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PREFACE 

The IUT AM Symposium on Microstructure Property Interactions in Composite Mate-
rials was held during the dates 22nd to 25th August 1994 in Rebild Bakker Conference 
Centre, situated in the heart of one of Denmark's most beautiful natural areas. 

Participation in the Symposium was reserved for invited participants, suggested by 
members of the Scientific Committee. The cooperation with the Scientific Committee 
is highly appreciated. 

The Symposium brought together 76 researchers from 15 countries representing a 
broad range of backgrounds relevant to the topic of the meeting. The participants 
represented the disciplines of materials science and engineering, applied mechanics, 
applied mathematics and scientific computations. The Symposium comprehensively 
addressed the analytical, numerical and experimental methods that provide an estimation 
of the overall, effective properties from microstructural data. The 41 contributions 
emphasized the significance of the microstructure morphology in understanding the 
nature and origin of a multitude of properties such as viscoelasticity, plasticity, strength 
and fracture for a variety of polymer, metal and ceramic based composite materials. 
Specifically, the Symposium examined and reviewed the current state of the art of 
micromechanical modelling, experimental investigations and morphological quan-
tification of composite materials' microstructure. 

The volume contains 35 papers published in an alphabetic order after the name of 
the first author. Much to regret of the Scientific Committee some manuscripts were not 
submitted. 

The financial support of the IUT AM, the Obels Family Foundation and the Institute 
of Mechanical Engineering, Aalborg University, is gratefully acknowledged. 

Finally, I would like to express my appreciation to the members of the Local 
Organizing Committee for their help which cannot be overestimated. 

Aalborg, November 1994 

Ryszard Pyrz 
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COMMENTS ON A VARIATIONAL MICRO-MACRO MODEL FOR RANDOM 
COMPOSITES AND THE INTEGRATION OF MICROSTRUCTURAL DATA 

M. ARMINJON, A. BOTIERO, B. GUESSAB, S. TURGEMAN 
Laboratoire "Sols, Solides, Structures", Universite de Grenoble & CNRS 
B.P. 53X, 38041 GRENOBLE cedex, France 

1. Introduction 

Any model for homogenization-localization tries to establish, in a "macro-homogeneous" 
situation, a correspondence between macro-fields and micro-fields of stimulus and 
response (e.g. strain and stress, or pressure gradient and filtration velocity, etc.). More 
exactly, from the data of the asymptotically unique value of the macro-stimulus S, a 
micro-field s, depending on the micro-position x, is first deduced, using the local 
constitutive equation binding sex) to the response rex): 

rex) = f(s(x), x). (1) 

This essential localization step is generally envisaged as the solution of a boundary value 
problem for a partial differential equation (PDE), and a first difficulty is to specify which 
is the domain whose boundary is considered and which boundary values should be 
relevant. For one does not wish to schematize directly the real physical situation, in 
which some external input, such as a surface traction, acts at the boundary of the piece of 
material: It leads only occasionnally to macro-homogeneous fields, and this only in some 
(central) part of the whole piece. Whereas one seeks to study in detail what happens in a 
such macro-homogeneous part. In a such part, "equivalent macro-elements are 
constrained by one another, not by the apparatus" (Hill 1984), thus the real surface 
tractions (say) at the boundary of one such macro-element are inherently unknown. Due 
to the asymptotic nature of the notions of macro-homogeneity and statistical 
homogeneity, the relevant ideal situation is that of an infinite medium in which a macro­
homogeneous situation prevails, although the micro-fields fluctuate randomly in the 
whole space. Considering a PDE in an infinite domain often leads, however, to 
mathematical and numerical problems, e.g. as to the definition of convolution integrals 
(this is well-known in the case of Poisson's equation). Moreover, due to the random 
fluctuation of the micro-fields, the boundary conditions remain undetermined, i.e. one 
does not have limit conditions at infinity. One may only hope that uniform conditions at 
infinity, as they are postulated e.g. in inclusions problems, are relevant to this situation. It 
was proved by Sab (1992) that, for an ergodic random elastic material, the uniform 
conditions for stress (at the boundary of a cube with side R), and the uniform conditions 

R. Pyrz (ed.), IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, 1-14. 
© 1995 Kluwer Academic Publishers. 
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for strain, give as R~oo the same macroscopic behaviour [this asymptotic equivalence 
was conjectured, though not in a closed mathematical form, by Suquet (1982)]. Yet this 
result does not seem to guarantee that uniform conditions at infinity are correct 
conditions to determine the micro-fields in the infinite medium. This is all the more so for 
non-linear behaviour, for which the sensitivity to the boundary conditions may be very 
strong, so that one might find a chaotic behaviour, like a turbulent flow. 

A second difficulty is this: the microscopic constitutive equation [Eq. (1)] is not 
really known, certainly not as a determined function of the local position x (save in 
exceptional cases). Actually one has to assume a phenomenological form, in which the 
inhomogeneous local behaviour appears directly as a dependence, not on x, but instead 
on a set X of internal variables (here collectively designed under the short name "state"): 
crystal orientation, hardening parameters, etc. These variables may include parameters 
of the local geometry- e.g. those defining the size (cf the Hall-Petch relation) and the 
shape of any grain containing a point x where the state is assumed to have a given 
value l . And what may be measured, or rather estimated, by microscopic observations, is 
generally not the dependence of X on x, but instead a set of statistical functions that 
characterize indirectly this dependence X=F(x). Thus if one seeks to enter an 
experimental characterization of the microscopic structure into whatever micro-macro 
model, so as to compare its predictions with experimental findings (regarding either the 
macroscopic behaviour or the micro-fields), the following occurs. One has to reformulate 
the model so that its algorithm for homogenization-localization can be expressed in terms 
of the state variable X instead of the local position. For example, if a polycrystal 
simulation is to be done by using a self-consistent model, it turns out to be possible to 
pass from a general integral formulation, based on the relevant Green tensor, to an 
interaction formula relating the average values of stress and strain in a given crystal 
orientation to the macro-averages (Molinari et al. 1987, Lipinski & Berveiller 1989). Of 
course, any such reformulation involves some closure assumptions; but only in that way 
can one take into account the existing microstructural information (e.g. the texture 
function). Note, however, that even for the case where the reformulation is possible, it 
does not solve the first problem, that of the appropriate domain and boundary conditions. 

It seems better not to stake all on formulations of the homogenization­
localization problem as a boundary value problem for a PDE, when (i) the boundary con­
ditions and the local behaviour are not known in the desired form, and (ii) the solution 
may depend sensitively on the boundary conditions. Thus it has been determined which 
general statistical conditions must be fulfilled by the medium itself (i.e. by the spatial 
distribution of the states) and by the micro-fields, in order that it just make sense to 
formulate, as explained hereabove, a micro-macro algorithm in terms of the state variable 
(Arminjon 1991a). It has also been examined the extent to which the solution of the 
localization problem in terms of the state variable X may provide a physically acceptable 
solution in terms of the position x in physical space. This was obtained (Arminjon 1991a) 
in combining the solution of the "compatibility problem" for deformed aggregates 
(Arminjon 1991b) with the statistical theory of the distribution of the states. We 

I Of course, if one includes geometrical parameters into the definition of the state X, then the latter will 
be a piecewise constant function of the position x, i.e. one adopts the scheme of an aggregate. 
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emphasize that the latter theory considers a deterministic medium, i.e. a non-random 
function X=F(x). 

In this paper, a more detailed comparison of this new statistical theory with the 
classical approach of random media is given. The necessity to supplement Hill's 
(1967,1984) macro-homogeneity conditions by additional statistical assumptions, in 
order to justify the reformulation of micro-macro problems in terms of the state X, is 
illustrated. The algorithm of the proposed variational model is briefly recalled. Its basic 
assumptions: (i) assumptions on the dependence of the inhomogeneity parameter ro on 
the macro-stimulus S, (ii) the principle of minimal inhomogeneity (Arminjon et al. 1994), 
are examined in more detail than before. Lastly, the integration of microstructural data 
into micro-macro models, as proposed by Arminjon et al. (1993,1994), is recalled, justi­
fied theoretically and experimentally checked for the case of fiber-reinforced mortars. 

2. Statistical Homogeneity: Deterministic vs. Ergodic-Random Definition 

2.1 COMMENTS ON THE CLASSICAL (ERGODIC-RANDOM) DEFINITION 

The notion of statistical homogeneity is related to invariance by translation in some 
statistical sense. There already exists a general frame for discussing this and other 
statistical aspects of micro-macro models: this is the theory of ergodic random media 
[e.g. Beran (1968), Kroner (1986); see also Sab (1992)]. In this theory, all micro-fields, 
including the internal variables (thus the state X) depend on the micro-position x and on 
the realization mEn, where the set of possible realizations, n, is assumed to be equipped 
with a probability measure P. Physically, one may think of the realizations m as of 
different samples of the inhomogeneous medium (Kroner 1986). The law P is not 
specified physically, only the so-called "spatial laws" may be physically defined for any 
random field Z(x,m), using the notion of the ensemble average. The ensemble average 
«Z» of some random variable Z, i.e. of some function defined on the set n(e.g. Z(m) 
might be the maximum stress in the realization m), is the limit 

1 N 
«Z» = lim - L Z(m;). 

N-+xJN ;~l 
(2) 

The existence of this limit and the fact that it does not depend on the sequence (m;) [for 
"P-almost every sequence (m;)" ] are a consequence, within the assumed existence of the 
law P, of the "strong law oflarge numbers" [e.g. Guichardet (1969)]. From the physical 
point of view, it is rather the reverse: we do not know the law P, but we might check 
whether the arithmetic average in Eq. (2) does not fluctuate too much, provided we take 
enough samples. Then one defines the spatial laws, e.g. for the random field X. A law of 
first-order (for X) is, at given x, the probability law 

{ I ifX(x,m) EA , 
P.(A)=«tPxA»' tPxA(m)= o otherwise (3) 
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where A is any [measurable] subset in the set of the values of the considered field, here 
the space of states E. A law of order 2, Px x ,is defined in a similar way [take A in E 2 

I 2 

and check whether (X(XI,OJ), X(X2,OJ» is in A), and so on. The statistical homogeneity of 
a random field, e.g. the state X, is defined as its stationarity, i.e. all the spatial laws of X 
are assumed to be translation invariant (px+b(A) = Px(A), etc.). For any stationary field 
Z(x,OJ), the ensemble average «Z(x»> (an average over a sequence of different samples 
OJ, taken at the same place x in any sample), is independent ofx. Then a stationary field Z 
is said to be ergodic if the asymptotic volume average2 , Z, (i) is well-defined and 
independent of the realization OJ (for almost any OJ) and (ii) is equal to the ensemble 
average «Z». 

This is an interesting theory. The reasons we find to formulate and to use a 
different theory are the following: (i) It is rather difficult and complex, appealing to quite 
advanced domains of probability theory; this may be the reason why definite statistical 
notions are not often used in the literature on mechanical micro-macro models. (ii) It 
may hardly be said that the notion of statistical homogeneity that emerges from this 
theory is an operational notion: the reason, developed by Matheron (1989), is that in 
many relevant physical situations, not only do we not have an infinity of realizations of 
the inhomogeneous material, but actually we only have one 3 . Hence, we cannot really 
check whether our material is stationary, and we even less can check whether it is 
ergodic; even if we would have enough realizations, we could not assess the extent to 
which our material is ergodic, because the definitions are too involved. (iii) Actually, all 
what we need for our purpose is the volume average. We thus have no reason to intro­
duce an ensemble average and try to equate this to the asymptotic volume average Z. 

2.2 COMPARISON WITH THE PROPOSED DETERMINISTIC DEFINITION 

The deterministic approach has been presented in some detail and in a mathematically 
rigorous form by Arminjon (1991a), so here we give only a sketch and some new 
comments. For any domain D of finite volume in the medium, we define the spatial 
distributions probabilities of the state X in D, of any order, by using only the volume 
measure V Thus the law of order 1 is given by 

(4) 

The laws of order 2 are defined in a similar way: 

2 I.e. the limit volume average in larger and larger domains (cubes, say), r~hedindependently of their 
r!sition [Eq. (7) below]; thus the theory needs, strictly speaking, an infinite number of infinite media. 

We may consider different samples (subdomains) in a unique material, but they are different only in so 
far as they are ostensibly finite; thus if we take larger and larger samples so as to examine the 
"asymptotic" average, we really take the whole material so that there is indeed only one realization. 
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PhD (A2) = V(~) V{X E D; (F(x),F(x + h» E A2}, A2 c E2, (5) 

and the like for n>2. A domain (sample) D is said to be 6-representative (for the laws of 
order 1, say) if, for any sufficiently large cubic sample D' in the material, some definite 
measure of the difference between the laws PD and PD , 4 is not more than 6. And the 
material, that is, the distribution of the states X, is said to be statistically homogeneous 
(S.H.) if 6-representative samples may be found for any 6, however small it is. This 
implies that the laws PD , tend towards a limit probability law P as the size of the cubic 
domain D' increases, independently of the position of D'. Note that the existence of 6-
representative samples is something that really can be checked experimentally: e.g. in a 
polycrystal we can measure the orientation density function for different samples and we 
can check whether the difference between the densities, averaged over the orientation 
space, is negligible for couples of large enough samples. Also note that, due to the 
definition, large samples must be representative but that, conversely, representative 
samples are not assumed large: in a periodic medium, the elementary cell is 6-
representative for any 6 >0. The existence of a unique limit law P allows to define a 
notion of average for any (P-integrable) function ¢ of the state: 

< ¢ > = j ¢ (X) dP(X) = j ¢ (X) f (X) dX 
E E 

(6) 

(the last equality assumes that the law P has a density 1, as will usually be the case). 
In order to express the relevant fields (stress, etc.) as function of the local state 

instead ofthe local position, one must give a precise form to the vague idea that "on an 
average, the local value of the field depends only on X ". Essentially, one defines, for a 
given field (of stimulus, say) s(x) and for any given sample D, a function d1 of the state 
X, by taking the volume average of the values s(x) at those positions x in D where the 
state is X (e.g. one defines the average strain in those grains of the sample that have a 
given crystal orientation g). One computes the average (j of 11d1(X)-d1'(X)11 for a couple 
of samples D and D ' (with II II the norm defined for stimulus and response tensors). If for 
any couple of large enough samples, (j is small enough, then there exists a limit function 
0, so one can speak of the average value u(X) of the field s at those points of the 
microstructure where the state is X, without specifying the sample which was considered 
to compute these average values. The field s is then said to be S.H.. Note that in our 
definitions, not only the notion of an S.H. material, but also the notion of an S.H. field 
depend on what has been defined as the local state X. This is important, because in 
practice one will consider different definitions of X for the same physical material, 
allowing to take into account more and more information on the microscopic behaviour 
and micro-geometry. Now we have the result that for any bounded S.H. field s, the 

4 This measure is simply the average difference between the densities tD andtD' of the laws PD and PD' 
, in the case of a "continuum" i.e. when the density exists for any sample, but it is a bit more technical 
for the case of an aggregate (Armin jon 1991a). 
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asymptotic average is well-defined and is equal to the average (6) of the corresponding 
function of the state, 0: 

<>-_. If o = s, s == hm V(D) s dV 
R(D)-'>oo D 

(7) 

(the limit is reached e.g. for cubes D with side R(D), independently of their position). We 
emphasize that Eq. (7) is totally different from the equality between ensemble average 
«s» and (asymptotic) volume average s in the theory of random media: s has indeed 
the same definition in both theories (although in the theory of random media s a priori 
depends on the realization m), but < 0 > is very different from an ensemble average (the 
latter has no meaning in the proposed theory since we have only one realizations). 
Moreover, we obtain here Eq. (7) for any S.H. field whereas, in the classical theory, 
«s» = s is true only for an S.H. (Le. stationary) and ergodic field. 

Thus, if the stimulus and response micro-fields sex) (e.g. strain) and rex) (e.g. 
stress) are S.H. in the proposed sense, we may ask whether the corresponding state­
averaged values o(X) and p(X) can be related together by a constitutive equation: 

p(X) = .(o(X), X). (8) 

The existence of a such equation is tacitly assumed in the operation of numerous micro­
macro models for materials with randomly distributed inhomogeneity, such as the self­
consistent models (e.g. Molinari et al. 1987, Lipinski & Berveiller 1989), the simple 
models of uniform strain (Voigt model, referred to as "Taylor model" in plasticity) or 
uniform stress (Reuss model), the "relaxed" Taylor model (e.g. Van Houtte 1984) and 
the variational model proposed at first for polycrystals by Arrninjon (1987). But since 
o(X) and p(X) are averaged values of inhomogeneous micro-fields sex) and rex), we 
know that these averages can be bound together via a constitutive equation only if these 
micro-fields fluctuate reasonably around their respective averages, in the sense precised 
by Hill (1967) for the case where s and r are indeed a strain and a stress field. Thus, at 
least for the particular case where the local domains Dx with given state X are well­
identified constituents, like grains in a polycrystal, Hill's analysis applies here really as 
well as for the macroscopic average envisaged by Hill. In particular, the fields s and r 
should have no "correlation" in the domain Dx. Since this should apply simultaneously to 
any domain Dx for all values of X (e.g. in every grain, for the case that each can be 
characterized by its orientation), this would be a rather severe condition (Arminjon 
1991b). However, one may content oneself with the weaker condition that the volume 
average, for the different states X present in a cubic sample D, of the deviation to the no­
correlation of s and r in Dx, tends towards zero as R(D)~oo. This condition, if it is 
fulfilled by two fields s and r that are S.H. and also macro-homogeneous in the sense of 
Hill, implies that the corresponding functions of X verify the "transported no-correlation 
condition" (in which: means the scalar product), 

5 Strictly speaking, one may define here a trivial probability space with one unique element ~, 
equipped with the Dirac measure. Thus the ensemble average of a "random" field Z(x,w) would be Z(x)! 
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< cr : p > = < cr > : < p >. (9) 

When trying to introduce precise definitions in a formal situation, assumed to 
represent a correct idealization of some physical situation, one must show that the formal 
situation is mathematically feasible, since otherwise one might come to contradictions. 
Thus we have the example of the space-filling periodic medium, the state X=F(x) being 
defined as the position of the equivalent point to x, in the elementary cell C (thus E=C). 
It is a simple exercise to verify that this is an S.H. continuum. It is now classical that 
periodic fields (of compatible strain and self-equilibrated stress) are macro-homogeneous 
in the sense of Hill, i.e. verify Hill's no-correlation condition in physical space (Suquet 
1982, 1987). For any bounded periodic field s, the function r? tends uniformly towards 
the restriction of s to C as R(D)~oo, hence any periodic field is S.H. and any two 
periodic fields satisfy the above-recalled asymptotic condition for the average deviation 
to the no-correlation (Arminjon 1991a). Hence, for admissible strain and stress fields in a 
periodic medium, condition (9) indeed applies to the associated functions of the so­
defined state (and brings nothing more than Hill's condition on the elementary cell). 

3. The inhomogeneous variational model: basics, comments and proposals 

3.1 DETERMINATION OF THE MACROSCOPIC ACTUAL POTENTIAL 

From now on, we consider the special case where the microscopic constitutive law [Eq. 
(1) or (8)] derives from a potential u. It has been established, for several relevant 
situations in the mechanics of materials, that the average of the micro-potential u is a 
potential U for the macroscopic constitutive law, and that Voigt's uniform strain 
assumption and Reuss' uniform stress assumption give an upper bound and a lower 
bound to U, respectively (Hill 1952, 1967). We have previously emphasized (Arminjon 
1991a, Arminjon et al. 1994) that these three results depend only on the assumption ofa 
convex potential and on the no-correlation condition between stimulus and response 
micro-fields, and thus can be extended to a number of situations (also in other fields of 
physics). The general proof of these results (Arminjon 1991a) has been given for the case 
where the "state" variable X is substituted for the micro-position x, using the transported 
no-correlation (9). It has also been shown that they can be expressed, using a potential 
depending on a parameter r, 

Ur(S) = Min{<u(cr)>; <cr>=S, h(cr):s;r}, (10) 

6 Note that h(o) is a homogeneous function [h(Ao")= IAI h(o)] and that, if p=2, h(o) is simply the stan­
dard deviation. The number p is uniquely determined from the requirements that (i) IIoulosil ~ A IIsilP - 1 

for all s and X, and (ii) u(s,X) ~ B IIslF for all X and all s with IIsil ~ a. However, (ii) and the condition 
p> I are needed only to ensure that the minimum Ur (S) is indeed reached by some function Or S (X), 
whereas numerically an infimum can hardly be distinguished from a true minimum. In standard 
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(11) 

The equality in (11) means that the minimum U~ , which is obtained in dropping the 
inequality constraint in (10), is reached by a function O"Reuss such that h(O"Reuss) = R < 00 ; 

this indeed corresponds to the Reuss-Hill bound, because it turns out that the response 
function PReuss, associated with O"Reuss by Eq. (8), is uniform. Clearly, Vo (i.e. r =0 in (10» 
is the average potential corresponding to a uniform stimulus function O"(X) = S, hence 
corresponds to the Voigt-Hill bound. From (11), it follows that there exists a unique 
value ro (with 0 :$; ro :$; R), depending a priori on the macro-stimulus S, such that the 
actual macro-potential V(S) is equal to Vro(S). 

So the data ro determines the actual potential V as the minimum value 
corresponding to the minimum problem (10), but ro in turn is not determined by this 
theory. As long as we merely wish to determine V, we have thus replaced the scalar 
unknown V by the other one roo The point is that ro is an average inhomogeneity of the 
micro-stimulus, as expressed as a function of the state X, and is likely to depend slowly 
on the macro-stimulus S. More precisely, the value ro = ro(S) for a given S sets the exact 
potential V(S) as Vro(S) between the Reuss and Voigt bounds (and, conversely, ro(S) is 
hence determined by the data V(S». For another stimulus S' (with IIS'II = IISII), Vro(S'), 
with the same value ro, is a good approximation of V(S'). This is at least what has been 
found for two very strongly inhomogeneous fiber-reinforced mortars, schematized as 
rigid-plastic (with S=D, the strain-rate, and R=T, the stress), for which the ratios of the 
Voigt bound to the Reuss bound in tension were 6 and 4.6 (Arminjon et al. 1993, 1994). 
Since the approximation ro(D) = Const. (for IIDII =1) works well for such strongly 
inhomogeneous materials, we may expect that it will do so for materials with more usual 
(smaller) size of the Reuss-Voigt band. But we recall that the existence ofro(S) involves 
only very general statistical assumptions (plus convexity), so actually the model for 
calculating the macro-potential from the micro one begins when one tries to guess the 
dependence ro = ro(S). This is unshamedly a phenomenological model for micro-macro 
transition, since the microscopic data are not enough. Once this phenomenological 
nature has been accepted and it has been recognized that it leads to powerful predictions, 
one must yet realize that the assumption ro(S) = a IISII is quite simplistic. Thus if we have 
more data, we can assume a more complex dependence of ro on S, using e.g. the theory 
of invariants: as for a phenomenological yield criterion, the interest will be to predict V 
for values of S that were not incorporated in the input data. E.g. if S is a general 
symmetric tensor of order 2 (as for compressible plasticity, where S=D is not traceless), 
there is little doubt that an assumption like 

ro(S) = [«IISI12 + b (tr S)2] 112 + c tr S, (12) 

plasticity, s is the strain-rate, r is the stress, u is the rate of work and p= l. In the applications to 
plasticity, we have nevertheless used the standard deviation for h(cr). This is probably harmless, though 
the correct value p=l might be more appropriate after all. 
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will be more accurate than the assumption roeS) = a IISII. Again, the decisive point is to 
predict: (i) correctly, and (ii) more than is entered into the model. Summary: the 
variational definition of the actual potential as U(S)=Uro<S)(S) is predictive because it 
turns out to be easy to get the dependence ro=ro(S), in so far as it influences the values 
Uro<S)(S). This means that the average inhomogeneity h is a relevant, "heavy" parameter 
in micro-macro problems. 

3.2 LOCALIZATION: THE PRINCIPLE OF MINIMAL INHOMOGENEITY 

Consistently with the followed approach, the localization problem is seen as the search 
for the actual distribution of the local stimulus as a function O's = O's(X), from the data of 
the macro-stimulus S. Clearly, we have a good candidate, namely the solution O'ro s to the 
minimum problem (10), for the correct value r = roeS) of the inhomogeneity parameter 
(any solution, if there are several; the uniqueness is guaranteed if the local potential u is a 
strictly convex function ofs at fixed X). A first point is that the (any) solution 0' to (10) 
has exactly the inhomogeneity h=r, save in the exceptional case where the value of the 
minimum is the lower bound (in which case a solution to (10) with some value r is also a 
solution to (10) with any value r' > r and so has an inhomogeneity h<rllt has also been 
proved that assuming that O's = O'ro s is equivalent to a principle of minimal 
inhomogeneity (pM!) according to which the actual distribution O's is a solution to: 

h(O'*) = Min, under the constraints: < 0'* > = S and <u(O'*» = U(S) (13) 

(Arminjon et al. 1994). Thus it is equivalent to assuming that, among the distributions of 
local stimulus whose average is the macro-stimulus S and whose average potential is the 
corresponding actual potential, the actual distribution has the least inhomogeneity h. 
Since, for h=O, the average potential is Voigt's upper bound, it still means that the 
inhomogeneity occurs only in so far as it allows to lower the average potential. We find 
this principle plausible, in any case it is this principle that underlies the success, as 
regards the prediction of deformation textures in polycrystals (Van Houtte 1984, 
Arminjon 1987), of the relaxed Taylor theory and the proposed variational model. 

However, we do not have plausible assumptions allowing to deduce this principle 
from deterministic micro-macro arguments. Another problem is the apparent ambiguity 
in the statement of this principle. First, we may exchange stimulus and response; e.g. for 
elastic or viscoplastic behaviour, a potential for strain or strain-rate as the response, may 
be deduced from the potential for stress, by Legendre transformation (Hill 1956). If the 
corresponding statements are not equivalent (as seems likely), which is the correct form? 
It seems that the PM! is plausible in so far as the potential may have a direct 
interpretation as an energy (since in that case the PM! amounts to a principle of minimal 
energy consumption). Now consider the general class of inelastic materials with Green­
elastic domain depending on internal variables H, the latter evolving only for inelastic 
strain increments, as envisaged by Hill & Rice (1973). For such materials, the elastic 
potential (¢in their notation) for the stress t i.e. that one which is a function of the strain 
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e, is a true energy, since the variation of tP during an elastic strain increment is indeed the 
work done, otP = t:oe. Since OIJl = e:ot, the same cannot be said of the complementary 
potential IJI = t:e - tP, although it has the dimension of an energy. In standard plasticity, 
the rate of work is a potential for the stress (Hill 1986) and a true complementary 
potential cannot be defined (the yield function, which is surely not an energy, is a 
potential for the direction of strain-rate only), hence there is no ambiguity. Thus in the 
mechanics of materials at least, the physical meaning of the PM! seems to imply that the 
primary (''stimulus'' s) variable should be taken as the strain (or strain-rate) and the 
response as the stress- not the reverse. Second apparent ambiguity in the statement of 
the principle: that of the norm Iisli. One norm appears naturally in the theory, e.g. in the 
proof of the general form of the Reuss-Voigt bounds (Arminjon 1991a): it is the 
Euclidean norm, derived from the scalar product, IIsll = (s : S)II2; for every relevant tensor 
space, we have one and only one natural scalar product, e.g. s : r == sij rij for second­
order tensors. Thus, although all theoretical results remain valid if one takes any other 
norm (since all norms are equivalent in finite dimension), there seems to be little reason 
to do so. Lastly, we have seen that the real exponent p ~ 1 is imposed6 and thus the 
average inhomogeneity h is uniquely defined. We conclude that the statement of the PM! 
is unambiguous, unless one artificially defines a different norm for stimulus tensors 7 . 

4. Microstructure as an internal, state variable 

4.1 THE METHOD AND ITS THEORETICAL JUSTIFICATION 

The way we propose to account for micro-geometry and additional parameters such as 
interface behaviour (Arminjon et al. 1994), is not particularly bound to the variational 
model recalled in §3. Indeed, it depends only on the statistical theory of the distribution 
of the states in S.H. media, summarized in Sect. 2.2. Thus this way could be used with 
different micro-macro models, e.g. it may be used with the self-consistent models 
proposed by Molinari et al. (1987) and Lipinski & Berveiller (1989). Our starting point is 
similar to the basic idea of "cluster models" (Kocks & Canova 1986) and to that of 
"morphological representative patterns" (Stolz & Zaoui 1991): it is the idea (Arminjon 
1991a) that the near environment of a material (micro-) volume has a greater influence 
on the inhomogeneity of the local fields than the long-range one. This idea, however, 
translates to the statistical theory in a rather original form. The crucial point is that, in 
this theory, the inhomogeneity of the local fields (s and r) within the constituents is 
recognized from the beginning, i.e. from the definition of the distributions of the local 

7 The possibility of selecting an anisotropic norm on morphological grounds was evoked by Arminjon et 
al. (1994). One may in that way recover the relaxed Taylor model (e.g. Van Houtte 1984) as the limiting 
case of a degenerate (semi-) norm. The relaxed Taylor model has not a very sound theoretical basis. 
Morphological effects are consistently described using the proposed methodology for integration of 
microgeometry (§4). In addition to the fact that it derives from the scalar product, a distinctive feature of 
the Euclidean norm is this: if one introduces an anisotropic norm N on physical grounds, then its 
coefficients must have a physical dimension, hence N will not make sense for stimulus and response. 
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stimulus and response as functions 0 and p, not of the position x, but of the state X. 
Thus the "constituents", i.e. the domains Dx with given state X, are subjected to fields 
which are homogeneous only in a strongly statistical sense, since (i) those "constituents" 
are not necessarily contiguous (e.g. a group of grains with the same orientation) and (ii) 
only an average, for the different states i.e. for all constituents, of the deviation to the 
no-correlation condition between the local fields sand r, must cancel. The concrete 
consequence is that one may take as "constituents" a group of n neighbouring 
constituents C1, ... , C, which is formally done in replacing the initial "simple" state XO 
(identified as the set of parameters indexing the local constitutive law) by a "complex" 
state X involving the states X\ ... , XO n and the parameters describing the geometry of 
this cluster (sizes and shapes of the C 's and their relative positions)(Arminjon 1991a). 

In order to run a micro-macro model one has to know the constitutive law, so the 
question arises: how can we get the "constitutive law" of a such cluster? The answer will 
be obtained if we remember the statistical meaning of the local constitutive law (8) in the 
theory: One assumes that, in any statistically homogeneous situation, the average values 
o(X) and P(X) of the fields sand r, over the domain Dx, are related by Eq. (8). By 
hypothese, this relation depends only on the particular state X, thus it does not depend 
on the distribution of (all the other) states. Hence, if we consider an inhomogeneous 
medium for which the state is (the same) X everywhere, i.e. for which the domain Dx is 
the whole (space-filling) material, the same law ell will relate the asymptotic volume 
averages S=S and r=R of the fields sand r in S.H. situations. Now consider the case 
where the state X involves geometrical parameters, more precisely describes the 
geometry and microscopic behaviour of some cell C 8. Then a space-filling medium with 
state X everywhere is nothing else than a periodic medium with elementary cell C. And 
the relation between asymptotic averages s and r is none other than the homogenized 
law of the periodic medium (Suquet 1987). Thus the constitutive law of our micro­
cluster, in precisely the meaning it has in the proposed statistical theory, will be most 
rigorously obtained as the homogenized law of a periodic medium consisting of the 
endless repetition of this same cluster- provided, of course, that the space can be filled 
with this cluster, i.e. provided it has the form of e.g. a parallelepiped. 

In order to take into account short-range effects of micro-geometry, Arrninjon et 
al. (1993,1994) envisaged any S.H. medium as consisting ofa periodic array of cells with 
identical shape, but with a "random" variation of X from one cell to another (this may 
always be envisaged, since the array is only in our thought). They defined and obtained 
the behaviour of a cell C, depending on the "state" parameters X describing this cell, as 
that delivered by the homogenization theory for a periodic medium with cell C [this is 
hence done successively for each different cell. Of course, this will be feasible in practice 
only if the medium is schematized so that there is only a (small) finite number of different 
cells (states); however, symmetries allow to reduce this number]. We have just proved 
that this method is rigorously correct in the frame of the statistical theory considered. 

8 Note that this situation does not imply that the state X contains an infinite number of parameters, since 
in practice the geometry will be simple: a few elliptic inclusions, one or two fibers, ... However, the whole 
of the statistical theory remains valid for cases with an infinity of parameters (Armin jon 1991a). 
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4.2. APPLICATION TO RIGID-PLASTIC REINFORCED MORTARS 

The variational model (§3) was applied to predict the failure criterion of two mortars 
reinforced by steel fibers by Arminjon et al (1993,1994), using the rigid-plastic scheme. 
The model was first applied directly as a "volume:fraction model", in defining the state X 
as the phase identifyier i (in view of the isotropy of each phase and its perfectly plastic 
behaviour, no other parameter intervenes in that case), thus X=1 for mortar and X=2 for 
steel The inhomogeneity parameter ro of the model was assumed independent of the 
macro-stimulus D (with IIDII = 1), and was adjusted so that the predicted and measured 
loads coincide for the tension test of a plate structure. It was found that the predicted 
loads were also close to the experimental band for bending test and compression test. 
Another application of the model ("refined model") was obtained in combination with 
the proposed method for taking the short-range effects of micro-geometry into account: 
the material was schematized as an array of rectangular cells, each of which containing 
one whole fiber and two half-fibers (cut by the walls of the cell), all three with same 
orientation. The contact at the fiber-mortar interface was schematized by a Coulomb 
friction with the same friction coefficient f = tan rjJ for all cells. The cells differed only by 
the fiber in-plane orientation, so the state was this orientation angle X=a. Consistently 
with the real distribution, a uniform angle distribution was assumed. The "refined model" 
(X=a) is much heavier to run, due to the preliminary steps of periodic homogenization of 
the different cells; its interest for this material was the dramatic reduction of the Voigt­
to-Reuss load ratio,; (with the retained value of the fiiction coefficient 1, see below) in 
tension, .; passed from 6. to 1.15 for one material (Arminjon et al 1993) and from 4.6 to 
1.04 for the second one (Arrninjon et al 1994). However, it was found that the 
experimental band was not exactly within the Reuss-Voigt (R V) bounds of the refined 
model (Fig. 1), which did not give a better overall agreement with experiment. We work 
out this question hereafter. 
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Figure 1. Comparison between loads computed with the refined model (double-scale homogenization). 
depending on the inhomogeneity parameter r, and experimentally observed load range, for a fiber­
reinforced mortar with 0.6% volume fraction of steel fibers : compression test of a plate (left) and 
bending test on a beam (right). The macroscopic inhomogeneity of these tests is accounted for via the 
use of the finite element method in addition to the homogenization model. 
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The experimental band is of the same order as the R V band of the refined model. 
So any micro-macro model is good enough to predict the behaviour of the aggregate of 
cells from the behaviour of the cells and their volume fractions, and there is less need to 
adjust the inhomogeneity parameter in the refined model. Assume that the (carefully 
checked!) experimental and numerical results are correct. To understand why there is 
some (small) distance between the experimental and RV bands, we must identifY in 
which respect the aggregate of cells may not be a good enough schematization of the 
real material. Thus: (i) Did we assume an adequate constitutive scheme (here rigid­
plasticity with isotropic quadratic yield criteria, plus Coulomb friction)? (ii) Are the 
values or rather, in view of the inhomogeneity, the bands of the corresponding 
constitutive parameters correct? (iii) Is the (volume) distribution of the geometrical and 
constitutive parameters of the cells correct? As long as we merely look at the maximum 
loads, we may argue that the answer to (i) is "yes", cf Chambard (1993). (ii) As it should 
be, we have tried to get the correct experimental values of the material parameters for 
the phases (mortar and steel), but the values are not yet very accurate and may account 
for a good part of the distance. Furthermore, for the friction coefficient, no direct 
measurement was possible. We checked 4 values: "j=0" (in fact, sliding contact), j=0.2, 
0.5, ''.f=oo'' (in fact, adhesive contact) and retained that one (j=0.2 or 0.5, depending on 
the material) which gave the best overall agreement, but noted that the value adopted in 
the technical norm for reinforced concretes (a similar material),j=O.4, would have given 
close results. It still remains worth to examine point (iii), since it is specific to micro­
macro models and since the main point is perhaps that the RV bounds of the refined 
model were simply too close. Thus we are currently investigating the effect of allowingf 
to vary from one cell to another, as the fibres may be more or less closely bound to the 
matrix (in future work, the effect of varying the geometry of the cell will be also 
investigated). To this end, we now define the state as the pair (a, f). Preliminary results 
have been obtained for the case where the four values off are uniformly distributed and 
independent of the value of the angle a. As expected, they show a wider RV band than 
for the case where the friction coefficient f is assumed uniform. Of course, the interest of 
these computations with the refined model is mainly illustrative, since for this material we 
are not able to measure f and even less its distribution. 
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CORRELATION BETWEEN FRACTURE TOUGHNESS 
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Aalborg, Denmark 

1. Introduction 

The dispersion of fibers and cracks in the transverse direction of a unidi­
rectional composite material has very strong influence on local stress field 
and therefore, it may affect the durability of the material. The local stress 
field influences the fracture toughness of cracks situated among the fibers 
and new cracks initiates at various positions depending on the surrounding 
fibers and existing cracks. Thus it is necessary to investigate the correlation 
between the microstructure variability and different mechanisms of crack 
nucleation. 

Usually, the dispersion of fibers is assumed to have some form of regular­
ity or fibers are assumed to be sparsely distributed. In these cases each fiber 
is either exposed to the same amount of interaction in regular distributions 
or it is exposed to no interaction in the dilute distributions. Therefore it is 
possible to establish a repetitious unit cell containing only one fiber and it 
may be analyzed thoroughly within reasonable limits. In order to investigate 
a non-regular distribution of fibers the unit cell concept is not sufficient. 
Each fiber is in this case exposed to different amount of interaction and the 
local stress field varies throughout the whole microstructure. Therefore it 
is necessary to re-define the unit cell concept so that it contains enough 
fibers and cracks to be representative for the non-regular microstructure. 
In relation to this re-defined concept a method for calculating the stress 
field in a material with randomly dispersed fibers as well as determining 
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the stress intensity factors for cracks situated among the fibers must be 
established. 

Pijaudier-Cabot and Bazant(l99l) presented a method to calculate the 
stress field in a solid containing multiple fibers and to determine the stress 
intensity factors for a single crack situated among the fibers. A method for 
stress analysis in an elastic solid with randomly distributed cracks was pre­
sented by Kachanov(1987). Both methods are based upon a superposition 
scheme and take into account the interaction between fibers and cracks. In 
the present work a new calculation procedure is developed that allows to 
treat multiple fibers and cracks in a unified way. 

The local stress field is dependent upon the exact position of fibers 
and cracks and this also affects the initiation of new cracks. Consider the 
case of cracks initiating at the interface around the fibers. Two scenarios are 
possible in this case; matrix and interface cracks. The matrix cracks initiate 
at the interface and extend radially to the fiber into the matrix material. 
Interface cracks initiate tangentially to the fiber and also extend in this 
direction. At which angle around the fibers the cracks appear depends on 
the local stress field. It is reasonable to assume that matrix cracks initiate 
at positions where maximum tangential stress occurs and interface crack 
initiate at positions where maximum radial stress occurs. The magnitude 
of the maximum stress components and the angle where they occur are 
strongly affected by the dispersion of fibers and existing cracks. 

Having the criterion of the crack initiation it possible to determine how 
these microcracks affect the fracture toughness of a composite material. 
Such an investigation is performed by situating a macro crack in the vicinity 
of distributed fibers. Interface cracks are then allowed to initiate during a 
load increase. As a result, the fracture toughness of a material is affected 
depending on the position of fibers and interface cracks. 

2. Stress and Fracture Analysis 

In order to determine various mechanical properties of materials with ran­
domly dispersed fibers and cracks it is necessary to introduce a method for 
calculating the stress field in an infinite solid containing multiple fibers and 
exposed to uniform tractions at the remote boundaries. Also it is necessary 
to determine the stress intensity factors for cracks located in the matrix 
material. 

2.1. STRESS ANALYSIS METHOD 

In the following only a short introduction to the stress analysis method is 
given. The stress field solution for the single fiber configuration, Fig. la, 
may be obtained analytically from the complex potential theory or the 
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Eshelby solution, see e.g. Muskhelishvili(1962), Mura(1987)). Since the 
method must be extended to include multiple fibers another iterative pro­
cedure is applied. A heterogeneous solid is replaced by an equivalent 
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Figure 1. (a) Single fiber configuration, (b) multiple fiber configuration. 

homogeneous solid where tractions are applied on the imaginary contour 
of the circular fiber and an unbalanced stress field inside this contour is 
added. Then the iterative procedure is applied and as a starting point the 
stress field in the whole solid is a = a 00' Using the theory of eigenstresses, 
Mura(1987), the unbalanced stress field becomes 

(1) 

where Da and Dm are the stiffness matrix for the fiber and matrix material, 
respectively. Tractions are applied at the imaginary contour of the fiber in 
order to account for the unbalanced stresses inside the fiber 

Pa = -Llana (2) 

where na is a unit outward normal to the circular contour r a' The tractions 
are substituted by concentrated forces for which the stress field can be 
obtained from the complex potential theory. The forces are integrated along 
the circular contour and then the stress field is calculated at an arbitrary 
point within the contour 

(3) 

The new stress field inside the fiber is obtained by 

a = a 00 + a a - Lla (4) 
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From this expression the unbalanced stress is re-calculated according to 
Equation 1 and the iterations are repeated until Pa does not change signif­
icantly. The method converges quite rapidly to the analytical solution and 
the stress field outside the fiber may be determined as follows 

(5) 

For the multiple fibers, Fig. Ib, it is necessary to account for the inter­
action between fibers and a similar iterative procedure is applied. In this 
case the stress field in each fiber is determined as it were alone in the ma­
trix except that the interaction from the remaining fibers is added in the 
calculation. Thus the stress field is based upon a superposition scheme and 
Equation 4 yields 

U = U oo + U a + Ui -..::1u (6) 

where Ui is the interacting stress field from the remaining fibers. When 
the stress field inside the fibers is determined, the stress field in the matrix 
material is calculated similarly to the single fiber solution. 

2.2. DETERMINATION OF STRESS INTENSITY FACTORS 

The determination of the stress intensity factors is based on a superpo­
sition scheme in which the interaction between fibers and cracks is taken 
into account . First the original problem is decomposed into an initial and 
subsidiary problem, Fig. 2. The initial problem consists of calculating the 

t t t t t t t t t t t t t t 
...... 

+ -\ 
~ ~ + + + + + 

Original problem Initial problem Subsidiary problem 

Figure 2. Superposition scheme for the multiple fiber-crack problem. 

stress field at the imaginary contours of the cracks by applying the method 
described in the previous section. These stress fields are added in the sub­
sidiary problem so that the configuration is in equilibrium. In order to solve 
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the subsidiary problem it is divided into a number of subproblems corre­
sponding to the number of cracks. Each subproblem consists of one crack 
with applied tractions, a number of imaginary cracks and the surrounding 
fibers. The tractions may be written as 

P = Pc + Pint (7) 

where P is the applied traction, Pc is the real yet unknown traction including 
the interaction from the fibers and cracks and Pint is the interacting stress. 
The interacting stresses arise because the real tractions interact with fibers 
and other cracks and they are subsequently reflected back. In order to 
determine the real tractions Equation 7 is averaged and the interacting 
stresses are written as a function of real stresses 

(p) = (I + A)(pc) (8) 

where A is a transmission factor which takes into account the whole inter­
action between fibers and cracks. The averaged real tractions are found by 
rearranging Equation 8 

(9) 

Having calculated these uniform tractions for all cracks the non-uniform 
tractions may now be determined as 

(10) 

These tractions may now be calculated at any point of the crack lines and 
by numerical integration the stress intensity factors are determined as 

1 fC~±x -- --- Pc . nc dx Fc -c C =f x 
(11) 

J(II(±C) = 1 fC ~±x A -- ---Pc' ncdx Fc -c C =f x 
(12) 

where C is the half crack length. The method is more thoroughly described 
in Axelsen (1994). 

3. Effect of Fiber Distribution on Matrix and Interface Cracks 

The stress field for randomly dispersed fibers is determined in two steps: 
first the stress field inside the fibers is determined and then the stress field 
in the matrix material may be calculated. In order to investigate how the 
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dispersion of fibers affects both the stress field inside the fibers and the 
local stress field in the matrix two fiber distributions are analyzed, Fig. 3. 
The clustered distribution exists in composites made of bundles of fibers 
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( a) (b) 

Figure 3. Distribution of fibers in the re-defined unit cell; (a) regular distribution, (b) 
clustered distribution. 

containing a very dense dispersion of fibers and matrix rich areas. The area 
within the box represents the sample area whereas the area outside the 
box represents the boundary area. With this type of unit cell the bound­
ary conditions may be altered by changing the distribution of fibers in 
the boundary area. The fibers in the boundary area constitute periodic 
boundary conditions for both distributions. The number of fibers included 
in the sample and boundary areas is dependent on what must be analyzed 
and adjusted, accordingly. In this case 841 and 798 fibers are dispersed in 
the regular and clustered distributions, respectively. The distributions are 
exposed to a unidirectional load applied at the remote boundaries in the 
vertical direction. The ratio between the Young's moduli for the matrix 
and fiber material is Ea/ Em = 23, and the Poisson ratios are Va = 0.3 
and Vm = 0.35. The stress field inside the fibers is represented by the von 
Mises stresses calculated for fibers within the sample area, Fig. 4. The 
fiber stresses within the sample area are almost uniform for the regular 
distribution, which has been also expected as each fiber is exposed to the 
same amount of interaction. For the clustered distribution the fiber stresses 
are non-uniform due to the non-regularity of the dispersion of fibers. 

The fiber stresses are used to calculate the stress field in the matrix 
material. Particularly, two important damage modes, matrix and interface 
cracking, are affected by the local stress field around the fibers. Figure Sa 
shows the tangential and radial stress components around the fibers which 
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(b) 

Figure 4. Stress field inside the fibers represented by Von Mises stress; (a) regular 
distribution, (b) clustered distribution. 

are responsible for the matrix and interface cracking, respectively. It IS 

(a) (b) 

Figure 5. (a) Tangential and radial stress components around the fibers, (b) estimated 
positions of matrix and interface cracks. 

reasonable to assume that they are nucleated at positions where the tan­
gential and radial stress components reach their maximum. Figure 6 shows 
the normalized tangential and radial stress components for one fiber alone 
in the matrix . The maximum values of the tangential stress component 
are located at () = 0°, 180° resulting in a possible crack initiation at these 
positions, Fig. 5b. For the radial stress component the maximum values are 
located at () = 90°, 270° . 

In order to show how the dispersion of fibers affects the magnitude of the 
maximum stress components and at which angles they appear, the regular 
and clustered distributions are analyzed. The maximum tangential stress 
component is calculated for all fibers and depicted in Figure 7. It appears 
that the dispersion of fibers is very influencial on both the magnitude of 
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Figure 6. Normalized tangential and radial stress components for the single fiber confi­
guration. 
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Figure 7. Distribution of the maximum tangential stress component for; (a) regular 
distribution, (b) clustered distribution. 

tangential stresses and the angle at which they are detected. For regular 
distribution the maximum values are equally distributed and they appear 
at e = 0°,180° due to the symmetrical dispersion of fibers. The maximum 
radial stress component is influenced as well, Fig. 8. In this case the angles 
at which the maximum values occur are less affected by the dispersion of 
fibers. 

The analyses show that the dispersion of fibers is a very important 
parameter in the investigation of damage modes. 

4. Influence of Interfacial Cracks 

In order to investigate the effect of microcracks on the stress field at the tip 
of preexisting macro cracks two selected configurations are analyzed. Only 
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Figure 8. Distribution of the maximum radial stress component for; (a) regular distri­
bution, (b) clustered distribution. 

the initiation of interface cracks is taken into consideration as the matrix 
cracks show much less influence on the stress field at the tip of macrocracks. 

The interface cracks do not initiate simultaneously because the mag­
nitude of the radial stress component depends on the dispersion of fibers. 
Therefore an iterative procedure is applied while the load is increased until 
interface cracks appear in all fibers. During this load increase the stress 
intensity factor is calculated. The procedure is summarized in Table 1. The 

TABLE 1. The iteration procedure for initiation of interface cracks. 

initial state no interface cracks are initiated 
(J'r,max is calculated (incl. interaction from the macro crack) 
If (J'r,max > (J"',critical =} crack initiation 
iterations 

- A crack is introduced at Bmax with length a = a( (J'r,max) 

- The load is increased 
- (J"',max is calculated for the remaining fibers (incl.interaction 

from the macrocrack and the initiated interfacial cracks) 

- If (J'r,mux > (J'r,critical =} crack initiation 
stop iteration when interface cracks appear in all fibers 

end 

interface cracks are initiated at small distance from the fibers for numerical 
purposes. 
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The first configuration consists of a macro crack situated in front of the 
cluster of 50 fibers, Fig. 9a. This configuration is subjected to far field 

A B 

(a) (b) 

Figure 9. Configuration with a macrocrack situated in front of the cluster of 50 fibers; 
(a) initial state, (b) enlarged view of the enclosed area in the final state. 

loading in vertical direction. The ratio between the macrocrack length and 
the fiber radius is 2. In the initial state no interface cracks have been initi­
ated and this particular configuration will increase the fracture toughness 
as compared with pure matrix by lowering the stress intensity factors for 
both crack tips A and B. The iterative procedure is repeated until interface 
cracks appear in all fibers. An enlarged picture of the distribution in the 
final state is shown in Figure 9b. The position of interface cracks varies due 
to the influence of neighbouring fibers. Cumulative distribution of interface 
cracks is shown in Figure lOa. Appearence of interface cracks results in 
increased values of the normalized stress intensity factor for both tips of the 
macro crack, Fig. lOb. It is interesting to notice that embedding fibers into 
the matrix material improves the fracture toughness by itself as the stress 
intensity factor K I is less than the corresponding stress intensity factor 
K 10 for pure matrix. Thus the nucleation of interface cracks deteriorates 
the reinforcing effect of fibers. 

The second configuration is shown in Figure lla where two clusters, 
each consisting of 25 fibers, are situated below and above the macrocrack. 
The ratio between the macro crack length and the fiber radius is in this con­
figuration 3. In the initial state this configuration will decrease the fracture 
toughness by increasing the stress intensity factor. An enlarged picture of 
the final state is shown in Figure lIb where interface cracks appear in all 
fibers. As the interface cracks are initiated, Fig. 12, the stress intensity 
factor decreases and thus the fracture toughness is increased while in the 
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Figure 10. (a) Number of initiated cracks as a function ofthe applied load, (b) normal­
ized stress intensity factors as a function of the applied load. 
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Figure 11. Configuration with two clusters of 25 fibers situated below and above a 
macrocrackj (a) initial state, (b) enlarged view of the enclosed area in the final state. 

initial state the existence of fibers decreases the fracture toughness, i.e. 
KI/KIO > 1. 

5. Conclusion 

A method for calculating the stress field in a solid containing randomly 
dispersed fibers as well as determination of the stress intensity factors for 
cracks situated among the fibers has been established. 

The dispersion pattern of fibers seems to be very influencial on the initi­
ation of matrix and interface cracks around the fibers. Both the magnitude 
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Figure 12. (a) Number of initiated cracks as a function of the applied load, (b) normal­
ized stress intensity factor as a function of the applied load. 

of the maximum stress components and the angle, at which they occur, are 
affected. 

Typical configurations of fibers and a macrocrack show that the fracture 
toughness may increase or decrease depending on the particular arrange­
ment of fibers. Therefore, descriptors that quantify distribution pattern 
of fibers should become indispensable factors in the strength and fracture 
analysis of composite materials, Pyrz(1994), Pyrz and Bochenek(1994). 
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ABSTRACf. This paper reports theoretical and experimental work carried out in the 
field of microstructure-property correlations of porous and composite materials. It deals 
with the aim, to get a better scientific insight into the effects of microstructure on the 
properties of multiphase materials and to use the results technologically for designing 
purposes. In this context porous materials are considered to be the limiting case of 
multiphase materials, when one phase becomes gaseous. Equations for the mechanical 
properties of two phase materials are presented and the theory of the microstructure­
property correlation via microstructural modelling is described. To satisfy the demand of 
maximun reliability from a theoretical as well as practical point of view, no fitting 
factors have been introduced into the equations and the properties of a matrix type 
composite (porous) material remain only dependent on the microstructural features and 
the concentration of the included phase. Finally, the case of the thermal shock resistance 
of porous ceramics is presented as an example of application of the microstructure­
property correlations to design new materials with improVed properties. 

1. Introduction 

In materials science the interrelationship between microstructure and 
properties became important not only to get a better scientific insight into 
the behaviour of materials but also because of the necessity to develop 
methods for designing new materials, showing the required properties and 
being economically advantageous and ecologically not suspicious. These 
new materials have to substitute less available, scarce or ecologically 
polluting conventional engineering materials. The essential problem that has 
to be considered is that of how the properties of composite materials 
depend on the properties of the separate phases, their volume fractions and 
their geometrical configuration or microstructure. 

The selection of a suitable plan for the discussion of the physical 
properties of composites presents some difficulties. Therefore, treating 
properties in their relation to microstructure, it is instructive to define 
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property groups for which similar considerations and treatments are valid. 
These groups are: 
a) Thermochemical properties, which describe the behaviour of the material 
during -non mechanical- energy transfer and which are directly correlated 
with the atomistic bonding conditions as chemical bonding and thermal 
vibration of the atoms. Heat capacities, transformation heats or thermal 
expansion by heat absorption are examples for this group. 
b) Field properties, which characterize the behaviour of materials under 
electrical, magnetic or thermal fields, as for example electrical and thermal 
conducti vi ty. 
c) Mechanical properties, referred to the behaviour of materials under stress­
strain conditions, as for example modulus of elasticity, Poisson's ratio and 
fracture strength. 
d) Technological properties, which are of especial practical interest and 
consist of a mathematical combination of primary properties. An example is 
the thermal shock resistance of brittle materials, which is influenced by the 
following material properties: Young's modulus, thermal conductivity, 
mechanical strength, coefficient of thermal expansion and Poisson's ratio. 
While the thermochemical and field properties of two phase materials have 
been extensively treated in previous works [1-5] in this article the 
mechanical properties are considered. Theoretical approaches leading to the 
microstructure dependence of the mechanical properties of composite 
materials are reviewed and discussed in section 2 while section 3 presents an 
example of application of the microstructure-property correlations in 
designing a composite (porous) material with improved thermal shock 
resistance. Therefore the article discusses representatively the 
microstructure-property-correlation of two-phase materials and its use as a 
tool of "materials engineering" to design composite materials with 
predetermined "tailor-made" properties. 

2. Mechanical properties of two phase materials 

2.1. GENERAL CONSIDERATIONS 

Since the aim of the present paper is to demonstrate, how a technological 
property like the thermal schock resistance of a composite or porous 
material may be tailored by proper microstructural design, only those 
mechanical properties which influence the thermal shock behavior are 
considered. These are: Young's modulus of elasticity (E), Poisson's ratio (v) 
and fracture strength (0). 
Although bound equations exist for both Young's modulus of elasticity [5] 
and Poisson's ratio [6] as well as for the fracture strength [7] of composite 
materials, the treatment here will be restricted to microstructure-property 
equations based on the spheroidal modelling of the microstructure as 
described in the next paragraph. 
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2.2. SPHEROIDAL MICROSTRUCfURAL MODEL 

The chosen model proceeds from a real two-phased material, whose 
microstructure consists of a continuous matrix phase in which the particles 
of the inclusion phase are embedded discontinuously but macroscopically 
quasi-homogeneously. These particles, which are normally irregularly 
shaped in real materials, are replaced by spheroids, i.e. particles with a 
regular mathematically definable geometry and geometrical arrangement 
within the material. The mean shape is given by the ratio of the rotational 
axis (z) to the minor axis (x) of the spheroid (z/x), see figure I-a. To obtain 
this, each real particle is considered to be replaced by an spheroid having the 
same surface-to-volume ratio as the real particle and therefore a specific 
axial ratio. For a given axial ratio there are two alternatives for substituting 
the real particles of the inclusion phase, namely, either by an oblate (z/x <1) 
or a prolate one (z/x >1). The mean orientation of the substituting spheroid 
is determined by the orientation of the rotational axis to the stress direction, 
see figure 1, and is given by cos2aD. As shown in previous studies [3,4], if 
one assumes an statistically homogeneous distribuion of the second phase in 
the matrix only these parameters, shape and orientation, are required for the 
complete characterization of the microstructure in addition to the volume 
fraction of the included phase, or phase concentration factor. Spheroidal 
characterization of the inclusion phase particles offers the advantage of high 
adaptability to real irregular geometries by changing the axial ratio. The 
extreme cases include disc-shaped (z/x -> 0, platelets) and cylindrical 
inclusions (z/x ->00 , fibres), whilst spherical inclusions are realized as a 
special case (z/x =1). How to determine the substituting spheroid best-suited 
to a real structure by quantitative microstructural analysis and stereological 
functions has been shown in previous works [4,5]. 

2.3. YOUNG'S MODULUS OF ELASTICITY 

Contrarily to the bound concept, where variational methods are used [5,8], 
the model concept to be discussed here uses direct methods in which the 
averaged stresses and strains are calculated with the aid of an effective 
Hooke's tensor. The derivation starts assuming a two-phase material with 
matrix phase microstructure, where the two phases behave isotropically. The 
two-phase material then is subdivided into elementary cells (finite elements), 
where the elementary cell consists of a cube of given elastic materials in 
which the spheroidal inclusions in any orientation are discontinuosly 
embedded in the matrix phase, as shown in figure I-a. The mean stresses 
and strains are calculated for this elementary cell by dividing it into small, 
disjunct prisms (see figure I-b). An effective modulus of elasticity is 
approximately calculated for each prism. The final effective modulus of 
elasticity is determined on the basis of a new averaging over all prisms. The 
exact derivation of the equation has been published recently [9]. The 
effective Young's modulus of elasticity can be given in terms of the elastic 
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moduli of the matrix and inclusion phases and the microstructural 
parameters as: 

with 

Figure 1. Spheroidal microstructural modelling: a) definition of 
shape and orientation, b) elementary cell and prism for derivation of 
eq. 1 

and 

ED and EM are the Young's moduli of the inclusion and the matrix phase 
respectively. 
If in eq. 1 the Young's modulus of the inclusion is assummed to be zero, 
then the effective modulus of elasticity of porous materials is obtained as a 
function of volume fraction porosity (P) and pore structure as follows, with a 
correction made for considering the boundary condition Ep=O at P= 1 [10]: 
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Ep = EM (1 - p2/3'f 

S = 1.21 [~J/3 Mfl2 -l)cOS2aD 
(2) 

EM represents the Young's modulus of the fully dense matrix. The 
comparison between calculated and experimental data for particulate 
composites with glass, ceramic and polymer matrix [7] and for porous 
metals and ceramics [7,10] has been carried out and the suitability of the 
equations has been demonstrated. 

2.4. POISSON'S RATIO 

Being a dimensionless parameter Poisson's ratio is a very useful elastic 
property because it enters in a number of equations describing the fracure 
and deformation behavior of materials. Therefore it is theoretically 
interesting and practically useful to obtain its dependence on microstructure 
and second phase content accurately. 
The derivation of the equations has been carried out recently [7] so that 
only details will be given here. 
The way to derive the dependence has been to consider the relationship 
between the Poisson's ratio and the elastic constants Young's and bulk 
modulus in isotropic materials and the known microstructural depencence of 
these elastic constants. While the microstructural dependence of the Young's 
modulus is accurately known (eqs. 1 and 2), for the bulk modulus only 
equations for spherical geometry are available [11,12]. Therefore the 
derived equations for the Poisson's ratio are strictly valid for spherical 
inclusion phase. For the case of porous materials, which is the relevant case 
for this study, the final equation has been derived to be valid on the whole 
porosity range [13] as: 

(1 _ p2/3r21 
Vp = 0.5 - ~--------:--':""""'-:--"""':""".....-------~---:----,;-

4[(1-U) (3-5P)(I-P) +u (I-P)] 
2(3-5P){I-2vM)+3P(I+VM) 3(1 -VM) 

(3) 

u= 1 
1 + e- 100 (p - 0.4) 

where VM represents the Poisson's ratio of the porous-free matrix. For the 
high porosity range the theoretical variation of the Poisson's ratio exhibits a 
trend of converging to a value vp= 0.5, when the porosity increases to P=1. 
A similar convergence trend has been found in other theoretical studies [14] 
but a rigorous experimental verification of such variations is still to be done. 
For the low porosity range eq. 3 has been tested succesfuUy by comparison 
with extensive experimental data on porous ceramics [15]. 
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2.5. FRACfURE STRENGTH 

The starting point to study the microstructural dependence of the fracture 
strength is to consider the case of porous materials not only because it is 
more simple but also because of its practical relevance. 
A rigorous derivation, in which the shape of the included phase is a variable 
of the system is formidable even with nowadays computers. This is why 
again the spheroidal modelling of the microstructure is applied, permitting 
the quantification of the shape and orientation effect of the pores. In order 
to assess the porosity dependence of the rupture strength two effects have to 
be considered: 
i) the reduction of the load-bearing area due to the presence of pores and 
ii) the stress concentration originated at the pores. 
While the load-bearing area reduction can be calculated knowing the volume 
fraction of porosity [16], the model substitution allows the calculation of the 
stress concentration by using the equations of the theory of elasticity in 
three dimensions [17]. This path provides the equations in order to calculate 
the effective rupture strength of porous materials ap in dependence of the 
volume fraction of porosity P and the pore structure as follows [7]: 

ap = aM (1 - pf 

K = t{[~J ' cos2UO) 
(4) 

where aM is the strength of the fully dense matrix and K is the stress 
concentration factor, which results as a function of the shape and orientation 
of the pores and of the Poisson's ratio vM of the matrix. Due to the 
complicated mathematical nature of the equations involved in the calculation 
[17] a computational programm was developed to calculate the stress 
concentration factor K as a function of shape and orientation of the pores 
for variing Poisson's ratio of the matrix phase [7]. The results for a matrix 
phase with Poisson's ratio vM = 0.25 are plotted in figure 2, where the stress 
concentration factor K varies with the orientation angle for different axial 
ratios of oblate (figure 2-a) and prolate (figure 2-b) spheroids. The 
calculations [7] also showed, that there is no significant effect of the 
Poisson's ratio of the matrix on the stress concentration factor. The results in 
figure 2 can therefore be used with accuracy for all materials with VM 
between 0.1 and 0.4. Calculated values using eq. 4 have been satisfactorily 
compared with experimental data on porous glasses, ceramics and metals 
with different porous structures [7,18]. 
The determination of the fracture strength of a composite material is by an 
order of magnitude more diffiCUlt than the problem of property prediction 
of other properties as pointed out by Hashin [8]. A recent survey [7] has 
shown that there is considerable work dedicated to this topic in the literature 
and that the different theoretical approaches can not predict all experimental 
results. The reason is the great number of variables influencing the problem, 
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which can not be considered in a unique fonnula at the present state-of-the­
art. Besides the strength of the phases involved and their microstructural 
arrangement. the mismatch between the elastic moduli and thennal 
expansion coefficients of the phases and the strength of the bonding and 
further mechanisms at the interfaces are of great importance in detennining 
the fracture strength of the composite. 
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Figure 2. Stress concentration factor (K) for a) oblate and b) prolate 
spheroids of different axial ratios as a function of their orientation to 
stress direction 

For composites without thennal expansion mismatch and perfect bonding 
between matrix and inclusions a load-sharing mechanism has been proposed 
[19] to detennine the final strength of the composite. If the components in 
the system share the applied load in proportion to their elastic moduli, the 
strain in all components in unidirectional tension will be the same, i.e. both 
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the second phase and the matrix must deform equally. It follows that the 
load to failure, and consequently aC, varies proportionally to the Young's 
modulus of the composite. Using the known microstructural dependence for 
the Young's modulus (eq. 1) the following equation has been proposed [7] 
for the variation of the fracture strength of composite materials with matrix­
type microstructure: 

I J 1 1 1 1]\ 
ac=aM\l-~ 9(1+1:9{~~_1}) 3(1+1,:8{~~_1}) 9(1+1:4{~~_1})1 (5) 

where A and B are given by eq. 1. Although the conditions leading to eq. 5 
seem to be too restrictive, it has been shown [7], that for many particulate 
composite systems the equation predicts the fracture strength with sufficient 
accuracy. 

3. Design of a matrix-type composite with optimal technical properties 
using the microstructure-property correlations 

As shown in previous sections a particular property of a composite material 
can be varied in a predetermined way by controlled changes in the phase 
composition and microstructure. 
In this context, the microstructure-property correlations provide a powerful 
engineering tool to design composites with optimized technological 
properties. As mentioned in section 1, these properties result from a 
combination of terms of thermochemical, field and mechanical properties, 
the dependence of which on microstructure is now well known. 
As an example for technological properties the thermal shock resistance of 
porous brittle materials is considered because of its significance in the 
choice of ceramics for high temperature structural applications. 
As mentioned before, the thermal shock resistance can be understood as the 
maximum temperature difference that can be tolerated in a ceramic body 
under heat transfer conditions without thermal stress failure occuring. Since 
different testing conditions may affect the result, different so-called "thermal 
shock resistance parameters" have been proposed, which have been already 
compiled for many situations involving thermal stresses and thermal stress 
fracture [20]. One of the most generally used thermal shock resistance 
parameters, named RTS, and originally derived in the last century [21] is 
defined as: 

RTS == cr cj> (1 - v) (6) 
a.E 

where <\> is the thermal conductivity and a is the thermal expansion 
coefficient of the material. The RTs-parameter characterizes the resistance to 
fracture initiation under steady state heat conduction. The materials 
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properties involved in eq. 6 can now be substituted by porosity functions 
from the microstructure-property correlations. As shown in previous studies 
[1] the thermal expansion coefficient of porous materials does not depend 
on porosity. Moreover the variation of the Poisson's ratio with porosity has 
only a minor effect on the thermal shock behavior of the composite, as a 
recent theoretical and experimental study has demonstrated [22]. Therefore 
only the porosity functions of the thermal conductivity, the Young's 
modulus and the fracture strength have to be considered and substituted in 
eq. 6. Eqs. 2 and 4 give the porosity dependence of the Young's modulus 
and the fracture strength respectively, while the following relation has been 
derived [4] for the thermal conductivity of porous materials: 

q,p= q,M (1- p)R 
1 2 2 R= - COS ao + cos ao 

(7) 

1 - Fo 2 Fo 

The thermal conductivity, of the porous material (C\>P ) appears as a function 
of the conductivity of the matrix phase (C\>M), the porosity, the shape factor 
(FD), which is a function of the axial ratio of the pores [4], and the 
orientation factor (COS2a.D). 
Substituting eqs. 2, 4 and 7 in eq. 6 the thermal shock resistance RTS(P) of a 
porous ceramic material normalized to the property of the fully dense 
material RTS(O) results as: 

RTS(P) _ (1 _ p)K+R 

RTS(O) (t _ p2/3t 
(8) 

where R, S and K depend on the porosity structure, i.e. shape and orientation 
of the pores. Thus three variables remain influencing the material's property. 
By changing these variables properly it is possible to optimize the final value 
of the property and hence to design a porous ceramic with improved 
thermal shock resistance. 
Figure 3 shows, for example, the variation of the relative thermal shock 
resistance with the pores axial ratio (z/x) for parallel oriented pores (cos2 a.D 
=1). Values for three different porosities (P) are shown. While for porosities 
above P=O.l the porous ceramic behaves invariably worse than the fully 
dense body (RTS(P)IRTS(O)<l), for much lower porosities (P=O.Ol), the 
porous body has a better thermal shock resistance than the fully dense one 
for a wide range of pores axial ratios. It is significant to note that the same 
behaviour of the fully dense body can be reached by a porous body 
containing about 5% of residual porosity providing the pores have an axial 
ratio Z/X == 0.7. 

A possibility of improving the thermal shock behavior of porous 
ceramics at higher porosities is shown in figure 4, where the variation of the 
relative thermal shock resistance is represented as a function of the porosity 
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for pores having an axial ratio z/x = 10 (cylindrical porosity). The curves 
shown represent the values for statistical (cos2 aD = 0.33), perpendicular 
(cos2 aD =0) and parallel (cos2 aD =1) orientation of the pores. For this 
kind of pore structure, the perpendicular orientation provides the best result 
for improving the thermal shock behavior, reaching a maximum at a volume 
fraction porosity of about 7%. Moreover, the property of the porous body 
remains above that of the fully dense one up to a porosity of aprox. 20%. 
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Figure 3. Relative thermal shock resistance of a porous brittle 
material as a function of the axial ratio of the pores for different 
porosities and orientation cos2 aD =1. 

These theoretical results are alltogether in qualitative agreement with many 
statements found in the literature [23] concerning the initial increase of 
thermal shock resistance with the volume fraction of pores of ceramic 
materials. Experimental verification of the predictions of eq. 8 have been 
made for sintered glass and CaTi03-Ti02 ceramics containing spherical 
pores [22,24]. Work is in progress to test the theoretical predictions with 
experiments for porosity structures other than spherical [7], since the 
experimental verification of Eqs. 2, 4 and 7 is an indirect confirmation for 
eq. 8 too. Thus, microstructure-property correlations together with 
appropiated processing parameters form a useful basis to obtain desired 
porosity structures in order to design porous ceramics with optimized 
thermal shock resistance. A similar treatment as the one presented here for 
porous materials is being investigated for the improvement of the thermal 
shock resistance of dense brittle matrices by addition of second phase 
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particles [22J. These considerations may obviously be extended for other 
technological properties or group of properties making the microstructure­
property correlation an essential tool for composite design. 

1.2 
6" cosZeio= 'iii .... a: 
..... 
iL 

1.0 
'" .... 

a: 
CD 
0 c 
! 
Ui 
!!! 0.8 .>< 
0 
0 .r= ... 
"iii 
E 
CD 
-5 0.6 
"0 
CD 
.~ 
"iii 
E 
(; f =10 c 

0.4 
0 0.1 0.2 OJ 0.4 0.5 

porosity 
Figure 4. Relative thermal shock resistance of a porous brittle 
material as a function of porosity for different orientations of pores 
and axial ratio z/x= 10. 

4. References 

[1] Nazare, S. and Ondracek, G. (l978) Zurn Zusamrnenhang zwischen 
Eigenschaflcn und Gefilgestruklur rnehrphasiger Werkstoffe. Z. Werkstoffiech. 
9, 140-147. 

[3] Bossert, J. (1993) Zur Haftung von VerbundwerkslOffen im festen 
Aggregatzustand. PhD Thesis Rheinisch-West.fiilische Technische Hochschule 
RWfH Aachen. 

[3] Ondracek, G. (1982) Zur quantitativen Gefilge-Feldeigenschafts-Korrelation 
mehrphasiger Werkstoffe. Metall 36,523. 

[4] Ondracek, G. (1987) The quantitative microstructure field property correlation 
of multiphase and porous materials. Reviews on Powder Metallurgy and 
Physical Ceramics 3,205-322. 

[5] Ondracek, G. (1986) Microstructure-thermomechanical-property correlations of 
two phase and porous materials. Mat. Chern. Phys. 15281-312. 



38 

[6] Kreuzberger, S. (1993) Zum Grenzwertkonzept fUr mechanische uod 
thermochemische Eigenschaften mehrphasiger Weckstoffe. PhD Thesis RWTH 
Aachen. 

[7] Boccaccini, A. R. (1994) Zur Abhangigkeit der mechanischen Eigenschaften 
zweiphasigec und porOser Werkstoffe von dec GefUge- bzw. PorosiWsstruktur. 
PhD Thesis, Rheinisch-WestfiUische Technische Hochschule RWTH Aachen. 

[8] Hashin, Z. (1983) Analysis of composite materials. A survey. J. Appl. Mech. 
50,481-505. 

[9] Mazilu, P and Ondracek, G. (1989) On the effective Young's modulus of 
elasticity for porous materials. Part I: The general model equation, in K. 
Herrmann and Z. Olesiak (eds.).Thermal Effects in Fracture of Multiphase 
Materials. Proc. Euromech. Colloquium 255. Springer Verlag Heidelberg 
Tokyo New York pp. 214-230. 

[10] Boccaccini, A. R., Ondracek, G., et a1.(1993) On the effective Young's 
modulus of elasticity for porous materials: microstructure modelling and 
comparison between calculated and experimental values. J. Mech. Behav. Mat. 
4, 119-126. 

[11] Ondracek, G. (1978) Zum Zusammenhang zwischen Eigenschaften und 
Gefilgestruktur mehrphasiger Werkstoffe. Teil III. Z. Werkstofftech.9 31-36. 

[12] Walsh, J. B., et al. (1965) Effect of porosity on compressibility of glass. J. 
Am. Ceram. Soc. 48, 605-608. 

[13] Arnold, M., Boccaccini, A. R. and Ondracek, G. (1994) Prediction of the 
Poisson's ratio of porous materials. Submitted to J. Mat. Sci. 

[14] Ramakrishnan, N. and Arunachalam, V. S. (1993) Effective elastic moduli of 
porous ceramic materials. J. Am. Ceram. Soc. 76, 2745-52. 

[15] Boccaccini, A. R. and Ondracek, G. (1993) On the porosity dependence of the 
Poisson's ratio in ceramics. Ceramica Acta 5,61-66. 

[16] Griffiths, T. J., Davies, R. and Basset, M. B. (1979) Analytical study of 
effects of pore geometry on tensile strength of porous materials. Powd. Metall. 
22, 119-123. 

[17] Sadowsky, M. A. Sternberg, E. (1949) Stress concentration around a triaxial 
ellipsoidal cavity. J. Appl. Mech. 16149-155. 

[18] Boccaccini, A. R. and Ondracek, G. (1993) On the porosity dependence of the 
fracture strength of ceramics, in P. Dunlo and J. F. Fernandez (eds.). Third 
Euro-Ceramics 3, 895-900. 

[19] Borom, M. P. (1977) Dispersion-strengthened glass matrices - glass­
ceramics, A case in point. J. Am. Ceram. Soc. 60,17-21. 

[20] Hasselman, D. P. H. (1970) Thermal str~s resistance parameters for brittle 
refractory ceramics: a Compendium. Am. Ceram. Soc. Bull. 49,1033-37. 

[21] Winkelmann, A., Schott, O. (1894) Ober thermischen Widerstandskoeffizienten 
verschiedener GUtser in ihrer Abhllngigkeit von dec chemischen 
Zusammensetzung. Ann. Phys. und Chemie 51,730. 

[22] Boccaccini, A. R. and Ondracek, G. (1993) ErhOhung der 
Thermoschockbcstl1ndigkcit von Sinterglas und Keramik fiber das 
Verbundwerkstoffkonzcpt. Mat.-wiss. u. Werkstofftech. 24,450-456 

[23] Salmang, H. and Scholze, H. (1982) Keramik. Springer Verlag, p. 253. 
[24] Jauch, U. (1988) Zur Thermoschockfestigkeit mehrphasiger Werkstoffe. PhD 

Thesis, Rheinisch-WestHilische Tcchnische Hochschule RWTH Aachen. 



CRACK GROWTH IN A COMPOSITE 
WITH WELL ALIGNED LONG FIBERS 
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ABSTRACT. Longitudinal strength 0"0 of an epoxy reinforced with one layer of long 
aligned and equally spaced glass fibers has shown that for a certain fiber spacing A, 
O"J'f: = 1( , where 1( is a constant. A similar expression was suggested for the strength 
of a borosilicate glass - SiC fibers composite under bending and the maximum fiber 
spacing. Steady crack growth under fatigue was observed in the glass - epoxy system. 
Using experimental data and a simple analysis, the forces on the fibers in the bridging 
zone were found equal. Analysis indicated that the total stress intensity factor was 
constant at the steady growth mode. Power relations were used to correlate steady speed 
with the stress intensity factor and the rate of debonding with the applied stress. 

1. Introduction 

When long aligned fibers are used as a reinforcement in a brittle matrix the result is a 
composite material with improved mechanical properties and enhanced resistance to 
crack growth. Resistance to crack growth in this class of materials comes from two 
important sources. The first one results from bridging of the crack faces by fibers. The 
second one is from crack bowing and trapping. Depending on the material types, 
interfacial characteristics, geometry and loading conditions these two mechanisms may 
lead to crack deceleration or crack arrest. 

Analytical research on the effects of bridging and crack bowing on stress intensity 
factors and crack growth behavior of composite with long aligned fibers has been 
reported by several researchers [1-12]. Although important progress has been achieved 
in understanding the role of reinforcement in the composites' behavior, experimental 
studies have received much less attention in the literature. In particular, issues related 
to the effects of fiber spacing and fiber types on strength and crack growth have not 
been addressed experimentally. 

An experimental research program was initiated to address issues related to strength 
and crack bridging in model composite systems with long aligned fibers [13-15]. In 
this paper, a summary of results on strength and crack propagation on specimens with 
one layer of well aligned and equally spaced glass fibers (mono-layer) in an epoxy 
matrix are reported. Work on multi-layer composites will be reported elsewhere [16]. 
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2 . Experimental Approach 

The specimens used in the experimental studies were, unidirectional, single lamina 
composites. The matrix material was an epoxy and the reinforcement consisted of glass 
fibers in a bundle form with an overall diameter of 0.4 mm. The Young's moduli of 
the matrix and the fibers were Em = 3.5 GPa, and Ef = 12.5 GPa. The strain-to­
failure of the matrix is less than that of the fibers. Therefore the fibers in the crack 
wake do not fail and thus all of them contribute to the bridging of the crack faces. This 
is considered to be a typical case of large-scale bridging. Moreover, the system is 
sufficiently simple to allow for an in situ observation of crack growth, debonding, 
crack opening displacement (COD), any dissipative mechanisms in the matrix material 
as well as crack front changes due to the reinforcement. Details of the specimen 
preparation procedures and experimental methods can be found in [13]. 

So far in this work we have dealt with strength and fatigue crack propagation. 
Longitudinal strengths of the composite material were determined using smooth 
specimens with different fiber spacing that were pulled to fracture. For the fatigue 
testing, a 60° angle notch of 1 mm depth was milled at the middle of the specimen 
edge. Various experiments each having different fiber spacing and load levels were 
performed [13,14]. All experiments were load controlled with a sinusoidal waveform 
function and various levels of stress. It should be noted that because we were interested 
in the steady state, one value of crack speed was obtained from each experiment. 

3 . Results and Discussion 

3.1. SlRENGTH 

The strength characteristics of the composite material were determined using smooth 
specimens that were pulled to fracture. To identify the effects of fiber spacing on 
strength ramp tests were performed on specimens with different fiber spacing and the 
same overall specimen dimensions. In all cases, fracture occurred first in the matrix 
while the fibers remained intact until the crack run across the specimen width. 

Conventionally, longitudinal strength of composite materials is described in terms 
of volume fractions and the strength of the fiber or the matrix material. This 
approximation is based on the rule of mixture and that the fibers possess uniform 
strength [17]. The volume fraction used in the rule of mixture does not always 
represent the local morphology (especially when there is no regularity in fiber spacing) 
because it is a volume average parameter. Therefore, the effects of scale on strength can 
not be formulated. To directly relate the composite's strength with a characteristic 
length scale i.e., fiber spacing, we turn to another treatment of the experimental data. 

A useful tool in analysis of experimental data as well as in the study of size effects 
is dimensional analysis. Through dimensional analysis the important parameters of the 
problem at hand can be identified and the relationship between the depended and 
independent variables can be illustrated. 

