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Preface 

This is a book about the frontiers of computer science that have re
cently been opened by work in quantum mechanics, but it is also a book 
about the use of recently developed automatic programming technolo
gies to explore those frontiers. The automatic programming technologies 
themselves issue from another interdisciplinary frontier of computer sci
ence — one born of the intersection of computer science with evolution
ary biology. So this is a book about two frontiers of computer science, 
one being used primarily for the sake of exploring the other. 

The selection of topics in this book was made with the intention of 
showing how genetic programming can be usefully applied to certain 
problems in quantum computing. To this end, it provides a basic intro
duction to quantum computing for non-physicists and it also provides a 
basic introduction to genetic programming for non-computer-scientists. 
These treatments should be comprehensible to scientifically literate read
ers who have, at minimum, a passing familiarity with undergraduate-
level computer science (e.g. programming concepts) and mathematics 
(e.g. simple linear algebra). No background in physics is assumed. 

Neither the introduction to quantum computing nor the introduction 
to genetic programming is intended to be comprehensive or even "bal
anced." Coverage of each field is limited to relatively narrow slices that 
support the demonstrations found later in the book — those demon
strations show how certain genetic programming techniques can be ap
plied to certain problems in quantum computing. Citations are provided 
where appropriate to sources that provide more comprehensive and de
tailed coverage. 

The first chapter contains an introduction to quantum computing for 
non-physicists. The intention is to provide readers with a sense of how 
quantum computers could possibly deliver the surprising benefits that 
many researchers envision. 
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The second chapter details a mathematical (matrix-based) model of 
quantum computation and describes how this model can be used to sim
ulate quantum computations on classical computers. Such simulation 
is necessarily inefficient — if we could simulate quantum computers ef
ficiently on classical computers then there'd be little reason to study 
quantum computing in the first place! But for small computations sim
ulation is indeed possible; this model allows us to use simulation in the 
"fitness assessment" step of a genetic programming algorithm, described 
later in the book. 

The third chapter describes one particular quantum computer simula
tion system, the author's QGAME ("Quantum Gate and Measurement 
Emulator") system, and presents a few of the ways in which quantum 
programs and quantum computer states can be visually displayed. It 
concludes with a detailed example of the simulation of a quantum pro
gram for Grover's database search problem. 

The fourth chapter introduces genetic and evolutionary computation, 
with a focus on the traditional genetic algorithm. It also discusses, in 
general terms, the use of parallelism to scale genetic and evolutionary 
computation technologies up for complex applications, and the applica
bility of these technologies for various types of problems including those 
related to quantum computing. 

The fifth chapter specializes the treatment of genetic algorithms to ge
netic programming, which is the use of genetic algorithms for automatic 
programming. It includes a detailed example and a discussion of the 
steps one must generally take to obtain and understand useful results 
from a genetic programming system. 

The sixth chapter moves beyond traditional genetic programming, 
and describes the ways in which one can evolve programs that include, 
for example, multiple data types, modules, and developmental compo
nents. Some of these capabilities are particularly useful for the evolu
tion of quantum programs. Emphasis is placed on the author's Push 
programming language for genetic and evolutionary computation, which 
provides some of the desired advanced capabilities in unusually simple 
ways. This chapter concludes with a description of the PushGP genetic 
programming system, which evolves Push programs, and a brief descrip
tion of some more radically self-adaptive "autoconstructive evolution" 
techniques that are enabled by Push. 

The seventh and eighth chapters bring the materials from all of the 
preceding chapters together, first with a discussion of specific strate-
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gies for quantum program evolution/ and then with concrete examples 
in which interesting quantum programs were evolved using QGAME, 
PushGP and related technologies. These examples document a few spe
cific ways in which genetic programming has already helped to explore 
the power of quantum computing. 

The ninth chapter provides a brief summary of the main points of the 
book and discusses prospects for new discoveries made with the aid of 
automatic quantum computer programming technologies. 

Source code, in Common Lisp, for a minimal version of QGAME is 
included in the Appendix. Additional related source code is available 
online from addresses that are cited within the text. Most of these files 
are also hnked to the author's pubhc "code" page.^ 

This book would not have been possible without the close working re
lationships enjoyed by the author with colleagues and students at Hamp
shire College in Amherst, Massachusetts. Several of the results that are 
used as examples in the book emerged from joint work of the author 
with Herbert J. Bernstein, Howard Barnum, and Nikhil Swamy. Al
though specific joint results are acknowledged where they occur in the 
text, these citations do not by themselves fully convey the extent of the 
influence of these colleagues. Similarly, the novel technologies that are 
described in the text owe much to the contributions of Chris Perry, Jon 
Klein, Mark Feinstein, Raymond Coppinger, Alan Robinson, Raphael 
Crawford-Marks, and Manuel Nickschas. Many of these colleagues also 
commented on the manuscript of this book, leading to substantial im
provements. Additional substantial comments were provided by John 
Koza, Sameer H. Al-Sakran, and Rennie Nelson. Rebecca S. Neimark 
provided essential assistance in many phases of the project, including 
the creation of several of the figures and the design of the cover, which 
uses an image created by Chris Perry. James Hendler provided critical 
encouragement and advice, and Leni Bowen and Paula Harmon provided 
invaluable administrative support. 

Some of the materials used in this book derive from those prepared 
by the author for a series of tutorials on quantum computing presented 
over several years at the Genetic and Evolutionary Computation Confer-

•'Note that the term "evolution" is used here and throughout this book in a sense derived 
from its biological usage: it refers to a process in which a population undergoes variation and 
natural selection. Some physicists use "evolution" in a more general sense, to describe any 
change in a system over time. The phrase "quantum program evolution" in this book refers 
to the generation of quantum programs using techniques derived from biological evolutionary 
processes. 
^http://hampshire.edu/lspector/code.html 
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ences (GECCO), for an invited presentation on "Quantum Computation 
and Artificial Intelligence" at the 1999 National Conference on Artificial 
Intelligence (AAAI), for a seminar in the Chevron TechNet Advanced 
Information-Based Modeling seminar series, for a seminar presented at 
BBN Technologies, and for a course called "Quantum Computing with 
No Prerequisites of Any Kind" taught at Hampshire College. 

This work was supported by a National Science Foundation Direc
tor's Award for Distinguished Teaching Scholars, by National Science 
Foundation grant EIA-0216344, and by the Defense Advanced Research 
Projects Agency and Air Force Research Laboratory, Air Force Materiel 
Command, under agreement number F30502-00-2-0611. 



Graspings: 
wholes and not wholes, 

convergent divergent, 
consonant dissonant, 

from all things one and 
from one thing all. 

—Heraclitus 



Chapter 1 

THE POWER OF QUANTUM COMPUTING 

This chapter provides a brief, non-technical introduction to quantum 
computing and outhnes both the potential power and the enigmatic na
ture of quantum computers. It also makes the case for the application 
of automatic programming technologies to problems in quantum com
puting, arguing that such technologies can play a unique and important 
role in the future of this emerging field. The discussion here is general; 
mathematical and computational details are deferred to later chapters. 

1. What is Quantum Computing? 
What physical principles govern the processes of computation? Physi

cists studying this question have recently made a remarkable series of 
discoveries. These discoveries imply that it may be possible to build 
quantum computers — that is, computers that take advantage of certain 
quantum mechanical phenomena — that are more powerful, in a funda
mental sense, than any other computers previously designed. More than 
that, they may be more powerful than any other computers previously 
imagined, in the sense that they obey new and more permissive laws of 
computational complexity. 

We use the phrase "quantum computing" to describe computational 
processes that rely for their efficacy on specifically quantum mechanical 
properties of information-processing hardware. Of course all computing 
relies on quantum mechanics in some sense, since quantum mechanics is 
currently our best theory for describing all physical processes. As Rolf 
Landauer has made clear (Landauer, 1999), "information is inevitably 
physical," and this means, among other things, that the laws of physics 
(and in particular the laws of quantum mechanics) underlie all infor
mation processing. But as of this writing most information processing 
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can be understood using only classical physics and classical informa
tion theory, and the specifically quantum mechanical properties of the 
hardware can be ignored. Quantum computing is computing in which 
the specifically quantum mechanical properties matter a great deal, usu
ally because they are being leveraged to allow us to do things that are 
not permitted by the classical theories. We call computers that can be 
understood in terms of the classical theories classical computers, and 
computers that can be understood only in terms of quantum mechanics 
quantum computers. 

Why are we interested in quantum computing? One reason is that 
the size of computing elements continues to shrink at an exponential 
rate (following "Moore's Law"), with the result that we will be storing 
bits on devices roughly the size of atoms within the next decade. At 
these sizes, specifically quantum mechanical effects predominate and we 
will be doing quantum computing whether we want to or not! But most 
of the excitement surrounding quantum computing comes not from its 
inevitability but rather from the discovery that quantum computers can 
do things beyond the reach of classical computers. 

What can quantum computers do that classical computers cannot? 
This question is still largely open and under active investigation. Indeed, 
the primary motivation for this book is to provide new tools for the 
exploration of this question. But we do already know that quantum 
computers can outperform classical computers in a few specific ways. 

At the time of this writing the most spectacular known advantage of 
quantum over classical computers is the complexity advantage demon
strated by Peter Shor's algorithm for factoring large numbers (Shor, 
1994), a problem with practical applications in cryptography and possi
bly in other areas. Although the classical computational complexity for 
factoring is not known with certainty, the best known classical factoring 

1 2 

algorithms require an amount of time proportional to 2"^ ^osm^ ^ where 
n is the number of digits in the number to be factored. In contrast, 
Shor's quantum algorithm (Beckman et al., 1996; Shor, 1998) requires 
time proportional to only n^ log (n) log log (n). This is an exponential 
savings, assuming that the known classical factoring algorithms are near 
optimal (which is not known but is suspected by many to be true). 

A rough calculation can give one a feel for just how spectacular this 
improvement is. Suppose we wish to factor a 5,000 digit number. If we 
crudely (but consistently) assume that the complexity functions in the 
previous paragraph are exact, that all logarithms are to be taken base 2, 
and that we can execute one instruction per nanosecond, then we would 
expect the best known classical algorithms to require about 80 billion 
years. This is many times the current age of the universe. By contrast, 
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under the same assumptions Shor's quantum factoring algorithm would 
require less than two seconds! Of course we are ignoring many things 
that cannot really be ignored in these estimates, such as constants in 
the complexity functions and the possibility that quantum and classical 
hardware will support different clock rates. So the exact numbers in 
these estimates may be quite far off. But the dramatic nature of the 
exponential speedup is independent of these factors. 

A more modest, but also more certain advantage of quantum over 
classical computers was discovered by Lov Grover. Grover's quantum 
search algorithm (Grover, 1997) achieves a quadratic speedup over the 
best classical algorithms for finding a single "marked" item in a database. 
A classical algorithm must test, on average, half of the n items in the 
database, while the quantum algorithm can find the item after mak
ing only about i/n queries. This is less spectacular than the apparent 
exponential savings of Shor's algorithm, but the quantum complexity 
advantage is unquestionable, the algorithm has wide applicability, and 
the savings may be considerable in practice. In Section 3.3 we examine 
Grover's algorithm in more detail, and in Section 8.2 we demonstrate 
the use of genetic programming to re-discover an instance of Grover's 
algorithm. 

Can quantum computers speed up other sorts of calculations? Several 
variants of Shor's and Grover's algorithms have been developed for re
lated problems, and a few other, qualitatively different algorithms have 
also been discovered.^ For some types of problems we have also obtained, 
via mathematical analysis, specific bounds on the possible speedups. But 
overall our current knowledge is spotty; we know relatively little about 
what kinds of computations can be sped up, or how much, by the use of 
quantum hardware. These gaps in our knowledge provide one motiva
tion for the development of technologies that can automatically discover 
new quantum algorithms. 

Quantum computing technology may also provide other kinds of ben
efits, qualitatively different than those due to the computational com
plexity advantages that are exemplified by Shor's algorithm and Grover's 
algorithm. For example, quantum states are "tamper resistant" in a cer
tain sense, and this property can be leveraged to provide secure commu
nication channels upon which it is theoretically impossible to eavesdrop. 
Some of the schemes for such channels require relatively little in the way 
of quantum hardware engineering, and quantum information technology 
products for secure communications are already commercially available. 

^Additional quantum algorithms are described, for example, in (Hogg, 1998; Hogg, 2000; 
Hallgren, 2002; Hallgren et al., 2003; van Dam and Seroussi, 2002; van Dam et al., 2002). 
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Other possible technologies may result from the exploitation of phe
nomena such as quantum superdense coding, quantum teleportation or 
quantum error correction, allowing information to be moved and/or re
constructed in novel ways. Although these applications and potential 
applications appear to be quite different in nature from the "speedups" 
provided by Shor's and Grover's algorithms, all of these envisioned ap
plications result from the discovery of quantum algorithms and protocols 
with novel properties. For this reason they may also benefit from tech
nologies that can automatically discover new quantum algorithms. 

Some theorists envision yet further benefits emerging from some fu
ture, deeper understanding of quantum mechanics, possibly stemming 
from new theories of quantum gravity that support new forms of com
putation. For example, Roger Penrose argues that human consciousness 
and creativity rely on quantum effects beyond those conceivably provided 
by current models of quantum computation (Penrose, 1989; Penrose, 
1997). Regardless of the strength of these arguments — which appear 
to this author to rest on mistakes about the nature of human cognition 
— it seems reasonable to expect such exotic forms of quantum com
putation, if they ever exist, to present challenges to human algorithm 
designers that are at least as great as those posed by "ordinary" quan
tum computation. This would further increase the utility of technologies 
that automatically discover new quantum algorithms. 

Several general introductions to quantum computing are available. 
These include, listed roughly from least to most technical, (Brown, 
2000; Milburn, 1997; Brooks, 1999; Rieffel and Polak, 2000; Williams 
and Clearwater, 1998; Steane, 1998; Gruska, 1999; Nielsen and Chuang, 
2000). John Preskill's online lecture notes also provide a comprehensive 
introduction.^ Some foundational documents can be found in (Feynman, 
1996) and (Hey, 1999). Current research in the quantum computing and 
quantum information theory is published in a wide range of journals 
(mostly physics journals) and conference proceedings (such as Shapiro 
and Hirota, 2003). Many contributions are distributed in pre-print form 
from the online "arXiv" archive.'^ 

2. Possibilities Count 
How is it that quantum computers can outperform classical comput

ers? That is, how can the specifically quantum mechanical properties of 
quantum computing hardware provide non-classical computing power? 
In Chapter 2 we look at a mathematical characterization of quantum 

^http://www.theory.caltech.edu/people/preskill/ph229/ 

^http://arxiv.org/archive/quant-ph 
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computing that provides, in some sense, the most complete answer to 
this question. But the mathematical characterization does little to pro
vide intuitions about what's really going on. Indeed, such intuitions are 
hard to come by, since better-than-classical quantum algorithms exploit 
the "weird" aspects of quantum mechanics that have baffled nearly ev
erybody for nearly a century. As Richard Feynman wrote in discussing 
quantum electrodynamics: 

No, you're not going to be able to understand it. . . . You see, ray physics 
students don't understand it either. That is because I don't understand it. 
Nobody does. . . . The theory of quantum electrodynaraics describes Nature 
as absurd from the point of view of common sense. And it agrees fully with 
experiment. So I hope you can accept Nature as She is — absurd. (Feynman, 
1985) 

The same can be said in regard to some of the deepest questions in 
quantum computing: we can easily see how the mathematics produces 
the results, but that's a far cry from understanding how or why Nature 
conforms to the particular, counter-intuitive mathematics. 

Nevertheless, in this section a brief attempt is made to ground at least 
some fundamental intuitions about how it is that quantum mechanical 
properties can provide computational advantages. 

One perspective on the source of the power of quantum computing is 
that in quantum computing possibilities count, even if they never happen. 
Furthermore, in well-designed quantum algorithms, each of exponen
tially many possibilities can be used to perform a part of a computation 
at the same time. 

At first blush this must appear to be a preposterous assertion. How 
can possibilities that never happen influence the outcome of a computa
tion? But there is a sense in which this is literally true, and one can view 
many if not all of the novel effects of quantum computing as stemming 
from this fact. 

Consider a beam splitter as shown in Figure 1.1, which might be made 
from a half-silvered mirror. Photons leave the light source on the left, hit 
the beam sphtter in the center, and either reflect to detector A or pass 
through to detector B. When we turn the light up high, sending out a 
steady beam, half of the photons are detected at A and half are detected 
at B. When we turn the light down very low, so that there is only one 
photon in the system at a time, each photon is detected either at A or at 
B with 50% probability for each detector. That is, for any given photon 
there is a possibility that it will be reflected and a possibility that it will 
pass through. Quantum mechanics tells us that we cannot know which 
possibility will actually happen — that is, will eventually be detected 
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A 

light _9 
^ 

^ B 

Figure 1.1. A beam splitter. 

light J 

Figure 1.2. An interferometer. 

— in advance; both possibilities are "live options" up to the moment of 
detection. 

Now consider the optical interferometer shown in Figure 1.2. The 
lighter bars are again beam splitters, but the solid black bars are ordinary 
mirrors. The system is precisely engineered so that each of the four paths 
in the center of the interferometer is exactly the same length. What 
happens when we send a beam of photons through this apparatus? One 
might naively predict that one would again detect half of the photons at 
A and half at B. After all, our experience with the beam splitter seems to 
indicate that half of the photons will reflect from the first beam splitter 
while half will pass through. Each of these beams then reflects back to 
the second beam splitter where, it would seem reasonable to assume, 
half of each beam will again reflect and half of each beam will pass 
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light 3 

Figure 1.3. Interference of amplitudes in the interferometer. 

through. Of the photons that pass through the first splitter, those that 
pass through the second splitter should be detected at A, while those 
that reflect from the second splitter should be detected at B. Of the 
photons that reflect off of the first splitter, those that pass through the 
second splitter should be detected at B, while those that reflect from the 
second splitter should be detected at A. The predicted result, overall, 
would therefore be that we would again detect half of the photons at A 
and half at B. 

But this is not what one actually observes when the experiment is 
conducted. Instead, all of the photons that leave the source are detected 
at B! How can this be? Perhaps the reader is aware that light has wave
like aspects, along with its particle-like aspects — this may suggest that 
photons traveling in the different arms of the interferometer interfere 
with one another, just as waves in a water interfere with one another. 
M&ybe the waves are combining to form higher peaks in some places 
(such as detector B) and canceling one another in others (such as detec
tor A). This is a reasonable first stab at an explanation, but it begins to 
break down when we repeat the experiment with the light again turned 
down very low, so that there is only one photon in the entire apparatus 
at a time. When we do this we still detect photons only at B. Presum
ably each photon must be taking one path or the other, since nobody 
has ever detected anything like a "half a photon." What then could be 
interfering with what? 

Quantum mechanics provides a straightforward way to calculate the 
result that is actually observed, although the interpretation of the cal
culation — why it is this calculation and not some other, and what this 
means about the nature of the universe — is the subject of considerable 
debate. 
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The calculation is based on the association of a complex number, 
called an amplitude, with each possible path that a photon can take. 
Graphically, following Feynman (Feynman, 1985), we draw an arrow 
for each amplitude, as shown in Figure 1.3. The arrow emerging from 
the light source is of length 1 and is oriented in an arbitrarily chosen 
direction. Each arrow rotates as its associated photon moves down the 
path, at a rate related to the photon's frequency. For our interferometer 
we can ignore these "traveling" rotations by specifying that all of the 
path segments have lengths that are even multiples of the length required 
for a full rotation, so that a single arrow can represent the amplitude 
both at the beginning and at the end of a segment. 

When we reach a beam splitter, we split the arrow in two — actually 
each component is of length 4=, but we can ignore that here — and 
we rotate the reflected arrow 90° counter-clockwise. We do not rotate 
the arrow that corresponds to the possibility that the photon passes 
straight through the beam splitter. At ordinary mirrors the reflected 
arrows are rotated 180°. When two or more arrows meet via different 
paths we "add" the arrows using vector addition; that is, we place the 
arrows tip to tail and draw the "sum" arrow from the tail of the first 
to the tip of the last. The arrows determine experimental observations 
in the following way: the square of the length of any arrow gives the 
probability that the photon will be detected by a detector placed in the 
corresponding path. 

This graphical method, based on rotating arrows, can be used to 
explain a vast array of optical phenomena (as in Feynman, 1985). In 
the case of our interferometer the explanation emerges quite quickly. 
Using the rules specified above we see that a full-length arrow emerges 
at detector B, while no arrow at all emerges at detector A. This means 
that there is a 100% probability of detecting each photon at detector B, 
and no probability of detecting a photon at detector A. 

In what sense does this demonstrate that "possibilities count"? Con
sider what happens if we remove the mirror at the lower right of the 
diagram. In this case there is no possibility of a photon arriving at the 
second beam sphtter via the bottom arm of the interferometer. As a 
result, the only arrows at the detectors will be those from the upper 
arm, and a photon arriving via the upper arm will have an equal chance 
of arriving at either A or B. That is, a single photon leaving the source 
and traveling on the upper arm may now arrive at A, an outcome that 
was previously impossible, because the possibility of a photon traveling 
on the lower arm has been eliminated. The possibility of an event that 
does not occur nonetheless "counts" in determining how a photon in the 
apparatus will behave. 
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Figure 1.4- A photon-triggered bomb. (Adapted from Penrose, 1997.) 

How can this be leveraged for computational advantage? Consider the 
hypothetical "photon-triggered bomb" illustrated in Figure 1.4. This 
bomb is fitted with a plunger on its nose, upon which is mounted a 
mirror. The bomb is designed to detonate if, and only if, a photon hits 
the mirror. When the bomb detonates, the triggering photon reflects in 
some direction other than that which would result from reflection off of 
an ordinary mirror. (The specific direction doesn't matter.) Due to a 
manufacturing error some of the bombs are "duds" of a specific sort — 
their plungers are stuck, and these dud bombs act as ordinary mirrors. 
How could we separate the duds from the "good" bombs? The obvious 
approach of hitting each mirror with a photon has the unfortunate side 
effect of detonating all of the good bombs. Can we do better? 

Avshalom Elitzur and Lev Vaidman (Elitzur and Vaidman, 1993; 
Vaidman, 1996) discovered how to do this, and their scheme helps to 
demonstrate how computational work can be done by possibilities that 
are never actualized. Consider the interferometer in Figure 1.5, in which 
a photon-triggered bomb has been inserted in place of the mirror at the 
lower right. First consider what happens when the bomb is a dud. In 
this case the bomb acts as an ordinary mirror and we have the same 
situation as in Figure 1.2; all photons leaving the source are detected at 
B, and none are detected at A. But now consider what happens when 
the bomb is "good." In this case any photon traveling on the lower arm 
will detonate the bomb and will fail to reach the second beam splitter. 
As a consequence, the situation for photons traveling on the upper arm 
is now the same as it would be with the lower right mirror removed: a 
single photon leaving the source and traveling on the upper arm may 
arrive either at A or at B, each with 50% probability. Those that arrive 
at B tell us nothing — photons would arrive there even if the bomb were 
a dud. But a photon arriving at A tells us that the bomb must be good. 
It tells us this by traveling on the upper arm in a context in which it 
is not possible to reach the second beam splitter via the lower arm. We 
get information (and accomplish computational work) from the presence 
or absence of possibilities that are not directly explored. The detection 
of a photon that does not even get close to the bomb tells us that the 
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light J 

Figure 1.5. A way to test photon-triggered bombs without exploding all of the 
"good" ones. (Adapted from Penrose, 1997.) 

bomb would detonate if a photon were to strike it. Schemes similar to 
this can be and have been physically implemented, and while the scheme 
described here only recovers about a quarter of the good bombs there 
are enhanced versions that allow one to reduce the amount of bomb loss 
as much as one would like (Kwiat et al., 1995).^ 

Most interesting quantum algorithms make use of a similar effect. One 
generally creates a situation in which several possible states of a quantum 
memory register exist simultaneously, in what is known as "superposi
tion." One then arranges for many of the possibilities to influence, often 
via some sort of interference, the outcome of later observations. In some 
cases one can arrange for exponentially many possible computations to 
simultaneously contribute to the output of a calculation, thereby reduc
ing the amount of time and/or space required to perform a computation 
below the limits that can be obtained with classical hardware. 

3. The Role of Automatic Programming 
Computer science will be radically transformed if the ongoing efforts 

to build large-scale quantum computers eventually succeed and if the 

•̂ A non-technical discussion of the Elitzur and Vaidman bomb testing problem and its philo
sophical implications is in (Penrose, 1997, pp. 66-70). 
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properties of these computers meet optimistic expectations. Unfortu
nately, however, we still lack a thorough understanding of the power 
of quantum computing, and it is not always clear how best to utilize 
the power that we do understand. This is largely because quantum al
gorithms are difhcult to understand and even more difficult to write. 
Despite large-scale international efforts only a few important quantum 
algorithms are known, and many basic questions about the potential of 
quantum algorithms remain unanswered. 

Michael Nielsen and Isaac Chuang, in their textbook on Quantum 
Computation and Quantum Information, describe the difficulty of dis
covering new algorithms as follows: 

Coming up with good quantum algorithms seems to be hard. A pessimist 
might think that's because there's nothing quantum computers are good for 
other than the applications already discovered! We take a different view. 
Algorithm design for quantum computers is hard because designers face two 
difficult problems not faced in the construction of algorithms for classical 
computers. First, our human intuition is rooted in the classical world. . . . 
Second, to be truly interesting it is not enough to design an algorithm that is 
merely quantum mechanical. The algorithm must be better than any existing 
classical algorithm! . . . The combination of these two problems makes the 
construction of new quantum algorithms a challenging problem for the future. 
(Nielsen and Chuang, 2000, p. 7) 

These circumstances are ideal for the application of automatic pro
gramming technologies, which allow us to leverage computer power to 
explore the space of algorithms in a mechanical way. As mentioned in 
Section 1 above, such technologies can be applied to the discovery of 
new quantum speedups and also to the exploitation of other uniquely 
quantum-computational effects. 

Genetic programming techniques, in particular, can be extended to 
produce quantum algorithms that solve particular computational prob
lems on a quantum computer. These methods have already produced 
new quantum algorithms and it is reasonable to expect further discover
ies in the future. The quantum algorithms found by these methods may 
help us to understand how to solve particular practical problems using 
quantum computers. They may also help to guide theoretical work on 
the power and limits of quantum computing. 

The opportunities here are significant both because of the potential 
power of quantum computing and because of the enigmatic nature of that 
power. Genetic programming is an automatic programming technology 
that can, in many circumstances, perform at a "human competitive" 
level (Koza et al., 2003; see also Section 8.6). But quantum computer 
programming is particularly difficult for humans, and one might there
fore be justified in expecting genetic programming systems to perform 
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better than humans in this area. Because the stakes are so high — on ac
count of the unprecedented computational powers that may result from 
the construction of large scale quantum computers — the application of 
genetic programming to automatic quantum computer programming is 
worthy of serious investigation. 



Chapter 2 

Q U A N T U M C O M P U T E R SIMULATION 

Chapter 1 discussed quantum computing in non-technical terms and 
in reference to simple, idealized physical models. In this chapter we 
make the underlying mathematics explicit and show how one can sim
ulate, albeit inefficiently, the behavior of a quantum computer on an 
ordinary (classical) digital computer. Such simulation is necessary for 
the "fitness evaluation" steps of the methods for automatic quantum 
computer programming that will be described later in this book. 

1. Bits, Qubits, and Gates 
In classical computing the fundamental unit of information is the bit, 

which can exist in one of two states (conventionally labeled "0" and 
"1"). Bits can be implemented as positions of gears or switches, levels 
of charge, or any other conditions of any physical systems that can be 
easily and unambiguously classified into one of two states. Computations 
consist of sequences of operations, conventionally referred to as "gates," 
that are applied to bits and to collections of bits. The physical medium in 
which the bits and the gates are embedded may influence the computer's 
size, energy requirements, or "clock rate," but it has no impact on the 
fundamental computational power of the computer. Two computers 
with the same storage capacity (in bits) and the same set of supported 
operations (gates) can be considered equivalent for many purposes. 

In quantum computing the fundamental unit of information is the 
qubit, which can also exist in one of two "computational basis" states 
(conventionally labeled using Paul Dirac's "bra-ket" notation as |0) and 
|1)). But unlike the bit, the qubit can also exist in a superposition of 
|0) and |1) represented as ao|0) -|- Q:I|1), where ao and ai are complex 
numbers such that |Q;OP + IcuP = 1- The alphas here are the arapli-
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tudes described in Chapter 1, and one can square the absolute value 
of an alpha to determine the probability that a measurement will re
veal the corresponding state; for example |a;op is the probability that 
measurement of the qubit will find it in the |0) state. 

The physical medium underlying a quantum computer, like that un
derlying a classical computer, is generally not relevant to discussions of 
the computer's fundamental computational power. All that is neces
sary is that the medium supports the units of storage (qubits) and the 
relevant operations (quantum gates). A wide variety of proposals has 
been developed for implementing qubits and quantum gates, including 
schemes based on optics, ion traps, and the manipulation of nuclear spins 
in nuclear magnetic resonance devices. All of these schemes present en
gineering challenges, and many are under active development. We will 
not be concerned with the details of any of them in the present book, 
because the computational properties in which we are primarily inter
ested are captured by the abstract view of the quantum computer as a 
collection of qubits, on which we operate by means of mathematically 
specified quantum gates. Automatic programming techniques similar 
to those described later in this book, but built on models of particu
lar implementation schemes, may be be useful for exploring limits or 
opportunities of the corresponding implementations. 

