation of (pi), which is used in the SIN
function example to convert degrees into radians.

Listing 5-6. Trigonometric, Exponential, and Logarithmic Functions

select sin(30*3.14159265/180), tanh(0.5)
> exp(4), log(2,32), 1n(32)
from dual;

SIN(30%3.14159265/180) TANH(0.5) EXP(4) L0G(2,32) LN(32)

.5 .4621172 54.59815 5 3.465736

5.3 Text Functions

The most important Oracle text functions are listed in Table 5-3.

121

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

Table 5-3. Common Oracle Text Functions

Function Description

LENGTH(t) Length (expressed in characters) of t

ASCII(t) ASCII value of first character of t

CHR(n) Character with ASCII value n

UPPER(t), LOWER(t) t in uppercase/lowercase

INITCAP(t) Each word in t with initial uppercase; remainder in lowercase
LTRIM(t[,k]) Remove characters from the left of t, until the first character not in k
RTRIM(t[,k]) Remove characters from the right of t, after the last character not in k

TRIM([[option][c FROM]]t) Trim character c from t; option = LEADING, TRAILING, or BOTH

LPAD(t,n[,k]) Left-pad t with sequence of characters in k to length n

RPAD(t,n[,k]) Right-pad t with k to length n (the default k is a space)

SUBSTR(t,n[,m]) Sug)string of t from position n, m characters long (the default for m is until
en

INSTR(t,k) Position of the first occurrence ofk in t

INSTR(t,k,n) Same as INSTR(t, k), but starting from positionnin t

INSTR(t,k,n,m) Same as INSTR(t, k,n), but now the mth occurrence of k

TRANSLATE(t,v,w) Replace characters from v (occurring in t) by corresponding character inw

REPLACE(t,v) Remove each occurrence of v from t

REPLACE(t,v,w) Replace each occurrence of vin t byw

CONCAT(t1,12) Concatenate t1 and t2 (equivalent to the | | operator)

Note When counting positions in strings, always start with one, not with zero.

122

CHAPTER 5 = RETRIEVAL: FUNCTIONS

Several text functions have a corresponding function with a B suffix, such as SUBSTRB, INSTRB, and
LENGTHB. These special functions express their results in bytes instead of characters. This distinction is
relevant only if you are using multibyte character sets. See Oracle SQL Reference for more details.

Listing 5-7 shows some examples of the LOWER, UPPER, INITCAP, and LENGTH text functions; the results
are self-explanatory.

Listing 5-7. Using the lower, UPPER, initcap, and LENGTH Functions

select lower(job), initcap(ename)
from employees

where upper(job) = 'SALESREP'
order by length(ename);

LOWER(JOB) INITCAP(ENAME)
salesrep Ward

salesrep Allen
salesrep Martin
salesrep Turner

Listing 5-8 illustrates the text functions ascii and CHR. If you compare the third and the fifth
columns of the result, you can see that the ascii function considers only the first character of its
argument, regardless of the length of the input text (see Table 5-3 for the description of the ASCII text
function).

Listing 5-8. Using the ASCII and CHR Functions

select ascii('a'), ascii('z')
, ascii('A"), ascii('z')
, ascii('ABC'), chr(77)
from dual;

ASCIT('A") ASCII('Z') ASCIT('A') ASCII('Z') ASCII('ABC') CHR(77)

The first two column headings in Listing 5-8 are very confusing, because SQL*Plus converts all
SELECT clause expressions to uppercase, including your function arguments. If you want lowercase
characters in your column headings, you must add column aliases and specify them between double
quotes. For example, the first line of Listing 5-8 would look like this:

select ascii('a') as "ASCII('a')", ascii('z') as "ASCII('z')"

Listings 5-9 and 5-10 show some self-explanatory examples of using the INSTR, SUBSTR, LTRIM, and
RTRIM text functions. (The layout in Listing 5-9 is formatted to increase readability.)

123

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

Listing 5-9. Using the INSTR and substr Functions

select dname

) substr(dname,4) as substr1i

, substr(dname, 4,3) as substr2

, instr(dname, 'I") as instr1i

, instr(dname,'I',5) as instr2

, instr(dname,'I",3,2) as instr3

from departments;

DNAME SUBSTR1 SUBSTR2 INSTR1 INSTR2 INSTR3
ACCOUNTING OUNTING OUN 8 8 0
HR 0 0 0
SALES ES ES 0 0 0
TRAINING INING INI 4 6 6

Listing 5-10. Using the ltrim and RTRIM Functions

select ename

, ltrim(ename,'S') as ltrim s
, rtrim(ename,'S') as rtrim s
from employees

where deptno = 20;

ENAME LTRIM S RTRIM_ S

SMITH MITH SMITH

Listing 5-11 demonstrates using the LPAD and RPAD functions. Note that they not only lengthen
strings, as their names suggest, but sometimes they also shorten strings; for example, see what happens
with ACCOUNTING and TRAINING in Listing 5-11.

Listing 5-11. Using the LPAD and RPAD Functions

select dname

s 1pad(dname,9,'>")
, rpad(dname,6, '<")
from departments;

DNAME LPAD(DNAM RPAD(D
ACCOUNTING ACCOUNTIN ACCOUN
HR >>>5555HR HR<<<<
SALES >>>>SALES SALES<

TRAINING >TRAINING TRAINI

124

CHAPTER 5 = RETRIEVAL: FUNCTIONS

You can use the LPAD and RPAD functions to produce column-value histograms by providing variable
expressions, instead of constant values, as their second argument. For an example, see Listing 5-12,
which shows how to create a salary histogram with a granularity of 100.

