

AUTOMATIC QUANTUM
COMPUTER PROGRAMMING
A Genetic Programming Approach

GENETIC PROGRAMMING SERIES

Series Editor

John Koza
Stanford University

Also in the series:

GENETIC PROGRAMMING AND DATA STRUCTURES: Genetic
Programming + Data Structures = Automatic Programming! William B.
Langdon; ISBN: 0-7923-8135-1

AUTOMATIC RE-ENGINEERING OF SOFTWARE USING
GENETIC PROGRAMMING, Conor Ryan; ISBN: 0-7923-8653-1

DATA MINING USING GRAMMAR BASED GENETIC
PROGRAMMING AND APPLICATIONS, Man Leung Wong andKwong
Sak Leung; ISBN: 0-7923-7746-X

GRAMMATICAL EVOLUTION: Evolutionary Automatic Programming
in an Arbitrary Language, Michael O 'Neill and Conor Ryan; ISBN: 1-4020-
7444-1

GENETIC PROGRAMMING IV: Routine Human-Computer Machine
Intelligence, John R. Koza, Martin A. Keane, Matthew J. Streeter, William
Mydlowec, Jessen Yu, Guido Lanza; ISBN: 1-4020-7446-8

GENETIC PROGRAMMING THEORY AND PRACTICE, edited by
RickRiolo, Bill Worzel; ISBN: 1-4020-7581-2

AUTOMATIC QUANTUM
COMPUTER PROGRAMMING
A Genetic Programming Approach

Lee Spector
Hampshire College

^ Springer

Lee Spector
Hampshire College

Library of Congress Control Number: 2006931640

ISBN-10: 0-387-36496-X e-ISBN-10: 0-387-36791-8
ISBN-13: 978-0387-36496-4 e-ISBN-13: 978-0387-36791-0

© 2004 by Springer Science-nBusiness Media, LLC
Paperback Edition 2007

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science + Business
Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this pubhcation of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression
of opinion as to whether or not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Contents

Preface vii

1. THE POWER OF QUANTUM COMPUTING 1

1 What is Quantum Computing? 1

2 Possibilities Count 4

3 The Role of Automatic Programming 10

2. QUANTUM COMPUTER SIMULATION 13

1 Bits, Qubits, and Gates 13

2 Gate-Level Simulation 18

3. QUANTUM COMPUTER PROGRAMMING 23

1 QGAME: Quantum Gate and Measurement Emulator 23

2 Visualization 28

3 Example: Grover's Database Search Algorithm 31

4. GENETIC AND EVOLUTIONARY COMPUTATION 37

1 What is Genetic and Evolutionary Computation? 37

2 Genetic Algorithms 39

3 Scalability via Parallelism 41

4 Applicability of Genetic and Evolutionary Computation 41

5. GENETIC PROGRAMMING 43

1 Programming by Genetic Algorithm 43

2 Traditional Program Representations 45

3 Traditional Genetic Operators 48

4 Example: Symbolic Regression 49

5 Obtaining Genetic Programming Results 52

vi AUTOMATIC QUANTUM COMPUTER PROGRAMMING

6. EVOLUTION OF COMPLEX PROGRAMS 55

1 Types, Modules, and Development 56

2 The Push Programming Language 59

3 Push Examples 63

4 PushGP: Genetic Programming with Push 68

5 Autoconstructive Evolution 71

7. EVOLUTION OF QUANTUM PROGRAMS 75

1 Program Representations 75

2 Fitness 80

3 Operators and Refinements 82

8. EVOLVED QUANTUM PROGRAMS 87

1 The 1-bit Deutsch-Jozsa (XOR) Problem 88

2 Grover's Database Search Problem 95

3 Scaling Majority-ON 104

4 The OR and AND/OR Problems 108

5 Gate Communication Problems 114

6 Significance of These Results 118

9. CONCLUSIONS AND PROSPECTS 123

Appendix A
QGAME source code 127

References 141

About the Author 149

Index 151

Preface

This is a book about the frontiers of computer science that have re
cently been opened by work in quantum mechanics, but it is also a book
about the use of recently developed automatic programming technolo
gies to explore those frontiers. The automatic programming technologies
themselves issue from another interdisciplinary frontier of computer sci
ence — one born of the intersection of computer science with evolution
ary biology. So this is a book about two frontiers of computer science,
one being used primarily for the sake of exploring the other.

The selection of topics in this book was made with the intention of
showing how genetic programming can be usefully applied to certain
problems in quantum computing. To this end, it provides a basic intro
duction to quantum computing for non-physicists and it also provides a
basic introduction to genetic programming for non-computer-scientists.
These treatments should be comprehensible to scientifically literate read
ers who have, at minimum, a passing familiarity with undergraduate-
level computer science (e.g. programming concepts) and mathematics
(e.g. simple linear algebra). No background in physics is assumed.

Neither the introduction to quantum computing nor the introduction
to genetic programming is intended to be comprehensive or even "bal
anced." Coverage of each field is limited to relatively narrow slices that
support the demonstrations found later in the book — those demon
strations show how certain genetic programming techniques can be ap
plied to certain problems in quantum computing. Citations are provided
where appropriate to sources that provide more comprehensive and de
tailed coverage.

The first chapter contains an introduction to quantum computing for
non-physicists. The intention is to provide readers with a sense of how
quantum computers could possibly deliver the surprising benefits that
many researchers envision.

viii AUTOMATIC QUANTUM COMPUTER PROGRAMMING

The second chapter details a mathematical (matrix-based) model of
quantum computation and describes how this model can be used to sim
ulate quantum computations on classical computers. Such simulation
is necessarily inefficient — if we could simulate quantum computers ef
ficiently on classical computers then there'd be little reason to study
quantum computing in the first place! But for small computations sim
ulation is indeed possible; this model allows us to use simulation in the
"fitness assessment" step of a genetic programming algorithm, described
later in the book.

The third chapter describes one particular quantum computer simula
tion system, the author's QGAME ("Quantum Gate and Measurement
Emulator") system, and presents a few of the ways in which quantum
programs and quantum computer states can be visually displayed. It
concludes with a detailed example of the simulation of a quantum pro
gram for Grover's database search problem.

The fourth chapter introduces genetic and evolutionary computation,
with a focus on the traditional genetic algorithm. It also discusses, in
general terms, the use of parallelism to scale genetic and evolutionary
computation technologies up for complex applications, and the applica
bility of these technologies for various types of problems including those
related to quantum computing.

The fifth chapter specializes the treatment of genetic algorithms to ge
netic programming, which is the use of genetic algorithms for automatic
programming. It includes a detailed example and a discussion of the
steps one must generally take to obtain and understand useful results
from a genetic programming system.

The sixth chapter moves beyond traditional genetic programming,
and describes the ways in which one can evolve programs that include,
for example, multiple data types, modules, and developmental compo
nents. Some of these capabilities are particularly useful for the evolu
tion of quantum programs. Emphasis is placed on the author's Push
programming language for genetic and evolutionary computation, which
provides some of the desired advanced capabilities in unusually simple
ways. This chapter concludes with a description of the PushGP genetic
programming system, which evolves Push programs, and a brief descrip
tion of some more radically self-adaptive "autoconstructive evolution"
techniques that are enabled by Push.

The seventh and eighth chapters bring the materials from all of the
preceding chapters together, first with a discussion of specific strate-

PREFACE ix

gies for quantum program evolution/ and then with concrete examples
in which interesting quantum programs were evolved using QGAME,
PushGP and related technologies. These examples document a few spe
cific ways in which genetic programming has already helped to explore
the power of quantum computing.

The ninth chapter provides a brief summary of the main points of the
book and discusses prospects for new discoveries made with the aid of
automatic quantum computer programming technologies.

Source code, in Common Lisp, for a minimal version of QGAME is
included in the Appendix. Additional related source code is available
online from addresses that are cited within the text. Most of these files
are also hnked to the author's pubhc "code" page.^

This book would not have been possible without the close working re
lationships enjoyed by the author with colleagues and students at Hamp
shire College in Amherst, Massachusetts. Several of the results that are
used as examples in the book emerged from joint work of the author
with Herbert J. Bernstein, Howard Barnum, and Nikhil Swamy. Al
though specific joint results are acknowledged where they occur in the
text, these citations do not by themselves fully convey the extent of the
influence of these colleagues. Similarly, the novel technologies that are
described in the text owe much to the contributions of Chris Perry, Jon
Klein, Mark Feinstein, Raymond Coppinger, Alan Robinson, Raphael
Crawford-Marks, and Manuel Nickschas. Many of these colleagues also
commented on the manuscript of this book, leading to substantial im
provements. Additional substantial comments were provided by John
Koza, Sameer H. Al-Sakran, and Rennie Nelson. Rebecca S. Neimark
provided essential assistance in many phases of the project, including
the creation of several of the figures and the design of the cover, which
uses an image created by Chris Perry. James Hendler provided critical
encouragement and advice, and Leni Bowen and Paula Harmon provided
invaluable administrative support.

Some of the materials used in this book derive from those prepared
by the author for a series of tutorials on quantum computing presented
over several years at the Genetic and Evolutionary Computation Confer-

•'Note that the term "evolution" is used here and throughout this book in a sense derived
from its biological usage: it refers to a process in which a population undergoes variation and
natural selection. Some physicists use "evolution" in a more general sense, to describe any
change in a system over time. The phrase "quantum program evolution" in this book refers
to the generation of quantum programs using techniques derived from biological evolutionary
processes.
^http://hampshire.edu/lspector/code.html

X AUTOMATIC QUANTUM COMPUTER PROGRAMMING

ences (GECCO), for an invited presentation on "Quantum Computation
and Artificial Intelligence" at the 1999 National Conference on Artificial
Intelligence (AAAI), for a seminar in the Chevron TechNet Advanced
Information-Based Modeling seminar series, for a seminar presented at
BBN Technologies, and for a course called "Quantum Computing with
No Prerequisites of Any Kind" taught at Hampshire College.

This work was supported by a National Science Foundation Direc
tor's Award for Distinguished Teaching Scholars, by National Science
Foundation grant EIA-0216344, and by the Defense Advanced Research
Projects Agency and Air Force Research Laboratory, Air Force Materiel
Command, under agreement number F30502-00-2-0611.

Graspings:
wholes and not wholes,

convergent divergent,
consonant dissonant,

from all things one and
from one thing all.

—Heraclitus

Chapter 1

THE POWER OF QUANTUM COMPUTING

This chapter provides a brief, non-technical introduction to quantum
computing and outhnes both the potential power and the enigmatic na
ture of quantum computers. It also makes the case for the application
of automatic programming technologies to problems in quantum com
puting, arguing that such technologies can play a unique and important
role in the future of this emerging field. The discussion here is general;
mathematical and computational details are deferred to later chapters.

1. What is Quantum Computing?
What physical principles govern the processes of computation? Physi

cists studying this question have recently made a remarkable series of
discoveries. These discoveries imply that it may be possible to build
quantum computers — that is, computers that take advantage of certain
quantum mechanical phenomena — that are more powerful, in a funda
mental sense, than any other computers previously designed. More than
that, they may be more powerful than any other computers previously
imagined, in the sense that they obey new and more permissive laws of
computational complexity.

We use the phrase "quantum computing" to describe computational
processes that rely for their efficacy on specifically quantum mechanical
properties of information-processing hardware. Of course all computing
relies on quantum mechanics in some sense, since quantum mechanics is
currently our best theory for describing all physical processes. As Rolf
Landauer has made clear (Landauer, 1999), "information is inevitably
physical," and this means, among other things, that the laws of physics
(and in particular the laws of quantum mechanics) underlie all infor
mation processing. But as of this writing most information processing

2 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

can be understood using only classical physics and classical informa
tion theory, and the specifically quantum mechanical properties of the
hardware can be ignored. Quantum computing is computing in which
the specifically quantum mechanical properties matter a great deal, usu
ally because they are being leveraged to allow us to do things that are
not permitted by the classical theories. We call computers that can be
understood in terms of the classical theories classical computers, and
computers that can be understood only in terms of quantum mechanics
quantum computers.

Why are we interested in quantum computing? One reason is that
the size of computing elements continues to shrink at an exponential
rate (following "Moore's Law"), with the result that we will be storing
bits on devices roughly the size of atoms within the next decade. At
these sizes, specifically quantum mechanical effects predominate and we
will be doing quantum computing whether we want to or not! But most
of the excitement surrounding quantum computing comes not from its
inevitability but rather from the discovery that quantum computers can
do things beyond the reach of classical computers.

What can quantum computers do that classical computers cannot?
This question is still largely open and under active investigation. Indeed,
the primary motivation for this book is to provide new tools for the
exploration of this question. But we do already know that quantum
computers can outperform classical computers in a few specific ways.

At the time of this writing the most spectacular known advantage of
quantum over classical computers is the complexity advantage demon
strated by Peter Shor's algorithm for factoring large numbers (Shor,
1994), a problem with practical applications in cryptography and possi
bly in other areas. Although the classical computational complexity for
factoring is not known with certainty, the best known classical factoring

1 2

algorithms require an amount of time proportional to 2"^ ^osm^ ^ where
n is the number of digits in the number to be factored. In contrast,
Shor's quantum algorithm (Beckman et al., 1996; Shor, 1998) requires
time proportional to only n^ log (n) log log (n). This is an exponential
savings, assuming that the known classical factoring algorithms are near
optimal (which is not known but is suspected by many to be true).

A rough calculation can give one a feel for just how spectacular this
improvement is. Suppose we wish to factor a 5,000 digit number. If we
crudely (but consistently) assume that the complexity functions in the
previous paragraph are exact, that all logarithms are to be taken base 2,
and that we can execute one instruction per nanosecond, then we would
expect the best known classical algorithms to require about 80 billion
years. This is many times the current age of the universe. By contrast,

The Power of Quantum Computing 3

under the same assumptions Shor's quantum factoring algorithm would
require less than two seconds! Of course we are ignoring many things
that cannot really be ignored in these estimates, such as constants in
the complexity functions and the possibility that quantum and classical
hardware will support different clock rates. So the exact numbers in
these estimates may be quite far off. But the dramatic nature of the
exponential speedup is independent of these factors.

A more modest, but also more certain advantage of quantum over
classical computers was discovered by Lov Grover. Grover's quantum
search algorithm (Grover, 1997) achieves a quadratic speedup over the
best classical algorithms for finding a single "marked" item in a database.
A classical algorithm must test, on average, half of the n items in the
database, while the quantum algorithm can find the item after mak
ing only about i/n queries. This is less spectacular than the apparent
exponential savings of Shor's algorithm, but the quantum complexity
advantage is unquestionable, the algorithm has wide applicability, and
the savings may be considerable in practice. In Section 3.3 we examine
Grover's algorithm in more detail, and in Section 8.2 we demonstrate
the use of genetic programming to re-discover an instance of Grover's
algorithm.

Can quantum computers speed up other sorts of calculations? Several
variants of Shor's and Grover's algorithms have been developed for re
lated problems, and a few other, qualitatively different algorithms have
also been discovered.^ For some types of problems we have also obtained,
via mathematical analysis, specific bounds on the possible speedups. But
overall our current knowledge is spotty; we know relatively little about
what kinds of computations can be sped up, or how much, by the use of
quantum hardware. These gaps in our knowledge provide one motiva
tion for the development of technologies that can automatically discover
new quantum algorithms.

Quantum computing technology may also provide other kinds of ben
efits, qualitatively different than those due to the computational com
plexity advantages that are exemplified by Shor's algorithm and Grover's
algorithm. For example, quantum states are "tamper resistant" in a cer
tain sense, and this property can be leveraged to provide secure commu
nication channels upon which it is theoretically impossible to eavesdrop.
Some of the schemes for such channels require relatively little in the way
of quantum hardware engineering, and quantum information technology
products for secure communications are already commercially available.

^Additional quantum algorithms are described, for example, in (Hogg, 1998; Hogg, 2000;
Hallgren, 2002; Hallgren et al., 2003; van Dam and Seroussi, 2002; van Dam et al., 2002).

4 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Other possible technologies may result from the exploitation of phe
nomena such as quantum superdense coding, quantum teleportation or
quantum error correction, allowing information to be moved and/or re
constructed in novel ways. Although these applications and potential
applications appear to be quite different in nature from the "speedups"
provided by Shor's and Grover's algorithms, all of these envisioned ap
plications result from the discovery of quantum algorithms and protocols
with novel properties. For this reason they may also benefit from tech
nologies that can automatically discover new quantum algorithms.

Some theorists envision yet further benefits emerging from some fu
ture, deeper understanding of quantum mechanics, possibly stemming
from new theories of quantum gravity that support new forms of com
putation. For example, Roger Penrose argues that human consciousness
and creativity rely on quantum effects beyond those conceivably provided
by current models of quantum computation (Penrose, 1989; Penrose,
1997). Regardless of the strength of these arguments — which appear
to this author to rest on mistakes about the nature of human cognition
— it seems reasonable to expect such exotic forms of quantum com
putation, if they ever exist, to present challenges to human algorithm
designers that are at least as great as those posed by "ordinary" quan
tum computation. This would further increase the utility of technologies
that automatically discover new quantum algorithms.

Several general introductions to quantum computing are available.
These include, listed roughly from least to most technical, (Brown,
2000; Milburn, 1997; Brooks, 1999; Rieffel and Polak, 2000; Williams
and Clearwater, 1998; Steane, 1998; Gruska, 1999; Nielsen and Chuang,
2000). John Preskill's online lecture notes also provide a comprehensive
introduction.^ Some foundational documents can be found in (Feynman,
1996) and (Hey, 1999). Current research in the quantum computing and
quantum information theory is published in a wide range of journals
(mostly physics journals) and conference proceedings (such as Shapiro
and Hirota, 2003). Many contributions are distributed in pre-print form
from the online "arXiv" archive.'^

2. Possibilities Count
How is it that quantum computers can outperform classical comput

ers? That is, how can the specifically quantum mechanical properties of
quantum computing hardware provide non-classical computing power?
In Chapter 2 we look at a mathematical characterization of quantum

^http://www.theory.caltech.edu/people/preskill/ph229/

^http://arxiv.org/archive/quant-ph

The Power of Quantum Computing 5

computing that provides, in some sense, the most complete answer to
this question. But the mathematical characterization does little to pro
vide intuitions about what's really going on. Indeed, such intuitions are
hard to come by, since better-than-classical quantum algorithms exploit
the "weird" aspects of quantum mechanics that have baffled nearly ev
erybody for nearly a century. As Richard Feynman wrote in discussing
quantum electrodynamics:

No, you're not going to be able to understand it. . . . You see, ray physics
students don't understand it either. That is because I don't understand it.
Nobody does. . . . The theory of quantum electrodynaraics describes Nature
as absurd from the point of view of common sense. And it agrees fully with
experiment. So I hope you can accept Nature as She is — absurd. (Feynman,
1985)

The same can be said in regard to some of the deepest questions in
quantum computing: we can easily see how the mathematics produces
the results, but that's a far cry from understanding how or why Nature
conforms to the particular, counter-intuitive mathematics.

Nevertheless, in this section a brief attempt is made to ground at least
some fundamental intuitions about how it is that quantum mechanical
properties can provide computational advantages.

One perspective on the source of the power of quantum computing is
that in quantum computing possibilities count, even if they never happen.
Furthermore, in well-designed quantum algorithms, each of exponen
tially many possibilities can be used to perform a part of a computation
at the same time.

At first blush this must appear to be a preposterous assertion. How
can possibilities that never happen influence the outcome of a computa
tion? But there is a sense in which this is literally true, and one can view
many if not all of the novel effects of quantum computing as stemming
from this fact.

Consider a beam splitter as shown in Figure 1.1, which might be made
from a half-silvered mirror. Photons leave the light source on the left, hit
the beam sphtter in the center, and either reflect to detector A or pass
through to detector B. When we turn the light up high, sending out a
steady beam, half of the photons are detected at A and half are detected
at B. When we turn the light down very low, so that there is only one
photon in the system at a time, each photon is detected either at A or at
B with 50% probability for each detector. That is, for any given photon
there is a possibility that it will be reflected and a possibility that it will
pass through. Quantum mechanics tells us that we cannot know which
possibility will actually happen — that is, will eventually be detected

AUTOMATIC QUANTUM COMPUTER PROGRAMMING

A

light _9
^

^ B

Figure 1.1. A beam splitter.

light J

Figure 1.2. An interferometer.

— in advance; both possibilities are "live options" up to the moment of
detection.

Now consider the optical interferometer shown in Figure 1.2. The
lighter bars are again beam splitters, but the solid black bars are ordinary
mirrors. The system is precisely engineered so that each of the four paths
in the center of the interferometer is exactly the same length. What
happens when we send a beam of photons through this apparatus? One
might naively predict that one would again detect half of the photons at
A and half at B. After all, our experience with the beam splitter seems to
indicate that half of the photons will reflect from the first beam splitter
while half will pass through. Each of these beams then reflects back to
the second beam splitter where, it would seem reasonable to assume,
half of each beam will again reflect and half of each beam will pass

The Power of Quantum Computing

light 3

Figure 1.3. Interference of amplitudes in the interferometer.

through. Of the photons that pass through the first splitter, those that
pass through the second splitter should be detected at A, while those
that reflect from the second splitter should be detected at B. Of the
photons that reflect off of the first splitter, those that pass through the
second splitter should be detected at B, while those that reflect from the
second splitter should be detected at A. The predicted result, overall,
would therefore be that we would again detect half of the photons at A
and half at B.

But this is not what one actually observes when the experiment is
conducted. Instead, all of the photons that leave the source are detected
at B! How can this be? Perhaps the reader is aware that light has wave
like aspects, along with its particle-like aspects — this may suggest that
photons traveling in the different arms of the interferometer interfere
with one another, just as waves in a water interfere with one another.
M&ybe the waves are combining to form higher peaks in some places
(such as detector B) and canceling one another in others (such as detec
tor A). This is a reasonable first stab at an explanation, but it begins to
break down when we repeat the experiment with the light again turned
down very low, so that there is only one photon in the entire apparatus
at a time. When we do this we still detect photons only at B. Presum
ably each photon must be taking one path or the other, since nobody
has ever detected anything like a "half a photon." What then could be
interfering with what?

Quantum mechanics provides a straightforward way to calculate the
result that is actually observed, although the interpretation of the cal
culation — why it is this calculation and not some other, and what this
means about the nature of the universe — is the subject of considerable
debate.

8 AUTOMATIC QUANTUM COMPUTER PROCRAMMING

The calculation is based on the association of a complex number,
called an amplitude, with each possible path that a photon can take.
Graphically, following Feynman (Feynman, 1985), we draw an arrow
for each amplitude, as shown in Figure 1.3. The arrow emerging from
the light source is of length 1 and is oriented in an arbitrarily chosen
direction. Each arrow rotates as its associated photon moves down the
path, at a rate related to the photon's frequency. For our interferometer
we can ignore these "traveling" rotations by specifying that all of the
path segments have lengths that are even multiples of the length required
for a full rotation, so that a single arrow can represent the amplitude
both at the beginning and at the end of a segment.

When we reach a beam splitter, we split the arrow in two — actually
each component is of length 4=, but we can ignore that here — and
we rotate the reflected arrow 90° counter-clockwise. We do not rotate
the arrow that corresponds to the possibility that the photon passes
straight through the beam splitter. At ordinary mirrors the reflected
arrows are rotated 180°. When two or more arrows meet via different
paths we "add" the arrows using vector addition; that is, we place the
arrows tip to tail and draw the "sum" arrow from the tail of the first
to the tip of the last. The arrows determine experimental observations
in the following way: the square of the length of any arrow gives the
probability that the photon will be detected by a detector placed in the
corresponding path.

This graphical method, based on rotating arrows, can be used to
explain a vast array of optical phenomena (as in Feynman, 1985). In
the case of our interferometer the explanation emerges quite quickly.
Using the rules specified above we see that a full-length arrow emerges
at detector B, while no arrow at all emerges at detector A. This means
that there is a 100% probability of detecting each photon at detector B,
and no probability of detecting a photon at detector A.

In what sense does this demonstrate that "possibilities count"? Con
sider what happens if we remove the mirror at the lower right of the
diagram. In this case there is no possibility of a photon arriving at the
second beam sphtter via the bottom arm of the interferometer. As a
result, the only arrows at the detectors will be those from the upper
arm, and a photon arriving via the upper arm will have an equal chance
of arriving at either A or B. That is, a single photon leaving the source
and traveling on the upper arm may now arrive at A, an outcome that
was previously impossible, because the possibility of a photon traveling
on the lower arm has been eliminated. The possibility of an event that
does not occur nonetheless "counts" in determining how a photon in the
apparatus will behave.

The Power of Quantum Computing

Figure 1.4- A photon-triggered bomb. (Adapted from Penrose, 1997.)

How can this be leveraged for computational advantage? Consider the
hypothetical "photon-triggered bomb" illustrated in Figure 1.4. This
bomb is fitted with a plunger on its nose, upon which is mounted a
mirror. The bomb is designed to detonate if, and only if, a photon hits
the mirror. When the bomb detonates, the triggering photon reflects in
some direction other than that which would result from reflection off of
an ordinary mirror. (The specific direction doesn't matter.) Due to a
manufacturing error some of the bombs are "duds" of a specific sort —
their plungers are stuck, and these dud bombs act as ordinary mirrors.
How could we separate the duds from the "good" bombs? The obvious
approach of hitting each mirror with a photon has the unfortunate side
effect of detonating all of the good bombs. Can we do better?

Avshalom Elitzur and Lev Vaidman (Elitzur and Vaidman, 1993;
Vaidman, 1996) discovered how to do this, and their scheme helps to
demonstrate how computational work can be done by possibilities that
are never actualized. Consider the interferometer in Figure 1.5, in which
a photon-triggered bomb has been inserted in place of the mirror at the
lower right. First consider what happens when the bomb is a dud. In
this case the bomb acts as an ordinary mirror and we have the same
situation as in Figure 1.2; all photons leaving the source are detected at
B, and none are detected at A. But now consider what happens when
the bomb is "good." In this case any photon traveling on the lower arm
will detonate the bomb and will fail to reach the second beam splitter.
As a consequence, the situation for photons traveling on the upper arm
is now the same as it would be with the lower right mirror removed: a
single photon leaving the source and traveling on the upper arm may
arrive either at A or at B, each with 50% probability. Those that arrive
at B tell us nothing — photons would arrive there even if the bomb were
a dud. But a photon arriving at A tells us that the bomb must be good.
It tells us this by traveling on the upper arm in a context in which it
is not possible to reach the second beam splitter via the lower arm. We
get information (and accomplish computational work) from the presence
or absence of possibilities that are not directly explored. The detection
of a photon that does not even get close to the bomb tells us that the

10 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

light J

Figure 1.5. A way to test photon-triggered bombs without exploding all of the
"good" ones. (Adapted from Penrose, 1997.)

bomb would detonate if a photon were to strike it. Schemes similar to
this can be and have been physically implemented, and while the scheme
described here only recovers about a quarter of the good bombs there
are enhanced versions that allow one to reduce the amount of bomb loss
as much as one would like (Kwiat et al., 1995).^

Most interesting quantum algorithms make use of a similar effect. One
generally creates a situation in which several possible states of a quantum
memory register exist simultaneously, in what is known as "superposi
tion." One then arranges for many of the possibilities to influence, often
via some sort of interference, the outcome of later observations. In some
cases one can arrange for exponentially many possible computations to
simultaneously contribute to the output of a calculation, thereby reduc
ing the amount of time and/or space required to perform a computation
below the limits that can be obtained with classical hardware.

3. The Role of Automatic Programming
Computer science will be radically transformed if the ongoing efforts

to build large-scale quantum computers eventually succeed and if the

•̂ A non-technical discussion of the Elitzur and Vaidman bomb testing problem and its philo
sophical implications is in (Penrose, 1997, pp. 66-70).

The Power of Quantum Computing 11

properties of these computers meet optimistic expectations. Unfortu
nately, however, we still lack a thorough understanding of the power
of quantum computing, and it is not always clear how best to utilize
the power that we do understand. This is largely because quantum al
gorithms are difhcult to understand and even more difficult to write.
Despite large-scale international efforts only a few important quantum
algorithms are known, and many basic questions about the potential of
quantum algorithms remain unanswered.

Michael Nielsen and Isaac Chuang, in their textbook on Quantum
Computation and Quantum Information, describe the difficulty of dis
covering new algorithms as follows:

Coming up with good quantum algorithms seems to be hard. A pessimist
might think that's because there's nothing quantum computers are good for
other than the applications already discovered! We take a different view.
Algorithm design for quantum computers is hard because designers face two
difficult problems not faced in the construction of algorithms for classical
computers. First, our human intuition is rooted in the classical world. . . .
Second, to be truly interesting it is not enough to design an algorithm that is
merely quantum mechanical. The algorithm must be better than any existing
classical algorithm! . . . The combination of these two problems makes the
construction of new quantum algorithms a challenging problem for the future.
(Nielsen and Chuang, 2000, p. 7)

These circumstances are ideal for the application of automatic pro
gramming technologies, which allow us to leverage computer power to
explore the space of algorithms in a mechanical way. As mentioned in
Section 1 above, such technologies can be applied to the discovery of
new quantum speedups and also to the exploitation of other uniquely
quantum-computational effects.

Genetic programming techniques, in particular, can be extended to
produce quantum algorithms that solve particular computational prob
lems on a quantum computer. These methods have already produced
new quantum algorithms and it is reasonable to expect further discover
ies in the future. The quantum algorithms found by these methods may
help us to understand how to solve particular practical problems using
quantum computers. They may also help to guide theoretical work on
the power and limits of quantum computing.

The opportunities here are significant both because of the potential
power of quantum computing and because of the enigmatic nature of that
power. Genetic programming is an automatic programming technology
that can, in many circumstances, perform at a "human competitive"
level (Koza et al., 2003; see also Section 8.6). But quantum computer
programming is particularly difficult for humans, and one might there
fore be justified in expecting genetic programming systems to perform

12 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

better than humans in this area. Because the stakes are so high — on ac
count of the unprecedented computational powers that may result from
the construction of large scale quantum computers — the application of
genetic programming to automatic quantum computer programming is
worthy of serious investigation.

Chapter 2

Q U A N T U M C O M P U T E R SIMULATION

Chapter 1 discussed quantum computing in non-technical terms and
in reference to simple, idealized physical models. In this chapter we
make the underlying mathematics explicit and show how one can sim
ulate, albeit inefficiently, the behavior of a quantum computer on an
ordinary (classical) digital computer. Such simulation is necessary for
the "fitness evaluation" steps of the methods for automatic quantum
computer programming that will be described later in this book.

1. Bits, Qubits, and Gates
In classical computing the fundamental unit of information is the bit,

which can exist in one of two states (conventionally labeled "0" and
"1"). Bits can be implemented as positions of gears or switches, levels
of charge, or any other conditions of any physical systems that can be
easily and unambiguously classified into one of two states. Computations
consist of sequences of operations, conventionally referred to as "gates,"
that are applied to bits and to collections of bits. The physical medium in
which the bits and the gates are embedded may influence the computer's
size, energy requirements, or "clock rate," but it has no impact on the
fundamental computational power of the computer. Two computers
with the same storage capacity (in bits) and the same set of supported
operations (gates) can be considered equivalent for many purposes.

In quantum computing the fundamental unit of information is the
qubit, which can also exist in one of two "computational basis" states
(conventionally labeled using Paul Dirac's "bra-ket" notation as |0) and
|1)). But unlike the bit, the qubit can also exist in a superposition of
|0) and |1) represented as ao|0) -|- Q:I|1), where ao and ai are complex
numbers such that |Q;OP + IcuP = 1- The alphas here are the arapli-

14 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

tudes described in Chapter 1, and one can square the absolute value
of an alpha to determine the probability that a measurement will re
veal the corresponding state; for example |a;op is the probability that
measurement of the qubit will find it in the |0) state.

The physical medium underlying a quantum computer, like that un
derlying a classical computer, is generally not relevant to discussions of
the computer's fundamental computational power. All that is neces
sary is that the medium supports the units of storage (qubits) and the
relevant operations (quantum gates). A wide variety of proposals has
been developed for implementing qubits and quantum gates, including
schemes based on optics, ion traps, and the manipulation of nuclear spins
in nuclear magnetic resonance devices. All of these schemes present en
gineering challenges, and many are under active development. We will
not be concerned with the details of any of them in the present book,
because the computational properties in which we are primarily inter
ested are captured by the abstract view of the quantum computer as a
collection of qubits, on which we operate by means of mathematically
specified quantum gates. Automatic programming techniques similar
to those described later in this book, but built on models of particu
lar implementation schemes, may be be useful for exploring limits or
opportunities of the corresponding implementations.

In classical computing the representation of an n-bit system is sim
ply the concatenation of the representations of n 1-bit systems. For
example the state of a 5-bit register might be represented as 10010. In
quantum computing the representation of a multi-qubit system is more
involved, because the individual qubits are not independent of one an
other. Indeed, qubits in a quantum computer can become "entangled"
with one another, and this entanglement underlies several interesting
quantum algorithms (Jozsa, 1997; Bennett, 1999). The nature of quan
tum entanglement is a subject with an enormous literature and a rich
history, some of which bears directly on questions about quantum com
putation. A few suggested entry-points into this literature are (Bell,
1993), (Deutsch, 1997), (Albert, 1992), and many of the essays in (Hey,
1999).

To represent the complete state of a multi-qubit system one must in
general store a complex amplitude for each combination of basis values
(|0) and |1)) over the entire system. So, for example, the state of a
3-qubit register might be represented as ao|000) + Q;I|001) + a2|010) -|-
Q!3|011) + a4|100) + asllOl) + aelHO) + ajlUl), where the squares of
the absolute values of the alphas sum to 1.