In classical computing the representation of an n-bit system is sim
ply the concatenation of the representations of n 1-bit systems. For 
example the state of a 5-bit register might be represented as 10010. In 
quantum computing the representation of a multi-qubit system is more 
involved, because the individual qubits are not independent of one an
other. Indeed, qubits in a quantum computer can become "entangled" 
with one another, and this entanglement underlies several interesting 
quantum algorithms (Jozsa, 1997; Bennett, 1999). The nature of quan
tum entanglement is a subject with an enormous literature and a rich 
history, some of which bears directly on questions about quantum com
putation. A few suggested entry-points into this literature are (Bell, 
1993), (Deutsch, 1997), (Albert, 1992), and many of the essays in (Hey, 
1999). 

To represent the complete state of a multi-qubit system one must in 
general store a complex amplitude for each combination of basis values 
(|0) and |1)) over the entire system. So, for example, the state of a 
3-qubit register might be represented as ao|000) + Q;I|001) + a2|010) -|-
Q!3|011) + a4|100) + asllOl) + aelHO) + ajlUl), where the squares of 
the absolute values of the alphas sum to 1. 

Quantum gates can be formalized as matrices, with the apphcation of 
a gate to a quantum computer state implemented as the multiplication 
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of the gate's matrix times a column vector containing the state's ampH-
tudes. What sense does this make? Let us first look at a classical version 
of this idea. Consider a 2-bit classical register. Such a register can be 
in one of four possible states, namely 00, 01, 10, or 11. Suppose, for 
reasons that will seem perverse until we generalize to the quantum case, 
that we wish to represent the state of this register not using the two bits 
themselves, but rather by recording individually the "amplitudes" for 
each of the four possible states. Since the register is classical it cannot 
be in a superposition — it will always be in one particular state. The 
amplitude corresponding to the actual state of the register will be 1, and 
all of the other amplitudes will be 0. We will write the amplitudes in the 
form of a column vector in binary order; that is, the number on top will 
be the amplitude for the 00 state, the next one will be the amplitude for 
the 01 state, and so on. So the four possible states of this 2-bit classical 
register will be represented as: 

• 1 • 

0 
0 
0 

7 

• 0 " 

1 
0 
0 

7 

• 0 " 

0 
1 
0 

) 

" 0 " 
0 
0 
1 

What classical operations can be performed on such a register? Al
though they can be built in various ways from Boolean primitives, all 
allowable operations have the effect (if they have any effect at all) of 
changing the state of the register from one of these four states to an
other. And any such operation can be represented as a matrix, con
sisting only of Os and Is, which, when applied to a state vector (via 
matrix-vector multiplication), produces another valid state vector. For 
example, consider the following matrix: 

1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 

This matrix will have no effect when applied to 00 or 01, but it will 
transform 10 into 11 and 11 into 10. That is, it will act as a "NOT" 
operation on the right-most bit if and only if the left-most bit is 1. 
For this reason this is often called a "controlled NOT" or "CNOT" gate. 
All permissible transformations of the 2-bit register can be represented 
similarly, using 4 x 4 matrices containing only Os and Is. Not all such 
matrices are permissible — only those that are guaranteed to produce 
valid classical state vectors (containing one 1 and the rest Os) when 
applied to valid classical state vectors. 
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Quantum computation can be viewed, mathematically, as a general
ization of this classical matrix model. The first generalization is that 
the amplitudes in the state vectors are no longer required to be 0 or 
1. Each amplitude can be any complex number, as long as the squares 
of the absolute values of the amplitudes sum to 1.̂  Similarly, the set 
of permissible operations (matrices) is expanded to include any matrix 
that meets the condition of unitarity, which can be expressed (in one 
formulation) as the requirement that: 

U^U = UU^ = 1 

Here U is the matrix in question, U^ is the Hermitean adjoint of U 
(obtained by taking the complex conjugate of each element of U and 
transposing the result), and / is the identity matrix. The multiplication 
of a vector of amplitudes by any unitary matrix will always preserve the 
"summing to one" constraint described above. Although there are in
finitely many such unitary matrices, a small finite set suffices for quan
tum computational universality in the same sense that the NAND gate 
suffices for classical computation (Barenco et al., 1995). 

In this book we use a selection of quantum gates similar to that used 
elsewhere in the quantum computing literature. We use the CNOT gate 
described above, along with the simpler 1-bit Quantum NOT or QNOT gate 
with the matrix: 

QNOT 0 1 
1 0 

We also use a family of 1-qubit "rotations" parameterized by an angle 
with matrices of the form: 

Ue = 
cos{9) sin(6l) 

- sin(6i) cosle) 

Another 1-qubit gate, called Square Root of NOT or SRN provides a 
good example of the non-classical power of quantum gates. We use a 
version of SRN with the following matrix (which is also equivalent to 

A / 

SRN^^^ 1 - 1 
1 1 

^Squaring does not obviate the taking of the absolute value, because some amplitudes will 
be complex and have negative squares. 
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When applied to a qubit that is in either the |0) or the |1) state, 
it leaves the qubit in an equal superposition of |0) and |1) — that is, 
it appears to randomize the value of the qubit, since a measurement 
after the application of the gate will produce 0 or 1, each with 50% 
probability. But this is not simple randomization, as the qubit's history 
can still influence its future behavior. A second apphcation of SRN to the 
qubit will leave it, deterministically, in the opposite of the state in which 
it started — that is, measurement will produce 0 if the intial state was 
11), or 1 if the initial state was |0).^ So two applications of SRN produce 
the effect of QNOT, which is why SRN has the name that it does. 

The final 1-qubit gate that we routinely employ is the HADAMARD gate, 
with the following matrix: 

^ - A 
1 1 
1 - 1 

This gate is similar to SRN except that it acts more like a "square root 
of identity." It is useful for creating and "decoding" superpositions in a 
variety of quantum algorithms. 

It is sometimes helpful to use a fully-parameterized 1-qubit gate, 
which can act as any other 1-qubit gate if its parameters are set ap
propriately. One form for this "generalized rotation," which we call U2, 
is as follows: 

U2 = 
0 

0 
cos(0) 
sin(6l) cos(^) 

—iip 

0 
0 0 

0 

Other useful 2-qubit gates include the Controlled Phase gates, with 
matrices of the form: 

CPHASE= 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 e*° 

Finally, the SWAP gate, which simply swaps the states of two qubits. 
is often handy: 

SWAP = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

^Actually, the matrix for two consecutive applications of SRN is [ : meaning that 

two applications of SRN to |1) will produce —10), although the change in sign has no effect on 
measurements. Six applications would be required to obtain |0). 
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Specific problems may call for the use of additional gates. For exam
ple, many problems are phrased with respect to a "black box" or "ora
cle" gate, of which we are asked to determine some property. Grover's 
database search problem is of this sort; we are given a multi-qubit gate 
that encodes a database, and we are asked to determine which input will 
produce a "yes" output (which the oracle usually indicates by flipping 
— QNOTing — a specified qubit). 

2. Gate-Level Simulation 
There are many approaches to quantum computer simulation. At 

one extreme one can attempt to simulate, as realistically as possible, 
the exact interactions involved in a particular physical device, including 
noise and other effects of imprecision in the design of the physical com
ponents. For example, Kevin Obenland and Alvin Despain simulated 
a quantum computer that manipulates trapped ions by means of laser 
pulses, modeling imperfections in the laser apparatus as deviations in 
the angles of rotations (Obenland and Despain, 1998). Alternatively, 
one could simulate the quantum computer at a higher level of abstrac
tion, ignoring implementation details and working only with "perfect" 
unitary matrices. 

If one wishes to simulate the execution of arbitrary sequences of quan
tum gates then one necessarily faces exponential space and time costs 
whether one works at the implementation level or at a more abstract 
level. That is, if the number of qubits in the system is A ,̂ then the space 
and time requirements for simulation will both scale approximately as 
2^ . 

In order to evolve quantum algorithms, as described in Chapter 7, we 
must indeed be able to simulate the execution of arbitrary sequences of 
quantum gates. But since our focus is on the theoretical power of quan
tum computing, and not on the strengths or weaknesses of any particular 
implementation, we can conduct our simulations with straightforward 
matrix mathematics. We will explicitly maintain full vectors of complex 
amplitudes, upon which we will explicitly conduct large matrix multi
plications. We will pay exponential costs for this form of simulation but 
the simulation techniques will be conceptually simple. 

The exponential costs associated with simulation will limit the range 
of problems to which our automatic programming techniques can be 
applied. We will generally seek applications that involve only small 
quantum systems or that produce algorithms that can be "scaled" to 
various sizes by hand after they have been discovered automatically. 
Fortunately, there do seem to be many problems for which the simulation 
costs are not prohibitive. 
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Simulation shortcuts are possible if one knows in advance that the 
algorithm being simulated obeys certain constraints — that is, that cer
tain amphtudes will always be zero, or that certain amplitudes will have 
values that can be quickly re-derived (so that one needn't always store 
them all explicitly), or that certain types of entangled states will never 
be produced. Such constraints, combined with clever encoding schemes, 
can lead to substantial improvements in simulation speed for many al
gorithms, although exponential costs will still be incurred in the worst 
case (Viamontes et al., 2002; Viamontes et al., 2003; Udrescu-Milosav, 
2003). These types of advanced simulation techniques are not discussed 
further in this book, but they could certainly be incorporated into the 
automatic quantum computer programming framework described here, 
and one would expect their incorporation to increase the reach of the 
technology. 

To perform the full matrix mathematics described in the previous 
section we must generally expand the compact matrices that characterize 
the gates to the appropriate size for the complete quantum system being 
simulated. For example, if we wish to apply a QNOT gate to the right
most qubit of a 3-qubit system then it is not enough to multiply two 
amplitudes by the 2 x 2 matrix that characterizes QNOT. Rather, one 
must do something that affects all amplitudes in the system, effectively 
multiplying it by the following 8 x 8 matrix: 

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

In this case the expansion of the 2 x 2 matrix to produce the 8 x 8 
appears relatively straightforward, but the process is more confusing 
when one must expand a multi-qubit gate, particularly when the qubits 
to which it is being applied are not adjacent in the chosen representation. 
For example if one wishes to apply a CNOT gate in a 3-qubit system, using 
the right-most qubit as the "control" input and the left-most qubit as 
the "target" (the one that is flipped when the control qubit is 1), then 
one must effectively use the following 8 x 8 matrix: 
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1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 

How does one construct the needed matrix expansion? First, note 
that one needn't necessarily construct the matrix (the "tensor product") 
explicitly. In many cases it will suffice to perform an operation which 
has the same effect as multiplication by the expanded matrix, but which 
uses only the compact representation of the gate. We call this "implicit 
matrix expansion." 

In other cases one does want the explicit representation of the ex
panded gate, for example because one wants to multiply several ex
panded gates with one another for storage and later re-application. The 
choice between implicit and explict matrix expansion presents a trade-off 
between space requirements and flexibility. With implicit matrix expan
sion one must store the matrices only in their compact forms, which can 
be a considerable savings. For example, a 1-qubit gate in its compact 
form can be represented with only 4 complex numbers, whereas the ex-
phcit expansion of this gate for a 10-qubit system consists of 1,048, 576 
complex numbers. On the other hand, the expanded forms may be con
venient for certain purposes both in the evolution and in the analysis 
of quantum algorithms. An ideal simulator will therefore provide both 
options and allow the user to switch among them according to need. 

An algorithm for explicit matrix expansion is provided in Figure 2.1, 
and an algorithm for applying an implicitly expanded gate is provided 
in Figure 2.2. Source code for these algorithms is included in the distri
butions of QGAME, a quantum computer programming language and 
simulation system described in the following chapter; the code for ap
plying an implicitly expanded gate is included in the minimal version of 
QGAME in the Appendix of this book. 

A variety of other approaches to quantum computer simulation exist, 
some of which are based on alternative conceptualizations of quantum 
computers (for example, on "quantum Turing machines" or "Feynman 
computers"). Source code for other simulators can be found in other 
texts (for example, Williams and Clearwater, 1998) and via internet 
searches. 
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To expand gate matrix G (explicitly) for application 
to an n-qubit system: 

• Create a 2" x 2" matrix M. 

• Let Q be the set of qubit indices to which the operator is 
being applied, and Q' be the set of the remaining qubit 
indices. 

• Mij = 0 if i and j differ from one another, in their bi
nary representations, in any of the positions referenced by 
indices in Q'. 

• Otherwise concatenate bits from the binary representation 
of i, in the positions referenced by the indices in Q (in 
numerical order), to produce i*. Similarly, concatenate 
bits from the binary representation of j , in the positions 
referenced by the indices in Q (in numerical order), to 
produce j * . Then set Mij = Gi*j*. 

• Return M. 

Figure 2.1. An algorithm for explicit matrix expansion. 
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To apply gate matrix G (expanded implicitly) to an 
n-qubit system: 

• Let Q be the set of qubit indices to which the operator is 
being appHed, and Q' be the set of the remaining qubit 
indices. 

• For each combination C of 0 and 1 for the set of qubit 
indices in Q': 

— Extract the column A of ampHtudes that results from 
holding C constant and varying all qubit indices in Q. 

- A' = GxA. 

~ Install A' in place of A in the array of amplitudes. 

Figure 2.2. An algorithm for applying an implicitly expanded gate. 



Chapter 3 

QUANTUM COMPUTER PROGRAMMING 

This chapter describes the author's QGAME ("Quantum Gate and 
Measurement Emulator") quantum computer simulation system. It also 
describes a few of the ways in which quantum programs and quantum 
computer states can be visually displayed. It concludes with a detailed 
example of the simulation of a quantum program for an instance of 
Grover's database search problem. 

1. QGAME: Quantum Gate and Measurement 
Emulator 

One embodiment of the simulation ideas presented in Chapter 2 is the 
author's QGAME system. The original version of QGAME was written 
in the Common Lisp programming language, which has native support 
for complex numbers along with other features that support rapid system 
development, and some of the elements of QGAME's syntax retain Lisp-
hke features. A C + + version of QGAME, written by Manuel Nickschas, 
is also available. Current versions of QGAME can be obtained from 
h t t p : / /hampshire. edu/lspector/qgame.html. Common Lisp source 
code for the core components of QGAME is provided in the Appendix. 

QGAME provides a syntax for the expression of quantum programs 
and also an interpreter that simulates their execution. Some versions 
also provide basic visualization capabilities. 

A QGAME program consists of a sequence of "instruction expres
sions," each of which is surrounded by parentheses. The most typical 
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instruction expressions consist of the name of a gate type, followed by 
a combination of qubit indices (specifying to which qubit or qubits the 
gate is to be applied) and other parameters (such as angles to rotation 
gates). For example, an expression of the form: 

(QNOT q) 

where g is a qubit index (an integer, starting with 0), applies a quantum 
"not" (QNOT) gate to the specified qubit. Similarly, an expression of the 
form: 

(CNOT Qcontrol Qtarget^ 

applies a quantum controlled NOT gate to the specified control and 
target qubits. Instruction expressions following the same pattern, for 
the remaining gates described in the Chapter 2, are as follows: 

(SRN q) 

(HADAMARD q) 

(U-THETA q 9) 

052 q (j) 6 ip a) 

(CPHASE qcontrol qtarget « ) 

(SWAP qcontrol Qtarget') 

QGAME also provides a way to specify algorithms that include calls 
to "oracle" gates with any number of inputs and one output. These 
gates are "Boolean" in the sense that they can have one of two possible 
effects on their output qubits on any particular invocation, but unlike 
classical logic gates they cannot act by setting their output qubits to 0 
or 1 as such behavior would be non-unitary. The alternative convention 
adopted in most work on quantum computing, and built into QGAME, 
is that a Boolean gate acts by flipping or not flipping its output qubit to 
indicate an output of 1 or 0 respectively. The "flip" here is implemented 
as a QNOT, and all oracle gates can therefore be thought of as CNOT gates 
with more complex controls. 

During the testing of an algorithm that contains an oracle gate one 
normally wants to run the program with various instances of the oracle 
and to collect statistics over all of the results. For example, if one is 
testing a program for Grover's search problem one might want to run it 
on all possible databases (each of which is implemented as an oracle that 
QNOTs its output qubit if its inputs address the "marked" item), ensuring 
that it reports the correct answer in each case. This is facilitated in 
QGAME with a sort of "macro" instruction expression of the form: 

(ORACLE Q qi q2 ... Qn qout) 
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Q, should be the right-hand column of a Boolean truth table that specifies 
the action of the ORACLE gate, listed in parentheses and in binary order. 
The qi, q2, • • • Qn parameters are the indices of the input qubits, and gout 
is the index of the output qubit. For example, the following expression: 

(ORACLE (0 0 0 1) 2 1 0) 

calls a gate that flips qubit 0 (the right-most qubit) when (and only 
when) the values of qubits 2 and 1 are both 1. In other words, this 
oracle acts as the following matrix: 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

This particular matrix, incidentally, is also known as the "Toffoli" gate; 
it can be used to implement quantum versions of classical NAND and 
FANDUT gates, meaning that all possible deterministic classical compu
tations can be computed on quantum computers using appropriately 
connected Toffoli gates (Nielsen and Chuang, 2000, pp. 29-30). 

If fl in an ORACLE expression is the symbol ORACLE-TT then this in
dicates that the interpreter should substitute a valid truth table speci
fication in place of the symbol before execution; this is normally in the 
context of a call to TEST-qUANTUM-PROGRAM (see below). 

It is sometimes useful to limit the number of times that an oracle 
can be called during a single simulation. For this reason QGAME also 
provides an instruction expression of the form: 

(LIMITED-ORACLE max Q qi q2 . •. Qn qout) 

This works just Hke ORACLE the first max times it is executed in a sim
ulation; after max executions it has no further effect. 

QGAME also provides a way to simulate the effects of single-qubit 
measurements during the execution of a quantum program, and allows 
for the outcomes of those measurements to influence the remainder of 
the simulation. In an actual run of a quantum computer such measure
ments would, in general, be probabihstic. In particular, the probability 
that measurement of a qubit will find it in the 0 state is equal to the 
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sum of the squares of the absolute values of all of the amplitudes cor
responding to 0 values for that qubit. Because we generally wish, when 
performing our simulations, to obtain the actual probabilities for vari
ous outputs and not just particular (probabilistically chosen) outputs, 
QGAME simulates a/l possible measurement outcomes. This is done by 
branching the entire simulation and proceeding independently for each 
possible outcome. In each branch the measured qubit is forced to the 
measured value. The probability for taking each branch is recorded, and 
output probabilities at the end of the simulation are calculated on the 
basis of all possible final states and the probabilities of reaching them. 

The syntax for a QGAME measurement is as follows: 

(MEASURE q) ... branchi... (END) . . .brancho. . . (END) 

This is actually a sequence of instruction expressions, beginning with 
the MEASURE expression that specifies the qubit to measure. Any num
ber of instruction expressions may occur between the MEASURE expression 
and the first following END; all of these will be executed in the branch 
of the simulation corresponding to a measurement of 1. Similarly, any 
number of instruction expressions may occur between the first following 
END and a subsequent END; all of these will be executed in the branch of 
the simulation corresponding to a measurement of 0. Instruction expres
sions following the second END will be executed in both branches of the 
simulation, following the execution of the branch-specific instructions. 
If there is no END following the MEASURE expression then the entire re
mainder of the program is branchi and there is no' brancho. Similarly, 
if there is only one subsequent END then the entire program beyond that 
END is brancho. Unmatched ENDs are ignored. 

A few additional instruction expressions provide benefits in special 
circumstances. Expressions of the form: 

(MATRIX-GATE M history) 

allow for the inclusion of gates with arbitrary unitary matrices. M here is 
a fully expanded matrix, of size 2" x 2" for an n-qubit system, expressed 
in Lisp 2D array notation. For example, the notation for a matrix that 
acts like QNOT, for a 1-qubit system, would be "#2A((0 1) (1 0) )" . The 
history parameter is ignored by the QGAME interpreter but it may 
carry information about the source of the matrix that will be useful for 
human interpretation; this is used, for example, in conjunction with the 
"gate compression" genetic operator in Chapter 7. 

A HALT expression simply terminates the current simulation (or the 
current branch of the simulation, in the context of measurements): 
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(HALT) 

The following two expressions allow for the printing of diagnostic in
formation: 

(PRINTAMPS) 
(INSP) 

PRINTAMPS prints the amplitudes of the executing quantum system, 
while INSP (short for "inspect") provides more detail about the system 
state. INSP is implementation-specific; in the Lisp version of Q G A M E 
it causes the Lisp inspector to be invoked on the executing quantum 
system, thereby allowing for interactive exploration and manipulation. 

The main top-level call to the Q G A M E interpreter, which will be 
particularly useful for the approach to automatic quantum computer 
programming discussed in Chapter 7, is TEST-QUANTUM-PROGRAM. This 
call takes the following inputs: 

• PROGRAM: The program to be tested, in Q G A M E program syntax. 

• NUM-QUBITS: The number of qubits in the quantum computer to be 
simulated. 

• CASES: A parenthesized list of ^^[oracle-truth-table output)" pairs, 
where each oracle-truth-table is a parenthesized list of Os and Is 
specifying the right-hand (output) column of the oracle's t ru th ta
ble (where the rows are listed in binary order), and where the output 
is the correct non-negative integer answer for the given t ru th table; 
the test compares this number to the number read from the final 
measurement qubits at the end of the computation. 

• FINAL-MEASUREMENT-QUBITS: A parenthesized list of indices speci
fying the qubits upon which final measurements will be performed, 
with the most significant qubit listed first and the least significant 
qubit listed last. 

• THRESHOLD: The probability of error below which a run is considered 
successful for the sake of the "misses" component of the return value 
(see below). This is typically set to something hke 0.48, which is 
usually far enough from 0.5 to ensure tha t the "better than random 
guessing" performance of the algorithm is not due to accumulated 
round-off errors. 

Additional inputs may be provided by particular implementations to 
support debugging or other features. TEST-QUANTUM-PROGRAM returns a 
list containing the following values: 
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• The number of "misses"; that is, cases in which the measured value 
will, with probability greater than the specified threshold, fail to 
equal the desired output. 

• The maximum probability of error for any provided case. 

• The average probability of error for all provided cases. 

• The maximum number of expected oracle calls across all cases. 

• The number of expected oracle calls averaged across all cases. 

It is relatively easy to extend TEST-QUANTUM-PROGRAM to return addi
tional values, for example the full list of error values or other statistics 
related to the program's performance. But the values listed above are 
sufficient to support many uses of QGAME for automatic quantum 
computer programming. 

2. Visualization 
QGAME program syntax provides one way to view quantum algo

rithms, and lists of amplitudes provide one way to view the state of a 
quantum computer. But such textual representations, while convenient 
for computer input and output, are relatively opaque to human com
prehension. Alternative visualization techniques can be useful, even in 
the context of automatic quantum computer programming, as they may 
significantly aid in the analysis and human understanding of quantum 
algorithms, whatever their source. 

Diagraming schemes similar to those used for classical circuits have 
been developed for quantum algorithms and they are used frequently in 
the literature. We use such "gate array" diagrams to document examples 
later in this book. One typically draws a horizontal line for each qubit 
and superimposes gate symbols on the lines, indicating from left to right 
the sequence of gate applications as the computation proceeds across 
the page. A labeled box is superimposed on a line to represent the 
application of a single-qubit gate, and boxes or other symbols that span 
multiple lines are used to represent multi-qubit gates. Our particular 
diagraming conventions will be made clear in the context of examples. 

Gate array diagrams can be helpful, but they can also be deceptive, 
particularly if one is accustomed to classical circuit or flow diagrams. 
For example, one must bear in mind that qubits can be entangled, and 
that gates are really applied not to independent "wires," as implied by 
the horizontal lines, but rather to amplitudes that are shared among all 
qubits. Even single-qubit gates typically change all of the amplitudes in 
the system, and the value of every qubit is influenced by every amplitude. 
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Figure 3.1. An amplitude diagram for a 3-qubit state. 

So there may often be interconnections that are essential to the algorithm 
but are not indicated directly in the diagram. 

Quantum algorithms are also often presented in algebraic form. Al
gebraic representations are also popular for the representation of quan
tum computer states, typically using Dirac "bra-ket" notation. These 
notations often allow for elegant presentation of algorithms and states 
designed by humans, but they can be ungainly when applied to the ar
bitrary algorithms and states that emerge from an automatic quantum 
computer programming system. 

Visualization of arbitrary quantum computer states is difficult for 
several reasons. The state of an n-qubit system is a collection of 2"' 
amplitudes, each of which is a complex number. The collection of am
plitudes has structure, but the structure is n-dimensional and it is not 
obvious how to map these dimensions onto a 2-dimensional diagram in 
a meaningful way. Neither is it obvious how best to map the individual 
complex numbers to image features. 

An amplitude diagram, as shown in Figure 3.1, can sometimes be 
helpful. The diagram displays all of the amplitudes numerically (in 
place of the as in the Figure), but they are arranged in a grid that 
hierarchically prioritizes the qubits. In the diagram as shown in Figure 
3.1 qubit 0 is prioritized first, so that the major left/right split of the 
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Figure 3.2. A cube diagram for a 3-qubit state. 

diagram puts all of the amplitudes for qubit 0 being 0 on the left, and all 
the amplitudes for qubit 0 being 1 on the right. The second (vertical) 
split is on the basis of qubit 1, and the third (horizontal, within the 
quadrants) is on the basis of qubit 2. This particular prioritization makes 
the values of qubits 0 and 1 most obvious, but one can re-prioritize to 
focus on other qubits. This scheme can be nested further, allowing for 
the "hierarchically flattened" visualization of relatively large quantum 
computer states. 

Janet Wiles and Bradley Tonkes developed a similar graphical repre
sentation scheme but for rather different (non-quantum) purposes, called 
hyperspace graph paper (Wiles and Tonkes, 2002). Their scheme omits 
explicit indications of the prioritization of the dimensions (though these 
could be added), and it uses grayscale values rather than numerals in 
the individual cells. As a result, many significant patterns are visually 
evident. For use in visualizing quantum computer states one would have 
to generalize the grayscale tones in some way, as the amplitudes can be 
complex. One way to do this, which was adopted in an early graphical 
user interface for QGAME, is to use a "hue, saturation, value" repre
sentation for color, mapping the phase of the amphtude to hue and the 
absolute value to saturation and/or value. 

For the special case of a 3-qubit system a related cube diagram can 
be used, as shown in Figure 3.2. 
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3. Example: Grover's Database Search Algorithm 
In this section we present one example in detail, an instance of Grover's 

database search algorithm (Grover, 1997), in order to clarify some of the 
ideas presented in this chapter. 

In this problem we are given a 3-qubit gate that, we are told, imple
ments a 4-item database. Two of the inputs to the gate are used to set 
an address, and the gate operates by flipping (QNOTing) the third input 
if (and only if) the addressed location contains a 1. Furthermore, for the 
instance of the problem that we are considering here, we are promised 
that one and only one of the locations in the database contains a 1; all 
other locations contain Os. 

Classically, it would require 3 queries to the database to be certain of 
the location of the single 1. If, after 3 queries, we had still not found the 
1, then we could be certain that it was in the one location in which we 
had not yet looked. But if we make only 2 queries and do not find the 
1 then we have no information about which of the remaining locations 
may be the correct one; we will have only a 50% chance of choosing 
correctly after 2 failed queries. 

Quantum mechanically the situation is quite different. In fact, a single 
query to the database allows us to determine, with 100% certainty, the 
location of the 1. This is accomplished by querying the database with 
the address qubits in a superposition of all possible addresses, and then 
decoding the resulting state to extract the needed information. 

One version of the quantum algorithm that solves this problem, found 
by genetic programming and simplified by Herbert J. Bernstein (personal 
communication), can be expressed as a QGAME program as follows: 

((HADAMARD 2) 
(HADAMARD 1) 
(U-THETA 0 0.7853981633974483) ;6l = 7r/4 
(ORACLE ORACLE-TT 2 1 0 ) 
(HADAMARD 2) 
(CNOT 2 1) 
(HADAMARD 2) 
(U-THETA 2 1.5707963267948966) ; ^ = 7r/2 
(U-THETA 1 1.5707963267948966)) ;e = 7r/2 

Figure 3.3 shows a gate array diagram for this same version of Grover's 
algorithm. 

Before running this program we set all qubits to the 0 state. We then 
run the program and read the answer, which will be the address of the 1 
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Figure 3.3. A gate array diagram for one version of Grover's database search algo
rithm for a 4-item database. 

in the database, from qubits 2 and 1. Simulation with QGAME confirms 
that this provides the correct answer in all cases. This simulation can 
be performed using TEST-QUANTUM-PROGRAM with the following inputs: 

• program: (As listed above). 

• num-qubits: 3. 

• cases: (((1000)0)((0100)1)((0010)2)((0001)3)). 

• f inal-measurement-qubits: (2 1) 

• threshold: 0.48. 

This call, using the current Lisp implementation of QGAME, pro
duces the following results: 

• misses: 0. 

• maximum error: 6.661338147750939 x 10"^^ (zero aside from a tiny 
round-off error). 

• average error: 6.661338147750939 x 10"-̂ ^ (zero aside from a tiny 
round-off error). 

• Maximum expected oracle calls: 1. 

• Average expected oracle calls: 1. 

Note that the "output" of the database is not even consulted after the 
database query; instead, the answer is decoded from the states in which 



Quantum Computer Programming 33 

the input qubits are left. This highhghts a counter-intuitive property 
of many quantum algorithms, sometimes called the "back action" of 
unitary gates. 

Figures 3.4 through 3.13 illustrate the action of this algorithm via 
cube diagrams for the single case of a database with the item stored at 
the address (0,0). Note that measurement of the system's state after 
the query to the database (as illustrated in Figure 3.8) would produce 
completely random results; the "decoding" steps in the remainder of the 
algorithm are necessary to extract the correct answer. Note also that the 
value of qubit 0, which is nominally the output of the database query, 
is completely uncertain at the end of the simulation (as illustrated in 
Figure 3.13). 
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Figure 3.4- A cube diagram of the ini
tial state for Grover's algorithm, as di
agrammed in Figure 3.3. All qubits are 
in the 0 state. 

