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PREFACE

The IUTAM Symposium on Microstructure Property Interactions in Composite Mate-
rials was held during the dates 22nd to 25th August 1994 in Rebild Bakker Conference
Centre, situated in the heart of one of Denmark’s most beautiful natural areas.

Participation in the Symposium was reserved for invited participants, suggested by
members of the Scientific Committee. The cooperation with the Scientific Committee
is highly appreciated.

The Symposium brought together 76 researchers from 15 countries representing a
broad range of backgrounds relevant to the topic of the meeting. The participants
represented the disciplines of materials science and engineering, applied mechanics,
applied mathematics and scientific computations. The Symposium comprehensively
addressed the analytical, numerical and experimental methods that provide an estimation
of the overall, effective properties from microstructural data. The 41 contributions
emphasized the significance of the microstructure morphology in understanding the
nature and origin of a multitude of properties such as viscoelasticity, plasticity, strength
and fracture for a variety of polymer, metal and ceramic based composite materials.
Specifically, the Symposium examined and reviewed the current state of the art of
micromechanical modelling, experimental investigations and morphological quan-
tification of composite materials’ microstructure.

The volume contains 35 papers published in an alphabetic order after the name of
the first author. Much to regret of the Scientific Committee some manuscripts were not
submitted.

The financial support of the [IUTAM, the Obels Family Foundation and the Institute
of Mechanical Engineering, Aalborg University, is gratefully acknowledged.

Finally, I would like to express my appreciation to the members of the Local
Organizing Committee for their help which cannot be overestimated.

Aalborg, November 1994

Ryszard Pyrz
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COMMENTS ON A VARIATIONAL MICRO-MACRO MODEL FOR RANDOM
COMPOSITES AND THE INTEGRATION OF MICROSTRUCTURAL DATA

M. ARMINIJON, A. BOTTERO, B. GUESSAB, S. TURGEMAN
Laboratoire "Sols, Solides, Structures", Université de Grenoble & CNRS
B.P. 53X, 38041 GRENOBLE cedex, France

1. Introduction

Any model for homogenization-localization tries to establish, in a "macro-homogeneous"
situation, a correspondence between macro-fields and micro-fields of stimulus and
response (e.g. strain and stress, or pressure gradient and filtration velocity, etc.). More
exactly, from the data of the asymptotically unique value of the macro-stimulus S, a
micro-field s, depending on the micro-position x, is first deduced, using the local
constitutive equation binding s(x) to the response r(x):

r(x) = f(s(x), x). (1)

This essential localization step is generally envisaged as the solution of a boundary value
problem for a partial differential equation (PDE), and a first difficulty is to specify which
is the domain whose boundary is considered and which boundary values should be
relevant. For one does not wish to schematize directly the real physical situation, in
which some external input, such as a surface traction, acts at the boundary of the piece of
material: It leads only occasionnally to macro-homogeneous fields, and this only in some
(central) part of the whole piece. Whereas one seeks to study in detail what happens in a
such macro-homogeneous part. In a such part, "equivalent macro-elements are
constrained by one another, not by the apparatus" (Hill 1984), thus the real surface
tractions (say) at the boundary of one such macro-element are inherently unknown. Due
to the asymptotic nature of the notions of macro-homogeneity and statistical
homogeneity, the relevant ideal situation is that of an infinite medium in which a macro-
homogeneous situation prevails, although the micro-fields fluctuate randomly in the
whole space. Considering a PDE in an infinite domain often leads, however, to
mathematical and numerical problems, e.g. as to the definition of convolution integrals
(this is well-known in the case of Poisson's equation). Moreover, due to the random
fluctuation of the micro-fields, the boundary conditions remain undetermined, i.e. one
does not have limit conditions at infinity. One may only hope that uniform conditions at
infinity, as they are postulated e.g. in inclusions problems, are relevant to this situation. It
was proved by Sab (1992) that, for an ergodic random elastic material, the uniform
conditions for stress (at the boundary of a cube with side R), and the uniform conditions

1
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for strain, give as R—o the same macroscopic behaviour [this asymptotic equivalence
was conjectured, though not in a closed mathematical form, by Suquet (1982)]. Yet this
result does not seem to guarantee that uniform conditions at infinity are correct
conditions to determine the micro-fields in the infinite medium. This is all the more so for
non-linear behaviour, for which the sensitivity to the boundary conditions may be very
strong, so that one might find a chaotic behaviour, like a turbulent flow.

A second difficulty is this: the microscopic constitutive equation [Eq. (1)] is not
really known, certainly not as a determined function of the local position x (save in
exceptional cases). Actually one has to assume a phenomenological form, in which the
inhomogeneous local behaviour appears directly as a dependence, not on x, but instead
on a set X of internal variables (here collectively designed under the short name "state"):
crystal orientation, hardening parameters, etc. These variables may include parameters
of the local geometry- e.g. those defining the size (cf. the Hall-Petch relation) and the
shape of any grain containing a point x where the state is assumed to have a given
value' . And what may be measured, or rather estimated, by microscopic observations, is
generally not the dependence of X on x, but instead a set of statistical functions that
characterize indirectly this dependence X=F(x). Thus if one seeks to enter an
experimental characterization of the microscopic structure into whatever micro-macro
model, so as to compare its predictions with experimental findings (regarding either the
macroscopic behaviour or the micro-fields), the following occurs. One has to reformulate
the model so that its algorithm for homogenization-localization can be expressed in terms
of the state variable X instead of the local position. For example, if a polycrystal
simulation is to be done by using a self-consistent model, it turns out to be possible to
pass from a general integral formulation, based on the relevant Green tensor, to an
interaction formula relating the average values of stress and strain in a given crystal
orientation to the macro-averages (Molinari et al. 1987, Lipinski & Berveiller 1989). Of
course, any such reformulation involves some closure assumptions; but only in that way
can one take into account the existing microstructural information (e.g. the texture
function). Note, however, that even for the case where the reformulation is possible, it
does not solve the first problem, that of the appropriate domain and boundary conditions.

It seems better not to stake all on formulations of the homogenization-
localization problem as a boundary value problem for a PDE, when (i) the boundary con-
ditions and the local behaviour are not known in the desired form, and (ii) the solution
may depend sensitively on the boundary conditions. Thus it has been determined which
general statistical conditions must be fulfilled by the medium itself (i.e. by the spatial
distribution of the states) and by the micro-fields, in order that it just make sense to
formulate, as explained hereabove, a micro-macro algorithm in terms of the state variable
(Arminjon 1991a). It has also been examined the extent to which the solution of the
localization problem in terms of the state variable X may provide a physically acceptable
solution in terms of the position x in physical space. This was obtained (Arminjon 1991a)
in combining the solution of the "compatibility problem" for deformed aggregates
(Arminjon 1991b) with the statistical theory of the distribution of the states. We

! Of course, if one includes geometrical parameters into the definition of the state X, then the latter will
be a piecewise constant function of the position x, i.e. one adopts the scheme of an aggregate.



3

emphasize that the latter theory considers a deterministic medium, i.e. a non-random
function X=F(x).

In this paper, a more detailed comparison of this new statistical theory with the
classical approach of random media is given. The necessity to supplement Hill's
(1967,1984) macro-homogeneity conditions by additional statistical assumptions, in
order to justify the reformulation of micro-macro problems in terms of the state X, is
illustrated. The algorithm of the proposed variational model is briefly recalled. Its basic
assumptions: (i) assumptions on the dependence of the inhomogeneity parameter 7o on
the macro-stimulus S, (ii) the principle of minimal inhomogeneity (Arminjon et al. 1994),
are examined in more detail than before. Lastly, the integration of microstructural data
into micro-macro models, as proposed by Arminjon et al. (1993,1994), is recalled, justi-
fied theoretically and experimentally checked for the case of fiber-reinforced mortars.

2. Statistical Homogeneity: Deterministic vs. Ergodic-Random Definition
2.1 COMMENTS ON THE CLASSICAL (ERGODIC-RANDOM) DEFINITION

The notion of statistical homogeneity is related to invariance by translation in some
statistical sense. There already exists a general frame for discussing this and other
statistical aspects of micro-macro models: this is the theory of ergodic random media
[e.g. Beran (1968), Kroner (1986), see also Sab (1992)]. In this theory, all micro-fields,
including the internal variables (thus the state X) depend on the micro-position x and on
the realization we (2, where the set of possible realizations, (2, is assumed to be equipped
with a probability measure P. Physically, one may think of the realizations w as of
different samples of the inhomogeneous medium (Kroner 1986). The law P is not
specified physically, only the so-called "spatial laws" may be physically defined for any
random field Z(x,w), using the notion of the ensemble average. The ensemble average
<<Z>> of some random variable Z, i.e. of some function defined on the set 2 (e.g. Z(w)
might be the maximum stress in the realization w), is the limit

1 N
<<Z>>=lim FZ Z(w,). )

Now IV

The existence of this limit and the fact that it does not depend on the sequence (@) [for
"P-almost every sequence (@;)" ] are a consequence, within the assumed existence of the
law P, of the "strong law of large numbers" [e.g. Guichardet (1969)]. From the physical
point of view, it is rather the reverse: we do not know the law P, but we might check
whether the arithmetic average in Eq. (2) does not fluctuate too much, provided we take
enough samples. Then one defines the spatial laws, e.g. for the random field X. A law of
first-order (for X) is, at given x, the probability law

1if X(x, 4,
PA)=<< bry 5>, (@)= { TR lLO) )
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where 4 is any [measurable] subset in the set of the values of the considered field, here
the space of states £. A law of order 2, py ., , is defined in a similar way [take 4 in £ 2

and check whether (X(x,®), X(x2,®)) is in A], and so on. The statistical homogeneity of
arandom field, e.g. the state X, is defined as its stationarity, i.e. all the spatial laws of X
are assumed to be translation invariant (px(4) = px(4), etc.). For any stationary field
Z(x,w), the ensemble average <<Z(x)>> (an average over a sequence of different samples
o, taken at the same place x in any sample), is independent of x. Then a stationary field Z
is said to be ergodic if the asymptotic volume average’, Z, (i) is well-defined and
independent of the realization @ (for almost any w) and (ii) is equal to the ensemble
average <</>>.

This is an interesting theory. The reasons we find to formulate and to use a
different theory are the following: (i) It is rather difficult and complex, appealing to quite
advanced domains of probability theory; this may be the reason why definite statistical
notions are not often used in the literature on mechanical micro-macro models. (ii) It
may hardly be said that the notion of statistical homogeneity that emerges from this
theory is an operational notion: the reason, developed by Matheron (1989), is that in
many relevant physical situations, not only do we not have an infinity of realizations of
the inhomogeneous material, but actually we only have one *. Hence, we cannot really
check whether our material is stationary, and we even less can check whether it is
ergodic; even if we would have enough realizations, we could not assess the extent to
which our material is ergodic, because the definitions are too involved. (iii) Actually, all
what we need for our purpose is the volume average. We thus have no reason to intro-
duce an ensemble average and try to equate this to the asymptotic volume average Z .

2.2 COMPARISON WITH THE PROPOSED DETERMINISTIC DEFINITION

The deterministic approach has been presented in some detail and in a mathematically
rigorous form by Arminjon (1991a), so here we give only a sketch and some new
comments. For any domain D of finite volume in the medium, we define the spatial
distributions probabilities of the state X in D, of any order, by using only the volume
measure V. Thus the law of order 1 is given by

Py(A)=Py{X e 4} = Vixe D,F(x)=Xe 4}, ACE. )

1
V(D)

The laws of order 2 are defined in a similar way:

% Le. the limit volume average in larger and larger domains (cubes, say), reached independently of their
position [Eq. (7) below]; thus the theory needs, strictly speaking, an infinite number of infinite media.
We may consider different samples (subdomains) in a unique material, but they are different only in so
far as they are ostensibly finite; thus if we take larger and larger samples so as to examine the
"asymptotic" average, we really take the whole material so that there is indeed only one realization.
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Pup (4y)=——=V{x € D,(F(x),F(x +h)) € 4,}, 4, cE?, (5)

and the like for n>2. A domain (sample) D is said to be &-representative (for the laws of
order 1, say) if, for any sufficiently large cubic sample D’ in the material, some definite
measure of the difference between the laws Pp and P *is not more than & And the
material, that is, the distribution of the states X, is said to be statistically homogeneous
(S.H)) if erepresentative samples may be found for any & however small it is. This
implies that the laws Pp tend towards a limit probability law P as the size of the cubic
domain D' increases, independently of the position of D’. Note that the existence of &
representative samples is something that really can be checked experimentally: e.g. in a
polycrystal we can measure the orientation density function for different samples and we
can check whether the difference between the densities, averaged over the orientation
space, is negligible for couples of large enough samples. Also note that, due to the
definition, large samples must be representative but that, conversely, representative
samples are not assumed large: in a periodic medium, the elementary cell is &
representative for any £ >0. The existence of a unique limit law P allows to define a
notion of average for any (P-integrable) function ¢ of the state:

<¢>=]) $X)dPX) =) $(X) f (X)aX ©)

(the last equality assumes that the law P has a density £, as will usually be the case).

In order to express the relevant fields (stress, etc.) as function of the local state
instead of the local position, one must give a precise form to the vague idea that "on an
average, the local value of the field depends only on X ". Essentially, one defines, for a
given field (of stimulus, say) s(x) and for any given sample D, a function ¢” of the state
X, by taking the volume average of the values s(x) at those positions x in D where the
state is X (e.g. one defines the average strain in those grains of the sample that have a
given crystal orientation g). One computes the average 6 of ||6”(X)-c” (X)|| for a couple
of samples D and D’ (with || || the norm defined for stimulus and response tensors). If for
any couple of large enough samples, & is small enough, then there exists a limit function
o, so one can speak of the average value o(X) of the field s at those points of the
microstructure where the state is X, without specifying the sample which was considered
to compute these average values. The field s is then said to be S.H.. Note that in our
definitions, not only the notion of an S.H. material, but also the notion of an S H. field
depend on what has been defined as the local state X. This is important, because in
practice one will consider different definitions of X for the same physical material,
allowing to take into account more and more information on the microscopic behaviour
and micro-geometry. Now we have the result that for any bounded S.H. field s, the

* This measure is simply the average difference between the densities f;, and f of the laws P, and Ppy
, in the case of a "continuum" i.e. when the density exists for any sample, but it is a bit more technical
for the case of an aggregate (Arminjon 1991a).
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asymptotic average is well-defined and is equal to the average (6) of the corresponding
function of the state, o:

<g>=§, S$=
c S, § R(ID)—mV(D)‘[ sdlV @)

(the limit is reached e.g. for cubes D with side R(D), independently of their position). We
empbhasize that Eq. (7) is totally different from the equality between ensemble average
<<s>> and (asymptotic) volume average § in the theory of random media: § has indeed
the same definition in both theories (although in the theory of random media § a priori
depends on the realization @), but < o > is very different from an ensemble average (the
latter has no meaning in the proposed theory since we have only one realization®).
Moreover, we obtain here Eq. (7) for any S.H. field whereas, in the classical theory,
<<s$>>=7 is true only for an S.H. (i.e. stationary) and ergodic field.

Thus, if the stimulus and response micro-fields s(x) (e.g. strain) and r(x) (e.g.
stress) are S.H. in the proposed sense, we may ask whether the corresponding state-
averaged values 6(X) and p(X) can be related together by a constitutive equation:

P(X) = ¢(o(X), X). ®

The existence of a such equation is tacitly assumed in the operation of numerous micro-
macro models for materials with randomly distributed inhomogeneity, such as the self-
consistent models (e.g. Molinari et al. 1987, Lipinski & Berveiller 1989), the simple
models of uniform strain (Voigt model, referred to as "Taylor model" in plasticity) or
uniform stress (Reuss model), the "relaxed" Taylor model (e.g. Van Houtte 1984) and
the variational model proposed at first for polycrystals by Arminjon (1987). But since
o(X) and p(X) are averaged values of inhomogeneous micro-fields s(x) and r(x), we
know that these averages can be bound together via a constitutive equation only if these
micro-fields fluctuate reasonably around their respective averages, in the sense precised
by Hill (1967) for the case where s and r are indeed a strain and a stress field. Thus, at
least for the particular case where the local domains Dx with given state X are well-
identified constituents, like grains in a polycrystal, Hill's analysis applies here really as
well as for the macroscopic average envisaged by Hill. In particular, the fields s and r
should have no "correlation" in the domain Dy. Since this should apply simultaneously to
any domain Dy for all values of X (e.g. in every grain, for the case that each can be
characterized by its orientation), this would be a rather severe condition (Arminjon
1991b). However, one may content oneself with the weaker condition that the volume
average, for the different states X present in a cubic sample D, of the deviation to the no-
correlation of s and r in Dy, tends towards zero as R(D)—w. This condition, if it is
fulfilled by two fields s and r that are S.H. and also macro-homogeneous in the sense of
Hill, implies that the corresponding functions of X verify the "transported no-correlation
condition" (in which : means the scalar product),

* Strictly speaking, one may define here a trivial probability space with one unique element c,

equipped with the Dirac measure. Thus the ensemble average of a "random" field Z(x, w) would be Z(x)!
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<g:p>=<0c>:<p> ©

When trying to introduce precise definitions in a formal situation, assumed to
represent a correct idealization of some physical situation, one must show that the formal
situation is mathematically feasible, since otherwise one might come to contradictions.
Thus we have the example of the space-filling periodic medium, the state X=F(x) being
defined as the position of the equivalent point to x, in the elementary cell C (thus £=C).
It is a simple exercise to verify that this is an S.H. continuum. It is now classical that
periodic fields (of compatible strain and self-equilibrated stress) are macro-homogeneous
in the sense of Hill, i.e. verify Hill's no-correlation condition in physical space (Suquet
1982, 1987). For any bounded periodic field s, the function ¢” tends uniformly towards
the restriction of s to C as R(D)—x, hence any periodic field is S.H. and any two
periodic fields satisfy the above-recalled asymptotic condition for the average deviation
to the no-correlation (Arminjon 1991a). Hence, for admissible strain and stress fields in a
periodic medium, condition (9) indeed applies to the associated functions of the so-
defined state (and brings nothing more than Hill's condition on the elementary cell).

3. The inhomogeneous variational model: basics, comments and proposals

3.1 DETERMINATION OF THE MACROSCOPIC ACTUAL POTENTIAL

From now on, we consider the special case where the microscopic constitutive law [Eq.
(1) or (8)] derives from a potential #. It has been established, for several relevant
situations in the mechanics of materials, that the average of the micro-potential u is a
potential U for the macroscopic constitutive law, and that Voigt's uniform strain
assumption and Reuss' uniform stress assumption give an upper bound and a lower
bound to U, respectively (Hill 1952, 1967). We have previously emphasized (Arminjon
1991a, Arminjon et al. 1994) that these three results depend only on the assumption of a
convex potential and on the no-correlation condition between stimulus and response
micro-fields, and thus can be extended to a number of situations (also in other fields of
physics). The general proof of these results (Arminjon 1991a) has been given for the case
where the "state" variable X is substituted for the micro-position x, using the transported
no-correlation (9). It has also been shown that they can be expressed, using a potential
depending on a parameter 7,

U,(S)=Min{<u(o) >, <6>=$, h(c)<r}, (10)

[where < u(c) >= IE u(6(X).X) f(X)dX and h(0) =(<llo- <o>/|7>)"7 (p>1) ], as follows:

® Note that k(o) is a homogeneous function [#(1c)= |4 h(c)] and that, if p=2, h(c) is simply the stan-
dard deviation. The number p is uniquely determined from the requirements that (i) ||5u/ds|| < 4 ||s|l” '
for all s and X, and (ii) #(s,X) > B ||s|’ for all X and all s with ||s]| > a. However, (ii) and the condition
p>1 are needed only to ensure that the minimum U, (S) is indeed reached by some function o, s (X),
whereas numerically an infimum can hardly be distinguished from a true minimum. In standard



Ur(S) =Ux(8) < U(S) < Uy(8). an

The equality in (11) means that the minimum U, , which is obtained in dropping the
inequality constraint in (10), is reached by a function Oreuss such that A(Orewss) = R < 0
this indeed corresponds to the Reuss-Hill bound, because it turns out that the response
function preuss, associated with orewss by Eq. (8), is uniform. Clearly, U, (i.e. =0 in (10))
is the average potential corresponding to a uniform stimulus function 6(X) = S, hence
corresponds to the Voigt-Hill bound. From (11), it follows that there exists a unique
value ry (with 0 < ry < R), depending a priori on the macro-stimulus S, such that the
actual macro-potential U(S) is equal to U, (S).

So the data r, determines the actual potential UU as the minimum value
corresponding to the minimum problem (10), but 7y in turn is not determined by this
theory. As long as we merely wish to determine U, we have thus replaced the scalar
unknown U by the other one 7. The point is that 7, is an average inhomogeneity of the
micro-stimulus, as expressed as a function of the state X, and is likely to depend slowly
on the macro-stimulus S. More precisely, the value o= ro(S) for a given S sets the exact
potential U(S) as U, (S) between the Reuss and Voigt bounds (and, conversely, 7o(S) is
hence determined by the data U(S)). For another stimulus S' (with ||S'|| = ||S]), U,(S"),
with the same value 7y, is a good approximation of U(S'). This is at least what has been
found for two very strongly inhomogeneous fiber-reinforced mortars, schematized as
rigid-plastic (with S=D, the strain-rate, and R=T, the stress), for which the ratios of the
Voigt bound to the Reuss bound in tension were 6 and 4.6 (Arminjon et al. 1993, 1994).
Since the approximation ro(D) = Const. (for ||D|| =1) works well for such strongly
inhomogeneous materials, we may expect that it will do so for materials with more usual
(smaller) size of the Reuss-Voigt band. But we recall that the existence of ro(S) involves
only very general statistical assumptions (plus convexity), so actually the model for
calculating the macro-potential from the micro one begins when one tries to guess the
dependence ry = ro(S). This is unshamedly a phenomenological model for micro-macro
transition, since the microscopic data are not enough. Once this phenomenological
nature has been accepted and it has been recognized that it leads to powerful predictions,
one must yet realize that the assumption 7o(S) = a ||S|| is quite simplistic. Thus if we have
more data, we can assume a more complex dependence of 7o on S, using e.g. the theory
of invariants: as for a phenomenological yield criterion, the interest will be to predict U
for values of S that were not incorporated in the input data. E.g. if S is a general
symmetric tensor of order 2 (as for compressible plasticity, where S=D is not traceless),
there is little doubt that an assumption like

n(S)= [ S|P +btrS)’1+ctrS, |8 =(trs?)"”, (12)

plasticity, s is the strain-rate, r is the stress, u is the rate of work and p=1. In the applications to
plasticity, we have nevertheless used the standard deviation for /(o). This is probably harmless, though
the correct value p=1 might be more appropriate after all.
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will be more accurate than the assumption 7o(S) = a ||S||. Again, the decisive point is to
predict: (i) correctly, and (ii) more than is entered into the model. Summary: the
variational definition of the actual potential as U(S)=U,s/(S) is predictive because it
turns out to be easy to get the dependence ro=ro(S), in so far as it influences the values
U.s)(8S). This means that the average inhomogeneity 4 is a relevant, "heavy" parameter
in micro-macro problems.

3.2 LOCALIZATION: THE PRINCIPLE OF MINIMAL INHOMOGENEITY

Consistently with the followed approach, the localization problem is seen as the search
for the actual distribution of the local stimulus as a function os = 65(X), from the data of
the macro-stimulus S. Clearly, we have a good candidate, namely the solution o, s to the
minimum problem (10), for the correct value » = ro(S) of the inhomogeneity parameter
(any solution, if there are several; the uniqueness is guaranteed if the local potential u is a
strictly convex function of s at fixed X). A first point is that the (any) solution ¢ to (10)
has exactly the inhomogeneity #=r, save in the exceptional case where the value of the
minimum is the lower bound (in which case a solution to (10) with some value 7 is also a
solution to (10) with any value 7' > r and so has an inhomogeneity #<r"). It has also been
proved that assuming that os = o, s is equivalent to a principle of minimal

inhomogeneity (PMI) according to which the actual distribution o is a solution to:
h(c*) =Min, under the constraints : < ¢* > =S and <u(c*)>= U(S) (13)

(Arminjon et al. 1994). Thus it is equivalent to assuming that, among the distributions of
local stimulus whose average is the macro-stimulus S and whose average potential is the
corresponding actual potential, the actual distribution has the least inhomogeneity .
Since, for /=0, the average potential is Voigt's upper bound, it still means that the
inhomogeneity occurs only in so far as it allows to lower the average potential. We find
this principle plausible, in any case it is this principle that underlies the success, as
regards the prediction of deformation textures in polycrystals (Van Houtte 1984,
Arminjon 1987), of the relaxed Taylor theory and the proposed variational model.
However, we do not have plausible assumptions allowing to deduce this principle
from deterministic micro-macro arguments. Another problem is the apparent ambiguity
in the statement of this principle. First, we may exchange stimulus and response; e.g. for
elastic or viscoplastic behaviour, a potential for strain or strain-rate as the response, may
be deduced from the potential for stress, by Legendre transformation (Hill 1956). If the
corresponding statements are not equivalent (as seems likely), which is the correct form?
It seems that the PMI is plausible in so far as the potential may have a direct
interpretation as an energy (since in that case the PMI amounts to a principle of minimal
energy consumption). Now consider the general class of inelastic materials with Green-
elastic domain depending on internal variables H, the latter evolving only for inelastic
strain increments, as envisaged by Hill & Rice (1973). For such materials, the elastic
potential (¢ in their notation) for the stress t i.e. that one which is a function of the strain
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e, is a true energy, since the variation of ¢ during an elastic strain increment is indeed the
work done, 8¢ = t:8e. Since Sy = e:8t, the same cannot be said of the complementary
potential ¥ = t:e - ¢, although it has the dimension of an energy. In standard plasticity,
the rate of work is a potential for the stress (Hill 1986) and a true complementary
potential cannot be defined (the yield function, which is surely not an energy, is a
potential for the direction of strain-rate only), hence there is no ambiguity. Thus in the
mechanics of materials at least, the physical meaning of the PMI seems to imply that the
primary ("stimulus" s) variable should be taken as the strain (or strain-rate) and the
response as the stress- not the reverse. Second apparent ambiguity in the statement of
the principle: that of the norm ||s||. One norm appears naturally in the theory, e.g. in the
proof of the general form of the Reuss-Voigt bounds (Arminjon 1991a): it is the
Euclidean norm, derived from the scalar product, ||s|| = (s : s)"’%; for every relevant tensor
space, we have one and only one natural scalar product, e.g. s : r = s; r; for second-
order tensors. Thus, although all theoretical results remain valid if one takes any other
norm (since all norms are equivalent in finite dimension), there seems to be little reason
to do so. Lastly, we have seen that the real exponent p > 1 is imposed® and thus the
average inhomogeneity # is uniquely defined. We conclude that the statement of the PMI
is unambiguous, unless one artificially defines a different norm for stimulus tensors’ .

4. Microstructure as an internal, state variable
4.1 THE METHOD AND ITS THEORETICAL JUSTIFICATION

The way we propose to account for micro-geometry and additional parameters such as
interface behaviour (Arminjon et al. 1994), is not particularly bound to the variational
model recalled in §3. Indeed, it depends only on the statistical theory of the distribution
of the states in S H. media, summarized in Sect. 2.2. Thus this way could be used with
different micro-macro models, e.g. it may be used with the self-consistent models
proposed by Molinari et al. (1987) and Lipinski & Berveiller (1989). Our starting point is
similar to the basic idea of "cluster models" (Kocks & Canova 1986) and to that of
"morphological representative patterns" (Stolz & Zaoui 1991): it is the idea (Arminjon
1991a) that the near environment of a material (micro-) volume has a greater influence
on the inhomogeneity of the local fields than the long-range one. This idea, however,
translates to the statistical theory in a rather original form. The crucial point is that, in
this theory, the inhomogeneity of the local fields (s and r) within the constituents is
recognized from the beginning, i.e. from the definition of the distributions of the local

" The possibility of selecting an anisotropic norm on morphological grounds was evoked by Arminjon et
al. (1994). One may in that way recover the relaxed Taylor model (e.g. Van Houtte 1984) as the limiting
case of a degenerate (semi-) norm. The relaxed Taylor model has not a very sound theoretical basis.
Morphological effects are consistently described using the proposed methodology for integration of
microgeometry (§4). In addition to the fact that it derives from the scalar product, a distinctive feature of
the Euclidean norm is this: if one introduces an anisotropic norm N on physical grounds, then its
coefficients must have a physical dimension, hence N will not make sense for stimulus and response.
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stimulus and response as functions ¢ and p, not of the position x, but of the state X.
Thus the "constituents", i.e. the domains Dx with given state X, are subjected to fields
which are homogeneous only in a strongly statistical sense, since (i) those "constituents"
are not necessarily contiguous (e.g. a group of grains with the same orientation) and (ii)
only an average, for the different states i.e. for all constituents, of the deviation to the
no-correlation condition between the local fields s and r, must cancel. The concrete
consequence is that one may take as "constituents" a group of n neighbouring
constituents C,,..., C,, which is formally done in replacing the initial "simple" state X’
(identified as the set of parameters indexing the local constitutive law) by a "complex”
state X involving the states X';,..., X’, and the parameters describing the geometry of
this cluster (sizes and shapes of the C; 's and their relative positions)(Arminjon 1991a).

In order to run a micro-macro model one has to know the constitutive law, so the
question arises: how can we get the "constitutive law" of a such cluster? The answer will
be obtained if we remember the statistical meaning of the local constitutive law (8) in the
theory: One assumes that, in any statistically homogeneous situation, the average values
o(X) and p(X) of the fields s and r, over the domain Dx, are related by Eq. (8). By
hypothese, this relation depends only on the particular state X, thus it does not depend
on the distribution of (all the other) states. Hence, if we consider an inhomogeneous
medium for which the state is (the same) X everywhere, i.e. for which the domain Dy is
the whole (space-filling) material, the same law ¢ will relate the asymptotic volume
averages 5 =S and =R of the fields s and r in S H. situations. Now consider the case
where the state X involves geometrical parameters, more precisely describes the
geometry and microscopic behaviour of some cell C . Then a space-filling medium with
state X everywhere is nothing else than a periodic medium with elementary cell C. And
the relation between asymptotic averages § and T is none other than the homogenized
law of the periodic medium (Suquet 1987). Thus the constitutive law of our micro-
cluster, in precisely the meaning it has in the proposed statistical theory, will be most
rigorously obtained as the homogenized law of a periodic medium consisting of the
endless repetition of this same cluster- provided, of course, that the space can be filled
with this cluster, i.e. provided it has the form of e.g. a parallelepiped.

In order to take into account short-range effects of micro-geometry, Arminjon et
al. (1993,1994) envisaged any S.H. medium as consisting of a periodic array of cells with
identical shape, but with a "random" variation of X from one cell to another (this may
always be envisaged, since the array is only in our thought). They defined and obtained
the behaviour of a cell C, depending on the "state" parameters X describing this cell, as
that delivered by the homogenization theory for a periodic medium with cell C [this is
hence done successively for each different cell. Of course, this will be feasible in practice
only if the medium is schematized so that there is only a (small) finite number of different
cells (states); however, symmetries allow to reduce this number]. We have just proved
that this method is rigorously correct in the frame of the statistical theory considered.

¥ Note that this situation does not imply that the state X contains an infinite number of parameters, since
in practice the geometry will be simple: a few elliptic inclusions, one or two fibers,... However, the whole
of the statistical theory remains valid for cases with an infinity of parameters (Arminjon 1991a).
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4.2. APPLICATION TO RIGID-PLASTIC REINFORCED MORTARS

The variational model (§3) was applied to predict the failure criterion of two mortars
reinforced by steel fibers by Arminjon et al. (1993,1994), using the rigid-plastic scheme.
The model was first applied directly as a "volume-fraction model", in defining the state X
as the phase identifyier i (in view of the isotropy of each phase and its perfectly plastic
behaviour, no other parameter intervenes in that case), thus X=1 for mortar and X=2 for
steel. The inhomogeneity parameter r, of the model was assumed independent of the
macro-stimulus D (with ||[D|| = 1), and was adjusted so that the predicted and measured
loads coincide for the tension test of a plate structure. It was found that the predicted
loads were also close to the experimental band for bending test and compression test.
Another application of the model ("refined model") was obtained in combination with
the proposed method for taking the short-range effects of micro-geometry into account:
the material was schematized as an array of rectangular cells, each of which containing
one whole fiber and two half-fibers (cut by the walls of the cell), all three with same
orientation. The contact at the fiber-mortar interface was schematized by a Coulomb
friction with the same friction coefficient f = tan ¢ for all cells. The cells differed only by
the fiber in-plane orientation, so the state was this orientation angle X=q. Consistently
with the real distribution, a uniform angle distribution was assumed. The "refined model"
(X=q) is much heavier to run, due to the preliminary steps of periodic homogenization of
the different cells; its interest for this material was the dramatic reduction of the Voigt-
to-Reuss load ratio & (with the retained value of the friction coefficient f, see below): in
tension, & passed from 6. to 1.15 for one material (Arminjon et al. 1993) and from 4.6 to
1.04 for the second one (Arminjon et al. 1994). However, it was found that the
experimental band was not exactly within the Reuss-Voigt (RV) bounds of the refined
model (Fig. 1), which did not give a better overall agreement with experiment. We work
out this question hereafter.

Figure 1. Comparison between loads computed with the refined model (double-scale homogenization),
depending on the inhomogeneity parameter r, and experimentally observed load range, for a fiber-
reinforced mortar with 0.6% volume fraction of steel fibers: compression test of a plate (/eft) and
bending test on a beam (right). The macroscopic inhomogeneity of these tests is accounted for via the
use of the finite element method in addition to the homogenization model.
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The experimental band is of the same order as the RV band of the refined model.
So any micro-macro model is good enough to predict the behaviour of the aggregate of
cells from the behaviour of the cells and their volume fractions, and there is less need to
adjust the inhomogeneity parameter in the refined model. Assume that the (carefully
checked!) experimental and numerical results are correct. To understand why there is
some (small) distance between the experimental and RV bands, we must identify in
which respect the aggregate of cells may not be a good enough schematization of the
real material. Thus: (i) Did we assume an adequate constitutive scheme (here rigid-
plasticity with isotropic quadratic yield criteria, plus Coulomb friction)? (ii) Are the
values or rather, in view of the inhomogeneity, the bands of the corresponding
constitutive parameters correct? (iii) Is the (volume) distribution of the geometrical and
constitutive parameters of the cells correct? As long as we merely look at the maximum
loads, we may argue that the answer to (i) is "yes", cf. Chambard (1993). (ii) As it should
be, we have tried to get the correct experimental values of the material parameters for
the phases (mortar and steel), but the values are not yet very accurate and may account
for a good part of the distance. Furthermore, for the friction coefficient, no direct
measurement was possible. We checked 4 values: "/=0" (in fact, sliding contact), /=0.2,
0.5, "f=00" (in fact, adhesive contact) and retained that one (/=0.2 or 0.5, depending on
the material) which gave the best overall agreement, but noted that the value adopted in
the technical norm for reinforced concretes (a similar material), /=0.4, would have given
close results. It still remains worth to examine point (iii), since it is specific to micro-
macro models and since the main point is perhaps that the RV bounds of the refined
model were simply too close. Thus we are currently investigating the effect of allowing f
to vary from one cell to another, as the fibres may be more or less closely bound to the
matrix (in future work, the effect of varying the geometry of the cell will be also
investigated). To this end, we now define the state as the pair («, f). Preliminary results
have been obtained for the case where the four values of f are uniformly distributed and
independent of the value of the angle a. As expected, they show a wider RV band than
for the case where the friction coefficient f'is assumed uniform. Of course, the interest of
these computations with the refined model is mainly illustrative, since for this material we
are not able to measure f and even less its distribution.
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CORRELATION BETWEEN FRACTURE TOUGHNESS
AND THE MICROSTRUCTURE MORPHOLOGY

IN TRANSVERSELY LOADED

UNIDIRECTIONAL COMPOSITES
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1. Introduction

The dispersion of fibers and cracks in the transverse direction of a unidi-
rectional composite material has very strong influence on local stress field
and therefore, it may affect the durability of the material. The local stress
field influences the fracture toughness of cracks situated among the fibers
and new cracks initiates at various positions depending on the surrounding
fibers and existing cracks. Thus it is necessary to investigate the correlation
between the microstructure variability and different mechanisms of crack
nucleation.

Usually, the dispersion of fibers is assumed to have some form of regular-
ity or fibers are assumed to be sparsely distributed. In these cases each fiber
is either exposed to the same amount of interaction in regular distributions
or it is exposed to no interaction in the dilute distributions. Therefore it is
possible to establish a repetitious unit cell containing only one fiber and it
may be analyzed thoroughly within reasonable limits. In order to investigate
a non-rtegular distribution of fibers the unit cell concept is not sufficient.
Each fiber is in this case exposed to different amount of interaction and the
local stress field varies throughout the whole microstructure. Therefore it
is necessary to re-define the unit cell concept so that it contains enough
fibers and cracks to be representative for the non-regular microstructure.
In relation to this re-defined concept a method for calculating the stress
field in a material with randomly dispersed fibers as well as determining
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the stress intensity factors for cracks situated among the fibers must be
established.

Pijaudier-Cabot and Bazant(1991) presented a method to calculate the
stress field in a solid containing multiple fibers and to determine the stress
intensity factors for a single crack situated among the fibers. A method for
stress analysis in an elastic solid with randomly distributed cracks was pre-
sented by Kachanov(1987). Both methods are based upon a superposition
scheme and take into account the interaction between fibers and cracks. In
the present work a new calculation procedure is developed that allows to
treat multiple fibers and cracks in a unified way.

The local stress field is dependent upon the exact position of fibers
and cracks and this also affects the initiation of new cracks. Consider the
case of cracks initiating at the interface around the fibers. Two scenarios are
possible in this case; matrix and interface cracks. The matrix cracks initiate
at the interface and extend radially to the fiber into the matrix material.
Interface cracks initiate tangentially to the fiber and also extend in this
direction. At which angle around the fibers the cracks appear depends on
the local stress field. It is reasonable to assume that matrix cracks initiate
at positions where maximum tangential stress occurs and interface crack
initiate at positions where maximum radial stress occurs. The magnitude
of the maximum stress components and the angle where they occur are
strongly affected by the dispersion of fibers and existing cracks.

Having the criterion of the crack initiation it possible to determine how
these microcracks affect the fracture toughness of a composite material.
Such an investigation is performed by situating a macrocrack in the vicinity
of distributed fibers. Interface cracks are then allowed to initiate during a
load increase. As a result, the fracture toughness of a material is affected
depending on the position of fibers and interface cracks.

2. Stress and Fracture Analysis

In order to determine various mechanical properties of materials with ran-
domly dispersed fibers and cracks it is necessary to introduce a method for
calculating the stress field in an infinite solid containing multiple fibers and
exposed to uniform tractions at the remote boundaries. Also it is necessary
to determine the stress intensity factors for cracks located in the matrix
material.