Quantum gates can be formalized as matrices, with the apphcation of
a gate to a quantum computer state implemented as the multiplication

Quantum Computer Simulation 15

of the gate's matrix times a column vector containing the state's ampH-
tudes. What sense does this make? Let us first look at a classical version
of this idea. Consider a 2-bit classical register. Such a register can be
in one of four possible states, namely 00, 01, 10, or 11. Suppose, for
reasons that will seem perverse until we generalize to the quantum case,
that we wish to represent the state of this register not using the two bits
themselves, but rather by recording individually the "amplitudes" for
each of the four possible states. Since the register is classical it cannot
be in a superposition — it will always be in one particular state. The
amplitude corresponding to the actual state of the register will be 1, and
all of the other amplitudes will be 0. We will write the amplitudes in the
form of a column vector in binary order; that is, the number on top will
be the amplitude for the 00 state, the next one will be the amplitude for
the 01 state, and so on. So the four possible states of this 2-bit classical
register will be represented as:

• 1 •

0
0
0

7

• 0 "

1
0
0

7

• 0 "

0
1
0

)

" 0 "
0
0
1

What classical operations can be performed on such a register? Al
though they can be built in various ways from Boolean primitives, all
allowable operations have the effect (if they have any effect at all) of
changing the state of the register from one of these four states to an
other. And any such operation can be represented as a matrix, con
sisting only of Os and Is, which, when applied to a state vector (via
matrix-vector multiplication), produces another valid state vector. For
example, consider the following matrix:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

This matrix will have no effect when applied to 00 or 01, but it will
transform 10 into 11 and 11 into 10. That is, it will act as a "NOT"
operation on the right-most bit if and only if the left-most bit is 1.
For this reason this is often called a "controlled NOT" or "CNOT" gate.
All permissible transformations of the 2-bit register can be represented
similarly, using 4 x 4 matrices containing only Os and Is. Not all such
matrices are permissible — only those that are guaranteed to produce
valid classical state vectors (containing one 1 and the rest Os) when
applied to valid classical state vectors.

16 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Quantum computation can be viewed, mathematically, as a general
ization of this classical matrix model. The first generalization is that
the amplitudes in the state vectors are no longer required to be 0 or
1. Each amplitude can be any complex number, as long as the squares
of the absolute values of the amplitudes sum to 1.̂ Similarly, the set
of permissible operations (matrices) is expanded to include any matrix
that meets the condition of unitarity, which can be expressed (in one
formulation) as the requirement that:

U^U = UU^ = 1

Here U is the matrix in question, U^ is the Hermitean adjoint of U
(obtained by taking the complex conjugate of each element of U and
transposing the result), and / is the identity matrix. The multiplication
of a vector of amplitudes by any unitary matrix will always preserve the
"summing to one" constraint described above. Although there are in
finitely many such unitary matrices, a small finite set suffices for quan
tum computational universality in the same sense that the NAND gate
suffices for classical computation (Barenco et al., 1995).

In this book we use a selection of quantum gates similar to that used
elsewhere in the quantum computing literature. We use the CNOT gate
described above, along with the simpler 1-bit Quantum NOT or QNOT gate
with the matrix:

QNOT 0 1
1 0

We also use a family of 1-qubit "rotations" parameterized by an angle
with matrices of the form:

Ue =
cos{9) sin(6l)

- sin(6i) cosle)

Another 1-qubit gate, called Square Root of NOT or SRN provides a
good example of the non-classical power of quantum gates. We use a
version of SRN with the following matrix (which is also equivalent to

A /

SRN^^^ 1 - 1
1 1

^Squaring does not obviate the taking of the absolute value, because some amplitudes will
be complex and have negative squares.

Quantum Computer Simulation 17

When applied to a qubit that is in either the |0) or the |1) state,
it leaves the qubit in an equal superposition of |0) and |1) — that is,
it appears to randomize the value of the qubit, since a measurement
after the application of the gate will produce 0 or 1, each with 50%
probability. But this is not simple randomization, as the qubit's history
can still influence its future behavior. A second apphcation of SRN to the
qubit will leave it, deterministically, in the opposite of the state in which
it started — that is, measurement will produce 0 if the intial state was
11), or 1 if the initial state was |0).^ So two applications of SRN produce
the effect of QNOT, which is why SRN has the name that it does.

The final 1-qubit gate that we routinely employ is the HADAMARD gate,
with the following matrix:

^ - A
1 1
1 - 1

This gate is similar to SRN except that it acts more like a "square root
of identity." It is useful for creating and "decoding" superpositions in a
variety of quantum algorithms.

It is sometimes helpful to use a fully-parameterized 1-qubit gate,
which can act as any other 1-qubit gate if its parameters are set ap
propriately. One form for this "generalized rotation," which we call U2,
is as follows:

U2 =
0

0
cos(0)
sin(6l) cos(^)

—iip

0
0 0

0

Other useful 2-qubit gates include the Controlled Phase gates, with
matrices of the form:

CPHASE=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e*°

Finally, the SWAP gate, which simply swaps the states of two qubits.
is often handy:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

^Actually, the matrix for two consecutive applications of SRN is [: meaning that

two applications of SRN to |1) will produce —10), although the change in sign has no effect on
measurements. Six applications would be required to obtain |0).

18 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Specific problems may call for the use of additional gates. For exam
ple, many problems are phrased with respect to a "black box" or "ora
cle" gate, of which we are asked to determine some property. Grover's
database search problem is of this sort; we are given a multi-qubit gate
that encodes a database, and we are asked to determine which input will
produce a "yes" output (which the oracle usually indicates by flipping
— QNOTing — a specified qubit).

2. Gate-Level Simulation
There are many approaches to quantum computer simulation. At

one extreme one can attempt to simulate, as realistically as possible,
the exact interactions involved in a particular physical device, including
noise and other effects of imprecision in the design of the physical com
ponents. For example, Kevin Obenland and Alvin Despain simulated
a quantum computer that manipulates trapped ions by means of laser
pulses, modeling imperfections in the laser apparatus as deviations in
the angles of rotations (Obenland and Despain, 1998). Alternatively,
one could simulate the quantum computer at a higher level of abstrac
tion, ignoring implementation details and working only with "perfect"
unitary matrices.

If one wishes to simulate the execution of arbitrary sequences of quan
tum gates then one necessarily faces exponential space and time costs
whether one works at the implementation level or at a more abstract
level. That is, if the number of qubits in the system is A ,̂ then the space
and time requirements for simulation will both scale approximately as
2^ .

In order to evolve quantum algorithms, as described in Chapter 7, we
must indeed be able to simulate the execution of arbitrary sequences of
quantum gates. But since our focus is on the theoretical power of quan
tum computing, and not on the strengths or weaknesses of any particular
implementation, we can conduct our simulations with straightforward
matrix mathematics. We will explicitly maintain full vectors of complex
amplitudes, upon which we will explicitly conduct large matrix multi
plications. We will pay exponential costs for this form of simulation but
the simulation techniques will be conceptually simple.

The exponential costs associated with simulation will limit the range
of problems to which our automatic programming techniques can be
applied. We will generally seek applications that involve only small
quantum systems or that produce algorithms that can be "scaled" to
various sizes by hand after they have been discovered automatically.
Fortunately, there do seem to be many problems for which the simulation
costs are not prohibitive.

Quantum Computer Simulation 19

Simulation shortcuts are possible if one knows in advance that the
algorithm being simulated obeys certain constraints — that is, that cer
tain amphtudes will always be zero, or that certain amplitudes will have
values that can be quickly re-derived (so that one needn't always store
them all explicitly), or that certain types of entangled states will never
be produced. Such constraints, combined with clever encoding schemes,
can lead to substantial improvements in simulation speed for many al
gorithms, although exponential costs will still be incurred in the worst
case (Viamontes et al., 2002; Viamontes et al., 2003; Udrescu-Milosav,
2003). These types of advanced simulation techniques are not discussed
further in this book, but they could certainly be incorporated into the
automatic quantum computer programming framework described here,
and one would expect their incorporation to increase the reach of the
technology.

To perform the full matrix mathematics described in the previous
section we must generally expand the compact matrices that characterize
the gates to the appropriate size for the complete quantum system being
simulated. For example, if we wish to apply a QNOT gate to the right
most qubit of a 3-qubit system then it is not enough to multiply two
amplitudes by the 2 x 2 matrix that characterizes QNOT. Rather, one
must do something that affects all amplitudes in the system, effectively
multiplying it by the following 8 x 8 matrix:

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

In this case the expansion of the 2 x 2 matrix to produce the 8 x 8
appears relatively straightforward, but the process is more confusing
when one must expand a multi-qubit gate, particularly when the qubits
to which it is being applied are not adjacent in the chosen representation.
For example if one wishes to apply a CNOT gate in a 3-qubit system, using
the right-most qubit as the "control" input and the left-most qubit as
the "target" (the one that is flipped when the control qubit is 1), then
one must effectively use the following 8 x 8 matrix:

20 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

How does one construct the needed matrix expansion? First, note
that one needn't necessarily construct the matrix (the "tensor product")
explicitly. In many cases it will suffice to perform an operation which
has the same effect as multiplication by the expanded matrix, but which
uses only the compact representation of the gate. We call this "implicit
matrix expansion."

In other cases one does want the explicit representation of the ex
panded gate, for example because one wants to multiply several ex
panded gates with one another for storage and later re-application. The
choice between implicit and explict matrix expansion presents a trade-off
between space requirements and flexibility. With implicit matrix expan
sion one must store the matrices only in their compact forms, which can
be a considerable savings. For example, a 1-qubit gate in its compact
form can be represented with only 4 complex numbers, whereas the ex-
phcit expansion of this gate for a 10-qubit system consists of 1,048, 576
complex numbers. On the other hand, the expanded forms may be con
venient for certain purposes both in the evolution and in the analysis
of quantum algorithms. An ideal simulator will therefore provide both
options and allow the user to switch among them according to need.

An algorithm for explicit matrix expansion is provided in Figure 2.1,
and an algorithm for applying an implicitly expanded gate is provided
in Figure 2.2. Source code for these algorithms is included in the distri
butions of QGAME, a quantum computer programming language and
simulation system described in the following chapter; the code for ap
plying an implicitly expanded gate is included in the minimal version of
QGAME in the Appendix of this book.

A variety of other approaches to quantum computer simulation exist,
some of which are based on alternative conceptualizations of quantum
computers (for example, on "quantum Turing machines" or "Feynman
computers"). Source code for other simulators can be found in other
texts (for example, Williams and Clearwater, 1998) and via internet
searches.

Quantum Computer Simulation 21

To expand gate matrix G (explicitly) for application
to an n-qubit system:

• Create a 2" x 2" matrix M.

• Let Q be the set of qubit indices to which the operator is
being applied, and Q' be the set of the remaining qubit
indices.

• Mij = 0 if i and j differ from one another, in their bi
nary representations, in any of the positions referenced by
indices in Q'.

• Otherwise concatenate bits from the binary representation
of i, in the positions referenced by the indices in Q (in
numerical order), to produce i*. Similarly, concatenate
bits from the binary representation of j , in the positions
referenced by the indices in Q (in numerical order), to
produce j * . Then set Mij = Gi*j*.

• Return M.

Figure 2.1. An algorithm for explicit matrix expansion.

22 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

To apply gate matrix G (expanded implicitly) to an
n-qubit system:

• Let Q be the set of qubit indices to which the operator is
being appHed, and Q' be the set of the remaining qubit
indices.

• For each combination C of 0 and 1 for the set of qubit
indices in Q':

— Extract the column A of ampHtudes that results from
holding C constant and varying all qubit indices in Q.

- A' = GxA.

~ Install A' in place of A in the array of amplitudes.

Figure 2.2. An algorithm for applying an implicitly expanded gate.

Chapter 3

QUANTUM COMPUTER PROGRAMMING

This chapter describes the author's QGAME ("Quantum Gate and
Measurement Emulator") quantum computer simulation system. It also
describes a few of the ways in which quantum programs and quantum
computer states can be visually displayed. It concludes with a detailed
example of the simulation of a quantum program for an instance of
Grover's database search problem.

1. QGAME: Quantum Gate and Measurement
Emulator

One embodiment of the simulation ideas presented in Chapter 2 is the
author's QGAME system. The original version of QGAME was written
in the Common Lisp programming language, which has native support
for complex numbers along with other features that support rapid system
development, and some of the elements of QGAME's syntax retain Lisp-
hke features. A C + + version of QGAME, written by Manuel Nickschas,
is also available. Current versions of QGAME can be obtained from
h t t p : / /hampshire. edu/lspector/qgame.html. Common Lisp source
code for the core components of QGAME is provided in the Appendix.

QGAME provides a syntax for the expression of quantum programs
and also an interpreter that simulates their execution. Some versions
also provide basic visualization capabilities.

A QGAME program consists of a sequence of "instruction expres
sions," each of which is surrounded by parentheses. The most typical

24 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

instruction expressions consist of the name of a gate type, followed by
a combination of qubit indices (specifying to which qubit or qubits the
gate is to be applied) and other parameters (such as angles to rotation
gates). For example, an expression of the form:

(QNOT q)

where g is a qubit index (an integer, starting with 0), applies a quantum
"not" (QNOT) gate to the specified qubit. Similarly, an expression of the
form:

(CNOT Qcontrol Qtarget^

applies a quantum controlled NOT gate to the specified control and
target qubits. Instruction expressions following the same pattern, for
the remaining gates described in the Chapter 2, are as follows:

(SRN q)

(HADAMARD q)

(U-THETA q 9)

052 q (j) 6 ip a)

(CPHASE qcontrol qtarget «)

(SWAP qcontrol Qtarget')

QGAME also provides a way to specify algorithms that include calls
to "oracle" gates with any number of inputs and one output. These
gates are "Boolean" in the sense that they can have one of two possible
effects on their output qubits on any particular invocation, but unlike
classical logic gates they cannot act by setting their output qubits to 0
or 1 as such behavior would be non-unitary. The alternative convention
adopted in most work on quantum computing, and built into QGAME,
is that a Boolean gate acts by flipping or not flipping its output qubit to
indicate an output of 1 or 0 respectively. The "flip" here is implemented
as a QNOT, and all oracle gates can therefore be thought of as CNOT gates
with more complex controls.

During the testing of an algorithm that contains an oracle gate one
normally wants to run the program with various instances of the oracle
and to collect statistics over all of the results. For example, if one is
testing a program for Grover's search problem one might want to run it
on all possible databases (each of which is implemented as an oracle that
QNOTs its output qubit if its inputs address the "marked" item), ensuring
that it reports the correct answer in each case. This is facilitated in
QGAME with a sort of "macro" instruction expression of the form:

(ORACLE Q qi q2 ... Qn qout)

Quantum Computer Programming 25

Q, should be the right-hand column of a Boolean truth table that specifies
the action of the ORACLE gate, listed in parentheses and in binary order.
The qi, q2, • • • Qn parameters are the indices of the input qubits, and gout
is the index of the output qubit. For example, the following expression:

(ORACLE (0 0 0 1) 2 1 0)

calls a gate that flips qubit 0 (the right-most qubit) when (and only
when) the values of qubits 2 and 1 are both 1. In other words, this
oracle acts as the following matrix:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

This particular matrix, incidentally, is also known as the "Toffoli" gate;
it can be used to implement quantum versions of classical NAND and
FANDUT gates, meaning that all possible deterministic classical compu
tations can be computed on quantum computers using appropriately
connected Toffoli gates (Nielsen and Chuang, 2000, pp. 29-30).

If fl in an ORACLE expression is the symbol ORACLE-TT then this in
dicates that the interpreter should substitute a valid truth table speci
fication in place of the symbol before execution; this is normally in the
context of a call to TEST-qUANTUM-PROGRAM (see below).

It is sometimes useful to limit the number of times that an oracle
can be called during a single simulation. For this reason QGAME also
provides an instruction expression of the form:

(LIMITED-ORACLE max Q qi q2 . •. Qn qout)

This works just Hke ORACLE the first max times it is executed in a sim
ulation; after max executions it has no further effect.

QGAME also provides a way to simulate the effects of single-qubit
measurements during the execution of a quantum program, and allows
for the outcomes of those measurements to influence the remainder of
the simulation. In an actual run of a quantum computer such measure
ments would, in general, be probabihstic. In particular, the probability
that measurement of a qubit will find it in the 0 state is equal to the

26 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

sum of the squares of the absolute values of all of the amplitudes cor
responding to 0 values for that qubit. Because we generally wish, when
performing our simulations, to obtain the actual probabilities for vari
ous outputs and not just particular (probabilistically chosen) outputs,
QGAME simulates a/l possible measurement outcomes. This is done by
branching the entire simulation and proceeding independently for each
possible outcome. In each branch the measured qubit is forced to the
measured value. The probability for taking each branch is recorded, and
output probabilities at the end of the simulation are calculated on the
basis of all possible final states and the probabilities of reaching them.

The syntax for a QGAME measurement is as follows:

(MEASURE q) ... branchi... (END) . . .brancho. . . (END)

This is actually a sequence of instruction expressions, beginning with
the MEASURE expression that specifies the qubit to measure. Any num
ber of instruction expressions may occur between the MEASURE expression
and the first following END; all of these will be executed in the branch
of the simulation corresponding to a measurement of 1. Similarly, any
number of instruction expressions may occur between the first following
END and a subsequent END; all of these will be executed in the branch of
the simulation corresponding to a measurement of 0. Instruction expres
sions following the second END will be executed in both branches of the
simulation, following the execution of the branch-specific instructions.
If there is no END following the MEASURE expression then the entire re
mainder of the program is branchi and there is no' brancho. Similarly,
if there is only one subsequent END then the entire program beyond that
END is brancho. Unmatched ENDs are ignored.

A few additional instruction expressions provide benefits in special
circumstances. Expressions of the form:

(MATRIX-GATE M history)

allow for the inclusion of gates with arbitrary unitary matrices. M here is
a fully expanded matrix, of size 2" x 2" for an n-qubit system, expressed
in Lisp 2D array notation. For example, the notation for a matrix that
acts like QNOT, for a 1-qubit system, would be "#2A((0 1) (1 0))" . The
history parameter is ignored by the QGAME interpreter but it may
carry information about the source of the matrix that will be useful for
human interpretation; this is used, for example, in conjunction with the
"gate compression" genetic operator in Chapter 7.

A HALT expression simply terminates the current simulation (or the
current branch of the simulation, in the context of measurements):

Quantum Computer Programming 27

(HALT)

The following two expressions allow for the printing of diagnostic in
formation:

(PRINTAMPS)
(INSP)

PRINTAMPS prints the amplitudes of the executing quantum system,
while INSP (short for "inspect") provides more detail about the system
state. INSP is implementation-specific; in the Lisp version of Q G A M E
it causes the Lisp inspector to be invoked on the executing quantum
system, thereby allowing for interactive exploration and manipulation.

The main top-level call to the Q G A M E interpreter, which will be
particularly useful for the approach to automatic quantum computer
programming discussed in Chapter 7, is TEST-QUANTUM-PROGRAM. This
call takes the following inputs:

• PROGRAM: The program to be tested, in Q G A M E program syntax.

• NUM-QUBITS: The number of qubits in the quantum computer to be
simulated.

• CASES: A parenthesized list of ^^[oracle-truth-table output)" pairs,
where each oracle-truth-table is a parenthesized list of Os and Is
specifying the right-hand (output) column of the oracle's t ru th ta
ble (where the rows are listed in binary order), and where the output
is the correct non-negative integer answer for the given t ru th table;
the test compares this number to the number read from the final
measurement qubits at the end of the computation.

• FINAL-MEASUREMENT-QUBITS: A parenthesized list of indices speci
fying the qubits upon which final measurements will be performed,
with the most significant qubit listed first and the least significant
qubit listed last.

• THRESHOLD: The probability of error below which a run is considered
successful for the sake of the "misses" component of the return value
(see below). This is typically set to something hke 0.48, which is
usually far enough from 0.5 to ensure tha t the "better than random
guessing" performance of the algorithm is not due to accumulated
round-off errors.

Additional inputs may be provided by particular implementations to
support debugging or other features. TEST-QUANTUM-PROGRAM returns a
list containing the following values:

28 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

• The number of "misses"; that is, cases in which the measured value
will, with probability greater than the specified threshold, fail to
equal the desired output.

• The maximum probability of error for any provided case.

• The average probability of error for all provided cases.

• The maximum number of expected oracle calls across all cases.

• The number of expected oracle calls averaged across all cases.

It is relatively easy to extend TEST-QUANTUM-PROGRAM to return addi
tional values, for example the full list of error values or other statistics
related to the program's performance. But the values listed above are
sufficient to support many uses of QGAME for automatic quantum
computer programming.

2. Visualization
QGAME program syntax provides one way to view quantum algo

rithms, and lists of amplitudes provide one way to view the state of a
quantum computer. But such textual representations, while convenient
for computer input and output, are relatively opaque to human com
prehension. Alternative visualization techniques can be useful, even in
the context of automatic quantum computer programming, as they may
significantly aid in the analysis and human understanding of quantum
algorithms, whatever their source.

Diagraming schemes similar to those used for classical circuits have
been developed for quantum algorithms and they are used frequently in
the literature. We use such "gate array" diagrams to document examples
later in this book. One typically draws a horizontal line for each qubit
and superimposes gate symbols on the lines, indicating from left to right
the sequence of gate applications as the computation proceeds across
the page. A labeled box is superimposed on a line to represent the
application of a single-qubit gate, and boxes or other symbols that span
multiple lines are used to represent multi-qubit gates. Our particular
diagraming conventions will be made clear in the context of examples.

Gate array diagrams can be helpful, but they can also be deceptive,
particularly if one is accustomed to classical circuit or flow diagrams.
For example, one must bear in mind that qubits can be entangled, and
that gates are really applied not to independent "wires," as implied by
the horizontal lines, but rather to amplitudes that are shared among all
qubits. Even single-qubit gates typically change all of the amplitudes in
the system, and the value of every qubit is influenced by every amplitude.

Quantum Computer Programm,ing 29

0

ag

I000>

CX4

I100>

1

vX'^

ICHO>
2 *^6

I110>

0

« !

1001 >

.'"1
" 5

I101>

1

CXa

1011>
a^

l l l l>

Figure 3.1. An amplitude diagram for a 3-qubit state.

So there may often be interconnections that are essential to the algorithm
but are not indicated directly in the diagram.

Quantum algorithms are also often presented in algebraic form. Al
gebraic representations are also popular for the representation of quan
tum computer states, typically using Dirac "bra-ket" notation. These
notations often allow for elegant presentation of algorithms and states
designed by humans, but they can be ungainly when applied to the ar
bitrary algorithms and states that emerge from an automatic quantum
computer programming system.

Visualization of arbitrary quantum computer states is difficult for
several reasons. The state of an n-qubit system is a collection of 2"'
amplitudes, each of which is a complex number. The collection of am
plitudes has structure, but the structure is n-dimensional and it is not
obvious how to map these dimensions onto a 2-dimensional diagram in
a meaningful way. Neither is it obvious how best to map the individual
complex numbers to image features.

An amplitude diagram, as shown in Figure 3.1, can sometimes be
helpful. The diagram displays all of the amplitudes numerically (in
place of the as in the Figure), but they are arranged in a grid that
hierarchically prioritizes the qubits. In the diagram as shown in Figure
3.1 qubit 0 is prioritized first, so that the major left/right split of the

30 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Large positive
amplitude at

|000>

|100>

•

1110)

|010)

Small negative
^% amplitude at

" " ^ 1 1 0 1)

ofr'

| i i i>

oO
V °'

|011)

Figure 3.2. A cube diagram for a 3-qubit state.

diagram puts all of the amplitudes for qubit 0 being 0 on the left, and all
the amplitudes for qubit 0 being 1 on the right. The second (vertical)
split is on the basis of qubit 1, and the third (horizontal, within the
quadrants) is on the basis of qubit 2. This particular prioritization makes
the values of qubits 0 and 1 most obvious, but one can re-prioritize to
focus on other qubits. This scheme can be nested further, allowing for
the "hierarchically flattened" visualization of relatively large quantum
computer states.

Janet Wiles and Bradley Tonkes developed a similar graphical repre
sentation scheme but for rather different (non-quantum) purposes, called
hyperspace graph paper (Wiles and Tonkes, 2002). Their scheme omits
explicit indications of the prioritization of the dimensions (though these
could be added), and it uses grayscale values rather than numerals in
the individual cells. As a result, many significant patterns are visually
evident. For use in visualizing quantum computer states one would have
to generalize the grayscale tones in some way, as the amplitudes can be
complex. One way to do this, which was adopted in an early graphical
user interface for QGAME, is to use a "hue, saturation, value" repre
sentation for color, mapping the phase of the amphtude to hue and the
absolute value to saturation and/or value.

For the special case of a 3-qubit system a related cube diagram can
be used, as shown in Figure 3.2.

Quantum Computer Programming 31

3. Example: Grover's Database Search Algorithm
In this section we present one example in detail, an instance of Grover's

database search algorithm (Grover, 1997), in order to clarify some of the
ideas presented in this chapter.

In this problem we are given a 3-qubit gate that, we are told, imple
ments a 4-item database. Two of the inputs to the gate are used to set
an address, and the gate operates by flipping (QNOTing) the third input
if (and only if) the addressed location contains a 1. Furthermore, for the
instance of the problem that we are considering here, we are promised
that one and only one of the locations in the database contains a 1; all
other locations contain Os.

Classically, it would require 3 queries to the database to be certain of
the location of the single 1. If, after 3 queries, we had still not found the
1, then we could be certain that it was in the one location in which we
had not yet looked. But if we make only 2 queries and do not find the
1 then we have no information about which of the remaining locations
may be the correct one; we will have only a 50% chance of choosing
correctly after 2 failed queries.

Quantum mechanically the situation is quite different. In fact, a single
query to the database allows us to determine, with 100% certainty, the
location of the 1. This is accomplished by querying the database with
the address qubits in a superposition of all possible addresses, and then
decoding the resulting state to extract the needed information.

One version of the quantum algorithm that solves this problem, found
by genetic programming and simplified by Herbert J. Bernstein (personal
communication), can be expressed as a QGAME program as follows:

((HADAMARD 2)
(HADAMARD 1)
(U-THETA 0 0.7853981633974483) ;6l = 7r/4
(ORACLE ORACLE-TT 2 1 0)
(HADAMARD 2)
(CNOT 2 1)
(HADAMARD 2)
(U-THETA 2 1.5707963267948966) ; ^ = 7r/2
(U-THETA 1 1.5707963267948966)) ;e = 7r/2

Figure 3.3 shows a gate array diagram for this same version of Grover's
algorithm.

Before running this program we set all qubits to the 0 state. We then
run the program and read the answer, which will be the address of the 1

32 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

2 - H

1 ^

0 - m) -e
Figure 3.3. A gate array diagram for one version of Grover's database search algo
rithm for a 4-item database.

in the database, from qubits 2 and 1. Simulation with QGAME confirms
that this provides the correct answer in all cases. This simulation can
be performed using TEST-QUANTUM-PROGRAM with the following inputs:

• program: (As listed above).

• num-qubits: 3.

• cases: (((1000)0)((0100)1)((0010)2)((0001)3)).

• f inal-measurement-qubits: (2 1)

• threshold: 0.48.

This call, using the current Lisp implementation of QGAME, pro
duces the following results:

• misses: 0.

• maximum error: 6.661338147750939 x 10"^^ (zero aside from a tiny
round-off error).

• average error: 6.661338147750939 x 10"-̂ ^ (zero aside from a tiny
round-off error).

• Maximum expected oracle calls: 1.

• Average expected oracle calls: 1.

Note that the "output" of the database is not even consulted after the
database query; instead, the answer is decoded from the states in which

Quantum Computer Programming 33

the input qubits are left. This highhghts a counter-intuitive property
of many quantum algorithms, sometimes called the "back action" of
unitary gates.

Figures 3.4 through 3.13 illustrate the action of this algorithm via
cube diagrams for the single case of a database with the item stored at
the address (0,0). Note that measurement of the system's state after
the query to the database (as illustrated in Figure 3.8) would produce
completely random results; the "decoding" steps in the remainder of the
algorithm are necessary to extract the correct answer. Note also that the
value of qubit 0, which is nominally the output of the database query,
is completely uncertain at the end of the simulation (as illustrated in
Figure 3.13).

A

y
. 01

•

•

V
oOi

Figure 3.4- A cube diagram of the ini
tial state for Grover's algorithm, as di
agrammed in Figure 3.3. All qubits are
in the 0 state.

Figure 3.5. A cube diagram of the
second state in the execution of
Grover's algorithm, after the applica
tion of a HADAMARD gate to qubit 2.

34 AUTOMATIC QUANTUM COMPUTER PROGRAMMINC

V
)0 i

Jf- 7?
^

^

7*
1

2
oOi

Figure 3.6. A cube diagram of the
third state in the execution of Grover's
algorithm, after the apphcation of a
HADAMARD gate to qubit 1.

Figure 3.1. A cube diagram of the
fourth state in the execution of
Grover's algorithm, after the applica
tion of a U-THETA gate to qubit 0.

^

^

k-

/?

2

oOi 3O1

Figure 3.8. A cube diagram of the
fifth state in the execution of Grover's
algorithm, after the database call.
In this example the single 1 in the
database is at address (0,0).

Figure 3.9. A cube diagram of the
sixth state in the execution of Grover's
algorithm, after the application of an
other HADAMARD gate to qubit 2.

Quantum Computer Programming 35

A

) 0 i

/T

0
V °

oOi

Figure 3.10. A cube diagram of the
seventh state in the execution of
Grover's algorithm, after the applica
tion of a CNOT gate with qubit 2 as the
control and qubit 1 as the target.

Figure 3.11. A cube diagram of the
eighth state in the execution of
Grover's algorithm, after the applica
tion of another HADAMARD gate to qubit
2.

A

)0 i

A

o

V
oOi

7
1

2

Figure 3.12. A cube diagram of the
ninth state in the execution of Grover's
algorithm, after the application of a
U-THETA gate to qubit 2.

Figure 3.13. A cube diagram of the
final state in the execution of Grover's
algorithm, after the application of a
U-THETA gate to qubit 1. The (cor
rect) answer is read from qubits 2 and
1, both of which now have the value 0
with certainty.

Chapter 4

G E N E T I C A N D E V O L U T I O N A R Y
C O M P U T A T I O N

This chapter introduces genetic and evolutionary computing, focus
ing on the traditional genetic algorithm. It also discusses, in general
terms, the use of parallelism to scale up genetic and evolutionary com
putation technologies for complex applications, and the applicability of
these technologies for various types of problems including those related
to quantum computing.

1. What is Genetic and Evolutionary
Computation?

The phrase "genetic and evolutionary computation" is used in the lit
erature to describe a wide array of computational enterprises that borrow
general principles from genetics and from evolutionary biology. The mo
tivations for these enterprises vary considerably. Some researchers are
primarily interested in the processes that underlie biological genetics
and evolution, and they use computational models (which may include
problem-solving components) as tools to develop, test, and refine bio
logical theory. Others are primarily interested in the problem-solving
potential exhibited by evolution and by living systems, and they borrow
methods from nature mainly for the sake of engineering more powerful
problem-solving systems. And of course many researchers combine both
of these motivations, perhaps with others as well.

In this book the focus is on the engineering applications of genetic and
evolutionary computation; we seek methods by which the space of quan
tum algorithms can be explored, and we turn to genetic and evolutionary
computation because it provides powerful problem-solving methods that
are well suited to this application area. While fidelity to natural genetic

38 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

Random Generation

V
Assessment > Solution

Selection 1> Variation

Figure 4-1- A problem-solving strategy common to many forms of genetic and evo
lutionary computation.

and evolutionary systems is not our primary concern, insights from biol
ogy may nonetheless be essential. Nature's "problem-solving methods"
are not yet completely understood, and we, as engineers, cannot yet be
sure which of nature's methods will serve us best. Indeed, the argument
can be made that the cutting edge of practice in genetic and evolutionary
computation is moving ever more swiftly toward biology, largely because
biological systems still outstrip our technologies in terms of adaptive ca
pacity. For example, recent advances in genetic programming techniques
use mechanisms derived from DNA dynamics, learning mechanisms in
neural networks, immune systems, regulatory networks, and biological
gene expression processes (Spector, 2003). A few of these advances, in
particular some of those related to the development and evolution of
modular structures, will be discussed in later chapters of this book.

Many genetic and evolutionary computation systems conform to the
general structure shown in Figure 4.1. We begin with a population of
random individuals. In a problem-solving context an "individual" is
usually a candidate solution — something selected from the (normally
immense) set of the kinds of things that could possibly be solutions. Of
course, since the initial population is random it is unlikely that any of
these individuals will actually be a solution, but these individuals become
the starting points for an evolutionary search of the space of candidate
solutions.

We then assess the fitness of the individuals in the population. The
term "fitness" is used here, as in most genetic and evolutionary compu
tation literature, in a sense different from that which it normally has in

Genetic and Evolutionary Computation 39

biology: it means the value of an individual relative to one's problem-
solving goal. The biologist's notion of "reproductive fitness" is useful
in genetic and evolutionary computation as well, but it applies here not
to the goal-relative "fitness" measure alone, but rather to the combined
effects of goal-relative fitness, selection, and variation. Although there
are "ecological" and "co-evolutionary" exceptions, fitness is normally
assessed for each individual in isolation from the remainder of the pop
ulation and from any significant external environment.

We use the goal-oriented fitness measure both to drive evolution and
to determine success. If, during fitness assessment, a solution to the
posed problem is found, then the solution is produced as output and the
system halts. Until this happens (or until the user gives up) the system
proceeds through a loop of selection, variation, and re-assessment.

The details of this "selection, variation, assessment" loop, and of
the representations and algorithms used within it, vary among differ
ent forms of genetic and evolutionary computation. For example, in
some ("generational") methods the entire population is assessed first
and is then subjected to distinct population-wide selection and varia
tion procedures. In other ("steady state") methods single individuals
or small groups of individuals are progressed through the entire loop
independently. Selection may be based on virtual roulette wheels or on
tournaments or on other abstractions. Variation may be asexual (mu
tation) or sexual (recombination or crossover), and may come in many
forms; researchers have experimented with dozens if not hundreds of
different mutation and recombination operators.