Figure 3.5. A cube diagram of the 
second state in the execution of 
Grover's algorithm, after the applica
tion of a HADAMARD gate to qubit 2. 
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Figure 3.6. A cube diagram of the 
third state in the execution of Grover's 
algorithm, after the apphcation of a 
HADAMARD gate to qubit 1. 

Figure 3.1. A cube diagram of the 
fourth state in the execution of 
Grover's algorithm, after the applica
tion of a U-THETA gate to qubit 0. 
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Figure 3.8. A cube diagram of the 
fifth state in the execution of Grover's 
algorithm, after the database call. 
In this example the single 1 in the 
database is at address (0,0). 

Figure 3.9. A cube diagram of the 
sixth state in the execution of Grover's 
algorithm, after the application of an
other HADAMARD gate to qubit 2. 
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Figure 3.10. A cube diagram of the 
seventh state in the execution of 
Grover's algorithm, after the applica
tion of a CNOT gate with qubit 2 as the 
control and qubit 1 as the target. 

Figure 3.11. A cube diagram of the 
eighth state in the execution of 
Grover's algorithm, after the applica
tion of another HADAMARD gate to qubit 
2. 
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Figure 3.12. A cube diagram of the 
ninth state in the execution of Grover's 
algorithm, after the application of a 
U-THETA gate to qubit 2. 

Figure 3.13. A cube diagram of the 
final state in the execution of Grover's 
algorithm, after the application of a 
U-THETA gate to qubit 1. The (cor
rect) answer is read from qubits 2 and 
1, both of which now have the value 0 
with certainty. 



Chapter 4 

G E N E T I C A N D E V O L U T I O N A R Y 
C O M P U T A T I O N 

This chapter introduces genetic and evolutionary computing, focus
ing on the traditional genetic algorithm. It also discusses, in general 
terms, the use of parallelism to scale up genetic and evolutionary com
putation technologies for complex applications, and the applicability of 
these technologies for various types of problems including those related 
to quantum computing. 

1. What is Genetic and Evolutionary 
Computation? 

The phrase "genetic and evolutionary computation" is used in the lit
erature to describe a wide array of computational enterprises that borrow 
general principles from genetics and from evolutionary biology. The mo
tivations for these enterprises vary considerably. Some researchers are 
primarily interested in the processes that underlie biological genetics 
and evolution, and they use computational models (which may include 
problem-solving components) as tools to develop, test, and refine bio
logical theory. Others are primarily interested in the problem-solving 
potential exhibited by evolution and by living systems, and they borrow 
methods from nature mainly for the sake of engineering more powerful 
problem-solving systems. And of course many researchers combine both 
of these motivations, perhaps with others as well. 

In this book the focus is on the engineering applications of genetic and 
evolutionary computation; we seek methods by which the space of quan
tum algorithms can be explored, and we turn to genetic and evolutionary 
computation because it provides powerful problem-solving methods that 
are well suited to this application area. While fidelity to natural genetic 
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Assessment > Solution 

Selection 1> Variation 

Figure 4-1- A problem-solving strategy common to many forms of genetic and evo
lutionary computation. 

and evolutionary systems is not our primary concern, insights from biol
ogy may nonetheless be essential. Nature's "problem-solving methods" 
are not yet completely understood, and we, as engineers, cannot yet be 
sure which of nature's methods will serve us best. Indeed, the argument 
can be made that the cutting edge of practice in genetic and evolutionary 
computation is moving ever more swiftly toward biology, largely because 
biological systems still outstrip our technologies in terms of adaptive ca
pacity. For example, recent advances in genetic programming techniques 
use mechanisms derived from DNA dynamics, learning mechanisms in 
neural networks, immune systems, regulatory networks, and biological 
gene expression processes (Spector, 2003). A few of these advances, in 
particular some of those related to the development and evolution of 
modular structures, will be discussed in later chapters of this book. 

Many genetic and evolutionary computation systems conform to the 
general structure shown in Figure 4.1. We begin with a population of 
random individuals. In a problem-solving context an "individual" is 
usually a candidate solution — something selected from the (normally 
immense) set of the kinds of things that could possibly be solutions. Of 
course, since the initial population is random it is unlikely that any of 
these individuals will actually be a solution, but these individuals become 
the starting points for an evolutionary search of the space of candidate 
solutions. 

We then assess the fitness of the individuals in the population. The 
term "fitness" is used here, as in most genetic and evolutionary compu
tation literature, in a sense different from that which it normally has in 
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biology: it means the value of an individual relative to one's problem-
solving goal. The biologist's notion of "reproductive fitness" is useful 
in genetic and evolutionary computation as well, but it applies here not 
to the goal-relative "fitness" measure alone, but rather to the combined 
effects of goal-relative fitness, selection, and variation. Although there 
are "ecological" and "co-evolutionary" exceptions, fitness is normally 
assessed for each individual in isolation from the remainder of the pop
ulation and from any significant external environment. 

We use the goal-oriented fitness measure both to drive evolution and 
to determine success. If, during fitness assessment, a solution to the 
posed problem is found, then the solution is produced as output and the 
system halts. Until this happens (or until the user gives up) the system 
proceeds through a loop of selection, variation, and re-assessment. 

The details of this "selection, variation, assessment" loop, and of 
the representations and algorithms used within it, vary among differ
ent forms of genetic and evolutionary computation. For example, in 
some ("generational") methods the entire population is assessed first 
and is then subjected to distinct population-wide selection and varia
tion procedures. In other ("steady state") methods single individuals 
or small groups of individuals are progressed through the entire loop 
independently. Selection may be based on virtual roulette wheels or on 
tournaments or on other abstractions. Variation may be asexual (mu
tation) or sexual (recombination or crossover), and may come in many 
forms; researchers have experimented with dozens if not hundreds of 
different mutation and recombination operators. 

The extent to which some genetic and evolutionary computation vari
ants might be better than others, in general or for certain sorts of ap
plications, has been a topic of considerable interest in the research com
munity. Many of these questions are addressed within discussions of so-
called "No Free Lunch" theorems (for example, Wolpert and Macready, 
1997; Droste et al., 1999; Whitley, 1999; Christensen and Oppacher, 
2001; Schumacher et al., 2001; Igel and Toussaint, 2003; Woodward and 
Neil, 2003). Aside from noting that this range of variation exists, along 
with the associated discussion (and meta-discussion) of the relative mer
its of the variants, we will not directly address these issues further in 
this book; we present methods that can be applied to the task of auto
matic quantum computer programming, and we leave it to the reader to 
consider or experiment with variations that may produce better results. 

2. Genetic Algorithms 
One of the most straightforward and widely applied forms of genetic 

and evolutionary computation is the "genetic algorithm" (GA) as devel-
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oped by John Holland (Holland, 1992). In the simplest genetic algorithm 
each individual is a linear chromosome consisting of some fixed number 
of loci. At each locus of each chromosome is, in the simplest 
single bit (0 or 1), although sometimes a larger or even unbounded (e.g. 
continuous) "genetic alphabet" is used. Each chromosome encodes a 
potential solution to the target problem in some problem-specific way. 
For example, for one problem each locus of a chromosome might encode 
a direction to turn in a maze, while for another problem the loci may 
encode coefficients of a polynomial. Whatever the encoding, the fitness 
function takes a chromosome as input and produces a fitness value as 
output. 

The traditional genetic algorithm is generational. All chromosomes 
are assessed for fitness, and then chromosomes are selected, in a fitness-
proportionate way, to contribute to the next generation via reproduction 
and genetic operators. 

One popular selection method is "tournament selection." In tourna
ment selection we designate a tournament size T (usually between 2 and 
7), and each time that we want to select a chromosome we first ran
domly select T chromosomes. We then compare the fitness values of the 
chromosomes and return, as the selection, the one with the best fitness. 
This method is simple to implement and it allows for selection pressure 
to be adjusted by changing the tournament size. 

The most common genetic operators are point mutations, in which the 
contents of single loci are probabilistically replaced or perturbed (e.g. 
by Gaussian noise), and crossovers, in which an offspring is produced by 
concatenating a left-hand portion of one chromosome with a right-hand 
portion of another, with the "crossover point" chosen randomly. Vari
ations on these operators abound; for example, in "uniform crossover" 
each locus is randomly selected from one or the other of two parents. 
In some schemes the meaning of a locus is de-coupled from the position 
of the locus on the chromosome, allowing the system to learn appropri
ate "linkages" between loci, rather than having them determined by a 
pre-defined sequence. Some schemes have been derived purely on the 
basis of engineering considerations, while others, for example the use of 
"diploid" chromosomes, have been derived from biology. 

Genetic algorithms have been the subject of intensive study and de
velopment and many successful systems, developed according to a wide 
variety of designs, have been fielded in a wide range of application ar
eas. Good introductory-level treatments of genetic algorithms and their 
apphcations include (Goldberg, 1989) and (Mitchell, 1996). 
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3. Scalability via Parallelism 
Because genetic and evolutionary computation systems process pop

ulations, and because many of the operations that are performed on the 
population's individuals are performed independently for each individual 
(e.g., many forms of fitness assessment), these systems are well suited 
to parallelization across multiple computer systems. Indeed, loose cou
pling of multiple sub-populations (often called "demes") with occasional 
migrations can actually be advantageous to the evolutionary process by 
slowing the fixation of sub-optimal genetic patterns throughout the sys
tem. One can therefore deploy genetic and evolutionary computation 
systems across large clusters that have moderate or low interconnec
tion bandwidth, thereby reaping gains both in overall computational 
throughput and in search performance. For this reason genetic and evo
lutionary computing methods are sometimes referred to in the literature 
as "embarrassingly parallel." 

Parallelization is important for applications to automatic quantum 
computer programming because these applications often call for quan
tum computer simulation in the fitness test. As discussed in Chapter 2, 
the classical simulation of quantum algorithms generally entails exponen
tial inefficiencies, so fitness tests that rely on such simulation will require 
significant time and/or memory. We cannot fully regain the exponen
tial losses through parallelism (unless we can afford to grow our com
puter cluster exponentially!), but we can nonetheless expand the range 
of quantum computation problems that can be addressed by deploying 
our genetic and evolutionary computation systems across modest-sized 
computer clusters. 

4. Applicability of Genetic and Evolutionary 
Computation 

Genetic and evolutionary computation methods are powerful in part 
because they require little advance knowledge of the problems being 
posed or of the structure of possible solutions. Methods with this prop
erty are sometimes called "weak methods" in the literature, but this 
designation actually implies generality, not lack of power. 

Genetic and evolutionary computation methods leverage computa
tional resources (CPU cycles) to search vast spaces, combining "blind" 
exploration (e.g. random initial populations and random variation) with 
goal-directed guidance (via fitness-based selection, and often via the 
combinatorics of genetic recombination). As such they are ideal for 
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exploring domains about whicli we have little prior knowledge. This 
makes them very powerful tools in the engineer's toolkit. 

But by the same token genetic and evolutionary computation tech
nologies, like all so-called weak methods, will generally underperform 
specialized methods that are based on a deep understanding of a partic
ular problem area's search space. When one knows a domain sufficiently 
well one can often develop problem-solving methods that are consider
ably more efficient than random variation and selection. 

Owing to our current relative ignorance about the nature of quantum 
algorithms, about the principles of quantum software engineering, and 
about quantum complexity theory, the applicability of genetic and evolu
tionary methods to automatic quantum computer programming appears 
to be strong at present. It may weaken, however, as the fields of quantum 
computing and quantum information theory mature. 



Chapter 5 

GENETIC PROGRAMMING 

This book is concerned with automatic quantum computer program
ming by means of genetic and evolutionary computation. In Chapter 
4 we described genetic and evolutionary computation methods in gen
eral; here we narrow the focus to the form of genetic and evolutionary 
computation most directly concerned with the discovery of programs, 
namely "genetic programming." We provide a concise introduction to 
the basic concepts of genetic programming, a detailed example, and a 
discussion of the steps that one must generally take to obtain and under
stand useful results from a genetic programming system. The techniques 
described in this chapter are not specific to quantum computing; we will 
narrow the focus further to genetic programming for quantum comput
ers in Chapter 7, following the description, in Chapter 6, of advanced 
genetic programming techniques that are particularly useful for evolving 
quantum programs. 

1. Programming by Genetic Algorithm 
A "genetic programming" system is a genetic algorithm in which the 

chromosomes are executable computer programs. There is no sharp line 
between "executable computer programs" and other chromosomal en
codings at a fundamental level of analysis, since the elements of any en
coding could be considered "commands" in some language for which the 
chromosome-decoder is the "compiler" or "interpreter." But in practice 
so-called genetic programming systems tend to differ from other genetic 
algorithms in several ways. Although there are exceptions, genetic pro
gramming systems tend to use chromosome encodings that are similar 
in syntax and semantics to existing programming languages. They tend 
to allow chromosomes to vary in length (as computer programs normally 
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do) and to incorporate hierarchical, compositional structures. And they 
often allow one to combine the use of special-purpose, problem-specific 
instructions or variables with general-purpose, commonly-used instruc
tions (for example, + and x). 

As a result, a genetic programming system is not only a problem-
solving system but also an automatic programming system. We provide 
the system with information that describes what we want a program to 
do (primarily via the fitness function), and a successful run of the system 
produces (via evolution) a program that meets the desired specification. 
We must also provide values for a few other parameters (such as the set 
of instructions that may be used, population sizes, and genetic operator 
rates), but most of this is straightforward and requires little expertise 
about the problem we are using the system to solve. 

In other words, what we provide to a genetic programming system 
is mostly just a specification of the behavior of the program that we 
seek. A successful run of the system produces, automatically, a program 
that exhibits the desired behavior. So genetic programming is an auto
matic programming technology that produces programs via genetic and 
evolutionary computation. 

As John Koza has argued forcefully in several of his books, automatic 
programming is an extremely general capability that can be applied in 
almost every conceivable area of science and technology (Koza, 1992; 
Koza, 1994; Koza et al., 1999; Koza et al., 2003). Genetic programming 
in particular has been applied to a wide range of problems, including 
many in science and technology and even several in the arts (for example, 
Spector and Alpern, 1994; Polito et al., 1997). 

Beyond its applicability to "external" problems, automatic program
ming (and thereby genetic programming) also opens up new approaches 
to the study of fundamental questions in computer science itself. This 
is because many fundamental questions in computer science are about 
whether or not there exist computer programs having particular proper
ties. Many of these questions can be approached using analytical tech
niques; for example, mathematical proofs are often employed to demon
strate negative results, proving that no program can possibly have some 
particular set of properties. But many other questions are best ap
proached via algorithm design — researchers attempt to find programs 
that have the properties in question, usually relying on their own expe
rience and ingenuity to do so. 

Automatic programming technologies open the door to new approaches 
to such questions, allowing us to use the computer itself to search the 
space of computer programs and thereby to expand the frontiers of the
oretical computer science. They allow us to do "computer science by 



Genetic Programming 45 

automatic programming" — and if our automatic programming tech
nology is genetic programming, then we can do "computer science by 
genetic programming." This is in fact the goal of the present book, 
which seeks more specifically to describe some of the ways in which one 
can do "quantum computer science by genetic programming." 

The most widely used genetic programming techniques are docu
mented in Koza's books (Koza, 1992; Koza, 1994; Koza et al., 1999; Koza 
et al., 2003), although some readers may prefer the more concise intro
duction in (Banzhaf et al., 1998), which also includes a survey of alterna
tive approaches such as "machine code" genetic programming. Innova
tions in genetic programming technique are regularly reported at several 
international conferences with published proceedings, most notably the 
Genetic and Evolutionary Computation Conference (GECCO), which 
combines the previously existing Genetic Programming Conference and 
the International Conference on Genetic Algorithms. Important jour
nals in the field include Genetic Programming and Evolvahle Machines 
and Evolutionary Computation. Advances in genetic programming tech
nique have also been documented in several edited books (Kinnear, Jr., 
1994a; Angeline and Kinnear, Jr., 1996; Spector et al., 1999c; Riolo and 
Worzel, 2003). A searchable, online bibliography on genetic program
ming is also available.^ 

2. Traditional Program Representations 
It is a simple matter to suggest the use of executable computer pro

grams as chromosomes in a genetic algorithm, but it is more difficult to 
devise detailed schemes for program representations and genetic oper
ators that allow such a genetic algorithm to perform well. The most 
popular scheme for genetic programming, which is now often called 
"traditional" genetic programming, "standard" genetic programming, 
or "tree-based" genetic programming (for reasons that will be made 
clear below), was developed and popularized primarily by John Koza, 
although similar ideas were also presented early by others (Cramer, 1985; 
Koza, 1992). 

One obvious concern in using programs as chromosomes is that pro
grams must generally conform to a particular syntax — that of the 
programming language in which they are expressed — in order to be 
meaningful at all. The misplacement of a single character in a program 
in most languages is very often "fatal," in that the program will fail even 
to compile or will cause an interpreter to halt abnormally in an error 

^ http://liinwww.ira.uka.de/bibliography/Ai/genet ic.programming.html 
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condition. The genetic operators in a genetic algorithm are generally 
"blind" — they "slice and dice" chromosomes without any cognizance 
of chromosomal syntax. How then are we to ensure that the "offspring" 
of syntactically valid programs, as produced by genetic operators, are 
always (or at least often) themselves syntactically valid? 

The traditional approach to this concern is to use a syntactically min
imal programming language as the language for the evolving (chromoso
mal) programs. Although there are many candidates for such a language 
(and several have been explored), the one traditionally used is a tiny 
subset of Lisp. 

Lisp is a language with a long and important history in computer 
science (see, for example, McCarthy et al., 1966, Steele Jr., 1984, and 
Graham, 1994), but few of its significant features are exploited in tra
ditional genetic programming. For the most part, all that is used is the 
basic syntax for programs (which, in Lisp, are also data). The subset of 
Lisp syntax used in traditional genetic programming is usually just: 

program ::= terminal \ ( functiorin program^ ) 

In other words: 

• A "terminal" is a program; terminals are often constants (like "5" 
or "3.14" or "TRUE") although they may also be variables or zero-
argument functions. 

• A parenthesized sequence of an n-ary function followed by n addi
tional programs is a program. This is a prefix notation for a function 
call with n arguments. 

A simple example is an expression like: 

(+ (* X Y) 
(+ 4 (- Z 23))) 

This expression is interpreted "functionally," with each program re
turning a value to the enclosing context, usually to be passed as an 
argument to the function heading the enclosing expression. Overall this 
example returns the sum of two values, the first of which is the product 
of X and Y (which are presumably variables containing numbers), and 
the second of which is the sum 4 and Z minus 23. 

Functional interpretation (that is, interpretation in which each func
tion call's primary job is to return a value to the enclosing context) is 
not mandatory, however, and many genetic programming applications 
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Figure 5.1. A tree graph of the arithmetic Lisp expression given in. the text. 

have utilized functions that act primarily by side-effect on external data 
structures. For example, in the classic "artificial ant" problem (Koza, 
1992) the terminals (LEFT, RIGHT, and MOVE) are interpreted as com
mands to a simulated ant moving on a grid containing simulated food. 
They return no values, and the functions that can appear as the first 
items of parenthesized expressions "expect" no arguments; they merely 
serve to sequence the calls to the side-effecting terminals (in some cases 
conditionally). 

The essential feature of this program representation with respect to 
genetic programming is syntactic uniformity — any sub-program can 
be substituted for any other sub-program within any program, and 
the result will necessarily be syntactically well formed. It is therefore 
easy to devise genetic operators that operate "blindly" on programs 
but nonetheless always produce syntactically valid results. These repre
sentations are often called "tree-based" because they can be presented 
graphically using tree structures as in Figure 5.1, which shows the tree 
form of the arithmetic expression given above. 

In traditional genetic programming all of the constant terminals used 
for a particular run must be of the same data type. The functions used 
in the run must all return values of this same type, and must take argu
ments only of this type. These restrictions prevent type incompatibility 
errors, but they are inconvenient; several ways to relax these restrictions 
are discussed in Chapter 6. 

Additional steps must often be taken to ensure that arbitrary pro
grams are also semantically valid — that is, that they will always execute 
without error, producing interpretable (even if incorrect) results. For 
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example, one must sometimes engineer special return values for "patho
logical" calls, such as division by zero. To handle division by zero, one 
usually replaces the division function with a "protected division" func
tion that returns an arbitrary value (for example, zero or one) when 
it receives zero as its second argument (Koza, 1992). Similar strategies 
can be employed to produce "protected" versions of other functions with 
pathological special cases. 

3. Traditional Genetic Operators 
The most common forms of genetic programming mutation involve the 

replacement of an arbitrarily chosen subprogram of with a newly gener
ated random subprogram. For example, consider the following program: 

(+ (* X Y) 
(+ 4 (- Z 23))) 

If we wish to mutate this program we first select a random subprogram 
for replacement, as follows: 

(+ l(* X Y)| 
(+ 4 (- Z 23))) 

We then generate a new random subprogram and insert it in place of 
the selected subprogram: 

(+ (- (+ 2 2) Z) 
(+ 4 (- Z 23) ) ) 

There is plenty of room for variation of this basic scheme for mutation 
and many variants have been explored. For example, it is common 
to bias the selection of subprograms in favor of entire function calls 
(rather than terminals) (Koza, 1992), and one can vary the ways in 
which random subprograms are generated (for example, to limit their 
length). One variation that may help to prevent run-away program 
growth ("bloat") forces replacement subprograms to be similar in size 
to the subprograms that they replace; this is called "size fair mutation" 
(Langdon et al., 1999; Crawford-Marks and Spector, 2002). A survey of 
published mutation operators appears in (Langdon, 1998). 

Program crossover (recombination) is usually accomplished in a sim
ilar way, via the swapping of subprograms. Given two parent programs 
(which may be selected from the population on the basis of fitness tour
naments or other fitness-sensitive selection methods), we select random 
subprograms in each: 
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Parent 1: (+ |(* X Y)| 
(+ 4 (- Z 23))) 

Parent 2: (- (* 17 (+ 2 X)) 
(* | ( - (* 2 Z) 1)1 

(+ 14 (/ Y X)))) 

We then swap the subprograms to produce two potential child pro
grams: 

Child 1: (+ | ( - (* 2 Z)""in 
(+ 4 (- Z 23))) 

Child 2: (- (* 17 (+ 2 X)) 
(* |(* X Y)| 

(+ 14 (/ Y X)))) 

Again, many variations have been proposed and tested, including vari
ations intended to increase the chances that children of fit parents will 
themselves be fit, variations intended to increase or decrease the "ex
ploratory power" of recombination, and variations intended to control 
the size and shape statistics of evolving populations. 

The rates at which these genetic operators are applied — that is, the 
proportions of a generation produced by mutation, crossover, and exact 
reproduction — have also been the subject of many studies (for example, 
Luke and Spector, 1998). 

4. Example: Symbolic Regression 
This section provides a brief example of traditional genetic program

ming applied to a "symbolic regression" problem. The task in symbolic 
regression (Koza, 1992) is to find an equation that fits a provided set of 
data. Many other types of regression analysis require the user to specify 
the form of the solution (for example, linear or quadratic) in advance; 
by contrast, in symbolic regression we have no a priori knowledge of the 
form of the solution and we expect the genetic programming system to 
find both the form and the details of the solution equation. 

The example that we consider here is a 2-dimensional symbolic re
gression problem, in which we are given a set of (x, y) pairs and the task 
of producing a program that takes an x value as input and produces the 
appropriate y value as output. For the example here we generated the 
data from the function y — x^ — 0.2, using 20 x values evenly distributed 
between zero and one. Of course the system is given only the data and 
not the function that generated the data; the task of the system is to 
re-discover the generating function. 
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Table 5.1. Parameters for the example run of traditional genetic programming on a 
symbolic regression problem. The "%" function is a protected division function that 
returns 1 if its second argument is 0. Detailed explanations of these parameters can 
be found in (Koza, 1992). 

Target function 
Function set 
Terminal set 

Maximum number of Generations 
Size of Population 

Maximum depth of new individuals 
Maximum depth of new subtrees for mutants 

Maximum depth of individuals after crossover 
Fitness-proportionate reproduction fraction 

Crossover at any point fraction 
Crossover at function points fraction 

Selection method 
Generation method 

Randomizer seed 

j / = a ;^-0 .2 
{+,- ,* ,%} 
{x,0.1} 
51 
1000 
6 
4 
17 
0.1 
0.3 
0.5 
fitness-proportionate 
ramped-half-and-half 
1.2 

Koza's "Little Lisp" demonstration genetic programming code^ was 
used for the run described below, with the parameters shown in Table 
5.L For each fitness test the program under consideration was evaluated 
for each of the 20 x values. Each such "fitness case" produced an error 
value, calculated as the absolute value of the difference between the y 
value produced by the program and the y value corresponding to the 
input X value in the data set. The sum of the errors over the 20 fitness 
cases was taken to be the overall "fitness" of the program, with lower 
fitness values indicating better programs. The fitness value for a perfect 
program, using this scheme, is zero. 

In the initial, randomly generated population (generation 0), the pro
gram with the best (lowest) fitness was as follows: 

a (* 0.1 
( * X X ) ) 

(- (7, 0.1 0.1) 
(* X X))) 

0.1) 

^http://www.genetic-programming.org/gplittlelisp.html 
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This program has a fitness value (total error) of about 2.22127 and is 
shown graphed against the target function { y = x^ — 0.2) in Figure 5.2. 
The best fitness in the population generally improved each generation, 
with the best program in generation 5 being the following: 

( - (* (* (7. X 0 .1 ) 
(* 0 . 1 X)) 

( - X 
a 0 . 1 X)) ) 

0 .1 ) 

This program has a fitness of 1.05 and and is shown graphed against 
the target function in Figure 5.3. By generation 12 a considerably better 
program was found, with a fitness value of 0.56125: 

(+ ( - ( - 0 .1 
( - 0 .1 

( - (* X X) 
( + 0 . 1 

( - 0 . 1 
(* 0 . 1 

0 . 1 ) ) ) ) ) ) 
(* X 

(* a 0 . 1 
a (* (* ( - 0 . 1 0 .1 ) 

(+ X 
( - 0 . 1 0 . 1 ) ) ) 

X) 
(+ X (+ ( - X 0 .1 ) 

(* X X ) ) ) ) ) 
(+ 0 . 1 (+ 0 . 1 X ) ) ) ) ) 

(* X X)) 

This program is shown graphed against the target function in Figure 
5.4. Although this program is large, some of the code tha t it contains is 
"junk" because, for example, it produces a result tha t is later multiplied 
by zero. Issues related to such non-functional code and its possible con
tributions to code "bloat" and evolutionary progress have been discussed 
extensively in the literature; see for example (Luke, 2000). 

In this run a perfect solution (fitness 0) was found in generation 22 
(Figure 5.5), in the following form: 

( - ( - (* X (* X X)) 0 .1 ) 0 .1 ) 
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Figure 5.2. The performance of the 
best program of generation 0, plot
ted against that of the target function, 
in an apphcation of standard genetic 
programming to a symbolic regression 
problem. 
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Figure 5.3. The performance of the 
best program of generation 5. 
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Figure 5.4- The performance of the 
best program of generation 12. 

Figure 5.5. At generation 22, a per
fect match to the target function is 
found. 

5. Obtaining Genetic Programming Results 
Genetic programming is a general technique that can be applied, with

out substantial re-engineering, to a wide array of problems. The prepara
tory steps that one must complete to apply the technique to a new prob
lem include the selection and/or definition of appropriate functions and 
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terminals out of which programs will be constructed, the definition of 
a problem-specific fitness function, and the setting of other parameters 
such as population size and mutation and crossover rates. These steps 
are described in detail by John Koza (Koza, 1992), who also makes 
the case that one can often obtain good results by making straightfor
ward or standardized choices in each of the preparatory steps. Although 
solutions may emerge more rapidly or more reliably with a carefully 
circumscribed function set, or with a refined fitness function, or with 
a mutation rate that has somehow been adjusted to suit a particular 
problem, etc., one often finds that the "obvious" or standard choices 
nonetheless suffice to solve the problems in which one is interested. 

Nonetheless, in some cases — particularly when attempting to solve 
difficult real-world problems — it may be necessary to apply more art 
than science to genetic programming's preparatory steps. If a problem 
is resisting solution, for example, then one might want to use a larger 
population. But larger populations require more processing time, which 
may make it difficult to run the system for a sufficiently large number of 
generations. As a consequence one might try running with various pop
ulation sizes for a small number of generations to get a sense of the rates 
of progress at each setting, and one might follow up this exploration with 
an extended run at a particular population size. Similarly, one might no
tice that the system tends to get "stuck" short of a solution, after which 
the diversity of the population plummets."^ In this case one might ex
periment with different mutation or crossover rates or alternative fitness 
functions. One may gain other insights, and be led to experiment with 
other parameters, by watching average program sizes over the course of 
a run. In short, while standard choices for many parameters may per
form reasonably well for a wide range of problems, progress on difficult 
real-world problems sometimes, nonetheless, demands experimentation 
and tuning. 