In the present work, we are interested in the longitudinal strength of a composite 
specimen O'c' It is then assumed that the governing parameters of the material system 

are: fracture toughness of the matrix material Kmc , the Young's moduli of the matrix 
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Em' and of the reinforcing fibers Ef ; the respective Poisson's ratios vm' and Vf; the 
fiber spacing A, and fiber diameter D; the specimen width w, and thickness h. 
Choosing Kmc , and A as fundamental parameters (Jc can be expressed as 

(1) 

Where, the dimensionless parameters in the function <PI are n parameters, 

ni =EmJA IKmc, ~=Er.JA I Kmc , ~ =D/)., ~=w IA , ~ =D/h 

~ = vm ' ~ = Vf. The first four n parameters depend on the' fiber spacing A. 
Furthermore, because the explicit form of the function is not known, it is difficult to 
examine its dependence on A. For t!te glass - epoxy system [13] ni » 1 ( .. 102) , 
n2 » 1 ( == 1()3), ~» 1 ( .. 60), f4 » 1 ( .. 10) . According to dimensional 
analysis, a complete self - similarity implies that large or small parameters (compared 
to unity) can be eliminated from the function CPi as long as there exists a limit of CPi 
for very large or very small variables [18]. With respect to the problem at hand, ni , 

n2 and ~ are very large and can be eliminated from CPl' The fourth parameter is not 
very large in comparison to unity especially in the case of the largest fiber spacing used 
in this work (for A ==3 mm, w/A. - 8). However, it assumed that it is sufficiently large 
and can also be eliminated. Note that the comparison with the experimental results 
will attest this assumption. Moreover, the ratio D/h remains the same in all 
specimens. Thus, the following limiting similarity law is obtained for the longitudinal 
strength of the composite specimen with well aligned fibers 

(2) 

Strength values plotted against 1 1 JA are shown in Fig. la. Note that with the 
exception of one datum point, a straight line through the origin represents the data very 
well. Thus, the strength of the composite specimen scales with the square root of the 
fiber spacing because the dimensionless function, <pz(vm, Vf' D Ih) , and Kmc can be 

taken as constants. It is worth noticing that for those specimens where (JcJA = 
constant, fatigue crack growth and the rate of debonding in single edge notched 
specimens reached a steady state mode, i.e., independent of the crack length. In 
specimens with larger fiber spacing, crack speed versus crack length increased with large 
fluctuations [14]. 
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Fig. 1: strength with spacing for (a) epoxy - glass, (b) borosilicate glass - SiC 

The similarity expression (2) is an important result for the model composite system 
with the range of fiber spacing examined in the present studies. However, in a real 
composite system fiber spacing is not regular. Thus, it is important to contemplate a 
similarity law akin to (2) in composite systems without a regular fiber spacing. 
Experimental data on strength versus a characteristic length scale are not available in 
the literature because strength usually is expressed in terms of fiber volume fraction. A 
set of such data on matrix initiation strength versus fiber spacing, recorded under three 
point bending on borosilicate glass reinforced with SiC fibers, has been reported [19]. 
Although, it is stated by the authors that the data were preliminary, they are examined 
here in an attempt to deduce a scaling expression similar to (2). Since there was no 
regularity in the fiber spacing in the borosilicate glass - SiC system, the parameters 
that reflect the specimen size and a set of length scales are introduced Ai' i = 1, ... , n 
that represent fiber distances. 

Recognizing that strength is a strong function of extreme local material 
heterogeneity, the fundamental parameters are taken as 

"'max = Ak = max(A 1, .. ·, Ak_l , Ak, Ak+I'"'' An) and ~c . The choice of ~x is also 
justified by the experimental observations that matrix cracking originated between the 
largest fiber spacing. Thus, the strength of the composite can be written as 
_~(Em.fC Er.fC t w w L AI Ak_1 Ak+1 An) 

(Jc - -~""'1 K 'v ' Vm , Vr, D' 'l 'D' 1 ' 1 .... , 1 • 1 ''' ' 1 
V ~ax me·'-mc ''''max ""max ''''max "''I1l1.X "''max "'max 

Here ~,Em' Er, Vm• vr and d have the same meaning as before; L, w, and t are the 
support span, width. and height of the beam, respectively. The parameters containing 
the Young's moduli and the ratios L / "'max' tID, and wID are very large in comparison 

to unity. Moreover, because the distribution of Ai is not known it is assumed that 

their ratios with ~ax are small. Thus the function $1 can be substituted by its limit 
when these parameters approach very large or very small values 
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(3) 

The ratio w / Amax is between 6 and 12. Such a quantity is not very large with respect 

to 1 when Amax is largest. Nevertheless, considering its value to be large, one obtains 

C'Jc..rr;;::: = K",c~(vm' vf ) = constant. Note that the data will detennine the validity of 
this approximation. 

The data in Fig. 1 b show that, except for one datum point with strength of about 
50 MPa, the matrix initiation stress C'Jc , is well correlated with 1/..rr;;:::. Although 
this is a preliminary result, its implications are important because fiber spacing reflects 
the microstructure better that volume fraction, an average quantity, commonly used to 
correlate strength data in composite materials. This may be one of the reasons for the 
large scatter in strength versus volume fractions observed in brittle composites. 

3.2. CRACK PROPAGATION BEHAVIOR 

A typical behavior of crack speed with the crack length is shown in Fig. 2 [16]. 
Interestingly, three distinct regimes were observed: two transient phases separated by a 
steady phase. In all cases, the time to crack initiation largely depended upon the fiber 
spacing, the applied load and the distance of the notch tip to the first fiber. After 
initiation, a significant decrease in the crack speed was observed (Fig. 2). The extent of 
this behavior was dependent upon the fiber spacing, applied load and the distance of the 
notch tip to the first fiber. In some cases the crack speed increased upon initiation 
followed by a decrease [14]. 

The decrease in crack speed may be explained with the effects of the reinforcement 
on the stress field at the crack tip. It has been reported [20] that an inclusion, in front of 
a crack, with higher stiffness than the surrounding material lowers the stress intensity 
factor at the crack tip. Therefore when the crack approaches a fiber that is stiffer than 
the matrix, the local stress intensity factor is reduced leading to a deceleration of the 
crack speed. 

After crack initiation and a transient phase, crack growth behavior depended upon 
the fiber spacing. In specimens with A'" 3 to 3.5 mm a tendency of increasing crack 
speed was seen albeit with large fluctuations [14]. In test pieces with smaller fiber 
spacing, fatigued under various loads, the crack speed reached a steady phase. That is, 
the crack speed and the rate of energy dissipation were independent of the crack length 
and cycle number. 

After the steady phase of fracture, a decrease in the crack speed was observed. This 
decrease was accompanied by an increase in the energy dissipation (Fig. 2). To identify 
the sources of this behavior, attention was focused on the bridging zone and the bulk of 
the specimen. In particular two photoelastic sheets were used during testing to observe 
the specimen upon loading. Two photographs of the specimen are shown in Fig. 3. 
The morphology shown in Fig. 3A is typical of the steady phase of fracture. The 
photograph 3B was taken at the phase when a decrease in the crack speed was recorded. 

The behavior shown in Fig. 3 may be explained in tenns of time and/or temperature 
effects primarily on the matrix material [16]. At relatively short times, the material 
behaves as an elastic one with most of energy dissipated within the bridging zone and 
in creating crack surfaces. 
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As time progress, however, the rheological behavior of the matrix material changes 
due to temperature increase resulting from the cyclic load and/or due to creep. These 
changes in the matrix material result in an increase of energy absorbed by the matrix 
material. Consequently, less energy is spent within the bridging zone and crack 
propagation. Additional experimental and theoretical work is required to elucidate these 
important findings. 

Most of the work so far has been aimed at understanding the steady phase of crack 
growth. Crack propagation rates AI/AN, plotted against the crack length I. are shown 
in Fig. 4. For the same fiber spacing the steady crack speed was an increasing function 
of the applied stress. For the same load level the steady speed depended upon the fiber 
spacing, i.e. the smaller the fiber spacing, the smaller the crack speed. For the same 
fiber spacing, the level of the average steady state speed depended upon the applied load. 
It is worth pointing out that steady crack speed was observed only in the specimens 
where a/A = 1(. Moreover, for A. '" 3.5 mm the average crack growth rate did not 
reach a constant value suggesting that for a given load, the steady state can be obtained 
for fiber spacing below a critical value. Thus both strength measurements and fatigue 
crack growth suggest a transition in the behavior of the composite material in terms of 
the fiber spacing. 
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I A. = 1.8 mm 
I 0 = 12.5 MPa 
I .... 

Crack Length, mm 
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..:.c 
C,I 

E 
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),.:: 2.5 mn'l 
o~ .. =:17.8 M~a 

U V+~~~~-T~~~~-' 

Crack mm 

Fig. 4: crack speed for two typical fiber spacing 

Crack opening displacements, measured at the maximum load of the fatigue cycle, 
are shown in Fig. Sa. Data points were obtained along the crack where fibers were 
located as a function of crack length. Note that the COD at a point where a fiber in the 
bridging zone is located is linearly related to debonding (Fig. Sa) and that the linear 
relationship is the same for the fibers in the bridging zone. Moreover, CODs at the 
points where the fibers are located vary linearly with crack length. The linearity with 
crack length indicates a constant rate of growth in COD in the steady state because 
crack length and cycle number are linearly related [13]. Within the resolution of the 
observations, fiber debonding, friction and some filament fracture were assumed to have 
contributed to energy dissipation. 
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4 . ANALYSIS 

The experimental results reported in this paper have demonstrated that crack propagation 
in uniaxially reinforced composite specimens exhibit a steady state behavior. 
Theoretical works on the dependence of matrix cracking stress on material properties in 
the steady state have been reported. These analyses use a shear lag approximation for 
the stresses on the fibers and energy balance [1-3] or a stress intensity factor based 
approach with a uniform distribution of tractions in the bridging zone [4-5]. Although 
these analyses provide an important understanding of the composite's fracture. they are 
not easily applicable here because the reinforcement cannot be substituted by 
continuous tractions on the crack planes and the effects of the fiber spacing cannot be 
investigated. 

Because of the steady growth mode. it is assumed that the total stress intensity 
factor Kt • at the matrix crack tip. arising from the remote load and the fibers. is 

constant at the steady state. The next step is to calculate ~ and its dependence on 
fiber spacing. Towards this end. it was assumed that for a crack bridged by fibers the 
principle of superposition applies and that the level of residual stresses due to specimen 
preparation was negligible. Thus the stress intensity factor Kt • is expressed as 

n 

~ = K(a_./) - L K!(Pi. c) + M( (4) 
i=1 

Where K(a_./) is the stress intensity factor due to the applied stress aoo • on a 

homogeneous specimen with a crack of length I. originating from the middle of the 

edge. K[(Pi' Ci). is the contribution to Kt of the i-th fiber . in the bridging zone. 

expressed as the effect of a closure force Pi acting at a distance ci from the specimen 
edge. The sum is over the number of fibers bridging the crack. The correction M( is 
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due to an effect arising from the fibers ahead of the crack front Both K(a .. , I) and 

Kfm, cJ can be evaluated using standard procedures. For the fiber spacing employed in 
the present studies and considering in the calculations that the crack tip was located in 
the middle of two consecutive fibers, AK was presumed negligible [13]. 

Evaluation of K(a .. , I) does not possess any particular difficulty. The contribution 

of the reinforcements to the total stress intensity factor, however, can be evaluated only 
if the forces carried the fibers are known. These quantities are difficult to determine 
experimentally. To obtain a better insight as well as relationships between the forces 
on the fibers bridging the crack, the debond length and the COD, the stress -
displacement relations of a fiber in the bridging zone were analyzed using a frictional 
model similar to that in [4]. According to this analysis [13] the COD u(d) at a typical 
fiber in the bridging wne is 

u(d) = ~ (kd fel t(d,x)dx + (1-k) fel dx fX t(d'l1)dr!) 
Err Jo Jo Jo (5) 

Where k is a constant, d is the debonding along the fiber and t is the shear stress. 
The experimental data have shown that, at steady state, the crack opening 

displacement and debonding are linearly related (Fig. 5a). Therefore the integral in (5) 

Lei t(d,x)dx , should not depend on d. A simple expression for the shear stress can be 

derived, considering that for fixed d it does not vary along the interface, i. e. 
t(d,x) = t(d). However, when the debonding increases the shear stress decreases such 

that the product t(d)d remains constant, say to Po. If t(d,x) = Po / d one obtains 

a(d) = 2(1 +k)po / r and u(d) = (1 +k)dpJEr r . 

To continue, the constant Po should be identified. Assuming that no fiber failure 

occurs and that the applied stress a.. is equally taken by all fibers, the maximum stress 

on fiber is (ar}max = a .. / Vr , where Vr denotes the fiber volume fraction. Considering 

that the stress carried by the fibers is distributed across the thickness, the maximum 
value of the closing traction due to a fiber in the bridging zone is P max = a .. B / N 

where N is the total number of fibers in the composite specimen. Assuming that the 
fibers in the bridging zone carry the same load and equal to P max = a .. B / N simulations 

were carried out to evaluate Kt • Typical results of simulations are shown in Fig. 5b. 

Note that ~ is constant for liB - 0.2 - 0.4. Afterwards, the interaction of the crack 

front and the specimen edge leads to an increase of Kt that results in specimen fracture. 

Considering that Kt is constant at the steady state, the next step would be to 
correlate the steady speed for various fiber spacing and applied loads with Kt • Towards 
this end, an empirical power relation can be used. It would be useful, however, to 
explore the importance of the fiber spacing on crack speed and ascertain any similarity 
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parameters. Due to lack of analytical work at present to help in such understanding an 
analysis of the steady state fracture process using dimensional arguments has been 
attempted to obtain guidance towards a better experimental design as well as analytical 
research [13]. From this analysis it was shown that for the case when the constituent 
materials, specimen geometry and fiber spacing are kept the same, the crack speed can 
be expressed as 

(6) 

Where both Rand nl = 2+(1 are parameters that depend upon the specimen 

geometry, material and interfacial properties. The applied load controls the crack speed 
only through Kt. Dimensional analysis suggested certain procedures to be followed 
when investigating the effects of fiber spacing and applied load on the steady crack 
speed. Namely, when studying the effects of load level on steady speed, the fiber 
spacing should be kept the same from experiment to experiment otherwise the exponent 

may vary in a way that is difficult to explain because the explicit form of R and the 

exponent nl = 2+<x are unknown. This is also the case when the fiber spacing is 

changed from experiment to experiment while the stress level remains the same. This 
procedure was followed in the experimental part of this research [13]. 

Plots of !:J.l j!l.N these data as a function of the total stress intensity factor on a 

Log - Log plane are shown in Fig. 6a. For the three sets of data, the parameter nl 
(Eq. 6) was found equal to 4.26, 4.77, and 4.04, respectively. Using an average value 
of 4.35 and calculating the steady speeds for each set, a difference of about 20% was 
observed between the experimental and calculated steady speeds. 

A power relation was also used for the rate of debonding as a function of stress level 
on specimens with 1.=1.8 mm. It has been reported that for an interfacial crack the 

energy release rate at steady state is proportional to rr , where t is the stress carried by 
a fiber of radius r [21]. Drawing on this results and considering that the forces carried 
by the fibers are proportional to the applied load, the experimental data on the steady 
evolution of debonding were correlated with the following expression 

(7) 

Where B and 1lz are constants and (J is the maximum stress of the fatigue cycle. The 

data shown in Fig. 6b are rates of debonding and the straight line represents Eq. (7). 
Note that the exponent n2 = 4.5 is practically equal to the exponent nl (= 4.77) 

obtained from the correlation of the steady speed on specimens with the same fiber 
spacing. This is consistent with the steady state of the fracture phenomenon. 
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5. Summary 
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The results outlined in the work have shown that experimental and analytical research 
on systems with well controlled reinforcement can be useful in our attempts to 
understand the phenomena related to strength and fracture of composites with long 
aligned fibers. Despite the lack of analytical tools for an in depth modeling, some 
important results that emerged from this work are: (a) The scaling expression 
cr/A = K relates the strength of the composite with a characteristic structural size, 
namely the fiber spacing. A similar expression is suggested for a ceramic composite 
without regular fiber spacing. (b) During the steady phase of propagation, crack speed, 
the rates of debonding, crack opening displacement and energy dissipation are constant. 
A decrease in crack speed is recorded after the steady phase. It is attributed to changes of 
the matrix material and is manifested in an increase in energy dissipation. (c) Strength 
measurements and crack growth suggest a transition in the behavior of the composite 
material in terms of fiber spacing. (d) Using the COD measurements and a simple 
analysis, the product of the shear stress, along the debonded interface and the debond 
length was found constant. Using this finding and simulations for the total stress 
intensity factor Kt, it was shown that Kt was approximately constant in the steady 
phase of crack growth. The steady crack speed and the steady rate of debonding seem to 
have a similar power dependence on stress level. 
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FIBER ARRANGEMENT EFFECTS ON THE MICROSCALE 
STRESSES OF CONTINUOUSLY REINFORCED MMCS 

H.J. BOHM AND F.G. RAMMERSTORFER 

Institute for Light Weight Stmctures and Aerospace Engineering 
Vienna Technical University 
Guflhausstr. 27-29, A-l040 Vienna, Austria 

Abstract. A unit cell based numerical approach is used for investigating 
fiber arrangement effects on the microscale stress and strain fields and on 
the overall thermomechanical response of a continuously reinforced uni­
directional B/ Al MMe. Simple periodic fiber arrays, clustered hexagonal 
configurations as well as modified and clustered square geometries are con­
sidered. The mean values and standard deviations of microstress and mi­
crostrain parameters in the matrix are computed and discussed for axial 
and transverse mechanical loading as well as for thermal loading. 

1. Introduction 

A number of methods have been developed for theoretical investigations 
of phase arrangement effects on the microscopic and macroscopic beha­
vior of composites. One group of strategies employs statistical concepts for 
characterizing the phase arrangements of multiphase materials and for in­
vestigating relationships between microstructure and material properties. 
Such work includes, among others, studies based on correlation functions, 
e.g. (Pyrz, 1994), and on metallographic parameters, e.g. (Fan et al., 1994). 

A different approach, which is followed in the present study, consists 
of analyzing the predicted responses of selected model microgeometries, 
which typically take the form of periodic phase arrangements of various 
levels of complexity, see e.g. (Bigelow, 1992; Nakamura and Suresh, 1993; 
S0rensen and Talreja, 1993; Bohm et al., 1994). By interpreting such results 
within a statistical framework, it was found possible in some cases to link 
the above strategies, see e.g. (Siegmund et al., 1993). 
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2. Micromechanical Modelling 

2.1. FIBER ARRANGEMENTS 

Eight periodic microgeometries, each corresponding to a fiber volume frac­
tion of ~=0.475, are considered, see Fig.I. Configurations PHO and pso are 
periodic hexagonal and square arrays, respectively. The clustered hexago­
nal arrangements CH1 and CH3, the modified square configuration MS5 as 
well as the clustered square geometries CS7 and csa were selected such that 
the minimum nearest-neighbour distance between fiber centers, a, takes the 
same value as that of the "honeycomb" arrangement RH2. For ~=0.475 this 
corresponds to a=I.282d, where d stands for the fiber diameter. 

Even though their nearest-neighbour distances are equal, the clustered 
microgeometries differ considerably in the average number of nearest neigh­
bours per fiber and in the distribution of the thickness of matrix material 
around the fibers. This can be clearly seen from Fig.2, which shows the 
widths of the "matrix bridges" (in terms of the fiber diameter) as functions 
of the circumferential angle for the eight arrangements. Two curves each 
are given for the clustered arrangements CH1, CH3 and CS7 to account for 
the "inner" (dotted lines) and "outer" fibers of the clusters. As expected, 
the distributions of the widths of the matrix bridges are smoothest for the 
hexagonal and square arrays, and "matrix islands" are evident for the other 
configurations, especially arrangements CH1, RH2 and CH3. 

It is worth noting that, whereas the overall elastic behavior of the four 
hexagonal microgeometries is transverse isotropic, arrangements PSO, CS7 
and csa show tetragonal elastic symmetry, and MS5 is monoclinic. The 
thermal expansion behavior of all configurations except MS5 is transverse 
isotropic (Nye, 1957). Once yielding has taken place under non-axial me­
chanical loading, the above symmetry properties are typically degraded. 

2.2. FINITE ELEMENT MODELS 

The micros tress and microstrain distributions for the eight periodic fiber 
arrangements were evaluated numerically via suitable unit cells, and the 
overall responses were obtained by homogenization. The unit cells and the 
associated boundary conditions were designed to be capable of handling 
axial and transverse normal mechanical loading as well as thermal loading 
(which in the present context is understood to involve no spatial tempera­
ture gradients), for a detailed discussion see (Bohm, 1993; Bohm et at., 1993; 
Bohm et at., 1994). Generalized plane strain models were used, the compu­
tations being performed with the FE-code ABAQUS (HKS, 1992). 
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Figure 1. The eight periodic fiber arrangements considered (1;=0.475) . 
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TABLE 1. Material parameters used for the boron monofilaments 
and the A16061-0 matrix 

T E 1/ Uy Et Q 

[0C] [GPa] [MPa] [MPa] [K- 1] 

fibers 0-400 400.0 0.230 5.00xlO-6 

matrix 20 68.9 0.350 68.9 1710 22.85x 10-6 

50 67.8 0.350 67.9 1683 23.50x10-6 

100 66.2 0.350 65.7 1643 24.50x10- 6 

150 64.5 0.345 62.2 1601 25.50x 10-6 

200 63.0 0.335 55.0 1564 26.40xlO- 6 

250 61.6 0.330 34.5 1529 27.30xlO- 6 

300 60.3 0.330 25.1 1497 28.20x 10-6 

350 58.7 0.330 18.2 1457 29.20xlO-6 

400 56.3 0.335 11.3 1397 30.20xlO-6 

The boron monofilaments were treated as isotropic elastic continua. 
For describing the behavior of the A16061-0 matrix, a simple thermoela­
stoplastic material model with linear kinematic hardening was employed, 
the Young's modulus E, the Poisson's ratio v, the yield stress in uniaxial 
tension t7y , the hardening modulus Et , and the total coefficient of thermal 
expansion (CTE) 0:' being piecewise linear functions of the temperature, see 
Table 1. The interface between fibers and matrix was assumed to be perfect. 
Damage effects and the relaxation of microstresses were not considered for 
the present study. 

3. Discussion of Results 

The investigated load cases comprise axial normal loading to 400 MPa, 
transverse normal loading to 100 MPa and cooling down from 400°C to 
20°C, the MMC being assumed to be initially stress free. In order to account 
for the anisotropic elastic and/or elastoplastic transverse behavior of the 
models, transverse loads acting in two directions were applied to all models 
except MS5. The directions of these loads are referred to the horizontal in 
Fig. 1. 

3.1. EVALUATION PROCEDURES 

For comparing the microscale stress and strain variables predicted for the 
different fiber arrangements, histograms of their frequency distributions 
(weighted by volume) within each phase as well as the corresponding mean 
values and standard deviations were computed. Following standard Finite 
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Element practice, these evaluations used the "nodal averaged" micros tress 
and micros train fields. The phase averages of the stress components were 
checked with respect to the overall equilibrium conditions, good compliance 
being found. 

3.2. OVERALL RESPONSE 

The predicted overall axial and transverse Young's moduli, EA and Er, and 
CTEs, a:4. and ar, respectively, of the BI Al MMC at room temperature 
are listed in Table 2 together with analytical results obtained with the 
Mori-Tanaka method (Benveniste, 1987). The elastic transverse anisotropy 
of arrangements PSO, csa and, to a lesser degree, CS7 is evident from the 
difference in the transverse Young's moduli corresponding to loading in the 
0° and 45° directions. Asterisks have been placed with the transverse data 
for arrangement MS5 to indicate their incompleteness. 

TABLE 2. Numerical and analytical predictions for thermoelastic pro-
perties of a unidirectional B/ Al MMC (room temperature, ~=O.475) 

arrangement E'A ET a:4. aT 
[CPa] [CPa] [K- 1] [K- 1] 

PHO 226.2 139.2 8.13xl0-6 15.7xlO-6 

CHI 226.3 142.2 8.18xlO-6 15.5xlO-6 

RH2 226.3 142.9 8.24x 10-6 15.2xl0-6 

CH3 226.3 142.4 8.20x 10-6 15.4x 10-6 

PSO 226.2 152.9/128.3 8.14xlO-6 15.6xlO-6 

MS5 226.3 149.0/*** 8.18xlO-6 15.5 x 10-6 /*** 
CS7 226.3 142.4/140.9 8.19xlO-6 15.5x10-6 

CS8 226.2 154.3/128.7 8.16xlO-6 15.6x10-6 

Mori-Tanaka 226.5 137.4 8.15x10-6 15.6xlO-6 

The dependence of the overall elastoplastic responses on the fiber ar­
rangements was found to be very small for axial loading, of limited import­
ance for thermal loading, and strong for transverse mechanical loading. For 
the latter case, the yielding and hardening behavior of the models PHO, 
CH1, RH2 and CH3 shows some anisotropy, and there are marked differences 
between the nonlinear responses to transverse loads in the 0° and 45° di­
rections for the square-type arrangements CSO and csa. Such behavior is 
well known from the literature, compare e.g. (Nakamura and Suresh, 1993; 
Bohm et al., 1993). 
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3.3. AXIAL LOADING 

In Table 3, the microscale axial stresses, ar), von Mises effective stresses, 

a~i~, hydrostatic stresses at), and effective plastic strains c:lf,P evaluated 
for the matrix of a B/ Al MMC subjected to an axial load of 400MPa are 
listed in terms of their mean values and standard deviations. 

TABLE 3. Microscale parameters (meanestandard deviation) 
predicted for the matrix of an initially stress free BI Al MMC 
(€=0.475) subjected to an axial load of 400MPa 

arrangement (m) 
Cl A 

(m) 
Clef! 

(m) 
ClH 

(m) 
Eef f,p 

[MPaJ [MPaJ [MPaJ [x 1O-4J 

PHO 73.geO.6 70.4eO.0 27.6eO.3 8.91eO.12 
CHI 74.8e4.5 70.4eO.l 28.5e3.8 8.86eO.42 
RH2 76.5e8.0 70.4eO.l 30.le7.0 8.80eO.66 
eH3 75.5e6.4 70.4eO.l 29.2e5.8 8.84eO.59 
PSO 74.le2.3 70.4eO.0 27.8e1.8 8.90eO.26 
MS5 74.8e4.1 70.4eO.l 28.5e3.5 8.87eO.38 
CS7 75.3e5.7 70.4eO.l 28.ge5.0 8.83eO.49 
CS8 74.4e3.4 70.4eO.l 28.0e2.9 8.8geO.31 

The dependence of the mean values of the above microfield parameters 
on the fiber arrangements is very small, the effective stresses being prac­
tically equal. There are, however, noticeable differences in the standard 
deviations, which are smallest for the periodic hexagonal array and reach 
the highest values for the clustered arrangements and the honeycomb geo­
metry RH2. The larger standard deviations of the microstresses are due to 
regions of reduced axial and hydrostatic stresses at the points of closest 
approach between neighbouring clusters (arrangements CHi and CH3) and 
at positions of minimum width of the matrix bridges (configurations RH2, 
CH3, MS5, CS7 and CSa). The effective plastic strains also reach their ma­
xima in these zones. Interestingly, the inner fibers of the hexagonal clusters 
are strongly shielded (i.e. the clusters in geometries CHi and CH3 behave 
like fiber-rich regions), but no such behavior is shown by arrangement CS7. 

3.4. TRANSVERSE LOADING 

Under transverse normal loading, both the mean values and the standard 
deviations of the matrix micros tresses and micros trains depend noticeably 
on the fiber arrangement. This can be seen from Table 4, which lists ma­
trix microscale parameters corresponding to a transverse load of lOOMPa 
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(u,r) stands for the transverse matrix stresses in the loading direction). 
There is also a clear correlation between the microfields and the direction 
of the transverse loads, which is most marked in the case of the tetragonal 
microgeometries PSO and csa. 

TABLE 4. Microscale parameters (meanestandard deviation) predicted for 
the matrix of an initially stress free BI Al MMC (~=0.475) subjected to a 
transverse load of 100MPa 

arrangement (7Jl) (7Jl) (7Jl) (7Jl) (7Jl) a A aT aeff a H Eef f,p 

[MPa] [MPa] [MPa] [MPa] [XIO- 3 ] 

PHOW) 48.8e25.3 94.le25.7 73.ge7.4 52.7e23.1 3.8le2.73 
PHO(900) 37.7e17.8 83.7e20.3 74.7e4.7 42.0e20.4 3.6ge2.50 

CHIW) 40.8e29.4 88.4e30.0 69.8e8.8 48.1e27.8 2.0ge2.15 
CHI (90°) 35.0e23.4 83.6e26.9 70.6e6.5 42.8e25.6 2.03e1.99 
RH2(00) 36.5e24.3 81.8e26.1 72.7e5.9 41.ge24.6 2.86e2.24 
RH2(900) 45.0e24.8 91.4e24.8 73.le5.4 50.7e23.7 2.90e2.47 

CH3W) 40.1e28.0 87.0e29.2 70.8e7.7 46.7e27.1 2.30e2.29 
CH3(900) 37.2e23.9 85.2e25.8 71.7e5.3 44.2e25.0 2.26e2.26 
PSOW) 32.4e30.1 79.0e34.6 57.4e16.4 43.ge31.3 1.04e1.46 
PSO(45°) 47.1e8.1 97.3e9.0 83.5e6.6 48.8e7.2 8.76e3.50 
MS5(00) 34.le25.5 82.6e29.5 63.7eI6.9 43.8e5.6 2.78e4.11 

CS7W) 37.4e31.8 84.7e35.3 66.5e14.1 45.2e32.1 2.62e2.57 
CS7(45°) 37.8e20.6 88.3e22.9 72.le14.1 45.3e19.4 4.57e4.83 

CS8W) 30.2e27.4 79.5e32.7 58.0eI3.6 43.0e29.6 0.56eO.99 
CS8(45°) 47.2e7.9 97.3e8.9 83.8e6.2 48.8e7.2 8.72e3.54 

This behavior can be explained in terms of the spatial distributions of 
the effective plastic strains and the effective stresses in the matrix, which 
tend to become concentrated in "bands" where allowed by the geometry. 
The periodic arrangements discussed here show straight "channels" of in­
finite free path length in the matrix at angles of 00 and ±60° (PHO, CHi, 
CH3), of ±30° and 900 (RH2), of 00 and 900 (PSO, CSa), of 00 , 900 and -450 

(MS5) and of 00 , ±45° and 900 (CS7). The highest mean values of the effec­
tive plastic strains and the effective stresses as well as the softest overall 
responses are predicted when wide bands can form in straight matrix chan­
nels at ±45° to the loading direction. The opposite behavior is found when 
the only channels are parallel or perpendicular to the loading direction, and 
shear strains activated at ±30° or ±60° give rise to intermediate results. 

Random arrangements of fibers (and thus real composites) do not show 
straight matrix channels of infinite path length, which are a typical fea­
ture of periodic arrays and clusters. The latter are, however, well suited 
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for describing the microfields in subregions with approximately periodic or 
clustered geometries, which are typically found in MMCs. 

3.5. COOLING DOWN FROM PROCESSING TEMPERATURE 

Among the load cases considered here, the strongest dependence of the 
matrix microstresses on the fiber arrangement was predicted for cooling 
down the B/ Al MMC from a processing temperature of 400°C to room 
temperature, see Table 5. The effective plastic strains, however, showed 
only a limited sensitivity to the microgeometries. 

TABLE 5. Microscale parameters (meanestandard deviation) pre-
dicted for the matrix of a BI Al MMC (~=0.475) cooled down from 
400°C to 20°C 

arrangement (m) aA 
(m) 

ael I 
(m) a H 

(m) 
cell,p 

[MPa] [MPa] [MPa] [xlO- 2 ] 

PHO 84.0e9.6 87.2e3.9 45.2e4.4 1.10eO.21 
CHI 93.6e49.7 87.7elO.8 50.5e40.5 1.1leO.63 
RH2 113.2e95.8 88.8eI9.4 68.7e86.4 1.1ge1.14 
CH3 105.le96.0 88.4eI5.0 63.3e88.6 1.16eO.92 
PSO 87.0e22.8 87.3e7.1 45.3eI3.4 1.08eO.41 
MS5 91.1e43.7 88.3el0.2 51.0e37.3 1.15eO.59 
CS7 100.1e79.4 88.2eI3.6 57.7e71.5 1.15eO.79 
CS8 89.2e41.3 87.7e8.7 48.1e34.8 1.11eO.51 

A noteworthy feature of the above results are the very high standard 
deviations computed for the axial and hydrostatic micros tresses of some 
arrangements, especially RH2, CH3 and CS7. This behavior is explained by 
Fig.3, which shows the histograms of the relative frequencies of the hydro­
static stresses corresponding to Table 5 (in order to improve the legibility of 
the figure, the negative tails of the distributions, which cannot be resolved 
at the scale of Fig.3, were clipped for RH2, CH3, MS5 and CS7). The dis­
tributions for configurations CH3 and CS7 are clearly bimodal with widely 
separated peaks, and RH2 has a flat second peak around -225MPa (clip­
ped in Fig.3). These bimodal distributions are due to a tendency for the 
hydrostatic stresses to be markedly tensile in large matrix islands and to 
be strongly compressive around positions of narrow matrix bridges between 
fibers and/or fiber clusters (reduced axial and hydrostatic micros tresses at 
similar positions were found for axial loading) . This behavior was discussed 
in the context of the interfacial stresses in (Bohm et al., 1994). 
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Whereas matrix islands are typically associated with marked tensile 
hydrostatic stresses in the cooled down state, the effective stresses tend 
to be low in such regions. Accordingly, in the histograms of the relative 
frequencies of the von Mises stresses, which are shown in Fig.4, the clustered 
arrangements show strong maxima at low stresses and long tails at higher 
values (corresponding to localized regions of elevated effective stresses), 
whereas the distributions are more "compact" for the simple arrays. 

4. Conclusions 

The influence of the investigated periodic microgeometries on the overall 
and microscale thermomechanical behavior of a continuously reinforced un­
idirectional MMC was found to depend strongly on the load cases. Because 
fiber volume fractions and (with the exception of the simple periodic arrays) 
minimum fiber distances were kept equal for the investigated configurations, 
the results indicate that these two parameters are not sufficient for fully 
describing the nonlinear behavior of MMCs. The discussion of frequency 
distributions showed that considerable information may be lost when only 
the mean values of the microscale stresses and strains are studied. 
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ANALYTICALIEXPERIMENTAL STUDY OF INTERPHASE EFFECTS ON 
COMPOSITE COMPRESSION STRENGTH 

Abstract 

GREG P. CARMAN AND SAEED ESKANDARI 
Mechanical, Aerospace and Nuclear Engineering Department 
University of California, Los Angeles 
Los Angeles, CA 90024-1597 

In this work we present an analytical model of a composite containing coated 
cylindrical fibers subjected to a compressive loading. The modeling approach used in 
this paper is a blend of two conventional analytical techniques to predict the 
composites compression strength as a function of microparameters. The model 
presented here explicitly includes interphase influences and the circular geometry of 
the fiber which causes substantial stress concentrations at key locations. Analytical 
results suggest that a specific coating may increase the compression strength of a 
composite. Experimental studies are conducted on several composite systems 
fabricated with coated glass fibers as the reinforcing fiber. Results indicate that 
coating effects, adhesion, and fiber geometry play a critical role in compression 
strength. Comparison of the experimental results with the analytical model yield 
reasonable correlation between the two, thus supporting the theoretical claims of the 
model. 

1. Introduction 

The use of composite materials has grown considerably over the past two decades in 
applications ranging from sporting goods to aerospace vehicles. While these materials 
are widely used in today's society, the specific physical mechanisms which govern 
their performance are not completely understood. To address this concern, scientists 
and engineers have begun to re-focus their attention on constituent interaction 
occurring in the composite between the fiber, coating, and matrix regions. These 
micromechanical studies are being performed with the hopes of gaining a better 
understanding of the physical mechanisms governing a composite's strength and 
performance characteristics. In fact, recent publications indicate that an opportunity 
exists to improve a composites performance by tailoring the fiber coatings (interphase 
region) or fibers adhesion characteristics (interface). 
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Papers which review the effect of fiber coatings on the macro-response of a 
composite systems include Swain et al. (1990) and Jayaraman et al. (1993). Optimum 
fiber coatings for metal-matrix and polymeric-matrix composites subjected to thermal 
loading were studied by Ghosn and Lerch (1989) using an energy based criteria. 
Carman et al. (1993) presented an analysis to determine the optimum fiber coating for 
a composite subjected to transverse loading to minimize cross-ply cracking. Pak 
(1992) published an analysis of a composite material subjected to shear tractions for 
maximizing the shear load supported by the fiber. Schwartz and Hartness (1985) 
investigated the effect of fiber coatings on interlaminar fracture toughness and 
transverse strength of a composite. There also exists a number of theoretical and 
experimental papers discussing the effect of interphases on global properties, for 
example Pagano and Tandon (1988), Lesko et al. (1991), and Chang et al. (1992). 
While interphase/interface effects have been studied in a variety of contexts, probably 
their largest impact is reported in experimental literature discussing a composites 
compression strength. Greszczuk (1975) demonstrated with a pseudo-composite system 
that fiber-matrix interface strength and fiber size strongly influenced compression 
strength. Madhukar and Drzal (1991) experimentally evaluated several graphite epoxy 
composite systems containing varying degrees of fiber/matrix interface adhesion and 
concluded that the compression strength changed substantially. Swain (1992) 
experimentally showed that fiber surface treatments altered the fatigue life of a 
composite. These experimental studies, as well as a host of others, have yielded a 
great deal of insight, as well as a fair degree of confusion, into understanding the 
effect of microparameters on compression strength. 

Analytical modeling efforts of compression strength Rosen (1965) are based on 
compression failure that occur in either an "extension" or "shear" mode, with the latter 
being more typical in standard composites. Shear mode failure initiates at or near the 
interphase region in the form of matrix cracking or fiber/matrix interface decohesion. 
These failures are due to the local stress concentrations which arise in the 
matrix/interphase region near/adjacent to the fiber. While compression strength 
appears to be a shear dominated phenomena, these models apparently overestimate 
compression strength by a factor of 3. Attempting to account for this overestimation 
Kulkarni (1975) introduced the concept of fiber/matrix adhesion, Greszczuk (1974) 
included end fixity conditions, Waas et al. (1990) identified the absence of free-edge 
traction, Lessard and Chang (1991) suggested that fiber-fiber interactions playa role. 
Still other researchers, such as Hahn and Tsai (1980) introduced a fiber waviness 
parameter and Steif (1990) looked at finite deformations. In more recent work, Wass 
(1992) introduced interphase effects in a compressive strength model to investigate 
failure strain and buckling wave lengths. A review of compression strength models 
can be found in Shuart paper (1985) summarizing various techniques for assessing the 
compressive strength of a composite. 

It is the purpose of this paper to analytically model the influence of the interphase 
and the circular geometry of the fibers on compression strength. While researchers 
have indicated that the interphase region plays a role in compression strength, it is the 
supposition of this paper that the cylindrical geometry of the fiber is an additional 
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parameter which needs to be considered. This geometry gives rise to specific 
variations in stress which vary azimuthally in the composite and generate substantial 
stress concentrations at key locations. Theoretical results generated suggest that a 
specific coating on a circular fiber might improve compression strength. Experimental 
results are also presented for a model composite system containing fibers coated with 
different materials. The agreement between experimental and theoretical results 
support certain analytical claims. 

2. Analytical model 

Consider an unidirectional composite 
subjected to compression in the 
direction of the structural fibers as 
presented in Figure 1. To analytically 
model the effect of fiber coatings on 
compression strength, we begin with the 
approach presented in Tsai and Hahn 
(1980). Assumptions used in this 
development include each constituent in 
the composite (fiber, interphase, and 
matrix) exhibits linear elastic behavior, 
the materials are transversely isotropic, 
the strains are small, and the bond 
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2f 
0 

oA 

~M+dM 
_V+dV 

~' , dz 

x '.,. 1 
_v 

~M 
oA 

are continuous across each interface. Figure I Illustration of compression strength model. 

The fibers are also assumed to be much 
stiffer than the matrix. An initial deflection, Vo, of the plies is assumed to take the 
form: 

(1) 

where I is the half-length of the undulation and fa is the amplitude of the undulation. 
When a compressive load is applied to the composite, the deflection of the plies is 
assumed to be of a similar form to that presented in Equation lor: 

(2) 

where f is the final amplitude of the deflection for a given applied load. While other 
deformation profiles are possible it is more plausible that the end deformation will 
resemble the initial one. Therefore, Equation 2 is a reasonable estimate of this 
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deformation profile. Using a representative volume element of length dz and cross­
sectional area A as presented in Figure 1, a mechanics of materials approach can be 
used to develop an equation for a composite's compressive strength Xc 

c( 10) Xc = Css 1 - t; 
(3) 

where fc is the amplitude of the undulation when the composite fails. To evaluate this 
amplitude, we assume that the composite fails by local shear failure in the matrix or 
interphase region when a critical shear strength has been reached. This critical value 
can be represented by the shear strength of the matrix 8", or the interface strength 
between the constituents. It is our supposition, that this value depends upon the local 
stress distribution around the fiber and must be evaluated with a micromechanical 
model. The formulation presented here requires a quantitative assessment of the 
average shear strain experienced by the local element. Using the deformation profiles 
defined in Equation 1 and 2 the average shear strain can be determined 

c • (1tz) Y =y sm-
LX LX I 

(4) 

where 

where t 7J( is the local composites shear strain when the matrix region or interphase 
region fails. Using the strain information in a concentric cylinders model containing 
fiber/interphase/matrix constituents (Rashin & Rosen 1964), the local stress/strain state 
can be determined and an appropriate failure criteria based on the constituents, fiber 
geometry, and local stress concentrations developed. Since we are only interested in 
failure of the composite, we choose to investigate the stress distribution at a specific 
axial location, i.e. z=0. By assuming that the representative volume element 
experiences the same volume average strains as the bulk composite, the following 
boundary condition is applied to the element. 

(5) 

Where rm is the outer radii of the element and w is the axial displacement. The 
pertinent governing differential equation for this problem written in terms of 
displacement variables is 
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(6) 

The solution to this partial differential equation subjected to the boundary condition 
in Equation 5 is 

Ft' n 
w n(r,6,Z) = [-+Fz r] cos6 

r 

(7) 

Employing the stain-displacement and stress-strain relations for a transversely 
isotropic material, the non-zero stresses in each constituent are found to be 

(8) 

where C55n is the axial shear modulus of the n'th phase (f=fiber, i=interphase, 
m=matrix, and c=composite) in the composite, and Ft are undetermined constants. 
These are evaluated by 

A. applying the boundary conditions stated in Equation 5, 
B. demanding continuity of the traction and displacements at each interface (Le. crrzn 

and uzn), and 
C. demanding that the stresses be bounded (F/ = 0). 

Using this information the stress/strain state in each of the constituents of the 
composite can be determined. The matrix stress becomes 

m (m 6 m. 6) . (1tz) Oxz = an cos -OBz sm sm-
I 

(9) 

To investigate the magnitude of the stress concentrations in the constituents, we 
recognize that their are two possible locations for failure. Stress concentrations arise 
in composites at bi-material interfaces at either e = 0° or e = 90° (Carman & Case 
1992) subjected to shearing loads. These locations are associated with classical 
problems similar to a hole or a circular rigid inclusion in a plate. Based on this 
argument, the magnitude of the stress concentrations in the constituents is 

(10) 

The presence of the plus or minus term in Equation 10 reflects the nature of the stress 
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concentration occurring at e = 0° or e = 90°. Assuming that the shear strength of the 
matrix has been reached Equation 9 can be recast in terms or the shear strength 

(11) 

where K represents the stress concentration arising due to geometry and constituent 
properties defined in Equation 10. Solving for the critical value fc in Equation 11 and 
substituting into Equation 3, we obtain an expression for the compression strength of 
the composite. 

(12) 

To predict the compression strength of a composite from constituent information the 
shear modulus of the composite must also be determined. This can be done by relating 
the volume averaged stresses calculated from Equation 8 to the applied strain in 
Equation 5. This is depicted by the following equation 

(13) 

3. Manufacturing methods 

The composite test specimens are fabricated by one of three manufacturing processes, 
autoclave (A), hot-press (HP), and resin transfer mold (RT). All of the composites 
were constructed with optical fiber approximately 200 microns in diameter as the 
reinforcing fiber. Optical fibers provide a convenient off the shelf commodity to 
construct a composite system containing fibers with well characterized coatings and 
geometries. The optical fibers used in our experiments are coated with either a silicon 
rubber (S), polyimide (P), acrylate (A), or a nylon (N) coating. Relative dimensions 
between the fiber (core-cladding) and the coating are silicon rubber 200/230, 
polyimide 225/245, nylon 210/230, and acrylate 125/215. The matrix used in these 
studies is an epoxy M-IOE resin. 

Autoclave and hot press manufacturing methods are based on a lamination 
approach. This common technique is presently utilized throughout the aerospace 
industry for manufacturing typical graphite epoxy composite specimens. Only acrylate 
fibers were employed in the hot press operations while acrylate, polyimide, and nylon 
coated fibers were incorporated into autoclave processes. The latter method provided 
highly repeatable results while the previous one yielded composites containing 
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considerable voids. In either method, the fibers are first laid onto sheets of resin 
material using a filament winder, a hand layup technique, or an alignment fixture to 
provide a sheet of prepreg tape. Following this process, the prepreg is laid into a 
desired lamination scheme, for our purposes a unidirectional layup. Once constructed, 
the laminate is cured with either a hot-press or an autoclave. 

The mold injection method used silicon rubber and acrylate coated fibers. To 
manufacture these specimens, the coated fibers are suspended between two perforated 
plates located at the ends of the die. These perforated plates are fabricated to 
accommodate various fiber size, fiber volume, fiber arrays, and can be used to control 
fiber spacing. The fibers are held in their position with the use of RTV (silicon 
rubber) or a mechanical gripper while liquid resin is injected into the mold. The RTV 
silicon permits pretension to be applied to the fibers during the resin transfer process 
to ensure fiber straightness. All of the manufacturing methods, hot press, autoclave, 
and resin transfer mold, provide a material system containing physically measurable 
micro-parameters. However, the resin transfer mold and the autoclave process yielded 
higher quality specimens than did the hot press. 

4. Analytical results 

The fiber volume fraction used in the analytical study is Vj = 0.59, the interphase 
volume fraction is Vi = 0.13, the pertinent fiber property is Cs/ = 28 GPa, and the 
pertinent matrix property is Cssm = 1.1 GPa. Using these physical quantities (Carman 
& Case 1992) an optimum interphase shear modulus of C\s = 0.11 GPa is calculated. 
In discussing the results, a normalized shear modulus is defined as C 1iss = Ciss!C"ss. 
The four interphase values studied here range from an extremely compliant interphase 
value (Le. actually a hole) to the geometric mean of the fiber and matrix shear moduli. 
In the present study, a similar shear strain is applied to each composite element 
containing the different interphase materials. The stress quantities are normalized to 
a homogeneous matrix material subjected to the same strain. 

The shear stress variations in the composite as a function of the normalized radial 
coordinate (rlr m) for 8 = 0° are presented in Figure 2. As the shear modulus of the 
interphase increases, the stress concentration in each of the constituents increases. This 
is expected, since the shear stress concentration at 8 = 0° is related to a rigid inclusion 
effect. Another interesting feature of this graph is that as the interphase modulus 
decreases the stress supported by the fiber decreases. This suggests that for compliant 
coatings, the composite may buckle after the ultimate load is reached rather than 
resulting in fiber failure. 

To understand the influence of fiber coatings on stress state at the bimateraial 
interfaces, a plot of shearing stresses at the matrix/interphase interface as a function 
of 8 is presented in Figure 3. For stiff interphase values large shearing stresses occur 
at 8 = 0° while for compliant interphases they occur at 8 = 90°. On the other hand, 
the composite containing the optimum interphase does not display a dependence on 
angular position. This is typical of a homogeneous material system subjected to axial 
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shear. For compliant systems 
the larger shearing stresses 
exist along the neutral axis of 
the local element and may 
lead to premature buckling of 
the composite specimen. 
While the stress state in the 
composite is minimized with 
the application of the 
compliant coating there is 
detrimental effect to the 
composite. That is, the shear 
stiffness of the composite 
decreases with the application 
of a compliant coating. As 
presented in analytical results 
by Carman et al. (1992) the 
stiffness of the composite, 
including the transverse 
modulus (Ey) and the 
transverse shear modulus 
(C'ss) decrease significantly. In 
regards to compression 
strength, the shear modulus 
has a significant impact on 
this property as evidenced by 
Equation 12. However, results 
published by Madhukar and 
Drzal (1991) suggests that this 
influence is not as significant 
as analytically predicted. 

In Figure 4, a parametric 
study of the effect that 
undulation size, matrix shear 
strength, and interphase 
properties has on a composite 
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Figure 3: Shearing Stresses at Matrix Coating Interface. 

material subjected to a similar traction profile is presented. In presenting the results 
we have normalized the compression strength of the composite to the shear modulus 
of the composite. This normalization process helps remove any discrepancies which 
might be associated with inconsistencies in shear stiffness predictions. The curves 
discontinuity is caused by the maximum stress state shifting from e = 0 to 90. The 
sensitivity parameter, i.e. (loess m)/(S"l) represents changes in matrix shear stiffness, 
matrix shear strength and undulation amplitude of the fiber in the composite. With 
decreasing values of this parameter, the local undulation becomes less severe for 



constant matrix values. In the 
limit as the undulation 
approaches 0 or a straight line, 
Equation 16 indicates that 
compression strength is not a 
function of interphase stiffness 
values. Figure 4 indicates that 
an optimum interphase 
stiffness value exists to 
maximize the normalized 
compression strength of a 
composite, that is if the shear 
modulus of the composites 
does not change appreciably. 
Furthermore, the curves 
suggests that compliant 
interphase values reduce the 
compression strength to a 
larger extent than do stiff 
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Figure 4: Normalized Compression Strength as a Function of 
Coating. 

interphase values, as one might expect. In this light, it seems possible that an 
interphase might exist to maximize the compression strength/strain to failure of a 
composite. 

5. Experimental results 

All compression tests were conducted on an Illinois Institute of Technology Research 
Institute (IITRI) test fixture in a 10 kip electromechanical driven load frame. Tests 
were conducted at a rate of 0.127 cm/min on specimens conforming to the ASTM 
D3410 standard. The gauge length of the specimens was 1.27 cm, the width of the 
specimens was approximately 0.635 cm, and the thicknesses of the specimens varied 
from 0.3 to 0.4 cm. Specimens were strain gauged to determine failure strains and 
evaluate buckling characteristics. The shear modulus values used for theoretical 
calculations presented in this section are core-cladding 28 GPa, polyimide 1.2 GPa, 
nylon 1.2 GPa, acrylate 0.13 GPa, silicon rubber 0.13 GPa, and epoxy matrix 1.6 GPa. 
The length of the undulation used in the theoretical calculations was the gauge length 
of the specimen with an amplitude equal to a nominal fiber diameter (Le. f= 200 
microns) and sm= 3.5 MPa. 

Experimental and theoretical results are presented in Table 1. Panel number 5, 
which was manufactured by the hot press method, contained excessive amount of 
voids in the epoxy resin. In this panel, all of the voids were spherical in geometry and 
fully encapsulated in epoxy resin. While the precise volume fraction of the voids is 
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not known at this time, an estimate of 30% was used in a spherical inclusion model 
to calculate a 40% stiffness reduction for the matrix. Panels 3, 7, 8, 9, and 10 were 
all essentially void free. 

During the manufacturing process it was noted that the nylon coating could easily 
be removed from the fiber. Therefore, when analytically modeling this panel an 
extremely compliant thin layer was placed between the fiber and the nylon material. 
In addition to this anomaly, compression tests conducted on composites containing 
silicon rubber coated fibers indicated that the coating does not adhere well to the 
matrix. Evidence supporting this claim was found by post-test inspections revealing 
that the fibers had pushed through the ends. Load time plots for these specimens also 
indicated that fiber pushout occurred. As the load increased, a plateau was reached 
where the fibers apparently began debonding from the matrix. Therefore, the analytical 
model for this specimen also incorporated a thin compliant layer between the coating 
and the matrix region. 

Panel Coating Process Fiber Exp. Theory Failure Theory cr/G 
# Volume Strength Strain Strain 

Fraction 
% MPa MPa % % % 

5* A HP 7.5 122.7 140 2.3 2.2 19.8 

7 A RM 7.5 168.6 204 2.0 2.5 17.7 

3 A AC 14.9 148.8 125 1.8 1.1 15.0 

10 S RM 16.3 140.0 148 --- 1.1 14.6 

9 N AC 33.0 121.3 100 --- 0.5 13.1 

8 P AC 42.0 917.0 807 2.6 2.8 24.5 

Analytical failure predictions for the specimens indicate that all of the composites 
would fail along the neutral axis (8 = 90) with the exception of the polyimide coated 
fibers where theoretical predictions indicated that failure should occur (8 = 0). 
Experimental results support this contention. That is, the polyimide specimens 
microbuckled followed by fast fracture severing the specimen into two pieces. All 
other specimen failures were typified by long wavelength fiber buckling leading to 
specimen buckling. However, several specimens from panel 5 failed by microbuckling 
leading to composite fast fracture. These latter specimens had the lowest ratio of stress 
concentration at 8 = 90 to 8 = 0, indicating a higher propensity for microbuckling 
than other ones. 

Theoretical predictions for strength are comparable to the experimental results 
obtained on all specimens shown in Table 1. Clearly, the polyimide coated fiber was 
the strongest of the samples tested. However, for a composite with a comparable fiber 
volume fraction, i.e. nylon, the strength decreased by almost an order of magnitude 
when compared to the polyimide. This degradation is attributable to the lack of 
adhesion between the fiber and the coating and is explicitly depicted in the model 
through the presence of an extremely compliant layer. On the other hand, comparing 
the results obtained on a lower fiber volume fraction composite than the nylon, i.e. 



73 

silicon, which also exhibits poor adhesion between the coating and the matrix, the 
silicon exhibited a larger strength than did the nylon coated fiber, a result which is not 
intuitively obvious. The reason for the relative increase in strength for the silicon fiber 
system is because the nylon coated fiber has a larger stress concentration and a lower 
shear modulus. These two reasons are associated with the relatively larger area of 
decohered region within the nylon composite compared to the lower fiber volume 
fraction silicon composites. 

Turning our attention to the acrylate coated specimens, some additional 
observations can be made. For panel 3, which contained a relatively larger fiber 
volume fraction than panel 7, the strength is lower. The reason that the strength is 
lower for a composite containing a larger fiber volume fraction is attributable to the 
compliant coating decreasing the shear modulus and increasing the stress 
concentrations in the matrix. The reason panel 5 exhibited a relatively lower strength 
when compared to panel 3 and 7 is attributable to the voids present in the resin 
material that were discussed previously. By decreasing the matrix modulus the 
theoretical model is able to predict this decrease. In all of the experimental results, 
the theoretical model provides an accurate representation of strength and a means to 
explain specific phenomena. 

Theoretical failure strains presented in Table 1 were calculated by dividing the 
theoretical failure strengths by the analytically determined composites longitudinal 
Young's modulus. The theoretical failure strains compared to experimentally measured 
ones appear to be less accurate than the failure strength predictions. On the other hand 
by comparing the measured failure strains to the normalized values obtained from 
dividing the strength of the composite by the shear modulus, similar trends are 
observed. The normalized value was presented in Figure 4 and discussed in section 
4.0. The correlation in the trends between the normalized value and the strain to 
failure in Table 1 suggests that the normalized parameter could be used to predict the 
strain to failure for the composite. One reason that this may be a plausible approach 
is due to the inaccuracies associated with predicting the shear modulus of the 
composite. 

6. Conclusions 

An analytical model was presented to investigate the influence of coated cylindrical 
fibers on a composites compression strength. Results indicate that compliant coatings 
cause final failures along the neutral axis leading to composite buckling, while stiff 
coatings fail by microbuckling. The compliant coatings also cause significant 
decreases in a composite shear modulus which suggests large reductions in 
compression strength. However, if we normalize the compression strength of the 
composite to the shear modulus of the composite a specific coating appears to 
maximize the strength. 

An experimental methodology employing coated glass fibers was presented to 
study the influence of coatings on composite properties. The manufacturing techniques 
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are typical of actual composites in aerospace applications. The model composite 
system provides the opportunity to systematically change physical micro-parameters 
within the composite with a high degree of confidence. Compression tests results for 
the composites containing varied coatings properties indicate that coatings properties, 
adhesion, and void content significantly influence compression strength. Experimental 
results closely parallel the theoretical predictions, which support the predictions 
capabilities of the model. 

7. Acknowledgements 

The authors gratefully acknowledge the support provided by the National Science 
Foundation under research grant MSS-9222515. The authors would also like to thank 
Ciba-Geigy and Matt Lowery for all the assistance they provided during the 
manufacturing of these specimens. 

8. References 

Carman G.P., Averill R.C., Reifsnider K.L., and Reddy J.N., "Optimization of Fiber Coatings to Minimize 
Micromechanical Stress Concentrations in Composites," J. of Compo Mat., accepted, Jan. 1993. 

Carman G.P. & Case S.W. , "Minimizing Stress Concentrations in Material Systems with Appropriate Fiber 
Coatings," American Society of Composites 7th tech conf. 1992, pp. 889-899. 

Chang, Y.S., Lesko, J.J., Case, S.W., Dillard, D.A., Reifsnider, K.L., "Mechanical Properties of 
Thermoplastic Composites: The Interphase Effect," Proceedings of the 7th Tech. Conf. of American 
Society of Composites, Oct. 1992, pp. 817-826. 

Ghosn, L.J. and Lerch, B., "Optimum Interface Properties for Metal Matrix Composites," NASA Technical 
Memorandum, no. 102295, August 1989, pp. 1-19. 

Greszczuk, L.B., "Microbuckling of Lamina-Reinforced Composites," Composite Materials: Testing and 
Design (Third Coriference), ASTM STP 546, American Society for Testing and Materials, 1974, pp. 
5-29. 

Greszczuk L.B., "Mircobuckling Failure of Circular Fiber-Reinforced Composites," AIAA Journal, V. 13, 
no 10, Oct. 1975 pp. 1311-1318. 

Hashin, Z. and Rosen, B.W., "The Elastic Moduli of Fiber-Reinforced Materials," J. of App/. Mech., pp. 
223-232, 1964 Vol. 31. 

Jayraman K., et aI., "Elastic and Thermal Effects in the Interphase: Part I. Comments on Characterization 
Methods," J. of Compo Tech. and Research, 1993, pp. 3-22. 

Kulkarni, S.V., Rice, J.R., and Rosen, B.W., "An Investigation of the Compressive Strength of Kevlar 
49IEpoxy Composites," Composites, Vol. 6, 1975, pp. 217-225. 

Lesko, J.J., Carman, G.P., Dillard, D.A., and Reifsnider, K.L., "Penetration Testing of Composite Materials 
as a Tool for Measuring Interfacial Quality, "Composite Materials: Fatigue and Fracture" (4th 
Symposium ASTM), accepted for publication Nov. 1991, ASTM-STP 1156. 

Lessard, L.B. and Chang, F.K., "Effect of Load Distribution on the Fiber Buckling Strength of 
Unidirectional Composites," Journal of Composite Materials, Vol. 25, Jan. 1991, pp 65-87. 

Madhukar, M.S. and Drzal, L.T., "Fiber-Matrix Adhesion and its Effect on Composite Mechanical 
Properties: I. Inplane and Interlarninar Shear behavior of GraphitelEpoxy Composites", J. of Compo 
Mat., Vol. 25, Aug. 1991, pp. 932-958. 

Pagano N. J. and Tandon G.P., "Elastic Response of a Multi-directional Coated-fiber Composites," Compo 
Sci. and Tech., Vol. 31, pp. 273-293 (1988). 

Pak Y., "Longitudinal Shear Transfer in Fiber Optic Sensor," Smart Mat. Struct., Vol. 1, 1992, pp. 57-62. 
Rosen, B.W., Fiber Composite Materials, American Society for Metals, Metals Park, Ohio, 1965, Chap. 3. 



75 

Schwartz, H.S., and Hartness, J.T., "Effect of Fiber Coatings on Interlaminar Fracture Toughness of 
Composites," Symposium on Toughened Composites, ASTM STP 937, pp. 150-165, 1985. 

Shuart, MJ., "Short Wavelength Buckling and Shear Failures of Compression-Loaded Composite 
Laminates," NASA TN87640, Nov. 1985. 

Steif, P.S., "A Model for Kinking in Fiber Composites - 1. Fiber Breakage via Micro-Buckling," 
International Journal of Solids and Structures, Vol. 26, No. 5/6, 1990, pp. 549-561. 

Swain, R., Reifsnider, K.L., Jayraman, K., and EI-Zein M., "Interface/Interphase Concepts in Composite 
Material Systems," J. of Thermoplastic Comp., Vol. 3, 1990, pp. 13-23. 

Swain, R., "The role of the FiberlMatrix Interphase in the Static and Fatigue Behavior of Polymeric 
Composite Laminates," Dissertation, Va. Tech, Eng. Sci. and Mech. Dept., Feb. 1992. 

Tsai S.W. and Hahn T.H., Introduction to Composite Materials, Technomic, 1980, pp. 414-416. 
Wass, A.M., Babcock, C.D., Jr., Knauss, W.G., "A Mechanical Model for Elastic Fiber Microbuckling," 

Journal of Applied Mechanics, Vol. 57, March 1990, pp. 138-149. 
Waas, A.M., "Effect ofInterphase on Compressive Strength of Unidirectional Composites," J. of Applied 

Mech., June 1992, V. 59, pp. sI83-s188. 



The Measurement and Modelling of Fibre Directions in Composites 
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Department of Physics 
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Uk 

ABSTRACf. The nearest neighbour angle frequency distributions, f(<<I>NN) of fibre images 
on a 2D section plane through both glass fibre and carbon fibre reinforced, polymer 
composites are compared to the predictions of a 3D, 'Monte Carlo' computer simulation. 
Actual f(<<I>NN) distributions can be simulated by a '3D random hard core' spatial 
distribution of fibres. The shapes of the f(<<I>NN) distributions within all of our composite 
samples appear to be well approximated by f(<<I>NN) = A + B.cos2<l>NN + C.cos4«1>NN where 
A, Band C are functions of the fibre packing fraction and range of directions (~8, ~«I». 

1. Introduction 

For the past five years, a research project has been undertaken into the quality 
measurement of glass and carbon fibre directions in a variety of polymer matrices. Both 
unidirectional, continuous fibres at high packing fractions (40% 5_.Yf 555%) as well as 
short fibre reinforcements at a number of different packing fractions (25% 5 Vf ~ 50%) 
have been studied. An automated, 2D image analyser has been designed to not only derive 
the best fit elliptical parameters of each fibre image on a section plane, but also to identify 
the absolute centre coordinates of each fibre image within a 2 mm x 2 mm area of the 
sample. The elliptical parameters of each fibre's image indicate the direction of the fibre in 
space, denoted by the angles (8,«1» where «I> is the in-plane angle, given by the orientation 
of the major axis of the elliptical image and 8 is the colatitude angle or out-of-plane angle 
given by the ratio of the major axis 'a' and the minor axis 'b': 

8 = cos-1(b/a) (1) 
see figure l(a). 

A few years ago, Davy and Guild (1988) published a paper where they modelled a 
composite as though the reinforcements followed a Gibbs 'hard core' distribution of 
random positions in a 2D section plane. However, the Gibbs hard core hypothesis is only 
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realistic if either the fillers are flat, 2D objects (rather than 3D rods) or if the packing 
fraction of short fibres in the composite is so low that there is essentially no interaction 
between the fibres! 

It was decided to test Davy & Guild's hypothesis by checking whether the distribution of 
nearest neighbour angles, f(<I»NN) for the thousands of fibres in a typical 2 mm x 2 rrm 
dataset was consistent with the predicted isotropic f(<I»NN) distribution. As reported in 
Clarke and Davidson(1991), no actual composite analysed at Leeds gave an isotropic 
f(<I»NN) distribution. Every composite sample studied has exhibited a remarkably similar 
functional form for the f( <l»NN) distribution, as shown in figure 1 (b). 

However, like Davy & Guild we acknowledged that the fibres in all real composites 
(with Vf~ 55%) have spatial distributions which are far from the ideal, regular 'square' or 
'hexagonal' arrays assumed by many finite element analysis papers, e.g. Dubois et 
a/(1993). Therefore, we embarked upon a 3D modelling exercise to generate the f(<I»NN) 
distributions at different levels within a simulated 3D space. Some of the model results 
have been puzzling us for the past three years, but with our improved 2D and 3D 
techniques, Archenhold et al(1992), Mattfeldt et al(1994), Clarke et al(1994) to analyse 
composite microstructures, we are now in a better position to interpret the original model 
data. Also, a recent paper on 2D microstructural issues by Pyrz(1993) has rekindled our 
interest in this work. 

2. Measurement of Fibre Directions in Composites 

A large area, high spatial resolution, 2D image analyser system has been developed to 
automate fully the collection of (9, <1») fibre data, see Clarke et al(1991). For speed of 
operation, the design uses a small network of transputer chips which form the basis of a 
parallel processing system, as shown in figure 2. 

The image analyser design has a number of unique features. It scans automatically in X 
and Y, finding the best position of focus at each new XY location and merges overlapping 
image frames to create a data table of absolute x, y fibre coordinates over a 2 mm x 2 nun 
area. The system automatically performs image splitting, determines a quality factor for 
the elliptical fit to each fibre image, performs an 'autocalibration' in XY by following 
specific fibre images during the XY scanning, merges partial fibre images between XY 
frames and plots the (9, <1») angular distributions within seconds of the end of each large 
area scan. 

When a sample containing well-aligned fibres is sectioned perpendicular to the main 

fibre direction and analysed by any 2D system, the apparent 9 and <I» distributions will 
resemble those shown in figures 3(a) and 3(b). The 9 distribution will show a spurious 
peak at around 9 = 10 - 200 and the <I» distribution will most probably show a very broad 
distribution of angles between 00 and 1800 (note that every 2D system has a <I» ambiguity 
of 1800 ). These angular distributions occur because of errors in deriving 9 from near 
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circular, digitised images, see Clarke et al(1993). Our original motivation for exploring the 
f(cI>NN) distributions was to improve upon these apparent (9, cI» distributions. 

However we now know that, if the well-aligned sample is cut at an angle of 450 to the 
main fibre direction, the fibre ellipticities and hence the 9', cI>' values in this 450 section 
plane can be derived very accurately. Each fibre's direction may be mathematically 
transformed by 450 to derive more accurate (9, cI» distributions, see Hine et al(1993). 

3. Modelling of Fibres in 3D 

3.1 COMPUTER HARDWARE 

The basic network of transputers used for the image analyser design was reorganised for 
the 3D modelling by adding another pipeline of three transputers as shown in Figure 4. In 
this configuration, the master transputer, T 1 was responsible for collating information from 
the other 'slave' transputers and archiving to disk. The master transputer together with 
each of the other six transputers was running identical code which enabled them to 
perform 1500 simulations in an 8 hour overnight run. Hence, a speedup of x7 over a single 
transputer was achieved and 10,500 points on the f(cI>NN) distributions every 20 Jlm in 
section depth were generated, as typified by the distributions in figure 5. 

3.2 THE MONTE CARLO ALGORITHM 

The algorithm allows us to vary the initial spatial locations of each fibre (e.g. on a basic 
square array or hexagonal array or placed randomly at the top surface) and also to choose 
the range of fibre directions. 

In order to mimic the 'unidirectional', glass and carbon reinforced composites at our 
disposal, the fibres were constrained to have a range of angles, 9 between 00 and + ~9 and 
cI> between (900 ± ~cI» and (2700 ± ~cI». The spatial positions of the fibres at the sUrface 
of the simulated volume were chosen randomly in x and y or were placed in a square 
array. For each candidate fibre, four random numbers were chosen. The frrst random 
number determined the ~9 value, the second determined the ~cI> value, the third and the 
fourth determined the x, y of the fibre centre on the section plane. The model assumed a 
fixed fibre length, L = 1 mm and a fixed diameter, D = 10 Jlm for ease of computation. 
Each fibre was followed in 3D space and if it was found to hit a fibre which was already in 
that 3D space, the fibre would be discarded and another fibre with another set of random 
numbers and hence a different set of {x, y, 9 and cI>} was produced and checked. The 
process was repeated until the required packing fraction of fibres had been achieved at the 
surface of the simulated volume. Hence the model, in effect, simulates a 3D version of the 
Gibbs hard core process. Note that, as the nearest neighbour information is obtained from 
the central fibre and it's nearest neighbours, rather than to all of the fibres within the 
simulated volume, there are no 'edge effects' which might lead to an incorrect f(cI>NN) 
distribution. 
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3.3 LIMITATIONS OF lHE CURRENT 3D MODEL 

The gradual evolution of the shape of the f(cl>NN) distribution as a function of depth 
puzzled us until we realised that our 3D model currently has two limitations: 

a) Although a particular packing fraction is established at the 'surface level', there 
is a systematic change of effective packing fraction with depth, which depends upon the 
pennissible range of angles, ~9 during the simulation. The worst case change of packing 
fraction as a function of ~9 is shown in figure 6. 

b) Because the model only checked for non-intersecting fibres within the 3D 
volume, the f(cl>NN) distributions at and near the surface of the 3D space are physically 
unreasonable. However, the angular distributions simulated at lower levels within the 3D 
volume should be representative of those distributions within a real composite. 

4. Characterisation of the f(cIlNN) Distribution 

Instead of the expected 'isotropic distribution' of nearest neighbour angles for a '2D Gibbs 
hard core' process, the influence of the third dimension i.e. fibre length gave rise to 
characteristic, f(cl>NN) distributions in our 3D simulations. 

The main point of our analysis was to explore the 'anisotropy' of the f(<I>NN) distributions 
and to seek correlations with the (9, cl» fibre directional distributions. All of the real and 
modelled nearest neighbour angular distributions seem to have the same functional form, 
shown idealised in figure 7(a). Recently we have found that a reasonably good fit to these 
frequency distributions, f(cl>NN) is given by the function 

as shown in figure 7(b). However, when the model data was reduced originally, it was 
decided to characterise the distribution in terms of two, easily determined, 'probability 
amplitudes', Ain and Aout' 

Referring to figure 7(a), the 'in-phase' amplitude of the f(<I>NN) distribution is defined as 

(3) 

and the 'out-of-phase' amplitude of the f(<I>NN) distribution is defined as 

(4) 

In this way, the systematic modification to the shape of the f(cl>NN) distributions can be 
followed as different constraints are placed on the range of individual fibre (9, cl» values. 
(Note that the definition of Am and Aout is arbitrary when analysing a real composite and 
hence each value in the top part of the Am-Aout plot has an equivalent value in the lower 
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part of the Am-Aout plot). Figure 8 illustrates the mapping of the probability amplitudes 
onto the Aio -Aout plot and figure 9 shows the result of a number of model simulations. 

5. Comparison with real composites 

Most of the composites that have been studied were produced by processes which involve 
the layering of plies and therefore it is not surprising if the fibres' exhibit a preferred 
orientation. When the samples were positioned on the XY stage, the operator lined up the 
edge of the sample (which was perpendicular to the plies) to correspond with the X or Y 
axis of the video system. Hence, the most probable nearest neighbour orientations should 
be at <l»NN = 00 or 900 . 

Great care was exercised to ensure that the 'peaks' in the distributions were not artefacts 
of the image analyser (e.g. they could be produced spuriously if an incorrect 'aspect ratio' 
was chosen for the X-Y image frame analysis). The aspect ratio was checked by rotating 
the sample on the X -Y stage and confmning that the peaks appeared at the correct angles 
in the image analyser's coordinate system. 

The probability amplitudes of various composites are plotted in figure 9. 

5.1 CONTINUOUS GLASS FIBRES IN EPOXY 

Recently, considerable research effort has been put into the analysis of a continuous, 
'unidirectional', glass fibre reinforced composite with a view to characterise the 'waviness' 
of the glass fibres in 3D. The sample has been analysed with our 2D image analyser by 
sectioning at 450 to the main fibre orientation axis (in order to produce the most accurate 
9 distributions) and also with our new 3D confocal laser scanning microscope technique, 
Clarke et al(1994) which is capable of accurate 3D positional information. Both of these 
techniques confirm that the 9 angular distribution of 1 00 ~m segments of fibres exhibits a 
narrow range, A9FWHM = ± 2.50 , see figure 10, equivalent to A9 = 2.50 in our model. The 
<I» distribution has a range, ~<I»FWHM = 400 - 600 (i.e. ~<I» = ± 250 ), as shown in figurell. 

The 2D image analyser has also scanned three sections, each section being perpendicular 
to the main fibre direction and the f(<I»NN) distributions have been obtained for all three 
sections. The frrst section was a 2 mm x 2 mm scanned area in XY. The second section 
was prepared by removing approximately 10 ~m of material and repolishing, thereby 
creating a section plane parallel to the first. Another 50 ~m of material was removed to 
create a plane parallel to the frrst two sections. Care was taken to orient the sample for 
each scan so that there would be minimal A<I» error between scans. The results are shown 
in figures 12(a), (b) and (c). The scans are statistically identical and have been added 
together and normalised in figure 12(d). These distributions give 'probability amplitudes' of 
Am = 0.19 and Aout = 0.24. Note that, although the (9, <1») angular distributions are due to 
intrinsic 'waviness' of continuous fibres (typical wavelengths in the range 0.5 mm through 
to 2 mm and typical amplitudes 25 to 50 ~m), the f(<I»NN) distribution is characterised by a 
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Figure 9. Probability Amplitudes for both real composites and model simulations. 
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point in our Am-Aout plot which corresponds closely to the simulated f(<I>NN) distribution of 
1 mm fibres with the allowed angular ranges set at A9 = + 50 and A<I> = ± 250 i.e. 
A<I>FWHM = 500 . 

6. Conclusions 

At the reasonably high packing fractions (55% ~ V f ~ 40%) studied, there is significant 
fibre-fibre interaction and it would appear that the statistical distribution of nearest 
neighbour angles is correlated to the intrinsic (9, <1» fibre distributions. We have shown 
that the microstructure of real composites can be simulated by a 3D version of the 
classical 20 Gibbs 'hard core' process. 

We are not aware of an analytical solution to the nearest neighbour f(<I>NN) distributions 
but, empirically, the <l>NN frequency data appears to follow the simple trigonometrical 
relationship, f(<I>NN) = A + B.cos2 <l>NN + C.cos4<1>NN' Although this work has shown that 
the shapes of the f(<I>NN) distributions (i.e. the coefficients A, B and C) are affected by the 
<I> distribution of individual fibres, the sensitivity of the f(<I>NN) distributions to different 
fibre lengths, fibre packing fractions and 9 distributions has still to be evaluated. A more 

rigorous description of the f(<I>NN) distributions using best fit Fourier coefficients could be 
developed for a future study. More high quality, 3D orientation data are needed on a 
range of different composite samples in order to assess fully the 3D model. 

References 

Archenhold G., Clarke A.R. and Davidson N.C. (1992) 3D microstructure of fibre reinforced composites, 
SPIE Proc. Biomed Image Proc.& 3D Microscopy 1660, 199 - 210. 
Clarke A.R. and Davidson N.C. (1991) Determining the spatial distributions of fibres in composites, Proc. 
oj ICAM91 , 55 - 60. 
Clarke A.R., Davidson N.C. and Archenhold G. (1991) A large area, high resolution image analyser for 
polymer research, Proc. Int. Con/. Transputing 911, 31 - 47. 
Clarke A.R., Davidson N.C. and Archenhold G. (1993) Measurement of fibre directions in fibre 
reinforced composites, J. of Microscopy 171, Pt 1,69 - 80. 
Clarke A.R., Archenhold G. and Davidson N.C. (1994) A novel technique for determining the 3D spatial 
distribution of glass fibres in composites, Compo Sci. Tech., in press. 
Davy P.I. and Guild F.I. (1988) The distribution of interparticle distance and its application in finite 
element modelling of composites, Proc. Royal Soc. London A418, 95 - 112. 
Dubois F., Keunings R. and Verpoest I. (1993) Micromechanical numerical analysis of toughness in 
model composites, Proc. ICCM91JI, 375 - 382. 
Hine PJ., Duckett R.A., Davidson N.C. and Clarke A.R. (1993) Modelling of the elastic properties of 
fibre reinforced composites I: Orientation Measurement, Compo Sci. Tech 47, 65 - 73. 
Mattfeldt T., Clarke A.R. and Archenhold G. (1994) Estimation of the directional distribution of spatial 
fibre processes using stereology and confocal laser microscopy, J. of Microscopy 173,87-101. 
Pyrz R. (1993) Morphological description of microstructure for composite materials, Proc. ICCM9 111, 
383 - 390. 



TRANSFORMATION ANALYSIS OF INELASTIC LAMINATES 

Abstract 

GEORGE J. DVORAK and YEHIA A. BAHEI-EL-DIN 
Rensselaer Polytechnic Institute, Troy, NY 12180-9590, USA 
Structural Engineering Department, Cairo University, Giza, Egypt 

The transformation field analysis (TF A) of inelastic composite materials (Dvorak 
1992) is extended here to fibrous composite laminates. Loading is limited to 
uniform in-plane stresses and out-of-plane normal stress, and to uniform changes 
in temperature. The solution for local stresses or strains in the plies is found in 
terms of elastic transformation influence functions and concentration factors which 
reflect a selected microgeometry representation of a unidirectional composite, and 
the constraints imposed on the in-plane strains of the pedectly bonded plies. This 
methodology is applied in simulations of hot isostatic pressing and subsequent 
loading of a (O/90Ys Sigma/Timetal 21S laminate under axial tension/tension stress 
cycles applied at constant temperature. 

1. Introduction 

The transformation field analysis (TF A) is a method for incremental solution of 
thermomechanicalloading problems in inelastic heterogeneous media and composite 
materials, described in recent papers by Dvorak (1991, 1992). In its application to 
composite materials reinforced by aligned continuous fibers, the local strain and 
stress fields in a representative volume of the material are modeled by piecewise 
uniform approximations using a selected micromechanical model such as the 
self-consistent (Hill 1965) and Mori-Tanak (1973) models, or the Periodic 
Hexagonal Array (PHA) model (Dvorak and Teply 1985, Teply and Dvorak 1988). 
Only elastic solutions under certain overall uniform loads and local transformation 
strains are required from these models to recover the transformation influence 
functions and concentration factors used in the TF A method to evaluate the local 
fields and the overall response. Implementation of this procedure for several 
constitutive laws of the matrix material is described by Dvorak and co-workers 
(1994a,b). 

The purpose of the present paper is to apply the TF A approach to inelastic 
fibrous composite laminates consisting of unidirectional layers bonded together with 
fibers oriented at different directions. Only symmetric layups under overall uniform 
stresses and temperature variations which produce membrane stresses in the 
individual plies are considered. These loading conditions are found in fabrication 
processes and in service under static and cyclic in-plane loads of symmetric 
composite laminates. 
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The TF A analysis for laminates is described in sections 2 and 3 of the paper. 
Application of the method to a (0/90h titanium matrix laminate under hot isostatic 
pressing conditions and subsequent load cycles is presented in section 4. 

2. Transformation Field Analysis of Laminated Plates 

Consider a laminate consisting of 2N thin elastic plies arranged in a symmetric 
layup with respect to the midplane X1X2 of a cartesian coordinate system, Fig. 1. 
The ratio Ci = tilt, i=1,2, .. N, of the ply thickness, ti, and half the laminate 
thickness, t, denotes the ply volume fraction. In-plane membrane forces and the 
corresponding uniform stresses are applied, together with uniform change in 
temperature. In addition, we admit loading by uniform normal stresses in the 
thickness direction Xs; this is useful in applications to processing by hot pressing, 
and also in analysis of eigenstress states under in-plane constraint. Moreover, we 
also account for inelastic deformation of the phases in each ply, the resulting 
inelastic response of some or all of the plies, and of the laminate itself. Our goal is 
to find the ply and phase stresses as well as the overall strains under these loading 
conditions. 

The local and overall inelastic strains, and the thermal strains, will be 
regarded as eigenstrains or transformation strains in an otherwise elastic laminate. 
Hence, we write the overall constitutive relations of the laminate in the overall 
coordinate system Xk, k = 1,2,3, as, 

0'= Ll+~, l=Mu+p, (1) 

where, p is eigenstrain, ~ is eigenstress, L and M are the elastic stiffness and 
compliance matrices, respectively, and L = M-1, ~ = - L P Using contracted 
notation, the stress and strain vectors are: 

T , T 

0' = [0'1' 0"2' 0"6' O"sl = [0' ,00sl , (2) 

T , T 
l = [E1' l2' 2E 6, Esl = [l ,Esl , (3) 

where the vectors 0" and l' list the in-plane stress and strain components. In the 
sequel, we outline the solution for the elastic properties of the laminate, and develop 
a transformation field analysis for evaluation of the overall eigenstrains p , or 
eigenstresses ~, and the corresponding local fields when inelastic or thermal strains 
are present in the phases. 

2.1. LAMINA STRESSES 

In analogy with (1), the ply constitutive relations of a ply (i) in the local coordinate 

system Xk, k = 1,2,3, can be written as, 

(4) 
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Figure 1. Geometry of a fibrous composite laminate. 

where, /J.i is the ply eigenstrain, e.g. thermal or inelastic strain, li is eigenstress, Li 
and Mi are stiffness and compliance matrices. The stress and strain vectors are: 

- -i -i -i -i -i _iT _, -i -i _iT 
lTi = [U1, U 2, U6, U3, U 4, us] = [U i , U 3, U 4, us] , (5) 

(6) 

To simplify the subsequent analysis, we re-write eqs. (4) for the in-plane stress and 
- i -i 

strain components and account for the nonvanishing Us, fS components 
(Bahei-El-Din 1992, Dvorak et al. 1992); 

(7) 

where 

EL k+mn 2ml 0 l 
-' 1 -' -1 ki 

1 
Li 4km 0 =[Mi] , k-m k + m k + m (8) 

SYM. p(k+m) 0 

1/ EL -vL/EL 0 
- , 
Mi= I/ET 0 

SYM. I/GL 



92 

The overall longitudinal, and transverse Young's moduli, EL and ET , and Poisson's 

ratios, vL and liT' and the longitudinal shear modulus, GL, are found from a selected 

micromechanical model of a unidirectional composite. The corresponding Hill's 
moduli (Hill 1964) are denoted by k, l, n, m, p, where EL = n - fl/k, ilL = 1/2k, 

m = ET /2(I+vT ), GL = p. 