The extent to which some genetic and evolutionary computation vari
ants might be better than others, in general or for certain sorts of ap
plications, has been a topic of considerable interest in the research com
munity. Many of these questions are addressed within discussions of so-
called "No Free Lunch" theorems (for example, Wolpert and Macready,
1997; Droste et al., 1999; Whitley, 1999; Christensen and Oppacher,
2001; Schumacher et al., 2001; Igel and Toussaint, 2003; Woodward and
Neil, 2003). Aside from noting that this range of variation exists, along
with the associated discussion (and meta-discussion) of the relative mer
its of the variants, we will not directly address these issues further in
this book; we present methods that can be applied to the task of auto
matic quantum computer programming, and we leave it to the reader to
consider or experiment with variations that may produce better results.

2. Genetic Algorithms
One of the most straightforward and widely applied forms of genetic

and evolutionary computation is the "genetic algorithm" (GA) as devel-

40 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

oped by John Holland (Holland, 1992). In the simplest genetic algorithm
each individual is a linear chromosome consisting of some fixed number
of loci. At each locus of each chromosome is, in the simplest
single bit (0 or 1), although sometimes a larger or even unbounded (e.g.
continuous) "genetic alphabet" is used. Each chromosome encodes a
potential solution to the target problem in some problem-specific way.
For example, for one problem each locus of a chromosome might encode
a direction to turn in a maze, while for another problem the loci may
encode coefficients of a polynomial. Whatever the encoding, the fitness
function takes a chromosome as input and produces a fitness value as
output.

The traditional genetic algorithm is generational. All chromosomes
are assessed for fitness, and then chromosomes are selected, in a fitness-
proportionate way, to contribute to the next generation via reproduction
and genetic operators.

One popular selection method is "tournament selection." In tourna
ment selection we designate a tournament size T (usually between 2 and
7), and each time that we want to select a chromosome we first ran
domly select T chromosomes. We then compare the fitness values of the
chromosomes and return, as the selection, the one with the best fitness.
This method is simple to implement and it allows for selection pressure
to be adjusted by changing the tournament size.

The most common genetic operators are point mutations, in which the
contents of single loci are probabilistically replaced or perturbed (e.g.
by Gaussian noise), and crossovers, in which an offspring is produced by
concatenating a left-hand portion of one chromosome with a right-hand
portion of another, with the "crossover point" chosen randomly. Vari
ations on these operators abound; for example, in "uniform crossover"
each locus is randomly selected from one or the other of two parents.
In some schemes the meaning of a locus is de-coupled from the position
of the locus on the chromosome, allowing the system to learn appropri
ate "linkages" between loci, rather than having them determined by a
pre-defined sequence. Some schemes have been derived purely on the
basis of engineering considerations, while others, for example the use of
"diploid" chromosomes, have been derived from biology.

Genetic algorithms have been the subject of intensive study and de
velopment and many successful systems, developed according to a wide
variety of designs, have been fielded in a wide range of application ar
eas. Good introductory-level treatments of genetic algorithms and their
apphcations include (Goldberg, 1989) and (Mitchell, 1996).

Genetic and Evolutionary Computation 41

3. Scalability via Parallelism
Because genetic and evolutionary computation systems process pop

ulations, and because many of the operations that are performed on the
population's individuals are performed independently for each individual
(e.g., many forms of fitness assessment), these systems are well suited
to parallelization across multiple computer systems. Indeed, loose cou
pling of multiple sub-populations (often called "demes") with occasional
migrations can actually be advantageous to the evolutionary process by
slowing the fixation of sub-optimal genetic patterns throughout the sys
tem. One can therefore deploy genetic and evolutionary computation
systems across large clusters that have moderate or low interconnec
tion bandwidth, thereby reaping gains both in overall computational
throughput and in search performance. For this reason genetic and evo
lutionary computing methods are sometimes referred to in the literature
as "embarrassingly parallel."

Parallelization is important for applications to automatic quantum
computer programming because these applications often call for quan
tum computer simulation in the fitness test. As discussed in Chapter 2,
the classical simulation of quantum algorithms generally entails exponen
tial inefficiencies, so fitness tests that rely on such simulation will require
significant time and/or memory. We cannot fully regain the exponen
tial losses through parallelism (unless we can afford to grow our com
puter cluster exponentially!), but we can nonetheless expand the range
of quantum computation problems that can be addressed by deploying
our genetic and evolutionary computation systems across modest-sized
computer clusters.

4. Applicability of Genetic and Evolutionary
Computation

Genetic and evolutionary computation methods are powerful in part
because they require little advance knowledge of the problems being
posed or of the structure of possible solutions. Methods with this prop
erty are sometimes called "weak methods" in the literature, but this
designation actually implies generality, not lack of power.

Genetic and evolutionary computation methods leverage computa
tional resources (CPU cycles) to search vast spaces, combining "blind"
exploration (e.g. random initial populations and random variation) with
goal-directed guidance (via fitness-based selection, and often via the
combinatorics of genetic recombination). As such they are ideal for

42 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

exploring domains about whicli we have little prior knowledge. This
makes them very powerful tools in the engineer's toolkit.

But by the same token genetic and evolutionary computation tech
nologies, like all so-called weak methods, will generally underperform
specialized methods that are based on a deep understanding of a partic
ular problem area's search space. When one knows a domain sufficiently
well one can often develop problem-solving methods that are consider
ably more efficient than random variation and selection.

Owing to our current relative ignorance about the nature of quantum
algorithms, about the principles of quantum software engineering, and
about quantum complexity theory, the applicability of genetic and evolu
tionary methods to automatic quantum computer programming appears
to be strong at present. It may weaken, however, as the fields of quantum
computing and quantum information theory mature.

Chapter 5

GENETIC PROGRAMMING

This book is concerned with automatic quantum computer program
ming by means of genetic and evolutionary computation. In Chapter
4 we described genetic and evolutionary computation methods in gen
eral; here we narrow the focus to the form of genetic and evolutionary
computation most directly concerned with the discovery of programs,
namely "genetic programming." We provide a concise introduction to
the basic concepts of genetic programming, a detailed example, and a
discussion of the steps that one must generally take to obtain and under
stand useful results from a genetic programming system. The techniques
described in this chapter are not specific to quantum computing; we will
narrow the focus further to genetic programming for quantum comput
ers in Chapter 7, following the description, in Chapter 6, of advanced
genetic programming techniques that are particularly useful for evolving
quantum programs.

1. Programming by Genetic Algorithm
A "genetic programming" system is a genetic algorithm in which the

chromosomes are executable computer programs. There is no sharp line
between "executable computer programs" and other chromosomal en
codings at a fundamental level of analysis, since the elements of any en
coding could be considered "commands" in some language for which the
chromosome-decoder is the "compiler" or "interpreter." But in practice
so-called genetic programming systems tend to differ from other genetic
algorithms in several ways. Although there are exceptions, genetic pro
gramming systems tend to use chromosome encodings that are similar
in syntax and semantics to existing programming languages. They tend
to allow chromosomes to vary in length (as computer programs normally

44 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

do) and to incorporate hierarchical, compositional structures. And they
often allow one to combine the use of special-purpose, problem-specific
instructions or variables with general-purpose, commonly-used instruc
tions (for example, + and x).

As a result, a genetic programming system is not only a problem-
solving system but also an automatic programming system. We provide
the system with information that describes what we want a program to
do (primarily via the fitness function), and a successful run of the system
produces (via evolution) a program that meets the desired specification.
We must also provide values for a few other parameters (such as the set
of instructions that may be used, population sizes, and genetic operator
rates), but most of this is straightforward and requires little expertise
about the problem we are using the system to solve.

In other words, what we provide to a genetic programming system
is mostly just a specification of the behavior of the program that we
seek. A successful run of the system produces, automatically, a program
that exhibits the desired behavior. So genetic programming is an auto
matic programming technology that produces programs via genetic and
evolutionary computation.

As John Koza has argued forcefully in several of his books, automatic
programming is an extremely general capability that can be applied in
almost every conceivable area of science and technology (Koza, 1992;
Koza, 1994; Koza et al., 1999; Koza et al., 2003). Genetic programming
in particular has been applied to a wide range of problems, including
many in science and technology and even several in the arts (for example,
Spector and Alpern, 1994; Polito et al., 1997).

Beyond its applicability to "external" problems, automatic program
ming (and thereby genetic programming) also opens up new approaches
to the study of fundamental questions in computer science itself. This
is because many fundamental questions in computer science are about
whether or not there exist computer programs having particular proper
ties. Many of these questions can be approached using analytical tech
niques; for example, mathematical proofs are often employed to demon
strate negative results, proving that no program can possibly have some
particular set of properties. But many other questions are best ap
proached via algorithm design — researchers attempt to find programs
that have the properties in question, usually relying on their own expe
rience and ingenuity to do so.

Automatic programming technologies open the door to new approaches
to such questions, allowing us to use the computer itself to search the
space of computer programs and thereby to expand the frontiers of the
oretical computer science. They allow us to do "computer science by

Genetic Programming 45

automatic programming" — and if our automatic programming tech
nology is genetic programming, then we can do "computer science by
genetic programming." This is in fact the goal of the present book,
which seeks more specifically to describe some of the ways in which one
can do "quantum computer science by genetic programming."

The most widely used genetic programming techniques are docu
mented in Koza's books (Koza, 1992; Koza, 1994; Koza et al., 1999; Koza
et al., 2003), although some readers may prefer the more concise intro
duction in (Banzhaf et al., 1998), which also includes a survey of alterna
tive approaches such as "machine code" genetic programming. Innova
tions in genetic programming technique are regularly reported at several
international conferences with published proceedings, most notably the
Genetic and Evolutionary Computation Conference (GECCO), which
combines the previously existing Genetic Programming Conference and
the International Conference on Genetic Algorithms. Important jour
nals in the field include Genetic Programming and Evolvahle Machines
and Evolutionary Computation. Advances in genetic programming tech
nique have also been documented in several edited books (Kinnear, Jr.,
1994a; Angeline and Kinnear, Jr., 1996; Spector et al., 1999c; Riolo and
Worzel, 2003). A searchable, online bibliography on genetic program
ming is also available.^

2. Traditional Program Representations
It is a simple matter to suggest the use of executable computer pro

grams as chromosomes in a genetic algorithm, but it is more difficult to
devise detailed schemes for program representations and genetic oper
ators that allow such a genetic algorithm to perform well. The most
popular scheme for genetic programming, which is now often called
"traditional" genetic programming, "standard" genetic programming,
or "tree-based" genetic programming (for reasons that will be made
clear below), was developed and popularized primarily by John Koza,
although similar ideas were also presented early by others (Cramer, 1985;
Koza, 1992).

One obvious concern in using programs as chromosomes is that pro
grams must generally conform to a particular syntax — that of the
programming language in which they are expressed — in order to be
meaningful at all. The misplacement of a single character in a program
in most languages is very often "fatal," in that the program will fail even
to compile or will cause an interpreter to halt abnormally in an error

^ http://liinwww.ira.uka.de/bibliography/Ai/genet ic.programming.html

46 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

condition. The genetic operators in a genetic algorithm are generally
"blind" — they "slice and dice" chromosomes without any cognizance
of chromosomal syntax. How then are we to ensure that the "offspring"
of syntactically valid programs, as produced by genetic operators, are
always (or at least often) themselves syntactically valid?

The traditional approach to this concern is to use a syntactically min
imal programming language as the language for the evolving (chromoso
mal) programs. Although there are many candidates for such a language
(and several have been explored), the one traditionally used is a tiny
subset of Lisp.

Lisp is a language with a long and important history in computer
science (see, for example, McCarthy et al., 1966, Steele Jr., 1984, and
Graham, 1994), but few of its significant features are exploited in tra
ditional genetic programming. For the most part, all that is used is the
basic syntax for programs (which, in Lisp, are also data). The subset of
Lisp syntax used in traditional genetic programming is usually just:

program ::= terminal \ (functiorin program^)

In other words:

• A "terminal" is a program; terminals are often constants (like "5"
or "3.14" or "TRUE") although they may also be variables or zero-
argument functions.

• A parenthesized sequence of an n-ary function followed by n addi
tional programs is a program. This is a prefix notation for a function
call with n arguments.

A simple example is an expression like:

(+ (* X Y)
(+ 4 (- Z 23)))

This expression is interpreted "functionally," with each program re
turning a value to the enclosing context, usually to be passed as an
argument to the function heading the enclosing expression. Overall this
example returns the sum of two values, the first of which is the product
of X and Y (which are presumably variables containing numbers), and
the second of which is the sum 4 and Z minus 23.

Functional interpretation (that is, interpretation in which each func
tion call's primary job is to return a value to the enclosing context) is
not mandatory, however, and many genetic programming applications

Genetic Programming 47

Figure 5.1. A tree graph of the arithmetic Lisp expression given in. the text.

have utilized functions that act primarily by side-effect on external data
structures. For example, in the classic "artificial ant" problem (Koza,
1992) the terminals (LEFT, RIGHT, and MOVE) are interpreted as com
mands to a simulated ant moving on a grid containing simulated food.
They return no values, and the functions that can appear as the first
items of parenthesized expressions "expect" no arguments; they merely
serve to sequence the calls to the side-effecting terminals (in some cases
conditionally).

The essential feature of this program representation with respect to
genetic programming is syntactic uniformity — any sub-program can
be substituted for any other sub-program within any program, and
the result will necessarily be syntactically well formed. It is therefore
easy to devise genetic operators that operate "blindly" on programs
but nonetheless always produce syntactically valid results. These repre
sentations are often called "tree-based" because they can be presented
graphically using tree structures as in Figure 5.1, which shows the tree
form of the arithmetic expression given above.

In traditional genetic programming all of the constant terminals used
for a particular run must be of the same data type. The functions used
in the run must all return values of this same type, and must take argu
ments only of this type. These restrictions prevent type incompatibility
errors, but they are inconvenient; several ways to relax these restrictions
are discussed in Chapter 6.

Additional steps must often be taken to ensure that arbitrary pro
grams are also semantically valid — that is, that they will always execute
without error, producing interpretable (even if incorrect) results. For

48 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

example, one must sometimes engineer special return values for "patho
logical" calls, such as division by zero. To handle division by zero, one
usually replaces the division function with a "protected division" func
tion that returns an arbitrary value (for example, zero or one) when
it receives zero as its second argument (Koza, 1992). Similar strategies
can be employed to produce "protected" versions of other functions with
pathological special cases.

3. Traditional Genetic Operators
The most common forms of genetic programming mutation involve the

replacement of an arbitrarily chosen subprogram of with a newly gener
ated random subprogram. For example, consider the following program:

(+ (* X Y)
(+ 4 (- Z 23)))

If we wish to mutate this program we first select a random subprogram
for replacement, as follows:

(+ l(* X Y)|
(+ 4 (- Z 23)))

We then generate a new random subprogram and insert it in place of
the selected subprogram:

(+ (- (+ 2 2) Z)
(+ 4 (- Z 23)))

There is plenty of room for variation of this basic scheme for mutation
and many variants have been explored. For example, it is common
to bias the selection of subprograms in favor of entire function calls
(rather than terminals) (Koza, 1992), and one can vary the ways in
which random subprograms are generated (for example, to limit their
length). One variation that may help to prevent run-away program
growth ("bloat") forces replacement subprograms to be similar in size
to the subprograms that they replace; this is called "size fair mutation"
(Langdon et al., 1999; Crawford-Marks and Spector, 2002). A survey of
published mutation operators appears in (Langdon, 1998).

Program crossover (recombination) is usually accomplished in a sim
ilar way, via the swapping of subprograms. Given two parent programs
(which may be selected from the population on the basis of fitness tour
naments or other fitness-sensitive selection methods), we select random
subprograms in each:

Genetic Programming 49

Parent 1: (+ |(* X Y)|
(+ 4 (- Z 23)))

Parent 2: (- (* 17 (+ 2 X))
(* | (- (* 2 Z) 1)1

(+ 14 (/ Y X))))

We then swap the subprograms to produce two potential child pro
grams:

Child 1: (+ | (- (* 2 Z)""in
(+ 4 (- Z 23)))

Child 2: (- (* 17 (+ 2 X))
(* |(* X Y)|

(+ 14 (/ Y X))))

Again, many variations have been proposed and tested, including vari
ations intended to increase the chances that children of fit parents will
themselves be fit, variations intended to increase or decrease the "ex
ploratory power" of recombination, and variations intended to control
the size and shape statistics of evolving populations.

The rates at which these genetic operators are applied — that is, the
proportions of a generation produced by mutation, crossover, and exact
reproduction — have also been the subject of many studies (for example,
Luke and Spector, 1998).

4. Example: Symbolic Regression
This section provides a brief example of traditional genetic program

ming applied to a "symbolic regression" problem. The task in symbolic
regression (Koza, 1992) is to find an equation that fits a provided set of
data. Many other types of regression analysis require the user to specify
the form of the solution (for example, linear or quadratic) in advance;
by contrast, in symbolic regression we have no a priori knowledge of the
form of the solution and we expect the genetic programming system to
find both the form and the details of the solution equation.

The example that we consider here is a 2-dimensional symbolic re
gression problem, in which we are given a set of (x, y) pairs and the task
of producing a program that takes an x value as input and produces the
appropriate y value as output. For the example here we generated the
data from the function y — x^ — 0.2, using 20 x values evenly distributed
between zero and one. Of course the system is given only the data and
not the function that generated the data; the task of the system is to
re-discover the generating function.

50 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 5.1. Parameters for the example run of traditional genetic programming on a
symbolic regression problem. The "%" function is a protected division function that
returns 1 if its second argument is 0. Detailed explanations of these parameters can
be found in (Koza, 1992).

Target function
Function set
Terminal set

Maximum number of Generations
Size of Population

Maximum depth of new individuals
Maximum depth of new subtrees for mutants

Maximum depth of individuals after crossover
Fitness-proportionate reproduction fraction

Crossover at any point fraction
Crossover at function points fraction

Selection method
Generation method

Randomizer seed

j / = a ;^-0 .2
{+,- ,* ,%}
{x,0.1}
51
1000
6
4
17
0.1
0.3
0.5
fitness-proportionate
ramped-half-and-half
1.2

Koza's "Little Lisp" demonstration genetic programming code^ was
used for the run described below, with the parameters shown in Table
5.L For each fitness test the program under consideration was evaluated
for each of the 20 x values. Each such "fitness case" produced an error
value, calculated as the absolute value of the difference between the y
value produced by the program and the y value corresponding to the
input X value in the data set. The sum of the errors over the 20 fitness
cases was taken to be the overall "fitness" of the program, with lower
fitness values indicating better programs. The fitness value for a perfect
program, using this scheme, is zero.

In the initial, randomly generated population (generation 0), the pro
gram with the best (lowest) fitness was as follows:

a (* 0.1
(* X X))

(- (7, 0.1 0.1)
(* X X)))

0.1)

^http://www.genetic-programming.org/gplittlelisp.html

Genetic Programming 51

This program has a fitness value (total error) of about 2.22127 and is
shown graphed against the target function { y = x^ — 0.2) in Figure 5.2.
The best fitness in the population generally improved each generation,
with the best program in generation 5 being the following:

(- (* (* (7. X 0 .1)
(* 0 . 1 X))

(- X
a 0 . 1 X)))

0 .1)

This program has a fitness of 1.05 and and is shown graphed against
the target function in Figure 5.3. By generation 12 a considerably better
program was found, with a fitness value of 0.56125:

(+ (- (- 0 .1
(- 0 .1

(- (* X X)
(+ 0 . 1

(- 0 . 1
(* 0 . 1

0 . 1))))))
(* X

(* a 0 . 1
a (* (* (- 0 . 1 0 .1)

(+ X
(- 0 . 1 0 . 1)))

X)
(+ X (+ (- X 0 .1)

(* X X)))))
(+ 0 . 1 (+ 0 . 1 X)))))

(* X X))

This program is shown graphed against the target function in Figure
5.4. Although this program is large, some of the code tha t it contains is
"junk" because, for example, it produces a result tha t is later multiplied
by zero. Issues related to such non-functional code and its possible con
tributions to code "bloat" and evolutionary progress have been discussed
extensively in the literature; see for example (Luke, 2000).

In this run a perfect solution (fitness 0) was found in generation 22
(Figure 5.5), in the following form:

(- (- (* X (* X X)) 0 .1) 0 .1)

52 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

-n— Target

o Generation 0

Figure 5.2. The performance of the
best program of generation 0, plot
ted against that of the target function,
in an apphcation of standard genetic
programming to a symbolic regression
problem.

0.75

0.5

0.25

-a— Target

» Generation 5

-0.25

Figure 5.3. The performance of the
best program of generation 5.

0.75

0.25

0.75

-0.25

0.25

-0.25

Figure 5.4- The performance of the
best program of generation 12.

Figure 5.5. At generation 22, a per
fect match to the target function is
found.

5. Obtaining Genetic Programming Results
Genetic programming is a general technique that can be applied, with

out substantial re-engineering, to a wide array of problems. The prepara
tory steps that one must complete to apply the technique to a new prob
lem include the selection and/or definition of appropriate functions and

Genetic Programming 53

terminals out of which programs will be constructed, the definition of
a problem-specific fitness function, and the setting of other parameters
such as population size and mutation and crossover rates. These steps
are described in detail by John Koza (Koza, 1992), who also makes
the case that one can often obtain good results by making straightfor
ward or standardized choices in each of the preparatory steps. Although
solutions may emerge more rapidly or more reliably with a carefully
circumscribed function set, or with a refined fitness function, or with
a mutation rate that has somehow been adjusted to suit a particular
problem, etc., one often finds that the "obvious" or standard choices
nonetheless suffice to solve the problems in which one is interested.

Nonetheless, in some cases — particularly when attempting to solve
difficult real-world problems — it may be necessary to apply more art
than science to genetic programming's preparatory steps. If a problem
is resisting solution, for example, then one might want to use a larger
population. But larger populations require more processing time, which
may make it difficult to run the system for a sufficiently large number of
generations. As a consequence one might try running with various pop
ulation sizes for a small number of generations to get a sense of the rates
of progress at each setting, and one might follow up this exploration with
an extended run at a particular population size. Similarly, one might no
tice that the system tends to get "stuck" short of a solution, after which
the diversity of the population plummets."^ In this case one might ex
periment with different mutation or crossover rates or alternative fitness
functions. One may gain other insights, and be led to experiment with
other parameters, by watching average program sizes over the course of
a run. In short, while standard choices for many parameters may per
form reasonably well for a wide range of problems, progress on difficult
real-world problems sometimes, nonetheless, demands experimentation
and tuning.

Once a solution has been found, it may require further work to under
stand the solution that has evolved. Genetic programming may produce
programs that solve problems by means of novel principles, and the es
sential features of the evolved solutions may be buried in large volumes
of irrelevant or non-functional code. A variety of approaches has been
applied to this problem of analysis. In some cases it may be relatively
easy to edit out non-functional code, such as expressions that produce
values that are later multiplied by zero, using knowledge about the func-

^Several measures of population diversity have been developed in the genetic programming
literature; see for example (Burke et al., 2002a) and (Burke et al., 2002b).

54 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

tion and terminal sets and the ways that they interact. In other cases
it may be more helpful to use a second phase of genetic programming
to minimize the size of the result. For example, one can define the fit
ness of any genuine solution to be the size of the solution program, and
the fitness of any non-solution to be larger than the largest permissible
size. One can then conduct a run of genetic programming with an ini
tial population consisting only of previously found (but probably large)
solutions, and use the run to minimize solution length. In many cases,
however, the only path to understanding a solution produced by genetic
programming is to trace carefully the execution of the solution program.

Chapter 6

E V O L U T I O N OF C O M P L E X P R O G R A M S

Traditional genetic programming, as described in Chapter 5, is a
powerful problem-solving tool but it nonetheless has several limitations.
Some of these limitations prevent the successful application of the tech
nique to large-scale, difficult problems such as the automatic quantum
computer programming problems discussed in this book. Fortunately,
however, an active international community of researchers has enhanced
the technique in ways that extend its power significantly; in this chapter
several such enhancements are presented, with a focus on those that find
direct application in automatic quantum computer programming.

More specifically, this chapter describes some of the ways in which
genetic programming techniques can be used to evolve programs that
include multiple data types, modules, and developmental components.
Although these capabilities were developed for problems unrelated to
quantum computing, several of them are nonetheless particularly useful
for the evolution of quantum programs. The author's Push programming
language for genetic and evolutionary computation, which provides some
of the desired advanced capabilities in unusually simple ways, and the
author's PushGP genetic programming system, which evolves Push pro
grams, are described in detail. These technologies, while not themselves
specifically oriented toward quantum computing, underlie the techniques
for automatic quantum computer programming described in Chapter 7,
which are in turn used for the production of the results documented
in Chapter 8. The chapter concludes with a brief description of self-
adaptive "autoconstructive evolution" techniques that are enabled by
Push.

56 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1. Types, Modules, and Development
In many application areas it is natural to use several data types. In

automatic quantum computer programming, for example, it is natural to
use integers (for qubit indices), floating-point numbers (for parameters
to quantum gates such as UQ), and possibly unitary matrices containing
complex numbers (for the expression of novel quantum gates). For some
problems it may be natural to use even more types, for example arrays
of classical (non-quantum) bits, genuine ratios (such as | , as opposed
to 0.666...), etc. In this context, one of the most glaring limitations of
the traditional genetic programming technique is the requirement that
evolved programs can manipulate values only of a single data type.

One can sometimes work around the single-type limitation of the stan
dard technique by considering all of the required values to be members
of a "union" of several data types, and by ensuring that all of the func
tions in the function set can handle all possible members of this union
type in all argument positions. But this is an awkward maneuver that
becomes impractical for problems that call for many data types.

To address this need, David Montana has developed an extension
to traditional genetic programming called "strongly typed genetic pro
gramming." In strongly typed genetic programming one annotates each
terminal and each function with type information (Montana, 1993). New
procedures, which are sensitive to this type information, are used for the
generation of random programs and for genetic operators such as mu
tation and crossover. As long as these operations all respect the type
requirements of the functions and terminals used by the system, the
remainder of the genetic programming process can proceed unchanged.

Strongly typed genetic programming allows for the evolution of pro
grams that manipulate multiple types, although it presumably also has
impacts on evolutionary dynamics. For example, because strongly typed
crossover can swap subprograms only if they return the same types, there
will generally be many fewer crossover options for a pair of strongly typed
programs than there would be for a pair of untyped programs of similar
sizes. It is not clear if these impacts are generally beneficial, detrimental,
or neutral, but it is clear in any event that Montana's technique allows
genetic programming to be applied to a wider range of problems. Prac
titioners have found it to be useful in many situations and developers
have incorporated it into many genetic programming systems.

Another limitation of the standard technique that should be clear to
any student of programming languages is the lack of facilities for the
expression of subroutines or other modular code structures. For au
tomatic quantum computer programming modular structures may be
particularly helpful because, for example, one often wishes to perform

Evolution of Complex Programs 57

an identical transformation on each of several qubits in a quantum reg
ister. Some forms of modular code structure, based on conditionals
("IF THEN" structures) and iterative loops ("DO UNTIL" structures),
can be incorporated into genetic programming in straightforward ways
(Koza, 1992), but these fall short of the code structuring facilities pro
vided in even the most rudimentary programming languages designed
for human use. For any complex program it is usually advantageous
to design blocks of code that can be expressed once and then reused
multiple times with different inputs over the course of a single program
execution.

A variety of schemes have been proposed for the incorporation of mod
ules (sometimes also called subroutines, defined functions, automatically
defined functions, automatically defined macros, or products of encapsu
lation) in the programs that are manipulated and produced by genetic
programming (see for example Koza, 1990; Koza, 1992; Angeline and
Pollack, 1993; Kinnear, Jr., 1994b; Spector, 1996; Racine et a l , 1998;
and Roberts et al., 2001). The most popular of these is probably the
"Automatically Defined Function" (ADF) scheme presented in detail by
Koza in his first and second genetic programming books (Koza, 1992;
Koza, 1994). In this scheme the structure of the programs in the pop
ulation is restricted to a pre-specified modular architecture, with some
fixed number of function definitions (each of which takes some fixed num
ber of arguments) and a "result-producing branch." One also specifies,
in advance, which automatically defined functions can call which other
automatically defined functions. Program generation and manipulation
procedures (for example, the procedures for mutation and crossover) are
all refined to respect the restrictions of the specified modular architec
ture.

Koza showed that the use of ADFs allows genetic programming to
exploit regularities inherent in many problems and thereby to scale up
to substantially larger problem instances. He also showed that the use
of ADFs usually allows solutions to be found more quickly and that
the solutions so found are usually more parsimonious than those found
by the traditional genetic programming technique. In subsequent work
he showed how one can add another "architecture altering" layer to the
genetic programming process to allow ADF architecture to evolve during
a run (Koza et al., 1999).

The final limitation of traditional genetic programming to be consid
ered here concerns the evolution of programs or other executable struc
tures that do not easily map to traditional Lisp-derived program repre
sentation. For example, a neural network is in some sense a program,
but many neural network architectures ("recurrent" architectures) allow

58 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Executing Program
(CODE.QUOTE (INTEGER.POP 1) CODE.QUOTE (CODE.DUP . . .

1

23

Integc
stac)

jr

TRUE

Boolean
stack

3 . 1 4 1

0 . 0 0 1

1 2 . 3 4

X

F

(2 X . . ,

(CODE.,

Mame
stack

/ ' ^ / f l o a t = 3 . 1 4 ^ \
(F /code=(CODE.DUP. . .))

U2. . .

CNOT..

Name/type=value bindings

More stacks as needed...

Float
stack

Code
stack

QGate
stack

Figure 6.1. A schematic view of a Push interpreter.

for loops that do not map nicely to the tree-like structures of traditional
genetic programming. Of course, one can evolve neural networks using
other forms of genetic and evolutionary computation; for example, one
can use neuron connectivity matrices as chromosomes and evolve net
works using traditional genetic algorithm techniques. But several fea
tures of the genetic programming paradigm are useful for the evolution
of neural networks, including support for variable-length representations
and the forms of modular reuse described in the previous paragraphs.

To address this need several researchers have extended the genetic
programming technique with "developmental" features. Although there
are variations, the basic move in most developmental approaches is to
retain traditional program representations but to drop the notion that
an evolved program itself solves to the problem under consideration.
Rather, the evolved (chromosomal) program, when executed, produces
(or develops into) another program that actually solves the problem. In
some cases the structure produced by the execution of the chromosomal
program is not a "program" in the traditional sense but instead some
other type of "executable object" which is then "run" to determine the
behavior and fitness of the individual. For example, in some of John
Koza's work the execution of the chromosomal program produces speci
fications for electrical circuits or control systems (Koza et al., 1999; Koza
et al., 2003). In other cases the product of development may be a pro
gram in the traditional sense but the chromosome may not] for example.

Evolution of Complex Programs 59

in grammatical evolution the chromosome is a string of bits or integers
which is transformed into a program, during development, by a process
that involves indexing into a grammar of a conventional programming
language (O'Neill and Ryan, 2003). In yet other cases there may be
no clear distinction between the developmental and execution phases;
for example, in the ontogenetic programming framework (Spector and
Stoffel, 1996b; Spector and Stoffel, 1996a), and in the PushGP system
described in Section 6.4, programs can modify (develop) their own code
as they run. While doing so they may also be constructing secondary
programs or executable structures which are themselves the solutions to
the problems under consideration — if so then the systems of which they
are elements are "developmental" in two distinct senses.

Most developmental process must be conducted as a part of every
fitness test, although in some cases it is possible to assess a program on
multiple "fitness cases" (input sets) after a single developmental phase.
Development can be accomplished by various means, with the most com
mon strategy being to begin each developmental phase with a minimal
"embryo," to which later function calls add components. The secondary,
developed "program" may take various forms, ranging from neural net
works (Gruau, 1994) to electrical circuits, control system specifications
and even metabolic pathways (Koza et al., 2003). And as we will see in
Chapter 7, similar techniques are also useful for the evolution of quan
tum computer algorithms.

2. The Push Programming Language
Push is a programming language designed specifically for use in ge

netic and evolutionary computation systems that evolve programs, as
the language in which evolving programs are expressed (Spector, 2001;
Spector and Robinson, 2002a; Spector et al., 2003b). Push has an unusu
ally simple syntax, which facilitates the implementation (or evolution)
of mutation and recombination operators that generate and manipulate
programs. Despite this simple syntax. Push provides more expressive
power than most other program representations that are used for pro
gram evolution. This expressive power allows Push-based genetic and
evolutionary computation systems to provide many of the advanced ca
pabilities described in Section 6.1 (along with others) with less system
complexity or user configuration.

Push programs can process multiple data types without the syntax
restrictions that usually accompany this capability, and they can express
and make use of arbitrary control structures (e.g. recursive subroutines
and macros) through the explicit manipulation of their own code (via
a CODE data type). This allows Push to support the automatic evo-

60 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

lution of modular program architectures in a particularly simple way,
even when it is employed in an otherwise ordinary, ADF-free genetic
programming system (such as PushGP; see Section 6.4). Push can also
support entirely new evolutionary computation paradigms such as "au-
toconstructive evolution," in which genetic operators and other compo
nents of the evolutionary system themselves evolve {as in the Pushpop
and SWARMEVOLVE 2.0 systems; see Section 6.5).

Push achieves its combination of syntactic simplicity and semantic
power through the use of a stack-based execution architecture that in
cludes a stack for each data type. This architecture extends the single-
type architecture used in previous work on "stack-based genetic pro
gramming" (Perkis, 1994; Stoffel and Spector, 1996; Tchernev, 1998).

