
Programming in Modula-3

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Laszlo Boszormenyi
Carsten Weich

Programming
in Modula-3
An Introduction in Programming
with Style

Foreword by Joseph Weizenbaum

, Springer

Usz16 Boszormenyi
Carsten Weich

U niversitat Klagenfurt
Institutfiir Informatik
UniversitatsstraBe 65-67
A-9022 Klagenfurt

With 61 figures

The software environment was created with the kind support of Springer
Verlag, Digital Equipment Corporation, and Raiffeisenverband Karnten

Translated from the German edition Programmieren mit Modula-3
by Robert Bach, Traunkirchen, Austria

ISBN-13: 978-3-642-64614-0 e-ISBN-13: 978-3-642-60940-4
DOl: 10.1007/978-3-642-60940-4

CIP-data applied for
Die Deutsche Bibliothek CIP-Einheitsaufnahme
programming in Modula-3: an introduction in programming with style /
Uszl6 Boszormenyi; Carsten Weich. Foreword by Joseph Weizenbaum [Trans!. from
the German ed. by Robert Bach J. - Berlin; Heidelberg; New York; Barcelona; Budapest;
Hong Kong; London; Milan; Paris; Santa Clara; Signapore; Tokyo: Springer; 1996

Dt. Ausg. u.d.T.: Boszormenyi. Uszl6: Programmieren mit Modula-3
ISBN-13: 978-3-642-64614-0

NE: Weich. Carsten:

This work is subject to copyright. All rights are reserved. whether the whole or part of the
material is concerned. specifically the rights of translation. reprinting. reuse of illustrations.
recitation. broadcasting. reproduction on microfilm or in other ways. and storage in data
banks. Duplication of this publication or parts thereofis permiuedonlyunder the provisions
of the German Copyright Law of September 9.1965. in its current version. and permission
for use must always be obtained from Springer-Verlag. Violations are liable for prosecution
act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Softcover reprint ofthe hardcover 1st edition 1996

The use of general descriptive names. registered names. trademarks. etc. in this publication
does not imply. even in the absence of a specific statement. that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by authors; Cover illustration: Hegedus Miklos
Cover design: Klinkel + Lopka Werbeagentur. Ilvesheim
SPIN:I0426494 33/3020-543210 - Printed on acid -free paper

To Joseph Weizenbaum

Foreword
by Joseph Weizenbaum

Since the dawn of the age of computers, people have cursed the difficulty
of programming. Over and over again we encounter the suggestion that
we should be able to communicate to a computer in natural language what
we want it to do. Unfortunately, such advice rests upon a misconception
of both the computer and its task. The computer might not be stupid, but
it is stubborn. That is, the computer does what all the details of its pro
gram command it to do, i.e., what the programmer "tells" it to do. And this
can be quite different from what the programmer intended. The misun
derstanding with respect to tasks posed to the computer arises from the
failure to recognize that such tasks can scarcely be expressed in natural
language, if indeed at all. For example, can we practice music, chemistry
or mathematics without their respective special symbolic languages?

Yet books about computers and programming languages can be written
more or less reasonably, even if they are not quite poetic or lyrical. This
book can serve as an example of this art and as a model for anyone at
tempting to teach inherently difficult subject matters to others.

Klagenfurt, April 1995

Preface

Striving to make learning to program easier, this book addresses primarily
students beginning a computer science major. For our program examples,
we employ a new, elegant programming language, Modula-3. However,
most of the concepts that we introduce apply and are relevant indepen
dently of the specific programming language.

This book can either accompany an introductory lecture on program
ming or serve self-study purposes. Both cases absolutely demand hands-on
programming practice in addition to reading the book. Perusing a book on
programming in dry dock without ever navigating the challenging waters
of programming would be like reading about how to playa violin without
ever touching the instrument. Learning to program means mastering both
theory and practice, preferably simultaneously.

Newcomers to a computer science major bring with them a broad range
of different backgrounds. Some have no computer literacy, while others can
handle certain application programs such as word processors or spread
sheets. Still others have programming experience, although the breadth
and depth of their skills varies greatly. This book assumes no particular
prerequisites. A reader armed with normal high school mathematics and
rudimentary computer literacy should be able to understand this book. We
begin with fundamental concepts and only stepwise introduce the more dif
ficult, higher-level concepts that build on them. To avoid the risk of bore
dom, students with a higher level of programming experience should feel
free to skim over exhaustive explanations that are already clear to them.

Organization of the Book

The book consists offive parts:

1. Introduction
In the first chapter we cast light on the term programming from var
ious perspectives and show their relative importance in the field of
computer science. The second chapter introduces a formal notation
for the precise specification of the syntax of programming languages.

x

2. Introduction to Programming
Chapters 3 to 10 introduce the classical programming concepts. Be
ginning with a sequence of statements and many simple and user
defined static types, these chapters move on to arm the reader with
procedures, functions and modules to be able to correctly structure
even complex problems. On completion of Chapter 10, the reader
should be able to write many challenging programs.

3. Advanced Programming
Here we introduce a number of concepts that particularly support the
development of program systems that need to react to ever changing
sets of data. We present dynamic data structures as well as recur
sion at the algorithmic and data-structure level. The reader also be
comes familiar with persistent data and exception handling. Chapter
13 treats object-oriented programming, which has conquered an ever
growing share of the field of software system development. Another
steadily rising field, parallel programming, highlights Chapter 16.

4. Appendices
Through the appendices we have striven to ease the task of Modula-3
programming. Appendix A describes a complete non-trivial program
to manage music CD's. Appendix B, intended as a reference for the
pros, offers a complete but very compact description of the semantics
of Modula-3. It is a reprint of the original Modula-3 language defini
tion [CDG+S9]. Further appendices describe the most important in
terfaces to the Modula-3 development environment and provide con
cise descriptions of various such environments. The appendices also
include detailed instructions on installing and configuring a Modula-3
development environment and the software included with this book.

5. Included Software
All examples in the book have been tested. They are either executable
themselves or parts of executable programs. We provide these to the
reader at no charge. All Modula-3 programs (including the Modula-3
compiler) can be started from an integrated, interactive, user-friendly
environment.

Acknowledgments

Our foremost gratitude goes to Roland Mittermeir, who profoundly con
tributed to the production of this book. Significant texts and examples in
Chapters 10 to 12 come from him. He is actually a co-author of this book.

We also owe special thanks to Hans-Peter Mossenbock, Peter Rechen
berg, Johann Eder and Karl-Heinz Eder; they assumed the enormously

Xl

work-intensive and thankless task of thoroughly proofreading the origi
nal German manuscript. We likewise wish to express our gratitude to
Michael Dobrovnik for his comments on our example program in the ap
pendix. Their criticisms and comments taught us a great deal, and without
their contributions it would have been impossible to complete this book.
Naturally the authors retain full and sole accountability for any errors.

Our gratitude also goes to the researchers at Digital Systems Research
Center, Palo Alto, who developed Modula-3 and made it available. We es
pecially thank Marc Najork, for his support. We are also grateful to Greg
Nelson and Bill Kalsow.

We also extend our appreciation to Springer-Verlag, Digital Equipment
Corporation, the University of Klagenfurt and the Raiffeisen Bank of Ca
rinthia for their generous support of the development of our user-friendly
Modula-3 environment and to Miklos Szabo for his development work.

We also offer our sincere thanks to Silvia Nedizavec for her meticulous
preparation of the figures in this book and to Michael Vrbicky for his help
in formatting the English edition.

Last but not least, we thank our patient families, who spent many
evenings and weekends without us during the two years in which we wrote
this book.

We offer the reader this book as the fruits of our labors in the hope that
it proves to be a useful learning instrument and that it provides some fun
and pleasure along the way.

Contents

1 What is programming?
1.1 An informal introduction.

1.1.1 Algorithms
1.1.2 Switches and symbols
1.1.3 Turing machine
1.1.4 Computability

1.2 The von Neumann computer.
1.3 Rigid thought structures ...
1.4 Programming in the small . .

1.4.1 Software production methods
1.4.2 Writing simple programs ...

1. 5 Levels of programming
1.5.1 Formal and human languages.
1.5.2 Assembler
1.5.3 High-level programming languages.

1.6 Programming and computer science
1.6.1 The responsibility of computer scientists

2 Metalanguages
2.1 Definition of formal languages .
2.2 Digits and numbers . .
2.3 Names
2.4 Arithmetic expressions
2.5 Extension for Modula-3 syntax

3 The structure of programs
3.1 Structuring
3.2 Language environment
3.3 The statics and dynamics of a program .

3.3.1 Data and data types
3.3.2 Algorithms and procedures

3.4 Structure of Modula-3 programs
3.4.1 The module

1
1
2
4
6
7
9

11
14
14
17
18
18
20
21
24
25

27
27
29
30
31
33

35
35
36
38
39
41
42
42

XlV

3.4.2 Hello, world
3.4.3 Source code
3.4.4 Computing the arithmetic mean
3.4.5 SIO interface.

4 Predefined data types
4.1 Integers

4.1.1 Range .. .
4.1.2 Operations

4.2 Logical type ...
4.2.1 Range...
4.2.2 Operations

4.3 Characters
4.3.1 Range ...
4.3.2 Operations

4.4 Texts
4.4.1 Range .. .
4.4.2 Operations

4.5 Floating-point numbers.
4.5.1 Range
4.5.2 Floating-point literals
4.5.3 Operations
4.5.4 Input and output of floating-point numbers

5 Statements
5.1 The assignment
5.2 Structured statements
5.3 Sequence
5.4 Branches

5.4.1 If statement ..
5.4.2 Case statement
5.4.3 Equivalence of If and Case .

5.5 Loops
5.5.1 While loop .. .
5.5.2 Loop invariants
5.5.3 Repeat loop. . .
5.5.4 For loop
5.5.5 Loop statement
5.5.6 Equivalence of the repetition statements

6 User-defined simple types
6.1 Enumeration

6.1.1 Predefined enumerations.

Contents

44
46
47
50

53
53
53
54
60
60
60
63
63
65
67
67
68
72
73
74
75
78

83
83
84
87
87
87
92
96
97
97

102
105
108
110
112

115
115
117

Contents

6.1.2 Range ...
6.1.3 Operations

6.2 Subranges
6.2.1 Operations
6.2.2 Predefined subranges .

7 Expressions and declarations
7.1 Expressions

7.1.1 Syntax of expressions ...
7.1.2 Evaluation of expressions
7.1.3 Evaluation oflogical expressions

7.2 Declarations
7.2.1 Constant declarations
7.2.2 Type declarations ..
7.2.3 Variable declarations

7.3 Equivalence of types ...
7.4 Subtypes
7.5 Assignment compatibility
7.6 Expression compatibility

8 Composite static types
8.1 Arrays

8.1.1 Unidimensional arrays ..
8.1.2 Multidimensional arrays.
8.1.3 Array constructors
8.1.4 Operations on arrays .. .
8.1.5 Example: Schedule
8.1.6 Linear search in an array
8.1.7 Sorting an array.

8.2 Records
8.2.1 Record selectors .. .
8.2.2 Record constructors .
8.2.3 Operations with records
8.2.4 With statement
8.2.5 Example: Student data management.

8.3 Sets
8.3.1 Range
8.3.2 Set constructors ..
8.3.3 Operations on sets
8.3.4 Example: Input of numbers

8.4 Comparison of arrays, records and sets.
8.5 Packed data types

xv

117
118
120
122
122

125
125
125
127
128
129
129
131
132
133
134
135
136

139
140
141
142
144
145
148
150
152
154
156
157
160
160
162
163
164
165
165
168
170
170

XVI

9 Structuring algorithms
9.1 Block structure
9.2 Procedures and functions .. .

9.2.1 Procedure declaration
9.2.2 Procedure invocation

9.3 Modes of parameter passing
9.3.1 Value parameter ...
9.3.2 Variable parameters
9.3.3 Read-only parameters
9.3.4 Information transfer via global variables
9.3.5 Comparing the kinds of parameters

9.4 IdentifYing the procedures
9.5 Name, type and default value of

a parameter . .
9.6 Eval statement
9.7 Procedure types

9.7.1 Operations with procedures

10 Modules
10.1 Structure

10.1.1 Interface
10.1.2 Implementation
10.1.3 Compilation units.

10.2 Using modules
10.2.1 Structuring the data space .
10.2.2 Type creation
10.2.3 Creating toolboxes

10.3 An example with graphic elements
10.4 Modularization

11 Dynamic data structures
11.1 Dynamism in static data structures

11.1.1 Implementation of stacks as arrays.
11.1.2 FIFO queues in arrays
11.1.3 Example: Rotating shifts
11.1.4 Explicit address management with pointers.
11.1.5 Address management by the system

11.2 Dynamic data in Modula-3
11.2.1 Allocation and de allocation
11.2.2 Operations with references
11.2.3 Open (dynamic) arrays
11.2.4 Arrays of references .

11.3 Subtypes

Contents

173
173
177
179
181
183
185
185
186
187
188
192

193
194
195
195

201
206
207
208
210
210
212
215
219
219
223

227
228
228
231
234
235
238
241
241
245
246
247
248

Contents XVll

11.3.1 Subtype rule for references .. 249
11.3.2 Subtype rule for arrays 250

11.4 Abstract and encapsulated data types 251
11.4.1 Opaque data types 252
11.4.2 Revelation 254
11.4.3 An abstract and a generic stack. 257
11.4.4 Rules for the design of encapsulated data types 260

11.5 Dynamic structures. 261
11.5.1 Lists. 262
11.5.2 Kinds oflists 263
11.5.3 Singly linked, sorted linear list 264

12 Recursion 271
12.1 Recursive algorithms 273

12.1.1 Fundamentals of recursive programming 273
12.1.2 Using recursion . . . 278
12.1.3 Quicksort. 281
12.1.4 The Towers of Hanoi 282
12.1.5 Recursive list management 285

12.2 Recursive data structures 287
12.2.1 Trees 287
12.2.2 Binary trees and search trees 290
12.2.3 Binary search trees 292
12.2.4 Traversing a tree 294
12.2.5 Implementation of the binary search tree 296

13 Objects 305
13.1 Object-oriented modeling. 305
13.2 Object-oriented programming 308

13.2.1 Encapsulation 308
13.2.2 Inheritance. . . . 309
13.2.3 Polymorphism . . 310
13.2.4 Dynamic binding 310
13.2.5 Object-oriented applications . 311

13.3 Object types in Modula-3 312
13.3.1 Declaration of object types . 313
13.3.2 Implementation of objects . 314
13.3.3 Implementation of methods 315
13.3.4 Accessing object components. 317
13.3.5 Creating objects 317
13.3.6 Subtyping rules for objects. 318

13.4 Encapsulation of object types 319
13.4.1 Inheritance. 323

XVlll

13.4.2 Polymorphism and dynamic binding
13.4.3 Generalization
13.4.4 The tree class hierarchy .
13.4.5 Subclasses of binary trees

14 Persistent data structures
14.1 Files

14.1.1 Accessing files ..
14.1.2 Access functions.
14.1.3 Files and main memory
14.1.4 File types

14.2 Files in Modula-3
14.2.1 Input and output streams
14.2.2 Fmt and Scan
14.2.3 Simple-IO ...

14.3 Persistent variables ..
14.3.1 Implementation

15 Exception handling
15.1 Exceptions in a program
15.2 Exception handling in Modula-3 ..

15.2.1 Exceptions, run-time errors,
programming errors ...

15.2.2 Declaration of exceptions.
15.2.3 Generation of exceptions
15.2.4 Exception handling ..
15.2.5 Delegating exceptions .

15.3 Delaying exception handling . .
15.4 Strategies for exception handling

16 Parallel programming
16.1 Motivation for parallelism
16.2 Parallel programs
16.3 Threads in Modula-3 .. .

16.3.1 Schedulers ofModula-3 environments
16.3.2 Creating threads

16.4 Shared variables.
16.4.1 Data-parallel algorithms
16.4.2 Critical regions and mutual exclusion
16.4.3 Type Mutex and the Lock statement
16.4.4 Monitor ...
16.4.5 Semaphores

16.5 Message passing ..

Contents

325
328
339
344

349
350
350
351
352
352
353
353
357
360
362
364

371
371
375

375
376
376
376
377
379
382

385
385
388
390
390
391
397
397
400
402
405
413
418

Contents XIX

16.5.1 Client/server model 418
16.5.2 Synchronous message communication 419
16.5.3 Asynchronous message communication 419
16.5.4 Channels 420

A A small database 427
Al The task ... · 427
A2 The object model. 428
A3 Interfaces of the object model 431

A3.1 Interface of the base object. 431
A3.2 The specific interfaces 432

A4 User interface · ... 433
A4.1 Input strategy 433
A4.2 Output · ... 435

A5 Implementation ... 436
A5.1 Persistent sets . 437
A5.2 Sets · 438
A5.3 Object lists ... 439
A5.4 Auxiliary modules . 439
A5.5 Selections. 439
A5.6 Implementation modules of the object model 440
A5.7 Input 441
A5.8 Queries 442

A6 Interfaces 443
A7 Implementation modules . 447

B Language Definition 469
B.l Definitions · ... 469
B.2 Types 470

B.2.1 Ordinal types 470
B.2.2 Floating-point types 471
B.2.3 Arrays · ... 472
B.2.4 Records 473
B.2.5 Packed types . 474
B.2.6 Sets · ... 474
B.2.7 References 474
B.2.8 Procedures 475
B.2.9 Objects · . 477
B.2.10 Subtyping rules 480
B.2.11 Predeclared opaque types 482

B.3 Statements 482
B.3.1 Assignment 483
B.3.2 Procedure call 484

xx

B.3.3 Eval
B.3A Block statement
B.3.5 Sequential composition .
B.3.6 Raise
B.3.7 Try Except .
B.3.8 Try Finally .
B.3.9 Loop ..
B.3.10 Exit ..
B.3.11 Return
B.3.12 If
B.3.13 While
B.3.14 Repeat
B.3.15 With.
B.3.16 For ...
B.3.17 Case . .
B.3.18 Typecase
B.3.19 Lock ...
B.3.20 Inc and Dec

BA Declarations . . .
BA.1 Types ...
BA.2 Constants
BA.3 Variables
BAA Procedures
B.4.5 Exceptions
B.4.6 Opaque types
BA.7 Revelations. .
BA.8 Recursive declarations

B.5 Modules and interfaces ..
B.5.1 Import statements
B.5.2 Interfaces.
B.5.3 Modules ...
B.5A Generics . . .
B.5.5 Initialization.
B.5.6 Safety.

B.6 Expressions
B.6.1 Conventions for describing operations
B.6.2 Operation syntax
B.6.3 Designators
B.6A Numeric literals
B.6.5 Text and character literals.
B.6.6 Nil
B.6.7 Function application
B.6.8 Set, array, and record constructors

Contents

485
486
486
486
487
488
488
488
489
489
490
490
490
491
492
492
493
493
494
494
494
495
495
496
496
496
497
498
499
500
500
501
503
503
504
504
505
506
507
508
508
508
508

Contents

B.6.9 New
B.6.10 Arithmetic operations
B.6.11 Relations
B.6.12 Boolean operations
B.6.13 Type operations ..
B.6.14 Text operations ..
B.6.15 Constant Expressions.

B. 7 Unsafe operations
B.8 Syntax

B.8.1 Keywords
B.8.2 Reserved identifiers .
B.8.3 Operators.
B.8.4 Comments
B.8.5 Pragmas
B.8.6 Conventions for syntax .
B.8.7 Compilation unit productions
B.8.8 Statement productions .
B.8.9 Type productions
B.8.10 Expression productions ..
B.8.11 Miscellaneous productions
B.8.12 Token productions.

C Library interfaces
C.1 Standard interfaces

C.l.1 Text ..
C.l.2 Thread
C.l.3 Word
C.1.4 Real ..
C.l.5 Float
C.l.6 FloatMode

C.2 Formatting .
C.2.1 Fmt
C.2.2 Scan

C.3 Input and output streams
C.3.1 Rd
C.3.2 Wr
C.3.3 Simple input/output (SIO)
C.3.4 Simple Files (SF)

D Modula-3 language environments
D.1 The DEC/SRC language environment
D.2 A language environment for PCs

D.2.1 Installation

XXI

509
510
513
514
514
516
516
516
518
518
518
518
518
518
519
519
520
521
521
522
522

525
525
525
527
528
530
530
533
534
534
538
538
538
540
542
545

547
547
548
548

XXII

D.2.2 The programming editor .
D.2.3 The browser
D.2.4 A graphical user interface
D.2.5 Restrictions

Bibliography

Index

Contents

549
550
550
551

553

557

Chapter 1

What is programming?

1.1 An informal introduction

The question seems superfluous: Programming means writing programs,
right? But what are programs? In essence, programs contain a sequence of
instructions that produce desired behavior on a computer. This still sounds
simple. Does this mean that programming is also simple? Unfortunately,
we cannot answer this question in the affirmative just like that.

Just what is the difficulty in programming? We can most readily formu
late it as follows: Programming is difficult because humans are so intelli
gent and computers so unintelligent. As a result, there seems to be a gen
eral difficulty in issuing instructions: If we try to issue instructions to an
intelligent being, we encounter the problem that the affected being might
not agree with our intentions - precisely because the being is intelligent.
If we issue instructions to an unintelligent being (such as a computer),
then we must assume that it does not even understand our instructions. If
we want to assure that our instructions are actually and impeccably exe
cuted, then we must descend to the level of the unintelligent being. In other
words, we must provide very precise specifications of our wishes, down to
the last detail. And here we encounter the difficulty of programming: Hu
mans must communicate their wishes with unaccustomed precision, which
more or less contradicts the very nature of most people.

Does this make programming hopelessly formidable? This is not the
case. As we shall see, people can learn to structure programs so system
atically that even a very complex set of instructions can be reduced to a
comprehensible structure. Thus we can decompose our programs into cor
respondingly small and comprehensible units, allowing us always to con
centrate on the essential.

Here the notation that we use is particularly important. We know
that the ancient Greeks did not posses our modern mathematical notation
[Co169]. Although they practiced mathematics on a very high level, their

2 1. What is programming?

computational skills were by no means as efficient as what we have to
day. (Perhaps efficiency was not even their goal, but that is another story.)
For lack of adequate notation, they calculated in a way akin to when we
do computations in our head today. The semiautomatic (and hence only
semiconscious) calculations that we carry out with pencil and paper, e.g.,
when we multiply two larger numbers, was made possible only through the
introduction of modern notation.

1.1.1 Algorithms

How we apply a set of exact rules, e.g., to multiply larger numbers, can also
be termed algorithmic computation.

I An algorithm is a precise, unambiguous specification of a finite, effective
procedure.

But what does this statement mean? Let us first clarify some of the
terms.

• The essence of a procedure is that it can be executed stepwise - by a
human or even a machine .

• Finite has dual meaning: First, the description of an algorithm must
be finite. Second, its execution must be finite; i.e., it must terminate
at some time.

You might wonder why it is necessary to require that a description
must be finite. You might assert that an endless description cannot
be produced anyway; that would require endlessly long paper! This
is not the case. A description might contain a loop, e.g., from which
there is no exit.

A student once behaved very conspicuously during a written exam
ination until the examiner finally approached him and found a sus
picious paper on his desk. The following words were written on the
paper: "Perpetuum mobile - description on the reverse side". The
examiner turned the paper over to find the words: "Perpetuum mo
bile - description on the reverse side". This is not an algorithm (un
fortunately, or we would have implemented the perpetuum mobile).
Neither the description nor the procedure terminates.

In the following example the description terminates, but the proce
dure does not always terminate. We give someone instructions on
how to find the way out of a systematically structured labyrinth:

"Go to the first possible branch. If it goes left, follow it.
Otherwise continue straight. Keep going straight until you
reach a T-junction and then take a right turn there.

1.1. An informal introduction

Repeat the whole procedure until you see the light. If you
reach a dead end, then turn around and continue as though
the interruption had not occurred."

3

Whether this procedure terminates depends on the labyrinth. If it
has no exit, the procedure does not terminate. Hence this is no al
gorithm. Since in computer science inexhaustibly looping procedures
are often very important, they are sometimes called nonterminating
algorithms.

• Effective means that the algorithm actually has an effect, returns a
result. Some twenty years ago, when computer time was very ex
pensive, a good friend of one of the authors wrote an excellent pro
gram that carried out important computations with utmost precision.
The program ran a whole weekend around the clock. However, the
programmer forgot to write the output instructions that would have
printed the results. This was not exactly effective, and his boss was
not at all pleased.

Effectiveness is closely related to finiteness: An endless function cer
tainly does not return a result. However, it can have an effect, a side
effect. If the author of the above program had forgotten the instruc
tions that terminate the program instead of the output instructions,
then the program would have been very effective, exhausting all the
paper in the printer, yet without a result. His boss would have been
no more pleased in this case.

• Unambiguous means that with every step the executing agent knows
exactly what is to be done and always has exactly one next step. When
the Oracle of Delphi tells me, "Know thyself", then this is certainly
great wisdom, but not unambiguous and hence no algorithm. There
is no unambiguous procedure for this purpose. Probably there can
be no such procedure, for while I try to know myself, I change as a
consequence of the search. Perhaps this is exactly the purpose of the
instruction.

• The meaning of precise naturally depends on the receiver of our in
structions. For example, we might request of a high school graduate,
"Please tell us how many months you have lived." Although we have
formulated the task with sufficient precision, we have said nothing
about the procedure. In such a case we have formulated only the
function, but not the algorithm. By contrast, we could say, "Multiply
your age in years by the number of months in a year and add to that
the number of months that have elapsed since your last birthday."

4 1. What is programming?

Here the procedure (the algorithm) for how to proceed is also formu
lated precisely. Yet if we confront a computer, such a formulation in
everyday language would lack sufficient precision.

There have been efforts in the realm of artificial intelligence to make
computers "intelligent" enough to execute such instructions formu
lated in human language. We do not treat this research here.

This brings us to the point where we inevitably need to turn to the sub
ject of computers. Above we defamed computers as unintelligent beings.
Why? Computers are praised as the most intelligent of machines! Com
puters actually do enjoy a unique position among machines because they
possess amazing flexibility. Consider one of the most wonderful machines,
the clock. The clock has a well defined function for which it can be used.
It can tell us what time it is, but nothing more. Somewhat more flexible
devices do exist. A table, e.g., permits us to store a variety of things on it
(although not everything). Despite the endless variety of applications for
tables, their function remains clearly defined and restricted.

1.1.2 Switches and symbols

Let us illustrate the flexibility ofthe computer with the following compari
son. Take a simple light switch; its function is very much restricted in that
it turns a light on or off. Now imagine a light switch that is not connected
to a light. If we assign some arbitrary meaning to the up and down po
sitions (states), then we can employ it for various functions. For example,
we could make an agreement with our children: "If the switch is up, then
please do not disturb me. If it is down, we can go out and play." We could
invent any number of such interpretations. And if a single switch does not
suffice, we can simply use more.

We thus achieve enormous flexibility by liberating the switching func
tion to allow any assigned interpretation. For a wired light switch, its
interpretation is inherent: up means a lighted room and down means dark
(or vice versa). But severed from their usual function, these two states can
mean anything.

Actually a computer consists of nothing more than a vast number of
(very fast, minute) switching elements. Part of these switches constitute
the central processing unit (CPU, which consists of the arithmetic / logic
unit (ALU) and the control unit) and the rest form the memory.

The switching elements of the processing unit have predefined func
tions: The CPU can execute a set of predefined primitive instructions (in
cluding, e.g., addition of two numbers according to a specified algorithm).
The CPU is the active element, or the engine of a computer.

1.1. An informal introduction 5

The switching elements of the memory unit can again be classified into
two parts: the program region and the data region.

Programs employ the instructions of the CPU to describe certain behav
ior. Ifwe liken the CPU to the engine of an automobile, then the program is
the map that guides us to various destinations. The execution of a program
corresponds to a specific excursion. To carry out a given trip, the driver
must interpret this map. Similarly, the CPU interprets the instructions of
a program. (Here we neglect the fact that humans generally interpret more
intelligently than computers: A quick glimpse at the map might suffice for
a human, while the CPU must process the instructions step by step.)

The engine (CPU) for a certain automobile (computer) remains the same.
However, the map (program) can change any number of times as new maps
become necessary for new destinations. Also, a specific route (program ex
ecution) can be repeated any number of times.

The instructions of a program relate to data in the same memory unit
(called working storage or main memory). This means that every execution
of a program with different data can produce somewhat different results.
For example, if we write a program to determine the arithmetic mean of
two numbers, then the program should return 3 for 2 and 4, and for 10
and 20 the result would be 15. Or, to continue the auto simile, we could
consider the state of traffic lights, other automobiles, and the streets to be
traveled as our data. The traffic situation changes with each trip.

Our data comprise a set of possible states, the state space. We usu
ally perceive this state space as consisting of smaller state units - state
variables. Each such unit represents one dimension in this hypothetical
space. Each traffic light, for example, has its possible states (red, amber
and green), and ten traffic lights form a ten-dimensional state space.

At any given time, the state space has a certain configuration (the cur
rent state of the lights) which represents the current state. For example, if
our data region consists oftwo switches, then the total state space contains
four possible configurations: both up, both down, the first down and the
second up, and the first up and the second down.

The alert reader might ask what the current state is if we are just
in the process of toggling a switch. Obviously we need to introduce
infinitely many intermediate states in order to be able to do justice
to the process of switching itself To avoid this, we prefer to refine our
statement that the state space has a certain configuration at any given
time. At any moment only means at any moment when the switching
elements have fixed their states. In the interim periods, when the state
space is in the process of changing from one state to the other, we will
simply look the other way.

We identify state variables by name or by address. We call the contents of
a state variable (a concrete configuration of a smaller state unit) its value.

6 1. What is programming?

< >

~ Readl write head

Figure 1.1: Turing machine

As indicated, these values can represent, or symbolize, anything. Therefore
computers are often called symbol-manipulating machines.

If we view all of memory as one unit, then we can say that during the
execution of a program computers can change their own state space auto
matically - either in an endless loop or until some point is reached that
is regarded as end state or termination state. Hence computers are often
called automata. The name automobile reflects the fact that the vehicle
propels itself as a horseless carriage. Because the computer controls it
self, a computer resembles an automobile that reads maps itself, selects
and drives the route independently, and eventually even controls the traf
fic lights as well. (Perhaps the future will offer such automobiles.)

Before examining the architecture of modern computers in more detail,
we should ask what all a computer can compute.

1.1.3 Turing machine

In his famous paper [Tur36] Alan Turing developed a hypothetical com
puter that could do the following (Figure 1.1):

• Read symbols from a tape of infinite length where at least two differ
ent symbol values must be possible, e.g., 0 and 1.

• Replace an existing value with a new one.

• Move the tape left or right.

• Make a transition to a new state based on the existing state and the
value that was read.

The machine begins at a certain position on a tape that contains the input.
The machine's respective action depends on the input symbol at this loca
tion and on the current state of the machine itself The machine has only
a fixed number of states between which it can change back and forth (de
pending on the contents of the tape). With every state transition, it writes
a new symbol onto the tape (i.e., at every processing step), and the tape is
moved on. The action might also be to stop the tape and thus the machine;
the tape content at this time represents the result.

1.1. An informal introduction 7

future problems

I

computable problems
all problems in the world

efficiently computable problems

Figure 1.2: Computability

The interpretation, i.e., the specification of which symbol triggers the
writing of which new symbol and which movement, is stored on the same
tape (expressed with similar symbols), e.g., by storing state numbers. Thus
one tape (we could call it a program) can turn the machine into an adding
machine, while another tape makes the same machine a prime number
generator, and so on.

Naturally the Turing machine is no real computer; it is a mathematical
abstraction that requires in-depth study to understand it in full [Tur36,
Hop79]. It represents the first successful attempt to formalize the term
computability.

1.1.4 Computability

As unlikely as it might seem, this apparently simple machine can, in all
probability, compute everything that is computable. We add the constraint
"in all probability" because this hypothesis, made by Alonso Church, has
yet to be proven or refuted. The constraint "that is computable" indicates
that by no means everything is computable. This even applies in mathe
matics, where we might expect otherwise. Many scientists, beginning with
Kurt Godel, have proven this. We can even say that more things are un
computable than are computable.

Even such a "simple" function as one that can decide whether arbitrary
functions always terminate cannot be computed. For if we had such a

8 1. What is programming?

function h, then we could define another function h that terminates
precisely and exclusively at that point when h claims that h does not
terminate. Now if we ask h whether h terminates, then either h
responds in the affirmative - in which case h does not terminate - or
vice versa. This is quite amazing, isn't it?

The number of uncomputable functions is non-enumerably infinite,
while the number of computable functions is "only" enumerably in
finite [Hop79]. And this does not encompass what is uncomputable
outside of mathematics.

Furthermore, many computable functions can only be computed very inef
ficiently. The time required to compute many functions rises exponentially
(e.g., by a power of two) with the size of the problem. Assuming that a
function requires 4 time units for 2 data values, then 3 data values would
escalate the time to 8, and 4 values would demand 16. For 10 data values
the function exceeds 1000 time units. Although such functions might be
theoretically computable, in practical terms they prove impossible to pro
cess for larger problems. Problems that we handle as programmers must
be not only finite but also efficiently computable (Figure 1.2).

This indicates that the domain of programming is definitely restricted.
This needs to be stated at the beginning of an introductory textbook to
programming. Still, we hope that this realization will not deflate anyone's
motivation to learn programming. The use of computers makes it possi
ble to produce many things to make one's own life and others' lives easier.
However, when the computer is applied to domains that are principally un
computable, this application becomes senseless and even damaging. Most
domains of human life are uncomputable - and they should not be made
computable by force. Nothing is more boring than a conversation in which
we always know what the partner will say next. On the other hand, nothing
can be finer than a conversation in which the participants grace each other
with new, unexpected ideas. The experience is intensified if we ourselves
give birth to new ideas. The value of human life is its very uncomputability
(whereby we do not mean hysteria).

The difference between medication and poison often depends on the
dose. The same applies to the application of computers. People who study
computer science should be aware of this fact in order to be able to promote
the reasonable use of computers and to prevent their senseless application.

"A machine only becomes useful when it has grown independent of the
knowledge that led to its discovery," Dtirrenmatt stated ironically in his
drama The Physicists. And he draws the consequences: "Hence today any
fool can make a light bulb glow - or an atomic bomb explode." We hope that
our book will help to foster the reader's capability to understand both the
power and the limits of programming.

1.2. The von Neumann computer

Program

Data

instruct.ion 1
Instructlon 2 I current

:==-=--=--=--_-_-..... ..,I~tructlOn

Instructlonn
date1
date2 L

ArithmetlC/Loglc
unit (ALU)

Control unit

Input/output
control

/ Devices

Monitor

9

CPU

Hard disk

daten

Main Memory

Bus
Keybord ri~~~~~J

Mouse

Figure 1.3: Structure of a computer

1.2 The von Neumann computer

Alan Turing's computer was never built in the form described above (page
6) (for one reason because a tape of infinite length proves rather difficult
to realize). The first modern computers that appeared in the late 1940s
had a somewhat different architecture. The classical von Neumann com
puter (see Figure 1.31), named after the Hungarian-American mathemati
cian John von Neumann consisted of:

• Memory

• Central processing unit or CPU (= arithmeticllogical unit (ALU) +
control unit)

• Input and output units (lIO)

The memory can represent any state space, and it can be modified arbitrar
ily. This memory is divided into memory cells (also called words), which can
be addressed individually.

The memory cells consist of smaller atomic units called bits. A bit cor
responds to a single switch and can have two states, which are represented

IThe original von Neumann architecture had no bus, but all modern computers do have
a bus system.

10 1. What is programming?

as 0 and 1. The bit is the smallest unit of representation in the binary
number system [AU92]. Eight bits combine to form a byte. Most modern
computers employ memory words that consist of 32 or 64 bits (i.e., 4 or 8
bytes).

The computer depicted in Figure 1.3 functions as follows: From an in
put unit we load an initializing state into memory. Part ofthis state (the
program) remains unchanged in storage as long as the instructions that
it specifies are being executed. Another part of the state, the data, can
be changed. The execution is governed by the CPU, which interprets the
program's instructions sequentially.

Ifthe CPU encounters an instruction, e.g., which tells it to add the data
located at addresses 100 and 200, then it loads the operands into its inter
nal registers, carries out the addition, and stores the result in an internal
register. Then the CPU processes the next instruction, which might tell
it, e.g., to write the result of the previous addition to address 300 of mem
ory. Instructions are carried out in this way until the CPU encounters a
halt instruction. The intriguing aspect is that the program and its data
are accommodated in the same memory. Hence we can imagine programs
that process other programs (or even themselves) as data. Here we begin
to perceive an exciting flexibility.

"This idea often scared me in the beginning," stated Konrad Zuse
[Zus92l, the designer of one of the first - if not the very first - modern
computers. "Because until then with the computers Zl-Z4 one could under
stand what was going on. You could even follow the calculations. In the
moment that I allowed the computed data to influence the program - for
that only a small wire connection the arithmetic unit and the stored pro
gram is required - I could no longer monitor the calculations. I had a lot
of respect for that little wire, because I felt as soon as this wire is there,
Mephisto stands behind me. ... With it a programmer can do the most
amazing things."

Note here that in this context Zuse did not mean exactly the same
thing with "stored program" as we understand today. He meant in
particular the ability to recompute the addresses (or indices) of the
data, which he considered to be a program modifidation.

The programs ofa von Neumann computer consist of the basic instructions
of the computing machine. The most important of such instructions are:

• Simple arithmetic operations (such as addition and multiplication)

• Logical operations (such as comparison)

1.3. Rigid thought structures 11

• Assignments (where one storage cell accepts the state value of an
other)

• Conditional and unconditional branches (the condition usually being
the result of the preceding operation)

The architecture of the von Neumann computer is very powerful, almost as
powerful as the Turing machine. However, there are important differences:

• Storage is finite for the von Neumann computer.

• The von Neumann computer has a general concept of input/output,
which enables communication with the user.

• Von Neumann computers are relatively easy and efficient to imple
ment.