When expressed in the overall coordinate system Xk, k = 1,2,3, eq. (7) is 
written as (Bahei-El-Din 1992, Dvorak et al. 1992) 

where 

I II i I '" i I 

CT i = L i l i + k i 0"3 + Ai' l i = M i CT i + n i 0"3 + IJ.i , 

2 
cos f.{)i 

'T ' -1 . 2 
Ri = (Nd = SIn f.{)i 

2 
cos f.{)i 

1 . 2 2" SIn f.{)i 

COS 2f.{)i 

and /Pi is the angle between the local xl-axis and the overall xl-axis, Fig. l. 

(10) 

(11) 

(12) 

(13) 

We now can address the problem of finding the ply stresses in a laminate 
loaded by overall in-plane stresses CT', out-<>f-plane normal stress 0"3, and ply 
eigenstresses Ai, introduced by certain prescribed in-plane eigenstrains 

IJ.i = - MiA i· Since the laminate is elastic, we write the ply stresses as the sum of 

the overall stress and local eigenstress contributions, 

N 

CT~ = H ~ CT' + "i 0"3 + L F ~j A ~ , 
j = 1 

i = 1,2, .. N , 

iii 
0"3=0"3' 0"4=O"S=0, i=I,2, .. N. 

(14) 

(15) 

The lamina out-<>f-plane eigenstresses A3, A4, As, are not introduced in eqs. (14), 
(15) since the in-plane equi-fltrian condition imposed on the perfectly bonded plies 
can be maintained under these eigenstresses without introducing additional ply 
stresses. The Hi, "i are stress distribution factors for in-plane overall stresses, and 

out-<>f-plane normal stress, respectively, and Fij is transformation influence 

coefficient. In the absence of the overall stresses CT', 0"3' the ply in-plane stresses 
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at, a2, a6 caused in lamina (i) by a unit eigenstress Ak, k = 1,2,3, applied to 
lamina (j) are given by the kth column of matrix Fij' Evaluation of the 

distribution factors Hi, K.i , and the transformation coefficients Fij for a symmetric 

laminate is given in section 3. 
Considering the full (6xl) eigenstress vector >'j = - Lj Jl.j, we augment 

eqs. (14), (15) and write the (6xl) local stress vector as 

where 

N 

O'i = Hi 0'- L Gij ~j' i = 1,2, .. N , 
j = 1 

[ H~ K.li] , 
Hi= 0 1 

(16) 

(17) 

0' is ~iven by (2), 0 is a (3x3) null matrix, and 1 = [1, 0, of Note that the order of 
Hi is t6x4), and the order of Gij is (6x6). 

The eigenstrains originate in the phases of each unidirectional ply and must be 
evaluated from a micromechanical model. This is usually achieved in the local 

coordinate system Xk, k = 1,2,3, of the ply. Considering (6xl) strain vectors, the 
inverse transformation of (11h can be written for the eigenstrain as 

[ 
R~ 0

1
] , 

Rj = oJ j = 1,2, .. N , (18) 

where 1 is a (3x3) identity matrix. Substituting (18) into (16), and applying the 
transformation (11 h to the (6xl) stress vectors, the ply stress in the local coordinate 
system is found as 

i=I,2, .. N . (19) 

2.2 PHASE STRESSES 

Consider a representative volume Vj of a unidirectional composite ply (j), 
j = 1,2, .. N, which is divided into M subvolumes, V~ , TJ = 1,2, .. M. We recall the 

modified Levin's formula (Dvorak and Benveniste 1992) and write the lamina 

eigenstrain ~j in terms of the local eigenstrains found in each of the subvolumes as 
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M 
- ~ -j [ j]T j -j j / 
I'j = k ~ B'I\ """', c'l\ = V'I\ Vj , j=1,2, .. N, (20) 

'1\=1 

where B~ is elastic stress concentration factor. The columns of B~ are given by the 

average stress vectors u'I\ caused in subvolume 1/ by a ply overall stress liK = 1, 

k = 1,2, .. 6. These factors can be obtained from a selected micromechanical model of 
a unidirectional composite, e.g. the self--consistent and Mori-Tanaka models, or the 
PHA model. 

The local stresses in the subvolumes of a lamina (i) can now be written as 
(Dvorak 1992) 

M 

u~ = B~ tic L F~'I\ ~ ~, P =1,2, .. M, i=1,2, .. N . (21) 
'1\=1 

The columns of the transformation influence coefficient F~'I\ provide the stress 

vectors in subvolume p caused by an eigenstress Ak = 1, k = 1,2, .. 6, introduced in 
subvolume 1/. These coefficients are derived from analysis of the selected 
representative volume of a unidirectional composite as described by Dvorak et al. 

(1994a,b). From eqs. (19)-{21), the local stress u~ can be written as 

p = 1, 2, .. M, i = 1, 2, .. N . (22) 

The first term in (22) is the local stress caused by the overall stress applied to 
the laminate, while the second and third terms are the contributions of the 
subvolume eigenstrains in all the plies to subvolume p of lamina (i). The second 
term provides the local stresses due to local eigenstrains in lamina (i). The in-plane 
constraint E' = Ei imposed on the lamina causes additional stresses in the 

subvolumes of the plies when eigenstrains ~ are present in other layers (j). This 

effect is given by the third term in (22). 

3. Distribution factors and Infiuence Coefficients 

Here we find expressions for the distribution factors Hi, "i' and the influence 

coefficients Fij which appear in eq. (14). From in-plane strain compatibility of the 
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perfectly bonded plies, f' = f~, and the force equilibrium condition, E Ci O"~ = 0"', 

i = 1,2, .. N, one can establish that (Bahei-El-Din 1992, Dvorak et al. 1992) 

R 

M' = [Lyl , L = L ci Li , 

, 
n=-M ", 

R 

L Ci H~ = I, 
i; 1 

i; 1 

R 

L Ci "i = o. 
i; 1 

(23) 

(24) 

(25) 

(26) 

The transformation influence factors F~j in (14) are found from the solution of 

an elastic symmetric laminate in which an in-plane eigenstress vector ~ j is applied 
to lamina j as the only load, i. e., 0"' = 0, 0"3 = o. The lamina and laminate are first 
constrained from in-plane deformation. Under this constraint, the eigenstress is 

*' equilibrated by an overall in-plane stress 0" such that 

R 

O"~ = Dij ~ ~, ~'= L Ci O"~ = Ci ~ ~ , (27) 
i; 1 

where Dij is Kronecker's symbol. For the laminate to return to the unconstrained 
, * , 

state under 0" = 0, 0"3 = 0, the overall stress 0" must be removed. This is achieved 
* , 

by applying the stress - 0" to the laminate. Under this stress, the lamina stresses 
are given by the first term in (14), and the net stress found in lamina (i) at the end 
of this loading/unloading sequence is given by the sum 

(28) 

The (3x3) influence factors F~j follow from a comparison of (28) and the last term 

of (14). The result is 

(29) 
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4. Application to Thermo-Viscoplastic Laminates 

As an application of the TF A method, we consider viscoplastic deformation of the 
phases of a fibrous composite under thermomechanicalloads applied to a symmetric 

laminate. In this case, the eigenstrain rates ~ in subvolume V~ , 1/ = 1,2, .. M, of 

lamina (j), j = 1,2, .. N, can be written as the sum of thermal strain and inelastic 
strain rates. If the latter is specified by a power law of an internal stress variable 

j 
~, then 

where t is time, 0 is temperature, X (0) and p (0) are material parameters for the 

element volume V~, and q~ specifies the direction of the inelastic strain rate in the 

local stress space. The first term in eq. (30) is the thermal strain rate where a is 
the coefficient of thermal expansion, M is the elastic compliance, and 0' is the 
current stress in the subvolume. 

Substituting (30) into (22) yields a system of rate equations for the local 
stresses in the subvolumes of all plies of the laminate which can be integrated along 

a specified loading path 0" (t), u;(t), 0 (t) applied to the laminate as described b~ 
Dvorak et al. (1994a,b). The ply stresses follow from eq. (16), or (19), with (18) 

and (20), and the ply as well as the laminate in-plane strain, f' = f~, from (10h. 
Alternately, the lamina stresses may be computed using an elastic finite 

element routine which utilizes the modified Levin's formula (20) and the ply 
transformation field equation (21). This approach, encoded by Bahei-El-Din 
(1994) in the VISCOPAC routine, was used to compute the local stresses in the 
phases of a (O/90)s, Sigma/Timetal 21S laminate under hot isostatic conditions and 
subsequent axial tension/tension load cycles at 6500 C as shown in Fig. 2. The 
laminate was first pressed by a hydrostatic pressure of 103.5 MPa at 8990 C for 2 
hours, and then aged at 621 0 C for 8 hours (condensed in Figs. 2-6 to 2 hours). The 
14 axial stress cycles applied at 6500 C correspond to the number of cycles sustained 
by the laminate up to failure in actual experiment under the same loading 
conditions. In the analysis, the Mori-Tanak model was used to estimate the 
concentration factors B1'] for the matrix and fiber, and the constitutive equations 

described by Bahei-EI-Din et al. (1991) were used to compute the inelastic strains 
for the matrix, eq. (30). The fiber was assumed to be elastic. The elastic moduli 
and coefficients of thermal expansion of both phases vary with temperature. 

Figures 3 and 4 show the evolution of the local stress averages in the fiber and 
matrix of the 00 ply during the applied loading history. The results show that the 
residual stresses caused by processing do contribute to the subsequent cyclic stress 
magnitudes. This contribution need not be detrimental, indeed, in the present case, 

f 
the residual axial fiber stress Ull is compressive and thus helps to reduce the tensile 
stress magnitude under the cyclic mechanical load. However, the final peak 
magnitude of the fiber stress is 976 MPa, and suggests that failure may be caused by 
overloading of the fiber in the 00 plies. 
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Figure 2. Thermomechanicalloading history applied to a (O/90)s laminate 

Figures 5 and 6 show the local stress averages in the 900 ply. The magnitudes 
of the transverse tension U22 is rather large and can contribute to debonding of the 

f 
fiber-matrix interface. In fact, the in-plane transverse stress U22 in the fiber is as 

f 
high as 227 MPa, probably suggestive of partial fiber debonding. However, the U33 

remains in the range of -107 to -133 MPa, offering support for the interface bond. 
The axial stress in the 900 fiber is compressive in the range 143-282 MPa. 

These results suggest the existence of rather high internal stresses in the 900 

plies that are not likely to be supported by the interfaces. The axial fiber stress is 
also very high, and would increase substantially after debonding of the 90 0 fibers. 

5. Closure 

The transformation field analysis (TF A) is a general method for solving inelastic 
deformation problems in heterogeneous media and can accommodate any uniform 
loading path, inelastic constitutive equation, and micromechanical model. The 
method can be also used in structural applications of heterogeneous materials such 
as fibrous composite laminates. The structural as well as model geometries are 
incorporated in the TF A method through mechanical transformation influence 
functions or concentration factor tensors derived from elastic solutions for the 
specified geometry and the elastic moduli. Thus, there is no need to solve inelastic 
boundary value problems either for heterogeneous materials or for their structural 
applications. As an example of the TF A application to fibrous composite laminates, 
the method was used to analyze the local stresses in the fiber and matrix phases of a 
titanium matrix laminate under fabrication conditions and fatigue loads. 
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DEVELOPMENT OF ANISOTROPY IN POWDER COMPACTION 

Abstract 

N.A.FLECK, 
Cambridge University Engineering Dept., 
Trumpington St, Cambridge, 
CB2 lPZ, England 

The cold compaction of an aggregate of powder is treated from the viewpoint of crystal 
plasticity theory. The contacts between particles are treated as compaction planes which 
yield under both normal and shear straining. The hardening of each plane represents 
both geometric and material hardening at the contacts between particles; the 
macroscopic tangent stiffness can be written down in terms of the hardening rate for 
active compaction planes. During the early stages of compaction the contacts yield in 
an independent manner, which can be interpreted within the crystal context as 
independent hardening. The macroscopic yield surfaces for isostatic and closed die 
compaction are estimated for a uniform distribution of an orthogonal pair of compaction 
planes. A vertex forms at the loading point and significant anisotropy develops for 
closed die compaction. 

1. Introduction 

The powder metallurgy industry is based upon the process of cold compaction of 
powders (usually, but not exclusively metallic) followed by sintering. This production 
route allows for the net shape forming of exotic alloys which are difficult to cast or 
shape by other methods. Cold compaction occurs within a closed die or in a cold 
isostatic press, and densification is by low temperature plasticity. At low relative 
densities (relative density D < 0.9) plastic deformation occurs local to the contacts 
between particles: this is 'Stage I 'compaction. As full density is approached 'Stage II' 
compaction takes over and plastic flow spreads throughout each particle; then, the 
powder aggregate is best viewed as a non-dilute concentration of cusp-shaped voids 
within a metallic matrix. 

In this paper we consider stage I compaction within the framework of crystal 
plasticity theory. The central idea is to mimic the response at a contact between 
particles by a 'compaction plane', that is by a plane which can suffer both normal and 
shear straining, see Fig. 1. We consider the compaction plane to be smeared out 
through the neighbouring particles on each side of the contact, but sharing the same 
normal n as that of the contact plane, as shown in Fig. la. In this manner the 
compaction plane is analogous to a slip plane in crystal plasticity theory. Each contact 
is represented by a compaction plane, and the overall response of the aggregate is the 
sum of the responses of each compaction plane. The approach builds upon Calladine's 
micromechanical model of the yielding of clays, Calladine (1971). He assumed that 
compaction planes exist physically as rough surfaces of contact within the aggregate; 
here, we consider them to represent discrete contacts between particles. 

101 

R. Pyrz (ed.), IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, 101-112. 
© 1995 Kluwer Academic Publishers. 



102 

(0) 

(b) (c) 

Figure 1. (a) Representation for the isolated contacts between particles by 
'smeared-out' compaction planes. (b) Loading on a compaction plane (a). 
(c) Yield surface and normal plastic flow rule for a compaction plane (a). 

The outline of the paper is as follows. First. a single crystal plasticity 
framework is summarised for a finite number of compaction planes. The Bishop and 
Hill (1951) method is then used to determine the macroscopic yield surface for a 
'polycrystal' wherein each crystal comprises a pair of orthogonal compaction planes. 
The normal to the compaction planes is averaged over all orientations n within a plane. 
and the polycrystal is subjected to macroscopic in-plane biaxial loading. Using the 
crystal plasticity framework the effect of strain path upon yield surface evolution is 
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explored by comparing the yield surfaces for isostatic compaction and closed die 
compaction. The marked development of anisotropy is evident for closed die 
compaction. 

2. Crystal plasticity framework 

We replace each contact between particles by a compaction plane within the particle. 
In this way the finite number of contacts around a representative particle are 
represented by a fmite number of compaction planes within the particle: the particle is 
analogous to a single crystal with a set of slip planes. 

Consider a representative contact with normal n(1) as shown in Fig. 1a. The 
neighbouring particles on each side of this contact can suffer a relative displacement in 
a direction parallel to n(1), and a shear displacement orthogonal to n(1). The resulting 
contact force between the particles depends upon the deformation mechanism at the 
contact; here we shall assume a non-linear response due to plastic dissipation. The 
non-linear contact law between the neighbouring particles can be treated as a non-linear 
spring at the contact, or as a 'smeared-out' compaction plane within each particle. 

A representative compaction plane a is defmed in Fig. 1 b. The smeared-out 

plane is allowed to suffer a normal strain e(a) in the direction n(a) and two shear strains 

y~a) and y~a) in the directions s(a) and t(a), respectively. We shall assume that strains 
are small, and shall neglect the effects of finite rotation of the compaction planes. A 
finite strain generalisation can be developed in a relatively straightforward manner, but 

is omitted here. The work conjugate stress measures are the normal stress crea ) and two 

shear stresses 'ts(a) and 'tt(a), such that the work rate per unit volume w(a) is 

w(a) = cr(a)f,(a) + 'ts(a)Ys(a) + 'tt(a)Yt(a) (2.1) 

where no sum is performed over the index a unless explicitly stated by a summation 
sign. Suppose the aggregate is comprised of N compaction planes. Then, in terms of 

the Cartesian reference frame Xi, the macroscopic plastic strain rate EG is related to the 

strain rate (f,(a),Ys(a),Yt(a») on each active compaction plane a by 

EP. = ~N [p(a)e(a) + Q{~)Y· (a) + R{~)Y· (a)] (2.2) 
IJ ~a=l IJ IJ S IJ t 

where the orientation factors p~a), Qft) and Rft) are defmed by 

p,(a) == n{a)n(a) Q{~) == .!.(n{a)s(a) + s{a)n(a») R{~) = .!.(n{a)t(a) + t{a)n(a») (2.3) 
IJ 1 J' IJ 2 1 J 1 J ' IJ - 2 1 J 1 J • 

The macroscopic stresses on each compaction plane (cr( a), 'ts (a), 'tt (a») are related to the 

macroscopic stress I, by substituting (2.2) into the work statement 

I, .. EP. = ~N [cr(a)e(a) + 't (a)y· (a) + 'tt(a)y. tea)] (2.4) 
IJ IJ ~a=l s s 

to get 
cr(a) = p.(a)I, .. 

IJ IJ ' 
'tea) = Q{~)I, .. and 'tea) = R{~)I,·· 

s IJ IJ t IJ IJ • (2.5) 



104 

We assume that a compaction plane a suffers plastic flow when the yield 
function 

f(a) == a~a)( a(a), 't~a}, 't~a}) - a~} = 0 (2.6) 

is satisfied. Here, a~a} is an effective stress measure and a~} is a scalar measure of the 
current magnitude of the yield surface. The shape of the yield surface is dependent 
upon the local contact law between particles, including the shear strength and the 
cohesive strength. For example, a yield surface of elliptical shape is given by 

a~a} = (a(a}t +(a<a}'t~a}t +(b(a}'t~a}t (2.7) 

where a<a) and b(a} are constants defining the ellipticity of the yield surface. Here, we 
shall continue to work in terms of the general form (2.6) rather than the particular form 
(2.7). 

For simplicity, we assume that plastic flow occurs in a direction normal to the 
yield surface for each compaction plane, giving 

a (a) a (a) a (a) 
.(a}_).,(a)~ .(a)_).,(a)~ d .(a}_).,(a)~ (2.8) 
£ - a (a)' 1s - a (a) an 1t - :\_(a} . 

a ~ ~ 

The magnitude of the plastic multiplier ).,(a} is determined from a work hardening 

statement, as follows. Introduce an effective strain rate £~a} by the work statement 

w(a} == a~a}t~a} = a(a}t(a} + 't~a}'Y~a} + 't~a}'Y~a} . (2.9) 

Then, upon substituting (2.8) into (2.9), ).,(a} is expressible in terms of £~a} as 

).,(a} = c<a}E~a} (2.10) 
where 

(a) 
C(a) = ac (2.11) 

- (a) aa(a} (a) aa(a) (a) aa(a} a -_c_+'t _c_+'t __ c_ 
aa(a} s a't~a} t a't~a} 

(It is noted that C<a}=1 when a~a) is homogeneous and of degree one in 

(a(a),'t~a},'t~a}) such as given by (2.7).) The macroscopic plastic strain rate can now 

be expressed in terms of the effective strain rate on each compaction plane t~a} by 
rewriting (2.2) with the aid of (2.8) and (2.10) as 

EP. = ~N [c<a}T.(a}e(a}] (2.12) 
IJ £'a=1 IJ c 

where 

(2.13) 

(2.14) 
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In general, the hardening matrix hap can be homogeneous and of degree zero in the 

effective strain rates t~a); here, only hardening laws for which the hap are independent 
of the effective strain rates are employed. 

In the foregoing we have assumed that cr~a) is a function of £~). An alternative 
work hardening hypothesis is to assume normal hardening with no shear hardening, 

such that cr~a) depends only upon £(P). For the case of independent hardening, the 
hardening matrix is then given by 

cr(a) dcr(a) h = ____ e_ 
aa cr(a) dE(a) 

e 
hap = 0, ex ~ p . (2.15) 

The above structure remains unchanged with this minor modification to the hardening 
rule. This form of hardening has been used by Schofield and Wroth (1969) in their Cam 
Clay model and by Calladine (1971) in his microstructural view of clay. 

3. Calibration of crystal plasticity law 

Ashby and co-workers (Helle et al. (1985» have developed accurate relations for the 
hydrostatic stage I compaction of a powder aggregate. They assume that spherical 
particles are composed of elastic, perfectly-plastic material of yield strength cry. The 

yield pressure Py for the aggregate is dependent upon its relative density D (0= density 
of aggregatel full density) according to 

p = 3D2 (D- Do) 0" (3.1) 
y (I-Do) y 

where Do is the initial relative density corresponding to random packing of the 
particles. For example, for dense random packing Do =0.64. We calibrate the 
hardening matrix hap in the crystal plasticity model against (3.1) in the hydrostatic 
limit 

4. Bishop-Hill calculation of yield surface for hydrostatic compaction 

So far we have dealt with the 'single crystal response' of a finite set of compaction 
planes for a representative particle. Now consider the case of an aggregate comprising 
randomly oriented particles. bonded at their mutual contacts. The macroscopic 
'polycrystalline' limit yield surface for the aggregate of compaction planes can be 
estimated using the upper bound method laid down by Bishop and Hill (1951). Elastic 
deformation of the particles is ignored and a work calculation is performed to determine 
the collapse response in stress space for the random aggregate of particles. We restrict 
ourselves to in-plane biaxial straining of the aggregate, and assume that the deformation 
response for each particle is adequately described by a pair of orthogonal compaction 
planes, oriented at an angle co as defined in Fig. 2a. The aggregate is assumed to be 
isotropic, with the compaction planes distributed uniformly over all orientations. 
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ty-

-ac at 0' a) 

(b) 

Figure 2. (a) A pair of orthogonal compaction planes. with orientation ro. 
(b) Assumed yield surface for each compaction plane. 

For simplicity. we assume that the yield surface for each compaction plane is 
rectangular in shape as shown in Fig. 2b. and is characterised by a compressive yield 

strength o~a). a tensile yield strength of a) and a shear yield strength 't~a). The 

magnitude of the yield surface is taken to scale with the normal strain £(a). such that 
o(a)(£(a») - o(a) 

e - c . (4.1) 
Consider the case where an aggregate has been compacted hydrostatically from 

an initial density 0 0 to a current density O. Then. the magnitude of o~a) for all 
compaction planes follows from (3.1) as 

Ja) = p =302 (0-00 ) 0 (4.2) 
c y (1-00 ) y. 

Gurson (1977) has shown that the macroscopic stress E on the aggregate. corresponding 

to a plastic strain rate t P is given by 
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(. p) . P :Eij = dW E IdE ij (4.3) 
where W is the plastic dissipation rate of the aggregate per unit volume. It remains to 

estimate W(ltP). For a pair of orthogonal compaction planes as shown in Fig. 2a, the 
plastic dissipation per unit volume w is 

w = 0(1)£(1) + 0(2)£(2) + 't(l)y(l) + 't(2)y(2) (4.4) 
where we have dropped the subscript s from the shear terms, to keep notation compact. 
A simple connection exists between the strain rates on the compaction planes and the 
macroscopic strain rate; after some manipulation, (2.2) leads to 

[ :~~ ] = [ ;~:~: :~::: ~~n2:I:t). (4.5) 

1(1) -1(2) -sin2ro sin2ro 2cos2ro Ef2 

Since we are dealing with an isotropic aggregate we can consider principal stresses and 

principal strains and, without loss of generality, we can set Ef2 =0. For a given 

(Efl,E~2) the stress state for each of the two compaction planes is at a vertex, and both 

£(1) and iP) are determined uniquely from (4.5). The values of 1(1) and 1(2) follow 
from (4.5) and from the minimum plastic work hypothesis of Bishop and Hill (1951): 

the strain rates are selected to minimise w. This optimisation gives 1(1) > 0, 1(2)=0 for 

(1(1) -1(2» > 0, and 1(1) =0, y(2)>o for (1(1) -1(2» < O. 

The macroscopic stress 1: is calculated by volume averaging the response for a 
pair of compaction planes at all orientations, that is, 

:E .. = ~ r7t / 2 d;' dro . (4.6) 
IJ It Jo dEP. 

IJ 
Upon substituting into (4.6) the expression (4.4) for w, and (4.5) for the strain rates in 
each compaction plane, we obtain a specification for the macroscopic limit yield 
surface. The yield surface is plotted in Fig. 3 for the cases at lac = 0, 1 and 

'ty lac = 0, 11(2 + It). The value 'ty / Oc = 1/(2 + It) corresponds to perfectly sticking 
contacts as discussed in section 3. We conclude from Fig. 3 that the cohesive strength 
ratio at / 0c has a more major effect on the size and shape of the yield surface than has 

the shear strength ratio 'ty lac' For a wide range of strain rate directions (Efl >0 and 

E~>O; Efl<O and E~<O) the macroscopic stress lies at a vertex close to the 
hydrostatic axis. Akisanya and Cocks (1994) observed a similar behaviour in their 
analysis of the compaction of a hexagonal array of cylindrical particles. 

5. Bishop-Hill calculation of yield surface for closed die compaction: the 
development of anisotropy 

The above Bishop-Hill calculation can be repeated for the case of closed die compaction 

where, without loss of generality we take Efl=O, E~<O. Again, we consider the 
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Figure 3. Yield surface for a unifonn distribution of an orthogonal pair of 
compaction planes, subjected to hydrostatic compaction. 

response for an isotropic aggregate, composed of a unifonn distribution of pairs of 
orthogonal compaction planes as shown in Fig. 2a. The yield surface is taken to be 
rectangular in shape, see Fig. 2b, and the magnitude of the yield surface scales with the 

nonnal strain £(a) on that compaction plane, with O"~a) = O"~a)(£(a»). 
Consider a compaction plane with orientation 0)=0 such that the unit normal 0(1) 

is aligned with the X2 axis. The complementary compaction plane is orthogonal with a 
normal 0(2) aligned with the Xl axis. Then, after a small amount of closed die 

compaction (say D=0.7 from an initial value of Do = 0.64), we have 0"~1) = 2py and 

0"~2) = 0, where py(D) is given by (3.1). For a pair of compaction planes with 
orientation 0), the nonnal strain on the compaction planes follows from (4.5) as 

£(1) = E~2 cos2 0) , £(2) = E~2 sin2 0) (5.1) 
We assume that the degree of compaction is small (D increases by less than 10%) and 

so the yield strengths (O"~a),O"~a),t~») and O"~a) increase linearly with £(a) for all 

compaction planes, giving 

0"~1) = 2py cos2 0) , O"F) = 2py sin2 0) (5.2) 
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The shape of the yield surface for each compaction plane is taken to be constant with 

cr~a) Icr~a) fixed at zero (for cohesionless aggregate) and at unity (for full cohesive 

strength). Perfectly sticking contacts are modelled by putting 't~a) I cr~a) = 1/(2 + x), 

while the choice 't~ a) I cr~a) = 0 is appropriate for frictionless contacts. 
The macroscopic yield surface is evaluated from (4.6), with w given by (4.4), 

and the strain rate for each compaction plane specified by (4.5). Again, the relative 

magnitudes of 1(1) and 1(2) are selected to minimise w, subject to the constraint on 

(1(1) - 1(2» given by (4.5). 
The yield surface for closed die compaction is plotted in Fig. 4 for crt Icrc= 0, 1 

and 'ty I crc= 0, 1/(2 + x). The main features are the same as for isostatic compaction, 
as shown in Fig. 3: the degree of cohesive strength has a major influence and the shear 
strength at the contacts has a minor influence upon the yield surface. As a result of 
preferential hardening of compaction planes aligned with the direction of compaction, 
significant anisotropy develops for closed die compaction. The compact is about three 
times stronger in the compaction direction X2 than in the transverse Xl direction. 

2~--------r----------' 

o ~-----r~~~~r------~ 

-1 

O't=O'c,"ty=O 

a; <1t =o."t y= _C_ 
2+n: 

Figure 4. Yield surface for a unifonn distribution of an orthogonal pair of 

compaction planes, subjected to closed die compaction, Ef1 =0, E~ <0. 
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The yield surface for closed die compaction is compared with that for isostatic 
compaction in Fig. 5, for frictionless contacts (1.y'!CJc={) and for the two limiting cases 

of full cohesive strength (CJt ! CJc =1) and vanishing cohesive strength (CJt ! CJc={). The 
comparison is made at the same value of relative density D slightly greater than Do. 
The development of anisotropy under closed die compaction is obvious: the yield 
strength along the X2 direction is greater after closed die compaction than after isostatic 
compaction. Conversely, the yield strength in the transverse direction is less for closed 
die compaction than for isostatic compaction. 

6. Concluding discussion 

Fleck et al. (1992) have previously used the Bishop-Hill method to estimate the 
macroscopic yield locus for stage I compaction of a powder aggregate. They assume 
that plastic flow occurs in accordance with Green's (1954) slip line field solution at all 
contacts on the surface of a representative spherical particle: all contacts are active for 
an arbitrary macroscopic strain rate. The contacts are assumed to be perfectly sticking 
with a cohesive strength equal to the indentation strength. More recently, Fleck (1994) 
has repeated the calculation for a range of shear strength and cohesive strength. He 
fmds that the macroscopic yield surface is influenced to a minor extent by the level of 
shear strength, and much more strongly influenced by the cohesive strength. These 

--- closed die 
2r-__ -_-_-_-~is~o~st~a~tTic~------_, 

-2 _2!;--'---'--..L.....l-_:-1 ....L...-J.......l.---'---=O---'-...l-..JL........L.--!-..L.....l---'-~2 

['1/ Py 

Figure 5. Comparison of yield surface for isostatic compaction and for closed .die 
compaction. The yield surfaces are calculated for the same small increment m 

relative density D above the initial density Do. Contacts are frictionless with 1.y = O. 
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conclusions are fully supported by the fmdings of the current study. 
The predictions of Fleck (1994) are compared with those of the current study in 

Fig. 6 for the case of isostatic compaction. Yield surfaces are given for frictionless 
contacts, with either zero cohesion or perfect cohesion between particles. The results 
are presented in terms of the deviatoric stress measure :E == :E22 - :Ell and the mean 

stress measure :Em == t(:Ell + :E22 ), for the case of an isotropic distribution of two 
orthogonal compaction planes as described in section 4 above. The calculation by Fleck 
(1994) was done for axisymmetric loading of an aggregate with :E33 = :Ell; the 
appropriate deviatoric stress measure remains :E == :E22 - :Ell, and the mean stress is 

defined by :Em == t(:Ell + 2:E22)' We conclude from Fig. 6 that the yield surface given 
by the plane strain crystal plasticity calculation of section 4 and Fleck's (1994) 
axisymmetric calculation (assuming plastic dissipation at up to twelve contacts per 
particle) give closely similar results. This is not surprising since both calculations 
assume that all contacts are active, and predictions have been calibrated to give the 
result (3.1) for hydrostatic loading. 

--- axisymmetric, Fleck (1991.) 
-- 2 compaction planes 1.5 ,--------='------'-'--.!:....::...'--'-'-ir---'::..c..::.....:...::..::------, 

L 0.5 

Py 
0 

-0.5 

-1 

-1.5 
-1.5 -1 -0.5 0 0.5 15 

Lm/Py 

Figure 6. Predictions of the yield surface after a small amount of hydrostatic 
compaction, for the two compaction plane model of the current study, and the 

axisymmetric model of Fleck (1994). Frictionless contacts. 
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Akisanya and Cocks (1994) have recently examined the densification of a 
hexagonal array of cylinders under in-plane loading, and Ogbonna and Fleck (1994) 
have performed an approximate calculation of axisymmetric compaction using a cell 
model. In both cases it is found that as densification proceeds plastic flow occurs 
throughout each particle and is no longer confined to each contact. Independent 
collapse of each contact is replaced by a discrete set of collapse mechanisms for the 
representative particle: these collapse mechanisms involve plastic dissipation at several 
contacts. Latent hardening occurs between one collapse mechanism and the next. The 
crystal plasticity framework has adequate flexibility to include this cross-hardening 
between mechanisms via the off-diagonal terms of the hardening matrix haP' Indeed, 

the cell calculations may be used to calibrate the off-diagonal terms of hap. Further 
work is needed to further develop this calculation scheme. 
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Tel-Aviv, Israel 

Abstract. Variational analysis of cracked laminates with imperfect inter­
laminar interface is developed on the basis of a generalized extemum prin­
ciple of thermoelastic complementary energy. Closed form results for effec­
tive Young's modulus, thermal expansion coefficient, shear modulus and 
internal stresses are developed for cracked cross-ply laminates. The results 
provide an assessment of the significance of interlaminar imperfection. 

1. Introduction 

The present paper is concerned with the effect of intralaminar crack (IC) 
accumulation on the thermomechanical properties of fiber composite lam­
inates and the resulting internal stress distributions. Such cracks develop 
in the matrix along fibers due to load or temperature change. They are 
thus parallel crack distributions within the layers which propagate very 
rapidly until the laminate edges. Therefore,the formation of a typical IC is 
not viewed as a crack propagation phenomenon but as a fract ure event 
which occurs instantaneously. Thus, the concern is with a laminate which 
contains IC distributions which are quantitatively described by crack den­
sity, the number of IC per unit length. The problems are then to determine 
deterioration of thermoelastic peoperties in terms of crack density, lami­
nate internal geometry and ply properties, internal stresses resulting from 
crack accumulation and their relation to failure mechanisms, and more am­
bitiously - to predict crack density due to load or temperature. 
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The problems outlined have been the subject of a large number of re­
search papers over the last 15 years. There are two major approaches : 
the first may be termed the micromechanics approach and the second, the 
continuum damage approach. In the first approach it is attempted to car­
ry out analysis recognizing the cracks as defects on which the tractions 
must vanish. The advantage of this approach is physical realism and in­
formation about internal (micro) stresses, which is important for failure 
considerations. The disadvantage is analytical difficulty and for this reason 
the micromechanics approach has to date been confined to cross-plies. 

In the second approach effect of IC on a layer is modeled by an abstract 
damage function whose form is not unique and which invariably contains 
unknown coefficients. The disadvantage is that such coefficients must be 
backed out from experiment on the laminate and it is not clear whether 
such coefficients qualify as ply material parameters or are fitting parameters 
which change from laminate to laminate. The advantage of the approach 
is that it can be applied to practical laminates, more complicated than 
cross-plies. 

The present work is concerned with the micromechanics approach for 
cross-ply laminates. Review of the voluminous literature is not within the 
present scope. It is recalled that initial analytical efforts were based on 
the shear-lag approximation e.g. Reifsnider and Jamison (1982),Laws and 
Dvorak (1988). This method requires the determination of a so-called shear 
lag parameter on the basis of the fracture toughness of the ply materials. 
Analysis in terms of a displacement formulation represented, arbitrarily, 
by hyperbolic functions was given by Tsai et al. (1990). Work of similar 
nature with the choice of different form displacement functions has been 
done by Lee et al. (1990). A variational method based on the principle of 
minimum complementary energy has been developed by Hashin (1985) with 
application to stiffness reduction and stress analysis of cross-ply laminates 
with one layer cracked. This has been extended to the case of all layers 
cracked in Hashin (1987) and to evaluation of thermal expansion coefficients 
in Hashin (1988). The only assumption made in the variational anslysis is 
that-in plane stresses in the ply are constant over the thickness. Analysis 
based on similar assumptions has been given by McCartney (1992). Analysis 
for more general in-plane stresses has been given by Varna and Berglund 
(1994). Nairn et al. (1993) have successfully used the variational analysis 
for prediction of crack density resulting from in plane loading of cross-ply 
laminates. 

The purpose of the work presented here is to extend the variational 
analysis to the evaluation of thermoelastic properties and internal stresses 
of cross-ply laminates when there is imperfect interlaminar bond between 
the layers. 



115 

2. Thermoelastic Extremum Principle for Imperfect Interface 

Perfect interface between two solid constituents implies continuity of trac­
tion and displacement vectors at the interface. When the interface displace­
ment vector is discontinous, while the traction vector remains continuous 
for reasons of equilibrium, the interface is called imperfect. Let the dis­
placement jump at interface S12 be denoted 

Then the simplest imperfect interface condition is 

Tn 
Ts 
Tt 

= 
= 
= 

Dn [Un] 
Ds [Us] 
Dt [Ut], 

(1) 

(2) 

where n,s, t are normal and tangential components of the interface normal 
n, assumed here as pointing into phase 2, and Dn, D s, Dt are spring constant 
type interface parameters. With respect to a :fixed cartesian coordinate 
system, (2) assumes the forms 

T = D.[u] [u] = R.T R= D-1 , (3) 

where the Cartesian components of D and its inverse R now vary along the 
interface. It has been shown in Hashin (1990) that the effect of a thin and 
very compliant interphase between constituents can actually be expressed 
in the form (2) and that the interface parameters can be expressed in terms 
of interphase thickness and stiffness. 

In the variational analysis to be employed here the generalization of 
the extremum principle of minimum complementary energy for imperfect 
interface conditions will be needed, Hashin (1992). This will here be further 
generalized to the thermoelastic case and will be stated for the case when 
tractions are prescribed over the entire external surface S. Let tT be the 
actual stress field and;; an admissible stress field for a body with surface 
load T (S) and imperfect interface S12. Define 

W = !tT: S : tT 
W = !;;: S : ;;, 

(4) 

where S is the compliance tensor. Here W is the stress energy density while 
W has no physical meaning. Next define the functionals 

U = iv [W + 0:.(1' (J - cp «(J2/2(Jo)] dV + i i812 T : R: TdS 

U iv [W + 0:.;; (J - cp «(J2 /2(Jo)] dV + i i812 T : R : TdS 
(5) 



116 

Here a is the thermal expansion tensor, cp the specific heat at constant 
pressure and (J is the (known) temperature relative to a reference tem­
perature (Jo' Then the thermoelastic principle of minimum complementary 
energy is expressed by the inequality 

fj? U, (6) 

equality occurring if, and only if, 0- = (T • 

For composite materials applications it is of importance to consider the 
case of constant temperature and so-called homogeneous traction boundary 
conditions which are defined as 

T (S) = O'°.n (S) 

Where 0'0 is a constant stress tensor. Then 0'0 is the average stress tensor 
and it can be shown that the first of (5) is, rigorously 

U = ~ [0'0: S*: 0'0 + a*. 0'0 - c; ((P/200)] V (8) 

where S* ,a* and c; are the effective elastic compliance tensor, thermal 
expansion tensor and specific heat, respectively. 

In the following the variational principle will be exploited to analyze 
approximately thermo-elastic properties and internal stresses in cracked 
la.minates. 

3. Cross-Ply Laminates with One Ply Family Cracked 

The case to be considered here is a [O~, 90~]8Iaminate in which either the 0° 
or the 900plies are cracked, fig. 1a. The variational method will be employed 
to obtain strict lower bounds for the effective Young's modulus E; and the 
effective shear modulus G;y and approximations for the effective thermal 
expansion coefficient a; and internal stresses, for the case of imperfect 
interla.minar interface as defined by a damaged interphase between plies. 
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y 

( a. ) ( b) 

Figure 1. Cracked laminate 

3.1. EFFECTIVE YOUNG'S MODULUS 

Let it be assumed that the laminate is subjected to a constant tensile 
membrane force Nxx and let the (1'xx stresses in the layers of the uncracked 
laminate be denoted (1'1 and (1'2, respectively, where from now on the label 
1 refers to the 900 ply and 2 refers to the 00 ply. As is well known, these 
stresses are constant throughout the layers . The actual stress state in the 
cracked laminate is described by generalized plane strain in reference to the 
y axis, and therefore all stresses are functions of x,z only. It is at present 
assumed that only the 900 ply is cracked. The admissible stress state in the 
cracked laminate will be constructed on the basis of the simplification that 
the (1'xx stresses are functions of x and not of z. Thus these stresses may be 
written in the form 

(1'1;> = (1'1[1 - <1>1 (x )] 

(1'1;> = (1'2[1 - <l>2(X)] 
(9) 

where <1>1 and <1>2 are unknown functions . These functions are, however, 
related since the stress pairs (1'1, (1'2 and (9) are each in equilibrium with 
the same N xx , Therefore 

Consider a typical region between two adjacent cracks at distance 2a, fig .1b. 
It is emphasized that the cracks do not have to be equidistant. For example, 
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the interdistance 2a could be a random variable. For a typical intercrack 
region as shown in fig.1b the admissible stress field is constructed by in­
tegration of the two dimensional equations of equilibrium in the xz plane 
with the stresses (9). The integration produces residual unknown function­
s which are determined by satisfaction of traction continuity conditions 
at layer interfaces and zero traction conditions on the external laminate 
surface. The remaining admissible stresses are then 

ui.~ = U14J'(Z)Z 
(1) = u14J"(z)(ht1 - z2)/2 uzz 
(2) 

(10) 
U:cz (u1/>.)4J'(z)(h - z) 

(2) Uzz (u1/>.)4JI1(z)(h - z)2/2 

where 4J = 4J1 , >. = t21t1 and prime superscript denotes z differentiation. 
These stresses have already been given in Hashin (1985). On the crack 
surfaces ui.!J and ui.~ must vanish and therefore 

4J(±a) = 1 4J'(±a) = 0 (11) 

The aggregate of the stress fields (9-11) for all intercrack regions are the 
admissible stress field. The stress energy densities for the layers 1 and 2 
are: 

2W1 = ui.!J2 lET - 2ui.!J u~~) liT lET + U~~)2 lET + ui.~2 I GT 

2W2 = ui~t lEA - 2ui;>u~;)IIAIEA + U~;)2 lET + Ui;)2/GA 
(12) 

where the elastic ply properties in (12) are: EA, II A - axial Young's modulus 
and associated Poisson's ratio JET, liT - transverse Young's modulus and 
associated Poisson's ratio j GA, GT - axial and transverse shear moduli. 

For reasons of symmetry it is sufficient to evaluate the complementary 
energy functional for the regions -am ~ z ~ am; 0 ~ y ~ 1; 0 ~ z ~ h. 
Then for such a region and for an isothermal state, the second of (5) assumes 
the form 

f1:Cm = Jam rtl W1dzdz + Jam rh W2 dzdz+ -am Jo -am Jtl 

! J~:m (u~z(z, t1)1 Dn + u~zCz, t1)1 DB) dz 
(13) 

where Dn and DB are normal and shear interface parameters, and for the 
entire laminate 

(14) 
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The actual complementary energy is given for the present case by 

(15) 

where V is the volume of the entire cracked laminate of thickness 1 in y 
direction. Introduction of the admissible stress field with functions <Pm for 
each region into (14) results, according to the principle of minimum com­
plementary energy, in an upper bound on (15). The lowest upper bound is 
obtained by minimizing the resulting functional with respect to the func­
tions <Pm. This is a standard problem in the calculus of variations resulting 
in Euler equations and boundary conditions for the minimizing functions 
which have the form 

where 

e = Z/tl Pm = am/tl P = (C02 - Cn )/C22 q = COO/C22 

COO = 1/ ET + 1/ )'EA CO2 = ~(). + ~) - {fA). 

C22 (). + 1)(3).2 + 12). + 8)/60ET + ).2/4Dntl (11) 

Cn l(l/GT + l/)'GA) + l/Dstl 

Evaluation of the complementary energy functional in terms of the func­
tions <Pm as was done in Hashin(1985), introduction of the result into the 
complementary inequality (6) with (15) as the actual complementary ener­
gy gives the result 

l/E* < l/Eo + (0"1)2 C22 (X(p)) 
x - x 0"0). + 1 (p) , (18) 

where the brackets denote average with respect to the random variable am, 
half of the intercrack spacing. The form of X depends on the nature of the 
roots of the characteristic equation of (16). When these roots are of the 
form ±(a + i(3), where i = A ,then the solution of (16) is of the form 

<Pm = AmCosh(ae) cos(f3e) + BmSinh(ae) sin(f3e) (19) 

where the constants are determined by the boundary conditions in (16). 
Then the associated Xm is 

(20) 
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If the roots are real, thus of the form ±a, ±f3 ,then 

4Jm = Am C osh( ae) + Bm C osh(f3e) 
(21) 

Xm Coth(ap) a-Coth(.ep)/.e 

3.2. IMPERFECT INTERFACE MODEL 

A physical interpretation of the interface parameters Dn and Ds has been 
given in Hashin (1990). If there is a thin elastic isotropic interphase of 
thickness ti between the phases, then 

(22) 

where Ki and Gi are the bulk and shear moduli of the interphase. It is 
easily shown that if the interphase is orthotropic, with material axes n,s 
and t , (22) becomes 

(23) 

where Cnn is the normal stiffness and Gns and Gnt are shear moduli. The 
first of (22,23) is strictly valid only when the interphase elastic moduli are 
much smaller than those of the constituents, but there is no such restric­
tion with respect to Ds and Dt . If the interphase moduli are of the order 
of constituent moduli then the thin interphase effect is negligible and is 
equivalent to a perfect interface with displacement continuity. Consider a 
thin interphase in-between the layers of a cross-ply, fig.2. A relevant ex­
ample is an oxidation protection layer between the laminae of a ceramic 
composite. Such a layer may develop many transverse cracks due to ther­
mal stresses produced by manufacturing cooldown, fig. 2. These cracks are 
roughly orthogonal in fiber directions of the layers. In a ceramic fiber com­
posite laminate, for example a SiC matrix reinforced by graphite fibers, the 
stiffness of the interphase layer is of the order of the stiffness of the layer 
material. For large crack density in the layer the shear moduli decrease very 
significantly, but not Cnn. Therefore such a cracked layer can be considered 
as an interface which is perfect for normal contact, [un] = 0 , but is im­
perfect for shear. In that event the term in C22 , equ.(17), containing Dn, 
is negligible. 
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Figure 2. Laminate with damaged interphase 

3.3. THERMAL EXPANSION 

To evaluate the effective thermal expansion coefficient (TEe) of a cracked 
laminate it is very convenient to use the Levin relation as has been done 
for perfect interlaminar interface in Hashin (1988). For this purpose con­
sider any elastic composite which is subjected to the homogeneous traction 
boundary conditions (7) and let the internal stresses due this loading be 
uM ( z). Denoting the local TEe o:(z) and the effective TEe 0:*, the Levin 
relation, Levin (1967), is expressed as 

(24) 

Levin's original derivation of (24) is based on displacement continuity, but 
it may be shown that it remains valid for interface displacement continu­
ities which obey the relations (3) and therefore (24) may be employed in 
the present case with the stresses (9-10) and the functions <Pm to give an ap­
proximate expression for the TEe. For the loading Nxx the only surviving 
component of u~ in (7) is u~x = uO as defined by (15). Then from (24) 

where L is the length of the laminate of unit thickness in y direction. In­
sertion of the stresses into (25) with use of the boundary conditions of (16) 
yields 

(26) 
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where 00 is the TEO of the un cracked laminate. aA and aT are the axial 
In: 

and transverse TEO of the unidirectional fiber composite and < t/I > is the 
average of the random variable ~m which is defined as 

(27) 

Also 
(28) 

3.4. EFFECTIVE SHEAR MODULUS 

Let the cracked laminate shown in fig. 1 be subjected to constant shear 
membrane load NZJI which defines the average applied shear stress 

(29) 

In this case the laminate is in a state of antiplane stress with respect to the 
y axis. Admissible stresses are defined as in Hashin (1985) by 

aW - .,.0[1- ,p(z)] O'W = T°,pI(Z)% 

0'1;> = TO(l + i-,p( z)] O'~~) = ~,pl (z)( h - z) 
(30) 

Then a variational optimization as done above and in Rashin (1985) yields 
the results 

.I'm(~) CO!lh(ILC)/CO!lh(ILPm) 2 - 3(1+1/~) 
-" ~ - r\ ,- J' - l+l.GA /GT+3GA/CID. (31) 

G. > GA 
:&" - 1+ < Tanh(l'p) > /AI' < P > 

In the case of equidistant cracks am = a , Pm = a/tl. and all of the 
averages in all of the expressions above reduce to simple functions of P 
which are defined by removal of the brackets. 

3.5. STRESS ANALYSIS AND CRACK OPENING DISPLACEMENTS 

The optimal functions t/lm and ,pm define optimal admissible stresses by 
the relations (9.10.30). The effective properties E; and G;" based on these 
are strict lower bounds which also agree quite well with experimental data. 
The status of the stresses associated with the optimal functions is less clear 
which is a typical situation for any variational field approximation. It is. 
however, believed that these stresses are of qualitative importance, at least, 
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and the numerical results obtained, some of which are shown below, support 
this belief. 

The results obtained in this work can be easily used to estimate the 
crack opening displacements (COD) when the cracks are equidistant. It is 
rigorously true that the stress energy U of a cracked elastic body, homoge­
neous or non-homogeneous, and the stress energy Uo of the same uncracked 
body, under same load, are related by 

1 m 1 U = Uo + - L: TO.[u]dS 
2 8m 

(32) 

where Sm is the surface of the mth crack, TO is the traction on same surface 
in the uncracked body and [1£] is the COD. In the case of simple tension 
discussed above U is given by (15) and Uo = (0"°2 /2E~)V for the uncracked 
laminate. Also, the only surviving Tp is T~ = 0"1. The COD is now estimated 
in the form of two equal and oppositely joined second order parabolas. Thus 

[ux ] = 20[1 _ ( !... )2] 
tl 

where 20 is the maximum COD. It then follows easily that 

(33) 

4. Results 

Illustrative results are presented for a [0°, 900 ]s laminate in which the layers 
of equal thickness are T300/SiC ceramic unidirectional composites with 
fiber volume fraction 0.45. The relevant properties of the layer material 
are: 

EA 431.5 GPa ET = 113.6 GPa 
GA 90.8 GPa GT = 39.3 GPa 
VA 0.182 VT = 0.446 
aA 2.39 1O-6( CO) aT = 5.49 1O-6( CO) 

It is assumed that in between the layers there is a thin oxidation protec­
tion interphase of isotropic B4 C material with thickness 0.02 of the layer 
thickness and with properties 

Ei = 380 GPa Gi = 159.7 GPa Vi = 0.19 

Due to thermal treatment the interphase may develop many through 
cracks. As has been explained above, this creates an orthotropic interphase 
which may be considered perfect in normal z direction but imperfect in 
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shear. Increase of crack density of the interphase may be considered as 
decrease of the effective shear stiffness of the interphase. All of the results 
given below are in the form of plot families where each plot is associated 
with a shear modulus value Gdm , m=l,5, 10, 20, 50, 100, 200. Figs. 3-5 
show plots of Young's modulus, TEe and shear modulus, all normalized 
with respect to their values for the un cracked laminate, as functions of crack 
density for the case of equidistant cracks, expressed by the parameter p. For 
large values of p the properties of the un cracked laminate are attained while 
for small values of p the properties reduce to those of a laminate in which the 
90° layer has vanishing ET and GA but retains it's EA value. Such stiffness 
loss is associated with the concept of laminate netting analysis. The values 
of the properties decrease with decreasing interphase shear modulus. Thus 
for each property the uppermost plot is for undamaged interphase which 
may be regarded as a perfect interface while the lowest plot is for m=200. It 
is seen that the effect ofinterface imperfection, i.e. interphase damage, is not 
very significant for Young's modulus and TEC but is very significant for the 
shear modulus. It is also seen that the plots for normalized Young's modulus 
and TEC are very similar and indeed these normalized quantities are almost 
the same numerically. It should be realized that interphase damage has no 
effect on an uncracked laminate under in-plane loading since there are no 
interlaminar stresses in this case. 

Figs. 6-7 show internal stresses as functions of x ,for load N xx , when 
the intercrack distance is 2a = 5tl. Fig.6 shows the in-plane stresses u1!1 in 
the cracked layer and u1~ in the un cracked layer functions of z for the case 
when the intercrack distance is 2a = 5tl, the family of plots being defined 
by the sequence Gi/m. It is seen that the tensile stress in the cracked 
90° layer decreases with increasing interphase damage amd therefore the 
stress in the uncracked 0° layer increases with damage. Fig. 7 shows similar 
plots for the interlaminar stresses uxz(z, tl) and uzz(z, tl). These stresses 
decrease with increasing interphase damage and the effect is significant. 
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Figure 5. Effective shear modulus versus crack spacing 
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Normalized Interface Stresses 

Figure 7. Interface stresses 

5. Conclusion 

Previously developed variational analysis of cracked laminates has been 
extended to the case of imperfect interlaminar interface by use of a gen­
eralized thermo-elastic variational principle for imperfect interface. In the 
present work detailed analysis has been confined to a cross-ply laminate 
in which only the 90° layer is cracked. But there is no difficulty to carry 
out similar analysis with imperfect interface for the case when all layers 
are cracked, on the basis of the admissible stress system which has been 
constructed in Hashin (1987) for orthogonally cracked laminates. It is also 
a straightforward matter to analyze mechanical and thermal stresses. 

Present analysis has shown that for a cracked laminate with interlaminar 
interface which is imperfect in shear only, the quantitative effect of interface 
imperfection on effective Young's modulus and TEe is not drastic, but there 
is significant effect on the effective shear modulus and internal interlaminar 
stresses. 
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NUMERICAL MODELLING OF CRACK GROWTH IN MATERIAL MODELS 
OF FIBROUS COMPOSITES 
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Pohlweg 47-49, D-33098 Paderbom, Germany 

ABSTRACT 

Experimental investigations of fracture phenomena in thermomechanically loaded fi­
brous composites demonstrate the appearance of different failure mechanisms, like ma­
trix and interface cracks as well as of fiber breakings. In addition, the existence of bran­
ched crack systems consisting of a combination of those elementary failure mechanisms 
has also been observed several times. Therefore, in this paper the numerical modelling 
of complicated crack systems has been performed, consisting of a combination of matrix 
and fiber cracks where the latter are originated by local asymmetrical interface cracks 
and according to experimental results arise in a single layer of a thermomechanically 
loaded fibrous composite structure. The mathematical modelling of such branched crack 
systems in thermomechanically loaded two-phase compounds leads to mixed boundary 
value problems of the thermoelasticity. The corresponding solutions were obtained by 
using a closed finite element program capable of an automatic mesh generation. Further, 
special emphasis has been given to the crack path prediction of thermal cracks initiated 
in a plastic matrix/glass fiber reinforced composite structure by using a newly establis­
hed crack growth criterion based on the total energy release rate of a quasi static mixed­
mode crack extension. This numerical simulation of the crack growth process in appro­
priate material models should allow a better understanding of the fracture behaviour of 
fibrous composites on a micromechanicallevel. 

1. INTRODUCTION 

The failure behaviour of fibrous composites differs considerably from that of homoge­
neous solids due to the large number of possible failure mechanisms arising in thermo­
mechanically loaded composite materials. Thus, for example, the fracture behaviour of a 
laminate will be influenced by local failure mechanisms in a single layer such as fiber 
breaks, matrix and interface cracks, fiber pull-outs as well as the plastification of the 
matrix material. These failure modes existing on a microscale depend heavily from the 
orientation of the fibers, the individual ply thickness as well as on the constitutive 
equations describing the mechanical properties of the fibers, the matrix as well as the 
fiber-matrix interface. In addition to these elementary failure mechanisms having the 
size of the microstructure, i.e. the dimension of a fiber diameter, other failure modes 
arise, for instance intralaminar transverse cracks as well as extended delaminations 

129 

R. Pyrz (ed.), lVTAM Symposium on Microslructure-Properry Interactions in Composite Materials, 129--140. 
© 1995 Kluwer Academic Publishers. 



130 

between single plies with dimensions of several orders of magnitude larger than a fiber 
diameter. Because of the variety of parameters needed to be considered for a formula­
tion of strength characteristics for composites based on experimental results only, to­
day's composite research prefers the application of appropriate analytical models sho­
wing the essential details of the failure physics. There exist two different methods for a 
description of the failure behaviour of composites by using fracture mechanics; known 
in the literature as the micromechanical and macromechanical stress analysis. A review 
concerning the essential peculiarities of these two distinct continuum mechanical me­
thods for a characterization of the fracture behaviour of composites has been given by 
Rosen et al. [1] and Mahishi [2,3]. Within the last two decades a considerable number of 
publications dealing with different aspects of the strength and fracture behaviour of 
composites has been accumulated. For instance, Goree and GroB [4] gave an analytical 
solution concerning the determination of stress and strain fields in a unidirectionally 
fiber-reinforced composite containing an arbitrary number of broken fibers as well as a 
plastified matrix material. The corresponding analytical model based on the shear-lag 
assumption as well as on a shear stress fracture criterion allows, for instance, the pre­
diction of the characteristic strength and fracture properties of a boron fiber/aluminum 
matrix composite in agreement with experimental results. Further, Tvardovsky [5] con­
sidered an appropriate material model of an anisotropic layered composite containing 
isolated collinear and double periodic cracks, respectively. Thereby by assuming a re­
mote constant loading of the composite structure as well as by consideration of the inhe­
rent boundary and continuity conditions the associated boundary value problem could 
be reduced to a singular integral equation by applying the finite Fourier transform. 
Furthermore, there already exist several micromechanical models which allow for an 
analysis as well as for a prediction of the overall behaviour of composites. These me­
thods are known in the literature as the dilute approximation, the self-consistent scheme, 
the Mori-Tanaka and the differential scheme. In Aboudi's book [6] a description of 
these composite models with their advantages and disadvantages has been given. 
Aboudi himself developed a micromechanical composite model based on the study of 
interacting periodic cells. Thereby due to the assumed periodic microstructure, a repre­
sentative volume element only needs to be considered consisting of the fiber and the 
matrix subcells. By using a homogenization procedure a set of continuum equations can 
be produced allowing the transition to an equivalent homogeneous continuum. The im­
portant advantage of Aboudi's model consists in the establishment of a unified approach 
in the prediction of the overall behaviour of composites. 
Moreover, an interesting problem concerning the failure behaviour of thermomechani­
cally loaded composite structures consists in the prediction of the prospective paths of 
microcracks which already exist in the heterogeneous microstructure depending on the 
geometrical configuration as well as on the applied thermomechanical load distribution 
belonging to a given composite. Several possible failure criteria have been discussed in 
this respect in the literature, e.g. in a review article by Rosen [7]. Besides, there exist 
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some stochastic models for a description of the fracture behaviour of unidirectionally 
reinforced composites. Elementary failure mechanisms like fiber breaking, debonding as 
well as matrix cracking due to special loading and overloading were simulated by 
appropriate computer experiments, Kopyov et al. [8]' The corresponding activation cri­
teria concerning the initiation of such damage mechanisms were obtained by an analysis 
of the stress redistribution due to rising microcracks in the fibrous composites. 

2. BRANCHED CRACK SYSTEMS IN MATERIAL MODELS OF FIBROUS 
COMPOSITES 

2.1. DISK-LIKE BIMATERIAL SPECIMEN 
In this paper, branched crack systems consisting of a combination of curved matrix and 
interface cracks as well as of fiber breaks and arising in different material models of 
fibrous composites are considered. 

Figure 1. Branched thermal crack system in a disk-like material model of a fibrous 
composite and associated finite element discretization 

Figure 1 shows the cross section of a cracked disk-like two-phase solid (matrix: Araldite 
F, fibers: steel) containing three matrix as well as two interface cracks at the fiber-ma­
trix interfaces of two neighbouring fibers due to thermal loading after a special casting 
process. The thermal loading of the composite structure took place due to a cooling 
from the temperature To = 60 deg C of the unstressed initial state to a loading tempera­
ture TJ = -7,5degC according to a special cooling curve. The latter as well as the as­
sociated material properties of the two-phase compound and also the geometrical pa­
rameters of the disk-like bimaterial specimen can be taken from reference [9] . 
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Further, an appropriate nomenclature of different possible model geometries of ther­
mally loaded two-phase composite structures has been introduced in order to be able to 

formulate the following boundary value problems of the plane thermoelasticity [10] 

a:(rm,cp)=a:(rm,cp)=O; (jcpl~7t) (1) 

a!p (Pro '" ) = a!1jI (Pf' '" ) = 0; (1",1 < '" J, (j = f, m) (2) 

[app(p,,,,)]p;=p, = [apljI (p,"')]PI=P, =0; ("'i ~1"'1~7t) (3) 

[ Up (p, "')] _ = [UIjI (p, "')] _ = 0; ( '" i ~ 1",1 ~ 7t) (4) 
PI-P, PI-P, 

Besides, global plane polar coordinates r,cp with respect to the centers of the composite 
structures (with the outer radius rm) as well as local coordinates p, "', with the center in 
each fiber (with the radius Pf) have been introduced into the boundary and continuity 

conditions (1) - ( 4). By applying the basic equations of the stationary thermoelasticity 

for a plane stress state 

a .. =-( E ){e .. +-v-ekko .. - l+v nATO .. } 
IJ l+v IJ 1-2v IJ 1-2v IJ 

aji,j = 0 

e .. ='!{u .. +u .. } 
IJ 2 I,J J,I 

(5) 

(6) 

(7) 

the associated boundary value problems (1) - (4) can be solved either by means of the 

finite element method or by using the experimental methods of the photoelasticity and 
shadow optics. By using a refined finite element mesh in the neighbourhood of a bran­
ched thermal crack system (cf. Fig. 1) strain energy release rates at the tips of matrix 
and interface cracks were calculated. Furthermore, by implementing an appropriate 
crack growth criterion based on a maximum energy release rate principle a theoretical 
prediction of the experimentally observed branching phenomenon of curvilinear thermal 
cracks in disk-like material models of fibrous composites could be performed. Figure 2 
shows a summary of experimentally obtained results concerning the crack velocity v 
and the opening-mode stress intensity factor KJ at the tip of a curvilinear thermal matrix 
crack propagating in a disk-like material model of a self-stressed composite structure. 
Moreover, the radius ro of the initial curve of the caustic surrounding the crack tip as 
function of the crack length a is given which was used for a determination of the 
diameter of the caustic. Finally, Fig. 2 clearly demonstrates that the values of the stress 
intensity factor KJ obtained experimentally by the method of caustics in transmission 
and reflection for a curvilinear thermal matrix crack show a very good coincidence with 
the corresponding numerical KJ-values determined by associated finite element 
calculations especially in the region of stable crack propagation. More details about 
these investigations are given in reference [10]. 
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2.2. DETERMINATION OF FRACTURE MECHANICAL DATA AND CRACK 
PATH PREDICTION OF A BRANCHED CRACK SYSTEM IN A SINGLE UD­
LAYER OF A LAMINATE 

2.2.1. Crack growth criterion 
Figure 3 shows the cross section of a cracked single UD-Iayer laminate model (matrix: 
Araldite F, fibers: glass) containing matrix and interface cracks as well as fiber breaks 
due to a thermal loading after a special casting process. 

Figure 3. Material model of a cracked UD-Iayer of a laminate 
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The thermal loading of the composite structure took place due to a homogeneous coo­
ling from the temperature To = 60 deg C of the unstressed initial state to a loading tem­
perature of TI = -5.0 deg C. Further, finite element calculations were performed in order 
to predict the experimentally observed branching phenomenon of cracks arising in 
single UO-Iayers of different thermomechanically loaded composite structures. 
Figure 4 shows the finite element discretization of a UO-Iayer where a standard finite 
element program has been applied by using triangular constant strain 3-node elements. 

Figure 4. Finite element discretization of a cracked UO-Iayer of a two-phase compound 

The directional criteria for the description of crack growth in brittle solids proposed in 
the past, like the criteria of principal stress [11], maximum of strain energy release rate 

[12,13], minimum of strain energy density [14,15] require the knowledge of the near-tip 
stress and displacement fields in the vicinity of the original crack tip characterized for a 
general plane loading situation by the stress intensity factors K( and K II , respectively. 

Figure 5. Global und local coor­
dinates at a kinked crack tip 

Figure 6. Finite element mesh at a crack 
tip with a new crack lengthening .:1a 
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Moreover, the application of these criteria to a cracked brittle solid delivers equations 
for the determination of the angle S· describing the direction of further crack growth 
(cf. Fig. 5). By combining the essentials from the principal stress and the maximum 
energy release rate criterion, an appropriate crack growth criterion based upon the nu­
merical calculation of energy release rates at crack tips has been proposed by Herrmann 
and Dong [16 -18]' 

Moreover, it was shown earlier by Herrmann and Grebner [19] that the calculation of 
strain energy release rates at the tips of quasistatically extending curvilinear thermal 
cracks in self-stressed two-phase solids could be reached by using a method originated 
by Rybicki and Kanninen [20]. This method is founded on the evaluation of Irwin's 
crack closure integral 

G(a,S) = G1(a,S )+Gn(a,S) = lim _1_j[cr33 (r,S ).u3 (r,S)] dr 
M-+O 2~a 0 

+ lim _1_j[crr3 (r,S)· ur(r,S)] dr 
M-+o2~a 0 

(8) 

where the quantities cr 33' cr r3 represent the near-tip stresses in the local coordinate sy­
stem at the crack tip prior to crack extension, whereas the quantities Ur, u3 stand for the 
corresponding normal and tangential displacements between opposite points of the 
crack surface after crack extension and ~a represents the crack lengthening. 
By using a finite element mesh according to Fig. 6 a numerical calculation of the 
average energy release rates G,GpGn related to the global coordinate system x,y as 
indicated can be performed where the displacements along the new crack surfaces are 
approximated by a linear interpolation function in the related finite elements, i.e. usually 
3-node triangUlar elements. The corresponding formulae read as follows [17] 

G(a+ ~a ,S )=G{a+ ~a ,3 )+Gn(a+ ~a ,3) (9) 

G{ a+ ~a ,3 )~ G1(a ~a+~a,3) = Asin2 3 -2Bsin3cos3 +Ccos2 3 (10) 

Gn( a+ ~ ,3 ) ~ Gn(a ~ a+~a,3) = Acos2 S +2Bsin3cos3 +Csin2 3 (11) 

with 

A = _1_Fc(ud _uc). 
2t~a x x x' 

B = _1_[FC(ud _ uc) + Fc(ud _ uc )] 
4t~a x y y y x x 

(l2a) 

C = _1_Fc(ud _uc) 
2~a y y y (12b) 
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where t denotes the specimen thickness, F:, F; mean the components of the nodal forces 

in the global coordinate system x, y before the crack extension Aa, and u~, u~ (i = c, d) 
stand for the components of the corresponding nodal displacements of the new crack 
surfaces after the crack extension Aa. Besides, it should be mentioned that the coef­
ficient B in the equations (10) - ( 12) differs from the former coefficient B introduced in 

the references [16 - 18] by a factor of 2. 

By using the equations (9)-(11) the strain energy release rates G,GI>GlI can be deter­
mined if the new crack extension direction S is known. However, the latter quantity is 
just wanted. Therefore, an approximate method for the determination of the new crack 
extension direction has been developed, based on the physical mechanisms of brittle 
fracture. Thus, it is assumed that the new direction of crack extension Aa is given by the 
direction in which GIl = 0 holds true and crack extension occurs for G1 ~ G1c (critical 
crack extension force). Further, an iteration scheme concerning the determination of the 
new crack extension direction has been stated which is based on this criterion GIl = 0 
and on the numerical calculation of the strain energy release rates Gj(i = I,ll). 

2.2.2. Iteration scheme 
Step 1: Select a start angle S' of the prospective crack growth. 
Step 2: Let S = S· by arranging a local finite element mesh in the vicinity of the crack 

tip. By using this preliminary extension angle calculate a set of coefficients 
A,B,C according to the equations (12a, b) as well as the associated strain 

energy release rates, equations (9)-(11). If GIl = 0 is valid, then S· already 
gives the desired new crack extension direction and the iteration is finished. 
However, usually GIl becomes not be zero and then step 3 has to be carried 
out. 

Step 3: By taking GIl = 0 it follows 
Acos2 S +2BsinS cosS +Csin2 S = 0 (13) 
from which a new angle S· for the desired crack extension direction can be 
calculated, namely 

&' ==1- ~ ±A~)' -~ 1 (14) 

Step 4: After obtaining this new crack extension direction S', the iteration scheme can 
be started again. The procedure can be stopped if after a few reiterations of the 
steps 2 and 3 the new angle S· nearly equals S, the prior angle used to calcu­
late the coefficients A,B,C. Then the strain energy release rate Gli reaches 
approximately zero value. Thus, this calculated angle then corresponds to the 
new crack extension angle. 
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2. 2. 3. Crack path prediction in a UD-layer of a two-phase compound 
The crack growth criterion stated in the previous session has been applied for the pre­
diction of a combined crack system extending in an epoxy matrix/glass fiber reinforced 
composite model due to well-defined stress fields caused by uniform temperature chan­
ges and additional mechanical loadings. Figure 3 gives the cross section of the two­
phase compound consisting of homogeneous isotropic and linearly elastic materials with 
different thermoelastic properties according to Table I. 

Table I. Material properties of a two-phase compound 

Material Matrix: Araldite F Fibers: Glass (SFll) 
Young 's modulus E [N/mm2] 2600 74850 
Poisson's ratio v [I] 0.39 0.17 

Thermal expansion coefficient a [10-7 K -1] 530 5.0 

The numerical modelling of the crack path starts with the development of a straight ma­
trix crack, initiated in the origin of the coordinate system shown in Fig. 4, and growing 
quasi statically towards a neighbouring fiber. By striking the nearest fiber-matrix inter­
face a material defect has been modelled by a short asymmetrical interface crack. 
Further, the following prediction of the prospective crack path has been performed by 
applying the crack growth criterion already mentioned. The graphs 7-8 show the crack 

extension direction angles S' as functions of the projected crack lengths ax as well as 
the prospective crack paths by applying a thermomechanical loading system consisting 

of a homogeneous cooling of L'1T = -650 degC and variable mechanical loads to the 
composite structure. It can be seen that for two of the additional mechanical loads only 
cracks exist up to the end of the prospective crack path. The other mechanical loads de­
liver either a further crack extension or a crack arrest in the neighbouring fiber. The lat­
ter result can also be taken from Fig. 9 showing the strain energy release rate G( in de­
pendence on the projected crack length ax. 
Besides, it can been from the same graph that the G(-values at the tip of the first straight 
matrix crack reach certain maximum values near to the fiber-matrix interface. In additi­
on, Fig. 10 shows that for all cases of a thermomechanical loading a mixed-mode loa­
ding situation exists along the fiber-matrix interface. Moreover, the program developed 
for an automatic mesh generation was not able to handle the large crack deviation an­
gles arising in the fiber due to the applied crack growth criterion. Therefore, in these 
cases the further crack extension in the fiber has not been investigated. Finally, it should 
be mentioned that a second UD-Iayer composite model (SSKN5 glass matrix/SF 1 1-

glass fiber) has been studied in reference [21]. 
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3. CONCLUSIONS 
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A numerical modelling of branched crack systems arising in thermomechanically loaded 
material models of fibrous composites is given. By taking the substructure technique of 
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the finite element method as well as by implementing an appropriate crack growth cri­
terion a numerical simulation of branched thermal crack systems arising in disk-like 
models of fibrous composites due to a steady cooling process has been performed. Besi­
des, kinked crack systems arising in thermomechanically loaded UD-Iayers of fibrous 
composites have been considered. In both cases fracture mechanical data were calcula­
ted where these quantities have been used for the prediction of crack initiation as well as 
of further crack growth. 
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ANALYTICAL ESTIMATE OF INTERACTION AMONG 
ELLIPSOIDAL INCLUSIONS: 
UPPER AND LOWER BOUNDS FOR STRAIN ENERGY 
DUE TO INTERACTION 

M. HORI 
Department of Civil Engineering, 
University of Tokyo, 
Tokyo 11:3, Japan 

1. Introduction 

Recent advancement of material and computer sciences enables one to analyze be­
havior of members and structures made of composite materials with superior proper­
ties, using a large numerical computation. The developed computational mechanics 
is being applied to highly heterogeneous and inelastic geomaterials to predict behav­
ior of foundations or underground structures. It is essential in such computation to 
implement the constitutive relations of the material which exhibits anisotropy, in­
elasticity, nonlinearity or path-dependence. Micromechanical analysis is effective in 
predicting the constitutive relations since such responses are often due to irreversible 
deformation, failure or evolution of microconstituents. To reduce the required com­
putational efforts, the analysis ought to lead to a closed-form expression of the 
constitutive relations. 

The evaluation of interaction effects among microconstituents is a key issue in 
the micromechanical analysis. Eshelby (19.57) succeeded to analytically estimate 
interaction between one inclusion and the surrounding matrix, solving a problem 
of an infinite body containing an ellipsoidal inclusion (a single-inclusion problem). 
The solution is expressed in a closed-form, and has been applied to various averaging 
schemes which predict the effective properties; see, for example, Nemat-Nasser and 
Hori (199:3) for references. To evaluate the interaction among plural inclusions, one 
may need a solution to a problem of a body containing many ellipsoidal inclusions (a 
many inclusion problem), though it is an open question whether this problem can be 
solved analytically or not. The prediction of the effective properties, however, may 
not need an exact solution of the problem. An approximate but sufficiently accurate 
solution is preferable if it is given in a simple closed-form. For such a solution, the 
error due to the approximation should be estimated. 

To predict the effective properties of a heterogeneous material, Nemat-Nasser and 
Hori (199:3) has found universal bounds that give a range of the average strain energy 
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stored in any arbitrary finite body when subjected to various boundary conditions. 
Thc universal bounds are rigorously computed by using a functional for eigenstress 
fields. It is shown that one can set the functional such that it has either the maximum 
or the minimum valuf' , which equals the average strain energy of the body. 

Applying the universal bounds to the many inclusion problem, we seek to eval­
uate upper and lower bounds for the strain energy caused by the interaction which 
ads among the ellipsoidal inclusions. To this end, first, a functional which bounds 
the strain energy of the many inclusion problem is derived from the universal bounds 
in Section 2. To compute the functional analytically, we solve the single inclusion 
problem in Section :3, using an equivalent inclusion method which is formulated in 
a more general setting. The solution of the single inclusion problem is expressed in 
terms of a characteristic function for the ellipsoidal inclusion and a function which is 
defined outside of the inclusion and decays in the farfield. In Section 4, using these 
functional and the solution, we obtain suitable approximate solutions of the many 
inclusion problem. It is shown that upper and lower bounds for the strain energy 
can be analytically computed from the approximate solutions. 

2. Universal Inequalities 

A many inclusion problem considered here 
is as follows: an infinite elastic body, de­
noted by B, contains plural ellipsoidal in­
clusions, na's, embedded in matrix M. 
This body is subjected to farfield strains 
or stresses (f:'X) = C M : U OO ). Each nO' 
or 1lJ is uniform, and has a distinct elas­
ticity tensor, e a or eM, respectively; see 
Fig. 1. C(re) = Laip<Y(re)C"'+ipM(re)cM 
is the elasticity tensor field of B, where 
ip(o)( re) is the characteristic function of do­
main (.). Superscript (.) designates that 
the quantity is associated with domain (.). 
Note that (.) is used to denote a domain as 
well as its volume or shape. The displace­
ment, traction, strain and stress fields are 
denoted by u(re), t(re), f:(re) and u(re), re-
spectively. 

farfield loading 

Fig. 1: Many Inclusion Problem 

For simplicity, we take a finite region, V, which contains all no< in it, and re-
gard B as the limit of V expanding infinitely. The boundary conditions for V are 
homogeneous stress or uniform traction (t( re) = v( re) . UO on av with constant 
UO). According to the universal inequalities established by Nemat-Nasser and Hori 
(199:3), the strain field of this problem, denoted by f:eract(re), produces the minimum 
total strain energy among all compatible strain fields that have the same volume 
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average as the average of EfIact(z). That is, 

o > J ~ Ee.ract : C : Ee.ract dV - J ~ E: C : E dV, 
- ~'2 v2 

(1) 

where E(Z) is a compatible strain field which satisfies < E >v=< Efract >v. 
To obtain a suitable strain field, we apply the equivalent inclusion method. In­

troducing an infinite homogeneous body, denoted by B*, we consider its subregion 
V* (which is the same shape as V). The elasticity tensor of B* or V* is Co and an 
eigenstress field s*(z) is prescribed in B* such that the constitutive relations become 
O'(z) = Co : E(Z) + s*(z). For given s*(z), we can formally solve this subsidiary 
problem. Using the Green function of B*, we define an integral operator, rO(z; SO), 
which gives the disturbance strain field produced by s*(z), and denote the strain 
field in B* by E(Z) = E"" + rO(z; so). The consistency condition is to choose an 
eigenstress field that makes the fields of the subsidiary problem coincide with those 
of the original problem. Denoting this eigenstress field by O'*(z), we can write the 
condition as EOO + rO(z; 0'*) - (C(z) - CO)-l : O'*(z) = 0; see Nemat-Nasser and 
Hori (199:3). The strain field of the original many inclusion problem is then given 
as Eeract = EOO + rO(z; 0'*). 

Using C- which makes C(z) - C- negative-semi-definite for all z, we can obtain 
the following inequality from the consistency condition: 

(2) 

where E(z) = (C(z) - CO)-l : s*(z). Superscript - of r- emphasizes that the 
reference elasticity tensor of B* is C-. Equality in Eq. (2) holds only for O'*(z). 
Note that EOC' + r-(z; so) in Eq. (2) is compatible for other eigenstress fields, and 
can be used in Eq. (1). 

In the many inclusion problem, the change of the total strain energy due to the 
presence of [!""s is 

tV = lim r ~ Efract : C : Eeract _ ~ Eoo : C M : Eoo dV. 
v-=k2 2 

(3) 

Taking the sum of Eq. (1) and Eq. (2) and its limit as V --+ 00, we can obtain 
02:: W + J(s*; C-), where J is a functional for s*(z) defined as 

J(s*; CO) = Fm J ~ s* : ((C - cotl : s* - rO(s*) - 2Eoo) 
v_oo l' 2 

_E'oo : Co : rO(s*) _ ~ rO(s*) : (Co: rO(s*) + SO) 

+~ Eoo : (CM _ CO) : Eoc, dV. (4) 
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Inequa1ity 0 ;::: W + J(8*; C-) is universal in the sense that it applies to V of any 
arbitrary microstructure!. Although J is the essentially same form as the one used in 
the lIashin-Shtrikman variational principle (1962), it does not assume the statistical 
homogeneity2 for V 

Another universal inequality, 0 :::; W + J( 8*; C+), can be derived in a similar 
manner. The major difference is that we use the change of the complementary strain 
energy, 

!im r ~ u Exact : (C)-I: uexact - ~ u= : (CM)-l : u=dV, 
\-':>0 k 2 2 

where uExact(x) is the stress field when V is subjected to homogeneous strain bound­
ary or linea,r displacement conditions (u( x) = x . «:0 on av with constant «:0), and 
that C+ makes C(x)-C+ positive-semi-definite; see Nemat-Nasser and Hori (1993). 
In the limit as V --; 00, the solution of the two boundary-value problems coincide 
if u'X' = C M : «:00, and the change of the complementary strain energy becomes W. 
Therefore, we obtain 

(5) 

where superscript + or - for 8* emphasizes that it is considered in B* of C- or C+, 
respectively. As J uses an eigenstress field which is closer to the one that satisfies 
the consistency condition, J(8*+; C-) or J(8*-; C+) becomes a sharper bound for 
lV. 

3. Eshelby's Solution and Complementary Eshelby's Solution 

For the computation of J, we need an eigenstress field which is close to the solution of 
the consistency condition and is given in a closed form such that the resulting fields 
can be analytically computed. To this end, we solve a single inclusion problem, 
applying the equivalent inclusion method which is formulated in the manner as 
presented in the last section. A class of eigenstress fields that satisfy the above 
requirements are then obtained by considering a subsidiary problem which uses B* 
of CO =f=. CAl: see Fig. 2. To simplify the expression in the following discussion, we 
omit the arguments of a field or a function if it does not make confusion. 

The original problem is an infinite domain B which contains one ellipsoidal 
inclusion. n. and the subsidiary problem is an infinite homogeneous domain B* 
which has the elasticity tensor Co and an eigenstress field 8*. Noting that a strain 
field ill B* is «:'-,0 + ra. we write the consistency condition as 

(6) 

lOne may obtain the same functional as J when a unit cell of a periodic structure is considered 
instead of V in B; see Nemat-Nasser and Hori (1993). 

2See Francfort and Murat (1986), Milton and Kahn (1988), and Torquato (1001) for the statis­
tical homogeneity and the related variational technique. 
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Fig. 2: Equivalent Inclusion Method Applied to Single Inclusion Problem 

where C(x) = cpll(X)CIl + cpM(X)C M , and j,\;1 denotes the domain outside of n. 
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In terms of an eigenstress, Eshelby 's solution can be expressed as follows : a 
uniform distribution of eigenstresses, 17*, in the ellipsoidal n (i.e., cpll (x )17*) produces 

(7) 

where pll(C") and qn(x ; C O) are symmetric fourth-order tensors which give Ut11-

form strain field in n and a decaying strain field out of n. They can be explicitly 
determined from the ellipsoidal shape of n and the reference elasticity Co ; see Mura 
(1987) for the detailed explanation of Eshelby's solution3 . This solution was found 
for an anisotropic C o as well as an isotropic one; see, for example, Willis (1964). 