2.1. STRESS ANALYSIS METHOD

In the following only a short introduction to the stress analysis method is
given. The stress field solution for the single fiber configuration, Fig. la,
may be obtained analytically from the complex potential theory or the
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Eshelby solution, see e.g. Muskhelishvili(1962), Mura(1987)). Since the
method must be extended to include multiple fibers another iterative pro-
cedure is applied. A heterogeneous solid is replaced by an equivalent

Figure 1. (a) Single fiber configuration, (b) multiple fiber configuration.

homogeneous solid where tractions are applied on the imaginary contour
of the circular fiber and an unbalanced stress field inside this contour is
added. Then the iterative procedure is applied and as a starting point the
stress field in the whole solid is o = 0,. Using the theory of eigenstresses,
Mura(1987), the unbalanced stress field becomes

Ao = (D, -D,)D;' o (1)

where D, and D,,, are the stiffness matrix for the fiber and matrix material,
respectively. Tractions are applied at the imaginary contour of the fiber in
order to account for the unbalanced stresses inside the fiber

pP. = —Aon, (2)

where n, is a unit outward normal to the circular contour I';. The tractions
are substituted by concentrated forces for which the stress field can be
obtained from the complex potential theory. The forces are integrated along
the circular contour and then the stress field is calculated at an arbitrary
point within the contour

o, :}[ o(p.)ds (3)
Lo
The new stress field inside the fiber is obtained by

O=0y,+0,—- Ao (4)
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From this expression the unbalanced stress is re—calculated according to
Equation 1 and the iterations are repeated until p, does not change signif-
icantly. The method converges quite rapidly to the analytical solution and
the stress field outside the fiber may be determined as follows

0=0x+t0, (5)

For the multiple fibers, Fig. 1b, it is necessary to account for the inter-
action between fibers and a similar iterative procedure is applied. In this
case the stress field in each fiber is determined as it were alone in the ma-
trix except that the interaction from the remaining fibers is added in the
calculation. Thus the stress field is based upon a superposition scheme and
Equation 4 yields

O=0yx+0,+0;— Ac (6)

where o; is the interacting stress field from the remaining fibers. When
the stress field inside the fibers is determined, the stress field in the matrix
material is calculated similarly to the single fiber solution.

2.2. DETERMINATION OF STRESS INTENSITY FACTORS

The determination of the stress intensity factors is based on a superpo-
sition scheme in which the interaction between fibers and cracks is taken
into account. First the original problem is decomposed into an initial and
subsidiary problem, Fig. 2. The initial problem consists of calculating the

Figure 2. Superposition scheme for the multiple fiber-crack problem.

stress field at the imaginary contours of the cracks by applying the method
described in the previous section. These stress fields are added in the sub-
sidiary problem so that the configuration is in equilibrium. In order to solve
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the subsidiary problem it is divided into a number of subproblems corre-
sponding to the number of cracks. Each subproblem consists of one crack
with applied tractions, a number of imaginary cracks and the surrounding
fibers. The tractions may be written as

P = Pc + Pint (7)

where p is the applied traction, p. is the real yet unknown traction including
the interaction from the fibers and cracks and p;,; is the interacting stress.
The interacting stresses arise because the real tractions interact with fibers
and other cracks and they are subsequently reflected back. In order to
determine the real tractions Equation 7 is averaged and the interacting
stresses are written as a function of real stresses

(p) = (I+ A)(p) (8)

where A is a transmission factor which takes into account the whole inter-
action between fibers and cracks. The averaged real tractions are found by
rearranging Equation 8

(pe) = (I+4)"{p) (9)

Having calculated these uniform tractions for all cracks the non-uniform
tractions may now be determined as

Pc = p — A(pc) (10)

These tractions may now be calculated at any point of the crack lines and
by numerical integration the stress intensity factors are determined as

. 1 e

Ki(£e) = T ) ,/C$wpc-ncda: (11)
i 1 ¢ et R

Kri(£e) = T ”C:Fxpc-ncda: (12)

where c is the half crack length. The method is more thoroughly described
in Axelsen(1994).

3. Effect of Fiber Distribution on Matrix and Interface Cracks

The stress field for randomly dispersed fibers is determined in two steps:
first the stress field inside the fibers is determined and then the stress field
in the matrix material may be calculated. In order to investigate how the
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dispersion of fibers affects both the stress field inside the fibers and the
local stress field in the matrix two fiber distributions are analyzed, Fig. 3.
The clustered distribution exists in composites made of bundles of fibers

Figure 8. Distribution of fibers in the re-defined unit cell; (a) regular distribution, (b)
clustered distribution.

containing a very dense dispersion of fibers and matrix rich areas. The area
within the box represents the sample area whereas the area outside the
box represents the boundary area. With this type of unit cell the bound-
ary conditions may be altered by changing the distribution of fibers in
the boundary area. The fibers in the boundary area constitute periodic
boundary conditions for both distributions. The number of fibers included
in the sample and boundary areas is dependent on what must be analyzed
and adjusted, accordingly. In this case 841 and 798 fibers are dispersed in
the regular and clustered distributions, respectively. The distributions are
exposed to a unidirectional load applied at the remote boundaries in the
vertical direction. The ratio between the Young’s moduli for the matrix
and fiber material is E,/FE, = 23, and the Poisson ratios are v, = 0.3
and v,, = 0.35. The stress field inside the fibers is represented by the von
Mises stresses calculated for fibers within the sample area, Fig. 4. The
fiber stresses within the sample area are almost uniform for the regular
distribution, which has been also expected as each fiber is exposed to the
same amount of interaction. For the clustered distribution the fiber stresses
are non-uniform due to the non-regularity of the dispersion of fibers.

The fiber stresses are used to calculate the stress field in the matrix
material. Particularly, two important damage modes, matrix and interface
cracking, are affected by the local stress field around the fibers. Figure 5a
shows the tangential and radial stress components around the fibers which
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Figure 4. Stress field inside the fibers represented by Von Mises stress; (a) regular
distribution, (b) clustered distribution.

are responsible for the matrix and interface cracking, respectively. It is

Figure 5. (a) Tangential and radial stress components around the fibers, (b) estimated
positions of matrix and interface cracks.

reasonable to assume that they are nucleated at positions where the tan-
gential and radial stress components reach their maximum. Figure 6 shows
the normalized tangential and radial stress components for one fiber alone
in the matrix. The maximum values of the tangential stress component
are located at # = 0°,180° resulting in a possible crack initiation at these
positions, Fig. 5b. For the radial stress component the maximum values are
located at 8 = 90°,270°.

In order to show how the dispersion of fibers affects the magnitude of the
maximum stress components and at which angles they appear, the regular
and clustered distributions are analyzed. The maximum tangential stress
component is calculated for all fibers and depicted in Figure 7. It appears
that the dispersion of fibers is very influencial on both the magnitude of



22

Cr / (0799

G6 /Ceo

0 100 200 300

Figure 6. Normalized tangential and radial stress components for the single fiber confi-
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Figure 7. Distribution of the maximum tangential stress component for; (a) regular
distribution, (b) clustered distribution.

tangential stresses and the angle at which they are detected. For regular
distribution the maximum values are equally distributed and they appear
at 8 = 0°,180° due to the symmetrical dispersion of fibers. The maximum
radial stress component is influenced as well, Fig. 8. In this case the angles
at which the maximum values occur are less affected by the dispersion of
fibers.

The analyses show that the dispersion of fibers is a very important
parameter in the investigation of damage modes.

4. Influence of Interfacial Cracks

In order to investigate the effect of microcracks on the stress field at the tip
of preexisting macrocracks two selected configurations are analyzed. Only
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Figure 8. Distribution of the maximum radial stress component for; (a) regular distri-
bution, (b) clustered distribution.

the initiation of interface cracks is taken into consideration as the matrix
cracks show much less influence on the stress field at the tip of macrocracks.

The interface cracks do not initiate simultaneously because the mag-
nitude of the radial stress component depends on the dispersion of fibers.
Therefore an iterative procedure is applied while the load is increased until
interface cracks appear in all fibers. During this load increase the stress
intensity factor is calculated. The procedure is summarized in Table 1. The

TABLE 1. The iteration procedure for initiation of interface cracks.

initial state no interface cracks are initiated
Or,mac 1s calculated (incl. interaction from the macrocrack)
If 0 maz > Orcriticat = crack initiation
iterations
— A crack is introduced at Oma. with length ¢ = a(0r maz)
~ The load is increased
— Ormac is calculated for the remaining fibers (incl.interaction
from the macrocrack and the initiated interfacial cracks)
— If 07, maz > Orcriticat = crack initiation
stop iteration when interface cracks appear in all fibers

end

interface cracks are initiated at small distance from the fibers for numerical
purposes.
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The first configuration consists of a macrocrack situated in front of the
cluster of 50 fibers, Fig. 9a. This configuration is subjected to far field
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Figure 9. Configuration with a macrocrack situated in front of the cluster of 50 fibers;
(a) initial state, (b) enlarged view of the enclosed area in the final state.

loading in vertical direction. The ratio between the macrocrack length and
the fiber radius is 2. In the initial state no interface cracks have been initi-
ated and this particular configuration will increase the fracture toughness
as compared with pure matrix by lowering the stress intensity factors for
both crack tips A and B. The iterative procedure is repeated until interface
cracks appear in all fibers. An enlarged picture of the distribution in the
final state is shown in Figure 9b. The position of interface cracks varies due
to the influence of neighbouring fibers. Cumulative distribution of interface
cracks is shown in Figure 10a. Appearence of interface cracks results in
increased values of the normalized stress intensity factor for both tips of the
macrocrack, Fig. 10b. It is interesting to notice that embedding fibers into
the matrix material improves the fracture toughness by itself as the stress
intensity factor K is less than the corresponding stress intensity factor
Ko for pure matrix. Thus the nucleation of interface cracks deteriorates
the reinforcing effect of fibers.

The second configuration is shown in Figure 1la where two clusters,
each consisting of 25 fibers, are situated below and above the macrocrack.
The ratio between the macrocrack length and the fiber radius is in this con-
figuration 3. In the initial state this configuration will decrease the fracture
toughness by increasing the stress intensity factor. An enlarged picture of
the final state is shown in Figure 11b where interface cracks appear in all
fibers. As the interface cracks are initiated, Fig. 12, the stress intensity
factor decreases and thus the fracture toughness is increased while in the
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Figure 10. (a) Number of initiated cracks as a function of the applied load, (b) normal-
ized stress intensity factors as a function of the applied load.
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Figure 11. Configuration with two clusters of 25 fibers situated below and above a
macrocrack; (a) initial state, (b) enlarged view of the enclosed area in the final state.

initial state the existence of fibers decreases the fracture toughness, i.e.
I(]/](]o > 1.

5. Conclusion

A method for calculating the stress field in a solid containing randomly
dispersed fibers as well as determination of the stress intensity factors for
cracks situated among the fibers has been established.

The dispersion pattern of fibers seems to be very influencial on the initi-
ation of matrix and interface cracks around the fibers. Both the magnitude
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Figure 12. (a) Number of initiated cracks as a function of the applied load, (b) normal-
ized stress intensity factor as a function of the applied load.

of the maximum stress components and the angle, at which they occur, are
affected.

Typical configurations of fibers and a macrocrack show that the fracture
toughness may increase or decrease depending on the particular arrange-
ment of fibers. Therefore, descriptors that quantify distribution pattern
of fibers should become indispensable factors in the strength and fracture
analysis of composite materials, Pyrz(1994), Pyrz and Bochenek(1994).
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THE QUANTITATIVE MICROSTRUCTURE-PROPERTY
CORRELATIONS OF COMPOSITE AND POROUS MATERIALS:
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ABSTRACT. This paper reports theoretical and experimental work carried out in the
field of microstructure-property correlations of porous and composite materials. It deals
with the aim, to get a better scientific insight into the effects of microstructure on the
properties of multiphase materials and to use the results technologically for designing
purposes. In this context porous materials are considered to be the limiting case of
multiphase materials, when one phase becomes gaseous. Equations for the mechanical
properties of two phase materials are presented and the theory of the microstructure-
property correlation via microstructural modelling is described. To satisfy the demand of
maximun reliability from a theoretical as well as practical point of view, no fitting
factors have been introduced into the equations and the properties of a matrix type
composite (porous) material remain only dependent on the microstructural features and
the concentration of the included phase. Finally, the case of the thermal shock resistance
of porous ceramics is presented as an example of application of the microstructure-
property correlations to design new materials with improved properties.

1. Introduction

In materials science the interrelationship between microstructure and
properties became important not only to get a better scientific insight into
the behaviour of materials but also because of the necessity to develop
methods for designing new materials, showing the required properties and
being economically advantageous and ecologically not suspicious. These
new materials have to substitute less available, scarce or ecologically
polluting conventional engineering materials. The essential problem that has
to be considered is that of how the properties of composite materials
depend on the properties of the separate phases, their volume fractions and
their geometrical configuration or microstructure.

The selection of a suitable plan for the discussion of the physical
properties of composites presents some difficulties. Therefore, treating
properties in their relation to microstructure, it is instructive to define
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property groups for which similar considerations and treatments are valid.
These groups are:

a) Thermochemical properties, which describe the behaviour of the material
during -non mechanical- energy transfer and which are directly correlated
with the atomistic bonding conditions as chemical bonding and thermal
vibration of the atoms. Heat capacities, transformation heats or thermal
expansion by heat absorption are examples for this group.

b) Field properties, which characterize the behaviour of materials under
electrical, magnetic or thermal fields, as for example electrical and thermal
conductivity.

¢) Mechanical properties, referred to the behaviour of materials under stress-
strain conditions, as for example modulus of elasticity, Poisson's ratio and
fracture strength.

d) Technological properties, which are of especial practical interest and
consist of a mathematical combination of primary properties. An example is
the thermal shock resistance of brittle materials, which is influenced by the
following material properties: Young's modulus, thermal conductivity,
mechanical strength, coefficient of thermal expansion and Poisson's ratio.
While the thermochemical and field properties of two phase materials have
been extensively treated in previous works [1-5] in this article the
mechanical properties are considered. Theoretical approaches leading to the
microstructure dependence of the mechanical properties of composite
materials are reviewed and discussed in section 2 while section 3 presents an
example of application of the microstructure-property correlations in
designing a composite (porous) material with improved thermal shock
resistance. Therefore the article discusses representatively the
microstructure-property-correlation of two-phase materials and its use as a
tool of "materials engineering” to design composite materials with
predetermined "tailor-made” properties.

2. Mechanical properties of two phase materials
2.1. GENERAL CONSIDERATIONS

Since the aim of the present paper is to demonstrate, how a technological
property like the thermal schock resistance of a composite or porous
material may be tailored by proper microstructural design, only those
mechanical properties which influence the thermal shock behavior are
considered. These are: Young's modulus of elasticity (E), Poisson's ratio (v)
and fracture strength (o).

Although bound equations exist for both Young's modulus of elasticity [S]
and Poisson's ratio [6] as well as for the fracture strength [7] of composite
materials, the treatment here will be restricted to microstructure-property
equations based on the spheroidal modelling of the microstructure as
described in the next paragraph.
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2.2. SPHEROIDAL MICROSTRUCTURAL MODEL

The chosen model proceeds from a real two-phased material, whose
microstructure consists of a continuous matrix phase in which the particles
of the inclusion phase are embedded discontinuously but macroscopically
quasi-homogeneously. These particles, which are normally irregularly
shaped in real materials, are replaced by spheroids, i.e. particles with a
regular mathematically definable geometry and geometrical arrangement
within the material. The mean shape is given by the ratio of the rotational
axis (z) to the minor axis (x) of the spheroid (z/x), see figure 1-a. To obtain
this, each real particle is considered to be replaced by an spheroid having the
same surface-to-volume ratio as the real particle and therefore a specific
axial ratio. For a given axial ratio there are two alternatives for substituting
the real particles of the inclusion phase, namely, either by an oblate (z/x <1)
or a prolate one (z/x >1). The mean orientation of the substituting spheroid
is determined by the orientation of the rotational axis to the stress direction,
see figure 1, and is given by cos2ap. As shown in previous studies [3,4], if
one assumes an statistically homogeneous distribuion of the second phase in
the matrix only these parameters, shape and orientation, are required for the
complete characterization of the microstructure in addition to the volume
fraction of the included phase, or phase concentration factor. Spheroidal
characterization of the inclusion phase particles offers the advantage of high
adaptability to real irregular geometries by changing the axial ratio. The
extreme cases include disc-shaped (z/x -> 0, platelets) and cylindrical
inclusions (z/x ->eo , fibres), whilst spherical inclusions are realized as a
special case (z/x =1). How to dctermine the substituting spheroid best-suited
to a real structure by quantitative microstructural analysis and stereological
functions has been shown in previous works [4,5].

2.3. YOUNG’S MODULUS OF ELASTICITY

Contrarily to the bound concept, where variational methods are used [5,8],
the model concept to be discussed here uses direct methods in which the
averaged stresses and strains are calculated with the aid of an effective
Hooke's tensor. The derivation starts assuming a two-phase material with
matrix phase microstructure, where the two phases behave isotropically. The
two-phase material then is subdivided into elementary cells (finite elements),
where the elementary cell consists of a cube of given elastic materials in
which the spheroidal inclusions in any orientation are discontinuosly
embedded in the matrix phase, as shown in figure 1-a. The mean stresses
and strains are calculated for this elementary cell by dividing it into small,
disjunct prisms (see figure 1-b). An effective modulus of elasticity is
approximately calculated for each prism. The final effective modulus of
elasticity is determined on the basis of a new averaging over all prisms. The
exact derivation of the equation has been published recently [9]. The
effective Young's modulus of elasticity can be given in terms of the elastic
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moduli of the matrix and inclusion phases and the microstructural
parameters as:
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Figure 1. Spheroidal microstructural modelling: a) definition of
shape and orientation, b) elementary cell and prism for derivation of
eq. 1
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Ep and EM are the Young's moduli of the inclusion and the matrix phase
respectively.

If in eq. 1 the Young's modulus of the inclusion is assummed to be zero,
then the effective modulus of elasticity of porous materials is obtained as a
function of volume fraction porosity (P) and pore structure as follows, with a
correction made for considering the boundary condition Ep=0 at P=1 [10]:
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Ep=Epm (1 - P2/3)s

s = 1.21 [Z 4/1+[F?- 1] cos?tp 2)

EM represents the Young's modulus of the fully dense matrix. The
comparison between calculated and experimental data for particulate
composites with glass, ceramic and polymer matrix [7] and for porous
metals and ceramics [7,10] has been carried out and the suitability of the
equations has been demonstrated.

2.4. POISSON'S RATIO

Being a dimensionless parameter Poisson's ratio is a very useful elastic
property because it enters in a number of equations describing the fracure
and deformation behavior of materials. Therefore it is theoretically
interesting and practically useful to obtain its dependence on microstructure
and second phase content accurately.

The derivation of the equations has been carried out recently [7] so that
only details will be given here.

The way to derive the dependence has been to consider the relationship
between the Poisson's ratio and the elastic constants Young's and bulk
modulus in isotropic matcrials and the known microstructural depencence of
these elastic constants. While the microstructural dependence of the Young's
modulus is accurately known (egs. 1 and 2), for the bulk modulus only
equations for spherical geometry are available [11,12]. Therefore the
derived equations for the Poisson's ratio are strictly valid for spherical
inclusion phase. For the case of porous materials, which is the relevant case
for this study, the final equation has been derived to be valid on the whole
porosity range [13] as:

(1 _P2/3)l.2l
(3-5P)(1-P) ‘u (1-p)
2(3-5P)(1-2vm)+3P(1+vm) 3(1 -vm)

Vp=0.5 .

3
4|(1-u)

= 1
4= e 100(P-04)

where vy represents the Poisson's ratio of the porous-free matrix. For the
high porosity range the theoretical variation of the Poisson's ratio exhibits a
trend of converging to a value vp= 0.5, when the porosity increases to P=1.
A similar convergence trend has been found in other theoretical studies [14]
but a rigorous experimental verification of such variations is still to be done.
For the low porosity range eq. 3 has been tested succesfully by comparison
with extensive experimental data on porous ceramics [15].
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2.5. FRACTURE STRENGTH

The starting point to study the microstructural dependence of the fracture
strength is to consider the case of porous materials not only because it is
more simple but also because of its practical relevance.

A rigorous derivation, in which the shape of the included phase is a variable
of the system is formidable even with nowadays computers. This is why
again the spheroidal modelling of the microstructure is applied, permitting
the quantification of the shape and orientation effect of the pores. In order
to assess the porosity dependence of the rupture strength two effects have to
be considered:

i) the reduction of the load-bearing area due to the presence of pores and

ii) the stress concentration originated at the pores.

While the load-bearing area reduction can be calculated knowing the volume
fraction of porosity [16], the model substitution allows the calculation of the
stress concentration by using the equations of the theory of elasticity in
three dimensions [17]. This path provides the equations in order to calculate
the effective rupture strength of porous materials op in dependence of the
volume fraction of porosity P and the pore structure as follows [7]:

op=om(1-PK

K= f([ﬂ , cos2aD) @)

where o) is the strength of the fully dense matrix and K is the stress
concentration factor, which results as a function of the shape and orientation
of the pores and of the Poisson's ratio vy of the matrix. Due to the
complicated mathematical nature of the equations involved in the calculation
[17] a computational programm was developed to calculate the stress
concentration factor K as a function of shape and orientation of the pores
for variing Poisson's ratio of the matrix phase [7]. The results for a matrix
phase with Poisson's ratio vM = 0.25 are plotted in figure 2, where the stress
concentration factor K varies with the orientation angle for different axial
ratios of oblate (figure 2-a) and prolate (figure 2-b) spheroids. The
calculations [7] also showed, that there is no significant effect of the
Poisson's ratio of the matrix on the stress concentration factor. The results in
figure 2 can therefore be used with accuracy for all materials with vy
between 0.1 and 0.4. Calculated values using eq. 4 have been satisfactorily
compared with experimental data on porous glasses, ceramics and metals
with different porous structures [7,18].

The determination of the fracture strength of a composite material is by an
order of magnitude more difficult than the problem of property prediction
of other properties as pointed out by Hashin [8]. A recent survey [7] has
shown that there is considerable work dedicated to this topic in the literature
and that the different theoretical approaches can not predict all experimental
results. The reason is the great number of variables influencing the problem,
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which can not be considered in a unique formula at the present state-of-the-
art. Besides the strength of the phases involved and their microstructural
arrangement, the mismatch between the elastic moduli and thermal
expansion coefficients of the phases and the strength of the bonding and
further mechanisms at the interfaces are of great importance in determining
the fracture strength of the composite.
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Figure 2. Stress concentration factor (K) for a) oblate and b) prolate

spheroids of different axial ratios as a function of their orientation to
stress direction

For composites without thermal expansion mismatch and perfect bonding
between matrix and inclusions a load-sharing mechanism has been proposed
[19] to determine the final strength of the composite. If the components in
the system share the applied load in proportion to their elastic moduli, the
strain in all components in unidirectional tension will be the same, i.e. both
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the second phase and the matrix must deform equally. It follows that the
load to failure, and consequently o, varies proportionally to the Young's
modulus of the composite. Using the known microstructural dependence for
the Young's modulus (eq. 1) the following equation has been proposed [7]
for the variation of the fracture strength of composite materials with matrix-
type microstructure:

1 1 . 1 . 1 \
=oMm|1-& 91 lfngJ) 3(1 168 E—M-1>9(1 1'—04E—M-1)
OCGM{{(+B Ep "B Ep "B Ep {(5)
where A and B are given by eq. 1. Although the conditions leading to eq. 5
seem to be too restrictive, it has been shown [7], that for many particulate

composite systems the equation predicts the fracture strength with sufficient
accuracy.

3. Design of a matrix-type composite with optimal technical properties
using the microstructure-property correlations

As shown in previous sections a particular property of a composite material
can be varied in a predetermined way by controlled changes in the phase
composition and microstructure.

In this context, the microstructure-property correlations provide a powerful
engineering tool to design composites with optimized technological
properties. As mentioned in section 1, these properties result from a
combination of terms of thermochemical, field and mechanical properties,
the dependence of which on microstructure is now well known.

As an example for technological properties the thermal shock resistance of
porous brittle materials is considered because of its significance in the
choice of ceramics for high temperature structural applications.

As mentioned before, the thermal shock resistance can be understood as the
maximum temperature difference that can be tolerated in a ceramic body
under heat transfer conditions without thermal stress failure occuring. Since
different testing conditions may affcect the result, different so-called "thermal
shock resistance parameters” have been proposed, which have been already
compiled for many situations involving thermal stresses and thermal stress
fracture [20]. One of the most generally used thermal shock resistance
parameters, named RTgs, and originally derived in the last century [21] is
defined as:

Rts = _q_¢(1 - V) (6)
o E

where ¢ is the thermal conductivity and o is the thermal expansion
coefficient of the material. The RTs-parameter characterizes the resistance to
fracture initiation under stcady state heat conduction. The materials
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properties involved in eq. 6 can now be substituted by porosity functions
from the microstructure-property correlations. As shown in previous studies
[1] the thermal expansion coefficient of porous materials does not depend
on porosity. Moreover the variation of the Poisson's ratio with porosity has
only a minor effect on the thermal shock behavior of the composite, as a
recent theoretical and experimental study has demonstrated [22]. Therefore
only the porosity functions of the thermal conductivity, the Young's
modulus and the fracture strength have to be considered and substituted in
eq. 6. Egs. 2 and 4 give the porosity dependence of the Young's modulus
and the fracture strength respectively, while the following relation has been
derived [4] for the thermal conductivity of porous materials:

op= dm (1- P)R )
R= 1 - cos’ap , cos’op
1-Fp 2Fp

The thermal conductivity, of the porous material (¢p ) appears as a function
of the conductivity of the matrix phase (¢M), the porosity, the shape factor
(Fp), which is a function of the axial ratio of the pores [4], and the
orientation factor (cosz(xD).

Substituting eqs. 2, 4 and 7 in eq. 6 the thermal shock resistance RTs(P) of a
porous ceramic material normalized to the property of the fully dense
material RTg(0) results as:

Rrs(P) _ (1 - p)r
R1s(0) (1 i Pz/a)s

®

where R, S and K depend on the porosity structure, i.e. shape and orientation
of the pores. Thus three variables remain influencing the material's property.
By changing thesc variables properly it is possible to optimize the final value
of the property and hence to design a porous ceramic with improved
thermal shock resistance.
Figure 3 shows, for example, the variation of the relative thermal shock
resistance with the pores axial ratio (z/x) for parallel oriented pores (cos2 oD
=1). Values for three different porosities (P) are shown. While for porosities
above P=0.1 the porous ceramic bchaves invariably worse than the fully
dense body (RTs(P)/RTs(0)<1), for much lower porosities (P=0.01), the
porous body has a better thermal shock resistance than the fully dense one
for a wide range of pores axial ratios. It is significant to note that the same
behaviour of the fully dense body can be reached by a porous body
containing about 5% of residual porosity providing the pores have an axial
ratio z/x = 0.7.

A possibility of improving the thermal shock behavior of porous
ceramics at higher porosities is shown in figure 4, where the variation of the
relative thermal shock resistance is represented as a function of the porosity
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for pores having an axial ratio z/x =10 (cylindrical porosity). The curves
shown represent the values for statistical (cos2 ap = 0.33), perpendicular

(cos? ap =0) and parallel (cos? ap =1) orientation of the pores. For this
kind of pore structure, the perpendicular orientation provides the best result
for improving the thermal shock behavior, reaching a maximum at a volume
fraction porosity of about 7%. Moreover, the property of the porous body
remains above that of the fully dense one up to a porosity of aprox. 20%.

|

12

cos? ap=1

06 1

normalized thermal shock resistance Rrg (P) / Rrg(0)

04

01 " 10 100 000

axial ratio (%)

Figure 3. Relative thermal shock resistance of a porous brittle
material as a function of the axial ratio of the pores for different
porosities and oricntation cos2 ap =1.

These theoretical results are alltogether in qualitative agreement with many
statements found in the literature [23] concerning the initial increase of
thermal shock resistance with the volume fraction of pores of ceramic
materials. Experimental verification of the predictions of eq. 8 have been
made for sintered glass and CaTiO3-TiO2 ceramics containing spherical
pores [22,24]. Work is in progress to test the theoretical predictions with
experiments for porosity structures other than spherical [7], since the
experimental verification of Egs. 2, 4 and 7 is an indirect confirmation for
eq. 8 too. Thus, microstructure-property correlations together with
appropiated processing parameters form a useful basis to obtain desired
porosity structures in order to design porous ceramics with optimized
thermal shock resistance. A similar treatment as the one presented here for
porous materials is being investigated for the improvement of the thermal
shock resistance of dense brittle matrices by addition of second phase
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particles [22]. These considerations may obviously be extended for other
technological properties or group of properties making the microstructure-
property correlation an essential tool for composite design.
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Figure 4. Relative thermal shock resistance of a porous brittle
material as a function of porosity for different orientations of pores
and axial ratio z/x=10.
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CRACK GROWTH IN A COMPOSITE
WITH WELL ALIGNED LONG FIBERS
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ABSTRACT. Longitudinal strength ¢, of an epoxy reinforced with one layer of long
aligned and equally spaced glass fibers has shown that for a certain fiber spacing A,
oA =x, where x is a constant. A similar expression was suggested for the strength

of a borosilicate glass - SiC fibers composite under bending and the maximum fiber
spacing. Steady crack growth under fatigue was observed in the glass - epoxy system.
Using experimental data and a simple analysis, the forces on the fibers in the bridging
zone were found equal. Analysis indicated that the total stress intensity factor was
constant at the steady growth mode. Power relations were used to correlate steady speed
with the stress intensity factor and the rate of debonding with the applied stress.

1. Introduction

When long aligned fibers are used as a reinforcement in a brittle matrix the result is a
composite material with improved mechanical properties and enhanced resistance to
crack growth. Resistance to crack growth in this class of materials comes from two
important sources. The first one results from bridging of the crack faces by fibers. The
second one is from crack bowing and trapping. Depending on the material types,
interfacial characteristics, geometry and loading conditions these two mechanisms may
lead to crack deceleration or crack arrest.

Analytical research on the effects of bridging and crack bowing on stress intensity
factors and crack growth behavior of composite with long aligned fibers has been
reported by several researchers [1-12]. Although important progress has been achieved
in understanding the role of reinforcement in the composites’ behavior, experimental
studies have received much less attention in the literature. In particular, issues related
to the effects of fiber spacing and fiber types on strength and crack growth have not
been addressed experimentally.

An experimental research program was initiated to address issues related to strength
and crack bridging in model composite systems with long aligned fibers [13-15]. In
this paper, a summary of results on strength and crack propagation on specimens with
one layer of well aligned and equally spaced glass fibers (mono-layer) in an epoxy
matrix are reported. Work on multi-layer composites will be reported elsewhere [16].
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2. Experimental Approach

The specimens used in the experimental studies were, unidirectional, single lamina
composites. The matrix material was an epoxy and the reinforcement consisted of glass
fibers in a bundle form with an overall diameter of 0.4 mm. The Young's moduli of

the matrix and the fibers were E., = 3.5 GPa, and E¢ = 72.5 GPa. The strain-to-

failure of the matrix is less than that of the fibers. Therefore the fibers in the crack
wake do not fail and thus all of them contribute to the bridging of the crack faces. This
is considered to be a typical case of large-scale bridging. Moreover, the system is
sufficiently simple to allow for an in situ observation of crack growth, debonding,
crack opening displacement (COD), any dissipative mechanisms in the matrix material
as well as crack front changes due to the reinforcement. Details of the specimen
preparation procedures and experimental methods can be found in [13].

So far in this work we have dealt with strength and fatigue crack propagation.
Longitudinal strengths of the composite material were determined using smooth
specimens with different fiber spacing that were pulled to fracture. For the fatigue

testing, a 60° angle notch of 1 mm depth was milled at the middle of the specimen
edge. Various experiments each having different fiber spacing and load levels were
performed [13,14]. All experiments were load controlled with a sinusoidal waveform
function and various levels of stress. It should be noted that because we were interested
in the steady state, one value of crack speed was obtained from each experiment.

3. Results and Discussion
3.1. STRENGTH

The strength characteristics of the composite material were determined using smooth
specimens that were pulled to fracture. To identify the effects of fiber spacing on
strength ramp tests were performed on specimens with different fiber spacing and the
same overall specimen dimensions. In all cases, fracture occurred first in the matrix
while the fibers remained intact until the crack run across the specimen width.

Conventionally, longitudinal strength of composite materials is described in terms
of volume fractions and the strength of the fiber or the matrix material. This
approximation is based on the rule of mixture and that the fibers possess uniform
strength [17]. The volume fraction used in the rule of mixture does not always
represent the local morphology (especially when there is no regularity in fiber spacing)
because it is a volume average parameter. Therefore, the effects of scale on strength can
not be formulated. To directly relate the composite's strength with a characteristic
length scale i.e., fiber spacing, we turn to another treatment of the experimental data.

A useful tool in analysis of experimental data as well as in the study of size effects
is dimensional analysis. Through dimensional analysis the important parameters of the
problem at hand can be identified and the relationship between the depended and
independent variables can be illustrated.

In the present work, we are interested in the longitudinal strength of a composite
specimen O, . It is then assumed that the governing parameters of the material system

are: fracture toughness of the matrix material K. , the Young's moduli of the matrix
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E,, , and of the reinforcing fibers E;; the respective Poisson's ratios v,, , and v;; the
fiber spacing A, and fiber diameter D; the specimen width w, and thickness h.
Choosing K, , and A as fundamental parameters O, can be expressed as

K ExA E¥A D w D
0'c- qu)l( ch ’ ch' }», }», h’vm'vf) (l)

Where, the dimensionless parameters in the function (; are IT parameters,
Mm=EVA/K,, TL=E¥A/K_, , I,=D/A, I=w/A , I=D/h |,
Tg=Vy,, I =v;. The first four IT parameters depend on the fiber spacing A .
Furthermore, because the explicit form of the function is not known, it is difficult to
examine its dependence on A. For the glass - epoxy system [13] I, >>1 (= 10%),
IL,>>1(=10%, I>>1(=~60), I;>>1(=10). According to dimensional
analysis, a complete self - similarity implies that large or small parameters (compared
to unity) can be eliminated from the function ¢, as long as there exists a limit of ¢,
for very large or very small variables [18]. With respect to the problem at hand, I, ,

I1, and I1, are very large and can be eliminated from ¢, . The fourth parameter is not
very large in comparison to unity especially in the case of the largest fiber spacing used
in this work (for A =3 mm, w/A ~ 8). However, it assumed that it is sufficiently large
and can also be eliminated. Note that the comparison with the experimental results
will attest this assumption. Moreover, the ratio D/h remains the same in all
specimens. Thus, the following limiting similarity law is obtained for the longitudinal
strength of the composite specimen with well aligned fibers

0= 9V Ve D) @

Strength values plotted against 1/vA are shown in Fig. la. Note that with the

exception of one datum point, a straight line through the origin represents the data very
well. Thus, the strength of the composite specimen scales with the square root of the

fiber spacing because the dimensionless function, @,(v,,, V¢, D/h), and K. can be
taken as constants. It is worth noticing that for those specimens where oA =
constant, fatigue crack growth and the rate of debonding in single edge notched
specimens reached a steady state mode, i.e., independent of the crack length. In

specimens with larger fiber spacing, crack speed versus crack length increased with large
fluctuations [14].
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Fig. 1. strength with spacing for (a) epoxy - glass, (b) borosilicate glass - SiC

The similarity expression (2) is an important result for the model composite system
with the range of fiber spacing examined in the present studies. However, in a real
composite system fiber spacing is not regular. Thus, it is important to contemplate a
similarity law akin to (2) in composite systems without a regular fiber spacing.
Experimental data on strength versus a characteristic length scale are not available in
the literature because strength usually is expressed in terms of fiber volume fraction. A
set of such data on matrix initiation strength versus fiber spacing, recorded under three
point bending on borosilicate glass reinforced with SiC fibers, has been reported [19].
Although, it is stated by the authors that the data were preliminary, they are examined
here in an attempt to deduce a scaling expression similar to (2). Since there was no
regularity in the fiber spacing in the borosilicate glass - SiC system, the parameters
that reflect the specimen size and a set of length scales are introduced A;, i = 1,..., n
that represent fiber distances.

Recognizing that strength is a strong function of extreme local material
heterogeneity, the fundamental parameters are taken as
Amax = A =max(A ..., Ay, Ay, Ay, Ay) and K. The choice of A_,, is also
justified by the experimental observations that matrix cracking originated between the
largest fiber spacing. Thus, the strength of the composite can be written as

_ Kne 4 EmVAmax EevAmax T ow ow_ L A Ao Ay A
O T N Ko " Ko YD T D T o™ ot P e
Here K, E, E, Vi, Ve and d have the same meaning as before; L, w, and t are the
support span, width, and height of the beam, respectively. The parameters containing

the Young's moduli and the ratios L /A, , /D, and w/D are very large in comparison

to unity. Moreover, because the distribution of A; is not known it is assumed that

their ratios with A,  are small. Thus the function &, can be substituted by its limit
when these parameters approach very large or very small values
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O, = Md)z(vma Vi, 'r‘) (3)

The ratio w /A, is between 6 and 12. Such a quantity is not very large with respect
to 1 when A, is largest. Nevertheless, considering its value to be large, one obtains

O\ Amax = Kinc®3(Vim, V5) = constant. Note that the data will determine the validity of

this approximation.
The data in Fig. 1b show that, except for one datum point with strength of about

50 MPa, the matrix initiation stress o, , is well correlated with 1/4/A,,, . Although

this is a preliminary result, its implications are important because fiber spacing reflects
the microstructure better that volume fraction, an average quantity, commonly used to
correlate strength data in composite materials. This may be one of the reasons for the
large scatter in strength versus volume fractions observed in brittle composites.

3.2. CRACK PROPAGATION BEHAVIOR

A typical behavior of crack speed with the crack length is shown in Fig. 2 [16].
Interestingly, three distinct regimes were observed: two transient phases separated by a
steady phase. In all cases, the time to crack initiation largely depended upon the fiber
spacing, the applied load and the distance of the notch tip to the first fiber. After
initiation, a significant decrease in the crack speed was observed (Fig. 2). The extent of
this behavior was dependent upon the fiber spacing, applied load and the distance of the
notch tip to the first fiber. In some cases the crack speed increased upon initiation
followed by a decrease [14].

The decrease in crack speed may be explained with the effects of the reinforcement
on the stress field at the crack tip. It has been reported [20] that an inclusion, in front of
a crack, with higher stiffness than the surrounding material lowers the stress intensity
factor at the crack tip. Therefore when the crack approaches a fiber that is stiffer than
the matrix, the local stress intensity factor is reduced leading to a deceleration of the
crack speed.

After crack initiation and a transient phase, crack growth behavior depended upon
the fiber spacing. In specimens with A = 3 to 3.5 mm a tendency of increasing crack
speed was seen albeit with large fluctuations [14]. In test pieces with smaller fiber
spacing, fatigued under various loads, the crack speed reached a steady phase. That is,
the crack speed and the rate of energy dissipation were independent of the crack length
and cycle number.