• More important (at least from the viewpoint of programmers) is that
the von Neumann is relatively easy to program - even though pro
gramming in the early years ofthe computer (the 1950s) in retrospect
seems unbelievably difficult, inefficient and especially error-prone.

Ifwe try to employ a Turing machine to program even simple mathematical
functions (i.e., to translate them into the basic instructions of the Turing
machine), we find that this soon becomes quite cumbersome and clumsy.

1.3 Rigid thought structures

The instructions of a von Neumann machine more closely resemble human
thinking. This is no wonder, as they were derived from thought structures.
We can program a von Neumann computer with such instructions as:

Instruction i1:
Take a symbol x and compare it with a symbol y.

If they are equal, jump to instruction i2; else jump to instruction i3

Instruction i2:

Instruction i3:

The actual notation that must be used is not as relaxed as in our example.
We show the actu':ll appearance of such a program later.

The basic arithmetic operations (addition, multiplication) and predicate
logic (negation, conjunction, disjunction) are fundamental elements of the

12 1. What is programming?

instruction set. The basic structure of programs is essentially based on
such constructs as: "if ... then ... " and "repeat ... until ... ". These constructs
reflect certain thought patterns.

It is noteworthy that these rigid thought structures are stored in the
computer independently of the respective content. We must emphasize
that it is by no means as self-evident as it might seem to be able to store
thought structures. This requires that humans formulate these structures
abstractly and independently of the content. This in turn requires the ca
pacity of humans to observe their own thinking process, yet this contains a
fundamental contradiction [Kiih84, Kiih90]. We can observe our thinking
only with our thinking itself - no other tool is available. How can thinking
observe itself? When we attempt such observation, then we note that the
observing thinking always comes too late - thoughts are already present.
Thinking cannot grasp the process of thinking. However, it can apparently
observe its own past. Once the thought is there, we can observe it in terms
of both content and structure. Hence thinking seems to be occurring in at
least two dimensions: in the present, where it is currently active, and in
the past, where what has been thought becomes conscious and observable
from the perspective of the present.

This leaves the question of why the present dimension escapes observa
tion. It would be a contradiction to say that such observation is principally
impossible. First, we cannot doubt the existence of the present because the
past could not exist without a corresponding, preceding present. Second,
we cannot principally preclude the possibility of observing something that
surely exists - to make a certain statement in that direction would require
already having observed it. Hence we are confronted with a practical im
pediment: Our attention does not suffice to consciously grasp the presence
ofthinking - actually our own present. Our attention remains dark at first,
and the light of consciousness always comes too late and shines on the al
ready frozen dimension of the past. Therefore many thinkers doubt the
existence ofthis present and try to derive the origin of thinking from some
thing beyond thinking, such as from philosophical matter or the collective
unconscwus.

Consider, however, that the process-oriented, present form of thinking
cannot be darker than the light of consciousness - indeed, it could be that
this light is so bright that it blinds us at first. The results of thinking -
our own thoughts - are clear to us, which is the only thing that is really
clear to us. Thus the origin, the source of thinking cannot be principally
unclear, unapproachable, incomprehensible. We cannot trace thinking to
something that is principally incomprehensible. The "darkness" of philo
sophical matter or of the collective unconscious is principal in nature (so
defined), while the darkness of present thinking is only practical. People
cannot think something that they do not understand themselves. (They

1.3. Rigid thought structures 13

can say things that they do not understand, but that is another matter.) In
order to cast our own light on the moment of origin of understanding, we
would have to remove practical impediments.

These practical impediments consist of the weakness of our attentive
ness. This is reflected in the fact that our attentiveness is too weak, too
scattered to stick to a specific subject for an arbitrarily long time. Normally
even a short time proves impossible; our attention is quickly diverted. In
order to bear its own presence in its living, process-oriented character, our
attentiveness would have to be much stronger. Enhancing our attentive
ness and thus leading it to its own present dimension - to our own present
dimension - could be achieved nowadays by any halfway healthy person by
practice. Whether we do this is a matter of free choice. In A Guide for the
Perplexed [Sch78] E. F. Schumacher writes that today's humanity and to
day's science have lost their vertical component. Finding it again is within
the realm of free choice.

The usual form of thinking known today is thus perhaps not its final
form - and probably not the first. Small children apparently have a con
sciousness different from that of adults. Likewise earlier humankind also
seems to have had a different, more "archaic" consciousness that encom
passed different abilities, different qualities [Kuh84, Kuh90]. The ancient
Greeks were excellent mathematicians, but they did not invent the com
puter. They also did not compute as efficiently as we do. Instead, they ex
perienced the qualities of numbers; e.g., for Pythagoras mathematics had
the character of a cult or religion. The history of mathematics bears wit
ness to an ever increasing ability to abstract [Co169], always associated
with the loss of certain other qualities. The computer appears at a certain
phase of our development in which the ability to abstract has reached its
highest level and is also generally accessible.

Computers can store rigid thought structures and thus simulate intel
ligent behavior. They can effectively emulate the past dimension of in
telligence, which is the mechanics that have loosed themselves from the
process. However, this is not intelligence, for computers lack at least two
fundamental features of intelligence:

1. The ability to produce new ideas

2. The capacity to make free decisions

The "intelligence" of a computer always derives from human intelligence
and cannot regenerate itself [Bos89]. In response to the frequent ques
tion of whether a computer can emulate human behavior such as human
thinking, we can respond: In its highest forms, as when we discover some
thing new, certainly not. However, we humans can become so mechanical
and schematic in our thinking and behavior that little difference remains

14 1. What is programming?

between us and a computer. Yet even at our worst we have the potential
to free ourselves from such automation and to direct our intellect in com
pletely new directions.

1.4 Programming in the small

For the programmer the most important consequence of the above consid
erations is that programming, viewed very generally, is nothing more than
the translation of ideas into an unusually precise form. The programmer
must cast human concepts into the mold prescribed by the structure of the
computer.

This general definition of programming takes on a broad variety of con
crete forms. In computer science much effort was expended to make this
translation easier through the development of both methods, and program
ming languages.

1.4.1 Software production methods

Let us first define the scope of the term programming as we employ it in
this book. We shall outline the phases in the development of an idea to a
complete program, indeed to a program system, or software system.

Conception of an idea

First an idea emerges on the part of us or our client. We first need to
examine whether this problem lends itself to solution by computer. If the
problem is principally uncomputable, then we must forsake our search for
a computer solution. Of course, this basic uncomputability might only arise
later. We might also find that the problem could be solved by computer, but
we decide that we prefer not to solve it, e.g., because the solution would
cause harm to persons. In this case we should also abandon our search for
a solution.

This aspect was addressed as follows by J. Weizenbaum in a lecture
in Budapest. If you go to a doctor and ask to have a finger removed, the
doctor would certainly ask why. If you respond that your head hurts, then
the doctor will surely want to examine you for the cause of your headache.
By contrast, if a client approaches a software developer with the request
to produce software to compute the ballistic trajectory of objects with high
precision, then the software developer normally only asks when the client
needs it and how much the client is willing to pay. It would be better if the
software developer would also first ask why. If the client expresses a desire
to improve a weapons system to finally obliterate a neighboring country

1.4. Programming in the small 15

from the face of the earth, then the technical problem becomes a complex
social and moral problem that cannot be solved at a technical level.

In the absence of such impediments, we can advance to the next phase.

Analysis

The fundamental question is: What are the actual requirements? Fre
quently a client can only formulate wishes very vaguely, such as an im
provement in bookkeeping or increased productivity in the company's man
ufacturing. These are admirable wishes, but they do not suffice to derive
a program. We need to study the complete production process and formu
late the rough requirement in the form of a number of smaller constituent
requirements. We need to localize bottlenecks where we can employ auto
matic controls to achieve improvements. However, we must note that a
local optimization can have unexpected negative side effects on the over
all system: For example, the bottleneck might move from the improved
production station to its successor, which might be overwhelmed by the
improvement.

A client might also approach a software developer with a very specific
wish: Produce software that does this and that. In such a case the de
veloper should also ask why. One of the authors of this book was once
contracted to produce software to implement a certain communication pro
tocol. The work would have easily taken a year. But the author first de
termined the actual requirement behind the wish. The result was that the
client did not need the new software at all, and the requirements could be
met by slight adaptation of existing software within two days.

In summary, in this phase we analyze the problem to be solved, at first
completely independently ofthe details ofthe final the solution.

Specification

Once we have understood the problem in detail, we derive a number of spe
cific requirements. Now we are able to say exactly what we want to achieve.
We formulate our problem solution as a (possibly very large) set of sub
functions. We normally describe such a subfunction by specifYing possible
input data (parameters) of a function and stating which results (output) the
function should produce. Furthermore, we specifY the conditions that the
inputs and outputs must fulfill. Outputs of subfunctions serve as inputs for
other functions. Since it is difficult to assure that the set of outputs of one
function are compatible with the set of inputs of the next, we can employ
computer-aided tools and dedicated specification languages[PST91j.

This phase usually overlaps chronologically with the preceding phase.
The result is a document that should contain all components to be realized.

16 1. What is programming?

Design

This phase produces a detailed plan for the solution of the of the specified
problem. Here is where we begin to consider how to solve the problem.
This plan should remain as independent as possible of concrete implemen
tation details, but we do need to consider the requirements on the computer
system. From the data set, the functions, and the nature of utilization (e.g.,
around the clock, once daily, once annually; by a certain client, by many
clients, etc.) we can determine the necessary capacity, performance and
security of the computer system. Which specific type of computer affords
these features should not affect the design in this phase. The costs of the
solution must be compatible with the client's budget.

Implementation

Now the design is translated into a form that the computer can process.
Here we might first check which software components are already available
(either from the client or from third-party vendors); these can be reused,
perhaps in modified form. Reuse is possible already during specification or
design; reuse is still practiced seldom, yet increasingly.

The missing components must be programmed. The actual program
ming occurs rather late in the software life cycle[Som92], and it is fre
quently a smaller part of the time investment. This is a general rule which
- like all rules - does not always apply. The individual components must
be validated: We must be convinced of their correctness. This can occur
via formal methods (the proof of a software component similar to a math
ematical theorem), or by thorough testing (to determine how the software
reacts to certain typical and atypical inputs). We are best advised to use a
reasonable com bination of both approaches.

Integration and testing

The individual components must be synthesized and the overall system
must be tested. An important quality attribute of the design, as well as of
the software tools employed, is whether this step is easy or - as so often
happens - it becomes hopelessly complex. In the latter case we would need
to begin a redesign - or we put poor software on the market, which certainly
has been known to happen.

Installation and maintenance

Last but not least, the software is installed for use. It begins a second
life: Software must often be maintained over years or decades. For poorly
planned projects, the errors begin to emerge here. Either some detail fails

1.4. Programming in the small 17

to work that was not detected during implementation, or something has
been omitted. Now the nature of the errors determines the consequences:
If the analysis was sloppy, this might now necessitate rethinking and re
designing large parts of the software system. The farther back in the de
velopment process that an error occurred, the more difficult and expensive
is the remedy.

Detected errors and new wishes need to be handled continuously. Al
most never are programs written once and then put into service without
modification. Particularly the design ofthe system must thus pay attention
to modifiability. Typical modifications include extensions and adaptations
to newly purchased hardware.

Top-down and bottom-up

The distinction between the development phases is not always clear, and
we sometimes need to repeat certain phases. The method outlined here
is only one of many possibilities for carrying out a software project. It
basically represents a top-down approach: First we view the whole, de
compose and refine it, and then sequentially solve the subproblems. The
opposite direction, a bottom-up approach, means obtaining or construct
ing functional components that can hopefully combine to a useful whole.
For certain problems this proves quite practical: If we have a store of pre
fabricated parts, we can sometimes simply assemble them. This requires
that we can slightly modify the problem to be solved so that it matches
our available parts. (For more about the software development process, see
[Som92]).

We could say that the top-down method puts analysts and designers
in a "divine" position: They attempt to create a world from above. The
opposite approach (bottom-up) in its extreme form regards the world
from an ant's perspective, seeing only the details and hoping that they
fit together to a whole. As in the Indian saying where different people
are confronted with different parts of an elephant's body - one hold
ing the tail, another the trunk, the third a leg - each individual is
convinced that elephants look like what they are perceiving.

1.4.2 Writing simple programs

This book concentrates primarily on the production of relatively simple pro
grams where at least the specifications are already available. Design and
validation will usually be quite simple. Hence this book is restricted to pro
gramming in the small. Our primary concern will be devising algorithms
and corresponding data structures for given problems. Thereby we further

18 1. What is programming?

restrict the yet too general definition of programming. We define programs
according to Niklaus Wirth as follows:

I Programs consist of data structures and the algorithms that operate on
them.

The restriction to programming in the small does not mean that we
want to develop our programs ad hoc. Quite the contrary:

I We shall practice in the small how to design programs systematically and
with good style.

Good style in this context has less to do with aesthetics, but is a quality
attribute that is most difficult to define. A program reflects good style if it
is structured comprehensibly and economically. In the words of E.F. Schu
macher, "Small is beautiful" [Sch89]. This applies even if the scope ofthe
problem is quite large: We must particularly assure that large problems
are decomposed into multiple smaller ones and that the overall structure
ofthe solution as a whole remains comprehensible. We adapt Schumacher's
quotation for the purposes of this book: "Clear is beautiful." This principle
will payoff in the development of large software systems!

1.5 Levels of programming

1.5.1 Formal and human languages

Programming today differs radically from that of the early days of the com
puter in the 1950s due to the introduction of various formal languages. For
mal languages used for programming are called programming languages.
Their purpose is to make programming easier, more efficient and especially
more secure (less error-prone).

Note that the expression formal language (and the derived expression
programming language) can be confusing because it gives the impression
of affinity to human languages. In part they were actually derived from
the observation of human languages by researchers such as N. Chomsky.
Formal languages also have an alphabet (the set of characters that may
appear), a syntax (a set of rules that govern correct sentence formation) and
semantics (rules that attempt to distinguish meaningful from meaningless
sentences). However, there are fundamental differences.

The rules of formal languages - similar to those of a game - are deter
mined in advance. Before playing chess, we must study the rules. In the
immensely more complex "game oflanguage", as Ludwig Wittgenstein calls
it, we participate before we learn any rules. The rules of human languages
are determined along the way. Not a single human language possesses a
complete grammar, and the usage of human grammars is unconscious (or

1.5. Levels ofprogramming 19

what terms superconscious [Kiih90]). A small child of five or so can usually
speak its native language(s) perfectly (is competent, in Chomsky's terms).
But the child has no idea of grammar and is not even aware of its existence.
With formal languages the opposite is true. Here the alphabet, syntax and
semantics, all rules, are determined in advance. Using a formal language
requires (especially at first, similar to learning a foreign language) that
these rules be applied very consciously.

Furthermore, human languages are inherently ambiguous - otherwise
there would be no poetry, no puns or other humor. The purpose of for
mal languages, and so of programming languages, is that their grammar
is specified unambiguously. Although some formal languages fail to ful
fill this requirement, we consider this their shortcoming rather than some
enrichment. The requirement of freedom from ambiguity again shows the
fundamental difficulty of programming: In human communication, ambi
guity can often be the most important component (imagine the intolerable
poverty of life without poetry and humor). Yet communication with the
computer demands unambiguity. Although unambiguity is often required
in human spheres as well, it is never completely achieved there, not even
in the military.

However, there are significant commonalities between good program
ming languages and human languages. A true wonder oflinguistics is that
children learn their native language from surprisingly little data. A great
deal can be guessed - even if some errors occur in the process. This is pos
sible because hunlan languages, despite all exceptions, are as consistent as
from a casting. Good programming languages are also consistent in this
sense - seeing a given property, we can, with a certain level of experience,
infer another. Still, we discourage this approach to learning a program
ming language and suggest instead a systematic method, whereby theoret
ical considerations should always precede trial and error! With chess it is
also better to learn the rules first, then perhaps some methods ofthe grand
masters; only later can one develop into a real chess player. Simply trying
aimlessly quickly exhausts a partner's patience. The computer is more pa
tient in this sense, but observe that we also write our programs for people,
usually other people.

For human languages we have deliberately avoided the widespread ex
pression natural language. We consider human languages far from natu
ral. This is reflected in the fact that they are not inherited. A baby can
learn any language as its native language. If a child grows up without a
human environment, it does not learn to speak - it does not even walk up
right [Kuh90]. While a deaf dog barks exactly like other dogs, a deaf child
does not automatically learn a language. This leads us to ask: If human

20 1. What is programming?

languages are neither artificial (like formal languages) nor natural (like
dog barking), where do they come from? We leave this question open as a
stimulus.

1.5.2 Assembler

Above we mentioned the programming style of the pioneering period of
computing. Today we call this style low-level programming, or program
ming close to machine level. At the lowest level of programming the basic
instructions of the computer and the addresses of the data are mapped, or
coded, directly onto the internal switching elements ofthe computer. Such
programs are only sequences of numbers or codes. This is the level of ma
chine language or machine code.

The next step is known as assembly language, or assembler, where the
basic instructions can be specified in the form of short, easy-to-remember
names. Also, the data addresses need not be written directly; instead, the
programmer uses short, symbolic names (as is the practice in mathemat
ics), which are automatically mapped onto concrete addresses by the pro
gram translator (the assembler). This programming style dominated pro
gramming for decades. Although its importance has declined over time, it
will likely remain necessary for certain purposes.

The following is the short program segment that was loosely formulated
on page 11, here in a typical assembler notation:

i1: LOAD X

CMPy
BEQi2
BRAi3

i2:

i3:

The first instruction loads the storage cell at address x into the central
processor, into the accumulator register of the arithmeticllogic unit. The
second instruction (where CMP means compare) compares the contents of
the storage cell at address y with the value in the register. If the compar
ison indicates equality, control jumps to i2 (BEQ means branch on equal).
Otherwise program flow continues at i3 (BRA stands for branch). Machine
code would look even worse, consisting of nothing but a sequence of num
bers (binary numbers coded in octal or hexadecimal form - quite inhuman).

1.5. Levels of programming 21

1.5.3 High-level programming languages

Programming languages on a higher level of abstraction (high-level pro
gramming languages) afford more complex commands and data structures.

Various taxonomies can be applied to high-level programming lan
guages. Some authors distinguish generations oflanguages. However,
we do not discuss this further here.

This book explains programming with the help of a new, modern program
ming language, the high-level programming language Modula-3 [Ne191,
Har921. It was developed at the Systems Research Center (SRC) of Digital
Equipment Corporation (DEC) in Palo Alto, California. The most impor
tant attributes of Modula-3 are:

• It is an imperative programming language.

• It has a secure type system.

• It is a structured programming language.

• It is object-oriented.

Imperative programming languages

Imperative programming languages focus on the algorithm. The program
mer must specifY the algorithm precisely (as in the example on page 3,
where we specified the method for computing age in months: "Multiply
your age in years by the number of months in a year ... "). The programming
language offers many aids for expressing an algorithm, but the program
mer bears sole responsibility for the correctness of the algorithm itself

A more than two decade old story tells of a fledgling computer user
who complained indignantly to the system programming group of his
computing center: The computer failed to give an error message when
he erroneously entered the sine function in a formula instead of the co
sine! Even today such errors are seldom detected automatically. The
computer can check whether sine is written correctly and whether the
parameter values are in a permissible range, but not whether the pro
grammer meant to write sine.

A fundamentally different approach (or paradigm) employs only functions.
Here the user does not want to deal with memory and commands at either
a low or high level, but simply enters mathematical functions in the usual
form. With an adequately powerful function concept built particularly on
recursion (see Chapter 2), this approach can actually be implemented. This
paradigm is employed in functional programming languages.

22 1. What is programming?

The logical programming languages represent a different paradigm.
Here the programmer must specifY initial statements and derivation rules
so that the computer can automatically derive the correct consequences.

We do not discuss the functional and logical paradigms further in this
book. We refer interested readers to the literature (e.g., [WH83, CM81]).

Imperative programming languages (often called procedural) are the
oldest form and are particularly useful for an introduction because they
require the programmer to express the algorithms explicitly. Functional
and logical programming languages partially hide the inner behavior of the
computer. Although this might often be useful, for a novice it is particularly
important to become familiar with the details.

The imperative programming languages have seen a very interesting
development. The first such programming language, Fortran, (from
Formula translator) made an important breakthrough at the end of the
1950s. Fortran represented the first successful attempt at translating a
formal notation that very much resembled the accustomed mathematical
formulas, automatically and efficiently into machine language. This began
a new dimension for programming because for the first time the program
mer was freed from many details of machine language and could better
concentrate on the content ofthe algorithm.

The programming language Cobol brought another development by en
abling easier expression of commercial applications rather than mathemat
ical formulas. Cobol emphasized such aspects as easy generation of format
ted tables.

Mter the initial euphoria, difficulties soon emerged with the new lan
guages. They were not defined precisely enough. Furthermore, they con
tain a number of features that encourage certain programming errors and
make them hard to detect. An attempt to build larger software systems
with these languages soon reveals their drawbacks.

This makes it all the more surprising that Fortran and Cobol are still
so widespread today. These programming languages do not even rep
resent the technology of yesterday, but reach back even farther. The
improvements made in these languages over the years have been cos
metic in nature and tend more to disguise the errors than to remedy
them. Without a doubt, the most important reason for the longevity
of these dinosaurs is the large installed base (estimated as hundreds
of thousands of programs consisting of billions of lines of code). At
any rate, universities have been responsible for assuring that develop
ment continues and that new and improved programming languages
continue to gain acceptance.

1.5. Levels of programming 23

Formally defined languages

Such experience caused researchers to think about the precise specifica
tion of programming languages. This led to the Backus-Naur notation
(presented in Chapter 2), which is a metalanguage (itself a formal lan
guage) that helps to specifY further formal languages. Naturally this only
makes sense if the metalanguage is significantly simpler than the for
mal languages being described. Although Backus-Naur notation can de
scribe (without extreme complexity) only the syntax of a programming lan
guage, it still brought important quality improvements in programming
languages.

The language Algol-60 was the first programming language with a for
mally specified syntax, making its definition concise and unambiguous.
Even today Algol-60 remains exemplary in many ways. For a long time Al
gol served as the publication language for precisely specifYing algorithms
in scientific literature. Many other languages borrow from Algol-60 (the
Algol family), e.g., Algol-68 and especially Pascal.

The significant difference between Pascal and Algol-68 is not so
much Pascal's introduction of new concepts, but rather its restraint in
the use of new concepts, which enabled the realization of compilers for
Pascal programs with comparably little effort. What is more impor
tant, this made it easier for a programmer to learn such a language
and to completely master it.

A strict type system: the Pascal family

Pascal [Wir711 has itself become the progenitor of a series oflanguages (the
Pascal family), such as Modula-2 [Wir82J, Oberon [WG92, RW92J, Oberon-
2 [Mos931 and the language used in this book, Modula-3 [NeI91, Har921.
Pascal's most significant innovation over Algol-60 was that Pascal vested
great importance not only in control structures but also in the design of
data structures.

Pascal was the first widespread language with a strict type system. On
the one hand, this means (in simplified form) that for all data the program
mer must declare in advance the type - the permissible value range and the
allowed operations. This enables the compiler to check the correct use of
the data. It is no longer possible to add apples and oranges, as with earlier
programming languages. This is an important example of how restriction
can achieve increased security. On the other hand, Pascal compensates for
this strictness by providing flexibility in the definition of new data types.
In Pascal the programmer can define custom types beyond the predefined
types built into the language.

24 1. What is programming?

Structured programming

Modula-3 is a structured programming language.
The theory of structured programming builds on the works of E.W. Di

jkstra and O. Dahl [Dij68a, DDH72]. We do not explain structured pro
gramming here, but do note that all languages of the Pascal family incor
porate this theory. We can summarize the essence of the theory by saying
that it restricts programming to constructs that form closed and well un
derstood units. The advantage of this approach is that we can check the
correctness of smaller components individually and then construct a larger
system from such checked components. This requires rules of composition
that assure that we do not destroy the already tested components during
the synthesis.

Structured programming languages provide special constructs, struc
tures, for structured programming. In Modula-3 the classical concepts of
structured programming have attained a very high degree of maturity.

Object orientation

The newest members ofthe Pascal family - including Modula-3 - are object
oriented. Pascal recognized the importance of data structures and elevated
the design of data structures to equal importance with control structures.
Object-oriented programming languages go farther: They combine asso
ciated data structures and operations into a syntactic and semantic unit.
Details of object-oriented programming are covered in Chapter 13.

Note that in object-oriented programming languages a very important
aspect of programming comes to light: modeling. Computers, as the name
indicates, were originally conceived as computing machines. (To be more
specific, during World War II the goal was to decode encrypted enemy mes
sages.) Due to their flexibility, computers are capable of representing ab
stract models of very different systems. Both the structure and the behav
ior of systems can be modeled on computers. Naturally the model must be
conceived by humans, but just as models can be built from wood or plaster,
they can be constructed as software. Object-oriented programming lan
guages provide especially expressive concepts for modeling the structure
and behavior of systems.

1.6 Programming and computer science

Programming (in the restricted sense above) is only a modest aspect of
computer science. Some use the term informatics nowadays instead of com
puter science to emphasize that this is a science with a spectrum that ex
tends beyond the computer itself While on the one hand increasingly many

1. 6. Programming and computer science 25

people spend an increasing amount of time on a computer, the activity of
many computer scientists is shifting to tasks (e.g., analysis, specification,
etc.) that only indirectly involve a computer. You can study many aspects
of computer science without ever having seen a computer.

1.6.1 The responsibility of computer scientists

Even programming does not necessarily require a computer. One of the
most important computer scientists, Edsger W. Dijkstra, proposes a method
[DFS88] by which programming should be learned as a purely mathemat
ical discipline, initially only with the help of pencil and paper (and think
ing, of course). The correctness of programs is not tested on a computer but
verified by means of mathematical proof The underlying idea is that the
programmer should learn to accept complete responsibility for the correct
ness of a program. The availability of (ever faster) computers creates an
immense temptation to immediately test programs on the machine instead
of thinking them through to the last detail. However, we can never exhaus
tively test a complex program. Testing helps us to detect a certain number
of errors. Still, we can never preclude additional errors that were not de
tected during testing. Only careful thinking can give us greater certainty.
Thinking is also error prone, for to err is human. Still, if we ourselves as
authors of a programs cannot comprehend it, then how can we expect it to
function properly as if by magic?

Such a position would also be morally dubious. In a lecture in Zurich
Edsger W. Dijkstra said: ''An adult with a healthy hand is responsible for
his own handwriting." Likewise, authors are responsible for their own pro
grams and should not attempt to shift this responsibility to the computer.

In this book we do not assume the computerless approach of Dijkstra.
However, we do assume his position of moral responsibility.

Chapter 2

Metalanguages

As stated in the introduction, the syntax of a formal language should be
defined with the help of a simple metalanguage. The syntax specifies the
rules for correct sentence construction. Human communication allows a
great deal of liberty, but communication with a computer demands follow
ing strict rules. Yet if the rules themselves are defined imprecisely, this
makes following them almost impossible.

The lack of a formal definition of Fortran syntax actually created a
great many difficulties in the construction ofthe first Fortran compiler.

2.1 Definition of formal languages

To start with an example, let us take a formal language, a notation familiar
to everyone: the notation of arithmetic. We all know that arithmetic allows
us to use numbers and symbols that stand for numbers. In addition, we
can form arithmetic expressions with the help of operators. We know that
a + b or (a + b) * (c - 2) are legal expressions!. Expressions like a + b * c
and a * b / c are also legal, although it is not necessarily clear

• Whether a + b * c should be interpreted as (a + b)e or as a + (be) -
that is, whether multiplication has higher precedence than addition,
or vice versa, or whether they have equal precedence .

• Whether a * b / c should be interpreted as ~ or as a%; that is, assum
ing that multiplication and division have equal precedence, as usual,
whether evaluation is to proceed from left to right (left-associatively)
or from right to left (right-associatively). Ifb is not divisible by c with
out a remainder, this makes a significant difference!

IThe * character is used in computer science for multiplication.

28 2. Metalanguages

We also understand that expressions such as a + * + b) and a + $% are
incorrect. The assimilated rules that we apply in the evaluation of the
correctness of such expressions are usually quite unconscious and incom
pletely formulated. Can we formulate these rules explicitly, concisely and
unambiguously? For this purpose we introduce another formal language
- a metalanguage - that serves to define other formal languages. Natu
rally it must be simpler (significantly simpler, if possible) than the formal
languages that it is to define; otherwise we lose more than we gain.

The first such formalism employed to define programming languages
(for Algol-60 in 1960) was the Backus-Naur form (BNF). Later it experi
enced many extensions (extended Backus-Naur form EBNF). We first intro
duce the language scope of the original BNF; however, we use the notation
of the newer and more widespread EBNF. We base our introduction to BNF

on Methodology of Programming by Edsger W. Dijkstra and W. H. J. Feijen
[DFS88].

The following symbols can occur in a BNF definition:

• Symbols ofthe BNF itself, called metasymbols.

• Symbols belonging to the language being defined. These are written
in quotation marks ("). They stand for themselves alone; that is, they
are utilized in the same form as they appear in the definition.

• Names of syntactical units that are then themselves described with
BNF rules.

A BNF definition resembles a mathematical equation. To the left of the
equal sign (=) we have the name ofthe syntactical unit to be defined (orig
inal BNF employed the symbol ::= to underscore the difference from the
usual equal sign). At the right we have the symbols that define the syntac
tical units at the left. These can be any BNF symbols. The following rules
apply:

1. Two or more consecutive symbols (e.g., X y z) form a sequence that
must appear in exactly the same order on application of the definition
(x before y before z without omission).

2. Two symbols separated by the metasymbol I designate alternatives
from which to choose in applying the definition. Sequence binds stron
ger than the alternative; thus x y I z means that either xy or z is
possible, but not xyz or xz.

3. Definitions terminate with a period.

This suffices for now in order to precisely define the syntax of quite complex
formal languages.

2.2. Digits and numbers 29

2.2 Digits and numbers

Our first example is the definition of digits:

Digit = "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I "8" I "9" .

This definition states that a digit consists of either a 0 or a 1 or a 2, etc.
This was simple so far. Now let us define the syntax of a natural (non

negative) number. A number consists of any number of digits. Can we
express this in BNF? We write as follows:

NaturalNumber = Digit I Digit Digit I Digit Digit Digit.

This allows precise definition of numbers under 1000. But how do we con
tinue? Since we could have infinitely long numbers, we would need to write
the definition on endlessly long paper. Instead, we introduce new symbols,
the curly braces { and }, as repetition symbols. Everything within { and}
can be repeated any number of times (including zero). Now we can write:

NaturalNumber = Digit {Digit} .

This definition states that a number consists of at least one digit, followed
by any number of additional digits. Note that the following definition would
be incorrect because a number cannot consist of no digit at all:

NaturalNumber = {Digit} .

Introducing the braces is practical, but not absolutely necessary, to mas
ter the problem of infinite repetition. The following definition would also
suffice:

NaturalNumber = Digit I Digit NaturalNumber.

Perhaps this looks curious. The same syntactical unit (NaturaINumber) ap
pears on both sides of the definition. Such definition, where one element
is defined in part by itself, is called recursive. Can something be defined
by itself? Certainly this alone does not suffice! Such a definition as the
following is senseless:

NaturalNumber = NaturalNumber.

However, the unit to be defined can be included in its own definition. This
allows us to express infinite definitions in finite (and usually very short)
form. The above recursive definition states that a natural number consists
of either a single digit or a digit followed by a natural number. This con
stituent natural number again consists of either a single digit or a digit
followed by a natural number, and so on any number of times. At some

30 2. Metalanguages

point, however, the first alternative (NaturalNumber = Digit) must apply so
that the digit generation terminates.

Any digit from 0 to 9 thus is a natural number itself (e.g., 2 is a natural
number). If we write a digit in front of it, we still have a natural number
(e.g., 62 is another natural number). Ifwe place another digit in front of
this, we still have a natural number (e.g., 862), and so on.

It should be clear that it does not matter whether we generate numbers
by adding digits to the front or the back. Thus the following definition
proves just as adequate:

NaturalNumber = Digit I NaturalNumber Digit.

2.3 Names

Now let us approach the task of precisely defining the syntax of arithmetic
expressions. In order to be able to use symbolic names (for variables) in
addition to numbers, we need to define letters and names.

Letter = "a" I "b" I ... I "z" I "A"I "8" I ... I "Z".

The ellipsis (" ... ") serves as an abbreviation for an obvious case. To be
absolutely precise, we would have to list all letters (which is no problem
since their number is finite). The ellipsis spares us a bit of writing; it
belongs neither to BNF nor to the notation we are defining.

Our definition states that a letter can be any lower-case or upper-case
character in the alphabet. We can further define a name (or identifier)
following the pattern of the numbers. Let us begin as follows:

Name = Digit I Name Digit I Letter I Name Letter.

This definition states that a name consists of any sequence of letters and
digits. This means that a 1, 1 a, x, and xyz as well as 1 and 625 are all
valid names. However, this is inconvenient because we cannot distinguish
numbers from names.

Exact definition alone does not protect us from errors: Our definition
provides a precise syntax, but falters semantically. It is not even in
herently incorrect, but only clashes with our definition of numbers.

To solve this problem, most such grammars require that names begin with
a letter, which can then be followed by digits and/or letters. Thus a1 would
be valid, but not 1 a.

Hence we must amend our definition slightly:

Name = Letter I Name Letter I Name Digit.

2.4. Arithmetic expressions 31

This definition states that a name consists either of a single letter or a
sequence of letters and/or digits beginning with a letter. A name must
always begin with a letter.

We could also express the definition of names without recursion with
the help of braces:

Name = Letter {Letter I Digit }.

2.4 Arithmetic expressions

Now we can define the syntax of arithmetic expressions. Arithmetic expres
sions consist of terms connected by additive operators. The terms contain
factors bound by multiplicative operators. A factor can be a number, an
identifier or an expression in parentheses. Our definition in BNF takes the
following form:

1 addop = "+" I "-" .
2 mulop = "*" I "f' .
3 Expression = Term I Expression addop Term.
4 Term = Factor I Term mulop factor.
5 Factor = NaturalNumber I Name I "(" Expression ")".

Now let us examine the examples of incorrect expressions given on page 28:
The expression a + * + b) is invalid because a term cannot begin with *. A +
(an addop) must always be followed by a term (see rule 3). The expression
a + $% is even easier to reject because the characters $ and % are not valid.

What about the interpretation of a + b * c? Can our syntax answer
this question? Does it express the precedence of operators? Which is the
correct interpretation, (a + b)c or a + (bc)? Let us test this by deriving
the expression from the rules according to both interpretations. For our
derivation we assume that we have a valid expression and then attempt to
replace the names of the syntactic units with the help of the rules until we
reach the character string that we want to interpret, or until we fail. If we
need to replace multiple names, we will always take the one at the extreme
left.

In the first case ((a + b)c) we could derive our expression from the defi
nition as follows:

Expression -+ Term -+ Term mulop Factor -+ ?

First we apply the first alternative of rule 3 (since we are striving for the
interpretation (a + b)c, the second alternative does not apply). Then we
choose the second alternative of rule 4 to represent our expression as a
product. Here we reach a dead end because a + b is not a valid term.

32 2. Metalanguages

Now let us try our derivation with the interpretation a + (bc):

Expression ---+ Expression addop Term ---+ Term addop Term ---+
Factor addop Term ---+ Name addop Term ---+ a addop Term ---+ a
+ Term ---+ a + Term mulop Factor ---+ a + Factor mulop Factor ---+
a + Name mulop Factor ---+ a + b mulop Factor ---+ a + b * Factor
---+ a + b * Name ---+ a + b * c.

With the second interpretation we have succeeded in finding a correspond
ing alternative of the definition to derive the expression a + b * c from the
definition. On the basis ofthis example it seems that our formal definition
also expresses the precedence of operators: The precedence of multiplica
tive operators is higher than that of additive operators.

If we examine the expression syntax more closely, it becomes clear why
this is so: In the second alternative of rule 3 we see that the additive op
erators can connect only whole expressions and terms. The multiplicative
operations must already be combined as a term.

Now let us consider the expression a * b / c. Do we interpret it as a~
or as !':!!.? The second alternative of rule 4 states that a term is always to

c
the left and a factor to the right of a multiplicative operator. Likewise the
second alternative of rule 3 states that in additive operators the expression
is to the left and the term to the right. Given equal precedence, operators
are left-associative (they combine from left to right to become operands).
In our example the first case would be right-associative; hence the second
case conforms to the definition. We can derive the expression as follows:

Expression ---+ Term ---+ Term mulop Factor ---+ Term mulop Fac
tor mulop Factor ---+ Factor mulop Factor mulop Factor ---+ Name
mulop Factor mulop Factor ---+ a mulop Factor mulop Factor ---+ a
* Factor mulop Factor ---+ a * Name mulop Factor ---+ a * b mulop
Factor ---+ a * b / Factor ---+ a * b / Name ---+ a * b / c.

Our syntax definition thus also expresses the rule of left-associativity for
operators with equal precedence.

Note that in this case the recursive definition cannot be replaced by the
use of repetition symbols. The case where any number of parentheses can
appear before or after a symbol- e.g., (X))) - is easy to describe. However,
if the parentheses are to appear only pairwise as in mathematical expres
sions - e.g., (((a + b) * c) + 1) - then we cannot express this with repetition
symbols alone.

2.5. Extension for Modula-3 syntax

Notation Meaning
x y I Sequence (y follows x)

x I y I Alternatives (either x or y)
[xl Option (x not at all or once)

{x} Repetition (x not at all or any number of times)
(x) Group (combines a set of symbols)

"abc" Terminal (abc is a symbol of the
ammar to be defined)

Table 2.1: EBNF definition

2.5 Extension for Modula-3 syntax

33

Here we add a BNF extension that we will later use in the introduction
of Modula-3. We base Table 2.1 on [Har92, Ne191] to show its definition,
whereby x and yare intended to represent an arbitrary syntactic unit. This
definition contains some redundancy. The advantage of this extended defi
nition (as will later become obvious) is that the syntax to be defined (here
Modula-3) becomes more concise and readable.