Taking advantage of Eq . (7) , we can solve Eq. (6) for the case of Co = CM, 
and obtain 17* = cpll A : E CX' with A = (( CII _ C M ) - l _ pll (C M ) )- 1. In the original 
problem, the strain field due to the presence of n is then given by 

where superscript JV! for r emphasizes C o = C M . 

For the case of C o i CAl , due to the uniqueness of the solution, the eigenstress 
field that satisfies Eq. (6), 17*( x) , must produces the same strain field as E OO + Ed, i.e., 
r O(x;u*) = Erl (X). Therefore, u *(x) can be expressed in terms of Ed as u' = (C­
C O) : (E,x'+ Erl ). This eigenstress field4 consists of the following three: a homogeneous 

3I Il the t\Vo dimellsional setting , the solution of an ellip tical inclusion problem can be used 
illstead of Eshelby 's solution , and prl and qrl are computed by using Airy's stress function or 
complex stress functions. 

4R ecall that {Od is constant in n and decays in M. 
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part, (C M - C O) : E'x " a constant in n, <./vf(Cfl _ CM) : E= + (Cfl - C O) : Ed , and a 
decaying part in Al, (CAf - C O) : Ed. Since the homogeneous part does not produce 
strains and the constant in n produces a field given by Eg. (7), a contribution of 
the decaying part to the disturbance strain field is determined. Therefore, we can 
explicitly compute the strain field due to a decaying eigenstress field in M (i.e., 
yi\J(x)(C M _ C Q

) : qfl(x ; CM) : 0"*) as 

r O(x;yM(CM _ C Q ) : qfl(CIH ) : 0"*) = ( '{'fl(X)(pfl(C M ) _ Bfl : pfl(Co)) 

+'{'M(X)(qfl(X ; C 'H) _ Bfl: qfl(X;CO))) : 0"* (8) 

where Bfl = 1+ (CH - C O) : pfl(CM ). If Eg. (8) is used as well as Eg. (7) , 
we can directly solve Eq. (6) for any arbitrary Co. In this sense, we call5 Eg. (8) 
complem entary Eshelby's solution; see Fig. 3. 

strain field 

Eshelby's solution 

intcgral operatOr r D 

intcgral operator r D 

complementary 
Eshelby' solution 

··9 s ··· ... ' 

uniform 

Fig. :3: Eshplby 's Solution and Complementary Eshelby 's Solution 

5The complement.ary Eshelby solution uses pfl's and qfl 's which are measured for C o and C M . 

A simpler equat.ion is derived by sett.ing C M = 2Co and using pfl(2CO) = pfl(CO)/2 in Eq. (8). 
It is expressed as r O( 'I:/"{ C o : qfl : 0") = 2( I + C o : pfl) : ('Pflpfl + 'PM qfl) : 0'* only in t.erms of 
pfl and qfl measured for C o. 
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4. Analytical Estimate of Interaction 

Making use of Eshelby's solution and complementary Eshelby's solution, we seek 
to obtain an approximate solution of the many inclusion problem and to estimate 
the interaction among the inclusions using J given by Eq. (4). The key issue is the 
computation of J. If J is analytically computed for a class of eigenstress fields which 
are expressed in terms of these solutions we can determine the eigenstress field that 
stationarizes J. This eigenstress field gives the most suitable approximate solution 
and yields the sharpest bounds for l1;' among the class when C- or C+ is used. 

4.1. COMPUTATION OF J FOR TRIAL EIGENSTRESS FIELD 

First, we consider a class of trial eigenstress fields. In view of the form of the exact 
eigenstress field for the single inclusion problem, the form of a trial eigenstress field 
should be (CM - CO) : £OC. + La <p"'S*,,1 + (1- <pOl)(CM _ CO) : qOl(CM) : S*0I2 with 
a set of (constant) eigenstresses, {s*" 1 , S*0'2}. To reduce the number of eigenstresses 
half, we set sOLd = Bet : S*O'2. Rewriting S*0I12 = S*OI, we have an eigenstress field of 
the following form: 

s* = (CM - CO): £CO + L (<pO'B OI + (1- 'POI)(CM _ CO): q"') : s*"'. (9) 
'" 

The strain and stress fields produced by this trial eigenstress field are 

£ = £<X' + L ('Pap'" + (1 - 'P"')qOl) : sOc"', (10) 

u = C M : £00 + L ('PO'(C M : p'" + I) + (1 - <p"')CM : q"') : S*"'. (11) 
(} 

As is seen, these fields6 are analytically expressed in terms of p""s and q""s which 
are measured for C M . 

Next, we compute J for this class of eigenstress fields, taking advantage of the 
following two properties of ro: 1) IB rO(s*) : (Co: rO(s*) + s*)dV = 0 for s*(:I:) 
which vanishes sufficiently fast at the farfield; and 2) Iv rO(s*)dV = (finite) for 
any sufficiently large ellipsoidal V (Nemat-Nasser and Hori (1993)). Substituting a 
trial eigenstress field into the right side of Eq. (4) and computing the integration of 
the second and third terms, we can obtain 

6Note that iT = eM : E in M = V - L", n'" and iT = eM : E + s' in n"'. 
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The integration in the last term is anaIytica.lly computed by applying the Tanaka­
Mori tilPorem7 (1972), which are st.ated in terms of pO and qO as follows: for any 
ellipsoida11' including n, IF 'P"po + (1- y"')qOdl' = np~'. Therefore, the last term 
becomes p~' : L" s*O. if the shape of V is ellipsoidal and remains the same as it 
expands. Functional J is now reduced to the following function of {s*O}: 

J'( {s*,'}: CO) = 'f 100 ~ s* : ((CO' - CO)-l : s* - f.d - 2f.(0) 

+~ f.')O : (CM _ CO) : f.oodV 

1 +:) f.oo : (CM + CO) : pv : (2: nO' s*"). 
~ a 

4.2. APPROXIMATE SOLUTION AND BOUNDS FOR STRAIN ENERGY 

(12) 

The derivative of J' with respect to s*"'s is computed from Eq. (12). The eigen­
stresses that stationarize J', denoted by {o'*"}, then satisfy the following set of 
tensorial equations: 

L 1oo(Y'" B'" + (1 - t.pO')q'" : (CM - CO)) : ((CO' - COtl : s* - f.d - f.oo) dV 
(j 

_~ nO'p~' : (CM + CO) : f. 00 = 0, (13) 

for 0: = 1,2, .... Terms in Eq. (13) can be analytically computed except for the 
volume integration8 of qi3 ,s over n". Substituting {o'*O'} into Eqs. (10,11), we can 
obtain the most suitable approximate strain and stress fields among trial eigenstress 
fields. 

It follows from Eq. (.5) that when Co = C- or C+, J" computed for {o'*"} 
yields the sharpest upper or lower bound for W, respectively. That is, 

(14) 

This inequality can be applied to a many inclusion problem for any set of ellipsoidal 
inclusions of arbitrary shape and elasticity which are arranged in an arbitrary man­
ner. As mentioned, if {o'*O'+} or {o'*O'-} is closer to the exact eigenstress field, J" 

provides a sharper bound for W. Therefore, J'( {o'*"+}; C+) - P( {o'*"-}; C-) can 
be used as a measure of the error of the approximate solutions that are given by 
substituting {o'*"-} and {o'*"+} into Eqs. (10,11). 

Since pt' depends on F, the last term in Eq. (13) represents the effects of the 
surrounding ellipsoidaImatrix on the inclusions. If this term is neglected, Eq. (13) 

'See Nemat-Nasser and Hori (1993) for the detailed derivation of the Tanaka-Mori theorem. 
BOne may evaluate this integral using the mean value theorem. 



becomes 

k" Bet: ((C - CO)-1 : s* - Ed - Eoo)dV 

+ 2: { q"': (CM - CO) : ((C - co)-1 : s* - Ed - Eoo)dV = o. 
!#,,,In/3 
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This is the volume average of the consistency conditions, (C - CO) : s* - E = 0, 
weighted by B'" in Da and by q'" : (CAl -CO) in other D"'s. Denoting by {Cf*"'} the 
eigenstresses that satisfy the above set of equations9 , we can compute jS( {Cf*}; CO) 
as 

-~ Eoc : (2: la(B'" - (CM + CO): pF): u*'" + 2: q/3: u*/3dV). 
- 0 n /3#0 

Although jS( {Cf*"}; CO) is not optimum, it still provides an upper or lower bound 
for W when Co = C- or C+. 

4.3. CASE OF INCLUSIONS OF COMMON SHAPE AND ELASTICITY 

As an illustrative example, we consider a simple case when all DO's are of common 
shape and elasticity tensor, denoted by D and C rl . Setting s*O = s* for all a's, 
we can rewrite jS given by Eq. (12) as a function of s*, and reduce Eq. (13) to a 
tensorial equation for s*. If the term which includes pF is neglected, the solution of 
this equation is 

Y'" = (Bn + 2: Q/3 : (CM - CO)) : (Cn _ c o )-1 : (Cn _ C M). 
i#o 

If Q""s are omitted, Cf* coincides with the exact solution of the single inclusion 
problem. Therefore, Q'" represents the strains which are produced in D" by the 
existence of other inclusions, and the contribution of Q"'s on jS represents the 
interaction effects among the inclusions. 

Substituting Cf* into Eqs. (10,11), we can obtain the approximate strain and 
stress fields as 

9Instead of the weighted average consistency condition, one may use the average consistency 
condition over each \1'" to determine the eigenstresses. 
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Function JS for U* becomes 

As mentioned, J>(U*; CO) provides an upper or lower bound for W when Co = C­
or C+, although it is not the sharpest among trial eigenstresses. From J>(71'*+; C+)­
J> (U*-; c- ), we can measure the error of the approximate strain and stress fields 
produced by U*+ and 71'*-. 

5. Conclusion 

For the many inclusion problem, a functional which gives the strain energy is de­
rived from the universal bounds. This functional can be used to bound the change of 
the strain energy caused by the interaction effects among the ellipsoidal inclusions. 
Applying the equivalent inclusion method in a general setting, we find comple­
mentary Eshelby's solution, and compute the functional analytically. It is shown 
that a suitable approximate solution of the many inclusion problem is obtained by 
stationarizing the functional and the bounds for the strain energy are analytically 
computed. 

We briefly mention the application of the many inclusion problem and its ap­
proximate solution. The problem is suitable to model a microstructure of a material 
which contains microconstituents of various kinds, and the effective elasticity of the 
material can be predicted from the approximate solutions. The advantage of this 
prediction is 1) the required computation is analytical except for the volume inte­
gration of functions; and 2) the error of the estimate can be measured from the 
difference of the strain energy bounds which are computed from the approximate 
solutions. 
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ABSTRACT. The overall elastic constants of a particulate composite ma­
terial are theoretically estimated. The composite consists of a high concen­
tration of randomly arranged spherical particles embedded in an isotropic 
elastic matrix. Because of the high concentration of particles (volume frac­
tion close to the maximum possible), the load transfer occurs mainly at the 
regions of near contact between neighbouring particles. The self-consistent 
approach is therefore unlikely to give an accurate prediction. It is now nec­
essary to estimate the load transfer between two neighbouring particles sep­
arated by a thin layer of matrix material. This has been done in the present 
paper without placing any restrictions on the rigidity of the particles or on 
the length of contact zone between them. The latter two limiting cases have 
been previously solved by Batchelor and O'Brien (1977), Phan-Thien and 
Karihaloo (1982), and Dvorkin, Mavko and Nur (1991). The results of the 
present study are applicable in particular to cemented granular materials. 

1. Introduction 

The determination of the bulk properties of particulate solids has been 
pursued in two ways. In the first, the emphasis has been placed on improving 
the accuracy of the results with respect to the volume concentration of the 
particles. Many results have been obtained which are accurate up to the 
order O( </» or to O( </>2), where </> is the volume concentration of the embedded 
particles. These were deduced by ignoring the interaction effect between the 
particles. If the volume fraction is small enough, the results of Smallwood 
(1944), Dewey (1947), Walpole (1971) are all accurate up to terms of order 
O( </». Further analysis using the variational approach and the self-consistent 
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method can be found in the works of Hashin and Shtrikman (1963), and 
Willis (1977). 

The second approach is to consider the interaction effects between the 
particles as for instance by Laws and McLaughlin (1979) for the analogous 
fibre-reinforced problem who used the self-consistent method developed by 
Hill (1963). This method approximates the interaction effects between par­
ticles by solving the elasticity problem of one particle enclosed in a spherical 
shell of the effective composite. Chen and Acrivos (1978), based upon the 
elasticity solution of two particles in an infinite region, gave the effective 
elastic moduli accurate up to terms of order 0(12 ). 

When the particle concentration is high, the load transfer occurs mainly 
at the regions of near contact between the neighbouring particles. In this 
case, the self-consistent method is unlikely to give an accurate prediction. 
Dvokin, Mavko and Nur (1991) considered the load transfer problem of 
two spherical particles with a layer of cement between them. They gave the 
elastic moduli of the cemented system when the length of the cement layer 
was prescribed and remained constant. However, the method developed by 
Batchelor and O'Brien (1977) that makes explicit use of the load transfer 
characteristics is expected to be more accurate for the problem of high 
concentration particles close to the maximum volume fraction and when 
the length of contact zone is a variable. In this paper an attempt is made 
to determine the overall elastic constants of a particulate material. The 
material consists of a high concentration of randomly arranged particles 
embedded in an isotropic elastic matrix. In view of the high concentration, 
the particles are assumed to be nearly in contact with each other. We shall 
confine our attention to the situation in which both the ratio of Young's 
modulus of the particles to that of the matrix and the volume concentration 
of the particles are high. The method adopted in this paper closely follows 
the procedure used by Phan-Thien and Karihaloo (1982) in their study of 
the limiting case when the modulus ratio tends to infinity. 

2. Mathematical Preliminaries 

As is customary in the suspension mechanics of materials with random 
structure, we shall assume that the particulate solid is statistically homo­
geneous so that ensemble averages can be replaced by corresponding volume 
averages. Thus, the bulk stress tensor is given by 

(1) 
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where V is a representative volume element (Hill, 1963), Vm , the matrix 
volume in V and Va is the volume of particle a in V, such that 

(2) 

In eqn (1) (Jij are the local stresses, namely 

.. ( ) _ { )..ckk6ij + 2f..lcij, x inside the matrix material, 
(JtJ X - )..*ckk 6ij + 2f..l*cij, x inside the particles, (3) 

where ).., f..l and )..*, f..l* are the Lame constants of the matrix and the 
particle, respectively. 

Based upon the replacement of the ensemble averages by the volume 
averages of the stress and the strain, the integrals on the right hand side of 
eqn (1) can be converted to the following expression 

< (Jij > = (1 - ~<p) .. < Ckk > 6ij + 2(1 - ~<p)f..l < Cij > + 
+~ L: [ Xi(Jjknk dA - iRij (4) 

V a lAo 

where <p is the particle volume fraction (= Ea Va/V) and Aa is the surface 
of a particle. In eqn (4), the remainder term is given by (with Vp = Ea Va) 

iRij = ~ iv
p 

{A(ckk - ~ < ckk > )6ij + 2f..l(cij - ~ < Cij >)} dV (5) 

If iRij can be made as small as possible by choosing ~ properly, then it may 
be neglected from (4) to give 

< (Jij > = (1 - ~<p) .. < Ckk > 6ij + 2(1 - ~<p)f..l < Cij > + 
+~ L: [ Xi(Jjknk dA (6) 

V a lAo 

It now remains to show how iRij can be made as small as possible by 
a proper choice of ~. It is noted that the stresses at the interfaces between 
the matrix and the particles are continuous. We approximate this continuity 
condition by 

1 c" dV = ~ 1- <p 1 c" dV 
tJ * A. tJ 

Vm f..l 'f' Vp 
(7) 

With this approximation, it can be shown that 

1 

~= (1-<P)?+<P 
(8) 



156 

leads to Rij = O. In the following we shall use eqn (8) in the average stress 
(6). 

In the limit of a dilute concentration of particle when </> -+ 0, the stress 
field within a particle is unaffected by the presence of other particles. For 
simple particle shapes, the particle contribution to the stress can be explic­
itly obtained. For a sphere of radius a we have (Walpole, 1972), 

1 + ± [( K + ~JL) 1'1 -10JL(1- v)''Y2] </> + 0(</>2) 

1 + 15(1- v) 1'2 </> + 0(</>2), 

(9) 

(10) 

where the subscript c denotes a composite property; K is the bulk modulus 
(= A + ~JL) and v Poisson's ratio. Other parameters in eqns (9) and (10) 
are defined as follows 

3K*-3K 
1'1 = 3K* + 4JL ' 

f3-1 
1'2 = 2f3( 4 - 5v) + 7 - 5v' (11) 

Accurate expressions for the composite Lame constants (up to 0(</>2)) 
have been obtained by Chen and Acrivos (1978) and have been confirmed 
by O'Brien (1979). 

In this paper we are concerned with the opposite limit, namely when 
the particles are in high concentration and </> is close to its maximum value 
(almost touching particles). We adopt the procedure of a previous paper 
by Phan-Thien and Karihaloo (1982). 

We consider here the simple case of identical elastic particles of radius a 
embedded in an elastic matrix (Fig. 1). At high concentrations of particles, 
the load transfer in the composite occurs at the regions of near contact of 
neighbouring particles. As the magnitude of the transfer load will be large 
in the vicinity of the regions of near contact, the integrals in (6) can be 
approximated by the sum of contributions from these regions: 

(12) 

where {xd is the position vector of the contact region f3 and 

(13) 

in which Aa,6 is the area of the contact region f3 of particle Q. 



157 

Fig.1 A 1)rpical Microstructure of Particulate Solids 

At high concentrations of particles we may replace V by the volume of 
one particle. Thus 

where {pil is unit vector defining the contact region f3 of the generic parti­
cle. Thus, to evaluate the bulk stress tensor, < (Tij >, we need to evaluate 
{H j }, the load transfer vector in the contact region f3. We consider this 
question in the next section. 

3. Load Transfer between two Particles nearly in Contact 

We consider here the contact problem of two identical spheres of high 
Young's modulus (compared to the matrix modulus), see Fig. 2. When 
the particles are nearly in contact, the thickness of the matrix layer, 2h, 
can be approximated by a quadratic function of the radial coordinate r: 

(15) 
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where 2ho is the minimum thickness of the matrix layer between the parti­
cles. 

z 

r 

Fig.2 The Load Transfer Problem between two Generic Particles 

If the relative displacement of the centres of the spherical particles is 
2f).h, we have (Fig. 2) 

w* +w = f).h - r 2 /2a (16) 

where w* and ware given by the Hertzian contact theory (Landau and 
Lifshitz, 1959): 

w 1 - v2 J [ q( r') , d9d ' 
7r E J Aa~ (r2 + r'2 _ 2rr' cos 9)1/2 r r , 

(17) 

w* = 1 - v*2 J 1 q( r') , d9d ' 
7r E* Aa~ (r2 + r'2 _ 2rr' cos 9)1/2 r r . (18) 

Here, Aai3 is the contact area; q( r) the normal loading and, as before, an 
asterisk denotes a particle property. 
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Let I ( ~) represent the following function 

I :.... = ~ f 7r r dO = 4r K ~ ( 
') 2' , (r--I) 

r -7rJo (r2+r'2-2rr'cos())1/2 7r(r+r') r+r" 
(19) 

where K(m) is the complete elliptical integral ofthe first kind (K(m) used 
here is identical to K(m2 ) used by Batchelor and O'Brien (1977)), then 
from (16)-(18), we get 

( 1 - v2 + 1 - v*2) fR q(r') I (r') dr' = b..h _ ~, (20) 
E E* Jo r 2a 

where R is the contact radius. 
This problem has been studied by Tu and Gazis (1964). However, in 

calculating the load transfer they regarded h to be constant and thus their 
treatment does not reflect the physical problem being considered here. 

4. Thin Plate Approximation 

By Fourier transform techniques, Tu and Gazis (1964) found that, if the 
matrix layer between the particles was thin enough, the displacement field 
in the layer corresponded to plane stress deformation. This can also be 
seen independently from the order-of-magnitude analysis of Phan-Thien 
and Karihaloo (1982). It can be shown that if the matrix layer between the 
spherical particles is thin, the integral (17) reduces to 

2(1- v2 ) 
w(r) = (2 _ v)E h q(r), (21) 

so that eqn (20) becomes 

1 1 loR , (r' ), r2 ( )khq+-k* q(r)I - dr =b..h--, 
2 - v 2 0 r 2a 

(22) 

where 

(23) 

We shall endeavour to find the solution of q( r) by transforming (22) to 
an expression similar to that obtained by Batchelor and O'Brien (1977). 
To do this, let us define f( r) by 

1 
(2 _ v) khq = b..h[1 - f(r)]' (24) 
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whereupon the integral equation (22) is transformed to 

f(r) = (2 - v) k* [R 1- f,(r') I (r') dr + ~. (25) 
2 k io ho + r 2/2a r 2atlh 

N ondimensionalizingall linear dimensions by a and denoting c = f, 
eqn (25) can be written as 

[Ria 1- f(r') (r') , r2 
f(r) = (2-v)cio 2ho +r'2 1 -:;: dr +2tlh· (26) 

The magnitude of the load transfer vector is 

l R 21[(2 - v)a2 1R /a 2r[l- f(r)] 
H = 21[ q(r)rdr = k 2h 2 dr. 

o 0 0 + r (27) 

From (24) and (27), the nondimensionalload transfer is 

Hk [Ria 2r[1 - f(r)] 
N = 21[(2 _ v)atlh = io 2ho + r2 dr. (28) 

5. Overall Moduli of Composite 

The bulk stress tensor of the composite, eqn (14), can now be written as 

< CTij > = (1 - ~¢»).. < Ckk > Oij + 2(1 - ~¢»J.l < Cij > + 
3(2 - v) "tlh 

+ 4(1- v)E 77 NpiPj, (29) 

where N is given by (28). 
Following the procedure of Phan-Thien and Karihaloo (1982), it can be 

shown that the constitutive equations of the composite are 

or 

< CTij > = (1 - ~¢»).. < Ckk > Oij + 2(1 - ~¢»J.l < Cij > + 
(2 - v) 

+ 20(1 _ v2) N EN ( < ckk > Oij + 2 < Cij », (30) 

< CTij > 

(31) 
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where N is a constant which depends on the packing mode of the particles. 
For an isotropic random packing, N = 6.5. 

The ratios of the moduli of the composite to those of the matrix are 

(1 _ ~</» + (2 - v)(l - 2v) N~ 
20(1- v)v 

(1- ~</» + (2 - v) N~. 
10(1 - v) 

(32) 

(33) 

In order to obtain the overall moduli of the composite, it is necessary 
to solve the integral eqn (26). The kernel of this equation has a weak and 
integrable singularity. It can be solved by iteration. 

For an isotropic matrix and particle both of which have a Poisson's ratio 
of 0.3, we have calculated the ratio of the shear moduli from eqn (33). The 
results are shown in Figs 3 and 4. Since the primary interest is in the case of 
high particle concentration and high particle modulus, large values of </> and 
small values of c are chosen. a/ho is approximated by </>1/3/(</>~P _ </>1/3), 
where </>m is the maximum possible particle fraction (=0.63) for random 
packing. 

3.0 r-----------------------, 

RIa = 0.4 

2.0 

0.50 

1.0 

O~------~------~------~----~~----~ o 0.1 0.2 0.3 0.4 0.5 
E 

Fig.3 Ratio of the Shear Moduli when RIa = 0.4 

Because of the non-linear nature of the contact problem, the elastic 
properties obtained above depend upon the contact radius R, or the relative 
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displacement b.h, besides the properties of the constituent phases. Figs 3 
and 4 show the results for R/ a = 0.4 and R/ a = 0.5, respectively. The shear 
modulus of the composite material increases with the chosen contact radius 
R. In practice this will mean that the stiffness of the composite will increase 
with deformation. It is expected that the present calculation will be more 
accurate when € is low and ¢> is high. When the stiffnesses of the matrix 
and the particle approach each other, it is seen that the predicted J-tc/ J-t can 
drop below 1.0. The reason for this is that we only take into account the 
load transferred at the near contact areas between the particles and ignore 
the load transferred through the matrix surrounding the particle. When 
the stiffnesses of the matrix and particle are close, load transferred through 
the matrix will become significant. 

4.0...----------------------, 

3.0 
Ria = 0.5 

~ 2.0 

1.0 

O~---~-----~------~------~------~ o 0.1 0.2 0.3 0.4 0.5 
£ 

Fig.4 Ratio of the Shear Moduli when Ria = 0.5 

The contact model can be approximately linearized by assuming R/a = 
1.0. In this case, w* + w = b.h everywhere in eqn (16), so that the integral 
equation (22) becomes 

1 1 loR , (r') , -- khq + -k* q( r ) I - dr = b.h, 
2-11 2 0 r 

(34) 

The results obtained from the solution of the above integral equation 
together with eqn (33) are shown in Fig. 5. Also shown are those calculated 
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using the formula given by Willis and Acton (1976) which is accurate up 
to the term of O( </>2) 

f..Lc = 1 + </> (f..L* - f..L,) (1 + f..L') + </>2 (f..L* - f..L,) 2 (1 + f..L') + 
f..L f..L* + f..L f..L f..L* + f..L f..L 

+ 210 </>2 { (,8 + l' )[6a(3k)+8,8(2Ml + (2M(281'2 - ,82)} (2M2 (~ - ~Jp) 

where a, ,8, 1', f..L', k and p, are constants related to the moduli of the 
matrix and particle. 

It is seen that the results calculated from eqns (34) and (35) are fairly 
close when </> is moderate, e.g. </> = 0.4. However, the results diverge for 
large </>. Therefore, it seems that at low particle concentrations the self­
consistent model (e.g. Willis and Acton, 1976) gives a more accurate result, 
but at moderate to high concentrations the present linearized contact model 
produces a reasonable prediction of the elastic properties of the particulate 
composite. 
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4.0 

~c 3.0 
II 
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Fig.5 Ratio of the Shear Moduli when RIa = 1.0 
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1. Introduction 

In two-phase materials such as fiber-reinforced composites, the effective behavior of the 
material is determined not only by the properties of the constituents, but also by their 
geometry and their arrangement in the composite - the microstructure of the material 
[1]. When calculating effective properties and local stress or strain fields, it is therefore 
important to consider the effect of modelling assumptions concerning the microstructure. 
In analytical approaches, the information on the composite's microstructure is contained 
implicitely in certain model parameters. For example, in the Halpin-Tsai equations, the 
empirical fitting parameter is a function of the Poisson's ratio and of the reinforcing 
phase's geometry [2]. For analyses by finite elements (FE), the microstructure is defined 
explicitely by the FE mesh. A certain degree of idealization is necessary to keep the 
problem computationally tractable. This leads to the definition of a model material that 
is usually not representative of reality. On the other hand, a composite with a "random" 
fiber distribution is hard to define and a given distribution can be fairly arbitrary. A 
further difficulty lies in describing local concentrations of fibers or resin. However, 
certain models do describe experimental data better than others. This was shown by 
Adams and Tsai, who studied random fiber packings based on periodic arrays of 
possible fiber positions [1]. Coming closer to observed microstructures, Pyrz has 
explored ways to quantitatively describe the microstructure of unidirectional composites 
and the influence it can have on the material properties [3]. 

The linear viscoelastic behavior of composites can be modelled micromechanically 
based on the viscoelastic correspondence principle (V C P) [4, 5]. U sing the 
correspondence principle, one can derive the viscoelastic response from the elastic 
solution by an inverse Laplace transform into the time domain. One can thus derive the 
composite properties from the constituent properties by micromechanics. However the 
inverse Laplace transform usually requires a numerical procedure. A useful 
approximation is the so-called pseudoelastic assumption, which simply states that elastic 
phase moduli in the elastic solution can be replaced by the corresponding relaxation 
moduli to obtain the viscoelastic response. It will be shown later on that this 
approximation can be quite accurate. Unidirectional composites are often modelled 
using pseudoelastic versions of the Kerner or Halpin-Tsai equations [6] or other 
micromechanics models [7]. This is mostly for transverse properties, whereas the 
longitudinal response is usually considered to be approximatively elastic for continuous 
fibers. 
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The direction of loading with respect to the fiber axis in unidirectional laminates has 
been found to be important when analyzing composites with a stress-dependent matrix 
behavior in that it affects the mean stress in the matrix [8]. Thus, factors such as the 
choice of array, which also affect the mean stress, as will be shown here, are also 
expected to affect the calculated viscoelastic response. 

The viscoelastic behavior of composites has been recognized to be too complex to 
lend itself to an exact micromechanical analysis [9]. Many researchers accordingly rely 
on the method of cells [10] or FE methods to solve, at the micromechanics level, 
problems of composite creep or relaxation with various constituent material properties 
[11] and microstructures [12]. Since the effective properties are influenced by the local 
microstructure, it is important to understand the dependence of the results on the fiber 
arrangement chosen for the model. 

This paper examines the evolution of the stresse state in a unidirectional composite 
under transverse tension and the influence of the FE model's unit cell on the calculated 
effective viscoelastic properties. The viscoelastic response is shown to be related to the 
initial, elastic stress field in the matrix, and is thus sensitive to parameters such as fiber 
content and packing. A hybrid (COMP) unit cell is introduced that combines features of 
the square (SQ) and hexagonal (HCP) arrays. It identifies the elements of elastic 
solutions which are significant for the viscoelastic behavior and evaluates various 
analytical approaches based on modified elastic models with respect to the FE results. 

2 The influence of stress state on stress relaxation 

Consider a linear elastic material 

. O'ij 0'kJr. 
Eij = 2G and EkJr. = 3K Eqs. I 

where the primes denote deviatoric components of stress and strain. For a material 
consisting of two phases m and! of volume fractions (l-I/J) and C/J, respectively, the 
total strain is 

Eq.2 

where the overbars denote volume average. Substituting Eqs. (I) one obtains 

I-I/J-'m I-I/Js:-m I/J -'/ I/J s:-f e·· = --0' .. +--u .. O' .... + --0' .. +--u"O'kk 
'I 2G 'I 9K 'I "'" 2G 'I 9K 'I 

m m / / 
Eq.3 

Material compliances can be obtained by differentiating (3) with respect to the total 
stress 0' kl : 

S 1 - C/J Am 1- C/J to m I/J / I/J s: / 
"kl = -- "kl + -- u.Bkl + -- A..kl + -- u·Bkl 
'I 2G 'I 9K 'I 2G 'I 9K 'I 

J m m / / 

Eq.4 

where Aijkl and Bkl are influence coefficients relating the average deviatoric and 
isotropic stress in a phase to the total applied stress, 

Eqs.5 
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and similarly for the fiber phase. Equation (4) is exact in the elastic case, and applies to 
stress relaxation within the pseudoelastic approximation, by replacing Gm by Gm(t). 

Consider a homogeneous material whose bulk modulus is elastic (constant) and 
shear modulus is linear viscoelastic. If this material is subjected to a relaxation test in 
simple tension, the total stress relaxes over time but the ratios between different stress 
components stay constant, and thus the stress coefficients Aijkl and Bkk are temporally 

constant. In any type of stress state where stress ratios are kept constant the relaxation 
behavior is entirely dictated by the stress coefficients. The situation in a composite is 
similar: the phase arrangement influences the relaxation behavior simply through 
changing the average stress state in the matrix. However, in a composite, the stress state 
itself may change as the material relaxes, making the stress coefficients time dependent. 

A crude relaxation model can be constructed by ignoring this time dependence and 
assuming the average stress state in the relaxing phase to be constant, i.e. only its 
magnitude is time dependent. For a two-phase composite with only G m relaxing this 
means setting the last three terms in (4) constant, to obtain 

S"kl(t) - S"kl = 1- 4> (_1 __ _ l_)A~kl 
'f " 2 Gm(l) G~ 'f 

Eq.6 

giving the modulus 

Eq.7 

Other components, such as the Poisson's ratio, may be similarly obtained. 
In the particular case of rigid fibers, the stress coefficients can be simply, and 

exactly, related to overall composite moduli. A rigid fiber phase means that all strain 
comes from the matrix. Using (1), we obtain 

Eq.8 

differentiation with respect to (J'kl yields the stress coefficients 

A·kl = _m_ -_,_, - - 8··8 S nkl 2G (dE.. 1 ) 
'J 1-4> dEmn 3 'f mn m Eq.9 

In the case of continuous rigid fibers aligned with X3 (plane strain), V31 = 0 and we can 
write the particular components 

Eqs.lO 

These can be substituted into, e.g., (7) to yield a simple model for relaxation in terms of 
the initial Poisson's ratio: 
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Eq.11 

The same can be done for other components, such as the time-dependent Poisson's ratio. 
This result (Eq. 11) suggests that the composite's elastic Poisson's ratio carries the 

essential information about the matrix's ability to relax, and may thus be used as an 
indicator of the phase arrangement effect. It will be shown below that the relaxation 

behavior is indeed a function of V2J' 

3. Finite element models 

3.1. FIBER ARRAYS 

The most common modelling configurations for transverse properties arc the square 
array, with a 0° (SQ) or 45° (SFC) orientation [13] and the hexagonal (HCP) array [14]. 
In this study, two regular arrays with a total of four loading configurations were 
examined (Fig. 1): square (SQ), face-centered square (SFC), hexagonal loaded along the 
densest axis (HCPy), and hexagonal loaded along the least dense axis (HCPx). 
Furthermore, a hybrid (COMP) array consisting of a combination of features from the 
HCP and SQ clements was analyzed (Fig. 1). This model has a broader distribution of 
interfiber spacings than the SQ and Hcr models, since the assembly of the different 
constituent cells leads to much smaller as well as significantly larger interfiber distances. 
It is thus more "random" than a simple linear series of different unit cells. The main 
objective of the comparison between these arrays was to clarify the influence of the 
packing on the stresses in the matrix and thus on the calculated elastic and viscoelastic 
properties. The finite clement program ABAQUS was used for the solution of the 
associated boundary value problems. 

The FE meshes consist of six-node, triangular plane-strain elements with a quadratic 
interpolation function . A mesh refinement of four elements through the thickness of the 
matrix between two neighboring fibers was found to be sufficient for convergence on a 
stable solution. The following assumptions were made in all cases: 

A perfect bond between the fiber and the matrix, no interphase 
All edges subjected to kinematic conditions of periodic symmetry 

Figure 1. Arrays for the finile clement analysis 



169 

Linear elastic fibers and linear viscoelastic matrix 
Plain strain loading conditions, since the fibers are much stiffer than the matrix 

3.2. FmERS AND MATRIX: CONSTITUENT PROPERTIES 

The variety of commonly used fibers and matrices in current composites applications 
calls for an approach to the problem that is as general as possible. For modelling the 
elastic case, this can be done by using ratios of constituent properties. For a typical 
glass fiber-reinforced polypropylene, for example, the ratio between the moduli is about 
70, as is the case for a carbon fiber-reinforced epoxy system. Here the composite was 
modeled with a modulus ratio of 70 and also with rigid fibers in order to clarify the 
contribution of simple geometric effects and that of the interplay between deformations 
in the fibers and the matrix. Poisson's ratios of 0.22 and 0.35 for the fibers and the 
matrix, respectively, were used. Only isotropic constituents were considered. 

A Prony series, which gives the modulus of a generalized Maxwel1 model (Eq. 12), 
was used for model1ing the viscoelastic behavior of the composite. 

G(t) = Go tgj exp(-~) Eq. 12 
1=1 'C1 

The relaxing shear and bulk components are given by two distinct series, and one 
element per decade is usually sufficient to describe very accurately a stress relaxation 
curve. For the present study a model matrix with a single relaxation time 1" = 100s and a 
relaxed shear modulus Goo = 0.5 Go, where Go is the unrelaxed modulus, was used. The 
bulk modulus K was defined as non-relaxing, which has been shown to be the case for 
neat polymers [151. As a result, the Poisson's ratio increases with time [16] and can be 
calculated from the elastic relationship (Eq. 13). 

vet) - 3K - 2G(t) Eq. 13 
2(3K + G(t» 

With few exceptions, such as acamid, the fibers can be assumed to be linear elastic over 
the time spans considered. 

4. FE results: stress distributions and linear viscoelastic response 

It has been shown III that the calculated elastic properties of the composite depend 
strongly on the array that is used for the calculation. This array dependence is, however, 
strongly reduced when results are compared on the basis of effective volume fraction 

cfJ / cfJrnax· The different effective stiffness values obtained for the composite at the same 
actual fiber content (Fig. 2), are attributed to the elastic stress distribution, which varies 
from one array to the next. Such a distribution, or stress spectrum, is shown in Fig. 3 in 
the form of a frequency distribution of the stress in loading direction for a fiber content 
of 30%. The fraction of matrix at a certain stress level is plotted as a function of the 
local stress normalized by the stress applied to the composite. The mean value of the 
distributions over the volume of the matrix, which is the stress coefficient A!I!!' varies 
from 0.89 for the SQ array to 1.02 for the SFC array. The SFC array, with the highest 
mean stress value, also gives the lowest calculated modulus for the composite, while the 
SQ array, with the lowest mean, results in the highest modulus. Similar variations are 
obtained in plots of the stress distribution with varying fiber contents for a given array, 
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with mean stress values going down to 0.49 for the SQ array with a fiber volume content 
of 70%. 

The calculated effective viscoelastic response of the composite with a fiber volume 
content of 30% is plotted in Fig. 4 for different arrays. All curves are normalized by the 
initial, unrelaxed modulus. Since only the shear modulus G relaxes from 1 to 0.5, the 
tensile modulus E of the matrix decreases from 1 to 0.56 in plane strain through the 
relaxation. All curves thus lie above the relaxation curve of the matrix , but no shift or 
extension of the relaxation time is observed. A shift toward longer relaxation times was 
described in [17], but this was attributed to a modified structure of the polymeric matrix 
material as a resulL of varying local curing conditions near the filler/matrix interface. A 
change in the relaxation times could, however, also be related to the geometric constraint 
which the fibers present if the matrix material is nonlinear viscoelastic. Such effecL'> are 
discussed below. 
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As for the elastic case, the normalized relaxed modulus can be seen to depend on the 
array used for the calculation. Clearly this discrepancy occurs only for a non-zero 
relaxed modulus of the matrix, and it increases with an increasing value of the latter. 
The SQ array gives the least amplitude of relaxation, i.e. the highest normalized relaxed 
modulus. On the other hand, the calculated relaxation curve for the SFC array is only 
slightly highcr than that for the matrix. The curves for the HCP and COMP models 
coincide and lie between those for the SQ and the SFC models. The COMP model 
however gives an initial, unrelaxed modulus which is lower than that obtained with both 
the SQ and the HCP array. The agreement of the results from the COMP model in the 
two loading directions despite the differences in fiber arrangement along the two axes 
fits in part the condition of transverse isotropy desired of a micromechanics model for an 
arbitrary unidirectional composite. 

The appropriate choice of an arrangement of fibers in a monodisperse array is one 
difficulty encountered in modelling unidirectional composites. It is especially important 
to account correctly for the degree of alignment and the homogeneity of the fiber 
packing in the viscoelastic case, since the long-term response, in particular the relaxed 
modulus, is affected by the stress distribution, and thus by the fiber arrangement and 
spacing. Local variations in fiber content can affect the global, effective properties of 
the composite [3]. 

The relaxation curves for the SQ and the SFC arrays may be seen as an envelope 
within which are the results for an arbitrary composite at the given fiber volume content, 
since they represent loading along the densest and least dense line packing, respectively. 
The results of the COM!> model supports this: although it has a local regularity of fiber 
packing, it contains resin-rich as well as fiber-rich areas, and yet gives a relaxation curve 
that corresponds very closely to that of the most densely packed array, the HCP. This is 
further supported by an examination of the influence of the fiber content. An increasing 
deviation from the behavior of the neat model matrix occurs with increasing fiber 
contents of the composite (Fig. 5). Such an effect has been shown to exist in the 
dynamic-mechanical behavior of two-phase composites, where the storage modulus at 
low frequencies decreases to a smaller extent with increasing filler contents [18]. The 
variation is related to the changing von Mises, or octahedral shear, stress spectrum in the 
matrix, which have been shown to determine the effective relaxation properties of 
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unidirectional laminates [8]. The effect of a higher fiber content is to raise the 
normalized relaxed modulus of the composite, shown ploned as a function of fiber 
content for different models in Fig. 7. This graph confirms that the similarity between 
the COMP model and the HCP array extends to fiber contents up to at least 50% for the 
linear viscoelastic case. The results of the analytical models, discussed below, are also 
given in Fig. 7. 

It was found that the mean octahedral shear stress in the matrix decreases with 
increasing fiber content. Different mean stress values were obtained for various arrays 
and fiber contents. The relaxation amplitude is found to be monotonically related to the 
mean octahedral shear stress (Fig. 6a). This applies both to variations of the fiber 
content and to the choice of different arrays for the model. 

The constant stress state model (Fig. 6b) works only in very dilute conditions, where 
the clastic plane strain Poisson's ratio of the composite is close to that of the matrix. 
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Nevertheless, Vf2 seems to be a useful indicator of the relaxation strength to be 
expected. 

Two effects must be considered in the relaxation of the composite: the change of 
modulus and Poisson's ratio of the matrix material and the associated redistribution of 
stresses in the matrix. The shear modulus of the neat model matrix used in the present 
study decreases by half through the relaxation, while the bulk modulus remains constant. 
As a result, the Poisson's ratio of the matrix increases from 0.35 to 0.42. For the linear 
viscoelastic analysis, the composite relaxation modulus at any time can be obtained by 
the pseudoelastic approximation, i.e. from an elastic FE calculation with the 
corresponding matrix property, G(t), at the given time for the linear viscoelastic case. 
This hints to a possibility of using simple analytical micromechanics models for 
approximate calculations of the viscoelastic response of the unidirectional composites. 

5. Evaluation of' analytical models 

Pseudoelastic micromechanical models have been used in which the matrix elastic 
modulus £ is simply replaced by the relaxation modulus Eft), among them the Halpin­
Tsai or related equations [6, 17]. These models use fitting parameters that take into 
account the shape of the inclusions and are usually a function of the inclusion aspect 
ratio. Comparable results are obtained for both square (SQ) and hexagonal (HCP) arrays 
when the fiber content l/J is replaeed by an effective fiber content such as the fiber 
content normalized by the maximum content for the given array. This approach gives 
fairly good results for the viscoelastic behavior of particulate composites with relatively 
low filler contents. 

For fibrous materials and higher filler contents, however, these models become 
inaccurate. This comes from the fact that they implicitely assume that Poisson's ratio is 
constant, while the better assumption usually is that the bulk modulus K is constant. 
This can be helped by finding an empirical, time-varying expression for the fitting 
parameters as a function of V(l). A beller approach however is a solution such as the 
composite cylinder assemblage (CCA) model r 19 j, which includes explicitely both G(t) 
and vet) of the matrix, i.e. in which the full time-dependence of the behavior of the 
matrix is accounted for. 

Figure 7 shows the normalized relaxed modulus as a function of fiber content for 
different arrays modelled by FE and for CCA. The pseudoelastic Halpin-Tsai equation 
gives a normalized relaxed modulus practically equal to that of the matrix for all fiber 
contents and has thus been omitted from Fig. 7. This shows its inapplicability to 
composites with higher fiber contents, as it does not reproduce the influence of the fiber 
arrays on the relaxation behavior of the composite. The CCA bounds for the normalized 
relaxed modulus of the composite are slightly broader than the range given by the FE 
results, but the average of the CCA upper and lower bounds is nearly the same as the 
average of the FE solutions. It should be noted that the COMP array, which combines 
features of the four regular arrays, gives results that are very close to those obtained with 
the HC!> arrays. 

The differences between the models originate in part in the assumptions made on 
fiber microstructure in the composite. While the FE models allow an explicit definition 
of the array and the results of the Halpin-Tsai model can be made to correspond closely 
to the FE solutions at least in the elastic case for certain values of the fitting parameter, 
the CCA model is based on a quite different premise. In the latter, cylindrical units of 
varying sizes are assembled to completely fill an arbitrary space that is subjected to a 
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figure 7. Nomlalizcd relaxed modulus £_IEo as a function of fiber content 

mean displacement fiek!. As was seen from the FE results, this affects very significantly 
the stress state in the matrix and thus the calculated relaxation response. 

Since the curves in Fig. 7 are predominantly concave upward, any pseudo-elastic 
model can be used as an approximation, with the error staying low up to a fiber content 
of about 5-10%. This is the range over which experimental studies on the influence of 
fiber content on the relaxation behavior exist [17]. For higher fiber contents, there is 
still a need for experimental data to confirm the effects of the fiber-related constraints on 
the relaxation behavior of composites. 

6. Extension to non-linear viscoelasticity 

Nonlinearities in the viscoelastic response of polymer matrix composites can be caused 
by several factors: time-dependent effects, such as physical aging; changes of polymer 
structure due to uptake of humidity or solvents; changes of microstructure due to flaw or 
damage formation and accumulation in the matrix or at the fiber-matrix interface; and 
sensitivity to the stress or strain level. With respect to the latter, it is therefore clear that 
the choice of fiber array, which determines the local stress distribution, has an influence 
on the calculated nonlinear viscoelastic properties of the composite. It is well known 
that the geometric constraint presented by relatively stiff fibers results in a strain 
amplification in the matrix. The associated local stress concentration leads to a 
nonlinear behavior of the composite at low composite stress levels [20]. In such cases, 
the only current way of dealing with the non-linear properties of the matrix is by FE 
analysis [11]. It has been shown that even in the linear case the geometry chosen for the 
unit cell affects the results of the analysis. Given the considerable differences between 
the stress distributions in the matrix for the different arrays, nonlinearity of the matrix 
material can be expected to accentuate the range of responses obtained depending on the 
array used. 

No shift in the relaxation times is observed for the present, linear case. The 
characteristic time of the relaxation remains lhe same as that of the matrix for all arrays 
and fiber contents. Furthermore, the composite response is linear viscoelastic, with a 
relaxation that is proportional to the applied stress. However, when the matrix behaves 
in a nonlinear viscoelastic way, the highly inhomogenous stress distribution in the 
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matrix could lead to a significant shift and broadening of the relaxation time spectrum 
for the composite. The broadening would be less important in the HCP array, where the 
stresses in the matrix are more homogenous than for the SQ array. On the other hand, 
the SFC array, with a higher mean stress, can be expected to have shorter relaxation 
times than the others. Since the relaxation times of the matrix are usually shifted toward 
shorter times with increasing stress, the more highly stressed areas in the matrix will 
relax more rapidly and contribute to a shortening of the composite's relaxation times, 
while the less stressed areas will extend them. 

7. Conclusions 

This paper examined the interrelation between fiber arrangement, stress distribution in 
the matrix, and relaxation behavior. The normalized amplitude of relaxation is smaller 
for the composite than for the matrix. The characteristic relaxation times are not 
changed by the presence of the fibers in the linear viscoelastic case. The relaxation 
behavior of unidirectional composites under transverse loading in the linear viscoelastic 
domain can therefore be predicted by pseudo-clastic analytical models, provided these 
explicitely include the evolution of the shear and bulk moduli of the matrix. It was 
shown that the average stress state in the matrix is determinant for the effective 
relaxation behavior of the composite, and in particular the relaxed modulus. The 
reinforcing phase effectively reduces the relaxation of the matrix by imposing a 
geometrical constraint that depends on the packing geometry and fiber content. The 
different unit cells thus lead to considerable differences in the calculated effective 
viscoelastic response of the composite under transverse loading. The constraint effect is 
rellected in the stress spectrum of the matrix as well as in the Poisson's ratio obtained 
from an elastic solution. 
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CONSTRUCTION OF A STOCHASTIC MACRO FAILURE MODEL OF 
UNIDIRECTIONAL FIBER REINFORCED COMPOSITES BASED ON 
DYNAMIC FAILURE PROCESS SIMULATIONS OF MICRO FAILURE 
MODELS 

Abstract 
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7-3-1 Hongo, Bunkyo -ku, Tokyo 113, Japan 
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A new failure process simulation model of unidirectional fiber reinforced composite 
materials is introduced considering the effect of matrix shear fail!Jfe as well as fiber 
breaks based on a shear - lag theory in which a failure can occur randomly not only in 
fiber elements but also in matrix elements. A stochastic static tensile failure process of 
unidirectional composite materials is simulated by means of a Monte Carlo method 
based on a repeated increment scheme using a finite difference technique. 

Then a new dynamic failure process simulation model is proposed in which an 
additional time variable is also incorporated by taking into account the mass of fiber aOO 
matrix elements. An exact time - dependent stress redistribution process in a composite 
failure model is evaluated by means of a finite difference scheme based on a time -
increment method. A statistical analysis is rna<k on the dynamic failure model aOO 
compared with the static one in terms of the different strength parameters, which shows 
that the dynamic simulation gives a better estimation on the dispersion of strength data 
and on the actual failure pattern. 

Finally a macro model is proposed which is a new cumulative failure model composed 
of elements of micro models based on the previous dynamic failure process simulation 
models. This method is successfully used in estimating the statistical nature of strength 
properties of composite materials of actual size, and it is shown that the strength of 
composites depends clearly on the length but not on the width of a specimen. 
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1. Introduction 

The failure process of fiber reinforced composites is a very complicated accumulation 
process of damage due to random failure of fibers, matrix and interface, which leads to a 
catastrophic fracture. It should be necessary to introduce a reliability assessment system 
to evaluate effectively a decrease in strength due to cumulative damage and defects taking 
every aspect of variation into consideration in rob' to understand thoroughly the 
statistical nature of strength properties of composite materials. 

A Monte Carlo simulation is one of the most effective methods to analyze such a 
complicated probabilistic phenomenon as a failure process of composites and several 
studies have so far been canied out including the author's earlier work [1,2,3,4]. In 
most of the past investigations, however, a simple failure model, which is called Rosen 
- Zweben's model [5,6], has been applied in which only random fiber breaks arxl 
stress concentration in the nearest fiber to the broken one are taken into account. This 
simple model leads to no more than a flat cleavage plane of a specimen. 

In examining a tensile failure process of unidirectional fiber reinforced composites, not 
only fiber break but also mmed interfacial debonding between fibers and matrix and pull 
- out of fibers are frequently observed especially in single arxl hybrid fiber composites 
with a medium - to - high volume fraction of fibers. Such a complex failure 
mechanism often leads to a complicated zigzag cleavage plane of a specimen. Although 
a few investigations taking into account interfacial debonding have been canied out, the 
interfacial failure criterion has not been clearly defined [7] . Therefore, it is important 
to take interfacial strength into consideration in modelling a basic failure model of 
composites. 

For these reasons, the present paper aims at establishing a general assessment system 
to predict a decrease in reliability of composite materials due to cumulative damage, 
with a main system to simulate a stochastic failure process of composite materials 
considering the effect of a scatter in strength of fibers and matrix and defects mixed in 
during a fabrication process, accompanied with a subsystem of statistical analysis. 

For this purpose, new static and dynamic failure process simulation models of 
unidirectional composites are introduced considering the effect of matrix shear failure as 
well as fiber breaks, based on a repeated increment scheme using a finite difference 
technique. A macro model is also proposed, which is a new cumulative failure model 
composed of elements of micro models based on the dynamic failure process simulation. 
The statistical nature of strength of unidirectional composites is characterized arxl 
discussed on the basis of these simulation models. 

2. Basic Failure Model 

Consider a lamina of unidirectional composite as shown in Fig. 1. Not only each 
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reinforcing fiber arranged parallel to the direction of load has a varied fiber strength, but 
also every part of a fiber has a different strength. So each of k reinforcing fibers 
arranged at the same intervals is assumed to be composed of n links of "ineffective 
length", ~,where ineffective length means the minimum length in which a fiber does 
not break at more than two places. And it is assumed that each fiber should break at the 
center of a fiber element. Then nodal displacements, utl. ui, are set up above or below 

fiber element, F(i, j}, which is the i - th fiber from the leftside aOO the j - th element 
from the top as shown in Fig. 2. And as for the matrix, the matrix element, M(i, j), is 
introduced between nodes ui and ui+ I, which is a characteristic of this model. 

Considering a stress transmission mechanism in the tensile failure of unidirectional 
composite, the mechanism is approximated by the shear - lag theory, which means that 
fibers transmit only axial force and matrix only shear force. Therefore tensile strength is 
allocated at n X k fiber elements and shear strength is allotted at (n-l) X (k-l) matrix 
elements. Namely, random numbers based on a statistical distribution are generated 
about fibers and matrices. (/ (i, j) is allocated at the fiber element, F ( i, j), and T (i, j) is 
allotted at the matrix element, M(i, j), respectively. 

The strength distribution of fiber elements is given by the random number, (/ (i, j), 
based on the Weibull distribution. As for the matrix elements, the same distribution of 
shear strength should be assumed, but there are almost no measured data. So, supposing 
the effect of fiber strength distribution to be the most important factor for determining 
the strength of composites, a uniform shear strength, T max' is assumed in this study. 
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(1) 

Where, Uj : axial displacement of i-th fiber, E: Young's modulus of fiber, A; cross -

sectional area of fiber, G: shear modulus of matrix, d: distance between fibers, h : 
thickness of lamina. 

Approximating the second - order differential equations such as Eq. (1) by the 
following equation of finite difference : 

d2u. uj - I - 2u j + uj +1 
l _ l " 

dx2 - 82 
(2) 

the nodal displacement, ui, is given by [3] : 

j_1 j+1 Gh82 (j j) ui + ui + -- Ui _1 + Ui +1 
u j - EAd 

i - (Gh82 J 21+--
EAd 

(3) 

The tensile stress caused in the fiber element, F (i, j), is calculated from the difference 
of nodal displacements, ui, uti, by E(ui-utl)! (] and compared with the given strength, 

(J' (i, j). If E (ui-utl)! (] ~ (J' (i, j), then the fiber element, F(i, j), is supposed to be 

broken. 
When a fiber element is broken, the stress field disorder takes place around the broken 

element. As it is assumed that a fiber always breaks at the center of an element, when 
the fiber element, F( i, j), breaks, the nodal displacement of the broken point is expressed 
byut lf2 . ThereforewhenF(i,j) breaks as shown in Fig. 2,asforui-1 [3] , 

d2 j-I 4 (j-2 j-I u· u· -u· --'-=-' , 
dx 2 38 8 

j-l j-1/2) Ui -Ui 

812 

d2 j-l 4 _u_i ____ ( j-2 _ j-l) 

dx2 - 382 ut ui 

similarly, as for ui, 

(4) 

(5) 
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(6) 

so that the equation of fmite difference in the fonn of Eq.(2) is rep1aced by Eq. (5) for 
ui and by Eq.(6) for ut1 in this case. 

On the other hand, shear stress caused in the matrix element, M(i, j), is calculated 

from the difference between nodal displacements, ui, ui+ Ii,by I G tan-1{ui+Ii-uiVd I, arxl 

compared with the shear strength of matrix, T (i,j). If I Gtan-1{ui+ Ii-uiVd I ~ T 

(i, j), the matrix element, M(i, j), is supposed to be broken. In this case, the 
equilibrium equations become as follows: 

E'A d2U/ Gh( 1 _ 1)-0 
.t1 2 + u· 1 u· -dx d 1- 1 

2 i 
EA d Ui+1 Gh( i J)_ 0 
~+d Uj +2 -Uj +1 -

} (7) 

A tensile failure process simulation is carried out on the basis of a repeated increment 
scheme [3] until it arrives at the ultimate fracture of a lamina. 

3. Dynamic Failure Model 

The basic failure model as described above is extended to a new dynamic failure model, 
in which an aditioinal time variable is also incorporated by taking into account the 
mass of fiber and matrix elements. From a shear -lag theory, the equilibrium equation of 
force is given in the finite difference fonn : 

EA (i-1 2 i i-1) Gh (1 2 i-1 1) _ d2u/ (8) 82 uj - uj +uj +d Ui +1 - uj +uj _ 1 - m dt2 

where m is mass per unit length of a fiber including that of surrounding matrix region. 
The dynamic problem is solved by means of Wilson's theta method. When the nodal 

displacement, Uij' at the time, t + (J 6. t , is given by uij (t+ (J 6. t) , Eq. (8) is 

combined with the following two sets of equations, from which the acceleration, Ui./..t+ 
(J 6. t), is obtained. 

U/(t + Oilt) = u/(t) + Oiltu/(t) 

(Oilt)2 U i () (Oilt)2 .. i( llA ) +--uj t +--uj t+uut 
3 6 

(9) 
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it! (t + ()t,.t) = it! (t) + ()~ {ii! (t) + ii!(t + ()t,.t)} (10) 

Using Ui/ • ..f+ 0 tl t), Ui/ t+ tl t) is obtained from the following equations of 

interpolation: 

ii! (t + t,.t) = ~ {( (1 -1)ii! (t) + ii!(t + ()t,.t)} 

it! (t + t,.t) = it! (t) + ~t {ii!(t) + ii! (t + t,.t)} 

U!(t+ M) = u!(t) + t,.tit!(t) 

(t,.t)2 "j() (t,.t)2 .. j( A ) +--Uj t + --Uj t + I..l.t 
3 6 

(11) 

(12) 

(13) 

It is known that 0 ~ 1.37 gives an unconditional stable condition in the Wilson's 
theta method. As a large value of 0, however, decrease the accuracy, Wilson 
recommends 0 =1.4 as practical value [8], which is adopted in this calculation. 

The failure criteria of fiber and matrix elements are the same as in the stastic 
simulation as descnbed above. The equilibrium eqation is rep1aced in a similar way as 
in the static case when a fiber or matrix element fails. The strain' increases regardless 
wether an element fails or not in the dynamic simulation, while the strain does not 
increase until a successive failure at a certain strain level comes to an end arriving at an 
equilibrium condition in the static simulation. 

A statistical analysis is made of the strength and failure pattern distributions of typical 
unidirectioiial CFRP(carbon fiber reinforced plastics) and GFRP(glass fiber reinforced 
plastics) based on the dynamic failure model and compared with the static one in terms 
of different strength parameters. The dynamic model is tile same as the static one and the 
volume fraction of fiber is assumed to be 40 and 60 per cent. The strain rate is supposed 
to be 10'2 mS'l and the interval oftime increment is assumed to be .M = 2 X 10"8 s. The 
number of simulations is 30 for each case for the purpose of statistical analysis. 

TABLE I shows a comparison between the mean values and the coefficients of 
variation for maximum stress «(J max)' maximum strain (E: max) and number of broken 
elements in fiber and matrix based on the static and dynamic simulations. Judging 
from these results, the dynamic simulation gives a larger (J max than the static one by 

37.5 MPa in GFRP of l'J = 60 %, while there is no significant diifference in GFRP of 

V, = 40 %. On the other hand, the dynamic result gives a lower (J max in CFRP (by 

54.7 MPa in l'J = 60 % ) and gives a larger coefficient of variation in either V, = 40 % 

or 60 %. As for E: max' the static simulation gives a little larger value in botlh CFRP 
and GFRP. It is noteworthy that there is a more significant difference, in the number 
of broken elements : the number of broken fiber elements is larger in the dynamic 
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'simulation, especially in GFRP, am the numbers of broken matrix elements are 
considerably different in CFRP. 

In the static model, a "static" stress redistribution is made until a next equilibrium 
condition is attained, which causes a few "multiple fracture" as shown in TABLE 1 : 
almost no "multiple fracture" is observed especially in GFRP. The static model also 
tends to make the number of failures smaller in matrix in case of CFRP with a Jaeger 
number of failures in matrix. Hence the active generation of failures in a microscopic 
region can be explained only by the dynamic failure model. Therelore, it is suggested 
that both static am dynamic simulations give a little difference as far as the advantage 
values of tensile strength and maximum strain are concerned, but that the dynamic 
simulations gives a better estimation in terms of the dispersion of strength data and the 
actual failure pattern. 

TABLE 1. Comparison between static and dynamic simulations 

lj (/ max E: max Number of broken elements 
% MPa % Fiber Matrix 

60 1297.6 1.045 13.70 46.24 
(7.8) (10.5) (16.6) (23.2) 

Static 
40 845.5 0.959 15.02 22.04 

(6.7) (7.0) (18.8) (21.0) 
CFRP 

60 1224.9 1.017 17.13 55.67 
(9.6) (10.1) (43.9) (18.2) 

Dynamic 
40 826.7 0.958 18.73 30.90 

(9.4) (7.7) (40.4) (23.3) 

60 724.4 3.413 11.66 106.50 
(10.0) (12.6) (7.6) (9.8) 

Static 
40 502.3 3.046 11.82 70.24 

(9.9) (13.6) (8.3) (14.0) 
GFRP 

60 761.9 3.247 17.83 106.47 
(11.6) (15.0) (47.7) (10.9) 

Dynamic 
40 502.6 2.920 16.03 75.23 

(9.7) (19.3) (40.3) (16.8) 

Note: Figures in parentheses indicate coefficient of variation (%). 
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4. Macro Model and Size Effects in Strength 

4.1 CONSTRUCTION OF MACRO MODEL 

The basic failure model as described above is a "micro" model as in,dicated by the white 
broken line in Fig. 3 which is a typically observed final failure pattern of unidirectional 
CFRP [9]. Although such a micro model explains well the actual failure pattern of 
composites as described above, there remains a practical problem on what kind of 
statistical correlations exist between the simulated strength of "micro" models and the 
observed strength of "macro" region of composites of actual size. Consider, for 
examples, a rectangular region of 10 mm in width and 50 mm in gauge length in a 
tensile test specimen. As this region is equivalent to an assembly of about 5,000 micro 
models, composied of 165 X 5,000 elements, some kind of macroscopic considerations 
is required for simulating the failure process of such a "macro" region. 

For this reason, a macro model is proposed which is a new cumulative failure model 
composed of elements of micro models based on the dynamic failure process 
simulations. Consider a macro model composed of m X n micro model elements ( m 
rows in longitudinal direction and n columns in transverse direction) as shown in Fig. 
4. A longitudinal strength, 11 er (i, j), is allotted at an element (i, j) according to the 
Weibull random numbers, which are given by the Weibull parameters deribed from 
11 max data based on the dynamic simulations. 

Figure 3. Micrography by SEM observation 
- fracture surface -
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Figure 4. Macro model 
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A tensile failure simulation is made on a macro model. As the number of elements is 

as many as several thousands, it is not practical to solve the equilibrium equations of a 
system successively based on a strain increment scheme by means of a finite element 
method. Hence only the maximum load (ultimate strength) of a macro model is 
simulated based on a load increment scheme, in which a uniform stress is frrst applied to 

each element and stress concentration factors are then given to surrounding elements 
around a broken one : a stress redistribution is repeated by judging a failure of elements 
on the basis of successive comparisons between stress and strength of an element. 

The stress concentration factors are calculated in advance for various failure patterns by 
means of a finite element method and stored in a data file. Then, if a failure occurs, the 

failure pattern is searched and the corresponding stress concentration factors are given to 

the neighboring three elements around a broken one on both sides: k( i, j ± 1), k( i, j ± 2) 

and k(i, j ± 3), ane the element stress is increased to k . 17 in a next step. A failure of a 
macro model can be assumed in the following two ways :i) at least one element fails in 
every column of n columns (series - parallel type), ii) all elements fail in either row out 
of m rows (parallel - series type). The former criterion is adopted in this study in onkr 

to allow a longitudinal crack to extend between micro model elements, which is often 

observed in a failure of unidirectional composites. 
First, a macro model simulation is made on a small - scaled model composed of 10 X 

10 elements and compared with a FEM simulation. A comparison is made between the 

resulting failure patterns of elements in macro model and FEM simulations on the same 

models with the identical strength distribution. It is shown that failure patterns are 
apparently similar in both cases, though a macro model simulation is not intended to 

express an exact failure pattern. The simulated ultimate strength is 872.7 MPa by FEM 
and 891.7 MPa by macro model, which shows the validity of a macro model 
simulation. 

Then. a macro model simulation is canied out on unidirectional CFRP and GFRP 
(V r60%) of 50 mm in length and 10 mm in width corresponding to a region over gauge 

length in a tensile test specimen. The simulated results are shown in TABLE 2, in 
which the micro model simulations in TABLE I are also listed for the purpose of 
comparison. The mean values by macro model are 61-66% as large as those by micro 
models, which shows that the size effect in strength is remarkably large. On the other 

hand, the coefficients of variation by macro models are considerably smaller than those 

by micro models, which reflects a general statistical tendency that the variation becomes 
smaller as the number of elements increases. 

The theoretical strength of macro models is expressed by the following Weibull 
analysis which is also shown in TABLE 2. The probability that an element does not 
fail under a stress 17, R( 17 ), is given by : 

R(a) = exp( - ~:) (14) 

where a is the shap parameter and fJ is the scale parameter of a Weibull distribution. 
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So that, the probability of failure of a macro model composed of m columns and n rows 
under the failure criterion (i), Fl «(f), is expressed by: 

(15) 

and the probability of failure under the failure criterion (ii) is given by : 

(16) 

The stress levels corresponding to the probability of failure: Fl «(f) or F2( (f )=0.1, 
0.01, that is, the probability of survival: Rl «(f) or R2( (f )=0.90, 0.99, are shown in 
TABLE 2. 

In comparing the simulated result with the theoretical one under the criterion (i), 
corresponding to the failure criterion of a macro model, the former is smaller than the 
latter by about 25%, since the latter is based on a simple probabilistic theory in which 
the effect of stress concentration is neglected. The failure criterion (ii) appears to be 
irrational, as it gives larger values of strength than the mean values of a macro model. 

TABLE 2. Comparison between micro and macro model simulations 

CFRP GFRP 

Simulation 
Micro Model 

1224.9 761.9 
(9.6) (11.6) 

Macro Model 
805.2 468.8 
(2.9) (4.8) 

Criterion (i) R=0.90 928.1 573.6 
R=0.99 1000.5 598.1 

Weibull 
Criterion (ii) R=0.90 1383.0 853.5 

R=0.99 1398.2 867.5 

Notes: Units in MPa. Figures in parentheses indicate coefficient of variation (%). 

4.2 DISCUSSIONS ON SIZE EFFECT IN STRENGTII 

It is well recognized that there is an obvious size effect in s~ngth of composite 
materials. A simulation is made on the size effect in strength of unidirectional CFRP 
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(lj = 60%) by varying the number of elements in a macro model. The number of rows 

is varied as one - forth, one - half and two times in comparison to the standard one to 
examine the size effect in length. The mean values analyzed by assumed normal 
distributions based on 30 simulations in each case are shown in Fig. 5, together with 
the theoretical values based on the simple Weibull theory under the criterion (i). 
Similarly, the number of columns is varied as one-forth, one - half and two times in 
comparison to the standard one to examine the size effect in width. The simulated and 
analyzed results are shown in Fig. 6. 

In comparing Fig. 5 with Fig. 6, the simulations show that there is an obvious 
tendency that the strength depends on the length : the strength is decreased but the rate of 
~ becomes dull as the length is increased. The Weibull theory gives a similar 
tendency. On the other hand, the strength does not appear to depend on the wigth in the 
simulated results. The size effect in width is small also in the theoretical results : even 
if the number of columns is 104, the strength would be increased only to 1,063.1 MPa. 
As there is the effect of stress concentration in the simulations, the increase in 
reliability due to the increase in numbers of columns is cancelled by the decrease in 
reliability due to the increase in number of elements. 
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5. Conclusions 
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In this study, a reliability assessment system is proposed on the basis of static and 
dynamic failure process simulations of unidirectional lamina models in order to examine 
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the statistical nature of strength properties of unidirectional composite materials. The 
main results are summarized as follows : 
1) A successful simulation is canied out tracing faithfully an acbJal failure process by 
considering interfacial debonding between fibers and matrix as well as random fiber 
breaks. The reliability and damage tolerance levels of unidirectional composites are 
evaluated quantitatively based on the simulations. 
2) An exact time - dependent stress redistribution process due to progressive failures is 
evaluated based on the dynamic simulations, which give a better estimation in terms of 
the dispersion of strength data and the active generation of failures than in the static 
simulations. 
3) A macro model is proposed which is a new cumulative failure model composed of 
elements of micro models based on the dynamic simulations. This method is successful 
in estimating the statistical nature of strength of composite materials of actual size. 
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ON IMPREGNATION QUALITY AND RESULTING MECHANICAL 
PROPERTIES OF COMPRESSION MOULDED COMMINGLED YARN 
BASED THERMOPLASTIC COMPOSITES 
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A glass fibre (GF) / polypropylene (PP) commingled yam was selected to investigate the 
relationship between impregnation mechanisms and processing conditions during consoli­
dation. Furthermore a carbon fibre (CF) / polyetheretherketone (PEEK) commingled yarn 
was studied. Laminates out of these material forms were fabricated by hot pressing. 
Microscopy of cross-sections and density measurements helped to examine the quality of 
impregnation and consolidation. 

Based on microscopic observations, an impregnation model for the qualitative description 
of the consolidation behaviour was generated. It can be used to describe variations in void 
content over laminate thickness as a function of bundle geometry and combinations of 
processing parameters. The relationship between processing temperature, holding time, and 
applied pressure, required to reach full consolidation, were evaluated. 

Results of transverse flexure tests were used to correlate the mechanical properties with 
the impregnation quality. For each kind of material the optimum processing window for 
manufacturing of laminates could be suggested. 

1. Introduction 

Thermoplastic resins as matrix materials for advanced composite materials have many 
advantages over thermosetting composites. For example, their fracture toughness is very 
high compared to thermosetting resins, they do not require extra time for chemical reaction 
after processing, and there is no need for sub-zero temperature storage [1]. On the other hand, 
thermoplastics at their processing temperature have viscosities of 500-5000 Pa's compared to 
thermosets which possess values less than 100 Pa·s. The high viscosity imposes many 
problems in the manufacturing process of thermoplastic composites [2]. Along with poor 
dispersion of fibres in the thermoplastic matrices, the quality of impregnation has been one 
of the major concerns. 
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To make impregnation and consolidation easier, some intermediate material forms have 
been developed, such as powder impregnated fibre bundles and commingled yams [3,4]. 
These can be further consolidated into fully or partly impregnated, stiffer tapes, or directly 
processed into final part geometries during an on-line impregnation and consolidation 
process, e.g. by fllament winding or pUltrusion. 

The present study is intended to provide a deeper insight into the impregnation and 
consolidation behaviour of commingled yarns during a compression molding process. For 
this propose, a GF/PP and a CF/pEEK system were selected. An impregnation model was 
generated to describe the consolidation process. Both approaches will help to predict under 
which conditions of pressure, time and temperature the material forms result in perfect 
composite macrostructures and good mechanical performance of the parts made out of them. 

2 • Materials and Evaluations 

2.1 MATERIALS 

The GF/pP - commingled yam was supplied by Toyobo, Co. Japan. The yarn consisted of a 
50: 50 weight-% mixture of glass and polypropylene fibres. The melting peak, Tm, of the 
PP-polymer was determinated by DSC analysis as 162.90 C. In addition, CF/pEEK com­
mingled yarn supplied by BASF, Germany was studied (exact description "PEEKlAS4 3k 
RC40"). It was composed of a 60 : 40 weight-% mixture of carbon and PEEK fibres. The 
melting peak, T m, of the PEEK-polymer amounted to 3450 C (Table 1). 

TABLE 1. Properties of two commingled yarns studied 

Properties 

Weight of one bundle Wb 
Real fibre volume fraction V r* 
Assumed fibre volume fractions in fibre 
rich areas V f 
Fibre radius rf 

Density of reinforcing fibres Pf 

Density of matrix fibres Pm 

Theoretical density Pt 

Area of fully consolidated bundle Ab 

Area of matrix in a consolidated bundle AM 
Average width of a fibre bundle y 
Height of fibre bundle h 
Distance x 
Initial void content Xvo 
Kozeny-Carman constant ko 

GF/PP 

8.0 • 10-3 g/cm 
0.26 

0.05 
8.5 )lm 

2.56 g/cm3 

0.905 g/cm3 

1.337 g/cm3 

0.6 mm2 

0.44 mm2 

2000 )lm 
300 )lm 
55.5 Jlm 
15.6 % 
700 

CF/PEEK 

3.5 • 10-3 g/cm 
0.53 

0.53 
3.5 )lm 

1.78 g/cm3 

1.332 g/cm3 

1.569 g/cm3 

0.24 mm2 

0.11 mm2 
1250 Jlffi 
192 Jlffi 
22.5 Jlm 
10.5 % 
80 
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2.2 MANUFACfURING OF LAMINATES 

Each laminate contained 16 layers of unidirectional "prepreg" sheets, which were made by 
winding individual bundles onto an aluminum plate, with subsequent two lines welding of 
bundles at both ends of the plate. Consolidation of the laminates was performed by using a 
small steel mould with a square cavity and a laboratory hot press. Once the mould reached 
the desired temperature (185 °C-220 °C for GF/PP; 380 °C-420 °C for CF/PEEK), pressure 
was applied. Different impregnation pressures (0.5, l.5 and 3.0 MPa) and holding times (3, 
5, 10, and 20 min) were selected to identify the impregnation mechanisms as a function of 
processing conditions. The composite panels were cooled rapidly to room temperature in 
order to avoid formation of voids in the resin-rich areas during cooling [5]. The average 
cooling rate was about 30°C/min. 

2.3 VOID CONTENT 

Density measurements were carried out in order to correlate consolidation states with 
apparent void contents in relation to the processing conditions. The laminate density, PI, 
under different processing conditions was determined according to ASTM-792. The 
theoretical density, Pt, of a fully consolidated composite part could be estimated by the 
following equation: 

Pr· Pm 
Pt = 

W r • Pm + W m • Pr (1) 
where Pc and Pm are the densities and We and Wm the weight fractions of fibres and matrix, 
respectively. The apparent void content, Xv, was then determined by: 

Pt - PI 
Xv =-­

Pt (2) 
However, when a consolidated part with higher fibre volume fraction was obtained (due 

to a large matrix volume squeezed out of the processing mould, i.e. when PI>Pt), Xv was set 
to be zero. 

2.4 MECHANICAL CHARACTERIZATION 

Characterization of mechanical properties as a function of impregnation conditions was 
carried out by using a small transverse flexure (three point bending) testing facility. The 
length of the span amounted to 40 mm; the width and thickness of the specimens were 
about 10 mm and 3.3 mm, respectively. The cross-head speed was set to Imm/min. 
Transverse elastic constants and flexural strength were determined according to ASTM 
standard 0-790. 

3 • Consolidation of Laminates 

Based on microscopic observations and previously developed processing theories, an impreg­
nation model for the qualitative description of the consolidation behaviour in laminates made 
out of commingled yam was generated. By examining the consolidation process in each fibre 
bundle, it can be found that although there existed differences in the states of impregnation 
and compaction between each fibre bundle, the basic procedure was almost the same for each 
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of them. Hence, by assuming that all fibre bundles undergo impregnation simultaneously in 
a laminate and that all of them are identical in geometry, the consolidation of the entire 
laminate can be described by the inward impregnation in a representative single bundle. 

It was observed that the initially commingled polymer fibres and the reinforcing fibres 
became unmingled when non-uniform tension was applied, because of the mismatch in 
stiffness in the fibre direction (Figure 1). This may result in both a non-uniform distribution 
of fibres in the final composite part and in insufficient impregnation of the reinforcing fibres 
and therefore poor load transfer between them [6]. It can locally lead to a higher fibre volume 
fraction in the fibre rich areas (V f ), in comparison to the given fibre volume fraction (V f *). 

Reinforcing Fibres 

~ \ 000 
~O.Q. ."~OOOO 
~~t~:~ .{.eg~o 
O.o~ ~o 

Matrix Fibres 

flGURE 1. Separation of the different fibres due to streching 
of the fibre bundle in fibre direction 

For the impregnation model it was assumed that the cross-sectional shape is a rectangle. 
Figure 2 shows this acceptance. Now, the mechanism can be described by a kind of film 
stacking process. 

Matrix Fibres 

Reinforcing Fibres 

flGURE 2. Theoretical cross-sectio1Ul1 shape of a single commingled 
yarn bundle 

The processing time required for the consolidation can be evaluated by Darcy's equation. 
If it is assumed that the matrix impregnates the fibre network normal to the fibre axis, the 
rate of impregnation is given by 

dz Kp ~ --. 
• ~ ~ m 

where dp/dz is the pressure gradient, Jl is the melt viscosity, and Kp the permeability of the 
fibre tow. Once the local fibre volume fraction V f is known, the permeability can be 
estimated by the modified Carman-Kozeny equation [7,8,9]: 
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2 3 
rr (1- Vr) 

(4) 
where rf is the average radius of fibres and leo is the Carman-Kozeny constant. In this case, 
the value of ko will be determined during the evaluation of void content by fitting a set of 
selected experimental data. Assuming re, ~, ko and Ve are constant, the time to reach a 
penetration distance z is 

t = 
2 

2 
Vf 

r f • Pa 
(5) 

where Pa is the applied pressure. The penetration distance after a special time can then be 

3 
(1 - V r) 

expressed as: 
2 

rr • Pa 
z (t) = 

3 
(1- Vr) .-r: 

2 
Vr (6) 

The cross-sectional area, Ab, of a fully consolidated (i.e. void free) commingled yarn 
bundle can be obtained from the theoretical density, Ph and the weight of unit length bundle, 
Wb, according to 

Wb 
Ab = AM + A F = -p-­

t (7) 
This cross-sectional area was assumed to be the initial area of the reinforcing fibres before 

pressure was applied. The presumed area of the matrix, Am, could be calculated by 

(8) 
and was imagined as a layer above the reinforcing fibre layer. The reinforcing fibres were 
spread equal about the area Ab. Figure 3 shows this arrangement. 

:j AM 

Ab = AM+ A F 
lz 

'II t 

Y 
FIGURE 3. Thefilm sttu:king process in the impregnation model 

The distance "x" can be ascertained by the equation 
x = VM • h (9) 

which leads to a void content of the laminate before applying pressure of 

AM x·y X 

X VO = AM + A b = x· y + h· Y = x + h 
(10) 

This value refers to the share in the voids of the whole laminate. The cross-sectional area, 
Ab, is the area without voids. Hence, the area of the voids is as large as the area of the 
matrix. 
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Based on the idea of such a representative bundle, the impregnation and consolidation 
behaviour in a real composite laminate can be described. For example, if the total number of 
fibre bundles, N, in the laminate manufacturing can be identified, the current laminate 
thickness, H, can be evaluated from the following equation: 

N • Ab (1 + X v) 
H= =Ho·(l+Xv) 

B (11) 
where B is the width of the processing mould and Ho = N • AbIB is the thickness of the 
fully consolidated laminate. 

In reality the matrix fibres are not completely unmingled and seperated from the 
reinforcing fibres, so that the penetration distance "h" is shorter. Figure 4 shows the initial 
situation when only a part of the fibres is unmingled. 

x matrix fibres 

~ commingled fibres 

h I.z 
" 

reinforcing fibres 

... ~ 
y 

FIGURE 4.lnitilJl situaJion of the impregnation model 

Between the matrix layer and the layer with the reinforcing fibres is a layer with 
commingled matrix and reinforcing fibres. Hence the initial void content is lower, as well. 
Assuming three fourth of the matrix fibres are still commingled with the reinforcing fibres, 
this leads to a distance "x", of only 

x = 1/4 VM • b (12) 
Equations (5) - (12) provide relationships between void content, degree of impregnation 

and processing variables in the consolidation process, namely, viscosity as a function of 
temperature [jJ. = J.L(n], applied pressure, holding time and bundle geometry. To directly 
introduce the void content in equation (5), z has to be expressed in terms of the remaining 
void content: 

X 
z = b • (1- --Y­

XYO 

4 . Results and Discussion 

4.1 IMPREGNATION OF LAMINATES 

(13) 

The cross-sectional area, Ab, of a fully consolidated fibre bundle and the presumed area of the 
matrix, Am, were calculated with equation (7) and (8) and are listed in Table 1. The values of 
ko were determined during the evaluation of void content by fitting a set of selected experi­
mental data. Using the equations (3) and (4), the permeability of the fibre tow under different 
pressures can be estimated. Besides the applied pressure, the permeability also depends upon 
compaction of the fibre tow, i.e., it varies with the current fibre volume fraction during the 
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impregnation process [3]. This effect is, however, neglected in the present approach. 
The viscosity data of the polypropylene matrix were assumed to be the same as known 

from a comparable carbon fibre/polypropylene composite system [10]. The matrix viscosity, 
Jl, is almost constant at low shear rates and can be fit to an equation as follows [8]: 

Jl = 2.6.10.3• exp ( 5600 ) [pa· s] 
T [K] 

where T is the processing temperature, expressed in Kelvin degrees. 
With equation (15), the matrix viscosity, Jl, of PEEK can be calculated: 

(14) 

Jl = 1.13 • 10 .10. exp ( 19123 ) [Pa. s] 
T [K] . (15) 

The time to reach a laminate with a certain void content Xv can be calculated combining the 
equations (5) and (13): 

2 
rr • P. 