Listing 5-12. Producing Histograms with the LPAD and RPAD Functions

select lpad(msal,4)||' '||
rpad('o',msal/100,'0") as histogram

from employees

where deptno = 30;

HISTOGRAM

1600 0000000000000000

1250 000000000000

1250 000000000000

2850 0000000000000000000000000000
1500 000000000000000

800 00000000

Listing 5-13 shows the difference between the functions REPLACE and TRANSLATE. TRANSLATE replaces
individual characters. REPLACE offers the option to replace words with other words. Note also what
happens if you use the REPLACE function with only two arguments, instead of three: the function removes
words instead of replacing them.

Listing 5-13. Using the TRANSLATE and REPLACE Functions

select translate('beer bucket','beer','milk') as translate
, replace ('beer bucket','beer','milk’') as replace_1
, replace ('beer bucket','beer") as replace_2
from dual;

TRANSLATE REPLACE_1 REPLACE_2

miik muckit milk bucket bucket

9.4 Regular Expressions

The previous chapter introduced the LIKE operator, and the previous section of this chapter introduced
the INSTR, SUBSTR, and REPLACE functions. All of these SQL functions search for text. The LIKE operator
offers the two wildcard characters % and _, which allow you to perform more advanced searches. The
other three functions accept plain text searches only. This functionality is sometimes insufficient for
complicated search operations. Therefore, Oracle SQL also supports four functions: REGEXP_LIKE,
REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE. These SQL functions support, as their names suggest,
so-called regular expressions. Apart from that, they serve the same purpose as their non-REGEXP
counterparts.

Regular expressions are well known in all UNIX operating system variants (such as Linux, Solaris,
and HP/UX) and are part of the international POSIX standard. They are documented in great detail in

125

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

Oracle SQL Reference, Appendix C. This section provides an introduction to regular expressions, focusing
on their use with the Oracle SQL regular expression functions.

Regular Expression Operators and Metasymbols

Table 5-4 shows the most important regular expression metasymbols and their meanings. The Type
column in Table 5-4 may contain the following:

e Postfix, which means that the operator follows its operand
e Prefix, which means that the operator precedes its operand
¢ Infix, which means that the operator separates its operands

¢ Nothing (empty), which means that the operator has no operands

Table 5-4. Common Regular Expression Operators and Metasymbols

Operator Type Description

* Postfix Zero or more occurrences
+ Postfix One or more occurrences
? Postfix ~ Zero or one occurrence
Infix Operator to separate alternative choices
» Prefix Beginning of a string, or position immediately following a newline character
$ Postfix ~ End of the line
. -- Any single character
[[*]1list] -- One character out of a list; a circumflex (*) at the beginning works as a

negation; a dash (-) between two characters works as a range indicator

() -- Groups'a (sub)expression, allowing you to refer to it further down in the
expression

{m} Postfix Preciselym times

{m,} Postfix Atleastmtimes

{m,n} Postfix ~ Atleastmtimes, and at most n times

\n -- Refiers back to the nth subexpression between parentheses (n is a digit between 1
and 9)

126

CHAPTER 5 = RETRIEVAL: FUNCTIONS

If the square brackets notation does not give you enough precision or flexibility, you can use
multicharacter collation elements, character classes, and equivalence classes, as follows:

e Multicharacter collation elements are relevant for certain languages. Valid values
are predefined and depend on the NLS_SORT setting. Use [. and .] to enclose
collation elements.

e Character classes give you more flexibility than the dash symbol between square
brackets; for example, you can refer to alphabetic characters, numeric digits,
alphanumeric characters, blank spaces, punctuation, and so on. Use [: and :] to
enclose character classes.

e Equivalence classes allow you to match all accented and unaccented versions of a
letter. Use [= and =] to enclose equivalence classes.

Before we look at some examples of how these regular expression operators work with the regular
expression functions (in Listings 5-14 through 5-16), we need to discuss the syntax of the functions.

Regular Expression Function Syntax

The four regular expression functions have the following syntax. You can specify regular expressions in
their pattern argument.

e REGEXP_LIKE(text, pattern[, options])

e REGEXP_INSTR(text, pattern[, pos[, occurrence[, return[, options]]1]])

e REGEXP_SUBSTR(text, pattern[, pos[, occurrence[, options]]])

e REGEXP_REPLACE(text, pattern[, replace [, pos[, occurrence[, options]]]])

For all four functions, the first two arguments (text and pattern) are mandatory. These arguments
provide the source text and the regular expression to search for, respectively. All of the remaining
arguments are optional. However, function arguments can only be omitted from the right to the left. For
example, if you want to specify a value for the options argument of the REGEXP_INSTR function, all six
arguments are mandatory and must be specified.

In REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE, you can use the pos argument to specify from
which position in text you want the search to start (the default value is 1), and with occurrence, you can
specify how often you want to find the search pattern (the default value is 1). The options argument of
all four of the functions and the return argument of the REGEXP_INSTR function require a bit more
explanation.

Influencing Matching Behavior

You can influence the matching behavior of the regular expression functions with their options
argument. Table 5-5 shows the values you can specify in the options function argument.

127

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

128

Table 5-5. Regular Expression Option Values

Option Description

i Case-insensitive search (no distinction between uppercase and lowercase)

C Case-sensitive search

n Allows the period (.) to match the newline character

m Treat text as multiple lines; # and $ refer to the beginning and end of any of those lines

You can specify one or more of these values. If you specify conflicting combinations, such as 'ic’,
the Oracle DBMS uses the last value (c) and ignores the first one.