Chapter 3

The structure of programs

The intention of this chapter is to provide an overview of program com
ponents that will be explained in detail in later chapters. We introduce
the structure of computer programs and the most important structuring
concepts in general and for Modula-3 in particular. In the last part of the
chapter we develop our first Modula-3-programs. This chapter addresses
almost everything, but finishes explaining almost nothing. The readers
should retain questions for the next chapters, and on completion of the
book should be able to answer them.

3.1 Structuring

The programs of the 1950s were monolithic chunks of code, all one piece.
AB long as a program consists of not more than 100 lines and executes a sin
gle (albeit complex) computation, this approach can work well. However,
once the programs grow larger, they must be structured. Today's software
systems consist of tens of thousands, even hundreds of thousands or mil
lions oflines of code. Under such circumstances, structuring the programs
becomes a necessity that is decisive for the quality of nontrivial software.
Novices frequently fail to understand when a program is rejected in an ex
ercise or an examination even though it "works" - it was just somewhat
"dirty". Dirty, i.e., poorly structured, programs create chaos and cause im
mense damage as soon as they have to work together with other parts of a
larger system. Since the end of the 1960s, this awareness has increasingly
found its way into the consciousness of computer scientists and has formed
a foundation of university education in programming.

The basic idea of structured programming is to construct programs from
components whose correctness can be checked independently of other
components. A correctly functioning component must not sabotage oth
ers, i.e., must not affect their correctness.

36 3. The structure of programs

Smaller and larger components must all comply with this principle.
Thereby we achieve a division oflabor and can decompose a complex prob
lem into smaller ones that are easier to solve. The smallest components of
problem solutions are variables, simple types and individual instructions;
larger components include procedures, objects and modules. Some of these
are introduced in this chapter, and the remainder ofthe book handles them
in detail. But first let us examine the path a program takes from its devel
opment to its execution on a computer.

3.2 Language environment

Programming languages are formal languages that permit us to precisely
express problem solutions. Programming languages have another impor
tant characteristic: Source code in a programming language can automat
ically and efficiently be brought into a form that a digital computer can
execute. Such source code is translatable and executable.

This is a fundamental property of programming languages. Formal lan
guages that lack this characteristic are not real programming languages.
When we speak of programming languages, we mean automatically and
efficiently translatable formal languages. For historical reasons, the auto
matic translation of programs is called compilation and the translator is
called a compiler. Compilation means the assembly of various components.
The expression stems from times when programs were not translated, but
only certain subfunctions were automatically incorporated. Compiler tech
nology has experienced immense evolution over the last three decades and
now is one of the theoretically best founded areas of computer science. Here
we only discuss some elementary points. The interested reader should refer
to the literature [ASU85].

The purpose of translating a formal language is not always the gener
ation of an executable computer program. Formal languages are also
used to precisely specify problems and, as explained in Chapter 2, to
represent other formal languages. The purpose of automatic transla
tion in this context (ifit is done at all) is to check the completeness and
consistency of the specification.

A system that transforms program code written in a certain programming
language into executable programs is called a language environment. The
purpose of a language environment is to transform programs from the form
in which they were written (a form adapted to human needs) into a form
that a computer can process. Thus programs have various phases of trans
formation (see Figure 3.1).

3.2. Language environment 37

> >

LinkfT Lca:Jar

:Sou roe code Compiled program Loadable program Executable program

Figure 3.1: Phases of program translation

1. The program text or source code
The text written in a programming language such as Modula-3 is
called program text or source code. The source code is normally writ
ten by a programmer.

There are systems that can automatically generate source code
of a high-level programming language from a formal specification
language that is on a higher abstraction level than the program
ming languages we present here. We do not discuss such systems
here. Furthermore, there are even systems (compiler-compilers)
that can generate the source code for compilers for other program
ming languages [ASU85j.

Large programs are normally not compiled as one unit, but in smaller
compilation units. The particular decomposition depends on the pro
gramming language.

2. The compiled program
The compiler translates the source code into a form that comes close
to the machine language and proves nearly unreadable for humans
(aside from determined hackers and compiler developers). The com
piled code (or object code) is enriched with additional control infor
mation that is necessary, e.g., to link programs components that were
compiled separately, to a single program. Additional control informa
tion assists the program loader.

3. The loadable program
The linker generates the loadable program. The main function of the
linker is to link the separately compiled program components. In the
loadable program, the (separately compiled) compilation units are al
ready linked.

4. The executable program
The executable form of a program generally ensues only upon loading
into main memory. The program must be started from the language
environment. During execution an executable program receives run
time support from this environment.

38 3. The structure of programs

Corresponding to these forms, the conversion of source code to an exe
cutable program usually encompasses four main steps:

1. Compilation

2. Linking

3. Loading

4. Execution

In various language environments these functions can be implemented in
different ways. Often individual functions are merged. Some systems em
bed linking in the loader, i.e., link at load time. This saves the explicit link
step and adds flexibility. Some very new systems even incorporate part of
the translation in the linkerlloader [Fra94], adding even more flexibility.

Most systems distinguish these four steps internally, but the user re
ceives interactive help to combine several steps into a sequence. Compiling
and linking, as well as loading and execution, are each controlled with a
single command1 .

3.3 The statics and dynamics of a program

The previous section showed on the one hand that a program is textual
source code and on the other hand that it can be executed by a computer
after appropriate translation. The structuring of a program thus has two
aspects: static and dynamic. The static aspect regards the structuring of
the source code, while the dynamic aspect affects program execution.

We illuminate these aspects with the following example: A company
has a static structure that determines its management hierarchy, depart
ments, groups, etc. This structure changes relatively seldom; it is tuned to
the company's underlying global goals. However, the various units must
cooperate with one another, and how this cooperation takes place is by no
means determined by the static structure. Instead, it depends on the re
spective tasks, which departments interact with which, who provides and
consumes services, how information and materials flow between organi
zational units, etc. The static structures (at least for healthy companies)
tend to be much simpler than the dynamic rules, which adapt to changing
demands.

Accordingly, programs also have a static structure that reflects the un
derlying goals and that only seldom change for a correctly designed pro
gram. The dynamics of a program, resulting from the respective input
data that reflect demands, builds on the static structure.

lOur language environment, e.g., provides commands for automating the compilation
of multiple components and their linking; see Appendix D.

3.3. The statics and dynamics of a program 39

3.3.1 Data and data types

As Chapter 1.1 showed, programs contain instructions that manipulate
data. We also saw that a computer can store the data in the form of a state
space, with freedom in the interpretation of the individual states. This
flexibility proves to be too great to allow us to reasonably handle it. We
want to restrict the possible interpretations. We categorize the data and
define data types. Some programming languages are quite relaxed in this
sense. They provide more flexibility at the expense of security. We prefer
strict languages like Modula-3 that permit only typed data. Every pro
gramming language has some predefined (built-in) types, and most permit
the programmer to use type constructors to create additional types.

Data types

• A data type defines a set of permissible values.

• It specifies the set of operations on these values.

One data type, e.g., that occurs in practically every programming language
defines the set of whole numbers. This type is usually called INTEGER
and is usually predefined. The numbers 0, 1, 625 and -2300 are all of this
type, but real numbers such as 2.5 are not. The set of integers is always
finite (in contrast to the set of whole numbers in mathematics) because a
computer can only store finite sizes. Most programming languages specifY
a general integer type and leave it to the respective language environment
to set the limits of this set. This approach can create difficulties if different
environments offer a programming language with different value ranges.
This can mean that a number might be legal in one environment, but create
a range overflow in another. In order to create software that can be ported
to any other environment (with the same programming language), we need
to pay particular attention to this aspect.

In addition to integers, most programming languages provide other
built-in types, such as:

• real numbers

• readable text

• characters

• logical values

In addition to the set of permissible values, data types also define the op
erations allowed on the data of a given data type. Even if we know that in
tegers are whole numbers within a certain range, this does not unambigu
ously restrict which operations are permissible. We consider it self-evident

40 3. The structure of programs

Figure 3.2: Variables in computer science

that addition and subtraction are permitted on whole numbers. However,
we need to clarify what happens when we add two numbers whose sum
leads to an overflow of the integer range (because it cannot be represented).
Another question is whether multiplication for two integers is defined in
advance, or whether it needs to be realized by repeated addition. Division
presents a more complicated problem. How do we divide numbers that are
not divisible without a remainder? How do we obtain the remainder? What
is the remainder when we divide a positive number by a negative number?

Another example is the logical type, usually called Boolean after the
English mathematician George Boole. Here the complete range consists of
two values: true and false. We will see how useful this type is after we
specify the operations (such as logical" and V relations).

Hence we conclude the following: A type is really defined only when we
specify the set and semantics of the allowable operations in addition to the
permissible range. The definitions of such types are often called abstract
data types (see Section 11.4).

Data types serve to categorize data. They define a general pattern, or
scheme, the type. We still need to create (or instantiate) the concrete data
itself, i.e., the examples or instantiations belonging to a type.

Variables

The concept of variables in programming is quite different from that in
mathematics. In mathematics a variable x stands for a value. If we say
about a right triangle that a2 + b2 = c2 , we mean that if a, band c assume
the values of the length of sides and the hypotenuse of a right triangle,
then the above equation applies. An equation such as x = x + 1 does not
apply for any real value.

In computer science variables are containers for values [AU92]. They
have a name, a type and a stored value (see Figure 3.2). The name x repre-

3.3. The statics and dynamics of a program 41

sents a container and a value. The semantics of a programming language
always clearly define what is meant in each case.

All programming languages contain an assignment operation that re
sembles an equation, but means that the value ofthe right side is assigned
to the variable designated in the left side. An assignment such as x = 1
means that the container X is to store the value 1. The assignment x = x +
1 indicates that 1 is added to the value of X and the result is stored in con
tainer x. Thus the purpose is to increment the value stored in x by 1. This
has nothing to do with the mathematical interpretation. To underscore the
difference between these interpretations, many programming languages,
including Modula-3, replace the equal sign with a special assignment oper
ator (:=) (see Section 3.4.4).

All variables together constitute the state space of a program. The vari
able containers can be created as fixed or be generated at run time. (The
scope ofthe state space can change dynamically; see Chapter 11.)

Constants

Constants are values that are set on creation of a program and do not
change during program execution. All values written directly into the
source code (such as numbers and texts) are constants. We call such con
stants literals. However, we can also assign names to constants and access
their values via their names; such constants are often called symbolic con
stants. Like variables, constants have a type.

3.3.2 Algorithms and procedures

In the introduction we discussed the algorithm, which precisely and unam
biguously expresses a finite, effective procedure. Programming languages
provide constructs to express algorithms. Whether such algorithms are re
ally finite, effective, unambiguous, etc. rests in the hands of the program
mer.

In most programming languages the essential building block for for
mulating algorithms is the procedure or the function. With the help of
their own data and statements, procedures define an algorithm (or subalgo
rithm). We can assign names to procedures and functions and parametrize
them to make the algorithms reusable. On each execution of the proce
dure, we can substitute new parameter values to allow application of the
algorithm to different data of the same type. The mathematical formula
y = f(x) expresses that for various x values f defines corresponding y val
ues. f(a) represents f(x) for a certain a. In an imperative programming
language f(a) means that at the position where f(a) occurs in a program,

42 3. The structure of programs

the function f starts with the current value of a, executes, and returns the
result.

Consider the example of the arithmetic mean of two numbers. The al
gorithm is very simple: Add the two numbers and divide the sum by two.
The function construct permits us to assign this algorithm a name such as
Mean. The function requires passing two parameters for the two numbers
to be averaged, and it returns the mean. The statement

z := Mean(x, y)

starts the computation and, after execution of the function, assigns the
result to the variable z.

Procedures have many more applications than for computations in the
form we showed here. Also, they do not necessarily return a value. A
function or function procedure is a special procedure that returns a value
- it stands for a value. Procedures that do not return a value (sometimes
called pure procedures) form a statement. Chapter 9 handles both variants
in detail.

3.4 Structure of Modula-3 programs

To make these considerations more concrete, we need an overview of the
most important structuring elements in Modula-3. In the process, we will
develop our first Modula-3 programs. These programs will not do much
of practical use, but that is not our goal initially. We begin by equipping
ourselves for our later launch to distant planets.

By way of preview, we list the most important structuring elements:

• Module: A program consists of modules.

• Block: A module contains blocks.

• Declaration: A block contains declarations (definitions) ...

• Statement: ... and statements (instructions to the computer).

3.4.1 The module

A Modula-3-program consists of a number of modules. The module is the
smallest compilation unit in Modula-3.

Many programming languages support the module concept, e.g.,
Modula-2, Oberon-2 and Ada. In Ada they are called packages. The
name ofthe programming language Modula is an abbreviation of Mod
ular Language.

3.4. Structure of Modula-3 programs

I
Module Program EXPORTS Main;
IMPORTS ModuleA, Module8;

~L
1_ Interf~~e ModuleA; J

~ __ ~ __ ~_~ ___ ~L __ ~ __ ~~~_

MODULE ModuleA;
EXPORTS ModuleA;

,--~- -----D~~~-
MODULE Module8;
EXPORTS MOd. ule8;
IMPORTS ModuleC;

Interface ModuleC;

MODULE ModuleC; I
EXPORTS ModuleC; I

L ~_~_I

Figure 3.3: A module hierarchy

43

A program is a main module that relies on the services of other modules.
These service modules in turn can employ the services of additional mod
ules, etc. This creates a module hierarchy. The root of this hierarchy is
always the main module. In principle, modules could exchange services
bidirectionally (e.g., module A employs the services of module Band B
those of A); however, in a good design, this is very rare.

Theoretically a Modula-3 program could consist of a single module (the
main module). As we soon will see, even the smallest practical programs
already consist of two modules. The number of modules rises rapidly with
the complexity of the tasks that a program must fulfill.

A module normally has two parts, an interface and an implementation.
These are stored in separate files. The interface specifies the elements that
it provides (exports) to other modules, i.e., the services that a module offers.
Other modules can import and employ these services. The implementation
contains the realization of the exported elements. The internal details of
the implementation are hidden from the environment (information hid
ing). Other modules can only access the interface of a module, but not its
implementation. This corresponds to the basic requirement of structured
programming: It must not be possible to sabotage a functioning module
from outside it.

By sabotage we mean introducing programming errors, not malevo
lent sabotage. Likewise information hiding does not imply classified

44 3. The structure of programs

government secrets, but a language feature that syntactically protects
the internal details of a module from other modules. Information hid
ing is practical even if one programmer develops all modules alone.
Here this programmer knows all the details of the implementations,
yet applying information hiding can significantly reduce the error
proneness of the program. Programmers usually learn to appreciate
this only when they have to carry out a larger software project with
out information hiding.

Until we cover the technique of modularization in Chapter 10, we will
restrict ourselves to developing only main modules. However, we will em
ploy the services of certain available modules (e.g., module SIO).

3.4.2 Hello, world

A frequent first step in introducing a programming language is the Hello
World program. This is a program that outputs a greeting ("Hello, world!")
on the monitor:

Example 3.4: Hello World program

MODULE Hello EXPORTS Main;
IMPORTSIO;

BEGIN
SIO.PutText("Hello, world!\n")

END Hello.

In the simplest manner, this program demonstrates the use of module
building blocks. We developed a module named Hello. It exports the prede
fined, empty interface Main; this labels it as a main module. The IMPORT

statement indicates that we intend to employ the services of the module
SIO, which means "simple input/output". The module provides services to
the input/output of data, including the procedure PutText for output oftext.
The text is the parameter of the procedure and is specified here as a con
stant. Character strings enclosed in quotation marks are text constants.
The character string "\n" has a special meaning: It moves the cursor to
the start of the next line (a carriage return with line feed). We can com
pile, link, load and execute the module Hello. (SIO need not be compiled;
it is part of the language environment and ready for use). We receive the
following output on the monitor:

[Hello, world! J
It is probably quite easy to understand how the Hello module works.

But how do we know that we have to write "IMPORT SIO" to import SIO?

3.4. Structure of Modula-3 programs 45

"Use module SIO" would say the same thing. This is a matter of syntax,
i.e., the rules for how to write Modula-3 source code. To define the syntax,
we use EBNF, as described in Chapter 2:

Simplified syntax of modules 2

Module3 = "MODULE" Idents9 ["EXPORTS" IDUsts7] ";"

{ ImportlO } Block12 Idents9 ".".

The identifiers MODULE and EXPORTS are symbols of the programming
language itself; i.e., they are used in Modula-3 source code exactly as they
occur within the quotation marks in the syntax. The character strings
MODULE and EXPORTS constitute keywords; these strings are reserved
and may only be used for their intended purpose (e.g., MODULE to intro
duce a module definition). Most programming languages have such key
words, which are usually rather few in number. With a little programming
experience they tend to be learned automatically. In Modula-3 all keywords
are written in all capital letters (hence "Module" is not a keyword because
Modula-3 is case-sensitive).

The syntactic unit Idents9 stands for any name specified by the program
mer (compare Section 2.3), whereby keywords are precluded. It indicates
the name of the module. The same name must be repeated at the end ofthe
module. The requirement that the name be the same at the beginning and
end ofthe module is not evident from the syntax (because Idents9 in the syn
tax stands for any name). Therefore we have to describe this requirement
verbally.

Names chosen by the programmer can be in any mix of upper-case and
lower-case characters. However, we should avoid names consisting of only
capital letters in order to keep keywords optically distinguishable. 3 In this
book module names always begin with a capital letter.

Such rules constitute important conventions that make source code more
readable. The compiler processes all names in the same way. Another aid
promoting readability is textual indentation ofthe source code after BEGIN
and the undenting after END in a block. This makes the block optically dis
tinguishable (for human readers) and easier to understand.

A module consists of its name followed by an optional list of exported
interfaces, then a number of optional imports and finally a block. We have

2The syntactic constructs are provided with indices to simplify orientation in the com
plete syntax description ofthe language (see Appendix B.8.)

3The first module that we encountered, 810, is the first exception to the rule. We use
the module as though it were part of the system and thus use the capital letters in the
name.

46 3. The structure of programs

already mentioned that a module must have (i.e., export) at least one in
terface. If a module does not specify its list of exported interfaces, then it is
assumed that it exports an interface equivalent to the name ofthe module.

The syntax of a block is very simple:

Syntax of a block

Block12 = { Declaration13 }"BEGIN" Stmts23 "END".
Stmts23 = [Stmh4 { ";" Stmt24 } [";"]].

Stmt24 stands for a statement (see page 49), Stmts23 for a sequence of
statements. Our statement in the Hello World program is the invocation
of the procedure PutText from module SIO. We do not discuss the syntax of
the import list or the procedure invocation here. It suffices to say that the
keyword IMPORT can be followed by a list of module names (separated by
commas) and a semicolon. Since our first example imports not an individ
ual procedure but the whole interface of SIO, when we use the procedure
PutText in the body of the procedure, we must precede its name with the
name of its module. We call this qualifying the name ofthe procedure with
the name of the module. We write the parameter of the procedure (the
greeting text) between parentheses after the procedure name.

Interested readers can check the syntax definition in Appendix B.8 to
determine whether the IMPORT statement and the procedure invoca
tion in the example abide by the syntax.

3.4.3 Source code

The source code (the text) of a program must serve human needs and the
machine (more precisely, the translation program) equally well. This whole
book deals with how to formulate programs properly so that we obtain the
desired results after compilation. To make the source code comprehensible
for human readers, we use blanks, blank lines and tabulators (collectively
called white space). We indent certain parts and group elements of the
source code that belong together (see Example 3.5). We can insert any
amount of white space between syntactic units.

We can also insert explanatory comments directly in the source code.
The symbol pair (* and *) serves as special bracketing for enclosing a com
ment. Comments can be placed wherever white space is allowed. Com
ments serve to inform the human reader of source code. They are not
strictly part of the program (the compiler simply skips everything between
commentary brackets). Commentary can significantly increase the read
ability of a program. In the next example we use comments to explain the
purpose of each line ofthe program.

3.4. Structure of Modula-3 programs 47

MODULE Mean EXPORTS Main; (*Author: LB, October 15,1994 *)
(*The program computes the arithmetic mean of three numbers. *)

IMPORT SIO;

VAR
x, y, z: INTEGER;
mean: INTEGER;

(*We import the services of Simple I/O *)

(*x,y and z contain the values whose mean we will compute*)
(*We store the result in the variable mean *)

BEGIN
SIO.PutText("Arithmetic mean of three numbers\n");
SIO.PutText("Please enter three numbers: ");

(*This begins the statement part*)
(*Greeting text on the monitor*)
(*Prompts the user for inputs*)

x:= SIO.GetintO;
y:= SIO.GetintO;
z:= SIO.GetlntO;

(*Reads a value into x*)
(*Reads a value into y*)
(*Reads a value into z*)

mean:= (x + y + z) DIV 3; (*Computes the mean and stores it in the variable mean *)

SIO.PutText("Arithmetic mean = ");
SIO.Putlnt(mean);
SIO.PutText("\n");

END Mean.

(*Outputs the arithmetic mean*)
(*Moves to the start of the next line on the screen*)

Example 3.5: Arithmetic mean of three numbers

Comments can be used in many ways. If multiple programmers are
working on a project, comments prove to be one of the most impor
tant aids for reading source code written by someone else. All source
code should bear a header with the name of its author and the date of
completion as well as a brief description of its purpose. Project team
members decide what else is to be commented, or commentary policy
is dictated by company regulations. Usual objects of commentary in
clude the purposes of variables and procedures as well as the logic of
difficult algorithms.

Commenting can be exaggerated. Comments also inflate the source
code and can, if they reiterate the obvious, devalue the readability of
source code.

In this book comments serve to support explanations in the text. Com
ments such as "This begins the statement part" are certainly out of
place in real programs!

3.4.4 Computing the arithmetic mean

Next we examine how variables and assignments are used in Modula-3.
We will write a program to compute the arithmetic mean of three num
bers. Again we provide the solution (Example 3.5), which we discuss in
this section.

48 3. The structure of programs

Declarations

Example 3.5 demonstrates the use of variables in Modula-3. As we showed
above (page 46), a module contains a block which consists of declarations
and statements. The idea of a declaration is to define names (identifiers) for
later use. The following lines declare the names x, y and z as variables of
type INTEGER.

VAR
x, y, z: INTEGER;

This declaration also creates containers for the declared names, whose
values are initially undefined.

I The programmer must initialize each variable, i.e., provide it with a start
value.

In our example initialization takes place by reading the values via
SIO.GetlntO·

Simplified syntax of variable declarations

Declaration13 = ... I "VAR" VariableDecl17 ";" I ...
VariableDecl17 = IDList87 (":" Type48 I ...) .
IDList87 = Idents9 { "," Idents9 }.

This excerpt from the syntax of declarations shows that the declaration
of variables follows the keyword VAR. This declaration takes the (simpli
fied) form of a list of (variable) names, a colon and a type. (We do not
discuss the syntax of types here. In our example the name of the type is
the predefined type INTEGER.)

In Modula-3 all variables that are used in the statement part of a block
must be declared. This is not the case in every programming language (e.g.,
Fortran and PU1). However, the requirement to declare all variables has
important advantages:

1. The Compiler can test whether we use only variables that we intend
to use (rather than artifacts ensuing from spelling errors).

It is a well known story that a Venus rocket was lost in space
because a Fortran program with a guidance function contained a
spelling error that created a phantom variable that stole the value
of the intended variable. Such an error is impossible in languages
like Modula-3, which require explicit declaration.

3.4. Structure of Modula-3 programs 49

2. The compiler can test whether a variable is used only according to its
type. (By contrast, some programming languages allow the "addition"
of a text with a number. The result is naturally nonsense.)

3. The compiler knows how to reserve storage for the variables.

Not only all variables but also all types and procedures must be de
clared. Generally speaking, declarations associate a name (which is visible
only within the block in which it is declared) and a definition.

Statements

With statements we have collected the most important components of
Modula-3 programs: We have a module that contains a block. The block
consists of declarations and a statements sequence (see page 46).

Simplified syntax of statements

Stmt24 = AssignStmt25 I CallStmt26 I ...
AssignStmt25 = EXpr66 ":=" EXpr66.

A statement (Stmt24) can be an assignment (AssignStmt25), a procedure
call (CaIlStmt26), or another kind of statement not listed above. We have
already seen that the statement part can contain a sequence of statements
separated by";". The statements of a statement sequence are executed
sequentially. The output ofthe two texts with which Example 3.5 begins is
such a statement sequence consisting of two procedure calls (SIO.PutText):

SIO.PutText("Arithmetic mean of three numbers\n");
SIO.PutText("Please enter three numbers: ");

The following statement is an assignment (AssignStmt25):

x:= SIO.GetintO;

The expression (EXpr66) to the left of the assignment operator (:=) must
specifY a variable container to which the expression on the right side can
be assigned. For now let us assume that the expression is simply the name
of a variable. The right side is an expression that determines the value.
In this case we have a function call. SIO.GetintO reads a number from the
keyboard and returns the value. The effect of the statement is that the
number that the user enters is assigned to the variable x.

The following statement is also an assignment:

mean := (x+y+z) DIV 3

50 3. The structure of programs

INTERFACE SIO; (*Simple Input/Output 13.04.94. LB*)

PROCEDURE GetTextO: TEXT;
(*Reads a sequence of non blank characters and returns them. *)

PROCEDURE PutText(t: TEXT);
(*Writes the characters from t to the output stream. *)

PROCEDURE GetlntO: INTEGER;
(*Reads all adjacent digits from the input stream and returns the result

as an INTEGER. *)

PROCEDURE Putlnt(i: INTEGER; length := 3);
(*Outputs i as a sequence of digits to the output stream.

If the number of digits in i is less than length, then blanks are added at the beginning
to bring the total output characters to length. *)

PROCEDURE NIO;
(*Outputs a line feed. *)

END SIO.

Example 3.6: Simplified excerpt from the SID interface

Here the expression on the right is an arithmetic expression (compare Sec
tion 2.4) quite similar to the familiar ones from mathematics. The only
unusual element is the keyword DIV, which represents integer division.
DIV divides the first operand (x + y + z) by the second (3). The result is
stored in the variable mean.

The program ends by outputting the result. SIO.Putlnt outputs an inte
ger. One possible execution of this program is the following4 :

Arithmetic mean of three numbers
Please enter three numbers: -4928
Arithmetic mean = 11

3.4.5 SIO interface

How can we use the name SIO.PutText and others in Example 3.5 without
declaring them? Obviously, specifying the import list serves this function:

IMPORT SIO

Thereby we import a number of declarations into our module, i.e., make
them visible in the module. These declarations define the services of the

IUser input is in italics.

3.4. Structure of Modula-3 programs 51

module, in our case, input/output procedures. The part of the module SIO
that is public (i.e., visible for other modules) - its interface - is stored in a
separate source code file. Figure 3.6 shows a (simplified) excerpt from the
SIO interface.

Commentary is absolutely essential in interfaces in order to explain the
provided services to users of the module. The interface exports the listed
procedures. The Get procedures read from the keyboard and return a cor
responding function value. The Put procedures output the value of their
parameters on the monitor. (Section 14.2.3 shows how the same procedures
can also read from and write to files.) The complete interface is printed in
Appendix C.3.3.

Chapter 4

Predefined data types

Section 3.3.1 introduced some predefined data types. Now we handle all
predefined data types in Modula-3 individually.

4.1 Integers

Without a doubt the most basic and most frequently used data type is that
ofthe whole numbers. The type for whole numbers in Modula-3, as in most
programming languages, is called INTEGER. Modula-3 defines a separate
type for non-negative whole numbers, CARDINAL. INTEGER numbers can
assume any whole-number value within the range (upper and lower limits)
imposed by the language environment. CARDINAL numbers can assume
any whole-number value between 0 and the upper limit imposed by the
language environment.

Ordinal types

These whole number types are ordinal types, which means that they are
ordered: Every whole number, excepting the limit values, has exactly one
predecessor and one successor (smaller or larger by one, respectively). We
will encounter a number of other ordinal types. However, there are data
types that do not reflect this property (e.g., character strings and floating
point numbers, presented in this chapter).

4.1.1 Range

We specify the range of whole-number types in square brackets: [lower limit
.. upper limit], whereby the two limit values are inclusive.

In the PC environment for Modula-3, the range of INTEGER numbers is
[-2147483648 .. 2147483647] and for CARDINAL numbers [0 .. 2147483647].

54 4. Predefined data types

The values of these remarkably large numbers might seem completely
arbitrary. However, some insight into the fine points of binary repre
sentation [AU92J quickly shows that these values expressed as powers
oftwo seem much rounder: [_231 .. 231 -IJ and [0 .. 231 -IJ. The range
for type INTEGER reflects that 1 bit of a storage word is used for the
sign, the rest for the numeric value. 64-bit computers provide a range
ofl-263 .. 263 - IJ.

A Modula-3 programmer need not know anything about the details of
the internal representation (although this knowledge certainly does no
harm). The programmer only needs to know that INTEGER numbers are
whole numbers in the specified range. If a particular computation might
exceed the range oftype INTEGER, the limits can be checked in the program
with predefined (built-in) functions.

4.1.2 Operations

As mentioned, in addition to its range each predefined data type has a set
of operations permissible on it. For whole numbers Modula-3 offers a group
of arithmetic and a group of relational operations. In addition, there are a
number of predefined functions for whole numbers.

Most ofthese operations (such as addition, testing for equality, etc.) are
also defined for other data types (such as floating-point numbers), but with
different semantics.

Predefined functions

The predefined function FIRST returns the lowest value of an ordinal type;
the function LAST returns the highest. We can query these values as nor
mal INTEGER values in our computations and assure that their range is not
exceeded. The function LAST also lets us define the type CARDINAL more
precisely: Its range is [0 .. LAST(INTEGER)].

Since whole number types are ordinal, it makes sense to be able to sim
ply specify the next or the previous number for a given x. This can be done
with the predefined procedures INC and DEC.

INC(x) is equivalent to x:= x + 1.
DEC(x) is equivalent to x:= x - 1.
INC(x, y) is equivalent to x:= x + y.
DEC(x, y) is equivalent to x:= x - y.

This might seem extraneous: Why do we need a predefined procedure
for operations that can so readily be derived from existing operations? The

4.1. Integers 55

MODULE MinMax EXPORTS Main;

IMPORT SIO;

(*Ranges. October 20, 1994. LB*)

CONST MaxPlaces = 11;

BEGIN

(* Maximum number of decimal places*)

SIO.PutText("Minlnteger = ");
SIO.Putlnt(FIRST(INTEGER). MaxPlaces); SIO.NIO;

SIO.PutText("Maxlnteger = ");
SIO.Putlnt(LAST(INTEGER). MaxPlaces); SIO.NIO;

END MinMax.

Example 4.1: Outputting the range limits of type INTEGER

importance of INC and DEC is that they apply to all ordinal types (see also
Sections 6.1 and 6.2).

Furthermore, these built-in procedures are usually more efficient than
arithmetic expressions because the variable only needs to be accessed
once. In the expression x:= x+ 1 the variable is accessed twice: to read
its value and to write the new value.

The predefined function ABS provides the absolute value of an INTEGER
number.

Note that ABS(FIRST(lNTEGER)) cannot be represented because ofthe
asymmetry of the upper and lower bounds of INTEGER numbers. The
explanation points to the coding of INTEGER numbers as twos comple
ments [AU92].

Example 4.1 outputs the range limits of type INTEGER on the monitor.
Output is right-justified because the second parameter of Putlnt has been
set accordingly.

The example also shows the advantages of using symbolic constants.
The value of MaxPlaces is the maximum number of decimal places plus one
place for the possible sign. This value depends on the respective language
environment and finally on the underlying computer. On a 32-bit computer
the maximum number of places is 10, while a 64-bit computer allows 19.
To port the program to a computer with a different number of maximum
places, it suffices to adapt the value of this constant (e.g., MaxPlaces = 20
for a 64-bit computer) and recompile the module. Nothing else changes.

The monitor output on a 32-bit computer is:

Minlnteger
Maxlnteger

-2147483648
2147483647

56 4. Predefined data types

Arithmetic operations

Modula-3 predefines the following arithmetic operations (in parentheses
we provide the notation used in the language):

• addition (+)

• subtraction (-)

• multiplication (*)

• integer division (DIV)

• remainder after integer division (MOD)

The result of an integer expression is always an integer. The + and -
signs can also be used as unary operators (signs). We can omit the unary +
sign (+x equals x).

Rules of precedence (compare Sections 2.4 and 7.1) are defined as usual:
Addition and subtraction have the least, *, DIV and MOD medium, and the
unary sign has the greatest connective strength.

If x is divisible by y without a remainder, then x DIV y yields exactly the
quotient; otherwise x DIV y returns the nearest whole number that is less
than the quotient.

MOD computes the remainder for integer division. The semantics of
MOD are defined so that the following equation always applies:

x MOD Y = x - y * (x DIV y)

Ify> 0, then x MOD y returns a result in the range [0 .. y -1]; for y < 0
the result is in the range [y + 1 .. 0].

MOD is often used to determine whether a number is even or odd. X

MOD 2 always yields 0 for even and 1 for odd X, even if X is negative.

The following table provides an overview of the behavior of DIV and
MOD for positive and negative operands:

x y x DIVy xMODy
9 4 2 1

-9 -4 2 -1
9 -4 -3 -3

-9 4 -3 3

It is important to note that the semantics of arithmetic operations often
deviate from the meaning familiar from mathematics. The reason is the
fact that a computer can store only finitely large numbers.

4.1. Integers

Hence, e.g., the associative law of addition does not always apply:

(x + y) + z = x + (y + z)

Consider the following statement sequence:

VAR
x, y, Z, w: INTEGER;

x:= LAST(INTEGER);
y:= 1;
z:= -2;

a) w:= x + (y + z); b) w:= (x + y) + Z;

57

In case a) y + Z is computed first (yielding -1), which can easily be added
to the maximum INTEGER value (yielding LAST(INTEGER) - 1). In case b)
x + y is computed first, attempting to add one to the maximum INTEGER
value. Thus the interim result cannot be represented in the system. What
happens? The language definition of Modula-3 (and most programming
languages) leaves this question open, and the decision is left to the lan
guage environment. Either program execution can be terminated with an
overflow, or computation continues. For efficiency reasons, language envi
ronments usually choose the second variant.

By the way, in the above example the second variant works with no
problem; w has the same value in both cases. The reason is two's comple
ment representation [AU92j. The essence of this representation is that the
number line joins at the two ends, actually forming a circle. This means:

LAST(INTEGER) + 1 = FIRST(INTEGER)
FIRST(INTEGER) - 1 = LAST(INTEGER)

Thus case b) yields:

(x + y) + z = FIRST(INTEGER) - 2 = LAST(INTEGER) - 1

This attractive property only affects additive operations. (x + y) * z with
the original values, e.g., would lead to a nonsensical result (0). In this case
terminating the program due to overflow would be more adequate than
continuing computation.

Another example shows that we must proceed with caution with integer
division as well.

(x * y) DIV Y = (x DIV y) * Y = x

58 4. Predefined data types

MODULE Integers EXPORTS Main;

IMPORT SIO;

(*Integer operations, Sept. 12, 1993. LB*)

VAR
i, j: INTEGER;

BEGIN
SIO.PutText("Basic arithmetic functions\n");
SIO.PutText("Please enter two numbers: ");

(*Statement part*)

i:= SIO.GetintO;
j:= SIO.GetlntO;

(*Assigns the entered number to i *)
(* Assigns the entered number to j *)

SIO.Putlnt(i); SIO.PutText(" + "); SIO.PutlntU); SIO.PutText(" = ");
SIO.Putlnt(i + j); SIO.NIO;

SIO.Putlnt(i); SIO.PutText("- "); SIO.PutlntU); SIO.PutText(" = ");
SIO.Putlnt(i - j); SIO.NIO;

SIO.Putlnt(i); SIO.PutText(" * "); SIO.PutlntU); SIO.PutText(" = ");
SIO.Putlnt(i * j); SIO.NIO;

SIO.Putlnt(i); SIO.PutText(" DIV "); SIO.PutlntU); SIO.PutText(" = ");
SIO.Putlnt(i DIV j); SIO.NIO;

SIO.Putlnt(i); SIO.PutText(" MOD "); SIO.PutlntU); SIO.PutText(" = ");
SIO.Putlnt(i MOD j); SIO.NIO;

END Integers.

Example 4.2: Integer operations

only applies if x is divisible by y without a remainder. Let us examine what
happens with the following values:

x:= 11; y:= 4;
a) z:= (x * y) DIV y; b) z:= (x DIV y) * y;

In case a) the result is z = 11 (or z = x), but in case b) z = 8. Ifwe begin
with x = 8, the result is the same in both cases (z = 8). If x starts with the
value LAST(INTEGER), then case a) would produce an error because x*y
obviously cannot be represented. (Here again an overflow error would be
preferable over an erroneous result.) Example 4.2 permits the user to play
with the basic operations. Here is a possible sequence:

Basic arithmetic operations
Please enter two numbers: 12-5

12 + - 5 7
12
12 *

-5
-5

17
-60

12 DIV -5 -3
12 MOD -5 -3

4.1. Integers

x = Y is true if X and y have the same value, otherwise false.
X # Y is true if X and y do not have the same value, otherwise false.

X < Y is true if the value ofx is less than that ofy, otherwise false.
X > y is true ifthe value of X is greater than that of y, otherwise false.

X > = Y is true if X = Y or X > y, otherwise false.
X <= Y is true if x = y or X < y, otherwise false.

Table 4.3: Relational operations

Relational operations

Modula-3 also specifies a group of relational operations for integers.

• equal (=)

• unequal (#)

• greater than (>)

• less than «)
• greater than or equal (>=)

• less than or equal «=)

59

Many of these operators are defined for multiple types. The operators
= and # apply to all types. The semantics of the operations depend on
the type, so we explain them separately in each context. The result of a
relational operation is always either true or false with no other possibility.
Thus the logical data type BOOLEAN (see Section 4.2) serves as the result
type for relational operations.

Relational operations are defined for INTEGER values in the accustomed
way (see Table 4.3). x <= Y is equivalent to y >= x. If both x < y and x >
y prove false then x = y is true. Hence if x = Y is true, then x # y must be
false and vice versa. Since whole numbers represent an ordinal type, all
relational operations are unambiguous.