Once a solution has been found, it may require further work to under
stand the solution that has evolved. Genetic programming may produce 
programs that solve problems by means of novel principles, and the es
sential features of the evolved solutions may be buried in large volumes 
of irrelevant or non-functional code. A variety of approaches has been 
applied to this problem of analysis. In some cases it may be relatively 
easy to edit out non-functional code, such as expressions that produce 
values that are later multiplied by zero, using knowledge about the func-

^Several measures of population diversity have been developed in the genetic programming 
literature; see for example (Burke et al., 2002a) and (Burke et al., 2002b). 
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tion and terminal sets and the ways that they interact. In other cases 
it may be more helpful to use a second phase of genetic programming 
to minimize the size of the result. For example, one can define the fit
ness of any genuine solution to be the size of the solution program, and 
the fitness of any non-solution to be larger than the largest permissible 
size. One can then conduct a run of genetic programming with an ini
tial population consisting only of previously found (but probably large) 
solutions, and use the run to minimize solution length. In many cases, 
however, the only path to understanding a solution produced by genetic 
programming is to trace carefully the execution of the solution program. 



Chapter 6 

E V O L U T I O N OF C O M P L E X P R O G R A M S 

Traditional genetic programming, as described in Chapter 5, is a 
powerful problem-solving tool but it nonetheless has several limitations. 
Some of these limitations prevent the successful application of the tech
nique to large-scale, difficult problems such as the automatic quantum 
computer programming problems discussed in this book. Fortunately, 
however, an active international community of researchers has enhanced 
the technique in ways that extend its power significantly; in this chapter 
several such enhancements are presented, with a focus on those that find 
direct application in automatic quantum computer programming. 

More specifically, this chapter describes some of the ways in which 
genetic programming techniques can be used to evolve programs that 
include multiple data types, modules, and developmental components. 
Although these capabilities were developed for problems unrelated to 
quantum computing, several of them are nonetheless particularly useful 
for the evolution of quantum programs. The author's Push programming 
language for genetic and evolutionary computation, which provides some 
of the desired advanced capabilities in unusually simple ways, and the 
author's PushGP genetic programming system, which evolves Push pro
grams, are described in detail. These technologies, while not themselves 
specifically oriented toward quantum computing, underlie the techniques 
for automatic quantum computer programming described in Chapter 7, 
which are in turn used for the production of the results documented 
in Chapter 8. The chapter concludes with a brief description of self-
adaptive "autoconstructive evolution" techniques that are enabled by 
Push. 
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1. Types, Modules, and Development 
In many application areas it is natural to use several data types. In 

automatic quantum computer programming, for example, it is natural to 
use integers (for qubit indices), floating-point numbers (for parameters 
to quantum gates such as UQ), and possibly unitary matrices containing 
complex numbers (for the expression of novel quantum gates). For some 
problems it may be natural to use even more types, for example arrays 
of classical (non-quantum) bits, genuine ratios (such as | , as opposed 
to 0.666...), etc. In this context, one of the most glaring limitations of 
the traditional genetic programming technique is the requirement that 
evolved programs can manipulate values only of a single data type. 

One can sometimes work around the single-type limitation of the stan
dard technique by considering all of the required values to be members 
of a "union" of several data types, and by ensuring that all of the func
tions in the function set can handle all possible members of this union 
type in all argument positions. But this is an awkward maneuver that 
becomes impractical for problems that call for many data types. 

To address this need, David Montana has developed an extension 
to traditional genetic programming called "strongly typed genetic pro
gramming." In strongly typed genetic programming one annotates each 
terminal and each function with type information (Montana, 1993). New 
procedures, which are sensitive to this type information, are used for the 
generation of random programs and for genetic operators such as mu
tation and crossover. As long as these operations all respect the type 
requirements of the functions and terminals used by the system, the 
remainder of the genetic programming process can proceed unchanged. 

Strongly typed genetic programming allows for the evolution of pro
grams that manipulate multiple types, although it presumably also has 
impacts on evolutionary dynamics. For example, because strongly typed 
crossover can swap subprograms only if they return the same types, there 
will generally be many fewer crossover options for a pair of strongly typed 
programs than there would be for a pair of untyped programs of similar 
sizes. It is not clear if these impacts are generally beneficial, detrimental, 
or neutral, but it is clear in any event that Montana's technique allows 
genetic programming to be applied to a wider range of problems. Prac
titioners have found it to be useful in many situations and developers 
have incorporated it into many genetic programming systems. 

Another limitation of the standard technique that should be clear to 
any student of programming languages is the lack of facilities for the 
expression of subroutines or other modular code structures. For au
tomatic quantum computer programming modular structures may be 
particularly helpful because, for example, one often wishes to perform 
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an identical transformation on each of several qubits in a quantum reg
ister. Some forms of modular code structure, based on conditionals 
("IF THEN" structures) and iterative loops ("DO UNTIL" structures), 
can be incorporated into genetic programming in straightforward ways 
(Koza, 1992), but these fall short of the code structuring facilities pro
vided in even the most rudimentary programming languages designed 
for human use. For any complex program it is usually advantageous 
to design blocks of code that can be expressed once and then reused 
multiple times with different inputs over the course of a single program 
execution. 

A variety of schemes have been proposed for the incorporation of mod
ules (sometimes also called subroutines, defined functions, automatically 
defined functions, automatically defined macros, or products of encapsu
lation) in the programs that are manipulated and produced by genetic 
programming (see for example Koza, 1990; Koza, 1992; Angeline and 
Pollack, 1993; Kinnear, Jr., 1994b; Spector, 1996; Racine et a l , 1998; 
and Roberts et al., 2001). The most popular of these is probably the 
"Automatically Defined Function" (ADF) scheme presented in detail by 
Koza in his first and second genetic programming books (Koza, 1992; 
Koza, 1994). In this scheme the structure of the programs in the pop
ulation is restricted to a pre-specified modular architecture, with some 
fixed number of function definitions (each of which takes some fixed num
ber of arguments) and a "result-producing branch." One also specifies, 
in advance, which automatically defined functions can call which other 
automatically defined functions. Program generation and manipulation 
procedures (for example, the procedures for mutation and crossover) are 
all refined to respect the restrictions of the specified modular architec
ture. 

Koza showed that the use of ADFs allows genetic programming to 
exploit regularities inherent in many problems and thereby to scale up 
to substantially larger problem instances. He also showed that the use 
of ADFs usually allows solutions to be found more quickly and that 
the solutions so found are usually more parsimonious than those found 
by the traditional genetic programming technique. In subsequent work 
he showed how one can add another "architecture altering" layer to the 
genetic programming process to allow ADF architecture to evolve during 
a run (Koza et al., 1999). 

The final limitation of traditional genetic programming to be consid
ered here concerns the evolution of programs or other executable struc
tures that do not easily map to traditional Lisp-derived program repre
sentation. For example, a neural network is in some sense a program, 
but many neural network architectures ("recurrent" architectures) allow 
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Figure 6.1. A schematic view of a Push interpreter. 

for loops that do not map nicely to the tree-like structures of traditional 
genetic programming. Of course, one can evolve neural networks using 
other forms of genetic and evolutionary computation; for example, one 
can use neuron connectivity matrices as chromosomes and evolve net
works using traditional genetic algorithm techniques. But several fea
tures of the genetic programming paradigm are useful for the evolution 
of neural networks, including support for variable-length representations 
and the forms of modular reuse described in the previous paragraphs. 

To address this need several researchers have extended the genetic 
programming technique with "developmental" features. Although there 
are variations, the basic move in most developmental approaches is to 
retain traditional program representations but to drop the notion that 
an evolved program itself solves to the problem under consideration. 
Rather, the evolved (chromosomal) program, when executed, produces 
(or develops into) another program that actually solves the problem. In 
some cases the structure produced by the execution of the chromosomal 
program is not a "program" in the traditional sense but instead some 
other type of "executable object" which is then "run" to determine the 
behavior and fitness of the individual. For example, in some of John 
Koza's work the execution of the chromosomal program produces speci
fications for electrical circuits or control systems (Koza et al., 1999; Koza 
et al., 2003). In other cases the product of development may be a pro
gram in the traditional sense but the chromosome may not] for example. 
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in grammatical evolution the chromosome is a string of bits or integers 
which is transformed into a program, during development, by a process 
that involves indexing into a grammar of a conventional programming 
language (O'Neill and Ryan, 2003). In yet other cases there may be 
no clear distinction between the developmental and execution phases; 
for example, in the ontogenetic programming framework (Spector and 
Stoffel, 1996b; Spector and Stoffel, 1996a), and in the PushGP system 
described in Section 6.4, programs can modify (develop) their own code 
as they run. While doing so they may also be constructing secondary 
programs or executable structures which are themselves the solutions to 
the problems under consideration — if so then the systems of which they 
are elements are "developmental" in two distinct senses. 

Most developmental process must be conducted as a part of every 
fitness test, although in some cases it is possible to assess a program on 
multiple "fitness cases" (input sets) after a single developmental phase. 
Development can be accomplished by various means, with the most com
mon strategy being to begin each developmental phase with a minimal 
"embryo," to which later function calls add components. The secondary, 
developed "program" may take various forms, ranging from neural net
works (Gruau, 1994) to electrical circuits, control system specifications 
and even metabolic pathways (Koza et al., 2003). And as we will see in 
Chapter 7, similar techniques are also useful for the evolution of quan
tum computer algorithms. 

2. The Push Programming Language 
Push is a programming language designed specifically for use in ge

netic and evolutionary computation systems that evolve programs, as 
the language in which evolving programs are expressed (Spector, 2001; 
Spector and Robinson, 2002a; Spector et al., 2003b). Push has an unusu
ally simple syntax, which facilitates the implementation (or evolution) 
of mutation and recombination operators that generate and manipulate 
programs. Despite this simple syntax. Push provides more expressive 
power than most other program representations that are used for pro
gram evolution. This expressive power allows Push-based genetic and 
evolutionary computation systems to provide many of the advanced ca
pabilities described in Section 6.1 (along with others) with less system 
complexity or user configuration. 

Push programs can process multiple data types without the syntax 
restrictions that usually accompany this capability, and they can express 
and make use of arbitrary control structures (e.g. recursive subroutines 
and macros) through the explicit manipulation of their own code (via 
a CODE data type). This allows Push to support the automatic evo-
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lution of modular program architectures in a particularly simple way, 
even when it is employed in an otherwise ordinary, ADF-free genetic 
programming system (such as PushGP; see Section 6.4). Push can also 
support entirely new evolutionary computation paradigms such as "au-
toconstructive evolution," in which genetic operators and other compo
nents of the evolutionary system themselves evolve {as in the Pushpop 
and SWARMEVOLVE 2.0 systems; see Section 6.5). 

Push achieves its combination of syntactic simplicity and semantic 
power through the use of a stack-based execution architecture that in
cludes a stack for each data type. This architecture extends the single-
type architecture used in previous work on "stack-based genetic pro
gramming" (Perkis, 1994; Stoffel and Spector, 1996; Tchernev, 1998). 

A diagram of the Push execution architecture is shown in Figure 6.1. 
The CODE data type, which has its own stack and an associated set of 
code-manipulation instructions, provides many of the more interesting 
features of the language. Push instructions, like instructions in all stack-
based languages, take any arguments that they require and leave any 
results that they produce on data stacks. 

To provide for "stack safe" execution of arbitrary code Push adopts 
the convention, used widely in stack-based genetic programming, that 
instructions requiring arguments that are not available (because there 
are too few values on the relevant stacks) become NOOPs; that is, they 
do nothing. Because Push's stacks are typed, instructions will always 
receive arguments and produce results of the appropriate types (if they 
do anything at all), regardless of the contexts in which they occur. 

The syntax of Push is simply this: 

program ::= instruction \ literal \ ( program* ) 

In other words: 

• An instruction is a Push program. 

• A literal is a Push program. 

• A parenthesized sequence of zero or more Push programs is a Push 
program. 

Parenthesized sequences are also referred to as "lists," and Push pro
grams can in fact be treated as list data structures. Literals are constants 
such as "3" (an integer constant), "3.14" (a floating point number con
stant), and "TRUE" (a Boolean constant). Instruction names generally 
start with the name of the type that they primarily manipulate, followed 
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by a "."; for example, INTEGER. + is the instruction for adding two in
tegers, and BOOLEAN.DUP is the instruction for duplicating the value on 
the top of the Boolean stack. 

Execution of a Push program involves the recursive application of the 
following procedure: 

To execute program P: 

If P is a single instruction then execute it. 
Else if P is a literal then push it onto the 

appropriate stack. 
Else P must be a list; sequentially execute 

each of the Push programs in P. 

A top-level call to the interpreter can be provided with a list of lit
erals to be pushed onto the appropriate stacks before the program is 
executed. In addition, the program passed to the top-level call will it
self be pushed onto the CODE stack before execution; this convention 
simplifies the expression of some recursive programs (see below for an 
example). 

The CODE. QUOTE instruction is an exception to the execution proce
dure given above. Execution of CODE.QUOTE has no immediate effect, 
aside from changing the state of the interpreter such that the subse
quent piece of code considered for execution will not in fact be executed 
— it will instead be pushed onto the CODE stack. This provides a conve
nient way to get specific pieces of code onto the CODE stack, where they 
may be manipulated and/or executed by later instructions. 

The NAME data type provides for symbolic variable names and associ
ated binding spaces via GET and SET instructions that are defined for all 
types. Any identifiers that do not represent known Push instructions or 
literals of other types (such as TRUE and FALSE) are recognized as NAMEs, 
and are pushed onto the NAME stack when executed.^ CODE, like any 
other type, has a binding space; this means that NAMEs can be used to 
name subroutines (or pieces of code for any other purpose) in the same 
way that they can be used to implement variables of other types. 

A Push interpreter contains a random code generator that can be 
used to produce random programs or program fragments. This can be 
called from outside the interpreter (for example to create or mutate pro
grams in a genetic programming system) or from a standard CODE. RAND 

-'Some implementations of Push may require NAMEs to be distinguished in other ways as well, 
for example by beginning with a special character such as "_". The NAME type is not used 
in the examples in Chapter 8, but it is described here both for completeness and to simplify 
some of the examples in this chapter. 



62 AUTOMATIC QUANTUM COMPUTER PROGRAMMING 

instruction (which is analogous to RAND instructions available for other 
types). Several algorithms for the generation of random code have been 
described in the genetic programming literature. Random code genera
tion is less compHcated for Push programs than it is for Lisp-style code 
trees, since in Push one doesn't have to worry about function "arity" or 
about function versus argument positions when generating code. So it is 
easier, for example, to generate programs with predictable size and shape 
distributions. The standard Push random code generation algorithm is 
shown in Figure 6.2. It produces a uniform distribution of sizes and 
what seems to be a reasonable distribution of shapes, in a reasonable 
amount of time. An "ephemeral random constant" mechanism, simi
lar to that employed in traditional genetic programming (Koza, 1992), 
allows randomly-generated code to include newly-generated literals of 
various types. 

Execution safety is an essential feature of Push, in the sense that 
any syntactically correct program should execute without crashing or 
signaling an interrupt to the calling program. This is because Push is 
intended for use in genetic and evolutionary computing systems, which 
often require that bizarre programs (for example those that result from 
random mutations) be interpreted without interrupting the evolutionary 
process. The "stack safety" convention described above (that is, the 
convention that any instruction that finds insufficient arguments on the 
stacks acts as a NOOP) is one component of this feature. In addition, 
all instructions are written in ways that are internally safe; they have 
well defined behavior for all predictable inputs, and they typically act 
as NOOPs in predictable "exceptional" situations (like division by zero). 

Additional safety concerns derive from the availability of explicit code 
manipulation and recursive execution instructions, which can in some 
cases produce exponential code growth or non-terminating programs. 
In response to these concerns Push interpreters enforce two limits: 

EVALPUSH-LIMIT: This is the maximum allowed number of "executions" 
in a single top-level call to the interpreter. The execution of a single 
Push instruction counts as one execution, as does the processing of a 
single literal, as does the descent into one layer of parentheses (that 
is, the processing of the "(" counts as one execution). When this limit 
is exceeded the interpreter terminates execution immediately, leaving 
its stacks in the states they were in prior to termination (so they may 
still be examined by a calling program). Whether or not this counts 
as an "abnormal" termination is up to the calling program. 

MAX-POINTS-IN-PROGRAM: This is the maximum size of an item on the 
CODE stack, expressed as a number of points. A point is an instruction, 
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a literal, or a pair of parentheses. Any instruction that would cause 
this limit to be exceeded instead acts as a NOOP, leaving all stacks in 
the states that they were in before the execution of the instruction. 

The convention regarding the order of arguments for instructions that 
are more commonly rendered as infix operators is that the argument 
on the top of the stack is treated as the right-hand argument and the 
argument second-from the top is treated as the left-hand argument. This 
means that the linear representation of an expression containing one of 
these instructions looks like the normal infix expression, except that 
the instruction has been moved to the end. For example, we divide 
3.14 by 1.23 using "( 3.14 1.23 FLOAT./ )" . Similarly, 23 minus 2 is 
expressed as "( 23 2 INTEGER.- )" . 

While Push's stacks are generally treated as genuine stacks — that is, 
they are accessed only "last in, first out," with instructions taking their 
arguments from the tops of stacks and pushing their results onto the 
tops of stacks — a few instructions (like YANK and SHOVE) do allow di
rect access to "deep" stack elements by means of integer indices. To this 
extent the stacks can be used as general, random access memory struc
tures. This is one of the features that ensures the Turing-completeness 
of Push (another being the arbitrary name/value bindings supported by 
the NAME data type and SET/GET methods). 

Additional types can be added to a Push implementation with relative 
ease; types that have been added to date include vectors and unitary 
matrices (as described in Chapter 7), and one could add both additional 
standard types (for example, arrays and strings) and more exotic types 
(possibly URLs, images, etc.) for the sake of particular applications. A 
standardized interpreter configuration file format helps to ensure that 
different Push implementations can be configured to behave in the same 
ways on the same inputs. 

More information on Push, including the current language specifica
tion document, pointers to implementations of Push interpreters (some 
in source code form), and related publications can be found online via 
the Push project home page.^ 

3. Push Examples 
This section contains just a few simple examples, to give the reader 

a feel for the language and a few of its features that are convenient for 
genetic and evolutionary computation. More examples, including test 
suites, are available from the Push project home page. 

http://hampshire.edu/lspector/push.html 
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Function RANDOM-CODE (input: MAX-POINTS) 

• Set ACTUAL-POINTS to a number between 1 and 
MAX-POINTS, chosen randomly with a uniform distribu
tion. 

• Return the result of RANDOM-CODE-WITH-SIZE called with 
input ACTUAL-POINTS. 

Function RANDOM-CODE-WITH-SIZE (input: POINTS) 

• If POINTS is 1 then choose a random element of the in
struction set. If this is an ephemeral random constant 
then return a randomly chosen value of the appropriate 
type; otherwise return the chosen element. 

• Otherwise set SIZES-THIS-LEVEL to the result of 
DECOMPOSE called with both inputs (POINTS - 1). Re
turn a list containing the results, in random order, 
of RANDOM-CODE-WITH-SIZE called with all inputs in 
SIZES-THIS-LEVEL. 

Function DECOMPOSE (inputs: NUMBER, MAX-PARTS) 

• If NUMBER is 1 or MAX-PARTS is 1 then return a Hst con
taining NUMBER. 

• Otherwise set THIS-PART to be a random number between 
1 and (NUMBER - 1). Return a list containing THIS-PART 
and all of the items in the result of DECOMPOSE with inputs 
(NUMBER - THIS-PART) and (MAX-PARTS - 1) 

Figure 6.2. The random code generation algorithm used both for the CODE.RAND 
instruction and for generating random programs for other purposes, for example in 
the initialization phase of PushGP. 
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First, some simple arithmetic: 

( 5 1.23 INTEGER.+ ( 4 ) INTEGER.- 5.67 FLOAT.* ) 

Execution of this code leaves the relevant stacks in the following states: 

FLOAT STACK: (6.9741) 
CODE STACK: ( ( 5 1.23 INTEGER.+ ( 4 ) INTEGER.- 5.67 

FLOAT.* ) ) 
INTEGER STACK: (1) 

A few points to note about this example: 

• Operations on integers and on floating point numbers can be inter
leaved; all instructions take their arguments from the appropriate 
stacks and push their results onto the appropriate stacks. 

• The call to INTEGER. + does nothing because there are not two integers 
on the INTEGER stack when it is executed. 

• The call to INTEGER. - subtracts 4 (which is on top of the stack) from 
5 (which is second on the stack), not the other way around. 

• The parentheses in "( 4 )" have no effect on the results; paren
theses serve mainly to group pieces of code for handling by code-
manipulation instructions. 

Here is a tiny program that adds an integer pre-loaded onto the stack 
to itself: 

( INTEGER.DUP INTEGER.+ ) 

When run with 5 pre-loaded onto the INTEGER stack, for example, 
this leaves 10 on top of the stack. The following does the same thing in 
a slightly more complicated way, pushing code onto the CODE stack and 
then executing it: 

( CODE.QUOTE ( INTEGER.DUP INTEGER.+ ) CODE.DO ) 

The "doubling subroutine" used in this example can be reused in a 
variety of ways. For example, one can use the CODE.DUP instruction to 
make multiple copies of the subroutine for multiple executions. In the 
following example the subroutine is duplicated twice, and then all three 
copies are executed sequentially via three calls to CODE.DO. When run 
with 5 pre-loaded onto the INTEGER stack this leaves 40 on top of the 
stack. 



66 AUTOMATIC QUANTUM COMPUTER PROGRAMMING 

( CODE.QUOTE ( INTEGER.DUP INTEGER.+ ) 
CODE.DUP CODE.DUP 
CODE.DO CODE.DO CODE.DO ) 

Another mechanism for code reuse involves named code variables. 
The following example is functionally equivalent to the one above, but 
the doubling subroutine is stored in the variable DOUBLE using CODE. SET 
and then retrieved multiple times using CODE.GET rather than being 
duplicated using CODE.DUP: 

( CODE.QUOTE ( INTEGER.DUP INTEGER.+ ) DOUBLE CODE.SET 
DOUBLE CODE.GET CODE.DO 
DOUBLE CODE.GET CODE.DO 
DOUBLE CODE.GET CODE.DO ) 

Although the named subroutine technique is more verbose than the 
duplicated subroutine technique in this simple case, it may be convenient 
for storage of code during other tasks that also use the CODE stack. 

The following more complicated example uses code duplication and 
also recursive calls (using CODE.DO in the subroutine) to compute the 
factorial of an integer pre-loaded onto the INTEGER stack. This example 
makes use of the fact that top-level calls to the interpreter push the 
executed code onto the CODE stack before execution: 

( CODE.QUOTE ( INTEGER.POP 1 ) 
CODE.QUOTE ( CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO 

INTEGER.* ) 

INTEGER.DUP 2 INTEGER.< CODE.IF ) 

This works by first pushing two pieces of code (for the base case and 
recursive case of the recursive factorial algorithm, respectively) onto the 
CODE stack; these are pushed on top of the code for the full program, 
which is pre-loaded onto the CODE stack by the top-level call to the 
interpreter. The subsequent code compares the provided integer with 2 
and, depending on the result of this (which will be found on the BOOLEAN 
stack), executes one of the pushed pieces of code (and discards the other). 
In the base case this will produce an answer of 1, while in the recursive 
case it will recursively compute the factorial of one less than the provided 
number, and multiply that result by the provided number. When called 
with 5 pre-loaded on the INTEGER stack this leaves the relevant stacks 
in the following states: 
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CODE STACK: (( CODE.QUOTE ( INTEGER.POP 1 ) 

CODE.QUOTE ( CODE.DUP INTEGER.DUP 1 
INTEGER.- CODE.DO INTEGER.* ) 

INTEGER.DUP 2 INTEGER.< CODE.IF )) 
BOOLEAN STACK: ( ) 
INTEGER STACK: ( 120 ) 

A simpler implementation of a Push factorial function can be pro
duced using the DO*COUNT iteration instruction, which is but one of 
several other instructions that recursively invoke the interpreter on code 
tha t is on the CODE stack. DO* is like DO except that it pops its code argu
ment before, rather than after, the code argument is executed. DO*TIMES 
is like DO* except that it executes the popped code a number of times 
that is taken from the INTEGER stack. DO*COUNT is hke DO*TIMES ex
cept tha t it also pushes an iteration counter (starting with 0) onto the 
INTEGER stack prior to each iteration. With DO*COUNT an iterative fac
torial function can be expressed as follows: 

( CODE.QUOTE ( 1 INTEGER.+ INTEGER.* ) 
1 INTEGER.SWAP CODE.DO*COUNT ) 

In all of the preceding examples, the pieces of code that were used as 
subroutines were simply copied (on the stack or via variables) and re-
executed without alteration. But Push also includes a rich set of code-
manipulation instructions that allow programs to modify code in arbi
t rary ways prior to execution. These include several instructions mod
eled on Lisp's hst-manipulation functions (such as CODE. CAR, CODE. CDR, 
and CODE.CONS), along with special-purpose, higher-level instructions 
such as CODE. DISCREPANCY (which pushes a measure of the difference be
tween the top two CODE stack items onto the INTEGER stack), CODE.RAND 
(which generates random code using the algorithm in Figure 6.2), and 
others. As an example of the sort of dynamic code construction that is 
possible, consider the following Push program for calculating 2" for a 
positive value of n tha t is pre-loaded onto the INTEGER stack: 

( CODE.QUOTE ( INTEGER.DUP INTEGER.+ ) DOUBLE CODE.SET 
CODE.QUOTE ( ) 
CODE.QUOTE ( DOUBLE CODE.GET CODE.APPEND ) 
CODE.DO*TIMES 
1 CODE.DO ) 

The first line of this program defines the same DOUBLE subroutine 
tha t was used in a previous example. Line 2 pushes an empty list onto 
the CODE stack. Line 3 pushes a piece of code that says "append the 
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definition of DOUBLE to whatever is on top of the CODE stack." Line 4 
pops the code from hne 3 and then executes it n times (since n was 
pre-loaded onto the INTEGER stack). At the end of this step the top item 
of the CODE stack will be a program consisting of n repeated instances 
of "INTEGER.DUP INTEGER.+". For example, if 3 has been pre-loaded 
onto the INTEGER stack then the top item on the CODE stack after the 
execution of line 4 will be: 

( INTEGER.DUP INTEGER.+ 
INTEGER.DUP INTEGER.+ 
INTEGER.DUP INTEGER.+ ) 

The 5th and final line of the program pushes 1 onto the INTEGER 
stack and then executes the program that was constructed by line 4. 
This leaves 2" on top of the INTEGER stack. Although this is an unusual 
and somewhat verbose way of calculating 2", it nonetheless illustrates 
some of the ways in which Push programs can dynamically manipulate 
and execute code. 

4. PushGP: Genetic Programming with Push 
PushGP is a genetic programming system that evolves Push programs. 

It is a simple system in many respects, in part because it was initially 
designed merely as a demonstration of the use of Push in a genetic pro
gramming system. Most of its algorithms and features are the same 
as those used in the simplest traditional genetic programming systems, 
and some, owing to efficiencies made possible by Push's minimalist syn
tax, are even simpler. Nonetheless, the use of Push as the language in 
which evolving programs are expressed provides the following attractive 
features: 

• Multiple data types without constraints on code generation or ma
nipulation. 

• Arbitrary modularity without constraints on code generation or ma
nipulation. 

• Evolved module architecture with no extra machinery. 

• Support for explicit, arbitrary recursion. 

• Support for code self-development and, via extensions such as Push-
pop, the evolution of diversifying reproduction procedures (see Sec
tion 6.5). 
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PushGP is described in detail in documents available from the Push 
project's onhne web page.'^ Here we describe only its basic structure and 
note a few aspects of its performance. 

A PushGP run begins with the generation of a population of random 
programs, using the algorithm shown in Figure 6.2. Each program in 
the population is then evaluated for fitness with respect to the target 
problem. If a solution to the target problem has been found then it is 
printed and the system halts. Otherwise a new generation of programs 
is produced through the application of genetic operators to programs in 
the current generation that are selected via fitness tournaments. These 
are then in turn evaluated for fitness, and the process continues until 
a solution is found or until a pre-established generation limit has been 
reached. 

The genetic operators that are used in PushGP generally include ex
act reproduction and simple variants of the mutation and crossover op
erators that were described in Section 5.3, "liberalized" somewhat to 
suit the more permissive syntax of Push. Additional operators, such 
as an ADD operator that inserts a new subprogram within the parent 
and a REMOVE operator that deletes a subprogram from the parent, are 
also often used; these have no direct analogues in traditional genetic 
programming because such insertions and deletions would, if not per
formed carefully, produce programs that violate the argument-number 
requirements of Lisp-like representations. Alternative operators, includ
ing some designed to combat run-away code growth ("bloat"), have also 
been explored (Robinson, 2001; Crawford-Marks and Spector, 2002). In 
addition, an IMMIGRATION operator, which copies programs from disk 
files, is sometimes used to facilitate the use of multiple-deme evolution 
architectures across networks of workstations. 

There is little remarkable about the overall PushGP algorithm itself; 
for the most part it is just a re-implementation of traditional genetic 
programming. But the fact that the underlying program representa
tion is Push, which supports multi-type programs and complex control 
structures via code self-manipulation, means that this simple system 
can evolve multi-type, modular, recursive, and self-developing programs 
with no additional mechanisms. 

The discerning reader will note that it is one thing to say that the 
Push representation "supports" various capabilities, and another thing 
entirely to demonstrate that programs with these capabilities actually 
do evolve in practice. It is yet another thing to demonstrate, for ex-

'http://hampshire.edu/lspector/push.html 
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ample, that the problem-solving advantages of modularization schemes 
such as ADFs are also obtained from the "emergent modularization" 
process that can occur during a PushGP run. Such demonstrations are 
important, but beyond the scope of this book. The fact that many of 
the results in Chapter 8 were produced with PushGP provides some 
anecdotal evidence of PushGP's efficacy, but it does not constitute a 
systematic assessment. Such assessments have been published elsewhere 
demonstrating, for example, "scale up" properties better than those 
of genetic programming with ADFs on parity problems (Spector and 
Robinson, 2002a), and modularity-based robustness properties similar 
to those provided by genetic programming with ADFs on a problem in 
a dynamic environment (Spector and Robinson, 2002b). 