A diagram of the Push execution architecture is shown in Figure 6.1.
The CODE data type, which has its own stack and an associated set of
code-manipulation instructions, provides many of the more interesting
features of the language. Push instructions, like instructions in all stack-
based languages, take any arguments that they require and leave any
results that they produce on data stacks.

To provide for "stack safe" execution of arbitrary code Push adopts
the convention, used widely in stack-based genetic programming, that
instructions requiring arguments that are not available (because there
are too few values on the relevant stacks) become NOOPs; that is, they
do nothing. Because Push's stacks are typed, instructions will always
receive arguments and produce results of the appropriate types (if they
do anything at all), regardless of the contexts in which they occur.

The syntax of Push is simply this:

program ::= instruction \ literal \ (program*)

In other words:

• An instruction is a Push program.

• A literal is a Push program.

• A parenthesized sequence of zero or more Push programs is a Push
program.

Parenthesized sequences are also referred to as "lists," and Push pro
grams can in fact be treated as list data structures. Literals are constants
such as "3" (an integer constant), "3.14" (a floating point number con
stant), and "TRUE" (a Boolean constant). Instruction names generally
start with the name of the type that they primarily manipulate, followed

Evolution of Complex Programs 61

by a "."; for example, INTEGER. + is the instruction for adding two in
tegers, and BOOLEAN.DUP is the instruction for duplicating the value on
the top of the Boolean stack.

Execution of a Push program involves the recursive application of the
following procedure:

To execute program P:

If P is a single instruction then execute it.
Else if P is a literal then push it onto the

appropriate stack.
Else P must be a list; sequentially execute

each of the Push programs in P.

A top-level call to the interpreter can be provided with a list of lit
erals to be pushed onto the appropriate stacks before the program is
executed. In addition, the program passed to the top-level call will it
self be pushed onto the CODE stack before execution; this convention
simplifies the expression of some recursive programs (see below for an
example).

The CODE. QUOTE instruction is an exception to the execution proce
dure given above. Execution of CODE.QUOTE has no immediate effect,
aside from changing the state of the interpreter such that the subse
quent piece of code considered for execution will not in fact be executed
— it will instead be pushed onto the CODE stack. This provides a conve
nient way to get specific pieces of code onto the CODE stack, where they
may be manipulated and/or executed by later instructions.

The NAME data type provides for symbolic variable names and associ
ated binding spaces via GET and SET instructions that are defined for all
types. Any identifiers that do not represent known Push instructions or
literals of other types (such as TRUE and FALSE) are recognized as NAMEs,
and are pushed onto the NAME stack when executed.^ CODE, like any
other type, has a binding space; this means that NAMEs can be used to
name subroutines (or pieces of code for any other purpose) in the same
way that they can be used to implement variables of other types.

A Push interpreter contains a random code generator that can be
used to produce random programs or program fragments. This can be
called from outside the interpreter (for example to create or mutate pro
grams in a genetic programming system) or from a standard CODE. RAND

-'Some implementations of Push may require NAMEs to be distinguished in other ways as well,
for example by beginning with a special character such as "_". The NAME type is not used
in the examples in Chapter 8, but it is described here both for completeness and to simplify
some of the examples in this chapter.

62 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

instruction (which is analogous to RAND instructions available for other
types). Several algorithms for the generation of random code have been
described in the genetic programming literature. Random code genera
tion is less compHcated for Push programs than it is for Lisp-style code
trees, since in Push one doesn't have to worry about function "arity" or
about function versus argument positions when generating code. So it is
easier, for example, to generate programs with predictable size and shape
distributions. The standard Push random code generation algorithm is
shown in Figure 6.2. It produces a uniform distribution of sizes and
what seems to be a reasonable distribution of shapes, in a reasonable
amount of time. An "ephemeral random constant" mechanism, simi
lar to that employed in traditional genetic programming (Koza, 1992),
allows randomly-generated code to include newly-generated literals of
various types.

Execution safety is an essential feature of Push, in the sense that
any syntactically correct program should execute without crashing or
signaling an interrupt to the calling program. This is because Push is
intended for use in genetic and evolutionary computing systems, which
often require that bizarre programs (for example those that result from
random mutations) be interpreted without interrupting the evolutionary
process. The "stack safety" convention described above (that is, the
convention that any instruction that finds insufficient arguments on the
stacks acts as a NOOP) is one component of this feature. In addition,
all instructions are written in ways that are internally safe; they have
well defined behavior for all predictable inputs, and they typically act
as NOOPs in predictable "exceptional" situations (like division by zero).

Additional safety concerns derive from the availability of explicit code
manipulation and recursive execution instructions, which can in some
cases produce exponential code growth or non-terminating programs.
In response to these concerns Push interpreters enforce two limits:

EVALPUSH-LIMIT: This is the maximum allowed number of "executions"
in a single top-level call to the interpreter. The execution of a single
Push instruction counts as one execution, as does the processing of a
single literal, as does the descent into one layer of parentheses (that
is, the processing of the "(" counts as one execution). When this limit
is exceeded the interpreter terminates execution immediately, leaving
its stacks in the states they were in prior to termination (so they may
still be examined by a calling program). Whether or not this counts
as an "abnormal" termination is up to the calling program.

MAX-POINTS-IN-PROGRAM: This is the maximum size of an item on the
CODE stack, expressed as a number of points. A point is an instruction,

Evolution of Complex Programs 63

a literal, or a pair of parentheses. Any instruction that would cause
this limit to be exceeded instead acts as a NOOP, leaving all stacks in
the states that they were in before the execution of the instruction.

The convention regarding the order of arguments for instructions that
are more commonly rendered as infix operators is that the argument
on the top of the stack is treated as the right-hand argument and the
argument second-from the top is treated as the left-hand argument. This
means that the linear representation of an expression containing one of
these instructions looks like the normal infix expression, except that
the instruction has been moved to the end. For example, we divide
3.14 by 1.23 using "(3.14 1.23 FLOAT./)" . Similarly, 23 minus 2 is
expressed as "(23 2 INTEGER.-)" .

While Push's stacks are generally treated as genuine stacks — that is,
they are accessed only "last in, first out," with instructions taking their
arguments from the tops of stacks and pushing their results onto the
tops of stacks — a few instructions (like YANK and SHOVE) do allow di
rect access to "deep" stack elements by means of integer indices. To this
extent the stacks can be used as general, random access memory struc
tures. This is one of the features that ensures the Turing-completeness
of Push (another being the arbitrary name/value bindings supported by
the NAME data type and SET/GET methods).

Additional types can be added to a Push implementation with relative
ease; types that have been added to date include vectors and unitary
matrices (as described in Chapter 7), and one could add both additional
standard types (for example, arrays and strings) and more exotic types
(possibly URLs, images, etc.) for the sake of particular applications. A
standardized interpreter configuration file format helps to ensure that
different Push implementations can be configured to behave in the same
ways on the same inputs.

More information on Push, including the current language specifica
tion document, pointers to implementations of Push interpreters (some
in source code form), and related publications can be found online via
the Push project home page.^

3. Push Examples
This section contains just a few simple examples, to give the reader

a feel for the language and a few of its features that are convenient for
genetic and evolutionary computation. More examples, including test
suites, are available from the Push project home page.

http://hampshire.edu/lspector/push.html

64 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Function RANDOM-CODE (input: MAX-POINTS)

• Set ACTUAL-POINTS to a number between 1 and
MAX-POINTS, chosen randomly with a uniform distribu
tion.

• Return the result of RANDOM-CODE-WITH-SIZE called with
input ACTUAL-POINTS.

Function RANDOM-CODE-WITH-SIZE (input: POINTS)

• If POINTS is 1 then choose a random element of the in
struction set. If this is an ephemeral random constant
then return a randomly chosen value of the appropriate
type; otherwise return the chosen element.

• Otherwise set SIZES-THIS-LEVEL to the result of
DECOMPOSE called with both inputs (POINTS - 1). Re
turn a list containing the results, in random order,
of RANDOM-CODE-WITH-SIZE called with all inputs in
SIZES-THIS-LEVEL.

Function DECOMPOSE (inputs: NUMBER, MAX-PARTS)

• If NUMBER is 1 or MAX-PARTS is 1 then return a Hst con
taining NUMBER.

• Otherwise set THIS-PART to be a random number between
1 and (NUMBER - 1). Return a list containing THIS-PART
and all of the items in the result of DECOMPOSE with inputs
(NUMBER - THIS-PART) and (MAX-PARTS - 1)

Figure 6.2. The random code generation algorithm used both for the CODE.RAND
instruction and for generating random programs for other purposes, for example in
the initialization phase of PushGP.

Evolution of Complex Programs 65

First, some simple arithmetic:

(5 1.23 INTEGER.+ (4) INTEGER.- 5.67 FLOAT.*)

Execution of this code leaves the relevant stacks in the following states:

FLOAT STACK: (6.9741)
CODE STACK: ((5 1.23 INTEGER.+ (4) INTEGER.- 5.67

FLOAT.*))
INTEGER STACK: (1)

A few points to note about this example:

• Operations on integers and on floating point numbers can be inter
leaved; all instructions take their arguments from the appropriate
stacks and push their results onto the appropriate stacks.

• The call to INTEGER. + does nothing because there are not two integers
on the INTEGER stack when it is executed.

• The call to INTEGER. - subtracts 4 (which is on top of the stack) from
5 (which is second on the stack), not the other way around.

• The parentheses in "(4)" have no effect on the results; paren
theses serve mainly to group pieces of code for handling by code-
manipulation instructions.

Here is a tiny program that adds an integer pre-loaded onto the stack
to itself:

(INTEGER.DUP INTEGER.+)

When run with 5 pre-loaded onto the INTEGER stack, for example,
this leaves 10 on top of the stack. The following does the same thing in
a slightly more complicated way, pushing code onto the CODE stack and
then executing it:

(CODE.QUOTE (INTEGER.DUP INTEGER.+) CODE.DO)

The "doubling subroutine" used in this example can be reused in a
variety of ways. For example, one can use the CODE.DUP instruction to
make multiple copies of the subroutine for multiple executions. In the
following example the subroutine is duplicated twice, and then all three
copies are executed sequentially via three calls to CODE.DO. When run
with 5 pre-loaded onto the INTEGER stack this leaves 40 on top of the
stack.

66 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

(CODE.QUOTE (INTEGER.DUP INTEGER.+)
CODE.DUP CODE.DUP
CODE.DO CODE.DO CODE.DO)

Another mechanism for code reuse involves named code variables.
The following example is functionally equivalent to the one above, but
the doubling subroutine is stored in the variable DOUBLE using CODE. SET
and then retrieved multiple times using CODE.GET rather than being
duplicated using CODE.DUP:

(CODE.QUOTE (INTEGER.DUP INTEGER.+) DOUBLE CODE.SET
DOUBLE CODE.GET CODE.DO
DOUBLE CODE.GET CODE.DO
DOUBLE CODE.GET CODE.DO)

Although the named subroutine technique is more verbose than the
duplicated subroutine technique in this simple case, it may be convenient
for storage of code during other tasks that also use the CODE stack.

The following more complicated example uses code duplication and
also recursive calls (using CODE.DO in the subroutine) to compute the
factorial of an integer pre-loaded onto the INTEGER stack. This example
makes use of the fact that top-level calls to the interpreter push the
executed code onto the CODE stack before execution:

(CODE.QUOTE (INTEGER.POP 1)
CODE.QUOTE (CODE.DUP INTEGER.DUP 1 INTEGER.- CODE.DO

INTEGER.*)

INTEGER.DUP 2 INTEGER.< CODE.IF)

This works by first pushing two pieces of code (for the base case and
recursive case of the recursive factorial algorithm, respectively) onto the
CODE stack; these are pushed on top of the code for the full program,
which is pre-loaded onto the CODE stack by the top-level call to the
interpreter. The subsequent code compares the provided integer with 2
and, depending on the result of this (which will be found on the BOOLEAN
stack), executes one of the pushed pieces of code (and discards the other).
In the base case this will produce an answer of 1, while in the recursive
case it will recursively compute the factorial of one less than the provided
number, and multiply that result by the provided number. When called
with 5 pre-loaded on the INTEGER stack this leaves the relevant stacks
in the following states:

Evolution of Complex Programs 67

CODE STACK: ((CODE.QUOTE (INTEGER.POP 1)

CODE.QUOTE (CODE.DUP INTEGER.DUP 1
INTEGER.- CODE.DO INTEGER.*)

INTEGER.DUP 2 INTEGER.< CODE.IF))
BOOLEAN STACK: ()
INTEGER STACK: (120)

A simpler implementation of a Push factorial function can be pro
duced using the DO*COUNT iteration instruction, which is but one of
several other instructions that recursively invoke the interpreter on code
tha t is on the CODE stack. DO* is like DO except that it pops its code argu
ment before, rather than after, the code argument is executed. DO*TIMES
is like DO* except that it executes the popped code a number of times
that is taken from the INTEGER stack. DO*COUNT is hke DO*TIMES ex
cept tha t it also pushes an iteration counter (starting with 0) onto the
INTEGER stack prior to each iteration. With DO*COUNT an iterative fac
torial function can be expressed as follows:

(CODE.QUOTE (1 INTEGER.+ INTEGER.*)
1 INTEGER.SWAP CODE.DO*COUNT)

In all of the preceding examples, the pieces of code that were used as
subroutines were simply copied (on the stack or via variables) and re-
executed without alteration. But Push also includes a rich set of code-
manipulation instructions that allow programs to modify code in arbi
t rary ways prior to execution. These include several instructions mod
eled on Lisp's hst-manipulation functions (such as CODE. CAR, CODE. CDR,
and CODE.CONS), along with special-purpose, higher-level instructions
such as CODE. DISCREPANCY (which pushes a measure of the difference be
tween the top two CODE stack items onto the INTEGER stack), CODE.RAND
(which generates random code using the algorithm in Figure 6.2), and
others. As an example of the sort of dynamic code construction that is
possible, consider the following Push program for calculating 2" for a
positive value of n tha t is pre-loaded onto the INTEGER stack:

(CODE.QUOTE (INTEGER.DUP INTEGER.+) DOUBLE CODE.SET
CODE.QUOTE ()
CODE.QUOTE (DOUBLE CODE.GET CODE.APPEND)
CODE.DO*TIMES
1 CODE.DO)

The first line of this program defines the same DOUBLE subroutine
tha t was used in a previous example. Line 2 pushes an empty list onto
the CODE stack. Line 3 pushes a piece of code that says "append the

68 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

definition of DOUBLE to whatever is on top of the CODE stack." Line 4
pops the code from hne 3 and then executes it n times (since n was
pre-loaded onto the INTEGER stack). At the end of this step the top item
of the CODE stack will be a program consisting of n repeated instances
of "INTEGER.DUP INTEGER.+". For example, if 3 has been pre-loaded
onto the INTEGER stack then the top item on the CODE stack after the
execution of line 4 will be:

(INTEGER.DUP INTEGER.+
INTEGER.DUP INTEGER.+
INTEGER.DUP INTEGER.+)

The 5th and final line of the program pushes 1 onto the INTEGER
stack and then executes the program that was constructed by line 4.
This leaves 2" on top of the INTEGER stack. Although this is an unusual
and somewhat verbose way of calculating 2", it nonetheless illustrates
some of the ways in which Push programs can dynamically manipulate
and execute code.

4. PushGP: Genetic Programming with Push
PushGP is a genetic programming system that evolves Push programs.

It is a simple system in many respects, in part because it was initially
designed merely as a demonstration of the use of Push in a genetic pro
gramming system. Most of its algorithms and features are the same
as those used in the simplest traditional genetic programming systems,
and some, owing to efficiencies made possible by Push's minimalist syn
tax, are even simpler. Nonetheless, the use of Push as the language in
which evolving programs are expressed provides the following attractive
features:

• Multiple data types without constraints on code generation or ma
nipulation.

• Arbitrary modularity without constraints on code generation or ma
nipulation.

• Evolved module architecture with no extra machinery.

• Support for explicit, arbitrary recursion.

• Support for code self-development and, via extensions such as Push-
pop, the evolution of diversifying reproduction procedures (see Sec
tion 6.5).

Evolution of Complex Programs 69

PushGP is described in detail in documents available from the Push
project's onhne web page.'^ Here we describe only its basic structure and
note a few aspects of its performance.

A PushGP run begins with the generation of a population of random
programs, using the algorithm shown in Figure 6.2. Each program in
the population is then evaluated for fitness with respect to the target
problem. If a solution to the target problem has been found then it is
printed and the system halts. Otherwise a new generation of programs
is produced through the application of genetic operators to programs in
the current generation that are selected via fitness tournaments. These
are then in turn evaluated for fitness, and the process continues until
a solution is found or until a pre-established generation limit has been
reached.

The genetic operators that are used in PushGP generally include ex
act reproduction and simple variants of the mutation and crossover op
erators that were described in Section 5.3, "liberalized" somewhat to
suit the more permissive syntax of Push. Additional operators, such
as an ADD operator that inserts a new subprogram within the parent
and a REMOVE operator that deletes a subprogram from the parent, are
also often used; these have no direct analogues in traditional genetic
programming because such insertions and deletions would, if not per
formed carefully, produce programs that violate the argument-number
requirements of Lisp-like representations. Alternative operators, includ
ing some designed to combat run-away code growth ("bloat"), have also
been explored (Robinson, 2001; Crawford-Marks and Spector, 2002). In
addition, an IMMIGRATION operator, which copies programs from disk
files, is sometimes used to facilitate the use of multiple-deme evolution
architectures across networks of workstations.

There is little remarkable about the overall PushGP algorithm itself;
for the most part it is just a re-implementation of traditional genetic
programming. But the fact that the underlying program representa
tion is Push, which supports multi-type programs and complex control
structures via code self-manipulation, means that this simple system
can evolve multi-type, modular, recursive, and self-developing programs
with no additional mechanisms.

The discerning reader will note that it is one thing to say that the
Push representation "supports" various capabilities, and another thing
entirely to demonstrate that programs with these capabilities actually
do evolve in practice. It is yet another thing to demonstrate, for ex-

'http://hampshire.edu/lspector/push.html

70 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

ample, that the problem-solving advantages of modularization schemes
such as ADFs are also obtained from the "emergent modularization"
process that can occur during a PushGP run. Such demonstrations are
important, but beyond the scope of this book. The fact that many of
the results in Chapter 8 were produced with PushGP provides some
anecdotal evidence of PushGP's efficacy, but it does not constitute a
systematic assessment. Such assessments have been published elsewhere
demonstrating, for example, "scale up" properties better than those
of genetic programming with ADFs on parity problems (Spector and
Robinson, 2002a), and modularity-based robustness properties similar
to those provided by genetic programming with ADFs on a problem in
a dynamic environment (Spector and Robinson, 2002b).

PushGP often finds unexpected ways to leverage the code manipu
lation and multi-type facilities of Push to produce unusual (and "un-
human-like") solutions. For example, while PushGP routinely produces
recursive code, the code that is produced rarely follows the neat out
lines recommended in programming textbooks, and considerable effort
is sometimes required to understand the ways in which evolved Push
programs manipulate and execute code to achieve their results. In one
example, presented in (Spector and Robinson, 2002a), a program evolved
to solve the ODD problem, of determining whether its input is or is not
an odd number, did so by using the provided number as an index into
the program itself, and by evaluating a property of the code found at
that index. This was a clever (and 100% correct) solution, but not one
that a human programmer would be likely to devise.

PushGP is "self-adaptive" insofar as the number and architecture of
modules to be used in a solution, along with the selection of data types
to be employed, are determined dynamically and automatically as part
of the evolutionary process. To some extent the highly redundant na
ture of Push syntax — that is, the facts that parentheses can often be
added or deleted and that instruction sequences can often be reordered,
all without changing the function of a program — allows for other forms
of (representational) self-adaptation during a run. Many aspects of the
system, however, must be specified or adjusted manually. For exam
ple, PushGP uses hand-designed mutation and crossover algorithms and
hand-specified rates of application for each of the genetic operators. Be
yond PushGP, the code-manipulation features of Push can support more
radically self-adaptive forms of genetic and evolutionary computation, in
which more aspects of the system are under evolutionary control. Some
of these self-adaptive extensions are described in the following section.

Evolution of Complex Programs 71

5. Autoconstructive Evolution
Push allows one to integrate, in a syntactically uniform way, the ma

nipulation of code with the manipulation of problem-oriented data types
(integers, floating point numbers, matrices, etc.). As shown in the previ
ous section, this capability can be used to support the evolution of pro
grams that use modules and novel control structures. But it can also be
used, more ambitiously, to bring more of the evolutionary process under
evolutionary control. It be used in this way because a genetic and evo
lutionary computation system is itself made of code, some of which may
also be permitted to evolve. This section briefly describes some of the
ways in which these ideas can be applied with Push. Note, however, that
the relatively standard PushGP system described in the previous section
has thus far proven more useful in problem-solving contexts (including
automatic quantum computer programming, as described in Chapter 8)
than have such "meta-evolutionary'" systems. But it was to support
such systems that Push was originally designed, and these systems may,
by virtue of their self-adaptive capabilities, produce even more powerful
problem-solving technologies in the future.

Several previous genetic and evolutionary computation systems have
incorporated some form of self-adaptation such as the genetic encoding
of mutation rates. In the genetic programming literature more specifi
cally, several "Meta-GP" systems have been described in which the rates
and also the algorithms for mutation are genetically encoded and there
fore subject to evolution (Schmidhuber, 1987; Edmonds, 2001). In place
of traditional genetic operators these systems use co-evolving popula
tions of program-manipulation programs to produce the offspring of the
individuals in the primary (problem-solving) population.

An "autoconstructive evolution" system is a genetic and evolutionary
computation system in which the evolving problem-solving programs are
themselves responsible for the production (and diversification) of their
own oifspring, just as biological organisms are responsible both for "mak
ing a living" in their environments and for producing their own offspring
(Spector, 2001; Spector and Robinson, 2002a). Since the means by which
programs create their offspring are embedded within the evolving pro
grams themselves, and are therefore subject to variation and natural
selection, significant aspects of the evolutionary process thereby come
under evolutionary control. As an autoconstructive evolution system
runs, the evolutionary process itself, insofar as it is implemented by
the reproductive behaviors of the evolving programs, is constructed by
evolution.

72 A UTOMATIC Q UANTUM COMPUTER PROGRAMMING

Autoconstructive evolution can be accomplished with Push in a va
riety of ways. The first Push-based autoconstructive evolution system,
Pushpop, was derived via minimal changes to PushGP. An additional
code data type, called CHILD, was added that supported all of the stan
dard code-manipulation instructions except those that cause recursive
execution (like DO, DO*, and IF). At the end of each fitness test any
code left on the top of the CHILD stack became a potential child, stored
with the parent (which could then be considered to be "pregnant") until
the selection phase. In the selection phase, after all programs in the
population had been evaluated for fitness (and had produced their po
tential children), fitness tournaments between the parents determined
from which parents children would be taken for inclusion in the next
generation.

To avoid the evolutionary stagnation that would result from programs
that produced only exact clones of themselves, a "no cloning" rule was
imposed; children were not added to the subsequent generation if they
were duplicates either of their parent or of other children that had al
ready been added.^ Aside from the prohibition against clones, programs
could produce their children in any manner that was expressible in Push
code, including standard mutation and crossover procedures as special
cases. To support sexual recombination procedures (such as crossover),
special instructions were provided to access other individuals in the pop
ulation (selected by distance, parent's fitness, or program contents) and
to push their programs onto the current CODE stack. Note that code
could be "borrowed" from more than one mate, enabling complex forms
of multi-way recombination. Because this "borrowed code" could be
used not only for the production of children, but could also be executed
by the parent and thereby contribute to the problem-solving behavior of
the parent, the programs in a Pushpop population could become tightly
interdependent.

Pushpop has been demonstrated to solve simple symbohc regression
problems, but its primary utility to date has been in the study of self-
adaptive evolutionary processes themselves. For example, it has been
used to explore relations between diversification and adaptation, showing
that adaptive populations of Pushpop programs are reliably more diverse
than required by the "no cloning" rule (Spector, 2002).

It is possible to take additional steps in this self-adaptive direction,
for example to allow reproductive timing to be controlled by individual
programs (and hence by evolution), rather than by the hand-designed.

' 'There is no relation between Pushpop's "no cloning" rule and the "no cloning theorem" of
quantum information theory.

Evolution of Complex Programs 73

generation-based schemes of both PushGP and Pushpop. A system
called SWARMEVOLVE 2.0 does this, although in a rather different archi
tectural context. SWARMEVOLVE 2.0 is an autoconstructive evolution
system in which flying agents evolve in a 3 D virtual world that is imple
mented in the BREVE simulation environment (Klein, 2002).^ These
agents decide on their own when, where, and how to produce children
(using a SPAWN instruction), and many more features of the evolution
ary system are thereby under evolutionary control. This system has
been used primarily to study evolutionary dynamics; for example, it has
served as a framework for exploring the evolution of collective behaviors
(Spector and Klein, 2002; Spector et al., 2003a; Spector et al., in press).

The utility of autoconstructive evolution systems for automatic quan
tum computer programming is currently unknown. One may speculate,
however, that such systems will eventually out-perform traditional ge
netic programming systems by adapting their reproductive mechanisms
and their representations to their problem environments.

^BREVE is available from ht tp : / /www.spider land.org/breve.

Chapter 7

E V O L U T I O N O F Q U A N T U M P R O G R A M S

This chapter presents specific strategies for the evolution of quantum
programs using the technologies presented earlier in this book. The
application of these strategies to particular problems is documented in
Chapter 8. Related strategies have also been developed and applied
by other researchers (for example Williams and Gray, 1999; Surkan and
Khuskivadze, 2001; Leier and Banzhaf, 2003a; Leier and Banzhaf, 2003b;
Perkowski et al., 2003; Massey et al., 2004); while some of these efforts
are cited in the following discussion, the focus here is on the strategies
that have been developed by the author.

1. Program Representations
A genetic programming system can be thought of as a search proce

dure that searches the "space" of computer programs to find a program
that meets some particular, usually behavioral, criterion. The search
space is normally infinite, meaning that no finite search procedure can
explore it completely. If one considers programs with real-valued param
eters (like many quantum programs) then the search space is uncount-
ably infinite, even for programs of finite size. Even when one substitutes
limited-precision floating point numbers for true real numbers, the num
ber of programs of any nontrivial finite size is astronomically large. It is
therefore important for the designers of genetic programming systems to
carefully consider the subset of the space that will be examined by their

76 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

methods. The membership of this subset is influenced by many factors
ranging from program representation to the choice of genetic operators.

In traditional genetic programming the "chromosomes" upon which
the Darwinian processes of variation and natural selection act are the
programs themselves. That is, one determines the behavior of an individ
ual with a particular chromosome by executing the chromosome, which
is in fact the whole of the individual. By contrast, as described in Chap
ter 6, in developmental approaches the execution of the chromosomal
program produces another program which is then executed to produce
the problem-solving behavior. Both the direct, chromosomal encoding
and the indirect, developmental encoding of quantum programs can be
used for quantum program evolution.

In either case one must first determine the forms that the evolved
and/or developed quantum program will take. For some problems one
might have pre-established constraints that can be used to design effec
tive program representations. For example, if one knew that the program
that would solve a particular problem takes the form of a single-qubit
gate then one could represent the program using the four real-valued
parameters of a U2 gate (see Chapter 2). One could then attempt to
evolve the problem-solving single-gate program by using chromosomes
consisting of the four real-valued parameters, and genetic operators that
operate on strings of four numbers. Alternatively, one could use chro
mosomes of some more elaborate form such as programs which, when
executed, set the values of the four parameters.

For most interesting problems we seek programs that operate on many
qubits. Although it would be possible in principle to represent these
larger quantum programs using only numerical parameters, extending
the idea described in the previous paragraph, the number of parameters
grows rapidly as the size of the program increases. Worse, the meanings
of the large number of parameters become difficult for humans to discern,
so that the results of an evolutionary process producing sets of such
parameters would be difficult to analyze or extend. For these reasons
it often makes more sense to represent quantum programs as sequences
of well-understood quantum gates that operate on small numbers of
qubits. The QGAME representation for quantum programs, described
in Chapter 3, was designed for this purpose.

Once the representational scheme for the quantum programs has been
determined — and for the remainder of this chapter it will be assumed
that quantum programs take the form of QGAME programs — one
still faces choices with respect to chromosome representation. One pos
sibility is to use the QGAME programs themselves as chromosomes.
This is essentially the technique that was described as "stackless hnear

Evolution of Quantum Programs 77

genome genetic programming" with "encapsulated gates" in (Spector
et al., 1999a; Spector et al., 1999b), and it is similar to the techniques
that have been used by several other researchers (Williams and Gray,
1999; Leier and Banzhaf, 2003a; Massey et al., 2004). Because QGAME
programs are syntactically unconstrained — that is, any re-ordering of
the instruction expressions in a QGAME program yields another syn
tactically well-formed QGAME program — simple, "blind" genetic op
erators can be used in conjunction with these chromosomes. Several of
the results presented in Chapter 8 were first obtained using this tech
nique.

There are several reasons, however, that one might wish to use a more
expressive, and in fact developmental, chromosome representation. For
example, one may expect that the quantum programs that are solutions
to some problems will include multiple instances of the same parameter
value (for example, as a parameter to U-THETA)̂, and it would be de
sirable to allow a single instance of such a parameter in a chromosome
to "translate" into several instances of the parameter in the problem-
solving quantum program. In other cases the problem itself may have
parameters (for example, a number of times that an oracle gate may be
called), and it would be desirable to allow this parameter to directly in
fluence the construction of the problem-solving quantum program. Many
important problems have this property because they involve the discov
ery of scalable quantum programs that can solve problems of various
sizes. One strategy for solving these problems is to provide a size pa
rameter that influences the form of the resulting quantum program.^
Finally, in some cases it may be useful to allow components of evolved
quantum programs to be produced via computational manipulations of
other components of the same programs; for example, it may be useful
to allow the angle of a U-THETA gate to be obtained from the difî erence
between the angles two other U-THETA gates.

A developmental genetic programming approach, as described in Chap
ter 6, can provide all of these capabilities. In this approach the chromo
somal programs are expressed in some classical (non-quantum) program
ming language and may take various forms including Lisp-style program
trees or stack-based instruction sequences. These programs, when exe
cuted, consiruci the problem-solving quantum program.'^ The chromoso
mal programs may include both classical instructions, which manipulate

^See Chapter 2 for a description of QGAME instructions and their associated matrices.
^An example of the evolution of a scalable quantum program is presented in Chapter 8.
^A similar approach is explored in (Massey et al., 2004).

78 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

standard data types such as numbers and Booleans, and instructions
that add components to a developing QGAME program. Before the
execution of the chromosomal program one initializes an "embryo" that
consists of a minimal QGAME program; this embryo may be a com
pletely empty program or it may contain, for example, instructions that
initialize the states of certain qubits or conduct final measurements. The
execution of a quantum-component-adding instruction in the chromoso
mal program augments the embryo with a specific QGAME instruction
expression. These instruction expressions are typically added to the end
of the developing QGAME program, before any pre-specified final mea
surement gates.

The use of Push and PushGP (as described in Chapter 6) for such a
developmental approach provides several advantages. For example, the
ease with which multiple data types can be integrated into Push allows
one to add a QGATE type that supports complex evolved strategies for
quantum program development. Data of this type, as implemented in
the version of PushGP that was used to produce several of the results in
Chapter 8, consists of fully expanded unitary matrices (for quantum sys
tems of a pre-specified size) along with "history" specifications that show
how the matrices were constructed from primitive gate matrices. Most
of the QGATE instructions expand a particular matrix to the requisite
size, taking the arguments that they need to do so from the appropriate
stacks (and taking qubit indices modulo the number of qubits), and push
the resulting QGATE structure onto the QGATE stack.'* For example, the
QGATE.HADAMARD instruction, when executed in the context of a 2-qubit
quantum computer and with 0 on the INTEGER stack, pushes a struc
ture with the following unitary matrix (in which all numbers have been
rounded to 4 decimal places for readibilty) onto the QGATE stack:

((0.7071 0.7071 0.0000 0.0000)
(0.7071 -0.7071 0.0000 0.0000)
(0.0000 0.0000 0.7071 0.7071)
(0.0000 0.0000 0.7071 -0.7071))

The history attached to this matrix is simply (HARAMARD 0). The sub
sequent execution of a QGATE.GATE instruction would add a QGAME
instruction (in this case one that uses QGAME's MATRIX-GATE con
struction with the matrix specified above) to the developing QGAME
program.

*QGATE instructions corresponding to non-unitary QGAME program elements such as
MEASURE, END, and HALT, along with instructions that produce oracle calls, bypass the QGATE
stack and directly augment the developing QGAME program.

Evolution of Quantum Programs 79

Before the execution of QGATE.GATE, however, it is possible for the
Push program to store and to transform the unitary matrix. For exam
ple, consider the following Push program fragment:

0 QGATE.HADAMARD 1 0.23 QGATE.U-THETA
QGATE.COMPOSE 0 1 QGATE.CNOT QGATE.COMPOSE
QGATE.TRANSPOSE

This code first pushes the same matrix that was used in the previous
example onto the QGATE stack. It then pushes a U-THETA matrix (applied
to qubit 1, with angle 0.23) on top of the HADAMARD matrix. The sub
sequent QGATE.COMPOSE instruction pops both matrices from the stack
and replaces them with their composition (and a history that reflects the
origins of the composition).^ The next three items push a CNOT matrix
(with qubit 0 as the control and qubit 1 as the target), and the subse
quent QGATE. COMPOSE instruction composes the previously constructed
matrix and the CNOT. The call to QGATE. TRANSPOSE transposes the result
of the final composition, producing the following matrix (rounded):

((0.0688 0.0688 -0.0161 -0.0161)
(0.0161 -0.0161 0.0688 -0.0688)
(0.0161 0.0161 0.0688 0.0688)
(0.0688 -0.0688 -0.0161 0.0161))

This matrix could then be added to a developing QGAME program
by means of a call to QGATE. GATE, although it (or its components) could
also be duplicated via QGATE. DUP or stored in a named variable. It could
thereby be used multiple times, with or without further manipulation, in
the fully developed quantum program. The code-manipulation features
of Push and PushGP that allow for the emergence of modules and other
control structures during evolution can leverage this manipulation of the
QGATE stack to ease the evolution of quantum programs with complex,
modular structures.