For floating-point numbers, as we will see in Section 4.5, this is not
always so simple.

We will consider examples of relational operations later, in the next sub
section along with the logical data type, and particularly with statements
that contain a condition.

60 4. Predefined data types

4.2 Logical type

4.2.1 Range

The type name for logical values in Modula-3 is BOOLEAN. Logical data
can assume only one of two predefined values true and false. For logical
values Modula-3 predefines the constant values TRUE and FALSE.

Many programming languages (such as Fortran, Algol-60 and C) lack
the logical data type. The range is so minute that many believe that
logical values can be simulated easily with integers. We could inter
pret the value 0 as false and the value 1 as true, and this would take
care of the logical data type. However, the logical data type incorpo
rates much more semantics.

The presence of an explicit logical type has the following advantages:

1. Logical values can be explicitly distinguished from arithmetic values.
This makes programs more readable and less error-prone. This also
precludes happening to interpret the same variable once as a logical
value and another time as a number.

2. The operations of Boolean algebra can be defined for logical data.

4.2.2 Operations

The following logical operations are defined (with Modula-3-notation in
parentheses):

• Negation (NOT)

• Or (OR)

• And (AND)

The meaning of these operations can most readily be depicted in a truth
table (where p and q are oftype BOOLEAN):

p q NOTq pORq pANDq
true true false true true
true false true true false
false true false true false
false false true false false

4.2. Logical type

MODULE Booleans EXPORTS Main;

IMPORTSIO;

VAR
p, q: BOOLEAN;

61

(*Boolean operations, Sept. 14, 1993. LB*)

BEGIN (*Statement part*)
SIO.PutText("Basic Boolean functions\n");
SIO.PutText("Please enter two Boolean values: ");

p:= SIO.GetBooIO;
q:= SIO.GetBooIO;

SIO.PutBool(p); SIO.PutText(" OR "); SIO.PutBool(q); SIO.PutText(" = ");
SIO.PutBool(p OR q); SIO.NIO;

SIO.PutBool(p); SIO.PutText(" AND "); SIO.PutBool(q); SIO.PutText(" = ");
SIO.PutBool(p AND q); SIO.NIO;

SIO.PutText("NOT "); SIO.PutBool(p); SIO.PutText(" = ");
SIO.PutBool(NOT p); SIO.NIO;

END Booleans.

Example 4.4: Boolean operations

In words (where x {=> condition is an abbreviation for: "x is true if and only
if condition applies; otherwise x is false"):

NOT q {=> q false
p OR q {=> p or q or both true
p AND q {=> both p and q true

According to the rules of precedence (also see Section 7.1) OR has the
least connective strength among the Boolean operators, AND is medium
and NOT has the greatest strength. Hence the following applies:

P OR NOT q AND r = p OR ((NOT q) AND r)

The relational operations also apply to Boolean values because by defi
nition true> false. The operators >, <, >= and <= are applied to Boolean
values only in exceptional cases.

At this time we cannot do a lot with logical values. However, they be
come especially important in conditional statements. To assist in writing
an executable program, we introduce two further procedures from our SIO
interface to read and display logical values (TRUE and FALSE):

PROCEDURE GetBoolO: BOOLEAN;
PROCEDURE PutBool(b: BOOLEAN);

(*Reads a Boolean value*)
(*Writes TRUE or FALSE*)

62 4. Predefined data types

MODULE RelOps EXPORTS Main;

IMPORT SIO;

(*Relational operations, Sept. 12, 1993. LB*)

VAR
i, j: INTEGER;
greater, less, equal: BOOLEAN;

BEGIN
SIO.PutText("Relational operations\nPlease enter two numbers: ");

i:= SIO.GetintO;
j:= SIO.GetlntO;

(*Statement part*)

greater:= i > j;
less:= i < j;
equal:= i = j;

(*greater is true if i > j*)
(*Iess is true ifi <j*)

(*equal is true if i = j*)

SIO.Putlnt(i); SIO.PutText(" > "); SIO.PutlntU); SIO.PutText(" is ");
SIO.PutBool(greater); SIO.NIO;

SIO.Putlnt(i); SIO.PutText(" < "); SIO.Putlnt(j); SIO.PutText(" is ");
SIO.PutBool(less); SIO.NIO;

SIO.Putlnt(i); SIO.PutText(" = "); SIO.PutlntU); SIO.PutText(" is ");
SIO.PutBool(equal); SIO.NIO;

END RelOps.

Example 4.5: Relational operations

GetBool and PutBool function like Getlnt and Putlnt; the only difference
is that they handle logical instead of numeric values. With the help of this
extension, we can develop a variant of Example 4.2 (Example 4.4).

Example 4.5 shows how to assign the results of relational operations to
logical variables. However, it is not always necessary to assign the result
of a relational operation to a variable. The above program can readily be
shortened if we specify the relational operations directly as parameters
of PutBool. (Since relational operations return Boolean values, they can
occur wherever Boolean values or expressions are required.) Instead of
SIO.PutBool(greater), we could write SIO.PutBool(i > j). A possible program
execution could take the following form:

Relative operations
Please enter two numbers: 23-5
23 > -5 is TRUE
23 < -5 is FALSE
23 - 5 is FALSE

In Example 4.5 we declared both INTEGER and BOOLEAN variables. We
used the Boolean variables to store results of relational operations. Dif-

4.3. Characters 63

ferent types cannot be mixed arbitrarily. Statements such as the following
would be senseless:

i := j + greater; equal:= i;

We cannot add a number to a Boolean value and we cannot assign a
number to a Boolean variable, etc. In programming languages with a strict
type system, the compiler automatically detects such statements as seman
tic errors.

A counterexample is the programming language C, which has no
Boolean type, but permits logical operations with integers. The se
mantics are completely in the hands of the programmer, and if this
human erroneously applies different semantics to the same variable,
the compiler has no chance to detect this (because the logical variables
are formally integers as well). Although no programming language
can detect every senseless action (that would be nice), we should at
least preclude those errors that can be detected.

4.3 Characters

Programs process not only numbers and logical values, but also character
strings. Modula-3 offers two predefined data types for this purpose: TEXT

and CHAR. We begin with the data type for individual characters, the type
CHAR.

4.3.1 Range

The type CHAR designates a finite, ordered set of characters. In many re
spects, this set is similar to the integers. CHAR also represents an ordinal
type (compare Section 4.1).

One difference is that the number of possible character values is usually
much smaller than the possible integer values.

There are normally 256 different character values. Those who know
the binary representation of characters will immediately recognize
that this reflects the number of different values that can be repre
sented in a byte, or in 8 bits, because 28 = 256.

The other important difference is that we do not interpret these values
as numbers. Most of these are readable characters, such as upper-case
and lower-case letters of the alphabet, digits and special characters on the

64

\n line feed
\ t tabulator
\'
\\

apostrophe
backslash

4. Predefined data types

\f form feed
\r carriage return
\" quotation mark

Table 4.6: Escape sequences for special characters

keyboard of a computer, e.g., . I ; !. Additional, nonprintable characters
serve to control input/output devices, e.g., a special character for line feed.

We have already introduced the line feed as text. All characters can be
specified as (very short) text (see Section 4.4).

Which CHAR value corresponds to which character depends on the code
system of the respective computer. Most computers (except IBM main
frames) use the ASCII code system [AU92]. In Modula-3, coding corre
sponds to the ISO Latin-1 code (an extension of the ASCII codes). Normally
a programmer does not even need to know this. The language system han
dles the internal details of character coding.

Character literals can be defined with the help ofthe apostrophe ('). Any
character (except the apostrophe character itself) can be specified between
apostrophe characters.

'A' stands for capital A,
'z' for lower-case z,
'@'for@and
'1' for the character 1.

The difference between the character '1' and the number 1 is important:
The number 1 is of type INTEGER and can occur in arithmetic expressions.
The character '1' is of type CHAR and can only be used as a character.

The above notation for character literals obviously works only for print
able characters, and we cannot specify the apostrophe character itself Non
printable and other special characters must be specified via a detour, the
escape sequences. An escape sequence consists ofa backslash (\) followed by
either a special character or a three-digit number. The special characters
and their meanings are listed in Table 4.6.

The carriage return character moves to the start position of the current
line on the monitor or on the printer. The designation stems from
times when computers were operated without monitors, but connected
to electric typewriters.

To specify any special character, the \ can be followed by an octal num
ber with exactly three digits [AU92] corresponding to the code value of the

4.3. Characters 65

VAR i, j: INTEGER; ch: CHAR; b: BOOLEAN;

BEGIN
i:= ORD('1 ');
ch:= VAL(66, CHAR);
j:= ORD(TRUE);
b:= VAL(O, BOOLEAN);

(*ordinal value ofT (49) is assigned to i *)
(*character with ordinal value 66 ('B') is assigned to ch *)

(*ordinal value of TRUE (1) is assigned toj *)

(*b is assigned the Boolean value with ordinal value 0 (FALSE)*)

Example 4.7: The standard functions ORD and VAL

desired character (from the ISO code table). For example, '\012' stands for
the carriage return (because the code value of carriage return = 1010
128)' and '\061' indicates '1' (because the code value of '1' = 4910 = 618).

4.3.2 Operations

The usual arithmetic operations are not permitted on characters. However,
because characters, similar to integers, represent an ordinal type, the rela
tional operations (with the same syntax and semantics as for integers) are
defined on characters.

Nevertheless, there is one difficulty: It is not self-evident which char
acter is larger or smaller. Is 'A' greater or less than ';'? Is 'z' > 'Z', or
vice versa? This could depend on the underlying code system, although we
just stated that a programmer need not know it. Therefore it makes sense
not to employ such relational operations without restriction in programs.
However, we can be sure that the following conditions always apply:

'A' < '8' < 'C' < ... 'X' < 'Y' < 'Z'
'a' < 'b' < 'c' < ... 'x' < 'y' < 'z'
'0' < '1' < '2' < ... '7' < '8' < '9'

Additional details regarding the order of characters can be taken from the
ISO Latin-l code table, but the authors dissuade from doing so. In all other
cases it is best to avoid using the ordering of characters and at most com
paring them for equality or inequality.

As we will later see, we can define (unordered) sets of characters that
facilitate the formation of groups or classes of characters, e.g., the set
of control characters, the set of punctuation marks, etc. (see Section
8.3).

66 4. Predefined data types

CONST
Conv = ORDeA') - ORDea');

VAR
(*difference between ordinal values of 'A: and 'a' *)

ch: CHAR;

BEGIN
ch:= SIO.GetCharO;
ch:= VAL(ORD(ch) + Conv, CHAR);
SIO.PutChar(ch);

(*Reads a character and assigns it to ch *)
(*Converts ch to upper case *)

(*Outputs ch *)

Example 4.8: Converting a lower-case letter

Predefined functions

The predefined functions FIRST and LAST are also defined for type CHAR.
They return the character with the smallest and largest code number, re
spectively (normally these are special characters that the programmer sel
dom needs).

Likewise the predefined functions INC and DEC can be used as with
numbers to compute the successor and predecessor, respectively, of a char
acter. INC('8') returns 'C'; DECC8') is 'A'. The result of DECCA') depends
on the character coding. We should avoid writing programs that depend on
which character precedes 'A', 'a' or '0', and likewise with the successor of
'Z', etc. INC(LAST(CHAR)) and DEC(FIRST(CHAR)) produce an error.

Two additional predefined functions permit conversion between inte
gers and characters. The function ORD requires a parameter of any ordi
nal type (in our case, type CHAR) and returns its code value - the ordinal
number - ofthe character as an INTEGER number, e.g., ORDC1 ') = 49.

The function VAL is the inverse function of ORD. It takes an integer
as parameter along with any ordinal type (in our case, type CHAR). The
integer is interpreted as the code value of the specified type. The result is
the corresponding value ofthe specified type, e.g., VAL(49, CHAR) = '1 '.

Given that i is of type INTEGER and ch of type CHAR, the following al
ways apply:

ORD(VAL(i, CHAR)) = i
VAL(ORD(ch), CHAR)) = ch.

Example 4.7 sets the value of i to the ordinal value of the character '1'
(which is ASCII code 49, not 1). The value of ch is set to the character with
ordinal value 66 (which is the letter 'B') in ASCII code. The example also
shows how ORD and VAL can be used for another ordinal type (BOOLEAN).

For the input/output of individual characters we introduce two addi
tional procedures of the interface SIO:

4.4. Texts

PROCEDURE GetCharO: CHAR;
PROCEDURE PutChar(ch: CHAR);

(*Reads a character*)
(*Outputs a character*)

67

GetChar reads a character and returns it as its function value. PutChar
outputs the character in ch. Example 4.8 transforms a lower-case letter
into upper case. (The code fragment does not test whether the character
read is actually a lower-case letter.)

4.4 Texts

A text is a sequence of characters. Hence many programming languages do
not offer the predefined type TEXT because corresponding type constructors
permit specifYing a character string from individual characters. However,
Modula-3 includes the predefined type TEXT.

4.4.1 Range

A text consists of any number of characters (including none). The respec
tive language environment constrains the maximum size, but this ceiling
is normally so high that the restriction proves negligible.

Text literals can be specified between double quotation marks ("). A
text literal can include any characters except the quotation mark (") and
the backslash, which must be specified indirectly as escape sequences. A
text literal must be contained on one line, but it may include the escape
sequences for carriage return and line feed (see Table 4.6).

The following are examples of valid text literals:

"This is a Modula-3 text"
"\n"
"This text ends with a line feed\n"
"\"To thine own self be true\"\n"
"The above quote is from Shakespeare's Hamlet\n"

Ifwe display these text literals on the monitor with SIO.PutText, we obtain:

This is a Modula-3 text
This text ends with a line feed
"To thine own self be true"
The above quote is from Shakespeare's Hamlet

68 4. Predefined data types

By contrast, the following text literals are not valid:

"This is a Modula-3 text
and this is its continuation"
""Quote""

It is important to note the difference between text constants (of type
TEXT) and character constants (of type CHAR):

CONST
CharConst = 'A';
TextConst = "A";

Both declarations are legal. TextConst declares a text of length 1, while
CharConst declares a character. They have different types, and only the
operations are restricted to those of the respective type. However, it is easy
to convert between the types (see the following subsection).

4.4.2 Operations

For Modula-3 texts, the language specifies an infix operator (written di
rectly between texts) as well as a number of operations in the form of the
predefined interface Text. This interface is not part of the language itself,
but it must be present with the same syntax and semantics in every envi
ronment.

The concatenation operator &

Concatenation means sequentially merging two character strings. This al
lows us to merge any number of texts to a single text. If we execute the
program in Example 4.9, we obtain the output:

This is a Modula-3 text,
this is its continuation,

and this is its end.

Of the operations provided by the standard interface Text, Example 4.10
lists the most important. The complete interface is included in Appendix
C.l.l.

Equal returns a logical true value if and only if the contents of two texts
specified as parameters is the same (where upper- and lower-case letters
are considered different). Length returns the length of a text (as the num
ber of contained characters). GetChar allows extraction of a character at

4.4. Texts

MODULE Texts EXPORTS Main;

IMPORTSIO;

CONST
LF = "\n";
T1 = "This is a Modula-3 text,";
T2 = "this is its continuation,";
T3 = "and this is its end.";
T4 = T1 & LF & T2 & LF & LF & T3 & LF;

69

(*Concatenation, Sept. 15, 1993. LB*)

(*LF stands for line feed *)

BEGIN (*statement part *)

SIO.PutText(T 4);
END Texts.

Example 4.9: A program with the concatenation operator

INTERFACE Text; (*Copyright Digital Equipment Corporation *)

PROCEDURE Equal(t, u: T): BOOLEAN;
(*Returns TRUE ift and u have the same length and the same content. *)

PROCEDURE Length(t: T): CARDINAL;
(* Returns the number of characters in t. *)

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR;
(*Returns the character at position i (where first character has position 0) in t.

Ifi >= Length(t), a run-time error results. *)

PROCEDURE FromChar(ch: CHAR): T;
(*Returns a text consisting of the character ch. *)

END Text.

Example 4.10: Excerpt from the Text interface

position i in a text t (the valid range for i being [0 .. Length(t)-1]). FromChar
transforms a character to a text.

Before we examine an example of the use of these functions, we need
to add an important note. Of the relational operations, equality (=) and
inequality (#) are also valid for texts. However, it might happen that the
expressions text1 = text2 or text1 # text2 (assuming that text1 and text2 are
of type TEXT) functions differently than we anticipate.
It is possible that text1 = text2 yields false (or text 1 # text2 true) although the
two character strings are equal. The Equal function of the Text interface
always functions according to expectations. Therefore we should always
use this function for the comparison of two texts.

The reason for this curious behavior in text comparisons cannot be
explained fully at this time. The type TEXT does not really repre
sent texts, but pointers (references) to texts (see Section 11.5). The

70 4. Predefined data types

MODULE TextComparison EXPORTS Main;

IMPORT SIO, Text;

(*Text comparison, 11.05.94. LB*)

CONST
T1 = "This is a Modula-3 text";
T2 = "his is a Modula-3 text";

VAR
text1 , text2: TEXT;

BEGIN
text1 := "T";

(*statement part *)

text2:= text1 & T2;
SI0.PutText(T1 & "\n");
SI0.PutText(text2 & "\n");

(*contents oftext2: This is a Modula-3 text*)

SI0.PutBool(T1 = text2); SIO.NIO;
SI0.PutBool(Text.Equal(T1, text2)); SIO.NIO;

END TextComparison .

Example 4.11: Text comparison

(*outputs FALSE*)
(*outputs TRUE*)

relational operations (= and #) compare only these pointers, while the
Equal function compares the actual contents of the texts.

Example 4.11 makes this distinction clear. After the value assignment T1
and text2 reference two different character strings which are equal but not
the same. The expression T1 = text2 returns false, whereas Text. Equal(T1 ,
text2) yields true:

This is a Modula-3 text
This is a Modula-3 text
FALSE

TRUE

Now let us write a small program that presents the user with three
tasks. If the tasks are completed correctly, the program displays TRUE,

otherwise FALSE.

The tasks are:

• Input a text of a certain length.

• Input the same text again.

• Enter a text that ends with a certain character.

Example 4.12 lists the program. Note that in the third task EndChar must
be converted to type TEXT using Text.FromChar so that the concatenation

4.4. Texts 71

MODULE TextExercise EXPORTS Main;

IMPORT SIO, Text;

(*Exercises with texts, Sept. 15, 1993. LB*)

CONST
EndChar = ':;
Length = 3;
T1 = "Please enter a text of length";
T2 = "Please_re-enter _the_same_text";
T3 = "Please enter a text that ends with "';
T4 = ", \n";

VAR

(*end character for 3rd exercise*)
(*length of text in 1st exercise*)

text: TEXT; b: BOOLEAN; ch: CHAR; len: INTEGER;

BEGIN
SI0.PutText(T1);
SIO.Putlnt(Length); SIO.NIO;
text := SIO.GetTextO;

(*statement part*)
(*request a text of length ... *)

(*"Length" (= 3)*)

b := Text.Length(text) = Length;
SIO.PutBool(b); SIO.NIO;

(*b = TRUE iflength of text is correct*)

SI0.PutText(T2 & "\n");
text := SIO.GetTextO;
b := Text.Equal(text, T2);
SIO.PutBool(b); SIO.NIO;

SI0.PutText(T3 & Text. FromChar(EndChar) & T4);
text := SIO.GetTextO;
len := Text.Length(text);
ch := Text.GetChar(text, len - 1);
b := ch = EndChar;
SIO.PutBool(b); SIO.NIO;

END TextExercise.

(*b = TRUE if text = T2*)

(*ch is the last character*)
(*b = TRUE if ch = EndChar*)

Example 4.12: The program gives the user exercises

SI0.PutText(T3 & Text.FromChar(EndChar) & T4);
text:= SIO.GetTextO;
SIO.PutBool(Text.GetChar(text, Text.Length(text) - 1) = EndChar);
SIO.NIO;

Example 4.13: Abbreviation of the third exercise in Example 4.12

72 4. Predefined data types

operator can merge it into a text. The expression T3 & EndChar & T 4 would
be incorrect because we cannot use a value of type CHAR directly as text.

We could have spared ourselves some variables and lines of code by
passing the functions directly as parameter values. Example 4.12 repre
sents an abbreviated form of the third task in Example 4.13.

The preferred solution is often a matter of taste. Shorter programs are
often more comprehensible, but it is hard to say whether this is the case
here. At any rate, note that we certainly could not have omitted the vari
able text, which stores the entered text. A solution such as the following is
incorrect:

SIO.PutBool(Text.GetChar(SIO.GetTextO,
Text.Length(SIO.GetText()) -1) = EndChar);

The input is requested twice, although we only need it once.

In this case, if the user had entered a longer text the second time,
the program would even crash because Text.GetChar would attempt to
read from a position that does not exist in the first text.

4.5 Floating-point numbers

Real numbers playa very important role in mathematics. Therefore most
programming languages provide them as a predefined type. However, rep
resenting real numbers in a computer creates additional difficulties.

Whole numbers are infinite only in size: Every whole number has a pre
decessor and a successor. The real numbers, we could say, are also infinite
in their density (between any two real numbers there exists another real
number). Whole numbers form a denumerably infinite set, while the set of
real numbers is nondenumerable [Tru88]. In other words, the real numbers
form a continuum.

A real number can contain an infinite number of digits. When we ap
proximate a real number with a finite number of places after the decimal,
then we must always consider the precision of our approximation when us
ing such values. The approximated representation of real numbers in a
computer is called floating-point representation.

Assume that we have a four-digit decimal floating-point-arithmetic.
This means that the decimal point can "float" left or right, but we still have
only four positions. The largest number that we can represent is 9999 and
the smallest number is 0.001. The numbers 0.00011, 0.00012, 0.000111,
0.000112, etc. cannot be distinguished in our four-digit arithmetic. Nonrep
resentable numbers are rounded to a representable number. This means

4.5. Floating-point numbers 73

that practically all computations with floating-point numbers are subject
to rounding errors.

In floating-point representation a real number x is described with two
whole numbers, the exponent and the mantissa [Wir73]:

x = mantissa * baseexponent

The values of base, mantissa and exponent depend on the respective
computer system. The base is either 10 or a small power of 2. The di
mension of the mantissa and the exponent determine the range and the
precision of the representation. Typically many more places are reserved
for the mantissa than for the exponent.

A normal form is defined by the following condition:

1 mantissa
--<. . <1
base - maXlmum mantlssa

This condition assures that the floating point is always to the left of
the first digit that is not zero in the mantissa. In this form the den
sity of representatives in intervals of the real number axis declines
exponentially with increasing x. For base 10, e.g., the interval 0.1 -
1 contains the same number of representatives as the interval 1000 -
10000.

A digital computer can only represent finite numbers and only with fi
nite precision. Thus floating-point numbers in a computer differ signifi
cantly from real numbers in mathematics. The field of numerics deals with
computation with floating-point numbers [IK66, YG66]. We can only com
pute with imprecise numbers if we integrate the imprecision in the com
putation. We must know exactly how far the results of a computation can
deviate from the theoretical, precise value. (We could say that we must
compute with particular precision using imprecise numbers.) This book
does not treat numerics in detail, but only describes how floating-point
numbers are declared and used in Modula-3.

4.5.1 Range

The range for floating-point numbers is both greater and more fine-grain
than for integers. Modula-3 provides three predefined types (REAL, LONG
REAL and EXTENDED), which differ only in range and precision. The small
est range is for REAL, the largest for EXTENDED. The characteristic data
of the individual types, such as the smallest and largest positive repre
sentable value, is stored in the in standard interfaces for each type (see
Appendix C.1.4). The limits are symmetric to 0 (contrary to the integers).

74 4. Predefined data types

Thus it suffices to specifY the smallest and largest positive values. By
smallest positive number we mean the smallest number x, such that 0 is
separate and distinct from 0 + xl. The limits depend on the language envi
ronment. In many language environments, e.g., the limits for LONGREAL
and EXTENDED are the same.

4.5.2 Floating-point literals

Floating-point literals can be represented in the form of rational numbers
with decimal points, optionally followed by an exponent part, interpreted
as a power of ten.

Syntax of floating-point literals

Number94 = ... I Digit98 { Digit98 } "." Digit98 { Digit98 } [Exponent95].
Exponent95 = ("E" I "e" I "D" I "d" I "X" I "x") ["+" I "-"] Digit98 { Digit98 }.

A leading sign is not reflected here as part of the number because it
is not part of the syntax of the number, but is part of an expression (see
Section 7.1). The sign of the exponent is part of the number.

The exponent part begins with a letter E, D, or X, which specifies the
type of the number. E stands for type REAL, D for LONGREAL (double pre
cision), and X for EXTENDED.
The following are correct examples of floating-point numbers:

1.1
1.1DO
1.1XO
1.5e2
-1.5x+2
1.5E-3

is of type REAL
the same value oftype LONGREAL
the same value oftype EXTENDED
type is REAL, value = 150
type is EXTENDED, value = -150
type is REAL, value = 0.0015

The following are illegal examples of floating-point literals:

1
1.
1.1D
1.5 e2
1.5e 2

This is an integer.
Digit must follow the decimal point.
A digit must follow the exponent letter.
A number must not contain a blank.
A number must not contain a blank.

Table 4.14 shows typical values for the limits of representable values of
floating-point types.

IThis value usually refers to the normal form.

4.5. Floating-point numbers 75

MinPos MaxPos
REAL 1.17549435E-38

LONG REAL 2.2250738585072014D-308
3.40282347E +38

1.7976931348623157D+308

Table 4.14: Typical ranges for floating-point types

4.5.3 Operations

Arithmetic operations

The usual arithmetic operations are predefined for floating-point numbers
(Modula-3 notation is given in parentheses):

• addition (+)

• subtraction (-)

• multiplication (*)

• division (/)

The result of a floating-point expression is always a floating-point value.
The + and - signs can also be used as unary operators. The + sign can be
omitted (+x = x).

The rules of precedence (see Section 7.1) are defined as usual, with addi
tion and subtraction having the least, multiplication and division medium,
and the unary sign the greatest connective strength.

The semantics of the arithmetic, as might be expected, deviates from
the usual semantics customary arithmetic.

Similar to integers, an overflow can occur if the result of a computation
is too large (or too small in negative direction). Floating-point numbers can
also produce an underflow if the absolute value of a result is so small that
it cannot be represented.

The following rules apply for the basic operations [Wir73]:

1. Commutativity of addition and multiplication

x+y=y+x
x*y =y*x

and if x >= y >= 0, then (x - y) + y = x

2. Symmetry around 0

x-y =x+(-y)=-(y-x)
(-x) * y = X * (-y) = -(x * y)
(-x) / y = x / (-y) = -(x / y)

76

3. Monotony
if 0 <= X <= a and 0 <= Y <= b,
then the following always apply:

X + Y <= a + b
X * Y <= a * b
x-b <= a-y
x / b <= a / y

4. Predefined data types

We do not discuss additional rules that derive from these [Wir73j.
It is important to know that the associative and distributive laws do

not always apply. Additive operations prove particularly hazardous. If we
subtract nearly equal numbers from one another, the difference can become
so small that it cannot be represented. Similar problems arise, e.g., when
we add two very different numbers. The smaller number can fall under the
precision limit of the larger number and thus be ignored in the addition.
This effect is called cancellation. Ifwe add the smaller number to the larger
one ten times, the value of the larger number might not change. However,
if we had first added ten times the smaller number, the sum could be large
enough to change the larger number.

For the following example (based on [Wir73]) let us return to our four
digit floating-point arithmetic. The initial value for the floating-point num
bers x, y and z are: X = 8.800, Y = 2.200 and z = -0.999. This gives us the
following results:

(x + y) + z = 11.00 + (-0.999) = 10.01
x + (y + z) = 8.800 + 1.201 = 10.00

Division also demands caution. Division by a very small number (even
an intermediate result in an expression) can cause an overflow. The lan
guage environment detects division by 0 and reports a run-time error.

Relational operations

Relational operations for floating-point numbers are similar to those for
integers. The semantics demand some attention, however, especially for
equality (and inequality).

A floating-point number stands for an infinite sequence of real numbers
up to the next representable number. If two floating-point numbers are
"equal", this only means that the difference between them is not larger
than the smallest representable value. This means that we should avoid
testing equality. Instead of x = y, it is always better to employ relational
operations in the form ABS(x - y) < f, whereby f represents the necessary
preCISIOn.

4.5. Floating-point numbers

Built-in function Direction
FLOAT(i) INTEGER --+ REAL

FLOAT(r, LONGREAL) REAL --+ LONG REAL

ROUND(r) REAL --+ INTEGER

TRUNC(r) REAL --+ INTEGER

FLOOR(r) REAL --+ INTEGER

CEILlNG(r) REAL --+ INTEGER

77

Note
Converts an integer to a
floating-point number.
The value of the number is
preserved.

Converts a REAL number to a
LONGREAL type. The value
of the number is preserved.

Returns the integer closest to
r.
Truncates (cuts off) the digits
after the decimal point.

Returns the largest integer i
such that i :::; r.
Returns the smallest integer i
such that i ~ r.

Table 4.15: Type conversions between rea Is and INTEGER

Another - unexpected - phenomenon is that x <= y is not always the
same as NOT (x > y).

Handling these and similar difficulties is one of the most important
tasks of numerics. This field offers algorithms that accommodate these
restrictions of the computers. We repeat the warning:

I ?omputations with floating-point numbers demand knowledge of numer
ICS.

Conversions

Modula-3 has predefined functions to convert floating-point numbers to in
tegers and vice versa. Table 4.15 specifies the direction of type conversion
and how the conversion is done. (Let i be of type INTEGER and r of type
REAL). The function FLOAT can also convert between the different floating
point types (REAL, LONGREAL and EXTENDED) in all directions (Table 4.15
includes an example for the case REAL --+ LONGREAL).

There is obviously a significant difference between converting an inte
ger to a floating-point number or vice versa. In the former case the value
is preserved, while the latter generally sacrifices precision. Thus there are
a number of functions for the latter conversion direction, allowing control
over the rounding. Likewise there is a difference between converting a less
precise floating-point representation to a more precise floating-point rep-

78 4. Predefined data types

resentation (which preserves the value) or vice versa (which can induce a
loss of precision).

If r >= 0 then TRUNC(r) = FLOOR(r), and if r < 0 then TRUNC(r) =
CEILlNG(r). The rounding border for ROUND is exactly in the middle, i.e.,
ROUND(0.5) = 1.

The following examples give an impression ofthe above functions:

CEILlNG(1.499E2) = 150
ROUND(1.499E2) = 150
TRUNC(1.499E2) = 149
FLOOR(1.499E2) = 149

CEILlNG(-1.519E2) = -151
ROUND(-1.519E2) =-152
TRUNC(-1.519E2) = -151
FLOOR(-1.519E2) = -152

Additional predefined functions such as FIRST, LAST and ABS are also
defined for floating-point numbers. LAST returns the highest positive value
an, and FIRST is simply -LAST.

ABS returns the absolute value of a floating-point number: ABS(r) = r if
r >= 0; ABS(r) = -r if r < o.

Mathematical functions

For floating-point numbers every language environment offers a large num
ber of mathematical functions in the form of prefabricated interfaces. They
frequently contain basic functions, such as square root and trigonometric
functions. Many language environments also offer a great deal more, such
as help for various numeric functions, for statistics, etc.

4.5.4 Input and output of floating-point numbers

To write example programs with floating-point numbers, we need to be
able to read and output floating-point numbers. Here we use the following
procedures from the SIO interface:

PROCEDURE GetRealO: REAL; (*Reads a floating-point number*)
PROCEDURE PutReal(r: REAL); (*Outputs a floating-point number *)
PROCEDURE GetLongRealO: LONG REAL; (*Reads a long floating-point number')
PROCEDURE PutLongReal(r: LONG REAL); (*Outputs a long floating-point number*)

The syntax of floating-point numbers that we input at the keyboard
is more relaxed than that of Modula-3 literals: Whole numbers are also
accepted and converted to floating-point numbers. Example 4.16 shows a
program that reads, writes and converts floating-point numbers. A possible
execution of the program could be the following:

4.5. Floating-point numbers 79

MODULE Reals EXPORTS Main;

IMPORTSIO;

(*Realoperations, Sept. 15, 93. LB*)

VAR
real: REAL;

BEGIN
SIO.PutText("Range and conversion of floating-point numbers\n");
SIO.PutText("MaxReal = "); SIO.PutReal(LAST(REAL));
SIO.PutText(" MaxLongReal = "); SIO.PutLongReal(LAST(LONGREAL));

SIO.PutText("\nPlease enter a floating-point number: ");
real:= SIO.GetReaIO; (*the entered number is assigned to real*)

SIO.PutText("ROUND("); SIO.PutReal(real); SIO.PutText(,,) = ");
SIO.Putlnt(ROUND(real)); SIO.NIO;

SIO.PutText("TRUNC("); SIO.PutReal(real); SIO.PutText(") = ");
SIO.Putlnt(TRUNC(real)); SIO.NIO;

SIO.PutText("FLOOR("); SIO.PutReal(real); SIO.PutText(") = ");
SIO.Putlnt(FLOOR(real)); SIO.NIO;

SIO.PutText("CEIL ("); SIO.PutReal(real); SIO.PutText(") = ");
SIO.Putlnt(CEILlNG(real)); SIO.NIO;

END Reals.

Example 4.16: Input/output and conversion offloating-point numbers

Range and conversion of floating-point numbers
MaxReal = 3.402823E38 MaxLongReal = 1.797693D308
Please enter a floating-point number: 3.501
ROUND(3.50l) 4
TRUNC(3.50l) 3
FLOOR(3.50l) 3
CEIL (3.501) 4

AB our second example for floating-point numbers, we will solve a quad
ratic equation [Wir73]. Here we need functions for raising to powers and
for taking the square root. Such functions are available in the interface
Math of the Modula-3 language environment. For example, Math.pow(x, y)
returns x Y , Math.sqrt(x) returns Vx for X > 0 (for X ::::; 0 Math.sqrt(x) always
returns 0).

The solution to the quadratic equation

ax2 + bx + c = 0

can be found with the familiar formula:

-b+ Vb2 - 4ac

2a 2a

80

MODULE Square EXPORTS Main;

IMPORT SIO, Math;

CONST
Two = 2.0DO;
Four= 4.0DO;

VAR
a, b, c, d, e, f, x1, x2: LONG REAL;

BEGIN
SIO.PutText("Quadratic equation\nPlease enter a, b, c: ");

a:= SIO.GetLongReaIO;
b:= SIO.GetLongReaIO;
c:= SIO.GetLongReaIO;

e:= Math.pow(b, Two) - Four*a*c;
d:= Math.sqrt(e);
f:= Two * a;

x1:= (-b + d) / f;
x2:= (-b - d) / f;

SI0.PutText("x1 = "); SI0.PutLongReal(x1); SIO.NIO;
SI0.PutText("x2 = "); SI0.PutLongReal(x2); SIO.NIO;

END Square.

4. Predefined data types

(*Sept. 15, 1993. LB*)

(*2 as longreal constant*)
(*4 as longreal constant*)

(*input of a*)
(*input of b*)
(*input of c*)

(*e:= b2 - 4ac*)
(*d:= -.!b2 - 4ac*)

(*{"= 2a*)

Example 4.17: Solving a quadratic equation

Example 4.17 shows the solution. The variables e, d and t, which serve
to store intermediate results, are particularly interesting. Their use not
only makes our program more comprehensible, but also faster, because we
carry out only once the (possibly extensive) computations that occur in the
formula repeatedly. The functions of the Math interface use data of type
LONGREAL; thus we use the corresponding LONGREAL procedures of the
SIO interface. The following is a possible execution of Example 4.17:

Quadratic equation
Please enter a, b, c: 2103
xl -0.320550528229663
x2 = -4.6794494717703365

The solution in Example 4.17 has several weaknesses: For input values
where b2-4ac becomes negative, it produces an incorrect result instead of
an error message. Furthermore, it does not test for a=O and so accepts the
formula from familiar mathematics without criticism [Wir72]. For subtrac
tions with very divergent or with nearly equal values, the cancelation effect
mentioned above can occur, making the result worthless. For example, if

4.5. Floating-point numbers 81

the values ofb2 and 4ac are so far apart that within the representable pre
cision Vb2 - 4ac = V1Ji, then the one result is 0 and the other -~. This
indicates that we could achieve much more precise results with other algo
rithms.

Chapter 5

Statements

The preceding chapter presented a number of data types. Regarding state
ments, however, we have only briefly considered the assignment, the proce
dure call and the statement sequence (compare Section 3.4.4). This chapter
reviews assignments and sequences and then describes in detail the state
ments for branches and loops. Procedure invocation is handled later in
combination with the declaration of procedures (see Section 9.2).
Later chapters introduce additional special statements as we need them.

5.1 The assignment

The assignment statement serves the purpose of assigning a value to a
variable. Here we repeat the syntax of the assignment statement from
Section 3.4.4:

Syntax of the assignment statement

AssignStmh5 = EXpr66 ":=" EXpr66.

First the expression on the left side is evaluated, which determines the
target address (the container for the value). In by far most cases this is
simply the name of a variable. If the target address is not known in ad
vance, then it can be determined at run time (e.g., see arrays in Section 8.1
or references in Section 11.5).

Then the expression on the right side is evaluated and its value is as
signed to the target address. The original value of the variable on the left
side is lost after the assignment.

The preceding chapter presented several examples of assignments. Here
we show how the value of two variables, x and y, can be interchanged (or
swapped). If we were to write x:= y and y:= x, we would overwrite one of

84 5. Statements

the original values, losing the value in x. Thus we must introduce an aux
iliary variable as a temporary repository for one of the two values (thus
sometimes called a triangular swap):

VAR
x, y, repository: INTEGER;

BEGIN

repository := x; x:= y; y:= repository;

It would be easy to underrate the importance of the assignment state
ment at first glance; after all, it serves simply to copy some value from
one location to another. This makes it all the more surprising that - as
proven by extensive measurements - about half of all executed computer
commands are assignments [Tan90]. Thus the assignment statement has
fundamental importance, but does not suffice to express complex behavior.