Note The default behavior for case-sensitivity depends on the NLS_SORT parameter value.

REGEXP_INSTR Return Value

The return option of the REGEXP_INSTR function allows you to influence the return value. By default, the
position where the pattern was found is returned, but sometimes you want to know the position
immediately after the found pattern. Of course, you can add the length of the pattern to the result of the
function; however, using the return option is easier in that case. Table 5-6 shows the values you can
specify in the return function argument.

Table 5-6. Regular Expression Return Values

Return Description

0 Position of the first character of the pattern found (default)
1 Position of the first character after the pattern found
REGEXP_LIKE

Let’s look at an example of the REGEXP_LIKE function, using a SQL*Plus trick that will be explained in a
later chapter. The ampersand character (&) in the WHERE clause of the query in Listing 5-14 makes
SQL*Plus prompt for a value for text; therefore, you can repeat this query in the SQL buffer with the /
command as often as you like, specifying different source text values to explore the effect of the search
pattern.

CHAPTER 5 = RETRIEVAL: FUNCTIONS

Listing 5-14. Using the REGEXP_LIKE Function

SQL> select 'found!' as result from dual
2 where regexp_like('&text', '~.a{1,2}.4$', 'i');

Enter value for text: bar

RESULT

SQL> /
Enter value for text: BAARF

RESULT

found!

SQL> /
Enter value for text: ba

no rows selected
SQL>

The results of Listing 5-14 show that the pattern means the following: the first character is arbitrary,
followed by at least one and at most two a characters, followed by one or more arbitrary characters,
while ignoring the differences between uppercase and lowercase. By the way, Listing 5-14 shows that
REGEXP_LIKE is a Boolean function; its result is TRUE or FALSE.

REGEXP_INSTR

Listing 5-15 uses the REGEXP_INSTR function to search for history comments with nine or more words. It
looks for at least nine nonempty (+) substrings that do not contain spaces ([*]).

Listing 5-15. Using the REGEXP_INSTR Function

select comments
from history
where regexp instr(comments, '[*]+', 1, 9) > 0;

COMMENTS

Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...

Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

129

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

130

Notice that the last row of the result contains only seven actual words. It is found because the text
strings -- and : -) are counted as “words.”

REGEXP_SUBSTR

Listing 5-16 demonstrates searching for comments between parentheses, using the REGEXP_SUBSTR
function. The search pattern looks for a left parenthesis, followed by at least one character not equal to a
right parenthesis, followed by a right parenthesis. Note that you need the backslash character (\) to
suppress the special meaning of the parentheses.

Listing 5-16. Using the REGEXP_SUBSTR Function

select comments

, regexp_substr(comments, ‘\([*\)]+\)') as substring
from history

where comments like '%(%';

COMMENTS

Project (half a month) for the ACCOUNTING department
(half a month)

REGEXP_REPLACE

Listing 5-17 shows how you can use the REGEXP_REPLACE function to replace all words starting with an f
with a question mark.

Listing 5-17. Using the REGEXP_REPLACE Function

select regexp_replace(comments, ' f[a-z]* ',' ? ',1,1,'i")
from history
where regexp_like(comments, ' f[a-z]* ','i');

REGEXP_REPLACE(COMMENTS, 'F[A-Z]*','?',1,1,'I")
Hired as the new manager ? the accounting department
Founder and ? employee of the company

Project (half a month) ? the ACCOUNTING department

Notice that you must specify values for all function arguments if you want to make the replacement
case-insensitive, including default values for pos and occurrence. The WHERE clause ensures that the
query returns only the matching rows.

CHAPTER 5 = RETRIEVAL: FUNCTIONS

5.5 Date Functions

Before discussing the various Oracle date functions, let’s first review the syntax to specify date/time-
related constants (or literals), using predefined ANSI/ISO SQL standard formats.
Table 5-7 shows the syntax for the literals and examples.

Table 5-7. Syntax for Date/Time-Related Constants

Literal Example

DATE 'yyyy-mm-dd' DATE '2004-09-25'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff' TIMESTAMP '2004-09-25 23:59:59.99999' AT TIME
[AT TIME ZONE '..."] ZONE 'CET'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff TIMESTAMP '2004-09-25 23:59:59.99 -5:00'
{+|-}hh:mi’

INTERVAL ‘expr' <qualifier> INTERVAL '1' YEAR

INTERVAL '1 2:3"' DAY TO MINUTE

You can experiment with this syntax by entering the following query, using the SQL*Plus ampersand
(&) substitution method (as in Listing 5-14):

elect &input_date from dual;

If you simply enter an alphanumeric string, such as '21-JUN-04', you must rely on an implicit
conversion by Oracle. This implicit conversion succeeds or fails depending on the NLS_DATE_FORMAT and
NLS_TIMESTAMP_FORMAT parameter settings for your session. If you want to see an overview of all current
NLS parameter settings for your session, you can use the following query:
select * from nls_session_parameters;

If you execute this query, you will see the current values for NLS_DATE_FORMAT and

NLS_TIMESTAMP_FORMAT.
Table 5-8 shows the most commonly used Oracle date functions.