PushGP often finds unexpected ways to leverage the code manipu
lation and multi-type facilities of Push to produce unusual (and "un-
human-like") solutions. For example, while PushGP routinely produces 
recursive code, the code that is produced rarely follows the neat out
lines recommended in programming textbooks, and considerable effort 
is sometimes required to understand the ways in which evolved Push 
programs manipulate and execute code to achieve their results. In one 
example, presented in (Spector and Robinson, 2002a), a program evolved 
to solve the ODD problem, of determining whether its input is or is not 
an odd number, did so by using the provided number as an index into 
the program itself, and by evaluating a property of the code found at 
that index. This was a clever (and 100% correct) solution, but not one 
that a human programmer would be likely to devise. 

PushGP is "self-adaptive" insofar as the number and architecture of 
modules to be used in a solution, along with the selection of data types 
to be employed, are determined dynamically and automatically as part 
of the evolutionary process. To some extent the highly redundant na
ture of Push syntax — that is, the facts that parentheses can often be 
added or deleted and that instruction sequences can often be reordered, 
all without changing the function of a program — allows for other forms 
of (representational) self-adaptation during a run. Many aspects of the 
system, however, must be specified or adjusted manually. For exam
ple, PushGP uses hand-designed mutation and crossover algorithms and 
hand-specified rates of application for each of the genetic operators. Be
yond PushGP, the code-manipulation features of Push can support more 
radically self-adaptive forms of genetic and evolutionary computation, in 
which more aspects of the system are under evolutionary control. Some 
of these self-adaptive extensions are described in the following section. 
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5. Autoconstructive Evolution 
Push allows one to integrate, in a syntactically uniform way, the ma

nipulation of code with the manipulation of problem-oriented data types 
(integers, floating point numbers, matrices, etc.). As shown in the previ
ous section, this capability can be used to support the evolution of pro
grams that use modules and novel control structures. But it can also be 
used, more ambitiously, to bring more of the evolutionary process under 
evolutionary control. It be used in this way because a genetic and evo
lutionary computation system is itself made of code, some of which may 
also be permitted to evolve. This section briefly describes some of the 
ways in which these ideas can be applied with Push. Note, however, that 
the relatively standard PushGP system described in the previous section 
has thus far proven more useful in problem-solving contexts (including 
automatic quantum computer programming, as described in Chapter 8) 
than have such "meta-evolutionary'" systems. But it was to support 
such systems that Push was originally designed, and these systems may, 
by virtue of their self-adaptive capabilities, produce even more powerful 
problem-solving technologies in the future. 

Several previous genetic and evolutionary computation systems have 
incorporated some form of self-adaptation such as the genetic encoding 
of mutation rates. In the genetic programming literature more specifi
cally, several "Meta-GP" systems have been described in which the rates 
and also the algorithms for mutation are genetically encoded and there
fore subject to evolution (Schmidhuber, 1987; Edmonds, 2001). In place 
of traditional genetic operators these systems use co-evolving popula
tions of program-manipulation programs to produce the offspring of the 
individuals in the primary (problem-solving) population. 

An "autoconstructive evolution" system is a genetic and evolutionary 
computation system in which the evolving problem-solving programs are 
themselves responsible for the production (and diversification) of their 
own oifspring, just as biological organisms are responsible both for "mak
ing a living" in their environments and for producing their own offspring 
(Spector, 2001; Spector and Robinson, 2002a). Since the means by which 
programs create their offspring are embedded within the evolving pro
grams themselves, and are therefore subject to variation and natural 
selection, significant aspects of the evolutionary process thereby come 
under evolutionary control. As an autoconstructive evolution system 
runs, the evolutionary process itself, insofar as it is implemented by 
the reproductive behaviors of the evolving programs, is constructed by 
evolution. 
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Autoconstructive evolution can be accomplished with Push in a va
riety of ways. The first Push-based autoconstructive evolution system, 
Pushpop, was derived via minimal changes to PushGP. An additional 
code data type, called CHILD, was added that supported all of the stan
dard code-manipulation instructions except those that cause recursive 
execution (like DO, DO*, and IF). At the end of each fitness test any 
code left on the top of the CHILD stack became a potential child, stored 
with the parent (which could then be considered to be "pregnant") until 
the selection phase. In the selection phase, after all programs in the 
population had been evaluated for fitness (and had produced their po
tential children), fitness tournaments between the parents determined 
from which parents children would be taken for inclusion in the next 
generation. 

To avoid the evolutionary stagnation that would result from programs 
that produced only exact clones of themselves, a "no cloning" rule was 
imposed; children were not added to the subsequent generation if they 
were duplicates either of their parent or of other children that had al
ready been added.^ Aside from the prohibition against clones, programs 
could produce their children in any manner that was expressible in Push 
code, including standard mutation and crossover procedures as special 
cases. To support sexual recombination procedures (such as crossover), 
special instructions were provided to access other individuals in the pop
ulation (selected by distance, parent's fitness, or program contents) and 
to push their programs onto the current CODE stack. Note that code 
could be "borrowed" from more than one mate, enabling complex forms 
of multi-way recombination. Because this "borrowed code" could be 
used not only for the production of children, but could also be executed 
by the parent and thereby contribute to the problem-solving behavior of 
the parent, the programs in a Pushpop population could become tightly 
interdependent. 

Pushpop has been demonstrated to solve simple symbohc regression 
problems, but its primary utility to date has been in the study of self-
adaptive evolutionary processes themselves. For example, it has been 
used to explore relations between diversification and adaptation, showing 
that adaptive populations of Pushpop programs are reliably more diverse 
than required by the "no cloning" rule (Spector, 2002). 

It is possible to take additional steps in this self-adaptive direction, 
for example to allow reproductive timing to be controlled by individual 
programs (and hence by evolution), rather than by the hand-designed. 

' 'There is no relation between Pushpop's "no cloning" rule and the "no cloning theorem" of 
quantum information theory. 
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generation-based schemes of both PushGP and Pushpop. A system 
called SWARMEVOLVE 2.0 does this, although in a rather different archi
tectural context. SWARMEVOLVE 2.0 is an autoconstructive evolution 
system in which flying agents evolve in a 3 D virtual world that is imple
mented in the BREVE simulation environment (Klein, 2002).^ These 
agents decide on their own when, where, and how to produce children 
(using a SPAWN instruction), and many more features of the evolution
ary system are thereby under evolutionary control. This system has 
been used primarily to study evolutionary dynamics; for example, it has 
served as a framework for exploring the evolution of collective behaviors 
(Spector and Klein, 2002; Spector et al., 2003a; Spector et al., in press). 

The utility of autoconstructive evolution systems for automatic quan
tum computer programming is currently unknown. One may speculate, 
however, that such systems will eventually out-perform traditional ge
netic programming systems by adapting their reproductive mechanisms 
and their representations to their problem environments. 

^BREVE is available from ht tp : / /www.spider land.org/breve. 



Chapter 7 

E V O L U T I O N O F Q U A N T U M P R O G R A M S 

This chapter presents specific strategies for the evolution of quantum 
programs using the technologies presented earlier in this book. The 
application of these strategies to particular problems is documented in 
Chapter 8. Related strategies have also been developed and applied 
by other researchers (for example Williams and Gray, 1999; Surkan and 
Khuskivadze, 2001; Leier and Banzhaf, 2003a; Leier and Banzhaf, 2003b; 
Perkowski et al., 2003; Massey et al., 2004); while some of these efforts 
are cited in the following discussion, the focus here is on the strategies 
that have been developed by the author. 

1. Program Representations 
A genetic programming system can be thought of as a search proce

dure that searches the "space" of computer programs to find a program 
that meets some particular, usually behavioral, criterion. The search 
space is normally infinite, meaning that no finite search procedure can 
explore it completely. If one considers programs with real-valued param
eters (like many quantum programs) then the search space is uncount-
ably infinite, even for programs of finite size. Even when one substitutes 
limited-precision floating point numbers for true real numbers, the num
ber of programs of any nontrivial finite size is astronomically large. It is 
therefore important for the designers of genetic programming systems to 
carefully consider the subset of the space that will be examined by their 
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methods. The membership of this subset is influenced by many factors 
ranging from program representation to the choice of genetic operators. 

In traditional genetic programming the "chromosomes" upon which 
the Darwinian processes of variation and natural selection act are the 
programs themselves. That is, one determines the behavior of an individ
ual with a particular chromosome by executing the chromosome, which 
is in fact the whole of the individual. By contrast, as described in Chap
ter 6, in developmental approaches the execution of the chromosomal 
program produces another program which is then executed to produce 
the problem-solving behavior. Both the direct, chromosomal encoding 
and the indirect, developmental encoding of quantum programs can be 
used for quantum program evolution. 

In either case one must first determine the forms that the evolved 
and/or developed quantum program will take. For some problems one 
might have pre-established constraints that can be used to design effec
tive program representations. For example, if one knew that the program 
that would solve a particular problem takes the form of a single-qubit 
gate then one could represent the program using the four real-valued 
parameters of a U2 gate (see Chapter 2). One could then attempt to 
evolve the problem-solving single-gate program by using chromosomes 
consisting of the four real-valued parameters, and genetic operators that 
operate on strings of four numbers. Alternatively, one could use chro
mosomes of some more elaborate form such as programs which, when 
executed, set the values of the four parameters. 

For most interesting problems we seek programs that operate on many 
qubits. Although it would be possible in principle to represent these 
larger quantum programs using only numerical parameters, extending 
the idea described in the previous paragraph, the number of parameters 
grows rapidly as the size of the program increases. Worse, the meanings 
of the large number of parameters become difficult for humans to discern, 
so that the results of an evolutionary process producing sets of such 
parameters would be difficult to analyze or extend. For these reasons 
it often makes more sense to represent quantum programs as sequences 
of well-understood quantum gates that operate on small numbers of 
qubits. The QGAME representation for quantum programs, described 
in Chapter 3, was designed for this purpose. 

Once the representational scheme for the quantum programs has been 
determined — and for the remainder of this chapter it will be assumed 
that quantum programs take the form of QGAME programs — one 
still faces choices with respect to chromosome representation. One pos
sibility is to use the QGAME programs themselves as chromosomes. 
This is essentially the technique that was described as "stackless hnear 
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genome genetic programming" with "encapsulated gates" in (Spector 
et al., 1999a; Spector et al., 1999b), and it is similar to the techniques 
that have been used by several other researchers (Williams and Gray, 
1999; Leier and Banzhaf, 2003a; Massey et al., 2004). Because QGAME 
programs are syntactically unconstrained — that is, any re-ordering of 
the instruction expressions in a QGAME program yields another syn
tactically well-formed QGAME program — simple, "blind" genetic op
erators can be used in conjunction with these chromosomes. Several of 
the results presented in Chapter 8 were first obtained using this tech
nique. 

There are several reasons, however, that one might wish to use a more 
expressive, and in fact developmental, chromosome representation. For 
example, one may expect that the quantum programs that are solutions 
to some problems will include multiple instances of the same parameter 
value (for example, as a parameter to U-THETA )̂, and it would be de
sirable to allow a single instance of such a parameter in a chromosome 
to "translate" into several instances of the parameter in the problem-
solving quantum program. In other cases the problem itself may have 
parameters (for example, a number of times that an oracle gate may be 
called), and it would be desirable to allow this parameter to directly in
fluence the construction of the problem-solving quantum program. Many 
important problems have this property because they involve the discov
ery of scalable quantum programs that can solve problems of various 
sizes. One strategy for solving these problems is to provide a size pa
rameter that influences the form of the resulting quantum program.^ 
Finally, in some cases it may be useful to allow components of evolved 
quantum programs to be produced via computational manipulations of 
other components of the same programs; for example, it may be useful 
to allow the angle of a U-THETA gate to be obtained from the difî erence 
between the angles two other U-THETA gates. 

A developmental genetic programming approach, as described in Chap
ter 6, can provide all of these capabilities. In this approach the chromo
somal programs are expressed in some classical (non-quantum) program
ming language and may take various forms including Lisp-style program 
trees or stack-based instruction sequences. These programs, when exe
cuted, consiruci the problem-solving quantum program.'^ The chromoso
mal programs may include both classical instructions, which manipulate 

^See Chapter 2 for a description of QGAME instructions and their associated matrices. 
^An example of the evolution of a scalable quantum program is presented in Chapter 8. 
^A similar approach is explored in (Massey et al., 2004). 
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standard data types such as numbers and Booleans, and instructions 
that add components to a developing QGAME program. Before the 
execution of the chromosomal program one initializes an "embryo" that 
consists of a minimal QGAME program; this embryo may be a com
pletely empty program or it may contain, for example, instructions that 
initialize the states of certain qubits or conduct final measurements. The 
execution of a quantum-component-adding instruction in the chromoso
mal program augments the embryo with a specific QGAME instruction 
expression. These instruction expressions are typically added to the end 
of the developing QGAME program, before any pre-specified final mea
surement gates. 

The use of Push and PushGP (as described in Chapter 6) for such a 
developmental approach provides several advantages. For example, the 
ease with which multiple data types can be integrated into Push allows 
one to add a QGATE type that supports complex evolved strategies for 
quantum program development. Data of this type, as implemented in 
the version of PushGP that was used to produce several of the results in 
Chapter 8, consists of fully expanded unitary matrices (for quantum sys
tems of a pre-specified size) along with "history" specifications that show 
how the matrices were constructed from primitive gate matrices. Most 
of the QGATE instructions expand a particular matrix to the requisite 
size, taking the arguments that they need to do so from the appropriate 
stacks (and taking qubit indices modulo the number of qubits), and push 
the resulting QGATE structure onto the QGATE stack.'* For example, the 
QGATE.HADAMARD instruction, when executed in the context of a 2-qubit 
quantum computer and with 0 on the INTEGER stack, pushes a struc
ture with the following unitary matrix (in which all numbers have been 
rounded to 4 decimal places for readibilty) onto the QGATE stack: 

((0.7071 0.7071 0.0000 0.0000) 
(0.7071 -0.7071 0.0000 0.0000) 
(0.0000 0.0000 0.7071 0.7071) 
(0.0000 0.0000 0.7071 -0.7071)) 

The history attached to this matrix is simply (HARAMARD 0). The sub
sequent execution of a QGATE.GATE instruction would add a QGAME 
instruction (in this case one that uses QGAME's MATRIX-GATE con
struction with the matrix specified above) to the developing QGAME 
program. 

*QGATE instructions corresponding to non-unitary QGAME program elements such as 
MEASURE, END, and HALT, along with instructions that produce oracle calls, bypass the QGATE 
stack and directly augment the developing QGAME program. 
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Before the execution of QGATE.GATE, however, it is possible for the 
Push program to store and to transform the unitary matrix. For exam
ple, consider the following Push program fragment: 

0 QGATE.HADAMARD 1 0.23 QGATE.U-THETA 
QGATE.COMPOSE 0 1 QGATE.CNOT QGATE.COMPOSE 
QGATE.TRANSPOSE 

This code first pushes the same matrix that was used in the previous 
example onto the QGATE stack. It then pushes a U-THETA matrix (applied 
to qubit 1, with angle 0.23) on top of the HADAMARD matrix. The sub
sequent QGATE.COMPOSE instruction pops both matrices from the stack 
and replaces them with their composition (and a history that reflects the 
origins of the composition).^ The next three items push a CNOT matrix 
(with qubit 0 as the control and qubit 1 as the target), and the subse
quent QGATE. COMPOSE instruction composes the previously constructed 
matrix and the CNOT. The call to QGATE. TRANSPOSE transposes the result 
of the final composition, producing the following matrix (rounded): 

((0.0688 0.0688 -0.0161 -0.0161) 
(0.0161 -0.0161 0.0688 -0.0688) 
(0.0161 0.0161 0.0688 0.0688) 
(0.0688 -0.0688 -0.0161 0.0161)) 

This matrix could then be added to a developing QGAME program 
by means of a call to QGATE. GATE, although it (or its components) could 
also be duplicated via QGATE. DUP or stored in a named variable. It could 
thereby be used multiple times, with or without further manipulation, in 
the fully developed quantum program. The code-manipulation features 
of Push and PushGP that allow for the emergence of modules and other 
control structures during evolution can leverage this manipulation of the 
QGATE stack to ease the evolution of quantum programs with complex, 
modular structures. 

^Because computer representations of quantum gates often include small round-off errors 
it is important to check for unitarity when composing large numbers of gates; otherwise 
the accumulated round-off errors may significantly violate the unitarity constraint and the 
transformations specified by the composed gate may correspond to physically impossible op
erations. It is also sometimes useful to limit the amount of composition for other reasons, for 
example to facilitate human analysis; to this end the gate composition procedures supported 
by QGAME, and utilized by Push instructions like QGATE.COMPOSE, will refuse to compose 
gates if their combined histories exceed a pre-specified nesting depth. 
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2. Fitness 
The genetic programming process requires all individuals in the evolv

ing population to be assessed for fitness each generation. How might this 
fitness assessment be performed for the quantum programs that are pro
duced by the developmental processes described in the previous section? 

In some cases one might be able to use special-purpose fitness mea
sures that avoid the need for actual quantum computer simulation. For 
example, for some problems that use no non-unitary program elements 
(such as measurements), it may be possible to build the composite uni
tary matrix represented by an entire QGAME program and to directly 
assess features of this composite matrix that are relevant to the fitness of 
the program for the problem in question. This was the approach taken 
by Colin Williams and Alexander Gray in their work using genetic pro
gramming to find decompositions of pre-specified unitary matrices; they 
built the composite matrices and compared them, element by element, 
with the target matrix (Wilhams and Gray, 1999). In most cases, how
ever, this approach is impractical, either because the problem calls for 
non-unitary elements, or because the relevant features of the composite 
matrix are not easy to assess, or because the use of oracle gates would 
mandate the construction of a large number of composite matrices. For 
these reasons it is often simpler to simulate the execution of the program 
on a quantum computer, and to compute the program's fitness from the 
simulation output. 

As discussed in Chapter 2, a quantum computer running a particular 
quantum program may produce different outputs, each with a particular 
probability, from successive but otherwise identical runs. If we were to 
use a real quantum computer to assess fitness then we would only get 
one output from each run, and we would have to run the program many 
times to determine the probabilities for each output. With quantum 
computer simulators such as QGAME, however, we receive a list of 
all possible outputs and their associated probabilities from a single run 
(albeit from a run that requires exponential computational resources). 
All of this information about possible outputs and their probabilities can 
be used in a fitness function for genetic programming. 

The most straightforward way to use this information in a fitness 
function is to use the probability of error directly as a fitness value, with 
a fitness of zero indicating a perfect solution. This is similar to the use 
of an error value as a fitness value in traditional symbolic regression 
problems (as described in Chapter 5), although the probability of error 
is here being used in place of an actual numerical error. For a problem 
that has multiple fitness cases we might calculate fitness as the sum or 
average of the individual probabilities of error, or, depending on the 
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requirements of the problem, as the maximum probabiHty of error for 
any particular fitness case. 

Probability of error is a useful measure of quantum program quality, 
but it is often insufficient, by itself, as a fitness measure for quantum 
program evolution. This is because it is often extremely easy to produce 
a program with a 50% probability of error that has no resemblance to 
a true solution. This can often be done simply by rotating the output 
qubits to equal superpositions of 0 and 1 (as might be done, for exam
ple, with a HADAMARD gate). Programs that are "better" than this, in the 
sense that they contain more components of true solutions, may have a 
lower probability of error on some fitness cases but a higher probability 
of error on others, and their average probabilities of error may also be 
higher than 50%. As a consequence, programs that achieve a 50% prob
ability of error often form a troublesome local minimum in the search 
space produced by a fitness function that considers only probability of 
error. 

For this reason it is often useful to consider, in addition to the total, 
average, or maximum probability of error, a measure of the number of 
fitness cases for which the program is more likely than not to produce 
the wrong answer. This measure will be called the number of "misses" 
here.^ To ensure that one counts as misses even those cases that only dip 
below 50% probability of error because of round-ofi' errors, one should 
generally make the threshold for a miss somewhat lower; in the examples 
presented in Chapter 8 the threshold used was always 48%. As described 
in Chapter 2, QGAME's TEST-QUANTUM-PROGRAM function returns the 
number of misses along with error probability and oracle statistics. 

One might combine probability of error with misses to produce an 
evolution-guiding fitness function in a variety of ways. In many cases 
a "lexicographic" combination, in which the probability of error serves 
only to distinguish among programs with an identical number of misses, 
can be effective. For example, suppose we are conducting a run with four 
fitness cases, and that we use / = 10m-|- e as the fitness function, where 
m is the number of misses and e is the maximum probability of error on 
any one case. The first term of the sum will be one of 0, 10, 20, 30, or 
40, while the second term will be a real number less than or equal to 1. 
As previously, lower fitness values are considered better. The result will 
be that a program that achieves a lower number of misses will always 
be considered better than a program that achieves a higher number of 
misses. When comparing two programs that achieve the same number 

®This usage should not be confused with John Koza's use of the term "hits," which is only 
loosely (and inversely) analogous (Koza, 1992). 
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of misses the one with the lower maximum probabihty of error will be 
considered better. 

Many other combination methods are possible, including some stud
ied for other kinds of genetic programming problems and for "multi-
objective optimization problems" more generally (see, for example, Ekart 
and Nemeth, 2001). In addition, certain problems might call for unique 
manipulations of error probabilities and counts of misses. For exam
ple, for some problems the coarse, discrete nature of the misses count 
may produce problematic "plateaus" in the fitness landscape; that is, it 
might be necessary to temporarily explore programs with higher num
bers of misses (but perhaps lower probability of error) in order to make 
progress, but this exploration may be made impossible by the "all or 
nothing" quality of each "miss," combined with lexicographic combi
nation of misses and probability of error. In such cases one might try 
"smoothing" the misses count (for example, with a sigmoid function cen
tered on 48%) or transforming misses and/or error probabilities in some 
other way. There are no definitive guidelines on how best to do this for 
any particular problem, but analysis of failed runs can sometimes lead 
to interventions that eventually allow the system to discover a solution. 

Additional fitness components may be included for particular prob
lems. For some problems it may make sense to allow quantum programs 
to include multiple calls to an oracle gate, and it may be desirable to 
minimize the number of such calls by the end of the run; for these prob
lems it might be useful to combine the number of oracle calls with other 
values in the fitness function. One might also wish to minimize the total 
number of gates; this measure could be included in the fitness function 
as a sort of "parsimony" component (Koza, 1992). It might also be use
ful in some cases to include measures of quantum mechanical properties 
such as entanglement in the fitness function, either because they are di
rectly relevant to the problem being solved or because they are expected 
to have some particular values in solutions. 

3. Operators and Refinements 
As described in the previous sections, the application of genetic pro

graming to the task of automatic quantum computer programming calls 
for certain design decisions to be made with respect to program represen
tations and fitness functions. Such decisions are among the preparatory 
steps that must be taken in any application of genetic programming. 
This section briefly describes a few additional refinements which have 
been employed by the author in the evolution of certain quantum pro
grams, and which may also be useful in other situations. 
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Some of these refinements concern the genetic operators used to mu
tate and recombine the chromosomal programs. While the standard 
genetic operators provided with PushGP and with other genetic pro
gramming systems will suffice for many problems, additional operators 
that are specialized for quantum program evolution may also be useful. 
For example, because small changes to angles used in rotation gates of
ten result in significant changes in the behavior of the programs within 
which they are embedded, it may be useful to include a "number muta
tion" operator that adds small random numbers (generated, perhaps, via 
Gaussian noise) to the floating-point literals in a Push program. Such 
operators have been used previously in other forms of genetic and evo
lutionary computation (see, for example, Fogel and Atmar, 1990), but 
they are not typically used in genetic programming systems. 

The compositional properties of unitary gates suggest additional ge
netic operator refinements that are uniquely applicable to quantum pro
gram evolution. In approaches that use QGAME programs or similar 
representations as chromosomes one can use a "gate compression" op
erator which composes a sequence of unitary gates into a single gate, 
as described in conjunction with the QGATE.COMPOSE Push instruction 
above. This compresses a program, or a segment of a program, and pro
duces in its place a complex single gate, functionally equivalent to the 
entire segment, which may later be further compressed and/or passed 
to other programs via recombination. This scheme is similar in some 
respects to techniques developed for building libraries of subroutines in 
traditional genetic programming (Koza, 1990; Koza, 1992; Angeline and 
Pollack, 1992), although the compression of multiple gates into a single 
unitary matrix (which can be simulated with no greater cost than any 
other single matrix) has no direct analogue in most classical systems. 
As in all applications of unitary matrix composition one should be care
ful to avoid the accumulation of round-off errors that would produce 
non-unitary (and hence physically impossible) results. 

In developmental approaches, gate compression cannot be performed 
directly as a genetic operator, because the chromosome does not itself 
contain sequences of gates, but rather code that produces sequences of 
gates when executed. However, a related process of "matrix literaliza-
tion" may sometimes be useful. 

Matrix literalization takes place after fitness testing and is applied 
to some small number of high-performing individuals. The chromoso
mal programs of these individuals are re-executed to produce QGAME 
programs, and then gate compression is performed on the QGAME 
programs to produce matrices that compute significant segments of the 
more-successful quantum programs. These compressed matrices are then 
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made into QGATE literals that may later be included, via mutations, in 
other programs in the PushGP population. Over the course of evolu
tion the population may come to include matrix literals, which may be
come hierarchically composed, that represent useful complex operations 
distilled into compact subroutine-like modules. Examples of matrices 
produced by this process are presented in Chapter 8. 

Several genetic programming initialization steps may also be refined 
for application to problems in quantum computing, to increase the quan
tity of useful program structures in the initial population. For example, 
in most quantum oracle problems one knows in advance that a quantum 
program containing no oracle calls will be useless. One might therefore 
arrange for all randomly generated programs to include instructions that 
generate oracle gates; this might be accomplished either by discarding 
and regenerating any programs without the relevant calls, or by insert
ing such calls into all programs after random generation. Similarly, for 
such problems one can avoid wasting time during fitness evaluation by 
skipping the evaluation of any "clearly useless" programs; this can be ac
complished at the level of the chromosomal program (for example by re
fusing to evaluate any Push program that contains no oracle-generating 
instructions), at the level of the quantum program (for example by re
fusing to evaluate any QGAME program that does not contain oracle 
gates), or at both levels. In all such cases the useless program should 
then be assigned a fitness penalty that ensures that it will lose all fitness 
tournaments to any programs that are not obviously useless. 

Other initialization refinements concern the selection of constants and 
instructions that are available for inclusion in random programs. For 
example, because many known quantum algorithms involve the use of 
U-THETA rotations using values of 6 that are ratios of vr, it may in some 
cases be beneficial to use a specialized random floating point number 
generator that produces all or mostly numbers of this form. The selection 
of instructions can influence the performance of the system in many and 
complex ways, and although it is difficult to predict these influences in 
general, it may sometimes be possible to translate the requirements of 
a particular problem into a selection of instructions that improves the 
chances of finding a solution. 

A final set of initiahzation refinements concerns the "embryo" from 
which evolved quantum programs develop. Various kinds of information 
that the developer might have about the desired quantum program can 
be included in this embryo, eliminating the need for evolution to re
discover this information. For example, in some cases one might know 
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that solutions will involve the generation of an equal superposition of 0 
and 1 for some set of qubits prior to the execution of the main part of 
the program; in such cases one might add a sequence of HADAMARD gates 
to the embryo, eliminating the need for these gates to be generated by 
the execution of the chromosomal program. 

A few additional refinements concern the developmental process by 
which the problem-solving QGAME programs are produced. For evolv
ing scalable quantum programs it is natural to include size-related in
structions in the instruction set; for example, an example shown in the 
next chapter was evolved using a NUMQUBITS instruction that pushes the 
number of qubits in the quantum system onto the INTEGER stack. This 
instruction is used in the evolved Push program to control the develop
mental process, producing a larger QGAME program for larger numbers 
of qubits. Depending on the problem, one might want to provide other 
mechanisms to facilitate control of development; for example, it may 
sometimes be useful to include an iteration structure that iterates once 
for each qubit (or for each input qubit or for each output qubit), elim
inating the need to combine independent calls to NUMQUBITS and the 
generic iteration structures. 

Finally, in some cases it is useful to refine the developmental process 
by prohibiting certain additions to the developing quantum program. 
For example, in some of the problems presented in the next chapter the 
task is to determine whether information can be communicated between 
two sets of qubits by means of a single, particular gate that connects 
the two sets. The only quantum programs in which we are interested for 
this problem are those that connect the two sets of qubits with one and 
only one call to the particular gate under investigation. To produce such 
programs, and only such programs, we refine the developmental process 
to ignore all calls to add gates that would violate the communication 
restrictions. Other types of problems may involve diflFerent restrictions 
that can be handled in a similar way. 



Chapter 8 

EVOLVED Q U A N T U M P R O G R A M S 

This chapter presents examples of the automatic production of quan
tum computer programs via genetic programming. These examples 
demonstrate how the techniques described in previous chapters can be 
apphed to specific problems. They also provide evidence for the claim 
that scientifically significant results can be produced via automatic quan
tum computer programming. 

The examples that are presented here are solutions to two types of 
problems. We call problems of the first type "Boolean oracle analysis" 
problems because they require us to determine some property of a pro
vided Boolean quantum gate. This gate is often called an "oracle" or 
a "black box" because we are given little a priori information about 
the gate's construction or behavior. All of these oracles are "Boolean" 
in the sense that they act by inverting a particular single output qubit 
when provided with specified combinations of inputs. We are allowed to 
use the oracle gate, but we are not told in advance which combinations 
of inputs will produce the inversion — that is what a solution to the 
problem will tell us. Sometimes we may be "promised" that the oracle 
is one of some subset of the possible Boolean oracles of the given size; 
in these cases the problem is to determine which member of the subset 
we have been given. 