After the steady phase of fracture, a decrease in the crack speed was observed. This
decrease was accompanied by an increase in the energy dissipation (Fig. 2). To identify
the sources of this behavior, attention was focused on the bridging zone and the bulk of
the specimen. In particular two photoelastic sheets were used during testing to observe
the specimen upon loading. Two photographs of the specimen are shown in Fig. 3.
The morphology shown in Fig. 3A is typical of the steady phase of fracture. The
photograph 3B was taken at the phase when a decrease in the crack speed was recorded.

The behavior shown in Fig. 3 may be explained in terms of time and/or temperature
effects primarily on the matrix material [16]. At relatively short times, the material
behaves as an elastic one with most of energy dissipated within the bridging zone and
in creating crack surfaces.
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As time progress, however, the rheological behavior of the matrix material changes
due to temperature increase resulting from the cyclic load and/or due to creep. These
changes in the matrix material result in an increase of energy absorbed by the matrix
material. Consequently, less energy is spent within the bridging zone and crack
propagation. Additional experimental and theoretical work is required to elucidate these
important findings.

Most of the work so far has been aimed at understanding the steady phase of crack
growth. Crack propagation rates Al/AN , plotted against the crack length I, are shown
in Fig. 4. For the same fiber spacing the steady crack speed was an increasing function
of the applied stress. For the same load level the steady speed depended upon the fiber
spacing, i.e. the smaller the fiber spacing, the smaller the crack speed. For the same
fiber spacing, the level of the average steady state speed depended upon the applied load.
It is worth pointing out that steady crack speed was observed only in the specimens
where 6 YA =x. Moreover, for A~ 3.5 mm the average crack growth rate did not
reach a constant value suggesting that for a given load, the steady state can be obtained
for fiber spacing below a critical value. Thus both strength measurements and fatigue
crack growth suggest a transition in the behavior of the composite material in terms of
the fiber spacing.

Fig. 4: crack speed for two typical fiber spacing

Crack opening displacements, measured at the maximum load of the fatigue cycle,
are shown in Fig. 5a. Data points were obtained along the crack where fibers were
located as a function of crack length. Note that the COD at a point where a fiber in the
bridging zone is located is linearly related to debonding (Fig. 5a) and that the linear
relationship is the same for the fibers in the bridging zone. Moreover, CODs at the
points where the fibers are located vary linearly with crack length. The linearity with
crack length indicates a constant rate of growth in COD in the steady state because
crack length and cycle number are linearly related [13]. Within the resolution of the
observations, fiber debonding, friction and some filament fracture were assumed to have
contributed to energy dissipation.
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Fig. 5: (a) COD versus debonding, (b) evolution of stress intensity factors

4. ANALYSIS

The experimental results reported in this paper have demonstrated that crack propagation
in uniaxially reinforced composite specimens exhibit a steady state behavior.
Theoretical works on the dependence of matrix cracking stress on material properties in
the steady state have been reported. These analyses use a shear lag approximation for
the stresses on the fibers and energy balance [1-3] or a stress intensity factor based
approach with a uniform distribution of tractions in the bridging zone [4-5]. Although
these analyses provide an important understanding of the composite's fracture, they are
not easily applicable here because the reinforcement cannot be substituted by
continuous tractions on the crack planes and the effects of the fiber spacing cannot be
investigated.

Because of the steady growth mode, it is assumed that the total stress intensity
factor K, , at the matrix crack tip, arising from the remote load and the fibers, is

constant at the steady state. The next step is to calculate K, and its dependence on

fiber spacing. Towards this end, it was assumed that for a crack bridged by fibers the
principle of superposition applies and that the level of residual stresses due to specimen

preparation was negligible. Thus the stress intensity factor K, , is expressed as

K, =K., 1)- Y, KiP®, c) + AK @

i=1

Where K(o..,/) is the stress intensity factor due to the applied stress ©,,, on a
homogeneous specimen with a crack of length /, originating from the middle of the
edge. Kif(Pi, ¢, is the contribution to K, of the i-th fiber, in the bridging zone,
expressed as the effect of a closure force P, acting at a distance c; from the specimen
edge. The sum is over the number of fibers bridging the crack. The correction AK is
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due to an effect arising from the fibers ahead of the crack front. Both K(c._,/) and

Kif(Pi, ¢;) can be evaluated using standard procedures. For the fiber spacing employed in

the present studies and considering in the calculations that the crack tip was located in
the middle of two consecutive fibers, AK was presumed negligible [13].
Evaluation of K(6..,!) does not possess any particular difficulty. The contribution

of the reinforcements to the total stress intensity factor, however, can be evaluated only
if the forces carried the fibers are known. These quantities are difficult to determine
experimentally. To obtain a better insight as well as relationships between the forces
on the fibers bridging the crack, the debond length and the COD, the stress -
displacement relations of a fiber in the bridging zone were analyzed using a frictional
model similar to that in [4]. According to this analysis [13] the COD u(d) at a typical
fiber in the bridging zone is

2 o ‘[
ud)_ar- de'O T(d,x)dX’F(l-k)J; dXJ;) T(d,n)dn (5)

Where k is a constant, d is the debonding along the fiber and 1 is the shear stress.
The experimental data have shown that, at steady state, the crack opening
displacement and debonding are linearly related (Fig. 5a). Therefore the integral in (5)

d
J:) 7(d,x)dx , should not depend on d. A simple expression for the shear stress can be

derived, considering that for fixed d it does not vary along the interface, i. e.
(d.,x) = t(d) . However, when the debonding increases the shear stress decreases such
that the product ©(d)d remains constant, say to p,. If T©(dx)=p,/d one obtains
o(d) = 2(1+K)p, / t and u(d) = (1+K)dp,/Er .

To continue, the constant p, should be identified. Assuming that no fiber failure
occurs and that the applied stress G, is equally taken by all fibers, the maximum stress
on fiber is (O'f)m“ =0,/ V;, where V; denotes the fiber volume fraction. Considering
that the stress carried by the fibers is distributed across the thickness, the maximum
value of the closing traction due to a fiber in the bridging zone is P,,,=6,_,B/N
where N is the total number of fibers in the composite specimen. Assuming that the
fibers in the bridging zone carry the same load and equal to P,,, =6, B /N simulations
were carried out to evaluate K, . Typical results of simulations are shown in Fig. 5b.
Note that K, is constant for /B ~ 0.2 - 0.4. Afterwards, the interaction of the crack
front and the specimen edge leads to an increase of K, that results in specimen fracture.

Considering that K, is constant at the steady state, the next step would be to
correlate the steady speed for various fiber spacing and applied loads with K, . Towards

this end, an empirical power relation can be used. It would be useful, however, to
explore the importance of the fiber spacing on crack speed and ascertain any similarity
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parameters. Due to lack of analytical work at present to help in such understanding an
analysis of the steady state fracture process using dimensional arguments has been
attempted to obtain guidance towards a better experimental design as well as analytical
research [13]. From this analysis it was shown that for the case when the constituent
materials, specimen geometry and fiber spacing are kept the same, the crack speed can
be expressed as

-
- P K ©

Where both A and 7; = 2+0l are parameters that depend upon the specimen
geometry, material and interfacial properties. The applied load controls the crack speed
only through K;. Dimensional analysis suggested certain procedures to be followed
when investigating the effects of fiber spacing and applied load on the steady crack
speed. Namely, when studying the effects of load level on steady speed, the fiber
spacing should be kept the same from experiment to experiment otherwise the exponent

may vary in a way that is difficult to explain because the explicit form of A and the

exponent n, =2+0 are unknown. This is also the case when the fiber spacing is
changed from experiment to experiment while the stress level remains the same. This
procedure was followed in the experimental part of this research [13].

Plots of Al/AN these data as a function of the total stress intensity factor on a

Log - Log plane are shown in Fig. 6a. For the three sets of data, the parameter n,
(Eq. 6) was found equal to 4.26, 4.77, and 4.04, respectively. Using an average value
of 4.35 and calculating the steady speeds for each set, a difference of about 20% was
observed between the experimental and calculated steady speeds.

A power relation was also used for the rate of debonding as a function of stress level
on specimens with A=1.8 mm. It has been reported that for an interfacial crack the
energy release rate at steady state is proportional to r, where ¢ is the stress carried by

a fiber of radius r [21]. Drawing on this results and considering that the forces carried
by the fibers are proportional to the applied load, the experimental data on the steady
evolution of debonding were correlated with the following expression

22 =B (ovi)™ ™)

Where B and n, are constants and ¢ is the maximum stress of the fatigue cycle. The
data shown in Fig. 6b are rates of debonding and the straight line represents Eq. (7).
Note that the exponent n, = 4.5 is practically equal to the exponent n; (= 4.77)

obtained from the correlation of the steady speed on specimens with the same fiber
spacing. This is consistent with the steady state of the fracture phenomenon.
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Fig. 6: (a) steady crack speed plotted against stress intensity factor,
(b) steady rate of debonding plotted against o/t

5. Summary

The results outlined in the work have shown that experimental and analytical research
on systems with well controlled reinforcement can be useful in our attempts to
understand the phenomena related to strength and fracture of composites with long
aligned fibers. Despite the lack of analytical tools for an in depth modeling, some
important results that emerged from this work are: (a) The scaling expression
oA =x relates the strength of the composite with a characteristic structural size,
namely the fiber spacing. A similar expression is suggested for a ceramic composite
without regular fiber spacing. (b) During the steady phase of propagation, crack speed,
the rates of debonding, crack opening displacement and energy dissipation are constant.
A decrease in crack speed is recorded after the steady phase. It is attributed to changes of
the matrix material and is manifested in an increase in energy dissipation. (c) Strength
measurements and crack growth suggest a transition in the behavior of the composite
material in terms of fiber spacing. (d) Using the COD measurements and a simple
analysis, the product of the shear stress, along the debonded interface and the debond
length was found constant. Using this finding and simulations for the total stress
intensity factor Ky, it was shown that K; was approximately constant in the steady

phase of crack growth. The steady crack speed and the steady rate of debonding seem to
have a similar power dependence on stress level.
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FIBER ARRANGEMENT EFFECTS ON THE MICROSCALE
STRESSES OF CONTINUOUSLY REINFORCED MMCS

H.J. BOHM AND F.G. RAMMERSTORFER

Institute for Light Weight Structures and Aerospace Engineering
Vienna Technical University
Guphausstr. 27-29, A-1040 Vienna, Austria

Abstract. A unit cell based numerical approach is used for investigating
fiber arrangement effects on the microscale stress and strain fields and on
the overall thermomechanical response of a continuously reinforced uni-
directional B/Al MMC. Simple periodic fiber arrays, clustered hexagonal
configurations as well as modified and clustered square geometries are con-
sidered. The mean values and standard deviations of microstress and mi-
crostrain parameters in the matrix are computed and discussed for axial
and transverse mechanical loading as well as for thermal loading.

1. Introduction

A number of methods have been developed for theoretical investigations
of phase arrangement effects on the microscopic and macroscopic beha-
vior of composites. One group of strategies employs statistical concepts for
characterizing the phase arrangements of multiphase materials and for in-
vestigating relationships between microstructure and material properties.
Such work includes, among others, studies based on correlation functions,
e.g. (Pyrz, 1994), and on metallographic parameters, e.g. (Fan et al., 1994).

A different approach, which is followed in the present study, consists
of analyzing the predicted responses of selected model microgeometries,
which typically take the form of periodic phase arrangements of various
levels of complexity, see e.g. (Bigelow, 1992; Nakamura and Suresh, 1993;
Serensen and Talreja, 1993; Bohm et al., 1994). By interpreting such results
within a statistical framework, it was found possible in some cases to link
the above strategies, see e.g. (Siegmund et al., 1993).
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2. Micromechanical Modelling

2.1. FIBER ARRANGEMENTS

Eight periodic microgeometries, each corresponding to a fiber volume frac-
tion of £=0.475, are considered, see Fig.1. Configurations PHO and PSO are
periodic hexagonal and square arrays, respectively. The clustered hexago-
nal arrangements CH1 and CH3, the modified square configuration MS5 as
well as the clustered square geometries CS7 and CS8 were selected such that
the minimum nearest-neighbour distance between fiber centers, a, takes the
same value as that of the “honeycomb” arrangement RH2. For £=0.475 this
corresponds to a=1.282d, where d stands for the fiber diameter.

Even though their nearest-neighbour distances are equal, the clustered
microgeometries differ considerably in the average number of nearest neigh-
bours per fiber and in the distribution of the thickness of matrix material
around the fibers. This can be clearly seen from Fig.2, which shows the
widths of the “matrix bridges” (in terms of the fiber diameter) as functions
of the circumferential angle for the eight arrangements. Two curves each
are given for the clustered arrangements CH1, CH3 and CS7 to account for
the “inner” (dotted lines) and “outer” fibers of the clusters. As expected,
the distributions of the widths of the matrix bridges are smoothest for the
hexagonal and square arrays, and “matrix islands” are evident for the other
configurations, especially arrangements CH1, RH2 and CH3.

It is worth noting that, whereas the overall elastic behavior of the four
hexagonal microgeometries is transverse isotropic, arrangements PS0, CS7
and CS8 show tetragonal elastic symmetry, and MS5 is monoclinic. The
thermal expansion behavior of all configurations except MS5 is transverse
isotropic (Nye, 1957). Once yielding has taken place under non-axial me-
chanical loading, the above symmetry properties are typically degraded.

2.2. FINITE ELEMENT MODELS

The microstress and microstrain distributions for the eight periodic fiber
arrangements were evaluated numerically via suitable unit cells, and the
overall responses were obtained by homogenization. The unit cells and the
associated boundary conditions were designed to be capable of handling
axial and transverse normal mechanical loading as well as thermal loading
(which in the present context is understood to involve no spatial tempera-
ture gradients), for a detailed discussion see (Bohm, 1993; Bohm et al., 1993;
Bohm et al., 1994). Generalized plane strain models were used, the compu-
tations being performed with the FE-code ABAQUS (HKS, 1992).



Figure 1.

The eight periodic fiber arrangements considered (£{=0.475).
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TABLE 1. Material parameters used for the boron monofilaments
and the Al6061-0 matrix

T E v oy Ey o
[°C] [GPa] [MPa] [MPa] K™Y
fibers 0-400 400.0 0.230 — — 5.00x10~°

matrix 20 68.9  0.350 68.9 1710 22.85x107°
50 67.8  0.350 67.9 1683  23.50x107°
100 66.2  0.350 65.7 1643  24.50x107°
150 64.5 0.345 62.2 1601 25.50x107
200 63.0 0.335 55.0 1564  26.40x107°
250 61.6  0.330 34.5 1529  27.30x107°
300 60.3  0.330 25.1 1497  28.20x107°
350 58.7  0.330 18.2 1457  29.20x107°
400 56.3  0.335 11.3 1397  30.20x107°

The boron monofilaments were treated as isotropic elastic continua.
For describing the behavior of the Al6061-0 matrix, a simple thermoela-
stoplastic material model with linear kinematic hardening was employed,
the Young’s modulus F, the Poisson’s ratio v, the yield stress in uniaxial
tension oy, the hardening modulus F;, and the total coefficient of thermal
expansion (CTE) a being piecewise linear functions of the temperature, see
Table 1. The interface between fibers and matrix was assumed to be perfect.
Damage effects and the relaxation of microstresses were not considered for
the present study.

3. Discussion of Results

The investigated load cases comprise axial normal loading to 400 MPa,
transverse normal loading to 100 MPa and cooling down from 400°C to
20°C, the MMC being assumed to be initially stress free. In order to account
for the anisotropic elastic and/or elastoplastic transverse behavior of the
models, transverse loads acting in two directions were applied to all models
except MS5. The directions of these loads are referred to the horizontal in
Fig.1.

3.1. EVALUATION PROCEDURES

For comparing the microscale stress and strain variables predicted for the
different fiber arrangements, histograms of their frequency distributions
(weighted by volume) within each phase as well as the corresponding mean
values and standard deviations were computed. Following standard Finite
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Element practice, these evaluations used the “nodal averaged” microstress
and microstrain fields. The phase averages of the stress components were
checked with respect to the overall equilibrium conditions, good compliance
being found.

3.2. OVERALL RESPONSE

The predicted overall axial and transverse Young’s moduli, £ and E}, and
CTEs, o and oF, respectively, of the B/Al MMC at room temperature
are listed in Table 2 together with analytical results obtained with the
Mori-Tanaka method (Benveniste, 1987). The elastic transverse anisotropy
of arrangements PSO, CS8 and, to a lesser degree, CS7 is evident from the
difference in the transverse Young’s moduli corresponding to loading in the
0° and 45° directions. Asterisks have been placed with the transverse data
for arrangement MS5 to indicate their incompleteness.

TABLE 2. Numerical and analytical predictions for thermoelastic pro-
perties of a unidirectional B/Al MMC (room temperature, £=0.475)

arrangement E; Er aly arp
[GPa] [GPa] K™ K™

PHO 226.2 139.2 8.13x107° 15.7x107°
CH1 226.3 142.2 8.18x107° 15.5x107°
RH2 226.3 142.9 8.24x107° 15.2x107
CH3 226.3 142.4 8.20x10~° 15.4x1078
PS0 226.2 152.9/128.3 8.14x107° 15.6x107°
MS5 226.3  149.0/***  8.18x107% 15.5x1076/***
CS7 226.3 142.4/140.9 8.19x107° 15.5x1076
CS8 226.2 154.3/128.7 8.16x107° 15.6x1076
Mori-Tanaka  226.5 137.4 8.15x107° 15.6x107°

The dependence of the overall elastoplastic responses on the fiber ar-
rangements was found to be very small for axial loading, of limited import-
ance for thermal loading, and strong for transverse mechanical loading. For
the latter case, the yielding and hardening behavior of the models PHO,
CH1, RH2 and CH3 shows some anisotropy, and there are marked differences
between the nonlinear responses to transverse loads in the 0° and 45° di-
rections for the square-type arrangements CSO and CS8. Such behavior is
well known from the literature, compare e.g. (Nakamura and Suresh, 1993;
Bo6hm et al., 1993).



57

3.3. AXIAL LOADING

In Table 3, the microscale axial stresses, ag), von Mises effective stresses,

é f)f, hydrostatic stresses 0( m) , and effective plastic strains 52 f)f » evaluated

for the matrix of a B/Al MMC subjected to an axial load of 400MPa are
listed in terms of their mean values and standard deviations.

TABLE 3. Microscale parameters (meanestandard deviation)
predicted for the matrix of an initially stress free B/Al MMC
(£=0.475) subjected to an axial load of 400MPa

arrangement oﬁ;") (m)f o e

(MPa]  [MPa]  [MPa  [xi0-Y]
PHO 73.9¢0.6 70.4¢0.0 27.600.3 8.91¢0.12
CH1 74.804.5 70.4¢0.1 28.503.8 8.8600.42
RH2 76.568.0 70.4¢0.1 30.1¢7.0 8.80e0.66
CH3 75.506.4 70.4¢0.1 29.2¢5.8 8.84e0.59
PSO 74.102.3 70.4¢0.0 27.8¢1.8 8.9000.26
MS5 74.804.1 70.4¢0.1 28.53.5 8.87¢0.38
CS7 75.305.7 70.4¢0.1 28.9¢5.0 8.83¢0.49
CS8 74.403.4 70.4¢0.1 28.002.9 8.89¢0.31

The dependence of the mean values of the above microfield parameters
on the fiber arrangements is very small, the effective stresses being prac-
tically equal. There are, however, noticeable differences in the standard
deviations, which are smallest for the periodic hexagonal array and reach
the highest values for the clustered arrangements and the honeycomb geo-
metry RH2. The larger standard deviations of the microstresses are due to
regions of reduced axial and hydrostatic stresses at the points of closest
approach between neighbouring clusters (arrangements CH1 and CH3) and
at positions of minimum width of the matrix bridges (configurations RH2,
CH3, MS5, CS7 and CS8). The effective plastic strains also reach their ma-
xima in these zones. Interestingly, the inner fibers of the hexagonal clusters
are strongly shielded (i.e. the clusters in geometries CH1 and CH3 behave
like fiber-rich regions), but no such behavior is shown by arrangement CS7.

3.4. TRANSVERSE LOADING

Under transverse normal loading, both the mean values and the standard
deviations of the matrix microstresses and microstrains depend noticeably
on the fiber arrangement. This can be seen from Table 4, which lists ma-
trix microscale parameters corresponding to a transverse load of 100MPa
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(qun ) stands for the transverse matrix stresses in the loading direction).

There is also a clear correlation between the microfields and the direction
of the transverse loads, which is most marked in the case of the tetragonal
microgeometries PSO and CS8.

TABLE 4. Microscale parameters (meanestandard deviation) predicted for
the matrix of an initially stress free B/Al MMC (£=0.475) subjected to a
transverse load of 100MPa

arrangement ag") a(;" ) af}')f a%") .sg;)f v
[MPa] [MPa] [MPa] [MPa] [x1073)
PHO0(0°) 48.8025.3 94.125.7 73.9¢7.4 52.7023.1 3.81e2.73
PHO0(90°) 37.7017.8 83.7020.3 74.704.7  42.0020.4 3.69¢2.50
CH1(0°) 40.8029.4 88.4030.0 69.8e8.8 48.127.8 2.09e2.15
CH1(90°) 35.0023.4 83.6026.9 70.606.5 42.8025.6  2.0301.99
RH2(0°) 36.5024.3 81.826.1 72.7¢5.9 41.9024.6 2.862.24
RH2(90°) 45.0024.8 91.4e24.8 73.15.4 50.7023.7  2.90e2.47
CH3(0°) 40.1028.0 87.0029.2 70.807.7  46.727.1 2.3002.29
CH3(90°) 37.2023.9 85.2025.8 T71.7¢5.3 44.2e25.0 2.262.26
PS0(0°) 32.4030.1 79.0e34.6 57.416.4 43.9¢31.3 1.04e1.46
PS0(45°) 47.1e8.1 97.3¢9.0 83.506.6 48.807.2 8.7603.50
MS5(0°) 34.1025.5 82.629.5 63.7¢16.9 43.805.6 2.7804.11
CS7(0°) 37.4031.8 84.735.3 66.5014.1 45.232.1 2.622.57
CS7(45°) 37.8020.6 88.3022.9 72.1e14.1 45.3019.4 4.5T7e4.83
CS8(0°) 30.2027.4 79.532.7 58.0013.6 43.0029.6 0.560.99
(CS8(45°) 47.2¢7.9 97.308.9 83.806.2 48.807.2 8.72e3.54

This behavior can be explained in terms of the spatial distributions of
the effective plastic strains and the effective stresses in the matrix, which
tend to become concentrated in “bands” where allowed by the geometry.
The periodic arrangements discussed here show straight “channels” of in-
finite free path length in the matrix at angles of 0° and +60° (PHO, CH1,
CH3), of £30° and 90° (RH2), of 0° and 90° (PSO, CS8), of 0°, 90° and —45°
(MS5) and of 0°, +£45° and 90° (CS7). The highest mean values of the effec-
tive plastic strains and the effective stresses as well as the softest overall
responses are predicted when wide bands can form in straight matrix chan-
nels at £45° to the loading direction. The opposite behavior is found when
the only channels are parallel or perpendicular to the loading direction, and
shear strains activated at +30° or £60° give rise to intermediate results.

Random arrangements of fibers (and thus real composites) do not show
straight matrix channels of infinite path length, which are a typical fea-
ture of periodic arrays and clusters. The latter are, however, well suited
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for describing the microfields in subregions with approximately periodic or
clustered geometries, which are typically found in MMCs.

3.5. COOLING DOWN FROM PROCESSING TEMPERATURE

Among the load cases considered here, the strongest dependence of the
matrix microstresses on the fiber arrangement was predicted for cooling
down the B/Al MMC from a processing temperature of 400°C to room
temperature, see Table 5. The effective plastic strains, however, showed
only a limited sensitivity to the microgeometries.

TABLE 5. Microscale parameters (meanestandard deviation) pre-
dicted for the matrix of a B/Al MMC (£=0.475) cooled down from
400°C to 20°C

arrangement o ag}’)f o ag}l)f",
[MPa] [MPa] [MPa] [x1072]
PHO 84.009.6 87.203.9 45.2e4 .4 1.1000.21
CH1 93.6049.7  87.7¢10.8 50.5040.5 1.110.63
RH2 113.2e95.8 88.8019.4 68.7¢86.4 1.19e1.14
CH3 105.1096.0 88.4¢15.0 63.3e88.6 1.1600.92
PSo0 87.0022.8 87.3e7.1 45.3e13.4 1.08¢0.41
MS5 91.1e43.7 88.3010.2 51.0e37.3 1.150.59
CS7 100.1079.4 88.2013.6 57.7e71.5 1.150.79
CS8 89.2¢41.3 87.7e8.7 48.1¢34.8 1.110.51

A noteworthy feature of the above results are the very high standard
deviations computed for the axial and hydrostatic microstresses of some
arrangements, especially RH2, CH3 and CS7. This behavior is explained by
Fig.3, which shows the histograms of the relative frequencies of the hydro-
static stresses corresponding to Table 5 (in order to improve the legibility of
the figure, the negative tails of the distributions, which cannot be resolved
at the scale of Fig.3, were clipped for RH2, CH3, MS5 and CS7). The dis-
tributions for configurations CH3 and CS7 are clearly bimodal with widely
separated peaks, and RH2 has a flat second peak around —225MPa (clip-
ped in Fig.3). These bimodal distributions are due to a tendency for the
hydrostatic stresses to be markedly tensile in large matrix islands and to
be strongly compressive around positions of narrow matrix bridges between
fibers and/or fiber clusters (reduced axial and hydrostatic microstresses at
similar positions were found for axial loading). This behavior was discussed
in the context of the interfacial stresses in (Bohm et al., 1994).
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Figure 3. Relative frequencies of the hydrostatic stresses predicted for periodic B/Al
MMCs (£=0.475) cooled down from 400°C to 20°C.
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Figure 4. Relative frequencies of the von Mises effective stresses predicted for periodic
B/Al MMCs (£=0.475) cooled down from 400°C to 20°C.
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Whereas matrix islands are typically associated with marked tensile
hydrostatic stresses in the cooled down state, the effective stresses tend
to be low in such regions. Accordingly, in the histograms of the relative
frequencies of the von Mises stresses, which are shown in Fig.4, the clustered
arrangements show strong maxima at low stresses and long tails at higher
values (corresponding to localized regions of elevated effective stresses),
whereas the distributions are more “compact” for the simple arrays.

4. Conclusions

The influence of the investigated periodic microgeometries on the overall
and microscale thermomechanical behavior of a continuously reinforced un-
idirectional MMC was found to depend strongly on the load cases. Because
fiber volume fractions and (with the exception of the simple periodic arrays)
minimum fiber distances were kept equal for the investigated configurations,
the results indicate that these two parameters are not sufficient for fully
describing the nonlinear behavior of MMCs. The discussion of frequency
distributions showed that considerable information may be lost when only
the mean values of the microscale stresses and strains are studied.
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Abstract

In this work we present an analytical model of a composite containing coated
cylindrical fibers subjected to a compressive loading. The modeling approach used in
this paper is a blend of two conventional analytical techniques to predict the
composites compression strength as a function of microparameters. The model
presented here explicitly includes interphase influences and the circular geometry of
the fiber which causes substantial stress concentrations at key locations. Analytical
results suggest that a specific coating may increase the compression strength of a
composite. Experimental studies are conducted on several composite systems
fabricated with coated glass fibers as the reinforcing fiber. Results indicate that
coating effects, adhesion, and fiber geometry play a critical role in compression
strength. Comparison of the experimental results with the analytical model yield
reasonable correlation between the two, thus supporting the theoretical claims of the
model.

1. Introduction

The use of composite materials has grown considerably over the past two decades in
applications ranging from sporting goods to aerospace vehicles. While these materials
are widely used in today’s society, the specific physical mechanisms which govern
their performance are not completely understood. To address this concern, scientists
and engineers have begun to re-focus their attention on constituent interaction
occurring in the composite between the fiber, coating, and matrix regions. These
micromechanical studies are being performed with the hopes of gaining a better
understanding of the physical mechanisms governing a composite’s strength and
performance characteristics. In fact, recent publications indicate that an opportunity
exists to improve a composites performance by tailoring the fiber coatings (interphase
region) or fibers adhesion characteristics (interface).
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Papers which review the effect of fiber coatings on the macro-response of a
composite systems include Swain et al. (1990) and Jayaraman et al. (1993). Optimum
fiber coatings for metal-matrix and polymeric-matrix composites subjected to thermal
loading were studied by Ghosn and Lerch (1989) using an energy based criteria.
Carman et al. (1993) presented an analysis to determine the optimum fiber coating for
a composite subjected to transverse loading to minimize cross-ply cracking. Pak
(1992) published an analysis of a composite material subjected to shear tractions for
maximizing the shear load supported by the fiber. Schwartz and Hartness (1985)
investigated the effect of fiber coatings on interlaminar fracture toughness and
transverse strength of a composite. There also exists a number of theoretical and
experimental papers discussing the effect of interphases on global properties, for
example Pagano and Tandon (1988), Lesko et al. (1991), and Chang et al. (1992).
While interphase/interface effects have been studied in a variety of contexts, probably
their largest impact is reported in experimental literature discussing a composites
compression strength. Greszczuk (1975) demonstrated with a pseudo-composite system
that fiber-matrix interface strength and fiber size strongly influenced compression
strength. Madhukar and Drzal (1991) experimentally evaluated several graphite epoxy
composite systems containing varying degrees of fiber/matrix interface adhesion and
concluded that the compression strength changed substantially. Swain (1992)
experimentally showed that fiber surface treatments altered the fatigue life of a
composite. These experimental studies, as well as a host of others, have yielded a
great deal of insight, as well as a fair degree of confusion, into understanding the
effect of microparameters on compression strength.

Analytical modeling efforts of compression strength Rosen (1965) are based on
compression failure that occur in either an "extension" or "shear" mode, with the latter
being more typical in standard composites. Shear mode failure initiates at or near the
interphase region in the form of matrix cracking or fiber/matrix interface decohesion.
These failures are due to the local stress concentrations which arise in the
matrix/interphase region near/adjacent to the fiber. While compression strength
appears to be a shear dominated phenomena, these models apparently overestimate
compression strength by a factor of 3. Attempting to account for this overestimation
Kulkarni (1975) introduced the concept of fiber/matrix adhesion, Greszczuk (1974)
included end fixity conditions, Waas et al. (1990) identified the absence of free-edge
traction, Lessard and Chang (1991) suggested that fiber-fiber interactions play a role.
Still other researchers, such as Hahn and Tsai (1980) introduced a fiber waviness
parameter and Steif (1990) looked at finite deformations. In more recent work, Wass
(1992) introduced interphase effects in a compressive strength model to investigate
failure strain and buckling wave lengths. A review of compression strength models
can be found in Shuart paper (1985) summarizing various techniques for assessing the
compressive strength of a composite.

It is the purpose of this paper to analytically model the influence of the interphase
and the circular geometry of the fibers on compression strength. While researchers
have indicated that the interphase region plays a role in compression strength, it is the
supposition of this paper that the cylindrical geometry of the fiber is an additional
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parameter which needs to be considered. This geometry gives rise to specific
variations in stress which vary azimuthally in the composite and generate substantial
stress concentrations at key locations. Theoretical results generated suggest that a
specific coating on a circular fiber might improve compression strength. Experimental
results are also presented for a model composite system containing fibers coated with
different materials. The agreement between experimental and theoretical results
support certain analytical claims.

2. Analytical model
Consider an unidirectional composite Y oA

subjected to compression in the ﬁ M+dM
direction of the structural fibers as

. N . —_— V+dV
presented in Figure 1. To analytically
model the effect of fiber coatings on iz l
dz
21

approach presented in Tsai and Hahn
(1980). Assumptions wused in this

compression strength, we begin with the 2\
- x % J_

development include each constituent in —_—V
the composite (fiber, interphase, and ‘*/M
matrix) exhibits linear elastic behavior, oA

the materials are transversely isotropic, 2

the strains are small, and the bond °

between each constituent is "ideal", Y

such that the traction and displacements
are continuous across each interface. Figure 1 Illustration of compression strength model.
The fibers are also assumed to be much
stiffer than the matrix. An initial deflection, v,, of the plies is assumed to take the

form:
Vo = fo[l + cos(ilg)} M

where / is the half-length of the undulation and £ is the amplitude of the undulation.
When a compressive load is applied to the composite, the deflection of the plies is
assumed to be of a similar form to that presented in Equation 1 or:

v = f[l + cos(ff) @

where f'is the final amplitude of the deflection for a given applied load. While other
deformation profiles are possible it is more plausible that the end deformation will
resemble the initial one. Therefore, Equation 2 is a reasonable estimate of this
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deformation profile. Using a representative volume element of length dz and cross-
sectional area A4 as presented in Figure 1, a mechanics of materials approach can be
used to develop an equation for a composite’s compressive strength X,

o, L (©))
X, = Cyql - 70

where f; is the amplitude of the undulation when the composite fails. To evaluate this
amplitude, we assume that the composite fails by local shear failure in the matrix or
interphase region when a critical shear strength has been reached. This critical value
can be represented by the shear strength of the matrix S”, or the interface strength
between the constituents. It is our supposition, that this value depends upon the local
stress distribution around the fiber and must be evaluated with a micromechanical
model. The formulation presented here requires a quantitative assessment of the
average shear strain experienced by the local element. Using the deformation profiles
defined in Equation 1 and 2 the average shear strain can be determined

Yo = Yo sin(ltlE “)

where

Ve e =1

where y°,, is the local composites shear strain when the matrix region or interphase
region fails. Using the strain information in a concentric cylinders model containing
fiber/interphase/matrix constituents (Hashin & Rosen 1964), the local stress/strain state
can be determined and an appropriate failure criteria based on the constituents, fiber
geometry, and local stress concentrations developed. Since we are only interested in
failure of the composite, we choose to investigate the stress distribution at a specific
axial location, i.e. z=0. By assuming that the representative volume element
experiences the same volume average strains as the bulk composite, the following
boundary condition is applied to the element.

w™(r,) = Y5, cosd )
Where 1, is the outer radii of the element and w is the axial displacement. The

pertinent governing differential equation for this problem written in terms of
displacement variables is
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1 1
W’”+7w’r+; 00 :0 (6)

The solution to this partial differential equation subjected to the boundary condition
in Equation 5 is

g )

Fl n
w"(r,ﬂ,z) = [_ +F2 r] cosO
r

Employing the stain-displacement and stress-strain relations for a transversely
isotropic material, the non-zero stresses in each constituent are found to be

F/ F/ ®)

o’,;=cs’;[—r—; +F,']cosd o;z=C5';[—r—; ~F;]sin®

where C," is the axial shear modulus of the n’th phase (f=fiber, i=interphase,
m=matriXx, and c=composite) in the composite, and F" are undetermined constants.
These are evaluated by

A. applying the boundary conditions stated in Equation 5,

B. demanding continuity of the traction and displacements at each interface (i.e. G,,"

and #,"), and

C. demanding that the stresses be bounded (F,/ = 0).
Using this information the stress/strain state in each of the constituents of the
composite can be determined. The matrix stress becomes

oy, = (o}, cos® -og, sinb) sin(%) )]

To investigate the magnitude of the stress concentrations in the constituents, we
recognize that their are two possible locations for failure. Stress concentrations arise
in composites at bi-material interfaces at either 6 = 0° or 6 = 90° (Carman & Case
1992) subjected to shearing loads. These locations are associated with classical
problems similar to a hole or a circular rigid inclusion in a plate. Based on this
argument, the magnitude of the stress concentrations in the constituents is

Fln Fn
[ —r;i 21 (10)

The presence of the plus or minus term in Equation 10 reflects the nature of the stress
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concentration occurring at 6 = 0° or 8 = 90°. Assuming that the shear strength of the
matrix has been reached Equation 9 can be recast in terms or the shear strength

S" = C5K = (A (11

where K represents the stress concentration arising due to geometry and constituent
properties defined in Equation 10. Solving for the critical value f, in Equation 11 and
substituting into Equation 3, we obtain an expression for the compression strength of
the composite.

X, = Co—1— 12)
1 + f_()’i CSSK

I gm

To predict the compression strength of a composite from constituent information the
shear modulus of the composite must also be determined. This can be done by relating
the volume averaged stresses calculated from Equation 8 to the applied strain in
Equation 5. This is depicted by the following equation

1 - y f(a",Z cos6 - og, sin6)dV, 13)

VY, n v,

c
C55 -

3. Manufacturing methods

The composite test specimens are fabricated by one of three manufacturing processes,
autoclave (A), hot-press (HP), and resin transfer mold (RT). All of the composites
were constructed with optical fiber approximately 200 microns in diameter as the
reinforcing fiber. Optical fibers provide a convenient off the shelf commodity to
construct a composite system containing fibers with well characterized coatings and
geometries. The optical fibers used in our experiments are coated with either a silicon
rubber (S), polyimide (P), acrylate (A), or a nylon (N) coating. Relative dimensions
between the fiber (core-cladding) and the coating are silicon rubber 200/230,
polyimide 225/245, nylon 210/230, and acrylate 125/215. The matrix used in these
studies is an epoxy M-10E resin.

Autoclave and hot press manufacturing methods are based on a lamination
approach. This common technique is presently utilized throughout the aerospace
industry for manufacturing typical graphite epoxy composite specimens. Only acrylate
fibers were employed in the hot press operations while acrylate, polyimide, and nylon
coated fibers were incorporated into autoclave processes. The latter method provided
highly repeatable results while the previous one yielded composites containing
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considerable voids. In either method, the fibers are first laid onto sheets of resin
material using a filament winder, a hand layup technique, or an alignment fixture to
provide a sheet of prepreg tape. Following this process, the prepreg is laid into a
desired lamination scheme, for our purposes a unidirectional layup. Once constructed,
the laminate is cured with either a hot-press or an autoclave.

The mold injection method used silicon rubber and acrylate coated fibers. To
manufacture these specimens, the coated fibers are suspended between two perforated
plates located at the ends of the die. These perforated plates are fabricated to
accommodate various fiber size, fiber volume, fiber arrays, and can be used to control
fiber spacing. The fibers are held in their position with the use of RTV (silicon
rubber) or a mechanical gripper while liquid resin is injected into the mold. The RTV
silicon permits pretension to be applied to the fibers during the resin transfer process
to ensure fiber straightness. All of the manufacturing methods, hot press, autoclave,
and resin transfer mold, provide a material system containing physically measurable
micro-parameters. However, the resin transfer mold and the autoclave process yielded
higher quality specimens than did the hot press.

4. Analytical results

The fiber volume fraction used in the analytical study is v, = 0.59, the interphase
volume fraction is v, = 0.13, the pertinent fiber property is C;" = 28 GPa, and the
pertinent matrix property is C;;” = 1.1 GPa. Using these physical quantities (Carman
& Case 1992) an optimum interphase shear modulus of C's; = 0.11 GPa is calculated.
In discussing the results, a normalized shear modulus is defined as C”s; = C'/C™ss.
The four interphase values studied here range from an extremely compliant interphase
value (i.e. actually a hole) to the geometric mean of the fiber and matrix shear moduli.
In the present study, a similar shear strain is applied to each composite element
containing the different interphase materials. The stress quantities are normalized to
a homogeneous matrix material subjected to the same strain.