5.2 Structured statements

This raises the question of what kinds of statements we need to express
complex algorithms. Assume the example of systematically escaping from
a labyrinth (Chapter 1.1). The statements were:

"Go to the first possible branch. If it goes left, follow it. Other
wise continue straight. Keep going straight until you reach a
T-junction and then take a right turn there.

Repeat the whole procedure until you see light. If you reach a
dead end, then turn around and continue as though the inter
ruption had not occurred."

What kinds of statements does this example contain? The whole de
scription represents a sequence of statements. That is, first we must "go to
the first possible branch", and only then do we take the next step. How
ever, this sequence does not suffice, for the statements are sometimes as
sociated with conditions, such as "If [the branch] goes left, follow it". At
certain points the procedure presents alternatives or branches: Have we
already reached a "left branch"? If so, then we must turn left; otherwise
we continue straight. Conditions also control repetitions, or loops, in the
algorithm: "Keep going straight until you reach a T-junction". The sub
steps need to be repeated until some terminal condition - "you reach a
T-junction" - is met.

Finally, the entire procedure represents a loop. All steps must be re
peated, possibly even endlessly (for our procedure would never get us out

5.2. Structured statements

REPEAT
go_to_branch
IF no light yet THEN

IF found left branch THEN
goJeft

ELSE
go_straight

END
END
WHILE no light yet AND no T-junction found

go_to_branch
END
IF no light yet THEN gOJight END

UNTIL light seen

Example 5.1: Procedure for escaping from a labyrinth

85

of some labyrinths!). The repetition stops when the terminal condition -
"you see light" - occurs.

The types of statements provided by structured imperative program
ming languages actually fall into these three categories:

• Sequence

• Loop

• Branch

Loops and branches collectively are called structured statements. They
serve to bracket other statement sequences in order either to allow their
repeated execution or to select a certain sequence thereof

These types of statements can occur in any combination. For example,
loops can contain further loops, branches can contain sequences, sequences
can contain loops, etc. If structured statements contain statements, we call
this nesting of statements. Such nesting should be reflected optically in
the typed source code using indentation. Hence statements in a sequence
appear in line vertically. In Example 5.1 we wrote the algorithm like struc
tured statements and indented accordingly. Note that the global termi
nal condition - stop when you see light - must be checked after each step
because it can apply after each movement. For example, if the terminal
condition occurs after the first statement, goJo_branch, then none of the
subsequent movement statements is executed, for all further steps first
check whether the light condition has been met.

86 5. Statements

GoTos

Unstructured imperative programming languages usually provide a GoTo
statement that permits expressing both loops and branches. This can take
the following form: "If a>b then GoTo statement!> else GoTo statement2".

Thus the conditional GoTo statement is very powerful, indeed too power
ful. It enables a jump to any position in a program, e.g., into the middle
of a loop or branch. This property makes the GoTo statement a source of
errors because it encumbers reading the programmer's intended loops or
branches from the spaghetti of GoTo statements. If we execute a state
ment sequence repeatedly, then it seldom makes sense to jump to some
position within this sequence from the outside. Although an experienced
programmer can avoid senseless jumps, it is far better if the programming
language precludes such errors. Structured statements completely replace
GoTos and also permit jumps only within a structured framework.

E. W Dijkstra [Dij68al first warned of the danger of unrestricted Go
Tos. He did not stop at identifying the danger, but developed the con
cept of structured programming, which triggered a new epoch in pro
gramming.

Structured programming languages deliberately restrict programming
to the above constructs because these constructs enable us to assure that
statements always have a single entry point and a single exit. This applies
not only to simple statements, but also to composite, complex statements.
We can always rest assured that every statement has a well-defined start
ing point and end point; a jump to the middle is impossible.

This enables us to validate the correctness ofthe individual statements
independently. For each statement, we can say which state what we expect
before its execution, or which preconditions must apply. As a result, for each
statement we can specify which postconditions will apply after execution of
the statement. Thus we can validate the correctness of a statement inde
pendently. On assembly of statements to increasingly complex statements,
we only need to validate the preconditions and postconditions. There is no
danger oftrespassing into a statement from outside it.

It is easy to see the advantage of validating the correctness of a compo
nent consisting of 10 to 50 lines of code compared to validating a complete
program system consisting of hundreds of thousands of lines of code in
which jumps can occur to arbitrary locations.

We do not explain validation methodology in detail here. Validation
can involve methodical testing methods or formal methods. Proving the
correctness of a program with purely formal methods is called verification
[DFS88].

We must emphasize that restricting the form of statements alone does
not suffice to master the complexity of larger programs. As long as all

5.3. Sequence 87

statements of a program share a common (global) state space, precise val
idation of a large program remains hopeless. Thus, as we have already
addressed, we need to structure not only the statements but also the state
space. In Modula-3 the most important structuring tool for the state space
is the module, which we have already introduced briefly (see Chapter 10).
However, at this point we will handle only the statements.

5.3 Sequence

Statements that must be executed one after the other form a sequence.
We handled the syntax of the sequence (or statement sequence) with the
introduction to the block concept:

Syntax of the statement sequence

Stmts23 = [Stmt24 { ";" Stmt24 } [";"]].

Modula-3 permits combining any number of statements, separated by
semicolons, to a statement sequence. The statements in a sequence are
executed in the order of their appearance. This does not require a sepa
rate example, as the programs presented so far all contained statement
sequences.

5.4 Branches

Branches (or selections) bracket a set of statement sequences and, depend
ing on certain circumstances, select exactly one of these sequences for exe
cution. Modula-3 has two kinds of branches, the If statement and the Case
statement.

5.4.1 If statement

The IF statement permits testing a sequence of conditions whose evalu
ation provides the basis for selecting the appropriate statement sequence
(the
matching alternative).

To assign to the variable min the smaller of the values x and y (all of
type INTEGER) in Modula-3, we can write the following:

IF x < y THEN min := x ELSE min := y END;

The statement following the reserved word THEN executes if the evalu
ation ofthe condition x < y yields true. Otherwise (x < y yields false) the
statement following ELSE executes.

88 5. Statements

Syntax of the If statement

IfStmt31 = "IF" Expr66 "THEN" Stmts23

{ "ELSIF" Expr66 "THEN" Stmts23 } ["ELSE" Stmts23 1 "END".

An IF statement generally takes the following form:

IF b1 THEN statement sequence1
ELSIF b2 THEN statement sequence2
ELSIF b3 THEN statement sequence3

ELSIF bn THEN statement sequencen
ELSE statement sequenceo
END;

Each condition bi is a Boolean expression (compare Section 4.2). They
are evaluated sequentially until one returns the value true. If such a condi
tion bi is found, then the corresponding statement sequencei executes, thus
completing the IF statement (with the program continuing after the END of
the IF statement). Ifno true condition is found and there is an ELSE clause,
then the statement sequenceo after the reserved word ELSE executes. If
no true condition is found and there is no ELSE clause, then no statement
sequence is executed within the IF statement.

The following statement:

IF b1 THENA1 ELSIF b2 THENA2 ELSEAO END

simply represents a short form of:

IF b 1 THEN A 1 ELSE IF b2 THEN A2 ELSE AO END END

Since each new ELSE IF requires an additional END to terminate the
nested IF statement, the compact form is preferable if we need to test more
than one condition.

We can infer that if an IF statement contains more than one true con
dition, the first such condition triggers selection. This does not apply
in all programming languages. Among the languages conceived for
parallel processing, some treat multiple true conditions by arbitrary
selection from among the statement sequences with true conditions
(guarded statements by Dijkstra [Dij75], e.g., in SR [And91]). This
introduces a certain nondeterminism into the execution of selection
statements, which can be useful in nonsequential programs (see Chap
ter 16).

5.4. Branches

CONST
Cony = ORDCA') - ORDCa');

VAR
ch: CHAR;

BEGIN
ch:= SIO.GetCharO;
IF (ch >= 'a') AND (ch <= 'z') THEN

ch:= VAL(ORD(ch) + ConY, CHAR);
END;

89

(*difference between ordinal values of 'A: and 'a'*)

(*reads a character and assigns it to ch *)
(*value of ch is a lower-case letter*)

(*converts to upper case*)

SIO.PutChar(ch); (*outputs ch*)

Example 5.2: Testing a condition with an If statement

Example 4.8 showed how to transform lower-case letters into upper
case. Let us extend this example with a test to assure that we apply the
transformation only to lower-case letters. All other characters should pro
duce no action (Example 5.2). This calls for an IF statement without an
ELSE clause.

Assume that we want to determine the order of magnitude of the posi
tive number x, to the thousands position:

IFx >= OTHEN
IF X < 10 THEN SIO.PutText("one-digit")
ELSIF X < 100 THEN SIO.PutText("two-digit")
ELSIF X < 1000 THEN SIO.PutText("three-digit")
ELSE SIO.PutText("at least four-digit")
END; (*IF (x < 10)*)

ELSE
SIO. PutText("negative")

END; (*IF x >= 0*)

This program fragment exploits the fact that the ELSIF conditions are
evaluated sequentially; the tests are not independent. For example, if we
exchange the ELSIF branches that test x < 100 and x < 1000, then the pro
gram would identifY any number between 10 and 999 as three-digit. In this
case three-digit would mean at most three digits rather than exactly three
digits. We can eliminate this sequential dependency by always testing the
full range, thus making the tests disjunct:

IF (x >= 0) AND (x < 10) THEN SIO.PutText("one-digit")
ELSIF (x >= 10) AND (x < 100) THEN SIO.PutText("two-digit")
ELSIF (x >= 100) AND (x < 1000) THEN SIO.PutText("three-digit")
ELSIF (x >= 1000) THEN SIO.PutText("at least four-digit")
ELSE SIO. PutText("negative")
END; (*IF (x >= 0) ... *)

90 5. Statements

MODULE Ifs1 EXPORTS Main;

IMPORTSIO;

(*Sept. 20, 1993. LB*)

VAR i: INTEGER;

BEGIN (*statement part*)
SIO.PutText("Test of divisibility by 2 to 5\n" &

"Please enter a number: ");
i:= SIO.GetintO;
SIO.PutText("Your number is divisible by");

IF
«i MOD 2) = 0) OR «i MOD 3) = 0) OR«i MOD 4) = 0) OR «i MOD 4) = 0)

THEN (*at least one of the conditions holds*)
IF (i MOD 2) = 0 THEN SIO.Putlnt(2) END; (*divisible by 2*)
IF (i MOD 3) = 0 THEN SIO.Putlnt(3) END; (*divisible by 3*)
IF (i MOD 4) = 0 THEN SIO.Putlnt(4) END; (*divisible by 4*)
IF (i MOD 5) = 0 THEN SIO.Putlnt(5) END; (*divisible by 5*)

ELSE (*no condition holds*)
SIO.PutText("none of the numbers from 2 to 5")

END; (*[F (i MOD 2) = 0 ... *)

SIO.NIO;
END Ifs1.

Example 5.3: If statements nested to a depth of 1

This variant permits every interchange of ELSIF branches, but at the
price of more effort in constructing and evaluating the conditions.

In Modula-3 all structured statements have an easily recognizable
start and an end (in the form of keywords); the end of a structured
statement is not always so easy to recognize because most structured
statements employ the same keyword (END). Thus we recommend com
menting the end of a structured statement as in the examples above.

IF-ELSIF-ELSIF statements test all conditions until the first one is true.
All subsequent ones are ignored. This essentially differs from putting the
conditions in individual IF-THEN statements. To make this clear, let us
write a program that reads a number and determines whether the number
is divisible by 2, 3, 4 and/or 5 (Example 5.3). First we test whether any
conditions can be fulfilled at all. If not, we output a corresponding message
(in the ELSE branch). If any conditions can be fulfilled, then we test each
condition individually. The simple IF-THEN statements are nested in the
IF-THEN-ELSE statement.

The solution in Example 5.3 is correct, but not especially elegant be
cause each condition is tested redundantly.

5.4. Branches

MODULE Haho EXPORTS Main;

IMPORTSIO;

VAR
ch: CHAR; i: CARDINAL;

BEGIN

91

(*Sept. 20, 1993. LB*)

(*i: counter for position*)

(*statement part*)
SIO.PutText("Please enter a line beginning with 'Haho':\n");

i:= 1;
ch:= SIO.GetCharO;

IF (ch = 'H') OR (ch = 'h') THEN
INC(i); ch:= SIO.GetCharO;
IF (ch = 'A') OR (ch = 'a') THEN

INC(i); ch:= SIO.GetCharO;
IF (ch = 'H') OR (ch = 'h') THEN

INC(i); ch:= SIO.GetCharO;
IF (ch = '0') OR (ch = '0') THEN

INC(i); SIO.PutText("Correct\n");
END; (*IF (ch = '0'). .. *)

END; (*IF (ch = 'H') ... *)
END; (*IF (ch = 'A') ... *)

END; (*IF (ch = 'H') ... *)

IF i < 5 THEN
SIO.PutText("The position of the first deviation is ");
SIO.Putlnt(i); SIO.NIO

END; (*IF i < 5*)

END Haho.

(* 1st character is at 1st position*)
(*read 1st character*)

(* 1st letter is H or h *)

(*2nd letter is A or a*)

(*3rd letter is H or h*)

(*4th letter is 0 or 0*)

(*A difference was detected*)

Example 5.4: Repeatedly nested If statements

One possible program flow is the following:

Test of divisibility by 2 to 5
Please enter a number: 30
Your number is divisible by 2 3 5

A series of conditions that are to be tested until one of them produces
false presents a different kind of problem. Here we offer another program
that reads a character string and tests whether it begins with "Haho", with
out case sensitivity, so that we accept "Haho", "haho", "HAHO" etc. We can
not use Text.Equal because this procedure is case sensitive. If a character
string does not begin with "Haho", then we output the first position where
the first deviation occurred. This requires nesting the individual IF-THEN
statements (see Example 5.4). The variable i always contains the position
of the next character. Mter each successful test of a character, i is incre
mented by one. For matching words, i ascends to 5, and for nonmatching

92 5. Statements

words it represents the first deviating position. The following is a possible
program flow:

Please enter a line beginning with 'Haho'
haha
The position of the first deviation is 4

5.4.2 Case statement

The CASE statement computes an expression whose value determines the
selection of a statement sequence from a set of statement sequences.

Menu input typical of many interactive programs could take the follow
ing form:

SIO.PutText("Choose one of the following: ");
SIO.PutText("(1) first, (2) second, (3) third menu item.");

CASE SIO.GetintO OF
1 => SIO.PutText("first menu item")

12 => SIO.PutText("second menu item")
13 => SIO.PutText("third menu item")

ELSE SIO.PutText("improper input")
END;

Rather than a computation, here the expression consists of the return
value of the function SIO.Getlnt. Depending on whether the user inputs 1,
2 or 3, the corresponding statement executes. If the user inputs any other
number, the statement in the ELSE branch executes.

Syntax of the Case statement

CaseStmt27 = "CASE" Expr66 "OF" [Case42] { "1" Case42 }
["ELSE" Stmts23] "END".

Case42 = Labels43 { "," Labels43 } "=>" Stmts23 .
Labels43 = ConstExpr65 ["00" ConstExpr65].

Thus a Case statement sequence generally takes the following form:

CASE expression OF
I List 1 => statement sequence 1

I List2 => statement sequence2

Listn => statement sequencen
ELSE statement sequenceo
END (*CASE expression*)

5.4. Branches 93

The type of the expression must be an ordinal type (i.e., not REAL or
TEXT). Listi represents a list of individual values (in the form of constant
expressions) or ranges. A range is specified as lower bound .. upper bound,
whereby the bounds themselves are part of the range. The ELSE branch
is optional. All values that occur in any of the CASE lists of a given CASE
statement must be disjunct. The order of specification of the individual
values or ranges, contrary to the IF-ELSIF-ELSIF statement, is arbitrary.

During execution of the Case statement the expression is evaluated
first. Ifthere exists a Listi containing a matching value (of which there can
be only one), then the corresponding statement sequencei executes. If there
is no such list and an ELSE branch was specified, then statement sequenceo
executes.

If there is no list that contains the value and no ELSE branch, then a
run-time error results. This is a significant difference compared to the IF
statement. Ifthere is no valid condition in an IF statement, then the state
ment has no effect apart from the evaluation of the condition itself The
CASE statement assumes an error if none of the lists contains the value of
the CASE expression. In such cases it is always best to generate a run-time
error. In this way the programmer can more easily localize and correct the
error. Ifthe program were to protract execution and possibly continue com
putations with erroneous data, the error would be more difficult to localize.

For this reason we should consider the run-time error imposed by the
language environment not as an irritation, but as an aid. Although a
program crash proves frustrating, unfortunately it is usually our own
fault.

As an example of a CASE statement, let us rewrite our program for the
basic operations of integer arithmetic so that it selects only one operation
specified by the user. DIV and MOD must be specified by their first letters
(upper or lower case). Our first attempt is Example 5.5.

This solution represents a situation that unfortunately sometimes oc
curs in practice as well. It functions correctly for correct user input, but
crashes if the user enters an incorrect operation character. Hence we can
generally conclude that a CASE statement without an ELSE branch should
only be used if every possible value of the CASE expression occurs in one of
the CASE lists.

The compiler outputs a warning when translating a CASE statement
that does not cover all possible values: CASE s ta temen t does not
handle all possible values. This makes it easy to find such
dangerous CASE statements.

We can easily correct our error by inserting an ELSE branch (Example
5.6). This solution is still not correct because it returns the result k even in

94

MODULE Case EXPORTS Main;

IMPORTSIO;

VAR
i, j, k: INTEGER;
operator: CHAR;

BEGIN
SIO.PutText("Basic arithmetic functions\n" &

5. Statements

(*Sept. 20, 1993. LB*)

(*i and) are the operands, k the result*)
(*contains the entered operator "code"*)

(*statement part*)

"Please enter two numbers and an operator\n");

i:= SIO.GetintO;
j:= SIO.GetintO;
operator:= SIO.GetCharO;

CASE operator OF
1'+' => k:= i + j;
I '-' => k:= i - j;
I ,.' => k:= i • j;
I'D', 'd' => k:= i DIV j;
I'M', 'm'=> k:= i MOD j;

END; (*CASE operator*)

SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO;

END Case.

Example 5.5: Case statement without Else branch (danger of run-time error)

the event of a user error, although the value of k would then be undefined.
We can attain a better solution using nested CASE statements (Example
5.7). The outer CASE statement filters out cases with erroneous input. The
inner CASE statement no longer needs to handle errors, so that all possible
values of the CASE expression are now covered in the CASE lists.

This solution suffers from the repeated evaluation of expressions in a
way similar to the flaw in Example 5.3. Similar considerations apply.
Additionally, CASE statements with few cases - such as our outer CASE
statement - should better be avoided.

Two possible executions of Example 5.7 (omitting the greeting text)
follow:

[2334. 1
~I_n_v __ a_l_i_d __ o_p_e_r __ a_t_o_r ________________________________ ___

[2334 * 1
~R_e __ s_u_l_t ____ 7_8_2 ______________________________________ ~

5.4. Branches

CASE operator OF
I '+' => k:= i + j;
I '-' => k:= i - j;
I ,., => k:= i • j;
I'D', 'd' => k:= i DIV j;
I'M', 'm'=> k:= i MOD j;

95

ELSE SIO.PutText("lnvalid operator\n"); (*k remains undefined!*)
END; (*CASE operator*)
SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO;

Example 5.6: Case statement with Else branch

CASE operator OF
1'+', '-', ,*, , 'D', 'd', 'M', 'm' =>
CASE operator OF

I '+' => k:= i + j;
I '-' => k:= i - j;
I ,., => k:= i • j;
I'D', 'd' => k:= i DIV j;
I'M', 'm' => k:= i MOD j;

END; (*CASE operator*)

(*if operator is correct*)
(*now the list contains all possible ualues*)

SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO;
ELSE (*ifthe operator character was a typing error*)

SIO.PutText("lnvalid operator\n");
END;

Example 5.7: Case statements with error handling

IF operator = '+' THEN k:= i + j;
ELSIF operator = '-' THEN k:= i - j;
ELSIF operator = ,., THEN k:= i • j;
ELSIF (operator = 'D') OR (operator = 'd') THEN k:= i DIV j;
ELSIF (operator = 'M') OR (operator = 'm') THEN k:= i MOD j;
ELSE SIO.PutText("lnvalid operator\n");
END; (*IF operator*)

Example 5.8: Ifreplacing Case

96

CASE SIO.GetCharO OF
I 'A' .. 'Z' => SIO.PutText("capitalletter\n");
I 'a' .. 'z' => SIO.PutText("lower-case letter\n");
I '0' .. 'g' => SIO.PutText("number\n");

ELSE SIO.PutText("other\n");
END; (*CASE SIO.GetChar()*)

Example 5.9: Case statement with range lists

IF (SIO.GetCharO >= 'A') AND (SIO.GetCharO <= 'Z') THEN
SIO.PutText("capitalletter\n");

ELSIF (SIO.GetCharO >= 'a') AND (SIO.GetCharO <= 'z') THEN
(*On each invocation a new character is read - which we do not want!*)

5. Statements

Example 5.10: Case improperly replaced by If - side effect!

ch:= SIO.GetCharO;
IF (ch >= 'A') AND (ch <= 'Z') THEN

SIO.PutText("capitalletter\n");
ELSIF (ch >= 'a') AND (ch <= 'z') THEN

SIO.PutText("lower-case letter\n");
ELSIF (ch >= '0') AND (ch <= 'g') THEN

SIO.PutText("number\n");
ELSE

SIO.PutText("other\n");
END; (*IF SIo. GetChar() *)

Example 5.11: Case replaced by If - side effect disabled

In the program fragment in Example 5.9 the CASE statement classifies
the entered characters into categories and outputs a corresponding text.
The invocation of SIO.GetChar is used directly as the CASE expression.

5.4.3 Equivalence of If and Case

IF statements can be transformed to CASE statements and vice versa. There
are situations where either IF or CASE is absolutely preferable. Otherwise
this is a matter of taste.

The CASE statement of Example 5.6 is easy to replace with an IF state
ment (Example 5.8).

5.5. Loops 97

Which variant we choose is a matter of taste here; however, the corre
sponding CASE statement is more readable. If the expression in the CASE

statement is complicated and time consuming, then a CASE statement is
more efficient because the expression is only computed once. If there are
but a few cases to distinguish, then preference usually goes to an IF state
ment. If the CASE expression triggers a side effect (i.e., the expression not
only returns a value, but also changes the state space), then the CASE

statement cannot be replaced so easily with an IF statement. For exam
ple, if we naively convert the CASE statement in Example 5.9 one-to-one to
an IF statement, this would simply be incorrect because we would invoke
GetChar at each prompt (Example 5.10). Invoking GetChar causes a typical
side effect: on each invocation the procedure reads a new character from
the keyboard. The resulting program behaves differently from Example
5.9. We can easily disable this side effect by introducing an auxiliary vari
able (ch) (Example 5.11). The resulting IF construct is equivalent to the
CASE version (although less efficient).

5.5 Loops

Loops (or repetition statements) repeat the statements that they bracket
(the loop body). Either a loop is infinite or it ends on a certain condition,
the loop condition. The role of a loop condition can be seen from two view
points. It is either the condition that controls whether the loop body is to
be repeated, or the condition to terminate the repetition. In the first case
we also call the loop condition entry condition; in the second case termina
tion condition. For a given loop the following always applies: termination
condition = NOT entry condition.

In some loops the loop body executes at least once, while in others the
loop body might not execute at all. Modula-3 offers four types of loops that
differ primarily in the specification of the loop condition

• While (Section 5.5.1)

• Repeat (Section 5.5.3)

• For (Section 5.5.4)

• Loop (Section 5.5.5)

5.5.1 While loop

This repetitive control structure evaluates the loop condition before execut
ing the loop body. Take the example of integer division, with dividend di
vided by divisor, both of type CARDINAL. A naive algorithm might subtract

98 5. Statements

dividend from divisor until no further subtraction is possible because divisor
has become larger than dividend. The number of subtractions represents
the result of integer division:

result := 0;
WHILE dividend> divisor DO

INC(result); dividend := dividend - divisor
END;

AB long as the condition dividend> divisor is true, the statements after
the keyword DO are executed. The condition must be tested before execu
tion of the statements because the divisor could be larger than the dividend
from the start; the result of this integer division would be 0; itis computed
correctly by the loop (because no computation is done at all). Mter the
computation, the division remainder is contained in the variable dividend.

Syntax of the While loop

WhileStmt40 = "WHILE" Expr66 "DO" Stmts23 "END" .

Expr66 must be a Boolean expression. The WHILE loop executes as fol
lows: First Expr66 the loop condition is evaluated. Ifit is true, then the loop
body (Stmts23) is executed and then the condition is reevaluated. This is re
peated until the condition is false. Then the WHILE statement terminates
and the program resumes at the line after the END. At this location the
loop condition is certainly false. If the condition is initially false, the loop
body does not execute at all. On the other hand, if the condition never be
comes false, then the loop body executes infinitely! It is the programmer's
responsibility to assure that the loop condition is set to false at some point
in the loop body. The WHILE statement only tests the condition, but does
not set it.

As our first example of the WHILE statement, let us generalize Example
3.5 (page 47) such that the program computes the arithmetic mean of a
number sequence of any length (Example 5.12). We need to be able to
read any number of numbers in a loop, and the entry of a stop character
indicates the end of the sequence. We will store the sum of the sequence in
the variable sum. On each repetition of the loop we read a new number and
increase the count of numbers n by 1 and sum by the value of the number.
The termination condition is the entry of the stop character.

Note the initializations before the WHILE loop: To be able to use a
counter in a loop, it must be set to a start value before the loop begins!
We test for the stop character using the function SIO.LookAhead, which re
turns the next character in the input stream without removing it. Thus,
e.g., if the next character is a digit, then the number is read with Getlnt.

5.5. Loops 99

MODULE ArithMean EXPORTS Main; (*04.11.94. LB*)
(*The program computes the arithmetic mean of a series of numbers*)

IMPORT SIO, Text;

CONST
Stop = '.';

VAR
x, n: INTEGER;
sum: INTEGER;
mean: REAL;

BEGIN

(*terminates the input stream*)

(*x: current value, n: number ofvalues*)
(*stores the sum of the input numbers*)

(*arithmetic mean is type REAL*)

SIO.PutText("Arithmetic mean of a series of numbers\n" &
''Terminate input with" & Text.FromChar(Stop) & "\n");

sum:= 0;
n:= 0;

WHILE SIO.LookAheadO # Stop DO
x:= SIO.GetintO;
INC(sum, x);
INC(n);

END; (*WHILE x # Stop*)

IF n > 0 THEN
mean:= FLOAT(sum) / FLOAT(n);
SIO.PutText("Arithmetic mean = ");
SIO.PutReal(mean); SIO.NIO

ELSE
SIO.PutText("Empty input stream\n")

END; (*IF n i 0*)
END ArithMean.

(*sum initialized to 0*)
(*n initialized to 0*)

(*Termination condition: the stop character*)
(*reads a number into x*)

(*increments sum by x*)
(*increments n by 1*)

Example 5.12: Arithmetic mean ofa series of numbers

At the end of the loop we output the arithmetic mean as a REAL num
ber because the sum divided by the count might not be divisible without a
remainder. One possible execution of the program (without the greeting)
might be the following:

-10085050164.
Arithmetic mean 4.6666665

100

MODULE Euclid EXPORTS Main;
IMPORTSIO;

VAR

5. Statements

(*20.09.93. LB*)

a, b, x, y: CARDINAL;
BEGIN

(*a, b: input values; x, y: working variables*)
(*statement part*)

SIO.PutText("Euclidean algorithm\n Enter 2 positive numbers: ");

a:= SIO.GetintO;
b:= SIO.GetintO;

(*first number assigned to a*)
(*second number assigned to b*)

x:= a; y:= b; (*x and y can be changed by the algorithm *)

WHILE x# Y DO
IF x > y THEN x:= x - y ELSE y:= y - x END;

END; (*WHILE x # y*)

SIO.PutText("Greatest common divisor of ");
SIO.Putlnt(a); SIO.PutText(" and "); SIO.Putlnt(b);
SIO.PutText(" = "); SIO.Putlnt(x); SIO.NIO;

END Euclid.

Example 5.13: The Euclidean algorithm (without input validation)

Euclidean algorithm

The next example features the famous algorithm of Euclid to find the great
est common divisor (GCD) oftwo positive numbers. The algorithm is spec
ified as follows:

1. Compare the two numbers. If they are equal, the GCD is the same.

2. If the numbers are not equal, subtract the smaller number from the
larger one and replace the larger number by the result of the sub
straction.

3. Continue at step 1.

The algorithm stops upon finding the GCD - at the latest when the
numbers are both 1.

The algorithm did not become famous without cause, for it represents
one of the first algorithms ever. The geometric inspiration is quite
obvious: The algorithm can be executed geometrically with relative
ease.

With the help of a WHILE loop we can quite easily express the algorithm
(let X > 0 and y > 0):

WHILE x #y DO
IF x > y THEN x:= x - y ELSE y:= y - x END;

END; (*WHILE x # y*)

5.5. Loops

MODULE Euclid2 EXPORTS Main;

IMPORTSIO;

VAR

101

(* 17.05.94. LB*)

a, b: INTEGER;
x, y: CARDINAL;

(*input values *)
(*working variables *)

BEGIN
SIO.PutText("Euclidean algorithm\nEnter 2 positive numbers: ");

a:= SIO.GetintO;
WHILE a <= 0 DO

SIO.PutText("Please enter a positive number: "); a:= SIO.GetintO;
END; (*WHILE a < 0*)

b:= SIO.GetintO;
WHILE b <= 0 DO

SIO.PutText("Please enter a positive number: "); b:= SIO.GetintO;
END; (*WHILE b < 0*)

(*statement part*)

x:= a; y:= b; (*x and y can be changed by the algorithm *)
WHILE x# y DO

IF x > y THEN x:= x - y ELSE y:= y - x END;
END; (*WHILE x # y*)

SIO.PutText("Greatest common divisor = "); SIO.Putlnt(x); SIO.NIO;
END Euclid2.

Example 5.14: The Euclidean algorithm with controlled input

In Example 5.13 the algorithm is embedded in a program. Since we
know that the algorithm is defined for positive numbers, we declare the
variables as type CARDINAL.

Program 5.13 has one shortcoming: If the user enters a negative num
ber, the program crashes (at run time the language environment detects
that we are attempting to assign a negative value to a variable of type
CARDINAL). Even worse, if one of the entered numbers is zero, then the
program falls into an infinite loop. For example, if the second entry is
0, then X is always decremented by 0; the termination condition is never
met. Although negative numbers and zero are actually erroneous input,
the punishment is too severe. We must always assume that an interactive
user can make a mistake. In such cases we should request a new entry in
stead ofletting the program crash. Program example 5.14 eliminates this
shortcoming. Mter entry of each number, a WHILE loop requests input of
a new number until a positive number is entered. If the number is correct
from the start, this WHILE loop has no effect. Note that we had to change
the type of the input variables a and b to INTEGER to prevent the program
from still crashing on assignment of a possibly negative number.

102 5. Statements

The actual algorithm in Example 5.14 is surprisingly the smallest part
of the program. This is also typical of larger program systems: The
various management tasks (inputJoutput, error handling, etc.) often
require a much larger portion of the code than the actual computa
tions.

5.5.2 Loop invariants

As another example we will develop an algorithm that multiplies two natu
ral numbers using only addition and subtraction. The algorithm is actually
quite simple: x * y is equivalent to x + x ... + x (y times). We introduce two
auxiliary variables: result to store the result and steps to count the number
of steps (Example 5.15).

Example 5.15: Multiplication using only addition and subtraction

result:= 0;
step:= y;
WHILE step> 0 DO

result:= result + x; step:= step - 1 ;
END; (*WHILE*)

Now we can pose the question: Can we be sure that this algorithm is
correct? How can we be sure? Ifwe attempt to test the algorithm for all pos
sible numbers, then even the fastest computer in the world would require
centuries. Even for such a simple case, exhaustive testing is impossible.
We must find assurance in another way, i.e., with a more mathematical ap
proach. Although we do not discuss formal verification [DFS88] in detail,
we will show how to check the correctness of a loop semiformally. We use
the following idea:

• We formulate the required result (call it Q) using predicate logic.

• We look for a condition that applies during the entire execution of the
loop (an invariant). We can write this loop invariant (call it 1) for
the WHILE loop as follows (we put the invariant in parentheses {} to
indicate that it is not directly part of the algorithm):

{I} WHILE condition DO statements {I} END

• We look for a termination condition B such that the result Q ensues
from B /\ I (written B/\ I =::} Q). Note that the termination condi
tion for the WHILE loop is the negation of the WHILE condition. The
WHILE loop executes until the WHILE condition becomes false, or the
termination condition becomes true.

5.5. Loops 103

• Now we can be sure that if our loop terminates at some time, then
it must return the correct result. I applies for each iteration of the
loop, B applies after the loop, and BI\I imply the correct result. If
we prove this for a given algorithm, then we have proven the partial
correctness of the algorithm.

• Finally, we also show that the algorithm terminates. Then we have
proven the total correctness.

Now let us try to apply this procedure to Example 5.15.

• The required result is easy to formulate:

Q : result = x * y.

• We find the invariant as follows: Before the first execution of the loop
result = 0 and step = y. With each iteration result is increased by x and
step is decreased by 1. The algorithm is defined for natural numbers;
i.e., x and y must not be negative. Hence we can derive the additional
requirement that step must not become negative (the loop body is only
executed if step> 0). Thus the following condition always applies:

I : (result + (step * x) = x * y) 1\ (step >= 0)

• Furthermore, the following applies: Ifstep = 0, then result = x * y. This
gives us the termination condition

B: step = O.

The WHILE condition thus becomes step # o. We could have written
the loop in the form WHILE step # 0 DO ... END. Our variant is more
robust because the loop is simply skipped if step erroneously receives
a negative value.

• This already demonstrates the partial correctness. I is a valid invari
ant, and if B is true as well, then I becomes the result. For example,
if y = 0 then the loop body is not executed - result = 0 is the correct
answer.

• For the total correctness we must still prove that the loop actually
terminates. Here we must show that we approach the termination
condition with each iteration. In this case this means that steps> 0
must become false at some point. Since steps> 0 always applies at
the start ofthe loop body and steps is reduced by 1 with each iteration,
it must eventually become O.

104 5. Statements

It would also be possible to find other algorithms that meet the same
invariant and termination condition and yet are still different. [WG92,
RW92] offer such an algorithm, which is somewhat more complicated,
yet still more efficient (it requires less iterations) and fulfills the same
conditions.

Assertions

Modula-3 allows specification of assertions at any location in a statement
sequence. We can use assertions, e.g., to formulate loop invariants. Strictly
speaking, this feature is not part ofthe language, just as the invariants are
not part of the algorithm. Modula-3 permits assertions with the following
syntax:

Assertion = "<*" "ASSERT" Expr66 "*>" .

Expr66 is a Boolean expression. If it is true, the program continues to
run. If it is false, a run-time error is generated which terminates the pro
gram with an error message.

We could extend the program fragment in Example 5.15 so that we spec
ify the loop invariant directly as an assertion (Example 5.16).

As language elements, assertions belong to the pragmas. Pragmas are
used primarily to control the functioning of the compiler. Pragmas
are always bracketed in the special symbols <* and *>. One pragma,
e.g., allows disabling compiler warnings, while another permits link
ing program components that were written in another programming
language (e.g., in C) (see Appendix B.8.5).

The observant reader might be wondering why we cannot test the as
sertion with an IF statement, as in Example 5.17. This would be possible.
However, using assertions as pragmas indicates that testing the condition
is not part of the algorithm, but belongs other dimensions: on the one hand
to the documentation and simultaneously to the the improvement of secu
rity. Another advantage of specifying assertions in the form of pragmas is
that they can be ignored by setting a compiler option. We can direct the
compiler (with the option -A) to ignore all assertions (to handle them as
comments). Thus a program might contain many assertions during its de
velopment phase. Once we are convinced that our program is correct, the
assertions can simply be "compiled out"; then they only serve as comments,
but no longer affect the size or execution speed of the compiled program. If
we had chosen the version with the IF statement, we would have to man
ually remove the assertions in the final phase. Such obstacles would nor
mally lead programmers to prefer to do without assertions, thus saving not
only their own energy but also storage and CPU time. Naturally the loss is
much greater for serious applications: Faulty programs result!

5.5. Loops

result := 0;
step:= y;
<* ASSERT (result + (step * x) = x * y) *>
WHILE step> 0 DO

result := result + x; step:= step - 1 ;
<* ASSERT (result + (step * x) = x * y) *>

END; (*WHILE*)

Example 5.16: Multiplication algorithm with assertion

result:= 0;
step:= y;
WHILE step> 0 DO

IF (result + (step * x) = x * y) THEN
result:= result + x; step:= step - 1 ;

ELSE
SIO.PutText("ASSERTION ERROR -- CAUTION!");

END (*IF*)
END; (*WHILE*)

Exam pIe 5.17: If statement instead of assertion (unfavorable)

5.5.3 Repeat loop

105

This loop statement has its termination condition after the execution ofthe
loop body.

The following algorithm determines whether the positive number can
didate is a prime number. The variable i is initialized to 1 and then in
cremented by 1 in each iteration until either candidate can be divided by
i without a remainder (hence not a prime number) or until the following
applies:

i2 > candidate

Variables i and candidate of the code fragment are of type CARDINAL:

i:= 1;
REPEAT

i:= i + 1
UNTIL ((candidate MOD i) = 0) OR (i * i > candidate);
IF i * i > candidate THEN

SIO.PutText("Prime number")
END;

The statement between the keywords REPEAT and UNTIL executes until
the termination condition is fulfilled. An interesting aspect of this exam
ple is that the actual work is done in the evaluation of the termination
condition, while the loop body itself simply consists of an addition.