131

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

132

Table 5-8. Common Oracle Date Functions

Function Description

ADD_MONTHS(d, n) Date d plus n months

MONTHS_BETWEEN(d, e) Months between dates d and e

LAST_DAY(d) Last day of the month containing date d
NEXT_DAY(d, weekday) The first weekday (mon, tue, etc.) after d

NEW TIME(d, z1, z2) Convert date/time from time zone z1 to z2
ROUND(d[, fmt]) d rounded on fmt (the default for fint is midnight)
TRUNC(d[, fmt]) d truncated on fmt (the default for fmt is midnight)
EXTRACT(c FROM d) Extract date/time component ¢ from expression d

We'll start with the last function listed in Table 5-8.

EXTRACT

You can extract various components of a date or timestamp expression with the ANSI/ISO standard
EXTRACT function. Depending on the datatype of the argumentd (DATE, TIMESTAMP, or INTERVAL) the
following values for c are supported: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_ABBR, and so on.
Listing 5-18 shows an example.

Listing 5-18. Using the EXTRACT Function

select bdate

s extract(year from bdate) as year_of_birth
, extract(month from bdate) as month of birth
, extract(day from bdate) as day of birth
from employees

where ename = 'KING';

BDATE YEAR_OF_BIRTH MONTH_OF_BIRTH DAY_OF_BIRTH

CHAPTER 5 = RETRIEVAL: FUNCTIONS

ROUND and TRUNC

Table 5-9 lists the date formats (fmt) supported by the date functions ROUND and TRUNC. The default
formatis 'DD', resulting in rounding or truncating to midnight. For example, TRUNC(SYSDATE) truncates
the current system date and time to midnight.

Table 5-9. ROUND and TRUNC Date Formats

Format Description

CC, scc Century, with or without minus sign (BC)

[STYYYY, [S]YEAR, YYY, YY, Y Year (in various appearances)

IYYY,IYY, IV, I ISO year

Q Quarter

MONTH, MON, MM, RM Month (full name, abbreviated name, numeric, Roman numerals)
IW, W (ISO) week number

W Day of the week

DDD, DD, J Day (of the year/of the month/Julian day)

DAY, DY, D Closest Sunday

HH, HH12, HH24 Hours

MI Minutes

MONTHS_BETWEEN and ADD_MONTHS

Listings 5-19 and 5-20 show examples of using the date functions MONTHS_BETWEEN and ADD_MONTHS.

Listing 5-19. Using the MONTHS_BETWEEN Function

select ename, months_between(sysdate,bdate)
from employees
where deptno = 10;

ENAME MONTHS_BETWEEN(SYSDATE, BDATE)

CLARK 467.5042
KING 618.2461
MILLER 508.0525

133

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

134

Listing 5-20. Using the ADD_MONTHS Function

select add_months('29-JAN-1996', 1) add_months_1
s add_months('29-JAN-1997', 1) add_months_2
s add months('11-AUG-1997',-3) add months 3
from dual;

ADD_MONTHS_1 ADD_MONTHS_2 ADD_MONTHS_3

29-FEB-1996 28-FEB-1997 11-MAY-1997

Notice what happens in Listing 5-20 with a non-leap year. There is something else worth noting
about the query in Listing 5-20. As explained earlier, you could get back an error message because you
rely on implicit interpretation and conversion of the three strings by Oracle. It would have been
preferable to specify the three date literals in Listing 5-20 using the key word DATE (see the beginning of
this section) or using the TO_DATE conversion function. (See Section 5.7 later in this chapter for details
about conversion functions.)

NEXT_DAY and LAST_DAY

Listing 5-21 shows examples of using the date functions NEXT_DAY, LAST_DAY, ROUND, and TRUNC. Compare
the various function results with the first column, showing the current SYSDATE value.

Listing 5-21. Using the NEXT_DAY, LAST_DAY, ROUND, and TRUNC Functions

select sysdate
next_day(sysdate,'SAT') as next_sat

)

, last_day(sysdate) as last_day
s round(sysdate, 'YY') as round_yy
, trunc(sysdate, 'CC') as trunc_cc
from dual;

SYSDATE NEXT_SAT LAST_DAY ROUND_YY TRUNC_CC

17-AUG-2009 22-AUG-2009 31-AUG-2009 01-JAN-2010 01-JAN-2001

5.6 General Functions

The most important general (datatype-independent) functions are shown in Table 5-10.

CHAPTER 5 = RETRIEVAL: FUNCTIONS

Table 5-10. Common General Oracle Functions

Function Description

GREATEST(a, b, ...) Greatest value of the function arguments

LEAST(a, b, ...) Least value of the function arguments

NULLIF(a, b) NULL if a = b; otherwise a

COALESCE(a, b, ...) The first not NULL argument (and NULL if all arguments are NULL)
NVL(x, y) y if x is NULL; otherwise x

NL2(x, Y, Z) y if x is not NULL; otherwise z

CASE x when a1 then b1
when a2 then b2 ... else y

end

DECODE(x, a1, b1, bi1if x=a1,

a2, b2, b2ifx=a2,...

«, an, bn bnifx =an,

[, yD and otherwise y (or default: NULL)

You can express all of the other functions as CASE expressions, too, because they all share a
procedural nature. In other words, you don’t really need them. Nevertheless, these functions can be
useful in your SQL code because, for example, they make your code more compact. Note also that only
the CASE, NULLIF and COALESCE functions are part of the ANSI/ISO standard. The remaining five functions
(GREATEST, LEAST, NVL, NVL2, and DECODE) are Oracle-specific SQL extensions. In other words, if your goal is
to write portable SQL code, you should use only CASE, NULLIF, and COALESCE.