3 
(1- V r) 

Equation (11) calculates the resulting void content after a given time: 

3 
Pa (I-Vf ) t 

2 Jl ko 

r 
(1- ~ 

h Vf 
X (t) = X v vo 

(16) 

(17) 
The Carman-Kozeny constant leo was estimated by calculating the time to reach a fully or 

partly consolidated laminate, txv, at different processing conditions and comparing it with 
the actual results. For the glass fibre/polypropylene in this study leo amounted to leo = 700. 
For the carbon fibrelPEEK system it was determined as leo = 80. 

In the case of the GFIPP yam the fibre content in equations (16) and (17) is not the real 
fibre content of the yarn (V t*) but of an estimated loosely packing of glass fibres in the fibre 
rich areas and amounts to V f = 0.5. 
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Timet [min] 

20 

FIGURE 5. Void content as a/unction 0/ holding time (T = 185 0 C) for GFIPP - commingled yam 
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Next, the predicted void contents at different processing conditions were calculated. At 
ftrst, a conservative initial void fraction was estimated from equations (10) and (12) to be 
Xvo = 15%. For a temperature of 185°C this is a good assumption (Figure 5), but for higher 
tempemtures such as 200°C it is more realistic to assume a value of Xvo = 7% (Figures 6 
and 7). The model can well describe the trend of laminate consolidation, although there was 
signiftcant scatter in the void content measured. 

0.15 r---,....------;:==!:;:;::::;::;:;:::;;:::!;::;:;;;==:::::;-, 
• Calculation for 0.5 MPa 

Calculation for 1.5 MPa 
Calculation for 3 MPa 
0.5 MPa, expo 

>i 0.10 
C 
~ 
B 
:2 
~ 0.05 

j 

"T 
1.5 MPa, expo 
3 MPa,exp. 

0.00 L.-_--6=l.....--6oL....-.::"--_.....40 ....... __ .....;:.._L.-___ ---I 

o 10 
Timet [min] 

20 

FIGURE 6. Void content as a function of holding time (T = 200 0 C) for GFIPP - commingled 
yarn 
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FIGURE 7. Void content as afunction of holding time (T = 200°C) with corrected initiallloiJ 
content (GFIPP) 
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Figure 8 compares the predictions and the experimental measurements of the CF/PEEK 
system for a processing temperature of 380°C with Xvo = 10.5 %. It confirms that the basic 
trend of laminate consolidation is well characterized by the model used in these experiments. 
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FIGURE 8. Void content liS II function of holding time at three different levels of applied 
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t [min] 
FIGURE 9. Optimum processing window for commingled GFIPP fibres 

If the void content is set to be an indicative for the consolidation quality, the optimum 
processing window for manufacturing of laminates from commingled yam can be evaluated 
from equation (16), based on a critical level of void content of e.g. Xv = 5 % [5]. For the 
GF/PP system the impregnation time amounts to 
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( XV)2 ,~ 
t = 1--- 3.4910 -

Xvo P a (18) 
considering, in addition, that the initial void content differs with temperature (Xvo = 15 % at 
185°C and 7% at 200°C). Figure 9 illustrates, that on the left side of the curves the actual 
void content under the relevant processing conditions is still larger than 5%, whereas it is 
lower for pressure-time-conditions on the right. 
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FIGURE 10. Optimllm processing window for commingled CFtPEEKfibres 

20 

For the CF/PEEK system the relationship between temperature, applied temperature, and 
holding time to reach this desired level of void content can be expressed as: 

Xv 2 
t = (1--) 

~ 
1.2910' -

Xvo Pa 

This leads for Xvo = 10% to the processing window shown in Figure 10. 

4.2 RELATIONSIDP BETWEEN CONSOLIDATION AND MECHANICAL 
PROPERTIES 

4.2.1 Glass Fibres/Polypropylene 

(19) 

From the transverse flexure stress-strain curves it becomes obvious that the responses of 
consolidated composite parts highly depend upon the processing temperature. There clearly 
exists a yielding point and a yielding period in the stress-strain curve for the laminates 
consolidated at T = 185° C. However, at high processing temperature (T = 220° C) the 
yielding period is significantly decreased. With increase in applied pressure and holding time, 
the yielding point is gradually reduced to a deviation point in the linearity of the stress-strain 
curve. In addition, the ultimate stress value is clearly higher in the case of both high 
temperature and pressure consolidation. 
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Figure 11 and 12 illustrate the effects of void content on the ultimate transverse flexure 
stress and the transverse elastic modulus, respectively. In both cases the mechanical proper­
ties get reduced with increasing amount of voids in the laminates. Due to difficulties in 
flexural testing of the rather small samples, only the trends are given, i.e. the absolute 
values were normalized to the average value measured for 5% void content 
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4.2.2 Carbon FibreslPolyetheretherketone 
Although the transverse flexure stress-strain curves of CF/pEEK looked slightly different 
from those of the GF/PP samples, the same trends with regard to the effects of processing 
parameters on mechanical properties were revealed (Figure 13 and 14). 
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s. Conclusions 

The impregnation and consolidation mechanisms in composites made out of commingled 
GFIPP and CFIPEEK fibre bundles were investigated. The consolidation process of this 
kind of material differs from other material forms because of the distribution of fibres and 
matrix in the unconsolidated states. A model has been developed to qualitatively describe the 
impregnation process during consolidation. Combined with the permeability model, this 
model predicts the current void content and laminate thickness etc. as a function of bundle 
geometry and processing variables (temperature, applied pressure and holding time). Good 
correlations with the experimental data indicate the success of this approach. Based on a 
desired, minimum level of void content (e.g. Xv = 5%) in the laminates, optimum 
processing windows for manufacturing of composite parts from these materials are 
suggested. In practice, the present results will give important ideas to the user about how to 
optimize the manufacturing process, for example in case of laminate manufacturing, in order 
to obtain optimum structure-property relationships. 
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Experimental and numerical results are presented on the transverse stress-strain response of 
composite systems depending on the applied load direction. Coupon specimens of 6061-TO 
aluminum alloy with square array of circular holes (hollow and with steel filament reinforcement) 
were used to simulate an ideal regular composite system. A different load direction was obtained 
by a rotation of the pattern of holes with respect to the longitudinal axis of the coupon sample. 
Numerical results were obtained by FEM analysis on unit cells. A change in the load direction 
results in the different unit cell to be used. The numerical results show a fair agreement with 
experimental data The results of the perforated and reinforced periodic systems indicate the same 
trend in load direction dependency. This dependency is also affected by the presence of simulated 
voids. The effect of void pattern has a significant effect on the stress at failure. The variation in 
the failure stress due to change in load direction was also evaluated by preliminary macroscopic 
analysis which takes into account the observed failure modes. 

1. Introduction 

The deformation characteristics of continuous fiber-reinforced composites depend, in general, on the 
constituent phases as well as concentration and arrangement of the fibers. However, when the 
composite is loaded in the reinforcement direction the fiber arrangement does not affect significantly 
the overall material stress-strain response. In contrast, when the load is applied transversely the fiber 
arrangement may have a primary effect on the transverse behaviour. Traditionally, this behaviour 
is predicted based on a unit cell modelling by assuming perfect periodicity of the fiber arrangement 
[e.g. see 1-4]. A two-dimensional view of three commonly used periodic arrangements of circular 
fibers are: square edge-packing, square diagonal-packing and triangle-packing. These are shown 
schematically in Fig. I, where the dashed lines represent a unit cell. For the edge- (or diagonal-) 
packing and triangle-packing systems, the fibers are located in a square and a regular hexagonal 
array, respectively. In the square array arrangement, the distance between neighbouring fibers is not 
constant in the sense that the distance along the edge is different from that along the diagonal of the 
square. Therefore, this results in a significant direction-dependent behaviour of the square array 
morphology for transverse loading. Numerical results for composites [4] and experimental data for 
perforated materials [5] indicate that the square edge-packing system is the strongest whereas the 
square diagonal-packing is the softest one. The third system, i.e. the triangle-packing, exhibits the 
response which is somewhere between the above mentioned two arrangements. 
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Fig. 1 A two-dimensional view of the different fiber arrangements 
(a) square edge-packing, (b) square diagonal-packing, (c) triangle-packing 

In general, for a specific periodic morphology the overall (macroscopic) transverse behaviour 
is direction-dependent. This dependency may also be manifested in different failure modes. Thus, 
there is a coupling between morphology and loading direction in the transverse behaviour of the 
unidirectional composite materials. However, this coupling effect is difficult to investigate 
experimentally for real composites due to variability of the fiber arrangements [6,7]. 

The objective of this wode is to study experimentally the transverse behaviour of regular 
composite systems depending on the applied load direction. Coupon specimens of 6061-TO 
aluminum alloy with square array of circular holes (hollow and reinforced) were used to simulate 
an ideal composite system. In addition, the effect of two different void arrangements on the overall 
response was considered, in which the voids were simulated as holes without reinforcement. 
Experimentally recorded stress-strain responses for perforated and reinforced systems are compared 
with the results obtained by FEM analysis of unit cells. 

2. Experimental and Numerical Approach 

2.1 MATERIAL AND SPECIMENS 

6061 aluminum alloy coupon specimens having a thickness of 3.175 mm with a width of 12.7 mm 
and a testing length of 50.8 mm were used in this investigation. A square array of holes, as depicted 
in Fig. 2, with a diameter d .. 0.985 mm and a pitch a = 1.25 mm were drilled in the testing section 
of the sample. An angle a, shown in Fig. 2, specifies the inclination of the array pattern with 
respect to the longitudinal axis of the specimen. The specimens with a = 0°, 26.6° and 45° were 
fabricated, as shown in Fig. 3. A change in the inclination angle a, results in a different unit cell. 
The corresponding unit cells are depicted in Fig. 2 by dashed lines. Note that for a = 0° and 45° 
one gets the square edge-packing and diagonal-packing systems, respectively. A high strength steel 
filament with a diameter dr = 0.99 mm was used as the reinforcement material. The volume fraction 
of the filaments (fibers) was 0.47, which is a typical concentration for metal-matrix composites [6]. 
The tests were carried out on both types of specimens, i.e. unreinforced (perforated) and reinforced. 
Before testing all specimens (perforated and reinforced) were heat treated to obtain a fully annealed, 
TO, condition for the 6061 aluminum alloy matrix. 

The mechanical properties of 6061-TO matrix and the steel wire were obtained from tensile 
tests and are summarized in Table 1. Both materials, i.e. reinforcement and matrix, were assumed 
to be isotropic. 
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Table 1 Mechanical Properties 

Material Young's Modulus Poisson's Ratio Yield Strength Strain Hardening 
E(GPa) 

6061-TO Alloy 69 
(fully annealed) 

High Strength 203 
Steel Wire 

(a) From ref. [6], (b) estimated. 

-jar- d 
to 0 0/0 o 0 

TO 0 0 0 0 o 0 

p<= 
0 o 0 0 0 o 0 

r-' o 0 01010 o 0 

o 0 o 0 000 

o 0 0 0 000 

o 0 0 0 0 0 0 

a = 0° 

=>p 

a) Square edge-packing 

v 

0.33(a) 

0.3(b) 

o 0 000 000 

o 0 

o 0 

b) Square screw-packing 

00.2 (MPa) Exponent, n 

43.5 0.333 

1725 0.111 

o 0 

o 0 

o 0 

o 0 

c) Square diagonal 
-packing 

Fig. 2 Various orientations of coupon specimens relative to lattice direction for square 
array pattern 

Fig. 3 Coupon specimens with various orientations of the lattice directions 

The effect of void arrangement on the overall response of composite systems was also 
investigated in the case of transverse loading. For each angle a = 0°, 26.6° and 45°, two types of 
void arrangements were included, viz. square-pattern (S-P) and rhomboidal pattern (R-P), as shown 
in Fig. 4. The voids were simulated as holes without reinforcement. The ratio of voids to fibers 
was 25:75. 
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Fig. 4 Arrangements of voids 
(a) square-pattern (S-P), (b) rhomboidal-pattern (R-P) 

2.2 TESTING PROCEDURE 

All tests were carried out on an MTS servo-controlled system using ramp function for displacement. 
The displacement was measured by a clip-on 25.4 mm gauge length extensometer and converted to 
engineering strain. In the analysis two types of engineering stresses are used, a gross stress, S, and 
a net stress, cr, based on gross and net cross-section, respectively. An IBM PC computer was 
employed to provide a command signal. The data were recorded using both the IBM PC and an X-Y 
plotter. 

2.3 NUMERICAL MODELLING 

The numerical prediction of the stress-strain response of the perforated and reinforced systems was 
performed using a finite element code, ANSYS 5.0. A three-dimensional (3-D) unit cell with a 
circular fiber (or hole) was modelled for the three arrangements: square edge-packing (Fig. 2a), 
square screw-packing (Fig. 2b), and square diagonal-packing (Fig. 2c). Note that an appropriate unit 
cell selection (shown in Fig. 2) depends on the mutual orientation of the lattice with respect to the 
load direction which is specified by the angle n. For the square edge- (or diagonal-) packing 
system, due to symmetry, only one-fourth of the unit cell has to be considered in modelling. A 
finite element mesh in the transverse plane is shown in Fig. 5. The mesh was created using ANSYS 
mesh-generation program. In the direction of fiber/hole, only one layer of elements with unit 
thickness was modelled. For the composite with fibers, it is assumed that the fiber/matrix interfaces 
are debonded but contact each other. 3-D point to surface contact elements were used to model such 
interface conditions. 

The FEM analysis was performed assuming generalized plane strain condition, i.e. boundary 
conditions prescribed for the unit cell satisfied the requirement that the right parallelepiped shape 
of the unit cell remains a right parallelepiped during deformation. The above boundary condition 
does not strictly apply to the square screw-packing arrangement because the edges of the unit cell 
need not necessarily remain straight during deformation. However, the straight edge assumption is 
an acceptable approximation for small macroscopic strains (up to 1 %) considered in the numerical 
analysis. TIle validity of the above approximation has been checked experimentally using the 
perforated specimen. Before starting the test corresponding edge lines for the square screw-packing 
arrangement were marked on the sample. It was observed that these lines remained approximately 
straight for large macroscopic strains (2-3 percent). 
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(a) mmEE~ 

(c) 

Fig. 5 A two-dimensional view of the finite element discretization 
(a) square edge-packing, (b) square diagonal-packing, (c) square screw-packing 

The overall (macroscopic) stress-strain curves for transversely loaded composite systems were 
calculated based on the properties of the constituent materials given in Table 1. In the plastic regime 
the incremental (J2 flow) theory of plasticity with kinematic hardening was used. 

3. Results 

3.1 OVERALL STRESS-STRAIN RESPONSE 

Figures 6a and 6b show the experimental results in tenns of gross stress, S, versus overall strain, E, 
for perforated (no fibers) and reinforced (no voids) materials systems, respectively. It is clear that 
the overall (macroscopic) stress-strain behaviour depends on the angle IX specifying the orientation 
of the pattern with respect to the applied load direction. Both systems, i.e. perforated and reinforced, 
show the same trend in direction-dependent behaviour. The results indicate that the response for IX 

= 0 is the strongest, whereas for IX = 45 is the softest. The third system with IX = 26.6° exhibits a 
response which is somewhere between the fonner two. The results obtained by FEM analysis are 
also depicted in Fig. 6 by dashed lines. A fairly good agreement between experiments and numerical 
analysis is observed, especially for the perforated systems. Further experimental results concerning 
the macroscopic transverse stress-strain behaviour, including an arrangement with voids, are shown 
in Fig. 7. The influence of void arrangement for each investigated angle IX can be seen in this 
figure. The results indicate that material with voids arranged in the square-pattern (S-P) exhibit 
lower strain hardening than that with the rhomboidal-pattern (R-P). Consequently, for a given IX 

lower stress at failure was recorded for the material with S-R void pattern in comparison to that of 
R-P. 
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Fig. 6 Overall transverse stress-strain curves for 
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Fig. 7 Overall transverse stress-strain curves of composite systems for various loading directions 
(a) a = 0°, (b) a = 26.6°, (c) a = 45° 

3.2 MACROSCOPIC FAILURE MODES 

Macroscopic failure modes and the corresponding stress and strain at failure were also investigated. 
Figure 8a presents the failure modes observed for the perforated (no fibers) material systems. It is 
seen that the failure modes are influenced by the orientation angle a i.e. a separation mode for 
a = 0°, a slip mode for a = 45°, and a combined separation and slip made for a = 26.6°. Similar 
failure modes (with respect to angle a) were observed for other material systems, i.e. reinforced (no 
void) and reinforced with voids arranged in the square- or rhomboidal-pattern. Figure 8b shows the 
recorded values of the macroscopic strain and gross stress at failure for perforated material 
(designated as Err and Sfp' respectively) versus the orientation angle a. The results indicate that the 
gross stress at faIlure, Srp' decreases with increasing angle a. By contrast, the reverse trend is seen 
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with respect to the macroscopic strain at failure, I'fp' i.e. ductility increases with the increasing (l. 

The gross failure stresses, Sc' for the other three material systems, i.e. reinforced (no voids) and that 
with square and rhomboidal voids pattern, were normalized with respect to the failure stress for the 
perforated material, Scp' and the results are shown in Fig. 8c. For (l = 0 and 26.6°, all three 
normalized failure stresses, ScfScp' are less than 1, i.e. these material systems are weaker than 
perforated ones. In contrast, for (l = 45°, except for the material with square-pattern of voids, the 
normalized stresses are higher than 1. It is seen in Fig. 8c that the voids arranged in the square­
pattern have a more detrimental effect on the stress at failure in comparison to that of the 
rhomboidal-pattern. In general, the overall stress at failure depends on both applied stress direction 
and material systems (perforated, reinforced and void contents and pattern). 
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Fig. 8 Macroscopic (a) failure modes, (b) strain and gross stress at failure for perforated 
system, and (c) normalized gross stress at failure versus loading direction angle 

4. Macroscopic Analysis 

Using the failure modes, shown in Fig. 8a, the net stress at failure, 0fa' is calculated from 

(1) 

where PCa is the load at failure for a given angle (l and ~et is the net cross-section of the 
corresponding failure plane. The variation of the normalized net stress at failure, defined as 0Ca 

divided by 0co (for (l = 0), versus the orientation angle (l is shown in Fig. 9. The significant drop 
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in the normalized net stress at failure, 0fr/0fO' is observed with the increasing angle a. To indicate 
a possible explanation for this variation, a preliminary macroscopic analysis is conducted. It is noted 
that at large plastic strains, the stress-strain relation for fully annealed matrix material shows 
relatively low strain hardening. At failure, the specimen cross-section is fully yielded which 
indicates that an elastic-perfectly plastic material model can be assumed. Therefore, this implies that 
the stress concentrations due to the hole/fiber can be neglected when calculating macroscopic stresses 
at failure. 

<ifa 
<ifO 
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o 10 20 30 40 
a (deg) 

Fig. 9 Comparison of experimental and analytical 
net stresses at failure for different 
composite systems 

Let us define the equivalent failure stress, crf' 

(2) 

where Of and 'tf are the normal and shear stress components on the fracture plane. Equation (2) with 
J3 = 3 or 4 reduces to von Mises or Tresca equivalent stress, respectively. Using relations for Of = 
0fa cosa and 'tf = 0fa sina, eq. (2) yields 

(3) 
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Noting that for <X = 0°, crr = oro' the above relation can be written as 

(4) 

Equation (4) describes the variation of the nonnalized net stress at failure depending on the angle 
<X. The predictions of eq. (4) with ~ = 3 and 4 are depicted in Fig. 9. It is seen that the observed 
experimental variations of the failure stress with the angle <X can be predicted using this preliminary 
macroscopic analysis. A more accurate prediction will require a detailed microscopic analysis and 
will be reported at a later date. 

5. Conclusion 

For regular composite systems, the transverse stress-strain response depends on the applied load 
direction relative to the arrangement pattern. A different load direction was obtained by a rotation 
of the periodic morphology with respect to longitudinal axis of the coupon specimen. A change in 
load direction results in the different unit cell to be used in an FEM analysis. The results for the 
perforated (no fibers) and reinforced (no voids) systems indicate the same trend for the load direction 
dependency. This dependency is altered by the introduction of simulated voids to the material. The 
effect of void pattern is not very significant at low stresses, but becomes more apparent at failure. 
The square-pattern of voids exhibits a more detrimental effect on the stress at failure than the 
rhomboidal-pattern. The variation of the failure stress was evaluated using a preliminary 
macroscopic analysis which takes into account the observed failure modes. The coupling effect 
between morphology of the fiber arrangement as well as void pattern relative to transversely applied 
load requires further investigation using a more detailed micromechanical analysis. 

Acknowledgement 

This work was supported, in part, by the Natural Sciences and Engineering Research Council of 
Canada. 

References 

[l] Hashin, Z. (1983) Analysis of composite materials - A survey, ASME Trans. 1. Appl. Mech. 
50,481-505. 

[2] Aboudi, J. (1987) Closed fonn constitutive equations for metal matrix composites, Int. 1. 
Engng. Sci. 25, 1229-1240. 

[3] Teply, lL. and Dvorak, G. (1988) Bounds on overall instantaneous properties of elastic­
plastic composites, 1. Mech. Phys. Solids 36, 29-58. 

[4] Brockenbrough, lR., Suresh, S. and Wienecke, H.A. (1991) Defonnation of metal-matrix 
composites with continuous fibers: geometrical effects of fiber distribution and shape, Acta 
Metall. Mater. 39, 735-752. 



213 

[5] Litewka, A. and Sawczuk, A. (1982) On a continuum approach to plastic anisotropy of 
perforated materials, in: J.P. Boehler (ed.), Mechanical Behaviour of Anisotropic Solids, 
Martinus Nijhoff, The Hague, 803-817. 

[6] Backer, W., Pindera, M-J. and Herakovich, C.T. (1987) Mechanical response of 
unidirectional boron/aluminum under combined loading, Report CCMS-87-06 (VPI-E-87-17), 
VPI and SU, Blacksburg, V A. 

[7] Pyrz, R. (1992) Stereo logical quantification of the microstructure morphology for composite 
materials, in: P. Peterson (ed.), Optimal Design with Advanced Materials, Elsevier, 
Amsterdam, 81-95. 



BOUNDS FOR OVERALL NONLINEAR ELASTIC OR VISCOPLASTIC PRO­
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ABSTRACf: For a sample of a general heterogeneous nonlinearly elastic material, it is 
shown that, among all consistent boundary data which yield the same overall average 
strain (stress), the strain (stress) field produced by uniform boundary tractions (linear 
boundary displacements), renders the elastic strain (complementary strain) energy an 
absolute minimum. Similar results are obtained when the material of the composite is 
viscoplastic. Based on these results, universal bounds are presented for the overall 
potentials of a general, possibly finite-sized, sample of heterogeneous materials with 
arbitrary microstructures, subjected to any consistent boundary data with a common 
prescribed average strain (strain-rate) or stress. Statistical homogeneity and isotropy 
are neither required nor excluded. 

1. Introduction 

Composites consisting of nonlinearly elastic or nonlinearly viscoplastic constituents 
are considered. The strain (strain-rate) is denoted by E(X), where x measures position 
within the composite of volume V, bounded by av. The corresponding stress field is 
denoted by G(x). It is further assumed that the constituent material admits stress and 
strain (strain-rate) potentials, <I>(x ,E) and 'I'(x ,G), such that, at each point x in V, 

G = a<l>/aE, E = d'!'/aG, (l.1a,b) 

respectively. These potentials are related by a Legendre transformation, 
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where : denotes a double contradiction. 
Define the overall stress and strain (strain-rate) potentials by the unweighted volume 

average of <I> and'll, respectively, i.e., set 

<1>=<<1»= ~1<1>dV, 

'¥ = <'II> = ~ I'll dV , (1.2a,b) 

and seek to develop computable bounds for these potentials, for any consistent boun­
dary data which may be prescribed on av. 

2. Averaging Theorems 

Among all possible boundary data that may be prescribed on av, the uniform­
traction and the linear-displacement boundary data are of special consideration. Let E 
and 1: be given constant strain (strain-rate) and stress tensors. The linear-displacement 
boundary data are then defined by 

u =x . E on av, 
and the uniform-traction boundary data are given by 

t =n·a=n·1: on av, 

(2.la) 

(2.lb) 

where u is the displacement field and n is the unit exterior normal to aV. These boun­
dary data are, in general, mutually exclusive, although, under restrictive circumstances 
they may coexist. When the boundary data are given by (2.la), then it follows that 
(Hill, 1963) 

"£E = <e> = ~1e(x; E)dV = E, (2.2a) 

where e = e(x; E) is the strain (strain-rate) field. Denote the corresponding stress field 
by a = a(x ; E) and set 

(jE = < a> = ~ ~ a(x ; E) dV. (2.3a) 

The overall stress potential is then denoted by cI>E (E) = <<I>(x ,e(x; E »>. It is easy to 
show that (Nemat-Nasser and Hori, 1990, 1993) 

(jE = acI>E (E )/aE. (2.4a) 

Similarly, when the boundary data are given by (2.1b), the average stress becomes 

(jI: = <a> = ~ 1 a(x; 1:) dV = 1:, (2.2b) 

where a = a(x; 1:) is the stress field in V. The corresponding strain (strain-rate) is 
denoted by e = e(x ; 1:), and its average is given by 

"£I: = <e> = ~ ~ E(X; 1:) dV. (2.3b) 
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The overall strain (strain-rate) potential then becomes ,¥:E(E) = <'!'(x; O'(x; E»>. It 
can then be shown that 

(2Ab) 

see Nemat-Nasser and Hori (1990,1993). 
In addition to the boundary data (2.1a,b), consider any general (but consistent) boun­

dary data, and denote the corresponding strain (strain-rate), stress, and the associated 
potentials, respectively, by £G = £G (x), aG = O'G (x), cj>G (x), and vG (x). Then, the 
overall average quantities are, £G, oG, q,G, and ,¥G, respectively. These are obtained 
by simple volume averaging. The aim is to obtain computable bounds for q,G and ,¥G . 
This is done under the assumption that cj>(x; £) and '!'(x; 0') are convex functions of £ 

and 0', respectively. Hence, for any two strain (strain-rate) fields £(1) and £(2), and any 
two stress fields, 0'(1) and 0<2), it follows that 

cj>(x; £(1) - cj>(x; £(2» ~ (£(1) - £(2» : 0<2), (2.5a) 

and 

(2.5b) 

respectively. 
Further results are obtained for restricted boundary data, as discussed below. First 

note the following identity which holds for any divergence-free stress field 0', and any 
(related or unrelated) strain (strain-rate) field £ which is obtained from a suitably 
smooth displacement (velocity) field u: 

<O':£>-o:£=J...r (u -x .E). {n . (O'-o)}dS; (2.6a) 
vJav 

Hill (1963, 1967) and Mandel (1980). Then, for either linear-displacement (linear­
velocity) or uniform-traction boundary data, the right-hand side of (2.6a) vanishes, lead­
ing to 

<0: £> = 0 : £ (2.6b) 

There are other boundary data for which (2.6b) holds. Denote the stress and strain 
(strain-rate) fields of these special boundary data by as = as (x) and £s = Ff (x), 
respectively. The corresponding overall potentials are then denoted by cpS and ,¥s; 
here the superscript S stands for "special." 

3. Weakly Kinematically or Statically Admissible Fields 

A self-compatible strain (strain-rate) field in V, with a prescribed finite average 
value, is called weakly kinematically admissible. A self-equilibrating stress field in V, 
with a prescribed finite average value, is called weakly statically admissible. These 
fields need not satisfy any specific boundary data. The following general results are 
then obtained for nonlinearly elastic (viscoplastic) composites of any convex consti­
tuents; see Nemat-Nasser and Hori (1990, 1993) for details. 
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Theorem I: Among all weakly kinematically admissible strain (strain-rate) fields, that 
which corresponds to uniform boundary tractions renders the overall stress potential <1>, 
an absolute minimum, i.e., 

(3.1a) 

The proof follows directly from the convexity of the stress potential; take the volume 
integral of (2.Sa) and use (2.6) with (J(2) = (Jl:. The following corallary is an immediate 
consequence of the above theorem. 

Corollary I: Among all weakly kinematically admissible strain (strain-rate) fields with 
boundary data which satisfy (2.6b), those which correspond to uniform-traction and 
linear-displacement boundary data render the overall stress potential <I> an absolute 
minimum and an absolute maximum, respectively, i.e., 

<I>E ~ <t»S ~ <l>l: when"EE (= E) ="Es = El:. (3.2a) 

The proof, again, follows from (2.Sa) and the fact that the right-hand side of (2.6a) is 
identically zero for this class of boundary data. 

Similar results are obtained for the strain (strain-rate) potential. Hence the following 
general theorem and its corollary can be stated. 

Theorem II: Among all weakly statically admissible stress fields, that which 
corresponds to linear displacement (velocity) field, renders the overall strain (strain­
rate) potential 'P, an absolute minimum, i.e., 

'PG ~ 'PE when aG = aE . (3.1b) 

Corollary II: Among all weakly statically admissible stress fields with boundary data 
which satisfy (2.6b), those which correspond to linear-displacement (linear-velocity) 
and uniform-traction boundary data, render the overall strain (strain-rate) potential 'P an 
absolute minimum and an absolute maximum, respectively, i.e., 

(3.2b) 

As pointed out before, <I>E and 'Pl: are the overall stress and strain (strain-rate) poten­
tials, in the sense defined by (2.4a,b). In particular, for the special class of boundary 
data which satisfy (2.6b), it follows that 

as = a<t>S (d"Es , "Es = a'Ps laas , 'Ps + <t»S = as : "Es . (3.3a-c) 

4. Periodic Boundary Daia 

For periodically distributed inhomogeneities, V stands for a typical unit cell which 
may include any number of inhomogeneities with any desire distribution within the 
cell; e.g., the unit cell may even be isotropic in its overall average response. In the 
periodic case, the condition (2.6b) is always satisfied and hence results (3.1) and (3.3) 
are always valid; Nemat-Nasser and Hori (1993). 
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5. Calculation of Overall Potentials 

The calculation of the overall stress potential for an arbitrary heterogeneous solid is 
outlined here. The calculation of the strain (strain-rate) potential then follows similar 
steps. 

The calculation of the lower bound for <1»1: is based on the following general observa­
tion which is valid for any finite V. of any heterogeneity with pointwise convex 
material constituents; see (2.5). Suppose V 0 with boundary avo is totally contained in 
V. and 00 with boundary ano is totally contained in Vo. Assume the uniform stress t 
is prescribed in V - V o• while no is removed and instead. uniform tractions -n . aO are 
applied on the boundary ano. where n is the outward unit normal on ano. Calculate aO 

(constant) such that the average "cavity strain" £C equals the average strain ~ when 
uniform tractions n . aO are prescribed on ano of the isolated no. where 

£c == rio 1~ ~ (n ®u + u ®n)dS. (5.1) 

Note that the displacement field u is not continuous across avo. Denote the stress and 
strain fields in V by a(x) and e(x). respectively. and observe that 

{
:t in V - Vo 

a == a(x;:t) in V 0 - 00 
a(x ; 0-0). in no. 

(5.2a) 

where t and 0-0 are constant tensors. Also. whatever the composition of V - Vo. 
Vo - no. and no. and whatever the 0-0. the average stresses in V and 00 are given by 

(5.2b.c) 

respectively. where the subscripts V and no in the left-hand side of these equations 
denote the corresponding domain of averaging. Similarly. since avo is subjected to 
uniform tractions n . t. it also follows that 

(5.2d) 

The corresponding strain (strain-rate) field depends on the composition of the compo­
site. It is given by 

with the requirement that 

{
e(.x ; t) in V - V 0 

E == E(X; t) in V 0 - no 
e(x ; 0-0). in no. 

(5.3a) 

<e>~ = £c (5.3b) 

which then yields the required 0-0; here. £C is defined by (5.1). 
Now. let £(1) in (2.5a) be the strain (strain-rate) field in V. which is produced by uni­

form tractions n . 1: applied on av. Denote this strain field by £1: == £(x ; 1:); this is a 
compatible field. Let £(2) and a(2) in (2.5a) be the fields defined by (5.3) and (5.2). 
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respectively. While the strain (strain-rate) field (5.3) is not compatible, the stress field 
(5.2) is self-equilibrating everywhere within V. Hence, taking the volume average of 
(2.5a) over V, and noting (5.3b), obtain 

(5.4a) 

where 

<1>f == ~ L <I>(x ,E(X ; f» dV , (5.4b) 

and where the overall stresses, E and f, are not, in general, the same. The overall stress 
t must be adjusted such that the corresponding average strain (strain-rate) £ equals the 
average strain (strain-rate) w: which is produced by uniform tractions n . E applied on 
av of the original composite. 

From the above results it now follows that the given composite can be subdivided 
into a "matrix" M and a set of non-intersecting subregions, V IX' a = 1,2, ... , n, all 

n 
totally contained within V, where M = V - U V IX' Each V IX may contain its own set 

IX=1 

of inhomogeneities. In M, a uniform stress f is prescribed such that the final overall 
strain (strain-rate) £"1: is attained. Each V IX can now be treated in the manner discussed 
before, and the corresponding stress potential ci>f can then be computed, leading to a 
lower bound for <1>1:, and hence for <1>G. The poorest bound is obtained when a uniform 
stress t is assumed for the entire composite. This then leads to the lower bound associ­
ated with the Reuss model; Reuss (1929). Similarly, if a uniform strain (strain-rate) If 
is used for the entire composite, then the poorest bound for .pE is obtained. This 
corresponds to the Voigt model; Voigt (1889). All other bounds which may result from 
the procedure outlined in this work will be better than the Reuss and Voigt bounds. 

The method outlined in this work has been applied by Balendran and Nemat-Nasser 
(1994) to linear composites. The advantage of these bounds is that they are fmite for 
composites with cavities, rigid inclusions, or both cavities and rigid inclusions. The 
classical bounds obtained using methods which consider "comparison uniform solids" 
are generally zero and infinity when both cavities and rigid inclusions coexist. 
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Abstract. Anisotropic and inhomogeneous plastic flow are two basic deformation 

characteristics of fibrous composites. To include these effects into the constitutive 

relations. the scale invariance approach previously developed by the second author and 

his co-workers for finite plastic deformations of polycrystals is extended to composites. 

A rule of mixtures approach is then used to interpret the effect of fiber volume fraction. 

Finally, a strain gradient dependent flow stress is derived from self-consistent arguments 

to describe the heterogeneity of plastic flow in fibrous composites. 

I. Introduction 

Large deformation plasticity analyses are necessary for a comprehensive understanding 

of the deformation, instability and fracture behavior of composites. In particular, the 
issues of fiber anisotropy and heterogeneity development should be considered within a 

large deformation plasticity framework. Anisotropic effects were emphasized, for 

example, by Fares and Dvorak (1991) who indicated that the pronounced anisotropy of 

fibrous composites tends to magnify the effect of small rotations by causing relatively 

large changes in the resolved shear stress in the fiber direction. In this connection, non­

Schmid type yielding effects may also be important in modelling the overall behavior of 

composites as was illustrated by Qing and Bassani (1993) for the case of polycrystals. 

The issue of deformation heterogeneity is also extremely important for composites. 

Thus, even though the overall deformation may be small, the local deformation at regions 
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of microcrack nucleation and debounding are quite large. Moreover, patterning of 

deformation and cracking are routinely observed in composites and a gradient plasticity 

framework for considering such effects is required. 

In this paper, the scale invariance approach previously developed by Aifantis (1984, 

1987) and co-workers (Zbib and Aifantis 1988; Dafalias and Aifantis 1990; Shi et al. 
1990; Ning and Aifantis 1994) for plastic polycrystals is extended to the case of fibrous 

composites. The microscopic yield condition is now allowed to account for non-Schmid 

(matrix) and inherent (fiber) anisotropic effects and a modified maximization procedure 

is developed to connect micro to macro scales and determine the corresponding plastic 

spins. To evaluate the effect of the volume fraction of the fibers, a rule of mixtures 

procedure is employed. Finally, a strain gradient dependent theory based on self­

consistent arguments is formulated to describe heterogeneity development and 

deformation patterning in fibrous composites. 

2.Plastic Flow in Fibrous Composites 

In the scale invariance approach one starts from the microscopic configuration of a single 

slip system defined by two unit vectors (n, V) where n denotes the normal to the slip 

plane and V is in the slip direction. Then, the following basic equations hold for the 

plastic strain rate nP and the dislocation or back (internal) stress TD (see, for example, 

Aifantis 1987) 

(1) 

(2) 

where 0' is the Cauchy stress and TL is the lattice or effective stress. The parameters 

t and t are functions of the plastic strain history, commonly expressed in terms of the m n 
equivalent plastic strain f (I = J2tr (DPDP) ). The orientation tensors M and N 

are defined by 

1 
M = i(n®v+v®n), N = n®n. (3) 
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For a single family of inextensible fibers in an incompressible material, yielding is 

assumed to be independent not only on superimposed hydrostatic stress but also on 

superimposed tension in the fiber direction. The effective stress TL is thus decomposed 

into an effective reaction stress r and an effective extra-stress R (Spencer 1972) 

L 
T = r + R ; r = - pI + tA (4) 

Ll L L 1 L L 
R = T -itr(T -AT )I+itr(T -3AT )A, (5) 

where A = a ® a with a denoting the unit vector in the fiber direction. In this case, the 
microscopic yield condition reads 

't = tr (RM) = f (R, A, M, N, y) , (6) 

with the following simple form for f being adopted 

't = T\tr(HM) + 1C (yP) ; H = (RA + AR) 12. (7) 

To obtain a macroscopic counterpart of the slip system (n, V), we postulate that 

macroscopic plastic flow occurs in the direction where the plastic work rate 

wP = tr (RDP) is maximized (Aifantis 1984) subject to the constraints, trM = 0, 

trM2 = 112, trNM = 0, trN = 1, and the yield condition (7). This maximization 

procedure gives (Ning and Aifantis 1994-95) 

1 1 
M = 21.. {R-2A.3P}; P = i(R-T\H), 

2 
(8) 

where A.2 = J (2I2JR - I~) / (212 -tl) and A.3 = (11 -lCA.2) 1212 , The invariant 

quantities 11' 12 and JR are defined as JR = tr (RR) 12, 11 = tr (RP) , and 

12 = tr (PP) . 

Substitution of (8) into (7) gives 
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Mulhern, Rogers and Spencer (1967) proposed the following phenomenological yield 

condition 

2 2 
atr(R) +ptr(AR) -1 = 0, (10) 

which does not contain the effect of the third term in equation (9) derived on microscopic 
grounds by considering non-Schmid effects due to the presence of the fibers. 

Experimental data for the variation of tensile stress with fiber orientation are shown 

in Figure 1, in relation with the predictions of yield conditions (9) and (10). In the 

calculation,thevaluesoftheparametersKandTl weretakenasK = 6 (ksi) ,TI = 0.6. 
The predictions of the present approach are in excellent agreement with the 

corresponding experimental data and an improvement over those of the 

phenomenological yield condition (10). 

From (1) and (8), the corresponding plastic flow rule reads 

p f 
D = 2'" {R - 2"'3 P} , 

2 
(11) 

f = 2tr d'~M) I {h + TI'tr (UM)} , (12) 

where h = dK/d.f and TI' = dTl/d.f . The corotational mte P is defined in terms of 
the corresponding vorticity W and the plastic spin WP by 

~ = P-coP+Pco; co = W-WP, (13) 

as it will be discussed in detail in the next section. 

It is interesting to consider a simple J2 - type flow model. If 11 = 0, the flow rule 
(11) becomes 

(14) 

and the yield condition reads 

(15) 

It then turns out from (5) that 

(16) 
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A widely used yield condition (Hill 1948) for transversely isotropic materials can be 
cast in the fonn (Dafalias 1987) 

(F+2B)tr(TL'TL') +2(C-F-2B)tr (TL'2 A) + (5F+B-C)tr2(TL'A) = 1C2 ,(17) 

It follows that our microscopically derived yield condition (16) is identical to Hill's 
phenomenological yield condition (17) when 

F = 0, B = 114, C = 112, 

If the coordinate x 1 is along the direction of the fibers, (16) can be written as 

which, in the case of plane stress defonnation, gives 

!(TL)2+ (TL)2_1C2 - o· 4 22 12 -, 

(18) 

(19) 

(20) 

this being the surface of a cylinder with an elliptic cross section with Th along its axis 
in the stress space. Comparison of the above results with phenomenological approaches 
(Oaf alias 1987, Fares and Dvorak 1991) indicates that there are no unidentified 
parameters in the present micromechanics approach. 

3.Plastic Spin of Fibrous Composites 

In a complete finite defonnation plasticity framework, constitutive relations must be 
provided not only for the stretching part of the defonnation rate but also for the rate of 
rotation or plastic spin. In the representative single slip system, the exact microscopic 
expression for the plastic spin is given by the relation 

wP = fo.; 0. = ~(v®n-n®v), (21) 

with the orientation tensor 0. satisfying the conditions tr (0.) = 0 and 
tr (02) = -1/2. It is noted that, the plastic spin does not enter into the expression for 
the plastic work rate which was maximized in the previous section to reduce the 
macroscopic counterpart of the orientation tensor M and therefore the stretching tensor 
DP . It enters, however, the expression for the second order plastic work rate which has 
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already been introduced by Hill (1968) and co-workers (Hill and Ricel972, Havner 

1978) to discuss stability and uniqueness of plastic deformation. Motivated by the 

maximization procedure of the previous section for the plastic work rate, a similar 
maximization procedure for the second plastic work rate is developed to specify the 
macroscopic counterpart of the plastic spin by defining the corresponding Lagrangean 

L = tr (Snp) -I, tril -12( tril2 + D, (22) 

with 1,.2 denoting Lagrange multipliers. It turns out that 

with 

to) = J-2tr (SM - MS) 2 = J-2tr { (TLM - MTL) + (TDM - MTD) } 2. (24) 

In view of the microscopic equation for the back stress and the scale invariance 
argument, (23) can be specified further to provide definite expressions for the plastic 
spin. For example, in the case of isotropic/kinematic hardening materials with no 
reinforcement (A == 0), (I), (8) and (23) give 

wP = -t (TDnP - nPTD) , 
n 

(25) 

which is, indeed, the same expression as the one derived earlier by a simple scale 
invariance argument (Aifantis 1984, 1987). 

In the present case of fiber-reinforced composites, (8) with (A #. 0) should be used in 
connection with (1) and (23) to obtain the appropriate expression for Wp. This 

expression reads 

wP = CPt (TDS - STD) + CPz (SA - AS) + CP3 (S2 A - AS2) 

+ CP3 (ATDS - STDA) + CP3 (TDAS - SATD) + CP4 (SA 2 - A2S) , (26) 

where CPi are specific functions of the invariants of trTL and tr (A TL ) of the following 
form 
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1 L L 1 L L 
Rl = 2{tr(T ) -tr(AT)} ; R2 = 2{tr(T) -3tr(AT )}. 

It is noted that this expression includes terms due to deformation induced anisotropy, 
inherent anisotropy, and their interaction. In the case of transversely isotropic 

deformation with no back stress effects, we have 

which is the same expression obtained through representation theorems (Oaf alias 1985), 

but with the phenomenological coefficients (CP2' CP3' CP4) being now completely 
specified. 

In the case of J2 type plastic flow (1'\ = 0), equation (26) reduces to 

wP = CP2(SA-AS) , (28) 

which is similar to that given by Aravas and Aifantis (1991); [see also Zbib and Aifantis 
(1988)]. 

To interpret directly the effect of fiber volume fraction, it is not unreasonable to 

incorporate a rule of mixtures type of approach into the above continuum formulation. 

Generally, a composite may be regarded as a material made up by two phases: the matrix 

phase and the fiber phase. During deformation, plastic flow mainly occurs in the matrix 

phase. By extending the rule of mixtures argument to both stretching and rotating parts 

of deformation, we have 

(29) 

where D and W denote the total stretching and vorticity of the composite, while 

(Df' Wf) and (Dm, W m) denote respectively the corresponding stretching and 

vorticity of the fiber and matrix phases. The parameters V f and V m denote the volume 

fractions of the fibers and the matrix (Vf + V m = 1). To proceed further we adopt 

simplifying assumptions for W~ and WI' in order to illustrate the effect of the fiber 

volume fraction. Based on the scale invariance approach (Aifantis 1987), the plastic 
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spin associated with the matrix phase is given by 

Wp = -'!'(TDDP - DPTD) m m m • 
tn 

(30) 

In the fiber phase, the plastic deformation is negligible and the plastic spin Wp may be 
assumed (Zbib and Aifantis 1988, Aravas and Aifantis 1991) to be given by the 
expression 

(31) 

Next, we define the "effective material spin" tensor C1) by the relation 

p 
C1) = W - Weff' (32) 

with the "effective plastic spin" tensor given by 

It is noted that equation (33) is a special case of equation (26). Figure 2 shows clearly 
that a remarkable difference exists between the anisotropy induced by plastic flow and 
the anisotropy due to fiber orientation. Moreover, the evolution of the plastic spin is 
quite sensitive to the volume fraction of the fibers. In the early stages of small to 
moderate strains, the direction of fibers has a strong effect on the evolution of plastic 
spin. However, the evolution of plastic spin is dominated by the anisotropy induced by 
the plastic flow at stages of large deformation (Ning and Aifantis 1993). 

4. Inhomogeneous Deformation of Fibrous Composites 

Because of the existence of fibers, the local deformation in composites is highly 
inhomogeneous. In order to describe heterogeneity and deformation patterning in 
composites, the strain gradient approach as developed by Aifantis (1984, 1987) and co­
workers (Zbib and Aifantis 1989; Muhlhaus and Aifantis 1991; Vardoulakis and 
Aifantis 1991) is employed by utilizing the self-consistent framework (Eshelby 1956, 
Kroner 1958). 

The self-consistent stress-strain relations for fibrous composites can be written as 

(34) 

T 
where (f and eP are the overall stress and plastic strain with ec = Ie:, e;, ye} = 

Q-1cr = Q-l {crx' cry' t} T denoting the local stress-strain elastic relation in two 
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dimensions and Q being the stiffness matrix. The tensor S' is given by the relation 

S' = T-IST, where S is the Eshelby tensor and the coordinate transformation 

(orthogonal tensor) T reads 

T= 
sin29 

cos 9 

sin 9 cos 9 

sin 29 ] 
-sin29 

cos2 9 - sin2 9 

with the angle 9 denoting the orientation of the fibers with respect to axis Xl = x. 

It then follows that 

where AeP = eP - eP . 

In the case of simple shear, (36) reads 

where ~ = Q33 (1- 2S'33) . 

(35) 

(36) 

(37) 

Next, we note that the actual plastic shear strain yP is related to the "shear strain" 
ypz in the direction normal to the fibers by the equation 

1 
yP= 2 2 yPz, 

cos 0- sin 0 
(38) 

where the coordinate Xl = X is in the direction of fibers. In the plane normal to the 
fiber, we may calculate the average shear strain in a characteristic volume element 
through the expression 

R21t 

'Yfz = 'Yfz + 1t~2J J [ai'Yfzni + ~aii 'YfZninj) + .. } drd9 ='Yfz + ~2V2'Yfz' (39) 

o 0 

where R = R f is the spacing between fibers, ni denotes the outward unit normal of the 

circle r = R f , and V2 = a2 lax? since there is no strain variation (inextensibility 

assumption) along the fibers. It then turns out that 
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(40) 

where 

(41) 

Substitution of (40) into (37) gives 

(42) 

with 

(43) 

(l-v )E + (l-v )E 2 2 
A = { 12 2 21 I _ 2G12} sin Ocos 0, 

I-V12V21 
(44) 

dt -2 h = -; V = n· VV . n, 
dyP 

(45) 

where n denotes the unite vector normal to the fibers, Vo is the Poisson's ratio of the 
matrix, and the parameters (El' E2, °12, V 12' V21 ) are the overall elastic constants. 

It is seen that the gradient effect is directly related to the orientation of the fibers. It is 
also easy to prove the directional gradient operator v2 is an objective operator (see also 
Oka and Aifantis 1993). Moreover the equation (42) suggests that the orientation of 
shear bands in fibrous composites is directly dependent on the directional part of the 
flow stress. The effect of the fiber direction on the strain gradient coefficient ~ is shown 
in Figure 3 for two different values of the overall elastic parameter 

~ == {(1-v12)E2 + (1-v21)EI}/(1-vI2v21)012· 
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A FFT-BASED NUMERICAL METHOD FOR COMPUTING 
THE MECHANICAL PROPERTIES OF COMPOSITES 

FROM IMAGES OF THEIR MICROSTRUCTURES 

H. MOULINEC, P. SUQUET 
LMA/CNRS 
31 Chemin Joseph Aiguier 
13402. Marseille. Cedex 20. FRANCE 

Abstract: The effective properties of composite materials are strongly influenced by the geometry 
of their microstructures, which can be extremely complex. Most of the numerical simulations 
known to the authors make use of two- or three-dimensional finite elements analyses which 
are often time consuming because of the complexity imposed by the requirement of extremely 
precise description of the reinforcements distribution. A numerical method is presented here that 
directly uses images of the microstructure - supposed to be periodically repeated - to compute 
the composite overall properties, as well as the local distribution of stresses and strains, without 
requiring further geometrical interpretation by the user. The linear elastic problem is examined 
first. Its analysis is based on the Lippmann-Schwinger's equation, which is solved iteratively by 
means of the Green operator of an homogeneous reference medium. Then the method is extended 
to non-linear problems where the local stress strain relation is given by an incremental relation. 

Introduction 

This study is devoted to a new numerical technique to compute the local and 
overall response of a nonlinear composite from images of its real microstructure. 
The need for developing these numerical simulations is twofold. 

First, numerous studies have been devoted to nonlinear cell calculations using 
the Finite Element Method (FEM) and a list of comprehensive references (by no 
means exhaustive) include Adams and Donner (1967), Christman et al (1989), 
Tvergaard (1990), Brockenborough et al (1991), B6hm et al (1993), Michel and 
Suquet (1993), Nakamura and Suresh (1993). But the difficulties due to meshing 
and the large number of d.o.f.'s required by the analysis limit the complexity of 
the microstructures which can be investigated by means of the FEM. 

The present method avoids the first difficulty (meshing), and makes use of fast 
Fourier transforms (FFT) to solve the unit cell problem, even in a nonlinear con­
text. FFT algorithms require data sampled in a grid of regular spacing, allowing 
to use directly digital images of the microstructure. The second difficulty (size of 
the problem) is partially overcome by the use of an iterative method which does 
not require the formation of a stiffness matrix. 
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Second, the interest for numerical simulations of the nonlinear response of com­
posites has recently been strengthened by the emergence of theoretical methods 
to predict analytically the nonlinear overall behavior of composites (Willis (1991), 
Ponte Castaneda (1992), Suquet (1993)). Part of the present study intends to give 
precise numerical results for uniaxial or multiaxialloading paths which could serve 
as guidelines for theoretical predictions. 

1. Description of the method. 

1.1. BOUNDARY CONDITIONS 

The overall behavior of a composite is governed by the individual behavior of its 
constituents and by its microstructure. Its effective response to a prescribed path 
of macroscopic strains or stresses may be determined numerically via the resolution 
of the so-called "local problem" on a representative volume element (r.v.e.) V. In 
this study, the "representative" information on the microstructure is provided by 
an image (micrograph) of the microstructure of the composite of arbitrary com­
plexity. The image contains M x N pixels and independent mechanical properties 
are assigned individually to each pixel. 

The local problem consists in equilibrium equations, constitutive equations, 
boundary and interface conditions. All different phases are assumed to be per­
fectly bonded (hence displacements and tractions are continuous across interfaces). 
However, the displacements and tractions along the boundary of the r.v.e. are left 
undetermined and the local problem is ill-posed. We choose to close the problem 
with periodic boundary conditions which can be expressed as follows. The local 
strain field e:(u(x)) is split into its average E and a fluctuation term e:(u"(x)): 

e:(u(x)) = e:(u"(x)) + E or equivalently u(x) = u"(x) + E.x 

By assuming periodic boundary conditions it is assumed that the fluctuating term 
u· is periodic (notation: u· #), and the traction u.n is anti-periodic in order to 
meet the equilibrium equations on the boundary (notation: u.n - #). 

1.2. PRELIMINARY PROBLEM. 

First, the preliminary problem of an homogeneous linear elastic body, with stiffness 
co, subject to a polarization field T(X), is considered 

u(x) = CO : e:(u"(x)) + T(X) "Ix E V } 

divu(x) = 0 "Ix E V, u· #, u.n - # 
(1.1) 

The solution qf (1.1) can be expressed in real and Fourier spaces, respectively, by 
means of the periodic Green operator rO associated with co: 

e:(x) = -ro * T(X) "Ix E V, or i(~) = -i'0(~) : T(~) V~ f. 0, i(O) = 0 

The operator rO is explicitely known in Fourier space and, when the reference 
material is isotropic (with Lame coefficients AO et J-I 0 ), takes the form: 

'0 () _ 1 AO + J-I0 eiejekeh 
f ijkh e - 4J-10leI2(6kiehei +6hiekej +Okjehei +Ohjekei) - J-I0(AO + 2J-10) lel4 
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1.3. THE LIPPMANN-SCHWINGER EQUATION. 

The preliminary problem can be used to solve the problem of an inhomogeneous 
elastic composite material with stiffness c(x) at point x under prescribed strain E. 
For simplicity E is assumed to be prescribed, although other average conditions 
could be considered as well (prescribed stresses). 

u(x) = c(x) : (~(u*(x)) + E) \/x E V } 

divu(x) = 0 \/x E V, u* #, u.n - # 
(1.2) 

A reference material cO is introduced and a polarization tensor T(X), which is 
unknown a priori, is defined as 

T(X) = 6c(x) : ~(u(x)), 6c(x) = c(x) - co. (1.3) 

Thus, the problem reduces to the periodic Lippmann-Schwinger equation (Kroner 
(1972)), which reads, in real space and Fourier space respectively: 

~(u(x)) = -rO(x) * T(X) + E, } 

e(e) = -fO(e) : :;::(e) \/e f. 0, e(O) = E 

where T is given by (1.3). 

1.4. THE ALGORITHM. 

(1.4) 

The principle of the algorithm is to use alternately (1.3) and (1.4), in real space 
and Fourier space, respectively, in an iterative process, to solve (1.2): 

Initialization: 

Iterate i + 1 : 

~O(x) = E, \/ x E V, 

~i is known 

a) ui(x) = c(x) : ~i(x). Convergence test 

b) Ti(X) = ui(x) - CO : ~i(x), 

c) :;::i = F(Ti), 

d) ei+1(e) = -rO(e) : :;::i(e) \Ie f. 0 and ei+1(0) = E, 

e) ei+1 = F-1(ei ) 

(1.5) 

where F and F- 1 denote the Fourier transform and the inverse Fourier transform. 

The rate of convergence of the algorithm is governed by the choice of Lame 
coefficients of the reference material. A good convergence rate was observed when 
A ° and 1-'0 were prescribed to be the half sum of the minimum and maximum value 
of these coefficients in the composite (Moulinec and Suquet (1994)). 

1.5. NONLINEAR BEHAVIOR. 

The algorithm can be extended to the case where the individual constituents obey 
an incremental law (infinitesimal strains), e.g. phases with an elastic-plastic be­
havior with isotropic hardening. The loading is applied step by step. At each 
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loading step n, the overall strain En is prescribed, and the local problem is solved 
for (un, en, Pn) via the procedure summarized below: 

Iterate i + 1 : e~ is known 

a) Compute u~ and p~ from (e~, Un-l, en-l, Pn-d 
Convergence test 

b) T~(X) = u~(x) - cO : e~(x), (1.6) 

c) T~ = :F(T~), 
d) e~+1(e) = -rO(e) : T~(e) "Ie i 0 and e~+l(O) = E, 

e) e~+l = :F-l(e~) 
This procedure is similar to the one adopted in the linear elastic case. The main 
difference is due to the calculation of the stress field u~ (step (aJ). 

2. Applications to unidirectional fiber reinforced composites 

2.1. CONFIGURATIONS 

The above numerical scheme was applied to predict the overall and local response 
of unidirectional fiber reinforced composites. Owing to the translation invariance 
along the axial direction (parallel to the unit vector e3), the geometry and the 
material properties of these composites are completely specified by the same data 
on a cross section in the plane (el,e2) transverse to the fibers' direction. 

Several configurations were investigated. In all of them, the fibers cross sections 
were assumed to be impenetrable circular disks, with identical radii. In all the 
analyses presented below, the fiber volume fraction was 47.5% . 

Random configurations. A prescribed number of identical impenetrable circular 
fibers were placed randomly in the unit cell. Fibers intersecting the boundary of 
the unit cell were treated modulo the periodic lattice, i.e. by moving the part of 
the fiber which would lie outside the unit cell to the opposite boundary (Figure 
la). 

Standard configurations. Configurations which are classical in FEM modelling, 
namely circular fibers arranged at the nodes of a square or hexagonal lattice, were 
also considered (Figure 1 b ). 

All calculations were performed under the generalized plane strains condition 
(Michel and Suquet (1993)). 

2.2. CONSTITUTIVE BEHAVIOUR OF THE INDIVIDUAL PHASES 

The individual phases are assumed to be isotropic and elastic plastic with isotropic 
hardening. More specifically, their elastic properties are given by a Young modulus 
E and a Poisson ratio /) (labelled by for m for fibers and matrix respectively) and 
their plastic properties are governed by the flow rule and the Von Mises criterion 
with linear isotropic hardening, 

CT eq = CTo + H p, 
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where 0'0 is the initial flow stress (0'0 = +00 when the phase is purely elastic), 
H is the hardening modulus (H = 0 when the phase is ideally plastic), p is 
the equivalent plastic strain. This general form is specialized below to several 
cases: isotropic linear elastic fibers in an elastic-ideally plastic matrix (section 
3), isotropic linear elastic fibers in an elastic plastic matrix with isotropic linear 
hardening (section 3), elastic-ideally plastic matrix and fibers with different flow 
stresses (section 4). The specific values ofthe material constants are given in each 
section. 

3. Uniaxial transverse tension 

The use of generalized plane strains allows to follow arbitrary paths in the space 
of macroscopic stresses. In this section monotone uniaxial tension in a transverse 
direction is considered. Fibers are assumed to be purely elastic and the matrix is 
a Von Mises material 

Ei = 400 000 M Pa, vi = 0.23, 

Em = 68 900 M Pa, vm = 0.35, O'~ = 68.9 M Pa. 

The hardening modulus of the matrix is either Hm = 0 (ideally plastic case) or 
H m = 1 710 MPa (hardening case). 

23 images at a spatial resolution of 1024 x 1024 points containing 64 fibers 
with a constant volume fraction (0.475) were considered. The choice of this spatial 
resolution (for a given number of fibers) stems from a study of the influence of 
spatial resolution on the accuracy of the results (reported elsewhere). The square 
and hexagonal configurations were also considered. 

A uniaxial tension in the 0° direction was applied to each "random" config­
uration. The square and hexagonal configurations were submitted to a uniaxial 
tension at 0° and 45°. The results are shown in Figure 2 (the average of the 
strain/stress response of the random configurations is the thick solid line) and 
summarized in Table 1. 

Table 1. Uniaxial tension in the transverse plane. 

Transverse Young modulus E~om, flow stress O'~om (ideally plastic matrix), hardening modulus 

Hhom (hardening matrix). Sample mean (s. mean) and sample standard deviations (ssd) over 
23 random configurations (the sample standard deviations are expressed in percentage of the 
sample means of the corresponding constants). Hexagonal and square lattice. 

Random config. Hexag. lattice Square lattice 

Constant s. mean ssd 0° 45° 0° 45° 

E~om (MPa) 143166 0.93% 139 655 139580 153 190 128600 

u;om (MPa) 88.85 2.42% 87.95 79.55 98.01 79.56 

H hom (MPa) 10 002 6.54% 7100 7420 13400 4 760 

Comments 1. The square lattice has a marked transverse anisotropy, strengthened 
by the nonlinear behavior, which gives raise to different responses when the direc­
tion of tension makes an angle of 0° or 45° with one of the axis of the square lattice. 
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The low flow stress in the diagonal direction (45°) is due to the presence of a shear 
plane passing through the matrix. Indeed, when a plane of shear can be passed 
through the weakest phase of a composite, the shear strength of the composite is 
exactly the strength of the weakest phase (Drucker (1959)). In uniaxial tension 
in a direction inclined at 45° on this plane, the transverse flow stress of the same 
composite cannot exceed 20-1)' /.../3. This is the flow stress observed on Figure 2 and 
Table 1 (20-1)' /.../3 ~ 79.56M Pa). In conclusion, except at low volume fractions, 
the square lattice should not be used to investigate the transverse properties of 
transversely isotropic nonlinear composites. 

2. The hexagonal lattice approaches transverse isotropy. When the matrix is a 
hardening material, the predictions obtained with the hexagonal lattice underes­
timate the stiffness of the composite, or at least are located below the average of 
the predictions for the random configurations in the range of overall deformations 
considered. Another computation, not reported here, has been performed up to 
30% of transverse strain, with no modification in the conclusions. A similar obser­
vation was made by Brockenborough et al (1991) on another system. When the 
matrix is ideally plastic, the low flow stress in the diagonal direction (45°) is again 
due to the presence of a shear plane passing through the matrix. In conclusion, 
the hexagonal lattice should be used with care to predict the transverse properties 
of nonlinear composite systems, even for hardening matrices. 

3. The deviation from the average of the transverse Young's moduli computed 
on the different configurations is small. By contrast, the deviations in the other 
properties (flow stress, hardening modulus) are higher and might probably be 
attributed to the combined effects of nonlinearity and incompressibility. 

4. The inspection of the local plastic strains reveals significant differences 
between the ideally plastic case and the hardening case. When the matrix is ideally 
plastic, the strain localizes in thin bands in the matrix. In most configurations, 
only a small percentage of the matrix contributes to the plastic dissipation. The 
overall flow stress of the composite is observed to be in direct relation with the 
"tortuosity" of these bands. This observation is consistent with Drucker's remark 
and one of the most meaningful geometrical parameter seems to be the length 
of the shortest path passing through the matrix at an angle of approximately 
45° (in tension, or 0° in shear). When the matrix is a hardening material, the 
plastic strain spreads all over the matrix. The whole matrix contributes (although 
non homogeneously) to the plastic dissipation and, consequently, to the overall 
strengthening of the composite. In spite of these differences, it has been observed 
that the "stiffest" (respectively the "weakest") configurations in the ideally plastic 
case remain the stiffest (respectively the weakest) configurations in the hardening 
case. 

4. Overall flow surface of unidirectional composites 

4.1. OVERALL FLOW SURFACE 

When the macroscopic stress state ~ is multiaxial instead of being uniaxial, the 
notion of overall flow stress can be generalized into the notion of overall flow surface 
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of the composite. First, the overall strength domain of the composite is defined 
as the domain of overall stress states lJ which can be associated to a local stress 
field tT which is both in equilibrium with lJ and satisfies the strength condition 
(Suquet (1983) (1987)): 

phom = {lJ E IR~X3, such that there exists tT(x) with (tT) = lJ, 

div(tT(x)) = 0, ueq(x) ::::; uo(x), for every x in V}. 

The overall flow surface of the composite (or its extremal surface according to Hill 
(1967)) is the boundary of phom. It depends on the flow stress of each phase, on 
their volume fractions and on their arrangement but is independent of the behavior 
of its individual constituents prior to the flow stress. 

The general properties of phom will not be discussed here (the interested reader 
is referred to Suquet (1983) (1987)). We limit our attention to the numerical cal­
culation of phom in two-phase materials with two different flow stresses, one phase 
being under the form of cylindrical fibers with a circular cross section dispersed 
into the other phase. The boundary of phom is determined according to a pro­
cedure described in Marigo et al (1987) and Michel and Suquet (1993). In this 
procedure, each individual phase is assumed to be given an elastic ideally plastic 
behaviour and, for a prescribed radial direction in the space of stress, the response 
of the composite along this direction of loading is computed. The overall stress 
reaches an asymptotic value which is on the extremal surface. 

The overall stresses under consideration consist of the superposition of a uni­
axial tension and a transverse shear (this example was first considered by Ponte 
Castaneda and De Botton (1992)) 

The extremal yield surface lies in the plane (E l , E3). 

4.2. NUMERICAL SIMULATIONS 

Three contrast ratios between the strengths of the two phases u~ / ulf have been 
investigated: u~/ulf = 2, 5, 10. For one of them, u~/ulf = 2, the computations 
were performed with 11 of the 23 configurations used in section 3. For the other 
two ratios, the computations were performed one a single configuration represen­
tative of the average of the predictions over the whole set of configurations, when 
u~ / ulf = 2. More specifically this configuration approaches transverse isotropy 
and its overall strain/stress response is close to the mean response of all the config­
urations - as well under multiaxial loading, as under uniaxial tension. The results 
are shown in Figure 3 and summarized in Table 2. 

In all three cases, the shape of the extremal surface ressembles a bimodal sur­
face. Bimodal surfaces have been used by Hashin (1980), Dvorak (1988), De Buhan 
and Taliercio (1991), Ponte Castaneda and De Botton (1992) and several other 
authors to describe the first yield or the flow surface of unidirectional composites. 
The present calculations confirm the validity of this assumption or observation. 
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The inspection of the failure modes at the local level reveals that the unit cell can 
fail under two possible modes and confirms even further the bimodal shape of the 
overall flow surface. The first mode, observable for low values of the axial stress 
E3 , corresponds to shear bands in the matrix with an inclination of approximately 
±45° on the horizontal direction. When E3 reaches a threshold corresponding to 
the vertex of the flow surface, the plastic zone spreads throughout the unit cell. 
As E3 is increased, the plastic strain tends to be more and more homogeneous and 
becomes fully homogeneous when E3 reaches < 0"0 > (Figure 4). 

These numerical calculations can be used to propose a closed form expression 
to the bimodal surface. Indeed, simple piecewise constant stress fields meeting 
both the requirements of equilibrium and of strength can be constructed and lead 
to the following inner approximation of ph om 

I I (( J)2 2) 1/2 (( m)2 2) 1/2 E3 ~ VJ 0"0 - 3E1 + Vm 0"0 - 3E1 . (4.1) 

The strength in shear predicted by (4.1) coincides with the strength in shear of 
the matrix, O"[)' /,;3, while the calculations show a small increase in strength due 
to the fibers. This increase can be taken into account by modifying (4.1) into 

(4.2) 

k., in-plane shear strength of the composite, is the only adjustable parameter 
contained in (4.2). The resulting simple expression (4.2), with k. adjusted in pure 
in-plane shear, fits well with the results of numerical calculations performed on 
radial paths with arbitrary orientation. 

Table 2. Overall flow surface under combined axial tension and in plane shear. 

ut luO' == 2 ut luO' == 5 ut luO' == 10 

~duO' ~31uO' ~duO' ~31uO' ~duO' ~31uO' 
0.626 0.000 0.638 0.000 0.640 0.000 

0.626 0.626 0.639 1.756 0.642 3.640 

0.616 0.879 0.637 2.379 0.642 4.053 

0.580 1.005 0.591 2.562 0.642 4.569 

0.448 1.231 0.478 2.709 0.638 4.850 

0.356 1.328 0.391 2.779 0.609 4.963 

0.201 1.430 0.250 2.853 0.533 5.072 

0.000 1.475 0.000 2.900 0.450 5.142 

* * * * 0.184 5.255 

* * * * 0.000 5.275 
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Figure 1. Configurations. 

Periodic unit cell (framed area) containing 16 identical circular fibers placed randomly (Fig. 1.a). 

Hexagonal lattice (Fig. 1.b). The unit cell (framed area) contains 1 + 4 X t = 2 fibers. 

Figure 2.a: Matrix with linear hardening 
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Figure 2.b: Ideally plastic matrix 
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Figure 2. Uniaxial transverse tension. 

Overall stress-strain response computed with the present method. Fibers volume fraction = 
47.5%. Dotted lines: 23 configurations of 64 identical circular fibers placed randomly in the unit 

cell. Thick solid line: average of the random configurations (AR). SO (resp. S45): fibers placed 

at the nodes of a square lattice, tension at 0° (resp. 45°). HO (resp. H45): fibers placed at the 

nodes of a hexagonal lattice, tension at 0° (resp. 45°). 
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Figure 3. Overall flow sur­
face of unidirectional com­
posites. 

Figure 3a: 0-6 jur;' = 2. 

Numerical results for 11 random con­

figurations (full circles). 

Present model (4.2) (dotted line). The 

strength in shear k* in (4.2) is com­

puted on a representative configura­

tion. 

Figure 3b: Yield surface for a repre­

sentative configuration. 
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Present model (4.2) (dotted lines). 

Prediction of nonlinear bounding the­

ories (Ponte Castaneda and De Botton 

(1992), Suquet (1993)) using the lower 

Hashin-Shtrikrnan linear bound (solid 

line). 
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Figure 4. Overall flow surface. 

Maps of the equivalent plastic strain in a 

composite reinforced by identical unidirec­

tional circular fibers. Fibers volume frac­

tion = 47.5%. 0-6/0-(;' = 10. Loading con­

ditions described in sect. 4 .1. 

Figure 4 .a, 4.b, 4.c, and 4.d: equivalent 

plastic strains corresponding to 4 different 

extremal stresses (crosses a, b, c and d in 

figure 4.e). Overall strain in the direction 

of the applied stress= 1 %. 



HYSTERETIC EFFECTS AND PROGRESSIVE 

DELAMINATION AT COMPOSITE INTERFACES 
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Swif}tokrzyska 21, 00-049 Warsaw, Poland 

A bstract. Interface delamination is usually accompanied by friction slip at 
contacting interfaces under compressive normal traction. The present work 
is devoted to the analysis of friction slip phenomena for monotonic and 
cyclic loading involving progressive and reversal slips with account for mem­
ory ofload reversal. The progressive delamination interacts with the friction 
slip by affecting hysteretic response. Both limit stress and potential energy 
conditions are used in specifying the delamination evolution. When fric­
tion slip conditions during cyclic loading are affected by surface wear with 
respective variation of contact parameters, the delamination growth may 
occur in the course of cyclic loading. Three specific examples are treated 
in detail: i) cyclic tension of an elastic strip adhering to the interface; ii) 
fiber pull-out problem for cyclically varying load; iii) monotonic and cyclic 
flexure of a beam sliding on the frictional interface. 

1. Introduction 

The propagation of interlayer cracks and the resulting delamination in 
composite structures induce significant degradation of their stiffness and 
strength. This topic is of fundamental interest in strength assessment and 
design of composites. A detailed survey of research in this area can be found, 
for instance, in articles by Garg [4], Storakers [18] or in the extensive essay 
by Hutchinson and Suo [6] on cracking in layered materials. The present 
work is concerned with the case when compressive normal tractions occur 
at the interface and the effect of frictional slip accompanies progressive de­
lamination. When a composite material is subjected to cyclic loading, a 
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set of progressive and reverse slip zones develop at the interface and fric­
tional hysteretic effects occur inducing contact dissipation and evolution 
of the state of delaminated inteface due to wear. The varying state of a 
delaminated portion may cause coupling between the propagation mode of 
delamination of surface and the hysteretic dissipation in the domain of fric­
tional slip. This class of problems has not yet attracted sufficient interest of 
the researchers. The following major topics should be investigated in order 
to describe quantitatively frictional slip and delamination phenomena: 

i. formulation of accurate slip and wear rules at the delaminated interface 
portions with account for local dilatancy, compaction and interaction 
of asperities, 

ii. formulation of evolution rules of delamination with account for local 
stress state and friction dissipation during monotonic and cyclic load­
ing, 

iii. study of localized temperature effects due to cyclic slip and interface 
dissipation. 

Recently, the slip and memory rules in elastic, contact friction prob­
lems were discussed by Jarz~bowski and Mroz [7] following the earlier phe­
nomenological friction models by Michalowski and Mroz [11]. It was shown 
that progressive and reverse slip effects can be described by introducing 
active loading and memory surfaces in the space of contact tractions, sim­
ilarly to cyclic plasticity for which multi surface hardening rules proved to 
be very efficient. The constitutive models for contact slip effects were dis­
cussed in a set of papers [13, 14, 15] by Mr6z, Giambanco, Jarz~bowski 
and Stupkiewicz. The account of asperity interaction was made by consid­
ering single or dual asperity models with resulting dilatancy phenomena 
and associated wear effects. 

It is natural to expect that accurate modelling of friction and slip effects 
will constitute a substantial contribution to the analysis of coupled phe­
nomena of delamination and slip under compressive normal tractions. This 
state of stress occurs in many cases when the lateral pressure or constraint 
is combined with tangential loading, so the separation and delamination 
buckling effects do not occur. 

In the next section we shall present the general formulation of the prob­
lem. In Sections 3, 4, and 5, three simple cases will be disscussed, namely 
elastic strip, fiber pull-out or push-out problem and beam bonded to a rigid 
frictional foundation. 

2. Problem formulation 

Consider an interface between two elastic bodies 0 1 and O2 , Fig. 1. Denote 
by tI, t2, n the local orthogonal reference system with the n-axis pointing 
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b) 
d) 

Figure 1. a) Interface between elastic materials, b) Progressive slip and delamination 
fronts in a plate resting on a frictional foundation, c) Spherical asperity model, d) Dual 
asperity model. 

into the !h -domain. The interface can be replaced by a contact layer of 
thickness h. The contact stress components acting on the layer are an = 
n·un and Tn = u-(n·un)n. For the plane problem with slip occuring along 
tt, only the components an and Tnl are considered (Tn identified with Tn!). 

At the bonded interface portion, the displacement field is continuous. In 
view of continuity of interface traction components, on the bonded interface 
there is 

a = 1,2, (1) 

where [ ] denotes the discontinuity. At the debonded interface the traction 
components are continuous but the displacement components U Oll v may 
suffer discontinuity, thus 

(2) 

where U~l), v(1) and U~2), V(2) are referred to bodies n} and n2 • The engi­
neering strain components within the contact layer 

[Ua ] [v] 
Ina = h' En = h' Q = 1,2 (3) 

are assumed constant within the layer. The following rate equality holds 

(4) 

so that an, Tna and [iI], [ua ] can be regarded as the conjugate stresses 
and strain rates at the interface. The strain components (3) can be used 
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as measures of slip and dilatancy at the debonded interface. The additive 
decomposition is assumed, namely 

(5) 

where ee is the elastic interface strain and eS denotes the irreversible (or 
siding) strain. Similarly, [ue] and [US] denote the elastic and sliding dis­
placements. The elastic interface strain components are related to contact 
stresses by the constitutive law 

(6) 

where 

(7) 

and Efa, E~ are the tangential and normal stiffness moduli. For the non­
linear case, Efa and E~ are the secant interface moduli. 

The sliding mode along the interface occurs when the limit friction 
condition is reached. Assuming the classical Coulomb condition in the form 

(8) 

where ITnl = (TnaTncx)1/2 and </>b is the friction angle, the sliding rule is 
expressed as follows (compressive an is assumed as positive) 

• S A Tna 
Ina = ITn I' €~ = 0, A> 0, (9) 

The rules (8) and (9) follow from the assumption of isotropic friction 
and tangential sliding with no dilatancy or compaction effects. The gen­
eralization to the case of orthotropic friction was discussed by Mroz and 
Stupkiewicz [15] who considered a class of non-associated rules predict­
ing orientation of the sliding velocity vector with respect to the tangential 
traction vector. 

A more general class of slip and sliding rules was recently discussed 
by Mroz and Giambanco [13] by assuming the interface to be composed 
of spherical asperities contacting each other and slipping under tangential 
tractions, Fig. 1c. 

Considering two equal interacting spheres under normal and tangential 
forces, the classical solution of Mindlin and Deresiewicz [12] is used in 
order to generate contact slip rules and memory rules similar to plastic flow 
rules for hardening materials. For any distribution of spheres, the normal 
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and tangential slip displacement can be determined and the incremental 
response is specified, namely 

iT = E*e, (10) 

where 

E* = [Ett Etn], 
o Enn 

(11) 

and 
I? 

2Gf3( tan9)3 2Gf3 
Ett = 2 _ v 1 - tan 4>b ,Enn = 1 - v ' 

Etn = ± 2G f3 [1 _ (1 _ tan 9 ) fl. 
1 - v tan 4>b 

(12) 

Here f3 = a/ R = (4kO'n)1/3, k = 3(1 - v 2 )/( 4E), a and R denote the 
contact radius and the sphere radius. The plus sign in (12) is applied for 
loading or reloading and minus sign is used for unloading. The parameter p 
specifies the non-linear stiffness variation due to non-simultaneous contact 
engagement (the value p = 1 corresponds to contact of two equal spheres). 
Further, at any instant there is an active slip zone of radius c progressing 
from the external contact boundary, and 

1 

.: = (1 _ tan (I ) 3" 
a tan 4>b 

(13) 

The typical contact response is depicted in Figs. 2a and 2b. 
In order to predict realistically the dilatancy effect, the dual asperity 

model of Fig. Id is assumed. Namely, the contact of spherical asperities is 
assumed to occur along the large asperity of linear or curvilinear profile. 
The dilatancy then occurs for progressive sliding and compaction for reverse 
sliding. Figure 2c presents the typical dilatancy curve for progressive sliding. 
For cyclic loading the consecutive wear of asperities will affect the dilatancy 
response and the state of contact will vary. 

Having developed the constitutive models offrictional slip, the problem 
of progressive debonding accompanied by contact slip effect can be consid­
ered. Assume first the local or non-local stress condition of delamination 
progression, namely 

(14) 

or 

(15) 

where p denotes the non-locality range measured in the normal direction to 
the delamination front, and c, c are the local and non-local cohesion values. 
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Figure 2. Spherical and dual asperity models: typical contact response: a) normal 
compression, b) shear response, c) dilatancy curves. 

Non-local stress measures in delamination condition were successfully used 
by Brewer and Lagace [1], and recently the non-local condition (15) was 
applied by Seweryn and Mroz [17] to predict fracture of notched elements. 

An alternative approach would follow the energy consideration for a dis­
sipative system. Denote by -dIT the elastic potential energy increment due 
to delamination propagation, by dDf the variation of frictional dissipation 
and by dDd the variation of specific delamination dissipation. Then, we can 
postulate 

- dIT = dL - dU = dD s + dD d , (16) 

where dL is the increment of external work, dU is the increment of elastic 
energy. 

The friction dissipation behind the delamination front depends on the 
loading history. In fact, for cyclic loading there may exist on the contact 
surface several distinct passive or active slip zones corresponding to pro­
gressive or reverse slip effects. The separating boundaries between zones are 
denoted by ~{, ~{, etc., with the delamination boundary denoted by ~b, 
Fig. 1 b. The evolution of slip zones occurs during varying loading and the 
delamination boundary evolves when the critical stress or energy conditions 
(14), (15) or (16) are satisfied. In the next sections we shall discuss in detail 
several simple examples of combined delamination and friction slip effects. 
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Figure 3. Elastic strip model (I-perfectly bonded zone, II-debonded (slip) zone). 

3. Elastic Strip on a Frictional Foundation 

Consider first a simple unidimensional case of an elastic strip bonded to a 
frictional foundation and acted on by a tensile stress aa, Fig. 3. The shear 
stress in the layer equals r = k( u - US) where u is the strip displacement, US 

denotes the slip along the layer, and k is the layer shear modulus. Denote 
by A the strip cross section area and by ac the contact area per unit length. 
The equilibrium equation provides 

, ac 
a - -r = 0 

A 
(17) 

and since a = E€ = Eu', there is 

(18) 

where prime denotes the differentiation with respect to z following the strip 
axis. The delamination propagation could be governed by the local contact 
stress condition 

(19) 

where cb denotes the bonding cohesion and J.l = tan </i is the friction coef­
ficient. The friction slip occurs when the Coulomb condition is satisfied 

(20) 

The transition from (19) to (20) occurs by setting cb = O. Thus, there is a 
discontinuity of shear stress at the delamination front ,Z = -so 
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Assume first the interface layer as rigid and apply the energy condition 
(16). If there is no friction in the system, then 

dL - dU = dDd = acfd8, (21) 

where d8 denotes the increment of delamination zone and f is the specific 
delamination energy per unit contact area. The condition (21) provides the 
critical stress value 

(22) 

Consider now the elastic solution without debonding. Equation (18) now 
becomes 

(23) 

with the boundary conditions: (J' = (J'a at z = 0 and (J' = 0 at z = -L. The 
solution is 

(J'a eT(L+z) + e-T(L+z) 
u=---~--~-

rE eTL - e-TL (24) 

For an infinite strip, L --+ 00, we have 

(J'a k(J'a ( ) u = _eTZ = uaeTZ , T = _eTZ = TaeTZ (J' = (J'aeTZ, Z < O. 25 
rE rE 

Consider now the strip with the slip zone -8 < X < 0 and neglect the 
contact layer elasticity. The shear stress is constant within the shear zone, 
T = T s , so the equilibrium equation provides 

ac (J'a ( ) acTs (2 2) 
(J' = (J'a + A TsZ, U = E Z + 8 + 2EA Z - 8, -8 < Z < O. (26) 

The propagation condition (16) provides the critical stress condition. We 
have 

dL A d - (A(J'~ _ acTs(J'a ) d (J'a U a - E E 8 8, 

~ (1° ~E 2Ad ) = (A(J'~ _ acTs(J'a a~T; 2) d 
ds -s 2 E Z 2E E s + 2EA s s, (27) 

fO (OU) (acTs(J'a a~T; 2) 
i-s acTs OS dsdz = ~s - EA s ds, 

dU 

acfds 

and from (16) it follows that 

(28) 
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The first term of (28) presents the friction force, so the critical stress acting 
at the delamination front is again identical to (22). For the applied stress 
growing above O'er, we have 

(29) 

It is seen that in this case the contact friction does not affect the value of 
the critical stress acting on the interface. 