106

MODULE Prim EXPORTS Main;

IMPORTSIO;

VAR candidate, i: INTEGER;

BEGIN
SIO.PutText("Prime number test\n");
REPEAT

SIO.PutText("Please enter a positive number; enter 0 to quit. ");
candidate:= SIO.Getlnt();
IF candidate> 2 THEN

i:= 1;
REPEAT

i:= i + 1
UNTIL ((candidate MOD i) = 0) OR (i • i > candidate);

5. Statements

(*21.09.93. LB*)

IF (candidate MOD i) = 0 THEN SIO.PutText("Not a prime number\n")
ELSE SIO.PutText("Prime number\n")
END; (*IF (candidate MOD iJ = 0 ... *)

ELSIF candidate> 0 THEN
SIO.PutText("Prime number\n") (* 1 and 2 are prime*)

END; (*IF candidate> 2*)
UNTIL candidate <= 0;

END Prim.

Example 5.18: Prime number testing with Repeat

Syntax of the Repeat loop

RepeatStmh5 = "REPEAT" Stmts23 "UNTIL..:' Expr66.

Expr66 (the condition) is a Boolean expression. First the loop body ex
ecutes; then the condition is evaluated. If the condition is false, the loop
body is repeated until the condition becomes true. This terminates the RE

PEAT statement, and execution resumes with the next statement.
Contrary to the WHILE statement, the loop body of the REPEAT state

ment always executes at least once (because the condition is tested only
after the first iteration). Furthermore, a WHILE statement repeats as long
as the condition is true, while a REPEAT statement executes as long as the
condition is false. If the condition is never true, the loop body repeats in
finitely. The REPEAT statement - similar to the WHILE statement - only
tests the loop condition, but does not set it.

In Example 5.18 the prime number algorithm is imbedded in a program
that enables us to use the algorithm repeatedly. The algorithm is embedded
in an outer REPEAT loop that terminates the program on an entry ~ o.

Let us rewrite the multiplication algorithm of Example 5.15 using a
REPEAT loop. The loop invariant remains intact; only the termination con
dition changes. In Example 5.19 we list the complete program source code.
The program explicitly asks whether the user wants to use the algorithm

5.5. Loops

MODULE Mul EXPORTS Main;

IMPORTSIO;

VAR
x, y, result, step: INTEGER;
stop: CHAR;

BEGIN
REPEAT

SIO.PutText("Multiplication of two positive numbers: ");

REPEAT
x:= SIO.GetintO;

107

(*21.09.93. LB*)

(*controls termination *)

IF x <= 0 THEN SIO.PutText("Enter a positive number: ") END;
UNTIL x > 0; (*Reads until a positive number is entered*)
REPEAT

y:= SIO.GetlntO;
IF y <= 0 THEN SIO.PutText("Enter a positive number: ") END;

UNTIL y > 0; (*Reads until a positive number is entered*)

result:= 0;
step:= y;
REPEAT

result:= result + x; step:= step - 1 ;
<* ASSERT (result + (step * x) = x * y) *>

UNTIL step = 0;

SIO.PutText("x * y = "); SIO.Putlnt(result); SIO.NI();
SIO.PutText("Do you want to continue? yin ");
stop:= SIO.GetChar();

UNTIL (stop = 'N') OR (stop = 'n'); (*on all other characters we continue*)
END Mul.

Example 5.19: Multiplication and input control with Repeat

again. The algorithm with the WHILE loop also functioned properly for y=O.
The variant with the REPEAT loop only functions correctly ify > o. On y =
o after the first iteration we would have step = - 1. We have now inserted
the test y > 0 into the entry component. In this case the WHILE variant is
better.

The following reflects a possible execution:

Multiplication of two positive numbers: -32
Enter a positive number: 3
x * y = 6
Do you want to continue? yin n

108 5. Statements

5.5.4 For loop

This kind of loop is used in cases where the number of iterations is known
in advance. For example, to write all numbers from 1 to 100 on the screen,
we could simply write the following:

FOR i:= 1 TO 100 DO SIO.Putlnt(i) END;

In this loop a (read-only) variable i is automatically declared and ini
tialized to 1. Then the loop body (the statement after the keyword DO) ex
ecutes, the variable automatically is incremented by 1, and the loop body
executes again. This repeats until the variable becomes greater than 100.
Let us examine this more precisely:

Syntax of the For loop

ForStmt3o = "FOR" Ident89 ":=" EXpr66 "TO" EXpr66
["BY" EXpr66 1 "00" Stmts23 "END".

The general form of a FOR statement is:

FOR id := startValue TO endValue BY step DO statement sequence END

IdentS9 represents the control variable (or counter). It is declared only
through its occurrence in a FOR statement, and it disappears again after
the statement. Its scope (see Section 9.1) is restricted to the loop body of
the FOR statement. The three expressions (EXpr66) must be of an ordinal
type (e.g., INTEGER or CHAR, but not REAL or TEXT).

The FOR statement executes as follows: First - and only once - the three
expressions are evaluated. The first (after the := symbol) is the start value
ofthe control variable, the second (after the keyword TO) is the final value,
and the third (after BY) is the step for incrementing the control variable.
On omission of the optional BY phrase, the step is set to 1.

Step is always of type INTEGER, even if the control variable is, e.g., of
type CHAR. The control variable is incremented as though the state
ment INC (control variable, step) concluded the loop.

With a positive step the loop runs incrementally; with a negative step it
decrements. With step = 0 the loop is infinite.

The value of the control variable is set to the start value. For an in
cremental loop the statement tests whether the control variable::; the fi
nal value; for a decrementalloop, whether the control variable:::: the final
value. If the corresponding condition is true the loop body executes. Next

5.5. Loops 109

the control variable is incremented by the step (which amounts to decre
menting for a negative step) and everything repeats as long as the final
value is not exceeded. If the start value is greater than the final value at
the start of an incremental loop (or smaller for a decrementalloop), then
the loop body does not execute at all.

The control variable is set internally only and cannot be modified by the
programmer (it is read-only).

The FOR loop - contrary to WHILE and REPEAT loops - assures that
the loop progresses toward the termination condition. Thus it is easy to
demonstrate that a FOR loop terminates: If step # 0, it always terminates
(assuming that all statements in the loop body terminate).

Some programming languages (e.g., Modula-2) restrict the step to a
constant expression. Then the compiler can always detect the case step
= 0 and generates an error message on compilation. This guarantees
that a For loop always terminates. Naturally the drawback of this
solution is that the step cannot be computed at run time.

In Modula-3 the FOR loop is defined especially cleanly. In many other,
otherwise respectably defined programming languages, the FOR loop
has two traps, due to the fact that the control variable is a normal
variable:

1. Although it is strongly discouraged, the programmer can modify
the control variable within the loop. The consequences are un
predictable. Take an example like the following:

FOR i:= 1 TO N DO i:= i - 1; ... END;

This is obviously an infinite loop. Fortunately Modula-3 prohibits
such actions.

2. The value of the control variable is undefined after the loop. If
the programmer nevertheless makes some assumption about its
value, the compiler cannot detect this. What makes the situation
worse is that this value depends on the respective compiler. This
means that the program might run properly in one language en
vironment but incorrectly in another. This problem cannot occur
in Modula-3 because the control variable no longer exists after
the loop.

As an example of a FOR loop, let us rewrite our multiplication exercise
once again:

result := 0;
FOR step := y TO 1 BY -1 DO result := result + x; END;

110 5. Statements

As expected, this algorithm is easiest to specifY with the FOR loop be
cause we know in advance that we need to add X to itself exactly y times. We
no longer need to define the variable step; it can serve as control variable.

We could replace the decrementalloop with an incremental one:

result := 0;
FOR step := 1 TO Y DO result := result + X; END;

For our next example we will write a program that outputs every fifth
number to 32. With a FOR loop the solution is a single line:

FOR i:= 1 TO 32 BY 5 DO SIO.Putlnt(i) END;

This yields the following output:

[~1 __ 6 __ 1_1 __ 1_6 __ 2_1 __ 2_6 __ 3_1 ______________________________ J

We present additional examples of FOR loops after introducing arrays
(Section 8.1).

5.5.5 Loop statement

The LOOP statement is an endless loop; however, departure is possible at
any location using the EXIT statement.

Syntax of the Loop statement

LoopStmt33 = "LOOP" Stmts23 "END".
ExitStmhs = "EXIT".

The statements within LOOP statement are repeated until an EXIT state
ment is encountered. An EXIT causes immediate departure from the loop
and continuation of program execution after the end of the respective loop.
In nested loops the EXIT statement exits only the inner loop, i.e., the loop
in which the EXIT appears.

Taken precisely, EXIT raises the predefined Exit exception (see Sec
tion 15).

Although we present the EXIT statement in the context of the LOOP

statement, it can occur in any loop. It can exit any loop. Use EXIT only as
an emergency exit! This applies particularly for loops other than LOOP. You
can exit a FOR, REPEAT or WHILE loop at any location with EXIT. However,
the verification method using invariants applies only if all statements have
only one entry point and one exit point.

5.5. Loops 111

I We highly recommend using the EXIT statement only in the context of a
LOOP statement.

The EXIT statement violates our initial requirements because it permits
departure from a loop at an arbitrary location. Although the LOOP state
ment still has only one exit point (at the END of the loop), the IF statement
that typically contains the EXIT statement has at least two exit points.

LOOP

IF X < 0 THEN EXIT ELSE DEC(x) END (* Jumps to end if x < 0 *)

END (*LOOP*)

A LOOP statement can also have no exit point, which means that it does
not terminate.

You might ask what necessitates programming infinite loops. In most
cases infinite loops make no sense and are due to programming errors.
However, there are exceptions, especially in the area of parallel program
ming (see Chapter 16), where infinite loops prove quite practical. Consider,
e.g., our language environment, tirelessly waiting for our commands, or
programs that send and receive messages around the clock in a communi
cation network. For such cases it is quite appropriate to have a distinct
language construct where the normal case is an infinite loop and termina
tion (EXIT) is the exception. For normal sequential programs, however, the
LOOP statement should be avoided!

Now let us write a program that can apply the Euclidean algorithm to
any number of positive number pairs. The user can end the program by en
tering a number :s: O. On such an entry, we want the program to terminate
immediately rather than prompting for the second number. For such pur
poses the LOOP statement makes expression somewhat easier than with
other loops (Example 5.20). For the sake of completeness, we will rewrite
the Euclidean algorithm using a LOOP statement. The following is a possi
ble program execution:

Euclidean algorithm: Enter pairs of numbers
3612280
Greatest common divisor = 3
Greatest common divisor = 4
End of Euclidean algorithm

In general LOOP statements that contain only a single EXIT statement
at the beginning or end can always be replaced easily with a WHILE or

112

MODULE Loop EXPORTS Main;

IMPORTSIO;

VAR

5. Statements

(* 18.05.94. LB*)

a, b, x, y: INTEGER; (*a, b: input value; x, y: working variables*)

BEGIN (*statement part*)
SIO.PutText("Euclidean algorithm: Enter pairs of numbers\n");

LOOP
a:= SIO.GetintO;
IF a <= 0 THEN EXIT END; (*immediatelyexits the outer Loop*)

b:= SIO.GetintO;
IF b <= 0 THEN EXIT END; (*immediatelyexits the outer Loop*)

x:= a; y:= b; (*a and b are certainly> 0*)
LOOP

IF x > y THEN x:= x - y ELSIF Y > x THEN y:= y - x ELSE EXIT END
END; (*inner LOOP*)
SIO.PutText("Greatest common divisor ="); SIO.Putlnt(x); SIO.NIO;

END; (*outer LOOP*)

SIO.PutText("End of Euclidean algorithm\n");
END Loop.

Example 5.20: Input control and the Euclidean algorithm with Loop and Exit

REPEAT statement. Exit points at various locations in a large outer loop
are easier to implement with a LOOP statement. Despite this seductive
power, we repeat our warning that the LOOP and EXIT statements should
be avoided so as not to encumber the verification of our programs unneces
sarily.

5.5.6 Equivalence of the repetition statements

The most powerful repetition statement is obviously the LOOP statement.
Generally the LOOP statement cannot simply be replaced with the other
repetition statements (as is the case inversely). WHILE and REPEAT loops
are equally flexible; they can always be converted to one another easily.
The FOR loop offers the least flexibility and so can always be replaced easily
with other loops; nevertheless, it has particular advantages in processing
arrays (Section 8.1).

Arrays are data structures consisting of similar elements and requir
ing that the number of elements be known before the the creation of an
array. This is why FOR loops - which require knowing the number of
steps in advance - usually provide an ideal tool for processing arrays.

5.5. Loops

VAR k: INTEGER;
BEGIN

113

k:= 3; (*Variable "k" outside the For loop*)
FOR k:= 1 TO k' k BY k DO SIO.Putlnt(k) END;
SIO.Putlnt(k); (*this is the outer k, not the control variable "k"!*)

Example 5.21: Exotic For loop

The following shows how to express WHILE and REPEAT statements us
ing IF and LOOP statements:

WHILE B DO A END == LOOP IF B THEN A ELSE EXIT END END

REPEAT A UNTIL B == LOOP A; IF B THEN EXIT END END

Note that the EXIT statement occurs only once in each of these cases.
WHILE and REPEAT statements can also be converted to one another easily:

WHILE B DOA END == IF B THEN REPEAT A UNTIL NOT BEND

REPEAT A UNTIL B == A; WHILE NOT B DO A END

Now let us express the FOR loop using IF and WHILE statements (we
omit exception handling here; refer to the complete specification in [NeI91]):

FOR id := startValue TO endValue BY step DO A END ==
startValue, endValue and step are computed once and stored
internally in pseudovariables (E and S). The variable id can
only be modified internally.

id := startValue; E:= endValue; S:= step;
IF S >= 0 THEN

WHILE id <= E DO A; INC(id, S) END (*increment id*)
ELSE

WHILE id >= E DOA; INC(id, S) END (*decrement id*)
END (*IF S >= 0*)

On the basis of this definition we can correctly interpret the somewhat
pathological program fragment in (Example 5.21). Outside the FOR loop
the variable k has the value 3. Since the expressions are evaluated before
execution of the loop, we have start Value = 1, endValue = 9 and step =
3. Within the loop body the k declared outside is invisible and the k used
as control variable is a different variable! Mter the FOR loop the control
variable k ceases to exist. The program fragment will produce the following
output on the screen:

114 5. Statements

[~1 __ 4 __ 7 __ 3 ___ J

This example is not intended to say that the FOR loop should be used in
this way. It should merely say that the behavior of the loop can be derived
unambiguously from the definition even for this curious case - a property
that not every language definition shares.

Chapter 6

User-defined simple types

Thus far we have used only predefined (built-in) types. We have declared
constants and variables, but no types.

We have seen that assigning data to types brings many advantages.
However, if we only had the predefined data types to work with, we could
write only relatively simple programs. A particular strength of many pro
gramming languages (especially the Pascal family) is the possibility for the
programmer to define custom types based on the predefined types using
type constructors. This principle applies recursively, i.e., further types can
derive from these custom (or user-defined) types.

Such custom types are normally defined using type declarations, with
a name assigned by the user. This type name can then be used in vari
able declarations as a type name. Modula-3 even allows specifYing a type
directly in the variable declaration, which creates a nameless type. We
will initially avoid this manner of implicit type declaration and explicitly
declare all user-defined types.

This chapter introduces two simple user-defined types: the enumeration
and the subrange.

6.1 Enumeration

In practice we often require a list of names (identifiers). For example, we
might write a program that manages our classes. To assign designations
to the classes, we might number them, e.g., Mathematics = 1, Software = 2,
etc. However, it would be more elegant to use the designators Mathematics
and Software themselves in a program. This is where enumerations come
in. We define an enumeration by listing a sequence of identifiers.

116 6. User-defined simple types

TYPE
Abc1 = {a, b, c};
Abc2 = {a, b, c, d, e, f, g, h, i, j, k, I, m};
Abc3 = {n, 0, p, q, r, s, t, u, v, w, x, y, z};
Friends = {Eleanor, Peter, Robert, Albert};
Classes = {Software, Mathematics, English, Business};
Empty = {};

Example 6.1: Declaration of enumerations

Syntax of the enumeration

EnumType51 = "{" [IDListS7 l "y.
IDListS7 = Idents9 { "," Idents9 }.

Thus an enumeration (EnumType51) consists ofa list (IDListS7) ofidenti
fiers (ldents9) delimited by commas, all enclosed in braces. The values of an
enumeration are exactly the listed identifiers. These identifiers form a set
that is ordered by the sequence of their occurrence in the list. Enumera
tions are ordinal types. Given the enumeration:

T = { identifier], identifier2, ... , identifiern };

Thus identifieri < identifieri+l holds for all I ::; i ::; n - 1. Example 6.1
shows some enumerations. Note that an enumeration can be empty (as
Empty in the example).

What is the sense of an empty enumeration? Perhaps not much, but it
can be used as a null value enumeration. The existence of a null value
sometimes facilitates the general description of a problem. An empty
enumeration could represent the list of classes for a college major that
does not exist (yet).

The elements of an enumeration can be referenced with an expression
of the form Typname.identifier. The identifier is qualified by the type name.
Thus Friends.Eleanor, Abc1.a, Abc2.a, Abc3.n and Classes. Mathematics are
all valid and distinct identifiers.

You might find it annoying that we must write the type name before
the identifier, analogous to having to write the number 1 as INTE
GER.1. In many other languages, such as Pascal and Modula-2, the
identifiers in the list must be used without any qualification. The ad
vantage of the Modula-3 solution is that it prevents name conflicts.
A name conflict occurs when multiple identifiers with different mean
ings bear the same name (such as Abc1.a and Abc2.a). Such a name
conflict can occur especially easily if we import an enumeration from
another module and its values conflict with the identifiers of the im
porting module. In such a case we would have to rename our own
identifier. This uncomfortable situation cannot occur in Modula-3.

6.1. Enumeration 117

Why do we need enumerations at all? An ordered set of identifiers could
easily be simulated with the declaration of constants, e.g.:

CONST
a = 0; b = 1 ; c = 2; d = 3; ...
Peter = 0; Robert = 1; Albert = 2; Eleanor = 3;
Software = 0; Mathematics = 1; English = 2; Business = 3;

It is easy to see how error-prone this method is. Ifwe had erroneously
written Albert = 1 instead of Albert = 2, then Albert and Robert would be
equal. This error cannot occur with enumerations; the identifiers within
a list are disjunct. What is more important, in the constant solution the
identifiers represent normal INTEGER values. The relational operation
Mathematics = Robert would return true which as a rule is quite ridicu
lous. Furthermore, we could incorporate these numbers in an arbitrary
arithmetic operation; the compiler would compile c * Eleanor + English -
Albert, although it makes no sense. Such operations are precluded with
enumerations.

One important application of enumerations is to represent the states of
a small state space. Enumerations often serve as the index range of an ar
ray (see Chapter 8.1). They have an inherent similarity to CASE statement
(an enumeration defines a finite collection of values; a CASE statement se
lects from such). Thus enumerations can often be processed ideally with a
CASE statement.

6.1.1 Predefined enumerations

In Modula-3 the types BOOLEAN and CHAR are declared as predefined enu
meration types. This is important because this directly implies that both
types specify an order. Type BOOLEAN is defined as {FALSE, TRUE}, thus
FALSE < TRUE.

The reserved identifiers TRUE and FALSE can be understood as syn
onymous for BOOLEAN.TRUE and BOOLEAN. FALSE. Since the identi
fiers are reserved, a name conflict is precluded.

The values of type CHAR are defined in the code table. We also do not
qualifY the values of type CHAR with the type name; instead, we use the
notation that we already introduced for character literals (see Section 4.3).

6.1.2 Range

The range of an enumeration that is not predefined is specified by the pro
grammer. The possible values of a variable in a given enumeration are
exactly the identifiers specified in the list.

118 6. User-defined simple types

TYPE
Days = {Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday};
Classes = {Software, Mathematics, English, Business};

VAR
day: Days;
class: Classes;

(*stores the current day*)
(*stores the current class*)

BEGIN (*Enumerations*)

IF (day = Days.Tuesday) AND (class = Classes. Mathematics) THEN
SIO.PutText("Take along compass\n") (*Tuesdays is geometry*)

ELSIF (day < Days.Saturday) AND (class = Classes. English) THEN
SIO.PutText("Take along dictionary\n")

ELSIF day> Days.Friday THEN
SIO.PutText("Enjoy rest, rehabilitation and recreation\n")

END; (*IF day ... *)

Example 6.2: Use of enumerations

6.1.3 Operations

Relational operations

Relational operations are executed relative to the ordinal number of the
identifier. This number represents the position of the identifier in the dec
laration list, with the first identifier having ordinal number 0 (compare
type CHAR in Section 4.3). The ordinal numbers are normal non-negative
integers; hence the syntax and semantics of relational operations for enu
merations is identical to that for integers. If the variable class is of type
Classes (see Example 6.1), then the test class < Classes. English for class
= Classes. Software or class = Classes. Mathematics returns true, otherwise
false.

In Example 6.2 we assume that the variables day and class contain a
correct value before they are tested.

Predefined functions

All predefined functions that apply to ordinal types also work for enumer
ations: If T is an enumeration, then

FIRST(T) is the smallest element of type T
LAST(T) is the largest element of type T
NUMBER(T) is the number of elements of type T

6.1. Enumeration 119

With the declarations of Example 6.2:

FIRST(Classes) = Software
LAST(Classes) = Business
NUMBER(Classes) = 4

Since enumerations are ordinal types, ORO and VAL (see Section 4.3.2)
can also be used. If e is an enumeration variable or constant, then ORO(e)
is the ordinal number ofthe current enumeration value. If ° is the ordinal
number of an enumeration value of enumeration T, then VAL(o, T) is the
corresponding enumeration value. Therefore:

VAL(ORO(e), T) = e

For a particular value:

ORO(Classes.English) = 2, VAL(2, Classes) = Classes. English

Thus the ORO and VAL functions can be used to convert enumeration
values to ordinal numbers and back. In a carefully designed program
such conversions are seldom necessary, and if so, then usually for the in
put/output of enumeration elements.

We can determine the predecessor and successor of an enumeration
value as follows:

INC(e), OEC(e)

This sets the value of e to the next (previous) identifier in the list. If the
variable is class = Classes. English, then after INC(class) the value of class
has changed to Classes. Business, and after DEC (class) the value of class
is Classes. Mathematics. If the value of the parameter of INC or DEC is the
value of LAST or FIRST ofthe enumeration, respectively, then the language
environment generates a run-time error - as we would expect.

Input and output of enumeration elements

The identifiers of an enumeration are visible only within the program. We
cannot simply input and output them. We must employ either correspond
ing texts or the ordinal numbers. Example 6.3 shows a module that con
verts ordinal numbers to enumeration elements and later transforms the
enumeration elements to texts. We can often process an enumeration easily
with the FOR statement, e.g., to output all ordinal values of an enumera
tion:

FOR day := FIRST(Days) TO LAST(Days) DO SIO.Putlnt(ORD(day)) END

120

MODULE Enumerations EXPORTS Main;

IMPORT SIO;

TYPE
Days = {Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday};
VAR

day: Days; ord: INTEGER;

6. User-defined simple types

BEGIN (*Enumerations*)
REPEAT (*Reads until a valid ordinal number is input*)

SIO.PutText("Please enter an ordinal number for a weekday: ");
ord:= SIO.GetintO;

UNTIL (ord >= ORD(FIRST(Days))) AND (ord <= ORD(LAST(Days)));

day:= VAL(ord, Days);

CASE day OF

(*Converts the ordinal number to a weekday*)

I Days.Monday
I Days.Tuesday
I Days.wednesday
I Days.Thursday
I Days.Friday
I Days.Saturday
I Days.Sunday

END; (*CASE*)

END Enumerations.

=> SIO.PutText("Monday\n");
=> SIO.PutText("Tuesday\n");
=> SIO.PutText("Wednesday\n");
=> SIO.PutText("Thursday\n");
=> SIO.PutText("Friday\n");
=> SIO.PutText("Saturday\n");
=> SIO.PutText("Sunday\n");

Example 6.3: Input / output with enumeration

6.2 Subranges

In many applications the values of certain variables fall within limits that
are known in advance. In representing the days ofthe months, for example,
we can be sure that the values must fall between 1 and 31. If a variable
that stores a day assumes the value 35, we can be certain that our program
contains an error (whereby we do not consider the 35th of May by Erich
Kdstner). It would be nice to have the language environment detect such
errors automatically. Thus we need a means to specify a restricted range.
This is the purpose of the subrange, which allows us to restrict the range of
an ordinal type. We call the original type that we want to restrict the base
type.

Subranges are not really distinct types. They are subtypes of the base
type (see Section 7.4).

Syntax of the subrange

SubrangeType57 = "[" ConstExpr65 " .. " ConstExpr65 "]".

6.2. Subranges

TYPE
SubR1
SubR2
SubR3
Workdays
Weekend
Weekdays
SingleValue
Empty

= [-1 .. 16];
= [Abc2.a .. Abc2.f];
= [Abc3.p .. Abc3.x];
= [Days. Monday .. Days.Saturday];
= [Days.Saturday .. Days.Sunday];
= [Days. Monday .. Days.Sunday];
= [1 .. 1];
= [1 .. 0];

121

(*base type: Integer *)

(*base type: Abc2 *)

(*base type: Abc3 *)

(*base type: Days *)

(*base type: Days *)
(*base type: Days *)

(*base type: Integer *)
(*base type: Integer *)

Example 6.4: Declaration of subranges

The two constant expressions (ConstExpr65) serve as (inclusive) lower
and upper bounds. The two bounds must be of the same type. If the lower
bound is greater than the upper bound, we have an empty subrange.

The empty subrange is similar to the empty enumeration. It proves
useful as a null value.

Thus a subrange is written as:

Subrange = [lowerBound .. upperBound];

Example 6.4 shows some valid subrange declarations (in part with ref
erence to the declarations in Examples 6.1 and 6.2).

Type SubR1 specifies a subrange of INTEGER. Variables of type SubR1
can take on values between -1 and 16. The values of a variable of type
SubR2 are defined between Abc2.a and Abc2.f, and for a variable of type
Workdays between Days. Monday and Days.Saturday. Type Weekday encom
passes the entire range of type Days as defined in Example 6.3. Such a
subrange seldom makes sense, but is permissible. On the other hand, it
is not permissible to assign a variable of a subrange a value outside the
specified subrange. If the invalid value is a constant expression, the com
piler will report the error at compile time. Ifthe invalid value is a variable
expression, then the language environment detects the error only at run
time and generates a run-time error.

Let us declare the following variables:

VAR
day: Days; (*enumeration*)
workday: Workdays; (*subrange*)
weekendDay: Weekend; (*subrange*)

Note that the three types Days, Workdays and Weekend intersect on
Days.Saturday. All ofthe following statements are correct:

122

day := Days.Saturday;
workday := day;
weekendDay := day;
weekend Day := workday;

6. User-defined simple types

However, if the first statement were day := Days. Friday, then the last
two statements would be invalid (and would produce run-time errors).

Are subranges really useful? Ifwe already have the type INTEGER, why
do we need another type to specifY a subrange thereof? We could employ
appropriate statements to test whether the value is in the desired range.
This is true, although we might have to carry out this test quite often, and,
more important, we might forget such a test. Yet if a subrange is defined
once in the declaration, the test is always carried out automatically. The
importance of subranges rests in improved program security.

If the application itself indicates that the value of a variable must lie
within a certain subrange, then it makes sense to declare the variable as a
subrange. Then the program is automatically interrupted on an erroneous
assignment, and some faulty value cannot cascade through our program.
Here again, this type of error handling proves useful only for localizing
program errors. If the value of variables is determined interactively by
the user, we must explicitly test the input. For example, if we prompt for
a date, the program must not crash if the user inputs May 35, but must
(politely) request another input.

In Example 6.5 we first output all possible values ofthe type WorkHours.
The last assignment (workhour := hour) generates a run-time error because
the value of hour is outside the range of Work Hours (hour = LAST(WorkHours)
+ 1). The inverse assignment (hour := workhour) can never go wrong because
the range Hours fully encompasses WorkHours (also see Section 7.4).

6.2.1 Operations

A subrange allows exactly the same operations as its base type.

This rule derives from the fact that subranges have a subtype relation
ship to their base type (see Section 7.4).

6.2.2 Predefined subranges

Predefined enumerations were introduced in (Section 6.1.1). There is also
one predefined subrange. Type CARDINAL is actually defined as

TYPE
CARDINAL = [0 .. LAST(INTEGER)]

6.2. Subranges 123

TYPE
WorkHours = [8 .. 18];
Hours = [0 .. 24];

VAR

(*working hours*)
(*hours in a day*)

hour: Hours;
workhour: WorkHours;

BEGIN
FOR a:= FIRST(WorkHours) TO LAST(WorkHours) DO SIO.Putlnt(a) END;

hour:= LAST(WorkHours);
workhour:= hour;
INC(hour);
workhour:= hour;

(*output all*)
(*hour := 18*)

(*workhour := 18*)
(*hour:= 19*)

(*run·time error because 19 is not in range [8 .. 18)*)

Example 6.5: Range check with subranges

Modula-2, the predecessor ofModula-3, defined type CARDINAL not as
a subrange of INTEGER, but so as to exploit the entire word length of
the hardware platform for the representation of a non-negative num
ber. This meant double the range size (the sign bit was not wasted),
for a 16-bit machine 216 instead of 215 . This advantage has become
negligible with increasing word length (32- and 64-bit machines) in
contrast to the drawback that the semantics of CARDINAL in Modula-2
was not clearly defined. Therefore in Modula-2 INTEGER and CARDI

NAL were assignment compatible but not expression compatible (see
Section 7.1).

Chapter 7

Expressions and declarations

A major advantage of the type concept is that we cannot arbitrarily mix
data of different types. This guards the integrity of the semantics of the
data (we cannot add numbers to texts, use Boolean values in arithmetic
expressions, etc.).

This chapter precisely specifies the rules for compatibility of different
data types within an expression and in an assignment. However, first we
need to describe precisely the syntax and semantics of expressions, decla
rations and assignments.

7.1 Expressions

Thus far we have used expressions rather intuitively. We all know the syn
tax and semantics of school arithmetic, and we have built on this knowl
edge. For example, we all know that expressions consist of operands and
operators. In the expression a + b * c we have the operands a, band c and
the operators + and *.

However, we have already encountered some examples where both syn
tax and semantics deviate from the familiar. This section presents the
syntax and semantics of expressions in Modula-3, to the extent that we
already know the operand types and their operations (see Figure 7.1).

7.1.1 Syntax of expressions

In reading the syntax of expressions, we must note that the syntax alone
does not suffice to distinguish valid expressions from invalid ones: expres
sions for all types are combined in a single syntax and mixed. Whether a
syntactically correct expression is valid as well, can be determined at com
pile time or possibly even only at run time (see Section 7.6). For example,
the "expression" 3.1415 AND NUMBER("hello") > LAST(14) is syntactically

126

ConstExpr65
EXpr66
E167
E268
E369
E470
E571

E672

E773
E874

= EXpr66.
= E167 {"OR" E167 }.
= E268 { "AND" E268 }.
= { "NOT" } E369 .

7. Expressions and declarations

= E470 { ("=" I "#" I "<" I "<=" I ">" I ">=" I "IN") E470 }.
= E571 { ("+" I "-" I "&") E571 }.

= E672 { ("*" I "f' I "DIV" I "MOD") E672 }.

= {"+" I "-"} E773 ·
= E874 { Selector78 }.
= Ident89 I Number94 I CharLiteral91 I TextLiteral92

I Constructor79 I "(" EXpr66 ")".
Selector78 = "." Ident89 I "A" I "[" EXpr66 { "," EXpr66 } "]"

I "(" [Actual47 { "," Actual47 } ")".
Constructor79 = Type48 "{" [SetCons80 I RecordCons82 I ArrayCons84 1 "}".

Ident89
LeUerlOO
Digit98

= LeUerlOO { LeUerlOO I Digit98 I "-" }.
= "An I "8" I .. I "z" I "a" I "b" I .. I "z".
= "0" I "1" I .. 1"9",

Figure 7.1: Syntax of expressions

correct, although it is completely absurd (the parameters of the predefined
functions are invalid, and AND applies only to Boolean expressions). How
ever, we cannot determine this from the syntax.

The basic element of syntax is expression operator expression. Syntac
tic units E167 to E672 serve to produce the operators. With the help of
E773 , E874 , Selector78 and Constructor79 the individual (sub)expressions are
formed.

Let us begin bottom-up with E874 . An expression can be a name (identi
fier), a literal, a Constructor79 or an expression in parentheses. A Modula-
3 identifier (ldent89) is a sequence of letters and digits that must begin
with a letter. An interesting feature is the use of the underscore ("_")
within an identifier. This enables keeping longer identifiers readable (e.g.,
thisjs_substantialiy Jong) - although we should keep identifiers short but
pregnant, and generally avoid the underscore. The syntax of number, char
acter and text literals was covered in the introduction ofthe respective data
types.

Let us go farther up in the syntax. An E773 is an E874 , possibly followed
by a series of selectors. This allows us to form the values of enumera
tion types: Weekday. Friday. These are called qualified identifiers. We will
encounter other, similar selectors later to help us process arrays and pro
cedure invocations and to access record and object fields.

An E672 is an E773 with an optional leading sign to represent negative
numbers. Here Modula-3's syntax is quite generous and even allows using

7.1. Expressions 127

multiple leading signs (mathematically correct, but otherwise nonsensical).
Expression E571 consists of one or more E672 , joined by multiplicative op
erators. This means that, e.g., -a * -b + c and -a * -b + + - + c are valid
expressions.

And so it continues to EXpr66, which consists of a E167 or of E167 ex
pressions joined by OR operators. The syntax of a constant expression
(ConstExpr65) is the same as for EXpr66. However, it must be possible to
evaluate all the corresponding operands at compile time. Thus a constant
expression cannot contain variables (except as parameters of certain pre
defined functions, such as FIRST, LAST and NUMBER).

The syntax also expresses the rules of precedence (compare Section
2.4). The order of the syntactic rules exactly reflects the precedence rules;
the weakest operator is OR (see EXpr66), and the strongest is the leading
sign (E672). The infix operators (located between two operands) are left
associative; i.e., on equal priority they are evaluated from left to right.
Thus, e.g., a * b * c is interpreted as (ab)c rather than as a{bc).

Parentheses have the highest priority (see E874). When we are unsure
ofthe precedence, we should resort to parentheses. They often increase the
readability of programs, and at no cost. Rather than a OR b < c OR d AND
e, we should write a OR (b < c) OR (d AND e)

7.1.2 Evaluation of expressions

An expression defines a computation that results in either a value or a
variable. In an assignment, e.g., the expression must yield a variable on the
left side and a value on the right side (see Section 7.5). A simple expression
consists of an identifier or a literal. More complex expressions are formed
using the operators and constructors defined in the syntax.

An expression is evaluated recursively. Consider, e.g., the expression a
+ b. The operands a and b are themselves expressions, e.g., a = x * y and
b = z DIV w. x, y, z and ware likewise expressions that again can con
tain operators and constructors. This continues until we arrive at simple
expressions whose values are immediately available. The order of compu
tation of operands in an operation is undefined except for OR and AND (see
next section).

Caution: This comment does not refer to the precedence of operations,
nor to whether they are left- or right-associative. Instead it is a matter of
the order in which the operations are evaluated. Given an expression like
a + b for computation, we cannot know whether a or b is evaluated first.
Remember that a and b are expressions themselves.

The concrete semantics of expressions are handled with the respective
data types (e.g., as the semantics of arithmetic and logical expressions was

128 7. Expressions and declarations

handled in Section 4). Here we complement the description of logical ex
pressions in Section 4 with additional rules.

7.1.3 Evaluation of logical expressions

For OR and AND operations, the language definition requires left-to-right
and lazy evaluation. The latter means that the second operand is evalu
ated only if the result of the expression is not fixed after evaluation of the
first operand. For an OR expression, if the first operand yields true, or
for an AND expression the first operand is false then the second operand
is no longer relevant; evaluation can be terminated (and Modula-3 does
end evaluation). The following pseudocode conveys this somewhat more
formally (with p and q being logical expressions):

p AND q == IF NOT p THEN FALSE ELSE q END
p OR q == IF p THEN TRUE ELSE q END

The following example shows the advantage of this rule:

IF (x # 0) AND ((y DIV x) ::: 10) THEN S1 ELSE S2 END;

If x::: 0, then the first operand yields false and evaluation of the AND
expression terminates immediately (since the result of the overall expres
sion can only be false). Thus the second operand is not computed and the
division by zero is not executed.

Without this rule (as, e.g., in the programming language Pascal) y DIV
x could be computed first, division by 0 would generate a run-time
error.

In general, the laws of predicate logic apply for logical operations. The
scope of these laws is restricted in Modula-3 through the above rules. In
principle, e.g., the law of commutativity applies, yet we have just seen that
(x # 0) AND ((y DIV x) ::: 10) is not the same as ((y DIV x) ::: 10) AND (x
0). Another restriction can result if the logical values are computed by
functions that have a side effect. The following AND expression is anything
but commutative:

SIO.GetCharO:::'A' AND SIO.GetCharO:::'B'

Depending on what the user inputs first, the expression requires input
of one or two letters. Ifwe turn the expression around, the user must begin
with "B" instead of "N' to make the whole expression true

Thus the following laws hold only if the logical expressions p, q and r
can be evaluated in finite time without a run-time error or side effect:

7.2. Declarations

1. Commutativity:

P ORq =q OR P
p AND q= q AND p

2. Associativity:

(p OR q) OR r = p OR (q OR r)
(p AND q) AND r = p AND (q AND r)

3. Distributivity:

(p AND q) OR r = (p OR r) AND (q OR r)
(p OR q) AND r = (p AND r) OR (q AND r)

4. The de Morgan laws:

NOT (p OR q) = NOT p AND NOT q
NOT (p AND q) = NOT p OR NOT q

7.2 Declarations

129

Declarations were introduced briefly in Section 3.4.4. We also employed
declarations in almost all our examples. They serve to introduce new names
for constants, variables and types. Now we will treat these three kinds of
declarations more exactly. Later we will discover declarations for addi
tionallanguage elements.