GREATEST and LEAST

The GREATEST and LEAST functions can be useful in certain situations. Don’t confuse them with the MAX
and MIN group functions (which are covered in detail in Chapter 8). For now, remember the following
differences:

e GREATEST and LEAST allow you to make horizontal comparisons; they operate at the
row level.

e MAX and MIN allow you to make vertical comparisons; they operate at the column
level.

Listing 5-22 shows an example of the GREATEST and LEAST functions, selecting three constant
expressions against the DUAL table.

135

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

136

Listing 5-22. Using the GREATEST and LEAST Functions

select greatest(12*6,148/2,73)
s least (12%6,148/2,73)
from dual;

GREATEST(12*6,148/2,73) LEAST(12*6,148/2,73)

The NVL function is useful if you want to prevent certain expressions, or expression components, from
evaluating to a null value, as you can see in Listing 5-23.

Listing 5-23. Using the NVL Function

select ename, msal, comm

, 12*msal+nvl(comm,0) as yearsal
from employees

where ename like '%T%';

ENAME MSAL COMM YEARSAL
SMITH 800 9600
MARTIN 1250 1400 16400
SCOTT 3000 36000
TURNER 1500 0 18000
DECODE

The DECODE function is a typical remnant from the days that Oracle SQL did not yet support CASE
expressions. There are three good reasons not to use DECODE anymore:

o DECODE function expressions are quite difficult to read.
e DECODE is not part of the ANSI/ISO SQL standard.
e CASE expressions are much more powerful.

For completeness, and because you may encounter the DECODE function in legacy Oracle SQL
programs, Listing 5-24 shows a query where the DECODE function is used in the SELECT clause (to get a
certain output) and in the ORDER BY clause (to do a customized sorting of the records).

Listing 5-24. Using the DECODE Function

select job, ename
, decode(greatest(msal,2500)
,2500, 'cheap"’, 'expensive') as class

CHAPTER 5 = RETRIEVAL: FUNCTIONS

from employees
where bdate < date '1964-01-01'
order by decode(job, 'DIRECTOR',1, 'MANAGER',2,3);

JoB ENAME CLASS
DIRECTOR KING expensive
MANAGER BLAKE expensive
SALESREP ALLEN cheap
SALESREP WARD cheap
ADMIN MILLER cheap
TRAINER FORD expensive
TRAINER SCOTT expensive
SALESREP MARTIN cheap

5.7 Conversion Functions

Conversion functions allow you to convert expressions explicitly from one datatype into another
datatype. Table 5-11 lists the most common conversion functions in Oracle SQL. See Oracle SQL
Reference for more conversion functions.

Table 5-11. Common Oracle Conversion Functions

Function Description

TO_CHAR(n[,fmt]) Convert number n to a string

TO_CHAR(d[,fmt]) Convert date/time expression d to a string
TO_NUMBER(t) Convert string t to a number
TO_BINARY_FLOAT(e[,fmt]) Convert expression e to a floating-point number
TO_BINARY_DOUBLE(e[,fmt]) Convert expression e to a double-precision, floating-point number
TO DATE(t[,fmt]) Convert string t to a date

TO_YMINTERVAL(t) Convert string t to a YEAR TO MONTH interval
TO_DSINTERVAL(t) Convert string t to aDAY TO SECOND interval

TO _TIMESTAMP (t[,fmt]) Convert string t to a timestamp

CAST(e AS t) Convert expression e to datatype t

137

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

138

Note The syntax in Table 5-11 is not complete. Most conversion functions allow you to specify additional NLS
parameters after the format (fmt) argument. For example, you can influence the currency symbol, the numeric
characters (period and comma), and the date language. See Oracle SQL Reference and Globalization Support
Guide for more details.

TO_NUMBER and TO_CHAR

Listing 5-25 shows how you can use the TO_NUMBER and TO_CHAR functions (with or without a format
argument) to convert strings to numbers and vice versa.

Listing 5-25. Using the TO_CHAR and TO_NUMBER Functions

select 123
, to_char(123)
, to_char(123, '$09999.99")

s to_number('123")
from dual;

123 TO_ TO_CHAR(12 TO_NUMBER('123')

123 123 $00123.00 123
Listing 5-26 shows how you can nest conversion functions. On the third line, you use the T0_DATE

function to interpret the string '01/01/2006" as a date value; then, you use the T0O_CHAR function to
extract the day from the date value, as you can see in the third column of the query result.

Listing 5-26. Nesting the TO_CHAR and TO_DATE Functions

select sysdate as today
s to_char(sysdate, "hh24:mi:ss') as time
, to_char(to_date('01/01/2006","'dd/mm/yyyy")

,'"is on "Day') as new_year_ 2006
from dual;

TODAY TIME NEW_YEAR_2006

24-MAY-04 15:05:48 is on Sunday

In this example, the format Day results in Sunday because the default language is English. You can set
the NLS_LANGUAGE parameter to another language to influence this behavior. For example, if you set this
session (or system) parameter to Dutch, the result becomes Zondag (see also Listing 2-20 in Chapter 2).
You could also override this default at the statement level, by setting the NLS_DATE_LANGUAGE parameter,
as shown in Listing 5-27.

CHAPTER 5 = RETRIEVAL: FUNCTIONS

Listing 5-27. Influencing the Date Language at the Statement Level

select to char(sysdate, 'Day')
, to_char(sysdate, 'Day’', 'nls_date_language=Dutch")
from dual;

TO_CHAR(S TO_CHAR(S

Tuesday Dinsdag

Conversion Function Formats

Table 5-11 showed that several Oracle conversion functions support an optional format (fmt) argument.
These format arguments allow you to deviate from the default conversion. Table 5-12 shows most of the
possibilities.