Consider now the elastic contact layer with the delaminated zone -s < 
z < o. Assume first, according to (19), the local value of shear stress T = 
T m > Ts to govern the delamination propagation. We have in the elastic 
(bonded) zone -00 < Z < -s 

and in the slip zone -s < Z < 0 

The following relations now occur 

O'a > O'm. (32) 

Let us now apply the energy condition (16). We have 

dL 

dU 

= AO'a (0'; r ~) ds, 

dU I + dUs 

d 1 _ acT; r ATsO'm dUs = AO'! _ r ATsO'm 
U - 2k - 2k' 2E 2k' 

= fO (aU d ) d - (acTsO'm _ racT;) d -s acTs as s Z - E k s s, 

acfds 

and from (16) it follows that 

where 
acTs 0'1 =-­
rA 

(33) 

(34) 

(35) 
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Figure 4. Evolution of the shear stress during loading and unloading (I-perfect bonding 
zone, II-debonded (slip) zone, IIr -reverse slip zone, III-stick zone). 

and 0'/ corresponds to the growth of the critical stress due to elastic energy 
of the contact layer. The critical load applied at the end of strip now equals 

(36) 

and the critical shear stress equals Tm = kO'~r/(rE). Thus, in this simple 
example the energy condition can be reduced to the critical stress condition 
Tm = T er • 

Figure 4 presents the evolution of the shear stress during loading and 
unloading and Fig. 5 presents the hysteresis loop during cyclic loading. 
The portions 0-1, 2-3 and 5-3' of the loop correspond to elastic loading, 
the portion 1-2 corresponds to growth of delamination, the portions 3-4-5 
and 3'-4'-2 correspond to frictional slip of the delaminated strip segment. 

4. Fiber Pulling and Pushing with Interfacial Micro-Dilatancy 

The model of the strip on the rigid foundation presented in Section 3 can 
be regarded as a simple (constant shear stress) model of fiber debonding 
and sliding in brittle matrix composites. However, the case of fiber sliding 
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Figure 5. Load-displacement hysteresis loop. 

is more complex due to fiber Poisson contraction and resulting change of 
the compressive normal stress on the interface. The detailed study of such 
unidimensional model can be found in Hutchinson and Jensen [5] and its 
application to measurements of interfacial properties of brittle matrix com­
posites was presented by Marshall [9] and Marshall et al. [10]. The key role 
of interface sliding properties in such composites was emhasized by Evans 
and Marshall [2]. 

In this section the modification of this model will be briefly disscused, 
namely the effect of asperity interaction and resulting micro-dilatancy of 
the interface will be accounted for. We shall restrict ourselves to the case of 
a single isotropic fiber pulled out or pushed out from the isotropic matrix 
(Rf/R = 0 in Fig. 6), and only the stage of progressive debonding and 
relative sliding will be treated. The elastic compliance of the interface will 
be neglected, thus only the slip displacement occurs, rue] = 0, [u] = [US]. 
In contrast to the previous example, the axial stress in the fiber changes 
discontinously at the delamination front. 

The residual stress state in the composite is induced during the curing 
process of the composite by the mismatch of fiber and matrix coefficients 
of thermal expansion 

(37) 

where (1+ is the residual axial stress in the fiber, p+ is the residual com­
pressive stress on the interface and the radial misfit strain is denoted by 
f;. The non-dimensional parameters a2, a4 (introduced by Hutchinson and 
Jensen [5]) depend on the radial to axial misfit strain ratio). = f; / /f and 
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Figure 6. Axisimmetric model of fiber-matrix interaction. 
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Figure 7. a)-c) Interaction of asperities after relative slip, d) Simplified dilatancy model. 

the elastic properties of fiber and matrix: the Young's moduli E" Em and 
Poisson's ratios v" vm . 

Implying common assumptions (cf. [5]), stress and strain state in the 
composite can be found from the Lame solution of the axisimmetric rod­
cylinder model (Fig. 6) and here the influence of the radial misfit 6/ R, 
(Fig. 7) is explicit 

where the changes with respect to the initial state are defined as 

/:l.a = a - a+ , /:l.p = p - p+, /:l.c = c - c+. 

The non-dimensional parameters of eqns (38) are given by 

(39) 
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If the relative displacements of the fiber and matrix are of the same or­
der as the characteristic asperity wave-length, the assumption of constant 
increase of the radial misfit due to irregularities of the contacting surfaces is 
no longer valid. Using the "push-back" experiments Jero et al. [8] showed 
that the frictional resistance of the interface increases when the fiber is 
moved from its original position reaching steady value when the relative 
displacement is of the order of the asperity wave-length. Moreover, when 
the fiber seats back in its original position the friction force decreases. The 
explanation of this phenonenon can be provided by assuming that the as­
perities on both contacting surfaces match only when the relative displace­
ment is equal to zero. Otherwise, due to non-periodic layout of asperities 
the radial misfit of fiber and matrix increases, Fig. 7. Following these ob­
servations a very simple, piecewise-linear form of the dilatancy curve will 
be assumed allowing for analytical solution of governing equations, namely 

(41) 

Here 'fJ = 1 for pulling out and 'fJ = -1 for pushing out the fiber, UA, OA 

are the model parameters and can be identified as characteristic asperity 
amplitude and half of the asperity wave-length, respectively. 

In order to unify the notation for all loading events the frictional stress 
can be written as 

T = J1P signu = 'fJ'!9 J1P, 'fJ'!9 = ±1, (42) 

where '!9 = 1 in case of loading, reloading etc. and '!9 = -1 for unloading 
etc. Combining the equilibrium equation (17), with eqns (38), (41) and (42) 
the set of ordinary differential equations is obtained: 

where the non-dimensional form results from the following definitions 

(44) 

and parameters Db D2 are given by 

(45) 

Note that for OA = 0 eqns (43) decouple and the classical model is obtained. 
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The boundary condition at the end of the debonded zone is 

Z = -81 : ~a- = Tty, it = 0 (46) 

where the axial stress jump I can be found from the energy condition, eqn 
(16), and was given by Hutchinson and Jensen [5]: 

( 47) 

Similarly as in the case of the elastic strip the fiber axial stress at the 
debonded crack tip is constant and independent of the frictional properties 
of the interface. Equation (47) differs from (22) only by parameter b2 (for 
fiber ac / A = 2/ Rj). Parameter b2 is in fact close to unity and it accounts 
for the effect of radial fiber-matrix interaction. 

The solution of eqns (43) can be found analytically giving the fiber stress 
and displacement in the debonded zone as a function of z coordinate and 
two integration constants Ci. Implying the appropriate boundary condi­
tions for different loading events the integration constants can be found as 
functions of the lengths of the loading, unloading and reloading slip zones 

where the superscript (1) denotes loading, etc. and roman subscripts of 
Si denote frozen slip zones while arabic subscripts-the active ones. The 
explicit forms of ~a- and it will not be given here since they are quite 
lengthy. In fact the use of computer program handling symbolic operations 
is necessary when calculating Ci(2) and Ci(3). 

In contrast to the classical model when the differential equations (43) 
are decoupled it is not possible to find direct relation u,,(~aa). Instead, the 
parametric forms U,,(Si), ~a,,(sd have to be resolved numerically in order 
to generate the relation ~a-" (ita). 

In the case when 1 > a-+ spontaneous debonding occurs with no load 
applied to the fiber. Description of this phenomenon can be found in Mar­
shall [9]. In the same manner it can be incorporated into this model giving 
proper prediction of the measured load-displacement relation. 

Some properties of the model are shown in Fig. 8. Load-displacement 
curves are plotted for varying 1 (Fig. 8a) and itA (Fig. 8b). It is seen that 
micro-dilatancy of the interface results in stiffer response. 

The experimental data of Marshall et al. [10] was used to identify the 
model. Parameters of the model were found by means of curve-fitting of the 
monotonic loading path and the unloading-reloading cycle was then pre­
dicted. Resulting load-displacement curve is presented on Fig. 9 together 
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Figure 9. Identification of the experimental data of Marshall et at. [10]. For 0-+ = -0.123, 
t = 0 and UA > 10 I'm best fit parameters are: CA/UA = 0.018, I' = 0.585, p+ = 117 MPa. 



262 

Figure 10. Beam on a frictional foundation: a) slip zones in the debonded domain; b) 
propagation of delamination front; c) unloading of slip zone. 

with the load-displacement curve identified by Marshall et ai. for the classi­
cal model. The model accounting for micro-dilatancy fits the experimental 
data much better than the classical model. This could be expected as this 
model is closer to physical reality and two additional parameters UA and 
c5A , when properly identified, provide more accurate description. Also a bet­
ter prediction is obtained for the unloading-reloading cycle. Obviously, the 
model could be used with a non-linear dilatancy curve and the surface wear 
effect could be incorporated by considering the consecutive evolution of the 
initial dilatancy curve. 

5. Frictional Slip and Delamination of a Beam 

In this section, we shall discuss briefly slip and delamination effects for 
the case of a beam bonded to a rigid foundation and loaded tangentially 
to the foundation plane. In the debonded zone, the lateral friction slip oc­
curs and the delamination front will propagate for monotonically increasing 
load. The case of Coulomb friction and the associated slip phenomena were 
studied by Stupkiewicz and Mroz [19] following earlier research of this prob­
lem by Fischer et ai. [3] and Nikitin [16]. It turns out that for a beam loaded 
at its tip an infinite number of slip zones within the slip domain 0 ~ x ~ L 
is generated with varying orientation of slip rate in each zone, Fig. 10. 

The equilibrium equation takes the form 

ElwIV = -q sign( tV) (49) 

with the boundary conditions at x = 0 

Elw"(O, t) = M(t), Elw"'(O, t) = T{t) (50) 
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and the boundary conditions at x = L 

w(L, t) = w'(L, t) = w"(L, t) = wlll(L, t) = 0, (51 ) 

and with the initial conditions w(x, 0) = O. Here w(x, t) denotes the lateral 
beam deflection within the foundation plane and q is the specific friction 
force per unit length. 

When the slip domain interacts with the bonded domain, the consec­
utive slip zones are progressively annihilated and for monotonic loading 
eventually only one slip zone may remain, Fig. lOb. The boundary condi­
tions at the interface between slip and bonded domains are 

(52) 

and the condition of propagation (16) must be satisfied when the delami­
nation front propagates. During cyclic loading, only several slip zones will 
occur in the debonded domain. On the other hand, when the residual force 
state generated by friction slip is removed, an infinite number of slip zones 
will occur in the debonded domain for subsequent monotonic loading. A 
detailed study of these complex interaction will be presented separately. 

6. Concluding Remarks 

In the present paper we emphasized the importance of an accurate mod­
elling oflocal interface friction and slip effects together with dilatancy phe­
nomena occuring during monotonic or cyclic loading. The development of 
multiple slip zones in the contact area should be accounted for especially 
when the progression of the delamination interface is affected by prior load­
ing and slip history. The wear of slipping interfaces will induce further 
coupling effect causing growth of delamination. 
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1. Introduction 

Composite laminates employed in practical engineering components are subject to various 
non-steady loading under combined states of stress. A number of papers(I)-(6) have been 
published to elucidate the mechanisms of damage and fracture of composites under combined 
quasi-static or repeated loading, together with the resulting reduction of stiffness and residual 
strength. 

Laminates of these composites, however, show not only elastic but also salient inelastic 
deformation when they are subjected to the loading in off-fiber directions. The cyclic global 
loading and the resulting inter-lamina stress may induce significant internal damage of 
matrix cracking, delamination, fiber breakage, etc. The present paper is concerned with the 
observation of the evolution of internal damage and the related change of mechanical behavior 
of cross-ply graphite/epoxy laminate under cyclic tension-compression. 

Fatigue tests of graphite/epoxy (CFRP) [±4Y]4 laminate tubular specimens are first 
performed for the stress ratios R = (ama/amin) = 0 through -00 for a constant stress amplitude 
of a. = 80MPa. The mechanisms of the resulting inelastic behavior and the change of the 
mechanical properties were discussed in relation to the evolution of internal damage. Besides 
these global and macroscopic observations, we further perform quantitative measurement 
of matrix cracks and delaminations, and elucidate the interaction between the internal damage 
and the macroscopic mechanical properties. A series of tests under particular stress ratios R 
= 0 and R = -0.25 together with the stress amplitude a a = 62.5MPa are carried out to some 
specific life fractions NINe The distribution and the evolution of the number of the matrix 
cracks and the delaminations in the sliced sections of the specimens were counted. The 
relation between the crack and the delamination density and the reduction of elastic modulus 
is discussed quantitatively. 
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2. Materials and Test Conditions 

The experiments were performed for Graphite/Epoxy (CFRP) laminate tubular specimens 
shown in Fig. 1. The inside and outside diameters and the gauge length were 15mm, 17mm, 
and 40mm, respectively. The stacking sequence of the specimens is [±45°]4' fabricated 
from prepreg Toray P3052 (T300/2500) of 0.125mm thick. The volume fraction of the 
fiber is 59 percent in the prepreg. Table 1 shows the mechanical properties of the specimens 
employed in this experiment. 

The tests were carried out under stress-controlled cyclic tension and compression by 
use of an electrohydraulic servo-controlled combined tension-compression-torsion machine 
(SHIMADZU EHF-EB-IOffB-20L). Axial strain of the specimen was measured by use of 
a clip-on type extensometer MTS-632.11-C20. The change of specimen diameter was also 
measured during tests. Fatigue tests were performed under constant stress rate of 10MPa/ 
sec (0.02-0.04Hz) at the ambient atmosphere for the stress ratios ranging from R = (CJmu/ 

CJmin) = 0 to _00. 

Development of internal damage was observed at various stages of the fatigue tests. 
The tubular specimens were cut at the angle of 90° and 45° with respect to the specimen 
axis by use ofa diamond circular saw (MARUTO MC-IOO). The surfaces of the sections 
were observed by a light surface microscope (OL YMP AS BHM-MU). 

3 
"'1111' 
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Figure 1. CFRP [±4So1.laminate tubular specimen 

TABLE 1. Mechanical propenies of CFRP [±4So1.laminate tubular specimen 

Young's modulus 16GPa Shear modulus 30GPa 

Tensile yield stress 130MPa Compressive yield stress 125MPa 

Tensile strength 198MPa Compressive strength 170MPa 

Shear strength 420MPa 

3. Inelastic Deformation and Macroscopic Mechanical Behavior in Fatigue Process 

The causes and the mechanisms of inelastic deformation will be discussed first in order to 
elucidate the relationship between the evolution of the internal damage and the resulting 
inelastic deformation. 
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3.1 CYCLIC INELASTIC DEFORMATION 
IN CROSS-PLY CFRP TUBES 

Fatigue tests were performed on the tubular 
specimens of Fig. 1 under five different stress 
ratios R = (crrna/crrnin) = 0, -0.25, -1, -4 and-oo 
for a constant stress amplitude cr. = 80MPa. 
The resulting stress-strain hysteresis curves are 
shown in Fig. 2. 

As observed in these figures, hysteresis 
loops show significant non-linearity, and the 
shape of the loops changes in the process of 
fatigue. Though graphite fibers usually show 
linear elastic behavior under tension up to 
fracture, the elastic limit of composites for 
compression in the fibers direction and that 
for the shear parallel to the fibers are far 
smaller than that for tension. Thus the causes 
of the non-linear behavior in Fig. 2 may be 
attributable to the following five factors: 

1) Viscoelastic-plastic deformation of the 
epoxy resin for the matrix and the inter­
lamina adhesive, 

2) Development of microscopic cracking in 
the epoxy resin for the matrix and the 
inter-lamina adhesive, 

3) Delamination induced by the crack 
growth in the lamina interface, 

4) Debonding at fiber-matrix interface and 
fiber breakage, 

5) Reduction of bending rigidity induced 
by the development of delamination, and 
the resulting local and global buckling 
due to compressive loading. 

The causes 1), 2) are related to the mechanical 
property of epoxy resin, and result in strain­
hardening during the cyclic viscoelastic­
plastic deformation as well as in the strain 
softening due to the initiation of micro­
cracking. The causes 3),4) and 5), on the other 
hand, are concerned with the structure of 
composite materials. The causes 3) is induced 
mainly by the shear stress between laminae, 
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while 5) is related not only to the mechanical property of composite laminate but also to the 
geometry of the laminate tube. The salient changes of hysteresis loops in the fatigue process 
of tubular specimens shown in Fig. 2 can be interpreted in terms of these five causes. 

In order to discuss the effects of the above factor 1), the inelastic strain in off-axis 
composite materials should be separated into the viscoelastic and plastic strains. For this 
purpose we first examine the plastic property of the material by performing quasi-static 
tension and compression tests. The stress rate in the tests was 10 MPa/sec identically to the 
succeeding fatigue tests. Thus the effects of rate dependence was disregarded in this paper. 

Specimens were loaded monotonically to a specified stress, and then unloaded to zero. 
The plastic strain was determined from the residual strain at 24 hours after the unloading, 
since viscoelastic strain essentially recovers in this period. The yield stress of the materials 
was specified by the proof stress of 0.2% plastic strain. The resulting yield stresses for 
tension and compression were <ryt = 130 MPa and <rye = 125 MPa, respectively, as entered 
in Table 1. 

3.2 REDUCTION OF YOUNG'S MODULUS DUE TO FATIGUE DAMAGE 

Fig. 3 shows the reduction of Young's modulus in the process of fatigue tests under different 
loading conditions. Young's modulus was measured periodically in fatigue tests by 
performing local unloading in the stress range of 0-20 MPa to avoid plastic and viscoelastic 
effects. In order to compare the change of Young's modulus for different conditions of 
loading, the normalized relation between the non-dimensional modulus E/Eo and the fatigue 
life fraction N/Nf were used in Fig. 3, where Eo is the incipient elastic modulus measured 
before the tests. 

Despite some scattering ofthe results, Fig. 3 shows that the normalized relations between 
E/Eo and N/Nf for different R have almost identical evolution. Moreover since the values E/ 
Eo can be measured accurately at every stage, we can use them as a convenient measure to 
estimate the damage state and the residual life fraction of the specific stage. 
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Figure 3. Reduction of Young's modulus due to fatigue 
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To elucidate the evolution of the internal damage process of the above Figs. 2 and 3, 
we performed also the micrographical observations on the sections cut out in the direction 
of 45" with respect to the specimen axis at several stages of life fraction N/Nf" The details of 
the observations were reported elsewhere(7). 

3.3 EFFECTS OF S1RESS AMPLITUDE AND STRESS RATIO ON FATIGUE LIFE 

Fig. 4 shows the relation between the maximum stress and the number of life cycles with 
stress ratio as a parameter. It will be observed from this figure that the fatigue lives are 
largely governed by the maximum stress rather than by the stress amplitude. This may be a 
different feature observed in metals for which the stress amplitude or strain amplitude is the 
governing factor of the fatigue life. The deleterious effects on fatigue lives is more significant 
in the cyclic loading tests with stress reversal R < 0 than the cases of cyclic compression (R 
= 00). Namely, the local bulging ofthin tubular specimens ofR < 0 causes salient inelastic 
deformation, accelerates the evolution of delaminations, and thus may cause the reduction 
of the fatigue life. Therefore, fatigue lives under various loading conditions may be reasonably 
classified into three characteristic damage mechanisms shown schematically by three hatched 
regions in Fig. 4. 

The region A hatched by vertical lines, representing the loading condition of cyclic 
tension-compression with high stress level, shows the sudden fracture of specimens due to 
the local disperse defects without significant progressive damage. In the region B of cyclic 
tension-compression with rather low stress levels, hatched by horizontal lines, the final 
fracture results from the degradation of composite materials due to accumulation of 
progressive damage. 

In the region C for the stress reversal R < 0, shadowed by small dots, on the other hand, 
the final fracture is caused by the global buckling of thin tubular specimens resulting from 
the marked delamination over whole range of stress level. The stress-fatigue life relation 
for the stress ratio R = -0.25 (marked by ~ in Fig. 4) almost coincides with that of R = -00. 

Though the loading condition of R = -0.25 includes a small amount of compressive stress, 

Number of cycles N 

Figure 4. Fatigue limit under axial cyclic loading and the effect of maximum (or minimum) stress 
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the fatigue life decreases significantly because of the salient inelastic deformation due to 
the local bulging of tubular specimens. 

4. Quantitative Observation of Internal Damage 

4.1 OBSERVATION OF INTERNAL DAMAGE AND ITS QUANTIFICATION 

In order to elucidate the relation between the microstructural change and the macroscopic 
mechanical properties discussed so far, more detailed observation and the quantitative 
evaluation of the evolution of internal damage will be needed. For this purpose, we further 
observed the development and densities of the matrix cracks and the delamination in the 
specimens subjected to fatigue at several stages of life fraction N/Nf" The fatigue tests were 
performed at a stress amplitude 0". = 62.5MPa and under two levels of stress ratios R = 0 
and R = -0.25. The average fatigue lives under these conditions were Nf == 30,000 (R = 0) 
and 46,000 (R = -0.25), respectively. Micrographical observations were performed at the 
typical stages of the fatigue life fractions of N/Nf = 0.03, 0.44, 0.77, 0.93, and 0.96 for R = 
o and N/Nf = 0.15, 0.60, 0.80, 0.90 and 0.96 for R = -0.25. 

Specimens subjected to the fatigue of specific life fractions N/N f were sliced 
perpendicularly to the specimen axis at 8 sections of 3mm interval, as shown in Fig. 1, to 
examine the distribution of internal damage in the axial direction. The surfaces of the sections 
were ground and lapped, and were observed by a light micrographic apparatus. Fig. 5 shows 
a micrograph of the internal damage taken by dark field viewing with reflected light 
microscope. 

4.2 QUANTIFICATION OF INTERNAL DAMAGE 

4.2.1 Average Matrix Crack Length and Matrix Crack Density 

Figure 5. Observation of internal damage (R = 0, Ga = 62.5MPa, NINe = 0.96) 
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For the quantitative evaluation of internal damage. the size and the geometries of the defects 
as well as their number should be taken into account. As already observed in Fig. 5. the 
internal damage induced in the present specimens consists mainly of the matrix cracks and 
the inter-lamina delamination. 

The number of defects in the innermost layer (the first layer) and in the lamina-interface 
between the first and the second layer (D 12) were much larger than other regions regardless 
of the life fractions and stress ratios. Since this may be attributable to the additional 
deterioration caused in the process of preparing sliced specimens for the micro graphical 
observation. we will exclude the matrix cracks in the first layer together with the delamination 
at D12 in the later discussion. 

Since the matrix cracks have various length and configuration. we will classify them 
into the following three groups according to their length I projected in the direction 

perpendicular to the lamina: (a) 0 < 1/10 < 0.5. (b) 0.5 ~ 1/10 < 1. and (c) 1/10 = 1. where 10 
is the thickness of the lamina. Then. as the quantitative measures of the damage state. we 
will further define the average matrix crack length lAVE and the matrix crack density DMTC as 
follows: 

lAVE = (Na x 0.25 + Nb x 0.75 + Nc x 1) x 10 / NTOTAL 
DMTC = (Na x 0.25 + Nb x 0.75 + Nc x I) x 10 / A 

NTOTAL = Na + Nb + Nc 

(1) 

(2) 
(3) 

Na. Nb and Nc are the number of cracks of the above categories (a). (b) and (c) whileNTarAL 
is the total number ofthe cracks (a). (b) and (c). The symbol A in equation (2). on the other 
hand. is the total cross-sectional area of 8 sliced specimens. 

4.2.2 Total Area of Delamination and Delamination Density 
According to the micro graphical observation. the delaminations are induced mainly by the 
extension of matrix cracks to the lamina-interface. and then by their development along the 
interface. In the micrograph. the delaminations are observed as segments of line. and thus 
we will measure the number and the total length [DEL of the individual delamination. Since 
the delaminations extend also in the axial direction. we calculate the area of the delamination 
ADEL by multiplying the observed length of the segments by the thickness 3mm of the sliced 
specimen: ADEL = lDEL X 3· We will further define the delamination density DDEL by 

(4) 

where A INI' denotes the total inter-lamina area of 8 sliced specimens. 

4.3 DEVELOPMENT OF MATRIX CRACK 

In order to elucidate the development of damage in a whole tubular specimen. we first 
examined the distribution of the matrix crack density in the sliced specimens at several life 
fractions NINe of the fatigue life. Fig. 6 shows the distribution of the matrix crack density in 
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radial, circumferential and axial directions at the life fraction NINe = 0.96. The circular 
section of each slice was divided into 8 portions A, B, C, "', H in circumferential direction. 
It will be observed from these figures that, in both cases ofR = 0 and -0.25, the distribution 
of matrix crack density is sufficiently uniform in the radial direction. As regards the axial 
direction, the crack density is rather dominant at the central part of the specimen (slices No. 
4-7). This confirms the validity of the test results obtained by tubular specimens. 

The tubular specimens are free from edge effects, and can be employed not only to the 
compressive stress tests but also to those of combined stress. However, the damage states 
may be non-uniform in radial direction because of the effects of the curvature of the tubes 
and the resulting radial compressive stress. Thus, Krempl and An(8) have analyzed the stress 
distribution in CFRP [±45°], laminate tubes, besides performing the corresponding 
experiment, and confirmed insignificant effects of the specimen curvature. As observed in 
Fig. 6, the distribution of matrix crack density for both R = 0 and R = -0.25 is essentially 
uniform, and hence the effects of curvature may be disregarded also in the present tests. 
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Figure 6. Distribution of matrix crack density 
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Fig. 7 shows the increase of the number of the matrix cracks Na, Nb and Nc classified 
by their length . As the increase of the life fraction NINe' the fraction of the number of the 
longer cracks Nc increases. The marked increase of matrix cracks in the case of R = -0.25 is 
concentrated more to the last stage of fracture than the case of R = O. 

Figs. 8 and 9 show the increase of the average matrix crack length LAVE!Lo and that of 
matrix crack density DMJC for the cases of R = 0 and -0.25. In the case of R = -0.25, the 
matrix crack density DMJC increases markedly at NlNc ~ 0.8, and this induces rapid increase 
of the delamination density (cf. Fig. 12 below). In the case of R = 0, on the other hand, the 
matrix crack density is sufficiently large at NINf = 0.8. This may be accounted for by the 
fact that the maximum stress (fmax = 125MPa for R = 0 is larger than (fm.x = 100MPa for R = 
-0.25, and this larger value of the maximum stress induces larger number of matrix cracks. 
However, in the case of R = -0.25, the compressive stress accelerate the growth of the 
delamination at NINf > 0.8 (later Fig. 12). 

4.4 DEVELOPMENT OF DELAMINATION 

Now, let us examine the development of the delamination. Fig. lOis the distribution of 
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delamination density in tubular specimens at NINf = 0.96 for the cases of R = 0 and R = -
0.25. As mentioned already, the delaminations occurring on the interface between the first 
and the second layers (D12) have been excluded from Fig. 10. 

In both cases of R = 0 and R = -0.25, the locations of the largest delamination density 
in the axial direction coincide with those of the maximum matrix crack density (Le., the 
central part) shown in Fig. 6. However, as regards the distribution in the circumferential 
direction, the largest delamination density is localized saliently in a few limited regions, 
and these localized regions locate in the sequence ofD~A~F (R = 0) and or B~A~H~G 
(R = -0.25). By noting the thickness 3mm of the sliced specimens, these regions are situated 
along the direction of 45° with respect to the specimen axis. Namely, in view of the 
mechanism of the delamination which occurs as a result of the extension of matrix cracks to 
the lamina-interface and their growth along the interface, delamination may develop in the 
fiber direction of the layer. 

As regards the distribution in the radial direction, the largest delamination density is 
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observed in the outermost interface (D78) in both cases ofR = 0 and -0.25 in Fig. 10, and 
this situation is observed also at early stages of NINf" This is in contrast to the matrix crack 
distribution shown in Fig. 6, where the radial distribution is observed rather uniform 
throughout the fatigue process. If we note the stress-strain hysteresis curves shown in Fig. 
2, local and global buckling may have occurred at the stresses around their minimum. 
Then, the outermost lamina will expand radially, and the resulting tensile and shear stresses 
in radial direction will facilitate the delamination. 

The increase in the number and the density of the delamination is shown in Figs. 11 
and 12. In contrast to the development ofthe matrix crack density of Fig. 9, the delamination 
densities of Fig. 12 show almost identical increase both for R = 0 and R = -0.25. Though 
maximum stress crmax = 100MPa for R = -0.25 is smaller than crmax = 125MPa for R = 0, the 
compressive stress for R = -0.25 may have accelerated the delamination; this may account 
for the results of Fig. 12. 
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4.5 REDUCTION OF YOUNG 'S MODULUS AND ITS RELATION TO THE 
DEVELOPMENT OF INTERNAL DAMAGE 

Fig. 13 shows the reduction of Young's modulus induced by the fatigue process of the 
stress ratios of R = 0 and -0.25 and the stress amplitude of cra = 62.5MPa. Young's modulus 
was obtained by the procedure of Sec. 3.3, by performing local unloading at specific stages 
of NINf and by measuring the related change of elastic strain. 

Though some decrease in Young's modulus is observed from the onset of experiment, 
this may be due to the stabilization of the internal structure of the specimen. However, the 
succeeding and accelerating decrease in E/Eo is mainly due to the significant development 
of the matrix cracks and the delaminations. 

It should be noted from Fig. 14 that the normalized Young's modulus decreases almost 
linearly with the increase of the crack and the delamination densities. The slopes of the 
relations in Fig. 14 depends on the stress ratios; i.e., the slope for R = 0 is smaller than that 
ofR = -0.25. Namely, as observed in Figs. 6 and 10, the distribution of internal damage in 
axial direction is less uniform in the case ofR = -0.25, and hence more significant decrease 
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of Young's modulus after N/Nf = 0.90 is induced in this case of R. 
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5. Conclusions 
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The cyclic tension-compression tests on graphite/epoxy [±45"]41aminate tubes are performed. 
The relation between the change of the inelastic properties and the development of the 
internal damages was discussed. The quantitative observation of internal damage was also 
performed. 
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INTERACTION BE'1'WEEN A MAIN CRACK AND INCLUSIONS 
AT SHEAR STRESS STATE 

V.PETROVA 
Research Ir~tttute 01 Mat~~mattcs~ 
Voronezh State Untverstty 
Untversity sq.~l, Voronezh 394693~ Russta 

Abs'trac't. 
The problem of a crack interaction with an arbltrary 
of small rigid inclusions under the shear loading has 
solved using singular integral equations and a 
parameter method. Attent10n has been paid to analyze 
posslble contact of the crack edges. 

1.In'troduc't1on. 

set 
bt?i?11 

small 
the 

The work is concerned with the investigation of interaction 
between a main crack and the field of small r1gid 
inclusions at shear loading parallel to macrocrack line. 
Slmilar problem has been solved by Petrova (1988) under the 
influence of tensile loading using the small parameter 
method as glven by Romalis and Tamuzh (1984). In this work 
attention has been paid to analyze the possible contact of 
macrocrack edges. 

This phenomenon was observed for the shear loading of 
macro- and microcrack system (Tamuzh and Petrova (1993» 
and for the heat flux (Tamuzh V.,Petrova V. and Romalis N. 
(in press». It was found that depending on the locations 
and orientations of the small cracks the main crack could 
be partially or completely closed that means the 
overlapping of the crack faces. Therefore in order to 
obtain the correct macrocrack tip stress intenslty factor 
KI the appearance of the contact zones was taken into 

consideration. 
of d1ssimilar 

the slxties 
of Dundurs 

Early this effect for the shear loadlng 
materials with cracks has been revealed 1n 
Commninou and references can be found in paper 
and Commninou (1979). 

Applying the method similar to proposed 
Petrova (1993>, the problem of crack 
interactlon under the shear loading is 
following assumptions: 
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by Tamuzh and 
microinclus10ns 

solved with the 
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1) one opening zone with the unknown length 2c is located 
on the macrocrack; 
2) on the closed zones of the crack the smooth contact is 
assumed, i.e. the friction is not taken into account. 

2. Statement 01 the problem disregarding the contact zones 

Let an elastic isotropic plane contain a macrocrack of size 
2aO and N microdefects of size 2uk« 2UO<microcracks or 

small rigid inclusions) <Figure 1). It will be assumed that 
all Uk=U. Cartesian coordinates X and yare centered at the 

midpoint of the main crack such that the crack line lies 
along the X-axis. The local coordinate systems Xk and Yk 
are attached to each mlcrodefect positioned at the angle ~k 

to the X-axis. 
coordinates are 

The macro- and microdefect 
denoted by ZkO <&=O.1 ••••• N). 

... ... ... ... ... ... ... ... ... ... ... S 

~y ~ O''+- ... yC <0 ).. ak o ~ ~ 0.-* - - '1 
, -c c 

-ao 0 ?'c 
-0 

a XC o 0 X -- --
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S 

Figure 1. A location scheme of the main crack <with 
tact zone) and an array of small defects. 

midpoint 

con-

The crack edges are supposed to load not self-balanced 
forces 

o ± 
n 

Derivatives with respect to displacements 

d .... .... 
2G dt (u;;, +iV~)= f~<t)± ~(t>, 

(1) 

( 2) 

are assigened to lines of rigid inclusions, where G is the 
shear modulus. Stresses and rotation are absent at 
infinity. 

Singular integral equations for the system of defects 
have been derived by Berezhnitskiy et.al. (1983) 
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Here, 

and Knk and Lnk are regular kernals: 

(4) 

are introduied here (Berezhnitskiy et al (1983». The 
parameter Pk<Pk)iS assigned the following values: -l(Z> for 

the cracks, and Z<-l) for the inclusions, where ~3-4~ for 
plane deformation, cJ!= <3-~) / (1+~) for plan", stn~ss state, ~ 
is Poisson's ratio. 

If shear stress S are applied at infinity, this problem 
is reduced to a problem wIth conditions on the defect 
boundary. In our case 

* -2t~ 
Fn( Pn~<J)n)=-2tS e +4tG<t>n (7) 

where <J)nis the rotation angle of the rigid inclusion; <J)n=O 

for the cracks. These deflection angles are dertermined 
from the condition whereby the principal moment of all 
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forces acting on each inclusion is 
(Muskhelishvily (1968» 

equal to 

p* 
Ji (m )=-n_ Re 
n "11 p _p* n n 

2 1 * {an {1~[Gn(PnJ~}/Pn + Gn(PnJ~)]dX} 

Jin(<t>n)=O 

For the self-balanced forces on the edges 

* Gn<Pn,tn>=o 
and system (3) is simplified. 

zero 

(8) 

Equations (3) can be solved by taking into account the 
following conditions 

ak 
J Gn<Pn,tn)dt=O 
-ak 

(9) 

For the macrocrack-microdefects problem we have to single 
out an equation for the main crack (n=O) in syst<.:", c:;). The 
others may be either for small rigid inclusions or 
microcracks. Attention has been paid to the first case. The 
second one has been investigated by Tamuzh and Petrova 
(1993) and can be used for the check of solution. 

3. Consideration of the crack closure 
Let us assume that: only one open region with the unknown 

length 2c and center coordinate zg will arise on the main 

crack (Figure 1). Of course, this zone can coincide with 
whole macrocrack. To solve the problem by taking into 
account the crack closure it is necessary to formulate new 
boundary conditions. For the open zone of the main crack 
and for inclusions the previous boundary conditions (1),(2) 
are valid. On the closed zones of the macrocrack, the 
conditions are as follows 

± 
'to (x,D)= S 

[ .. J - 11 1.10 - ..... 

(10) 

The initial system of equations (3) has to be divided 
into two sets of real and imaginary parts according to 
Goldshtein et al (1992) 
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Ixl< c 

N 1 a 
L * J Bl/Pk,tJRe(Knk+LnkJ-Ai/Pk,t)Im(Knk- Lnk)Jdt=XCn 

k=n Pk-Plt -a 
n=1 ,2, ... , N I x I < a ( 11 ) 

dt -

In systems (11),(12) the following notations have been used 



282 

and for macrocrack 

where 
* GO(po,tJ=2g~(t), FO(po,tJ=-2PO(tJ 

~ 1 
g~(t)=2G ~t([UOl + t[VoJ)=~(Bo+tAo) 

(13) 

(14) 

(15) 

[uo], [Va] are the shear and transverse displacement jumps. 

The expressions of kernels Koi' Loi and Kno' L~O can be 
obtained from (8),<9) replacing the parameters of 
macrocrack by parameters of the opened zone of 
macrocrack,i.e. XOand TO (formula (5) at n=o. E--Q> should 

be replaced by 

rg = t+ zg, xg = X + zg . 
Conditions (9) for (11),(12) are the following 

(n="1,2, ••• ,N) 

(n=O,"1,. ••• N) 

Using variables t=ak~' x=anx the systems (11),(12) can 

be expressed in a dimensionless form and the solution is 
sought as a sequence of small parameter A=a/aO 

_al P _al P 
~ - E ~p A , Bn - E Bnp A (17) 

p=o p=o 
The kernels Knkand Lnk are expended in the series of A 

too. This expressions are cited in Tamuzh et al (1993). 
Taking into account the cond1tions (16) the systems of 

equations (11), (12) are regularized by Karleman-Vekua 
method (Muskhel1shvili (1968». Then, inserting series (17) 
in (11),(12) and equating the expressions at like powers of 
A, the recurrent relations are obtained for the subsequent 
determination of coefficients in (1'7). We calculated them 
with an accuracy to A2 



where 

Im(Jk)Re(mok1-nok1J 

2G 
- ¢l -J ) s n n 

(u2 - J )1/2 
1? 
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(19) 

(20) 
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(;21) 

Expressi;:;ns of mok1.nok1 looks similar, only e=1,dO=O. 

4. Stress intensity factors 

The stress intensity factors can be obtained from Gn(Pn.t} 
as follows: 

(22) 

The subscript "+" refer to the right side of the crack tip 
and "-" - to the left. 

The macrocrack stress intensity factor KII is defined by 

shear displacement jumps U~ (15). It was founded that the 

main crack closed zones don't change the value KII. The 

macrocrack tip stress intensity factor is defined by 
gradient displacement jumps V~2 (15). So, the KI contains 

the unknown macrocrack opening zone 2C and it's midpoint 
coordinate. 

Putting the expressions (18)-(21) into equation (22) and 
separating the real part, there results 

± _ ~ '}..2 N 1 {2G [ c C] 
KIO-~SY ao ~k~l~* Re(-S- ~k-Jk} Re mOk1 (±1)+ nOk1 (±1J 

-Im(Jk J Im[mgk1 (±1J- ngk1 (±1J] (23) 
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'}..2 N '1 2G 
4k~1~*{Re(S <Pll- Jll ) Im[mOll1 (±1)+ 

+Im(Jll ) Re[mOll1 (±1J- nOll1 (±1J] (24) 

e e JRo , <Pll' mOll1 ' nOll1 are the formulas (20). 

The unknown boundaries of the opening zone are found 
from the singularity absence in the solution near these 
boundaries (601dshtein et al (1992» 

KI He) = 0 (25) 

Practically the calculation of opened zone is provideo by 
iterativ~ process. At first step the region without macro­
crack edges overlapp1ng is taken. Then the size a have to 
be changed until equality (25) is fulfilled with 
requirement accuracy. 

5.Numerical results and conclusion 
The domains where inclusions of different orientation cause 
a full or partial closure of the main crack is defined by 
KI (22) and presented in Ftgure 2. 

To estimate the effect of crack closure on the stress 
intensity factor, a num~:-J,- ... l analysis is carried out for a 
single inclusion with coordinates x={)., y=0.5 aO and slope 

angle «ll=-450 , '}..=0.1. The value of KI , disregarding the 

closed zone on the main crack is K-IS(a )1/2 = 0.459.10-3 , 
I 0 

obtain but taki?~ into account the closure we 
KI IS(ao)1 =0.182.10-2 • On the right side the closure zone 

expands up to the crack tip and Kf=o. The half of opened 

zone is equal to c= 0.536 ao. 
It reveals that absolute value of KI is rather small, 

because in the undamaged body K1=0, and the increment of KI 
is caused by influence of one inclusion w1th size O.laO. 
But the relative change of KI due to the phenomenon of 

crack closure is rather significant. 
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Figure 2. Domains of inclusions cause the full (denoted by 
"-") or partial ("*") closure of the main crack or opened 
it (denoted by "+"). 0 - zero macrocrack opening. 

Conclusions 
It has been revealed that inclusions can cause full or 

partial closure of the main crack. 
The value of KII at the main crack tip can be calculated 

disregarding the contact zone. 
For correct determination of KI the presence of contact 

zone should be taken into account. 
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RECENT WORK ON MESOSTRUCTURES AND THE MECHANICS 
OF FIBER COMPOSITES 

Abstract 

M.R. PIGGOTT 

Department of Chemical Engineering and Applied 
Chemistry 
University of Toronto, Toronto, Ontario M5S lA4 Canada 

Mesostructures are middle size structures, and, in fiber composites, influence many 
important properties. This paper reviews papers presented at a recent meeting devoted to 
mesostructures and the mechanics thereof. Rapid developments are being made in the 
identification and quantification of fibre misalignments, waviness, and packing 
anomalies. These are shown to affect properties such as stiffness, strength and 
toughness. In addition, the mesostructure affects warping and cracking in composites. 
Developments in mechanics go some way towards explaining mesostructure effects in 
notched strength and other properties. However, much remains to be done. There is a 
very definite series of links between manufacture, meso structure and final properties, so 
that a better knowledge of mesostructures will surely lead to higher quality composites. 

1. Introduction 

Our models for fibre composites normally consist of straight rod-like fibres, uniformly 
packed in hexagonal or square arrays. While this is useful for estimating properties 
which depend principally on the fibre properties, it can be very misleading for matrix 
and interface dependent properties. 

For example, tensile strength and Young's modulus for unidirectional laminates are not 
very dependent on the detailed structure of the composite. Meanwhile, compressive 
strength is directly affected by fibre waviness [1] and is also probably influenced by fibre 
bundling [2]. These are examples of what has been termed orientation mesostruetures 
and packing mesostruetures [3]. 

Mesostructures are middle size structures. The are larger than the microstructures, which 
generally refers to the micron level, and involves such fine structures as those observed 
at the fiber-matrix interface [4,5]. The upper size limit for mesostructures is somewhat 
less than the macrostructure, e.g. the details of the laminate/honeycomb layup. Thus 
mesostructures range roughly from 0.03 to 3 mm in size. 
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Two main classes of mesostructure have been identified [3] and each has two subclasses. 

1. Secondary Disorder 
la. Orientation: fibre waviness is an example of this 
lb. Packing, e.g. fibre rich areas, resin rich areas and voids 

2. Secondary Order 
2a. Orientation, e.g. fibre preferred orientations in injection moldings. 
2b. Packing, e.g. fibre bundling and fibre end synchronization. 

The effect of fibre waviness on compressive strength has already been mentioned. It 
probably also plays a major role in shear strength [6] and fatigue endurance [7]. Fibre 
bundling affects toughness [8] as well as compressive strength. 

Mesostructures originate in the production process, and are determined by the precise 
nature of the material constituents used, as well as other factors of production. So far we 
know little about this, except that the effects can be very subtle: for example in the case 
of the mold material, graphite molds give straighter fibres than nickel ones, at least with 
reinforced thermoplastics [9]. 

There is clearly a pathway involved in this i.e., production processing~mesostructure 
~ mechanics of mesostructures ~ properties. So mesostructures could provide the key 
for developing production processes to obtain desired properties. Again there is huge 
potential for development. Furthermore, quantification of mesostructures could also be 
used for quality control of the final product. 

With this in mind, a two day meeting was called to discuss mesostructures and 
mechanics in fibre composites. All the participants were invited, and this paper 
highlights the issues discussed. 

2. Identification and Quantification 

Most work here appears to have been devoted to the measurement of fibre orientation. 
Hine et al [10] used sectioning, polishing, and a unique image analysis facility, to 
obtain three dimensional orientation measurements on long glass fibre reinforced nylon 
6,6 injection moldings. Each fibre intersection with the polished plane appears as an 
ellipse and its ellipticity and orientation were used to evaluate the fibre orientation 
relative to three orthogonal axes. The molded sheet contained the I and 3 axis, and the 2 
axis was normal to it. The 3 axis was the molding direction. A typical result, shown 
in fig. I, is given in terms of the squares of the cosines of the angles with respect to the 
three axes, 91, 92 and 93. These data can be used directly to calculate upper and lower 
bounds for the elastic constants Eij. Gij and Vij. Comparison with measured values 
(using ultrasonics) showed that most of the elastic constants fell within the bounds 
when allowance was made for experimental scatter, and further, that the upper and lower 
bounds differed by no more than about 30% of the upper bounds. 

An alternative method of determining the three dimensional orientation of glass fibres, 
described by McGrath and Wille [11], could be performed non destructively. It was also 
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Figure 1. Fibre orientations close to the injection point in a glass-nylon molding, 
relative to: 1) the direction in the plane of the molding and perpendicular 
to the injection direction; 2) the normal to the plane of the molding; and 
3) the molding direction [10]. 

Figure 2. Fibre orientation distribution diagram visualized as a 3-D histogram: 
fibres more or less aligned in one direction [11]. 
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rapid and economical. However, it needed opaque tracer fibres, and the composite needed 
to be transparent. (This was effected by matching the fibre and polymer refractive 
indices.) Carbon fibres were used as tracers, and constituted 0.1 wt % of the composite. 
3D histograms, such as that shown in fig. 2, were produced, and these could be rotated 
or zoomed on the computer monitor. 

FrankIe [12] described the use of eddy currents to evaluate fibre waviness in carbon­
carbon tubes. This method is also non-destructive and provides useful data on resistance 
to compressive collapse. 
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Fibre packing as given by a typical included angle distribution for nearest 
neighbours. (Square packing gives 450 and 900 ; hexagonal packing gives 

600 , as shown.) [13]. 

Yurgartis [13] quantified packing mesostructures as well as misalignments. (His 
method for misalignments - described previously [14] - involves sectioning at 50 or 100 

to the main fibre direction.) For the packing geometry the Hough Transform image 
analysis technique was used [15]. Spatial distribution was then quantified in terms of 
the included angle, as shown in fig. 3 for square and hexagonal packing. This 
representation has the advantage of being independent of fibre volume fraction. (pyrz 
[16], using the method of tesselations, develops a "coefficient of skewness" which is 
also apparently independent of fibre volume fraction) . Yurgartis also described a 
skeletonization method for the image processing of microcracks. The skeletonized 
images were then used to determine crack orientation and spacing distributions. 

Finally, Ifju et al [17] described the use of a Moire Interferometry method to identify 
structural details in 3-D woven and 2-D braided materials. In this method the specimen 
has a fine cross grating attached to it, "carrier fringes" are produced [18] and 
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Laminated 2-D Braided 3-D Woven 

Figure 4. Displacement field normal to the shear plane for a cross ply laminate, a 2-
D triaxial braid and a 3-D weave. In the last two cases the coarse 

structure reveals itself in the strain field (The specimen size was about 21 
x 6.5 mm2) [17]. 

Figure 5. Microcracking damage in a compact tension carbon-epoxy laminate {O, 
-45,90, +45)2s [19]. 
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displacements in two orthogonal directions can be measured. When a specimen is 
stressed, the internal structure is revealed, as shown in fig. 4, which compares a straight 
fibre laminate, a 2-D braid and a 3-D weave. These specimens were subject to a shear 
stress. 

3. Specific Mesostructures 

These include microcrack arrays, which can be detected and made visible by using high 
atomic number "stains" and then x-raying the specimen [19]. see fig. 5, and by 
ultrasonic backscattering. The polar backscattering of ultrasound is particularly effective 
as an NDE method for detecting cracks and determining their positions in three 
dimensions [20]. Fig. 6 shows the increase of crack density with increasing strain for a 
carbon fibre-polymide laminate . 

• 90° Layer 

.- Il 45° Layer 8 15 
v 
~ • • '-" • >. • ;::: 
III 10 • c 
~ 

Q 

.:.: • Il Il Il 
v 
~ 

5 Il ... 
U • 

• Il 

-_\ Il 
0 
0.00 0.40 0.80 1.20 

Strain (%) 

Figure 6. Increase of crack density with strain for a carbon-polyimide laminate (45, 
90, -45, 012s tested at -530 C [20]. 

The x-ray staining technique can also be used to tag individual fibres which may then be 
used as flow tracers in the molding process [19]. In addition, thermal expansion 
measurements can be used to detect fibre re-arrangements during molding [21]. 

Variations in crystallinity in reinforced thermoplastics also constitute a type of 
mesostructure. These were shown to influence the fracture behaviour of the composite 
[22]. 
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4. Property Relationships 

Compressive strength: Adams [23] showed that having wavy layers in cross-ply 
laminates of carbon-epoxy reduced the compressive strength in a linear fashion, up to 
about 35% loss. Thereafter, there appeared to be no further effect, fig. 7. The waviness 
was discrete, as shown in fig. 8. Different degrees of waviness were introduced by 
causing waviness in more, or fewer layers, while amplitude and wavelengths were held 
more or less constant. 
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Figure 7. Compressive strength vs fraction of wavy layers for carbon-epoxy [23]. 

Figure 8 Cross ply carbon epoxy laminate having several wavy layers lL..)J. 

Piggott [24] reviewed some previous work on the effect of waviness on compressive 
strength and modulus, shear strength, and fatigue endurance, then went on to show that 
significant increases in delamination resistance were possible, also, when the fibres are 
wavy. Other work on delamination, suggesting that there is, indeed, an effect, is 
reported in the next section (see section 5) 
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In a written submission, Varna et al [25] showed that voids influenced the generation of 
cracks in glass fabric-vinyl ester resin transfer molded laminates. When the composites 
were stressed in the transverse direction, two types of crack were produced: large ones 
which traversed the specimen almost completely, and small ones which arrested at 
transverse plies. Only the small cracks were influenced by the void content, Vv. Fig. 9 
shows the density of small cracks vs strain at Vv = 0.01, 0.03 and 0.04. These cracks 
appeared to toughen the material - the stress-strain curves, for the higher void content 
materials, fig. 10, showed considerable pseudo ductility. 
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Figure 9. Density of small cracks vs strain at void contents of I, 3 and 4% [25]. 

S. Manufacture-Mesostructure-Property Relationships 

A wide range of manufacturing variables are likely to affect the meso structure, and 
through it, the properties. This is inevitable because there are a very large number of 
types of material, ranging from very short random fibre glass-nylons through sheet 
molding compounds to highly organized forms such as laminates. Each has its own 
production methods. 

In the random fibre case, Michaeli and Heber were able to link manufacturing processes 
and warpage in lamp covers made with sheet molding compounds [26]. Sectioning 
samples gave orientation information. The orientations were used to evaluate the elastic 
constants. The shrinkage could also be estimated and hence, using the elastic constants, 
the warpage was predicted. Experimental tests showed good agreement with the 
predictions. 
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Figure 10. Stress-strain curves for glass fabric-vinyl ester transfer molded laminates 
with different void contents. Stress transverse to main fibre direction 

[25]. 

Ludwig et al [27] were able to orient short glass fibres in polypropylene in injection 
molding by using the push-pull process. (In this at least two gates, Gland G2 are 
used. The mold is first filled through Gl and some solidification occurs. More material 
is then injected via G2, so that the molten core is ejected through G 1. This process 
continues by alternate injection-ejection cycles.) This made the material highly 
anisotropic; see fig. 11, and increased the strength parallel to the flow direction by about 
65%. 

In more highly organized materials, Wang and Wang [28] were able to show that there 
should be a size effect in 3-dimensionally woven materials. This is because the 
structure at the corners and edges is different from the centre, and the volume of this 
material decreases proportionately with increasing size. The effect is influenced by the 
braiding angle, and is particularly noticeable at 20-300 . 

In the case of woven Kevlar-epoxy laminates modifications to the fabric before molding 
affected the work of delamination. Williams, with Briscoe [29] had earlier shown that 
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Figure 11. 
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lubrication of the fibres facilitated their movement in the molding process, so that they 
became more sinuous. Thus, in a delamination test, they tended to cross the fracture 
plane more frequently than when dried fibres were used. This gave rise to increased 
toughness. In the later paper [30] more fibre bridging was produced by abrading the 
fibres. This more than doubled the fracture resistance. 

Cairns et al [31] developed an inhomogeneity parameter and used this to explain the 
difference in notched tensile strength for samples made by hand lay up, and by an 
automated tow placement process. Hand lay up gave the most homogeneous structure, 
and this had a lower strength. The inhomogeneities were defined in terms of a Cosserat 
length, A, and fig. 12 compares the predictions using this approach and the experimental 
results. 

6. Conclusions 

Mesostructures have been identified as being important features of fibre composites. 
They affect many properties, and can be influenced by the manufacturing process. Their 
study is therefore likely to lead to a better control over the quality of fibre composites. 
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STIFFNESS REDUCTION IN COMPOSITE LAMINATES DUE TO 
TRANSVERSE MATRIX CRACKS 

G.N.PRAVEEN and J.N.REDDY 
Department of Mechanical Engineering 
Texas ABM University 
College Station, TX 77843-3123 

ABSTRACT: Cross-ply laminates with transverse matrix cracks are studied using 
the variational approach. An upper bound on the reduced stiffness has been de­
rived, complementary to Hashin's lower bound, for a given density of matrix cracks. 
Staggerring in crack patterns is also considered. The associated elasticity problem 
is solved using the Layerwise Laminate Theory of Reddy. The effect of crack density 
on the crack opening displacements and stress transfer is examined. 

1. Introduction 

Fiber composites are gaining increasing primacy as load bearing components in both 
small and large scale structures. In fiber matrix composites, matrix cracking is a 
typical damage mode. Matrix cracks by their very nature, introduce multiple stress 
concentration points (crack tips) which are potential sites for delamination. The 
different approaches to modeling transverse cracks are the shear lag model in its one­
dimensional and two-dimensional forms, the variational model, the self--consistent 
schemes, and more recently, the internal state variable model. 

Bailey and his coworkers (1977) proposed the shear lag model. In their experi­
ments on cross-ply laminates, cracks in the transverse ply showed a remarkably even 
spacing. Highsmith and Reifsnider {1982} reported the discovery of the "character­
istic damage state" , CDS, which refers to the state of a saturation in crack spacing. 
Fukunaga et al. (1984) studied the failure of [0/90]s awl [90/0]s laminates based on 
a statistical strength analysis, using an in-plane shear lag model. Flaggs(1985) used 
a mixed mode strain energy release rate criterion along with an approximate two 
dimensional shear lag model. Laws and Dvorak (1987) in their analysis accounted 
for the existence of residual stresses. 

The variational model was proposed by Hashin (1985). An approximate state 
of stress in the vicinity of a transverse crack was obtained by minimizing stress 
perturbations using the principle of minimum complementary energy. Predictions 
of this approach agreed well with experimental data of Highsmith and Reifsnider. 
Nairn (1989), in his analysis included the effect of residual thermal stresses. Varna 
and Berglund (1991), extended the thermoelastic analysis of [Om/90n]s laminates 
by taking into account a non-linear stress distribution in the thickness direction of 
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the 00 plies. Herakovich et al., (1988) developed an approximate analytical model 
to study stiffness reduction of cracked cross-ply laminates. The predictions of this 
model agreed reasonably well with experiments. 

Gudmondson and Ostlund (1992) obtained stiffness reduction in cross-ply lam­
inates based on the concept of change in elastic energy due to the appearance of 
cracks in the plies. Talreja (1986) developed a damage vector concept for matrix 
cracking and delamination. Allen et al., (1987) proposed a thermomechanical con­
stitutive theory for elastic composites, treating cracks as internal variables. 

In Hashin's variational approach, the axial stress perturbations in cracked lami­
nates under tension, are assumed to be independent of the thickness coordinate. The 
predictions of the theory agree well with experiments; nevertheless, the stresses are 
not accurate owing to the assumption of the invariance of axial stress perturbations 
through the thickness. Moreover, the stiffness reduction associated with staggered 
cracking cannot be very easily handled using Hashin's approach. In what follows an 
approach similar to that of Hashin will be presented. The approach in this paper is 
a displacement based approach and governing equations are derived using a concept 
based on plate theory. 

2. Stiffness Reduction Model 

In the following strain energy based model for laminates made from linear Hookean 
elastic material, with cracks, we invoke the principle of superposition. The cracked 
and uncracked bodies are subjected to the same external boundary conditions. The 
field variables of the cracked body are obtained by a simple superposition of the 
field variables in an uncracked body and corresponding perturbations. 

Following a method complementary to that of Hashin, by considering the ex­
pression for the strain energy of the cracked body in terms of the strain energy of 
the uncracked body and the perturbation strain energy, one arrives at the following: 

E* < EO _ 2U' 
- cfiV 

(I) 

The above equation yields an upper bound on the effective axial modulus of the 
cracked laminate. Hashin's complementary energy formulation yields a similar re­
sult, for the lower bound, as follows: 

(2) 

where, U; is the perturbation complementary strain energy and <To is the uniform 
applied stress and Co is the uniform applied strain. We now consider a laminate 
with a number of parallel transverse matrix cracks in the off-axis plies. The results 
due to Highsmith and Reifsnider (1982) show that the cracks are evenly spaced. 
In the light of the above fact, we will assume an even distribution of cracks in the 



303 

transverse plies. With this assumption, the crack density can be defined as the 
number of cracks per unit length, in a direction that is normal to the surface of the 
crack. Due to the equispacing of transverse cracks, a repeating pattern is evident. 
It suffices to solve the perturbation boundary value problem in anyone of these 
repeating patterns. The behavior of the stresses and displacements in the repeating 
unit is typical of that in the entire laminate. This repeating unit is therefore called 
a representative volume element, hereinafter referred to as the RVE. 

The upper bound on the reduced axial stiffness may be written in terms of the 
crack spacing, '2a', as, 

(3) 

where, '6.E', is the change in effective axial stiffness. This equation will henceforth 
be referred to as the stiffness reduction equation. 

The laminate is assumed to be wide enough in the direction parallel to the 
cracks, and that a state of plane strain exists corresponding to that direction. To 
accurately model the load transfer mechanism in the presence of matrix cracks, it 
is necessary to model the kinematics of deformation in the presence of cracks. The 
kinematics assumed here are a layerwise representation of the displacement func­
tions. In the residual problem, where the RVE is analysed, the length to thickness 
ratio of the RVE varies considerably from a high value of 12 to values less than 
unity, depending on the crack density. It has been reported by Highsmith and Reif­
snider (1982) that the saturation crack density in [0/903Js glass laminate is about 
0.75 cracks/mm, for a laminate thickness of 1.612 mm. In this case, the length to 
thickness ratio is around 0.83. Therefore, the RVE tends to behave more often, like 
a thick plate under the inplane perturbation boundary conditions. The layerwise 
laminate theory of Reddy is best suited to model displacements in these situations. 
The theory allows for a descritization of the RVE through its thickness, and yields 
governing equations in displacements at several planes through the thickness. 

The displacement field in an n-Iayered laminated plate composed of orthotropic 
laminae in the (x, y, z) system, may be written as (Reddy, 1987), 

n 

u(x,z) = Lui(x)q,i(z) 
i=l 
n 

w(x, z) = L wi (x)q,i (z) 
i=l 

(4) 

where ui and wi are undetermined coefficients and q,i are any piecewise continuous 
functions. The governing equations of the layerwise theory are derived from the 
principle of virtual displacements, which, in the absence of body forces is written 
as, 
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(5) 

Taking the origin of the Z coordinate axis to coincide with the lower surface of the 
plate, the function <I>i (z) is defined as follows; 

(6) 

The Euler-Lagrange equations of the layerwise theory are as follows: 

N~z - Q~z = 0 ,z 
(7) 

The resultants are evaluated using the modified plane-strain stiffnesses , as follows: 

where f:l.zi = [Zi-l, Zj+l] is the interval over which <I>i is non-zero and the Qs with 
numerical subscripts are the stiffness terms in the modified plane-strain constitutive 
equations, 

The equations of the layerwise theory form a system of coupled second-order 
ordinary linear differential equations. These equations may be solved exactly using 
the matrix operator method. But when the number of equations is large, a finite 
element solution is a better recourse. In their present form the equations require a 
simple one-dimensional finite element mesh. The mesh is used on each discretizing 
plane of the layerwise scheme, to obtain a finite element model of the computational 
domain. The finite element model is not presented here for the lack of space. 
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3. Results of the Model 

3.1. STIFFNESS REDUCTION 

In the present section, the predictions of the stiffness reduction model are presented. 
The model is validated by comparing the normalized reduced axial stiffness of cross­
ply laminates with a general [On/90m1s layup as a function of crack density, for glass 
epoxy composite laminate, with other models. 

Fig. 1 is a plot of the reduced axial stiffness normalized by the axial stiffness 
of the uncracked laminate, as a function of the crack density, compared with other 
models. The crack density is measured in terms of the number of cracks per mm 
along the longitudinal direction. The results presented herein are for a glass epoxy 
laminate whose properties are the same as in Hashin (1985). 

The upper bound on the reduced stiffness as predicted by the present model 
shows excellent agreement with the experimental results . The experimental results 
fall between Hashin's lower bound solution and the present variational upper bound 
solution. Both the solutions tend towards an asymptotic behavior in the limit of 
large crack densities. Also plotted are the predictions of the two- dimensional finite 
element model and the approximate analytical model due to Herakovich et al (1988) . 
It is seen that the latter models underpredict the reduction in stiffness. Fig. 2 
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Figure 1: Comparison of various models for [0/90318 glass epoxy laminate. 

shows the variation of the reduced axial stiffness normalized by the stiffness of the 
uncracked laminate, for glass epoxy laminates with increasing ratio of thickness of 
the cracked plies and the uncracked longitudinal plies. The effect of staggering in 
the pattern of cracks is also considered. It is seen that as the relative thickness 
of the cracked transverse plies increases, the reduction of stiffness at any given 
crack density increases. This is because, a greater amount of load is carried by the 
transverse plies in laminates with a greater relative thickness of these plies, in the 
uncracked configuration. Consequently, any cracking in the transverse plies leads to 
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Figure 2: Stiffness reduction vis crack density for glass epoxy laminates. 

a greater loss in load carrying ability of these plies. For the same external strain of 
the cracked and uncracked laminates, the cracked laminate requires a lesser load, 
due to the reduction in the effective axial stiffness. The stiffness reduction tends 
to saturate very quickly after a certain value of the crack density. At low crack 
densities, the reduction in stiffness is very high with even a slight increase in crack 
density. This is because, initially larger amounts of load are transferred or "shed" by 
the transverse plies to the adjacent longitudinal plies. As the load transfer increases, 
the load carried by the cracked plies reduces and therefore, the load transferred is 
expected to saturate after a certain crack spacing is achieved. This corresponds to 
the saturation in the normalized reduced axial stiffness. The crack spacing attains 
a saturation value. This crack density saturation state is called the characteristic 
damage state. Thus, the model clearly predicts the existence of the characteristic 
damage state. 

For steel and aluminum with modular ratio equal to unity, as expected, the 
model predicted a greater reduction in effective axial stiffness as compared to both 
glass-epoxy and graphite- epoxy laminates. The reduced stiffness was found to be 
around 25% and 27% of the original stiffness in the case of aluminum and steel 
respectively. The stiffness reduction curves for both aluminum and steel laminates 
were found to be almost the same. This implies that the reduction in stiffness is 
influenced only by the modular ratio and not by the absolute value of the moduli, 
for a given laminate at any particular crack density. 

3.2. CRACK OPENING DISPLACEMENTS 

The COD depends on the crack spacing, the layup, the placement of the transverse 
plies, their relative thickness as compared to the longitudinal plies, the applied 
strain and the reduction in stiffness for the particular crack spacing. By assuming 
that the profile of the crack opening is similar to that of a single crack in an infinite 
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isotropic plate under uniform far- field tension, the following normalization was done 
in conjunction with the stiffness reduction equation: 

~ E2 ~ U' ~ J 1 _ Z2 

4 t::.E nco a t2 
(9) 

where E2 is the transverse modulus, t::.E is the reduction in effective axial modulus, 
nc is the number of cracked plies, n is the total number of plies, t is the half thickness 
of the transverse plies and a is the half-crack spacing. The right hand side of the 
above equation is a function of f alone. The crack opening displacement as predicted 
by the layerwise theory is normalized as in the left hand side of the above equation. 
The closeness of the normalized layerwise solution of the COD profile to the profile 
of the ellipse determines the accuracy of the approximation made about the crack 
opening displacement. 

Fig. 3 shows the normalized crack opening displacements and the unit ellipse 
profile for [°/903]8 glass epoxy laminate. It is seen that at crack densities upto the 
saturation value, the normalized COD profile and the unit ellipse profile are almost 
identical. 
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Figure 3: Normalized COD for a [0/903]8 glass epoxy laminate. 

3.3. STRESS FIELDS IN THE RVE AT 0.1 CRACKS/MM. 

Fig. 4 shows the variation of the axial stresses in an RVE of a [0/903]8 glass epoxy 
laminate. The stresses are normalized by the axial stresses in the uncracked laminate 
at the corresponding locations, through the thickness of the laminate. The thickness 
coordinate of the discretizing planes are normalized by half the thickness of the 
transverse plies and is less than, equal to or greater than unity for planes located 
in the transverse ply group, coincident with the interface or in the longitudinal 
ply group, respectively. The axial stresses increase almost exponentially from zero 
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Figure 4: Variation of normalized axial stresses 0.1 cracks/mm. 

at the crack face to a far-field value in a distance of about 45% of the half crack 
spacing. In this region, most of the load is transferred to the adjacent plies. This 
load transfer occurs primarily at the interface in a region called the shear lag region. 
The axial stresses increase in magnitude as the distance from the midplane increases 
in the thickness direction. The variation of the axial stresses in the transverse plies 
along the thickness coordinate is not very pronounced for much of the transverse 
ply group, as seen at f = 0.667. 

Closer to the interface, the stresses reach a far field asymptotic value faster than 
at points near the midplane. The axial stresses in the 0 deg plies are very much higher 
along planes closer to the interface than at planes farther away from it . The axial 
stresses reach a peak value midway between the cracks, in the longitudinal plies. 
The stress concentration zone is pronounced and clearly extends beyond f = 1.2. 
In the [O/903)s laminate, the upper laminate free surface corresponds to f = 1.333. 
Thus, in cases where the 0 deg ply group is relatively thin, the stress concentration 
zone or the disturbance zone can span the entire thickness of the longitudinal plies. 

Fig. 5 shows the variation of the transverse shear stress along the distance 
from the crackface to the midpoint of the representative volume element, at differ­
ent planes through the thickness. The shear stress along each of the planes attains 
a maximum at a certain distance from the crackface. This behavior is in qualitative 
agreement with the results of the variational model of Hashin. The shear stresses 
decay to zero midway between the cracks. A comparison of the shear stress distri­
bution and the axial stress distribution reveals the shear lag region, wherein, there 
is a high non- zero shear in the transverse plies upto around 45% of the normalized 
half crack spacing. Thus, the reduction of the axial stresses in the cracked plies over 
a certain distance from the crack face manifests as an increased transverse shear 
stress over the same distance in the transverse plies and an increased axial stress 
over the same distance in the constraining longitudinal plies. This behavior of the 
stresses defines the extent of the shear lag region. As shown in Fig. 6, the transverse 
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Figure 5: Normalized transverse shear stresses at a crack density of 0.1 cracks/mm. 

normal stresses in the transverse plies are compressive near the crack face and reach 
a maximum at the midplane. The behavior changes from compression to tension, 
a small distance away from the crack face and attains a positive maximum which 
is relatively small, and then decays to zero towards the end of the shear lag re­
gion. The self- equilibrating nature of the transverse normal stresses is evident. The 
transverse normal stresses along any plane must be self-equilibrating because the 
shear lag region is bounded by vertical planes that are shear free and the traction 
free laminate top surface. In the constraining plies, the transverse normal stresses 
were again found to be self- equilibrating. The stresses were found to be tensile upto 
a certain distance from the crack plane. In general, they were of a behavior opposite 
to that in the transverse plies. These peeling stresses are responsible for the onset 
of delaminations at the crack tip. 
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Figure 6: Normalized transverse normal stress at a crack density of 0.1 cracks/mm. 
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3.4. STRESSES IN THE RVE AT CDS 

As the crack density increases, the nature and magnitude of the stresses in the 
representative volume element changes considerably. For the case of [0/903]8 glass 
epoxy laminates, a saturation crack density of 0.75 cracks/mm was reported by 
Highsmith and Reifsnider {1982}. The stress distribution corresponding to this 
crack spacing is compared to the previous case. Figs. 7 and 8 are plots of the 
stresses in the RVE at chracteristic damage state. 
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Figure 7: Normalized axial stress at the characteristic damage state. 
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Figure 8: Normalized transverse shear stress at CDS (transverse plies) . 

As seen in Fig. 7, the normalized axial stress is much lesser than at c = 0.1 
cracks/mm, and the axial stresses near the midplane show a distinct compressive 
behavior very close to the crack face. The transverse shear stress shown in Fig. 8 
exhibit characteristics that are similar to the case where the crack density was 0.1 
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cracks/mm. The normalized values of the shear stresses at any plane at c = 0.75 
cracks/mm are lesser than at c = 0.1 cracks/mm. This is because the present method 
is a displacement ( strain) based method wherein the laminates with crack density 
of 0.1 and 0.75 cracks/mm are subjected to the same external strain co. Under 
these conditions, the load required by the laminate with a higher crack density 
is very much lesser. The transverse normal stresses were found to attain a large 
compressive value at the crack face and a tensile value between the cracks. The 
self-equilibrating nature of the stresses was again noticed. This behavior extended 
over the entire length between the cracks, suggesting that the shear lag region spans 
the entire length between the cracks at the saturation crack density. 

4. Conclusions 

A strain energy based variational method has been employed to derive an upper 
bound on the effective axial stiffness of laminates with cracked transverse plies. 
Results of the model agreed well with experiments and the lower bound solution 
due to Hashin. Laminates with staggered cracks suffered greater loss of stiffness as 
compared to non-staggered cracking. The profile of the crack opening displacement 
was found to match that of a single crack in an infinite isotropic elastic solid under 
uniform far-field tension. A detailed study of the normalized stresses was carried out 
at two different crack densities including the saturation crack density, to examine 
the mechanics of load transfer and the mode of load shedding between the cracked 
transverse plies and the constraining longitudinal plies. 
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1. Introduction 

Improved characterization of present-day composites that are manufactured to obtain 
optimal property values by microstructure effects necessitates a more thorough know­
ledge of the microstructural features and their cooperative interaction which determine 
the physical characteristics of the material. This is particularly true for the description 
of strongly non-linear phenomena such as fracture. Neglecting geometrical disorder of 
fillers does not introduce a significant error in the prediction of the elastic and transport 
phenomena. By contrast, fracture is a highly localized phenomenon, and the local 
geometrical disorder cannot be neglected. The microfailure threshold is dominated by 
extreme fluctuations of the stress field, and these local hotspots are strongly influenced 
by a distribution pattern of inclusions. Continuum material models cannot capture the 
effect of random local material inhomogeneities on the localization of damage and 
failure. Also finite element models are not able to reflect the influence of local disorder 
on overall properties of composites. Moreover, an accurate modelling of a large number 
of inhomogeneities necessitates the size of the mesh to be sufficiently small compared 
to the typical size of an inclusion. Similar problems with a simultaneous modelling of 
microcracks nucleation and growth excludes this technique due to prohibitive costs and 
time consumption. 

In the present study transversely loaded unidirectional composite is discretized into 
a network of structural entities that are endowed with their own properties which re­
semble the microstructure on the mesoscopic length scales. The main objective of the 
investigation is to study the effect of inclusions' distribution on the load-carrying capa­
city of the material and to relate it to some geometrical descriptors of the microstruc­
ture. 
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2. Statistical Analysis of Patterns 

Several attempts have been made to determine parameters that characterize the distribu­
tion of fillers, for example: Altan et al (1990), Everett and Chu (1993), Green and 
Guild (1991), Taya et aJ (1991). Pyrz (1993a, 1994a) has introduced second order 
statistics to characterize the distribution patterns of fibres. The statistical descriptors 
used in the present study are illustrated in Fig. I. 
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Figure 1. Descriptors of point pattern. 

The centre points of fibres, detected from the composite by image analysis technique, 
serve as nuclei for a construction of the Dirichlet tessellation that uniquely maps the 
point pattern onto contiguous polygons covering the area of observation, Green and 
Sibson (1978), Pyrz (l993a). The second order intensity function K(r) is defined as the 
number of further points expected to lie within a radial distance r of an arbitrary point 
and divided by the number of points per unit area. 

The pair distribution function g(r) is related to the probability g(r)dr of finding an 
inclusion whose centre lies in an infinitesimal circular region with radius dr about the 
point r, provided that the coordinate system is located at the centre of a second inclu-
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sion. As shown in Pyrz (1994b) the functions K(r) and g(r) are related 

g(r) = _1_ dK(r) 
27rr dr 
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(1) 

For the Poisson pattern which is considered as a completely random distribution, Getis 
and Boots (1978), K(r) = 7rf2 and g(r) = 1. The pair distribution function g(r) charac­
terizes the occurrence intensity of inter-inclusion distances. Local maxima indicate the 
most frequent distances between points; local minima correspond to the least frequent 
distances in the pattern. Thus the supreme gmax of the local maxima determines a 
characteristic distance between pairs of inclusions. This value of the pair distribution 
function is, in the sequel, correlated with failure behaviour of patterns. The ability of 
the K(r) function to discriminate between different point patterns is illustrated in Figs. 
2 and 3. The second order intensity function K(r) for more regular patterns always lies 
below the corresponding function for the Poisson pattern contrary to clustered patterns 
whose K(r) functions are placed above the K(r) function of the Poisson pattern. 

The short- and long-range regularity is detected by a characteristic "stair" shape of 
the function K(r). Horizontal fragments of the function indicate empty space at cor­
responding distances either between points of the regular distribution or between clus­
ters which are regularly distributed. The function K(r) for the Poisson pattern serves 
as a dividing line between clustered patterns and patterns with a certain degree of order. 

3. Calculation Model and Simulation Results 

The Dirichlet network of polygons is created on transverse sections of unidirectionally 
reinforced material. It is then possible to identify all neighbours of a given fibre and to 
define uniquely the zone of influence for each pair of neighbouring fibres as denoted 
in Fig. 4 by the quadrangle ABeD. 

Thus the total area of observation is divided into a set of contiguous quadrangles 
which embrace the pairwise zones of influence. The stress field within an individual 
zone of influence and its geometry determine the properties of bonds which replace the 
continuous material in the discrete model. The pattern of embedded fibres with periodic 
boundary conditions is subjected to remote unit load in vertical direction. The stress 
components are calculated for each pairwise zone of influence at four nodes that cor­
respond to the centres of gravity of four quadrangles into which the zone is divided, 
Fig. 4. The stress calculation is based upon the superposition method that takes into ac­
count interactions between neighbouring fibres, Axelsen and Pyrz (this issue). Assuming 
an equivalence between the energy stored in the matrix material bounded by the pair­
wise zone of influence and the energy that would have existed if the zone of influence 
had been replaced by an elastic rod connecting centres of neighbouring fibres, the 
stiffness of rods may be calculated, and then the microstructure is transformed into a 
truss-like structure, Pyrz and Bochenek (1994). The model introduces the geometrical 
disorder through mapping of fibres' positions onto the lattice network and through a 
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quenched disorder in rods' stiffness. The pattern of fibres with the Dirichlet tessellation 
and corresponding truss network is shown in Fig. 5. 

B 

c 

Figure 4. Discretization model . 

Figure 5. Calculation model. 

The network is loaded in displacement mode control until the most overstressed rods 
reach a prectetermined critical strain value. Then the broken rods are removed and the 
lattice configuration is recalculated to obtain a new eqUilibrium. The displacement is 
increased again and this procedure is repeated until the network breaks fully apart. The 
simulations with the force control mode of loading have been investigated in Pyrz and 
Bochenek (1994) and Pyrz (l993b). 

The force-displacement diagrams for a model composite, having dispersion of fibres 
as in Fig. 3, are shown in Fig. 6. The triple cluster model starts to soften at smallest 
maximum force as compared to other distributions. This early stage of softening is 
caused by a microcracking resulted from intensified stress components due to strong 
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interaction effects between fibres in densely populated clusters. A number and positions 
of broken rods have been monitored during loading sequences. Each broken rod nu­
cleates a microcrack that has its trace being identified with the length and the position 
of that side of the Dirichlet polygon which is perpendicular to the broken rod. A sus­
ceptibility of clustered patterns to microcracking is seen in Fig. 6, where the triple 
cluster clearly exhibits largest number of microcracks in comparison to other patterns 
subjected to the same displacement level. The behaviour of the discrete model fully 
supports the result of the stress analysis performed with the same distribution of fibres, 
Pyrz (l994b). It has been shown that the local stress concentration that belongs to the 
higher values of a spectrum of the local stress variations embraces more fibres in 
clustered patterns than in regular ones. Consequently, the probability of a micro-failure 
increases as the arrangement of fibres in a matrix becomes aggregated. 

The critical forces which correspond to maximal values attained by models are 
correlated with respective values of the pair distribution function for each pattern, Fig. 
6. It is clearly seen that the regular pattern falls into a distinctly different range than the 
other three patterns for which the regularity of the dispersion is disturbed or completely 
lost. This property is further documented in Fig. 7, which shows that patterns with 
either inter-fibre regularity or inter-cluster regularity tend to occupy different areas on 
the parameter map than patterns with a pronounced influence of randomness. Both the 
short-range and the long-range regularity increase the critical force that can be sustained 
by the material. The error bars on the diagram represent a dispersion of results from 
eight simulations performed with the hard-core and the random cluster model from the 
area A and the random-regular cluster model from the area C. The deteriorating effect 
of randomness on the load-carrying capacity of the model distributions from the area 
C is apparent. The random-cluster model is more vulnerable to microcracking than the 
double regular cluster model. 

In order to assess if the model predictions are in accordance with a qualitative 
correlation tendency between a microstructure variability and the strength of real mate­
rials, the glass fibre-epoxy composite specimens were manufactured by a vacuum bag 
technique. The consolidation pressure was varied for three batches of specimens which 
resulted in different distribution pattern of fibres. The pattern analysis was performed 
at five quadrants selected randomly along the thickness of the specimens. Examples of 
recorded images with superimposed Dirichlet tessellations are shown in Fig. 8. The 
material A exhibits bands of matrix-rich areas which successively disappear as the 
consolidation pressure is increased, as for materials Band C. The model calculations 
performed for each recorded image reveal increasing strength with growing con­
solidation pressure, as reference to Fig. 9 suggests. Simultaneously, the maximum value 
of the pair distribution function decreases due to a more homogeneous distribution of 
fibres. These findings suggest that the material A should be weaker than materials B 
and C, which has been confirmed in experiments showing an increasing strength from 
18.2 MPa for the material A to 34.1 MPa and 52.5 MPa for materials Band C, respec­
tively, Pyrz (l993b). 
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Figure 9. Critical force correlated with the pair distribution function for three materials. 

In the network model the medium is discretized in such a way that all network's entities 
are equivalent and one does not need to make the network finer in regions of higher 
stress or strain gradients. This fact makes the qualitative analysis of the microcracking 
process time effortable. Figures 10 and 11 present a sequence of microcracks nucleated 
in the triple cluster pattern of fibres embedded into the hard-core background. The 
figures illustrate two cases with pre-existed cracks and one case where the microcrack­
ing process starts from the weakest bonds. Obviously, the morphology of the breaking 
process is different in each case as well as an overall behaviour differs significantly. 

The existence of the initial crack enforces the percolating fracture front to propagate 
along a continuous path with a few short side branches and a limited number of sepa­
rated microcracks. If the initial crack does not exist the system exhibits damaging 
behaviour which results in an appearance of a large number of dispersed microcracks. 
The macrocrack is formed by joining individual microcracks at the late stage of loading. 
However, the breaking process may also be localized for this case provided that only 
one most overstressed rod is removed at each step of loading. Then a single macrocrack 
dominates the failure process in as much similar fashion as for the system with the 
initial crack present. In order to avoid eventual singularities in the calculation procedure 
of the truss network the failure of the rods has been associated with a significant de­
crease of their stiffness rather than a physical removal from the network. Thus the 
failure behaviour of the model may be further extended if the broken rods are left with 
some residual strength. 