Syntax of declarations

Declaration13 ="CONST" { ConstDeci14 ";" }
I "TYPE" { TypeDeci15 ";" }
I "VAR" { VariableDecl17 ";" }

7.2.1 Constant declarations

ConstDecl14 = Ident89 [":" Type48 1 "=" ConstExpr65.

A constant declaration (ConstDeci14) firmly associates an identifier (on
the left side of the equal sign) with a value (to the right of the equal sign).
In other parts of the program, this identifier serves as a synonym for this
value. The value is specified with a constant expression. The following are
examples of constant declarations:

130

CONST
A = 10;
B = 2 * A;
C = A + 5 * B;
D = LAST(INTEGER) - C;

7. Expressions and declarations

These declarations give us B = 20 and C = 110. Naturally we could have
written C = 110 directly. The advantage in using expressions is that if A
changes, then Band C change, too. The value of a constant can only be
changed, of course, by editing and recompiling the program source code. D
immediately demonstrates the advantage of formulating expressions.

Consider the following declarations:

TYPE
Workdays

CONST
= [Days. Monday .. Days.Saturday];

Worktime = 8; (*hours of work per day*)
Weekdays = NUMBER(Workdays); (*workdays in a week*)
HoursPerWeek = Weekdays * Worktime; (*hours of work per week*)

The value of HoursPerWeek is 48. If we change the type declaration for
Workdays to

TYPE
Workdays = [Days.Monday .. Days. Friday];

then the value of HoursPerWeek (after recompilation) changes to 40.
The following example shows some non-arithmetic expressions:

CONST
Ch1
Ch2
B

='A';
= LAST(CHAR);
='a' > 'A';

Ext = NUMBER(CHAR) > 256;
CountryCode = "01-";
AreaCode = "201-";
Family = CountryCode & AreaCode & "310-6588";
Office = CountryCode & AreaCode & "270-5509";

The value of Ch2 contains the last character in the character set. B
is a Boolean constant; its value is true if character 'a' has a higher code
than 'N.. Ext is also a Boolean constant; its value is true iftype CHAR uses
extended coding (more than 1 byte). Family and Office are text constants
whose values are "01-201-310-6588" and "01-201-270-5509", respectively.

7.2. Declarations 131

The syntax of constant expressions also shows that after the name of
the constant, separated by a colon, we can explicitly declare a type. As we
have seen, in general, the type of a constant derives from the expression on
the right side ofthe equal sign. However, this is not always true. For a non
negative whole number, e.g., we cannot tell whether it is of type INTEGER or
CARDINAL. However, in the following declaration the type is unambiguous:

CONST A : CARDINAL = 0;

In such a case the unambiguity does not help much; we can do as much
with a CARDINAL zero as with an INTEGER zero. However, it can be advan
tageous to specifY that this constant must have a value from the range of
CARDINAL. The following example shows this more clearly:

CONST
Vacation Planning: [1 .. 12] = 7; (*we plan our vacation *)

VacationMonth: [1 .. 12] = Vacation Planning + 1;

Both constants depict a month as a number between 1 and 12. But
we have made an error here: If we change VacationPlanning to 12, Vaca
tionMonth is assigned an invalid number. The compiler detects this error
because we have specified the valid range. A proper solution would be:

VacationMonth: [1 .. 12] = Vacation Planning MOD 12 + 1;

7.2.2 Type declarations

TypeDecl15 = Ident89 ("=" I "<:") Type48.

The general forms of a type declaration are thus:

TYPE
identifier = type;
identifier <: type;

This binds an identifier to a type. This identifier can now be used any
where in a program where a type can occur (such as in the optional part
of the constant declaration). Later we will see how complex types can be
constructed by the programmer (Sections 8.1 and 8.2).

The second form serves to define a type only partially as a subtype of an
other type. (This kind oftype declaration is needed primarily in interfaces.
We treat them in Section 7.4.)

132 7. Expressions and declarations

7.2.3 Variable declarations

VariableDecl17 = IDLists7 (":" Type4s ":=" Expr66 [":" Type4s [":=" Expr66).
IDLists7 = Idents9 { "," Idents9 }.

Closer consideration ofthe syntax of variable declarations reveals some
new aspects. We have the following three variants:

a, b, c: type;
a, b, c: type := expression;
a, b, c := expression;

We associate a list of identifiers with a type and possibly with an initial
value as well. Thus far we have always used the first form. The other two
forms allow us to initialize a variable on declaration. The value of the
expression is assigned to all variables in the identifier list (to the left of the
colon). The initialization of all variables in a block (also see Section 9.1)
occurs - in the order of the declarations - before the execution of the first
statement of the statement part.

Imagine these initializations as a series of assignments ''hidden'' in the
keyword BEGIN.

VAR
i, j : INTEGER := 1;
b : BOOLEAN := FALSE;
t : TEXT := "This is a text";

BEGIN (*statement part*)

At the first statement after BEGIN we have i = 1, j = 1, b = FALSE and t =
"This is a text".

Note that a variable is initialized only once on declaration. If a variable
is used in a loop nested within a loop such that the outer loop must repeat
edly initialize its value for the inner loop, then initialization on declaration
is the wrong approach!

The third form of variable declaration specifies only the initialization;
the type is implicitly specified by the initial value. Implicit type specifi
cation can make the programmer uncertain about the type of a variable.
Thus we will avoid the third form for the time.

The syntax also indicates that we can specifY the type directly in the
variable declaration. In this case the type is nameless. The following ex
ample demonstrates this.

VAR a, b, c: [1 .. 16];

We recommend avoiding this form for the time.

7.3. Equivalence of types

CONST
N = 10;

TYPE

133

T1 = [1 .. 10];
T2 = [1 .. N];
T3 = [1 .. 2 * 2 * 2 + 2];
T4 = T1;

(*equivalent to T2, T3, T4*)
(*equivalent to Tl, T3, T4*)
(*equivalent to Tl, T2, T4*)
(*equivalent to Tl, T2, T3*)

T5 = {a, b, c};
T6 = {a, b, c};
T7 = {a, b, d};

(*equivalent to T6*)
(*equivalent to T5*)

(*not equivalent to the other types*)

Example 7.2: Equivalent types

In fact, the following declaration would be almost silly:

VAR e, t, g: {Monday, Tuesday, Wednesday};

The components of an enumeration cannot even be accessed without a
type name. A possibility to use the variables e, t, 9 at all is to addition
ally declare a named type with the same components, e.g.,

TYPE Days = {Monday, Tuesday, Wednesday};

due to structural equivalence (Section 7.3), this type is equivalent to
the type of e, t and g.

Note also that the kinds of declarations that we suggested avoiding for
the time do have their justification in certain cases where they appear in
a restricted context and where their scope is small and comprehensible
(Section 9.1).

7.3 Equivalence of types

Modula-3 employs structural equivalence of types. Two types are equiva
lent if their expanding results in the same type. Expanding means that all
constant expressions are replaced by their values and all type names are
replaced by their definitions. In Example 7.2 the types T1, T2, T3 and T4
are mutually equivalent. T5 is also equivalent to T6. T7 is not equivalent
to any of the specified types.

Many programming languages, e.g., Pascal and Modula-2, employ
name equivalence. Here types are equivalent only ifthey are explicitly
declared as such. In Example 7.2 only T1 and T 4 are name equivalent;
all others are considered different types from this perspective.

134 7. Expressions and declarations

7.4 Subtypes

Modula-3 supports a general concept of subtyping. We use the special sym
bol "<:" to specify the subtype relationship.

I If Sub and Super are two types and the relationship Sub <: Super exists,
then all values of Sub are also values of Super.

In this case Sub is a subtype of Super, and Super is the supertype of SUb.
In Modula-3 a type can have any number of subtypes, but only one super
type. (There are programming languages where a type can have multiple
supertypes.) The subtype relationship is often called the Is-a relationship:
A value of a subtype is a value of its supertype. Given the relationship
Workdays <: Weekdays, then all Workdays are Weekdays. The inverse need
not apply; all days of the week are not workdays, thank goodness.

At the moment we can give only one example of the subtype relation
ship: The subrange types (Section 6.2) are actually not independent types,
but subtypes of their base types. The following rules apply to subranges:

[u .. 0] <: B
[u .. 0] <: [U .. 0]

whereby B is the common base type of u and 0

if [u .. 0] is a subset of [U .. 0]

For example, given the subrange

TYPE
SubR1 = [3 .. 8];
SubR2 = [0 .. 2];

we have the relationships Ub1 <: INTEGER and Ub2 <: INTEGER. Actually,
all values of Ub1 and Ub2 are also values of INTEGER (but obviously not
vice versa). What is the relationship between Ub1 and Ub2? Neither of
the ranges is a subset of the other (indeed, they are disjunct); there is no
subtype relationship between these two types. An assignment involving
variables of types Ub1 and Ub2 is not permitted (see Section 7.5).

Take an example where the ranges overlap, e.g., the types Workdays and
Weekend from Example 6.4. We have the following relationships:

Workdays <: Days
Weekend <: Days

Workdays and Weekend are subtypes of the same base type, but do not
share a subtype relationship to one anotherCneither range is a subset of the
other). We can still make an assignment between variables of these types
because the ranges overlap. However, such an assignment can produce
an error if the assigned value is not in the range of the target variable. In
general, the following holds: Variable of ordinal types whose ranges overlap
can be assigned to one another (see Section 7.5).

7.5. Assignment compatibility 135

Reflexivity and transitivity

The subtype relationship is reflexive and transitive. Formal stated:

T<: T
T <: U 1\ U <: V=> T <: V

In words, every type is its own subtype and supertype. In addition, if type
T is a subtype of U and U is a subtype of V, then T is also a subtype of V.
For example, let T1 = [1 .. 100], T2 = [10 .. 80] and T3 = [30 .. 50]. Then T3
<: T2 and T2 <: T1. This implies that T3 <: T1 - which is easy to see.

However, T <: U and U <: T does not imply that U and T are equal (see
Section 7.4).

Operations on subtypes

All operations defined for a supertype are also defined for the subtype. This
means that for operands of a subrange type all operations of the corre
sponding base type apply. For example, for operands oftype T1 = [1 .. 100]
we can employ all INTEGER operations.

In general it is possible to define additional operations for subtypes. We
will employ this feature when we handle object types (see Section 13).

7.5 Assignment compatibility

We repeat the syntax of the assignment:

AssignStmt25 = EXpr66 ":=" EXpr66.

The expression on the left side ofthe colon (often abbreviated LRS for left
hand side expression) must result in a variable. The expression on the right
side (RRS for right-hand-side expression) returns a value. This value must
be assignment compatible with the variable on the left side and be within
its range.

You might wonder why the syntax specifies an expression on the left
side rather than simply Idents9 . The meaning of the more general syntax
will become clear stepwise as we become familiar with more complex LHS
expressions (e.g., indexed array elements, Section 8.1).

When are assignments legal? An expression A of type R is assignment
compatible with a variable var of type L (i.e., var := A is legal) if one of the
following conditions applies:

1. Rand L are equivalent (see Section 7.3), or

2. R <: Lor

136 7. Expressions and declarations

3. Rand L are ordinal types that overlap in at least one value, and the
value of A is in the range of L, or

4. L <: Rand R is an array type or a reference type for which certain
conditions apply (see Sections 8.1, 10, and 11).

Rule 1 is the simplest case: If the types are the same, then trivially
any value of the one expression is a possible value of the other expression.
Rule 4 is mentioned here for the sake of completeness and will be explained
later.

Rule 2 expresses the fact that in the subtype relationship all values of
the subtype are also values of the supertype (all Workdays are days, but
not all Days are Workdays).

For Rules 2 and 3 we have already seen examples in the context of sub
ranges (Section 6.2). If the variable workday is of type Workdays and day
of type Days, then it is clear that the assignment day := workday cannot go
wrong because all possible values of workday can also be values of day.

Violations of Rules 3 and 4 can be checked in part at compile time; oth
erwise they can only be tested at run time when the current values are
known.

In order to detect errors at run time, the compiler must make the
necessary preparations. It generates control statements that check
Rule 3 at run time. For example, if we assign a variable int of type IN
TEGER to a variable of type [1 .. 16], then at compile time the compiler
cannot know whether the value of int falls in the subrange. However,
the compiler can generate another command or commands to test this
condition at run time (e.g., exactly before the assignment in question).
Such tests represent additional overhead for the length and speed of
programs, but this generally proves negligible given the speed of mod
ern digital computers. Furthermore, most compilers allow removal of
the test with a compiler option, in which case the compiled program
becomes shorter and faster, but at the expense of run-time checks.
We discourage removing the run-time checks in general. However,
there are situations that demand the increased efficiency delivered
by removing the run-time checks; such program components must be
checked especially carefully by the developer.

7.6 Expression compatibility

With expressions of the form operandI operator operand2 we have a prob
lem similar to that of assignment compatibility: What kinds of operands
can we mix, and for which kinds is this impossible. For example, can we

7.6. Expression compatibility 137

add INTEGER numbers to CARDINAL numbers? The rules of expression
compatibility provide the answer.

In Modula-3 the operands of such expressions must share a common su
pertype (an exception is the IN operation; see Section 8.3). Before evalua
tion ofthe expression, the operands are converted to this common type. For
types that have no subtype relationship with any other type (e.g., REAL),
this means that both operands must be ofthe same type. However, CARDI
NAL <: INTEGER; therefore INTEGERs can be added to CARDINALs.

The following example is correct because addition of 51 and 52 takes
place in the range of INTEGER:

VAR
51: [1 .. 2] := 2;
52: [3 .. 4] := 3;
i: INTEGER;

BEGIN
i:= 51 + 52; (*type of the expression sl+s2 is INTEGER, value is 5*)

To combine operands of different types in an expression (e.g., mixing REALs
and INTEGERs), we must employ the conversion functions (see Section 6).
In Modula-3 expressions there is no implicit type conversion, but there
is explicit type conversion. The lack of implicit type conversions helps to
minimize programming errors.

A number of programming languages offer implicit type conversion.
The most spectacular example is PLl1, where totally different oper
ands can occur mixed in an expression. At first glance this seems like
a comfortable feature, but it can invoke the most unexpected errors.

Other languages (like Oberon-2 [WG92, RW92, Miis93J) define a regu
lated and sensibly restricted implicit type conversion (type inclusion).
In Oberon-2 the numeric types form a hierarchy. The larger and more
precise the range of a numeric type is, the higher it is in the hierar
chy. Expressions with operands belonging to different numeric types
are evaluated in the range of the hierarchically higher operand. For
example, to add an INTEGER and a REAL number, the INTEGER is au
tomatically converted to REAL.

Result type

The result type of an expression (usually called the type ofthe expression)
with two operands is not necessarily the type of its operands. The results
depends on the operator. Addition, for example, maps all INTEGER sub
ranges onto a result oftype INTEGER (even if both operands have the same
subrange type). The relational operators (greater than, less than, etc.) map

138 7. Expressions and declarations

all permitted operand types onto the result type BOOLEAN. We discuss the
result type of an operator with the introduction of the respective operator.

I The rules of type equivalence together with the compatibility rules form
the basic framework of the type system.

These rules regulate which expressions are valid and which assignment
is permissible. This system of rules allows the compiler to report all imper
missible expressions and assignments. This helps to automatically detect
a number of programming errors and thus to significantly increase the se
curity of programs.

ChapterS

Composite static types

Thus far all data (constants and variables) seemed like our own personal
acquaintances. We declared each one and assigned them individual values.
This allows us to solve a number of tasks. Certainly we could solve more
challenging tasks, for, as far as statements are concerned, we already have
quite a powerful arsenal. With loop statements we can carry out unlimited
(in principle infinite) computations. However, regarding data we are still
quite behind: We cannot define data collections (or data aggregates) yet.
Our data types so far were all scalar. A variable of a scalar type can contain
only a single value at a given time.

With the help of type constructors we can create various aggregates.
Without a computer we would use a table, a list or file cards to manage
information. We need a table, for example, to record the daily sales of a
business for every day of the year. A list could help us to describe the con
tents of a warehouse. We use file cards to collect heterogeneous information
such as birth dates, addresses and employee salaries. In programs we can
store tables in the form of arrays, file cards as records, and lists in the form
of dynamic data structures (see in Section 11.5). In addition, programming
languages provide us with sets, which are especially important in mathe
matics. Likewise arrays originally came to programming languages due to
the need to represent mathematical vectors and matrices.

This chapter presents the static type constructors - arrays, records and
sets. These types are static because their size is known in advance. This
applies to most tables (e.g., we know how many days of the year we need
to reserve for storage of sales) and for file cards. For the warehouse list
this generally does not apply; Although we might know approximately how
many articles we can store, the momentary number varies greatly, and we
cannot specify an exact upper limit. Here we need dynamic data structures,
which we will tackle later.

Computers are used primarily for storing and managing large amounts
of data. We are frequently confronted with applications such as bank-

140 8. Composite static types

ing systems and reservation systems. They manage an enormous set
of data in a database. This book does not cover database systems; we
limit ourselves to the basic concepts for data structuring as provided
by programming languages and on which database technology builds.

An introduction to databases can be found in [Ul182, Dat901, as well
as in a wealth of other literature. It is interesting that in recent years
object-oriented databases [KM94] have brought the concepts of pro
gramming languages and those of database technology closer.

8.1 Arrays

An array is an ordered collection of elements ofthe same type which can be
accessed collectively as a whole. The elements are "numbered" - although
not necessarily with numbers - and an element can be selected individually
via this "number" (its index).

Without arrays, many programming tasks are impossible to solve. We
cannot store the above sales table by declaring 365 individual variables (of
type REAL). Instead, we would like to store 365 REAL numbers together
and access them via the number of the day. Hence we could write:

TYPE
Days = [1 .. 365];
Sales = ARRAY Days OF REAL;

VAR
sales: Sales;

Now the variable sales can store 365 individual values. Days is the
index type and corresponds to the columns in the table. This "column type"
allows us to access the individual elements as follows:

sales[10]:= 105000.0;

This assigns a value to the tenth element of the array.

Syntax of the array type

ArrayTypel!1 = "ARRAY" [Typelx { "," Type48 }] "OF" Type48'

The type after the keyword OF is the element type; the others are the
illc/ex types. Index types must be ordinal types (e.g., subrange or enumera
tion l. Static arrays - whose size is specified on declaration - require specifi
cation of at least one index type. The number of indices reflects the number
nfdimellsiolls of the array. The length ofa static array can be computed at
cnmpilt, time.

8.1. Arrays 141

A a y

a [1] a [2] a [3] a [4] a [5]

Figure 8.1: Unidimensional array of characters

TYPE
Index = [1 .. 5];
Array = ARRAY Index OF CHAR;

VAR

(*index type*)
(*array type*)

a: Array; (*"a" can store 5 characters*)
BEGIN

FOR i:= FIRST(lndex) TO LAST(lndex) DO a[i]:= SIO.GetCharO END;
FOR i:= FIRST(lndex) TO LAST(lndex) DO SIO.PutChar(a[ij) END;

Example 8.2: Accessing an array of characters

8.1.1 Unidimensional arrays

Assume that IndexType is an ordinal type (e.g., [1 .. 10]), and ElementType
is an arbitrary type. We can specify a unidimensional array as follows:

TYPE A 1 = ARRAY IndexType OF ElementType

Unidimensional arrays are often called vectors after their mathematical
roots.

An element of an array can be accessed by indexing The index expres
sion is written in square brackets after the name ofthe array variable. The
expression must be assignment compatible with the index type. The value
of the index expression determines the element to be selected. This allows
the language environment to test whether the array has been indexed with
an appropriate index value: If we attempt to access an array with index
type [1 .. 10] using the index value 11, we would produce an error because
11 is not contained in the index type.

This range check is even more important in the context of array indices
than for variables of a subrange type. If a variable has an erroneous
value, that is bad enough. However, an incorrect index in an array
additionally leads to accessing memory regions that do not belong to
the array. This means that some other variable can be overwritten
randomly - probably with fatal consequences for the program.

The type Array in Example 8.2 defines an array that consists of five
elements of type CHAR. The first FOR loop assigns arbitrary characters to
the elements of the array; the second FOR loop outputs the contents of the

142 8. Composite static types

1 2 3 16

1

------ ~----I -----r- -l 2 3 4 ... 17
a[1,1) a[1,2) a[1,3) a[1,16)

3 4 5 , .. 18
a[2,1) a[2,2) a[2,3)

--
a[2,16)

I

f---'--------

2

I

~' I
--

:1 33 34 35 ... 48
a[32,1] aI32,2] aI32,3] aI32,16]

32

Figure 8.3: Bidimensional array of Integers

array. If we were to input the letters of the word "Array", the program
would output the character sequence "Array" (Figure 8.1),

The example also demonstrates how naturally the FOR loop lends itself
to processing arrays. With the help of the FIRST and LAST functions we can
easily iterate through the array.

We could have written the FOR loop as follows:

FOR i:= 1 TO 5 DO a[i]:= SIO.GetCharO END

However, this solution has the drawback that changes in the index
also necessitate changes in the loop. To extend index to [1 .. 100],
we would also have to change the loop to FOR i:= 1 TO 100 DO "'.
Such adaptation is undesirable; it is both work-intensive and error
prone, The solution in Example 8.2 requires no such adaptation: FIRST
and LAST always return the current boundary values, thus restricting
adaptation to a single location.

8.1.2 Multidimensional arrays

Arrays with more than one index are called multidimensional arrays. Bidi
mensional arrays have special importance because they are particularly
suited to representing matrices. Figure 8.3 shows such a bidimensional ar
ray (in this case with values corresponding to the sum of row and column
indices).

A bidimensional array type can be declared in two ways:

1. TYPE A2 = ARRAY Index1 OF ARRAY Index2 OF Element

2. TYPE A2 = ARRAY Index1, Index2 OF Element

8.1. Arrays

TYPE
Row = [1 .. 32];
Column = [1 .. 16];
Matrix = ARRAY Row, Column OF INTEGER;

VAR

143

(*row index*)
(*column index*)

(*array type*)

matrix: Matrix; (*"matrix" can store 32 x 16 numbers*)
BEGIN

FOR i:= FIRST(Row) TO LAST(Row) DO
FOR j:= FIRST(Column) TO LAST(Column) DO

matrix[i, j):= i + j;
END; (*FORj*)

END; (*FOR i*)

Example 8.4: Bidimensional array of Integers

The first notation emphasizes that the element type of the first array
is itself an array, while the second form more directly expresses the bidi
mensional character. We usually use the second notation. The first form is
necessary if a bidimensional array is constructed as a unidimensional ar
ray of another named array (such as the type Plane in Example 8.5). Both
notations can be generalized - as the syntax indicates - for arrays with any
number of dimensions, and the two notations can even be mixed.

In a multidimensional array an element of the nth dimension can be
accessed as follows:

The following simplified form is better:

The exact syntax for indexing is defined in the syntax for expressions
(compare Section 7.1.1). Below we show the corresponding excerpt from
the expression syntax.

Syntax for indexing arrays

E773 = E874 { Selector78 }.

Selector78 = "[" EXpr66 { "," EXpr66 } "]" I ...

Example 8.4 type Matrix defines a bidimensional array. Type Row de
fines the index type for rows and type Column for columns. The variable
matrix stores in each element the sum of its index values (Figure 8.3).

144 8. Composite static types

Shape

Following the pattern of the bidimensional array, we can define arrays of
any dimension. We term the element type of the "last" array the base type
of the array. The shape of a multidimensional array is the sequence of the
cardinality of its dimensions. A type that is not an array has an empty
shape. In the following example A 1, A2 and A3 have the same shape, but
A4 has a different shape.

TYPE
A1 = ARRAY [1 .. 2], [3 .. 5] OF INTEGER;
A2 = ARRAY [0 .. 1], [7 .. 9] OF INTEGER;
A3 = ARRAY ['A' .. 'B'], ['X .. 'Z'] OF INTEGER;
A4 = ARRAY [0 .. 1], [6 .. 9] OF INTEGER;

8.1.3 Array constructors

With the help of array constructors we can define array values. These are
quite useful if we want to initialize an array on declaration.

The exact syntax is part of the syntax for expressions (see Figure 7.1,
page 126):

Syntax of array constructors

E874 = Ident89 I Number94 I CharLiteral91 I TextLiteral92
I Constructor79 I "(" Expr66 ")".

Constructor79 = Type48 "{" [ArrayCons84 I ...] "}".
ArrayCons84 = Expr66 {"," Expr66 } ["," " .. "].

In an ArrayCons84 we can specify a list of expressions that are assigned
to the elements of the array sequentially. Specifying " .. " causes all non
initialized elements to assume the value of the last expression (which is
computed only once and not recomputed for each subsequent element). Ar
ray constructors can be assigned to array constants and array variables.
If no " .. " is specified, then the constructor must contain exactly as many
elements as the array to which the constructor is assigned.

Example 8.5 demonstrates the use of multidimensional arrays and ar
ray constructors. A point in N-dimensional space can be represented in
mathematics as a sequence of coordinates. In a program we use an array.
Note, however, that the dimension ofthe array is something quite different
from the dimensions of mathematical space. The N coordinates of a point
can be stored in one array dimension.

Example 8.5 employs arrays to represent points inN-dimensional space.
The origin of this space is a point whose coordinates are all O. The example

8.1. Arrays

CONST
N =3;

TYPE

145

Point = ARRAY [1 .. N] OF REAL;
Plane = ARRAY [1 .. 2] OF Point;

(*point in N-dimensional space*)

CONST
Origin = Point {O.O, .. };
XNorm = Point {1.0, 0.0, .. };
YNorm = Point {O.O, 1.0,0.0, .. };
XNormPlane= Plane {Origin, XNorm};

VAR

(*all elements set to 0.0*)
(*all elements from 2nd set to 0.0 *)

(*all elements from 3rd set to 0.0*)

aPlane:= Plane {Point{-1.0, 1.0,0.0, .. }, POint{1.0, 1.0,0.0, .. } };

Example 8.5: Initialization of a bidimensional array

shows how we declare the constant Origin of type Point. If all elements of
the array are not the same, then the same notation still can be used to
indicate that the elements starting at a certain position are all the same
(see constants XNorm and YNorm in Example 8.5).

This method even allows leaving the dimension of the space open: We
can set the constant N to every value 2: 3. After recompilation of the
source code, the constants Origin, XNorm and YNorm are declared cor
rectly again for the new space!

A polygon in N-dimensional space consists of a fixed number of points
that we can represent as an array of points. A plane in Example 8.5 is a
bidimensional array; a point is an array of coordinates; a plane an array of
points.

The declaration of variable aPlane is also an example of omitting the
explicit specification ofthe type of the variable and implicitly determining
it through the initialization value (see Section 7.2.3). The array construc
tor makes this obvious anyway. On the other hand, we could justifiably
consider the following declaration as "pompous"l:

aPlane: Plane:= Plane{Point{-1.0,1.0,O.O, .. }, Point{1.0,1.0,O.O, .. } };

Example 8.6 defines a polygon consisting of M points. The variable circle
is initialized such that it approximates a circle. To make the approximation
more fine-grained, it suffices to increase M.

8.1.4 Operations on arrays

Assignment

Arrays can be assigned to one another if they have the same base type and
the same shape (same number of elements in each dimension; see above,

lThis designation for exaggerated formalism is used by Niklaus Wirth.

146

MODULE Array3 EXPORTS Main;
IMPORT Math;

CONST
N = 3; M = 100;

TYPE
Point = ARRAY [1 .. N] OF LONG REAL;
Polygon = ARRAY [1 .. M] OF Point;

VAR

8. Composite static types

(*Math exports mathematical functions*)

(*point in N-dimensional space*)
(*polygon in N-dimensional space*)

circle: Polygon; (*use polygon to approximate circle*)
radius: LONG REAL := 10.000; alpha: LONGREAL:= 0.000;
step: LONGREAL:= 6.2800 / FLOAT(NUMBER(Polygon), LONGREAL);

BEGIN
FOR i:= FIRST(circle) TO LAST(circle) DO

circle[i, 1]:= Math.sin(alpha)*radius;
circle[i, 2]:= Math.cos(alpha)*radius;
FOR j:= 3 TO N DO circle[i, j]:= 0.000 END; (*circle in x/y plane*)
alpha:= alpha+step;

END;

Example 8.6: Circle approximated by a polygon

Section 8.1.2). This enables the assignment of the constant array Circuit to
the variable triangle in Example 8.7.

Relational operations

Assignment-compatible arrays can be tested for (in)equality. Two arrays
are equal if they have an equal number of elements and their elements are
pairwise equal (see Example 8.7). No other relational operations are valid
on arrays.

Predefined functions

The FIRST and LAST functions apply to array types as well as to vari
ables of type array. They return the first and last value, respectively, of
the index type of the array. For multidimensional arrays these function
can be applied to each dimension individually. Thus we could have writ
ten Example 8.4 in the more general form of Example 8.8. The expression
FIRST(matrix[FIRST(matrix)]) determines the first element in the second di
mension. The index expression between the square brackets serves to se
lect the second dimension; here we can use an arbitrary element of the first
dimension. The expression FIRST(matrix[LAST(matrix)]), e.g., is equivalent
to the previous one.

The function NUMBER can also be applied to arrays and returns the
number of elements (ofthe first dimension ofthe array) (Example 8.8).

8.1. Arrays

CONST
N=2;

TYPE
Point = ARRAY [1 .. N] OF REAL;
Triangle = ARRAY [1 .. 3] OF Point;
Cities = {Vienna, Salzburg, Klagenfurt};
CityTriangle = ARRAY Cities OF Point;

CONST

147

Circuit = CityTriangle{Point{1.4, 2.5}, POint{ 4.5, O.6}, Point{3.2, 3.2}};
VAR

triangle: Triangle;
BEGIN

triangle:= Circuit;

IF triangle # Circuit THEN

(*assignment of arrays *)

(*comparison of arrays *)

Example 8.7: Assignment and relational operations on arrays

TYPE
Line = [1 .. 32];
Column= [1 .. 16];
Matrix = ARRAY Line, Column OF INTEGER;

VAR

(*line index*)
(*column index*)

(*array type*)

matrix: Matrix; (*"matrix" can contain 32 x 16 numbers*)
BEGIN

FOR i:= FIRST(matrix) TO LAST(matrix) DO (*from 1 to 32*)
FOR j:= FIRST(matrix[FIRST(matrix)]) TO LAST(matrix[FIRST(matrix)]) DO

matrix[i, jJ:= i + j;
END; (*FORj*)

END; (*FOR i*)

(*from 1 to 16*)

SIO.Putlnt(NUMBER(matrix)); (*number of elements in 1st dimension: 32*)
SIO.Putlnt(NUMBER(matrix[FIRST(matrix)])); (*elements in 2nd dimension: 16*)

Example 8.8: Predefined functions on multidimensional arrays

The function SUBARRAY crops out part of an array. Its general form is:

SUBARRAY(a: Array; from, count: CARDINAL)

The result of SUB ARRAY is a variable whose type is array of the element
type of a (if a is multidimensional, then SUBARRAY applies to the first di
mension). Imagine this variable overlapping part of a. SUBARRAY thus
returns part of the array itself, not a copy thereof

The result contains count elements, whereby the first from elements of
the original array remain untouched. For from = 0 the subarray is overlaid

148

TYPE
Array1 = ARRAY [1 .. 100] OF INTEGER;
Array2 = ARRAY [1 .. 10] OF INTEGER;

VAR

8. Composite static types

a1:= Array1 {O, .. };
a2:= Array2{1, .. };

BEGIN

(*"al" stores 100 numbers (all initialized to 0) *)
(*"a2" stores only 10 numbers*)

(*copy a2 to a1 starting at index 11: *)

SUBARRAY(a1, 10, NUMBER(a2»:= a2;
(*assign the first 10 elements of a1 to array a2: *)

a2:= SUBARRAY(a1, 0, NUMBER(a2»;
(*replace a1 l1 .. a1 l5 : *)

FOR i:= 0 TO 4 DO SUBARRAY(a1, 10, 5)[i]:= 3 * i END;
(*shifts 5 values from index 11 by 1 element: *)

SUBARRAY(a1, 11,5):= SUBARRAY(a1, 10,5);

Example 8.9: The use of the subarray function

beginning at FIRST(a), for from = 1 from FIRST(a)+ 1, etc. SUBARRAY(a, 0,
NUMBER(a)) overlays the complete sub array over the entire array a. The
index type ofthe result is [0 .. count-1]. In Example 8.9 we see various uses
of SUBARRAY: We can even assign overlapping ranges within an array to
one another - the exact definition of SUB ARRAY permits this (see Language
Description B.2.3).

8.1.5 Example: Schedule

In Example 8.10 we set up a small class schedule for students. We define
a matrix whose rows represent days and whose columns reflect the hours.
(We optimistically assume that classes take place only Monday through
Friday and only between 7:00 and 20:00 hours.) The two constant arrays
DayNames and Class Names contain text constants. First we initialize the
schedule to the value None. Then we record several entries in the schedule
and output the schedule for all mornings.

The output of the name of a class employs nested indexing: Class
Name[schedule[day, hour]]. The expression schedule[day, hour]- its type is
Classes - indexes the array ClassNames, which contains the corresponding
text.

We neglected elegant formatting in our output. For a program in
tended for a broad market, this would be an important factor. For our
example, an attractive table would be appropriate, with days as col
umn headers and the hours labeling rows. To achieve this, we would
have to reverse the order of the FOR loops because the variable sched
ule contains the days in its first dimension and the hours in its second.

8.1. Arrays 149

MODULE ClassSchedule EXPORTS Main;

IMPORTSIO;

(*27.05.94. LB*)

TYPE
Days
Hours
Morning
Classes
Schedule

CONST

= {Monday, Tuesday, Wednesday, Thursday, Friday};
= [7 .. 20];
= [8 .. 12];
= {None, English, Software, Mathematics};
= ARRAY Days, Hours OF Classes;

DayNames = ARRAY Days OF TEXT {
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"};

ClassNames= ARRAY Classes OF TEXT {
"None", "English", "Software", "Mathematics"};

VAR
schedule: Schedule;

BEGIN
FOR day:= FIRST(Days) TO LAST(Days) DO

FOR hour:= FIRST(Hours) TO LAST(Hours) DO
schedule[day, hour]:= Classes. None;

END; (*FOR hour*)
END; (*FOR day*)

FOR hour:= 8 TO 18 DO
schedule[Days.Monday, hour]:= Classes. English;

END; (*FOR hour*)

(*Software Tuesday to Friday at 10*)
FOR day:= Days.Tuesday TO Days.Friday DO

schedule[day, 10]:= Classes.Software;
END; (*FOR day*)

schedule[Days.Tuesday, 8]:= Classes. Mathematics;
schedule[Days.Friday, 9]:= Classes. Mathematics;

(*print schedule for mornings *)
FOR day:= FIRST(Days) TO LAST(Days) DO

SIO.PutText(DayNames[day] & "\n");
FOR hour:= FIRST(Morning) TO LAST(Morning) DO

SIO.Putlnt(hour);
SIO.PutText(":" & ClassNames[schedule[day, hour]]);

END; (*FOR hour*)
SIO.NIO;

END; (*FOR day*)
END ClassSchedule.

(*stores the schedule*)

(*initialize to None*)

(*English nearly all day*)

Example 8.10: Class schedule as bidimensional array

150 8. Composite static types

As reader you might object that you could produce such a schedule
more efficiently on paper by hand, and that you do not need a computer
for this. This is true. Example 8.10 was intended to demonstrate the
basic data structures and several elementary operations. We still lack
sufficient knowledge to produce a program that properly manages a
schedule. For example, we would have to make a real schedule persis
tent; i.e., it must not simply disappear after execution of the program,
as in Example 8.8 (see Chapter 14).

8.1.6 Linear search in an array

Next let us solve a classic problem in computer science: searching for an
element in an array. It is easy to guess why searching is a classic problem.
We store the information in our computers for a reason: We want to be able
to use the stored information, and this means that we must be able to find
it. Let us assume for now that the data are stored completely randomly
in an array (i.e., there is no relationship between an element value and
its position in the array - in contrast to a sorted array, where "smaller"
elements appear before "larger" ones.) Thus to find a value, we must search
the array linearly from the start, one element at a time.

First let us formulate the task precisely. Given an array a of INTEGERs
with an index range between 1 and N and the target value x, we want to
find the first occurrence of this value in a. The precondition is:

N > 0 1\ (:3j: 1 :S j :S N : a[j] = x)

In words, N must be positive, and the value x must occur in a. In ad
dition, we implicitly assume that a, x and N do not change during the
execution of the search procedure.

The assumption that the target element actually occurs in the array
is not so unrealistic: We can increment N by 1 and copy x to the last
position. Then we always find x, and we know that if x is found at
the last position, then it was not contained in the original array. This
approach is called the sentinel method.

The program must fulfill the following postcondition:

ali] = x 1\ (\fj : 1 ::::: j < i: a[j] #- x)

The first expression (before 1\) states that x was found at position i; the
second states that x occurs at no position with a smaller index. Let us
derive the algorithm from this postcondition. We need a loop that linearly
searches the entire array until the target element is found. The second
expression of the postcondition can serve as our loop invariant, because

S.l. Arrays 151

this relationship must be preserved during the entire search. We will use
the invariant I:

I : (V j : 1 :::; j < i : a[j] =I- x)

The first expression ofthe postcondition could serve as termination con
dition for the loop. We will use a WHILE loop with the following form (see
Section 5.5):

{I} WHILE condition DO statements {I} END

The WHILE condition will be the negation of the termination condition
(i.e., ali] =I- x). Now the body of the While loop is easy to see: We want to
search the entire array linearly, so we need to increment the index by 1 in
each iteration. The final algorithm becomes:

{precondition == N> 0 /\ (3j: 1 :::; j :::; N : a[j] = xl}
i:= 1;
{I}
WHILE ali] =I- x DO

INC(i)
{I}

END;
{I /\ a[i] = x == postcondition}

A detailed proof of the partial correctness of the above algorithm can
be found in [DFS88]. It is easy to demonstrate termination (and thus the
total correctness): Since we postulated x E a, and since i searches the
array linearly from the start, ali] =I- x cannot remain true forever, and the
WHILE loop must terminate. Example 8.11 shows a corresponding solution
in Modula-3.