An example of a Boolean oracle analysis problem is Grover's database 
search problem, which was discussed earlier in Chapter 2. In Grover's 
problem the oracle represents a database containing a single "marked" 
item. We are promised that the oracle inverts its output for a single com
bination of inputs, which may be considered the address of the marked 
item. Our task is to determine which of the possible inputs it is for 
which the inversion is performed. 
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Other examples presented below — the Deutsch-Jozsa (XOR) prob
lem, the Majority-ON problem, and the OR and AND/OR problems — 
are similar except that the "promises" that we are given about the ora
cles and the features of the oracles that we are asked to determine vary 
from problem to problem. For the Majority-ON problem we attempt 
not just to solve a single instance of the problem but rather to produce 
a scaling program that can solve instances of this problem of any size. 

Several of these Boolean oracle analysis problems have practical sig
nificance because their solutions directly enable us to solve difficult real-
world problems more rapidly than is possible on classical computers; 
for example, Grover's algorithm can be used to provide a quadratic 
speedup for a host of problems that involve search through unstructured 
databases. 

The second type of problem considered here concerns the classical 
communication capacity of certain specific quantum gates. The prob
lems of this type that are presented derive from recent research on the 
tradeoffs between classical communication and entanglement-generating 
powers of certain unitary transformations (Spector and Bernstein, 2003; 
Bennett et al., 2004). In these problems the task is to transfer informa
tion from one set of qubits to another, without any direct connection 
between the two sets of qubits aside from a single instance of the gate 
under investigation. These problems are important not because they 
have any direct practical application — the gates under consideration 
do not generally correspond to any real-world communication channels 
— but rather because their solutions contribute to the development of 
the fundamental theory of quantum communication and computation. 

Sections 8.1 through 8.5 describe specific problems, specific genetic 
programming techniques that have been used to solve them, and inter
esting features of evolved solutions. Particular emphasis is given to the 
author's techniques described in Chapters 6 and 7 as they have been 
applied in specific cases. Section 8.6 discusses the general significance of 
the results presented in Sections 8.1 through 8.5, both with respect to 
the theory of quantum computation and with respect to techniques for 
automatic quantum computer programming. 

1. The 1-bit Deutsch-Jozsa (XOR) Problem 
In the Deutsch-Jozsa problem (Deutsch and Jozsa, 1992) we are given 

an oracle with some number of input qubits and one output qubit. We 
are told that the oracle's function is to invert its output qubit in certain 
situations (that is, with certain Boolean inputs), and we are promised 
that the oracle is either uniform, meaning that it either always or never 
inverts its output qubit, or balanced, meaning that it will invert and 
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Table 8.1. Push interpreter parameters for the example run of PushGP on the 
Deutsch-Jozsa (XOR) problem. Documentation of Push parameters and instructions 
is available from h t tp : / /hampsh i re .edu / l spec to r /push .h tml . 

MAX-RANDOM-FLOAT 
MIN-RANDOM-FLOAT 

MAX-RANDOM-INTEGER 
MIN-RANDOM-INTEGER 

EVALPUSH-LIMIT 
MAX-POINTS-IN-RANDOM-EXPRESSIONS 

MAX-POINTS-IN-PROGRAM 
MAX-ORACLE-CALLS 

Types 
Instructions 

1.0 
-1.0 
10 
-10 
150 
50 
100 
1 
QGATE, FLOAT, CODE, BOOLEAN, 
(see Table 8.3) 

INTEGER 

not invert equal numbers of times if called on all possible (Boolean) 
inputs. The task is to determine whether a given oracle is uniform or 
balanced. Classically one would have to query the oracle several times 
(up to one more than half the number of possible inputs) to be certain 
of the answer, but quantum computers can do better. Although this 
problem is not clearly related to any problems of practical significance, 
it is of historical significance because it was one of the first problems to 
be shown to be solvable with a better-than-classical quantum algorithm. 

The use of genetic programming to re-discover the quantum program 
that solves the 2-bit version of this problem (which uses an oracle with 
4 possible inputs) is documented in (Spector et al., 1998) and (Spector 
et al., 1999b). 1 Here we document the use of genetic programming to 
re-discover the quantum program that solves the simpler 1-bit version 
of this problem. In this version of the problem the oracle has only 1 
input qubit and hence two possible inputs (0 and 1). The oracle is 
uniform, as in the general case, if it either always or never inverts its 
output qubit. It is balanced in all other cases, in which it inverts its 
output qubit for one but not the other of its 2 possible inputs. We are 
therefore asked to determine the truth of the logical formula IQ © Ii , 
where IQ means "inverts with input 0," Ii means "inverts with input 1," 
and © is the exclusive OR (XOR) function. The classical version of this 
problem clearly requires two oracle queries; after a query with one input 
it will not be known whether the result of a query with the other input 
will match (meaning that the oracle is uniform) or not (meaning that 

•'in these references the Deutsch-Jozsa problem is referred to as Deutsch's "early promise" 
problem. 
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the oracle is balanced). By contrast a quantum program can solve this 
problem with a single query. 

This problem was easily solved using PushGP with the parameters 
shown in Tables 8.1 and 8.2 and the instruction set shown in Table 8.3, 
running under the O P E N M C L open source Common Lisp system^ on a 
1.33 GHz Apple Macintosh laptop computer with a PowerPC G4 chip. 
The complete source code for this run, along with the output log, is 
available online.^ 

The fitness of a Push program was assessed by running it once to 
produce a QGAME program (which began with the empty "embryo" 
corresponding to the gate array shown in Figure 8.1), and by testing the 
QGAME program with the TEST-QUANTUM-PROGRAM function described 
in Chapter 3. The maximum permitted number of oracle calls per case 
(and therefore the first argument in all calls to LIMITED-ORACLE) was 
1, so that only the first oracle call in any developed QGAME program 
would have any effect. The inputs provided to TEST-QUANTUM-PROGRAM 
were: 

• PROGRAM: The developmental result of executing the chromosomal 
Push program. 

• NUM-QUBITS: 2 

. CASES: (((0 0) 0) ((0 1) 1) ((1 0) 1) ((1 1) 0)) 

• FINAL-MEASUREMENT-QUBITS:(1) 

• THRESHOLD: 0.48 

Fitness was computed as the sum of the number of misses (the first re
turn value from TEST-QUANTUM-PROGRAM) and the maximum probability 
of error on any single case (the second return value). 

The fitness of the best program in the first, random generation ("gen
eration 0") was 3.0. Fitness improved rapidly thereafter, including a 
steep drop at generation 9 when the number of misses of the best pro
gram dropped from 2 to 0. At generation 18 a perfect solution was 
found, with a fitness value of 0 aside from a miniscule round-oflf error of 
4.4 X 10~^^. A plot of the fitness of the best individual per generation 
is shown in Figure 8.2. 

^http://openmcl.clozure.com/ 

•^http; //hampshire. edu/lspector/aqcp/evolved-xor/ 
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Table 8.2. PushGP genetic programming system parameters for the example run of 
PushGP on the Deutsch-Jozsa (XOR) problem. 

MAX-NEW-POINTS-IN-MUTANTS 
POPULATION-SIZE 
TOURNAMENT-SIZE 

MUTATION-PROBABILITY 
CROSSOVER-PROBABILITY 

MUTATION-OPERATORS 
CROSSOVER-OPERATORS 

FITNESS-FUNCTION 

20 
10,000 
7 
0.45 
0.45 
FAIR, PERTURB, ADD, REMOVE 
FAIR 
misses + max probability of error 

Table 8.3. Instructions used in the example run of PushGP on the 1-bit Deutsch-
Jozsa (XOR) problem. 

INTEGER 

BOOLEAN 

CODE 

FLOAT 

QGATE 

INTEGER.FROMBOOLEAN, INTEGER.FROMFLOAT, INTEGER.>, INTEGER.<, 
INTEGER."/., INTEGER./, INTEGER.*, INTEGER.-, INTEGER.+, 
INTEGER.STACKDEPTH, INTEGER.SHOVE, INTEGER.YANKDUP, 
INTEGER.YANK, INTEGER.=, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP 
BOOLEAN.FROMFLOAT, BOOLEAN.FROMINTEGER, BOOLEAN.NOT, 
BOOLEAN.OR, BOOLEAN.AND, BOOLEAN.STACKDEPTH, BOOLEAN.SHOVE, 
BOOLEAN.YANKDUP, BOOLEAN.YANK, BOOLEAN. =, BOOLEAN.SWAP, 
BOOLEAN.POP, BOOLEAN.DUP 
CODE.DISCREPANCY, CODE.DO, CODE.NTHCDR, CODE.NTH, CODE.APPEND, 
CODE.LIST, CODE.NOOP, CODE.IF, CODE.DO*, CODE.CONS, CODE.CDR, 
CODE.CAR, CODE.NULL, CODE.ATOM, CODE.QUOTE, CODE.STACKDEPTH, 
CODE.SHOVE, CODE.YANKDUP, CODE.YANK, CODE.=, CODE.SWAP, 
CODE.POP, CODE.DUP 

FLOAT.FROMBOOLEAN, FLOAT.FROMINTEGER, FLOAT.TAN, FLOAT.COS, 
FLOAT.SIN, FLOAT.>, FLOAT.<, FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-, 
FLOAT.+, FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP, 
FLO AT. YANK, FLOAT. =, FLOAT. SWAP, FLO AT. POP, FLO AT. DUP 

QGATE.END, QGATE.MEASURE, QGATE.U2, QGATE.CPHASE, QGATE.SWP, 
QGATE.CNOT, QGATE.QNOT, QGATE.SRN, QGATE.U-THETA, 
QGATE.HADAMARD, QGATE.LIMITED-ORACLE, QGATE.GATE, 
QGATE.TRANSPOSE, QGATE.COMPOSE, QGATE.STACKDEPTH, QGATE.SHOVE, 
QGATE.YANKDUP, QGATE.YANK, QGATE.=, QGATE.SWAP, 
QGATE.POP, QGATE.DUP 
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Figure 8.1. Gate array diagram for the empty "embryo" with which development 
begins for the solution to the Deutsch-Jozsa (XOR) problem. The only gate in the 
embryo performs a measurement of qubit 1; this need not even appear explicitly in 
the developed QGAME program as the call to TEST-QUANTUM-PROGRAM will specify 
that the final measurement will be performed on qubit 1. The developmental process 
will add gates from left to right, ending just before the measurement. 

Figure 8.2. A plot of the fitnesses of the best individuals in each generation during 
a run of PushGP on the 1-bit Deutsch-Jozsa (XOR) problem. 
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Execution was aborted at generation 20, at which time the best re
ported program was as follows: 

((BOOLEAN.= INTEGER.> CODE.DO*) ((FLOAT.TAN (FLOAT.< 
(BOOLEAN.DUP (BOOLEAN.POP BOOLEAN.SHOVE INTEGER.-
QGATE.CPHASE (CODE.CAR CODE.LIST TRUE)))) (CODE.NULL 
((CODE.APPEND) FLOAT.= (BOOLEAN.DUP BOOLEAN.DUP)))) 
CODE.CDR ((BOOLEAN.YANKDUP INTEGER.* BOOLEAN!=) 
(0.16907119750976562D0) -2 (QGATE.SRN QGATE.STACKDEPTH 
(QGATE.HADAMARD (QGATE.GATE CODE.STACKDEPTH)) CODE.NULL 
(BOOLEAN.SWAP) (INTEGER.YANKDUP BOOLEAN.OR 
(((QGATE.TRANSPOSE) CODE.NULL (QGATE.CPHASE INTEGER.>) 
CODE.LIST) (QGATE.GATE ((-5 (FLOAT.STACKDEPTH)) CODE.YANK 
BOOLEAN.POP))) (INTEGER.DUP)) QGATE.LIMITED-ORACLE)) 
(FLOAT.% QGATE.STACKDEPTH QGATE.GATE (((5 CODE.SWAP) 
QGATE.LIMITED-ORACLE) FLOAT.YANK) FLOAT.SWAP FLOAT.TAN) 
(TRUE)) (INTEGER.* (QGATE.SWP FLOAT.STACKDEPTH BOOLEAN.OR 
CODE.CDR) BOOLEAN.STACKDEPTH)) 

Regardless of how this Push program is formatted, it is not clear from 
visual inspection how it works (and it has therefore been presented in 
the most economical format). Execution of this program produces, via 
development, the following QGAME program (as expressed in Lisp no
tation, where "#2A" indicates a 2-dimensional matrix, and with floating 
point numbers rounded to 4 decimal places): 

((MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0) 
(0.0 0.7071 0.0 0.7071) 
(0.7071 0.0 -0.7071 0.0) 
(0.0 0.7071 0.0 -0.7071)) 

((HADAMARD 1))) 
(MATRIX-GATE #2A((0.7071 0.7071 0.0 0.0) 

(-0.7071 0.7071 0.0 0.0) 
(0.0 0.0 0.7071 0.7071) 
(0.0 0.0 -0.7071 0.7071)) 

(TRANSPOSED ((SRN 0)))) 
(LIMITED-ORACLE 1 ORACLE-TT 1 0) 
(LIMITED-ORACLE 1 DRACLE-TT 0 1) 
(MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0) 

(0.0 0.7071 0.0 0.7071) 
(0.7071 0.0 -0.7071 0.0) 
(0.0 0.7071 0.0 -0.7071)) 

((HADAMARD 1)))) 
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Figure 8.3. Gate array diagram for an evolved solution to the Deutsch-Jozsa (XOR) 
problem. The "f" gate is the oracle. The "SRN" gate with the diagonal line through 
it on qubit 0 transposed Square Root of NOT gate. 

The second oracle call is redundant and can be removed; since the 
oracle limit is 1 a second call to LIMITED-ORACLE will have no effect. 
The first and final gates are simply HADAMARD gates applied to qubit 1, 
while the second gate is a transposed SRN ("square root of NOT"; see 
Chapter 2) gate. The final evolved, developed and simplified quantum 
program is diagrammed in Figure 8.3. This program solves the 1-bit 
version of the Deutsch-Jozsa (XOR) problem with 100% certainty using 
only a single oracle call. 

How does this evolved solution solve the 1-bit Deutsch-Jozsa (XOR) 
problem? The mathematical explanation is straightforward — one needs 
only to construct and multiply all of the matrices — but it is difficult 
to provide an intuitive explanation even for such a simple quantum al
gorithm. The basic idea is indeed intuitive, however: the algorithm first 
puts both qubits into superpositions of |0) and |1) and then calls the or
acle once on this superposition, extracting information about both clas
sical inputs in a single call. This information must then be "decoded" 
from the resulting superposition by means of an additional HADAMARD 
gate, which reverses the effect of the HADAMARD gate prior to the oracle. 
Note that the final measurement is made on the qubit that is nominally 
the input to the oracle call, while the nominal output is ignored. This 
highlights one of the ways in which quantum gate arrays differ from clas
sical logic circuits.'^ The oracle call in this case modifies qubit 0, but in 
doing so it changes every amplitude in the system state. Through this 
action (which is sometimes called the "back action" of a quantum gate) 
it changes the effect of the final HADAMARD on qubit 1, leading to the 
measurement of the correct answer for both possible inputs. 

•̂ The potential deceptiveness of quantum gate array diagrams that results from such differ
ences was discussed in Chapter 3. 
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2. Grover's Database Search Problem 
Grover's database search problem was described above in Chapters 

1 and 2, the latter of which included a detailed presentation of one 
solution to the 4-iteni version of this problem. Grover's problem is an 
oracle problem, much like the Deutsch-Jozsa problem, except that the 
"promise" we are given regarding the oracle is different and the task is 
not just to distinguish two classes of oracles (uniform vs. balanced) but 
rather to determine exactly which of the possible oracles we have been 
given. 

More specifically, we are promised, in the instance of the problem 
considered here, that the oracle will invert its output for one and only 
one input. Our task is to determine which input it is that produces the 
inversion. This is described as a database problem because we may think 
of the oracle as a database, for which all of the possible inputs are ad
dresses, and we may think of the output inversion as an answer of "yes" 
to a database query for a marked item. Under this interpretation we 
are promised that we have been given a database containing a marked 
item at one and only one address, and we are asked to determine the 
address of that item using as few calls to the database query function 
(oracle) as possible. The number of queries required for a classical pro
gram to solve this problem with an n-item database is n — 1 in the worst 
case, but Grover's algorithm can find the marked item in approximately 
^/n queries. For the 4-item database considered here Grover's algorithm 
requires only a single database query. 

Techniques similar to those described above for the Deutsch-Jozsa 
problem also permit evolution of a solution to the 4-item database search 
problem.^ Because the oracle is in this case a 3-qubit gate (two input 
qubits and one output qubit), one must use a quantum computer with 
at least 3 qubits. One must also designate two qubits for final measure
ments, rather than the one qubit required for Deutsch-Jozsa, since one 
must be able to read a 2-bit address (0, 1, 2, or 3) from the measurement 
qubits at the end of the simulation. The cases on which programs are 
tested for fitness are: 

( ( (1 0 0 0) 0) 
((0 1 0 0) 1) 
((0 0 1 0) 2) 
((0 0 0 1) 3)) 

^The evolution of a solution to this problem using using "stackless linear genome genetic 
programming," as described in Chapter 7, is documented in (Spector et al., 1999b). 
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Table 8.4- Push interpreter parameters for the example run of PushGP on the 4-
item database search problem. Documentation on Push parameters and instructions 
is available from ht tp : / /ha i i ipshi re .edu/ l spec tor /push .h tml . 

MAX-RANDOM-FLOAT 
MIN-RANDOM-FLOAT 

MAX-RANDOM-INTEGER 
MIN-RANDOM-INTEGER 

EVALPUSH-LIMIT 
MAX-POINTS-IN-RANDOM-EXPRESSIONS 

MAX-POINTS-IN-PROGRAM 
MAX-ORACLE-CALLS 

Types 
Instructions 

10.0 
-10.0 
10 
-10 
250 
50 
100 
1 
QGATE, FLOAT, CODE, 
(see Table 8.6) 

INTEGER 

Table 8.5. PushGP genetic programming system parameters for the example run of 
PushGP on the 4-item database search problem. 

MAX-NEW-POINTS-IN-MUTANTS 
POPULATION-SIZE 
TOURNAMENT-SIZE 

MUTATION-PROBABILITY 
CROSSOVER-PROBABILITY 

IMMIGRATION-PROBABILITY 
MUTATION-OPERATORS 
CROSSOVER-OPERATORS 

FITNESS-FUNCTION 

20 
25,000 (x 10 demes) 
5 
0.45 
0.45 
0.005 
FAIR, GAUSSIAN-PERTURB, ADD, REMOVE 
STANDARD, FAIR 
10 X misses -1- max probability of error 

This means that the answer, to be assembled from the measured values 
of two qubits (we'll specify these to be qubits 1 and 2, specifying the 
high-order and low-order bits of the answer respectively), should be 0 if 
the location of the marked item is (0, 0), 1 if the location is (0, 1), 2 if 
the location is (1, 0), and 3 if the location is (1, 1). 

This problem was solved using PushGP with the parameters shown in 
Tables 8.4 and 8.5 and the instruction set shown in Table 8.6, running 
under the CMUCL open source Common Lisp system^ on a 10-CPU 
cluster of 2.1GHZ Linux workstations. The complete source code for 
this run, along with the output logs, is available online.^ 

^http://www.cons.org/cmucl/ 

'^http: //hampshire. edu/lspector/aqcp/evolved-grover/ 
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Table 8.6. Instructions used in the example run of PushGP on the 4-item database 
search problem. 

INTEGER 

CODE 

FLOAT 

QGATE 

INTEGER.FROMFLOAT, INTEGER./, INTEGER.*, INTEGER.-, 
INTEGER.+, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP 
C0DE.DO*COUNT, CODE.DC+TIMES, CODE.FROMFLOAT, 
CODE.FROMINTEGER, CODE.DO, CODE.NTHCDR, CODE.NTH, 
CODE.APPEND, CODE.LIST, CODE.NOOP, CODE.IF, 
CODE.DO*, CODE.CONS, CODE.CDR, CODE.CAR, 
CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP 

FLOAT.FROMINTEGER, FLOAT. /, FLOAT. *, FLOAT. -, 
FLOAT.+, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP 
QGATE.END, QGATE.MEASURE, QGATE.CPHASE, QGATE.SWP, 
QGATE.CNOT, QGATE.QNOT, QGATE.U-THETA, QGATE.HADAMARD, 
QGATE.LIMITED-ORACLE, QGATE.GATE, QGATE.TRANSPOSE, 
QGATE.COMPOSE, QGATE.SWAP, QGATE.POP, QGATE.DUP 

The 10-CPU cluster was utilized by means of a scheme of "demes" 
like that described briefly in Chapter 4. PushGP was started on each 
of the nodes and the 10 runs were allowed to proceed asynchronously. 
After the fitness-testing step of each generation a pool of emigrants, 
consisting of 125 individuals (0.5% of the population size of 25,000) 
selected via fitness tournaments (with tournament size 5), was written 
to a shared file system, replacing any previous pool of emigrants from the 
same node. Following emigration, a randomly selected file of emigrants 
on the shared file system (which may have come from the same node or 
from a different node) is read and becomes the pool of immigrants from 
which the IMMIGRATION genetic operator will randomly select individuals 
in the next offspring-production step. If the attempt to read a file of 
emigrants from the shared file system fails for any reason (for example 
because of network problems) then the IMMIGRATION operator will act 
as a reproduction operator, producing clones of individuals from the 
current population. 

This run also utilized the matrix literalization scheme discussed in 
Chapter 7. After the fitness-testing step of each generation the Push 
programs were processed in order of fitness (best first) until at least 10 
matrix literals were obtained. This was accomplished by re-evaluating 
each Push program to produce, via development, a QGAME program, 
and by compressing strings of matrices in the developed QGAME pro
gram to produce compressed matrix literals. These literals were then 
available for inclusion in mutations performed during the next offspring-
production step. In addition, this run utilized a GAUSSIAN-PERTURB 
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Figure 8.4- Gate array diagram for the empty "embryo" with which development 
begins for the solution to the database search problem. The only gates in the embryo 
perform measurement of qubits 1 (the high order bit of the answer) and 2 (the low 
order bit of the answer). The developmental process will add gates from left to right, 
ending just before the measurements. 

genetic operator, the idea for which was described in Chapter 7. When 
this operator is chosen for a particular instance of mutation,^ a child is 
produced from the parent by adding mean 0, standard deviation 0.01 
Gaussian noise to each floating-point literal in the parent. 

As with the Deutsch-Jozsa example in the previous section, the fit
ness of a Push program was assessed by running it once to produce a 
QGAME program (which began in this case with the empty "embryo" 
corresponding to the gate array shown in Figure 8.4), and by testing the 
QGAME program with the TEST-QUANTUM-PROGRAM function described 
in Chapter 2. The maximum permitted number of oracle calls per case 
was again 1, so that only the first oracle call in any developed QGAME 
program would have any effect. The fitness cases were those listed above 
and the threshold for a "miss" was again 0.48. Fitness was computed 
as the sum of 10 times the number of misses (the first return value from 
TEST-QUANTUM-PROGRAM) and the maximum probability of error for any 
one case (the second return value from TEST-QUANTUM-PROGRAM); this 
is the "lexicographic" fitness component combination scheme that was 
discussed in Chapter 7. 

The fitnesses over the 10 demes are plotted in Figure 8.5. The elimi
nation of "misses" is clearly visible as large drops in fitness values, which 
are lexicographic combinations of misses (x 10) and maximum proba
bility of error per case. Fitness improvements within particular levels 
of misses are obscured by the scale, but Figure 8.6 shows the additional 
detail at the level of zero misses. The first deme to achieve a perfect 
fitness value of zero did so at generation 113, while the last deme to 
achieve a perfect fitness value did so at generation 152. The last of these 

*In PushGP, a random one of the specified mutation operators is selected for each instance 
of mutation. Similarly for crossover: if multiple operators are specified then each instance of 
crossover uses a randomly selected crossover operator. 
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Figure 8.5. A plot of the fitnesses of the best individuals in each generation during 
a run of PushGP on the 4-item database search problem. This figure is dominated 
by the large drops due to the decreases in the "misses" component of the fitness 
function; it shows the overall structure of the evolutionary process but not the fine 
structure of fitness improvements at each level. Figure 8.6 shows a closer view of 
the improvements in fitness after all of the misses were eliminated. This run was 
conducted on a cluster of 10 computers that ran asynchronously, sharing individuals 
between generations (see text), and a line appears in the graph for each of the 10 runs. 
Because the individual runs ran asynchronously they reached particular generations 
at different times and one must be careful when inferring relations between runs from 
this graph; for example, an event that appears to the right of another event may 
actually have preceded that other event in time, and may even have influenced that 
other event via migration. 

perfect-fitness individuals was chosen, arbitrarily, as the basis for the 
following analysis. 

The evolved solution Push program contained 100 points, which was 
the maximum permitted.^ The average number of points in the popula
tion that included this solution was 80.5, and the median fitness in this 
population was 0.0026. The solution Push program contained 5 unitary 
matrix literals, produced via the matrix literalization process described 
above, some of which were derived from other matrix literals earlier in 

^Each instruction, literal, and pair of parentheses counts as one point. 
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Figure 8.6. A plot of the fitnesses of the best individuals in each generation during 
a run of PushGP on the 4-item database search problem. This is a closer view of 
the graph in Figure 8.5, showing the improvements in fitness after all of the "misses" 
components of the fitness function were eliminated. 

the evolutionary process. For example, one of the matrix literals is the 
composition of two instances of another matrix literal, which in turn in
cludes three instances of a matrix that appears to have been produced by 
an earlier matrix literalization process. The inclusion of the matrix lit
erals makes the printed representation of this Push program quite large 
(3,458 characters, not counting spaces); it is therefore not included here, 
although it can be found online.^° 

Execution of the evolved Push program produces, via development, a 
QGAME program consisting of 18 matrix gates. Some of the matrices 
in these gates appeared in the Push program as matrix literals, but 
others were produced by the execution of the Push program either from 
primitive gates or from matrix literals. For example, one matrix in 
the developed QGAME program is a transposed version of one of the 
matrix literals in the Push program. Another matrix in the developed 
QGAME program is a transposed version of one of the matrix literals in 

^"See h t tp : / /ha inpsh i re .edu / l spec tor /aqcp /evolved-grover / , at the end of the log file 
pushgp-output.nOl.bwOl.hampshire.edu. 



Evolved Quantum Programs 101 

the Push program that has also been augmented by an additional QNOT 
gate. Again, because the textual version of this this program is verbose 
it is not included here. 

As in the Deutsch-Jozsa example in the previous section, some of 
the gates in the final QGAME program are unnecessary and can be 
pruned from the result. Of particular interest in the present case is the 
fact that two of the gates, although they include matrix literals with 
rather complex histories, combine the matrices from those histories to 
produce identity operations; components of these histories are also used 
elsewhere in the final QGAME program to greater effect. The final 
QGAME program, after hand pruning and with the matrices removed 
for legibility, is as follows: 

((HADAMARD 1) 
(MATRIX-GATE <matrixl> <historyl>) 
(HADAMARD 1) 
(HADAMARD 0) 

(MATRIX-GATE <inatrix2> <history2>) 
(LIMITED-ORACLE 1 ORACLE-TT 2 10) 
(HADAMARD 2) 

(MATRIX-GATE <matrix3> <history3>) 
(MATRIX-GATE <matrix4> <history4>) 
(HADAMARD 1)) 

The matrix indicated as <matrixl> is just a transposed version of the 
matrix indicated as <matrix2>, which has the following history: 

((COMPRESSED 

((COMPRESSED ((U-THETA 2 1.233552982796235))) 
(COMPRESSED 
((COMPRESSED ((QNOT 0))) (COMPRESSED ((CNOT 1 2)))))))) 

The matrix indicated as <matrix3> has the following history: 

((COMPRESSED ((HADAMARD 1))) 
(COMPRESSED 
((COMPRESSED 

(TRANSPOSED ((U-THETA 1 1.0642909109545906)))))) 
(COMPRESSED 
((COMPRESSED 

(TRANSPOSED ((U-THETA 1 1.0642909109545906)))))) 
(COMPRESSED 
((COMPRESSED 
(TRANSPOSED ((U-THETA 1 1.0642909109545906))))))) 
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Figure 8.7. A gate array diagram for an evolved version of Grover's database search 
algorithm for a 4-item database. The full gate array is shown at the top, with Mi 
and M2 standing for the smaller gate arrays shown at the bottom. A diagonal line 
through a gate symbol indicates that the matrix for the gate is transposed. The "f" 
gate is the oracle. 

The matrix indicated as <matrix4> is a transposed version of the 
matrix indicated as <matrix3>, to which a QNOT gate has also been 
added on qubit 2. 

The resulting quantum gate array is diagrammed in Figure 8.7. Mi in 
the figure corresponds to <niatrix2> and M2 corresponds to <iiiatrix3>; 
the contents of each of these matrices are indicated in the smaller gate 
array diagrams in the bottom half of the figure. The transpositions in 
matrices 1 and 4 are indicated by the diagonal lines, and the additional 
QNOT gate that evolved as part of <inatrix3> is drawn separately on the 
qubit 2 line in the main diagram. This gate array solves the 4-item 
database search problem with 100% certainty using only a single oracle 
call. The evolved gate array exhibits several forms of modularity, some 
of which were achieved via recursive matrix literalization and others of 
which owe to the code-manipulation and matrix-manipulation facilities 
of the Push instruction set used for this run. 