Table 5-12. Conversion Functions: Optional Format Components

Format Description

[s]cc Century; S stands for the minus sign (BC)
[STYYYY Year, with or without minus sign

YYY, YY, Y Last 3, 2, or 1 digits of the year

[STYEAR Year spelled out, with or without minus sign (S)
BC, AD BC/AD indicator

Q Quarter (1,2,3,4)

MM Month (01-12)

MONTH Month name, padded with spaces to length 9
MON Month name, abbreviated (three characters)
WW, IW (ISO) week number (01-53)

W Week number within the month (1-5)

DDD Day number within the year (1-366)

DD Day number within the month (1-31)

139

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

140

DAY

DY

AM, PM
HH[12]
HH24
MI

SS

Day number within the week (1-7)

Day name, padded with spaces to length 9
Day name abbreviation (three characters)
Julian date; day number since 01/01/4712 BC
AM/PM indicator

Hour within the day (01-12)

Hour within the day (00-23)

Minutes within the hour (00-59)

Seconds within the minute (00-59)

Seconds after midnight (0-86399)
Punctuation characters; displayed verbatim (between date fields)

String between double quotes displayed within the date expression

Note You can influence several date characteristics, such as the first day of the week, with the NLS_TERRITORY

parameter.

Oracle supports some additions that you can use in conversion function format strings to further
refine the results of those functions. Table 5-13 shows these additions.

Table 5-13. Conversion Functions: Format Component Additions

Addition Description

FM Fill mode toggle

TH Ordinal number (e.g., 4th)

SP Spelled-out number (e.g., four)

THSP, SPTH Spelled-ordinal number (e.g., fourth)

CHAPTER 5 = RETRIEVAL: FUNCTIONS

In fill mode, Oracle does not perform padding with spaces, and numbers are not prefixed with
leading zeros. You can enable and disable this fill mode mechanism within the same format string as
many times as you like, by repeating FM (it is a toggle). Ordinal numbers indicate a relative position in a
sequence.

The conversion function formats are case-sensitive, as demonstrated in Listing 5-28.

Listing 5-28. TO_CHAR Formats and Case-Sensitivity

select to char(sysdate,'DAY dy Dy') as day

, to_char(sysdate, "MONTH mon') as month
from dual;

DAY MONTH

MONDAY mon Mon MAY may

Datatype Conversion

In the area of datatype conversion, you can leave many issues up to the Oracle DBMS. However, for
reasons of syntax clarity, it is better to express the datatype conversions explicitly with the appropriate
conversion functions. See the query in Listing 5-29 for an example.

Listing 5-29. Relying on Implicit Datatype Conversion

select ename, substr(bdate,8)+16
from employees
where deptno = 10;

ENAME SUBSTR(BDATE, 8)+16

CLARK 81
KING 68
MILLER 78

This query is internally interpreted and executed by the Oracle DBMS as the following:

select ename, TO_NUMBER(substr(to_char(bdate,'..."),8))+16
from employees
where deptno = 10

You should have formulated the query that way in the first place.

CAST

The last function to discuss in this section about conversion functions is CAST. This function is part of the
ANSI/ISO SQL standard, as opposed to all other conversion functions discussed so far in this section.
The CAST function is a generic conversion function. It allows you to convert any expression to any specific
datatype, including the option to specify a datatype precision. See Listing 5-30 for some examples.

141

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

142

Listing 5-30. CAST Function Examples

select cast(12.98 as number(2)) examplel
, cast('oak' as char(10)) example2
, cast(null as date) example3
from dual;

EXAMPLE1 EXAMPLE2 EXAMPLE3

5.8 Stored Functions

Although you might argue that Oracle already offers more than enough functions, you may find that you
need a specific capability that isn’t already provided. In that case, you can develop your own functions
(using PL/SQL) and add them to the SQL language.

PL/SQL is the standard procedural programming language for Oracle databases. PL/SQL is a
superset of SQL, adding several procedural capabilities to the nonprocedural SQL language. Here, we
will investigate one simple example of PL/SQL language usage in relation to custom functions. For more
information about PL/SQL, refer to Oracle PL/SQL User’s Guide and Reference.

Listing 5-31 shows how to define a function to determine the number of employees for a given
department.

Listing 5-31. Creating a Stored Function Using PL/SQL

create or replace function emp_count(p_deptno in number)
return number is
cnt number(2) := 0;

begin
select count(*) into cnt
from employees e
where e.deptno = p_deptno;
return (cnt);

end;

/

Function created.

Now it becomes relatively easy to produce an overview of all departments, with their (correct)
number of employees, as you can see in Listing 5-32. This query would be more complicated without
this function. In particular, department 40 (the well-known department without employees) would not
show up in your query results without some extra work. Without the stored function, you would need a
so-called OUTER JOIN (see Chapter 8) or you would need a subquery in the SELECT clause (see Chapter 9).

CHAPTER 5 = RETRIEVAL: FUNCTIONS

Listing 5-32. Using the Stored Function

select deptno, dname, location
, emp_count(deptno)
from departments;

DEPTNO DNAME LOCATION EMP_COUNT(DEPTNO)
10 ACCOUNTING NEW YORK 3
20 TRAINING DALLAS 5
30 SALES CHICAGO 6
40 HR BOSTON 0

Listing 5-33 shows how the SQL*Plus DESCRIBE command treats these stored functions.