^Because computer representations of quantum gates often include small round-off errors
it is important to check for unitarity when composing large numbers of gates; otherwise
the accumulated round-off errors may significantly violate the unitarity constraint and the
transformations specified by the composed gate may correspond to physically impossible op
erations. It is also sometimes useful to limit the amount of composition for other reasons, for
example to facilitate human analysis; to this end the gate composition procedures supported
by QGAME, and utilized by Push instructions like QGATE.COMPOSE, will refuse to compose
gates if their combined histories exceed a pre-specified nesting depth.

80 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

2. Fitness
The genetic programming process requires all individuals in the evolv

ing population to be assessed for fitness each generation. How might this
fitness assessment be performed for the quantum programs that are pro
duced by the developmental processes described in the previous section?

In some cases one might be able to use special-purpose fitness mea
sures that avoid the need for actual quantum computer simulation. For
example, for some problems that use no non-unitary program elements
(such as measurements), it may be possible to build the composite uni
tary matrix represented by an entire QGAME program and to directly
assess features of this composite matrix that are relevant to the fitness of
the program for the problem in question. This was the approach taken
by Colin Williams and Alexander Gray in their work using genetic pro
gramming to find decompositions of pre-specified unitary matrices; they
built the composite matrices and compared them, element by element,
with the target matrix (Wilhams and Gray, 1999). In most cases, how
ever, this approach is impractical, either because the problem calls for
non-unitary elements, or because the relevant features of the composite
matrix are not easy to assess, or because the use of oracle gates would
mandate the construction of a large number of composite matrices. For
these reasons it is often simpler to simulate the execution of the program
on a quantum computer, and to compute the program's fitness from the
simulation output.

As discussed in Chapter 2, a quantum computer running a particular
quantum program may produce different outputs, each with a particular
probability, from successive but otherwise identical runs. If we were to
use a real quantum computer to assess fitness then we would only get
one output from each run, and we would have to run the program many
times to determine the probabilities for each output. With quantum
computer simulators such as QGAME, however, we receive a list of
all possible outputs and their associated probabilities from a single run
(albeit from a run that requires exponential computational resources).
All of this information about possible outputs and their probabilities can
be used in a fitness function for genetic programming.

The most straightforward way to use this information in a fitness
function is to use the probability of error directly as a fitness value, with
a fitness of zero indicating a perfect solution. This is similar to the use
of an error value as a fitness value in traditional symbolic regression
problems (as described in Chapter 5), although the probability of error
is here being used in place of an actual numerical error. For a problem
that has multiple fitness cases we might calculate fitness as the sum or
average of the individual probabilities of error, or, depending on the

Evolution of Quantum Programs 81

requirements of the problem, as the maximum probabiHty of error for
any particular fitness case.

Probability of error is a useful measure of quantum program quality,
but it is often insufficient, by itself, as a fitness measure for quantum
program evolution. This is because it is often extremely easy to produce
a program with a 50% probability of error that has no resemblance to
a true solution. This can often be done simply by rotating the output
qubits to equal superpositions of 0 and 1 (as might be done, for exam
ple, with a HADAMARD gate). Programs that are "better" than this, in the
sense that they contain more components of true solutions, may have a
lower probability of error on some fitness cases but a higher probability
of error on others, and their average probabilities of error may also be
higher than 50%. As a consequence, programs that achieve a 50% prob
ability of error often form a troublesome local minimum in the search
space produced by a fitness function that considers only probability of
error.

For this reason it is often useful to consider, in addition to the total,
average, or maximum probability of error, a measure of the number of
fitness cases for which the program is more likely than not to produce
the wrong answer. This measure will be called the number of "misses"
here.^ To ensure that one counts as misses even those cases that only dip
below 50% probability of error because of round-ofi' errors, one should
generally make the threshold for a miss somewhat lower; in the examples
presented in Chapter 8 the threshold used was always 48%. As described
in Chapter 2, QGAME's TEST-QUANTUM-PROGRAM function returns the
number of misses along with error probability and oracle statistics.

One might combine probability of error with misses to produce an
evolution-guiding fitness function in a variety of ways. In many cases
a "lexicographic" combination, in which the probability of error serves
only to distinguish among programs with an identical number of misses,
can be effective. For example, suppose we are conducting a run with four
fitness cases, and that we use / = 10m-|- e as the fitness function, where
m is the number of misses and e is the maximum probability of error on
any one case. The first term of the sum will be one of 0, 10, 20, 30, or
40, while the second term will be a real number less than or equal to 1.
As previously, lower fitness values are considered better. The result will
be that a program that achieves a lower number of misses will always
be considered better than a program that achieves a higher number of
misses. When comparing two programs that achieve the same number

®This usage should not be confused with John Koza's use of the term "hits," which is only
loosely (and inversely) analogous (Koza, 1992).

82 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

of misses the one with the lower maximum probabihty of error will be
considered better.

Many other combination methods are possible, including some stud
ied for other kinds of genetic programming problems and for "multi-
objective optimization problems" more generally (see, for example, Ekart
and Nemeth, 2001). In addition, certain problems might call for unique
manipulations of error probabilities and counts of misses. For exam
ple, for some problems the coarse, discrete nature of the misses count
may produce problematic "plateaus" in the fitness landscape; that is, it
might be necessary to temporarily explore programs with higher num
bers of misses (but perhaps lower probability of error) in order to make
progress, but this exploration may be made impossible by the "all or
nothing" quality of each "miss," combined with lexicographic combi
nation of misses and probability of error. In such cases one might try
"smoothing" the misses count (for example, with a sigmoid function cen
tered on 48%) or transforming misses and/or error probabilities in some
other way. There are no definitive guidelines on how best to do this for
any particular problem, but analysis of failed runs can sometimes lead
to interventions that eventually allow the system to discover a solution.

Additional fitness components may be included for particular prob
lems. For some problems it may make sense to allow quantum programs
to include multiple calls to an oracle gate, and it may be desirable to
minimize the number of such calls by the end of the run; for these prob
lems it might be useful to combine the number of oracle calls with other
values in the fitness function. One might also wish to minimize the total
number of gates; this measure could be included in the fitness function
as a sort of "parsimony" component (Koza, 1992). It might also be use
ful in some cases to include measures of quantum mechanical properties
such as entanglement in the fitness function, either because they are di
rectly relevant to the problem being solved or because they are expected
to have some particular values in solutions.

3. Operators and Refinements
As described in the previous sections, the application of genetic pro

graming to the task of automatic quantum computer programming calls
for certain design decisions to be made with respect to program represen
tations and fitness functions. Such decisions are among the preparatory
steps that must be taken in any application of genetic programming.
This section briefly describes a few additional refinements which have
been employed by the author in the evolution of certain quantum pro
grams, and which may also be useful in other situations.

Evolution of Quantum Programs 83

Some of these refinements concern the genetic operators used to mu
tate and recombine the chromosomal programs. While the standard
genetic operators provided with PushGP and with other genetic pro
gramming systems will suffice for many problems, additional operators
that are specialized for quantum program evolution may also be useful.
For example, because small changes to angles used in rotation gates of
ten result in significant changes in the behavior of the programs within
which they are embedded, it may be useful to include a "number muta
tion" operator that adds small random numbers (generated, perhaps, via
Gaussian noise) to the floating-point literals in a Push program. Such
operators have been used previously in other forms of genetic and evo
lutionary computation (see, for example, Fogel and Atmar, 1990), but
they are not typically used in genetic programming systems.

The compositional properties of unitary gates suggest additional ge
netic operator refinements that are uniquely applicable to quantum pro
gram evolution. In approaches that use QGAME programs or similar
representations as chromosomes one can use a "gate compression" op
erator which composes a sequence of unitary gates into a single gate,
as described in conjunction with the QGATE.COMPOSE Push instruction
above. This compresses a program, or a segment of a program, and pro
duces in its place a complex single gate, functionally equivalent to the
entire segment, which may later be further compressed and/or passed
to other programs via recombination. This scheme is similar in some
respects to techniques developed for building libraries of subroutines in
traditional genetic programming (Koza, 1990; Koza, 1992; Angeline and
Pollack, 1992), although the compression of multiple gates into a single
unitary matrix (which can be simulated with no greater cost than any
other single matrix) has no direct analogue in most classical systems.
As in all applications of unitary matrix composition one should be care
ful to avoid the accumulation of round-off errors that would produce
non-unitary (and hence physically impossible) results.

In developmental approaches, gate compression cannot be performed
directly as a genetic operator, because the chromosome does not itself
contain sequences of gates, but rather code that produces sequences of
gates when executed. However, a related process of "matrix literaliza-
tion" may sometimes be useful.

Matrix literalization takes place after fitness testing and is applied
to some small number of high-performing individuals. The chromoso
mal programs of these individuals are re-executed to produce QGAME
programs, and then gate compression is performed on the QGAME
programs to produce matrices that compute significant segments of the
more-successful quantum programs. These compressed matrices are then

84 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

made into QGATE literals that may later be included, via mutations, in
other programs in the PushGP population. Over the course of evolu
tion the population may come to include matrix literals, which may be
come hierarchically composed, that represent useful complex operations
distilled into compact subroutine-like modules. Examples of matrices
produced by this process are presented in Chapter 8.

Several genetic programming initialization steps may also be refined
for application to problems in quantum computing, to increase the quan
tity of useful program structures in the initial population. For example,
in most quantum oracle problems one knows in advance that a quantum
program containing no oracle calls will be useless. One might therefore
arrange for all randomly generated programs to include instructions that
generate oracle gates; this might be accomplished either by discarding
and regenerating any programs without the relevant calls, or by insert
ing such calls into all programs after random generation. Similarly, for
such problems one can avoid wasting time during fitness evaluation by
skipping the evaluation of any "clearly useless" programs; this can be ac
complished at the level of the chromosomal program (for example by re
fusing to evaluate any Push program that contains no oracle-generating
instructions), at the level of the quantum program (for example by re
fusing to evaluate any QGAME program that does not contain oracle
gates), or at both levels. In all such cases the useless program should
then be assigned a fitness penalty that ensures that it will lose all fitness
tournaments to any programs that are not obviously useless.

Other initialization refinements concern the selection of constants and
instructions that are available for inclusion in random programs. For
example, because many known quantum algorithms involve the use of
U-THETA rotations using values of 6 that are ratios of vr, it may in some
cases be beneficial to use a specialized random floating point number
generator that produces all or mostly numbers of this form. The selection
of instructions can influence the performance of the system in many and
complex ways, and although it is difficult to predict these influences in
general, it may sometimes be possible to translate the requirements of
a particular problem into a selection of instructions that improves the
chances of finding a solution.

A final set of initiahzation refinements concerns the "embryo" from
which evolved quantum programs develop. Various kinds of information
that the developer might have about the desired quantum program can
be included in this embryo, eliminating the need for evolution to re
discover this information. For example, in some cases one might know

Evolution of Quantum Programs 85

that solutions will involve the generation of an equal superposition of 0
and 1 for some set of qubits prior to the execution of the main part of
the program; in such cases one might add a sequence of HADAMARD gates
to the embryo, eliminating the need for these gates to be generated by
the execution of the chromosomal program.

A few additional refinements concern the developmental process by
which the problem-solving QGAME programs are produced. For evolv
ing scalable quantum programs it is natural to include size-related in
structions in the instruction set; for example, an example shown in the
next chapter was evolved using a NUMQUBITS instruction that pushes the
number of qubits in the quantum system onto the INTEGER stack. This
instruction is used in the evolved Push program to control the develop
mental process, producing a larger QGAME program for larger numbers
of qubits. Depending on the problem, one might want to provide other
mechanisms to facilitate control of development; for example, it may
sometimes be useful to include an iteration structure that iterates once
for each qubit (or for each input qubit or for each output qubit), elim
inating the need to combine independent calls to NUMQUBITS and the
generic iteration structures.

Finally, in some cases it is useful to refine the developmental process
by prohibiting certain additions to the developing quantum program.
For example, in some of the problems presented in the next chapter the
task is to determine whether information can be communicated between
two sets of qubits by means of a single, particular gate that connects
the two sets. The only quantum programs in which we are interested for
this problem are those that connect the two sets of qubits with one and
only one call to the particular gate under investigation. To produce such
programs, and only such programs, we refine the developmental process
to ignore all calls to add gates that would violate the communication
restrictions. Other types of problems may involve diflFerent restrictions
that can be handled in a similar way.

Chapter 8

EVOLVED Q U A N T U M P R O G R A M S

This chapter presents examples of the automatic production of quan
tum computer programs via genetic programming. These examples
demonstrate how the techniques described in previous chapters can be
apphed to specific problems. They also provide evidence for the claim
that scientifically significant results can be produced via automatic quan
tum computer programming.

The examples that are presented here are solutions to two types of
problems. We call problems of the first type "Boolean oracle analysis"
problems because they require us to determine some property of a pro
vided Boolean quantum gate. This gate is often called an "oracle" or
a "black box" because we are given little a priori information about
the gate's construction or behavior. All of these oracles are "Boolean"
in the sense that they act by inverting a particular single output qubit
when provided with specified combinations of inputs. We are allowed to
use the oracle gate, but we are not told in advance which combinations
of inputs will produce the inversion — that is what a solution to the
problem will tell us. Sometimes we may be "promised" that the oracle
is one of some subset of the possible Boolean oracles of the given size;
in these cases the problem is to determine which member of the subset
we have been given.

An example of a Boolean oracle analysis problem is Grover's database
search problem, which was discussed earlier in Chapter 2. In Grover's
problem the oracle represents a database containing a single "marked"
item. We are promised that the oracle inverts its output for a single com
bination of inputs, which may be considered the address of the marked
item. Our task is to determine which of the possible inputs it is for
which the inversion is performed.

88 AUTOMATIC QUANTUM COMPUTER PROCRAMMING

Other examples presented below — the Deutsch-Jozsa (XOR) prob
lem, the Majority-ON problem, and the OR and AND/OR problems —
are similar except that the "promises" that we are given about the ora
cles and the features of the oracles that we are asked to determine vary
from problem to problem. For the Majority-ON problem we attempt
not just to solve a single instance of the problem but rather to produce
a scaling program that can solve instances of this problem of any size.

Several of these Boolean oracle analysis problems have practical sig
nificance because their solutions directly enable us to solve difficult real-
world problems more rapidly than is possible on classical computers;
for example, Grover's algorithm can be used to provide a quadratic
speedup for a host of problems that involve search through unstructured
databases.

The second type of problem considered here concerns the classical
communication capacity of certain specific quantum gates. The prob
lems of this type that are presented derive from recent research on the
tradeoffs between classical communication and entanglement-generating
powers of certain unitary transformations (Spector and Bernstein, 2003;
Bennett et al., 2004). In these problems the task is to transfer informa
tion from one set of qubits to another, without any direct connection
between the two sets of qubits aside from a single instance of the gate
under investigation. These problems are important not because they
have any direct practical application — the gates under consideration
do not generally correspond to any real-world communication channels
— but rather because their solutions contribute to the development of
the fundamental theory of quantum communication and computation.

Sections 8.1 through 8.5 describe specific problems, specific genetic
programming techniques that have been used to solve them, and inter
esting features of evolved solutions. Particular emphasis is given to the
author's techniques described in Chapters 6 and 7 as they have been
applied in specific cases. Section 8.6 discusses the general significance of
the results presented in Sections 8.1 through 8.5, both with respect to
the theory of quantum computation and with respect to techniques for
automatic quantum computer programming.

1. The 1-bit Deutsch-Jozsa (XOR) Problem
In the Deutsch-Jozsa problem (Deutsch and Jozsa, 1992) we are given

an oracle with some number of input qubits and one output qubit. We
are told that the oracle's function is to invert its output qubit in certain
situations (that is, with certain Boolean inputs), and we are promised
that the oracle is either uniform, meaning that it either always or never
inverts its output qubit, or balanced, meaning that it will invert and

Evolved Quantum Programs 89

Table 8.1. Push interpreter parameters for the example run of PushGP on the
Deutsch-Jozsa (XOR) problem. Documentation of Push parameters and instructions
is available from h t tp : / /hampsh i re .edu / l spec to r /push .h tml .

MAX-RANDOM-FLOAT
MIN-RANDOM-FLOAT

MAX-RANDOM-INTEGER
MIN-RANDOM-INTEGER

EVALPUSH-LIMIT
MAX-POINTS-IN-RANDOM-EXPRESSIONS

MAX-POINTS-IN-PROGRAM
MAX-ORACLE-CALLS

Types
Instructions

1.0
-1.0
10
-10
150
50
100
1
QGATE, FLOAT, CODE, BOOLEAN,
(see Table 8.3)

INTEGER

not invert equal numbers of times if called on all possible (Boolean)
inputs. The task is to determine whether a given oracle is uniform or
balanced. Classically one would have to query the oracle several times
(up to one more than half the number of possible inputs) to be certain
of the answer, but quantum computers can do better. Although this
problem is not clearly related to any problems of practical significance,
it is of historical significance because it was one of the first problems to
be shown to be solvable with a better-than-classical quantum algorithm.

The use of genetic programming to re-discover the quantum program
that solves the 2-bit version of this problem (which uses an oracle with
4 possible inputs) is documented in (Spector et al., 1998) and (Spector
et al., 1999b). 1 Here we document the use of genetic programming to
re-discover the quantum program that solves the simpler 1-bit version
of this problem. In this version of the problem the oracle has only 1
input qubit and hence two possible inputs (0 and 1). The oracle is
uniform, as in the general case, if it either always or never inverts its
output qubit. It is balanced in all other cases, in which it inverts its
output qubit for one but not the other of its 2 possible inputs. We are
therefore asked to determine the truth of the logical formula IQ © Ii ,
where IQ means "inverts with input 0," Ii means "inverts with input 1,"
and © is the exclusive OR (XOR) function. The classical version of this
problem clearly requires two oracle queries; after a query with one input
it will not be known whether the result of a query with the other input
will match (meaning that the oracle is uniform) or not (meaning that

•'in these references the Deutsch-Jozsa problem is referred to as Deutsch's "early promise"
problem.

90 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

the oracle is balanced). By contrast a quantum program can solve this
problem with a single query.

This problem was easily solved using PushGP with the parameters
shown in Tables 8.1 and 8.2 and the instruction set shown in Table 8.3,
running under the O P E N M C L open source Common Lisp system^ on a
1.33 GHz Apple Macintosh laptop computer with a PowerPC G4 chip.
The complete source code for this run, along with the output log, is
available online.^

The fitness of a Push program was assessed by running it once to
produce a QGAME program (which began with the empty "embryo"
corresponding to the gate array shown in Figure 8.1), and by testing the
QGAME program with the TEST-QUANTUM-PROGRAM function described
in Chapter 3. The maximum permitted number of oracle calls per case
(and therefore the first argument in all calls to LIMITED-ORACLE) was
1, so that only the first oracle call in any developed QGAME program
would have any effect. The inputs provided to TEST-QUANTUM-PROGRAM
were:

• PROGRAM: The developmental result of executing the chromosomal
Push program.

• NUM-QUBITS: 2

. CASES: (((0 0) 0) ((0 1) 1) ((1 0) 1) ((1 1) 0))

• FINAL-MEASUREMENT-QUBITS:(1)

• THRESHOLD: 0.48

Fitness was computed as the sum of the number of misses (the first re
turn value from TEST-QUANTUM-PROGRAM) and the maximum probability
of error on any single case (the second return value).

The fitness of the best program in the first, random generation ("gen
eration 0") was 3.0. Fitness improved rapidly thereafter, including a
steep drop at generation 9 when the number of misses of the best pro
gram dropped from 2 to 0. At generation 18 a perfect solution was
found, with a fitness value of 0 aside from a miniscule round-oflf error of
4.4 X 10~^^. A plot of the fitness of the best individual per generation
is shown in Figure 8.2.

^http://openmcl.clozure.com/

•^http; //hampshire. edu/lspector/aqcp/evolved-xor/

Evolved Quantum Programs 91

Table 8.2. PushGP genetic programming system parameters for the example run of
PushGP on the Deutsch-Jozsa (XOR) problem.

MAX-NEW-POINTS-IN-MUTANTS
POPULATION-SIZE
TOURNAMENT-SIZE

MUTATION-PROBABILITY
CROSSOVER-PROBABILITY

MUTATION-OPERATORS
CROSSOVER-OPERATORS

FITNESS-FUNCTION

20
10,000
7
0.45
0.45
FAIR, PERTURB, ADD, REMOVE
FAIR
misses + max probability of error

Table 8.3. Instructions used in the example run of PushGP on the 1-bit Deutsch-
Jozsa (XOR) problem.

INTEGER

BOOLEAN

CODE

FLOAT

QGATE

INTEGER.FROMBOOLEAN, INTEGER.FROMFLOAT, INTEGER.>, INTEGER.<,
INTEGER."/., INTEGER./, INTEGER.*, INTEGER.-, INTEGER.+,
INTEGER.STACKDEPTH, INTEGER.SHOVE, INTEGER.YANKDUP,
INTEGER.YANK, INTEGER.=, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP
BOOLEAN.FROMFLOAT, BOOLEAN.FROMINTEGER, BOOLEAN.NOT,
BOOLEAN.OR, BOOLEAN.AND, BOOLEAN.STACKDEPTH, BOOLEAN.SHOVE,
BOOLEAN.YANKDUP, BOOLEAN.YANK, BOOLEAN. =, BOOLEAN.SWAP,
BOOLEAN.POP, BOOLEAN.DUP
CODE.DISCREPANCY, CODE.DO, CODE.NTHCDR, CODE.NTH, CODE.APPEND,
CODE.LIST, CODE.NOOP, CODE.IF, CODE.DO*, CODE.CONS, CODE.CDR,
CODE.CAR, CODE.NULL, CODE.ATOM, CODE.QUOTE, CODE.STACKDEPTH,
CODE.SHOVE, CODE.YANKDUP, CODE.YANK, CODE.=, CODE.SWAP,
CODE.POP, CODE.DUP

FLOAT.FROMBOOLEAN, FLOAT.FROMINTEGER, FLOAT.TAN, FLOAT.COS,
FLOAT.SIN, FLOAT.>, FLOAT.<, FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-,
FLOAT.+, FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP,
FLO AT. YANK, FLOAT. =, FLOAT. SWAP, FLO AT. POP, FLO AT. DUP

QGATE.END, QGATE.MEASURE, QGATE.U2, QGATE.CPHASE, QGATE.SWP,
QGATE.CNOT, QGATE.QNOT, QGATE.SRN, QGATE.U-THETA,
QGATE.HADAMARD, QGATE.LIMITED-ORACLE, QGATE.GATE,
QGATE.TRANSPOSE, QGATE.COMPOSE, QGATE.STACKDEPTH, QGATE.SHOVE,
QGATE.YANKDUP, QGATE.YANK, QGATE.=, QGATE.SWAP,
QGATE.POP, QGATE.DUP

92 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1

0

Figure 8.1. Gate array diagram for the empty "embryo" with which development
begins for the solution to the Deutsch-Jozsa (XOR) problem. The only gate in the
embryo performs a measurement of qubit 1; this need not even appear explicitly in
the developed QGAME program as the call to TEST-QUANTUM-PROGRAM will specify
that the final measurement will be performed on qubit 1. The developmental process
will add gates from left to right, ending just before the measurement.

Figure 8.2. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 1-bit Deutsch-Jozsa (XOR) problem.

Evolved Quantum Programs 93

Execution was aborted at generation 20, at which time the best re
ported program was as follows:

((BOOLEAN.= INTEGER.> CODE.DO*) ((FLOAT.TAN (FLOAT.<
(BOOLEAN.DUP (BOOLEAN.POP BOOLEAN.SHOVE INTEGER.-
QGATE.CPHASE (CODE.CAR CODE.LIST TRUE)))) (CODE.NULL
((CODE.APPEND) FLOAT.= (BOOLEAN.DUP BOOLEAN.DUP))))
CODE.CDR ((BOOLEAN.YANKDUP INTEGER.* BOOLEAN!=)
(0.16907119750976562D0) -2 (QGATE.SRN QGATE.STACKDEPTH
(QGATE.HADAMARD (QGATE.GATE CODE.STACKDEPTH)) CODE.NULL
(BOOLEAN.SWAP) (INTEGER.YANKDUP BOOLEAN.OR
(((QGATE.TRANSPOSE) CODE.NULL (QGATE.CPHASE INTEGER.>)
CODE.LIST) (QGATE.GATE ((-5 (FLOAT.STACKDEPTH)) CODE.YANK
BOOLEAN.POP))) (INTEGER.DUP)) QGATE.LIMITED-ORACLE))
(FLOAT.% QGATE.STACKDEPTH QGATE.GATE (((5 CODE.SWAP)
QGATE.LIMITED-ORACLE) FLOAT.YANK) FLOAT.SWAP FLOAT.TAN)
(TRUE)) (INTEGER.* (QGATE.SWP FLOAT.STACKDEPTH BOOLEAN.OR
CODE.CDR) BOOLEAN.STACKDEPTH))

Regardless of how this Push program is formatted, it is not clear from
visual inspection how it works (and it has therefore been presented in
the most economical format). Execution of this program produces, via
development, the following QGAME program (as expressed in Lisp no
tation, where "#2A" indicates a 2-dimensional matrix, and with floating
point numbers rounded to 4 decimal places):

((MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0)
(0.0 0.7071 0.0 0.7071)
(0.7071 0.0 -0.7071 0.0)
(0.0 0.7071 0.0 -0.7071))

((HADAMARD 1)))
(MATRIX-GATE #2A((0.7071 0.7071 0.0 0.0)

(-0.7071 0.7071 0.0 0.0)
(0.0 0.0 0.7071 0.7071)
(0.0 0.0 -0.7071 0.7071))

(TRANSPOSED ((SRN 0))))
(LIMITED-ORACLE 1 ORACLE-TT 1 0)
(LIMITED-ORACLE 1 DRACLE-TT 0 1)
(MATRIX-GATE #2A((0.7071 0.0 0.7071 0.0)

(0.0 0.7071 0.0 0.7071)
(0.7071 0.0 -0.7071 0.0)
(0.0 0.7071 0.0 -0.7071))

((HADAMARD 1))))

94 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Figure 8.3. Gate array diagram for an evolved solution to the Deutsch-Jozsa (XOR)
problem. The "f" gate is the oracle. The "SRN" gate with the diagonal line through
it on qubit 0 transposed Square Root of NOT gate.

The second oracle call is redundant and can be removed; since the
oracle limit is 1 a second call to LIMITED-ORACLE will have no effect.
The first and final gates are simply HADAMARD gates applied to qubit 1,
while the second gate is a transposed SRN ("square root of NOT"; see
Chapter 2) gate. The final evolved, developed and simplified quantum
program is diagrammed in Figure 8.3. This program solves the 1-bit
version of the Deutsch-Jozsa (XOR) problem with 100% certainty using
only a single oracle call.

How does this evolved solution solve the 1-bit Deutsch-Jozsa (XOR)
problem? The mathematical explanation is straightforward — one needs
only to construct and multiply all of the matrices — but it is difficult
to provide an intuitive explanation even for such a simple quantum al
gorithm. The basic idea is indeed intuitive, however: the algorithm first
puts both qubits into superpositions of |0) and |1) and then calls the or
acle once on this superposition, extracting information about both clas
sical inputs in a single call. This information must then be "decoded"
from the resulting superposition by means of an additional HADAMARD
gate, which reverses the effect of the HADAMARD gate prior to the oracle.
Note that the final measurement is made on the qubit that is nominally
the input to the oracle call, while the nominal output is ignored. This
highlights one of the ways in which quantum gate arrays differ from clas
sical logic circuits.'^ The oracle call in this case modifies qubit 0, but in
doing so it changes every amplitude in the system state. Through this
action (which is sometimes called the "back action" of a quantum gate)
it changes the effect of the final HADAMARD on qubit 1, leading to the
measurement of the correct answer for both possible inputs.

•̂ The potential deceptiveness of quantum gate array diagrams that results from such differ
ences was discussed in Chapter 3.

Evolved Quantum Programs 95

2. Grover's Database Search Problem
Grover's database search problem was described above in Chapters

1 and 2, the latter of which included a detailed presentation of one
solution to the 4-iteni version of this problem. Grover's problem is an
oracle problem, much like the Deutsch-Jozsa problem, except that the
"promise" we are given regarding the oracle is different and the task is
not just to distinguish two classes of oracles (uniform vs. balanced) but
rather to determine exactly which of the possible oracles we have been
given.

More specifically, we are promised, in the instance of the problem
considered here, that the oracle will invert its output for one and only
one input. Our task is to determine which input it is that produces the
inversion. This is described as a database problem because we may think
of the oracle as a database, for which all of the possible inputs are ad
dresses, and we may think of the output inversion as an answer of "yes"
to a database query for a marked item. Under this interpretation we
are promised that we have been given a database containing a marked
item at one and only one address, and we are asked to determine the
address of that item using as few calls to the database query function
(oracle) as possible. The number of queries required for a classical pro
gram to solve this problem with an n-item database is n — 1 in the worst
case, but Grover's algorithm can find the marked item in approximately
^/n queries. For the 4-item database considered here Grover's algorithm
requires only a single database query.

Techniques similar to those described above for the Deutsch-Jozsa
problem also permit evolution of a solution to the 4-item database search
problem.^ Because the oracle is in this case a 3-qubit gate (two input
qubits and one output qubit), one must use a quantum computer with
at least 3 qubits. One must also designate two qubits for final measure
ments, rather than the one qubit required for Deutsch-Jozsa, since one
must be able to read a 2-bit address (0, 1, 2, or 3) from the measurement
qubits at the end of the simulation. The cases on which programs are
tested for fitness are:

(((1 0 0 0) 0)
((0 1 0 0) 1)
((0 0 1 0) 2)
((0 0 0 1) 3))

^The evolution of a solution to this problem using using "stackless linear genome genetic
programming," as described in Chapter 7, is documented in (Spector et al., 1999b).

96 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.4- Push interpreter parameters for the example run of PushGP on the 4-
item database search problem. Documentation on Push parameters and instructions
is available from ht tp : / /ha i i ipshi re .edu/ l spec tor /push .h tml .

MAX-RANDOM-FLOAT
MIN-RANDOM-FLOAT

MAX-RANDOM-INTEGER
MIN-RANDOM-INTEGER

EVALPUSH-LIMIT
MAX-POINTS-IN-RANDOM-EXPRESSIONS

MAX-POINTS-IN-PROGRAM
MAX-ORACLE-CALLS

Types
Instructions

10.0
-10.0
10
-10
250
50
100
1
QGATE, FLOAT, CODE,
(see Table 8.6)

INTEGER

Table 8.5. PushGP genetic programming system parameters for the example run of
PushGP on the 4-item database search problem.

MAX-NEW-POINTS-IN-MUTANTS
POPULATION-SIZE
TOURNAMENT-SIZE

MUTATION-PROBABILITY
CROSSOVER-PROBABILITY

IMMIGRATION-PROBABILITY
MUTATION-OPERATORS
CROSSOVER-OPERATORS

FITNESS-FUNCTION

20
25,000 (x 10 demes)
5
0.45
0.45
0.005
FAIR, GAUSSIAN-PERTURB, ADD, REMOVE
STANDARD, FAIR
10 X misses -1- max probability of error

This means that the answer, to be assembled from the measured values
of two qubits (we'll specify these to be qubits 1 and 2, specifying the
high-order and low-order bits of the answer respectively), should be 0 if
the location of the marked item is (0, 0), 1 if the location is (0, 1), 2 if
the location is (1, 0), and 3 if the location is (1, 1).

This problem was solved using PushGP with the parameters shown in
Tables 8.4 and 8.5 and the instruction set shown in Table 8.6, running
under the CMUCL open source Common Lisp system^ on a 10-CPU
cluster of 2.1GHZ Linux workstations. The complete source code for
this run, along with the output logs, is available online.^

^http://www.cons.org/cmucl/

'^http: //hampshire. edu/lspector/aqcp/evolved-grover/

Evolved Quantum Programs 97

Table 8.6. Instructions used in the example run of PushGP on the 4-item database
search problem.

INTEGER

CODE

FLOAT

QGATE

INTEGER.FROMFLOAT, INTEGER./, INTEGER.*, INTEGER.-,
INTEGER.+, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP
C0DE.DO*COUNT, CODE.DC+TIMES, CODE.FROMFLOAT,
CODE.FROMINTEGER, CODE.DO, CODE.NTHCDR, CODE.NTH,
CODE.APPEND, CODE.LIST, CODE.NOOP, CODE.IF,
CODE.DO*, CODE.CONS, CODE.CDR, CODE.CAR,
CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP

FLOAT.FROMINTEGER, FLOAT. /, FLOAT. *, FLOAT. -,
FLOAT.+, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP
QGATE.END, QGATE.MEASURE, QGATE.CPHASE, QGATE.SWP,
QGATE.CNOT, QGATE.QNOT, QGATE.U-THETA, QGATE.HADAMARD,
QGATE.LIMITED-ORACLE, QGATE.GATE, QGATE.TRANSPOSE,
QGATE.COMPOSE, QGATE.SWAP, QGATE.POP, QGATE.DUP

The 10-CPU cluster was utilized by means of a scheme of "demes"
like that described briefly in Chapter 4. PushGP was started on each
of the nodes and the 10 runs were allowed to proceed asynchronously.
After the fitness-testing step of each generation a pool of emigrants,
consisting of 125 individuals (0.5% of the population size of 25,000)
selected via fitness tournaments (with tournament size 5), was written
to a shared file system, replacing any previous pool of emigrants from the
same node. Following emigration, a randomly selected file of emigrants
on the shared file system (which may have come from the same node or
from a different node) is read and becomes the pool of immigrants from
which the IMMIGRATION genetic operator will randomly select individuals
in the next offspring-production step. If the attempt to read a file of
emigrants from the shared file system fails for any reason (for example
because of network problems) then the IMMIGRATION operator will act
as a reproduction operator, producing clones of individuals from the
current population.