The shear stress variations in the composite as a function of the normalized radial
coordinate (»/r,) for 8 = 0° are presented in Figure 2. As the shear modulus of the
interphase increases, the stress concentration in each of the constituents increases. This
is expected, since the shear stress concentration at 6 = 0° is related to a rigid inclusion
effect. Another interesting feature of this graph is that as the interphase modulus
decreases the stress supported by the fiber decreases. This suggests that for compliant
coatings, the composite may buckle after the ultimate load is reached rather than
resulting in fiber failure.

To understand the influence of fiber coatings on stress state at the bimateraial
interfaces, a plot of shearing stresses at the matrix/interphase interface as a function
of 0 is presented in Figure 3. For stiff interphase values large shearing stresses occur
at 0 = 0° while for compliant interphases they occur at 6 = 90°. On the other hand,
the composite containing the optimum interphase does not display a dependence on
angular position. This is typical of a homogeneous material system subjected to axial
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shear. For compliant systems 6.0 T ————————— .
the larger shearing stresses 1~ 7 L :
exist along the neutral axis of 5.87 (i-sg RN
the local element and may _ 2 —_—— o — *
lead to premature buckling of 491 /_ b ~ ]
the composite specimen. - Cy= 190 3
While the stress state in the ‘w® ]

composite is minimized with .01 ]
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stiffness of the composite 1 ci=o fiber matrix
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of a compliant coating. As th o,

presented in analytical results

by Carman et al. (1992) the Figure 2: Shearing Stresses in Composite.
stiffness of the composite,

including the transverse 6.0 -
modulus (E,) and the i__ :
transverse  shear modulus it PRI ]
(C*,,) decrease significantly. In wedl R ]
regards to compression i =~ AN ]
strength, the shear modulus . 4 3-°§ Gt = \\\ ]
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Equation 12. However, results .03 — ST e e
published by Madhukar and U S S DR
Drzal (1991) suggests that this 1 o

influence is not as significant -1.03~ 1.: A~ 1A= "ans o< N
as analytically predicted. 8 (degree)

In Figure 4, a parametric
study of the effect that
undulation size, matrix shear
strength, and interphase
properties has on a composite
material subjected to a similar traction profile is presented. In presenting the results
we have normalized the compression strength of the composite to the shear modulus
of the composite. This normalization process helps remove any discrepancies which
might be associated with inconsistencies in shear stiffness predictions. The curves
discontinuity is caused by the maximum stress state shifting from 6 = 0 to 90. The
sensitivity parameter, i.e. (f,Css")/(S"]) represents changes in matrix shear stiffness,
matrix shear strength and undulation amplitude of the fiber in the composite. With
decreasing values of this parameter, the local undulation becomes less severe for

Figure 3: Shearing Stresses at Matrix Coating Interface.
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constant matrix values. In the
limit as the undulation
approaches 0 or a straight line,
Equation 16 indicates that
compression strength is not a
function of interphase stiffness % 3
values. Figure 4 indicates that =g .3
an optimum interphase e
stiffness  value exists to ;
maximize the normalized 0.2]
compression strength of a ]
composite, that is if the shear
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modulus of the composites e.o:_,#v — v
does not change appreciably. e e o' ' e
Furthermore, the curves C]55 /65

suggests that compliant
interphase values reduce the
compression strength to a
larger extent than do stiff
interphase values, as one might expect. In this light, it seems possible that an
interphase might exist to maximize the compression strength/strain to failure of a
composite.

Figure 4: Normalized Compression Strength as a Function of
Coating.

5. Experimental results

All compression tests were conducted on an Illinois Institute of Technology Research
Institute (IITRI) test fixture in a 10 kip electromechanical driven load frame. Tests
were conducted at a rate of 0.127 cm/min on specimens conforming to the ASTM
D3410 standard. The gauge length of the specimens was 1.27 cm, the width of the
specimens was approximately 0.635 cm, and the thicknesses of the specimens varied
from 0.3 to 0.4 cm. Specimens were strain gauged to determine failure strains and
evaluate buckling characteristics. The shear modulus values used for theoretical
calculations presented in this section are core-cladding 28 GPa, polyimide 1.2 GPa,
nylon 1.2 GPa, acrylate 0.13 GPa, silicon rubber 0.13 GPa, and epoxy matrix 1.6 GPa.
The length of the undulation used in the theoretical calculations was the gauge length
of the specimen with an amplitude equal to a nominal fiber diameter (i.e. f= 200
microns) and S™= 3.5 MPa.

Experimental and theoretical results are presented in Table 1. Panel number 5,
which was manufactured by the hot press method, contained excessive amount of
voids in the epoxy resin. In this panel, all of the voids were spherical in geometry and
fully encapsulated in epoxy resin. While the precise volume fraction of the voids is
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not known at this time, an estimate of 30% was used in a spherical inclusion model
to calculate a 40% stiffness reduction for the matrix. Panels 3, 7, 8, 9, and 10 were
all essentially void free.

During the manufacturing process it was noted that the nylon coating could easily
be removed from the fiber. Therefore, when analytically modeling this panel an
extremely compliant thin layer was placed between the fiber and the nylon material.
In addition to this anomaly, compression tests conducted on composites containing
silicon rubber coated fibers indicated that the coating does not adhere well to the
matrix. Evidence supporting this claim was found by post-test inspections revealing
that the fibers had pushed through the ends. Load time plots for these specimens also
indicated that fiber pushout occurred. As the load increased, a plateau was reached
where the fibers apparently began debonding from the matrix. Therefore, the analytical
model for this specimen also incorporated a thin compliant layer between the coating
and the matrix region.

Panel Coating Process Fiber Exp. Theory Failure Theory o/G

# Volume Strength Strain Strain
Fraction

% MPa MPa % % %

5* A HP 7.5 122.7 140 23 22 19.8

7 A RM 7.5 168.6 204 2.0 25 17.7

3 A AC 149 148.8 125 1.8 1.1 15.0

10 S RM 16.3 140.0 148 --- 1.1 14.6

N AC 33.0 121.3 100 --- 0.5 13.1

P AC 42.0 917.0 807 2.6 2.8 24.5

Analytical failure predictions for the specimens indicate that all of the composites
would fail along the neutral axis (6 = 90) with the exception of the polyimide coated
fibers where theoretical predictions indicated that failure should occur (6 = 0).
Experimental results support this contention. That is, the polyimide specimens
microbuckled followed by fast fracture severing the specimen into two pieces. All
other specimen failures were typified by long wavelength fiber buckling leading to
specimen buckling. However, several specimens from panel 5 failed by microbuckling
leading to composite fast fracture. These latter specimens had the lowest ratio of stress
concentration at © = 90 to 6 = 0, indicating a higher propensity for microbuckling
than other ones.

Theoretical predictions for strength are comparable to the experimental results
obtained on all specimens shown in Table 1. Clearly, the polyimide coated fiber was
the strongest of the samples tested. However, for a composite with a comparable fiber
volume fraction, i.e. nylon, the strength decreased by almost an order of magnitude
when compared to the polyimide. This degradation is attributable to the lack of
adhesion between the fiber and the coating and is explicitly depicted in the model
through the presence of an extremely compliant layer. On the other hand, comparing
the results obtained on a lower fiber volume fraction composite than the nylon, i.e.
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silicon, which also exhibits poor adhesion between the coating and the matrix, the
silicon exhibited a larger strength than did the nylon coated fiber, a result which is not
intuitively obvious. The reason for the relative increase in strength for the silicon fiber
system is because the nylon coated fiber has a larger stress concentration and a lower
shear modulus. These two reasons are associated with the relatively larger area of
decohered region within the nylon composite compared to the lower fiber volume
fraction silicon composites.

Turning our attention to the acrylate coated specimens, some additional
observations can be made. For panel 3, which contained a relatively larger fiber
volume fraction than panel 7, the strength is lower. The reason that the strength is
lower for a composite containing a larger fiber volume fraction is attributable to the
compliant coating decreasing the shear modulus and increasing the stress
concentrations in the matrix. The reason panel S exhibited a relatively lower strength
when compared to panel 3 and 7 is attributable to the voids present in the resin
material that were discussed previously. By decreasing the matrix modulus the
theoretical model is able to predict this decrease. In all of the experimental results,
the theoretical model provides an accurate representation of strength and a means to
explain specific phenomena.

Theoretical failure strains presented in Table 1 were calculated by dividing the
theoretical failure strengths by the analytically determined composites longitudinal
Young’s modulus. The theoretical failure strains compared to experimentally measured
ones appear to be less accurate than the failure strength predictions. On the other hand
by comparing the measured failure strains to the normalized values obtained from
dividing the strength of the composite by the shear modulus, similar trends are
observed. The normalized value was presented in Figure 4 and discussed in section
4.0. The correlation in the trends between the normalized value and the strain to
failure in Table 1 suggests that the normalized parameter could be used to predict the
strain to failure for the composite. One reason that this may be a plausible approach
is due to the inaccuracies associated with predicting the shear modulus of the
composite.

6. Conclusions

An analytical model was presented to investigate the influence of coated cylindrical
fibers on a composites compression strength. Results indicate that compliant coatings
cause final failures along the neutral axis leading to composite buckling, while stiff
coatings fail by microbuckling. The compliant coatings also cause significant
decreases in a composite shear modulus which suggests large reductions in
compression strength. However, if we normalize the compression strength of the
composite to the shear modulus of the composite a specific coating appears to
maximize the strength.

An experimental methodology employing coated glass fibers was presented to
study the influence of coatings on composite properties. The manufacturing techniques
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are typical of actual composites in aerospace applications. The model composite
system provides the opportunity to systematically change physical micro-parameters
within the composite with a high degree of confidence. Compression tests results for
the composites containing varied coatings properties indicate that coatings properties,
adhesion, and void content significantly influence compression strength. Experimental
results closely parallel the theoretical predictions, which support the predictions
capabilities of the model.
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The Measurement and Modelling of Fibre Directions in Composites
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ABSTRACT. The nearest neighbour angle frequency distributions, f(®y,) of fibre images
on a 2D section plane through both glass fibre and carbon fibre reinforced, polymer
composites are compared to the predictions of a 3D, 'Monte Carlo' computer simulation.
Actual f(dyy,) distributions can be simulated by a '3D random hard core' spatial
distribution of fibres. The shapes of the f(dy,) distributions within all of our composite
samples appear to be well approximated by f(®yy) = A + B.cos2®yy + C.cos*®yy where
A, B and C are functions of the fibre packing fraction and range of directions (A9, AD).

1. Introduction

For the past five years, a research project has been undertaken into the quality
measurement of glass and carbon fibre directions in a variety of polymer matrices. Both
unidirectional, continuous fibres at high packing fractions (40% < Vf < 55%) as well as
short fibre reinforcements at a number of different packing fractions (25% < V¢ < 50%)
have been studied. An automated, 2D image analyser has been designed to not only derive
the best fit elliptical parameters of each fibre image on a section plane, but also to identify
the absolute centre coordinates of each fibre image within a 2 mm x 2 mm area of the
sample. The elliptical parameters of each fibre's image indicate the direction of the fibre in
space, denoted by the angles (8,d) where @ is the in-plane angle, given by the orientation
of the major axis of the elliptical image and 0 is the colatitude angle or out-of-plane angle
given by the ratio of the major axis 'a' and the minor axis 'b'":

6 = cos l(b/a) (1

see figure 1(a).
A few years ago, Davy and Guild (1988) published a paper where they modelled a
composite as though the reinforcements followed a Gibbs 'hard core' distribution of
random positions in a 2D section plane. However, the Gibbs hard core hypothesis is only
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Figure 1a. Coordinate system adopted. Figure 1b. Typical frequency distribution of
@ NN is the nearest neighbour angle. nearest neighbour angle.

Figure 2. Schematic of Leeds Image Analyser, incorporating a network of transputers.
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realistic if either the fillers are flat, 2D objects (rather than 3D rods) or if the packing
fraction of short fibres in the composite is so low that there is essentially no interaction
between the fibres!

It was decided to test Davy & Guild's hypothesis by checking whether the distribution of
nearest neighbour angles, f(®y,) for the thousands of fibres in a typical 2 mm x 2 mm
dataset was consistent with the predicted isotropic f(®y,) distribution. As reported in
Clarke and Davidson(1991), no actual composite analysed at Leeds gave an isotropic
f(d,) distribution. Every composite sample studied has exhibited a remarkably similar
functional form for the f(dy,) distribution, as shown in figure 1(b).

However, like Davy & Guild we acknowledged that the fibres in all real composites
(with V¢ < 55%) have spatial distributions which are far from the ideal, regular 'square’ or
'hexagonal' arrays assumed by many finite element analysis papers, e.g. Dubois et
al(1993). Therefore, we embarked upon a 3D modelling exercise to generate the f(Pyy)
distributions at different levels within a simulated 3D space. Some of the model results
have been puzzling us for the past three years, but with our improved 2D and 3D
techniques, Archenhold et al/(1992), Mattfeldt et al(1994), Clarke et al(1994) to analyse
composite microstructures, we are now in a better position to interpret the original model
data. Also, a recent paper on 2D microstructural issues by Pyrz(1993) has rekindled our
interest in this work.

2. Measurement of Fibre Directions in Composites

A large area, high spatial resolution, 2D image analyser system has been developed to
automate fully the collection of (0, ®) fibre data, see Clarke et al(1991). For speed of
operation, the design uses a small network of transputer chips which form the basis of a
parallel processing system, as shown in figure 2.

The image analyser design has a number of unique features. It scans automatically in X
and Y, finding the best position of focus at each new XY location and merges overlapping
image frames to create a data table of absolute x, y fibre coordinates over a 2 mm x 2 mm
area. The system automatically performs image splitting, determines a quality factor for
the elliptical fit to each fibre image, performs an ‘autocalibration' in XY by following
specific fibre images during the XY scanning, merges partial fibre images between XY
frames and plots the (0, ®) angular distributions within seconds of the end of each large
area scan.

When a sample containing well-aligned fibres is sectioned perpendicular to the main
fibre direction and analysed by any 2D system, the apparent 6 and @ distributions will
resemble those shown in figures 3(a) and 3(b). The 6 distribution will show a spurious
peak at around 8 = 10 - 200 and the & distribution will most probably show a very broad
distribution of angles between 00 and 1800 (note that every 2D system has a @ ambiguity
of 1809). These angular distributions occur because of errors in deriving 6 from near
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circular, digitised images, see Clarke et al(1993). Our original motivation for exploring the
f(dy,) distributions was to improve upon these apparent (8, ®) distributions.

However we now know that, if the well-aligned sample is cut at an angle of 459 to the
main fibre direction, the fibre ellipticities and hence the ', @' values in this 450 section
plane can be derived very accurately. Each fibre's direction may be mathematically
transformed by 459 to derive more accurate (8, ®) distributions, see Hine et al/(1993).

3. Modelling of Fibres in 3D
3.1 COMPUTER HARDWARE

The basic network of transputers used for the image analyser design was reorganised for
the 3D modelling by adding another pipeline of three transputers as shown in Figure 4. In
this configuration, the master transputer, T, was responsible for collating information from
the other 'slave' transputers and archiving to disk. The master transputer together with
each of the other six transputers was running identical code which enabled them to
perform 1500 simulations in an 8 hour overnight run. Hence, a speedup of x7 over a single
transputer was achieved and 10,500 points on the f(®yy) distributions every 20 um in
section depth were generated, as typified by the distributions in figure 5.

3.2 THE MONTE CARLO ALGORITHM

The algorithm allows us to vary the initial spatial locations of each fibre (e.g. on a basic
square array or hexagonal array or placed randomly at the top surface) and also to choose
the range of fibre directions.

In order to mimic the 'unidirectional’, glass and carbon reinforced composites at our
disposal, the fibres were constrained to have a range of angles, 6 between 00 and + A8 and
@ between (900 + Ad) and (2700 + AD). The spatial positions of the fibres at the surface
of the simulated volume were chosen randomly in x and y or were placed in a square
array. For each candidate fibre, four random numbers were chosen. The first random
number determined the AO value, the second determined the A® value, the third and the
fourth determined the x, y of the fibre centre on the section plane. The model assumed a
fixed fibre length, L = 1 mm and a fixed diameter, D = 10 pum for ease of computation.
Each fibre was followed in 3D space and if it was found to hit a fibre which was already in
that 3D space, the fibre would be discarded and another fibre with another set of random
numbers and hence a different set of {x, y, 8 and ®} was produced and checked. The
process was repeated until the required packing fraction of fibres had been achieved at the
surface of the simulated volume. Hence the model, in effect, simulates a 3D version of the
Gibbs hard core process. Note that, as the nearest neighbour information is obtained from
the central fibre and it's nearest neighbours, rather than to all of the fibres within the
simulated volume, there are no 'edge effects' which might lead to an incorrect f(dyy)
distribution.
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3.3 LIMITATIONS OF THE CURRENT 3D MODEL

The gradual evolution of the shape of the f(®yy) distribution as a function of depth
puzzled us until we realised that our 3D model currently has two limitations:

a) Although a particular packing fraction is established at the 'surface level', there
is a systematic change of effective packing fraction with depth, which depends upon the
permissible range of angles, A® during the simulation. The worst case change of packing
fraction as a function of A0 is shown in figure 6.

b) Because the model only checked for non-intersecting fibres within the 3D
volume, the f(dy,) distributions at and near the surface of the 3D space are physically
unreasonable. However, the angular distributions simulated at lower levels within the 3D
volume should be representative of those distributions within a real composite.

4. Characterisation of the f(®yy) Distribution

Instead of the expected 'isotropic distribution’ of nearest neighbour angles for a 2D Gibbs
hard core' process, the influence of the third dimension i.e. fibre length gave rise to
characteristic, f(®y,) distributions in our 3D simulations.

The main point of our analysis was to explore the ‘anisotropy' of the f(®y,) distributions
and to seek correlations with the (8, ®) fibre directional distributions. All of the real and
modelled nearest neighbour angular distributions seem to have the same functional form,
shown idealised in figure 7(a). Recently we have found that a reasonably good fit to these
frequency distributions, f(®yy) is given by the function

f(Pyy) = a + b.cos 4Dy, - c.cos 2Py = A + B.cos2®+ C.costdyy 2)
as shown in figure 7(b). However, when the model data was reduced originally, it was
decided to characterise the distribution in terms of two, easily determined, 'probability

amplitudes', A, and A ..
Referring to figure 7(a), the 'in-phase' amplitude of the f(®y,) distribution is defined as

An =(E2-f)/E2+ 1) 3)
and the 'out-of-phase' amplitude of the f(®yy) distribution is defined as
Ay = (3 - f/(E3 +17) @

In this way, the systematic modification to the shape of the f(®y,) distributions can be
followed as different constraints are placed on the range of individual fibre (0, @) values.
(Note that the definition of A,, and A, is arbitrary when analysing a real composite and
hence each value in the top part of the A, -A , plot has an equivalent value in the lower
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part of the A,-A_, plot). Figure 8 illustrates the mapping of the probability amplitudes
onto the A, -A ,, plot and figure 9 shows the result of a number of model simulations.

5. Comparison with real composites

Most of the composites that have been studied were produced by processes which involve
the layering of plies and therefore it is not surprising if the fibres' exhibit a preferred
orientation. When the samples were positioned on the XY stage, the operator lined up the
edge of the sample (which was perpendicular to the plies) to correspond with the X or Y
axis of the video system. Hence, the most probable nearest neighbour orientations should
be at dy, = 00 or 90°.

Great care was exercised to ensure that the 'peaks' in the distributions were not artefacts
of the image analyser (e.g. they could be produced spuriously if an incorrect 'aspect ratio'
was chosen for the X-Y image frame analysis). The aspect ratio was checked by rotating
the sample on the X-Y stage and confirming that the peaks appeared at the correct angles
in the image analyser's coordinate system.

The probability amplitudes of various composites are plotted in figure 9.

5.1 CONTINUOUS GLASS FIBRES IN EPOXY

Recently, considerable research effort has been put into the analysis of a continuous,
‘unidirectional', glass fibre reinforced composite with a view to characterise the 'waviness'
of the glass fibres in 3D. The sample has been analysed with our 2D image analyser by
sectioning at 45© to the main fibre orientation axis (in order to produce the most accurate
0 distributions) and also with our new 3D confocal laser scanning microscope technique,
Clarke et al(1994) which is capable of accurate 3D positional information. Both of these
techniques confirm that the 0 angular distribution of 100 pm segments of fibres exhibits a
narrow range, A8y = £ 2.59, see figure 10, equivalent to A6 = 2.59 in our model. The
® distribution has a range, A®pyp = 400 - 600 (i.e. AD = + 259), as shown in figurell.
The 2D image analyser has also scanned three sections, each section being perpendicular
to the main fibre direction and the f(dy,) distributions have been obtained for all three
sections. The first section was a 2 mm x 2 mm scanned area in XY. The second section
was prepared by removing approximately 10 um of material and repolishing, thereby
creating a section plane parallel to the first. Another 50 pm of material was removed to
create a plane parallel to the first two sections. Care was taken to orient the sample for
each scan so that there would be minimal A® error between scans. The results are shown
in figures 12(a), (b) and (c). The scans are statistically identical and have been added
together and normalised in figure 12(d). These distributions give 'probability amplitudes' of
A, =0.19 and A, = 0.24. Note that, although the (0, ®) angular distributions are due to
intrinsic 'waviness' of continuous fibres (typical wavelengths in the range 0.5 mm through
to 2 mm and typical amplitudes 25 to 50 um), the f(dy,) distribution is characterised by a
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Figure 9. Probability Amplitudes for both real composites and model simulations.
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point in our A, -A , plot which corresponds closely to the simulated f(®,,) distribution of
1 mm fibres with the allowed angular ranges set at A =+ 50 and A® = + 250 ie.
ADpyiny = 500.

6. Conclusions

At the reasonably high packing fractions (55% > V¢ > 40%) studied, there is significant
fibre-fibre interaction and it would appear that the statistical distribution of nearest
neighbour angles is correlated to the intrinsic (8, ®) fibre distributions. We have shown
that the microstructure of real composites can be simulated by a 3D version of the
classical 2D Gibbs 'hard core' process.

We are not aware of an analytical solution to the nearest neighbour f(®,,) distributions
but, empirically, the ®,, frequency data appears to follow the simple trigonometrical
relationship, f(®y,) = A + B.cos? @y + C.cos*®yy. Although this work has shown that
the shapes of the f(®y,,) distributions (i.e. the coefficients A, B and C) are affected by the
® distribution of individual fibres, the sensitivity of the f(®y,) distributions to different
fibre lengths, fibre packing fractions and 0 distributions has still to be evaluated. A more
rigorous description of the f(®y,) distributions using best fit Fourier coefficients could be
developed for a future study. More high quality, 3D orientation data are needed on a
range of different composite samples in order to assess fully the 3D model.
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Abstract

The transformation field analysis (TFA) of inelastic composite materials (Dvorak
1992) is extended here to fibrous composite laminates. Loading is limited to
uniform in—plane stresses and out—of—plane normal stress, and to uniform changes
in temperature. The solution for local stresses or strains in the plies is found in
terms of elastic transformation influence functions and concentration factors which
reflect a selected microgeometry representation of a unidirectional composite, and
the constraints imposed on the in—plane strains of the perfectly bonded plies. This
methodology is applied in simulations of hot isostatic pressing and subsequent
loading of a (0/90)s Sigma/Timetal 21S laminate under axial tension/tension stress
cycles applied at constant temperature.

1. Introduction

The transformation field analysis (TFA) is a method for incremental solution of
thermomechanical loading problems in inelastic heterogeneous media and composite
materials, described in recent papers by Dvorak (1991, 1992). In its application to
composite materials reinforced by aligned continuous fibers, the local strain and
stress fields in a representative volume of the material are modeled by piecewise
uniform approximations using a selected micromechanical model such as the
self—consistent (Hill 1965) and Mori—Tanak (1973) models, or the Periodic
Hexagonal Array (PHA) model (Dvorak and Teply 1985, Teply and Dvorak 1988).
Only elastic solutions under certain overall uniform loads and local transformation
strains are required from these models to recover the transformation influence
functions and concentration factors used in the TFA method to evaluate the local
fields and the overall response. Implementation of this procedure for several
E:onstitut)ive laws of the matrix material is described by Dvorak and co—workers
1994a,b).

The purpose of the present paper is to apply the TFA approach to inelastic
fibrous composite laminates consisting of unidirectional layers bonded together with
fibers oriented at different directions. Only symmetric layups under overall uniform
stresses and temperature variations which produce membrane stresses in the
individual plies are considered. These loading conditions are found in fabrication
processes and in service under static and cyclic in—plane loads of symmetric
composite laminates.
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The TFA analysis for laminates is described in sections 2 and 3 of the paper.
Application of the method to a (0/90)s titanium matrix laminate under hot isostatic
pressing conditions and subsequent load cycles is presented in section 4.

2. Transformation Field Analysis of Laminated Plates

Consider a laminate consisting of 2N thin elastic plies arranged in a symmetric
layup with respect to the midplane x;x; of a cartesian coordinate system, Fig. 1.
The ratio c; = ti/t, i=1,2,.N, of the ply thickness, ti, and half the laminate
thickness, t, denotes the ply volume fraction. In—plane membrane forces and the
corresponding uniform stresses are applied, together with uniform change in
temperature. In addition, we admit loading by uniform normal stresses in the
thickness direction xj3; this is useful in applications to processing by hot pressing,
and also in analysis of eigenstress states under in—plane constraint. Moreover, we
also account for inelastic deformation of the phases in each ply, the resulting
inelastic response of some or all of the plies, and of the laminate itself. Our goal is
to find the ply and phase stresses as well as the overall strains under these loading
conditions.

The local and overall inelastic strains, and the thermal strains, will be
regarded as eigenstrains or transformation strains in an otherwise elastic laminate.
Hence, we write the overall constitutive relations of the laminate in the overall
coordinate system xy, k = 1,23, as,

o=Le+d, e=Mo+y, (1)

where, p is eigenstrain, A is eigenstress, L and M are the elastic stiffness and
compliance matrices, respectively, and L= M, A=—Lg . Using contracted
notation, the stress and strain vectors are:

T , T
0=[0y, 0y 04 05 =[0,04 , (2)

T , T
€= [}, €5, 265, €3] =[€, €] , (3)

where the vectors o’ and e’ list the in—plane stress and strain components. In the
sequel, we outline the solution for the elastic properties of the laminate, and develop
a transformation field analysis for evaluation of the overall eigenstrains g , or
eigenstresses A, and the corresponding local fields when inelastic or thermal strains
are present in the phases.

2.1. LAMINA STRESSES

In analogy with (1), the ply constitutive relations of a ply (i) in the local coordinate
system xi, k = 1,2,3, can be written as,

P 0+ By (4)
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Figure 1. Geometry of a fibrous composite laminate.

where, p; is the ply eigenstrain, e.g. thermal or inelastic strain, A; is eigenstress, L;
and M; are stiffness and compliance matrices. The stress and strain vectors are:

_ io-io-io-io-i -T2 —i - T
o; = [0y, 04, 04, 03, 04, 05| = [0}, 03, 04, 0] (5)
S S T SN SRS SRR I ARIPIRNNE ST SR Y
fi :[61) 62; 256) 63) 264) 265] =[€i) 53) 264) 265] . (6)

To simplify the subsequent analysis, we re—write eqs. (4) for the in—plane stress and

strain components and account for the nonvanishing E;, E; components
(Bahei—El-Din 1992, Dvorak et al. 1992);

gi=L e, +K o3+ X;, €=M, a;+n,05+ 0, (1)
where
EL k4+mn 2m{ 0 l
— 1 _ s -1 = 1
Li:k‘l'—m 4km 0 =[M1] , kl=m k—-m , (8)
SYM p(k+m) 0
1/EL —VL/EL 0 VL/EL
SYM. 1/G 0
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The overall longitudinal, and transverse Young’s moduli, EL and E_, and Poisson’s

T)

ratios, v and Vs and the longitudinal shear modulus, GL, are found from a selected

micromechanical model of a unidirectional composite. The corresponding Hill’s
moduli (Hill 1964) are denoted by k, ¢ n, m, p, where E =n- £2/k, y = £/2k,

m = E,_/2(1+v,), G, =p.

When expressed in the overall coordinate system xi, k = 1,2,3, eq. (7) is
written as (Bahei—El-Din 1992, Dvorak et al. 1992)

el a A, Mo tma s, (10
where
in (11)
. (12)
2 .2 1 .
cos ¢;  sing; -5sin2y;
’ s -1 .2 2 .
RiT:(Ni) =|sinyp; cos p; %sm 2¢; |, (13)
sin 2¢; -sin 2¢p; cos 2¢p;

and ¢; is the angle between the local x,—axis and the overall x,—axis, Fig. 1.

We now can address the problem of finding the ply stresses in a laminate
loaded by overall in—plane stresses o/, out—of—plane normal stress o3, and ply
eigenstresses A5, introduced by certain prescribed in—plane eigenstrains

pi = — M3 X4 Since the laminate is elastic, we write the ply stresses as the sum of
the overall stress and local eigenstress contributions,
N
ai=H;a'+niaa+2F'ij,\j, i=1,2 N, (14)
i=t
i i i .
o,=0,, o04=05=0, i=12 .N. (15)

The lamina out—of—plane eigenstresses A3, A4, As, are not introduced in egs. (14),
(15) since the in—plane equi—strian condition imposed on the perfectly bonded plies
can be maintained under these eigenstresses without introducing additional ply
stresses. The HY, &; are stress distribution factors for in—plane overall stresses, and

out—of—plane normal stress, respectively, and F{; is transformation influence
coefficient. In the absence of the overall stresses o', o,, the ply in—plane stresses
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oy, 02, 0¢ caused in lamina (i) by a unit eigenstress Ay, k = 1,2,3, applied to
lamina (j) are given by the kth column of matrix Fi;. Evaluation of the
distribution factors Hj, k;, and the transformation coefficients F f for a symmetric

laminate is given in section 3.
Considering the full (6x1) eigenstress vector A\; = — L; pj, we augment
eqs. (14), (15) and write the (6x1) local stress vector as

N
ai-—-Hia——ZGijyj, i=1,2,.N, (16)
i=1
where
H; & F;,L; 0
Hi = ) G]J = ) (17)
0 1 0 0

o is given by (2), 0is a (3x3) null matrix, and 1 = [1, 0, 0]". Note that the order of
H; is %6x4), and the order of Gj; is (6x6).

The eigenstrains originate in the phases of each unidirectional ply and must be
evaluated from a micromechanical model. This is usually achieved in the local

coordinate system xx, k = 1,2,3, of the ply. Considering (6x1) strain vectors, the
inverse transformation of (11), can be written for the eigenstrain as

s Rj O]
“']:RJ ”’_]1 RJ:‘ ) J=1; 2) "N) (18)

0 I

where I is a (3x3) identity matrix. Substituting (18) into (16), and applying the
transformation (11) to the (6x1) stress vectors, the ply stress in the local coordinate
system is found as

N
o,=R;0,=R,H, 0 Riz Gy R} &, i=1,2,.N. (19)
it

2.2 PHASE STRESSES

Consider a representative volume Vj of a unidirectional composite ply (j),
j=1,2,.N, which is divided into M subvolumes, V; , 7=1,2,.M. We recall the
modified Levin’s formula (Dvorak and Benveniste 1992) and write the lamina
eigenstrain ﬁj in terms of the local eigenstrains found in each of the subvolumes as
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M

- j i .
B=YABA Sy, ey, @
m=1

where B:] is elastic stress concentration factor. The columns of B% are given by the

average stress vectors o, caused in subvolume 7 by a ply overall stress ox = 1,

k =1,2,..6. These factors can be obtained from a selected micromechanical model of
a unidirectional composite, e.g. the self—consistent and Mori—Tanaka models, or the
PHA model.

The local stresses in the subvolumes of a lamina (i) can now be written as
(Dvorak 1992)

U—ZF Ll =12, M, i=12,.N. (21)

The columns of the transformation influence coefficient Fln provide the stress

vectors in subvolume p caused by an eigenstress Ax = 1, k = 1,2,..6, introduced in
subvolume 7 . These coefficients are derived from analysis of the selected
representative volume of a unidirectional composite as described by Dvorak et al.

a,b). From eqs. the local stress ¢! can be written as
(1994 ,b) F q (19)—(21), he local 1 b

P
M N . . .
i =] T ]
a—B‘RHa——ZF in-BIR 2 [ch[Bn] ,‘q],
n=
p=1,2,.M, i=12 .N. (22)

The first term in (22) is the local stress caused by the overall stress applied to
the laminate, while the second and third terms are the contributions of the
subvolume elgenstrams in all the plies to subvolume p of lamina (i). The second
term provides the local stresses due to local eigenstrains in lamina (i). The in—plane
constraint €’ = €} imposed on the lamina causes additional stresses in the
subvolumes of the plies when eigenstrains p.f] are present in other layers (j). This

effect is given by the third term in (22).

3. Distribution factors and Influence Coefficients

Here we find expressions for the distribution factors Hf, ;, and the influence
coefficients F{; which appear in eq. (14). From in—plane strain compatibility of the



95

perfectly bonded plies, € = eli, and the force equilibrium condition, ¥ c; a'i = a’,
i =1,2,..N, one can establish that (Bahei—El-Din 1992, Dvorak et al. 1992)

H;=L;M , &=L;(n—n), (23)
N

M=, L= gL, (24)
i=1
N

n=—Mln, n=zciﬁi, (25)

iciH’i=I, Zcini=0. (26)

i=1 i=1

The transformation influence factors F j in (14) are found from the solution of

an elastic symmetric laminate in which an in—plane eigenstress vector ,\Jf is applied
to lamina j as the only load, i. e., 6 = 0, 03 = 0. The lamina and laminate are first
constrained from in—plane deformation. Under this constraint, the eigenstress is

equilibrated by an overall in—plane stress o such that
N
G52, ¥=%c

i=1

o =c; Ay, (27)

where §;; is Kronecker’s symbol. For the laminate to return to the unconstrained

state under ¢ = 0, o3 = 0, the overall stress o must be removed. This is achieved

by applying the stress — o to the laminate. Under this stress, the lamina stresses
are given by the first term in (14), and the net stress found in lamina (i) at the end
of this loading/unloading sequence is given by the sum

The (3x3) influence factors F: j follow from a comparison of (28) and the last term
of (14). The result is
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4. Application to Thermo—Viscoplastic Laminates

As an application of the TFA method, we consider viscoplastic deformation of the
phases of a fibrous composite under thermomechanical loads applied to a symmetric

laminate. In this case, the eigenstrain rates ;1:] in subvolume V:l , n=12.M, of

lamina (j), j=1,2,..N, can be written as the sum of thermal strain and inelastic
strain rates. If the latter is specified by a power law of an internal stress variable

Q:], then

.. oMo . - . .
(t) =[a(0) + BL; a:](t)] 0+x (0) (@) g, (30)

where t is time, § is temperature, x () and p (6) are material parameters for the
element volume V:l, and q:l specifies the direction of the inelastic strain rate in the

local stress space. The first term in eq. (30) is the thermal strain rate where a is
the coefficient of thermal expansion, M is the elastic compliance, and o is the
current stress in the subvolume.

Substituting (30) into (22) yields a system of rate equations for the local
stresses in the subvolumes of all plies of the laminate which can be integrated along

a specified loading path o (1), a;(t), 0 (t) applied to the laminate as described by
Dvorak et al. (1994a,b). The ply stresses follow from eq. (16), or (19), with (18)

and (20), and the ply as well as the laminate in—plane strain, ¢ = €3, from (10)s.
Alternately, the lamina stresses may be computed using an elastic finite
element routine which utilizes the modified Levin’s formula (20) and the ply
transformation field equation (21). This approach, encoded by Bahei—El-Din
(1994) in the VISCOPAC routine, was used to compute the local stresses in the
phases of a (0/90)s, Sigma/Timetal 21S laminate under hot isostatic conditions and
subsequent axial tension/tension load cycles at 650°C as shown in Fig. 2. The
laminate was first pressed by a hydrostatic pressure of 103.5 MPa at 8990°C for 2
hours, and then aged at 621°C for 8 hours (condensed in Figs. 2—6 to 2 hours). The
14 axial stress cycles applied at 6500C correspond to the number of cycles sustained
by the laminate up to failure in actual experiment under the same loading
conditions. In the analysis, the Mori—Tanak model was used to estimate the
concentration factors B, for the matrix and fiber, and the constitutive equations

described by Bahei—El-Din et al. (1991) were used to compute the inelastic strains
for the matrix, eq. (30). The fiber was assumed to be elastic. The elastic moduli
and coefficients of thermal expansion of both phases vary with temperature.

Figures 3 and 4 show the evolution of the local stress averages in the fiber and
matrix of the 0o ply during the applied loading history. The results show that the
residual stresses caused by processing do contribute to the subsequent cyclic stress
magnitudes. This contribution need not be detrimental, indeed, in the present case,

the residual axial fiber stress afu is compressive and thus helps to reduce the tensile
stress magnitude under the cyclic mechanical load. However, the final peak
magnitude of the fiber stress is 976 MPa, and suggests that failure may be caused by
overloading of the fiber in the 0° plies.
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Figure 2. Thermomechanical loading history applied to a (0/90)s laminate

Figures 5 and 6 show the local stress averages in the 90° ply. The magnitudes
of the transverse tension ¢y is rather large and can contribute to debonding of the

f
fiber—matrix interface. In fact, the in—plane transverse stress oy, in the fiber is as

high as 227 MPa, probably suggestive of partial fiber debonding. However, the a§3
remains in the range of —107 to —133 MPa, offering support for the interface bond.
The axial stress in the 90° fiber is compressive in the range 143—282 MPa.

These results suggest the existence of rather high internal stresses in the 900
plies that are not likely to be supported by the interfaces. The axial fiber stress is
also very high, and would increase substantially after debonding of the 900 fibers.

5. Closure

The transformation field analysis (TFA) is a general method for solving inelastic
deformation problems in heterogeneous media and can accommodate any uniform
loading path, inelastic constitutive equation, and micromechanical model. The
method can be also used in structural applications of heterogeneous materials such
as fibrous composite laminates. The structural as well as model geometries are
incorporated in the TFA method through mechanical transformation influence
functions or concentration factor tensors derived from elastic solutions for the
specified geometry and the elastic moduli. Thus, there is no need to solve inelastic
boundary value problems either for heterogeneous materials or for their structural
applications. As an example of the TFA application to fibrous composite laminates,
the method was used to analyze the local stresses in the fiber and matrix phases of a
titanium matrix laminate under fabrication conditions and fatigue loads.
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DEVELOPMENT OF ANISOTROPY IN POWDER COMPACTION

N. A. FLECK,

Cambridge University Engineering Dept.,
Trumpington St., Cambridge,

CB2 1PZ, England

Abstract

The cold compaction of an aggregate of powder is treated from the viewpoint of crystal
plasticity theory. The contacts between particles are treated as compaction planes which
yield under both normal and shear straining. The hardening of each plane represents
both geometric and material hardening at the contacts between particles; the
macroscopic tangent stiffness can be written down in terms of the hardening rate for
active compaction planes. During the early stages of compaction the contacts yield in
an independent manner, which can be interpreted within the crystal context as
independent hardening. The macroscopic yield surfaces for isostatic and closed die
compaction are estimated for a uniform distribution of an orthogonal pair of compaction
planes. A vertex forms at the loading point and significant anisotropy develops for
closed die compaction.