How does this evolved solution work? At a general level of descrip
tion the solution is the same as that presented in Section 3.3 above: a 
superposed state is fed into the call to the oracle gate and subsequent 
"decoding" gates extract the position of the marked item from the states 
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Table 8.7. Push interpreter parameters for the example run of PushGP on the Scal
ing Majority-ON problem. Documentation on Push parameters and instructions is 
available from h t tp : / /ha inpsh i re .edu/ l spec tor /push .h tml . 

MAX-RANDOM-FLOAT 
MIN-RANDOM-FLOAT 

MAX-RANDOM-INTEGER 
MIN-RANDOM-INTEGER 

EVALPUSH-LIMIT 
MAX-POINTS-IN-RANDOM-EXPRESSIONS 

MAX-POINTS-IN-PROGRAM 
MAX-ORACLE-CALLS 

Types 
Instructions 

1.0 
-1.0 
10 
-10 
150 
50 
100 
1 
QGATE, FLOAT, CODE, BOOLEAN, 
(see Table 8.9) 

INTEGER 

in which the address qubits (as opposed to the output qubit) are left by 
the action of the oracle. The solution presented here is, however, consid
erably more complex than that presented in Section 3.3.^^ Part of the 
reason for this difference is that the result presented earlier was subjected 
to further human editing,^^ but part may also be due to an unfortunate 
evolutionary accident early in the run presented here. The oracle call 
in the evolved gate array uses qubit 2 as the high-order input and qubit 
1 as the low-order input, while the measurements specified in the em
bryo use the opposite designation. If the programs that achieved limited 
success early in this run included the oracle call with this "backwards" 
configuration, then it may have been easier for evolution to find improve
ments that compensated for this configuration through additional gates 
than through the substitution of an alternative oracle configuration. An
other factor contributing to the complexity of this solution may be the 
use of matrix literalization, which facilitates the evolution of quantum 
programs containing complex modules; while this probably extends the 
power of the automatic quantum computer programming system it may 
also have the unfortunate side effect of encouraging the generation of 
unnecessarily complex solutions. 

^^It is also considerably more complex than the solution evolved by the author previously 
using other techniques (Spector et al., 1999b). 
•'^The editing performed here was limited to the removal of gates that had no effect on the 
result; further analysis may produce additional simplifications by substituting single gates 
for groups of gates, etc. 
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Table 8.8. PushGP genetic programming system parameters for the example run of 
PushGP on the Scaling Majority-ON problem. 

MAX-NEW-POINTS-IN-MUTANTS 
POPULATION-SIZE 
TOURNAMENT-SIZE 

MUTATION-PROBABILITY 
CROSSOVER-PROBABILITY 

IMMIGRATION-PROBABILITY 
MUTATION-OPERATORS 
CROSSOVER-OPERATORS 

FITNESS-FUNCTION 

20 
5,000 (x 13 demes) 
7 
0.45 
0.45 
0.005 
FAIR, PERTURB, ADD, REMOVE 
FAIR 
misses + max probability of error 

3. Scaling Majority-ON 
The Majority-ON problem asks us to determine if the number of in

puts for which an oracle inverts its output qubit is greater than the 
number of inputs for which it does not invert its output qubit. The 
name comes from interpreting the inversion as an indication that the lo
cation in the oracle addressed by the input is "on," and asking whether 
a majority of the oracle's locations are "on" in this sense. For simplicity 
here we omit oracles with an equal number of "on" and "off" locations. 

The Scaling Majority-ON problem presents the more ambitious task 
of evolving a scheme for solving Majority-ON that can be scaled up to 
work for an oracle of any size. To solve this problem using PushGP and 
QGAME a NUMQUBITS Push instruction was added that pushes the num
ber of qubits in the current problem instance onto the INTEGER stack. 
For the fitness test the system was run using all permissible oracles with 
1,2, and 3 input qubits for the fitness test. For each fitness case with an 
n-input oracle the Push program was executed in the context of an em
bryo with n + 1 qubits and a final measurement on the highest-numbered 
qubit. In addition, a global variable was set that caused the NUMQUBITS 
instruction to push n onto the INTEGER stack. This instruction could 
be used in evolved Push programs to alter the developmental process, 
thereby producing different QGAME programs for cases of different 
size. 

Aside from the addition of the NUMQUBITS Push instruction, the tech
niques used to produce the Scaling Majority-ON program presented here 
were qualitatively similar to those used for the database search problem 
in the previous section. The full parameter and instruction sets are 
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shown in Tables 8.7, 8.8 and 8.9. The complete source code for this run, 
along with the output logs, is available online.-^^ 

This run did not produce a completely successful solution, in the 
sense of "zero probability of error," although it did produce solutions 
that achieved zero misses. One such result, obtained at generation 112, 
was the following 94-point Push program: 

((((INTEGER.SWAP NUMQUBITS INTEGER.*) NUMQUBITS INTEGER.*) 
(((INTEGER.YANKDUP ((INTEGER.STACKDEPTH QGATE.HADAMARD) 
CODE.DISCREPANCY (8 ) ) (INTEGER.FROMFLOAT)) 
QGATE.LIMITED-ORACLE) ((CODE.YANK (INTEGER.STACKDEPTH)) 
(QGATE.DUP QGATE.U-THETA CODE.YANKDUP INTEGER.+))) ( ( ( 
CODE.NTHCDR ((INTEGER.STACKDEPTH QGATE.HADAMARD) 
CODE.DISCREPANCY)) BOOLEAN.=) (QGATE.GATE)) CODE.DO* 
BOOLEAN.POP) NUMQUBITS (((((QGATE.GATE (CODE.STACKDEPTH 
CODE.= (INTEGER.YANK CODE.NTH CODE.STACKDEPTH (FLOAT.POP 
(FLOAT.STACKDEPTH))) CODE.APPEND) (FLOAT.TAN) ( ( 
BOOLEAN.FROMFLOAT)))) (BOOLEAN.=) FLOAT.STACKDEPTH ( ( 
NUMQUBITS (CODE.DO*TIMES)) (((QGATE.QNOT ( 
-0 .25270235538482666d0)) NUMQUBITS) QGATE.LIMITED-ORACLE)) 
NIL CODE.IF)) (QGATE.U-THETA QGATE.DUP QGATE.GATE)) 
QGATE.CPHASE) 

For the 1-input fitness cases this program produces the following 
Q G A M E program:^"^ 

((LIMITED-ORACLE 1 ORACLE-TT 0 1) 
(HADAMARD 0) 
(LIMITED-ORACLE 1 ORACLE-TT 0 1) 
(HADAMARD 1) 
(HADAMARD 1) 
(LIMITED-ORACLE 1 ORACLE-TT 0 1) 
(U-THETA 0 6.03048295179476) 
(U-THETA 0 6.03048295179476)) 

^^ht tp: / /hampshire .edu/ lspector /aqcp/evolved-raajon/ 
^*In this and subsequent listings any MATRIX-GATEs with histories containing only a single 
primitive gate are replaced by the primitive gates themselves for readability. In this particular 
run a low limit of 5 on history nesting depth — see page 79 — prevented the production of 
non-trivial MATRIX-GATEs. 
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For the 2-input fitness cases it produces the following QGAME pro
gram: 

((HADAMARD 0) 
(HADAMARD 1) 

(LIMITED-ORACLE 1 ORACLE-TT 0 12) 
(U-THETA 0 6.03048295179476) 
(U-THETA 0 6.03048295179476) 
(LIMITED-ORACLE 1 ORACLE-TT 0 12) 
(U-THETA 0 6.03048295179476)) 

For the 3-input fitness cases it produces the following QGAME pro
gram: 

((HADAMARD 0) 
(HADAMARD 2) 
(HADAMARD 1) 

(LIMITED-ORACLE 1 ORACLE-TT 0 1 2 3) 
(U-THETA 0 6.03048295179476) 
(U-THETA 0 6.03048295179476)) 

Many of the gates in the first two of these programs are superflu
ous; those that are not are diagrammed in Figure 8.8. These quantum 
programs, which are similar to those evolved earlier with somewhat sim
pler techniques (Spector et al., 1999b), do indeed solve the Majority-ON 
problem with a maximum probability of error less than 50% for oracles 
of all sizes. Although the evolved Push program does not scale properly 
to oracles larger than those used in the fitness test — that is, running 
the Push program in the context of a larger embryo and a larger value 
for NUMQUBITS does not produce an appropriate QGAME program for 
the larger oracle — it is clear from visual inspection how this algorithm 
can be scaled up indefinitely. Unfortunately, however, the maximum 
probabilities of error for the cases shown in the Figure are 0, 0.25, and 
0.375, and the probabilities continue to approach 50% very quickly as 
the oracle sizes increase. In fact, these solutions are equivalent to the 
simple probabilistic classical algorithm of querying a single, random lo
cation of the oracle and answering "yes" if and only if the corresponding 
location of the oracle is "on." But although the evolved programs are not 
better than classical in this case, the example nonetheless demonstrates 
how genetic programming can be used as an aid in the development of 
scalable quantum algorithms. 
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Table 8.9. Instructions used in the example run of PushGP on the Scahng Majority-
ON problem. 

INTEGER 

BOOLEAN 

CODE 

FLOAT 

QGATE 

NUMQUBITS, INTEGER.FROMBOOLEAN, INTEGER.FROMFLOAT, INTEGER.>, 
INTEGER.<, INTEGER.*/., INTEGER./, INTEGER.*, INTEGER.-, 
INTEGER.+, INTEGER.STACKDEPTH, INTEGER.SHOVE, INTEGER.YANKDUP, 
INTEGER.YANK, INTEGER.=, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP 
BOOLEAN.FROMFLOAT, BOOLEAN.FROMINTEGER, BOOLEAN.NOT, 
BOOLEAN.OR, BOOLEAN.AND, BOOLEAN.STACKDEPTH, BOOLEAN.SHOVE, 
BOOLEAN.YANKDUP, BOOLEAN.YANK, BOOLEAN.=, BOOLEAN.SWAP, 
BOOLEAN.POP, BOOLEAN.DUP 
CODE.DO*COUNT, CODE.DO*TIMES, CODE.FROMBOOLEAN, 
CODE.FROMFLOAT, CODE.FROMINTEGER, CODE.DISCREPANCY, 
CODE.DO, CODE.NTHCDR, CODE.NTH, CODE.APPEND, CODE.LIST, 
CODE.NOOP, CODE.IF, CODE.DO*, CODE.CONS, CODE.CDR, CODE.CAR, 
CODE.NULL, CODE.ATOM, CODE.QUOTE, CODE.STACKDEPTH, CODE.SHOVE, 
CODE.YANKDUP, CODE.YANK, CODE.=, CODE.SWAP, CODE.POP, CODE.DUP 

FLOAT.FROMBOOLEAN, FLOAT.FROMINTEGER, FLOAT.TAN, FLOAT.COS, 
FLOAT.SIN, FLOAT.>, FLOAT.<, FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-, 
FLOAT.+, FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP, 
FLOAT.YANK, FLOAT.=, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP 
QGATE.END, QGATE.MEASURE, QGATE.U2, QGATE.CPHASE, QGATE.SWP, 
QGATE.CNOT, QGATE.QNOT, QGATE.SRN, QGATE.U-THETA, 
QGATE.HADAMARD, QGATE.LIMITED-ORACLE, QGATE.GATE, 
QGATE.TRANSPOSE, QGATE.COMPOSE, QGATE.STACKDEPTH, QGATE.SHOVE, 
QGATE.YANKDUP, QGATE.YANK, QGATE.=, QGATE.SWAP, QGATE.POP, 
QGATE.DUP 

0 -

e-^ 1 - U -H 
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e-^ 2 - U -H 

f 
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Figure 8.8. Gate array diagrams for the "Majority ON" problem for various oracle 
sizes, produced by a genetic programming run that evolved scalable programs. These 
are not better than classical solutions. 
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Table 8.10. Push interpreter parameters for the example runs of PushGP on the 
OR and AND/OR problems. Documentation on Push parameters and instructions is 
available from h t tp : / /hampsh i re .edu / l spec to r /push .h tml . 

MAX-RANDOM-FLOAT 
MIN-RANDOM-FLOAT 

MAX-RANDOM-INTEGER 
MIN-RANDOM-INTEGER 

EVALPUSH-LIMIT 
MAX-POINTS-IN-RANDOM-EXPRESSIONS 

MAX-POINTS-IN-PROGRAM 
MAX-QRACLE-CALLS 

Types 
Instructions 

1.0 
-1.0 
9 
-10 
150 
50 
100 
1 
QGATE, FLOAT, CODE, INTEGER 
(see Table 8.12) 

4. The OR and AND/OR Problems 
The OR and AND/OR problems are oracle problems similar to the 

XOR problem described above, but they ask us to determine a differ
ent property of the oracles. The OR problem is identical to the XOR 
problem except that we are asked to determine the truth of the logical 
formula JQ V/i, where IQ means "inverts with input 0," / i means "inverts 
with input 1," and V is the (inclusive) OR function. In the notation used 
for QGAME's TEST-QUANTUM-PROGRAM function, the cases that we use 
to assess fitness are: 

( ( (0 0) 0) 
((0 1) 1) 
( d 0) 1) 
( d 1) D ) 

In other words, we are asked to determine whether the oracle we have 
been given ever inverts its output qubit, whether for a 0 input, or for a 
1 input, or for both. This turns out to be a harder question to answer 
than the XOR question (which omits the "or both"), and it is known 
that there is no error-free single query solution. 

But a quantum program can nonetheless do better than a classical pro
gram on this problem, and genetic programming was used to discover a 
quantum algorithm that performed better than any that had previously 
been published. The evolved quantum program has a maximum prob
ability of error of ^ . This is better than can be achieved using even 
a probabilistic classical program, which must necessarily have a max-
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Table 8.11. PushGP genetic programming system parameters for the example runs 
of PushGP on the OR and AND/OR problems. 

MAX-NEW-POINTS-IN-MUTANTS 
POPULATION-SIZE 
TOURNAMENT-SIZE 

MUTATION-PROBABILITY 
CROSSOVER-PROBABILITY 

IMMIGRATION-PROBABILITY 
MUTATION-OPERATORS 
CROSSOVER-OPERATORS 

SIZE-PRESSURE 
FITNESS-FUNCTION 

10 
50,000 (x 13 demes) 
7 
0.48 
0.48 
0.005 
PERTURB, ADD, REMOVE 
FAIR 
2, IDEAL-SIZE= 50 
if misses = 0 then: 

U.l X Pmax 

otherwise: 

(0.1 X p-max) + 
En 1 

where: 
n = number of fitness cases. 
Pi — probability of error for case i, 
Pmax = maximum probability of error, 
and ^ = e('=+̂ > 

imum probability of error of at least | . The evolved program, which 
was originally produced using the LGP genetic programming system-^^ 
and a precursor to QGAME, is presented along with an analysis of the 
problem's classical and quantum complexity in (Spector et al., 1999a) 
and (Barnum et al., 2000). 

In this section we describe the more recent evolution of an equiv
alent quantum algorithm using PushGP and QGAME. For this run 
an alternative, stackless implementation of the QGATE data type was 
used. There was no QGATE.GATE Push instruction and the execution of 
Push instructions corresponding to primitive quantum gates (such as 
QGATE. HADAMARD) sent QGAME instructions directly to the develop
ing embryo. This decreased the amount of Push code required to build 
simple QGAME programs, but it did not allow the Push program to 
manipulate and store novel unitary matrices during development. 

The implementation of QGATE.MEASURE in this run was also unusual. 
The implementation used in the previous examples simply added an in
struction expression, "(measure q) " to the developing embryo, with q 
taken from the INTEGER stack (modulo the number of qubits in the sys-

^Available from http://helios.hampshire.edu/lspector/code.html. 
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Table 8.12. Instructions used in the example runs of PushGP on the OR and 
AND/OR problems. These runs used alternative implementations of the QGATE in
structions (see text). 

INTEGER 

CODE 
FLOAT 

QGATE 

INTEGER.MAX, INTEGER.MIN, INTEGER.'/., INTEGER./, INTEGER.*, 
INTEGER.-,INTEGER.*, INTEGER.STACKDEPTH, INTEGER.SHOVE, 
INTEGER.YANKDUP,INTEGER.YANK,INTEGER.SWAP, INTEGER.POP, 
INTEGER.DUP 

CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP 
FLOAT.TAN, FLOAT.COS, FLOAT.SIN, FLOAT.MAX, FLOAT.MIN, 
FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-, FLOAT.+, 
FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP, 
FLOAT.YANK, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP 
QGATE.MEASURE, QGATE.HALT, QGATE.U2, QGATE.CPHASE, 
QGATE.SWP, QGATE.CNOT, QGATE.QNOT, QGATE.SRN, 
QGATE.U-THETA, QGATE.HADAMARD, QGATE.LIMITED-ORACLE 

tem). Subsequent calls to QGATE.END were required to complete the 
branches of the computation for the two possible measurement out
comes (0 and 1).^^ For the present run an alternative implementation of 
QGATE. MEASURE was used that ensures, assuming that the Push program 
that contains it runs to completion, that all measurements are followed 
by complete branches for both possible outcomes. QGATE.MEASURE does 
this by taking two arguments from the CODE stack in addition to the 
index of the qubit to be measured (which is taken from the INTEGER 
stack). It then does the following: 

• Adds the MEASURE expression to the developing QGAME program. 

• Recursively executes one of the popped pieces of code (the one that 
was deeper in the stack), possibly adding additional elements to the 
developing QGAME program in the process. 

• Adds an (END) to the developing QGAME program. 

• Recursively executes the other popped piece of code, possibly adding 
additional elements to the developing QGAME program. 

• Adds another (END) to the developing QGAME program. 

The other parameters for this run are shown in Tables 8.10, 8.11, and 
8.12. The SIZE-PRESSURE parameter referred to in Table 8.10 relates 
to an experimental feature of PushGP that is intended to help control 

'See page 26 for the syntax of measurement constructions in QGAME. 
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Figure 8.9. A gate array diagram for an evolved solution to the OR oracle problem. 
The gate marked "f" is the oracle. The two sub-diagrams on the right represent 
the two possible execution paths following the intermediate measurement. In the 
bottom sub-diagram the result of the intermediate measurement is 0 and the result 
of the overall computation is read immediately from the other qubit. In the top 
sub-diagram the result of the intermediate measurement is 1 and additional gates are 
applied to the other qubit prior to the final measurement. 

program bloat; when this feature is enabled each attempt to use a genetic 
operator causes the operator to be called the indicated number of times 
(2 in this case), producing that number of potential offspring. The single 
offspring closest in size to the specified IDEAL-SIZE is chosen from these, 
and the others are discarded. 

The fitness function for programs that achieve zero misses is the max
imum probability of error on any single fitness case times 0.1. For pro
grams with misses, however, the fitness function is a lexicographic com
bination of a sigmoid function (based on the differences between each 
probability of error and the "miss threshold") and the maximum proba
bility of error. As discussed in Chapter 7, this sigmoid function provides 
a smoother fitness landscape while still prioritizing the elimination of 
misses, although the effectiveness of this measure has not been empiri
cally tested. 

The gate array in Figure 8.9 shows one result of this run, obtained at 
generation 302 and simplified by hand. This result exhibits elements 
of modularity even though it used only a minimal subset of Push's 
code-manipulation instructions and only one instruction — the modi-
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fied QGATE.MEASURE instruction — that triggers recursive execution of 
code on the CODE stack. For example, the same angle appears twice as an 
argument to U-THETA, even though there are no duplicate floating point 
literals in the evolved Push program, and the final QGAME program 
includes three HADAMARD gates even though the evolved Push program 
contains only two instances of QGATE.HADAMARD. 

This algorithm calls the oracle on a qubit in a superposition of |0) 
and |1) and then, after an additional Hadamard transformation of the 
qubit used as the input (and which was affected by the "back action" of 
the oracle), performs an intermediate measurement of the input qubit. 
Regardless of the result of this intermediate measurement, the final mea
surement is made on qubit 1 (as was specified in the embryo), but in one 
case qubit 1 is transformed, using copies of gates that appeared earlier 
in the algorithm, prior to the final measurement. 

The maximum probability of error for this algorithm is j ^ , while clas
sical algorithms necessarily have a probability of error of at least g. The 
existence of quantum algorithms with a maximum probability of error 
of jQ was first discovered by genetic programming. 

The AND/OR problem extends the OR problem to a larger oracle 
and to a more complex logical property. In this problem we are asked to 
determine if the cases for which the 2-qubit oracle flips its output qubit 
satisfy the logical formula (IQO V /QI) /\ [ho V I n ) , where A is the AND 
function. This formula is illustrated as an "and/or tree" in Figure 8.10. 
In the notation used for QGAME's TEST-QUANTUM-PROGRAM function, 
the cases that we use to assess fitness are: 

( ( ( 0 0 0 
( ( 0 0 0 
( (0 0 1 
( ( 0 0 1 
( ( 0 1 0 
( ( 0 1 0 
( (0 1 1 
( (0 1 1 
( ( 1 0 0 
( ( 1 0 0 
( d 0 1 
( ( 1 0 1 
( d 1 0 
( ( 1 1 0 
( ( 1 1 1 
( ( 1 1 1 

0) 0) 
1) 0) 
0) 0) 
1) 0) 
0) 0) 
1) 1) 
0) 1) 
1) 1) 
0) 0) 
1) 1) 
0) 1) 
1) 1) 
0) 0) 
1) 1) 
0) 1) 
1) 1) 
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ORACLE(0,0) ORACLE(0,i) ORACLE(l,0) ORACLE{l,l) 

Figure 8.10. An AND/OR tree describing the nature of the AND/OR oracle prob
lem. 

The existence of better-than-classical quantum algorithms for the 
AND/OR problem was first discovered by genetic programming. The 
first evolved programs for this problem (which were also evolved using 
LGP and a predecessor to QGAME) are presented, along with a com
plexity analysis, in (Spector et al., 1999a) and (Barnum et al., 2000). 
Here we present a program equivalent to the best of these that was 
evolved more recently using PushGP and QGAME, with the same pa
rameters as those used for the run on the OR problem above (Tables 
8.10, 8.11, and 8.12); only the fitness cases and the size of the embryo 
were changed. 

The evolved quantum program, a hand-simplified version of which is 
shown in Figure 8.11, has a maximum probability of error of 0.28731. By 
contrast the best that can be achieved by a probabilistic classical pro
gram is an error probability of ^. Like the solution to the OR problem 
above, this algorithm works by calling the oracle on inputs in superposi
tion and by subsequently performing intermediate measurements on the 
input qubits, which will have been affected by the back action of the 
oracle call. The final measurement is again made on the oracle's output 
qubit, but only after additional transformations to the output qubit that 
are conditional on the intermediate measurements. 

It is also noteworthy that the Push program that produced this so
lution contained only one instance of QGATE. MEASURE, meaning that the 
multiple-measurement solution resulted from the use of the use of Push's 
code-manipulation instructions, only a minimal subset of which were in
cluded in this run. 

It is natural to ask how these algorithms, both for the OR problem 
and for the AND/OR problem, can be scaled up to larger problem in-
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Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle 
problem. The gate marked "f" is the oracle. The sub-diagrams on the right represent 
the possible execution paths following the intermediate measurements. 

stances. Unfortunately, simple concatenations of the evolved algorithms 
do not suffice for this purpose. It is possible, however, that solutions 
to larger problem instances may be discovered through future genetic 
programming runs, and that the principles by which these algorithms 
can be scaled up can subsequently be inferred. 

5. Gate Communication Problems 
This section describes several problems that emerged from explo

rations of the relations between the communication and entanglement-
generation capacities of certain quantum gates (Spector and Bernstein, 
2003; Bennett et al., 2004). These explorations involved several iterative 
cycles of problem formulation, genetic programming, and human analy
sis. All of the genetic programming runs used PushGP, QGAME, and 
techniques similar to those described above. Due to space limitations 
the details of the many individual runs will not be presented here, except 
for the few novel features introduced specifically for these problems. 
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In the course of this work John SmoHn defined the following gate, 
which was initially thought to generate entanglement without allowing 
for communication: 

SMOLIN 

The open question was whether two parties (Alice and Bob) who were 
allowed to interact with one another only through a single use of this gate 
could use that interaction to communicate. This problem was solved 
using PushGP and QGAME, along with a developmental restriction 
that prevented any gates, aside form a single instance of SMOLIN, from 
spanning AHce's and Bob's qubits. The developmental restriction was 
implemented in the code that adds a gate expression to the developing 
embryo: if the gate expression spanned AHce's and Bob's qubits then it 
was simply ignored, unless it was both a SMOLIN gate expression and the 
first such expression encountered in the developmental process. 

There are two fitness cases in this problem. In the first case we leave 
AHce's qubit in the 0 state and penalize a program for any probabil
ity of reading a 1 from Bob's qubit at the end of the computation. In 
the second case we initially invert Alice's qubit and we penalize a pro
gram for any probability of reading a 0 from Bob's qubit at the end of 
the computation. Ideally Bob's qubit will always be read to have the 
value at which we initially set Alice's qubit. This fitness test can be 
implemented using techniques similar to those discussed above, using a 
0-input ORACLE gate (which will act either as an identity transformation 
or as an uncontrolled QNOT to implement Alice's choice). A call to this 
oracle is included, on Alice's qubit, at the beginning of the embryo; the 
answer read from Bob's qubit at the end of the computation should be 
0 when the oracle is the identity transformation and 0 when it is a QNOT. 

The evolved and hand-simplified quantum program shown in Figure 
8.12 solved this problem by determining, unexpectedly, that a single 
classical bit can be communicated through a single application of the 
SMOLIN gate with zero probability of error. This was a useful contri
bution to the human discovery (by Herbert J. Bernstein) of a general 
strategy for communicating, without any probability of error, through a 
generalization of the SMOLIN gate called J{0): 

cos(^) 0 0 sm{9) 
0 1 0 0 
0 0 1 0 

sin(6i) 0 0 -cos(6') . 

j{e)^ 
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Figure 8.12. A gate array diagram for an evolved protocol for communicating one 
classical bit through a Smolin gate. Alice either does or does not flip qubit 0 to send 
a 0 or a 1, respectively; the gate that sets her message is part of the embryo in the 
developmental process driven by the evolved PushGP program. 

Bob 

1 — e - u ( i ) - - u ( f ) - ^ 
o-e-u(i) 

Alice 
Figure 8.13. A gate array diagram for an evolved protocol for communicating one 
classical bit through a J{9) gate. 

The strategy for communicating through J{6) shown in Figure 8.13 
was designed by hand, but it was derived largely from the evolved strat
egy for communicating through SMOLIN shown in Figure 8.12. One in
teresting feature of this strategy for communicating through J{6) is that 
Bob does not even need to know the angle 6 used in the J{0) gate in 
order to decode Alice's bit; Alice must know 6 in order to apply the 
appropriate rotation to her qubit prior to the application of J{9), but 
Bob can perform the same decoding steps regardless of 6. 
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Further analysis of the SMOLIN and J{9) communication strategies 
yielded new problems to which genetic programming was subsequently 
applied. In particular, it led to the definition of the following BS{6) 
(Bernstein Spector) gate: 

BS{9) 

cos(6') 0 0 sin(6') 
0 0 1 0 
0 1 0 0 

. sin(6i) 0 0 -cos(6') 

At the time of this writing the BS{9) gate appears to entangle more 
than it can communicate, and communication appears difficult except 
at 9 mod vr = 0 (Spector and Bernstein, 2003; Bennett et al., 2004). 
Genetic programming has been used to explore several questions related 
to this gate, including the communication capacity that it provides for 
various values oi 9. In some cases the techniques described in Section 
8.3 above, for evolving scalable quantum algorithms, were used with 
the modification that 9, rather than the number of qubits, was varied 
between fitness cases. 

One example result, shown in Figure 8.14, involves communication 
in the context of prior entanglement. We stipulate that Alice and Bob, 
prior to the time at which communication via the BS(9) gate is required, 
entangle two of their qubits. In the genetic programming run we create 
this prior entanglement by including a HADAMARD gate and a CNOT gate 
in the "embryo" from which the QGAME program develops. The ge
netic programming result shown in Figure 8.14 demonstrates that it is 
possible, in the context of prior entanglement, for Alice to send Bob a 
classical bit through BS{^) with no probability of error. The algorithm 
for doing this, as shown in the figure, is extremely simple; aside from 
the elements that were included in the embryo only two HADAMARD gates 
and the call to BS-THETA itself are required. 

A related result is shown in Figure 8.15. In the run that produced this 
result we included code to generate prior entanglement in the embryo, 
as above, but we then attempted to transmit two classical bits through 
a single application of BS(Tr). Genetic programming found a way to do 
this, with no probability of error, using the quantum program shown 
in the figure. This result is a form of a well-known phenomenon called 
"superdense coding," in which two bits of classical information can be 
transmitted through a single qubit channel. 
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Figure 8.14- A gate array diagram for an evolved protocol for communicating one 
classical bit through a BS{j) gate in the context of prior entanglement. The 
entanglement-generating gates, to the left of the vertical bar, were included in the 
embryo to which the developmental process was applied. 

6. Significance of These Results 
Most of the results presented in this chapter demonstrate the human 

competitive nature of genetic and evolutionary computing technologies. 
A few also demonstrate the production, via genetic programming, of gen
uinely new knowledge with respect to the nature and power of quantum 
computing. 

What is meant by "human competitive" in this context? John Koza 
and his colleagues have developed a list of eight criteria for the assertion 
of human competitiveness of results produced by intelligent technologies 
(Koza et al., 2003). These criteria are expressed relative to measures 
that are commonly employed to assess human contributions to scien
tific and technological research and development, such as patents and 
publications in reputable, peer-reviewed scientific journals. The criteria 
all focus on properties of the results themselves, not on their automatic 
production by computer systems. 