The morphological analysis of the microcracking process and its spatial pattern 
depending upon an underlying disorder will be presented elsewhere. 
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4. Conclusion 
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In order to have some insight about fluctuations of the fracture characteristics, which 
are inherent for all types of materials, the network model is advantageous as it allows 
to introduce disorder in a natural way and to investigate the trends as a function of 
disorder parameters. The results from the present investigation strongly suggest that 
calculations based upon the unit cell concept, which means regularity of the microstruc­
ture, overestimate an actual load-carrying capacity of materials. Inherent in the usual 
continuum approaches are certain concepts like the locality of action and the homo­
geneity that constrain a microstructure-property connection to establish . Hence con­
siderations of the discreteness of the material from the onset combined with probabilis­
tic aspects of the microstructure and computer simulations seem to point a way for the 
successful establishment of a more comprehensive failure theory. 
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EVOLUTION CONCEPTS FOR MICROSTRUCTURE-PROPERTY 
INTERACnONS IN COMPOSITE SYSTEMS 
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ABSTRACT. Modern durability, damage tolerance, and reliability predictive 
methodologies rely on an accurate estimate of local stress states and material states in 
the micro-regions that control remaining strength and life of composite materials 
systems. Major advances have been made in the determination of local stresses with 
both closed form and numerical approximate analysis methods. However, the progress 
in the development of understandings and models of the evolution of material states in 
the presence of degradation during service has been more modest. These material state 
changes are particularly important when the material components operate at elevated 
temperatures, as is the case for many of the ceramic matrix composites in use today, 
and planned for the future. The present paper addresses this subject for fibrous 
composite material systems, with a focus on the degradation of stifliJess and strength 
associated with elevated temperature and cyclic load exposure. Special attention is 
given to the effects of creep and static fatigue on the deformation and remaining 
strength of ceramic composites. Interpretations of observations will also be discussed 
using the performance simulation codes that the authors have developed for this 
purpose. Examples of predictions and observations will be compared to illustrate the 
concepts that are to be demonstrated. A coherent philosophy for life prediction will 
be proposed. 

1. Fundamentals of Property Evolution due to Damage Accumulation 

In the limited space available here, only a brief outline of our fundamental approach 
will be recorded. We address the problem of remaining strength ofa fibrous composite 
system, and assume that such strength is defined by the (statistical) accumulation of 
micro-variations in the properties, geometry, and arrangement of the constituents and 
the interfaces I interphase regions between them. In that context, we set three 
fundamental premises: 

1. Fracture strength is an elastic property, i.e., we can describe fracture as an 
instability in terms of some potential, U, such that 

a2 u = 0 
ae2 

in which e is a measure of system strain, and U is defined over some (carefully 
identified) domain. 

2. Although fracture strength (as we will discuss it) is a scaler, it is a function of the 
material strength tensor and stress tensor for the instant of definition (analogous to 
stifliJess, conductivity, ... which are collectively defined by a state of material in relation 
to an applied (tensor) condition). 
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3. We construct our definition with the familiar scaler "continuity," "', defined as (1. 
Fa) (or more generally, some function of Fa) where Fa is a mechanistically or 
phenomenologically based failure criterion defined in a "critical element" (which 
defines our domain) for which rupture defines rupture of the system.[1] 

To this conceptual foundation, we add the physical observations: 

1. (instantaneous tangent stiffness) = E ( "') ,i.e., the change in any stiffness 

component can be defined in terms of '" . 

2. Remaining strength and life can be defined in terms of ",. 

Then we construct a fundamental evolution equation for strength with the following 
rationale. 

1. Helmholtz free energy f = f ( '" I e ij) ,becomes f = U", as in classical Kachanov 
theory. [1] Hence: 

(1) 

where Q is associated with the increment of entropy created by damage, and has the 
nature of energy released by degradation of the material state. Fa may not be the 
usual engineering failure criterion for these definitions. 

2. The central issue is the kinetic equation. We assume that the kinetics are defined 
by a specific (damage accumulation) process for a specific fracture mode, and define 
rates for all such processes of interest. 

We start with the most general, common kinetic equation (a power law), such that: 

~% = A ",n, where 't' is a normalized, generalized time variable (monotonic 

increasing), and n is a material constant. 

Generally, 't' = ~ where ~ is the characteristic time constant for the process at hand. 

~ could be a creep time constant, a creep rupture life, a fatigue life, etc., such that, for 
n 

example, 't' = N' 

Then: 

",i ti 

f d", =A f (",('t) )nd't 
(2) 

",0 0 

The left hand side is 

",i _ ",0 = 1 - Fa i -1 + Fa 0 (3 ) 

If we set A = 1, and approximate n = 1, then 
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~1 

Fa i = Fa - f ( 1 - Fa (.) ) d. 
(4) 

o 

which is the instantaneous value of the failure function for this process. 

Then we define a "residual strength" Fr such that 

~ 

Fr = 1 - f ( 1 - Fa (.) ) d. 
(5) 

o 

where aU quantities are defined in the critical element and for the process 
characterized by the characteristic time ~. A degenerate special case of equation 5 

S 
occurs for .... n ; ~ =:N for which Fa (.) ... Sa, the ratio of unidirectional 

N u 

Sr 
applied stress over unidirectional strength, whereupon Fr = Su' and equation 5 

integrates to 

Sr = 1 _ (l _ Sa) n 
Su Su N 

(6) 

a linear degradation of strength from initial to final value. (fhis form has been 
suggested by Eisseman.) Equation 6 is also an identity in the sense that it satisfies the 
end points of the residual strength curve, i.e., it is correct at the limits. In general, 
however: 

(
a .. (n) ) Fa = Fa ~J ; N = N{ n) 
Xij (n) 

(7 ) 

or 

( a .. (t)) 
Fa = Fa ~J ; N = N( t) 

Xij (t) 

(8) 

If we claim that the rate equation is explicit in generalized time and recast the basic 

kinetic law to read -%* = ljr .j-l, we obtain the final kinetic equation in the form 

~ 

Fr=l- f{l-Fa{.)) {.)j-1d. 
(9) 

o 

which is the form we will use in the present paper, and is essentially the form we first 
postulated in 1981.[2] 
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2. Applications of the Ideas 

To apply this philosophy to the problem at hand, we start by identifying a specific 
failure mode in the laboratory for the material system and conditions of interest. Our 
experience has taught us the number of independent failure modes is comparatively 
small, and that their physical character (tensile failure of fibers, microbuckling, etc.) 
is relatively general with variations in only the degree of associated details in many 
cases.[3,4] Careful laboratory identification of a failure mode defines the boundary 
value problem we are to solve to estimate the fracture strength of the system, i.e., it 
defines the representative volume for the distributed damage state. At this point, two 
new concepts are introduced. First, the representative volume is defined by the 
(eminent) fracture state, rather than by the initial (pristine) condition as is typically 
done. And second, the representative volume is divided into a "critical element" and 
subcritical elements, as depicted in Fig. 1. 

, , 

critical element 

subcritical element(s) 

Figure 1 Schematic of critical element concept. 

The critical element is the part of the representative volume that defines failure, i.e., 
when the critical element fails the system (global component) fails. The identity of this 
physical element must also be determined carefully from experiments. The remainder 
of the volume in the representative volume is "subcritical," in the sense that failures 
(such as delamination, cracking, chemical degradation, etc.) may occur without causing 
failure of the representative volume. In many ("fiber controlled") composites typical 
of current applications, the fibers are often part of the "critical element," while the 
matrix behavior is often a major factor in the behavior of the "subcritical elements." 

As mentioned in our section on "fundamentals," the failure function, Fa, is defined in, 
and by, the critical element. The simplest example might be the ratio of the fiber 
normal stress to the unidirectional strength, if that is determined to be the controlling 
condition, although the function is generally more complex and should reOect all of the 
pertinent local information that controls the final fracture event under the applied 
conditions considered. Also, generally, the "state of the material" in our system is 
defined by the critical element, and is usually stated in terms of continuum constitutive 
equations. Damage that develops in the sub critical elements alters the state of stress 
in the representative volume, and can greatly influence the local conditions in which 
the critical element operates, but it does not change the state of the material, as we 
have defined it. 
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3. Micro-structure - Strength Interactions 

The present approach is entirely micro-structure based; all calculations of remaining 
strength are made at the local level (the ply or fiber/matrix level). In the brief space 
available, we will discuss two aspects of the interaction, and then present one example 
of the "operation" of the models we have developed. 

The Xij that we defined in equation (8) are, in our model, micromechanical 
representations of the principle strengths of the fibrous material, i.e., tensile and 
compressive strength in the fiber direction and transverse to the fiber direction, and 
the in-plane shear strength. These are typical for laminar materials, but others may 
be more appropriate. We consider a tensile fiber direction strength model to illustrate 
our point. 

Zone of matrix and 
Broken corn -t 

POS I e core " Interfacial yielding 

Composite 

t 

~ ~Matrix regions 

unbroken fibers 

Figure 2 Schematic diagram o f the micromechanical 
tensile strength model. 

The authors have shown that it is possible to represent ply-level strength in terms of 
fiber/interphase/matrix level micromechanics[S,6]. For example, the tensile strength in 
the direction of the fibers has been represented by a nonlinear boundary value 
problem, based on a elastic-plastic shear lag formulation in which the number of 
broken fibers is calculated as the local failure process progresses. The model includes 
a region of broken fibers, a region of matrix plasticity (or fiber/matrix slipping), and 
an outer region of elastic behavior. Fig. 2 is an indication of the manner in which the 
boundary value problem is set. This type of micromechanical representation has 
several distinct advantages. Since the properties of the fibers, matrix, and interphase 
regions enter the analysis directly, damage and material state changes can be directly 
entered into a calculation of the strength to estimate the strength evolution as a 
function of the behavior of the constituents and the interphases between them. Hence, 
this presents the opportunity to represent the manner in which material systems come 
apart in terms of the parameters which define how they are put together. This opens 
an entirely new vista of opportnnity to design materials for specific behavior on the 
basis of such formulations. 

The second fundamental tie to microstructure is associated with the "characteristic 
time constant" for the process that controls failure in the critical element, as discussed 
in equation (2). As mentioned earlier, if the process that controls life in the critical 
element is unidirectional fiber-direction fatigue response at the ply level, then the 
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"characteristic time" may be the unidirectional fatigue life, N, which may be related 
to applied conditions by an equation such as 

o -t =A - B (log (N)),P 
Xt 

(10) 

where 0 f is the tiber-direction normal stress, X t is the unidirectional tensile strength, 
and A,B, and p are material constants. Of course, this equation is applied to the 
critical elements, i.e., the tibers in this case, so that under long-term loading or 

environmental conditions both 0 f and X t are functions of (generalized) time or cycles, 

reflecting such things as local stress redistribution (which changes 0 f) and changes in 

the ply strength (which changes Xt). Indeed, the micromechanics model we discussed 

above for Xt; involves tiber, matrix, and interphase properties and arrangements which 
may be altered by applied conditions over time (by micro-defects, oxidation, etc.). 
Hence, N is a dynamic variable in equation (2), as is 0 f. 

Of course, it is possible that other processes control the life of the critical element, and 
that a "characteristic time constant" for that process may be more appropriate to use 
in equation (2). Christensen discusses a kinetic theory of failure in which (using a 
generalization of Griffith crack instability concepts) the critical applied stress for 
instability is postulated as 

0 2 = __ 2_r __ 
hJ(.E.) 

c 

(11) 

in which P is a characteristic length, c is the flaw growth velocity, h is the initial flaw 
dimension, and J is the material creep function.[7,S] If one assumes a creep function 
of the form 

J( t) 
JO(1+y1t n ) 

(1+Y2 tn ) 
(12) 

and integrates equation 12 (taking only leading terms), one obtains the time to failure 
under constant (instantaneous) stress as 

1 f=-----2 
(1:.- 1 )6 n 

n 

(13) 

where the applied stress is normalized by the instantaneous "fast fracture" (intrinsic) 
strength and n is a material constant. Christensen also discusses a rate equation and 
associated characteristic time for combined creep and chemical degradation. 

Obviously, if the processes that control the failure of the critical element are clearly 
identitied and carefully characterized in the laboratory, one can specify the form of f. 
The important point in the present context is that the resulting expression depends on 
applied conditions and material constants; when applied to the critical element, those 
conditions and material parameters will, in general, be functions of time, cycles, or 
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history of the component being modelled. 

Before presenting an example calculation, we remind ourselves that rate equations (as 
functions of applied stress, temperature, and environmental conditions) must also be 
determined for such things as matrix cracking and creep or other stress relaxation 
mechanisms (to modify the modulus at the local level) as well as rate equations that 
represent such things as (diffusion or chemical rate controlled) strength degradation 
of constituents or interphase regions (to modify the inputs to our Xli correctly). 

4. An example 

The present philosophy has been applied to several ceramic composite systems, 
including SiC/SiC, Aluminum based oxide/oxide systems, Nicalon / CAS, Nicalon / LAS, 
and numerous carbon reinforced polymer systems.[9-12] Only a few representative 
results will be presented here. A comprehensive description of the details of the 
simulations, especially the manner in which the rate equations for creep, creep rupture, 
oxidation, and matrix cracking were obtained, is beyond the scope of this paper, but 
is of critical importance to the success of the effort. Some of those details are not yet 
published, but will appear shortly. To that extent, these results should be viewed as 
illustrative and preliminary. 

Normalized Stress, Strength 
1.2 r------------------------------------------------------------, 

0.8 

0.6 

0.4 

0.2 

,--Remaining Strength 

~bb_8~b_8_8~bb_8~bb_8~bb..:..:································· 

~ 

50,000 100.000 

Cycles 
150.000 200, 

Figure 3 Predicted remaining strength and predicted and observed 
life for a Ni/CAS laminate at 1000 dc. 

Figure 3 shows an example of the fatigue performance of a cross ply Nicalon / CAS 
laminate at about 1000 °C. (The data are normalized to protect the proprietary nature 
of the material.) The degradation of the laminate is a strong combination of micro­
damage due to the cyclic mechanical loading, and oxidative degradation of the carbon 
coating on the fibers and the fibers themselves. The degradation of the fundamental 
strength of the material reduces the denominators of the failure criterion used, and the 
relaxation of stress in the matrix by matrix cracking increases the stress in the fibers 
and, thereby, increases the numerator of the failure function. The net result is a steady 
rise of the local failure criterion throughout the test, and an acceleration of the failure 
event (compared to the room temperature result, for example, which has a life of over 
one million cycles at this load level). When the accumulation of damage reaches a 
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certain point, the remaining strength decreases quickly, and the specimen fails, at a 
predicted life which is quite similar to the observed value of about 200k cycles. This 
"sudden death" type of failure is quite common in these materials under these 
conditions. 

SiC/CAS, 1800 F 

o. .............. =t=-........................ = ... = ... -=: ... = ............................................................... . 

o. 000000000000000000000.000.000000000000000000 •• 00000.00.",.", ••• 000 ••• 00 •• 00.000 •••• 00 •• 000 •• 00 ••••• 1 Data 1 ........ 000 

~ 
o. 

0.4 

0.3+---------r---------r-------~--------_r---------r------~ 
0.1 1.1 2.1 3.1 4.1 5.1 6.1 

Log Cycles of Life 

I -- Predicted life I 
Figure 4 Predicted and observed creep-fatigue lives of Ni/CAS 
specimens subjected to tension-tension cyclic loading at elevated 
temperature. 

Figure 4 shows predicted and observed life for several loading levels at 1000 ·C. It is 
seen that at low stress levels, time-dependent oxidation is predicted (and observed) to 
control the life of the material, while at high cyclic load levels the degradation due to 
mechanical loading is dominant. This type of combined (interactive) effect cannot be 
gotten from linear models nor from phenomenological curve fits. Mechanistic models 
based on the constituent· level behavior and physics, such as the present one, are 
necessary for this task. 
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Figure 5 Remaining strength predictions and observations for a Quasi-isotropic 
center notched coupon fatigue loaded with R=-1. 

Numerous predictions for polymer composite have also been successfully made. Figure 
5 shows an example of predictions of remaining strength as a function of cycles for a 
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fully reversed loading of an AS-4/PEEK(APC-2) center-notched coupon, compared to 
experimental data. The predictions were made based on data for unidirectional fatigue 
of that material under tensile loading, only. Rate equations for matrix cracking were 
estimated on the basis of past experience. The predictions were made with MRLife8 
for this complex laminate, geometry, and loading. The agreement is seen to be within 
about 10 percent, which is typical of our experience for the prediction of remaining 
strength. 

5. Closure 

The present paper suggests that the durability and damage tolerance of composite 
systems can be modeled in terms of micro mechanical representations of strength which 
make it possible to represent changes in global composite properties and performance 
in terms of local changes in the constituents, the interfaces and interphases between 
constituents, and the local geometry (as influenced by defect development). In this way, 
micromechanical modeling can be used to represent microstructure-property 
interactions and evolution, as the properties of the constituents and local geometry 
change. Since these constituent changes or local geometry changes can be measured 
directly and independently, the approach provides a sound and systematic method of 
representing, and in some cases predicting, the evolution of strength and life at the 
global level. Examples of applications of the approach have also been shown, with good 
success in a performance simulation of the remaining strength and life of composite 
laminates (even at elevated temperatures) with limited input data. This approach holds 
the promise of providing the community with a systematic method of relating the 
details of how composite systems are made to the manner in which they perform under 
long-term exposure to complex combinations of mechanical, thermal, and other 
environmental combinations. Although the approach is new in many respects, many 
applications over the last ten years have provided a sound basis for progress, and a 
good motivation for continued effort in this direction. Continuing work is especially 
focused on situations in which complex combinations of changes in material state and 
stress state dominate the remaining strength and life of complex material systems, 
especially high temperature polymer and ceramic based composites. 
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OFF-AXIS FATIGUE LIFE PREDICTION USING MICROSTRESS ANALYSIS 
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Waterloo, Ontario, Canada 

1. Introduction 

Microscopic observations have revealed [1] that fatigue cracks in unidirectional 
off-axis polymer-based composites initiate and grow within the matrix along a plane 
parallel to the fibre direction. The fatigue process is controlled by the microstresses on 
these critical planes as well as the properties of the matrix. Also, due to the fibre-matrix 
interaction a complex stress state occurs in the matrix resulting in a multiaxial stress state 
on the critical planes. A micromechanical stress analysis is conducted in the present study 
on unidirectional graphite/epoxy, boron/aluminum and glass/epoxy composites to calculate 
the local stress/strain fields which serve as a basis for detennining a multiaxial 
stress/strain fatigue parameter used to correlate the fatigue life data and to derive a 
generalized fatigue stress/strain-life curve. This curve is then used to predict the fatigue 
lives of the particular composite tested under a variety of loading conditions. 

2. Micromechanical Analysis 

The present paper includes the micromechanics of deformation in long fibre 
composites loaded at an angle to the fibre and involves the finite element analysis of 
fibres arranged in a square unit cell. The fibres may be packed in an edge (00 square) or 
diagonal (450 square) sequence, as shown in Figs. 1 and 2. Considering transverse 
monotonic loading, they represent the stiffest and most compliant uniaxial tensile 
directions respectively. 

It has been shown that the elastic response of a composite loaded off-axially is 
sensitive to the spatial distribution of large concentrations of long fibres especially when 
the matrix is ductile [2,3]. Under such conditions the monotonic flow stress at a fixed 
plastic transverse strain was found to be the highest for edge packing (00 square) and 
lowest for diagonal packing (450 square), with hexagonal packing and random 
distributions lying between the two. Hence, the edge and diagonal arrangements may be 
regarded as representing upper and lower bounds. 

The first step in the microstress analysis establishes the relationship between the 
macrostresses Sij in the lamina and the point to point microstresses O'ij in the matrix and 
fibre. The macrostresses are usually used as input data in further analyses since they are 
linearly related to the applied load. Because of the periodic structure, adjacent basic 
blocks containing one fibre match exactly without any overlapping. Therefore, rectangular 
blocks must remain rectangular under defonnation. This constraint allows the basic 
defonnation to be modelled by only five defonnation states [4]. 

Finite element analysis based on either square packing arrangement is carried 
out for each deformation state. Superposition of the calculated stress components allows 
the corresponding stress tensors Sij and O'ij to be determined. 
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Figures 1 and 2. Nonnallzed max. principal stress contours lor 6061 A"O.25B under transverse loading 
In XI dlredlon. 

Following this procedure, the micros tress fields for the two square unit cells 
were calculated for 0.25 volume fraction boron fibres in 6061 aluminum alloy loaded in 
the transverse direction. The normalized maximum principal stress contours for edge 
packing (00 square) are shown in Fig. 1. In this figure, Xl represents the loading 
direction. The highest stress concentration of 1.35 is located in the matrix where IX2 1 
tends to zero. The maximum principal stress decreases with increase in the value of 
IX2 1. It can be seen that the stress falls below the nominal value when IX21 > rr. The 
microstresses crij were normalized with respect to the uniformly applied macrostress S\1' 
Fig. 2 shows the normalized principal stress contours for diagonal packing (45 0 square). 
In this case, the highest stress concentration is 1.04. 

Using the maximum and minimum values of the microstress range, the stress 
fields at different stages of the fatigue life may be determined. Because of the fatigue 
process, the coefficients in the microstress analysis vary due to the application of the 
constitutive equation containing a damage variable which reflects the deterioration of 
material properties with the number of applied cycles. Accordingly, the stress state must 
be evaluated for different stages of fatigue life. Considering the microstress distribution 
for a 00 square unit cell representing the boron reinforced composite, the stress 
concentration of 1.35 adjacent to the fibre is established immediately on the initial load 
cycle. During fatigue, nucleation and coalescence of microvoids occurring in the matrix 
greatly reduce the local stiffness resulting in a more uniform stress distribution. The 
stress concentration decreases to 1.24 after 5 x 105 cycles (N=0.67Nr). On the other hand, 
because of the high strength of boron, damage in the fibre is relatively small and its 
stiffness remains essentially unchanged. 
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3. Critical Plane Model 

Critical plane models proposed by Findley [5], McDiarmid [6], Brown and 
Miller [7] and Lohr and Ellison [8], as well as others, have been based upon a physical 
interpretation of the fatigue process whereby cracks were observed to form and grow on 
particular planes, known as critical planes. Also the strain-life approach and uniaxial 
strain fatigue failure criteria were found to be relatively successful in predicting the 
fatigue life of notched components in plane stress or plane strain. Therefore, most of the 
proposed critical plane criteria are given in the form of expressions involving a 
combination of shear and tensile strain amplitudes. One of the parameters which is often 
used in correlating fatigue data obtained under various multiaxial stress states is that 
proposed by Brown and Miller [7], given by: 

(1) 

This parameter y. has also been found to be successful in correlating fatigue data of 
composite materials tested under multiaxial cyclic loading [9] and is related to the fatigue 
life (Nf) by: 

(2) 

where coefficient A and exponent m are determined from experimental data. 
Equation (1) is often criticized for the lack of formal correctness from the 

continuum mechanics viewpoint. This is due to the difficulties concerning the 
interpretation of Eqn. (1), being an algebraic sum of the normal and shear strain 
amplitudes acting in the critical plane. Also, these amplitudes are weighted with the help 
of an experimental parameter, k, claimed to be constant for a given material. However, 
Fatemi and Kurath [10] have shown that parameter k varies with fatigue life. In addition, 
it has been suggested [11] that in the case of multiaxial fatigue, life estimates based on 
strain amplitudes are unsatisfactory since the stresses also contribute to cyclic damage. 
These are highly dependent upon the strain path, especially for non-proportional loading. 

To account for the effects of stress and strain, a strain energy density relation 
for the critical plane, which is analogous to Eqn. (1), can be formulated: 

(3) 

The parameter W· represents the sum of the strain energy density and the complementary 
strain energy density contributed by the stress and strain components on the critical plane. 
It can be shown that for a non-zero shear stress range, 0'\3 Eqn. (3) can be re-arranged 
in a similar form to that of Eqn. (1). 

(4) 

The ratio of (j 1 i (j 13' corresponding to parameter k in Eqn. (1), is not constant. Also, 

it is not clear how Eqn. (4) should be interpreted in the case of (j 13 ~ O. Therefore, the 

energy relation given by Eqn. (3) seems to be more appropriate as it is non-singular for 
both uniaxial and multiaxialloading. In addition, it is acceptable from the point of view 
of the formalism of continuum mechanics because energy components en TIS ande ll ill 
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are scalars and can be added algebraically. The novelty of the parameter VI' lies in the 
fact that it represents a fraction of the overall strain energy density contributed only by 
the stresses and strains on the critical plane. In other words, it can be interpreted as the 
flux of strain energy density associated with the direction dermed by the normal to the 
critical plane. 

4. Validation - Smooth Specimens 

4.1 Boron-Aluminum 

The fatigue data of a 6061-0 aluminum alloy reinforced with 0.25 volume 
fraction 100 pm diameter boron fibres were adapted from work carried out by Toth [12]. 
The elastic moduli of the fibre and matrix were 410 GPa and 69 GPa and the Poisson's 
ratios were 0.2 and 0.345 respectively. The specimens were 100 mm long, 6.35 mm wide 
and 1.65 mm thick with a gauge length of 25.4 mm. All the specimens were tested under 
constant amplitude loading with· a stress ratio of R = 0.2. 

From the fracture surface photograph taken by Toth [12] of a 45° unidirectional 
plate, it was apparent that the fracture occurred in the matrix parallel to the fibre axis. 
Therefore, the present matrix-controlled fatigue model could be used for these specimens. 

Two sets of data were obtained for unidirectional specimens tested under axial 
tension-tension loading with fibre to load axis angles (a.) of 200 and 45°. The third set 
of data was obtained from cross-ply specimens tested under cyclic tension-tension with 
a fibre/load angle of ±45°. The original data (Smu-Nf) of Toth [12] showed that the 
fatigue life was strongly influenced by the load/fibre angle a.. 

The local shear strain amplitude tIS and the normal strain amplitude 11\ at the 
highest stress concentration site were calculated using linear elastic analysis. The 
calculation was carried out for each applied load. Using fu and 11\' the fatigue control 
parameter f· was determined by Eqn. (I) and then correlated with the fatigue lives by 
Eqn. (2). The best fit was found using k=O since the same fatigue lives were observed 
for the ±45° laminate and 45° laminae, indicating that the normal strain had a negligible 
effect. From laminate stress analysis, it is known that these two lay-ups have the same 
shear strain and different normal strain. Consequently only k=O can result in the same 
fatigue control parameter f· for the same N,. 

The experimental data and the correlation are shown in Fig. 3. It is seen that the 
data for both square packing sequences follow Eqn. (2) and have the same slope. For 
edge packing A = -2.76, m = -0.017 and for diagonal packing A = -2.86, m = -0.017. 

Nakamura and Suresh [3] have shown that monotonic transverse tensile 
simulations for 0.46 volume fraction boron fibres randomly distributed in a 6061 
aluminum alloy matrix give results close to those for edge packing rather than diagonal 
packing. Since it is apparent from the present work that the predicted and experimental 
results are in very good agreement regardless of the packing sequence, then the edge 
packing arrangement will be employed for the remainder of this work. 
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Figure 3. Fatigue lives of 6061 A"O.1511 for edge and diagonal packing as a function of the multiu:lal 
parameter. Angles between fibre direction and loading oIs are Indicated. 

4.2 Graphite/Epoxy 

Experimental dam[l] for an epoxy based composite reinforced with 0.66 volume 
fraction graphite fibres were also analyzed. The results obtained for the load/fibre angle 
of 10" were used to derive the generalized multiaxial strain-life relation in the form of 
Eqn.(2). The best fit was found when k = 2.4 and A = -1.198, m = -0.069. This equation 
was then used to predict the fatigue lives of specimens tested at angles of 20°,30",45°, 
and 60". The parameter (flS + kill) satisfactorily described all the experimental data and 
allowed the effect of the load/fibre angle to be predicted. 

When the loading angle is 90" the shear strain amplitude y 13 tends to zero and 

the shear strain based critical plane model overestimates the fatigue life[13]. With this 
in mind, the fatigue life curves for loading angles of 60° to 90° were estimated by 
linearly extrapolating the data for the angles of 45° to 60° in accordance with previous 
experimental work[2]. Also, since the fibre properties dominate the fatigue life when a 
= 0, the life can be provided by axial fatigue tests. Combining the results of zero angle 
tests with those predicted for the 10" loading angle a full range of fatigue life curves 
from 0 to 90° loading angles can be obtained These are given in Fig. 4. 
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Figure 4. Effect of load/fibre on fatigue lives of graphite/epoxy composite; comparison of experimental 
[l] and predicted results. 

4.3 Glass/Epoxy 

Experimental data (R = 0.1) obtained for an epoxy based composite reinforced 
with 0.6 volume fraction E-glass fibres was taken from reference [14]. There were six 
sets of data corresponding to different angles of the load to fibre axis, namely 5°, 10°, 
15°, 20°, 300 and 60°. The set of data obtained for the load/fibre angle of 10° was used 
to derive the generalized multiaxial strain-life relation in the form given by Eqn. (2). The 
best fit was found when k=1 and A = -1.395, m = -0.101. 

This relation was then used to predict the fatigue lives of specimens tested at 
the angles of 5°, 15°, 20°, 30°, and 60°. Comparison of the predicted and experimental 

results indicated that the parameter (y 13 + kf 11 ) accurntely described all the 

experimental data and that the effect of the load/fibre angle can be predicted. When the 

data were plotted in the form of 19y· - IgN, all the experimental results collapsed into 

one master curve. 

5. Validation - Notched Specimens 

5.1 Prediction of Fatigue Crack Initiation Sites 

The validity of y. as a fatigue parameter can be illustrated by its ability to 
predict the location of crack initiation sites in a notched composite plane subjected to 
constant amplitude cyclic tensile loading. The experimental results were taken from work 
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Figure 5. Distribution of fatigue parameter f· around hole In unidirectional SCS·fifrI15·3 composite 
plate. 

of Newaz and Majumdar[15] who conducted fatigue tests(R = O.l,S.u = 355MPa) 
on unidirectional eight-ply silicon carbide fibre reinforced titanium (SCS-6/fi 15-3) plates 
with central circular holes 9.53 mm in diameter. The specimens were of rectangular 
shape 152.4 mm long by 19 mm wide and 1.55 mm thick. The angle between the loading 
direction and the fibre axis was zero and after cycling it was observed that four cracks 
initiated at the hole circumference, at angles e = ±(65 -+ 72") and e = ±(155 -+ 162°). 
These cracks were symmetric with respect to the x and y axes, as shown in Fig. 5. 

The circumferential stress (Soo) around the edge of the circular hole was 
calculated using the analyses of Shen et al [9]. The highest stress concentration (~ = 
3.42) occurred at e = ±90" which did not correspond to the fatigue crack initiation sites. 
It is apparent that the normal stress Soo was not the fatigue controlling parameter. 
Subsequently, the macrostress components Soo around the edge of the hole were used as 
the input data to calculate the microstress components Ow 

Substitution of the calculated shear y 13 and normal & 11 strain amplitudes into 

Eqn. (1), enabled the fatigue parameter y. around the edge of the hole to be determined. 

The distribution of parameter y ., calculated for a macrostress amplitude of 

S.u = 355MPa, is shown in Fig. 5. The locations of the maximum y. (1.3%) 
coincide with the observed crack initiation sites, indicating that the parameter y" can be 
used to determine the location of fatigue crack initiation sites in notched composite 
components. 
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5.2 Prediction of Fatigue Life Under Cyclic Tension and Torsion 

It is now possible to consider predicting the fatigue lives of notched tubes 
subjected to a variety of loading modes such as tension, torsion, and a combination of 
both using material data obtained from simple experiments associated with one loading 
mode, i.e. cyclic tension. Therefore, the flfSt step was to determine whether the 
experimental fatigue data obtained under cyclic tension and torsion may be unified by 

using the fatigue parameter y •. The tension and torsion fatigue data for a graphite/epoxy 
([±45°].lay up) tube containing a hole were taken from Ref. [16]. The specimens were 
in the form of a laminate tube 254 mm long, 25.4 mm diameter and 0.6 mm wall 
thickness. All tubes contained a single through thickness circular hole of 4.8 mm 

diameter. The distribution of the parameter y. around the edge of the hole in the -45° 
laminae under cyclic tension with the maximum tension stress of 108MPa was 
determined and also obtained under cyclic torsion with the maximum torsion stress of 
1l0MPa. Both series of tests were carried out under the same stress ratio of R = 0.1. The 

distribution of parameter y. in the +45° laminae can be obtained by a 1800 rotation of 

that determined for the -45° ply. The maximum values of parameter y. were found at 
angles 9 = ±90° in the -45° laminae subjected to cyclic tensile loading. However, in the 
case of torsion loading four maxima located at angles 9 = +123°, +147°, _33 0 and _57° 

were found in the -45° laminae. When the maximum values of parameter y. at these 

locations are plotted against the experimental fatigue lives it is apparent that the y • 
parameter is quite capable of normalizing the fatigue lives obtained under entirely 
different loading modes allowing the relationship to be expressed by Eqn. (2). The 
corresponding coefficient A(=1.216) and exponent m (= - 0.058) were determined by the 
least squares method using the experimental tensile and torsion data [16]. They agree 
very closely with those obtained under combined cyclic axial tension and internal 
pressure given in Ref. [16] which result in the expression 

y. = 1.241(2N)-GlIS3 (5) 

Eqn. (5) was subsequently used to predict fatigue lives under combined cyclic tension 

and torsion loading. For these conditions, the y. parameter around the circumference 
of the hole was first calculated to determine the locations of the fatigue crack initiation 
sites due to the different tension to torsion load ratios. The initiation sites were assumed 

to coincide with the sites of maximum y •. 
The generalized y. - NI curve (Eqn. (8» was used to determine the fatigue 

lives of three sets of tubes tested under combined cyclic tension and torsion with tension: 
torsion load ratios of 1:0.5, 1:1 and 1:2 [16]. The fatigue lives were predicted using Eqn. 

(5) and the maximum values of y. found on the notch circumference. Comparison of 
the experimental and calculated fatigue lives is given in Fig. 6. Good agreement between 
the predicted and experimental fatigue lives is apparent for the whole range of load 
combinations. 
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6. Conclusions 

It has been shown that microstress/strain analysis in conjunction with the 
multiaxial fatigue parameter can be applied to successfully predict the off-axis fatigue 
lives of long fibre composites. The multiaxial fatigue parameter is expressed as a 
combination of the shear and normal strains on the critical plane parallel to the fibres. 
This parameter enables a generalized strain-life relationship to be determined using 
limited experimental data. Once the generalized relationship is known the life of the 
composite cycled under any combination of loads and load-fibre angle may be predicted. 

The fatigue process of the composites considered in this work was controlled 
mainly by the local shear strain on the critical plane and the contribution of the normal 
strain was secondary. By applying the multiaxial fatigue parameter very good agreement 
was achieved between the experimental and predicted lives of smooth specimens of 
graphite/epoxy, glass/epoxy and boron/aluminum. 

Considering the fatigue life of a notched silicon carbide/titanium composite the 
location of the crack initiation sites was predicted using the local fatigue parameter 
incorporating the multiaxial alternating strains on the critical plane parallel to the fibre 
axis. The application of this parameter also enables the generalized strain-life relationship 
to be determined from a limited amount of experimental data, which can then be used 
to predict the life of notched graphite/epoxy composite components subjected to complex 
multiaxialloading conditions. 
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1. Introduction 

To calculate the plastic flow properties of two-phase materials, a large num­
ber of micromechanical models based on continuum mechanics principles 
has been established throughout the past years. Self consistent methods [1-
3], rules of mixture (ROM) [4-9], non-linear generalizations of the classical 
Hashin-Shtrikman bounds [10-12] and the finite-element (FE) method [6, 
13-19] have been used for this purpose. All these approaches aim to pre­
dict the properties of two-phase materials from the given properties of their 
constituent phases. Quantitative information from the microstructure, how­
ever, is incorporated seldomly in the models, with the exception of those 
with specific reference to matrix-inclusion-type microstructures. Up to now, 
only little attention was paid to microstructures different from these spe­
cial types due to the lack of stereological parameters to characterize general 
two-phase microstructures quantitatively, and so even finite element based 
micromechanical modeling methods have been restricted to more or less 
special two-phase microstructures [21]. It is the aim of this report to present 
a micromechanical model applicable to general two-phase microstructures. 
In this course, a stereological parameter is introduced, which fully quan­
tifies the geometrical continuity (GC) of the constituent phases. GC is a 
quantity of eminent importance, when dealing with various physical prop-
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erties of coarse grained two-phase alloys possessing interpenetrating phases 
[20]. 

The proposed micromechanical model is used to simulate and to analyze 
uniaxial tensile tests with respect to the overall flow stress, as well as the 
local deformation behavior within the two phases. The numerical results 
are compared with the predictions from a new rule of mixture-type equa­
tion that combines the quantitative characterization of the microstructure 
with the results from the non-linear generalization ofthe Hashin-Shtrikman 
bounds. 

2. The Micromechanical Model 

The essence of the micromechanical model is the unit cell approach com­
bined with finite element calculations. The model, which is similar to the 
one used in [16], has been described in detail in [20] and will be reviewed 
briefly here. During the production of the investigated duplex stainless steel, 
hot forging of the material results in a pronounced uniaxially anisotropic 
microstructure formed of elongated domains of the two phases ferrite and 
austenite arranged parallel to the axis of the forged rod. Therefore, the real 
microstructure can be approximated by a model microstructure that is gen­
erated as periodic arrangement of identical unit cells on a rectangular mesh. 
The unit cell consists of hexagonal prisms resembling the phase domains. 
One octant of a unit cell is given in fig. 1. The whole unit cell (dimensions 
2a, 2b, 2c) is obtained by starting from this octant, and repeatedly reflect­
ing it about the coordinate planes. This geometry is implemented into the 
FE code ABAQUS using generalized plane strain elements. Properties cal­
culated for this unit cell are characteristic for the overall microstructure. 
For the simulation of uniaxial tensile tests, boundary conditions are im­
posed on the unit cell octant so that the deformed microstructure can be 
constructed in the same way as the undeformed one. This is achieved by 
forcing the coordinate planes to remain plane and fixed in their initial po­
sitions. All other bounding planes remain plane and parallel to their initial 
setup. Uniaxial loading is achieved by prescribing a displacement in the e.g. 
Xl-direction, only. The unknowns to be determined from the FE calcula­
tions are the principle normal stress 0"1 acting on the planes normal to Xl, 

and the displacements U2 and U3 • 

The two phases ferrite (a) and austenite ('Y) of the duplex steel are 
assumed as isotropic elastic-perfectly plastic, with yield stresses O"~ and O"J, 

respectively. The von Mises yield criterion is used to calculate the onset 
of plastic deformation. In the calculations, the flow stress ratio 0"-; / O"~ is 
varied between 1 and 10. For the isotropic elastic properties the values 
EOl = E'Y = 200 OOOMPa and VOl = v'Y = 0.3 are used. 
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c 

Figure 1. One octant of the unit cell used in the FE calculations. 

3. Microstructures 

In a number of previous investigations it has been reported that the GC 
of the phases in the two-phase microstructure significantly influences the 
properties of the composite [1, 4, 6, 18, 22-26]. In coarse two-phase alloys 
both phases can be inclusion and/or matrix phase. A few examples of such 
microstructures are depicted in fig. 2. These plane two-phase microstruc­
tures are generated by random placement of the two phases ferrite (black) 
and austenite (white) on an array of 108 hexagons (resembling the grains) 
per unit cell octant according to a prescribed volume (area) fraction. A 
second set of similar microstructures can be gained immediately by color 
inversion. On increasing the volume fraction of the second phase (,) a mi­
crostructural transition from initialiy isolated ,-regions in an a-matrix to 
isolated a-regions in a ,-matrix occurs. This transition takes place in a 
range of volume fractions where both phases can be continuous and can 
form interconnected networks [27, 28]. 

Many different microstructures are possible at fixed volume fractions. 
Figure 3 shows three topologically different realizations for V~ = VJ = 0.5 
(a-matrix with ,-inclusions, both phases interwoven and ,-matrix with a­
inclusions). The parameter fraction of clusters r is introduced as a new con­
cept to describe quantitatively the geometrical continuity of phase regions. 
Its determination starts with counting the numbers of mutually enclosed 
grain clusters of each phase, NCi and N""Y, as suggested in [27]. An enclosed 
grain cluster consists only of grains of the considered phase, and is com­
pletely surrounded by grains of the other phase. From the numbers NCi and 
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Figure 2. Examples of unit cell microstructures. Ferrite is the dark phase. 

a 
r 0.0 

a 
r = 0.5 ra = 1.0 

Figure 3. Three different realizations of the volume fraction VJ = 0.5. 

N"I, the fraction of clusters, rCX and r"l, now can be defined as proposed in 
[20,23J: 

rCX = Ncx r"l = 1 _ rcx = __ N_"I __ 
NOI + N'Y ' N OI + N'Y 

(1) 

In fig . 4 the parameter fraction of clusters is given as a function of V.J for 
plane microstructures similar to the unit cell octants shown in Fig. 2. Mi-
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crostructures with a-inclusions in a l'-matrix are characterized by rex ---y 1, 
r'Y ---Y O. For microstructures with l'-inclusions in an a-matrix one obtains 
rex ---Y 0, r'Y ---Y 1. At intermediate volume fractions and for random place­
ments of the constituents the parameters are approximately rex "" r'Y "" 0.5. 
These microstructural geometries with both phases equally interwoven shall 
be termed duplex microstructures. As can be seen from the values on top 
of each microstructure in fig . 3, the r-parameter is quite appropriate to 
destinguish between microstructures of constant volume fractions. All mi­
crostructures used in the FE calculations are isotropic with respect to the 
geometrical arrangement of the two phases. Since both phases are mod­
eled as isotropic continua, the duplex microstructures can be assumed as 
transverse isotropic in their properties. 

Figure 4. The parameter fraction of clusters, rO< and r -Y , plotted over the volume fraction 
VJ of the 'Y-phase for microstructures similar to those of fig . 2. 

4. The Flow Stress of the Duplex Steel 

The plastic flow stress of the duplex steel is investigated for elastic ideal­
plastic constituents. This simple model system is chosen, because analytical 
reference solutions are available from the results by Bao et al. [1], Ponte 
Castaneda et al. [10] and Suquet [11, 12]. 

4.1. THE LIMIT FLOW STRESS AS FUNCTION OF THE VOLUME 
FRACTION 

For the microstructures introduced in fig. 2, tensile tests with a controlled 
boundary displacement are simulated in longitudinal (X3) as well as in 
the transverse (Xl, xz) directions of the unit cell. The flow stress ratio of 
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the phases is put to aJ / a~ = 5 in these calculations. Results of simulated 
tensile tests in the xl-direction are given in fig. 5 for the microstructures 
with VV' = 0.125,0.5,0.875, together with those for the single phases. The 
stress-strain curves of the composite materials exhibit a nonlinear transition 
from the elastic range to the limit state. The dependence of the limit flow 
stress al reached at high strains on the volume fraction of the constituents 
will now be studied in detail. 

I 

V'J=1I_5 

--------------------------
/ 

/ V'J=O.125 ---------------------------
v 'J=II 

Figure 5. Result of tensile test simulations for microstructures with various volume 
fractions of the ,),-phase. Loading is done in the xl-direction. 

The limit flow stress of the composite is, in a first approximation, 
bounded by the Voigt-upper bound at,Voigt = a~(1 + VV'(a;/a~ - 1)) and 

the Reuss-lower bound at,Reuss = a~. The limit flow stress for loading in the 
x3-direction as predicted by the micromechanical model is in all cases very 
well described by the upper bound at,Voigt (the linear ROM). The following 
considerations focus, therefore, on the transverse mechanical properties. In 
[10-12] improved bounds resp. estimates for the bounds for the limit flow 
stress of a transversely isotropic two-phase composite are given in form of 
a nonlinear generalization of the linear Hashin-Shtrikman bounds. If the 

yield strengths of the constituents fulfill the condition a~/a;:S ~.J1 + VV', 
an estimate for the lower bound for the limit flow stress of the unidirection­
ally anisotropic composite is given by at,L = a~.J 1 + VV' . This estimate is 
close to that for the limit flow stress of a particle composite consisting of the 

same constituents (at,L = a~.J1 + ~VV', if a~/a; :S ~.J1 + ~VV'). In [10] 
no analytic expression for the upper nonlinear Hashin-Shtrikman bound 
for the unidirectional composite has been stated explicitly. Therefore, the 



355 

upper Hashin-Shtrikman bound for the particle composite is used instead. 
This upper bound, at,U, which is certainly only an approximation for the 
upper bound for the limit flow stress of the unidirectional composite, is 
given by [10, 11] 

A = 3 + 2V-J. 

(2) 
Using this approximation seems to be justified, since the elastic moduli 

predicted by the linear Hashin-Shtrikman bounds for particle and unidirec­
tionally reinforced composites are similar, too [29]. 

In fig. 6 the results of the computer calculations for at; a~ are depicted 
as a function of the volume fraction of the hard phase V-J. The circles 
denote the mean values of the individual FE runs on the two microstructural 
realizations for each volume fraction. All microstructures are tested in the 
x}- and x2-directions. Additionally, the bounds and estimates for the limit 
flow stress are depicted. 

o FE 

o ~--~--~--~----~~ 
0.0 0,2 0.4 0.6 0 .8 1.0 

Figure 6. Dependence of (J'i/(J'; on the volume fraction VJ of the ,,),-phase, compared 
with analytical results (H S denotes Hashin-Shtrikman). 

Several observations can be made from fig. 6. The increase in limit flow 
stress obtained by the FE-model is small at low volume fractions of the ,­
phase, and a considerable increase can be achieved only for V-J > 0.3. Com­
paring these results with the detailed informations on the microstructures 
(figs. 2 and 4), it becomes evident that the observed behavior results from 
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the change in the geometrical arrangement of the phases occurring at inter­
mediate volume fractions. The lower estimates are a good approximation 
for the computed limit flow stress at low volume fractions (rO' ---+ 0, r'"Y ---+ 1), 
whereas at high volume fractions of the hard phase (r'"Y ---+ 0, rO' ---+ 1) the up­
per bounds are close to the computed values. At intermediate volume frac­
tions, the regime of the interwoven duplex-type microstructures (rO' ~ r'"Y), 
the computed values of the limit flow stress deviate considerably from both 
the lower estimates and the upper bounds, and a continuous transition of 
the FE-results from the lower estimates to the upper bound solutions can 
be observed. A combination of the microstructural information given by 
the parameter fraction of clusters and the estimates and bounds for the 
limit flow stress can describe the FE-results quite well. For that purpose a 
ROM-type equation is suggested in the form 

(3) 

At low or high volume fractions of the ,-phase, this equation coincides 
with the limiting solutions (see fig. 6). Furthermore, it predicts an S-shaped 
transition of at, a tendency also followed by the FE-results. The current 
result could be improved further by inserting better estimates and bounds 
into the ROM. The S-shaped curve is also observed experimentally in tensile 
tests on ferritic-martensitic two-phase steels [24]. 

4.2. THE DEPENDENCE OF THE LIMIT FLOW STRESS ON THE 
MICROSTRUCTURE 

The dependence of the limit flow stress on the geometrical arrangement 
of the phases austenite and ferrite in the microstructure can be explored 
also for equal volume fractions of the constituents (Vy = VJ = O.S). The 
yield strength ratios used in the calculations of the limit flow stress are 
aila~ = 1,2,3,4,5 and 10. Three of the four microstructures tested are 
shown in fig. 3. The results from the FE-simulations are summarized in 
fig. 7. For a; / a~ < 2 the Voigt upper bound approximates the limit flow 
stress of the composite, which is rather insensitive to the type of microstruc­
ture present in the material. For high yield strength ratios, however, the 
limit flow stress strongly depends on the details of the microstructural ar­
rangement. In microstructures with rO' = 0 (i.e. hard, inclusions in a 
weak matrix) the presence of the second phase does not lead to an increase 
in the limit flow stress. The properties of the inverse inclusion-matrix type 
microstructure with rO' = 1 (i.e. weak inclusions in a hard matrix) are com­
pletely different. Irrespectively of the yield strength ratio, the hard phase 
now contributes to the limit flow stress. This finally leads to much higher 
limit flow stresses for this type of microstructure. 
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Figure 7. The dependence of the limit flow stress on the microstructure for equal volume 
fractions of the phases. FE calculations compared with analytical results. 

Bao et ai. [1 J apply a three-phase self-consistent model to particle re­
inforced composites and inclusion-matrix type microstructures and obtain 
similar results with respect to the effect of interchanging the particle and 
matrix phases. The current model, however, allows to go further, and makes 
possible the investigation of duplex-type microstructures. The mechanical 
properties of these materials are distinctly different from materials pos­
sessing an inclusion-matrix type microstructure. For rCY = 0.5, inversion 
of the phases does not influence the mechanical properties, and a single 
value of limit flow stress can be assigned to these microstructures. The 
computed results fall between the limit flow stresses obtained for the two 
inclusion-matrix type microstructures and are approximately equidistant 
from these limits. The microstructures with rCY = 0 and r CY = 1 are close 
to the estimates for the lower Hashin-Shtrikman bounds and the upper 
Hashin-Shtrikman bounds , respectively. 

5. Influence of the Microstructure on the Local Deformations 

FE-based micromechanical modeling gives insight also into the local mate­
rial behavior. Contour plots of the equivalent plastic strain (PEEQ) provide 
a convenient overview of the influence of the geometrical arrangement of 
the phases on the local deformation behavior. Figures 8 and 9 are contour 
plots as obtained from FE-simulations on the microstructures of fig. 3. 

The composite is strained to a deformation of f = 0.02 in the Xl­

direction of the unit cell assuming a; / a~ = 5. Figure 8a shows PEEQ for 
the microstructure with r CY = 0, i.e. a microstructure with hard austenitic 
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Figure 9. Contour plots of the plastic equivalent strain (PEEQ) at an overall total 
strain <11 = 0.02 for the two duplex-type microstructures (r" = 0.5). Microstructure (a) 
is phase-inverse to (b). The maximum local strain is 0.1. 
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PROPERTIES OF TWO-DIMENSIONAL MATERIALS CONTAINING 
INCLUSIONS OF VARIOUS SHAPES 
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ABSTRACT. We discuss the effect of inclusion shape on the dielectric and elastic 
properties of two-dimensional materials. We show how the dielectric constant is 
determined by the dipole moment of the inclusion, conveniently found from the far field. 
Conformal mapping techniques are useful in two-dimensions to obtain the changes in the 
bulk properties in the special cases when the inclusions are holes or perfectly conducting 
or rigid. Our results are interpreted in terms of the reciprocity theorem for dielectrics and 
in terms of a similar, recently proved, theorem for elastic materials. We illustrate these 
techniques for polygonal inclusions and compare our results with those for circles and 
ellipses. 

1. Introduction 

In dielectrics and in elastic materials, it is possible to obtain exact closed form solutions 
when a single elliptical inclusion is embedded in a matrix. This is because the appropriate 
quantity (electric field for dielectrics and stress for elastic materials) is uniform inside the 
inclusion. Using these solutions, it is possible to find the change in the bulk properties to 
first order in the number of inclusions. This assumes that the inclusions are far enough 
apart that they are non-interacting. These solutions have been invaluable over the years as 
model systems and as the basis for constructing effective medium theories. However it 
would be useful to add some other shapes to our lexicon for comparison which is the 
purpose of the present paper. In the next section we show how conformal mapping 
techniques can be used to map a polygon onto a circle. This mapping can be used to solve 
the problem of a hole (or perfectly conducting inclusion) in a dielectric. If a second 
complex function is also introduced, then the solution for a polygonal inclusion (hole or 
rigid) can be found for elastic materials but only as an infinite series. In section 3, we 
present exact results for polygonal holes (and perfectly conducting inclusions) for 
dielectrics. We show how the reciprocity theorem limits the form for a general inclusion. 
We compare these results to those for circles and ellipses, to better understand the 
importance of the inclusion shape in determining the physical properties. In section 4, we 
show how the conformal mapping technique can be set up as a rapidly converging series 
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for polygons (holes and rigid inclusions) and obtain the first few terms for these 
hypotrochoids. We show how these results are compatible with the recently proved CLM 
theorem. Here also we compare the results to those for circles and ellipses. 

2. Conformal Mapping 

Conformal mapping is a useful technique in two-dimensions to map a complex shape onto 
a simple shape like a circle. For simple boundary conditions (Dirichlet or Neumann), a 
solution to the problem can then be obtained in some cases. The only boundary conditions 
that survive the mapping are for holes and perfectly conducting inclusions in the dielectric 
case, and holes and perfectly rigid inclusions in the elastic case. Despite these limitations, 
these mappings provide us with solutions for additional shapes. 

The conformal mapping of an n-sided polygon (n-gon) in the z -plane onto the unit 
circle in the w-plane can be found using the Schwarz-Christoffel transformation for 
straight lines as (Thorpe, 1992) 

W( l)Yn 
Z= [ 1- w 2 dw (1) 

where c is some constant. The ratio of the area A of the n-gon to that of the unit circle is 
given by 

(2) 

For the case of dielectrics, this mapping can be carried through in its entirety, to yield 
closed form solutions for the effective conductivity when the material contains just a few 
inclusions (Thorpe, 1992). For elastic media, the problem is more complex, and closed 
form solutions are not possible. It is therefore necessary to expand (1) as 

(3) 

-w 1+ + + ... 
_ ( 2 (n-2) (n-2)(2n-2)) 

n(n-1)wn n2(n_1)w2n 3n3(3n-1)w 3n 

and use as many terms as possible (Jasiuk, Chen and Thorpe, 1994). The area of the 
complete n-gon is given by (2), and the area of the rounded n-gon is given by the series 
using (3) as 



(n-2)2(2n-2)2 
9n6 (3n-l) 
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(4) 

For example the first 3 terms approximating the triangle are shown in Fig. 1. The 
respective areas are 7lr/9 = 2.4435 ... , 314lr/405 = 2.4357 ... and 31lr/40 = 2.4347 ... for 
one, two and three non-trivial terms in (4) for n = 3. As the number of terms approaches 
infinity, the area is given by (2) which for n = 3 is 2.4343 ... 

Figure 1. Showing the shape corresponding to the conformal mapping of an equilateral triangle from a 
circle given in (I) and (3), using two terms (dashed line) and three terms (solid line). 

3. Conductivity 

The dielectric problem is the easiest of this general class of problems. By dielectric 
problem, we refer to any system with a potential rp that obeys Laplace's equation V 2 rp = 0 
in the interior. This applies to thermal conductivity, dielectric media and electrical 
conduction. We will use the language of the latter here. Consider a large system 
containing a few polygonal holes as shown in Fig. 2, with a uniform electric field applied 
across the sample. We will consider the dilute limit of this problem, when the 
perturbations to the current flow produced by the inclusions are independent of one 
another. This is not so in the sketch in Fig. 2, but it is convenient to sketch the more 
concentrated case. 
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Figure 2. Showing a conducting sheet containing randomly located and oriented triangular inclusions. 

The material is initially isotropic and characterized by a single parameter, the 
conductivity a o. The conductivity of a two-dimensional sheet containing a vanishingly 
small area fraction of inclusions, can be written as 

a 
-=l-aj 
aD 

(5) 

where j is the area fraction of inclusions. The coefficient a is obtained from the far field 
perturbation caused by the current flow around a single inclusion (Thorpe, 1992). For 
polygonal holes, the result is independent of the orientation of the hole, as the polygonal 
hole acts as an equivalent circular hole in the far field. This can also be seen by symmetry 
arguments. A second rank tensor, in a symmetry group that contains an n-fold axis 
(where n is any integer greater than or equal to 3) is isotropic. 

3.1. RECIPROCITY THEOREM 

The reciprocity theorem in two dimensions (Keller, 1964) states that if a two phase 
medium, with conductivity a has components with conductivities a I and a 2 respectively, 
then if the geometry is kept fixed and the two components interchanged 

(6) 

This is useful in the present context as it relates the case when the inclusions are holes, to 
that where the inclusions are perfectly conducting. The reciprocity theorem is proved by 
using a rotation by 1</2 to relate the two cases. This rotation interchanges the 
equipotentials and the electric field lines. If (5) is the result for holes, then if the holes are 
replaced by perfect conductors, we obtain 



(j 
-=I+aj 
(jo 

with the only difference being the sign change. 

3.2. ELLIPTICAL INCLUSIONS 
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(7) 

A complete solution is available for elliptical inclusions (Hetherington and Thorpe, 1992). 
If the host material (j 0 contains an area fraction j of elliptical inclusions with conductivity 
(j I , then the conductivity of the composite (j is given by 

(8) 

to first order in the area fraction j. Here a, b are the semi-major, minor axes of the 
ellipse. To obtain this formula we have performed an average over the orientations of the 
ellipses to produce an isotropic material. In the limit for holes when (jl = 0, we find that 

a = 1 +..!..(~+!:). 
2 b a 

(9) 

From the discussion earlier, this also gives the a for the perfectly conducting elliptical 
inclusion. Thus a achieves its minimum value of 2 for the circular hole, and is larger for 
the ellipse, eventually approaching 00 in the needle limit. 

3.3. POLYC'.oNS 

The solution for an n-gon is possible in the dielectric case, because only the induced 
dipole moment of the inclusion is required. Because the mapping (1) does not have a 
dipole part (w- I term), the induced dipole is the same as that of the circle into which it is 
conformally mapped. Thus we only need to consider the change in area of the inclusion as 
it is mapped, and the general result is 

27f 
a=-

A 

where the area A that maps onto the unit circle is given by (2). Thus we find that 

for a regular n-gon. The results are tabulated in table 1. 

(10) 

(11) 
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It can be seen that the corners in the n-gons increase the value of a, hence depressing 
the conductivity from the value that it would have for holes with the same area fraction. 
For perfectly conducting inclusions, the effect is in the opposite sense. Thus the n-gons 
are more effective in scattering the current from its direct path across the material. A 
similar depression of a was seen for ellipses in (9), although in that case the corners are 
rounded of course. 

TABLE 1. Showing the exact results (11) for the coefficient a in 
the conductivity expression (5) for n-gons (Thorpe, 1992). 

Shape n a 

triangle 3 2.5811... 
square 4 2.1884 ... 
pentagon 5 2.0878 ... 
hexagon 6 2.0454 ... 
heptagon 7 2.0298 ... 
octagon 8 2.0197 ... 

circle 00 2 

If only the first few terms in the conformal mapping (3) are retained, successive 
approximations to the n-gon are obtained. These are probably best regarded not as 
approximations, but rather as exact solutions for the hypotrochoids shown in Fig. 1. As 
for the complete series, the result can be expressed in terms of the area via (10). The areas 
are given in (4), so that the results for a for the triangular shape keeping one, two and 
three non-trivial terms in (4) are 18/7 = 2.5714 ... , 4051157 = 2.5796 ... , and 80/31 = 

2.5806 ... , which are converging rapidly to the result a = 2.5811... for the triangle. Thus 
while the sharp corners have a dramatic influence on the local electric field near the 
corners of the n-gon (the electric field becomes divergent), the singularity is weak and has 
hardly any effect on global quantities like the conductivity (Hetherington and Thorpe, 
1992). 

Similar conformal mappings can be used to solve for other shapes made up of straight 
edges, rectangles, diamonds, stars etc. We have concentrated on the regular polygons here 
as these do not reduce the overall symmetry of the material from isotropic. For a general 
inclusion, where 0"1 is neither zero nor infinity, numerical methods must be used. For 
example Hetherington and Thorpe (1992) have used a boundary element approach via an 
integral equation to find a for this more general case. The exact results above serve as 
useful checks on the accuracy of the numerical procedures. 

4. Elasticity 

The situation, as always, is considerably more complex for analogous problems in elastic 
materials. While the conformal mappings described in the previous sections are applicable, 



367 

a second auxiliary complex function is also required (Savin, 1961). This complicates the 
problem considerably and means that only a finite number of terms in the series (3) can be 
treated (Jasiuk, Chen and Thorpe, 1994). Nevertheless from our experience with the 
dielectric case, we expect this to be a rapidly convergent sequence, and indeed this is the 
case. 

The details of this work have been published elsewhere (Jasiuk, Chen and Thorpe, 
1994; Jasiuk, 1994).and we summarize our results here with more terms in some of the 
series than previously published. The algebra was done using MAPLE (1981-1992); an 
algebraic manipulation program. 

In general two quantities are required to characterize an isotropic elastic sheet, and we 
choose the two-dimensional Young's modulus E and two-dimensional Poisson's ratio v. 
All other quantities of interest can be derived from the Young's modulus and Poisson's 
ratio. In particular, the planar bulk modulus K and shear modulus G are related through 

The other useful relations are 

K= E 
2(1- v) 

G= E 
2(1+ v) . 

4 1 1 
-=-+-
E K G 

K-G 
v=--. 

K+G 

As with dielectrics, we will restrict our attention to the extreme cases of holes and 
rigid inclusions, as analytic progress is possible here. The results in the dilute limit for 
rigid inclusions can be written 

E 
-=l+aj 
Eo 

(12) 

(13) 

(14) 

where in general a and f3 both depend upon the Poisson's ratio of the host material vo. 
In all cases the subscript zero refers to matrix quantities. We will see that indeed the 
general form (14) holds for rigid inclusions, with both a and f3 depending on the host 
Poisson's ratio Yo' but there is a significant simplification for holes. 

We note that with n-fold symmetry axis, the elastic tensor, which is a fourth rank 
tensor, is isotropic except for square symmetry (n = 4). Thus for n = 4, it is necessary to 
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do an average over two orientations of the inclusions which differ by tr/4. The dielectric 
tensor is second rank and is therefore isotropic for all n as noted earlier, without the need 
for any orientational averaging 

4. 1. eLM THEOREM 

The results that we obtain must be consistent with the recently proved CLM theorem 
(Cherkaev, Lurie and Milton, 1992). This is somewhat analogous to the reciprocity 
theorem for dielectrics and puts restrictions upon the form of the results. A significant 
difference is that the CLM theorem does not relate holes and rigid inclusions (as the 
reciprocity theorem could for dielectrics). The CLM theorem is of little use for rigid 
inclusions, but for holes tells us that the two-dimensional Young's modulus must be 
independent of the Poisson's ratio for the host, and also restricts the form of the Poisson's 
ratio, allowing the system in this dilute limit to be described by just two numbers. 

4.2. HOLES 

U sing the CLM theorem, the results for holes can be written as 

E 
-=I-af 
Eo 

(15) 

where the result just depends on the two pure numbers a and v·, which are independent 
of the Poisson's ratio of the host vO' This is an important simplification and means that we 
can present the results in tabular form as is done in Tables 2 and 3 for a and v· 
respectively. 

Table 2. Showing the result for the coefficient a in the expression for the Young's modulus in (15) for 
polygonal holes. The number of terms in the series is from the conformal mapping (3). This table contains 
more extensive results than were given in Jasiuk, Chen and Thorpe (1994). 

Shape n Number of terms in series 

2 3 4 5 6 7 8 

triangle 3 4.1429 4.1897 4.2019 4.2069 4.2096 4.2112 4.2122 4.2129 

square 4 3.4260 3.4580 3.4672 3.4711 3.4732 3.4745 3.4753 3.4758 

pentagon 5 3.2092 3.2285 3.2342 3.2366 3.2380 3.2387 3.2393 3.2396 

hexagon 6 3.1186 3.1306 3.1342 3.1357 3.1366 3.1371 3.1374 3.1376 

circle CI.J 3 3 3 3 3 3 3 3 
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It can be seen that the series converge about as rapidly as similar series for the 
dielectric, although in the elastic case we are unable to find the limit. It can be seen that 
the sharpening of the corners has little effect on the parameter a, as we might have 
anticipated using our experience with holes in dielectrics. Similar studies have been done 
recently by Kachanov, Tsukrov and Shafiro (1994). 

Results for v· are shown in Table 3, which also exhibit rapid convergence properties. 
In the case of both a and v· it can be seen how the circle limit is approached rapidly as 
the number of sides n increases. 

Table 3. Showing the result for the coefficient v· in the expression for the Poisson's ratio in (15) for 
polygonal holes. The number of terms in the series is from the conformal mapping (3). This table contains 
more extensive results than were given in Jasiuk, Chen and Thorpe, (1994). 

Shape n Number of terms in series 

2 3 4 5 6 7 8 

triangle 3 .24138 .23323 .231l7 .23035 .22995 .22971 .22956 .22946 

square 4 .31008 .30743 .30671 .30642 .30627 .30618 .30612 .30608 

pentagon 5 .32485 .32383 .32354 .32343 .32336 .32333 .32331 .32329 

hexagon 6 .32952 .32906 .32893 .32888 .32885 .32884 .32883 .32882 

circle 00 .33333 .33333 .33333 .33333 .33333 .33333 .33333 .33333 

4.3. ELLIPTICAL INCLUSIONS 

It is interesting to compare the results in Tables 2 and 3 with similar results for elliptical 
inclusions, as we did for dielectrics. This table contains more extensive results than were 
given in lasiuk, Chen and Thorpe, (1994) For elliptical holes (averaged over all 
orientations), we have 

1 a b 
a=-=I+-+-

v· b a 
(16) 

which shows that the rounded corners of the ellipse increase a and decrease v· as also 
happens to the hypotrochoids and the polygons. It is interesting to compare (16) with the 
very similar result (9) for elliptical holes in dielectrics. For the ellipses we have the identity 
avo == 1 (for all aspect ratios alb), and although this is true to better than 5%; it is not 
exactly obeyed for the hypotrochoids or the regular n-gons. The one exception is the first 
non-trivial term for the triangle, as can be determined from Tables 2 and 3. 

As we noted before, there is no simplification in the form of the results for rigid 
inclusions. As an example of the complexity, we give the results for a and fJ for rigid 
ellipses (Thorpe and Sen, 1985). 
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(17) 

( 2)( 1 1 ( / )[ 1- 3 Vo {3= I- vo --+- 2+a b+b/a ( )( ) 
3-vo 4 l+vo 3-vo 

These expressions are not particularly illuminating, except to illustrate the complexity of 
the behavior of rigid inclusions even in this simple, exactly soluble, geometry. 

4.4. RIGID INCLUSIONS 

The case of rigid elastic inclusions is considerably more complex than the other situations 
we have examined in this paper. There are no simplifications that are available to restrict 
the form of (14) and a and {3 both depend upon the Poisson's ratio of the host material 
Yo. This case has recently been examined by Jasiuk (1994), using series methods similar to 
those described in the previous section. Again a second complex function is required in 
addition to the conformal mapping (1). The results are complicated to present and we just 
give a flavor here. In Fig. 3, we show the results graphically for the first three non-trivial 
terms in the conformal mapping (3) for triangular inclusions. It can again be seen that the 
convergence is as good as in other cases studied in this paper. 

-2.l~--+--_>---__ -_. 
, 1.1 2 2.1 

~ 

Figure 3. The parameter a defined in (14) for elastic materials with rigid triangniar inclusions, 
approximated by one, two and three non-trivial terms in the conformal mapping (3), is 
plotted against 1]= (3-vo)/(l+vo) (Jasiuk, 1994). 

With this result, we can use only the first non-trivial term in (3) to compare different 
ll-gons as is done in Fig. 4. It can be seen that there is rather more shape dependence than 
in some of the other cases studied in this paper. 
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Figure 4. The parameter a in (14) is plotted against 17= (3-vo)/(I+vo) for elastic materials with 

rigid inclusions approximated by the first non-trivial term in (3) (Jasiuk, 1994). 

The case of rigid inclusions has also been considered by Zimmerman (1986). He used 
the same conformal mapping techniques and concentrated the compressibility which is 
directly related to the area bulk modulus K. The work of Zimmerman leads to a useful 
bridge between the dielectric and elastic problems via 

a elastic = 2a dielectric - 1 (18) 

where we have included subscripts to avoid confusion. The a for the dielectric and elastic 
problems are given by (5) and (14) respectively. This is a very useful relationship, but 
unfortunately is only approximate as a second integral in the expression for one of the 
stress functions was neglected [equation (3)] by Zimmerman (1986), which leads to small 
numerical error. Nevertheless (18) can be used as a useful approximation for any shape 
with isotropic symmetry. We note that it is exactly obeyed for elliptical inclusions [see 
equations (9) and (16)]. The first three non-trivial terms in the conformal mapping (3) for 
the triangle, Zimmerman's approximation (18) gives 29/7 = 4.1429 ... , 6531157 = 4.1592 ... 
and 129/31 = 4.1629 for aelastic (see section 3.3), whereas the correct answers are 
4.1429 ... , 4.1897 ... and 4.2019 [from Table 2], and only the first term is in exact 
correspondence. 

From the work in this paper, we are tempted to believe that (18) may be true in 
general as an inequality 

(19) 

Recently a rigorous inequality has been derived by Gibiansky and Torquato (1993) that 
relates the elastic and dielectric properties of 2d materials containing holes. By combining 
equations (13) and (14) in Gibiansky and Torquato [and ignoring the terms in 
U2/(K2 + ,u2)] we find 
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(20) 

which is an unusual bound as the area fraction is not involved explicitly. The bound (20) is 
most useful in the dilute limit [the left hand side of (20) goes negative well before 
percolation] where (20) becomes 

a elastic ;;:: t a dielectric' (21) 

which of course is obeyed by the results presented in this paper. Note that (21) is a weaker 
bound than that proposed in (18), but (21) has the virtue of being proven! 

5. Summary 

We have examined the effect of the shape of the inclusion in the dilute limit for both 
dielectric and elastic media, for both holes and perfectly conducting (rigid) inclusions. We 
find that there are significant shape dependencies, especially for n-gons with small n. 
However it is shown that the sharp comers have little effect on the bulk properties of the 
composites. We have also discussed how the reciprocity theorem and the CLM theorem 
can help in simplifying the results in some cases. This paper gives a brief review of some 
of our recent work. More details can be found in the references cited, especially Jasiuk 
(1994), Jasiuk, Chen and Thorpe (1994), Thorpe (1992) and Thorpe and Jasiuk (1992). 
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REINFORCEMENT DISTRffiUTION EFFECTS ON FAILURE IN 
PARTICULATE REINFORCED METALS 

Viggo Tvergaard 
Department of Solid Mechanics 
Technical University of Denmark, Lyngby, Denmark 

ABSTRACT - For an aluminium alloy reinforced by SiC particulates a micromechanical study of damage 
development is carried out numerically. A unit cell model analysis is employed to model the elastic-plastic 
deformations of the composite, taking into account failure by particulate fracture or by decohesion in the 
reinforcement-matrix interface. An estimate of the effect of reinforcement distribution is obtained by compar­
ing the behaviour predicted for periodic arrays of either transversely aligned or transversely staggered particu­
lates. Interfacial failure is modelled in terms of a cohesive zone formulation that accounts for decohesion 
by any combination of normal and tangential separation, while particulate fracture is represented by a critical 
value of the average tensile stress on a cross-section. 

1. Introduction 

SiC-particulate reinforcement is used to improve the stiffness and the tensile strength of aluminium 
alloys, but the reinforcement also results in poor ductility and low fracture toughness due to early 
void formation by debonding of the matrix-particulate interface or by particle fracture (McDanels, 
1985; Zok et at., 1988; Lagace and Lloyd, 1989; Derby and Mummery, 1993). A discussion of 
current applications of metal matrix composites has been given recently by Koczak et at. (1993). 
Numerical analyses for a characteristic volume element representative of a composite material allow 
for accurate modeling of the stress and strain fields, including local stress peaks at sharp particulate 
edges. Therefore such analyses can be used to obtain a parametric understanding of the effect of 
material parameters such as shape, distribution and volume fraction of reinforcement, strength of 
interface and particulates, and matrix yield stress and strain hardening. 

For metals reinforced by short fibres a number of numerical studies have focused on the behaviour 
of perfectly bonded composites (Christman et at., 1989a,b; Teply and Dvorak, 1988; Tvergaard, 
1990; Bao et ai., 1991). The onset of debonding at flat fibre ends has been analysed by Nutt and 
Needleman (1987), and debonding leading to fibre pull-out has been analysed by Tvergaard 
(1990,1991), taking into account also the effect of thermal contraction mismatch during cooling from 
the processing temperature. In two more recent papers Tvergaard (1993,1994) has analysed the 
effect of fibre breakage as well as fibre-matrix debonding in whisker reinforced metal, considering 
both transversely staggered and transversely aligned whiskers. It was found that for a realistic range 
of material parameters the model predictions reproduce experimentally observed material behaviour 
involving both types offailure (e.g. see Zok et at., 1988; Derby and Mummery, 1993). Quite recently 
Finot et ai. (1993) have analysed failure of materials with transversely aligned particles, assuming 
that brittle reinforcement fracture initiates from an initial penny-shaped crack inside the particles. 
An interesting result of this study is that a critical value of the average tensile stress on a reinforce-
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mentcross-section gives a good approximation ofthe prediction resulting from the assumption of an 
initial crack in the reinforcement. 

In addition to failure by fibre breakage or fibre-matrix debonding a number of discontinuously 
reinforced aluminium matrix composites show ductile failure by the nucleation, growth, and coales­
cence of voids within the matrix (e.g. see Christman et at., 1989b; Needleman et at., 1993). This type 
of failure mechanism has been studied numerically by Llorca et at. (1991), using a porous ductile 
material model to represent progressive failure development in the matrix material. A discussion of 
failure in metal matrix composites by fibre breakage, decohesion of the fibre-matrix interface, or 
failure within the matrix material alone has been given by Needleman et at. (1993), including both 
experimental observations and results of numerical model simulations. 

In the present paper the effect of different reinforcement distributions is studied for particulate 
reinforced metal. The distribution of particulates in a real material is more or less random, and the 
relative location of neighbouring particulates may have a significant influence on the onset of failure 
by debonding or breakage. Such distribution effects may be conveniently studied in the context of 
plane strain models (e.g. see Christman et at., 1989b; Brockenbrough et at., 1991), but in the case of 
short fibre or particulate reinforced metals this gives a rather poor approximation of the actual three 
dimensional stress fields around reinforcements. Since these stress fields are important in studies of 
damage, the numerical model would have to be full three dimensional, e.g. extending studies such as 
those of Levy and Papazian (1990), Hom (1992), or Slilrensen et at. (1994) to also account for failure; 
or an axisymmetric model can be used, which allows for a much finer mesh to resolve failure devel­
opment. The present investigation is based on axisymmetric models, with particulates modeled as 
short cylinders with aspect ratio one. Analyses for periodic arrays of particulates, which are taken to 
be either transversely aligned or transversely staggered, are here used to get some insight in the effect 
oflocal reinforcement distributions. Assuming that each of these idealised distributions is relevant to 
some region of a real material, the distribution giving first failure would represent the most critical 
situation. The possibility of ductile failure within the matrix material alone will not be studied here. 

2. Problem Formulation and Numerical Model 

The particulate reinforced material is modelled in terms ofaxisymmetric unit cell-models, as shown 
in Fig. I, where particulates are represented as short circular cylindrical fibres with aspect ratio one. 
For transversely aligned fibres (Fig. I b) the axisymmetric approximation of the periodic deforma­
tion pattern requires that the circular cylindrical unit-cell remains circular cylindrical throughout the 
deformation history (detailed boundary conditions are given by Tvergaard, 1982; 1994; Nutt and 
Needleman, 1987; Christman et at., 1989a). For transversely staggered fibres (Fig. lc) the same 
unit-cell is used (Fig. la), with different boundary conditions, as has been specified by Tvergaard 
(1990a; 1993). In both cases the boundary conditions are specified such that the average logarithmic 
strain in the axial direction, E1 ,is the prescribed quantity, and the ratio of the average true stresses 
oland O2 in the axial and transverse directions remains fixed, 

(2.1) 

The initial radius and length ofthe unit-cell are denoted re and Ce , respectively, and the particu­
late (or fibre) geometry is specified by the initial halflength C f and radius r f. Thus, the fibre volume 
fraction f is 

(2.2) 

The initial fibre aspect ratio u f and cell aspect ratio U e , respectively, are specified by 
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Figure 1. Periodic arrays of cylindrical particulates with parallel axes. (a) Axisymmetric cell-model. 
(b) Transversely aligned particulates. (c) Transversely staggered particulates. 

(2.3) 

In all calculations to be reported here the values of these aspect ratios are taken to be u f = U c = 1 . 
It is noted that the cell aspect ratio U c gives a measure of the average fibre spacings in the axial and 
transverse directions. 

The matrix material deformations are taken to be described by J 2 flow theory, with isotropic hard­
ening. For the analysis, a convected coordinate, Lagrangian formulation of the field equations is 
used, in which gij and Gj' are metric tensors in the reference configuration and the current configu­
ration, respectively, with determinants g and G. A cylindrical reference coordinate system is used, 
and the displacement components on the reference base vectors are denoted ui . The Lagrangian 
strain tensor is given by 

_ 1 ( k ) TJ .. - - u·· + u·· + U .uk · IJ 2 IJ J,I ,I J (2.4) 

",:~ere ( ) j denotes the covariant derivative in the reference frame. The contravariant components 
.'J of the Kirchhoff stress tensor on the current base vectors are related to the components of the 
Cauchy stress tensor oij by 

(2.5) 

The finite strain generalization of h flow theory, in which the incremental stress-strain relationship 
is of the form i;iJ = Ojkl~kl' is described in more detail elsewhere (e.g. see Tvergaard, 1990). The 
uniaxial stress-strain behaviour is represented by 

for 0:::; Oy 

(2.6) 
for 0> Oy 

where Oy is the uniaxial yield stress, n is the strain hardening exponent, and E is Young's modulus. 
The particles are approximated as rigid, to simplify the debonding analysis. The elastic modulus of 

SiC is much higher than that of aluminium (Ef = 5.7 EM) , and it has been found for perfectly 
bonded fibres (Tvergaard, 1990a) that predictions for elastic or rigid fibres differ rather little when 
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plastic yielding has occurred. Breakage is taken to occur when the average tensile stress in the middle 
of the particle (at xl = 0) reaches a critical value Of. When the peak fibre stress Of is reached, the two 
halves of the reinforcement are allowed to separate, and the axial force on the fibre cross-section, 
ofnrF ' is stepped down to zero in a few subsequent increments. During this force reduction the 
average axial strain is taken to be constant, Er = 0, rather than specifying a traction separation law 
for the fibre cross-section. 

The debonding behaviour is specified in terms of a cohesive zone model proposed by Tvergaard 
(1990b) as an extension of the model of Needleman (1987). A set of interface constitutive relations 
give the dependence of the normal and tangential tractions Tn and Tt on the corresponding 
components Un and Ut of the displacement difference across the interface. The model is chosen 
such that in pure normal separation (Ut == 0) it coincides with that of Needleman (1987). 

A non--dimensional parameter A is defined as 

A= (2.7) 

and a function F(A) is chosen as 

F(A) = 2J omax(I-2A + A2) , for 0:5 A :5 1 (2.8) 

Then, as long as A is monotonically increasing, the interface tractions are taken to be given by the 
expressions 

un 1) Ut 1 
Tn = ()n F(II. , Tt = a ()t F(II.) (2.9) 

It is seen that in pure normal separation (ut == 0) the maximum traction is Omax, total separation 
occurs at Un = ()n , and the work of separation per unit interface area is 90max()n/16. In pure 
tangential separation (un == 0) the maximum traction is aomax , total separation occurs at ut = ()t, 
and the work of separation per unit interface area is 9aomax()t/16. The values of the four parameters 
()n , ()t ' Omax and a have to be chosen such that the maximum traction and work of separation in 
different situations are well approximated. The incremental expressions for (2.9), needed in the 
numerical solution, are specified by Tvergaard (1990b), together with expressions for interface 
unloading during reversed loading and expressions defining friction between fibre and matrix during 
fibre pull-out. 

Numerical solutions are obtained by a finite element approximation, using a linear incremental 
method based on the incremental principle of virtual work. The elements used are quadrilaterals, 
each built up of four triangular axisymmetric linear displacement elements. The meshes used for the 
computations are analogous to those applied for short fibre composites by Tvergaard (1993,1994), 
using a small initial blunting at the centre of the fibre, to be able to resolve the large strains that 
develop at the tip of the penny shaped crack resulting from fibre fracture. 

The principle of virtual work for the cell-model is 

f ,;ij()l1 ijdV + f(Tn()Un + Tt()ut)dS = f Ti()uidS (2.10) 

v SI S 

where V and S denote the reference volume and surface of the cell, Sr denotestheintemalsurface,at 
which debonding or frictional sliding may take place, and 'P are the specified nominal surface 
tractions. The normal displacement difference Un and the tangential displacement difference Ut 
across the interface are expressed in terms of the axial displacement of the rigid fibre and the displace­
ments ui on the matrix side of the interface. The boundary conditions with a fixed principal stress 
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ratio (2.1) are implemented using a Rayleigh-Ritz finite element method (Tvergaard, 1976), and this 
procedure is also used to control the numerical stability during debonding. 

3. Results 

For the aluminium matrix the material parameters are chosen equal to those used for an aluminium 
alloy 2124-SiC whisker-reinforced material tested by Christman et at. (1989a). Thus, the uniaxial 
stress-strain curve is approximated by the power law (2.6) with oy/E = 0.005 and n = 7.66 (i.e. 
Oy = 0.3 GPa and E = 60 GPa), and with Poisson's ratio v = 0.3 . The fibre and cell aspect ratios 
are taken to be ur = U c = 1 , and in most of the studies the fibre volume fraction f = 0.20 is 
considered. 