1. Introduction

The powder metallurgy industry is based upon the process of cold compaction of
powders (usually, but not exclusively metallic) followed by sintering. This production
route allows for the net shape forming of exotic alloys which are difficult to cast or
shape by other methods. Cold compaction occurs within a closed die or in a cold
isostatic press, and densification is by low temperature plasticity. At low relative
densities (relative density D < 0.9) plastic deformation occurs local to the contacts
between particles: this is 'Stage I' compaction. As full density is approached 'Stage IT'
compaction takes over and plastic flow spreads throughout each particle; then, the
powder aggregate is best viewed as a non-dilute concentration of cusp-shaped voids
within a metallic matrix.

In this paper we consider stage I compaction within the framework of crystal
plasticity theory. The central idea is to mimic the response at a contact between
particles by a ‘compaction plane', that is by a plane which can suffer both normal and
shear straining, see Fig. 1. We consider the compaction plane to be smeared out
through the neighbouring particles on each side of the contact, but sharing the same
normal n as that of the contact plane, as shown in Fig. la. In this manner the
compaction plane is analogous to a slip plane in crystal plasticity theory. Each contact
is represented by a compaction plane, and the overall response of the aggregate is the
sum of the responses of each compaction plane. The approach builds upon Calladine's
micromechanical model of the yielding of clays, Calladine (1971). He assumed that
compaction planes exist physically as rough surfaces of contact within the aggregate;
here, we consider them to represent discrete contacts between particles.
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Figure 1. (a) Representation for the isolated contacts between particles by
'smeared-out' compaction planes. (b) Loading on a compaction plane (a).
(c) Yield surface and normal plastic flow rule for a compaction plane (ct).

The outline of the paper is as follows. First, a single crystal plasticity
framework is summarised for a finite number of compaction planes. The Bishop and
Hill (1951) method is then used to determine the macroscopic yield surface for a
'polycrystal’ wherein each crystal comprises a pair of orthogonal compaction planes.
The normal to the compaction planes is averaged over all orientations n within a plane,
and the polycrystal is subjected to macroscopic in-plane biaxial loading. Using the
crystal plasticity framework the effect of strain path upon yield surface evolution is
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explored by comparing the yield surfaces for isostatic compaction and closed die
compaction. The marked development of anisotropy is evident for closed die
compaction.

2. Crystal plasticity framework

We replace each contact between particles by a compaction plane within the particle.
In this way the finite number of contacts around a representative particle are
represented by a finite number of compaction planes within the particle: the particle is
analogous to a single crystal with a set of slip planes.

Consider a representative contact with normal n(1) as shown in Fig. 1a. The
neighbouring particles on each side of this contact can suffer a relative displacement in
a direction parallel to n(1), and a shear displacement orthogonal to n(1). The resulting

contact force between the particles depends upon the deformation mechanism at the
contact; here we shall assume a non-linear response due to plastic dissipation. The
non-linear contact law between the neighbouring particles can be treated as a non-linear
spring at the contact, or as a 'smeared-out' compaction plane within each particle.

A representative compaction plane a is defined in Fig. 1b. The smeared-out
plane is allowed to suffer a normal strain ¢(® in the direction n(® and two shear strains

yga) and yﬁ“) in the directions s(® and t(®), respectively. We shall assume that strains
are small, and shall neglect the effects of finite rotation of the compaction planes. A
finite strain generalisation can be developed in a relatively straightforward manner, but

is omitted here. The work conjugate stress measures are the normal stress 6 and two
shear stresses ts(“) and t[(“), such that the work rate per unit volume w(® is
w(® = (@) 4 ¢ (@) (@) 47 (@@ @1

where no sum is performed over the index o unless explicitly stated by a summation
sign. Suppose the aggregate is comprised of N compaction planes. Then, in terms of

the Cartesian reference frame x; , the macroscopic plastic strain rate Ep is related to the
strain rate (e(“),ys(“),yt(“)) on each active compaction plane o by
- N . . .
BR=YN I[Pi(j“)e(“) + Q) + Rg’)'yt(“)] 2
where the orientation factors P(“) Q(“) and R(“) are defined by
1
piga) = (a) (a) Q(a) = _( (a) (a) + s(0!) (a)) Rg!) = g(nga)tg") + tga)ng-“)) . 23)

The macroscopic stresses on each compaction plane (0(“),15(“),‘tt(°‘)) are related to the
macroscopic stress X by substituting (2.2) into the work statement
: N . . .
BgER = 3oy [0V + 1 4,(®) @)y, )] @4)
to get
o@=pMz;, =¥z ad =Rz 2.5)
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We assume that a compaction plane a suffers plastic flow when the yield
function

£(®) = (® (0(“),t§°‘),tga)) - O‘(Ya) =0 (2.6)

is satisfied. Here, cg“) is an effective stress measure and og‘{!) is a scalar measure of the
current magnitude of the yield surface. The shape of the yield surface is dependent
upon the local contact law between particles, including the shear strength and the
cohesive strength. For example, a yield surface of elliptical shape is given by

ol® = J (o )2 + (a(“)rg"))z + (b‘“’c&") )2 @7

where a(® and b® are constants defining the ellipticity of the yield surface. Here, we
shall continue to work in terms of the general form (2.6) rather than the particular form
Q.7).

For simplicity, we assume that plastic flow occurs in a direction normal to the
yield surface for each compaction plane, giving

o
£(@) _ @30
o\’

The magnitude of the plastic multiplier A® js determined from a work hardening

. ) ((X.) a ( )
,Yga) =) a:(ea) and ‘Y(a) =) % _ a:{'a) . 2.8)
S

statement, as follows. Introduce an effective strain rate ég“) by the work statement

Wl 2 oI D), @) 4 (4fe) 9
Then, upon substituting (2.8) into (2.9), A% is expressible in terms of ég“) as
A® = (@) (2.10)
where
(@) 0-(0‘)
- @3 | (@ Q. @30 R
0@ @t @

(It is noted that (=1 when cg @) g homogeneous and of degree one in
(c(“),rg“),:ﬁ")) such as given by (2.7).) The macroscopic plastic strain rate can now
be expressed in terms of the effective strain rate on each compaction plane ég") by
rewriting (2.2) with the aid of (2.8) and (2.10) as

=VN [ple)p(e)(e)

=¥ o[ .12
where

@ = 96 ( ) p(®) ao-((l)
ij 6 (a) 'J a‘c (‘1)
The overall hardening law is specified by

6 = z;l[haﬁé?)l : 2.19)

(0)
(0) , 90¢” (@)
Q" + att(“) Rj” . (2.13)
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In general, the hardening matrix hgyg can be homogeneous and of degree zero in the

effective strain rates é(e“); here, only hardening laws for which the hgp are independent
of the effective strain rates are employed.

In the foregoing we have assumed that Gg“) is a function of 89). An alternative
work hardening hypothesis is to assume normal hardening with no shear hardening,
such that cf,a) depends only upon e(B). For the case of independent hardening, the
hardening matrix is then given by

_ o 46l
oo~ @m
heg =0, azp. (2.15)

The above structure remains unchanged with this minor modification to the hardening
rule. This form of hardening has been used by Schofield and Wroth (1969) in their Cam
Clay model and by Calladine (1971) in his microstructural view of clay.

3. Calibration of crystal plasticity law

Ashby and co-workers (Helle et al. (1985)) have developed accurate relations for the
hydrostatic stage I compaction of a powder aggregate. They assume that spherical

particles are composed of elastic, perfectly-plastic material of yield strength 6. The
yield pressure py for the aggregate is dependent upon its relative density D (D= density
of aggregate/ full density) according to

(D - Do) o
(1" Do) Y
where D, is the initial relative density corresponding to random packing of the
particles. For example, for dense random packing D,=0.64. We calibrate the
hardening matrix hgg in the crystal plasticity model against (3.1) in the hydrostatic
limit.

py =3D? G.1)

4. Bishop-Hill calculation of yield surface for hydrostatic compaction

So far we have dealt with the 'single crystal response’ of a finite set of compaction
planes for a representative particle. Now consider the case of an aggregate comprising
randomly oriented particles, bonded at their mutual contacts. The macroscopic
'polycrystalline’ limit yield surface for the aggregate of compaction planes can be
estimated using the upper bound method laid down by Bishop and Hill (1951). Elastic
deformation of the particles is ignored and a work calculation is performed to determine
the collapse response in stress space for the random aggregate of particles. We restrict
ourselves to in-plane biaxial straining of the aggregate, and assume that the deformation
response for each particle is adequately described by a pair of orthogonal compaction
planes, oriented at an angle o as defined in Fig. 2a. The aggregate is assumed to be
isotropic, with the compaction planes distributed uniformly over all orientations.
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Figure 2. (a) A pair of orthogonal compaction planes, with orientation ®.
(b) Assumed yield surface for each compaction plane.

For simplicity, we assume that the yield surface for each compaction plane is
rectangular in shape as shown in Fig. 2b, and is characterised by a compressive yield

strength 0'5,“), a tensile yield strength o{“) and a shear yield strength t(y“). The

magnitude of the yield surface is taken to scale with the normal strain e(“), such that
o)) =0l @.1)
Consider the case where an aggregate has been compacted hydrostatically from

an initial density Do to a current density D. Then, the magnitude of 0&“) for all
compaction planes follows from (3.1) as

(D — Do)
(1 - Do)
Gurson (1977) has shown that the macroscopic stress £ on the aggregate, corresponding

o{® = p, =3p? o, . 42)

to a plastic strain rate EP is given by
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Z;; =dW(EP)/aE} 43)
where W is the plastic dissipation rate of the aggregate per unit volume. It remains to
estimate W(EP). For a pair of orthogonal compaction planes as shown in Fig. 2a, the
plastic dissipation per unit volume w is

w =W 4+ 6@ 4 1,(1).'Y(1) + 1(2):7(2) 4.4)
where we have dropped the subscript s from the shear terms, to keep notation compact.

A simple connection exists between the strain rates on the compaction planes and the
macroscopic strain rate; after some manipulation, (2.2) leads to

¢ sinf®  cos’®@ —sin2® EP|
¢®  |=| cos?w sin’@ sin20 ED, |. 4.5)
W 4D | | _sin20 sin20 2cos2w | EP,

Since we are dealing with an isotropic aggregate we can consider principal stresses and
principal strains and, without loss of generality, we can set Ef2=0. For a given

(E{’I,Egz) the stress state for each of the two compaction planes is at a vertex, and both

¢W and ¢? are determined uniquely from (4.5). The values of "y(l) and "y(z) follow
from (4.5) and from the minimum plastic work hypothesis of Bishop and Hill (1951):

the strain rates are selected to minimise w. This optimisation gives "y(l) >0, "y(z)=0 for
¢D-1@) >0, and yP=0, Y50 for (¥1-1@) <.

The macroscopic stress X is calculated by volume averaging the response for a
pair of compaction planes at all orientations, that is,
_ 2 (®/2 ow
ij = ;fo ggg o.
Upon substituting into (4.6) the expression (4.4) for w, and (4.5) for the strain rates in
each compaction plane, we obtain a specification for the macroscopic limit yield
surface. The yield surface is plotted in Fig. 3 for the cases o,/0, =0, 1 and
Ty/0.=0,1/(2+x). The value t,/0.=1/(2+ ) corresponds to perfectly sticking

contacts as discussed in section 3. We conclude from Fig. 3 that the cohesive strength
ratio 6, /o has a more major effect on the size and shape of the yield surface than has

4.6)

the shear strength ratio T, /0. For a wide range of strain rate directions (E{’1 >0 and

EB,>0; EP,<0 and E,<0) the macroscopic stress lies at a vertex close to the

hydrostatic axis. Akisanya and Cocks (1994) observed a similar behaviour in their
analysis of the compaction of a hexagonal array of cylindrical particles.

5. Bishop-Hill calculation of yield surface for closed die compaction: the
development of anisotropy

The above Bishop-Hill calculation can be repeated for the case of closed die compaction
where, without loss of generality we take E{’1=0, Egz <0. Again, we consider the
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Figure 3. Yield surface for a uniform distribution of an orthogonal pair of
compaction planes, subjected to hydrostatic compaction.

response for an isotropic aggregate, composed of a uniform distribution of pairs of
orthogonal compaction planes as shown in Fig. 2a. The yield surface is taken to be
rectangular in shape, see Fig. 2b, and the magnitude of the yield surface scales with the

normal strain €(* on that compaction plane, with oga) = oga) (e(a) )
Consider a compaction plane with orientation @=0 such that the unit normal n(1)

is aligned with the x5 axis. The complementary compaction plane is orthogonal with a
normal n(?) aligned with the x; axis. Then, after a small amount of closed die

compaction (say D=0.7 from an initial value of Do = 0.64), we have 09) =2py and

cgz) =0, where py(D) is given by (3.1). For a pair of compaction planes with
orientation ®, the normal strain on the compaction planes follows from (4.5) as

e =g, cos?0, e®=Eb;sin’0 (.1)
We assume that the degree of compaction is small (D increases by less than 10%) and
so the yield strengths (o(c"),oﬁ"),t(;‘)) and 6{® increase linearly with £ for all
compaction planes, giving

2

09) =2pycos @, ogz) =2p, sin @ (5.2)
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The shape of the yield surface for each compaction plane is taken to be constant with
oﬁ“)/ cﬁ“) fixed at zero (for cohesionless aggregate) and at unity (for full cohesive

strength). Perfectly sticking contacts are modelled by putting t(y“) / c(c“) =1/(2 +m),

while the choice ‘tg,a) / G(ca) =0 is appropriate for frictionless contacts.

The macroscopic yield surface is evaluated from (4.6), with w given by (4.4),
and the strain rate for each compaction plane specified by (4.5). Again, the relative
magnitudes of "y(l) and ‘{(2) are selected to minimise w, subject to the constraint on
(Y - 719) given by (4.5).

The yield surface for closed die compaction is plotted in Fig. 4 for 6,/06.=0, 1
and t,/0.=0, 1 /(2+ 7). The main features are the same as for isostatic compaction,

as shown in Fig. 3: the degree of cohesive strength has a major influence and the shear
strength at the contacts has a minor influence upon the yield surface. As a result of
preferential hardening of compaction planes aligned with the direction of compaction,
significant anisotropy develops for closed die compaction. The compact is about three
times stronger in the compaction direction x2 than in the transverse x; direction.
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Figure 4. Yield surface for a uniform distribution of an orthogonal pair of
compaction planes, subjected to closed die compaction, Ef;=0, E5,<0.
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The yield surface for closed die compaction is compared with that for isostatic
compaction in Fig. 5, for frictionless contacts (ty /6.=0) and for the two limiting cases

of full cohesive strength (6, /0.=1) and vanishing cohesive strength (6, /06,=0). The
comparison is made at the same value of relative density D slightly greater than D,
The development of anisotropy under closed die compaction is obvious: the yield
strength along the x2 direction is greater after closed die compaction than after isostatic
compaction. Conversely, the yield strength in the transverse direction is less for closed
die compaction than for isostatic compaction.

6. Concluding discussion

Fleck et al. (1992) have previously used the Bishop-Hill method to estimate the
macroscopic yield locus for stage I compaction of a powder aggregate. They assume
that plastic flow occurs in accordance with Green's (1954) slip line field solution at all
contacts on the surface of a representative spherical particle: all contacts are active for
an arbitrary macroscopic strain rate. The contacts are assumed to be perfectly sticking
with a cohesive strength equal to the indentation strength. More recently, Fleck (1994)
has repeated the calculation for a range of shear strength and cohesive strength. He
finds that the macroscopic yield surface is influenced to a minor extent by the level of
shear strength, and much more strongly influenced by the cohesive strength. These

closed die
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z22 I 77 |
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y | 0;=0 / |
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"
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Figure 5. Comparison of yield surface for isostatic compaction and for closed die
compaction. The yield surfaces are calculated for the same small increment in

relative density D above the initial density D,. Contacts are frictionless with T, =0.
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conclusions are fully supported by the findings of the current study.

The predictions of Fleck (1994) are compared with those of the current study in
Fig. 6 for the case of isostatic compaction. Yield surfaces are given for frictionless
contacts, with either zero cohesion or perfect cohesion between particles. The results

are presented in terms of the deviatoric stress measure X =Xy, —ZX;; and the mean
stress measure X E%(Zu +Xy,), for the case of an isotropic distribution of two
orthogonal compaction planes as described in section 4 above. The calculation by Fleck
(1994) was done for axisymmetric loading of an aggregate with X33 =X;; the
appropriate deviatoric stress measure remains X =Xy —X;;, and the mean stress is
defined by X, = %(Eu + 2222). We conclude from Fig. 6 that the yield surface given

by the plane strain crystal plasticity calculation of section 4 and Fleck's (1994)
axisymmetric calculation (assuming plastic dissipation at up to twelve contacts per
particle) give closely similar results. This is not surprising since both calculations
assume that all contacts are active, and predictions have been calibrated to give the
result (3.1) for hydrostatic loading.

——— axisymmetric, Fleck (1994)
——— 2 compaction planes

15

—_
LIS B S S S e S G

o
wm
T

LANNLENS B N S B B B B B S B

Zn/p,

Figure 6. Predictions of the yield surface after a small amount of hydrostatic
compaction, for the two compaction plane model of the current study, and the
axisymmetric model of Fleck (1994). Frictionless contacts.
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Akisanya and Cocks (1994) have recently examined the densification of a
hexagonal array of cylinders under in-plane loading, and Ogbonna and Fleck (1994)
have performed an approximate calculation of axisymmetric compaction using a cell
model. In both cases it is found that as densification proceeds plastic flow occurs
throughout each particle and is no longer confined to each contact. Independent
collapse of each contact is replaced by a discrete set of collapse mechanisms for the
representative particle: these collapse mechanisms involve plastic dissipation at several
contacts. Latent hardening occurs between one collapse mechanism and the next. The
crystal plasticity framework has adequate flexibility to include this cross-hardening
between mechanisms via the off-diagonal terms of the hardening matrix hgg. Indeed,

the cell calculations may be used to calibrate the off-diagonal terms of hgg. Further
work is needed to further develop this calculation scheme.
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CRACKED LAMINATES WITH IMPERFECT INTERLAMINAR
INTERFACE

Z. HASHIN

Dept. of Solid Mechanics, Materials and Structures
Faculty of Engineering

Tel-Aviv University

Tel-Aviv, Israel

Abstract. Variational analysis of cracked laminates with imperfect inter-
laminar interface is developed on the basis of a generalized extemum prin-
ciple of thermoelastic complementary energy. Closed form results for effec-
tive Young’s modulus, thermal expansion coefficient, shear modulus and
internal stresses are developed for cracked cross-ply laminates. The results
provide an assessment of the significance of interlaminar imperfection.

1. Introduction

The present paper is concerned with the effect of intralaminar crack (IC)
accumulation on the thermomechanical properties of fiber composite lam-
inates and the resulting internal stress distributions. Such cracks develop
in the matrix along fibers due to load or temperature change. They are
thus parallel crack distributions within the layers which propagate very
rapidly until the laminate edges. Therefore,the formation of a typical IC is
not viewed as a crack propagation phenomenon but as a fracture event
which occurs instantaneously. Thus, the concern is with a laminate which
contains IC distributions which are quantitatively described by crack den-
sity, the number of IC per unit length. The problems are then to determine
deterioration of thermoelastic peoperties in terms of crack density, lami-
nate internal geometry and ply properties, internal stresses resulting from
crack accumulation and their relation to failure mechanisms, and more am-
bitiously - to predict crack density due to load or temperature.
113

R. Pyrz (ed.), IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, 113-128.
© 1995 Kluwer Academic Publishers.



114

The problems outlined have been the subject of a large number of re-
search papers over the last 15 years. There are two major approaches :
the first may be termed the micromechanics approach and the second, the
continuum damage approach. In the first approach it is attempted to car-
ry out analysis recognizing the cracks as defects on which the tractions
must vanish. The advantage of this approach is physical realism and in-
formation about internal (micro) stresses, which is important for failure
considerations. The disadvantage is analytical difficulty and for this reason
the micromechanics approach has to date been confined to cross-plies.

In the second approach effect of IC on a layer is modeled by an abstract
damage function whose form is not unique and which invariably contains
unknown coefficients. The disadvantage is that such coefficients must be
backed out from experiment on the laminate and it is not clear whether
such coefficients qualify as ply material parameters or are fitting parameters
which change from laminate to laminate. The advantage of the approach
is that it can be applied to practical laminates, more complicated than
cross-plies.

The present work is concerned with the micromechanics approach for
cross-ply laminates. Review of the voluminous literature is not within the
present scope. It is recalled that initial analytical efforts were based on
the shear-lag approximation e.g. Reifsnider and Jamison (1982),Laws and
Dvorak (1988). This method requires the determination of a so-called shear
lag parameter on the basis of the fracture toughness of the ply materials.
Analysis in terms of a displacement formulation represented, arbitrarily,
by hyperbolic functions was given by Tsai et al. (1990). Work of similar
nature with the choice of different form displacement functions has been
done by Lee et al. (1990). A variational method based on the principle of
minimum complementary energy has been developed by Hashin (1985) with
application to stiffness reduction and stress analysis of cross-ply laminates
with one layer cracked. This has been extended to the case of all layers
cracked in Hashin (1987) and to evaluation of thermal expansion coefficients
in Hashin (1988). The only assumption made in the variational anslysis is
that-in plane stresses in the ply are constant over the thickness. Analysis
based on similar assumptions has been given by McCartney (1992). Analysis
for more general in-plane stresses has been given by Varna and Berglund
(1994). Nairn et al. (1993) have successfully used the variational analysis
for prediction of crack density resulting from in plane loading of cross-ply
laminates.

The purpose of the work presented here is to extend the variational
analysis to the evaluation of thermoelastic properties and internal stresses
of cross-ply laminates when there is imperfect interlaminar bond between
the layers.
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2. Thermoelastic Extremum Principle for Imperfect Interface

Perfect interface between two solid constituents implies continuity of trac-
tion and displacement vectors at the interface. When the interface displace-
ment vector is discontinous, while the traction vector remains continuous
for reasons of equilibrium, the interface is called imperfect. Let the dis-
placement jump at interface S;2 be denoted

[u] = u? — ul. (1)

Then the simplest imperfect interface condition is

Tn = Dn [un]
T, = D, [u,] (2)
Tt = Dt ['U-t],

where n,s,t are normal and tangential components of the interface normal
n, assumed here as pointing into phase 2, and D,,, D, D, are spring constant
type interface parameters. With respect to a fixed cartesian coordinate
system, (2) assumes the forms

T = D.[u] [u=R.T R=D71 (3)

where the Cartesian components of D and its inverse R now vary along the
interface. It has been shown in Hashin (1990) that the effect of a thin and
very compliant interphase between constituents can actually be expressed
in the form (2) and that the interface parameters can be expressed in terms
of interphase thickness and stiffness.

In the variational analysis to be employed here the generalization of
the extremum principle of minimum complementary energy for imperfect
interface conditions will be needed, Hashin (1992). This will here be further
generalized to the thermoelastic case and will be stated for the case when
tractions are prescribed over the entire external surface S. Let o be the
actual stress field and & an admissible stress field for a body with surface
load T (S) and imperfect interface S;2. Define

W = s0:S:0a

W = l7:s:5, (4)

where S is the compliance tensor. Here W is the stress energy density while
W has no physical meaning. Next define the functionals

U = [y[W+a.o 0-c,(62/20,)]dV + 3 [5, T : R: TdS

B |0 |

— - - ()
T = J [W+as0-c,(62/20,)] aV + [, T : R: TdS
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Here a is the thermal expansion tensor, ¢, the specific heat at constant
pressure and 6 is the (known) temperature relative to a reference tem-
perature 8,. Then the thermoelastic principle of minimum complementary
energy is expressed by the inequality

U>U, (6)

equality occurring if, and only if, 6 =0 .

For composite materials applications it is of importance to consider the
case of constant temperature and so-called homogeneous traction boundary
conditions which are defined as

T(S) = ¢°.n(S) (7)

Where o° is a constant stress tensor. Then o° is the average stress tensor
and it can be shown that the first of (5) is, rigorously

U= % [a’o :§*:0°+ a0’ —¢, (02/200)] |4 (8)

where S* ,a* and c; are the effective elastic compliance tensor, thermal
expansion tensor and specific heat, respectively.

In the following the variational principle will be exploited to analyze
approximately thermo-elastic properties and internal stresses in cracked
laminates.

3. Cross-Ply Laminates with One Ply Family Cracked

The case to be considered here is a [09,,902], laminate in which either the 0°
or the 90°plies are cracked, fig. 1a. The variational method will be employed
to obtain strict lower bounds for the effective Young’s modulus E} and the
effective shear modulus G;, and approximations for the effective thermal
expansion coefficient a} and internal stresses, for the case of imperfect
interlaminar interface as defined by a damaged interphase between plies.
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(a) (b)

Figure 1. Cracked laminate

3.1. EFFECTIVE YOUNG’S MODULUS

Let it be assumed that the laminate is subjected to a constant tensile
membrane force N, and let the o, stresses in the layers of the uncracked
laminate be denoted o, and o3, respectively, where from now on the label
1 refers to the 90° ply and 2 refers to the 0° ply. As is well known, these
stresses are constant throughout the layers . The actual stress state in the
cracked laminate is described by generalized plane strain in reference to the
y axis, and therefore all stresses are functions of x,z only. It is at present
assumed that only the 90° ply is cracked. The admissible stress state in the
cracked laminate will be constructed on the basis of the simplification that
the o, stresses are functions of x and not of z. Thus these stresses may be
written in the form
old = o1[1 - ¢1(a)]
(9)
0{3) = o3[1 - ¢s(a)]

where ¢; and ¢, are unknown functions. These functions are, however,
related since the stress pairs oy, o2 and (9) are each in equilibrium with
the same N_.,. Therefore

01t1¢1 + 0'2t2¢2 =0

Consider a typical region between two adjacent cracks at distance 2a, fig.1b.
It is emphasized that the cracks do not have to be equidistant. For example,
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the interdistance 2a could be a random variable. For a typical intercrack
region as shown in fig.1b the admissible stress field is constructed by in-
tegration of the two dimensional equations of equilibrium in the xz plane
with the stresses (9). The integration produces residual unknown function-
s which are determined by satisfaction of traction continuity conditions
at layer interfaces and zero traction conditions on the external laminate
surface. The remaining admissible stresses are then

ag(glz) = o01¢'(z)z
o) 019" (z)(hty — 22)/2
o = (o1/N)¢(z)(h - 2)

0D = (01/N)¢"(z)(h - 2)2/2

where ¢ = ¢; , A = t2/t; and prime superscript denotes z differentiation.
These stresses have already been given in Hashin (1985). On the crack
(1) (1)

surfaces 05, and o, must vanish and therefore
d(+a) =1 ¢ (£a)=0 (11)

The aggregate of the stress fields (9-11) for all intercrack regions are the
admissible stress field. The stress energy densities for the layers 1 and 2
are:

(10)

oWy = o /Er —2000Dvr/Br + 08 1Er + 0 /61 (12)
12
oWy = 08" /Es—2000Pva/Es+ 0 |Er+ 0 G

where the elastic ply properties in (12) are: E4, v4 - axial Young’s modulus
and associated Poisson’s ratio ; E1, vr - transverse Young’s modulus and
associated Poisson’s ratio ; G4, GT - axial and transverse shear moduli.

For reasons of symmetry it is sufficient to evaluate the complementary
energy functional for the regions —a,, <z <ap; 0<y<1l] 0<z<h.
Then for such a region and for an isothermal state, the second of (5) assumes
the form

Uc,, = [0 [ Widzdz + [°7 [*Wdzde+
% fff;",,, ("Zz(z’ tl)/‘D’n + U:Z'z(z’ tl)/Ds) dz

where D,, and D, are normal and shear interface parameters, and for the

entire laminate _ _
Uc = E Uc,, (14)

(13)
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The actual complementary energy is given for the present case by
Uc = o”V/2E:  o°= N,,/2h (15)

where V is the volume of the entire cracked laminate of thickness 1 in y
direction. Introduction of the admissible stress field with functions ¢,, for
each region into (14) results, according to the principle of minimum com-
plementary energy, in an upper bound on (15). The lowest upper bound is
obtained by minimizing the resulting functional with respect to the func-
tions ¢,,. This is a standard problem in the calculus of variations resulting
in Euler equations and boundary conditions for the minimizing functions
which have the form

d4¢m d2¢m d¢m
where

E=z/ty pm=an/ti p=(Co2—Cun)/C22 ¢q=Co/Ca
Coo = 1/ET+1/XEx Coz=F=(A+3)— 342
Caz2 = (A+1)(3A2+ 12X+ 8)/60ET + A%2/4D,ty (17)
Cn = %(1/GT + l/AGA) + 1/Dst1

Evaluation of the complementary energy functional in terms of the func-
tions ¢,,, as was done in Hashin(1985), introduction of the result into the
complementary inequality (6) with (15) as the actual complementary ener-
gy gives the result

3
e < yB (RPN o= s

where the brackets denote average with respect to the random variable a,,,
half of the intercrack spacing. The form of x depends on the nature of the
roots of the characteristic equation of (16). When these roots are of the
form +(a + i), where i = /=1 , then the solution of (16) is of the form

¢m = A Cosh(af) cos(BE) + By, Sinh(af) sin(B€) (19)

where the constants are determined by the boundary conditions in (16).
Then the associated x,, is

Cosh(2apy,) — cos(26pm)
asin(28p.) + BSinh(2ap,,)

Xm = 2af(a® + B?) (20)
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If the roots are real, thus of the form +a,+f ,then

é¢m = AnCosh(af)+ B,,Cosh(B§)
- B2=o? 21
Xm = Toth{ap)/a—Coth(Br)/B

3.2. IMPERFECT INTERFACE MODEL

A physical interpretation of the interface parameters D, and D, has been
given in Hashin (1990). If there is a thin elastic isotropic interphase of
thickness t; between the phases, then

Dy =(Ki+3G)/t  Dy=Di=Gift (22)

where K; and G; are the bulk and shear moduli of the interphase. It is

easily shown that if the interphase is orthotropic, with material axes n,s
and t , (22) becomes

Dn = nn/ti Ds = Gns/ti Dt = Gnt/ti (23)

where C,, is the normal stiffness and G,,; and G,; are shear moduli. The
first of (22,23) is strictly valid only when the interphase elastic moduli are
much smaller than those of the constituents, but there is no such restric-
tion with respect to D, and D;. If the interphase moduli are of the order
of constituent moduli then the thin interphase effect is negligible and is
equivalent to a perfect interface with displacement continuity. Consider a
thin interphase in-between the layers of a cross-ply, fig.2. A relevant ex-
ample is an oxidation protection layer between the laminae of a ceramic
composite. Such a layer may develop many transverse cracks due to ther-
mal stresses produced by manufacturing cooldown, fig. 2. These cracks are
roughly orthogonal in fiber directions of the layers. In a ceramic fiber com-
posite laminate, for example a SiC matrix reinforced by graphite fibers, the
stiffness of the interphase layer is of the order of the stiffness of the layer
material. For large crack density in the layer the shear moduli decrease very
significantly, but not C,,,,. Therefore such a cracked layer can be considered
as an interface which is perfect for normal contact , [u,] = 0 , but is im-
perfect for shear. In that event the term in Csg, equ.(17), containing D,,,
is negligible.
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INTERPHASE

CRACKED INTERPHASE

Figure 2. Laminate with damaged interphase

3.3. THERMAL EXPANSION

To evaluate the effective thermal expansion coefficient (TEC) of a cracked
laminate it is very convenient to use the Levin relation as has been done
for perfect interlaminar interface in Hashin (1988). For this purpose con-
sider any elastic composite which is subjected to the homogeneous traction
boundary conditions (7) and let the internal stresses due this loading be
oM( z). Denoting the local TEC a(z) and the effective TEC a*, the Levin
relation , Levin (1967), is expressed as

/a.a'Mde a*.c'V (24)
\4

Levin’s original derivation of (24) is based on displacement continuity, but
it may be shown that it remains valid for interface displacement continu-
ities which obey the relations (3) and therefore (24) may be employed in
the present case with the stresses (9-10) and the functions ¢,, to give an ap-
proximate expression for the TEC. For the loading N, the only surviving
component of of; in (7) is 02, = 0° as defined by (15). Then from (24)

L[ st h
a;raoV = / [/ ! aT(agﬂ) + ag))dz + / (aAaa(fx) + aTag))dz dz (25)
0 0 151

where L is the length of the laminate of unit thickness in y direction. In-
sertion of the stresses into (25) with use of the boundary conditions of (16)
yields

g
* _ 0 1 1
azz_axx+

—0—0-1+A(aA—aT)<¢> (26)
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where af_ is the TEC of the uncracked laminate, a4 and ar are the axial
and transverse TEC of the unidirectional fiber composite and < ¢ > is the
average of the random variable ¢,, which is defined as

&m (Pm) = E;—m _‘:" P (€)dE (27)
Also
a;y & agy (28)

3.4. EFFECTIVE SHEAR MODULUS

Let the cracked laminate shown in fig. 1 be subjected to constant shear
membrane load N, which defines the average applied shear stress

7° = N, /2h (29)

In this case the laminate is in a state of antiplane stress with respect to the
y axis. Admissible stresses are defined as in Hashin (1985) by

ag,) = 791 - ¢(z)] a,(,i) = 7%(z)z
o) = ™1+3¥@E)] o =¥ () (h-2)

Then a variational optimization as done above and in Hashin (1985) yields
the results

(30)

Ym(€) = Cosh(uf)/Cosh(upm) 1* = rgidbll s (31)

G > Ca
T 14 <Tanh(pp) > [dp < p >

In the case of equidistant cracks a,, = ¢, p,, = a/t;, and all of the
averages in all of the expressions above reduce to simple functions of p
which are defined by removal of the brackets.

3.5. STRESS ANALYSIS AND CRACK OPENING DISPLACEMENTS

The optimal functions ¢,, and ¥, define optimal admissible stresses by
the relations (9,10,30). The effective properties E} and G, based on these
are strict lower bounds which also agree quite well with experimental data.
The status of the stresses associated with the optimal functions is less clear
which is a typical situation for any variational field approximation. It is,
however, believed that these stresses are of qualitative importance, at least,
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and the numerical results obtained, some of which are shown below, support
this belief.

The results obtained in this work can be easily used to estimate the
crack opening displacements (COD) when the cracks are equidistant. It is
rigorously true that the stress energy U of a cracked elastic body, homoge-
neous or non-homogeneous, and the stress energy Up of the same uncracked
body, under same load, are related by

U=Us+ % f:/s 70 [u]dS (32)

where S,, is the surface of the m®* crack, T'° is the traction on same surface
in the uncracked body and [u] is the COD. In the case of simple tension
discussed above U is given by (15) and Uy = (¢9°/2EQ)V for the uncracked
laminate. Also, the only surviving 7P is T2 = 7. The COD is now estimated
in the form of two equal and oppositely joined second order parabolas. Thus

] = 261~ ()7

where 26 is the maximum COD. It then follows easily that

/0 = 320 No0(1 B - 1/89) (33)

4. Results

Ilustrative results are presented for a [0%,90°], laminate in which the layers
of equal thickness are T300/SiC ceramic unidirectional composites with
fiber volume fraction 0.45. The relevant properties of the layer material
are:

Ey = 431.5GPa  Er=113.6GPa
Gs = 908GPa  Gr= 393GPa
va = 0.182 vr = 0.446

aq = 2.391075(C°) ar = 5.4910-%(C°)

It is assumed that in between the layers there is a thin oxidation protec-
tion interphase of isotropic B4C material with thickness 0.02 of the layer
thickness and with properties

E; = 380 GPa G; =159.7GPa v;=0.19

Due to thermal treatment the interphase may develop many through
cracks. As has been explained above, this creates an orthotropic interphase
which may be considered perfect in normal z direction but imperfect in
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shear. Increase of crack density of the interphase may be considered as
decrease of the effective shear stiffness of the interphase. All of the results
given below are in the form of plot families where each plot is associated
with a shear modulus value G;/m , m=1,5, 10, 20, 50, 100, 200. Figs. 3-5
show plots of Young’s modulus, TEC and shear modulus, all normalized
with respect to their values for the uncracked laminate, as functions of crack
density for the case of equidistant cracks, expressed by the parameter p. For
large values of p the properties of the uncracked laminate are attained while
for small values of p the properties reduce to those of a laminate in which the
900 layer has vanishing ET and G4 but retains it’s E4 value. Such stiffness
loss is associated with the concept of laminate netting analysis. The values
of the properties decrease with decreasing interphase shear modulus. Thus
for each property the uppermost plot is for undamaged interphase which
may be regarded as a perfect interface while the lowest plot is for m=200. It
is seen that the effect of interface imperfection, i.e. interphase damage, is not
very significant for Young’s modulus and TEC but is very significant for the
shear modulus. It is also seen that the plots for normalized Young’s modulus
and TEC are very similar and indeed these normalized quantities are almost
the same numerically. It should be realized that interphase damage has no
effect on an uncracked laminate under in-plane loading since there are no
interlaminar stresses in this case.

Figs. 6-7 show internal stresses as functions of x ,for load N,,, when
the intercrack distance is 2a = 5t;. Fig.6 shows the in-plane stresses ag) in
the cracked layer and ag;) in the uncracked layer functions of z for the case
when the intercrack distance is 2a = 5¢,, the family of plots being defined
by the sequence G;/m. It is seen that the tensile stress in the cracked
90° layer decreases with increasing interphase damage amd therefore the
stress in the uncracked 0° layer increases with damage. Fig. 7 shows similar
plots for the interlaminar stresses 0,,(z,t1) and 0,,(z,t;). These stresses
decrease with increasing interphase damage and the effect is significant.
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Figure 8. Effective Young’s modulus versus crack spacing

Figure 4. Effective thermal expansion coefficient versus crack spacing
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Figure 5. Effective shear modulus versus crack spacing
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Normalized Interface Stresses

Figure 7. Interface stresses

5. Conclusion

Previously developed variational analysis of cracked laminates has been
extended to the case of imperfect interlaminar interface by use of a gen-
eralized thermo-elastic variational principle for imperfect interface. In the
present work detailed analysis has been confined to a cross-ply laminate
in which only the 90° layer is cracked. But there is no difficulty to carry
out similar analysis with imperfect interface for the case when all layers
are cracked, on the basis of the admissible stress system which has been
constructed in Hashin (1987) for orthogonally cracked laminates. It is also
a straightforward matter to analyze mechanical and thermal stresses.