Listing 5-33. Describing a Stored Function
SOL> describe emp_count

FUNCTION emp_count RETURNS NUMBER

Argument Name Type In/Out Default?
P_DEPTNO NUMBER IN
SQL>

5.9 Exercises

Use a database schema with the seven case tables (see Appendix C of this book) to perform the following
exercises. The answers are presented in Appendix D.

1. For all employees, provide their last name, a comma, followed by their initials.

2. For all employees, list their last name and date of birth, in a format such as
April 2nd, 1967.

3. On which day are (or were) you exactly 10,000 days old?
On which day of the week is (was) this?

4. Rewrite the example in Listing 5-23 using the NVL2 function.

5. Rewrite the example in Listing 5-24 to remove the DECODE functions using CASE
expressions, both in the SELECT clause and in the ORDER BY clause.

6. Rewrite the example in Listing 5-20 using DATE and INTERVAL constants, in such
a way that they become independent of the NLS_DATE_FORMAT setting.

143

CHAPTER 5 ™ RETRIEVAL: FUNCTIONS

7. Investigate the difference between the date formats WW and IW (week number
and ISO week number) using an arbitrary date, and explain your findings.

8. Look at Listing 5-15, where we use the REGEXP_INSTR function to search for
words. Rewrite this query using REGEXP_LIKE. Hint: You can use {n, } to express
“at least n times.”

144

CHAPTER 6

Data Manipulation

In this chapter, you will learn how to change the contents of an Oracle database. The SQL commands to
change the database contents are commonly referred to as Data Manipulation Language (DML)
commands.

The first four sections of this chapter cover the DML commands INSERT, UPDATE, DELETE, and MERGE.
The first three commands have names that are self-explanatory. The fourth one, MERGE, allows you to
perform a mixture of insertions, updates, and deletions in a single statement, which is especially useful
in data warehousing environments without using a procedural language like PL/SQL.

Note Many of the commands in this chapter modify data that is used in later chapters. It is important to issue
the ROLLBACK commands indicated in this chapter or to recreate the tables and data before continuing to
Chapter 7.

In production environments, especially when dealing with high-volume transactions, data
manipulation is mostly performed via database applications. In general, these database applications are
built (or generated) with application development tools such as Oracle Forms and Oracle JDeveloper.
Such applications offer a pleasant user-friendly interface to the database; however, they still use the
basic INSERT, UPDATE, and DELETE commands under the hood to communicate with the database, so you
should understand how these commands work. Additionally, sometimes “manual” data manipulation
via SQL*Developer and SQL*Plus can be very efficient. For example, you may want to perform global
updates (such as to change a certain column for all rows of a table at the same time) or to remove all
rows of a table.

Following are some of what we’ll cover in this chapter:

e Inthe first section (Section 6.1) we will introduce the INSERT command, which is
used to populate tables with data.

e The second section (Section 6.2) introduces the UPDATE command that modifies
data that is already in a table.

e Section 6.3 explains how to remove data from tables using DELETE.

e Section 6.4 introduces the MERGE statement, which is used to either INSERT or
UPDATE data depending on the rules you define.

e Section 6.5 explains the concept of transactions and introduces three transaction-
related SQL commands: COMMIT, SAVEPOINT, and ROLLBACK.This chapter is also the

145

CHAPTER 6 = DATA MANIPULATION

most obvious place in this book to pay some attention to read consistency and
locking. So, the last section (Section 6.6) discusses how the Oracle RDBMS
guarantees transaction isolation in a multiuser environment. It provides an
introduction to the concepts involved, without going into too many technical
details.

6.1 The INSERT Command

You use the INSERT command to add rows to a table. Along with the standard INSERT command, Oracle
SQL also supports a multitable INSERT which adds rows into several tables at one time. Multitable
inserts are an advanced topic and are not covered in this book.

Standard INSERT Commands

The standard INSERT command supports the following two ways to insert rows:

e Use the values clause, followed by a list of column values (between parentheses).
This method allows you to insert only onerow at a time per execution of the
INSERT command.

¢ Formulate a subquery, thus using existing data to generate new rows.

Both alternatives are shown in the syntax diagram in Figure 6-1.

|—(—L c-name——\—)—l
[>[>‘| INSERT INTO]7 t-name N

V4

) LA

——{ peFavLT |}

subqguery

Figure 6-1. INSERT command syntax diagram

If you know all of the table columns, including the internal physical order in which they are
presented by the SQL*Plus DESCRIBE command, you don’t need to specify column names after the table
name in the INSERT command. If you omit column names, you must provide precisely enough values and
specify them in the correct order.

146

CHAPTER 6 = DATA MANIPULATION

Caution Leaving out column names is rather dangerous, because your INSERT statement may become invalid
after nondestructive table modifications, such as adding columns. Column names also improve the readability of
your SQL statements.

In the VALUES clause, you can specify a comma-separated list of literals or an expression. You can use
the reserved word NULL to specify a null value for a specific column. You can also specify the reserved
word DEFAULT to instruct the Oracle DBMS to insert the default value associated with the corresponding
column. These default values are part of the table definition, stored in the data dictionary. If you don’t
specify a value for a specific column in your INSERT statement, there are two possibilities:

e Ifthe column has an associated DEFAULT value, the Oracle DBMS will insert that
value.

e Ifyou did not define a DEFAULT value for the column, the Oracle DBMS inserts a
null value (provided, of course, that the column allows null values).

Note Because the Oracle DBMS will automatically insert the default value when another value isn’t specified,
the DEFAULT keyword isn’t really necessary for INSERT statements. However, the DEFAULT keyword can be quite
useful when writing UPDATE statements, which are discussed in Section 6.2.