This run also utilized the matrix literalization scheme discussed in
Chapter 7. After the fitness-testing step of each generation the Push
programs were processed in order of fitness (best first) until at least 10
matrix literals were obtained. This was accomplished by re-evaluating
each Push program to produce, via development, a QGAME program,
and by compressing strings of matrices in the developed QGAME pro
gram to produce compressed matrix literals. These literals were then
available for inclusion in mutations performed during the next offspring-
production step. In addition, this run utilized a GAUSSIAN-PERTURB

98 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

2

1

0

low *

high ^

Figure 8.4- Gate array diagram for the empty "embryo" with which development
begins for the solution to the database search problem. The only gates in the embryo
perform measurement of qubits 1 (the high order bit of the answer) and 2 (the low
order bit of the answer). The developmental process will add gates from left to right,
ending just before the measurements.

genetic operator, the idea for which was described in Chapter 7. When
this operator is chosen for a particular instance of mutation,^ a child is
produced from the parent by adding mean 0, standard deviation 0.01
Gaussian noise to each floating-point literal in the parent.

As with the Deutsch-Jozsa example in the previous section, the fit
ness of a Push program was assessed by running it once to produce a
QGAME program (which began in this case with the empty "embryo"
corresponding to the gate array shown in Figure 8.4), and by testing the
QGAME program with the TEST-QUANTUM-PROGRAM function described
in Chapter 2. The maximum permitted number of oracle calls per case
was again 1, so that only the first oracle call in any developed QGAME
program would have any effect. The fitness cases were those listed above
and the threshold for a "miss" was again 0.48. Fitness was computed
as the sum of 10 times the number of misses (the first return value from
TEST-QUANTUM-PROGRAM) and the maximum probability of error for any
one case (the second return value from TEST-QUANTUM-PROGRAM); this
is the "lexicographic" fitness component combination scheme that was
discussed in Chapter 7.

The fitnesses over the 10 demes are plotted in Figure 8.5. The elimi
nation of "misses" is clearly visible as large drops in fitness values, which
are lexicographic combinations of misses (x 10) and maximum proba
bility of error per case. Fitness improvements within particular levels
of misses are obscured by the scale, but Figure 8.6 shows the additional
detail at the level of zero misses. The first deme to achieve a perfect
fitness value of zero did so at generation 113, while the last deme to
achieve a perfect fitness value did so at generation 152. The last of these

*In PushGP, a random one of the specified mutation operators is selected for each instance
of mutation. Similarly for crossover: if multiple operators are specified then each instance of
crossover uses a randomly selected crossover operator.

Evolved Quantum Programs 99

35

30

25

20

15

10
I I I 1

i

;i

-

-

20 40 60 80 100
Generation

120 140 160

Figure 8.5. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 4-item database search problem. This figure is dominated
by the large drops due to the decreases in the "misses" component of the fitness
function; it shows the overall structure of the evolutionary process but not the fine
structure of fitness improvements at each level. Figure 8.6 shows a closer view of
the improvements in fitness after all of the misses were eliminated. This run was
conducted on a cluster of 10 computers that ran asynchronously, sharing individuals
between generations (see text), and a line appears in the graph for each of the 10 runs.
Because the individual runs ran asynchronously they reached particular generations
at different times and one must be careful when inferring relations between runs from
this graph; for example, an event that appears to the right of another event may
actually have preceded that other event in time, and may even have influenced that
other event via migration.

perfect-fitness individuals was chosen, arbitrarily, as the basis for the
following analysis.

The evolved solution Push program contained 100 points, which was
the maximum permitted.^ The average number of points in the popula
tion that included this solution was 80.5, and the median fitness in this
population was 0.0026. The solution Push program contained 5 unitary
matrix literals, produced via the matrix literalization process described
above, some of which were derived from other matrix literals earlier in

^Each instruction, literal, and pair of parentheses counts as one point.

100 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

U . J 1 li 1

0.45 - :i

0.4 - ;

0.35 - '']

0.3 -

0.25 -

0.2 -

0.15 -

0.1 -

0.05 -

^ • ' ^ \ n
m

M!
fi
1

1

1

1 1

1

I ' • ' .

1;
W'
•\ 1 i
• \ \'\ ' \

xm\
\

1

^ [_ ^

-

-

-

-

-

-

20 40 60 80 100
Generation

120 140 160

Figure 8.6. A plot of the fitnesses of the best individuals in each generation during
a run of PushGP on the 4-item database search problem. This is a closer view of
the graph in Figure 8.5, showing the improvements in fitness after all of the "misses"
components of the fitness function were eliminated.

the evolutionary process. For example, one of the matrix literals is the
composition of two instances of another matrix literal, which in turn in
cludes three instances of a matrix that appears to have been produced by
an earlier matrix literalization process. The inclusion of the matrix lit
erals makes the printed representation of this Push program quite large
(3,458 characters, not counting spaces); it is therefore not included here,
although it can be found online.^°

Execution of the evolved Push program produces, via development, a
QGAME program consisting of 18 matrix gates. Some of the matrices
in these gates appeared in the Push program as matrix literals, but
others were produced by the execution of the Push program either from
primitive gates or from matrix literals. For example, one matrix in
the developed QGAME program is a transposed version of one of the
matrix literals in the Push program. Another matrix in the developed
QGAME program is a transposed version of one of the matrix literals in

^"See h t tp : / /ha inpsh i re .edu / l spec tor /aqcp /evolved-grover / , at the end of the log file
pushgp-output.nOl.bwOl.hampshire.edu.

Evolved Quantum Programs 101

the Push program that has also been augmented by an additional QNOT
gate. Again, because the textual version of this this program is verbose
it is not included here.

As in the Deutsch-Jozsa example in the previous section, some of
the gates in the final QGAME program are unnecessary and can be
pruned from the result. Of particular interest in the present case is the
fact that two of the gates, although they include matrix literals with
rather complex histories, combine the matrices from those histories to
produce identity operations; components of these histories are also used
elsewhere in the final QGAME program to greater effect. The final
QGAME program, after hand pruning and with the matrices removed
for legibility, is as follows:

((HADAMARD 1)
(MATRIX-GATE <matrixl> <historyl>)
(HADAMARD 1)
(HADAMARD 0)

(MATRIX-GATE <inatrix2> <history2>)
(LIMITED-ORACLE 1 ORACLE-TT 2 10)
(HADAMARD 2)

(MATRIX-GATE <matrix3> <history3>)
(MATRIX-GATE <matrix4> <history4>)
(HADAMARD 1))

The matrix indicated as <matrixl> is just a transposed version of the
matrix indicated as <matrix2>, which has the following history:

((COMPRESSED

((COMPRESSED ((U-THETA 2 1.233552982796235)))
(COMPRESSED
((COMPRESSED ((QNOT 0))) (COMPRESSED ((CNOT 1 2))))))))

The matrix indicated as <matrix3> has the following history:

((COMPRESSED ((HADAMARD 1)))
(COMPRESSED
((COMPRESSED

(TRANSPOSED ((U-THETA 1 1.0642909109545906))))))
(COMPRESSED
((COMPRESSED

(TRANSPOSED ((U-THETA 1 1.0642909109545906))))))
(COMPRESSED
((COMPRESSED
(TRANSPOSED ((U-THETA 1 1.0642909109545906)))))))

102 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

2

1 - H -

0

\
Ml

\

- H -

- H -

M;
\

\

2 -I

1

U(1.234)|-ffi- 2

0-e-
M,

1 - I

0

H - U(3.1929),

Mo

Figure 8.7. A gate array diagram for an evolved version of Grover's database search
algorithm for a 4-item database. The full gate array is shown at the top, with Mi
and M2 standing for the smaller gate arrays shown at the bottom. A diagonal line
through a gate symbol indicates that the matrix for the gate is transposed. The "f"
gate is the oracle.

The matrix indicated as <matrix4> is a transposed version of the
matrix indicated as <matrix3>, to which a QNOT gate has also been
added on qubit 2.

The resulting quantum gate array is diagrammed in Figure 8.7. Mi in
the figure corresponds to <niatrix2> and M2 corresponds to <iiiatrix3>;
the contents of each of these matrices are indicated in the smaller gate
array diagrams in the bottom half of the figure. The transpositions in
matrices 1 and 4 are indicated by the diagonal lines, and the additional
QNOT gate that evolved as part of <inatrix3> is drawn separately on the
qubit 2 line in the main diagram. This gate array solves the 4-item
database search problem with 100% certainty using only a single oracle
call. The evolved gate array exhibits several forms of modularity, some
of which were achieved via recursive matrix literalization and others of
which owe to the code-manipulation and matrix-manipulation facilities
of the Push instruction set used for this run.

How does this evolved solution work? At a general level of descrip
tion the solution is the same as that presented in Section 3.3 above: a
superposed state is fed into the call to the oracle gate and subsequent
"decoding" gates extract the position of the marked item from the states

Evolved Quantum Programs 103

Table 8.7. Push interpreter parameters for the example run of PushGP on the Scal
ing Majority-ON problem. Documentation on Push parameters and instructions is
available from h t tp : / /ha inpsh i re .edu/ l spec tor /push .h tml .

MAX-RANDOM-FLOAT
MIN-RANDOM-FLOAT

MAX-RANDOM-INTEGER
MIN-RANDOM-INTEGER

EVALPUSH-LIMIT
MAX-POINTS-IN-RANDOM-EXPRESSIONS

MAX-POINTS-IN-PROGRAM
MAX-ORACLE-CALLS

Types
Instructions

1.0
-1.0
10
-10
150
50
100
1
QGATE, FLOAT, CODE, BOOLEAN,
(see Table 8.9)

INTEGER

in which the address qubits (as opposed to the output qubit) are left by
the action of the oracle. The solution presented here is, however, consid
erably more complex than that presented in Section 3.3.^^ Part of the
reason for this difference is that the result presented earlier was subjected
to further human editing,^^ but part may also be due to an unfortunate
evolutionary accident early in the run presented here. The oracle call
in the evolved gate array uses qubit 2 as the high-order input and qubit
1 as the low-order input, while the measurements specified in the em
bryo use the opposite designation. If the programs that achieved limited
success early in this run included the oracle call with this "backwards"
configuration, then it may have been easier for evolution to find improve
ments that compensated for this configuration through additional gates
than through the substitution of an alternative oracle configuration. An
other factor contributing to the complexity of this solution may be the
use of matrix literalization, which facilitates the evolution of quantum
programs containing complex modules; while this probably extends the
power of the automatic quantum computer programming system it may
also have the unfortunate side effect of encouraging the generation of
unnecessarily complex solutions.

^^It is also considerably more complex than the solution evolved by the author previously
using other techniques (Spector et al., 1999b).
•'^The editing performed here was limited to the removal of gates that had no effect on the
result; further analysis may produce additional simplifications by substituting single gates
for groups of gates, etc.

104 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.8. PushGP genetic programming system parameters for the example run of
PushGP on the Scaling Majority-ON problem.

MAX-NEW-POINTS-IN-MUTANTS
POPULATION-SIZE
TOURNAMENT-SIZE

MUTATION-PROBABILITY
CROSSOVER-PROBABILITY

IMMIGRATION-PROBABILITY
MUTATION-OPERATORS
CROSSOVER-OPERATORS

FITNESS-FUNCTION

20
5,000 (x 13 demes)
7
0.45
0.45
0.005
FAIR, PERTURB, ADD, REMOVE
FAIR
misses + max probability of error

3. Scaling Majority-ON
The Majority-ON problem asks us to determine if the number of in

puts for which an oracle inverts its output qubit is greater than the
number of inputs for which it does not invert its output qubit. The
name comes from interpreting the inversion as an indication that the lo
cation in the oracle addressed by the input is "on," and asking whether
a majority of the oracle's locations are "on" in this sense. For simplicity
here we omit oracles with an equal number of "on" and "off" locations.

The Scaling Majority-ON problem presents the more ambitious task
of evolving a scheme for solving Majority-ON that can be scaled up to
work for an oracle of any size. To solve this problem using PushGP and
QGAME a NUMQUBITS Push instruction was added that pushes the num
ber of qubits in the current problem instance onto the INTEGER stack.
For the fitness test the system was run using all permissible oracles with
1,2, and 3 input qubits for the fitness test. For each fitness case with an
n-input oracle the Push program was executed in the context of an em
bryo with n + 1 qubits and a final measurement on the highest-numbered
qubit. In addition, a global variable was set that caused the NUMQUBITS
instruction to push n onto the INTEGER stack. This instruction could
be used in evolved Push programs to alter the developmental process,
thereby producing different QGAME programs for cases of different
size.

Aside from the addition of the NUMQUBITS Push instruction, the tech
niques used to produce the Scaling Majority-ON program presented here
were qualitatively similar to those used for the database search problem
in the previous section. The full parameter and instruction sets are

Evolved Quantum Programs 105

shown in Tables 8.7, 8.8 and 8.9. The complete source code for this run,
along with the output logs, is available online.-^^

This run did not produce a completely successful solution, in the
sense of "zero probability of error," although it did produce solutions
that achieved zero misses. One such result, obtained at generation 112,
was the following 94-point Push program:

((((INTEGER.SWAP NUMQUBITS INTEGER.*) NUMQUBITS INTEGER.*)
(((INTEGER.YANKDUP ((INTEGER.STACKDEPTH QGATE.HADAMARD)
CODE.DISCREPANCY (8)) (INTEGER.FROMFLOAT))
QGATE.LIMITED-ORACLE) ((CODE.YANK (INTEGER.STACKDEPTH))
(QGATE.DUP QGATE.U-THETA CODE.YANKDUP INTEGER.+))) (((
CODE.NTHCDR ((INTEGER.STACKDEPTH QGATE.HADAMARD)
CODE.DISCREPANCY)) BOOLEAN.=) (QGATE.GATE)) CODE.DO*
BOOLEAN.POP) NUMQUBITS (((((QGATE.GATE (CODE.STACKDEPTH
CODE.= (INTEGER.YANK CODE.NTH CODE.STACKDEPTH (FLOAT.POP
(FLOAT.STACKDEPTH))) CODE.APPEND) (FLOAT.TAN) ((
BOOLEAN.FROMFLOAT)))) (BOOLEAN.=) FLOAT.STACKDEPTH ((
NUMQUBITS (CODE.DO*TIMES)) (((QGATE.QNOT (
-0 .25270235538482666d0)) NUMQUBITS) QGATE.LIMITED-ORACLE))
NIL CODE.IF)) (QGATE.U-THETA QGATE.DUP QGATE.GATE))
QGATE.CPHASE)

For the 1-input fitness cases this program produces the following
Q G A M E program:^"^

((LIMITED-ORACLE 1 ORACLE-TT 0 1)
(HADAMARD 0)
(LIMITED-ORACLE 1 ORACLE-TT 0 1)
(HADAMARD 1)
(HADAMARD 1)
(LIMITED-ORACLE 1 ORACLE-TT 0 1)
(U-THETA 0 6.03048295179476)
(U-THETA 0 6.03048295179476))

^^ht tp: / /hampshire .edu/ lspector /aqcp/evolved-raajon/
^*In this and subsequent listings any MATRIX-GATEs with histories containing only a single
primitive gate are replaced by the primitive gates themselves for readability. In this particular
run a low limit of 5 on history nesting depth — see page 79 — prevented the production of
non-trivial MATRIX-GATEs.

106 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

For the 2-input fitness cases it produces the following QGAME pro
gram:

((HADAMARD 0)
(HADAMARD 1)

(LIMITED-ORACLE 1 ORACLE-TT 0 12)
(U-THETA 0 6.03048295179476)
(U-THETA 0 6.03048295179476)
(LIMITED-ORACLE 1 ORACLE-TT 0 12)
(U-THETA 0 6.03048295179476))

For the 3-input fitness cases it produces the following QGAME pro
gram:

((HADAMARD 0)
(HADAMARD 2)
(HADAMARD 1)

(LIMITED-ORACLE 1 ORACLE-TT 0 1 2 3)
(U-THETA 0 6.03048295179476)
(U-THETA 0 6.03048295179476))

Many of the gates in the first two of these programs are superflu
ous; those that are not are diagrammed in Figure 8.8. These quantum
programs, which are similar to those evolved earlier with somewhat sim
pler techniques (Spector et al., 1999b), do indeed solve the Majority-ON
problem with a maximum probability of error less than 50% for oracles
of all sizes. Although the evolved Push program does not scale properly
to oracles larger than those used in the fitness test — that is, running
the Push program in the context of a larger embryo and a larger value
for NUMQUBITS does not produce an appropriate QGAME program for
the larger oracle — it is clear from visual inspection how this algorithm
can be scaled up indefinitely. Unfortunately, however, the maximum
probabilities of error for the cases shown in the Figure are 0, 0.25, and
0.375, and the probabilities continue to approach 50% very quickly as
the oracle sizes increase. In fact, these solutions are equivalent to the
simple probabilistic classical algorithm of querying a single, random lo
cation of the oracle and answering "yes" if and only if the corresponding
location of the oracle is "on." But although the evolved programs are not
better than classical in this case, the example nonetheless demonstrates
how genetic programming can be used as an aid in the development of
scalable quantum algorithms.

Evolved Quantum Programs 107

Table 8.9. Instructions used in the example run of PushGP on the Scahng Majority-
ON problem.

INTEGER

BOOLEAN

CODE

FLOAT

QGATE

NUMQUBITS, INTEGER.FROMBOOLEAN, INTEGER.FROMFLOAT, INTEGER.>,
INTEGER.<, INTEGER.*/., INTEGER./, INTEGER.*, INTEGER.-,
INTEGER.+, INTEGER.STACKDEPTH, INTEGER.SHOVE, INTEGER.YANKDUP,
INTEGER.YANK, INTEGER.=, INTEGER.SWAP, INTEGER.POP, INTEGER.DUP
BOOLEAN.FROMFLOAT, BOOLEAN.FROMINTEGER, BOOLEAN.NOT,
BOOLEAN.OR, BOOLEAN.AND, BOOLEAN.STACKDEPTH, BOOLEAN.SHOVE,
BOOLEAN.YANKDUP, BOOLEAN.YANK, BOOLEAN.=, BOOLEAN.SWAP,
BOOLEAN.POP, BOOLEAN.DUP
CODE.DO*COUNT, CODE.DO*TIMES, CODE.FROMBOOLEAN,
CODE.FROMFLOAT, CODE.FROMINTEGER, CODE.DISCREPANCY,
CODE.DO, CODE.NTHCDR, CODE.NTH, CODE.APPEND, CODE.LIST,
CODE.NOOP, CODE.IF, CODE.DO*, CODE.CONS, CODE.CDR, CODE.CAR,
CODE.NULL, CODE.ATOM, CODE.QUOTE, CODE.STACKDEPTH, CODE.SHOVE,
CODE.YANKDUP, CODE.YANK, CODE.=, CODE.SWAP, CODE.POP, CODE.DUP

FLOAT.FROMBOOLEAN, FLOAT.FROMINTEGER, FLOAT.TAN, FLOAT.COS,
FLOAT.SIN, FLOAT.>, FLOAT.<, FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-,
FLOAT.+, FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP,
FLOAT.YANK, FLOAT.=, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP
QGATE.END, QGATE.MEASURE, QGATE.U2, QGATE.CPHASE, QGATE.SWP,
QGATE.CNOT, QGATE.QNOT, QGATE.SRN, QGATE.U-THETA,
QGATE.HADAMARD, QGATE.LIMITED-ORACLE, QGATE.GATE,
QGATE.TRANSPOSE, QGATE.COMPOSE, QGATE.STACKDEPTH, QGATE.SHOVE,
QGATE.YANKDUP, QGATE.YANK, QGATE.=, QGATE.SWAP, QGATE.POP,
QGATE.DUP

0 -

e-^ 1 - U -H

o - H -

e-^ 2 - U -H

f
1 - H - f

o - H -

e-^

Figure 8.8. Gate array diagrams for the "Majority ON" problem for various oracle
sizes, produced by a genetic programming run that evolved scalable programs. These
are not better than classical solutions.

108 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.10. Push interpreter parameters for the example runs of PushGP on the
OR and AND/OR problems. Documentation on Push parameters and instructions is
available from h t tp : / /hampsh i re .edu / l spec to r /push .h tml .

MAX-RANDOM-FLOAT
MIN-RANDOM-FLOAT

MAX-RANDOM-INTEGER
MIN-RANDOM-INTEGER

EVALPUSH-LIMIT
MAX-POINTS-IN-RANDOM-EXPRESSIONS

MAX-POINTS-IN-PROGRAM
MAX-QRACLE-CALLS

Types
Instructions

1.0
-1.0
9
-10
150
50
100
1
QGATE, FLOAT, CODE, INTEGER
(see Table 8.12)

4. The OR and AND/OR Problems
The OR and AND/OR problems are oracle problems similar to the

XOR problem described above, but they ask us to determine a differ
ent property of the oracles. The OR problem is identical to the XOR
problem except that we are asked to determine the truth of the logical
formula JQ V/i, where IQ means "inverts with input 0," / i means "inverts
with input 1," and V is the (inclusive) OR function. In the notation used
for QGAME's TEST-QUANTUM-PROGRAM function, the cases that we use
to assess fitness are:

(((0 0) 0)
((0 1) 1)
(d 0) 1)
(d 1) D)

In other words, we are asked to determine whether the oracle we have
been given ever inverts its output qubit, whether for a 0 input, or for a
1 input, or for both. This turns out to be a harder question to answer
than the XOR question (which omits the "or both"), and it is known
that there is no error-free single query solution.

But a quantum program can nonetheless do better than a classical pro
gram on this problem, and genetic programming was used to discover a
quantum algorithm that performed better than any that had previously
been published. The evolved quantum program has a maximum prob
ability of error of ^ . This is better than can be achieved using even
a probabilistic classical program, which must necessarily have a max-

Evolved Quantum Programs 109

Table 8.11. PushGP genetic programming system parameters for the example runs
of PushGP on the OR and AND/OR problems.

MAX-NEW-POINTS-IN-MUTANTS
POPULATION-SIZE
TOURNAMENT-SIZE

MUTATION-PROBABILITY
CROSSOVER-PROBABILITY

IMMIGRATION-PROBABILITY
MUTATION-OPERATORS
CROSSOVER-OPERATORS

SIZE-PRESSURE
FITNESS-FUNCTION

10
50,000 (x 13 demes)
7
0.48
0.48
0.005
PERTURB, ADD, REMOVE
FAIR
2, IDEAL-SIZE= 50
if misses = 0 then:

U.l X Pmax

otherwise:

(0.1 X p-max) +
En 1

where:
n = number of fitness cases.
Pi — probability of error for case i,
Pmax = maximum probability of error,
and ^ = e('=+̂ >

imum probability of error of at least | . The evolved program, which
was originally produced using the LGP genetic programming system-^^
and a precursor to QGAME, is presented along with an analysis of the
problem's classical and quantum complexity in (Spector et al., 1999a)
and (Barnum et al., 2000).

In this section we describe the more recent evolution of an equiv
alent quantum algorithm using PushGP and QGAME. For this run
an alternative, stackless implementation of the QGATE data type was
used. There was no QGATE.GATE Push instruction and the execution of
Push instructions corresponding to primitive quantum gates (such as
QGATE. HADAMARD) sent QGAME instructions directly to the develop
ing embryo. This decreased the amount of Push code required to build
simple QGAME programs, but it did not allow the Push program to
manipulate and store novel unitary matrices during development.

The implementation of QGATE.MEASURE in this run was also unusual.
The implementation used in the previous examples simply added an in
struction expression, "(measure q) " to the developing embryo, with q
taken from the INTEGER stack (modulo the number of qubits in the sys-

^Available from http://helios.hampshire.edu/lspector/code.html.

n o AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Table 8.12. Instructions used in the example runs of PushGP on the OR and
AND/OR problems. These runs used alternative implementations of the QGATE in
structions (see text).

INTEGER

CODE
FLOAT

QGATE

INTEGER.MAX, INTEGER.MIN, INTEGER.'/., INTEGER./, INTEGER.*,
INTEGER.-,INTEGER.*, INTEGER.STACKDEPTH, INTEGER.SHOVE,
INTEGER.YANKDUP,INTEGER.YANK,INTEGER.SWAP, INTEGER.POP,
INTEGER.DUP

CODE.QUOTE, CODE.SWAP, CODE.POP, CODE.DUP
FLOAT.TAN, FLOAT.COS, FLOAT.SIN, FLOAT.MAX, FLOAT.MIN,
FLOAT.*/., FLOAT./, FLOAT.*, FLOAT.-, FLOAT.+,
FLOAT.STACKDEPTH, FLOAT.SHOVE, FLOAT.YANKDUP,
FLOAT.YANK, FLOAT.SWAP, FLOAT.POP, FLOAT.DUP
QGATE.MEASURE, QGATE.HALT, QGATE.U2, QGATE.CPHASE,
QGATE.SWP, QGATE.CNOT, QGATE.QNOT, QGATE.SRN,
QGATE.U-THETA, QGATE.HADAMARD, QGATE.LIMITED-ORACLE

tem). Subsequent calls to QGATE.END were required to complete the
branches of the computation for the two possible measurement out
comes (0 and 1).^^ For the present run an alternative implementation of
QGATE. MEASURE was used that ensures, assuming that the Push program
that contains it runs to completion, that all measurements are followed
by complete branches for both possible outcomes. QGATE.MEASURE does
this by taking two arguments from the CODE stack in addition to the
index of the qubit to be measured (which is taken from the INTEGER
stack). It then does the following:

• Adds the MEASURE expression to the developing QGAME program.

• Recursively executes one of the popped pieces of code (the one that
was deeper in the stack), possibly adding additional elements to the
developing QGAME program in the process.

• Adds an (END) to the developing QGAME program.

• Recursively executes the other popped piece of code, possibly adding
additional elements to the developing QGAME program.

• Adds another (END) to the developing QGAME program.

The other parameters for this run are shown in Tables 8.10, 8.11, and
8.12. The SIZE-PRESSURE parameter referred to in Table 8.10 relates
to an experimental feature of PushGP that is intended to help control

'See page 26 for the syntax of measurement constructions in QGAME.

Evolved Quantum Programs 111

nH^mhri^
1

0

e-
H-

U(9)

H]-H^

rk

6=5.96143477

Figure 8.9. A gate array diagram for an evolved solution to the OR oracle problem.
The gate marked "f" is the oracle. The two sub-diagrams on the right represent
the two possible execution paths following the intermediate measurement. In the
bottom sub-diagram the result of the intermediate measurement is 0 and the result
of the overall computation is read immediately from the other qubit. In the top
sub-diagram the result of the intermediate measurement is 1 and additional gates are
applied to the other qubit prior to the final measurement.

program bloat; when this feature is enabled each attempt to use a genetic
operator causes the operator to be called the indicated number of times
(2 in this case), producing that number of potential offspring. The single
offspring closest in size to the specified IDEAL-SIZE is chosen from these,
and the others are discarded.

The fitness function for programs that achieve zero misses is the max
imum probability of error on any single fitness case times 0.1. For pro
grams with misses, however, the fitness function is a lexicographic com
bination of a sigmoid function (based on the differences between each
probability of error and the "miss threshold") and the maximum proba
bility of error. As discussed in Chapter 7, this sigmoid function provides
a smoother fitness landscape while still prioritizing the elimination of
misses, although the effectiveness of this measure has not been empiri
cally tested.

The gate array in Figure 8.9 shows one result of this run, obtained at
generation 302 and simplified by hand. This result exhibits elements
of modularity even though it used only a minimal subset of Push's
code-manipulation instructions and only one instruction — the modi-

112 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

fied QGATE.MEASURE instruction — that triggers recursive execution of
code on the CODE stack. For example, the same angle appears twice as an
argument to U-THETA, even though there are no duplicate floating point
literals in the evolved Push program, and the final QGAME program
includes three HADAMARD gates even though the evolved Push program
contains only two instances of QGATE.HADAMARD.

This algorithm calls the oracle on a qubit in a superposition of |0)
and |1) and then, after an additional Hadamard transformation of the
qubit used as the input (and which was affected by the "back action" of
the oracle), performs an intermediate measurement of the input qubit.
Regardless of the result of this intermediate measurement, the final mea
surement is made on qubit 1 (as was specified in the embryo), but in one
case qubit 1 is transformed, using copies of gates that appeared earlier
in the algorithm, prior to the final measurement.

The maximum probability of error for this algorithm is j ^ , while clas
sical algorithms necessarily have a probability of error of at least g. The
existence of quantum algorithms with a maximum probability of error
of jQ was first discovered by genetic programming.

The AND/OR problem extends the OR problem to a larger oracle
and to a more complex logical property. In this problem we are asked to
determine if the cases for which the 2-qubit oracle flips its output qubit
satisfy the logical formula (IQO V /QI) /\ [ho V I n) , where A is the AND
function. This formula is illustrated as an "and/or tree" in Figure 8.10.
In the notation used for QGAME's TEST-QUANTUM-PROGRAM function,
the cases that we use to assess fitness are:

(((0 0 0
((0 0 0
((0 0 1
((0 0 1
((0 1 0
((0 1 0
((0 1 1
((0 1 1
((1 0 0
((1 0 0
(d 0 1
((1 0 1
(d 1 0
((1 1 0
((1 1 1
((1 1 1

0) 0)
1) 0)
0) 0)
1) 0)
0) 0)
1) 1)
0) 1)
1) 1)
0) 0)
1) 1)
0) 1)
1) 1)
0) 0)
1) 1)
0) 1)
1) 1)

Evolved Quantum Programs 113

ORACLE(0,0) ORACLE(0,i) ORACLE(l,0) ORACLE{l,l)

Figure 8.10. An AND/OR tree describing the nature of the AND/OR oracle prob
lem.

The existence of better-than-classical quantum algorithms for the
AND/OR problem was first discovered by genetic programming. The
first evolved programs for this problem (which were also evolved using
LGP and a predecessor to QGAME) are presented, along with a com
plexity analysis, in (Spector et al., 1999a) and (Barnum et al., 2000).
Here we present a program equivalent to the best of these that was
evolved more recently using PushGP and QGAME, with the same pa
rameters as those used for the run on the OR problem above (Tables
8.10, 8.11, and 8.12); only the fitness cases and the size of the embryo
were changed.

The evolved quantum program, a hand-simplified version of which is
shown in Figure 8.11, has a maximum probability of error of 0.28731. By
contrast the best that can be achieved by a probabilistic classical pro
gram is an error probability of ^. Like the solution to the OR problem
above, this algorithm works by calling the oracle on inputs in superposi
tion and by subsequently performing intermediate measurements on the
input qubits, which will have been affected by the back action of the
oracle call. The final measurement is again made on the oracle's output
qubit, but only after additional transformations to the output qubit that
are conditional on the intermediate measurements.

It is also noteworthy that the Push program that produced this so
lution contained only one instance of QGATE. MEASURE, meaning that the
multiple-measurement solution resulted from the use of the use of Push's
code-manipulation instructions, only a minimal subset of which were in
cluded in this run.

It is natural to ask how these algorithms, both for the OR problem
and for the AND/OR problem, can be scaled up to larger problem in-

114 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

.-H ^

^

0 - H

1^U(7jt/4)f] [f p f [] ^ d U{5.4205)|- ^ ^

^ U(0.07491)^

: :

=-H — ^

A.

Figure 8.11. A gate array diagram for an evolved solution to the AND/OR oracle
problem. The gate marked "f" is the oracle. The sub-diagrams on the right represent
the possible execution paths following the intermediate measurements.

stances. Unfortunately, simple concatenations of the evolved algorithms
do not suffice for this purpose. It is possible, however, that solutions
to larger problem instances may be discovered through future genetic
programming runs, and that the principles by which these algorithms
can be scaled up can subsequently be inferred.

5. Gate Communication Problems
This section describes several problems that emerged from explo

rations of the relations between the communication and entanglement-
generation capacities of certain quantum gates (Spector and Bernstein,
2003; Bennett et al., 2004). These explorations involved several iterative
cycles of problem formulation, genetic programming, and human analy
sis. All of the genetic programming runs used PushGP, QGAME, and
techniques similar to those described above. Due to space limitations
the details of the many individual runs will not be presented here, except
for the few novel features introduced specifically for these problems.

Evolved Quantum Programs 115

A 0
0 1
0 0

75 «

0

0
1
0

1

0
0

1
V2

In the course of this work John SmoHn defined the following gate,
which was initially thought to generate entanglement without allowing
for communication:

SMOLIN

The open question was whether two parties (Alice and Bob) who were
allowed to interact with one another only through a single use of this gate
could use that interaction to communicate. This problem was solved
using PushGP and QGAME, along with a developmental restriction
that prevented any gates, aside form a single instance of SMOLIN, from
spanning AHce's and Bob's qubits. The developmental restriction was
implemented in the code that adds a gate expression to the developing
embryo: if the gate expression spanned AHce's and Bob's qubits then it
was simply ignored, unless it was both a SMOLIN gate expression and the
first such expression encountered in the developmental process.