Present analysis has shown that for a cracked laminate with interlaminar
interface which is imperfect in shear only, the quantitative effect of interface
imperfection on effective Young’s modulus and TEC is not drastic, but there
is significant effect on the effective shear modulus and internal interlaminar
stresses.
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NUMERICAL MODELLING OF CRACK GROWTH IN MATERIAL MODELS
OF FIBROUS COMPOSITES
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Paderborn University

Pohlweg 47-49, D-33098 Paderborn, Germany

ABSTRACT

Experimental investigations of fracture phenomena in thermomechanically loaded fi-
brous composites demonstrate the appearance of different failure mechanisms, like ma-
trix and interface cracks as well as of fiber breakings. In addition, the existence of bran-
ched crack systems consisting of a combination of those elementary failure mechanisms
has also been observed several times. Therefore, in this paper the numerical modelling
of complicated crack systems has been performed, consisting of a combination of matrix
and fiber cracks where the latter are originated by local asymmetrical interface cracks
and according to experimental results arise in a single layer of a thermomechanically
loaded fibrous composite structure. The mathematical modelling of such branched crack
systems in thermomechanically loaded two-phase compounds leads to mixed boundary
value problems of the thermoelasticity. The corresponding solutions were obtained by
using a closed finite element program capable of an automatic mesh generation. Further,
special emphasis has been given to the crack path prediction of thermal cracks initiated
in a plastic matrix/glass fiber reinforced composite structure by using a newly establis-
hed crack growth criterion based on the total energy release rate of a quasistatic mixed-
mode crack extension. This numerical simulation of the crack growth process in appro-
priate material models should allow a better understanding of the fracture behaviour of
fibrous composites on a micromechanical level.

1. INTRODUCTION

The failure behaviour of fibrous composites differs considerably from that of homoge-
neous solids due to the large number of possible failure mechanisms arising in thermo-
mechanically loaded composite materials. Thus, for example, the fracture behaviour of a
laminate will be influenced by local failure mechanisms in a single layer such as fiber
breaks, matrix and interface cracks, fiber pull-outs as well as the plastification of the
matrix material. These failure modes existing on a microscale depend heavily from the
orientation of the fibers, the individual ply thickness as well as on the constitutive
equations describing the mechanical properties of the fibers, the matrix as well as the
fiber-matrix interface. In addition to these elementary failure mechanisms having the
size of the microstructure, i.e. the dimension of a fiber diameter, other failure modes
arise, for instance intralaminar transverse cracks as well as extended delaminations
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between single plies with dimensions of several orders of magnitude larger than a fiber
diameter. Because of the variety of parameters needed to be considered for a formula-
tion of strength characteristics for composites based on experimental results only, to-
day's composite research prefers the application of appropriate analytical models sho-
wing the essential details of the failure physics. There exist two different methods for a
description of the failure behaviour of composites by using fracture mechanics; known
in the literature as the micromechanical and macromechanical stress analysis. A review
concerning the essential peculiarities of these two distinct continuum mechanical me-
thods for a characterization of the fracture behaviour of composites has been given by
Rosen et al. [1] and Mahishi [2,3]. Within the last two decades a considerable number of
publications dealing with different aspects of the strength and fracture behaviour of
composites has been accumulated. For instance, Goree and Grof3 [4] gave an analytical
solution concerning the determination of stress and strain fields in a unidirectionally
fiber-reinforced composite containing an arbitrary number of broken fibers as well as a
plastified matrix material. The corresponding analytical model based on the shear-lag
assumption as well as on a shear stress fracture criterion allows, for instance, the pre-
diction of the characteristic strength and fracture properties of a boron fiber/aluminum
matrix composite in agreement with experimental results. Further, Tvardovsky [5] con-
sidered an appropriate material model of an anisotropic layered composite containing
isolated collinear and double periodic cracks, respectively. Thereby by assuming a re-
mote constant loading of the composite structure as well as by consideration of the inhe-
rent boundary and continuity conditions the associated boundary value problem could
be reduced to a singular integral equation by applying the finite Fourier transform.
Furthermore, there already exist several micromechanical models which allow for an
analysis as well as for a prediction of the overall behaviour of composites. These me-
thods are known in the literature as the dilute approximation, the self-consistent scheme,
the Mori-Tanaka and the differential scheme. In Aboudi's book [6] a description of
these composite models with their advantages and disadvantages has been given.
Aboudi himself developed a micromechanical composite model based on the study of
interacting periodic cells. Thereby due to the assumed periodic microstructure, a repre-
sentative volume element only needs to be considered consisting of the fiber and the
matrix subcells. By using a homogenization procedure a set of continuum equations can
be produced allowing the transition to an equivalent homogeneous continuum. The im-
portant advantage of Aboudi's model consists in the establishment of a unified approach
in the prediction of the overall behaviour of composites.

Moreover, an interesting problem concerning the failure behaviour of thermomechani-
cally loaded composite structures consists in the prediction of the prospective paths of
microcracks which already exist in the heterogeneous microstructure depending on the
geometrical configuration as well as on the applied thermomechanical load distribution
belonging to a given composite. Several possible failure criteria have been discussed in
this respect in the literature, e.g. in a review article by Rosen [7] Besides, there exist
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some stochastic models for a description of the fracture behaviour of unidirectionally
reinforced composites. Elementary failure mechanisms like fiber breaking, debonding as
well as matrix cracking due to special loading and overloading were simulated by
appropriate computer experiments, Kopyov et al. [8] The corresponding activation cri-

teria concerning the initiation of such damage mechanisms were obtained by an analysis
of the stress redistribution due to rising microcracks in the fibrous composites.

2. BRANCHED CRACK SYSTEMS IN MATERIAL MODELS OF FIBROUS
COMPOSITES

2.1. DISK-LIKE BIMATERIAL SPECIMEN

In this paper, branched crack systems consisting of a combination of curved matrix and
interface cracks as well as of fiber breaks and arising in different material models of
fibrous composites are considered.

Figure 1. Branched thermal crack system in a disk-like material model of a fibrous
composite and associated finite element discretization

Figure 1 shows the cross section of a cracked disk-like two-phase solid (matrix: Araldite
F, fibers: steel) containing three matrix as well as two interface cracks at the fiber-ma-
trix interfaces of two neighbouring fibers due to thermal loading after a special casting
process. The thermal loading of the composite structure took place due to a cooling
from the temperature T, = 60degC of the unstressed initial state to a loading tempera-
ture T, =-7,5degC according to a special cooling curve. The latter as well as the as-
sociated material properties of the two-phase compound and also the geometrical pa-
rameters of the disk-like bimaterial specimen can be taken from reference [9]
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Further, an appropriate nomenclature of different possible model geometries of ther-
mally loaded two-phase composite structures has been introduced in order to be able to

formulate the following boundary value problems of the plane thermoelasticity [10]

O (1,0) = 074 (1,,0) = ; (lof<m) M
S5y (pr-w) =0, (pro¥) = 0; (jwl<wi).(i=f,m) @
[ow(pw)]  =[on(pw)] =00 (wis<lvl<n) 3)
[w,e.w)],  =[u,(ew)]  =0: (v, <|v|<) @

Besides, global plane polar coordinates r,¢ with respect to the centers of the composite
structures (with the outer radius r, ) as well as local coordinates p,\y, with the center in
each fiber (with the radius p;) have been introduced into the boundary and continuity
conditions (1)—(4). By applying the basic equations of the stationary thermoelasticity
for a plane stress state

E Y 1+v
L= .+ S. — ATS.. 5
% (1+v){8" 1—2v T2y “} ©)
Gijij =0 (6)
1
Sij = E{Ui’j + llj’i} (7)

the associated boundary value problems (1)—(4) can be solved either by means of the

finite element method or by using the experimental methods of the photoelasticity and
shadow optics. By using a refined finite element mesh in the neighbourhood of a bran-
ched thermal crack system (cf. Fig. 1) strain energy release rates at the tips of matrix
and interface cracks were calculated. Furthermore, by implementing an appropriate
crack growth criterion based on a maximum energy release rate principle a theoretical
prediction of the experimentally observed branching phenomenon of curvilinear thermal
cracks in disk-like material models of fibrous composites could be performed. Figure 2
shows a summary of experimentally obtained results concerning the crack velocity v
and the opening-mode stress intensity factor K, at the tip of a curvilinear thermal matrix
crack propagating in a disk-like material model of a self-stressed composite structure.
Moreover, the radius 1, of the initial curve of the caustic surrounding the crack tip as
function of the crack length a is given which was used for a determination of the
diameter of the caustic. Finally, Fig. 2 clearly demonstrates that the values of the stress
intensity factor K, obtained experimentally by the method of caustics in transmission
and reflection for a curvilinear thermal matrix crack show a very good coincidence with
the corresponding numerical K;-values determined by associated finite element
calculations especially in the region of stable crack propagation. More details about
these investigations are given in reference [10)].
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Figure 2. Stress intensity factor K|, crack velocity v, and radius rj of the initial curve
of the caustic as function of crack length a

2.2. DETERMINATION OF FRACTURE MECHANICAL DATA AND CRACK
PATH PREDICTION OF A BRANCHED CRACK SYSTEM IN A SINGLE UD-
LAYER OF A LAMINATE

2.2.1. Crack growth criterion

Figure 3 shows the cross section of a cracked single UD-layer laminate model (matrix:
Araldite F, fibers: glass) containing matrix and interface cracks as well as fiber breaks
due to a thermal loading after a special casting process.

Figure 3. Material model of a cracked UD-layer of a laminate
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The thermal loading of the composite structure took place due to a homogeneous coo-
ling from the temperature T, = 60 deg C of the unstressed initial state to a loading tem-
perature of T, = —5.0 deg C. Further, finite element calculations were performed in order
to predict the experimentally observed branching phenomenon of cracks arising in
single UD-layers of different thermomechanically loaded composite structures.

Figure 4 shows the finite element discretization of a UD-layer where a standard finite
element program has been applied by using triangular constant strain 3-node elements.

mw“q

N

Figure 4. Finite element discretization of a cracked UD-layer of a two-phase compound

The directional criteria for the description of crack growth in brittle solids proposed in
the past, like the criteria of principal stress [1 1], maximum of strain energy release rate
[12,13], minimum of strain energy density [14,15] require the knowledge of the near-tip
stress and displacement fields in the vicinity of the original crack tip characterized for a
general plane loading situation by the stress intensity factors K, and K,;, respectively.
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Moreover, the application of these criteria to a cracked brittle solid delivers equations
for the determination of the angle 9" describing the direction of further crack growth
(cf. Fig. 5). By combining the essentials from the principal stress and the maximum
energy release rate criterion, an appropriate crack growth criterion based upon the nu-
merical calculation of energy release rates at crack tips has been proposed by Herrmann
and Dong [16-18].

Moreover, it was shown earlier by Herrmann and Grebner [19] that the calculation of
strain energy release rates at the tips of quasistatically extending curvilinear thermal
cracks in self-stressed two-phase solids could be reached by using a method originated
by Rybicki and Kanninen [20]. This method is founded on the evaluation of Irwin's
crack closure integral

Aa

.1 _
G(a,9)= G,(a,S)+GH(a,8) = }:_rgﬂ [093 (r,S)-us (r,S)] dr
0

Aa

.1 _
+ lim | [6,5(r,9)-U,(r,9)]dr ®)

where the quantities 644,06 ,, represent the near-tip stresses in the local coordinate sy-
stem at the crack tip prior to crack extension, whereas the quantities u,,u, stand for the
corresponding normal and tangential displacements between opposite points of the
crack surface after crack extension and Aa represents the crack lengthening.

By using a finite element mesh according to Fig. 6 a numerical calculation of the
average energy release rates G,G;,G,; related to the global coordinate system X,y as
indicated can be performed where the displacements along the new crack surfaces are
approximated by a linear interpolation function in the related finite elements, i.e. usually
3-node triangular elements. The corresponding formulae read as follows [17]

Gla+22 9)=G,[a+22,8)+G,[a+22 8 ©)
2 2 2
G,(a+é25,9)zGl(a—)a+Aa,9)=Asin29—2Bsin90059+Cc0528 (10)
G,,(a+%,9)zGﬂ(a—)a+Aa,9)=A00528+2Bsin9cosS+Csin29 an
with
1 d 1 d cf,,d c
= ‘lul —ul); B= Flul —ul)+Flu, —u 12a
JtAa x( x x) 4tAa[ x( y y) y( X x)] ( )
1
=——F(uf —ul 12b
2tAa y( Y y) (120)
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where t denotes the specimen thickness, F;,F; mean the components of the nodal forces
in the global coordinate system x,y before the crack extension Aa, and ui,u;(i =¢,d)
stand for the components of the corresponding nodal displacements of the new crack
surfaces after the crack extension Aa. Besides, it should be mentioned that the coef-

ficient B in the equations (10)—(12) differs from the former coefficient B introduced in
the references [16 - 18] by a factor of 2.

By using the equations (9)—(11) the strain energy release rates G,G,,G; can be deter-
mined if the new crack extension direction 9is known. However, the latter quantity is
just wanted. Therefore, an approximate method for the determination of the new crack
extension direction has been developed, based on the physical mechanisms of brittle
fracture. Thus, it is assumed that the new direction of crack extension Aa is given by the
direction in which G, = 0 holds true and crack extension occurs for G, > G,, (critical
crack extension force). Further, an iteration scheme concerning the determination of the
new crack extension direction has been stated which is based on this criterion G; =0
and on the numerical calculation of the strain energy release rates G, (i = L,II).

2.2.2. Iteration scheme

Step 1:  Select a start angle 9" of the prospective crack growth.

Step2: Let 9 = 9" by arranging a local finite element mesh in the vicinity of the crack
tip. By using this preliminary extension angle calculate a set of coefficients
AB,C according to the equations (12a,b) as well as the associated strain
energy release rates, equations (9)—(11). If G, =0 is valid, then 8" already

gives the desired new crack extension direction and the iteration is finished.
However, usually G, becomes not be zero and then step 3 has to be carried

out.
Step 3: By taking G, =0 it follows
Acos’ 9 +2Bsin9 cos9 +Csin’ 9 =0 (13)

from which a new angle 3" for the desired crack extension direction can be
calculated, namely
2
9" = arctan —Ei (E] _A (14)
C C C

Step 4:  After obtaining this new crack extension direction 9", the iteration scheme can
be started again. The procedure can be stopped if after a few reiterations of the
steps 2 and 3 the new angle 8" nearly equals 9, the prior angle used to calcu-
late the coefficients A,B,C. Then the strain energy release rate G, reaches
approximately zero value. Thus, this calculated angle then corresponds to the
new crack extension angle.
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2.2.3. Crack path prediction in a UD-layer of a two-phase compound

The crack growth criterion stated in the previous session has been applied for the pre-
diction of a combined crack system extending in an epoxy matrix/glass fiber reinforced
composite model due to well-defined stress fields caused by uniform temperature chan-
ges and additional mechanical loadings. Figure 3 gives the cross section of the two-
phase compound consisting of homogeneous isotropic and linearly elastic materials with
different thermoelastic properties according to Table 1.

Table 1. Material properties of a two-phase compound

Material Matrix: Araldite F| Fibers: Glass (SF11)
Young’s modulus E [N/mm?] 2600 74850
Poisson’s ratio v [1] 0.39 0.17
Thermal expansion coefficient o [107 K] 530 5.0

The numerical modelling of the crack path starts with the development of a straight ma-
trix crack, initiated in the origin of the coordinate system shown in Fig. 4, and growing
quasistatically towards a neighbouring fiber. By striking the nearest fiber-matrix inter-
face a material defect has been modelled by a short asymmetrical interface crack.
Further, the following prediction of the prospective crack path has been performed by
applying the crack growth criterion already mentioned. The graphs 7-8 show the crack
extension direction angles 3° as functions of the projected crack lengths a_ as well as
the prospective crack paths by applying a thermomechanical loading system consisting
of a homogeneous cooling of AT =—65°degC and variable mechanical loads to the
composite structure. It can be seen that for two of the additional mechanical loads only
cracks exist up to the end of the prospective crack path. The other mechanical loads de-
liver either a further crack extension or a crack arrest in the neighbouring fiber. The lat-
ter result can also be taken from Fig. 9 showing the strain energy release rate G, in de-
pendence on the projected crack length a_ .

Besides, it can been from the same graph that the G,-values at the tip of the first straight
matrix crack reach certain maximum values near to the fiber-matrix interface. In additi-
on, Fig. 10 shows that for all cases of a thermomechanical loading a mixed-mode loa-
ding situation exists along the fiber-matrix interface. Moreover, the program developed
for an automatic mesh generation was not able to handle the large crack deviation an-
gles arising in the fiber due to the applied crack growth criterion. Therefore, in these
cases the further crack extension in the fiber has not been investigated. Finally, it should
be mentioned that a second UD-layer composite model (SSKNS5 glass matrix/SF11-

glass fiber) has been studied in reference [21].
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Figure 7. Crack extension direction angle 8* as function of the
projected crack length ay

Figure 8. Predicted crack paths in a UD-layer laminate model
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Figure 9. Strain energy release rate G; for a kinked crack system

Figure 10. Strain energy release rate Gy for a kinked crack system
3. CONCLUSIONS

A numerical modelling of branched crack systems arising in thermomechanically loaded
material models of fibrous composites is given. By taking the substructure technique of
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the finite element method as well as by implementing an appropriate crack growth cri-
terion a numerical simulation of branched thermal crack systems arising in disk-like
models of fibrous composites due to a steady cooling process has been performed. Besi-
des, kinked crack systems arising in thermomechanically loaded UD-layers of fibrous
composites have been considered. In both cases fracture mechanical data were calcula-
ted where these quantities have been used for the prediction of crack initiation as well as
of further crack growth.
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ANALYTICAL ESTIMATE OF INTERACTION AMONG
ELLIPSOIDAL INCLUSIONS:

UPPER AND LOWER BOUNDS FOR STRAIN ENERGY
DUE TO INTERACTION

M. HORI

Department of Civil Engineering,
University of Tokyo,

Tokyo 113, Japan

1. Introduction

Recent advancement of material and computer sciences enables one to analyze be-
havior of members and structures made of composite materials with superior proper-
ties, using a large numerical computation. The developed computational mechanics
is being applied to highly heterogeneous and inelastic geomaterials to predict behav-
ior of foundations or underground structures. It is essential in such computation to
implement the constitutive relations of the material which exhibits anisotropy, in-
elasticity, nonlinearity or path-dependence. Micromechanical analysis is effective in
predicting the constitutive relations since such responses are often due to irreversible
deformation, failure or evolution of microconstituents. To reduce the required com-
putational efforts, the analysis ought to lead to a closed-form expression of the
constitutive relations.

The evaluation of interaction effects among microconstituents is a key issue in
the micromechanical analysis. Eshelby (1957) succeeded to analytically estimate
interaction between one inclusion and the surrounding matrix, solving a problem
of an infinite body containing an ellipsoidal inclusion (a single-inclusion problem).
The solution is expressed in a closed-form, and has been applied to various averaging
schemes which predict the effective properties; see, for example, Nemat-Nasser and
Hori (1993) for references. To evaluate the interaction among plural inclusions, one
may need a solution to a problem of a body containing many ellipsoidal inclusions (a
many inclusion problem), though it is an open question whether this problem can be
solved analytically or not. The prediction of the effective properties, however, may
not need an exact solution of the problem. An approximate but sufficiently accurate
solution is preferable if it is given in a simple closed-form. For such a solution, the
error due to the approximation should be estimated.

To predict the effective properties of a heterogeneous material, Nemat-Nasser and
Hori (1993) has found universal bounds that give a range of the average strain energy
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stored in any arbitrary finite body when subjected to various boundary conditions.
The universal bounds are rigorously computed by using a functional for eigenstress
fields. Tt is shown that one can set the functional such that it has either the maximum
or the minimum value, which equals the average strain energy of the body.

Applying the universal bounds to the many inclusion problem, we seek to eval-
uate upper and lower bounds for the strain energy caused by the interaction which
acts among the ellipsoidal inclusions. To this end, first, a functional which bounds
the strain energy of the many inclusion problem is derived from the universal bounds
in Section 2. To compute the functional analytically, we solve the single inclusion
problem in Section 3, using an equivalent inclusion method which is formulated in
a more general setting. The solution of the single inclusion problem is expressed in
terms of a characteristic function for the ellipsoidal inclusion and a function which is
defined outside of the inclusion and decays in the farfield. In Section 4, using these
functional and the solution, we obtain suitable approximate solutions of the many
inclusion problem. It is shown that upper and lower bounds for the strain energy
can be analytically computed from the approximate solutions.

2. Universal Inequalities

A many inclusion problem considered here
is as follows: an infinite elastic body, de-
noted by B, contains plural ellipsoidal in- farfield loading
clusions, Q%'s, embedded in matrix M.
This body is subjected to farfield strains
or stresses (e = CM : ). Each Q°
or M is uniform, and has a distinct elas-
ticity tensor, C* or CM | respectively; see
Fig. 1. C(z) = %, ¢ (2)C+ oM (z)CM
is the elasticity tensor field of B, where
»\)(2) is the characteristic function of do-
main (.). Superscript (.) designates that
the quantity is associated with domain (.).

Note that (.) is used to denote a domain as
well as its volume or shape. The displace-
ment, traction, strain and stress fields are
denoted by u(z), t(x), e(x) and o(x), re-
spectively.

For simplicity, we take a finite region, V', which contains all Q% in it, and re-
gard B as the limit of V" expanding infinitely. The boundary conditions for V are
homogeneous stress or uniform traction (¢(x) = v(x) - o° on dV with constant
o°). According to the universal inequalities established by Nemat-Nasser and Hori
(1993), the strain field of this problem, denoted by €°**¢!(z), produces the minimum
total strain energy among all compatible strain fields that have the same volume

Fig. 1: Many Inclusion Problem
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average as the average of €“**“!(z). That is,

OZKY%E”"”:C:G”““dV——/%E:C:edv, (1)
where €(z) is a compatible strain field which satisfies < € >y=< € >y.

To obtain a suitable strain field, we apply the equivalent inclusion method. In-
troducing an infinite homogeneous body, denoted by B*, we consider its subregion
V> (which is the same shape as V7). The elasticity tensor of B* or V* is C? and an
eigenstress field s*(@) is prescribed in B* such that the constitutive relations become
o(x) = C°: e(x) + s*(x). For given s*(x), we can formally solve this subsidiary
problem. Using the Green function of B*, we define an integral operator, I'’(x; s*),
which gives the disturbance strain field produced by s*(&), and denote the strain
field in B* by €(®) = € 4 I'°(x;s*). The consistency condition is to choose an
eigenstress field that makes the fields of the subsidiary problem coincide with those
of the original problem. Denoting this eigenstress field by (&), we can write the
condition as €~ + I'’(x;0) — (C(x) — C°)~! : 0" () = O; see Nemat-Nasser and
Hori (1993). The strain field of the original many inclusion problem is then given
as €%t = €~ 4+ I'(x; 0%).

Using C~ which makes C(@)— C™ negative-semi-definite for all &, we can obtain
the following inequality from the consistency condition:

0> V%(E‘X‘—i—F_—é):(C—C'):(e“—l—F‘—é)dV (2)
where é(z) = (C(x) — C°)~! : s*(x). Superscript — of I'" emphasizes that the
reference elasticity tensor of B* is C~. Equality in Eq. (2) holds only for o*().
Note that €™ + I' (x; s*) in Eq. (2) is compatible for other eigenstress fields, and
can be used in Eq. (1).

In the many inclusion problem, the change of the total strain energy due to the
presence of Q%’s is

€ :CM : e®qV. (3)

Lo =

V—oo

1 .
W = lim / 5 €7 C et
vV 2

Taking the sum of Eq. (1) and Eq. (2) and its limit as V — oo, we can obtain
0> W + J(s*;C™), where J is a functional for s*(x) defined as

J(s7:C%) = lim A é s ((C—C) s —Io(s7) - 267)

€O I(s) = 5 I(s7) 1 (G0 T(s7) + )

s € (CY —C°) e dV. (4)

| —
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Inequality 0 > W + J(s*; C7) is universal in the sense that it applies to V of any
arbitrary microstructure!. Although J is the essentially same form as the one used in
the Hashin-Shtrikman variational principle (1962), it does not assume the statistical
homogeneity? for V.

Another universal inequality, 0 < W + J(s*;C%), can be derived in a similar
manner. The major difference is that we use the change of the complementary strain
energy,

3 1 exract | -1, exract 1
111]]/V§0' (C) o -5

V—x

o™ (CM) 1. g>dV,

where o“**“!(x) is the stress field when V' is subjected to homogeneous strain bound-
ary or linear displacement conditions (u(z) = @ - €° on @V with constant €°), and
that C* makes C(x)—C positive-semi-definite; see Nemat-Nasser and Hori (1993).
In the limit as ¥ — oo, the solution of the two boundary-value problems coincide
if 0> = C™ : €, and the change of the complementary strain energy becomes W.
Therefore, we obtain

—J(sHCH) < W< —J(s*;C7), (5)

where superscript + or — for s* emphasizes that it is considered in B* of C~ or Ct,
respectively. As J uses an eigenstress field which is closer to the one that satisfies
the consistency condition, J(s**;C~) or J(s*7; C") becomes a sharper bound for

W.

3. Eshelby’s Solution and Complementary Eshelby’s Solution

For the computation of .J, we need an eigenstress field which is close to the solution of
the consistency condition and is given in a closed form such that the resulting fields
can be analytically computed. To this end, we solve a single inclusion problem,
applying the equivalent inclusion method which is formulated in the manner as
presented in the last section. A class of eigenstress fields that satisfy the above
requirements are then obtained by considering a subsidiary problem which uses B*
of C? # C: see Fig. 2. To simplify the expression in the following discussion, we
omit the arguments of a field or a function if it does not make confusion.

The original problem is an infinite domain B which contains one ellipsoidal
inclusion, Q. and the subsidiary problem is an infinite homogeneous domain B*
which has the elasticity tensor C° and an eigenstress field s*. Noting that a strain
field in B* is € + I'°, we write the consistency condition as

Ca): (e + I (x;0*))=C°: (e + I'’(x;0™)) + o™(x), (6)

!One may obtain the same functional as J when a unit cell of a periodic structure is considered
instead of V" in B; see Nemat-Nasser and Hori (1993).

>See Francfort and Murat (1986), Milton and Kohn (1988), and Torquato (1991) for the statis-
tical homogeneity and the related variational technique.
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single inclusion problem

Fig. 2: Equivalent Inclusion Method Applied to Single Inclusion Problem

where C(2) = p%(2)C® + pM(2)CM, and M denotes the domain outside of 0.
In terms of an eigenstress, Eshelby’s solution can be expressed as follows: a
uniform distribution of eigenstresses, &, in the ellipsoidal 2 (i.e., o (2 )o*) produces

ri(az; %) = (¢ (2)p(C?) + p¥ (2)g%(2: C°)) : 07, (7)

where p*(C?) and ¢*(2;C°) are symmetric fourth-order tensors which give uni-
form strain field in © and a decaying strain field out of . They can be explicitly
determined from the ellipsoidal shape of Q and the reference elasticity C?; see Mura
(1987) for the detailed explanation of Eshelby’s solution®. This solution was found
for an anisotropic C? as well as an isotropic one; see, for example, Willis (1964).

Taking advantage of Eq. (7). we can solve Eq. (6) for the case of C° = CM,
and obtain 0 = %A : €* with A = ((C? — CM)=' — p®(CM))~!. In the original
problem, the strain field due to the presence of § is then given by

el(x) =T (x; ;%A : ),

where superscript M for I' emphasizes C° = CM.

For the case of C° # CM | due to the uniqueness of the solution, the eigenstress
field that satisfies Eq. (6). &*(x), must produces the same strain field as € +¢€?, i.e.,
I'’(z;0) = €!(x). Therefore, o*(x) can be expressed in terms of €? as o™ = (C —
C’) : (€*+€?). This eigenstress field! consists of the following three: a homogeneous

3In the two dimensional setting, the solution of an elliptical inclusion problem can be used
instead of Eshelby’s solution, and p? and ¢ are computed by using Airy’s stress function or
complex stress functions.

4Recall that €? is constant in Q and decays in M.
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part, (CM —C?) : €. a constant in Q, PM(C?—CM): €+ (C?-=C°) : €, and a
decaying part in M, (CM — C?) : €. Since the homogeneous part does not produce
strains and the constant in  produces a field given by Eq. (7), a contribution of
the decaying part to the disturbance strain field is determined. Therefore, we can
explicitly compute the strain field due to a decaving eigenstress field in M (i.e.,

Mayct —c?): q¢Hz:CM):07) as
Iz M(CY — €)1 g%(CY) 1 07) = (¢ (@) (p7(CM) — BT : p*(C7)
+oM(2)(¢%(@: CY) — B : ¢*(2;C°))) 0™ (8)

where BY = I + (CM — C°) : p*(CM). If Eq. (8) is used as well as Eq. (7),
we can directly solve Eq. (6) for any arbitrary C°. In this sense, we call® Eq. (8)
complementary Eshelby's solution; see Fig. 3.

Eshelby’s solution

*

S

strain field

uniform

integral operator I'°

integral operator I"°

complementary decaying
Eshelby’s solution

Fig. 3: Eshelby’s Solution and Complementary Eshelby’s Solution

5The complementary Eshelby solution uses p®’s and ¢®’s which are measured for C° and CM.
A simpler equation is derived by setting C* = 2C° and using p®(2C°) = p*(C°)/2 in Eq. (8).
It is expressed as I'’(pMC° : q% : 0*) = 2(I + C° : p?) : (¢"p? + pM¢?) : ¢* only in terms of
P and ¢ measured for C°.
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4. Analytical Estimate of Interaction

Making use of Eshelby’s solution and complementary Eshelby’s solution, we seek
to obtain an approximate solution of the many inclusion problem and to estimate
the interaction among the inclusions using J given by Eq. (4). The key issue is the
computation of .J. If .J is analytically computed for a class of eigenstress fields which
are expressed in terms of these solutions we can determine the eigenstress field that
stationarizes .J. This eigenstress field gives the most suitable approximate solution
and yields the sharpest bounds for W among the class when C~ or C* is used.

4.1. COMPUTATION OF J FOR TRIAL EIGENSTRESS FIELD

First, we consider a class of trial eigenstress fields. In view of the form of the exact
eigenstress field for the single inclusion problem, the form of a trial eigenstress field

should be (CM —C%) : € + 3, p*s™1 + (1 — p*)(CM = C°) : ¢*(CM) : 5™ with

o1 g2} To reduce the number of eigenstresses

a set of (constant) eigenstresses, {s
half, we set s™! = B" : s2, Rewrltlng s7°12 = g we have an eigenstress field of

the following form:
§* = (CJ\I o + Z ( aBoz kpoz)((;rlw _ CO) . qa> . g™ (9)
The strain and stress fields produced by this trial eigenstress field are

+Z 27+ (1= 9")g") : 87, (10)

o=C": +Z( (CMip + D) +(1-¢°)CM i g?) 15 (11)

As is seen, these fields® are analytically expressed in terms of p®’s and ¢*’s which
are measured for CM.

Next, we compute J for this class of eigenstress fields, taking advantage of the
following two properties of I'°: 1) fg I'’(s*) : (C° : I'°(s*) + s*)dV = 0 for s*(z)
which vanishes sufficiently fast at the farfield; and 2) f, I'°(s*)dV = (finite) for
any sufficiently large ellipsoidal V' (Nemat-Nasser and Hori (1993)). Substituting a
trial eigenstress field into the right side of Eq. (4) and computing the integration of
the second and third terms, we can obtain

1
— s ((C°—C°) 5" — €l — 2™ +l € (CM —C?): €dV
> [ e !
tLe (e 1)t lim (/ edd\/>,
2 V—oo \JV

where € = T, (¢°p? + (1 - %)q°) : 5.

SNote that 0 = CM 1ein M =V — > .Q%and o = cM e+ s in QO
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The integration in the last term is analytically computed by applying the Tanaka-
Mori theorem” (1972). which are stated in terms of p® and ¢ as follows: for any
ellipsoidal V" including Q. f;- 2°p% + (1 — »*)g%dV = Qp"". Therefore, the last term
becomes p' : 3, 8°°. if the shape of V' is ellipsoidal and remains the same as it
expands. Functional J is now reduced to the following function of {s**}:

J°({s}.C?) Z/ C“ Co) st —€l - '2£°°)
+% € (CM —C°) : e*dV

<

Rl (CM +C?) :pV : (ZQ“S’“). (12)

o3

..|._

o] =

14.2. APPROXIMATE SOLUTION AND BOUNDS FOR STRAIN ENERGY

The derivative of J* with respect to s**’s is computed from Eq. (12). The eigen-
stresses that stationarize J*, denoted by {o**}, then satisfy the following set of
tensorial equations:

Z/ " BY + 2M)g" : (CM —C?)) - ((C" —C) s — €l - e°°) dv
—= Q" VoM 4+ %) : e =0, (13)
for « = 1,2,.... Terms in Eq. (13) can be analytically computed except for the

volume integration® of g”’s over Q. Substituting {o**} into Eqgs. (10,11), we can
obtain the most suitable approximate strain and stress fields among trial eigenstress
fields.

It follows from Eq. (5) that when C° = C~ or C*, J* computed for {o**}
yields the sharpest upper or lower bound for W, respectively. That is,

—J{ethEChH) < W< —J ({o™ };C7). (14)

This inequality can be applied to a many inclusion problem for any set of ellipsoidal
inclusions of arbitrary shape and elasticity which are arranged in an arbitrary man-
ner. As mentioned, if {o=**} or {e™*~} is closer to the exact eigenstress field, J*
provides a sharper bound for W. Therefore, J*({o***};C*t) — J*({o"*~}; C™) can
be used as a measure of the error of the approximate solutions that are given by
substituting {o*~} and {o™**} into Eqgs. (10,11).

Since p* depends on V', the last term in Eq. (13) represents the effects of the
surrounding ellipsoidal matrix on the inclusions. If this term is neglected, Eq. (13)

“See Nemat-Nasser and Hori (1993) for the detailed derivation of the Tanaka-Mori theorem.
80ne may evaluate this integral using the mean value theorem.
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becomes
/ B ((C-C) s — e — )V

—}—Z/q (€Y —C%): ((C =€) i 57— e —€¥)dV = O.
B#a

This is the volume average of the consistency conditions, (C — C?) : s* — € = O,
weighted by B® in Q% and by ¢* : (C™ — C?) in other Q%’s. Denoting bv {7} the

eigenstresses that satisty the above set of equations®, we can compute J*({&~}; C?)

as
1 o ’ —=xa —=*
-5 € Z/ —C’M+C)' ): o +Zqﬁ:aﬁa"/).
& B#o
Although J*({F™*}; C*) is not optimum, it still provides an upper or lower bound
for W when C° = C~ or C™.
4.3. CASE OF INCLUSIONS OF COMMON SHAPE AND ELASTICITY

As an illustrative example, we consider a simple case when all 2%’s are of common
shape and elasticity tensor, denoted by Q and C%. Setting s** = s* for all a’s,
we can rewrite .J° given by Eq. (12) as a function of s, and reduce Eq. (13) to a
tensorial equation for s*. If the term which includes p¥ is neglected, the solution of
this equation is

-1
= _ o -1 _ 0oy Ju . Bav ] . e®
(Z/QY (A Q)dl) <%:/my x) €,
where Q% = 35, g’ and

V e (BQ + Z QS C\/[ Cu)) . (CQ _ Co)—l . (CQ _ CM)
B#a

If Q%'s are omitted, & coincides with the exact solution of the single inclusion

problem. Therefore, @ represents the strains which are produced in 2% by the

existence of other inclusions, and the contribution of Q®’s on J*° represents the

interaction effects among the inclusions.

Substituting & into Eqs. (10,11), we can obtain the approximate strain and
stress fields as

=e 43 (P"+ Q)7

o=C":ex+Y (CM:(p"+Q%)+1):7

9 - . .. .
“Instead of the weighted average consistency condition, one may use the average consistency
condition over each Q% to determine the eigenstresses.
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Function J* for & becomes
1 oo ’ o o —x
5 e (;/0(39_(0“@0 ):pY) +QUdV) : 7

As mentioned, J°(@*; C°) provides an upper or lower bound for W when C° = C~
or C™, although it is not the sharpest among trial eigenstresses. From J*(&**; C*)—
J*(*7; C™), we can measure the error of the approximate strain and stress fields
produced by &*t and *~.

5. Conclusion

For the many inclusion problem, a functional which gives the strain energy is de-
rived from the universal bounds. This functional can be used to bound the change of
the strain energy caused by the interaction effects among the ellipsoidal inclusions.
Applying the equivalent inclusion method in a general setting, we find comple-
mentary Eshelby’s solution, and compute the functional analytically. It is shown
that a suitable approximate solution of the many inclusion problem is obtained by
stationarizing the functional and the bounds for the strain energy are analytically
computed.

We briefly mention the application of the many inclusion problem and its ap-
proximate solution. The problem is suitable to model a microstructure of a material
which contains microconstituents of various kinds, and the effective elasticity of the
material can be predicted from the approximate solutions. The advantage of this
prediction is 1) the required computation is analytical except for the volume inte-
gration of functions; and 2) the error of the estimate can be measured from the
difference of the strain energy bounds which are computed from the approximate
solutions.
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ABSTRACT. The overall elastic constants of a particulate composite ma-
terial are theoretically estimated. The composite consists of a high concen-
tration of randomly arranged spherical particles embedded in an isotropic
elastic matrix. Because of the high concentration of particles (volume frac-
tion close to the maximum possible), the load transfer occurs mainly at the
regions of near contact between neighbouring particles. The self-consistent
approach is therefore unlikely to give an accurate prediction. It is now nec-
essary to estimate the load transfer between two neighbouring particles sep-
arated by a thin layer of matrix material. This has been done in the present
paper without placing any restrictions on the rigidity of the particles or on
the length of contact zone between them. The latter two limiting cases have
been previously solved by Batchelor and O’Brien (1977), Phan-Thien and
Karihaloo (1982), and Dvorkin, Mavko and Nur (1991). The results of the
present study are applicable in particular to cemented granular materials.

1. Introduction

The determination of the bulk properties of particulate solids has been
pursued in two ways. In the first, the emphasis has been placed on improving
the accuracy of the results with respect to the volume concentration of the
particles. Many results have been obtained which are accurate up to the
order 0(¢) or to 0(4?), where ¢ is the volume concentration of the embedded
particles. These were deduced by ignoring the interaction effect between the
particles. If the volume fraction is small enough, the results of Smallwood
(1944), Dewey (1947), Walpole (1971) are all accurate up to terms of order
0(¢). Further analysis using the variational approach and the self-consistent
153
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method can be found in the works of Hashin and Shtrikman (1963), and
Willis (1977).

The second approach is to consider the interaction effects between the
particles as for instance by Laws and McLaughlin (1979) for the analogous
fibre-reinforced problem who used the self-consistent method developed by
Hill (1963). This method approximates the interaction effects between par-
ticles by solving the elasticity problem of one particle enclosed in a spherical
shell of the effective composite. Chen and Acrivos (1978), based upon the
elasticity solution of two particles in an infinite region, gave the effective
elastic moduli accurate up to terms of order 0(4?).