The second way of using the INSERT command fills a table with a subquery. There are no special
constraints for these subqueries, as long as you make sure they produce the right number of values of
the right datatype. You can even use a subquery against the table into which you are inserting rows. This
sounds like a strange approach; however, insert into X select * from x is one of the fastest methods to
fill a table, provided you don’t have unique or primary key constraints.

Note The fact that you are able to query and insert into the same table at the same time is due to Oracle’s read
consistency implementation. See Section 6.6 for details.

Listing 6-1 shows four INSERT statement examples: three using the VALUES clause and one using the
subquery method.

147

CHAPTER 6 = DATA MANIPULATION

148

Listing 6-1. Four INSERT Command Examples

insert into departments -- Example 1
values (90, 'SUPPORT','SEATTLE', NULL);

1 row created.

insert into employees(empno,ename,init,bdate,msal,deptno) -- Example 2
values (7001, 'ZOMBIE','ZZ',trunc(sysdate), 0, DEFAULT);

1 row created.

select * from employees where empno = 7001;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
7001 ZOMBIE 77 15-SEP-2004 0 10
insert into departments(dname,location,deptno) -- Example 3

values('CATERING', 'ORLANDO', 10);
insert into departments(dname,location,deptno)
*

ERROR at line 1:
ORA-00001: unique constraint (BOOK.D PK) violated

insert into salgrades -- Example 4
select grade + 5

, lowerlimit + 2300

s least(9999, upperlimit + 2300)

500

)
from salgrades;

5 rows created.

rollback;

Rollback complete.

The examples work as follows:

The first example inserts a new department 90 without specifying column names.
It also shows how you can insert a null value with the reserved word NULL.

The second example shows how you can use DEFAULT to assign the default
department number to a new employee. (Chapter 7 explains how to assign such
default values.) The default value for the DEPTNO column of the EMPLOYEES table is
10, as you can see in Listing 6-1.

The third example shows a violation of a primary key constraint; department 10
already exists.

The fourth example shows how you can use a subquery to insert rows with the
INSERT command. It uses the LEAST function (introduced in Chapter 5) to avoid

CHAPTER 6 = DATA MANIPULATION

constraint violations. The first argument (9999) ensures that the upper limit will
never become greater than 9999.

At the end of Listing 6-1, we use ROLLBACK to undo our changes. The ROLLBACK command is explained
in Section 6-5.

Note After this chapter, we need all tables again in their unmodified state. Make sure to undo all changes you
apply in this chapter, or re-create the tables before proceeding with Chapter 7.

INSERT Using Subqueries

If existing data is the source for a table, using a subquery can speed up the process. As mentioned
already, it can also be used to rapidly populate a table with data from the table itself doubling the
number of rows with each insert. Listing 6-2 creates a table that we’ll insert some new data into. Listing
6-2 also shows the query that we’ll use to generate the data that we’ll be inserting. Listing 6-2 just gets
everything ready; Listing 6-3 is where we’ll do the actual INSERT statement.

Listing 6-2. Preparation for the INSERT using a subquery examples

CREATE TABLE dept_emp_names -- create a table to populate
(deptname VARCHAR2(10),

location VARCHAR2(8),

empname VARCHAR2(8),

job VARCHAR2(8)

)

Table created.

SELECT d.dname, d.location, e.ename, e.job
FROM departments d, employees e
WHERE e.deptno = d.deptno;

DNAME LOCATION ENAME JoB

TRAINING DALLAS SMITH TRAINER
SALES CHICAGO ALLEN SALESREP
SALES CHICAGO WARD SALESREP
TRAINING DALLAS JONES MANAGER
SALES CHICAGO MARTIN SALESREP
SALES CHICAGO BLAKE MANAGER

ACCOUNTING NEW YORK CLARK MANAGER
TRAINING DALLAS SCOTT TRAINER
ACCOUNTING NEW YORK KING DIRECTOR

SALES CHICAGO TURNER SALESREP
TRAINING DALLAS ADAMS TRAINER
SALES CHICAGO JONES ADMIN

TRAINING DALLAS FORD TRAINER

149

CHAPTER 6 = DATA MANIPULATION

150

ACCOUNTING NEW YORK MILLER

14 rows selected.

When performing DML, it is always a good idea to test it, where possible, by running a query or the
subquery first and verifying the results. Not only does this help you create the query before actually
modifying data, but it can also catch mistakes that might result in loss of data or the need to perform a
recovery. In Listing 6-2, the subquery that is used as the source for our intended insert is run and the
output displayed. Because the target table is empty before the insert, a query of the table after the insert
will display exactly the same data if the insert was executed properly.

Having confirmed from the output in Listing 6-2 that our query to generate data is correct, we can
use that query as a subquery to an insert statement. Listing 6-3 shows the results. The INSERT statement
in Listing 6-3 executes our query and inserts the resulting rows into the target table named

dept_emp_names.

Listing 6-3. Using subqueries to rapidly populate a table

INSERT INTO dept_emp

_names

ADMIN

-- Example 1

(deptname, location, empname, job)

(SELECT d.dname, d.location, e.ename, e.job

FROM departments d, employees e

WHERE e.deptno = d.deptno

;
14 rows created.
SELECT * -- Verify that the data is the same as Listing 6-2
FROM dept_emp_names;
DEPTNAME LOCATION EMPNAME 3JOB
TRAINING DALLAS SMITH TRAINER
SALES CHICAGO ALLEN SALESREP
SALES CHICAGO WARD SALESREP
TRAINING DALLAS J