There are two fitness cases in this problem. In the first case we leave
AHce's qubit in the 0 state and penalize a program for any probabil
ity of reading a 1 from Bob's qubit at the end of the computation. In
the second case we initially invert Alice's qubit and we penalize a pro
gram for any probability of reading a 0 from Bob's qubit at the end of
the computation. Ideally Bob's qubit will always be read to have the
value at which we initially set Alice's qubit. This fitness test can be
implemented using techniques similar to those discussed above, using a
0-input ORACLE gate (which will act either as an identity transformation
or as an uncontrolled QNOT to implement Alice's choice). A call to this
oracle is included, on Alice's qubit, at the beginning of the embryo; the
answer read from Bob's qubit at the end of the computation should be
0 when the oracle is the identity transformation and 0 when it is a QNOT.

The evolved and hand-simplified quantum program shown in Figure
8.12 solved this problem by determining, unexpectedly, that a single
classical bit can be communicated through a single application of the
SMOLIN gate with zero probability of error. This was a useful contri
bution to the human discovery (by Herbert J. Bernstein) of a general
strategy for communicating, without any probability of error, through a
generalization of the SMOLIN gate called J{0):

cos(^) 0 0 sm{9)
0 1 0 0
0 0 1 0

sin(6i) 0 0 -cos(6') .

j{e)^

116 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Bob

U(l)

o(D CD u(i) -SRN-

-\M-l)-rk

Alice

Figure 8.12. A gate array diagram for an evolved protocol for communicating one
classical bit through a Smolin gate. Alice either does or does not flip qubit 0 to send
a 0 or a 1, respectively; the gate that sets her message is part of the embryo in the
developmental process driven by the evolved PushGP program.

Bob

1 — e - u (i) - - u (f) - ^
o-e-u(i)

Alice
Figure 8.13. A gate array diagram for an evolved protocol for communicating one
classical bit through a J{9) gate.

The strategy for communicating through J{6) shown in Figure 8.13
was designed by hand, but it was derived largely from the evolved strat
egy for communicating through SMOLIN shown in Figure 8.12. One in
teresting feature of this strategy for communicating through J{6) is that
Bob does not even need to know the angle 6 used in the J{0) gate in
order to decode Alice's bit; Alice must know 6 in order to apply the
appropriate rotation to her qubit prior to the application of J{9), but
Bob can perform the same decoding steps regardless of 6.

Evolved Quantum Programs 117

Further analysis of the SMOLIN and J{9) communication strategies
yielded new problems to which genetic programming was subsequently
applied. In particular, it led to the definition of the following BS{6)
(Bernstein Spector) gate:

BS{9)

cos(6') 0 0 sin(6')
0 0 1 0
0 1 0 0

. sin(6i) 0 0 -cos(6')

At the time of this writing the BS{9) gate appears to entangle more
than it can communicate, and communication appears difficult except
at 9 mod vr = 0 (Spector and Bernstein, 2003; Bennett et al., 2004).
Genetic programming has been used to explore several questions related
to this gate, including the communication capacity that it provides for
various values oi 9. In some cases the techniques described in Section
8.3 above, for evolving scalable quantum algorithms, were used with
the modification that 9, rather than the number of qubits, was varied
between fitness cases.

One example result, shown in Figure 8.14, involves communication
in the context of prior entanglement. We stipulate that Alice and Bob,
prior to the time at which communication via the BS(9) gate is required,
entangle two of their qubits. In the genetic programming run we create
this prior entanglement by including a HADAMARD gate and a CNOT gate
in the "embryo" from which the QGAME program develops. The ge
netic programming result shown in Figure 8.14 demonstrates that it is
possible, in the context of prior entanglement, for Alice to send Bob a
classical bit through BS{^) with no probability of error. The algorithm
for doing this, as shown in the figure, is extremely simple; aside from
the elements that were included in the embryo only two HADAMARD gates
and the call to BS-THETA itself are required.

A related result is shown in Figure 8.15. In the run that produced this
result we included code to generate prior entanglement in the embryo,
as above, but we then attempted to transmit two classical bits through
a single application of BS(Tr). Genetic programming found a way to do
this, with no probability of error, using the quantum program shown
in the figure. This result is a form of a well-known phenomenon called
"superdense coding," in which two bits of classical information can be
transmitted through a single qubit channel.

118 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Bob
Entangle

^—e
o-H

H -

e^H

B
S

jt
"4

-rk

Alice
Figure 8.14- A gate array diagram for an evolved protocol for communicating one
classical bit through a BS{j) gate in the context of prior entanglement. The
entanglement-generating gates, to the left of the vertical bar, were included in the
embryo to which the developmental process was applied.

6. Significance of These Results
Most of the results presented in this chapter demonstrate the human

competitive nature of genetic and evolutionary computing technologies.
A few also demonstrate the production, via genetic programming, of gen
uinely new knowledge with respect to the nature and power of quantum
computing.

What is meant by "human competitive" in this context? John Koza
and his colleagues have developed a list of eight criteria for the assertion
of human competitiveness of results produced by intelligent technologies
(Koza et al., 2003). These criteria are expressed relative to measures
that are commonly employed to assess human contributions to scien
tific and technological research and development, such as patents and
publications in reputable, peer-reviewed scientific journals. The criteria
all focus on properties of the results themselves, not on their automatic
production by computer systems.

Several of Koza's criteria apply to the results presented in this chapter.
Two that are particularly helpful in assessing the significance of these
results are the following:

B: The result is equal to or better than a result that was accepted
as a new scientific result at the time when it was published in a
peer-reviewed scientific journal.

Evolved Quantum Programs 119

Entangle
3 — m

1-lH

0

Bob

^
Cphase(jt) _

e

e - ^
U(73T/4) rk

Alice

Figure 8.15. A gate array diagram for an evolved protocol for communicating two
classical bits through one application of a BS{TT) gate in the context of prior en
tanglement. This is a form of quantum superdense coding re-discovered by genetic
programming. The entanglement-generating gates, to the left of the vertical bar, were
included in the embryo to which the developmental process was applied.

• D: The result is publishable in its own right as a new scientific result—
independent of the fact that the result was mechanically created.

All of the results in this chapter, with the exception of the result for
the scaling Majority-ON problem, meet criterion B. The results for the
OR, AND/OR, and gate communication problems also meet criterion D,
as established by publications in physics venues (Barnum et al., 2000,
Spector and Bernstein, 2003).

The solution to the 1-bit Deutsch-Jozsa (XOR) problem appears sim
ple in retrospect, but one must remember that this surprising and power
ful effect went unnoticed for the first 60 years following the development
of the underlying quantum mechanics. And even now it is counterintu
itive to most people. It is true that much of the intelligence behind this
result lies in the human discovery that the problem was worth posing in
the first place, but the steps from the problem statement to a solution
are nonetheless non-trivial. The fact that genetic programming can pro
ceed automatically to a solution when provided only with the problem
statement and a generic set of quantum gates is therefore significant.

Similar comments apply to the result for Grover's database search
problem. Although a human being (Lov Grover) was responsible for the
insight that quantum computers could outperform classical computers
on this problem, the production of a better-than-classical quantum algo-

120 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

rithm for the problem is nonetheless difficult and represents a significant
achievement for an automatic programming system. It is also notewor
thy that the first time this result was produced by genetic programming
it exceeded the expectations of the person performing the experiment
(the author of this book), who had naively assumed that the y/n im
provement would allow only for a two-oracle-call solution. Although the
zero-error, single-call solution added nothing to the state of the art in
quantum computing, its possibility was news to the designer and user
of the automatic quantum computer programming system (who was at
that time new to the field of quantum computing). This is important
because it demonstrates that the system can produce knowledge beyond
that possessed by the system designers or users.

The results on the OR and AND/OR problems were published in
Journal of Physics A: Mathematical and General on the strength of their
contributions to the theory of quantum computing, not on the basis of
their production by mechanical means. Although the article does briefly
describe the genetic programming methodology that produced the re
sults, neither the article's title nor its abstract mention how the results
were produced. The novel methodology by which these results were pro
duced would probably not, by itself, warrant publication in this partic
ular journal, which routinely publishes articles on quantum complexity
theory but not on the design of automatic programming systems. The
fact that these results were published in a high-quality, peer-reviewed
physics journal demonstrates that the approach to automatic quantum
computer programming described in this book can produce new scientific
results that are on par with those produced by human scientists.

The result on the Scaling Majority-ON problem is of more limited
significance; it serves only to demonstrate how genetic programming can
be employed to find scalable solutions to problems that have instances
of various sizes. But the result itself is not better than classical, and it
is also fairly obvious. It is significant only insofar as it points the way to
more ambitious applications of genetic programming to other problems
in the future.

Several of the results on classical communication via particular quan
tum gates are new scientific contributions, significant independent of the
means by which they were produced. Evidence for this is their publica
tion in the Proceedings of the Sixth International Conference on Quan
tum Communication, Measurement, and Computing. It is also notewor
thy that in this case the genetic programming system was employed in
a role similar to that of a scientific colleague. The system was used first
to investigate a particular question ("Can classical information be trans-

Evolved Quantum Programs 121

mitted via a SMOLIN gate?") but its result ("Yes") was not the end of the
story; the details of the result inspired a round of human analysis and
the production of new questions for the system. Results of the runs on
these secondary questions have led to further analysis and insights. This
work is ongoing and additional publications in the physics literature are
expected in the future (Bennett et al., 2004).

Chapter 9

C O N C L U S I O N S A N D P R O S P E C T S

Quantum computing is an exciting frontier of computer science that
may, if the aspirations of its proponents are fully realized, provide hu
manity with truly awesome computational power. At present, however,
we have only hints of the power that may be available, and we have only
begun to grapple with the practical problems involved in the construc
tion of large-scale quantum computers.

Many open problems in quantum computing and quantum informa
tion theory can be formulated as searches for quantum programs that
have particular properties. In other words, they can be thought of as
programming problems, and more specifically as quantum computer pro
gramming problems. Unfortunately, quantum computers are counterin
tuitive and difficult to program. But fortunately we can adapt existing
automatic programming technologies to help us to search for quantum
programs. A successful automatic quantum computer programming sys
tem could contribute to our understanding of quantum computing in
several ways.

Genetic and evolutionary computation technologies — in particular
genetic programming technologies — provide powerful methods for au
tomatic programming. Recent advances in genetic programming tech
niques enable the evolution of complex programs that solve difficult,
real-world problems. When augmented with quantum computer simula
tion facilities these systems can be used for automatic quantum computer
programming, thereby aiding the exploration of quantum computing.

This book described several ways in which genetic programming can
support automatic quantum computer programming, culminating in a
set of specific techniques and examples. These examples, along with

124 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

related results produced by other researchers, (for example, Williams
and Gray, 1999; Surkan and Khuskivadze, 2001; Leier and Banzhaf,
2003a; Leier and Banzhaf, 2003b; Perkowski et al., 2003; Massey et al.,
2004), provide reasons to expect more dramatic discoveries from these
or related techniques in the future.

Straightforward improvements to many of the technologies presented
here should extend their capabilities in significant ways. The specific sys
tems described here, including QGAME and PushGP, were developed
as part of an exploratory research process and were not optimized for
execution speed. Most of them were written in un-optimized Common
Lisp for the sake of rapid prototyping and experimentation, but faster
versions of PushGP and QGAME, written in C++, have just become
available. These improvements, coupled with deployment across larger
networked clusters of computers (as described in Chapter 4), should
significantly increase the size of the quantum systems that can be sim
ulated and the reach of the genetic programming searches that can be
conducted. Improvements to the underlying quantum computer simula
tion algorithms, for example those that avoid exponential slowdowns for
classical segments of quantum programs, may allow for further scale-ups.

An important question not addressed in this book is "How can we de
termine what open problems in quantum computing are best addressed
by means of genetic programming?" This is a difficult question to an
swer without deep knowledge both in quantum computing and in genetic
programming. It is hoped that this book will encourage more people to
seek such knowledge in both areas, and subsequently to apply genetic
programming to new problems in quantum computing.

The "low-hanging fruit" for future applications are clearly other "small
n" problems. Any open problem that can be resolved, one way or the
other, with the discovery of a single, small quantum program is worth
considering as a candidate for solution via genetic programming. The
techniques for evolving such single-size programs are straightforward and
the exponential overhead for quantum computer simulation is manage
able for systems with small numbers of qubits.

More interesting, and more challenging, are problems that involve pro
grams that must be scaled up for various values of n. There are many
such problems — several of the important open questions in quantum
computing concern the asymptotic computational complexity of prob
lems as they grow in size. A basic technique for approaching these
problems was presented here, but the exponential overhead for quantum
computer simulation may hmit the use of this technique. Other advances
may be necessary to achieve significant scaling results.

Conclusions and Prospects 125

For the longer term, it is interesting to speculate about new sorts of
applications that might become practical using variants of the quantum
efficiencies that have already been discovered, and to consider the ways
in which automatic quantum computer programming technologies might
help us to design such applications.

Grover's search algorithm has many obvious applications, to which
it can provide a quadratic speedup. It is also possible that Grover's
ideas can be extended to provide more substantial speedups for certain
specialized searches.-^ A great deal of work in artificial intelligence views
all interesting computation as forms of search, and these ideas might be
used, in conjunction with refined quantum search algorithms, to support
an array of efficient quantum artificial intelligence technologies. Indeed,
as mentioned above one can even view automatic programming as a
form of search, and the notion of using quantum computers to speed
up automatic programming technologies such as genetic programming
has been raised in the literature several times (Spector et al., 1998;
Spector et al., 1999b; Rylander et al., 2001). One specialized form of
search that has wide application in Al is search over AND/OR trees,
which also form the foundation of some kinds of logic programming; one
might therefore speculate that the quantum speedups discovered for the
AND/OR problem may support some form of "quantum logic machine."

Other obvious areas for applications include numerical analysis and
cryptography, where we may expect techniques related to Shor's quan
tum Fourier transform and factoring algorithms to find new uses. We
might further speculate that technologies rooted in massive parallelism,
such as neural networks, will benefit rather directly from the form of ex
ponential parallelism provided by quantum computers. By similar logic
we might expect technologies rooted in the manipulation of probabili
ties, such as Bayesian networks, to benefit from the unique probability-
processing features of quantum computers. The capability of quantum
computers to represent superpositions of multiple states may also have
unexpected applications; for example, a recent Ph.D. dissertation claims
that quantum mechanical superpositions may have an important role to
play in natural language processing (Chen, 2002).

Each of these speculations leads in turn to a new set of questions, and
it is possible that many of these questions will be answered in the future
by automatic quantum computer programming technologies.

•'For some initial steps in this direction see (Hogg, 1998; Hogg, 2000).

Appendix A
QGAME source code

This appendix contains Common Lisp source code for the core elements of the
QGAME quantum computer simulator. It omits much of the program documentation
and also some of the system's advanced features (such as the algorithms for gate
compression). FulUy documented source code for this and other versions of QGAME
can be obtained online.^

f) > i > > t t)) t t i f t >) > } })) > >) t t >) > t i) > t > > >) > >) i

qgame.lisp

A minimal and lightly documented version of QGAME, the Quantum Gate

And Measurement Emulator, implemented in Common Lisp and prepared for

inclusion in:

AUTOMATIC QUANTUM COMPUTER PROGRAMMING: A GENETIC PROGRAMMING

APPROACH, by Lee Spector, published by Kluwer Academic Publishers

Full source and documentation is available from:

http://hampshire.edu/lspector/qgame.html

c) 1999-2004, Lee Spector, lspector@hampshire.edu

-'http://hampshire. edu/lspector/qgame .html

128 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

;; class definition for a quantum system

(defclass quantum-system ()

(;; the number of qubits in the system

(number-of-qubits :accessor number-of-qubits

:initarg :number-of-qubits)

;; an array of amplitudes

(amplitudes :accessor amplitudes

:initarg :amplitudes

:initform nil)

;; the probability for having reached this system

;; in the first place

(prior-probability :accessor prior-probability

: initeirg : prior-probability

:initform 1)

;; the number of oracle calls that have been made

;; in the history of this system

(oracle-count :accessor oracle-count

:initarg :oracle-count

:initform 0)

;; a list of measurements and their results in

;; the history of this system

(measurement-history :accessor measurement-history

:initarg :measurement-history

:initform nil)

;; a list of all instructions executed in the

;; history of this system

(instruction-history :accessor instruction-history

:initarg :instruction-history

:initform nil)

;; the program yet to be executed by this system

;; (if it hasn't yet terminated)

(program :accessor program

:initarg :program

:initform nil)

;; the following are just for convenience

;; a list of all valid qubit indices

(qubit-numbers :accessor qubit-numbers)

;; address storage, used for looping through qubits

(amplitude-address :accessor amplitude-address)))

APPENDIX A: QGAME source code 129

(defmethod initialize-instance

:after ((qsys quantum-system) ferest args)

"An initializer for quantum systems."

(declare (ignore args))

(let ((num-qubits (number-of-qubits qsys)))

;; if there are no amplitudes yet then initialize to 100...0>

(unless (amplitudes qsys)

(setf (amplitudes qsys)

(let ((amps (make-array (expt 2 num-qubits)

:initial-element COLO)))

(setf (aref amps 0) l.OLO) ;; start in zero state

amps)))

;; initilize list of valid qubit indices

(setf (qubit-numbers qsys)

(let ((all nil))

(dotimes (i num-qubits) (push i all))

(reverse all)))

;; initialize address register for amplitudes

(setf (amplitude-address qsys)

(make-array num-qubits :initial-element 0))))

;; quantum computer mEuiipulation utilities

(defun set-address-components (qsys count qubits)

"Sets (amplitude-address qsys) to refer to a particuleir amplitude, as

indicated by the bits in the integer count."

(dotimes (i (length qubits))

(setf (airef (amplitude-address qsys) (nth i qubits))

(if (logbitp i count) 1 0))))

(defun map-qubit-combinations (qsys function qubits)

"Calls function once for each of the 1/0 combinations of the provided

qubits, with the right-most qubit varying the fastest."

(setq qubits (reverse qubits))

(let ((number-of-iterations (expt 2 (length qubits))))

(dotimes (i number-of-iterations)

(set-address-components qsys i qubits)

(funcall function))))

(defun get-addressed-amplitude (qsys)

"Returns the amplitude that is currently addressed

by (amplitude-address qsys)"

(let ((niimerical-address 0))

(dotimes (i (number-of-qubits qsys))

(unless (zerop (aref (amplitude-address qsys) i))

(incf numerical-address (expt 2 i))))

(aref (amplitudes qsys) numerical-address)))

130 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

(defun set-addressed-amplitude (qsys new-value)

"Sets the amplitude currently addressed by (amplitude-address qsys)

to new-value."

(let ((numerical-address 0))

(dotimes (i (number-of-qubits qsys))

(unless (zerop (aref (amplitude-address qsys) i))

(incf numerical-address (expt 2 i))))

(setf (aref (amplitudes qsys) numerical-address) new-value)))

(defun matrix-multiply (matrix column)

"Multiplies the given square matrix by the given column (assumed

to be the right length) and returns the resulting column."

(let ((matrix-size (car (array-dimensions matrix)))

(result nil))

(dotimes (i matrix-size)

(push (let ((element 0))

(dotimes (j matrix-size)

(incf element (* (aref matrix i j) (nth j column))))

element)

result))

(reverse result)))

(defun extract-column (qsys qubits-to-vary)

"Returns a column from the amplitudes obtained by varying the listed

qubits, with the right-most qubit varying the fastest."

(let ((col nil))

(map-qubit-combinations

qsys

#'(lambda ()

(push (get-addressed-amplitude qsys) col))

qubits-to-vary)

(reverse col)))

(defun install-column (qsys column qubits-to-vary)

"Installs the given column in the amplitude positions obtained by

varying the listed qubits, with the right-most qubit varying the

fastest."

(map-qubit-combinations

qsys

#'(lambda ()

(set-addressed-amplitude qsys (car column))

(setq column (cdr column)))

qubits-to-vary))

APPENDIX A: QGAME source code 131

(defiin apply-operator (qsys operator qubits)

"Applies the given matrix-form operator to the given qubits."

(map-qubit-combinations

qsys

#'(lambda ()

(let* ((pre-column (extract-column qsys qubits))

(post-column (matrix-multiply operator pre-column)))

(install-column qsys post-column qubits)))

(set-difference (qubit-numbers qsys) qubits))

qsys)

(defun qc-output-probabilities (qsys qubits)

"Returns a list of the probabilities for all combinations for the

given qubits, in binary order with the right-most qubit varying fastest."

(let ((probabilities nil)

(other-qubits (set-difference (qubit-numbers qsys) qubits)))

(map-qubit-combinations

qsys

#'(lambda ()

(push (let ((probability 0))

(map-qubit-combinations

qsys

#'(lambda 0

(incf probability

(expt (abs (get-addressed-amplitude qsys))

2)))

other-qubits)

probability)

probabilities))

qubits)

(reverse probabilities)))

(defun multi-qsys-output-probabilities (qsys-list qubits)

"Returns a list of the probabilities for all combinations for the

given qubits, in binary order with the right-most qubit varying fastest.

This function takes a LIST of quantum systems as input and sums the

results across all systems."

(let ((probabilities

(mapcar #'(lambda (qsys)

(qc-output-probabilities qsys qubits))

qsys-list)))

(labels ((add-lists (11 12)

(if (null 11)

nil

(cons (+ (first 11) (first 12))

(add-lists (rest 11) (rest 12))))))

(reduce #'add-lists probabilities))))

132 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

(defun expected-oracles (qsys-list)

"Returns the expected number of oracle calls for the given

set of quantum systems."

(reduce #'+

(mapcar #'(lambda (qsys)

(* (prior-probability qsys)

(oracle-count qsys)))

qsys-list)))

;; oracle gates

(defun binary-operator-matrix (tt-right-column)

"Returns a matrix operator for a binary function with the

given tt-right-column as the right column of its truth table."

(let* ((column-length (length tt-right-column))

(operator-size (* 2 column-length))

(matrix (make-array (list operator-size operator-size)

:initial-element 0)))

(dotimes (i column-length)

(let ((offset (* i 2)))

(if (zerop (nth i tt-right-column))

(setf (aref matrix offset offset) 1

(aref matrix (1+ offset) (1+ offset)) 1)

(setf (aref matrix offset (1+ offset)) 1

(aref matrix (1+ offset) offset) 1))))

matrix))

(defun oracle (qsys tt-right-column &rest qubits)

"Applies the oracle operator built from tt-right-column, which

is the right column of the corresponding truth table."

(incf (oracle-count qsys))

(apply-operator

qsys

(binary-operator-matrix tt-right-column)

qubits))

(defun limited-oracle (qsys max-calls tt-right-column &rest qubits)

"If (oracle-count qsys) is less than max-calls then this applies

the oracle operator built from tt-right-column, which is the right

column of the corresponding truth table. Otherwise this does nothing,

(if (< (oracle-count qsys) max-calls)

(progn (incf (oracle-count qsys))

(apply-operator

qsys

(binary-operator-matrix tt-right-column)

qubits))

qsys))

APPENDIX A: QGAME source code 133

;; other quantum gates

(defun qnot (qsys q)
"Quantum NOT gate"
(apply-operator qsys

#2A((0 1)
(1 0))

(list q)))

(defun cnot (qsys ql q2)
"Quantum Controlled NOT gate"
(apply-operator qsys

#2A((1 0 0 0)
(0 10 0)
(0 0 0 1)
(0010))

(list ql q2)))

(defun srn (qsys q)
"Quantum Square-Root-of-NOT gate"
(apply-operator
qsys
(make-array
'(2 2)
:initial-contents

> > > > > J > :

(list (list (/ 1 (sqrt
(list (/ 1 (sqrt

(list q)))

efun hadamard (qsys q)
"Quantum Hadamard gate"
(apply-operator
qsys
(make-array
'(2 2)
:initial-contents
(list (list (/ 1 (sqrt

(list (/ 1 (sqrt
(list q)))

2.0L0))
2.0L0))

2.0L0))
2.OLD))

(-
(/

(/
(-

(/ 1 (sqrt 2.0L0))))
1 (sqrt 2.0L0)))))

1 (sqrt 2.0L0)))
(/ 1 (sqrt 2.0L0))))))

134 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

(defun u-theta (qsys q theta)
"Quantum U-theta (rotation) gate"
(apply-operator
qsys
(make-array
'(2 2)
:initial-contents
(list (list (cos theta) (sin theta))

(list (- (sin theta)) (COS theta))))
(list q)))

(defun cphase (qsys ql q2 alpha)
"Qucmtum controlled phase gate"
(apply-operator
qsys
(make-array
'(4 4)
:initial-contents
(list (list 1 0 0 0)

(list 0 1 0 0)
(list 0 0 10)
(list 0 0 0 (exp (* (sqrt -l.OLO) alpha)))))

(list ql q2)))

U2 = U(phi) * R(theta) * U(psi) * exp(i alpha)I
where U(a) = e"(-ia) 0

0 e~(ia)
and R(a) = cos(a) sin(-a)

sin(a) cos(a)
This is all pre-multiplied in the following code

(defun u2 (qsys q phi theta psi alpha)
"Quantum U2 gate, implemented as:

e"(i(-phi-psi+alpha))*cos(theta) e~(i(-phi+psi+alpha))*sin(-theta)
e~(i(phi-psi+alpha))*sin(theta) e"(i(phi+psi+alpha))*cos(theta)"

(apply-operator
qsys
(let ((i (sqrt -l.OLO)))
(make-array
'(2 2)
:initial-contents
(list (list (* (exp (* i (+ (- phi) (- psi) alpha))) (cos theta))

(* (exp (* i (+ (- phi) psi alpha))) (sin (- theta))))
(list (* (exp (* i (+ phi (- psi) alpha))) (sin theta))

(• (exp (* i (+ phi psi alpha))) (cos theta)))
)))

(list q)))

APPENDIX A: QGAME source code 135

(defun swap (qsys ql q2)

"A quantiom gate that swaps the amplitudes for the two specified

qubits."

(apply-operator

qsys

(make-array

'(4 4)

:initial-contents

(list (list 1 0 0 0)

(list 0 0 1 0)

(list 0 1 0 0)

(list 0 0 0 1)))

(list ql q2)))

;; utilities for measurement and branching

(defun end (qsys)

"Marks the end of a measurement branch; has no effect when used

in a qucintum program in any other context. "

qsys)

(defun distance-to-next-unmatched-end

(list &optional

(num-measures 0) (num-ends 0) (distance-so-far 0))

"Returns 0 if there is no unmatched (end) in list;

otherwise returns the number of instructions to the next

unmatched (end) (counting the (end))."

(if (null list)

0

(if (eq (caar list) 'end)

(if (zerop num-measures)

(+ 1 distance-so-far)

(if (oddp num-ends) ;; then this one closes a measure

(distance-to-next-unmatched-end (cdr list)

(- num-measures 1)

(- num-ends 1)

(+ 1 distance-so-far))

(distance-to-next-unmatched-end (cdr list)

num-measures

(+ num-ends 1)

(+ 1 distance-so-far))))

(if (eq (caar list) 'measure)

(distance-to-next-unmatched-end (cdr list)

(+ num-measures 1) num-ends

(+ 1 distcince-so-f ar))

(distance-to-next-unmatched-end (cdr list)

num-measures num-ends

(+ 1 distance-so-far))))))

136 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

(defun without-if-branch (program)

"Assuming that a MEASURE form has just been removed from the

given program, returns the remainder of the program without the

IF (measure-1) branch."

(let* ((distance-to-first-unmatched-end

(distance-to-next-unmatched-end program))

(distance-from-first-to-second-unmatched-end

(distance-to-next-unmatched-end

(nthcdr distance-to-first-unmatched-end program))))

(if (zerop distance-to-first-unmatched-end)

;; it's all the if part

nil

;; there is some else part

(if (zerop distance-from-first-to-second-unmatched-end)

;; the else never ends

(subseq program distsince-to-f irst-unmatched-end)

;; the else does end

(append

(subseq program

distance-to-first-unmatched-end

(+ distance-to-first-unmatched-end

distemce-from-first-to-second-unmatched-end

-D)
(subseq program (+ distance-to-first-unmatched-end

distamce-from-first-to-second-unmatched-end

)))))))

(defun without-else-branch (program)

"Assuming that a MEASURE form has just been removed from the

given program, returns the remainder of the program without the

ELSE (measure-0) branch."

(let* ((distance-to-first-unmatched-end

(distance-to-next-unmatched-end program))

(distance-from-first-to-second-unmatched-end

(distance-to-next-unmatched-end

(nthcdr distance-to-first-unmatched-end program))))

(if (zerop distance-to-first-unmatched-end)

;; it's all the if part

program

;; there is some else part

(if (zerop distance-from-first-to-second-unmatched-end)

;; the else never ends

(subseq program 0 (- distance-to-first-unmatched-end 1))

;; the else does end

(append

(subseq program 0 (- distance-to-first-unmatched-end 1))

(subseq program (+ distance-to-first-unmatched-end

distance-from-first-to-second-unmatched-end

)))))))

APPENDIX A: QGAME source code 137

(defun force-to (measured-value qubit qsys)

"Collapses a quantiun system to the provided measured-value for the

provided qubit."

(map-qubit-combinations

qsys

#'(lambda ()

(let* ((pre-coliomn (extract-column qsys (list qubit)))

(new-column (case measured-value

(0 (list (first pre-col\imn) 0))

(1 (list 0 (second pre-column))))))

(install-column qsys new-column (list qubit))))

(remove qubit (qubit-numbers qsys)))

qsys)

;; top level functions

(defun execute-quantum-prograra (pgm num-qubits

&optional (oracle-tt nil))

"Executes the provide quantum program with the specified number of

qubits and the provided oracle truth table, returning a list of the

resulting quantum systems."

(run-qsys (make-instance 'quantum-system

:number-of-qubits num-qubits

:program (subst oracle-tt 'ORACLE-TT pgm))))

138 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

(defun run-qsys (qsys)

"Tcikes a quemtum system cind returns the list of quemtum systems that

results from the execution of its program."

(if (or (null (program qsys))

(zerop (prior-probability qsys)))

(list qsys)

(let ((instruction (first (program qsys))))

(setf (instruction-history qsys)

(append (instruction-history qsys) (list instruction)))

(if (eq (first instruction) 'halt)

(list qsys)

(if (eq (first instruction) 'measure)

(let* ((measurement-qubit (second instruction))

(probabilities (qc-output-probabilities

qsys (list measurement-qubit))))

(append (run-qsys ;; 1 branch

(force-to

1 measurement-qubit

(make-instance 'quantum-system

:number-of-qubits (number-of-qubits qsys)

:amplitudes (copy-seq (amplitudes qsys))

:prior-probability (second probabilities)

:oracle-count (oracle-count qsys)

:measurement-history

(append (measurement-history qsys)

(list (list measurement-qubit 'is 1)))

:instruction-history (instruction-history qsys)

:program (without-else-branch

(rest (program qsys))))))

(run-qsys ; ; 0 bramch

(force-to

0 measurement-qubit

(make-instance 'queintiim-system

:number-of-qubits (number-of-qubits qsys)

:amplitudes (copy-seq (amplitudes qsys))

:prior-probability (first probabilities)

:oracle-count (oracle-count qsys)

:measurement-history

(append (measurement-history qsys)

(list (list measurement-qubit 'is 0)))

:instruction-history (instruction-history qsys)

:program (without-if-branch

(rest (program qsys))))))))

(let ((resulting-sys (apply (first instruction)

(cons qsys (rest instruction)))))

(setf (program resulting-sys)(rest (program resulting-sys)))

(run-qsys result ing-sys)))))))

APPENDIX A: QGAME source code 139

(defun test-quantum-program

(pgm &key num-qubits cases final-measurement-qubits threshold

(inspect nil) (debug 0))

"The top-level function to evaluate a quantum program relative to

a list of (oracle value) cases. Returns a list of: misses, max-error,

average-error, max-expected-oracles, and average-expected-oracles.

See complete documentation for a more complete explanation of the

argiments and return values. "

(let ((misses 0)

(max-error 0)

(total-error 0)

(average-error 0)

(max-expected-oracles 0)

(total-expected-oracles 0)

(average-expected-oracles 0)

(num-cases (length cases)))

(dolist (case cases)

(let* ((resulting-systems

(execute-quantum-program pgm num-qubits (first case)))

(raw-error

(- 1.0

(nth (second case)

(multi-qsys-output-probabilities

resulting-systems

final-measurement-qubits))))

(expected-oracles (expected-oracles resulting-systems)))

(if (> raw-error threshold) (incf misses))

(incf total-error raw-error)

(when (> raw-error max-error)

(setq max-error raw-error))

(incf total-expected-oracles expected-oracles)

(when (> expected-oracles max-expected-oracles)

(setq max-expected-oracles expected-oracles))

(when (>= debug 2)

(format t ""'/, ~'/,Case:~A, Error:~,5F" case raw-error))

(when inspect (inspect resulting-systems))))

(setq average-error (/ total-error num-cases))

(setq average-expected-oracles (/ total-expected-oracles num-cases))

(when (>= debug 1)

(format t "~'/,~'/,Misses: "A" misses)

(format t ""'/.Max error: "A" max-error)

(format t ""'/.Average error:"A" (float average-error))

(format t ""'/.Max expected oracles: "A" max-expected-oracles)

(format t ""'/.Average expected oracles: "A"

(float average-expected-oracles)))

(list misses max-error average-error max-expected-oracles

average-expected-oracles)))

References

Albert, D. Z. (1992). Quantum Mechanics and Experience. Harvard University Press,
Cambridge, Massachusetts.

Angelina, P. J. and Kinnear, Jr., K. E., editors (1996). Advances in Genetic Program
ming S. MIT Press, Cambridge, MA, USA.

Angeline, P. J. and Pollack, J. B. (1992). The evolutionary induction of subroutines. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington, Indiana, USA. Lawrence Erlbaum.

Angehne, P. J. and Pollack, J. B. (1993). Evolutionary module acquisition. In Fo-
gel, D. and Atmar, W., editors. Proceedings of the Second Annual Conference on
Evolutionary Programming, pages 154-163, La JoUa, CA, USA.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998). Cenetic Program
ming - An Introduction; On the Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann, dpunkt.verlag.