When the particle concentration is high, the load transfer occurs mainly
at the regions of near contact between the neighbouring particles. In this
case, the self-consistent method is unlikely to give an accurate prediction.
Dvokin, Mavko and Nur (1991) considered the load transfer problem of
two spherical particles with a layer of cement between them. They gave the
elastic moduli of the cemented system when the length of the cement layer
was prescribed and remained constant. However, the method developed by
Batchelor and O’Brien (1977) that makes explicit use of the load transfer
characteristics is expected to be more accurate for the problem of high
concentration particles close to the maximum volume fraction and when
the length of contact zone is a variable. In this paper an attempt is made
to determine the overall elastic constants of a particulate material. The
material consists of a high concentration of randomly arranged particles
embedded in an isotropic elastic matrix. In view of the high concentration,
the particles are assumed to be nearly in contact with each other. We shall
confine our attention to the situation in which both the ratio of Young’s
modulus of the particles to that of the matrix and the volume concentration
of the particles are high. The method adopted in this paper closely follows
the procedure used by Phan-Thien and Karihaloo (1982) in their study of
the limiting case when the modulus ratio tends to infinity.

2. Mathematical Preliminaries

As is customary in the suspension mechanics of materials with random
structure, we shall assume that the particulate solid is statistically homo-
geneous so that ensemble averages can be replaced by corresponding volume
averages. Thus, the bulk stress tensor is given by

1 1
<aij>=7/Vm0ijdV+V;/Vaf’ijdV (1)
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where V' is a representative volume element (Hill, 1963), V,,, the matrix
volume in V and V,, is the volume of particle a in V', such that

Vm+ Y Vo=V (2)

In eqn (1) o;; are the local stresses, namely

0ii(x) = Aekk0i; + 2ugi;,  x inside the matrix material,
L Aterkbiy + 2p%eqy, x inside the particles,

(3)

where A, p and A*, p* are the Lamé constants of the matrix and the
particle, respectively.

Based upon the replacement of the ensemble averages by the volume
averages of the stress and the strain, the integrals on the right hand side of
eqn (1) can be converted to the following expression

<oy > = (1—§¢)/\<6kk > 51‘j+2(1—§¢),u<6ij >+
1
+VZ/A T;0jkNk dA - \SRij (4)
o a

where ¢ is the particle volume fraction (= Y, V,/V) and A, is the surface
of a particle. In eqn (4), the remainder term is given by (with V, = 3", V,)

1
R = v /V {M(erk — € < ki >)bi5 + 2u(eij —E< ey >)} AV (5)
f

If £;; can be made as small as possible by choosing £ properly, then it may
be neglected from (4) to give

<oi;> = (1-€P)A<epp >0 +2(1 —€P)p < €55 > +
1
- iOikng dA
+v7 za:/Aa L0k (6)
It now remains to show how R;; can be made as small as possible by

a proper choice of . It is noted that the stresses at the interfaces between
the matrix and the particles are continuous. We approximate this continuity

condition by
u1—¢/
& dV = — —— €i; dV 7
/‘/m J u* ¢ Vp J ( )

With this approximation, it can be shown that

1

S ToE1s
(1_¢)u* +¢)
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leads to R;; = 0. In the following we shall use eqn (8) in the average stress
(6).

In the limit of a dilute concentration of particle when ¢ — 0, the stress
field within a particle is unaffected by the presence of other particles. For
simple particle shapes, the particle contribution to the stress can be explic-
itly obtained. For a sphere of radius a we have (Walpole, 1972),

I

145 [(K+30) n- 1w -] 6406 @

1+15(1 - v) 726 + 0(¢°), (10)

Il

= |F >

where the subscript ¢ denotes a composite property; K is the bulk modulus
(= A+ 2p) and v Poisson’s ratio. Other parameters in eqns (9) and (10)
are defined as follows

3K* - 3K B-1 uw*

3K +dp’ T 2B -5+ 7 -5 b=

(11)

4!

Accurate expressions for the composite Lamé constants (up to 0(¢?))
have been obtained by Chen and Acrivos (1978) and have been confirmed
by O’Brien (1979).

In this paper we are concerned with the opposite limit, namely when
the particles are in high concentration and ¢ is close to its maximum value
(almost touching particles). We adopt the procedure of a previous paper
by Phan-Thien and Karihaloo (1982).

We consider here the simple case of identical elastic particles of radius a
embedded in an elastic matrix (Fig. 1). At high concentrations of particles,
the load transfer in the composite occurs at the regions of near contact of
neighbouring particles. As the magnitude of the transfer load will be large
in the vicinity of the regions of near contact, the integrals in (6) can be
approximated by the sum of contributions from these regions:

/ Tk dA = Z z; H; (12)
A
@ B

where {z;} is the position vector of the contact region § and
H; = / ok dA (13)
Aap

in which A,p is the area of the contact region 3 of particle a.
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Fig.1 A Typical Microstructure of Particulate Solids

At high concentrations of particles we may replace V' by the volume of
one particle. Thus

<> = (1—§¢))\<Ekk >5ij+2(1—£¢)#<5i1 >+
3
e 20 (14)

where {p;} is unit vector defining the contact region (3 of the generic parti-
cle. Thus, to evaluate the bulk stress tensor, < o;; >, we need to evaluate
{H;}, the load transfer vector in the contact region 3. We consider this
question in the next section.

3. Load Transfer between two Particles nearly in Contact

We consider here the contact problem of two identical spheres of high
Young’s modulus (compared to the matrix modulus), see Fig. 2. When
the particles are nearly in contact, the thickness of the matrix layer, 2h,
can be approximated by a quadratic function of the radial coordinate 7:

h = ho +72/2a + 0(r*/a®) (15)
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where 2hg is the minimum thickness of the matrix layer between the parti-
cles.

Fig.2 The Load Transfer Problem between two Generic Particles

If the relative displacement of the centres of the spherical particles is
2Ah, we have (Fig. 2)

w*+w=Ah-1?/2a (16)

where w* and w are given by the Hertzian contact theory (Landau and
Lifshitz, 1959):

1- V2 q(TI) [ [
_ dodr', (17
v TE //Aa,, (r2 +1'2 — 277’ cos §)1/2 raer (17)

1 g(r') ' dodr'
= dodr . 18
w T E* //Aap (r2 4 7'2 — 277 cos 9)1/2 " 4 (18)

Here, A, is the contact area; ¢(r) the normal loading and, as before, an
asterisk denotes a particle property.
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Let I <’;—I) represent the following function

' o ' ' 7
(n El/ / T / 40 — 4r K QVTT, ’
T TJo (r2+ 1% —2rr cos§)l/2 m(r+r') r+r

(19)
where K (m) is the complete elliptical integral of the first kind (K (m) used
here is identical to K(m?) used by Batchelor and O’Brien (1977)), then
from (16)—(18), we get

1—-0v2 1-—p*2 R ' r ' r2
i — Ah—
( T + T )/0 q(r)I(T) dr = A 57 (20)

where R is the contact radius.

This problem has been studied by Tu and Gazis (1964). However, in
calculating the load transfer they regarded h to be constant and thus their
treatment does not reflect the physical problem being considered here.

4. Thin Plate Approximation

By Fourier transform techniques, Tu and Gazis (1964) found that, if the
matrix layer between the particles was thin enough, the displacement field
in the layer corresponded to plane stress deformation. This can also be
seen independently from the order-of-magnitude analysis of Phan-Thien
and Karihaloo (1982). It can be shown that if the matrix layer between the
spherical particles is thin, the integral (17) reduces to

21—
w(r) = 2=k hq(r), (21)
so that eqn (20) becomes
1 1 R [ ’l"l [ 7‘2

A "Var' =an -1 22
(2_V)khq+2k/0 q(r)I(T)dr A ¢

where ) i
k= M’ E* = _2_(_1.__1/_) (23)

E E~
We shall endeavour to find the solution of ¢(r) by transforming (22) to

an expression similar to that obtained by Batchelor and O’Brien (1977).
To do this, let us define f(r) by

(Q—ij) khq = AR[1— £(r)], (24)
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whereupon the integral equation (22) is transformed to

—v * R _ r 2
f(’"):(22 )%0 ;T%%d](r)dr+2 a3

Nondimensionalizing all linear dimensions by ¢ and denoting ¢ = Eki,

eqn (25) can be written as

Rfa 1 _ ! r2
f&%:@—ukA %%§%%1< )d - (26)

The magnitude of the load transfer vector is

R 2m(2 —v)a? [R/22r[1 — f(r)]
H= 271'/0 g(r)rdr = p /0 e 1 12 dr. (27)
From (24) and (27), the nondimensional load transfer is
Hk Rfa 2¢[1 — f(r)]
= —— = ———=dr.
. 27(2 — v)aAh /0 2hg + r? " (28)

5. Overall Moduli of Composite
The bulk stress tensor of the composite, eqn (14), can now be written as
<oy > = (1—f¢))\<5kk > 51J +2(1—§¢>)u<€ij >+

3(2
41— I/) Z pPip;j, (29)

where R is given by (28).
Following the procedure of Phan-Thien and Karihaloo (1982), it can be
shown that the constitutive equations of the composite are

<o > = (1—€P)A<epp >0 +2(1 —EP)p < €ij > +

(2-v)

)

NEX (< ex > 0ij +2 < ¢yj >), (30)
or

<oy > = [( —€Pp)A + NEN] < ek > 05 +

2M1 )

[( — &P+ NENJ < €ij >, (31)

20(1 v?)
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where N is a constant which depends on the packing mode of the particles.
For an isotropic random packing, N = 6.5.
The ratios of the moduli of the composite to those of the matrix are

Ae (2-v)(1-2v)

3 - 1o 20(1 - v)v MY (32)
He _ (2-v)

7; = (1-£¢9)+ m (33)

In order to obtain the overall moduli of the composite, it is necessary
to solve the integral eqn (26). The kernel of this equation has a weak and
integrable singularity. It can be solved by iteration.

For an isotropic matrix and particle both of which have a Poisson’s ratio
of 0.3, we have calculated the ratio of the shear moduli from eqn (33). The
results are shown in Figs 3 and 4. Since the primary interest is in the case of
high particle concentration and high particle modulus, large values of ¢ and
small values of ¢ are chosen. a/hg is approximated by ¢'/3/ (¢:,{3 — ¢'/3),
where ¢, is the maximum possible particle fraction (=0.63) for random
packing.

Ria=04
He
H
B—
0 ] ] | I
0 0.1 0.2 03 0.4 0.5

€

Fig.3 Ratio of the Shear Moduli when R/a = 0.4

Because of the non-linear nature of the contact problem, the elastic
properties obtained above depend upon the contact radius R, or the relative
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displacement Ah, besides the properties of the constituent phases. Figs 3
and 4 show the results for R/a = 0.4 and R/a = 0.5, respectively. The shear
modulus of the composite material increases with the chosen contact radius
R. In practice this will mean that the stiffness of the composite will increase
with deformation. It is expected that the present calculation will be more
accurate when ¢ is low and ¢ is high. When the stiffnesses of the matrix
and the particle approach each other, it is seen that the predicted u./p can
drop below 1.0. The reason for this is that we only take into account the
load transferred at the near contact areas between the particles and ignore
the load transferred through the matrix surrounding the particle. When
the stiffnesses of the matrix and particle are close, load transferred through
the matrix will become significant.

4.0

0 ] ! ] !
0 0.1 02 0.3 04 0.5

€

Fig.4 Ratio of the Shear Moduli when R/a = 0.5

The contact model can be approximately linearized by assuming R/a =
1.0. In this case, w* + w = Ah everywhere in eqn (16), so that the integral
equation (22) becomes

EESIpVA +1k*/R o1 () ar = A (34)
-V q 2 0 qr) r r = ’

The results obtained from the solution of the above integral equation
together with eqn (33) are shown in Fig. 5. Also shown are those calculated
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using the formula given by Willis and Acton (1976) which is accurate up
to the term of 0(¢?)

e () (o) v () (05)

+ 550 {(8 +1)16a(3%)+8820] + (1) (287° - 1)} 22 (4 - 1)

where a, 8, 7, u', Kk and [ are constants related to the moduli of the
matrix and particle.

It is seen that the results calculated from eqns (34) and (35) are fairly
close when ¢ is moderate, e.g. ¢ = 0.4. However, the results diverge for
large ¢. Therefore, it seems that at low particle concentrations the self-
consistent model (e.g. Willis and Acton, 1976) gives a more accurate result,
but at moderate to high concentrations the present linearized contact model
produces a reasonable prediction of the elastic properties of the particulate
composite.

6.0

Fig.5 Ratio of the Shear Moduli when R/a=1.0
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1. Introduction

In two-phase materials such as fiber-reinforced composites, the effective behavior of the
material is determined not only by the properties of the constituents, but also by their
geometry and their arrangement in the composite — the microstructure of the material
[1]. When calculating effective properties and local stress or strain fields, it is therefore
important to consider the effect of modelling assumptions concerning the microstructure.
In analytical approaches, the information on the composite’s microstructure is contained
implicitely in certain model parameters. For example, in the Halpin-Tsai equations, the
empirical fitting parameter is a function of the Poisson's ratio and of the reinforcing
phase's geometry [2]. For analyses by finite elcments (FE), the microstructure is defined
explicitely by the FE mesh. A certain degree of idealization is necessary to kecp the
problem computationally tractable. This leads to the definition of a model material that
is usually not representative of reality. On the other hand, a composite with a "random"
fiber distribution is hard to define and a given distribution can be fairly arbitrary. A
further difficulty lies in describing local concentrations of fibers or resin. However,
certain models do describe experimental data better than others. This was shown by
Adams and Tsai, who studied random fiber packings based on periodic arrays of
possible fiber positions [1]. Coming closer to observed microstructures, Pyrz has
explored ways to quantitatively describe the microstructure of unidirectional compositcs
and the influence it can have on the material properties [3].

The linear viscoelastic behavior of composites can be modelled micromechanically
based on the viscoelastic correspondence principle (VCP) [4, 5]. Using the
correspondence principle, one can derive the viscoelastic response from the elastic
solution by an inverse Laplace transform into the time domain. One can thus derive the
composite properties from the constituent properties by micromechanics. However the
inversc Laplace transform usually requires a numerical procedure. A useful
approximation is the so-called pseudoclastic assumption, which simply states that elastic
phase moduli in the elastic solution can be replaced by the corresponding relaxation
moduli to obtain the viscoelastic response. It will be shown later on that this
approximation can be quite accurate. Unidirectional composites are often modelled
using pseudoclastic versions of the Kerner or Halpin-Tsai equations [6] or other
micromechanics models [7]. This is mostly for transverse properties, whereas the
longitudinal response is usually considered to be approximatively elastic for continuous
fibers.
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The direction of loading with respect to the fiber axis in unidirectional laminates has
been found to be important when analyzing composites with a stress-dependent matrix
behavior in that it affects the mean stress in the matrix [8]. Thus, factors such as the
choice of array, which also affect the mean stress, as will be shown here, are also
expected to affect the calculated viscoelastic response.

The viscoelastic behavior of composites has been recognized to be too complex to
lend itself to an exact micromechanical analysis [9]. Many rescarchers accordingly rely
on the method of cells [10] or FE methods to solve, at the micromechanics level,
problems of composite creep or relaxation with various constituent material properties
[11] and microstructures [12]. Since the effective properties are influenced by the local
microstructure, it is important to understand the dependence of the results on the fiber
arrangement chosen for the model.

This paper examines the evolution of the stresse state in a unidirectional composite
under transverse tension and the influence of the FE model's unit cell on the calculated
effective viscoclastic properties. The viscoelastic response is shown to be related to the
initial, elastic stress ficld in the matrix, and is thus sensitive to parameters such as fiber
content and packing. A hybrid (COMP) unit cell is introduced that combines features of
the square (SQ) and hexagonal (HCP) arrays. It identifies the elements of elastic
solutions which are significant for the viscoelastic behavior and evaluates various
analytical approaches based on modified elastic models with respect to the FE results.

2 The influence of stress state on stress relaxation
Consider a linear elastic material

, O"'..
g;=—= and gy =& Egs. 1
26

where the primes denote deviatoric components of stress and strain.  For a material
consisting of two phases m and f of volume fractions (1— ¢) and ¢, respectively, the
total strain is

— Fm =/
€ =(1- Q)& + ¢€;; Eq.2
where the overbars denote volume average. Substituting Egs. (1) one obtains

-9 _p 1= _n ¢
& =——0; 6,0k + . ” Eq.3
1756, %1 "ok, i T, i Tk itk d

Material compliances can be obtained by differentiating (3) with respect 1o the total
Stress Oyt

_ 1- ¢ m 1- ¢ m ¢ f (D /
S = ?5”7 ik T ‘9_[‘<: 5ijBkl + E‘&T Adu + ‘56 6thk1 Eq.4

where Ay, and By, are influence coefficients relating the average deviatoric and
isotropic stress in a phase to the total applied stress,

—'m _ —=m _
0y = AjuOu » On =B;0y Egs.5
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and similarly for the fiber phase. Equation (4) is exact in the elastic case, and applies to
stress relaxation within the pseudoelastic approximation, by replacing G,, by G (1).
Consider a homogeneous material whose bulk modulus is elastic (constant) and
shear modulus is linear viscoclastic. If this material is subjected to a relaxation test in
simple tcnsion, the total stress relaxes over time but the ratios between different stress
components stay constant, and thus the stress coefficients Ay and By, are temporally

constant. In any type of stress state where stress ratios are kept constant the relaxation
behavior is entirely dictated by the stress coefficients. The situation in a composite is
similar: the phase arrangement influences the relaxation behavior simply through
changing the average stress state in the matrix. However, in a composite, the stress state
itself may change as the material relaxes, making the stress coefficients time dependent.

A crude relaxation model can be constructed by ignoring this time dependence and
assuming the average stress state in the relaxing phase to be constant, i.c. only its
magnitude is time dependent. For a two-phase composite with only G, relaxing this
means sctting the last three terms in (4) constant, to obtain

4 ]'¢ 1 1 m
Sy =8y =—| ———-—— |A] Eq.6
ikt (0 = Siju ) ( G () G,‘Z,j ikl q
giving the modulus
1 1 1- 1 1 m
——=—0+—¢ -—— A Eq.7
E () E 2 \G,() G,

Other components, such as the Poisson's ratio, may be similarly obtained.

In the particular case of rigid fibers, the stress cocfficients can be simply, and
exactly, related to overall composite moduli. A rigid fiber phase means that all strain
comes {rom the matrix. Using (1), we obtain

D P
&= o’i.'" Eq.8
2 ZGm Y 1
differentiation with respect to oy, yields the stress coefficients
2G, [ J&; 1
Ay = 1o _'; (——ﬁem 3 5.y5mn ]Smnkl Eq.9

In the case of continuous rigid fibers aligned with x5 (plane strain), v;; =0 and we can
write the particular components

2G,,(2+ vy) 2G,,(1+2v,,)

and Ay =-— Egs. 10
3(1-9)E, 2 3(1- 9)E,

111 =

These can be substituted into, e.g., (7) to yield a simple modcl for relaxation in terms of
the initial Poisson's ratio:
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E 12| Gn Eq. 11
E (1) 3 \G.(0)

The same can be done for other components, such as the time-dependent Poisson's ratio.

This result (Eq. 11) suggests that the composite's elastic Poisson's ratio carries the
essential information about the matrix's ability to relax, and may thus be used as an
indicator of the phase arrangement effect. It will be shown below that the relaxation

behavior is indeed a function of v3,.

3. Finite element models
3.1. FIBER ARRAYS

The most common modelling configurations for transverse propertics arc the square
array, with a 0° (SQ) or 45° (SFC) orientation [13] and the hexagonal (HCP) array [14].
In this study, two regular arrays with a total of four loading configurations were
examined (Fig. 1): square (SQ), face-centered square (SFC), hexagonal loaded along the
densest axis (HCPy), and hexagonal loaded along the least dense axis (HCPx).
Furthermore, a hybrid (COMP) array consisting of a combination of fcatures from the
HCP and SQ elements was analyzed (Fig. 1). This model has a broader distribution of
interfiber spacings than the SQ and HCP models, since the assembly of the different
constituent cells Icads to much smaller as well as significantly larger interfiber distances.
It is thus more "random" than a simple linear serics of different unit cells. The main
objective of the comparison between these arrays was to clarify the influence of the
packing on the stresses in the matrix and thus on the calculated elastic and viscoelastic
properties. The finite element program ABAQUS was used for the solution of the
associated boundary value problems.

The FE meshes consist of six-node, triangular plane-strain elements with a quadratic
interpolation function. A mesh refinement of four elements through the thickness of the
matrix between two neighboring fibers was found to be sufficient for convergence on a
stable solution. The following assumptions were made in all cases:

* A perfect bond between the fiber and the matrix, no interphase
« All cdges subjected to kinematic conditions of periodic symmetry

HCP

0406

resin-rich
area

HCP

Figure 1. Arrays for the finite clement analysis
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« Linear clastic fibers and lincar viscoclastic matrix
» Plain strain loading conditions, since the fibers are much stiffer than the matrix

3.2. FIBERS AND MATRIX: CONSTITUENT PROPERTIES

The varicty of commonly used fibers and matrices in current composites applications
calls for an approach to the problem that is as general as possible. For modelling the
clastic case, this can be done by using ratios of constituent properties. For a typical
glass fiber-reinforced polypropylene, for example, the ratio between the moduli is about
70, as is the case for a carbon fiber-reinforced epoxy system. Here the composite was
modeled with a modulus ratio of 70 and also with rigid fibers in order to clarify the
contribution of simple geometric effects and that of the interplay between deformations
in the fibers and the matrix. Poisson's ratios of 0.22 and 0.35 for the fibers and the
matrix, respectively, were used. Only isotropic constituents were considered.

A Prony series, which gives the modulus of a generalized Maxwell model (Eq. 12),
was used for modelling the viscoelastic behavior of the composite.

n
G() =G, Eg,- exp(— ——t—j Eq. 12
i=l 2
The relaxing shear and bulk components are given by two distinct series, and one
element per decade is usually sufficient to describe very accurately a stress relaxation
curve. For the present study a model matrix with a single rclaxation time T = 100s and a
relaxed shear modulus Goo = 0.5 G, where G is the unrelaxed modulus, was used. The
bulk modulus K was dcfined as non-rclaxing, which has been shown o be the case for
neat polymers [15]. As a result, the Poisson's ratio increascs with time [16] and can be
calculated from the clastic relationship (Eq. 13).
V(1) = 3K -2G()
2BK+G(@)
With few exceptions, such as aramid, the fibers can be assumed to be linear elastic over
the time spans considered.

Eq. 13

4. FE results: stress distributions and linear viscoelastic response

It has been shown [1] that the calculated elastic properties of the composite depend
strongly on the array that is used for the calculation. This array dependence is, however,
strongly reduced when results are compared on the basis of effective volume fraction
@/ ¢max - The dilfcrent effective stiffness values obtained for the composite at the same
actual fiber content (Fig. 2), are attributed to the elastic stress distribution, which varies
from one array to the next. Such a distribution, or stress spectrum, is shown in Fig. 3 in
the form of a frequency distribution of the stress in loading direction for a fiber content
of 30%. The fraction of matrix at a certain stress level is plotted as a function of the
local stress normalized by the stress applied to the composite. The mean value of the
distributions over the volume of the matrix, which is the stress cocfflicient A,,;, varies
from 0.89 for the SQ array to 1.02 for the SFC array. The SFC array, with the highest
mean stress value, also gives the lowest calculated modulus for the composite, while the
SQ array, with the lowest mean, results in the highest modulus. Similar variations are
obtaincd in plots of the stress distribution with varying fiber contents for a given array,
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Figure 2. Lffective elastic reponse of the composite for various arrays

Figure 3. Distribution of A%}, = G,7/a,, for various arrays, clastic analysis

with mean stress values going down to 0.49 for the SQ array with a fiber volume content
of 70%.

The calculated effective viscoclastic response of the composite with a fiber volume
content of 30% is plotted in Fig. 4 for different arrays . All curves are normalized by the
initial, unrelaxed modulus. Since only the shear modulus G relaxes from 1 to 0.5, the
tensile modulus E of the matrix decreases from 1 to 0.56 in plane strain through the
relaxation. All curves thus lie above the relaxation curve of the matrix, but no shift or
extension of the relaxation time is observed. A shift toward longer relaxation times was
described in [17], but this was attributed to a modificd structure of the polymeric matrix
material as a result of varying local curing conditions near the filler/matrix interface. A
change in the rclaxation times could, however, also be related to the geometric constraint
which the fibers present if the matrix material is nonlincar viscoelastic. Such effects are
discussed below.
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Figure 4 Normalized effective viscoelastic reponse of the composite for various arrays, ¢=30%

As for the elastic case, the normalized relaxed modulus can be seen to depend on the
array used for the calculation. Clearly this discrepancy occurs only for a non-zero
relaxed modulus of the matrix, and it increases with an increasing value of the latter.
The SQ array gives the least amplitude of relaxation, i.e. the highest normalized relaxed
modulus. On the other hand, the calculated relaxation curve for the SFC array is only
slightly higher than that for the matrix. The curves for the HCP and COMP models
coincide and lie between those for the SQ and the SFC modcls. The COMP model
however gives an initial, unrclaxed modulus which is lower than that obtained with both
the SQ and the HCP array. The agreement of the results from the COMP modcl in the
two loading directions despite the differences in fiber arrangement along the two axes
fits in part the condition of transverse isotropy desired of a micromechanics model for an
arbitrary unidirectional composite.

The appropriate choice of an arrangement of fibers in a monodisperse array is one
difficulty encountered in modelling unidirectional composites. It is especially important
to account correctly for the degrce of alignment and the homogencity of the fiber
packing in the viscoelastic case, since the long-term response, in particular the relaxed
modulus, is affcected by the stress distribution, and thus by the fiber arrangement and
spacing. Local variations in fiber content can affect the global, effective properties of
the composite [3].

The relaxation curves for the SQ and the SFC arrays may be seen as an envelope
within which arc the results for an arbitrary composite at the given fiber volume content,
since they represent loading along the densest and Icast dense line packing, respectively.
The results of the COMP model supports this: although it has a local regularity of fiber
packing, it contains resin-rich as well as fiber-rich areas, and yet gives a relaxation curve
that corresponds very closely to that of the most densely packed array, the HCP. This is
further supported by an examination of the influence of the fiber content. An increasing
deviation from the bechavior of the neat model matrix occurs with increasing fiber
contents of the composite (Fig. 5). Such an effect has been shown to exist in the
dynamic-mechanical behavior of two-phase composites, where the storage modulus at
low frequencies decreases to a smaller extent with increasing filler contents [18]. The
variation is related to the changing von Miscs, or octahedral shear, stress spectrum in the
matrix, which have been shown to determine the effective relaxation properties of
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Figure 5. Nomnalized effective viscoelastic reponse of the composite for various fiber contents, 1ICP array

Figure 6. Normalized strength of rclaxation as a function of mean initial elastic octahedral shear stress in the
matrix (left) and transverse Poisson's ratio vy, (right)

unidirectional laminates [8]. The effect of a higher fiber content is to raise the
normalized rclaxed modulus of the composite, shown plotied as a function of fiber
content for different models in Fig. 7. This graph confirms that the similarity between
the COMP model and the HCP array extends to fiber contents up to at Icast S0% for the
linear viscoclastic case. The results of the analytical models, discussed below, are also
given in Fig. 7.

It was found that the mean octahedral shear stress in the matrix decrcases with
increasing fiber content. Different mean stress values were obtained for various arrays
and fiber contents. The relaxation amplitude is found to be monotonically related to the
mean octahedral shear stress (Fig. 6a). This applies both to variations of the fiber
content and to the choicc of different arrays for the model.

The constant stress state model (Fig. 6b) works only in very dilute conditions, where
the elastic planc strain Poisson's ratio of the composite is close to that of the matrix.
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Nevertheless, vip scems to be a useful indicator of the relaxation strength to be
expected.

Two cffects must be considered in the relaxation of the composite:  the change of
modulus and Poisson's ratio of the matrix material and the associated redistribution of
stresses in the matrix. The shear modulus of the neat modcel matrix uscd in the present
study decreases by half through the relaxation, while the bulk modulus remains constant.
As a result, the Poisson's ratio of the matrix increases from 0.35 1o 0.42. For the lincar
viscoelastic analysis, the composite relaxation modulus at any time can be obtained by
the pscudoelastic approximation, i.e. from an e¢lastic FE calculation with the
corresponding matrix property, G(t), at the given time for the linear viscoclastic case.
This hints to a possibility of using simple analytical micromechanics models for
approximate calculations of the viscoclastic response of the unidircctional composites.

5. Evaluation of analytical models

Pscudoclastic micromechanical modcls have been used in which the matrix clastic
modulus E is simply replaced by the relaxation modulus E(t), among them the Halpin-
Tsai or related equations [6, 17]. Thesc models use fitting paramcters that take into
account the shape of the inclusions and are usually a function of the inclusion aspect
ratio. Comparable results are obtained for both square (SQ) and hexagonal (HCP) arrays
when the fiber content ¢ is replaced by an effective fiber content such as the fiber
content normalized by the maximum content for the given array. This approach gives
fairly good results for the viscoelastic behavior of particulate composites with relatively
low filler contents.

For fibrous materials and higher filler contents, however, these modcls become
inaccurate. This comes {rom the fact that they implicitcly assume that Poisson's ratio is
constant, while the better assumption usually is that the bulk modulus K is constant.
This can be helped by [inding an empirical, time-varying cxpression for the fitting
paramelers as a [unction of v(f). A better approach however is a solution such as the
composite cylinder assemblage (CCA) model [19], which includes explicitely both G(t)
and v(¢) of the matrix, i.c. in which the full time-dependence of the behavior of the
matrix is accounted for.

Figure 7 shows the normalized relaxed modulus as a function of fiber content for
different arrays modelled by FE and for CCA. The pseudoelastic Halpin-Tsai equation
gives a normalized relaxed modulus practically equal to that of the matrix for all fiber
contents and has thus been omitted from Fig. 7. This shows its inapplicability to
composites with higher fiber contents, as it does not reproduce the influence of the fiber
arrays on the relaxation behavior of the composite. The CCA bounds for the normalized
rclaxed modulus of the composite are slightly broader than the range given by the FE
results, but the average of the CCA upper and lower bounds is ncarly the same as the
average of the FE solutions. It should be noted that the COMP array, which combincs
features of the four regular arrays, gives results that are very close to those obtained with
the HCP arrays.

The differences between the models originate in part in the assumptions made on
fiber microstructure in the composite. While the FE models allow an explicit definition
of the array and the results of the Halpin-Tsai model can be made to correspond closely
to the FE solutions at least in the elastic case for certain values of the fitting parameter,
the CCA model is based on a quite different premise. In the latter, cylindrical units of
varying sizes are assembled (o completely fill an arbitrary space that is subjected to a
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Figure 7. Nommalized relaxed modulus E£_ /E, as a function of fiber content

mean displacement ficld. As was scen from the FE results, this affects very significantly
the stress state in the matrix and thus the calculated relaxation response.

Since the curves in Fig. 7 are predominantly concave upward, any pscudo-clastic
model can be uscd as an approximation, with the error staying low up to a {iber content
of about 5-10%. This is the rangc over which experimental studies on the influcnce of
fiber content on the relaxation behavior exist [17]. For higher fiber contents, there is
still a necd for experimental data to confirm the effects of the fiber-related constraints on
the relaxation behavior of composites.

6. Extension to non-linear viscoelasticity

Nonlincaritics in the viscoclastic responsc of polymer matrix composites can be caused
by scveral factors: time-dependent cffects, such as physical aging; changes of polymer
structure duc to uptake of humidity or solvents; changes of microstructure duc to flaw or
damage formation and accumulation in the matrix or at the fiber-matrix interface; and
sensitivity to the stress or strain Ievel. With respect to the latter, it is therefore clear that
the choicce of fiber array, which determines the local stress distribution, has an influence
on the calculated nonlinear viscoclastic properties of the composite. It is well known
that the gcometric constraint prescnted by relatively stiff fibers results in a strain
amplification in thc matrix. The associated local stress concentration leads to a
nonlinear behavior of the composite at low composite stress levels [20]. In such cases,
the only current way of dealing with the non-lincar properties of the matrix is by FE
analysis [11]. It has been shown that even in the linear case the gcometry chosen for the
unit cell affects the results of the analysis. Given the considerable differences between
the stress distributions in the matrix for the diffcrent arrays, nonlincarity of the matrix
material can be expected to accentuate the range of responses obtained depending on the
array uscd.

No shift in the relaxation times is observed for the present, lincar casc. The
characteristic time of the relaxation remains the same as that of the matrix for all arrays
and fiber contents. Furthermore, the composite response is lincar viscoelastic, with a
relaxation that is proportional to the applied stress. However, when the matrix bchaves
in a nonlincar viscoelastic way, the highly inhomogenous stress distribution in the
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matrix could lead to a significant shift and broadening of the relaxation time spectrum
for the composite. The broadening would be less important in the HCP array, where the
stresses in the matrix are more homogenous than for the SQ array. On the other hand,
the SFC array, with a higher mean stress, can be expected to have shorter relaxation
times than the others. Since the relaxation times of the matrix are usually shifted toward
shorter times with increasing stress, the more highly stressed areas in the matrix will
relax morc rapidly and contribute o a shortening of the composite's relaxation times,
while the lcss stressed arcas will extend them.

7. Conclusions

This paper examined the interrelation between fiber arrangement, stress distribution in
the matrix, and relaxation behavior. The normalized amplitude of relaxation is smaller
for the composite than for the matrix. The characteristic relaxation times are not
changed by the presence of the fibers in the linear viscoelastic case. The relaxation
behavior of unidirectional composites under transverse loading in the linear viscoelastic
domain can therefore be predicted by pseudo-elastic analytical modcels, provided these
explicitely include the evolution of the shear and bulk moduli of the matrix. It was
shown that the average stress state in the matrix is determinant for the cffective
relaxation behavior of the composite, and in particular the relaxed modulus. The
reinforcing phase cffectively reduces the relaxation of the matrix by imposing a
geomctrical constraint that depends on the packing geometry and fiber content. The
different unit cells thus lead o considerable differences in the calculated effective
viscoelastic response of the composite under transverse loading. The constraint effect is
reflected in the stress spectrum of the matrix as well as in the Poisson's ratio obtained
from an clastic solution. .
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CONSTRUCTION OF A STOCHASTIC MACRO FAILURE MODEL OF
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Abstract

A new failure process simulation model of unidirectional fiber reinforced composite
materials is introduced considering the effect of matrix shear failure as well as fiber
breaks based on a shear - lag theory in which a failure can occur randomly not only in
fiber elements but also in matrix elements. A stochastic static tensile failure process of
unidirectional composite materials is simulated by means of a Monte Carlo method
based on a repeated increment scheme using a finite difference technique.

Then a new dynamic failure process simulation model is proposed in which an
additional time variable is also incorporated by taking into account the mass of fiber and
matrix elements. An exact time - dependent stress redistribution process in a composite
failure model is evaluated by means of a finite difference scheme based on a time -
increment method. A statistical analysis is made on the dynamic failure model and
compared with the static one in terms of the different strength parameters, which shows
that the dynamic simulation gives a better estimation on the dispersion of strength data
and on the actual failure pattern.

Finally a macro model is proposed which is a new cumulative failure model composed
of elements of micro models based on the previous dynamic failure process simulation
models. This method is successfully used in estimating the statistical nature of strength
properties of composite materials of actual size, and it is shown that the strength of
composites depends clearly on the length but not on the width of a specimen.
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1. Introduction

The failure process of fiber reinforced composites is a very complicated accumulation
process of damage due to random failure of fibers, matrix and interface, which leads to a
catastrophic fracture. It should be necessary to introduce a reliability assessment system
to evaluate effectively a decrease in strength due to cumulative damage and defects taking
every aspect of variation into consideration in order to understand thoroughly the
statistical nature of strength properties of composite materials.

A Monte Carlo simulation is one of the most effective methods to analyze such a
complicated probabilistic phenomenon as a failure process of composites and several
studies have so far been carried out including the author's earlier work [1,2,3,4] . In
most of the past investigations, however, a simple failure model, which is called Rosen
- Zweben's model [5,6] , has been applied in which only random fiber breaks and
stress concentration in the nearest fiber to the broken one are taken into account. This
simple model leads to no more than a flat cleavage plane of a specimen.

In examining a tensile failure process of unidirectional fiber reinforced composites, not
only fiber break but also marked interfacial debonding between fibers and matrix and pull
- out of fibers are frequently observed especially in single and hybrid fiber composites
with a medium - to - high volume fraction of fibers. Such a complex failure
mechanism often leads to a complicated zigzag cleavage plane of a specimen. Although
a few investigations taking into account interfacial debonding have been carried out, the
interfacial failure criterion has not been clearly defined [7] . Therefore, it is important
to take interfacial strength into consideration in modelling a basic failure model of
composites.

For these reasons, the present paper aims at establishing a general assessment system
to predict a decrease in reliability of composite materials due to cumulative damage,
with a main system to simulate a stochastic failure process of composite materials
considering the effect of a scatter in strength of fibers and matrix and defects mixed in
during a fabrication process, accompanied with a subsystem of statistical analysis.

For this purpose, new static and dynamic failure process simulation models of
unidirectional composites are introduced considering the effect of matrix shear failure as
well as fiber breaks, based on a repeated increment scheme using a finite difference
technique. A macro model is also proposed, which is a new cumulative failure model
composed of elements of micro models based on the dynamic failure process simulation.
The statistical nature of strength of unidirectional composites is characterized and
discussed on the basis of these simulation models.

2. Basic Failure Model

Consider a lamina of unidirectional composite as shown in Fig. 1. Not only each
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reinforcing fiber arranged parallel to the direction of load has a varied fiber strength, but
also every part of a fiber has a different strength. So each of k reinforcing fibers
arranged at the same intervals is assumed to be composed of n links of "ineffective
length", &, where ineffective length means the minimum length in which a fiber does
not break at more than two places. And it is assumed that each fiber should break at the
center of a fiber element. Then nodal displacements, u;"!, u/, are set up above or below

fiber element, F(i, j), which is the i - th fiber from the leftside and the j - th element
from the top as shown in Fig. 2. And as for the matrix, the matrix element, M(j, j), is

introduced between nodes u; and u;, /, which is a characteristic of this model.

Considering a stress transmission mechanism in the tensile failure of unidirectional
composite, the mechanism is approximated by the shear - lag theory, which means that
fibers transmit only axial force and matrix only shear force. Therefore tensile strength is
allocated at n X k fiber elements and shear strength is allotted at (n-1) X (k-1) matrix
elements. Namely, random numbers based on a statistical distribution are generated
about fibers and matrices. o (i, j) is allocated at the fiber element, F(i, j), and = (i, j) is
allotted at the matrix element, M(i, j), respectively.