Several of Koza's criteria apply to the results presented in this chapter. 
Two that are particularly helpful in assessing the significance of these 
results are the following: 

B: The result is equal to or better than a result that was accepted 
as a new scientific result at the time when it was published in a 
peer-reviewed scientific journal. 
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Figure 8.15. A gate array diagram for an evolved protocol for communicating two 
classical bits through one application of a BS{TT) gate in the context of prior en
tanglement. This is a form of quantum superdense coding re-discovered by genetic 
programming. The entanglement-generating gates, to the left of the vertical bar, were 
included in the embryo to which the developmental process was applied. 

• D: The result is publishable in its own right as a new scientific result— 
independent of the fact that the result was mechanically created. 

All of the results in this chapter, with the exception of the result for 
the scaling Majority-ON problem, meet criterion B. The results for the 
OR, AND/OR, and gate communication problems also meet criterion D, 
as established by publications in physics venues (Barnum et al., 2000, 
Spector and Bernstein, 2003). 

The solution to the 1-bit Deutsch-Jozsa (XOR) problem appears sim
ple in retrospect, but one must remember that this surprising and power
ful effect went unnoticed for the first 60 years following the development 
of the underlying quantum mechanics. And even now it is counterintu
itive to most people. It is true that much of the intelligence behind this 
result lies in the human discovery that the problem was worth posing in 
the first place, but the steps from the problem statement to a solution 
are nonetheless non-trivial. The fact that genetic programming can pro
ceed automatically to a solution when provided only with the problem 
statement and a generic set of quantum gates is therefore significant. 

Similar comments apply to the result for Grover's database search 
problem. Although a human being (Lov Grover) was responsible for the 
insight that quantum computers could outperform classical computers 
on this problem, the production of a better-than-classical quantum algo-
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rithm for the problem is nonetheless difficult and represents a significant 
achievement for an automatic programming system. It is also notewor
thy that the first time this result was produced by genetic programming 
it exceeded the expectations of the person performing the experiment 
(the author of this book), who had naively assumed that the y/n im
provement would allow only for a two-oracle-call solution. Although the 
zero-error, single-call solution added nothing to the state of the art in 
quantum computing, its possibility was news to the designer and user 
of the automatic quantum computer programming system (who was at 
that time new to the field of quantum computing). This is important 
because it demonstrates that the system can produce knowledge beyond 
that possessed by the system designers or users. 

The results on the OR and AND/OR problems were published in 
Journal of Physics A: Mathematical and General on the strength of their 
contributions to the theory of quantum computing, not on the basis of 
their production by mechanical means. Although the article does briefly 
describe the genetic programming methodology that produced the re
sults, neither the article's title nor its abstract mention how the results 
were produced. The novel methodology by which these results were pro
duced would probably not, by itself, warrant publication in this partic
ular journal, which routinely publishes articles on quantum complexity 
theory but not on the design of automatic programming systems. The 
fact that these results were published in a high-quality, peer-reviewed 
physics journal demonstrates that the approach to automatic quantum 
computer programming described in this book can produce new scientific 
results that are on par with those produced by human scientists. 

The result on the Scaling Majority-ON problem is of more limited 
significance; it serves only to demonstrate how genetic programming can 
be employed to find scalable solutions to problems that have instances 
of various sizes. But the result itself is not better than classical, and it 
is also fairly obvious. It is significant only insofar as it points the way to 
more ambitious applications of genetic programming to other problems 
in the future. 

Several of the results on classical communication via particular quan
tum gates are new scientific contributions, significant independent of the 
means by which they were produced. Evidence for this is their publica
tion in the Proceedings of the Sixth International Conference on Quan
tum Communication, Measurement, and Computing. It is also notewor
thy that in this case the genetic programming system was employed in 
a role similar to that of a scientific colleague. The system was used first 
to investigate a particular question ("Can classical information be trans-
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mitted via a SMOLIN gate?") but its result ("Yes") was not the end of the 
story; the details of the result inspired a round of human analysis and 
the production of new questions for the system. Results of the runs on 
these secondary questions have led to further analysis and insights. This 
work is ongoing and additional publications in the physics literature are 
expected in the future (Bennett et al., 2004). 



Chapter 9 

C O N C L U S I O N S A N D P R O S P E C T S 

Quantum computing is an exciting frontier of computer science that 
may, if the aspirations of its proponents are fully realized, provide hu
manity with truly awesome computational power. At present, however, 
we have only hints of the power that may be available, and we have only 
begun to grapple with the practical problems involved in the construc
tion of large-scale quantum computers. 

Many open problems in quantum computing and quantum informa
tion theory can be formulated as searches for quantum programs that 
have particular properties. In other words, they can be thought of as 
programming problems, and more specifically as quantum computer pro
gramming problems. Unfortunately, quantum computers are counterin
tuitive and difficult to program. But fortunately we can adapt existing 
automatic programming technologies to help us to search for quantum 
programs. A successful automatic quantum computer programming sys
tem could contribute to our understanding of quantum computing in 
several ways. 

Genetic and evolutionary computation technologies — in particular 
genetic programming technologies — provide powerful methods for au
tomatic programming. Recent advances in genetic programming tech
niques enable the evolution of complex programs that solve difficult, 
real-world problems. When augmented with quantum computer simula
tion facilities these systems can be used for automatic quantum computer 
programming, thereby aiding the exploration of quantum computing. 

This book described several ways in which genetic programming can 
support automatic quantum computer programming, culminating in a 
set of specific techniques and examples. These examples, along with 
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related results produced by other researchers, (for example, Williams 
and Gray, 1999; Surkan and Khuskivadze, 2001; Leier and Banzhaf, 
2003a; Leier and Banzhaf, 2003b; Perkowski et al., 2003; Massey et al., 
2004), provide reasons to expect more dramatic discoveries from these 
or related techniques in the future. 

Straightforward improvements to many of the technologies presented 
here should extend their capabilities in significant ways. The specific sys
tems described here, including QGAME and PushGP, were developed 
as part of an exploratory research process and were not optimized for 
execution speed. Most of them were written in un-optimized Common 
Lisp for the sake of rapid prototyping and experimentation, but faster 
versions of PushGP and QGAME, written in C++, have just become 
available. These improvements, coupled with deployment across larger 
networked clusters of computers (as described in Chapter 4), should 
significantly increase the size of the quantum systems that can be sim
ulated and the reach of the genetic programming searches that can be 
conducted. Improvements to the underlying quantum computer simula
tion algorithms, for example those that avoid exponential slowdowns for 
classical segments of quantum programs, may allow for further scale-ups. 

An important question not addressed in this book is "How can we de
termine what open problems in quantum computing are best addressed 
by means of genetic programming?" This is a difficult question to an
swer without deep knowledge both in quantum computing and in genetic 
programming. It is hoped that this book will encourage more people to 
seek such knowledge in both areas, and subsequently to apply genetic 
programming to new problems in quantum computing. 

The "low-hanging fruit" for future applications are clearly other "small 
n" problems. Any open problem that can be resolved, one way or the 
other, with the discovery of a single, small quantum program is worth 
considering as a candidate for solution via genetic programming. The 
techniques for evolving such single-size programs are straightforward and 
the exponential overhead for quantum computer simulation is manage
able for systems with small numbers of qubits. 

More interesting, and more challenging, are problems that involve pro
grams that must be scaled up for various values of n. There are many 
such problems — several of the important open questions in quantum 
computing concern the asymptotic computational complexity of prob
lems as they grow in size. A basic technique for approaching these 
problems was presented here, but the exponential overhead for quantum 
computer simulation may hmit the use of this technique. Other advances 
may be necessary to achieve significant scaling results. 
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For the longer term, it is interesting to speculate about new sorts of 
applications that might become practical using variants of the quantum 
efficiencies that have already been discovered, and to consider the ways 
in which automatic quantum computer programming technologies might 
help us to design such applications. 

Grover's search algorithm has many obvious applications, to which 
it can provide a quadratic speedup. It is also possible that Grover's 
ideas can be extended to provide more substantial speedups for certain 
specialized searches.-^ A great deal of work in artificial intelligence views 
all interesting computation as forms of search, and these ideas might be 
used, in conjunction with refined quantum search algorithms, to support 
an array of efficient quantum artificial intelligence technologies. Indeed, 
as mentioned above one can even view automatic programming as a 
form of search, and the notion of using quantum computers to speed 
up automatic programming technologies such as genetic programming 
has been raised in the literature several times (Spector et al., 1998; 
Spector et al., 1999b; Rylander et al., 2001). One specialized form of 
search that has wide application in Al is search over AND/OR trees, 
which also form the foundation of some kinds of logic programming; one 
might therefore speculate that the quantum speedups discovered for the 
AND/OR problem may support some form of "quantum logic machine." 

Other obvious areas for applications include numerical analysis and 
cryptography, where we may expect techniques related to Shor's quan
tum Fourier transform and factoring algorithms to find new uses. We 
might further speculate that technologies rooted in massive parallelism, 
such as neural networks, will benefit rather directly from the form of ex
ponential parallelism provided by quantum computers. By similar logic 
we might expect technologies rooted in the manipulation of probabili
ties, such as Bayesian networks, to benefit from the unique probability-
processing features of quantum computers. The capability of quantum 
computers to represent superpositions of multiple states may also have 
unexpected applications; for example, a recent Ph.D. dissertation claims 
that quantum mechanical superpositions may have an important role to 
play in natural language processing (Chen, 2002). 

Each of these speculations leads in turn to a new set of questions, and 
it is possible that many of these questions will be answered in the future 
by automatic quantum computer programming technologies. 

•'For some initial steps in this direction see (Hogg, 1998; Hogg, 2000). 



Appendix A 
QGAME source code 

This appendix contains Common Lisp source code for the core elements of the 
QGAME quantum computer simulator. It omits much of the program documentation 
and also some of the system's advanced features (such as the algorithms for gate 
compression). FulUy documented source code for this and other versions of QGAME 
can be obtained online.^ 

f ) > i > > t t ) ) t t i f t > ) > } } ) ) > > ) t t > ) > t i ) > t > > > ) > > ) i 

qgame.lisp 

A minimal and lightly documented version of QGAME, the Quantum Gate 

And Measurement Emulator, implemented in Common Lisp and prepared for 

inclusion in: 

AUTOMATIC QUANTUM COMPUTER PROGRAMMING: A GENETIC PROGRAMMING 

APPROACH, by Lee Spector, published by Kluwer Academic Publishers 

Full source and documentation is available from: 

http://hampshire.edu/lspector/qgame.html 

c) 1999-2004, Lee Spector, lspector@hampshire.edu 

-'http://hampshire. edu/lspector/qgame .html 
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;; class definition for a quantum system 

(defclass quantum-system () 

(;; the number of qubits in the system 

(number-of-qubits :accessor number-of-qubits 

:initarg :number-of-qubits) 

;; an array of amplitudes 

(amplitudes :accessor amplitudes 

:initarg :amplitudes 

:initform nil) 

;; the probability for having reached this system 

;; in the first place 

(prior-probability :accessor prior-probability 

: initeirg : prior-probability 

:initform 1) 

;; the number of oracle calls that have been made 

;; in the history of this system 

(oracle-count :accessor oracle-count 

:initarg :oracle-count 

:initform 0) 

;; a list of measurements and their results in 

;; the history of this system 

(measurement-history :accessor measurement-history 

:initarg :measurement-history 

:initform nil) 

;; a list of all instructions executed in the 

;; history of this system 

(instruction-history :accessor instruction-history 

:initarg :instruction-history 

:initform nil) 

;; the program yet to be executed by this system 

;; (if it hasn't yet terminated) 

(program :accessor program 

:initarg :program 

:initform nil) 

;; the following are just for convenience 

;; a list of all valid qubit indices 

(qubit-numbers :accessor qubit-numbers) 

;; address storage, used for looping through qubits 

(amplitude-address :accessor amplitude-address))) 
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(defmethod initialize-instance 

:after ((qsys quantum-system) ferest args) 

"An initializer for quantum systems." 

(declare (ignore args)) 

(let ((num-qubits (number-of-qubits qsys))) 

;; if there are no amplitudes yet then initialize to 100...0> 

(unless (amplitudes qsys) 

(setf (amplitudes qsys) 

(let ((amps (make-array (expt 2 num-qubits) 

:initial-element COLO))) 

(setf (aref amps 0) l.OLO) ;; start in zero state 

amps))) 

;; initilize list of valid qubit indices 

(setf (qubit-numbers qsys) 

(let ((all nil)) 

(dotimes (i num-qubits) (push i all)) 

(reverse all))) 

;; initialize address register for amplitudes 

(setf (amplitude-address qsys) 

(make-array num-qubits :initial-element 0)))) 

;; quantum computer mEuiipulation utilities 

(defun set-address-components (qsys count qubits) 

"Sets (amplitude-address qsys) to refer to a particuleir amplitude, as 

indicated by the bits in the integer count." 

(dotimes (i (length qubits)) 

(setf (airef (amplitude-address qsys) (nth i qubits)) 

(if (logbitp i count) 1 0)))) 

(defun map-qubit-combinations (qsys function qubits) 

"Calls function once for each of the 1/0 combinations of the provided 

qubits, with the right-most qubit varying the fastest." 

(setq qubits (reverse qubits)) 

(let ((number-of-iterations (expt 2 (length qubits)))) 

(dotimes (i number-of-iterations) 

(set-address-components qsys i qubits) 

(funcall function)))) 

(defun get-addressed-amplitude (qsys) 

"Returns the amplitude that is currently addressed 

by (amplitude-address qsys)" 

(let ((niimerical-address 0)) 

(dotimes (i (number-of-qubits qsys)) 

(unless (zerop (aref (amplitude-address qsys) i)) 

(incf numerical-address (expt 2 i)))) 

(aref (amplitudes qsys) numerical-address))) 
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(defun set-addressed-amplitude (qsys new-value) 

"Sets the amplitude currently addressed by (amplitude-address qsys) 

to new-value." 

(let ((numerical-address 0)) 

(dotimes (i (number-of-qubits qsys)) 

(unless (zerop (aref (amplitude-address qsys) i)) 

(incf numerical-address (expt 2 i)))) 

(setf (aref (amplitudes qsys) numerical-address) new-value))) 

(defun matrix-multiply (matrix column) 

"Multiplies the given square matrix by the given column (assumed 

to be the right length) and returns the resulting column." 

(let ((matrix-size (car (array-dimensions matrix))) 

(result nil)) 

(dotimes (i matrix-size) 

(push (let ((element 0)) 

(dotimes (j matrix-size) 

(incf element (* (aref matrix i j) (nth j column)))) 

element) 

result)) 

(reverse result))) 

(defun extract-column (qsys qubits-to-vary) 

"Returns a column from the amplitudes obtained by varying the listed 

qubits, with the right-most qubit varying the fastest." 

(let ((col nil)) 

(map-qubit-combinations 

qsys 

#'(lambda () 

(push (get-addressed-amplitude qsys) col)) 

qubits-to-vary) 

(reverse col))) 

(defun install-column (qsys column qubits-to-vary) 

"Installs the given column in the amplitude positions obtained by 

varying the listed qubits, with the right-most qubit varying the 

fastest." 

(map-qubit-combinations 

qsys 

#'(lambda () 

(set-addressed-amplitude qsys (car column)) 

(setq column (cdr column))) 

qubits-to-vary)) 
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(defiin apply-operator (qsys operator qubits) 

"Applies the given matrix-form operator to the given qubits." 

(map-qubit-combinations 

qsys 

#'(lambda () 

(let* ((pre-column (extract-column qsys qubits)) 

(post-column (matrix-multiply operator pre-column))) 

(install-column qsys post-column qubits))) 

(set-difference (qubit-numbers qsys) qubits)) 

qsys) 

(defun qc-output-probabilities (qsys qubits) 

"Returns a list of the probabilities for all combinations for the 

given qubits, in binary order with the right-most qubit varying fastest." 

(let ((probabilities nil) 

(other-qubits (set-difference (qubit-numbers qsys) qubits))) 

(map-qubit-combinations 

qsys 

#'(lambda () 

(push (let ((probability 0)) 

(map-qubit-combinations 

qsys 

#'(lambda 0 

(incf probability 

(expt (abs (get-addressed-amplitude qsys)) 

2))) 

other-qubits) 

probability) 

probabilities)) 

qubits) 

(reverse probabilities))) 

(defun multi-qsys-output-probabilities (qsys-list qubits) 

"Returns a list of the probabilities for all combinations for the 

given qubits, in binary order with the right-most qubit varying fastest. 

This function takes a LIST of quantum systems as input and sums the 

results across all systems." 

(let ((probabilities 

(mapcar #'(lambda (qsys) 

(qc-output-probabilities qsys qubits)) 

qsys-list))) 

(labels ((add-lists (11 12) 

(if (null 11) 

nil 

(cons (+ (first 11) (first 12)) 

(add-lists (rest 11) (rest 12)))))) 

(reduce #'add-lists probabilities)))) 
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(defun expected-oracles (qsys-list) 

"Returns the expected number of oracle calls for the given 

set of quantum systems." 

(reduce #'+ 

(mapcar #'(lambda (qsys) 

(* (prior-probability qsys) 

(oracle-count qsys))) 

qsys-list))) 

;; oracle gates 

(defun binary-operator-matrix (tt-right-column) 

"Returns a matrix operator for a binary function with the 

given tt-right-column as the right column of its truth table." 

(let* ((column-length (length tt-right-column)) 

(operator-size (* 2 column-length)) 

(matrix (make-array (list operator-size operator-size) 

:initial-element 0))) 

(dotimes (i column-length) 

(let ((offset (* i 2))) 

(if (zerop (nth i tt-right-column)) 

(setf (aref matrix offset offset) 1 

(aref matrix (1+ offset) (1+ offset)) 1) 

(setf (aref matrix offset (1+ offset)) 1 

(aref matrix (1+ offset) offset) 1)))) 

matrix)) 

(defun oracle (qsys tt-right-column &rest qubits) 

"Applies the oracle operator built from tt-right-column, which 

is the right column of the corresponding truth table." 

(incf (oracle-count qsys)) 

(apply-operator 

qsys 

(binary-operator-matrix tt-right-column) 

qubits)) 

(defun limited-oracle (qsys max-calls tt-right-column &rest qubits) 

"If (oracle-count qsys) is less than max-calls then this applies 

the oracle operator built from tt-right-column, which is the right 

column of the corresponding truth table. Otherwise this does nothing, 

(if (< (oracle-count qsys) max-calls) 

(progn (incf (oracle-count qsys)) 

(apply-operator 

qsys 

(binary-operator-matrix tt-right-column) 

qubits)) 

qsys)) 
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;; other quantum gates 

(defun qnot (qsys q) 
"Quantum NOT gate" 
(apply-operator qsys 

#2A((0 1) 
(1 0)) 

(list q))) 

(defun cnot (qsys ql q2) 
"Quantum Controlled NOT gate" 
(apply-operator qsys 

#2A((1 0 0 0) 
(0 10 0) 
(0 0 0 1) 
(0010)) 

(list ql q2))) 

(defun srn (qsys q) 
"Quantum Square-Root-of-NOT gate" 
(apply-operator 
qsys 
(make-array 
'(2 2) 
:initial-contents 

> > > > > J > : 

(list (list (/ 1 (sqrt 
(list (/ 1 (sqrt 

(list q))) 

efun hadamard (qsys q) 
"Quantum Hadamard gate" 
(apply-operator 
qsys 
(make-array 
'(2 2) 
:initial-contents 
(list (list (/ 1 (sqrt 

(list (/ 1 (sqrt 
(list q))) 

2.0L0)) 
2.0L0)) 

2.0L0)) 
2.OLD)) 

(-
(/ 

(/ 
(-

(/ 1 (sqrt 2.0L0)))) 
1 (sqrt 2.0L0))))) 

1 (sqrt 2.0L0))) 
(/ 1 (sqrt 2.0L0)))))) 
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(defun u-theta (qsys q theta) 
"Quantum U-theta (rotation) gate" 
(apply-operator 
qsys 
(make-array 
'(2 2) 
:initial-contents 
(list (list (cos theta) (sin theta)) 

(list (- (sin theta)) ( COS theta)))) 
(list q))) 

(defun cphase (qsys ql q2 alpha) 
"Qucmtum controlled phase gate" 
(apply-operator 
qsys 
(make-array 
'(4 4) 
:initial-contents 
(list (list 1 0 0 0) 

(list 0 1 0 0) 
(list 0 0 10) 
(list 0 0 0 (exp (* (sqrt -l.OLO) alpha))))) 

(list ql q2))) 

U2 = U(phi) * R(theta) * U(psi) * exp(i alpha)I 
where U(a) = e"(-ia) 0 

0 e~(ia) 
and R(a) = cos(a) sin(-a) 

sin(a) cos(a) 
This is all pre-multiplied in the following code 

(defun u2 (qsys q phi theta psi alpha) 
"Quantum U2 gate, implemented as: 

e"(i(-phi-psi+alpha))*cos(theta) e~(i(-phi+psi+alpha))*sin(-theta) 
e~(i(phi-psi+alpha))*sin(theta) e"(i(phi+psi+alpha))*cos(theta)" 

(apply-operator 
qsys 
(let ((i (sqrt -l.OLO))) 
(make-array 
'(2 2) 
:initial-contents 
(list (list (* (exp (* i (+ (- phi) (- psi) alpha))) (cos theta)) 

(* (exp (* i (+ (- phi) psi alpha))) (sin (- theta)))) 
(list (* (exp (* i (+ phi (- psi) alpha))) (sin theta)) 

(• (exp (* i (+ phi psi alpha))) (cos theta))) 
))) 

(list q))) 
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(defun swap (qsys ql q2) 

"A quantiom gate that swaps the amplitudes for the two specified 

qubits." 

(apply-operator 

qsys 

(make-array 

'(4 4) 

:initial-contents 

(list (list 1 0 0 0) 

(list 0 0 1 0 ) 

(list 0 1 0 0) 

(list 0 0 0 1))) 

(list ql q2))) 

;; utilities for measurement and branching 

(defun end (qsys) 

"Marks the end of a measurement branch; has no effect when used 

in a qucintum program in any other context. " 

qsys) 

(defun distance-to-next-unmatched-end 

(list &optional 

(num-measures 0) (num-ends 0) (distance-so-far 0)) 

"Returns 0 if there is no unmatched (end) in list; 

otherwise returns the number of instructions to the next 

unmatched (end) (counting the (end))." 

(if (null list) 

0 

(if (eq (caar list) 'end) 

(if (zerop num-measures) 

(+ 1 distance-so-far) 

(if (oddp num-ends) ;; then this one closes a measure 

(distance-to-next-unmatched-end (cdr list) 

(- num-measures 1) 

(- num-ends 1) 

(+ 1 distance-so-far)) 

(distance-to-next-unmatched-end (cdr list) 

num-measures 

(+ num-ends 1) 

(+ 1 distance-so-far)))) 

(if (eq (caar list) 'measure) 

(distance-to-next-unmatched-end (cdr list) 

(+ num-measures 1) num-ends 

(+ 1 distcince-so-f ar)) 

(distance-to-next-unmatched-end (cdr list) 

num-measures num-ends 

(+ 1 distance-so-far)))))) 
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(defun without-if-branch (program) 

"Assuming that a MEASURE form has just been removed from the 

given program, returns the remainder of the program without the 

IF (measure-1) branch." 

(let* ((distance-to-first-unmatched-end 

(distance-to-next-unmatched-end program)) 

(distance-from-first-to-second-unmatched-end 

(distance-to-next-unmatched-end 

(nthcdr distance-to-first-unmatched-end program)))) 

(if (zerop distance-to-first-unmatched-end) 

;; it's all the if part 

nil 

;; there is some else part 

(if (zerop distance-from-first-to-second-unmatched-end) 

;; the else never ends 

(subseq program distsince-to-f irst-unmatched-end) 

;; the else does end 

(append 

(subseq program 

distance-to-first-unmatched-end 

(+ distance-to-first-unmatched-end 

distemce-from-first-to-second-unmatched-end 

-D) 
(subseq program (+ distance-to-first-unmatched-end 

distamce-from-first-to-second-unmatched-end 

))))))) 

(defun without-else-branch (program) 

"Assuming that a MEASURE form has just been removed from the 

given program, returns the remainder of the program without the 

ELSE (measure-0) branch." 

(let* ((distance-to-first-unmatched-end 

(distance-to-next-unmatched-end program)) 

(distance-from-first-to-second-unmatched-end 

(distance-to-next-unmatched-end 

(nthcdr distance-to-first-unmatched-end program)))) 

(if (zerop distance-to-first-unmatched-end) 

;; it's all the if part 

program 

;; there is some else part 

(if (zerop distance-from-first-to-second-unmatched-end) 

;; the else never ends 

(subseq program 0 (- distance-to-first-unmatched-end 1)) 

;; the else does end 

(append 

(subseq program 0 (- distance-to-first-unmatched-end 1)) 

(subseq program (+ distance-to-first-unmatched-end 

distance-from-first-to-second-unmatched-end 

))))))) 
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(defun force-to (measured-value qubit qsys) 

"Collapses a quantiun system to the provided measured-value for the 

provided qubit." 

(map-qubit-combinations 

qsys 

#'(lambda () 

(let* ((pre-coliomn (extract-column qsys (list qubit))) 

(new-column (case measured-value 

(0 (list (first pre-col\imn) 0)) 

(1 (list 0 (second pre-column)))))) 

(install-column qsys new-column (list qubit)))) 

(remove qubit (qubit-numbers qsys))) 

qsys) 

;; top level functions 

(defun execute-quantum-prograra (pgm num-qubits 

&optional (oracle-tt nil)) 

"Executes the provide quantum program with the specified number of 

qubits and the provided oracle truth table, returning a list of the 

resulting quantum systems." 

(run-qsys (make-instance 'quantum-system 

:number-of-qubits num-qubits 

:program (subst oracle-tt 'ORACLE-TT pgm)))) 
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(defun run-qsys (qsys) 

"Tcikes a quemtum system cind returns the list of quemtum systems that 

results from the execution of its program." 

(if (or (null (program qsys)) 

(zerop (prior-probability qsys))) 

(list qsys) 

(let ((instruction (first (program qsys)))) 

(setf (instruction-history qsys) 

(append (instruction-history qsys) (list instruction))) 

(if (eq (first instruction) 'halt) 

(list qsys) 

(if (eq (first instruction) 'measure) 

(let* ((measurement-qubit (second instruction)) 

(probabilities (qc-output-probabilities 

qsys (list measurement-qubit)))) 

(append (run-qsys ;; 1 branch 

(force-to 

1 measurement-qubit 

(make-instance 'quantum-system 

:number-of-qubits (number-of-qubits qsys) 

:amplitudes (copy-seq (amplitudes qsys)) 

:prior-probability (second probabilities) 

:oracle-count (oracle-count qsys) 

:measurement-history 

(append (measurement-history qsys) 

(list (list measurement-qubit 'is 1))) 

:instruction-history (instruction-history qsys) 

:program (without-else-branch 

(rest (program qsys)))))) 

(run-qsys ; ; 0 bramch 

(force-to 

0 measurement-qubit 

(make-instance 'queintiim-system 

:number-of-qubits (number-of-qubits qsys) 

:amplitudes (copy-seq (amplitudes qsys)) 

:prior-probability (first probabilities) 

:oracle-count (oracle-count qsys) 

:measurement-history 

(append (measurement-history qsys) 

(list (list measurement-qubit 'is 0))) 

:instruction-history (instruction-history qsys) 

:program (without-if-branch 

(rest (program qsys)))))))) 

(let ((resulting-sys (apply (first instruction) 

(cons qsys (rest instruction))))) 

(setf (program resulting-sys)(rest (program resulting-sys))) 

(run-qsys result ing-sys))))))) 
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(defun test-quantum-program 

(pgm &key num-qubits cases final-measurement-qubits threshold 

(inspect nil) (debug 0)) 

"The top-level function to evaluate a quantum program relative to 

a list of (oracle value) cases. Returns a list of: misses, max-error, 

average-error, max-expected-oracles, and average-expected-oracles. 

See complete documentation for a more complete explanation of the 

argiments and return values. " 

(let ((misses 0) 

(max-error 0) 

(total-error 0) 

(average-error 0) 

(max-expected-oracles 0) 

(total-expected-oracles 0) 

(average-expected-oracles 0) 

(num-cases (length cases))) 

(dolist (case cases) 

(let* ((resulting-systems 

(execute-quantum-program pgm num-qubits (first case))) 

(raw-error 

(- 1.0 

(nth (second case) 

(multi-qsys-output-probabilities 

resulting-systems 

final-measurement-qubits)))) 

(expected-oracles (expected-oracles resulting-systems))) 

(if (> raw-error threshold) (incf misses)) 

(incf total-error raw-error) 

(when (> raw-error max-error) 

(setq max-error raw-error)) 

(incf total-expected-oracles expected-oracles) 

(when (> expected-oracles max-expected-oracles) 

(setq max-expected-oracles expected-oracles)) 

(when (>= debug 2) 

(format t ""'/, ~'/,Case:~A, Error:~,5F" case raw-error)) 

(when inspect (inspect resulting-systems)))) 

(setq average-error (/ total-error num-cases)) 

(setq average-expected-oracles (/ total-expected-oracles num-cases)) 

(when (>= debug 1) 

(format t "~'/,~'/,Misses: "A" misses) 

(format t ""'/.Max error: "A" max-error) 

(format t ""'/.Average error:"A" (float average-error)) 

(format t ""'/.Max expected oracles: "A" max-expected-oracles) 

(format t ""'/.Average expected oracles: "A" 

(float average-expected-oracles))) 

(list misses max-error average-error max-expected-oracles 

average-expected-oracles))) 
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