Barenco, A., Bennett, C. H., Clave, R., DiVincenzo, D. P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J. A., and Wainfurter, H. (1995). Elementary gates for quantum
computation. Physical Review A, 52:3457-3467.

Barnum, H., Bernstein, H. J., and Spector, L. (2000). Quantum circuits for OR and
AND of ORs. Journal of Physics A: Mathematical and General, 33(45) :8047-8057.

Beckman, D., Chari, A. N., Devabhaktuni, S., and Preskill, J. (1996). Efficient net
works for quantum factoring. Technical Report CALT-68-2021, California Institute
of Technology, ht tp: / /xxx. lanl .gov/abs/quemt-ph/9602016.

Bell, J. S. (1993). Speakable and unspeakable in quantum mechanics. Cambridge Uni
versity Press, Cambridge.

Bennett, C. H. (1999). Quantum information theory. In Hey, A. J. G., editor, Feyn-
man and Computation: Exploring the Limits of Computers, pages 177-190. Persus
Books, Reading, Massachusetts.

Bennett, C. H., Bernstein, H. J., Harrow, A., Leung, D. W., Smolin, J. A., and
Spector, L. (2004). Evidence for unequal efficiencies of some quantum gates for
forward communication, backward communication and entanglement generation,
discovered in part by genetic programming, (in preparation).

Brooks, M., editor (1999). Quantum Computing and Communications. Springer-Verlag,
London.

Brown, J. (2000). Minds, Machines and the Multiverse: The Quest for the Quantum
Computer. Simon & Schuster.

142 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Burke, E., Gustafson, S., and Kendall, G. (2002a). A survey and analysis of diversity
measures in genetic programming. In Langdon, W. B., Cantu-Paz, E., Mathias, K.,
Roy, R., Davis, D., Poll, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener,
J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J. P., Burke, E., and Jonoska, N.,
editors, GECCO 200S: Proceedings of the Genetic and Evolutionary Gomputation
Gonference, pages 716-723, New York. Morgan Kaufmann Publishers.

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2002b). Advanced popula
tion diversity measures in genetic programming. In Guervos, J.-J. M., Adamidis,
P., Beyer, H.-G., nas, J.-L. F.-V., and Schwefel, H.-P., editors. Parallel Problem
Solving from Nature - PPSN VII, number 2439 in Lecture Notes in Computer
Science, LNCS, page 341 ff., Granada, Spain. Springer-Verlag.

Chen, J. C. (2002). Quantum Gomputation and Natural Language Processing. PhD
thesis. Department of Computer Science, University of Hamburg, Vogt-Kolln-Strae
30, D-22527 Hamburg, Germany,
ht tp: / /nats-www.informatik.uni-hamburg.de/"j oseph/d is / .

Christensen, S. and Oppacher, F. (2001). What can we learn from no free lunch? A
first attempt to characterize the concept of a searchable function. In Spector, L.,
Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen, S., Dorigo,
M., Pezeshk, S., Garzon, M. H., and Burke, E., editors, Proceedings of the Genetic
and Evolutionary Gomputation Gonference (GEGGO-2001), pages 1219-1226, San
Francisco, California, USA. Morgan Kaufmann.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential
programs. In Grefenstette, J. J., editor. Proceedings of an International Gonfer
ence on Genetic Algorithms and the Applications, pages 183-187, Carnegie-Mellon
University, Pittsburgh, PA, USA.

Crawford-Marks, R. and Spector, L. (2002). Size control via size fair genetic operators
in the PushGP genetic programming system. In Langdon, W. B., Cantii-Paz, E.,
Mathias, K., Roy, R., Davis, D., Poll, R., Balakrishnan, K., Honavar, V., Rudolph,
G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C , Miller, J. F., Burke, E.,
and Jonoska, N., editors, GEGGO 2002: Proceedings of the Genetic and Evolu
tionary Gomputation Gonference, pages 733-739, New York. Morgan Kaufmiann
Publishers.

Deutsch, D. (1997). The Fabric of Reality. Penguin Books.
Deutsch, D. and Jozsa, R. (1992). Rapid solution of problems by quantum computa

tion. Proceedings of the Royal Society of London Ser.A, A439:553-558.
Droste, S., Jansen, T., and Wegener, I. (1999). Perhaps not a free lunch but at least a

free appetizer. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar,
v . , Jakiela, M., and Smith, R. E., editors. Proceedings of the Genetic and Evo
lutionary Gomputation Gonference, volume 1, pages 833-839, Orlando, Florida,
USA. Morgan Kaufmann.

Edmonds, B. (2001). Meta-genetic programming: Co-evolving the operators of vari
ation. Elektrik, 9(l):13-29. Turkish Journal Electrical Engineering and Computer
Sciences.

Ekart, A. and Nemeth, S. Z. (2001). Selection based on the pareto nondomination cri
terion for controlling code growth in genetic programming. Genetic Programming
and Evolvable Machines, 2(l):61-73.

Elitzur, A. C. and Vaidman, L. (1993). Quantum mechanical interaction-free mea
surements. Foundation of Physics, 23:987-997.
h t tp : / / a rx iv .org /abs /hep- th /9305002 .

REFERENCES 143

Feynman, R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton
University Press.

Feynman, R. P. (1996). Feynman Lectures on Computation. Perseus Publishing, Cam
bridge, Massachusetts.

Fogel, D. B. and Atmar, J. W. (1990). Comparing genetic operators with Gaussian
mutations in simulated evolutionary processes using linear systems. Biological Cy
bernetics, 63(2):111-114.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Graham, P. (1994). On Lisp: advanced techniques for Common Lisp. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA.

Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters, pages 325-328.

Gruau, F. (1994). Genetic micro programming of neural networks. In Kinnear, Jr.,
K. E., editor. Advances in Cenetic Programming, chapter 24, pages 495-518. MIT
Press.

Gruska, J. (1999). Quantum Computing. McGraw-Hill Publishing Company, Maiden
head, Berkshire.

Hallgren, S. (2002). Polynomial-time quantum algorithms for pell's equation and the
principal ideal problem. In Proceedings of the 34th ACM Symposium on Theory of
Computing.

Hallgren, S., Russell, A., and Ta-Shma, A. (2003). The hidden subgroup problem and
quantum computation using group representations. SI AM J. Comput, 32(4) :916-
934.

Hey, A. J. G., editor (1999). Feynman and Computation: Exploring the Limits of
Computers. Persus Books, Reading, Massachusetts.

Hogg, T. (1998). Highly structured searches with quantum computers. Physical Re
view Letters, 80:2473-2476.

Hogg, T. (2000). Quantum search heuristics. Physical Review A, 61:052311.
Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An introductory

analysis with applications to biology, control, and artificial intelligence. The MIT
Press, Cambridge, Massachusetts. First edition ©1975.

Igel and Toussaint (2003). On classes of functions for which no free lunch results hold.
IPL: Information Processing Letters, 86.

Jozsa, R. (1997). Entanglement and quantum information. In Hugett, S., Mason, L.,
Todd, K. P., Tsou, S. T., and Woodhouse, N. J., editors. Geometric Issues in the
Foundations of Science. Oxford University Press.
ht tp: / /arXiv.org/quant-ph/9707034.

Kinnear, Jr., K. E., editor (1994a). Advances in Genetic Programming. MIT Press,
Cambridge, MA.

Kinnear, Jr., K. E. (1994b). Alternatives in automatic function definition: A compar
ison of performance. In Kinnear, Jr., K. E., editor. Advances in Cenetic Program
ming, chapter 6, pages 119-141. MIT Press.

Klein, J. (2002). BREVE: a 3d environment for the simulation of decentralized sys
tems and artificial life. In Standish, R. K., Bedau, M. A., and Abbass, H. A.,
editors. Proceedings of Artificial Life VIII, the 8th International Conference on
the Simulation and Synthesis of Living Systems, pages 329-334. The MIT Press.
h t tp : / /www.spider land.org/breve/breve-kle in-al i fe2002.pdf .

144 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Koza, J. (1990). Genetic programming: A paradigm for genetically breeding popu
lations of computer programs to solve problems. Technical Report STAN-CS-90-
1314, Dept. of Computer Science, Stanford University.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Pro
grams. MIT Press, Cambridge Massachusetts.

Koza, J. R., David Andre, Bennett III, F. H., and Keane, M. (1999). Genetic Pro
gramming III: Darwinian Invention and Problem Solving. Morgan Kaufman.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G.
(2003). Genetic Programming IV: Routine Human-Competitive Machine Intelli
gence. Kluwer Academic Publishers.

Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., and Kasevich, M. (1995). Inter
action-free quantum measurements. Physical Review Letters, 74:4763-4766.

Landauer, R. (1999). Information is inevitably physical. In Hey, J. G., editor, Feynman
and Computation: Exploring the Limits of Computers, pages 77-92. Perseus Books,
Reading, MA.

Langdon, W. B. (1998). Genetic Programming and Data Structures: Genetic Pro
gramming + Data Structures = Automatic Programming! Kluwer, Boston.

Langdon, W. B., Soule, T., PoH, R., and Foster, J. A. (1999). The evolution of size
and shape. In Spector, L., Langdon, W. B., O'Reilly, U.-M., and Angelina, P. J.,
editors. Advances in Genetic Programming 3, chapter 8, pages 163-190. MIT Press,
Cambridge, MA, USA.

Leier, A. and Banzhaf, W. (2003a). Evolving Hogg's quantum algorithm using linear-
tree GP. In Cantii-Paz, E., Foster, J. A., Deb, K., Davis, D., Roy, R., O'Reilly,
U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener,
J., Dasgupta, D., Potter, M. A., Schultz, A. C , Dowsland, K., Jonoska, N., and
Miller, J., editors. Genetic and Evolutionary Computation - GECCO-2003, volume
2723 of LNCS, pages 390-400, Chicago. Springer-Verlag.

Leier, A. and Banzhaf, W. (2003b). Exploring the search space of quantum programs.
In Sarker, R. et al., editors, Proc. 2003 Congress on Evolutionary Computation
(CEC'03), Canberra, volume 1, pages 170-177, Piscataway NJ. IEEE Press.

Luke, S. (2000). Issues in Scaling Genetic Programming: Breeding Strategies, Tree
Generation, and Code Bloat. PhD thesis, Department of Computer Science, Uni
versity of Maryland, A. V. Williams Building, University of Maryland, College
Park, MD 20742 USA.
h t t p : //www. cs . gmu. edu/~seain/papers/thesis2p. pdf.

Luke, S. and Spector, L. (1998). A revised comparison of crossover and mutation in
genetic programming. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo,
M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and Riolo, R., editors,
Genetic Programming 1998: Proceedings of the Third Annual Conference, pages
208-213, University of Wisconsin, Madison, Wisconsin, USA. Morgan Kaufmann.

Massey, P., Clark, J., and Stepney, S. (2004). Evolving quantum circuits and programs
through genetic programming. In Deb, K., Poh, R., Spector, L., Thierens, D.,
Beyer, H.-G., Tettamanzi, A., Lanzi, P. L., Tyrrell, A., Foster, J., Banzhaf, W.,
Holland, O., Floreano, D., Burke, E., Harman, M., Darwen, P., and Dasgupta, D.,
editors. Genetic and Evolutionary Computation - GECCO-2004- Springer-Verlag.

McCarthy, J., Levin, M., et al. (1966). LISP 1.5 Programmer's Manual. MIT.
Milburn, G. J. (1997). Schrodinger's Machines: The Quantum Technology Reshaping

Everyday Life. W. H. Freeman and Company, New York.

REFERENCES 145

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.
Montana, D. J. (1993). Strongly typed genetic programming. BBN Technical Report

#7866, Bolt Beranek and Newman, Inc., 10 Moulton Street, Cambridge, MA 02138,
USA.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum In
formation. Cambridge University Press, Cambridge.

Obenland, K. and Despain, A. (1998). A parallel quantum computer simulator,
h t tp : / /a rx iv .org /quant -ph/9804039.

O'Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, volume 4 of Genetic programming. Kluwer
Academic Publishers.

Penrose, R. (1989). The Emperor's New Mind: concerning computers, minds, and the
laws of physics. Oxford University Press.

Penrose, R. (1997). The Large, the Small and the Human Mind. Cambridge University
Press.

Perkis, T. (1994). Stack-based genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages 148-153, Orlando,
Florida, USA. IEEE Press.

Perkowski, M., Lukac, M., Pivtoraiko, M., Kerntopf, P., Folgheraiter, M., Lee, D.,
Kim, H., Kim, H., Hwangboo, W., Kim, .J.-W., and Choi, Y. (2003). A hierarchi
cal approach to computer aided design of quantum circuits. In Proceedings of 6th
International Symposium on Representations and Methodology of Future Comput
ing Technology, KM 2003, pages 201-209.
http://www.ee.pdx.edu/"mperkows/=PUBLICATI0NS/PDF-2003/Perkowski.pdf.

Polito, J., Daida, J., and Bersano-Begey, T. F. (1997). Musica ex machina: Composing
16th-century counterpoint with genetic programming and symbiosis. In Angeline,
P. J., Reynolds, R. C , McDonnell, J. R., and Eberhart, R., editors, Evolutionary
Programming VI: Proceedings of the Sixth Annual Conference on Evolutionary
Programming, volume 1213 of Lecture Notes in Computer Science, Indianapolis,
Indiana, USA. Springer-Verlag.

Racine, A., Schoenauer, M., and Dague, P. (1998). A dynamic lattice to evolve hierar
chically shared subroutines: DL'GP. In Banzhaf, W., Poll, R., Schoenauer, M., and
Fogarty, T. C , editors, Proceedings of the First European Workshop on Genetic
Programming, volume 1391 of LNCS, pages 220-232, Paris. Springer-Verlag.

Rieffel, E. and Polak, W. (2000). An introduction to quantum computing for non-
physicists,
h t tp : / /a rx iv .org/quant -ph/9809016.

Riolo, R. L. and Worzel, B. (2003). Genetic Programming Theory and Practice.
Kluwer, Boston, MA, USA.

Roberts, S. C , Howard, D., and Koza, J. R. (2001). Evolving modules in genetic
programming by subtree encapsulation. In Miller, J. F., Tomassini, M., Lanzi,
P. L., Ryan, C , Tettamanzi, A. G. B., and Langdon, W. B., editors, Genetic
Programming, Proceedings of EuroGP'2001, volume 2038 oi LNCS, pages 160-175,
Lake Como, Italy. Springer-Verlag.

Robinson, A. (2001). Genetic programming: Theory, implementation, and the evolu
tion of unconstrained solutions. Division III thesis, Hampshire College,
h t tp : / /hampshi re .edu/ l spec tor / robinson-div3 .pdf .

Rylander, B., Soule, T., Foster, J., and Alves-Foss, J. (2001). Quantum evolutionary
programming. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt,
H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke,

146 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

E., editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 1005-1011, San Francisco, California, USA. Morgan Kauf-
mann.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, on learn
ing now to learn: The meta-meta-meta...-hook. Diploma thesis, Technische Uni-
versitat Munchen, Germany.

Schumacher, C , Vose, M. D., and Whitley, L. D. (2001). The no free lunch and prob
lem description length. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B.,
Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke,
E., editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 565-570, San Francisco, California, USA. Morgan Kauf-
mann.

Shapiro, J. H. and Hirota, O., editors (2003). Proceedings of the 6th International
Conference on Quantum Communication, Measurement, and Computing. Rinton
Press, Princeton, New Jersey.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and
factoring. In Goldwasser, S., editor, Proceedings of the 35th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society Press.

Shor, P. W. (1998). Quantum computing. Documenta Mathematica, Extra Volume
ICM:467~486. h t t p : / / e a s t . camel .math. ca/EMIS/journals/DMJDMV/xvol-icm /
00/Shor.MAN.ps.gz.

Spector, L. (1996). Simultaneous evolution of programs and their control structures. In
Angeline, P. J. and Kinnear, Jr., K. E., editors. Advances in Genetic Programming
2, chapter 7, pages 137-154. MIT Press, Cambridge, MA, USA.

Spector, L. (2001). Autoconstructive evolution: Push, pushGP, and pushpop. In Spec-
tor, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H.-M., Gen, M., Sen,
S., Dorigo, M., Pezeshk, S., Garzon, M. H., and Burke, E., editors. Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages
137-146, San Francisco, California, USA. Morgan Kaufmann.

Spector, L. (2002). Adaptive populations of endogenously diversifying pushpop or
ganisms are reliably diverse. In Standish, R. K., Bedau, M. A., and Abbass, H. A.,
editors. Proceedings of Artificial Life VIII, the 8th International Conference on the
Simulation and Synthesis of Living Systems, pages 142-145. The MIT Press.

Spector, L. (2003). An essay concerning human understanding of genetic program
ming. In Riolo, R. L. and Worzel, B., editors. Genetic Programming Theory and
Practice, chapter 2, pages 11-24. Kluwer.

Spector, L. and Alpern, A. (1994). Criticism, culture, and the automatic generation of
artworks. In Proceedings of Twelfth National Conference on Artificial Intelligence,
pages 3-8, Seattle, Washington, USA. AAAI Press/MIT Press.

Spector, L., Barnum, H., and Bernstein, H. J. (1998). Genetic programming for quan
tum computers. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo,
M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and Riolo, R., editors.
Genetic Programming 1998: Proceedings of the Third Annual Conference, pages
365-373, University of Wisconsin, Madison, Wisconsin, USA. Morgan Kaufmann.

Spector, L., Barnum, H., Bernstein, H. J., and Swami, N. (1999a). Finding a better-
than-classical quantum AND/OR algorithm using genetic programming. In An
geline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala, A., editors.
Proceedings of the Congress on Evolutionary Computation, volume 3, pages 2239-
2246, Mayflower Hotel, Washington D.C., USA. IEEE Press.

REFERENCES 147

Spector, L., Barniim, H., Bernstein, H. J., and Swamy, N. (1999b). Quantum comput
ing applications of genetic programming. In Spector, L., Langdon, W. B., O'Reilly,
U.-M., and Angeline, P. J., editors. Advances in Genetic Programming 3, chapter 7,
pages 135^160. MIT Press, Cambridge, MA, USA.

Spector, L. and Bernstein, H. J. (2003). Communication capacities of some quantum
gates, discovered in part through genetic programming. In Shapiro, J. H. and
Hirota, O., editors. Proceedings of the Sixth International Conference on Quantum
Communication, Measurement, and Computing (QCMC), pages 500-503. Rinton
Press.

Spector, L. and Klein, J. (2002). Evolutionary dynamics discovered via visualization
in the BREVE simulation environment. In Smith, T., Bullock, S., and Bird, J.,
editors, Beyond Fitness: Visualising Evolution — Work, of Artificial Life VIII:
8th Int. Conf. Simulation and Synthesis of Living Systems.

Spector, L., Klein, J., Perry, C , and Feinstein, M. (2003a). Emergence of collective
behavior in evolving populations of flying agents. In Cantii-Paz, E., Foster, J. A.,
Deb, K., Davis, D., Roy, R., O'Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall,
C , Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M. A., Schultz,
A. C , Dowsland, K., Jonoska, N., and Miller, J., editors, Genetic and Evolution
ary Computation - GECCO-200S, volume 2723 of LNCS, pages 61-73, Chicago.
Springer-Verlag.

Spector, L., Langdon, W. B., O'Reilly, U.-M., and Angeline, P. J., editors (1999c).
Advances in Genetic Programming 3. MIT Press, Cambridge, MA, USA.

Spector, L., Perry, C , and Klein, J. (2003b). Push 2.0 programming language de
scription. Technical report. School of Cognitive Science, Hampshire College,
h t tp : / /hampshi re .edu / l spec tor /push2-descr ip t ion .h tml .

Spector, L. and Robinson, A. (2002a). Genetic programming and autoconstructive
evolution with the push programming language. Genetic Programming and Evolv-
able Machines, 3(l):7-40.

Spector, L. and Robinson, A. (2002b). Multi-type, self-adaptive genetic programming
as an agent creation tool. In Barry, A. M., editor, GECCO 2002: Proceedings of the
Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference,
pages 73-80, New York. AAAI.
ht tp: / /hampshire .edu/ lspector /pubs/ecomas2002-spector- toappear .pdf .

Spector, L. and StofFel, K. (1996a). Automatic generation of adaptive programs. In
Maes, P., Mataric, M. J., Meyer, J.-A., Pollack, J., and Wilson, S. W., editors.
Proceedings of the Fourth International Conference on Simulation of Adaptive Be
havior: From animals to animats 4, pages 476-483, Cape Code, USA. MIT Press.

Spector, L. and Stoffel, K. (1996b). Ontogenetic programming. In Koza, J. R., Gold
berg, D. E., Fogel, D. B., and Riolo, R. L., editors. Genetic Programming 1996:
Proceedings of the First Annual Conference, pages 394-399, Stanford University,
CA, USA. MIT Press.

Steane, A. (1998). Quantum computing. Reports on Progress in Physics, 61:117-173.
h t tp : / /xxx. lanl .gov/abs /quant-ph/9708022.

Steele Jr., G. L. (1984). Common LISP: The Language. Digital Press, Burlington,
Mass.

Stoffel, K. and Spector, L. (1996). High-performance, parallel, stack-based genetic
programming. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L.,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 224-229, Stanford University, CA, USA. MIT Press.

148 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Surkan, A. J. and Khuskivadze, A. (2001). Evolution of quantum algorithms for com
puter of reversible operators. In Stoica, A., Lohn, J., Katz, R., Keymeulen, D., and
Zebulum, R. S., editors, The 2002 NASA/DoD Conference on Evolvable Hardware,
pages 186-187, Long Beach, California. Jet Propulsion Laboratory, California In
stitute of Technology, IEEE Computer Society.

Tchernev, E. (1998). Forth crossover is not a macromutation? In Koza, J. R., Banzhaf,
W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg,
D. E., Iba, H., and Riolo, R., editors. Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 381-386, University of Wisconsin, Madison,
Wisconsin, USA. Morgan Kaufmann.

Udrescu-Milosav, M. (2003). Quantum Algorithms Implementation: Circuit Design
Principles and Entanglement Analysis. PhD thesis, University Politehnica Timisoara,
Romania.

Vaidman, L. (1996). Interaction-free measurements,
h t tp : / /a rx iv .org /quant -ph/9610033.

van Dam, W., Hallgren, S., and Ip, L. (2002). Quantum algorithms for some hidden
shift problems,
h t tp : / /a rx iv .org /quant -ph/0211140.

van Dam, W. and Seroussi, G. (2002). Efficient quantum algorithms for estimating
Gauss sums,
h t tp : / / a rx iv .org /quant -ph /0207131.

Viamontes, G. F., Markov, I. L., and Hayes, J. P. (2003). Improving gate-level simu
lation of quantum circuits,
h t tp : / /a rx iv .org/quant -ph/0309060.

Viamontes, G. F., Rajagopalan, M., Markov, I. L., and Hayes, J. P. (2002). Gate-level
simulation of quantum circuits,
h t tp : / /a rx iv .org /quant -ph/0208003.

Whitley, D. (1999). A free lunch proof for gray versus binary encodings. In Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith,
R. E., editors. Proceedings of the Genetic and Evolutionary Computation Confer
ence, volume 1, pages 726-733, Orlando, Florida, USA. Morgan Kaufmann.

Wiles, J. and Tonkes, B. (2002). Visualisation of hierarchical cost surfaces for evolu
tionary computation. In Proceedings of the 2002 Congress on Evolutionary Com
putation, pages 157-162.

Williams, C. P. and Clearwater, S. H. (1998). Explorations in Quantum Computing.
Springer-Verlag, New York.

WiUiams, C. P. and Gray, A. G. (1999). Automated design of quantum circuits. In
Williams, C. P., editor. Quantum Computing and Quantum Communications: First
NASA International Conference, QCQC'98, number 1509 in Lecture Notes in Com
puter Science, LNCS, pages 113-125, Palm Springs, California, USA. Springer-
Verlag.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Trans, on Evolutionary Computation, l(l):67-82.

Woodward, J. R. and Neil, J. R. (2003). No free lunch, program induction and com
binatorial problems. In Ryan, C , Soule, T., Keijzer, M., Tsang, E., Poll, R., and
Costa, E., editors, Genetic Programming, Proceedings of EuroGP'2003, volume
2610 of LNCS, pages 479-488, Essex. Springer-Verlag.

About the Author

Lee Spector is Dean of the School of Cognitive Science and Professor
of Computer Science at Hampshire College. He received a B.A. in Phi
losophy from Oberlin College in 1984, and a Ph.D. from the Department
of Computer Science at the University of Maryland in 1992.

Dr. Spector teaches and conducts research in computer science, ar
tificial intelligence, and artificial life. He recently received the highest
honor bestowed by the National Science Foundation for excellence in
both teaching and research, the NSF Director's Award for Distinguished
Teaching Scholars. His areas of interest include genetic and evolutionary
computation, quantum computation, planning in dynamic environments,
artificial intelligence education, artificial intelligence and neuropsychol
ogy, and artificial intelligence in the arts.

Dr. Spector has produced over 50 professional scientific publications
and serves as an Associate Editor for the journal Genetic Programming
and Evolvable Machines, published by Kluwer. He was Editor-in-Chief
for the Proceedings of the 2001 GECCO (Genetic and Evolutionary
Computation) conference and he has been the Program Chair for the
Genetic Programming and Evolvable Hardware tracks of other GECCO
conferences. He was lead editor for Advances in Genetic Programming,
Volume 3, pubhshed by MIT Press.

Index

ADFs, 57, 60, 70
Amplitude diagram, 29
Amplitudes, 7-8, 14-16, 18-19, 22, 26-30
Arrows, 8
ArXiv, 4
Autoconstructive evolution, viii, 55, 60,

71-72
Automatically defined functions, 57, 60, 70
Bayesian networks, 125
Beam splitter, 5-6, 8-9
Bernstein, Herbert J., 31, 115, 117
Bra-ket notation, 13
C + + , 23, 124
Chuang, Isaac, 11

Classical bits, 13, 15, 40, 56, 59, 115-119
Classical computers, 2, 13
Cluster computers, 41, 69, 96-97, 99, 124
Communication, 3, 85, 88, 114-115, 117,

119-120
Complexity, 1-3, 42, 59, 109, 113, 120, 124
Conditionals, 47, 57
Consciousness, 4
Creativity, 4
Crossover, 39-40, 48-50, 53, 56-57, 69-70,

72, 91, 96, 104, 109
Cryptography, 2
Cube diagram, 30, 33-35
Data types, viii, 55-56, 59-63, 68, 70-71, 78,

89, 96, 103, 108
Demes, 41, 69, 97-98
Despain, Alvin, 18
Development, viii, 55, 58-59, 68, 76-78, 80,

83, 85, 90, 93, 97, 104, 115
Dirac, Paul, 13
DNA dynamics, 38
DOUBLE, 66-67
Elitzur, Avshalom, 9
Embryo, 59, 78, 84-85, 90, 98, 117
Entanglement, 14, 19, 28, 82, 88, 114-115,

117-119

EVALPUSH-LIMIT, 62, 89, 96, 103, 108
Exponential costs, 18-19, 41, 62, 80, 124
Exponential speedup, 2-3, 5, 10, 125
Factorial, 66-67
Factoring, 2-3, 125
Feynman, Richard, 5, 8
Fitness, viii, 13, 38-41, 44, 48, 50-51, 53-54,

58-59, 69, 72, 80-82
Functional interpretation, 46
Gate array diagram, 28, 31-32, 92, 94, 98,

102, 107, 111, 114, 116, 118-119
Gate compression, 26, 83, 97, 127
Gate

Bernstein-Spector (BS-theta), 117-119
CNOT (controlled NOT), 15-16, 19, 24,

35, 79, 117
CPHASE (controlled phase), 17, 24
encapsulated, 77
FANOUT, 25
Hadamard, 17, 24, 33-35, 78-79, 81, 85,

94, 112, 117
J-theta, 115-117
NAND, 16, 25
oracle, 18, 24-25, 27-28, 77-78, 80-82, 84,

87-90, 94-95, 98, 102, 104, 106-108,
111-115,120

QNOT (quantum NOT), 16-19, 24, 26,
31, 101-102, 115

Smolin, 115-117, 121
SRN (square root of NOT), 16-17, 24, 94
SWAP, 17, 24
Toffoli, 25
U-theta, 16, 24, 34-35, 56, 77, 79, 84, 112
U2, 17, 24, 76

Gaussian noise, 40, 83
GECCO conference, x, 45, 149
Gene expression, 38
Genetic algorithm, traditional, viii, 37,

39-40, 43, 46, 58

152 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Genetic operators, 39-40, 45-49, 56, 59-60,
69-71, 76-77, 83, 91, 96, 104, 109

Genetic programming, traditional, viii,
43-50, 52-53, 56-58, 62, 69-70, 76, 83

Gray, Alexander, 80
Grover's algorithm, 3-4, viii, 18, 23-24,

31-35, 87, 95, 102, 119, 125
Grover, Lev, 3, 119
Hampshire College, x, ix
Holland, John, 40
Human competitive performance, 11,

118-121
Human interpretation, 26, 28, 53, 76, 121
Hyperspace graph paper, 30
Immune systems, 38
Interference, 7, 10
Interferometer, 6-9
Iteration, 57, 67, 85
Junk, 51
Koza, John, 44-45, 50, 53, 57-58, 81, 118
Landaur, Rolf, 1
LGP, 109, 113
Linux, 96
Lisp, ix, 23, 26-27, 32, 46-47, 50, 57, 62, 67,

69, 77, 90, 93, 96, 124, 127
Loops, 57-58
Matrix literalization, 83, 97
MAX-POINTS-IN-PROGRAM, 62, 89, 96,

103, 108
Measurement, 14, 17, 23, 25-27, 32-33, 78,

80, 90, 92, 95, 98, 111, 114
Meta-evolution, 71
Meta-GP, 71
Migration, 41, 69, 97
Modules, viii, 55, 57, 68, 70-71, 79
Montana, David, 56
Moore's Law, 2
Mutation, 39-40, 48-49, 53, 56-57, 59, 62,

69-72, 83-84, 91, 96, 104, 109
Neural networks, 38, 57-59, 125
Nielsen, Michael, 11
No Free Lunch theorems, 39
NOOP, 60, 62-63
NUMQUBITS, 85, 104
Obenland, Kevin, 18
Ontogenetic programming, 59
Oracle truth table, 25, 27
Parallelism, viii, 37, 41, 125
Parsimony, 57, 82
Penrose, Roger, 4
Photon-triggered bomb, 9-10
Photons, 5-10
Physical implementation, 14
Possibilities, 4-5, 8-10
Preskill, John, 4
Probability, 5, 8-9, 14, 17, ,25-28, 80-82, 90,

98, 106, 108-109, 113, 115, 117

Problem
AND/OR, 88, 108-110, 112-114, 119-120,

125
artificial ant, 47
Boolean oracle analysis, 87
database search, viii, 18, 23-24, 31, 87,

95-100, 102, 119
Deutsch-Jozsa (XOR), 88-92, 94-95, 119
gate communication, 114-115, 117,

119-120
Majority-ON, 88, 103-104, 106-107,

119-120
multi-objective optimization, 82
ODD, 70
OR, 88, 108-111, 113, 119-120
symbolic regression, 49-52, 72, 80

Protected division, 48, 50
Push, viii, 55, 58-63, 67-72, 78-79, 83-85,

89-90, 93, 96-100, 103-105, 108-109,
111, 113

PushGP, viii-ix, 55, 59-60, 64, 68-73,
78-79, 83-84, 89-92, 96-100, 103-104,
107-110, 113-116, 124

Pushpop, 60, 68, 72-73
QGAME, viii-ix, 20, 23-28, 30-32, 76-81,

83-85, 90, 92-93, 97-98, 100-101,
104-106, 108-109, 112-115, 117, 124,
127

QGATE type, 78-79, 84, 89, 91, 96-97, 103,
107-110

QGATE.COMPOSE, 79, 83
QGATE.MEASURE, 109-110, 112-113
Quantum gates, 13-26, 28, 31, 33, 56, 76-85,

87-88, 94-95, 114-115, 117, 119-120
Quantum gravity, 4
Quantum logic machine, 125
Quantum superdense coding, 4, 117, 119
Quantum teleportation, 4
Qubits, 13-14, 16-22, 24-31, 33-35, 56-57,

76, 78-79, 81, 85, 87-90, 94-95, 104,
108, 112, 115, 117, 124

Random code generation, 48, 50, 56, 61-62,
64, 67, 69, 84

Recursion, 59, 61-62, 66-70, 72
Regulatory networks, 38
Safety, 60, 62
Scalable quantum algorithms, 18, 77, 85, 88,

104, 106-107, 120
Selection pressure, 40
Selection, 39-42, 48, 50, 69, 71-72, 76
Self-adaptation, viii, 55, 70-72
Shor's algorithm, 2-4, 125
Shor, Peter, 2
Side effects, 9, 47
Size fair genetic operators, 48, 91, 96, 104,

109
Smolin, John, 115

INDEX 153

Stack-based genetic programming, 60, 77

Stack-safe execution, 60, 62

Strongly typed genetic programming, 56

Superposition, 10, 13, 15, 17, 31, 81, 85, 94,
102, 112-113, 125

SwarmEvolve, 60, 73

Terminals, 46-48, 50, 53-54, 56

TEST-QUANTUM-PROGRAM, 25, 27-28,

32, 81, 90, 92, 98, 108, 112

Tonkes, Bradley, 30

Tournament selection, 39-40, 48, 69, 72, 84,
97

Tree-based genetic programming, 45, 47, 58
Uniform crossover, 40
Unitarity, 16, 79
Unitary matrices, 16, 18, 26, 33, 56, 63,

78-80, 83, 88
Universality, 16
Vaidman, Lev, 9
Weak methods, 41-42
Wiles, Janet, 30
Williams, Colin, 80