The strength distribution of fiber elements is given by the random number, o (i, j),
based on the Weibull distribution. As for the matrix elements, the same distribution of
shear strength should be assumed, but there are almost no measured data. So, supposing
the effect of fiber strength distribution to be the most important factor for determining
the strength of composites, a uniform shear strength, = is assumed in this study.

max’
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Figure 1. Simulation model Figure 2. Fiber and matrix elements
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From a shear - lag theory the equilibrium equation of force is given by:

d’u, Gh W
EA— +—(u — 21, +u,,) =0 (1<i<k)
EA———d%Zi +§Z-(u -u,)=0 (i=1) ( @
2 2 1)~ -
tcii{u,. Gdh .
EA dx* +7(uk—1_uk)=0 (l=k)

Where, u; : axial displacement of i-th fiber, E : Young's modulus of fiber, A ; cross -

sectional area of fiber, G : shear modulus of matrix, d : distance between fibers, h :
thickness of lamina.

Approximating the second - order differential equations such as Eq. (1) by the
following equation of finite difference :

d*u,  w-2u +ul

a'le - 8’ 2
the nodal displacement, u/, is given by [3] :
2
, W +ult + Glad_(ui—lj + “i+1j)
u = 5 3
o 14 Ghé
EAd

The tensile stress caused in the fiber element, F (i, j), is calculated from the difference

of nodal displacements, u/, uj!, by E(uj-uj!)/ ¢ and compared with the given strength,
o (i, j). X E (uj-uj')/é = o (i, j), then the fiber element, F(i, j), is supposed to be
broken.

When a fiber element is broken, the stress field disorder takes place around the broken
element. As it is assumed that a fiber always breaks at the center of an element, when
the fiber element, F(i, j), breaks, the nodal displacement of the broken point is expressed
by uj-12. Therefore when F(i, j) breaks as shown in Fig. 2, as for u/! [3] ,

dZu!'—l 4 uj—2 _ u:f—l uj—l _uj—l/2 4
38 8 6/2 @
and since uj-2=uj1,
dw'?t 4 i
& =§5—2(u,! P-ul™) (5)

similarly, as for u/,
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dzuij __4_( j+t _
dx* 387

w —u ) (6)

so that the equation of finite difference in the form of Eq.(2) is replaced by Eq. (5) for
uj and by Eq.(6) for »/! in this case.

On the other hand, shear stress caused in the matrix element, M(i, j), is calculated
from the difference between nodal displacements, u/, u,, 1/,by | G tan'{u, /-ujyd |, and
compared with  the shear strength of matrix, 7 (i, j). If | Gtan'{u,, J-ujVdl = <

(i, j), the matrix element, M(i, j), is supposed to be broken. In this case, the
equilibrium equations become as follows :

2.0
EAZY @(u,.f_l— /)=0
d{fﬁ (;ih ™
EATJI"’T(“{# “.j+1)=0

A tensile failure process simulation is carried out on the basis of a repeated increment
scheme [3] until it arrives at the ultimate fracture of a lamina.

3. Dynamic Failure Model

The basic failure model as described above is extended to a new dynamic failure model,
in which an aditioinal time variable is also incorporated by taking into account the
mass of fiber and matrix elements. From a shear-lag theory, the equilibrium equation of
force is given in the finite difference form :

EA/ ;. j i Gh, ; i1 i dzuij
-33—(11 —2u,.’ +u,.’ )+7(u,.’+1—2ui’ +u,.’_1)= m i (8)
where m is mass per unit length of a fiber including that of surrounding matrix region.
The dynamic problem is solved by means of Wilson's theta method. When the nodal

displacement, u;;, at the time, t + 6 At , is given by ujj (+ 6 Ap , Eq. (8) is

i

combined with the following two sets of equations, from which the acceleration, aij(t+
8 At), is obtained.

u! (¢t + OAL) = i (t) + 6Atu! (t)

2 2
.\ (6A3t) (1) + (OATt) i/ (¢ + 6A1) ©)
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i/ (1 + A1) =u{(z)+%{ag(t)+ug(t+em)} (10)

Using ”i](“’ 0 Abp), uj]( + At is obtained from the following equations of

interpolation:
(1 + Ar) = %{(e — 1)/ (1) + i/t + 6AY)} 1)
W (14 Af) =il (1) + %—t—{u’ () +ii/ (+ Ar)} (12)
W (t+ Ar)=u! (1) + Atii/ (¢)
2 2
+—(A;) ii (1) + %ij{ (t+ A1) 13)

It is known that 8 =1.37 gives an unconditional stable condition in the Wilson's
theta method. As a large value of @, however, decrease the accuracy, Wilson
recommends 6 =1.4 as practical value [8], which is adopted in this calculation.

The failure criteria of fiber and matrix elements are the same as in the stastic
simulation as described above. The equilibrium eqation is replaced in a similar way as
in the static case when a fiber or matrix element fails. The strain’ increases regardless
wether an element fails or not in the dynamic simulation, while the strain does not
increase until a successive failure at a certain strain level comes to an end arriving at an
equilibrium condition in the static simulation.

A statistical analysis is made of the strength and failure pattern distributions of typical
unidirectioiial CFRP(carbon fiber reinforced plastics) and GFRP(glass fiber reinforced
plastics) based on the dynamic failure model and compared with the static one in terms
of different strength parameters. The dynamic model is tile same as the static one and the
volume fraction of fiber is assumed to be 40 and 60 per cent. The strain rate is supposed
to be 102 ms’! and the interval of time increment is assumed to be At =2X 108 s, The
number of simulations is 30 for each case for the purpose of statistical analysis.

TABLE 1 shows a comparison between the mean values and the coefficients of
variation for maximum stress (o ), maximum strain (e ) and number of broken
elements in fiber and matrix based on the static and dynamic simulations. Judging
from these results, the dynamic simulation gives a larger o than the static one by
37.5 MPa in GFRP of V;=60 %, while there is no significant diifference in GFRP of

V; =40 %. On the other hand, the dynamic result gives a lower o . in CFRP (by
54.7 MPa in V; =60 % ) and gives a larger coefficient of variation in either V, =40 %
or 60 %. Asfor ¢, the static simulation gives a little larger value in botlh CFRP
and GFRP. It is noteworthy that there is a more significant difference, in the number
of broken elements : the number of broken fiber elements is larger in the dynamic
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'simulation, especially in GFRP, and the numbers of broken matrix elements are
considerably different in CFRP.

In the static model, a "static" stress redistribution is made until a next equilibrium
condition is attained, which causes a few "multiple fracture" as shown in TABLE 1 :
almost no "multiple fracture" is observed especially in GFRP. The static model also
tends to make the number of failures smaller in matrix in case of CFRP with a larger
number of failures in matrix. Hence the active generation of failures in a microscopic
region can be explained only by the dynamic failure model. Therefore, it is suggested
that both static and dynamic simulations give a little difference as far as the advantage
values of tensile strength and maximum strain are concemed, but that the dynamic
simulations gives a better estimation in terms of the dispersion of strength data and the
actual failure pattern.

TABLE 1. Comparison between static and dynamic simulations

% O max € max Number of broken elements

% MPa % Fiber Matrix

60 12976 1.045 13.70 4624

‘ 1.8) (10.5) (16.6) (23.2)

Satic 0 84535 0.959 15.02 22.04

6.7) (1.0) (18.8) 21.0)

CFRP

60 12249 1.017 17.13 55.67

. 9.6) (10.1) 43.9) (18.2)

Dynamic . 8267 0.958 18.73 30.90

94 7.7 40.4) (23.3)
60 7244 3.413 11.66 106.50

' (10.0) (12.6) (1.6) 9.8)

Satic 0 5023 3.046 11.82 70.24

©9.9) (13.6) 8.3) (14.0)

GFRP

60 7619 3.247 17.83 106.47

, (11.6) (15.0) @71.7) (10.9)

Dynamic ., 5026 2.920 16.03 75.23

9.7) (19.3) 40.3) (16.8)

Note : Figures in parentheses indicate coefficient of variation (%).
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4. Macro Model and Size Effects in Strength
4.1 CONSTRUCTION OF MACRO MODEL

The basic failure model as described above is a "micro” model as indicated by the white
broken line in Fig. 3 which is a typically observed final failure pattern of unidirectional
CFRP [9] . Although such a micro model explains well the actual failure pattern of
composites as described above, there remains a practical problem on what kind of
statistical correlations exist between the simulated strength of "micro” models and the
observed strength of "macro" region of composites of actual size. Consider, for
examples, a rectangular region of 10 mm in width and 50 mm in gauge length in a
tensile test specimen. As this region is equivalent to an assembly of about 5,000 micro
models, composied of 165 X5,000 elements, some kind of macroscopic considerations
is required for simulating the failure process of such a "macro" region.

For this reason, a macro model is proposed which is a new cumulative failure model
composed of elements of micro models based on the dynamic failure process
simulations. Consider a macro model composed of m X n micro model elements ( m
rows in longitudinal direction and #n columns in transverse direction ) as shown in Fig.
4. A longitudinal strength, o, G, j), is allotted at an element (i, j) according to the
Weibull random numbers, which are given by the Weibull parameters deribed from
0 .0 data based on the dynamic simulations.

Figure 3. Micrography by SEM observation Figure 4. Macro model
- fracture surface -
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A tensile failure simulation is made on a macro model. As the number of elements is
as many as several thousands, it is not practical to solve the equilibrium equations of a
system successively based on a strain increment scheme by means of a finite element
method. Hence only the maximum load (ultimate strength) of a macro model is
simulated based on a load increment scheme, in which a uniform stress is first applied to
each element and stress concentration factors are then given to surrounding elements
around a broken one : a stress redistribution is repeated by judging a failure of elements
on the basis of successive comparisons between stress and strength of an element.

The stress concentration factors are calculated in advance for various failure patterns by
means of a finite element method and stored in a data file. Then, if a failure occurs, the
failure pattern is searched and the corresponding stress concentration factors are given to
the neighboring three elements around a broken one on both sides : k(i, j £ 1), k(i, j +2)
and k(, j+3), ane the element stress is increased to k - o in a next'step. A failure of a
macro model can be assumed in the following two ways :i) at least one element fails in
every column of n columns (series - parallel type), ii) all elements fail in either row out
of m rows (parallel - series type). The former criterion is adopted in this study in order
to allow a longitudinal crack to extend between micro model elements, which is often
observed in a failure of unidirectional composites.

First, a macro model simulation is made on a small - scaled model composed of 10X
10 elements and compared with a FEM simulation. A comparison is made between the
resulting failure patterns of elements in macro model and FEM simulations on the same
models with the identical strength distribution. It is shown that failure patterns are
apparently similar in both cases, though a macro model simulation is not intended to
express an exact failure pattern. The simulated ultimate strength is 872.7 MPa by FEM
and 891.7 MPa by macro model, which shows the validity of a macro model
simulation.

Then, a macro model simulation is camied out on unidirectional CFRP and GFRP
(V]=60%) of 50 mm in length and 10 mm in width corresponding to a region over gauge
length in a tensile test specimen. The simulated results are shown in TABLE 2, in
which the micro model simulations in TABLE 1 are also listed for the purpose of
comparison. The mean values by macro model are 61-66% as large as those by micro
models, which shows that the size effect in strength is remarkably large. On the other
hand, the coefficients of variation by macro models are considerably smaller than those
by micro models, which reflects a general statistical tendency that the variation becomes
smaller as the number of elements increases.

The theoretical strength of macro models is expressed by the following Weibull
analysis which is also shown in TABLE 2. The probability that an element does not
fail under a stress o, R(o ), is given by :

R(0)= exp(——;;) (14)

where a is the shap parameter and B is the scale parameter of a Weibull distribution.
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So that, the probability of failure of a macro model composed of m columns and 7 rows
under the failure criterion (i), F1 (), is expressed by :

F(0)= [1 - {exp(%;)}m ] 15)

and the probability of failure under the failure criterion (ii) is given by :

F(o)=1- |:1 - {1 - exp(—--;'—:)}n} (16)

The stress levels corresponding to the probability of failure : F;(o) or F,(0)=0.1,
0.01, that is, the probability of survival : R,(a) or R ¢ )=0.90, 0.99, are shown in
TABLE 2.

In comparing the simulated result with the theoretical one under the criterion (i),
corresponding to the failure criterion of a macro model, the former is smaller than the
latter by about 25%, since the latter is based on a simple probabilistic theory in which
the effect of stress concentration is neglected. The failure criterion (ii) appears to be
irrational, as it gives larger values of strength than the mean values of a macro model.

TABLE 2. Comparison between micro and macro model simulations

CFRP GFRP

. 1224.9 761.9

. . Micro Model 9.6) (11.6)
Simulation 2052 1638
Macro Model 2.9) @.8)

Criterion (i) R=0.90 928.1 573.6

Weibull R=0.99 1000.5 598.1
Criterion (ii) R=0.90 1383.0 853.5

R=0.99 1398.2 867.5

Notes : Units in MPa. Figures in parentheses indicate coefficient of variation (%).

4.2 DISCUSSIONS ON SIZE EFFECT IN STRENGTH

It is well recognized that there is an obvious size effect in strength of composite
materials. A simulation is made on the size effect in strength of unidirectional CFRP
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(V;=60%) by varying the number of elements in a macro model. The number of rows

is varied as one - forth, one - half and two times in comparison to the standard one to
examine the size effect in length. The mean values analyzed by assumed normal
distributions based on 30 simulations in each case are shown in Fig. 5, together with
the theoretical values based on the simple Weibull theory under the criterion (i).
Similarly, the number of columns is varied as one-forth, one - half and two times in
comparison to the standard one to examine the size effect in width. The simulated and
analyzed results are shown in Fig. 6.

In comparing Fig. 5 with Fig. 6, the simulations show that there is an obvious
tendency that the strength depends on the length : the strength is decreased but the rate of
decrease becomes dull as the length is increased. The Weibull theory gives a similar
tendency. On the other hand, the strength does not appear to depend on the wigth in the
simulated results. The size effect in width is small also in the theoretical results : even
if the number of columns is 10, the strength would be increased only to 1,063.1 MPa.
As there is the effect of stress concentration in the simulations, the increase in
reliability due to the increase in numbers of columns is cancelled by the decrease in
reliability due to the increase in number of elements.
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5. Conclusions

In this study, a reliability assessment system is proposed on the basis of static and
dynamic failure process simulations of unidirectional lamina models in order to examine
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the statistical nature of strength properties of unidirectional composite materials. The
main results are summarized as follows :

1) A successful simulation is carried out tracing faithfully an actual failure process by
considering interfacial debonding between fibers and matrix as well as random fiber
breaks. The reliability and damage tolerance levels of unidirectional composites are
evaluated quantitatively based on the simulations.

2) An exact time - dependent stress redistribution process due to progressive failures is
evaluated based on the dynamic simulations, which give a better estimation in terms of
the dispersion of strength data and the active generation of failures than in the static
simulations.

3) A macro model is proposed which is a new cumulative failure model composed of
elements of micro models based on the dynamic simulations. This method is successful
in estimating the statistical nature of strength of composite materials of actual size.
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Abstract

A glass fibre (GF) / polypropylene (PP) commingled yarn was selected to investigate the
relationship between impregnation mechanisms and processing conditions during consoli-
dation. Furthermore a carbon fibre (CF) / polyetheretherketone (PEEK) commingled yarn
was studied. Laminates out of these material forms were fabricated by hot pressing.
Microscopy of cross-sections and density measurements helped to examine the quality of
impregnation and consolidation.

Based on microscopic observations, an impregnation model for the qualitative description
of the consolidation behaviour was generated. It can be used to describe variations in void
content over laminate thickness as a function of bundle geometry and combinations of
processing parameters. The relationship between processing temperature, holding time, and
applied pressure, required to reach full consolidation, were evaluated.

Results of transverse flexure tests were used to correlate the mechanical properties with
the impregnation quality. For each kind of material the optimum processing window for
manufacturing of laminates could be suggested.

1. Introduction

Thermoplastic resins as matrix materials for advanced composite materials have many
advantages over thermosetting composites. For example, their fracture toughness is very
high compared to thermosetting resins, they do not require extra time for chemical reaction
after processing, and there is no need for sub-zero temperature storage [1]. On the other hand,
thermoplastics at their processing temperature have viscosities of 500-5000 Pa-s compared to
thermosets which possess values less than 100 Pa-s. The high viscosity imposes many
problems in the manufacturing process of thermoplastic composites [2]. Along with poor
dispersion of fibres in the thermoplastic matrices, the quality of impregnation has been one
of the major concerns.
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To make impregnation and consolidation easier, some intermediate material forms have
been developed, such as powder impregnated fibre bundles and commingled yarns [3, 4].
These can be further consolidated into fully or partly impregnated, stiffer tapes, or directly
processed into final part geometries during an on-line impregnation and consolidation
process, e.g. by filament winding or pultrusion.

The present study is intended to provide a deeper insight into the impregnation and
consolidation behaviour of commingled yarns during a compression molding process. For
this propose, a GF/PP and a CF/PEEK system were selected. An impregnation model was
generated to describe the consolidation process. Both approaches will help to predict under
which conditions of pressure, time and temperature the material forms result in perfect
composite macrostructures and good mechanical performance of the parts made out of them.

2. Materials and Evaluations
2.1 MATERIALS

The GF/PP - commingled yarn was supplied by Toyobo, Co. Japan. The yarn consisted of a
50 : 50 weight-% mixture of glass and polypropylene fibres. The melting peak, Ty, of the
PP-polymer was determinated by DSC analysis as 162.9° C. In addition, CF/PEEK com-
mingled yarn supplied by BASF, Germany was studied (exact description “PEEK/AS4 3k
RC40”). It was composed of a 60 : 40 weight-% mixture of carbon and PEEK fibres. The
melting peak, T, of the PEEK-polymer amounted to 345° C (Table 1).

TABLE 1. Properties of two commingled yams studied

Properties GF/PP CF/PEEK
Weight of one bundle Wy, 80103 gem  3.5-10°3 g/om
Real fibre volume fraction V¢* 0.26 0.53
Assumed fibre volume fractions in fibre

rich areas Vf 0.05 0.53

Fibre radius rf 8.5 um 3.5 um
Density of reinforcing fibres pf 2.56 g/cm3 1.78 g/cm3
Density of matrix fibres ppy 0.905 g/cm3 1.332 g/cm3
Theoretical density py 1.337 g/em3 1.569 g/cm3
Area of fully consolidated bundle Ay, 0.6 mm? 0.24 mm2
Area of matrix in a consolidated bundle Apy 0.44 mm? 0.11 mm?
Average width of a fibre bundle y 2000 pm 1250 pm
Height of fibre bundle h 300 pm 192 pm
Distance x 55.5 pm 22.5 um
Initial void content Xy 15.6 % 10.5 %
Kozeny-Carman constant kg, 700 80
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2.2 MANUFACTURING OF LAMINATES

Each laminate contained 16 layers of unidirectional "prepreg" sheets, which were made by
winding individual bundles onto an aluminum plate, with subsequent two lines welding of
bundles at both ends of the plate. Consolidation of the laminates was performed by using a
small steel mould with a square cavity and a laboratory hot press. Once the mould reached
the desired temperature (185 °C-220 °C for GF/PP; 380 °C-420 °C for CF/PEEK), pressure
was applied. Different impregnation pressures (0.5, 1.5 and 3.0 MPa) and holding times (3,
5, 10, and 20 min) were selected to identify the impregnation mechanisms as a function of
processing conditions. The composite panels were cooled rapidly to room temperature in
order to avoid formation of voids in the resin-rich areas during cooling [S]. The average
cooling rate was about 30 °C/min.

2.3  VOID CONTENT

Density measurements were carried out in order to correlate consolidation states with
apparent void contents in relation to the processing conditions. The laminate density, pj,
under different processing conditions was determined according to ASTM-792. The
theoretical density, p,, of a fully consolidated composite part could be estimated by the
following equation:

Pf * Pm

Pt

Wt epm + Wp *pr 6))

where pg and p, are the densities and Wy and W, the weight fractions of fibres and matrix,
respectively. The apparent void content, X, was then determined by:

_Pt-Pi

\4
Pt )
However, when a consolidated part with higher fibre volume fraction was obtained (due
to a large matrix volume squeezed out of the processing mould, i.e. when p>py), Xy was set
to be zero.

24 MECHANICAL CHARACTERIZATION

Characterization of mechanical properties as a function of impregnation conditions was
carried out by using a small transverse flexure (three point bending) testing facility. The
length of the span amounted to 40 mm; the width and thickness of the specimens were
about 10 mm and 3.3 mm, respectively. The cross-head speed was set to 1mm/min.
Transverse elastic constants and flexural strength were determined according to ASTM
standard D-790.

3. Consolidation of Laminates

Based on microscopic observations and previously developed processing theories, an impreg-
nation model for the qualitative description of the consolidation behaviour in laminates made
out of commingled yarn was generated. By examining the consolidation process in each fibre
bundle, it can be found that although there existed differences in the states of impregnation
and compaction between each fibre bundle, the basic procedure was almost the same for each
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of them. Hence, by assuming that all fibre bundles undergo impregnation simultaneously in
a laminate and that all of them are identical in geometry, the consolidation of the entire
laminate can be described by the inward impregnation in a representative single bundle.

It was observed that the initially commingled polymer fibres and the reinforcing fibres
became unmingled when non-uniform tension was applied, because of the mismatch in
stiffness in the fibre direction (Figure 1). This may result in both a non-uniform distribution
of fibres in the final composite part and in insufficient impregnation of the reinforcing fibres
and therefore poor load transfer between them [6]. It can locally lead to a higher fibre volume
fraction in the fibre rich areas (Vg ), in comparison to the given fibre volume fraction (V¢ *).

Reinforcing Fibres

Matrix Fibres

FIGURE 1. Separation of the different fibres due to streching
of the fibre bundle in fibre direction

For the impregnation model it was assumed that the cross-sectional shape is a rectangle.
Figure 2 shows this acceptance. Now, the mechanism can be described by a kind of film
stacking process.

Matrix Fibres

N T
\){ e

Reinforcing Fibres

FIGURE 2. Theoretical cross-sectional shape of a single commingled
yarn bundle

The processing time required for the consolidation can be evaluated by Darcy's equation.
If it is assumed that the matrix impregnates the fibre network normal to the fibre axis, the
rate of impregnation is given by

dz K P dp

dt 1 dz 3)
where dp/dz is the pressure gradient, W is the melt viscosity, and Ky, the permeability of the
fibre tow. Once the local fibre volume fraction V¢ is known, the permeability can be
estimated by the modified Carman-Kozeny equation [7, 8, 91:
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2 3
re . (1-Vy)

Kp =
4 ko Vf 2 (4)

where r¢ is the average radius of fibres and k,, is the Carman-Kozeny constant. In this case,
the value of ko will be determined during the evaluation of void content by fitting a set of
selected experimental data. Assuming rg, |, ko and Vg are constant, the time to reach a

penetration distance z is

2
¢ = 2:p-k o° 12 . Ve
2 3
rf ° pﬂ (1 - Vf) (5)
where p, is the applied pressure. The penetration distance after a special time can then be
expressed as:
2 3
rf *Pa (1-Vy)
z(t) = . . ‘\/_tl
2ep-k, v2
f ©)

The cross-sectional area, Ay, of a fully consolidated (i.e. void free) commingled yarn
bundle can be obtained from the theoretical density, py, and the weight of unit length bundle,
Wb, according to

w b

Ab =AM+AF= p
t

M

This cross-sectional area was assumed to be the initial area of the reinforcing fibres before
pressure was applied. The presumed area of the matrix, Ap,, could be calculated by

Ay =V Ay ®)

and was imagined as a layer above the reinforcing fibre layer. The reinforcing fibres were
spread equal about the area Ay, Figure 3 shows this arrangement.

X AM

h| A, =Au+ A g

L —————

y
FIGURE 3. The film stacking process in the impregnation model

The distance "x" can be ascertained by the equation
x=Vpm-h O
which leads to a void content of the laminate before applying pressure of
A M Xe y X

Ay+A, Xey+hey ~ x+h

X yo =
(10
This value refers to the share in the voids of the whole laminate. The cross-sectional area,
Ay, is the area without voids. Hence, the area of the voids is as large as the area of the
matrix.
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Based on the idea of such a representative bundle, the impregnation and consolidation
behaviour in a real composite laminate can be described. For example, if the total number of
fibre bundles, N, in the laminate manufacturing can be identified, the current laminate
thickness, H, can be evaluated from the following equation:

NeAy(1+Xv)

H = = Hye (1 + Xy)
B (11
where B is the width of the processing mould and H, = N « Ap/B is the thickness of the
fully consolidated laminate.

In reality the matrix fibres are not completely unmingled and seperated from the
reinforcing fibres, so that the penetration distance "h" is shorter. Figure 4 shows the initial
situation when only a part of the fibres is unmingled.

matrix fibres

commingled fibres

h .
reinforcing fibres ‘Z

« >
y
FIGURE 4. Initial situation of the impregnation model

Between the matrix layer and the layer with the reinforcing fibres is a layer with
commingled matrix and reinforcing fibres. Hence the initial void content is lower, as well.
Assuming three fourth of the matrix fibres are still commingled with the reinforcing fibres,
this leads to a distance “x”, of only

x =14 Vpy - h (12)

Equations (5) - (12) provide relationships between void content, degree of impregnation
and processing variables in the consolidation process, namely, viscosity as a function of
temperature [p = p(T)], applied pressure, holding time and bundle geometry. To directly
introduce the void content in equation (5), z has to be expressed in terms of the remaining
void content:

Vo (13)

4. Results and Discussion
4.1 IMPREGNATION OF LAMINATES

The cross-sectional area, Ay, of a fully consolidated fibre bundle and the presumed area of the
matrix, Ap,, were calculated with equation (7) and (8) and are listed in Table 1. The values of
ko were determined during the evaluation of void content by fitting a set of selected experi-
mental data. Using the equations (3) and (4), the permeability of the fibre tow under different
pressures can be estimated. Besides the applied pressure, the permeability also depends upon
compaction of the fibre tow, i.e., it varies with the current fibre volume fraction during the
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impregnation process [3]. This effect is, however, neglected in the present approach.

The viscosity data of the polypropylene matrix were assumed to be the same as known
from a comparable carbon fibre/polypropylene composite system [10]. The matrix viscosity,
M, is almost constant at low shear rates and can be fit to an equation as follows [8]:

-3 5600
H=2.6+10 -exp (___.___ [Pa «s]
T [K] (14)

where T is the processing temperature, expressed in Kelvin degrees.
With equation (15), the matrix viscosity, W, of PEEK can be calculated:

p=113-10 eexp (1223 ) [Pa-s]
T K] @a5)
The time to reach a laminate with a certain void content Xy can be calculated combining the
equations (5) and (13):

2
2.pk, hZ (1- X ) )
X vo Vf
ty, = 2 ’ 3
re +Pa 1-Vyp 16)
Equation (17) calculates the resulting void content after a given time:
3 1
r p, (1-Vg) t
- . f a f
Xv(t)"xvo a th 2u Kk, )
a”n

The Carman-Kozeny constant kg was estimated by calculating the time to reach a fully or
partly consolidated laminate, txy, at different processing conditions and comparing it with
the actual results. For the glass fibre/polypropylene in this study ko amounted to k, = 700.
For the carbon fibre/PEEK system it was determined as k,, = 80.

In the case of the GF/PP yarn the fibre content in equations (16) and (17) is not the real
fibre content of the yarn (V£*) but of an estimated loosely packing of glass fibres in the fibre
rich areas and amounts to V¢ = 0.5.

0.15
Calculation for 0.5 MPa
Calculation for 1.5 MPa
Calculation for 3 MPa
0.5 MPa, exp.
15 II\DIIPa, exp.
><> 0.10 3 MPa, exp.
L ol
S i
e
=S S N . N - P e e e
o !
2 i
k]
o 005 [ T v N v o TR e e e e e e =
O
> i O
MMWTMNWEMW — —
i
0.00
0 10 20
Time t [min]

FIGURE 5. Void content as a function of holding time (T = 185° C) for GF/PP - commingled yarn
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Next, the predicted void contents at different processing conditions were calculated. At
first, a conservative initial void fraction was estimated from equations (10) and (12) to be
Xvo = 15%. For a temperature of 185°C this is a good assumption (Figure 5), but for higher
temperatures such as 200°C it is more realistic to assume a value of Xy, = 7% (Figures 6
and 7). The model can well describe the trend of laminate consolidation, although there was
significant scatter in the void content measured.

0.15 v r v
] ® Calculation for 0.5 MPa
®  Calculation for 1.5 MPa
R ey A Calculation for 3 MPa
O 0.5 MPa, exp.
> O 1.5 MPa, exp.
> 0.10 A 3 MPa, exp.
=
[
b
c
[e]
(&)
ke
'S 0.05
>
0.00
0 10 20
Time t [min]
FIGURE 6. Void content as a function of holding time (T = 200°C) for GF/PP - commingled
yarn
0.10
3 ¢ Calculation for 0.5 MPa
| 8 Calculation for 1.5 MPa
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i o1 O 05MPa,exp.
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FIGURE 7. Void content as a function of holding time (T = 200° C) with corrected initial void
content (GF/PP)
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Figure 8 compares the predictions and the experimental measurements of the CF/PEEK
system for a processing temperature of 380°C with Xy, = 10.5 %. It confirms that the basic
trend of laminate consolidation is well characterized by the model used in these experiments.

0.10 7
® Calculation for 0.5 MPa
= Calculation for 1.5 MPa
A  Calculation for 3 MPa
O 0.5 MPa, exp.
O 1.5 MPa, exp.
><> A 3 MPa, exp.
L4
c
[
£ 005 -
[e]
(&)
o
O
> ~ O
0.00 M Q
0 10 20
Time t [min]

FIGURE 8. Void content as a function of holding time at three different levels of applied
pressure (T = 380°C) for CF/IPEEK - commingled yarn

10
GF/PP -
sl Commingled Yarn
(Vi *= 26 %, V¢ =50 %)
T=200°C
'a' 6 (xvo = 7%)
o.
=
d‘: 4 X,<5%
2 [ T=185°C,
i /(xv., = 15%)
0 I 1
0 10 20 30

t [min]
FIGURE 9. Optimum processing window for commingled GF/PP fibres

If the void content is set to be an indicative for the consolidation quality, the optimum
processing window for manufacturing of laminates from commingled yarn can be evaluated
from equation (16), based on a critical level of void content of e.g. Xy = 5 % [5]. For the
GF/PP system the impregnation time amounts to
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2 ¢ M
) 349 10° —

X Vo p a (18)
considering, in addition, that the initial void content differs with temperature (Xyo, = 15 % at
185°C and 7% at 200°C). Figure 9 illustrates, that on the left side of the curves the actual
void content under the relevant processing conditions is still larger than 5%, whereas it is
lower for pressure-time-conditions on the right.

X
t=(1- Y

10
CF / PEEK -
Commingled Yarn
st (V§=53%)
I IT:380°C,(XV°=1O%)
E‘ 6 - XV = 5 %
=
R
g af
2t X,=2%
d
° 1 [l 1 L L 1 1
0 5 10 15 20
t [min]
FIGURE 10. Optimum pr ing window for ingled CF/PEEK fibres

For the CF/PEEK system the relationship between temperature, applied temperature, and
holding time to reach this desired level of void content can be expressed as:
X 2 K
Y ) 129 10% —
Pa

t=(1-

vo

This leads for Xy, = 10% to the processing window shown in Figure 10.

19)

4.2 RELATIONSHIP BETWEEN CONSOLIDATION AND MECHANICAL
PROPERTIES

4.2.1 Glass Fibres/Polypropylene

From the transverse flexure stress-strain curves it becomes obvious that the responses of
consolidated composite parts highly depend upon the processing temperature. There clearly
exists a yielding point and a yielding period in the stress-strain curve for the laminates
consolidated at T = 185° C. However, at high processing temperature (T = 220° C) the
yielding period is significantly decreased. With increase in applied pressure and holding time,
the yielding point is gradually reduced to a deviation point in the linearity of the stress-strain
curve. In addition, the ultimate stress value is clearly higher in the case of both high
temperature and pressure consolidation.
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Figure 11 and 12 illustrate the effects of void content on the ultimate transverse flexure
stress and the transverse elastic modulus, respectively. In both cases the mechanical proper-
ties get reduced with increasing amount of voids in the laminates. Due to difficulties in
flexural testing of the rather small samples, only the trends are given, i.e. the absolute
values were normalized to the average value measured for 5% void content.
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4.2.2 Carbon Fibres/Polyetheretherketone

Although the transverse flexure stress-strain curves of CF/PEEK looked slightly different
from those of the GF/PP samples, the same trends with regard to the effects of processing
parameters on mechanical properties were revealed (Figure 13 and 14).
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5. Conclusions

The impregnation and consolidation mechanisms in composites made out of commingled
GF/PP and CF/PEEK fibre bundles were investigated. The consolidation process of this
kind of material differs from other material forms because of the distribution of fibres and
matrix in the unconsolidated states. A model has been developed to qualitatively describe the
impregnation process during consolidation. Combined with the permeability model, this
model predicts the current void content and laminate thickness etc. as a function of bundle
geometry and processing variables (temperature, applied pressure and holding time). Good
correlations with the experimental data indicate the success of this approach. Based on a
desired, minimum level of void content (e.g. Xy = 5%) in the laminates, optimum
processing windows for manufacturing of composite parts from these materials are
suggested. In practice, the present results will give important ideas to the user about how to
optimize the manufacturing process, for example in case of laminate manufacturing, in order
to obtain optimum structure-property relationships.
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MORPHOLOGY/LOADING DIRECTION COUPLING ON THE TRANSVERSE
BEHAVIOUR OF COMPOSITES
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Abstract

Experimental and numerical results are presented on the transverse stress-strain response of
composite systems depending on the applied load direction. Coupon specimens of 6061-TO
aluminum alloy with square array of circular holes (hollow and with steel filament reinforcement)
were used to simulate an ideal regular composite system. A different load direction was obtained
by a rotation of the pattern of holes with respect to the longitudinal axis of the coupon sample.
Numerical results were obtained by FEM analysis on unit cells. A change in the load direction
results in the different unit cell to be used. The numerical results show a fair agreement with
experimental data. The results of the perforated and reinforced periodic systems indicate the same
trend in load direction dependency. This dependency is also affected by the presence of simulated
voids. The effect of void pattern has a significant effect on the stress at failure. The variation in
the failure stress due to change in load direction was also evaluated by preliminary macroscopic
analysis which takes into account the observed failure modes.

1. Introduction

The deformation characteristics of continuous fiber-reinforced composites depend, in general, on the
constituent phases as well as concentration and arrangement of the fibers. However, when the
composite is loaded in the reinforcement direction the fiber arrangement does not affect significantly
the overall material stress-strain response. In contrast, when the load is applied transversely the fiber
arrangement may have a primary effect on the transverse behaviour. Traditionally, this behaviour
is predicted based on a unit cell modelling by assuming perfect periodicity of the fiber arrangement
[e.g. see 1-4]. A two-dimensional view of three commonly used periodic arrangements of circular
fibers are: square edge-packing, square diagonal-packing and triangle-packing. These are shown
schematically in Fig. 1, where the dashed lines represent a unit cell. For the edge- (or diagonal-)
packing and triangle-packing systems, the fibers are located in a square and a regular hexagonal
array, respectively. In the square array arrangement, the distance between neighbouring fibers is not
constant in the sense that the distance along the edge is different from that along the diagonal of the
square. Therefore, this results in a significant direction-dependent behaviour of the square array
morphology for transverse loading. Numerical results for composites [4] and experimental data for
perforated materials [5] indicate that the square edge-packing system is the strongest whereas the
square diagonal-packing is the softest one. The third system, i.e. the triangle-packing, exhibits the
response which is somewhere between the above mentioned two arrangements.
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Fig. 1 A two-dimensional view of the different fiber arrangements
(a) square edge-packing, (b) square diagonal-packing, (c) triangle-packing

In general, for a specific periodic morphology the overall (macroscopic) transverse behaviour
is direction-dependent. This dependency may also be manifested in different failure modes. Thus,
there is a coupling between morphology and loading direction in the transverse behaviour of the
unidirectional composite materials. However, this coupling effect is difficult to investigate
experimentally for real composites due to variability of the fiber arrangements [6,7].

The objective of this work is to study experimentally the transverse behaviour of regular
composite systems depending on the applied load direction. Coupon specimens of 6061-TO
aluminum alloy with square array of circular holes (hollow and reinforced) were used to simulate
an ideal composite system. In addition, the effect of two different void arrangements on the overall
response was considered, in which the voids were simulated as holes without reinforcement.
Experimentally recorded stress-strain responses for perforated and reinforced systems are compared
with the results obtained by FEM analysis of unit cells.

2. Experimental and Numerical Approach
2.1 MATERIAL AND SPECIMENS

6061 aluminum alloy coupon specimens having a thickness of 3.175 mm with a width of 12.7 mm
and a testing length of 50.8 mm were used in this investigation. A square array of holes, as depicted
in Fig. 2, with a diameter d = 0.985 mm and a pitch a = 1.25 mm were drilled in the testing section
of the sample. An angle o, shown in Fig. 2, specifies the inclination of the array pattern with
respect to the longitudinal axis of the specimen. The specimens with o = 0°, 26.6° and 45° were
fabricated, as shown in Fig. 3. A change in the inclination angle c, results in a different unit cell.
The corresponding unit cells are depicted in Fig. 2 by dashed lines. Note that for oo = 0° and 45°
one gets the square edge-packing and diagonal-packing systems, respectively. A high strength steel
filament with a diameter d; = 0.99 mm was used as the reinforcement material. The volume fraction
of the filaments (fibers) was 0.47, which is a typical concentration for metal-matrix composites [6].
The tests were carried out on both types of specimens, i.e. unreinforced (perforated) and reinforced.
Before testing all specimens (perforated and reinforced) were heat treated to obtain a fully annealed,
TO, condition for the 6061 aluminum alloy matrix.

The mechanical properties of 6061-TO matrix and the steel wire were obtained from tensile
tests and are summarized in Table 1. Both materials, i.e. reinforcement and matrix, were assumed
to be isotropic.



Table 1 Mechanical Properties
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Material Young’s Modulus | Poisson’s Ratio | Yield Strength | Strain Hardening
E(GPa) v Gy, (MPa) Exponent, n
6061-TO Alloy 69 0.33@ 435 0.333
(fully annealed)
High Strength 203 0.3® 1725 0.111
Steel Wire

(a) From ref. [6], (b) estimated.
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Fig. 2 Various orientations of coupon specimens relative to lattice direction for square
array pattern

Fig. 3 Coupon specimens with various orientations of the lattice directions

The effect of void arrangement on the overall response of composite systems was also
investigated in the case of transverse loading. For each angle o = 0°, 26.6° and 45°, two types of
void arrangements were included, viz. square-pattern (S-P) and rhomboidal pattern (R-P), as shown
in Fig. 4. The voids were simulated as holes without reinforcement. The ratio of voids to fibers

was 25:75.
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Fig. 4 Armrangements of voids
(a) square-pattern (S-P), (b) rhomboidal-pattern (R-P)

22 TESTING PROCEDURE

All tests were carried out on an MTS servo-controlled system using ramp function for displacement.
The displacement was measured by a clip-on 25.4 mm gauge length extensometer and converted to
engineering strain. In the analysis two types of engineering stresses are used, a gross stress, S, and
a net stress, o, based on gross and net cross-section, respectively. An IBM PC computer was
employed to provide a command signal. The dat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>