For SiC fibres the failure strain is often around 0.01 (Teply and Dvorak, 1988; Lloyd, 1989; 
Koczak et at., 1989), somewhat larger for whiskers and somewhat smaller for reinforcements with 
larger diameter, and the SiC elastic modulus is about 5.7 times that for aluminium. A failure strain of 
0.01 corresponds to a value 0.057 of or/EAf ' or to 0r/Oy = 11.4 for the present material 
parameters. Since particulates have often larger diameters, it is chosen here to focus on the values 
10 ,5 and 2.5 ,respectively, ofthe ratio or/Oy . Also in the description of decohesion atthe partic1e­
matrix interface different values of the peak stress Omax are considered, and the values of the remain­
ing parameters in the model (2.7)-(2.9) are here taken to be bn = b t = 0.02rr and U = 1 . 

3~------------------------------------------------~ 
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Figure 2. Stress-strain curves predicted for transversely aligned particulates, Q = 0 and f = 0.20 . 
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Fig. 2 shows computed overall stress-strain curves for materials with transversely aligned particu­
lates. The materials are subjected to uniaxial tension, Q = O2/01 = 0 , and have f = 0.20 . For 
or/Oy = 10 and omax/Oy = 5 no fibre breakage is predicted, but debonding at the sharp particle 
edge starts at E 1 "" 0.061 and the flat end of the particle is completely debonded at E 1 "" 0.117 . 
The other three curves in Fig. 2 assume alowerfibre strength, or/Oy = 5 . For omax/Oy = 5 this 
results in particle breakage at EI "" 0.047 ,prior to the onset of debonding found on the solid curve 
in Fig. 2, and practically no debonding occurs in this case as the crack through the particle centre 
opens up. For omax/ Oy = 10 this particle breakage occurs a little earlier, as a result ofthe reduced 
compliance of the interface and less tendency towards beginning interfacial failure. On the other 
hand, for omax/Oy = 2.5 failure by debonding at the flat particle end takes over again, and no 
breakage is predicted. 
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Figure 3. Stress-strain curves predicted for transversely staggered particulates, Q = 0 and f = 0.20. 

Fig. 3 shows predictions for a metal reinforced by transversely staggered particulates (Fig. Ic), but 
for material parameters and loading conditions otherwise identical to those considered in Fig. 2. It is 
seen that the transversely staggered particulates give significantly lower overall stress levels and thus 
also a much reduced tendency for material failure. In fact, three of the cases analysed show practi­
cally identical stress-strain curves with no failure at all in the range considered. In the fourth case, for 
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Omax/Oy = 2.5 and Of/Oy = 5 , debonding at the sharp particle edge starts rather late, at 
E 1 = 0.095 , and full debonding at the flat endface has occurred at E 1 = 0.110 . 

It is noted that the relatively high stress levels for transversely aligned particulates are a result of 
the highly constrained plastic flow that develops for this reinforcement distribution, as has also been 
found for whisker reinforced metals (Christman et at., 1989a,b; Tvergaard, 1994). The generally 
high stress level in the material promotes failure by particle fracture as well as by particle matrix 
decohesion. The transversely staggered array of particulates gives less constraint on plastic flow and 
thus generally lower stress levels in the material; but a cross-section through particulate centres 
contains only half as many particulates in the transversely staggered array, and this should tend to 
increase the stress levels inside particulates and thus give earlier breakage. For a whisker reinforced 
metal it has been shown (Tvergaard, 1994) that the latter mechanism dominates, so that failure by 
fibre breakage occurs at a smaller strain and a smaller average tensile stress with transversely stag­
gered fibres. The same trend is not found for the particulate reinforced materials illustrated by Figs. 2 
and 3. Here, the transversely staggered particulates give no breakage at all in the range analysed, and 
the only failure event predicted in Fig. 3 occurs at a much larger strain and a somewhat larger average 
tensile stress than that predicted in Fig. 2 for the corresponding material with transversely aligned 
particulates. 
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Figure 4. Stress-strain curves predicted for transversely aligned particulates, Of/Oy = 5 , Omax/Oy = 5 
and f= 0.20. 
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In Figs.4 and 5 the effect of stress triaxiality, as measured by Q = O2/0\ ,is comparedfor the two 
different types of particulate distributions. The material parameters are as those in the previous two 
figures, with f = 0.20 and or/ Oy = omax/ Oy = 5 ,and thus the solid curves in Figs. 4 and 5 are 
identical to curves also shown in Figs. 2 and 3, respectively. It is seen that increased stress triaxiality 
gives rise to much higher tensile stress levels, which promotes earlier onset of failure, as is clearly 
illustrated in Fig. 4, where particle fracture is the cause of failure in all four cases. For the correspond­
ing cases with transversely staggered particulates Fig. 5 shows no occurrence of failure, but it is noted 
that for· Q = 0.5 failure by particle fracture has been predicted outside the range illustrated in the 
figure, at t\ "" 0.127 and OdOy "" 3.54 . Thus, also here the trend is opposite to that found for 
short fibre reinforced metals (Tvergaard, 1994), since for Q = 0.5 transversely staggered particu­
lates give much later failure at a higher average tensile stress. In areal material, where the particulates 
are more or less randomly distributed, it is thus more likely that failure will initiate in regions where 
the particulates are transversely aligned than in regions with transversely staggered particulates. 
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Figure 5. Stress-strain curves predicted for transverseiy staggeredparticu iates, Or/Oy = 5 , Omax/Oy = 5 
and f= 0.20. 
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Figure 6. Stress-strain curves predicted for transversely aligned particulates. Q = 0, Of loy 
omax/oy = 5. 

5 and 

The effect of differences in the volume fraction of particulates is illustrated in Fig. 6 for a material 
with omax/oy = orJOy = 5 and with transversely aligned reinforcement, subject to uniaxial ten­
sion, Q = 0 . Increasing the value of f from 0.20 to 0.30 gives significantly higher overall stresses, 
as expected, and this results in failure by particle fracture at a much smaller strain. For the smaller 
volume fraction, f = 0.10 , the stress level in the particulates is so much reduced that no breakage 
occurs in the range analysed; but in this case a region of decohesion near the sharp particulate edges 
starts to develop at E I = 0.098 ,rather slowly since at E I = 0.148 the flat end face is not yet fully 
debonded. The same three sets of material parameters have also been analysed for transversely stag­
gered particulates, but here the stress levels are so much lower than those in Fig. 6 that neither 
breakage nor debonding are predicted in the range analysed. 

Results for transversely staggered particulates with orJOy = 2.5 and omax/oy = 5 are shown in 
Fig. 7, for Q = 0 . Here, due to the smaller particulate strength, breakage is predicted in all three 
cases. Qualitatively, the behaviour is quite in agreement with that in Fig. 6, showing that higher 
particulate volume fraction gives rise to more rapid growth of the average tensile stress, which leads 
to breakage at a smaller strain. 
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Figure 7. Stress-strain curves predicted for transversely staggered particulates, Q = 0, Of/Oy = 2.5 and 
omax/Oy = 5. 
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1. Introduction 

As it is known, the asymptotic homogenization methods for micro-periodic composites, 

leading to the effective modulus theories, neglect inertial aspects of microstructural 

features related to the size of constituents (cf. [1,2] and the references therein). The 

main aim of this contribution is to propose a new approach to the formulation of macro­

-models for micro-periodic thermoelastic composite materials. This approach takes into 

account a length-scale effect on a dynamic response of a composite and is simple 

enough to be applied in analysis of engineering problems and for quasi-stationary 

processes reduces to the special effective modulus theory, [3,4]. Theories of this type 

for elastic composite materials and structures were discussed in [5-7] and are termed 

refined macro-theories. In this paper governing equations of the refined macro­

-thermoelastodynamics are formulated on the basis of heuristic hypotheses concerning 

the expected form of disturbances in displacement and temperature fields, caused by the 

micro-inhomogeneity of a composite. At the same time a special form of macro­

-modelling approximations is used. The resulting equations are obtained without any 
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reference to a boundary value problem on the representative volume element, that is 

required in asymptotic homogenization approaches, [1,2]. The general considerations 

are illustrated by the simple example the aim of which is to compare results of the 

refined macro-theory and those of the effective modulus theory. It is shown that the 

microstructure length scale effects, described by the proposed macro~theory, play an 

essential role in investigations of the non-stationary behaviour of the composites. 

The analysis will be carried out in the framework of the linear thermo­

elastodynamics under assumption of the perfect bonding between constituents of the 

composite. The considerations are restricted to micro-periodic bodies, i.e., the 

maximum length dimension of the representative volume element is sufficiently small 

compared to the minimum characteristic length dimension of the body. 

Denotations. The region in the reference space, occupied by the undeformed composite 

body, will be denoted by Q. By x == (xI, x2, x3) and 't we denote points of 0 and a time 

coordinate, respectively, and XI, X2' X3 are Cartesian orthogonal coordinates in the 

reference space. Subscripts i, j, k, I related to these coordinates nm over the sequence 1, 

2, 3. Superscripts a, b, run over 1, ... ,n being related to a certain micro-discretization of 

the representative volume element V = (0, II) x (0, 12) x (0, 13) of the periodic 

composite structure. The summation convention holds both for i, j, k, I and a, b. For any 

V-periodic integrable function f(x) we introduce the averaging operator 

where dv = dx 1 dX2dx3. The area element of the boundary 00 will be denoted by da. 

The remaining basic denotations will be given at the beginning of the subsequent 

section. 
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2. Analysis 

2.1. FOUNDATIONS 

Foundations of the proposed approach are based on the governing equations of thermo­

-elastodynamics. Denoting by Uj, 8, Sjj, qj, p, s, bj, a., Sj, q displacements, temperature, 

stresses, heat fluxes, mass density, specific energy, body forces, heat supply, boundary 

tractions and boundary heat supply, respectively, we shall postulate the principle of 

balance of momentum and that of balance of energy in the following weak form 

~ Jp(x)Uj(x,'t)ouj(x)dv= §Sj(x,t)ouj(x)da- JSij(x,'t)oUj,j(x)dv+ 
d'tn an n 

+ J p(x) bjouj (x)dv , 
n 

d d J sex, 't)08(x)dv = hex, 't)08(x)da- J qj (x, 't)88,j (x)dv + 
't n an n 

+ j[a.(x, 't)+Sij(X, 't)tij,j (x, 't)]08(x)dv , 
n 

(1) 

where OUj, 08 are sufficiently regular test functions. The constitutive equations will be 

assumed in the linearized form 

1 
s( x, 't) = "2Cjjkl (x) u(j, j) (x, 't) u(bl) (x, t) + BjjCx) u( j, j) (x, 't) 8(x, 't) + 

+!c(x) 82 (x, 't) , (2) 
2 

Sjj(x,'t)=Cjjkl(X)U(j'j)(x,'t)+Bij(x)8(x,t), qj(x,t)=Kij(x)8'j(x,'t), 

where the elastic modulae CjjklO, the thermal conductivity modulae KijO, the thermal 

expansion modulae BijO and the specific heat cO are V -periodic functions. Eqs (2) 

have to satisfy the known dissipation condition. 
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If Eqs (1) hold for arbitrary regular test functions oUi, 08 then Eqs (1), (2) are 

equivalent to the well known equations of the linear thermo-elastodynamics, which for 

composite materials have to be considered together with the continuity conditions 

[O"ij]nj = 0, [hj] nj= 0 on the interfaces between constituents. However, due to the highly 

oscillating (V -periodic) form of Eqs (2), the aforementioned equations do not constitute 

the proper analytical tool for investigations of composite bodies. In order to formulate 

macro-modelling assumptions leading from Eqs (1), (2) to the equations of the refined 

thermo-elastodynamics we have to introduce certain preliminary concepts. 

2.2. PRELIMINARY CONCEPTS 

The first preliminary concept we are to introduce is related to the expected form of 

disturbances in displacement and temperature fields caused by the inhomogeneity of the 

medium. To this end we shall assume that from the qualitative viewpoint these 

disturbances can be described by a sequence of n linear independent functions ha(x), 

xER3, which are V-periodic, continuous, have piece wise continuous first derivatives 

ha,j suffering jump discontinuities across the interfaces between constituents and satisfy 

conditions' <ha> = 0 <ha -> = 0 <pha> = <"'ha> = <cha> = <B .. ha> = 0 Moreover we . "1' \..A. IJ" 

assume that ha(x)ECJ(l), where 1,= max Ii is the microstmcture length parameter, and 

that the values ha,i(x) of the derivatives of ha are independent of I. Functions ha(-) are 

called micro-shape functions; their specification depends on the material stmcture of the 

representative volume element V of the periodic composite and can be also related to a 

certain discretization procedure of V; for particulars the reader is referred to [3-5]. 

Let "A be a small macro-accuracy parameter related to the calculations of a certain 

real-valued function F(·) defined on Q (F can also depend on the time coordinate -c). 

Function F will be called V -macro function if for every X,YEQ such that X-YEV 

condition I F(x) - F(y) I < "A holds. If the condition of this form also holds for all 

derivatives of F then F will be referred to as the regular V-macro function. For any 

integrable V-periodic function f(·), micro-shape function haC) and regular V-macro 

function F(-), we obtain 
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jf(X)F(x)dv=<f> jF(x)dv+0!(A) , (3) 
n n 
(ha(x)F(x»,j = ha,j (X)F(X)+6l(A) , 

The concept of a regular V -macro function is strictly related to the macroscopic 

description of the behaviour of a composite in which the oscillations of functions within 

every single periodicity cell can be neglected, [5]. 

2.3. MACRO-MODELLING ASSUMPTIONS 

The passage from Eqs (1), (2) of micromechanics to the proposed macro-model of a 

composite will be based on the following modelling assumptions. 

Micro-Macro Localization Hypothesis. The displacement and temperature fields in the 

micro-periodic body can be expected in the form 

u j (x, t) = U j (x, t) + h a ( x) Vi (x, t) , 

8(x, t) = 0(x, t)+ ha(x)<I>a(x, t) , X En , 

(4) 

where Uj{-,t), vjaet), 0(-,t), <l>a(-,t) are arbitrary regular V-macro functions and haO 

are micro-shape functions, postulated in every problem under consideration. 

Fields Uj and 0 will be called macro-displacement and macro-temperature field, 

respectively. Fields vja, <l>a are referred to as correctors and describe, from the 

quantitative point of view, the possible disturbances in displacements and a temperature 

caused by the micro-periodic inhomogeneous stmcture of a composite. 

Macro-Balance Assumption. The balance equations (\) are assumed to hold for oUi = 

= oUj + hao Vr, 08 = 00 + hao<l>a, where oUj, 0 Vr, 00, o<l>a are arbitrary linear 

independent regular V -macro functions. 

Macro-Modelling Approximation. In the balance equations (1) terms (9(A) in integrals 

over n and terms (9(1) in integrals over on can be neglected. 
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3. Refined theory 

Substituting the right-hand sides of Eqs (2) into Eqs (1) and using the aforementioned 

macro-modelling assumptions (we apply formulae (3)), after some manipulations and 

introducing the following V -macro fields 

Sij =< Cjjkl > Uk ,I + < Cjjklh8,k > V~ + < Bjj > e + < Bjjh b > <1>b , 

Hf =< Cjjklh8 'j > Ubi + < Cjjklh8 'j hb ,I > V~ + < Bjjha,j > e + 

+<Bijh8 ,jhb > <1>b , (5) 

Q . =< K-. > e . + < K··h b . > <1>b 1 1) ,) 1)') , 

G8 =< K-·ha . > e . + < K··h8 . hb . > <1>b , 
1) ,) '1 1)'1') 

we obtain 

<p> U-Sjj,j=<p>b j , 

<ph8hb >V? +H8 =0 
1 1 

. . b· b 
<c>e-Qj,j+<Bjj >Uj,j+<Bjjh ,j>Vj =<(1) 

8 b·b b a ·b a < ch h ><1> + < Bjjh ,j h > V j + G = 0 , 

(6) 

and Sjjnrsj, Qjnj=q on an. Substituting the right-hand sides of Eqs (5) into Eqs (6) 

we arrive at the system of 4+4n equations for macro-displacements Ui, macro-

-temperature 0 and correctors Via, <1>a. These equations have constant coefficients and 

hence, represent a certain macro-model of the periodic body under consideration. The 
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underlined constants in Eqs (5), (6) depend on the microstructure length parameter I and 

describe the effect of the microstructure on the behaviour of the composite. Hence, Eqs 

(5), (6) represent the refined macro-thermoelastodynamics of composite materials and 

will be called macro-constitutive equations and local macro-balance equations, 

respectively. It has to be emphasized that the equations for correctors (the second and 

the last from Eqs(6)) are ordinary differential equations and hence, the correctors playa 

role of certain internal dynamical variables, i.e., they do not enter boundary conditions. 

For a homogeneous body from Eqs (5), (6) we obtain Va = 0, <Da = 0, provided that 
I 

initial values of Va, Va and <Da are equal to zero. Hence, we see that correctors 
I I 

describe the effect of inhomogeneity on the macro-behaviour of the body. 

4. Effective Modulus Theory 

Scaling the microstructure down in Eqs (5), (6) by means of 1-+0, we arrive at a certain 

asymptotic theory; in this case the underlined terms are equal to zero and we arrive at 

conditions Hf = 0, Ga = ° representing the systems of linear algebraic equations for the 

correctors v.a , <Da , Hence, eliminating correctors from Eqs (5), (6) we obtain equations 
1 

of a certain special effective modulus theory, given by 

<p>i\ -Sij,j=<p>bi ' 
eff e' Q eff . c "-' ·+B .. U· '=<a..> 

PI IJ I'J (7) 

S C eff Beff C\ 
ij = ijkI UbI + ij <::J , Qi=Kijffe'j. 

The constant coefficients in Eqs (7) are termed effective modulae and defined by: 

C eff C C h a Dab C h b 
ijkI =< ijkI > - < ijmn 'm > np < khp 'r>' 

Bijff =< BlJ > - < BkIha,I >Dk~ < Cprijhb,r > , 

Kijff =<Kij>-<Kikha,k>Dab<KjIhb,I> , 

eff B h a Dab B h b c =< c > - < ij ,j> ik < ki ,I>, 
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where Df~ and Dab represent linear transformations inverse to those given by 

<Cjjk)ha'jhb,» and <Kijha,jhb'j>' respectively. The aforementioned results have been 

derived independently in [3], without any reference to the refined theory. 

5. Example of Application 

Let us consider a laminated body made of two orthotropic constituents. In this case we 

introduce one micro-shape function hex)) (periodic in a direction Xl normal to the 

lamina interfaces, cf. [1] ), denoting by Vk, <P the pertinent correctors related to hex)). 

For the sake of simplicity let us neglect the body forces b i and heat supply u. The aim 

of this example is to show a difference between results obtained from the refined theory 

and those derived from the effective modulus theory. To this end we shall consider the 

homogeneous boundary conditions for the macro-displacements and macro­

-temperature: Vi = 0, Qini = 0 on an, homogeneous initial conditions for the macro-

-displacements and correctors: Vi = 0, U i = 0, Vi = 0, Vi = 0, <P = 0 at 't = 0 and the 

initial condition for the macro-temperature in the form: 0 = 0 0 at 't = 0, 0 0 = const. 

Then in the framework of the refined theory we obtain Vi = 0, V 2 = V 3 = <P = 0 for 

every 't > 0, X E n, and 

(8) 

where 

At the same time, the effective modulus theory yields the constant values of 0 and 

V 1 for every 't ~ 0: 
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0=00 , (9) 

From Eqs (8) it follows that the inhomogeneity of the medium and the coupling 

between temperature and deformations produce highly oscillating character of the 

macro-temperature field; this fact is not described by the effective modulus theory 

leading to (9). Thus we conclude that in investigations of non-stationary processes in 

thermo-elastic composites, the refined macro-elastodynamics has to be used instead of 

the effective modulus theory. 

Acknowledgment. This research work was supported by KBN, Warsaw, under grant 
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MICRO MECHANICAL MODELING OF EFFECTIVE ELECTRO· 

THERMO·ELASTIC PROPERTIES OF TWO·PHASE PIEZOELECTRIC 

COMPOSITES 
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ABSTRACf. A periodic microstructural model is developed to estimate the coupled 

electro-thermo-elastic response of piezoelectric composites. The model includes vital 

microstructural parameters, such as the constituent properties and shapes, and provides 

analytic estimates of the effective electro-thermo-elastic moduli of two-phase piezoelectric 

composites. 

1. Introduction 

The coupling of electric, thermal, and elastic responses within piezoelectric composites 

has attracted extensive attention recently in the light of the development of smart 

materials. Some of the existing works focus on the derivation of universal relations 

among the effective electro-thermo-elastic properties of piezoelectric composites [1-8], 

and some others study the local fields and effective behavior of piezoelectric composites, 

using various micromechanics models [1, 7-19]. It is noted that most of the existing 

micromechanics models, which were originally developed for structural composites in 

purely mechanical applications (see [20] for a comprehensive account), consider 

representative volume elements of statistically homogeneous piezoelectric composites 

with random microstructure. On the other hand, as a result of fabrication procedures, 

some of the piezoelectric composites may exhibit periodic microstructure [21,22]. In the 

present work, a general model based on periodic microstructure is developed to estimate 
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the effective electro-thermo-elastic properties and to study the microstructure-property 

relationships in two-phase piezoelectric composites. 

2. The Periodic Microstructural Model 

In the present model, the composites are considered to be infinite piezoelectric solids 

containing periodically distributed piezoelectric inhomogeneities. In view of the 

periodicity, the composite can be regarded as a collection of unit cells; see Figure 1 for 

the example of a particulate composite with periodically distributed ellipsoidal particles. 

Thus, the coupled electro-thermo-elastic response of the unit cell is representative of that 

of the infinite composite, under applied homogeneous electric, thermal, and mechanical 

loading. 

Figure 1. Composite with periodically distributed ellipsoidal particles and its unit cell. 
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Consider a parallelepiped unit cell, U, consisting of a continuous piezoelectric matrix, 

M, and a different piezoelectric phase (i.e., an inhomogeneity), n, of arbitrary shape. 

Let the unit cell (or equivalently, the infinite composite with periodic microstructure) be 

subjected to linear displacements u(x) = x·eo and a linear electric potential 4>(x) = 

-x·Eo, along with a uniform temperature change e(x) = eo on its boundary surface, 

where eO and EO are the homogeneous strains and electric fields, respectively, and x is 

the position vector. The superscript 0 indicates that the corresponding tensors are 

homogeneous. The average strains, electric fields and temperature change over U are 
therefore, eO, EO, and eo, respectively. However, the presence of periodically 

distributed inhomogeneities (fibers, whiskers, particles, etc.) induces a periodic 

perturbation field, of which the average over U vanishes. For example, the local strain 

field can be expressed by 

:too 

e(x) = If' + £P(x) = If' + l: f{C)exp(iC·x), 
~~o 

(1) 

where the superscript p stands for the periodic perturbation; C is a vector with 

components 

Ck = 1t~k (k=1,2,3; k not summed); 
(2) 

nk are integers; ak are the dimensions of the unit cell; and i =Y-1, The term associated 

with C = 0 (i.e., the average strains over U, eO) is excluded from the Fourier series. The 

Fourier coefficients £<0 are dermed by 

- 1 r e(0 = Vu Ju e(x) exp(-iC·x) dVx (3) 

with Vu being the volume of the unit cell. Similar expressions exist for the stresses O"(x), 

electric fields E(x), temperature change 9(x), and electric displacements D(x). The 

effective electro-thermo-elastic moduli of the piezoelectric composite are dermed by 

(4) 
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(5) 

where the angle brackets with the subscript U mean the volume average over U. The 

superscript T stands for the transpose of the corresponding third-order tensor. 

C, e, i, A, and Ii are the effective stiffness, piezoelectric, dielectric, thermal stress, and 

pyroelectric moduli of the piezoelectric composites, respectively. 

3. Homogenization 

To determine the effective electro-elastic moduli of piezoelectric composites, let the unit 

cell be subjected to electro-mechanical loading of u(x) = x·eo and cI>(x) = -x·Eo on its 

boundary surface. The effective thermal stress and pyroelectric moduli of the composite 

are to be determined separately; see Section 4. Instead of dealing with the composite unit 

cell, one can homogenize the original unit cell by the matrix phase [23]. A suitable 

amount of transformation stresses, a*(x), and transformation electric displacements, 

D*(x), which are strain-free and electric field-free, respectively, must be introduced in 0 

of the homogenized unit cell to satisfy the following constraint conditions: 

which require the electric, thermal, and elastic fields in 0 to be preserved in an average 

sense after the homogenization. The quantities with the superscripts and subscripts O(M) 

represent the material properties of and the volume averages over O(M), respectively. To 
solve (6) and (7) for (a*(x)Q and (D*(x))Q' one must determine the relationship between 

transformation fields, a*(x) and D*(x), and their resulting perturbation fields, 

eP(x), and EP(x). This inclusion problem is solved as follows. 

Consider a homogeneous unit cell with stiffness, piezoelectric, and dielectric moduli, 

CM, eM, and KM. Furthermore, transformation stresses, a*(x), and transformation 

electric displacements, D*(x), which are also periodic functions of x, are prescribed in 

O. The constitutive relations for such a homogeneous piezoelectric unit cell are given by 
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(8) 

D(x) = eM:£(x) + ~·E(x) + D*(x), (9) 

where the strains e(x) and electric fields E(x) are defmed by 

£(x) = i {V®u(x) + [V®u(x)t}, (10) 

E(x) = - VcI>(x) (11) 

with u(x) and cj>(x) being the elastic displacements and electric potential, respectively. 

The equilibrium and Gauss' law read 

V·a(x) = 0, (12) 

V·D(x) =0. (13) 

Substitution of (8) - (11) into (12) and (13), with the help of Fourler series expansion for 

all the electro-elastic fields, yields 

(14) 

(15) 

where ii(O and ~O, defined in a manner similar to (3), are the Fourier coefficients of 

displacements u(x) and electric potential cI>(x), respectively. Il. and f{Q are defmed by 

(16) 

(17) 

with sym representing the symmetric part of the corresponding fourth-order tensor. 

Consequently, the strains and electric fields are given by (10) and (11), whereas the 
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stresses and electric displacements are obtained by (8) and (9), respectively. When the 

transformation stresses and electric displacements are uniform in 0, i.e., 

a*(x) = G* and D*(x) = n* XE 0, (18) 

where a* and n* are constant second- and fIrSt-order tensors, respectively, the average 

perturbation strains and electric fields are given by 

where 

±-
(eP(x»)n = L£P(O g(Q, 

~ 

±-
(EP(x»)n = LEP(O g(Q, 

~ 

(19) 

(20) 

(21) 

(22) 

f is the inhomogeneity volume fraction, and the geometry of inhomogeneity is accounted 

for in 

g(O = ~n fn exp(iC·x) dVx (23) 

with Vo being the volume of 0. Explicit expressions of g(~) for a broad class of 

inhomogeneity shape have been reported in [24]. For example, the g(C) for an ellipsoid 

is given by 

(24) 

where 

(25) 



403 

with bh b2, and b3 being the principal radii of the ellipsoid, whereas the g(~) for an 

elliptic cylinder with principal radii bl and b2, and length b3, is expressed by 

(26) 

As can be seen, the shape and size of the inhomogeneity, as well as the material 

properties of the matrix and inhomogeneity, are explicitly included in the present 

formulation. 

4. Effective Electro-Thermo-Elastic Moduli 

Now, turning to (6) and (7), for simplicity, one assumes the transformation stresses and 
transformation electric displacements to be constant within O. Therefore, <cr*(x»n = 
a* and <D*(x»n = D*. By substituting (19) and (20) into (6) and (7), one can readily 

solve the appropriate 0* and D*, which satisfy the constraint conditions (6) and (7), i.e., 

the electro-elastic fields are preserved after the homogenization. The effective electro­

elastic moduli are then determined by 

(27) 

(28) 

The effective thermal stress and pyroelectric moduli, A. and p, can be expressed in terms 

of the effective electro-elastic moduli, C, e, and K, and the thermal stress and pyroelectric 

moduli of the matrix and inhomogeneity [3, 7, 8, 15]. 
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MICROSTRUCTURE EVOLUTION 

IN IDEALLY PLASTIC COMPOSITES 

M. ZAIDMAN and P. PONTE CASTANEDA 
Department of Mechanical Engineering 
and Applied Mechanics 
University of Pennsylvania 
Philadelphia, PA 19104, U. S. A. 

1. Introduction 

In this paper, we present a constitutive model for two-phase rigid/ideally plastic 

composites which accounts, approximately, for finite changes in the microstructure 

during a given loading program. To this end, variational estimates are computed for the 

instantaneous effective yield functions of composites with particulate microstructures 

consisting of aligned ellipsoidal inclusions of one phase dispersed in a matrix of a 

second phase. Then, the problem of finding appropriate state variables to characterize the 

evolution of the microstructure is addressed. It is argued that, under triaxial loading 

conditions, the aligned ellipsoidal inclusions deform into aligned ellipsoidal inclusions 

of different size and shape. This suggests that the volume fractions of the phases and the 

aspect ratios of the inclusions are the appropriate variables to characterize the state of the 

microstructure. Evolution laws, relating the change in volume and shape of a typical 

ellipsoidal. inclusion to the current value of the average strain-rates in the inclusion, 

which in turn may be related to the average straIn-rate in the composite, are developed. 

Estimates for the average strain rate in the inclusion are obtained from the works of 

Hashin and Shtrikman (1963) and Willis (1977) for linear composites, and the results 

are extended to the rigid/ideally plastic composites by means of the variational principles 

of Ponte Castaneda (1991). The resulting constitutive model takes the form of effective 
407 
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stress/strain-rate relations complemented by ordinary differential equations for the 

evolution of the volume fraction and aspect ratios of the inclusions. 

An important result, in the context of the proposed constitutive model, is that 

composites with ideally plastic phases, because of microstructure evolution, do not 

exhibit effective ideally plastic behavior, but may actually display hardening, or even 

softening behavior, depending on the specific loading conditions. The introduction of 

microstructure evolution is also shown to affect the predictions for strain localization in 

composite materials. Section 2 presents the model for linearly viscous composites with 

non-dilute concentrations of aligned ellipsoidal inclusions. Section 3 deals with the 

extension of the model to incompressible rigid/perfectly plastic composites. Section 4 is 

concerned with the application of the constitutive model to plane-strain deformations of 

initially isotropic composites. The final section includes some discussion of the main 

findings. 

2 Microstructure evolution for linearly viscous composites 

In this section, we address the problem of determining appropriate state variables to 

characterize the evolution of the microstructure in linearly viscous composite materials. 

The class of microstructures that is considered corresponds to aligned, self-similar 

ellipsoidal inclusions, with aspect ratios WI = 13//1 and W2 = 13/12 (where 11,/2,13 are 

the dimensions of the typical ellipsoid along the xI,X2,x3 axes), distributed in a 

continuous matrix phase according to "ellipsoidal" two-point correlation functions 

(Willis, 1977). 

2.1. EFFECTIVE VISCOSITY AND STRAIN CONCENTRATION TENSORS 

If we denote the proportions and viscosity tensors of the inclusion and matrix phases by 

c(l), c(2) and L(l), L(2) , respectively, the effective viscous compliance tensor 

M = i-I, may be expressed in the form 
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where S(2) denotes the Eshelby (1957) tensor associated with an ellipsoidal inclusion, 

with the given aspect ratios wI and W2' embedded in a matrix of phase 2. 

This effective viscous compliance tensor serves to relate the average Eulerian strain rate 

o to the the average Cauchy stress a via 

(2.2) 

The average strain-rate in the inclusions D(I), which we will need later in this section, 

is given, in terms of the strain-rate concentration tensor (Hill, 1965) A (I), such that 

(2.3) 

by 

D(I) = A (1)0. (2.4) 

2.2. EVOLUTION LAWS FOR COMPOSITES SUBJECTED TO TRIAXIAL LOADS 

We assume that under a loading process involving uniform triaxial loading, where the 

loading axes are aligned with the principal axes of the ellipsoids, initially ellipsoidal 

inclusions remain, on the average, ellipsoidal, with possibly different size and shape (for 

details, in the context of porous materials, refer to Ponte Castaneda and Zaidman, 1994). 

This assumption justifies the use of relations (2.1) as instantaneous stress/strain-rate 

relations. Then, given relations (2.1), the appropriate state variables, which serve to 

describe the microstructure of the composite, become the aspect ratios wI' w2 and the 

volume fractions e(l), e(2). 

By invoking mass conservation of the phases, it may be shown that the volume 

fractions of the phases satisfy the kinematical relations 

(2.5) 

where D(2) is the average strain rate in the matrix phase. In addition, evolution 

equations for the aspect ratios of the inclusions may be obtained from the relations 

. (D(I) D(I») d· (D(\) D(\») WI = 33 - II WI an W2 = 33 - 22 w2· (2.6) 

Or, in terms of the strain-rate concentration tensor A (I) of (2.3), we have that 

. (I) (I) ) - d· (A(I) A(I») D-
WI = WI A33ij - Allij Dij an w2 = w2 33ij - 22ij ij· (2.7) 
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The resulting effective constitutive model is thus given by equations (2.1) and (2.2), 

complemented by the evolution equations (2.5) and (2.7) for the state variables c(1), 

c(2) and WI' w2. In other words, equations (2.1), (2.2),(2.5) and (2.7) can be solved for 

the evolution of c(I), C(2) , wI' w2' and a (if v = D x is prescribed on the boundary), 

or D (if an = an is prescribed on the boundary). 

Before proceeding with the extension of the model for nonlinear composites, we 

specialize the model for the linearly viscous composites to materials with 

incompressible phases. In this case, due to incompressibility, the proportions of the 

inclusions and the matrix, c(l) and c(2), respectively, remain fi.xed during a deformation 

process, so that relations (2.5) become trivially satisfied. We also note that effective 

moduli tensor in this case may be written in terms of the shear moduli of the inclusions 

and the matrix /1(1), /1(2), respectively, in the form 

- 1_ 
M = -mm(y;wI' W2)' 

3/1 
(2.8) 

where y = /1(2) //1(1) . Similarly, the strain-rate concentration tensor may be written in 

the form 

(2.9) 

3 Microstmcture evolution for composites with rigid ideally plastic phases 

In this section, we consider two-phase composites made of rigid/perfectly plastic, 

homogeneous,. isotropic and incompressible phases, with ellipsoidal symmetry. The 

local constitutive behavior of the rigid-plastic materials is defined by the relation 

. (}<I> 
D{x) = J\.{x)-{x, a) , 

(}a 
(3.1) 

where a and D denote the Cauchy stress and Eul~rian strain-rate tensors, respectively 

and <I> is the local yield function. The effective behavior of the composite is then given 

by (Hill, 1967; Suquet, 1983) 

D = A (}q, (a) aa ' (3.2) 
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where ci>(a) = 0 defines the effective yield surface of the composite, and A is a plastic 

loading parameter that is to be determined later in this section. 

3.1. EFFECTIVE YIELD SURFACES 

Using the variational procedure of Ponte Castaneda (1991), Ponte Castaneda and 

Zaidman (1995) derived estimates for the effective yield surfaces of the above family of 

composite materials. The yield functions may be written in terms of a one-dimensional 

optimization problem in the form (see also Suquet, 1993) 

(3.3) 

These yield surfaces are valid for general loading conditions and for arbitrary values of 

the phase concentrations and aspect ratios of the inclusions. 

In Figure 1, we show examples of the resulting yield surfaces for fiber-reinforced 

materials. These yield surfaces were determined from expressions (2.1), (2.8) and (3.3) 

by prescribing one of the stress components and then solving for a second component, 

while the rest of the components was set equal to zero. The fibers have elliptical cross 

sections and are aligned in x2 direction (w2 = 0). The volume fractions are taken to be 

c(1) = c(2) = 0.5, and the contrast ratio is a}2) / a}l) = 0.5, so that the weaker material 

occupies the matrix phase. For illustrative purposes, yield surfaces are plotted for several 

aspect ratios, namely, WI = 100, 1, 0.5, 0.01. We observe the existence of weak and 

strong modes corresponding to flat and curved sectors, respectively, on the yield 

surfaces. These different domains are separated by areas of high curvature (i.e., corners). 

Flat sectors on the effective yield surfaces of rigid/perfectly plastic composites with the 

weaker material in the matrix phase were predicted by the work of Ponte Castaneda and 

deBotton (1992) for the special cases of laminated and fiber-reinforced composites with 

circular cross sections. However, Ponte Castaneda and Zaidman (1995) found that the 

effective yield surfaces of composites with particulate microstructures (with 

discontinuous reinforcement) are always smooth. We mention that bi-modal yield 
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surfaces for fiber-reinforced composites have been observed experimentally, for example, 

by Dvorak et al. (1988). It was on this basis that Hashin (1980) and Dvorak and Bahei­

EI-Din (1987) proposed empirically based models for fiber-reinforced composites. 
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Figure I - Different cross sections of the yield surfaces of materials reinforced by fibers aligned in the x2 

direction, with elliptical cross section with aspect ratio WI and yield strength ratio 0'~2) / O'~I) = 0.5. 
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3.2. EVOLlITION LAWS FOR COMPOSITES SUBJECTED TO TRIAXIAL LOADING 

It may be demonstrated (see deBotton and Ponte Castaneda, 1993) that the effective 

stress/strain rate relations for a nonlinear composite may be expressed in the form 

(3.4) 

where {L(l) = {L(l)(a) and {L(2) = {L(2)(a) are the optimal values of 11(1) and 11(2) from 

the appropriate optimization problem in the context of the variational principle of Ponte 

Castaneda (1991). For the special case ofrigid/ideally plastic composites, the variational 

principle gives the optimization problem (3.3) for the variable y = 11(2) /11(1) , whose 

optimal solution y = {L(2) / {L(I) may be seen to depend on the applied load. Note that, in 

spite the similarity between (2.1) and (3.4), the latter defines a non-linear constitutive 

relation due to the dependence of {L(I) and {L(2) (or y) on the applied loads. 

Being able to express the non-linear stress/strain-rate relations in a form similar to that 

of a linear constitutive relation suggests also being able to express the average strain 

rate in the inclusions of a nonlinear composite in terms of an expression similar to 

(2.4), but with A (I), from equations (2.4) and (2.9), expressed in terms of y instead of 

y. 

Recalling that the phases are incompressible, and therefore the volume fractions of the 

two phases remain unchanged during the deformation process, it follows from the above 

observations that evolution laws may be derived for the aspect ratios, WI and w2' of the 

aligned ellipsoidal inclusions in the composite, from relations (2.6), to obtain 

. [A(I) (A) A(I) (A)] D- d· [A(l) (A) A(I) (A)] D-WI = WI 33ij Y - Ilij Y i; an W2 = W2 33ij Y - 22ij Y ij· (3.5) 

Finally, the plastic loading factor A in relation (3.2) is obtained from the consistency 

condition, applied to the effective yield function (3.3), which requires that 

.i.(- ) a<i> -'- a<i>. a<i>. 0 
'V a; WI' W2 = -=-a ij + --WI + --W2 = , 

aaij aWl awz 
(3.6) 

where, we have used the fact that, for triaxial loading conditions, the principal axes of 

the applied stress 0' do not rotate, and therefore we do not need to distinguish between 
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the objective Jaumann and standard time derivatives. The final result for the effective 

stress/strain-rate relation may be written in the form 

(3.7) 

where H is the effective rate of hardening, given by 

[( ()el»[ (I) (A) (I) (A)] ()el> ( ()el»[ (I) (A) (I) (A)] ()el> 1 H = - WI ()WI A33ij Y - Allij Y ()Uij + W2 ()W2 A33ij Y - A22ij Y ()Uij . 

Note that even though the constituent phases exhibit perfectly plastic behavior, the 

effective hardening rate H is not zero in general due to the evolution of the 

microstructure. 

In conclusion, the constitutive behavior of the rigid/ideally plastic composites, under 

finite deformations, is defined by the effective yield function (3.3), the stress/strain-rate 

relations (3.7), and the evolution equations (3.5). 

4 Plane strain loading conditions for an initially isotropic composite 

In this section, we illustrate the application of the above constitutive model by 

considering the finite deformation of a two-phase rigid/perfectly plastic composite under 

plane strain conditions. This problem is analogous to that considered by Howard and 

Brierley (1976) (see also Bilby et at., 1975) for linearly viscous composites with dilute 

concentrations of inclusions. Thus, we consider triaxial loads with their principal axes 

aligned with the axes of material symmetry, such that 

Ull = 0, D22 = 0, al2 =0'13 =0'23 = 0 and 15.13 = g, (4.1) 

where g is prescribed and taken to be small enough to justify omission of inertial 

effects. 

Equations (3.3) and (3.7) may then be solved for the non-zero stresses. The solutions 

may be written, in terms of the optimal y, as 

(4.2) 
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(4.3) 

where 

In order to obtain the uniaxial stress/strain curve, equations (4.2) and (4.3) are to be 

solved together with the differential equations for the aspect ratios (3.5). Solutions with 

a compressive strain-rate in the axial direction (~3 < 0) for a composite material with 

volume fractions C(I) = c(2) = 0.5, initial aspect ratios wI = w2 = 1.0 and contrast 

ratios a~2) / a~J) = 0.5, 0.6, 0.7 are plotted in Figure 2. Recall that Jhe inclusion and 

matrix phases are denoted by 1 and 2, respectively, so that with the above choices of 

contrast ratios, the matrix is always weaker than the inclusions. The plots depict the 

evolution of the non-zero stresses (f22' (f33' the aspect ratios wI' W2 and the hardening­

rate coefficient H, all as functions of the average axial strain £33. 

It is observed, from Figure 2c, that the aspect ratios of the inclusions decrease under 

compression, faster in the unconstrained direction xI than in the direction in which the 

applied strains are constrained to vanish (the x2 direction). Thus, the initially spherical 

inclusions become shorter in the x3 direction and longer in xI direction. Looking at 

Figures 2a and b, we observe that the material hardens initially in both the x2 and x3 

directions, but as the deformation progresses, the material eventually softens in x2 

direction. The overall response, however, is of hardening, as may be observed in Figure 

2d, where the hardening rate coefficient H is plotted and found to be always positive. 

It is also observed that if the inclusions are stiffer than the matrix, there are values of 

yield strength ratios for which all the deformation takes place in the matrix. Such a case 

is described by the plots corresponding to a~2) / a~l) = 0.5. The inclusions in this case 

remain spherical and do not deform under the prescribed boundary conditions. 

The important thing to notice in the above results is that the composite material does 

not behave in general as a perfectly-plastic material even though the phases themselves 

are made of rigid/perfectly-plastic constituents. 
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Figure 2 - Evolution of the stresses (i22' (i", aspect ratios WI' w2 and hardening rate coefficient H, of an 

initially isotropic composite material, under plane strain conditions (ill = 0, 1522 = 0, 1513 < o. 

Results were also computed for materials with inclusions weaker than the matrix (see 

Zaidman, 1994). The findings are similar to those presented in this section except that 

the possibility of situations where the inclusions remain spherical is not available. 
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We finally remark that the hardening/softening induced by the change in the shape of the 

inclusions might be crucial in stability predictions for composite materials. For 

example, for plane-strain loading conditions, the possibility of localization may be 

identified with the vanishing of the effective hardening rate H (Rice, 1977). This 

condition, which was not satisfied during the process described in Figure 2, was found to 

be satisfied, in some cases, for initially anisotropic microstructures (Zaidman, 1994). 

5. Concluding remarks 

In this document, we have presented a constitutive model for two-phase rigid/ideally 

plastic composites, which is capable of accounting for the evolution of the 

microstructure under finite deformations conditions. The model assumes that the 

microstructure is of the particulate type with aligned, self-similar ellipsoidal inclusions 

distributed in a continuous matrix with ellipsoidal symmetry (Willis, 1977). 

The model includes instantaneous effective stress/strain-rate relations, as well as 

evolution equations for the aspect ratios of the inclusions, which serve to characterize 

the overall anisotropy of the composite. The stress/strain-rate relations are expressed in 

terms of effective yield functions which are defined by simple one-dimensional 

optimization problems involving the Hashin-Shtrikman estimates of Willis (1977) for 

the effective viscosity tensor of linearly viscous composites with the same type of 

microstructures as the nonlinear composites. These effective yield functions are valid for 

any combination of loading conditions, aspect ratios, volume fractions and yield 

strengths. Some sample yield surfaces, for materials reinforced by fibers with elliptical 

cross section, have been computed and are presented in the body of the paper. 

The evolution equations for the aspect ratios of the inclusions were derived for triaxial 

loading conditions, for which the principal axes of the applied loads are aligned with the 

axes of the ellipsoidal inclusions. The instantaneous stress/strain-rate relations and these 

evolution equations were solved simultaneously to obtain effective stress/strain curves 

for a sample composite SUbjected to plane strain conditions. These relations show that 

the effective behavior of the composite is qualitatively different from that of its 
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constituent phases, due to the evolution of the microstructure. Thus, it was found that 

the effective response of composites with perfectly plastic phases may exhibit 

hardening, or softening, depending rather strongly on the specific loading conditions and 

the initial shape of the inclusions. The transition from hardening to softening behavior, 

which may signal the onset of instabilities, may be crucial in situations where the 

stability of the defonnation process is important, as in fonning processes, for example. 
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We first show the advantage of dealing with finite composite patterns instead of points 
in order to take morphological features of inhomogeneous materials into account in the 
derivation of their overall behaviour. The method allows the derivation of new bounds, 
tighter than the classical ones, for the Composite Spheres Assemblage and a new 
definition as well as an extension of the Generalized Self-Consistent Scheme in the case 
of linear elasticity. A comparison of the classical and the generalized self-consistent 
predictions is then performed in the case of non ageing linear viscoelasticity: the 
relaxation spectra of a two-phase isotropic material with Maxwellian incompressible 
constituents exhibit strong differences according to the choice of the model, what reflects 
the influence of the phase connectedness. The case of nonlinear viscoelasticity is then 
addressed and a new formulation, applying both to the classical and the generalized self­
consistent schemes, is proposed and illustrated. 

1. Introduction 

In order to take better into account morphological characteristics of heterogeneous 
materials in view of the prediction of their overall mechanical behaviour as well as of the 
local response to a prescribed loading, it is proposed to combine a deterministic 
description of small, but finite, well-chosen "composite patterns" and a statistical 
representation of their spatial distribution: such a procedure can, in many cases, express 
essential morphological features, such as the connectedness of one phase or its dispersion 
as inclusions in another one, much more directly and easily than by using, as classical, 
point correlation functions of higher and higher orders. 

In the case of linear elasticity, this approach has been applied to the Hashin 
Composite Spheres (or Cylinders) Assemblage (C.S.A. or C.C.A.) whose overall shear 
moduli can be bounded more tightly than classically. In addition, when combined with 
Kroner's theory of perfect disorder, the method leads naturally to the so-called "three­
phase model" or "generalized self-consistent scheme" (G.S.C.S.) as the self-consistent 
treatment of a perfectly disordered C.S.A. (or C.C.A. for fiber reinforced composites). 
The principle of a computer-aided extension of this scheme to arbitrary morphological 
patterns is then suggested. 
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This analysis shows clearly that the classical (C.S.C.S.) and the generalized 
(G.S.C.S.) self-consistent schemes are two basic models adequate for two extreme cases 
of morphological situations (polycrystal or composite-type morphology). Therefore, it is 
interesting to investigate further the comparison of their predictions, in view of 
analysing the influence of the morphology on the overall properties. Attention will be 
focussed here on viscoelasticity. Linear non ageing viscoelasticity is first considered. The 
overall relaxation spectra of two-phase isotropic materials whose constituents obey a 
Maxwell-type behaviour are compared: while both models lead to continuous overall 
spectra instead of discrete ones for the constituents, the connectedness of one phase 
according to the G.S.C.S. is responsible for the splitting of the spectrum into two 
continuous parts, which does not occur when the phases are morphologically intricated. 

Finally the case of nonlinear viscoelasticity is addressed. This problem is much 
more complex and former attempts to propose a (classical) self-consistent formulation 
have failed to save the viscoelastic nature of the interphase accommodation. So, a new 
formulation is developed which combines a Hill-type linearisation procedure along the 
loading path and the use of the Laplace-Carson transform technique, what results in a 
symbolic elastic problem with eigenstrains. This procedure can be used in principle for 
any homogenization technique, including the G.S.C.S. one; it is illustrated in the case 
of the C.S.C.S. only, for a two-phase blend responding to a prescribed shear relaxation. 

2. "Pattern" versus "point" approaches 

Let us first recall briefly the basis of the proposed "pattern approach" [1] in order to 
stress its main conclusions. We consider that the given multiphase elastic material has 
already been decomposed, after some preliminary microstructural analysis aiming at 
extracting the most important morphological features, into several "morphological 
phases" (A) constituted with Nl. identical composite representative domains D1..i centered 
at.&.i and some residual content ("-0). For any field quantity fW, with y- = ~ + .&.i E D1..i, 
we can define two types of average values, namely: 

1 Nl. 

f~(~) = N ~)(~ + ~1..i) 
l. i=1 

f~ = _1_ f f(y)dc.o 
Vl.o -

vl.o 

(1) 

Using a non uniform polarization stress field Pl.W which takes equal values Pl.(~ at 
homologous points Y.. = !. + lUi E Dl.i and constant ones Pl.o in V l.o and the Green 
operator r°(!.~') for an infinite body with homogeneous moduli Co and homogeneous 
strain conditions E at infinity, the Hashin-Shtrikman functional HSO(E,p) is: 

2HSO(E,p)=E:CO:E+ I ~l. f Pl.:(E+£~-Hl.:Pl.)dc.o'+ ... 
l. Dl. (2) 

... + I Vvl.oPl.o :(E + £~ - H~ :Pl.o) 
I.. 
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with : 

H(I)=(C(I)-cOr1 

Ett(~) = Eo - L {NJ1 J ro~ (!,!' ):P J1(!' )dro' +V J1oro~ (!):PJ1o) 
J1 0.-

EA' = EO - L {N J1 J ro~M (!'): P J1 (!' )dro' + V J10 r o;:, : PJ10 ) 
(3) 

J1 DJ" 

Here c(y) are the local elastic moduli, Eo is an auxiliary strain tensor which is determined 
by the last eqn (3), cx is the volume fraction of the "phase" (A), (lx is the relative 
volume fraction of (~) with respect to (A); the first upper index of ro refers to averaging 
over ;t and the second one over ;t'. The last step aims at optimizing the choice of the 
polarization stress fields PxW and PAo by making HSO(E,p) stationary with respect to 
PxW and PAo' which lead to the equations: 

(4) 

Integration of (4) into eqns (3) shows that they rule (composite) inclusions 
problems through the Green operators r°tr(!,!' ),rO~(!),ro~M(!') and ro~ 

which have still to be determined, according to the available informations on the phase 
spatial distribution. Finally, optimal bounding is obtained by choosing the reference 
medium moduli Co so as to make Hx and Hr (just) positive or negative everywhere. 

In the case of an isotropic distribution of the phases (A) and of the domains DXi 

within (A), the problem can be solved completely: it reduces to several problems of 
composite spheres in an infinite homogeneous matrix. Similar conclusions hold for 
cylindrical patterns and transverse isotropy [2]. 

The main consequences of this approach may be summed up as follows: 
- when the composite domains DA,i reduce to points and the morphological phases 

(A) to the mechanical ones, the classical Hashin-Shtrikman's theory and results are 
recovered, as expected. 

- when this analysis is applied to an isotropic C.S.A. or to a transversely 
isotropic C.C.A., new Hashin-Shtrikman-type bounds are found [3] for the overall 
moduli, through the resolution of one composite sphere/matrix problem: they are tighter 
than the classical Hashin's [4] and Hashin-Rosen's [5] ones for those moduli which are 
not exactly determined (shear or transverse shear moduli). 

- when Kroner's [6] iterative procedure, related to his theory of graded and perfect 
disorder, consisting in softening or strengthening gradually the reference medium in order 
to converge towards the (classical) self-consistent estimate, is applied to the foregoing 
situation (i.e. new bounds for the C.S.A. or the C.C.A.), the limit estimate coincides 
with Christensen-Lo's [7] "three-phase model" one. This result is an indication that the 
three-phase model could apply exactly to a "perfectly disordered" isotropic C.S.A. or 
transversely isotropic C.C.A.: it gives a foundation to the denomination of "Generalized 
Self-Consistent Scheme" (G.S.C.S.) which is usually attributed to this model. 
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- according to the proposed approach, patterns may be arbitrary, provided that 
numerical (e.g. F.E.M.) calculations of the involved inclusion/matrix problems be 
performed; the three-phase model could then be generalized further by using arbitrary 
composite patterns embedded in the homogeneous equivalent medium. Such a "Pattern­
based Self-Consistent Scheme" is now in progress [8]. 

- for the time being, one can consider the C.S.C.S. and the G.S.C.S. as two 
basic models for the investigation of the influence of morphology on the mechanical 
behaviour of inhomogeneous media, since they correspond to two extreme cases of 
morphology: the fIrst one is well-suited to a "polycrystal-type morphology" (each phase 
domain is surrounded by many others distributed in a random fashion, so that no phase 
plays any prominent morphological role) and the second one to a "composite-type 
morphology" (one phase is geometrically continuous and acts as a "matrix" whereas the 
other ones are distributed as inclusions in it). So, significant conclusions may be drawn 
concerning the influence of the connectedness of one of the constituent phases of a 
multi phase material on its overall behaviour by comparing the predictions of these two 
models for a given loading path, as it is intented to be performed in the following. 

- within this framework, efforts can be made towards the extension of these two 
basic schemes to non elastic constitutive behaviour. Several significant results have 
already been obtained for elastoplasticity [9, 10] and viscoplasticity [11] and will not be 
reported here. Alternatively, attention will be focussed on the case of viscoelasticity. 

3. Application to linear viscoelasticity 

A basic phenomenon of the viscoelasticity of inhomogeneous materials is the so-called 
"long-range memory effect" related to the delayed mechanical interactions between the 
constituents. In the linear case, it is well-known [12] that this effect is responsible, for 
instance, for the fact that the overall behaviour of an aggregate of Maxwellian 
constituents is no more Maxwellian. If the local constitutive equations have the form 

e = a:O" + b:cr (5) 

the global ones exhibit an additional integral term whose kernel J expresses this effect 
t 

E = Ahom:l:+Bhom:±+ J J(t-s):±(s)ds 
o 

(6) 

From that, it looks interesting to investigate the sensitivity of this phenomenon to 
morphology by comparing the C.S.C.S. and the G.S.C.S. estimates of this J function. 

For sake of simplicity and tractability in view of the obtention of closed form 
results, let us consider a two-phase isotropic material whose constituents obey an 
isotropic incompressible Maxwellian behaviour, according to the equations: 

i= 1,2 (7) 

where e and s are the local strain and stress deviators and ai and bi material constants of 
the constituent (i). Through the Laplace transform, (7) can be written: 

sL(p)=2PIlr<p)eL(p), Ilr(p) = 2bi(P~VTJ (8) 
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where p is the complex variable, £L(P) the Laplace transform of f(t), Ti = b/ai the 
relaxation time of phase (i) and Jli.(t) its shear relaxation function.We are looking for the 
overall relaxation function Ilcff(t), according to either the C.S.C.S. or the G.S.C.S., with 
one phase, phase (2) say, included in the other. A convenient representation for our 
purpose is the spectral one, which allows to write a relaxation function Il(t) as: 

(9) 

where g('t) defines the relaxation spectrum of the material (which reduces to a single line 
for a Maxwell body). A direct comparison of these spectra for the two models [13] is 
able to illustrate the influence of morphology (especially of the phase connectedness). 

The correspondence principle states that the transform lleffL(P) is linked to IlIL(P) 
and IlZL(P) through the same equation that the one which links Ilcff, III and Ilz in the 
elastic problem, namely: 

L(P,c)Xz +2M(P,c)X +N(P,c) = 0 (10) 

where X = Ilcff /Ill> P = Ilz/Ill and c is the volume fraction of phase (2). For the 
C.S.C.S., we have: 

L=I, 

and for the G.S.C.S.: 

2-5c 5c-3 
M=-6-P +-6-' N=_2P 

3 

L(P,c) = 4[3(P -1)x3 - Th](TltX 7 -211z)-12611z(P -1)x3(1- XZ)2 

10 7 129 3 
M(P,c)=311I(P-l)x +4111113x -711z (P-l)x + ... 

3 A 3 Z Z ... +'4 112113 + 12611z ( .... -1)x (1- x ) 

N(P,c) = -[%(P-l)x3 + 113](11lx 7 + I; 112)- 12611z(P-I)x\l- x2)2, 

x = cl/3 , 111 = 19(P -1), 112 = 19P + 16 , 113 = 1(2p + 3). 
2 2 

(11) 

(12) 

The same equations (10) to (12) hold for XL(P) = IlcffL(P)/IlIL(P) instead of X by 
replacing P by pL(p) defined by : 

pL(p) = 1l~(P) = k P + lfT! with k = bdb2 (13) 
1l~(P) p+ lfT2 

The solution lleffL(p) can be written as the sum of two terms, f!L(p) and f2L(P) say: 

f~(p) = _ M(pL(p),c) 
2b! (p+ I/T!)L(pL(p),c) 

fL( ) _ [M2(pL(p),c)_L(pL(p),c)N(pL(p),c)]1/2 
2 P - 2bl (p+I/T1)L(pL(p),c) 

(14) 
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- the inverse of the first term is the sum of two (for the C.S.C.S.) or three (for 
the G.S.C.S.) decreasing exponential functions: they are responsible for two or three 
discrete lines in the relaxation spectrum respectively, at times Tl and Tz for the 
C.S.C.S. and Th 81 and 8z for the G.S.C.S., with 81 and 8z intermediate between TI 
and Tz: nevertheless, their intensity can be negative according to the c value. 

- this second term can be rewritten, after some reductions, as: 

f~(p) = k P c(p)I/Z with p c(p) = (p + 1ftl )(p + I/tz) 
C (p + I/TI)(p + I/T z) 

and k = ~(2 - Sc)zkz + 2(6 - Sc)(Sc + l)k + (Sc - 3)z 
C 12bl 

(IS) 

where tl and tz are intermediate times between TI and Tz, for the C.S.C.S.: for the 
G.S.C.S., this second term is: 

p ( )I/Z 
f~(p)=kg gP withkg~O 

(p + I/TI)(p+ 1/81)(p + 1/8z) (16) 

and P g(p) = (p+ 1ft'l )(p+ I/t' Z )(p+ I/t' 3 )(p+ I/t' 4) 

where 't\ and 't'z ('t'3 and 't'4 resp.) are intermediate times between TI and 81 (81 and 82 
resp.) . In both cases, the Laplace inverse fz(t) can then be derived through the formula: 

f2(t)=~Jf~(p)ePtdP (17) 
2m I'J. 

where the vertical axis 8 has to leave on its left all the critical points of fzL(p). By 
using the theorem of residues, Jordan's lemma and adequate cuts on the real negative 
axis, one finds (with TI<T2 for the discussion) for the C.S.C.S: 

f~(t)=±~{_I-1f'C2 ~-Pc(x) etxdx-... 
1t -1/'C1 (x + I/TI )(x + 1fT 2) 

~P c( -1fTI) -t(fl ~P c( -1fT z) -ttT2} 
..• -1t e + 1t e 

1fT 2 -1fTI I/TI -I/T 2 

(18) 

and for the G.S.C.S.: 

k I-I/T: 2 LP (x) 
f~(t)=±-!.{ V g etxdx-... 

1t -I/'C' I (x + I/TI)(x + 1j81)(x + 1f9z) 

I-liT: 4 ~-Pg(X) tx 

... - -1/'C'3 (x + I/TI)(x + 1/81)(x + 1/8z)e dx-... 
(19) 

1t ~P g( -1/(1) -tl9 ~P g( -1/9z) -tl9 
... - [ e I - e 2]} 

(V92 - 1/81 ) (liT I -1/81 ) (liT I - 1f82 ) 

Through the change of variable 't ; -l/x, the integrals in (18) and (19) are put in the 
form (9), which corresponds to continuous spectra, whereas the exponential functions 
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outside the integrals are associated to discrete lines. Addition to f1C(t) for the C.S.C.S. 
or to f1G(t) for the G.S.C.S. lead to the following final results: 

- the shear relaxation spectrum according to the C.S.C.S. is composed of one 
continuous spectrum lying between t1 and t2 (with T1<t1<t2<Tz) with the intensity: 

() kcT1T2 ~(t-t1)(t2 -t) [ ] 
gc t = ~ , tE t 1,t2 

1tVt1t2 t(t-T1)(T2 -t) 
(20) 

and of additional lines at t = T1 for c'5.3/5 (with the intensity (3-5c)/6b1) and at t = T2 
for c?2/5 (with the intensity (5c-2)/6bz); thus, such a spectrum line can be present or 
not according to the volume fraction of the phases; 

- the relaxation spectrum according to the G.S.C.S. is composed of a continuous 
part which is split up into two spectra lying between t\ and t'2 for the former and t'3 
and t'4 for the l~r, with the intensity; 

E (t)kg T19192 ~(t - t' 1 )(t - t' 2 )(t - t' 3 )(t' 4 -t) 
gg(t)= 1t~t'1 t'2 t '3 t '4 t(t-T1)(91-t)(92-t) 

t E [t' 1 ' t' 2 ] U [t' 3 ' t' 4 ] (21) 

with E(t)=1 if tE[t'1,t'2] and E(t)=-1 if tE[t'3,t'4] 

and of additional lines at t = T 1 in a fixed range of volume fractions and, according to the 
value of c, Tl> T2, k and bl> aU = 91 or 92, 

We can see on Figure 1 an illustrative example of these results comparing the 
relaxation spectra as predicted, for fixed values of the material parameters 3t, bi , and the 
volume fraction c, by the C.S.C.S. (a) and the G.S.C.S. (b) respectively. Several 
features can be emphasized: 

- obviously, both models predict a non-Maxwellian overal behaviour since the 
spectra do not reduce to a single spectrum line; this main result must be kept in mind in 
view of the treatment of the nonlinear case. In addition to some discrete lines, the 
continuous (bounded) spectrum expresses the delayed mechanical interactions between the 
phase domains which are responsible for the "long-range memory effect". 

- morphology strongly affects the continuous spectrum shape: whereas the 
"symmetrical" morphology associated with the C.S.C.S. modelling leads to a unique 
spectrum whose symmetry is only disturbed by the differences of material parameters and 
volume fractions, the unsymmetrical morphology inherent to the G.S.C.S. modelling is 
responsible for a splitting of the spectrum into two well-separated parts and for a 
spectrum shape which is clearly dependent on the prominent role played by the 
continuous phase (the"matrix" phase). 

This property would benefit in a direct experimental investigation in order to 
check whether such a "morphological signature" of a connected phase can be observed: 
some evidences of a temporary broadening of the relaxation spectrum when crossing the 
glass transition temperature could be related to this phenomenon. 

Note that the foregoing analysis could be extended to various loading paths (such 
as creep, applied sinusoidal stress or strain ... ) or to more general constitutive equations 
than Maxwell's ones without too much efforts [14]: the main conclusions would be 
essentially the same. 
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Figure 1: Comparison of the relaxation spectra derived by the C.S.C.S. (a) and the G.S.C.S. (b) 
forc = O.5,al =a2= 1, Tl = 1 and T2 = 10 

4. Nonlinear viscoelasticity 

4.1. GENERAL FRAME 

The problem of nonlinearity in the context of self-consistent modelling is now addressed 
in order to extend the foregoing analyses to more various situations. This is an open 
problem even in the case of the classical self-consistent scheme, despite several attempts 



427 

to solve it during the last decade [15, 16, 17]. The main difficulty to deal with is 
concerned with the coupling between elasticity and viscosity which is responsible for the 
simultaneous occurence in the constitutive equations of derivatives of different orders of 
the mechanical variables cr, E ... SO, the classical Hill's (for elastoplasticity [18]) or 
Hutchinson's (for viscoplasticity [19]) linearisation procedure which allows to save the 
convenient use of Green techniques for the resolution of the concentration problem (i.e. 
the derivation of the relations between the local and the global variables) cannot be 
applied anymore. In addition, nonlinearity prevents to use the Laplace transform facilities 
which can overcome the basic difficulty in the case of linear viscoelasticity [20]. Here we 
propose a new formulation [21] which allows to derive a nonlinear viscoelastic (or 
elastoviscoplastic) scheme from any model developed in the elastic case. Application 
will concern the C.S.C.S. but the G.S.C.S. or other models could be considered as well. 

Let us consider first these simple local nonlinear viscoelastic equations: 

E = s:o-+ g(cr) (22) 

where s are the elastic compliances. Starting from time t = 0, we are supposed to have 
determined the local and overall responses to the load history up to t = t" and we are 
looking for the solution for the next infinitesimal time interval [t", t" + dt]. Thus we 
can consider that, for the prediction of the response of the material on [t", t" + dt], the 
actual equations (22) are approximated by: 

£(t) == s:o-(t) + mn: cr(t) + E~ (t, tn), 

£~ (t, tn) = g[cr(tn)] - mn: cr(tn )+ ... 

... +{g[ cr(t)] - g[ cr( tn)] - mn: [cr( t) - cr( tn )]}[l- H( t - tn)], 

og 
mn = -[cr(tn)]· ocr 

(23) 

It is clear on these equations that the considered behaviour is a Maxwellian one 

with the eigenstrain rate £~ (t, tn). The crucial point is here: such a strain is actually an 
eigenstrain because its variation is completely known a priori and does not depend on the 
external loading which is applied beyond t,,; its time derivative is constant beyond t" and 
variable but known on [0, t,,). So, such a strain generalizes Eshelby's definition of a 
"stress-free strain" and can be dealt with in the following such as a (variable) eigenstrain. 
This would be wrong for the viscous strain EV whose time-derivative g(cr) is stress 
history-dependent: considering lO V as an eigenstrain [15,16,17] leads to an elastic 
treatment which conflicts with the viscoelastic nature of the interphase strain 
accommodation and the "long range memory effect [22]. 

The following steps are straightforward : as it is usual for linear non ageing 
viscoelasticity, the use of the Laplace-Carson transform defined by: 

f * (p) = p s: f(t)e-ptdt (24) 

which can apply to E~ (t, tn) as well, allows to convert the problem into a (symbolical) 
elastic one with eigenstrains. From the strain (stress resp.) elastic concentration tensor A 
(8 resp.), the transformed viscoelastic equivalent A *(P) (8*(P) resp.) is derived according 
to the correspondence principle and the whole set of equations has the classical form: 
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E* = S*:cr * +E~ * 

m 
S*(p)=S+_n, 

p 

or cr* = C*:(E * -E~*), 

C*(p)=S*-1 (p), 

E* = Shorn*:I:*+E~ * or I:* = cham*:(E*-E~*), (25) 

Cham *(p)=< c*(p):A * (p) > or Shorn *(p) =< s* (p):B* (p) >, 

B*(p) = c *(p):A * (p):< c *(p):A * (p) >-1, 

E~ * (p) =< B *T (p):E~ * (p) >. 

Due to the nonlinearity, an additional relation between the local and global variables is 
needed, dependent on the chosen model, in order to determine the mechanical state of each 
phase. The last step consists in the Laplace-Carson inversion: in general, it has to be 
performed numerically according to adequate techniques such as the collocation ones. 

Note that more general constitutive equations than (22) can be used with the same 
general procedure [21], such as the following ones: 

E =s:O-+g(cr,a.), 

a. = l(cr,a.):o-+ h(cr,a.) 
(26) 

but that no coupling with time-independent plasticity is permitted. 

4.2. APPLICATION TO THE C.S.C.S. 

Application to the C.S.C.S. can be made straightforwardly by specifying the A *(P) 
tensor in (25) and the additional concentration relation. We have, as classical: 

A~c * (p) = [I + p~c * (p):Oc~c * (p)rl:< [I + pSc * (p):ocsc * (p)rl >-1, 

Oc~C * (p) = cr * (p) _ eSc * (p), 

P~c * (p) = J r Sc * (P'~r'~; )dro; , 

Er * (p) = [I + P~c * (p):Oc rsc * (p)rl: {Eo * (p)+ ... 

... +P~C * (p):[Cr * (p):E::' * (p) - eSC * (p):E~ * (p)]), 

< E * (p) >= E * (p). 

(27) 

(28) 

where Or is the ellipsoidal inclusion for phase (r), superindex sc stands for "self­
consistent"and r*(p) is the Laplace-transform of the viscoelastic Green operator 
associated to the elastic one by the correspondence principle. If all the ellipsoids have the 
same aspect ratios and orientation, psc is independent on the phase and the 

"normalisation term" < [I + pSc * (p):ocsc * (p)rl > reduces to unity. 
The tractability of this method has been checked on a quite simple case [14], 

namely a shear relaxation test performed on the two-phase material already studied before 
in the linear case, but now with the constitutive local equations: 

(29) 
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where aequ is the von Mises equivalent stress; in this particular case, the problem 
reduces to a scalar one. Let the uniaxial applied strain be E(t) = Eo H(t): we are looking 
for the global stress response S(t). The details of the numerical treatment are reported 
elsewhere [23]: suffice it to say here that the closed form solution of the linear case 
reported hereabove can be used at each step for the Laplace transform inversion but that 
collocation and FFf techniques are also used. Typical results are reported on Figure 2 
which shows clearly both the nonlinear nature of the response and the variation of the 
overall eigenstrain E~ (t, to) at each step . 
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Figure 2: (a) nonnalized shear stress relaxation for a two-phase material according to the C.S.C.S. (m = 2, 
c = 0.5, bl = b2 = I, al = I, 82 = 5): (b) time variation of the overall eigenstrain for different steps t". 
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Further developments concerned with other models, including the G.S.C.S., and 
more general loading and material situations are now in progress. 
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Aims and Scope of the Series 
The purpose of this series is to focus on subjects in which fluid mechanics plays a fundamental 
role. As well as the more traditional applications of aeronautics, hydraulics, heat and mass transfer 
etc., books will be published dealing with topics which are currently in a state of rapid develop­
ment, such as turbulence, suspensions and multiphase fluids, super and hypersonic flows and 
numerical modelling techniques. It is a widely held view that it is the interdisciplinary subjects that 
will receive intense scientific attention, bringing them to the forefront of technological advance­
ment. Fluids have the ability to transport matter and its properties as well as transmit force, 
therefore fluid mechanics is a subject that is particularly open to cross fertilisation with other 
sciences and disciplines of engineering. The subject of fluid mechanics will be highly relevant in 
domains such as chemical, metallurgical, biological and ecological engineering. This series is 
particularly open to such new multidisciplinary domains. 

1. M. Lesieur: Turbulence in Fluids. 2nd rev. ed., 1990 ISBN 0-7923-0645-7 
2. O. Metais and M. Lesieur (eds.): Turbulence and Coherent Structures. 1991 

ISBN 0-7923-0646-5 
3. R. Moreau: Magnetohydrodynamics. 1990 ISBN 0-7923-0937-5 
4. E. Coustols (ed.): Turbulence Control by Passive Means. 1990 ISBN 0-7923- 1020-9 
5. A.A. Borissov (ed.): Dynamic Structure of Detonation in Gaseous and Dispersed Media. 1991 

ISBN 0-7923-1340-2 
6. K.-S. Choi (ed.): Recent Developments in Turbulence Management. 1991 

ISBN 0-7923-1477-8 
7. E.P. Evans and B. Coulbeck (eds.): Pipeline Systems. 1992 ISBN 0-7923-1668-1 
8. B. Nau (ed.): Fluid Sealing. 1992 ISBN 0-7923-1669-X 
9. T.K.S. Murthy (ed.): Computational Methods in Hypersonic Aerodynamics. 1992 

ISBN 0-7923-1673-8 
10. R. King (ed.): Fluid Mechanics of Mixing. Modelling, Operations and Experimental Tech-

niques.1992 ISBN 0-7923-1720-3 
11. Z. Han and X. Yin: Shock Dynamics. 1993 ISBN 0-7923-1746-7 
12. L. Svarovsky and M.T. Thew (eds.): Hydrociones. Analysis and Applications. 1992 

ISBN 0-7923-1876-5 
13. A. Lichtarowicz (ed.): Jet Cutting Technology. 1992 ISBN 0-7923-1979-6 
14. F.T.M. Nieuwstadt (ed.): Flow Visualization and Image Analysis. 1993 ISBN 0-7923-1994-X 
15. A.J. Saul (ed.): Floods and Flood Management. 1992 ISBN 0-7923-2078-6 
16. D.E. Ashpis, T.B. Gatski and R. Hirsh (eds.): Instabilities and Turbulence in Engineering 

Flows. 1993 ISBN 0-7923-2161-8 
17. R.S. Azad: The Atmospheric Boundary Layer for Engineers. 1993 ISBN 0-7923-2187-1 
18. F.T.M. Nieuwstadt (ed.): Advances in Turbulence N. 1993 ISBN 0-7923-2282-7 
19. K.K. Prasad (ed.): Further Developments in Turbulence Management. 1993 

ISBN 0-7923-2291-6 
20. Y.A. Tatarchenko: Shaped Crystal Growth. 1993 ISBN 0-7923-2419-6 
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21. J.P. Bonnet and M.N. Glauser (eds.): Eddy Structure Identification in Free Turbulent Shear 

Flows. 1993 ISBN 0-7923-2449-8 
22. R.S. Srivastava: Interaction of Shock Waves. 1994 ISBN 0-7923-2920-1 
23. J.R. Blake, J.M. Boulton-Stone and N.H. Thomas (eds.): Bubble Dynamics and Interface 

Phenomena. 1994 ISBN 0-7923-3008-0 
24. R. Benzi (ed.): Advances in Turbulence V. 1995 (forthcoming) ISBN 0-7923-3032-3 
25. B.I. Rabinovich, V.G. Lebedev and A.I. Mytarev: Vortex Processes and Solid Body Dynamics. 

The Dynamic Problems of Spacecrafts and Magnetic Levitation Systems. 1994 
ISBN 0-7923-3092-7 

26. P.R. Voke, L. Kleiser and J.-P. Chollet (eds.): Direct and Large-Eddy Simulation I. Selected 
papers from the First ERCOFfAC Workshop on Direct and Large-Eddy Simulation. 1994 

ISBN 0-7923-3106-0 
27. J.A. Sparenberg: Hydrodynamic Propulsion and its Optimization. Analytic Theory. 1995 

ISBN 0-7923-3201-6 
28. J.F. Dijksman and G.D.C. Kuiken (eds.): IUTAM Symposium on Numerical Simulation of 

Non-Isothermal Flow of Viscoelastic Liquids. Proceedings of an IUTAM Symposium held in 
Kerkrade, The Netherlands. 1995 ISBN 0-7923-3262-8 

29. B.M. Boubnov and G.S. Golitsyn: Convection in Rotating Fluids. 1995 ISBN 0-7923-3371-3 
30. S.I. Green (ed.): Fluid Vortices. 1995 ISBN 0-7923-3376-4 
31. S. Morioka and L. van Wijngaarden (eds.): IUTAM Symposium on Waves in Liquid/Gas and 

LiquidlVapour Two-Phase Systems. 1995 ISBN 0-7923-3424-8 
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From 1990, books on the subject of mechanics will be published under two series: 
FLUID MECHANICS AND ITS APPLICATIONS 

Series Editor: R.J. Moreau 
SOLID MECHANICS AND ITS APPLICATIONS 

Series Editor: G.M.L. Gladwell 

Prior to 1990, the books listed below were published in the respective series indicated below. 

MECHANICS: DYNAMICAL SYSTEMS 

Editors: L. Meirovitch and G.lE. Oravas 

1. E.H. Dowell: Aeroelasticity of Plates and Shells. 1975 ISBN 90-286-0404-9 
2. D.G.B. Edelen: Lagrangian Mechanics of Nonconservative Nonholonomic Systems. 

1977 ISBN 90-286-0077-9 
3. J.L. Junkins: An Introduction to Optimal Estimation of Dynamical Systems. 1978 

ISBN 90-286-0067-1 
4. E.H. Dowell (ed.), H.C. Curtiss Jr., R.H. Scanlan and F. Sisto: A Modern Course in 

Aeroelasticity. Revised and enlarged edition see under Volume 11 
5. L. Meirovitch: Computational Methods in Structural Dynamics. 1980 

ISBN 90-286-0580-0 
6. B. Skalmierski and A. Tylikowski: Stochastic Processes in Dynamics. Revised and 

enlarged translation. 1982 ISBN 90-247-2686-7 
7. P.C. Miiller and W.O. Schiehlen: Linear Vibrations. A Theoretical Treatment of Multi-

degree-of-freedom Vibrating Systems. 1985 ISBN 90-247-2983-1 
8. Gh. Buzdugan, E. MihiHlescu and M. Rade~: Vibration Measurement. 1986 

ISBN 90-247-3111-9 
9. G.M.L. Gladwell: Inverse Problems in Vibration. 1987 ISBN 90-247-3408-8 

10. G.!. Schueller and M. Shinozuka: Stochastic Methods in Structural Dynamics. 1987 
ISBN 90-247-3611-0 

11. E.H. Dowell (ed.), H.C. Curtiss Jr., R.H. Scanlan and F. Sisto: A Modern Course in 
Aeroelasticity. Second revised and enlarged edition (of Volume 4). 1989 

ISBN Hb 0-7923-0062-9; Pb 0-7923-0185-4 
12. W. Szemplinska-Stupnicka: The Behavior of Nonlinear Vibrating Systems. Volume I: 

Fundamental Concepts and Methods: Applications to Single-Degree-of-Freedom 
Systems. 1990 ISBN 0-7923-0368-7 

13. W. Szemplmska-Stupnicka: The Behavior oj Nonlinear Vibrating Systems. Volume II: 
Advanced Concepts and Applications to Multi-Degree-of-Freedom Systems. 1990 

ISBN 0-7923-0369-5 
SetISBN (Vols. 12-13) 0-7923-0370-9 

MECHANICS OF STRUCTURAL SYSTEMS 

Editors: J.S. Przemieniecki and G.lE. Oravas 

1. L. Fryba: Vibration of Solids and Structures under Moving Loads. 1970 
ISBN 90-01-32420-2 

2. K. Marguerre and K. Wolfel: Mechanics of Vibration. 1979 ISBN 90-286-0086-8 
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3. E.B. Magrab: Vibrations of Elastic Structural Members. 1979 ISBN 90-286-0207-0 
4. R.T. Haftka and M.P. Kamat: Elements of Structural Optimization. 1985 

Revised and enlarged edition see under Solid Mechanics and Its Applications, Volume I 

5. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite 
Materials. 1986 ISBN Hb 90-247-3125-9; Pb 90-247-3578-5 

6. B.E. Gatewood: Virtual Principles in Aircraft Structures. Volume 1: Analysis. 1989 
ISBN 90-247-3754-0 

7. B.E. Gatewood: Virtual Principles in Aircraft Structures. Volume 2: Design, Plates, 
Finite Elements. 1989 ISBN 90-247-3755-9 

Set (Gatewood 1 + 2) ISBN 90-247-3753-2 

MECHANICS OF ELASTIC AND INELASTIC SOLIDS 

Editors: S. Nemat-Nasser and G . ..E. Oravas 

1. G.M.L. Gladwell: Contact Problems in the Classical Theory of Elasticity. 1980 
ISBN Hb 90-286-0440-5; Pb 90-286-0760-9 

2. G. Wempner: Mechanics of Solids with Applications to Thin Bodies. 1981 
ISBN 90-286-0880-X 

3. T. Mura: Micromechanics of Defects in Solids. 2nd revised edition, 1987 
ISBN 90-247-3343-X 

4. R.G. Payton: Elastic Wave Propagation in Transversely Isotropic Media. 1983 
ISBN 90-247-2843-6 

5. S. Nemat-Nasser, H. Abe and S. Hirakawa (eds.): Hydraulic Fracturing and Geother-
mal Energy. 1983 ISBN 90-247-2855-X 

6. S. Nemat-Nasser, R.J. Asaro and G.A. Hegemier (eds.): Theoretical Foundation for 
Large-scale Computations of Nonlinear Material Behavior. 1984 ISBN 90-247-3092-9 

7. N. Cristescu: Rock Rheology. 1988 ISBN 90-247-3660-9 
8. G.l.N. Rozvany: Structural Design via Optimality Criteria. The Prager Approach to 

Structural Optimization. 1989 ISBN 90-247-3613-7 

MECHANICS OF SURFACE STRUCTURES 
Editors: W.A. Nash and G . ..E. Oravas 

1. P. Seide: Small Elastic Deformations of Thin Shells. 1975 ISBN 90-286-0064-7 
2. V. Panc: Theories of Elastic Plates. 1975 ISBN 90-286-0104-X 
3. J.L. Nowinski: Theory ofThermoelasticity with Applications. 1978 

ISBN 90-286-0457-X 
4. S. Lukasiewicz: Local Loads in Plates and Shells. 1979 ISBN 90-286-0047-7 
5. C. Fift: Statics, Formfinding and Dynamics of Air-supported Membrane Structures. 

1983 ISBN 90-247-2672-7 
6. Y. Kai-yuan (ed.): Progress in Applied Mechanics. The Chien Wei-zang Anniversary 

Volume. 1987 ISBN 90-247-3249-2 
7. R. Negruliu: Elastic Analysis of Slab Structures. 1987 ISBN 90-247-3367-7 
8. J.R. Vinson: The Behavior of Thin Walled Structures. Beams, Plates, and Shells. 1988 

ISBN Hb 90-247-3663-3; Pb 90-247-3664-1 