In Example 8.12 we search a text array. In the first WHILE loop we
read texts into array a, where we will later search. Since we might not
completely fill the array, we use the variable last to store the index of the
last valid value. If the Stop character is input at the start, then the search
is not carried out at all (i <= last is never true). In the search we do not use
a sentinel, thus complicating the termination condition.

The test of the termination condition relies on lazy evaluation (Section
7.1.3). Ifwe exchange the two conditions, then we might try to access
an element that does not exist.

152 8. Composite static types

CONST
N = 10; (*number of elements in array*)

TYPE
Array = ARRAY [1 .. N+1] OF INTEGER;

(*the position N+l is reserved for the sentinel*)
VAR

a: Array;
x, i: INTEGER;

BEGIN
(* ... a and x are initialized appropiately ... *)

a[LAST(a)]:= x;
i:= FIRST(a);
WHILE x # ali] DO INC(i) END;
IF i = LAST(a) THEN SIO.PutText("NOT found");
ELSE SIO.PutText("Found at position: "); SIO.Putlnt(i)
END;

(*the array to be searched*)
(*x contains the target value*)

(*statement part*)

(*sentinel at position N+l*)

Example 8.11: Linear search with sentinel

The following reflects a possible execution of the program:

Please enter a text, or terminate input with
Peter Paul Martha Julia Eleanor.
Search text : = Julia
Found at position: 4

For large quantities of data, linear searching can become too prolonged.
On the average, we have to search half ofthe array, and in the worst case all
of it. Ifwe order the data according to some principle, then we can employ
much faster methods. Thanks to the alphabetic order ofthe telephone book,
e.g., we can quickly find the corresponding first letter. Ifwe are looking up
the name Newman, then we open the telephone book approximately at the
middle. If we happen to open to the letter K, then we do not continue to
search in the first half, but only after K. On second try we might flip to P,
and on the third attempt we might land at N. This is not linear searching.
Ifwe encounter persons of the same name, we might then have to continue
with a linear search. We do not discuss improved search methods here, but
refer the reader to a number of algorithms in the literature [Knu81, Sed93,
Wir76].

8.1.7 Sorting an array

We have seen that the precondition for rapid searching is the existence of
some order in the array. This means that we have to sort our data.

8.1. Arrays

MODULE LinearSearch2 EXPORTS Main;

IMPORT SIO, Text;

CONST

153

(*1.12.94. LB*)

N = 128;
Stop = ".";

TYPE

(*maximum number of elements in array*)
(*end of input stream*)

Array = ARRAY [1 .. N] OF TEXT;
VAR

a: Array;
x: TEXT;
i, last: INTEGER;

(*the array, in which to search*)
(*current text or search text*)

(*Iast: last valid index*)

BEGIN (*statement part*)
SIO.PutText("Please enter a text, or terminate input with" & Stop & "\n");
last:= FIRST(a) - 1; x:= SIO.GetTextO;
WHILE NOT Text. Equal(x, Stop) AND (last < LAST(a)) DO

INC(last); a[last]:= x; x:= SIO.GetTextO;
END; (*WHILE NOT Text.Equal .. , *)

SIO.PutText("Search text := ");
x:= SIO.GetTextO;

i:= FIRST(a);

(*x contains the search text*)

WHILE (i <= last) AND NOT Text. Equal(a[iJ, x) DO INC(i) END;
IF i > last THEN SIO.PutText("NOT found");
ELSE SIO.PutText("Found at position: "); SIO.Putlnt(i)
END; (*IF i > last*)
SIO.NIO;

END LinearSearch2.

Example 8.12: Linear search without a sentinel

How do we sort an array of texts? How would we sort texts if they were
written on file cards? Perhaps the simplest method is the following: We find
the (alphabetically) smallest element and swap it with the first element.
This assures that the (new) first element is in the correct position. Next we
repeat the procedure with the second, third, etc. element. This produces an
increasingly long sorted sequence at the start of the array. After we have
progressed to the next-to-the-Iast element, the last element must also be
correctly positioned, i.e., the largest.

We can easily implement this algorithm with a nested FOR loop (Ex
ample 8.13). For input we use the same statements as in Example 8.12.
The outer FOR loop iterates through the array from the first to the next
to-the-Iast element. The inner loop seeks the smallest element within the
unsorted rest. To the variable min we always assign the index value of the
smallest element (at the start we assume that ai is the smallest). If we
find an element aj < amin' then we set min toj. Mter each iteration ofthe
inner loop we swap ai with amin- To compare texts, we use the Compare

154

TYPE
Array = ARRAY [1 .. N) OF TEXT;

VAR
a: Array;
x: TEXT;
last, min: INTEGER;

BEGIN

FOR i:= FIRST(a) TO last - 1 DO

8. Composite static types

(*the array in which to search*)
(*auxiliary variable*)

(*Iast: last valid index, min: current minimum*)

min:= i; (*index of smallest element*)
FOR j:= i + 1 TO last DO

IF Text.Compare(aUl, a[min]) = -1 THEN min:= j END; (*IF aj < amin *)
END; (*FORj*)
x:= a[min); a[min):= ali); a[i):= x; (*swap ai and amm *)

END; (*FOR i*)
FOR i:= FIRST(a) TO last DO

SIO.PutText(a[i) & " "); (*outputs sorted array*)
END; (*FOR i*)
SIO.NI();

Example 8.13: Sorting by selecting the smallest element

procedure of the Text interface. If text1 and text2 are of type TEXT, then
Compare(text1, text2) returns 0 if the content of text1 is equal to that of
text2, -1 if text1 comes before text2 in lexical order ("less than"), or +1 if
text1 comes after text2.

The following is a possible execution of the program:

Please enter a text, or terminate input with .
Peter Paul Ely Martha Julia Alma.
Alma Ely Julia Martha Paul Peter

This sorting algorithm is quite simple, but not particularly efficient. For
n elements we would have to iterate through the array on the average ~2
times. For more efficient sorting algorithms, we refer the interested reader
to the literature [Knu81, Sed93, Wir76].

8.2 Records

A record serves to combine components of different types. Such heteroge
neous combination makes sense when the components are logically related.
The components receive a symbolic name with which they can be accessed.

8.2. Records 155

Access to such components is thus static; i.e., they are already known at
compile time.

To collect information on the employees of a company, as on file cards,
we can write as follows:

TYPE
EmpData = RECORD

name, firstname: TEXT;
salary: REAL;

END;
VAR

employee: EmpData;

The variable employee can now be stored as a single value. All infor
mation on an employee can be accessed together via employee. We use
selectors to access individual components. To initialize the variable, we
can write as follows:

employee.name:= "Smith";
employee. firstname:= "Fred";
employee.salary:= 20000.0;

We could say that the components of a record become part of a larger
context, but do not lose their individual attributes such as name and type.
The components of an array, by contrast, are more uniform; they are all of
the same type and are identified with indices (actually with a "number" or
address). However, the indices of an array can be computed dynamically,
while the names of the components ofa record are static.

Syntax of record types

RecordTypes4 = "RECORD" FieldsS9 "END".
FieldsS9 = [Field60 { ";" Field60 } [";"]] .
Field60 = IDUst87 (":" Type48 I ":=" ConstExpr6s

I ":" Type48 ":=" ConstExpr6s).

The general form of a record type is thus:

TYPE T = RECORD field list END

The list of fields is very similar to a variable declaration. This is not an
accident, but actually the goal: In a record we combine declarations. Ini
tialization of the fields on declaration is restricted to constant expressions.
Initialization is carried out on creation of a variable of type record. Exam
ple 8.15 shows how points on a (bidimensional) screen can be represented

156 8. Composite static types

x y color [red] color [green] color [blue]

q: [_-~~--~_1"-__ "_--'-_~~-_"-__ :1 [:=1=00="====1 0=0 = L---~~;J 1

Figure 8.14: Record with simple and composite fields

TYPE
Colors = {red, green, blue};
Intensity = [0 .. 100];
ColorValues= ARRAY Colors OF Intensity;
Point = RECORD

VAR

x, y: INTEGER := 0;
color:= ColorValues {O, .. };

END; (*Point*)

(*primary colors*)
(*intensity in percent*)

(*black*)

P: Point; (*p.x = 0, p.y = 0, all p.color; = 0*)
q: Point; (*q.x = 0, q.y = 0, all q.color; = 0*)

BEGIN (*q receives new coordinates and color*)
q.x:= 10; q.y:= 10; (*q is shifted by 10 in both directions*)
FOR f:= FIRST(Colors) TO LAST(Colors) DO q.color[f]:= 100 END; (*q turns white*)

Example 8.15: Record declaration

in a graphic program. In this example a point has two coordinates and
one color value each for three primary colors (red, green and blue). The
coordinates are initialized to 0 and the color to black.

The reader should note the difference between the Point type in the
array in Example 8.5 and the Point type used in Example 8.15: We
use the record here because the number of point coordinates is fixed
and additional information (the color) needs to be stored with each
point.

8.2.1 Record selectors

The elements of a record are accessed via qualified identifiers. The field
name must be preceded by the name of the variable to which the field be
longs - separated by a period. To initialize coordinate x of variable q in
Example 8.15 and Figure 8.14, we would write the following:

q.x := 10

In the event of nested records, the entire path of field names must be
specified (see, e.g., the expression poly[i].p2.x in Example 8.19). The syntax
of access to record fields (like indexing of arrays) is defined in the expres
sion syntax (see Selector78 in Figure 7.1, page 126).

8.2. Records 157

8.2.2 Record constructors

Record values can be defined with the help of record constructors. For the
exact syntax, we repeat the relevant excerpt from the syntax of expres
SiOns:

Syntax

Constructor79 = Type48 "{" [RecordCons82 I ... J "}".
RecordConSR2 = RecordEltS3 { "," RecordEltS3 }.
RecordElt83 = [Ident89 ":=" J EXpr66.

A record constructor defines a list of values to be assigned to the record
fields. With the help of record constructors we can establish the value of
record constants and record variables. For fields for which the type decla
ration did not define a value, a value must be specified in the constructor.
Fields values that were given a value in their type declaration need not be
defined in the constructor. Here the value of the type declaration is used.
Mter the assignment of a constructor all fields of the target record receive
a valid value. The values of the constructors can be specified positionally
or by name.

1. Positional specification
The values are assigned sequentially to the record fields: the first
value to the first field, the second value to the second field, etc. If
the list of values is shorter than the number of fields, then the spec
ifications of the type declaration apply to the remaining fields. For
example, if the type Point is declared as in Example 8.15, then

Point{20,30}

defines a point with X = 20 and y = 30. The color value remains as
specified in the type declaration.

2. Specification by name
This specification is syntactically similar to a value assignment. The
sequence of the specifications is arbitrary in this case. The fields for
which no assignment is made assume their values from the type dec
laration. The following constructor defines the same point as above:

Point{y:= 30, x:= 20}

3. Mixed specification
For a mixed specification, the positional specifications must be made
first. We suggest avoiding mixed specifications because they are gen
erally hard to read.

158

TYPE
Colors = {red, green, blue};
Intensity = [0 .. 100];
ColorValues= ARRAY Colors OF Intensity;
Point = RECORD

CONST

x, y: INTEGER;
color: ColorValues;

END; (*Point*)

Black = ColorValues {O, .. };
White = ColorValues {100, .. };
Yellow = ColorValues {100, 100, o};
Origin = Point{x:= 0, y:= 0, color:= Black};

VAR
p: Point := Origin;
q:= Point {x:= 10, y:= 10, color:= White};

BEGIN
p.x:= p.x + 10;
p.y:= p.y + 15;
p.color:= Yellow;

8. Composite static types

(*primary colors*)
(*intensity in percent*)

(*Intensity value minimal => black*)
(*Intensity value maximal => white*)

(*red and green make yellow*)
(*record constructor*)

(*record constructor*)

(*shift p toward x by 10*)
(*shift p toward y by 15*)
(*set color ofp to yellow*)

Example 8.16: Record types, constructors and selectors

Figure 8.17: A zigzag line stored in the variable ''poly''

poly [1]

Figure 8.18: Array of records with various fields

8.2. Records

CaNST
Red
Step

TYPE
Colors
Intensity
ColorValues
Point

= ColorValues {100, 0, O};
= 10;

= {red, green, blue};
= [0 .. 100];
= ARRAY Colors OF Intensity;
= RECORD

x, y: INTEGER;

159

(*red color*)

(*primary colors*)
(*intensity in percent*)

color: ColorValues := Red;
END; (*Point*)

Line

Group
VAR

= RECORD
p1, p2: Point;

END; (*Line*)
= ARRAY [1..16] OF Line;

P := Point{x:= 0, y:= O};
line := Line{p1:= p, p2:= Point{x:= Step, y:= Step}};

poly: Group;
change: INTEGER := Step;

BEGIN

(*linejoints point(O,O) with point(10,10) with a red line*)
(*poly consists of a number of lines*)

(*change of direction on Yaxis*)

poly[FIRST(poly)]:= line;
FOR i:= FIRST(poly) + 1 TO LAST(poly) DO

poly[i].p1:= poly[i - 1].p2;
poly[i].p2.x := poly[i - 1].p2.x + Step;
change:= - change;
poly[i].p2.y := poly[i - 1].p2.y + change;

END; (*FOR i*)

(*poly[lljoins (0,0) with (10,10)*)

(*poly[i]'p1 takes p2 from predecessor*)
(*forward along X axis*)

(*changes direction with each iteration*)
(*up and down along Yaxis*)

Example 8.19: Nested records with constructors

In Example 8.16 Black, White and Yellow are array constants whose val
ues are set by array constructors. Origin is a record constant whose value is
defined by a record constructor. Variables p and q are both of type Point. p
is initialized to the value Origin, and q is initialized by a record constructor.
In the statement part the attributes of the declared points can be changed
as needed. Example 8.19 introduces lines and groups oflines in bidimen
sional space. A Line consists of two points. We define a group as an array
oflines. The variable poly represents a red zigzag line (see Figure 8.17 and
8.18).

160 8. Composite static types

8.2.3 Operations with records

Assignment

Records can be assigned to one another if all their fields have the same
names and types and have been declared in the same order in the record,
which makes them structurally equivalent (see Section 7.3). In the follow
ing example R1 and R2 are equivalent, but different from R3 (the fields of
R3 have the same types, but different names):

TYPE
R1 = RECORD a: INTEGER; b: REAL END;
R2 = RECORD a: INTEGER; b: REAL END;
R3 = RECORD x: INTEGER; y: REAL END;

The initialization values belong to the record type. Thus the following
types are different and thus not assignment compatible:

R4 = RECORD a: CARDINAL := 0 END;
R5 = RECORD a: CARDINAL END

On assignment between records, all fields of the RHS record (the right
side of the assignment) are copied to the corresponding fields of the LHS
record (on the left side).

Relational operations

Assignment compatible records can be tested for (in)equality. No other
relational operation is permitted.

8.2.4 With statement

Before we examine a larger example, we introduce a new statement that
allows us to use aliases for complex selectors that we need more than
once. Thus we can make the source code more compact and readable -
and we save some typing. Besides, it makes our programs more efficient
because certain internal access computations associated with the selectors
for record components and above all array indexing, only have to be carried
out once.

Syntax of the With statement

WithStmt41 = "WITH" Binding46 { "," Binding46 } "DO" Stmts23 "END".
Binding46 = Idents9 "=" Expr66.

8.2. Records

MODULE Students EXPORTS Main;

IMPORT SIO;
CONST

161

(*5.11.93. LB*)

SubjectName = ARRAY Subjects OF TEXT {"English", "Software", "Mathematics"};
MaxStudents = 300; (*maximum number of students*)

TYPE
Subjects
Tests
Student

= {English, Software, Mathematics};
= RECORD t1, t2: CARDINAL := 0 END;
= RECORD

name, firstName: TEXT := "";
studentNumber: CARDINAL := 0;
tests: ARRAY Subjects OF Tests;

END; (*Student*)
= ARRAY [1 .. MaxStudentsj OF Student; Students

StatData
Statistics

= RECORD count, score: CARDINAL:= 0 END;
= ARRAY Subjects OF StatData;

(*test statistics*)
(*statistics by subject*)

VAR
students: Students;
count: CARDINAL := 0;
statistics:= Statistics{ StatData {}, .. };

BEGIN
SIO.PutText("Student Data Management\n");

(*stores all student data*)
(*current number of records*)

(*statistics of test results by subject*)

(*initialize student data and the number of students*)

FOR s:= 1 TO count DO (*upper boundary = current count*)
WITH st = students[sj DO (*st is for students[s}*)

IF st.studentNumber # 0 THEN (*no test without student number*)
FOR f:= FIRST(Subjects) TO LAST(Subjects) DO

WITH stat = statistics[f], t = sUests[fj DO
INC(stat.count, 2);
INC(stat.score, U1);
INC(stat.score, U2);

END; (*WITH stat, t*)
END; (*FOR f*)

END; (*IF st.studentNumber # 0*)
END; ("WITH st = students[s}*)

END; (*FOR s*)

(*t=students[s}.tests[f1*)
(*exactly two tests per subject*)

(*add test 1*)
(*add test 2*)

FOR f:= FIRST(Subjects) TO LAST(Subjects) DO
SIO.PutText("Average for" & SubjectName[fj & " = ");
SIO.PutReal(FLOAT(statistics[fj.score) / FLOAT(statistics[fj.count));
SIO.NIO;

END; (*FOR f*)
END Students.

Example 8.20: Output of test statistics

162 8. Composite static types

The general form of a WITH statement:

WITH identifier = expression DO statement sequence END

The identifier is declared via the WITH statement; its scope (see Section
9) extends to the END of the statement. The identifier is used as an abbre
viation (nickname) for the expression. If the expression returns a value,
then the identifier within the WITH statement stands for this value, and no
new value can be assigned to the identifier (it is a read-only variable). If
the expression yields a (read/write) variable, then the identifier is actually
only another (shorter) name for the variable.

8.2.5 Example: Student data management

Let us develop a small student data management system: For each student,
we want to store the name, first name and student number. For each class,
the students must take exactly two tests (perhaps a too rigid assumption).
The points scored on the tests are to be stored. Student who lack a valid
(nonzero) student number are not considered in the assessment.

In Example 8.20 we assume that the student data has already been
recorded. For larger and more complex data sets, we usually read the input
data from a file (see Chapter 14) rather than from the keyboard. The data
to be read must be tested for syntax (correct format) as well as semantics.
The semantic test attempts to detect and reject senseless values. For a
student number, e.g., we could require that all student numbers in the
year 1995 begin with 95. Such a condition is easy to test.

Our program computes the mean of the test results within a subject.
The initialization of the variable statistics was specified on declaration.
This initialization must be moved to the statement part if we intend to
use the variable repeatedly. For the subject-related statistics we must iter
ate through all the collected student data (the current number of students
is stored on input in the variable count). For students with a valid student
number, we increment the statistical counter. Note that we store the num
ber of valid tests in the field count of the record StatData, which should not
be confused with the variable count.

In processing the array students we did not use FIRST and LAST because
we explicitly assume that the lower boundary of the array is always 1 (we
need not consider the case that numbering of the students begins at -5 or
100). Assume that we input of the following data (here we use the Euro
pean 1 (A) to 5 (F»:

8.3. Sets 163

FirstName Name StudentNo. English Software Mathematics
Amelia Smith 9400 2 5
Oscar Small 9401 4 5
Julia Jones 9402 4 1
Peter Piper 0000 4 1

The program would give us the following output:

Average for English = 3.5
Average for Software = 2.8333333
Average for Mathematics = 3.5

8.3 Sets

3 4 4 5
3 2 2 3
3 2 3 4
3 2 3 4

Sets are generally very powerful constructs. Modula-3, like many other
programming languages, restricts sets to those of ordinal types. We also
limit our discussion to this view of sets.

Sets are an unordered collection of elements. Thus we cannot index the
elements (there is no ith element). We can designate an element of a set
only as itself To read an element from an array, we specify its position
(the index). With a set we proceed differently: We insert an element or test
whether a certain element (that we already know) is contained in the set.

,As surprising as it may seem, this gives us a very powerful tool.

Sets are closer to human memory than array storage is. People do not
search in their memories as though they knew the position that con
tains the information, but did not know the contents. When people
remember something, they already have the information. When peo
ple cannot remember something (such as the name of the medication
against forgetfulness), they cannot iterate through a linear search of
memory. The efforts that people make in such a case are quite mys
terious. They seem to know something, but actually do not know it -
a situation that has little to do with the storage of information in a
computer.

A typical example of the use of sets in computer programs is the storage
of switch values. To store in a variable the current position of the mouse
keys of our computer, we could do the following:

TYPE
Keys = {left, middle, right};
Mouse = SET OF Keys;

VAR
mouse: Mouse;

164 8. Composite static types

The pressed keys, but not the others, are contained in the set mouse. To
initialize the variable mouse to "no key pressed", we can write:

mouse := Mouse{};

Thereby we assign to the variable an empty set of type Mouse. To add
the middle mouse key (to any keys currently pressed), we write:

mouse := mouse + Mouse{Keys.Middle};

This joins the current set of pressed keys with the set containing only
the element Keys. Middle. The following statement tests whether the middle
key is pressed.

IF Keys.Middle IN mouse THEN (*middle mouse key pressed*) END;

The programming language 8ETL [8+86] builds fundamentally on
sets. Many database languages also feature sets as "first-dass-citizens",
i.e., as full-fledged, unrestricted language construct. This means that
we can define sets of any data type. Note that sets are one of the
most basic mathematical constructs, and many other constructs can
be expressed as special cases of sets. However, it is quite difficult to
implement sets as full-fledged and efficient features.

Syntax of sets

SetType56 = "SET" "OF" Type4s.

Type4S, the base type of sets, must be an ordinal type. The elements that
are added to a set must be assignment compatible with this type.

8.3.1 Range

Since the base type itself represents a value set, the range of a set is a
power set (a set of sets). This power set represents the set of all possible
sets of the base type. If we create a set over the range [0 .. 1], then the
following values are contained in the range of the power set:

{} {O} {1} {O,1}

In words, the range encompasses the empty set, the sets containing either ° or 1, and the set containing both elements.
Sets are unordered; thus the set {O,l} can also be written as {1,O}. An

element can occur only once in a set: {O,l,l} is identical to {O,l}.
Ifthe cardinality (number of possible values) ofthe base type is N, then

the cardinality of the set formed therefrom is 2!'. This necessitates a re
striction of the base type range. A set of type INTEGER, e.g., can never be
represented fully. In general it makes sense to create sets of base types
with modest cardinality.

8.3. Sets

For internal representation of sets we need at least one bit per ele
ment; this bit specifies whether the element is contained in the set.
This simple representation would not be possible if sets were not so
restricted. For example, if a SET OF RECORD ... were possible, then
one bit per element would not suffice because the contents of the indi
vidual fields (or at least a pointer to them) would be necessary. How
ever, with the help of user modules it is possible to design general and
powerful sets (see Appendix A).

Even for a very thrifty representation we need 32 bits for a SET OF
[1 .. 32]. For the complete representation of SET OF INTEGER on a 32-bit
computer we would need 232 bits, or 512 Mbytes, of memory.

8.3.2 Set constructors

Set values can be defined with the help of set constructors.

Syntax

Constructor79 = Type4S "{" [SetConsso I ... J "}".
SetConsso = SetElts1 { "," SetElts1 }.
SetElts1 = EXpr66 [" .. " EXpr66].

165

A set constructor lists values or ranges to be contained in the set. Ex
ample 8.21 demonstrates the use of set constructors. The constant All con
tains all elements in the range [1..16], Null is an empty set, and Several
= {1,3,S,6,7,14,1S,16}. The initialization of variable s (to {r1,11,r2}) is an
example showing that a set constructor can also contain variable names.

8.3.3 Operations on sets

In addition to assignment, special set operations (analogous to the arith
metic operations) and relations are defined on sets.

Assignment

A set value can be assigned to a set variable if and only if their base types
are equivalent. This means that only equivalent set types are assignment
compatible.

In Example 8.22 the types Set1 and Set2 are not equivalent. Possible
values of Set1 are {} {1} {2} {1, 2}, while for Set2 they are {} {2} {3}
{2, 3}; therefore s1 and s2 are not assignment compatible.

166

TYPE
Range = [1 .. 16];
Set = SET OF Range;

CONST
All = Set{1 .. 16};
Null = Set{};
Several = Set{1, 3, 5 .. 7, 14 .. 16};

VAR
r1: Range := 10; r2: Range := 12;
8 := Set{r1, 11, r2};

8. Composite static types

(*contains all elern.ents from 1 to 16*)
(*empty*)

(*contains: 1, 3, 5, 6, 7, 14, 15, 16*)

(*s = Set{10,1l,12}*)

Example 8.21: Set constructors

TYPE
Set1 = SET OF [1 .. 2];
Set2 = SET OF [2 .. 3];

VAR
81:= Set1 {2}; 82:= Set2{2};

81:= 82; (*impermissible, for Set1 is not compatible with Set2*)

Example 8.22: Different set types

Set operations

For sets, Modula-3 defines the operations listed in Table 8.24 (where Sand
T are operands of the same set type). The parentheses enclose the lan
guage's prescribed notation. Figure 8.23 visualizes the effect of the set op
erations for nondisjunct sets with the help of Euler-Venn diagrams [Tru88].
An Euler-Venn diagram represents sets as ovals. The set operations are de
picted by shading. The diagram of S * T, e.g., shows the intersection (the
set of all elements belonging to both sets) as shaded.

Example 8.25 shows several set operations.

Relations

For sets the usual relations are defined with the accustomed syntax and
with semantics corresponding to set theory. In Table 8.26 Sand Tare
operands of the same set type. The parentheses enclose the language's
prescribed notation.

Example 8.27 shows how to output the contents of a set with the help of
the IN relation.

B.3. Sets 167

S*T

S-T

SIT

Figure 8.23: Set operations depicted as Euler-Venn diagrams

Union (+) S + T = {xl(x E S) V (x E Tn
in words: S + T is the set of all elements that
occur in S or in T or in both sets.

Difference (-) S - T = {xl(x E S) 1\ (x tic Tn
in words: S - T is the set of all elements that
occur in S but not in T.

Intersection (*) S * T = {xl(x E S) 1\ (x E Tn
in words: S * T is the set of all elements that
occur both in S and in T.

Symmetric
Difference (/) SIT = {xl(x E S 1\ x tic T) V (x E T 1\ x tic S)}

in words: SIT is the set of all elements that
occur in S or in T, but not in both

Table 8.24: Set operations

Equality (=) S = T true i Sand T contain the same ele
ments.

Inequality (#)

Subset «=)

Proper Subset (<)

S =f:. T iff NOT(S = T)

S <= T iffVs E S: sET
iff all elements in S also occur in T
S < Tiff (S <= T)ANO(S#T)

Superset (>=) S >= TiffT <= S

Proper Superset (» S > T iff T < S

Contained (IN) e IN S iff e E S
is true if element e is contained in set S. E
must be assignment compatible with the base
type of S. Note that the IN relation deviates
from the other relations because it does not
combine two operands of the same type.

2if f stands for "if and only if"

Table 8.26: Set relations

168

TYPE
Range = [1 .. 16];
Set = SET OF Range;

CONST
Half = Set{FIRST(Range) .. LAST(Range) DIV 2};

VAR
set1, set2, set3 := Set{};

BEGIN
FOR e:= FIRST(Range) TO LAST(Range) BY 2 DO

set1 := set1 + Set {e}
END;
set2:= Half - set1 ;
set1 := set1 - Half + set2;
set3:= set1 * set2;
set3:= set1 + set2;
set3:= set1 / set2;
set3:= set1 - set2;

8. Composite static types

(* 1,2,3,4,5,6,7,8*)

(*set1 = 1,3,5,7,9,11,13,15*)
(*set2 = 2,4,6,8*)

(*set1 = 2,4,6,8,9,11,13,15*)
(*set3 =2,4,6,8*)

(*set3 = 2,4,6,8,9,11,13,15*)
(*set3 = 9,11,13,15*)
(*set3 = 9,11,13,15*)

Example 8.25: Set operations

FOR e:= FIRST(Range) TO LAST(Range) DO
IF e IN set3 THEN SIO.Putlnt(e) END;

END; (*FOR e*)

(*over all possible elements *)

(*ifpresent in set, output *)

Example 8.27: Outputting a set

8.3.4 Example: Input of numbers

Let us write a program that reads an INTEGER. We will use SIO.GetChar,
but not SIO.Getlnt (Example 8.28). The number is a sequence of digits,
possibly preceded by blanks or tabs; such leading white space is simply
skipped. The sequence might also contain a leading sign. If no inter
pretable digit sequence is entered, an error message should be generated.
We will keep statistics on any characters appearing after the digit se
quence.

The program in Example 8.28 shows a very useful application of sets.
As mentioned in Section 4.3, type CHAR does have a defined order,
yet the current ordinal value of a character depends on the code table
used. (Although this is also specified explicitly in Modula-3, it is still
better to keep our program independent of code tables.)

8.3. Sets

MODULE Sets EXPORTS Main;
IMPORTSIO;
TYPE

169

(*29.10.93. LB*l

CharacterSet = SET OF CHAR;
CONST

(*set of all possible characters*)

Caps
LowCase
Letters
Digits
Blanks
Sign
Stop

VAR

= CharacterSet{,A' .. 'Z'};
= CharacterSet{,a' .. 'z'};
= Caps + LowCase;
= CharacterSet{,O' .. '9'};
= CharacterSet{, " '\1'};
= CharacterSet{,-', '+'};
= '\n';

ch: CHAR; negative: BOOLEAN := FALSE;
result: INTEGER := 0;
letters, digits, others: CARDINAL := 0;

BEGIN
SIO.PutText("Please enter a number\n");
REPEAT ch:= SIO.GetCharO UNTIL NOT ch IN Blanks;
IF ch IN Sign THEN

negative:= ch = '-';
REPEAT ch:= SIO.GetCharO UNTIL NOT ch IN Blanks;

END; (*IF ch IN Sign*)
IF ch IN Digits THEN

(*capitalletters*)
(*lower case*)
(*allletters*)

(*digits*)
(*blanks & tabs*)

(*leading sign*)

(*Result*)
(*counters for statistics*)

(*filters blanks and tabs*)

(*minus sign*)
(*filters blanks & tabs *)

WHILE ch IN Digits DO (*reads the digits of the number*)
result:= 10 * result + (ORD(ch) - ORDCO'»; (*ch is the last digit*)
ch:= SIO.GetCharO; (*next character*)

END; (*result is the unsigned value of the input number*)
IF negative THEN result:= -result END;
WHILE ch # Stop DO (*reads to stop character*)

IF ch IN Letters THEN INC(letters)
ELSIF ch IN Digits THEN INC(digits)
ELSE INC(others)
END; (*IF ch IN*)
ch:= SIO.GetCharO;

END;
(*next character*)

(*all characters have been processed*)
SIO.PutText("lnput number = ");
SIO.Putlnt(result);
SIO.PutText("\nStatistics on subsequent characters:\n");
SIO.PutText("Letters = "); SIO.Putlnt(letters);
SIO.PutText(" Digits = "); SIO.Putlnt(digits);
SIO.PutText(" Others = "); SIO.Putlnt(others);
SIO.NIO;

ELSE
SIO.PutText("No interpretable number\n")

END; (*ch IN Digits*)
END Sets.

Example 8.28: Reading a number using GetChar

170 8. Composite static types

8.4 Comparison of arrays, records and sets

Now we are familiar with all Modula-3 type constructors for defining static,
composite types. Most imperative programming languages provide analo
gous constructors. In summary, let us compare the characteristics of these
constructors

• Size
All constructors are static in the sense that their size or the number of
elements that they can accommodate is known in advance (at compile
time). The special case of dynamic arrays is not considered at this
point (see Section 11.2.3).

• Element types
Arrays and sets are homogeneous structures. They store values of
a single element type. Records are heterogeneous structures; they
combine elements (components) of different types.

• Access to elements
Access to record components is static; which component is selected in
an expression is known at compile time. It is not possible to make
computations at run time to determine which element will be ac
cessed.

Arrays are dynamically indexed: At run time we can compute which
element to select.

We cannot directly access the elements of a set. It is only possible to
test whether an element is contained in the set.

• Order of elements
The sequence of the components of a record and of an array are stati
cally fixed. The index values of an array are ordered; there is a "first
element" and a sequence of additional elements. The elements can be
resorted dynamically by swapping their values. The elements of a set
are not ordered; there is no "first element" in a set.

8.5 Packed data types

Packed data types serve to directly influence the internal representation of
a data type. Usually the compiler employs an internal representation that
is optimized primarily for speed of access (with respect to the underlying
hardware architecture). However, sometimes we find it more important to
optimize the use of storage, especially if we are processing a large amount

B.5. Packed data types 171

of data, e.g., a very large array of records. Then we are no longer ambiva
lent about whether all bits are used optimally.

Packed data types are also employed when the format of the data is
externally imposed (e.g., the format of incoming data for a communication
channel). In such a case we can adapt the internal representation of our
data directly to the external requirements.

A third application could be to drive a monochrome monitor directly
from the main memory. In this case we manage a bidimensional array of
BOOLEANs (e.g., true for black and false for white), whereby we must be
sure that the Boolean value is represented in a single bit (which is usually
not the case because in most computers bit addressing tends to be rather
slow).

Syntax of packed data types

PackedType50 = "BITS" ConstExpr65 "FOR" Type4s,

ConstExpr65 specifies the number of bits to be reserved for Type4s.
A bidimensional array of bits could take the following form:

TYPE
Bitmap = ARRAY Index, Index2 OF BITS 1 FOR BOOLEAN

Or the format of a network package could look like this:

TYPE
Packet = RECORD

addr: BITS 8 FOR [0 .. 255]; (*an 8-bit address*)
number1, number2: BITS 3 FOR [0 .. 7]; (*two 3-bit counters*)
controlBits: ARRAY [0 .. 1] OF BITS 1 FOR BOOLEAN; (*2 bits*)
info: ARRAY [3 .. 128] OF BITS 8 FOR [0 .. 255]; (*125-byte info*)

END; (*Packet*)

The compiler is allowed to restrict the specification of bits. For example,
it is not likely that a compiler on a machine with 32-bit word length would
permit a type such as Int33 = BITS 33 FOR INTEGER.

The following applies for packed types and their unpacked versions:

BITS n FOR T <: T 1\ T <: BITS n FOR T

A type and its packed version are mutual subtypes; they are assign
ment compatible, and still not the same. The purpose of this rule is easy
to perceive. Packed data types are represented differently in storage (nor
mally more compactly) from normal types. However, they can be converted
to each other and are thus assignment compatible. Formal variable pa
rameters of an unpacked type cannot be passed as actual parameters to

172 8. Composite static types

variables of the same type in packed version (this requires type identity;
see Section 9.3.2).

The examples also show that packed data types are important only in
advanced system-level programming, which is not the subject of this book.
They also require precise knowledge ofthe internal representation ofvari
ous data types. We mention them here for the sake of completeness and do
not use them any more.

Chapter 9

Structuring algorithms

The previous chapter remedied a deficit in data structuring. Now we can
define powerful data structures, data aggregates. With the help of struc
tured statements we are capable of programming complex computations.
But now let us critically examine the overall structure of our programs.

Our programs so far consisted of a main module, which itself consists
of a block. In this block we first have all declarations in any order. A
statement sequence of any length follows the keyword BEGIN. As long as
the entire program expresses a single algorithm, there is no objection to
this structure. However, if we assemble a large number of algorithms to
a program - as usually is the case in practice - then there is a need to
combine related declarations and statements to a syntactic unit. In addi
tion, we want to be able to reuse algorithms. This necessitates managing
algorithms as named units.

First we will more closely examine blocks, which do not immediately
solve this problem. Still, they represent an important step toward proce
dures, which as named blocks represent invokable algorithms, and which
we will discuss next.

9.1 Block structure

A block is the scope of a series of declarations. Thus far we had only one
block per main module, so the scope of all names was accordingly the whole
module. Many declarations (e.g., variables) are relevant only locally; they
are needed for only a few statements. With the help of nested blocks we
can restrict the definition of such local declarations to exactly the necessary
scope.

Syntactically a block is a Stmh4. Blocks can occur wherever statements
are allowed. A block in a statement sequence is executed as soon as the
preceding statement has been completed (see Section 5.3). Thus blocks do
not change the control structure of the statements. The control structure

174 9. Structuring algorithms

continues to be determined by the static source code: The statement part
of a block, like any other statement, is executed at its position in the source
code.

This concept stems from the language Algol-60, which dates back to
the 1960s.

Scope of identifiers

A block is the scope for identifiers, i.e., for names. Blocks can be nested to
any depth. An identifier is defined, or visible, from the beginning to the end
of the block in which it is declared. This also encompasses all nested blocks
- unless the same name is redeclared in the nested block. Let us examine
the code for a triangular swap (compare Section 5.1, page 84):

VAR x, y: INTEGER;
BEGIN

x:= 1; y:= 2;
VAR repos:= x;
BEGIN

x:= y; y:= repos;
END (*inner block*)

(* ... *)
END; (*outer block*)

(*repository needed only for the swap*)

Variables x and yare defined in both bIos. Variable repos, needed exclu
sively for the swap, is defined only in the inner block.

Figure 9.1 depicts three blocks. The module block (also called global
block) contains two nested blocks. The figure shows what happens when
a name is redefined in an inner block that has already been declared in
an outer block (variable x). In this case the redeclared identifier eclipses
the one in the enclosing block, making the outer variable invisible in the
inner block. In Figure 9.1 both the identifiers local are visible only in their
own blocks (they are local to their blocks). Outside their blocks they are
undefined. This means that variable local in the first block has nothing
to do with the variable in the second block that happens to bear the same
name. This is analogous to two persons named Smith living in the same
building but in different apartments. The identifiers global and x, declared
in the global block, are defined in the entire module. However, in the first
block, identifier x is redeclared. This eclipses the global x in this inner
block. (When we speak of "castle" and "king" in chess, these terms have a
meaning different from the usual; in the local context of chess, a castle is
not a large building!)

9.1. Block structure

MODULE Main;

VAR global; INTEGER;
x: INTEGER

BEGIN

VARi~~al: IN"TEGER;-i
x: REAL;

BEGIN

END;

VAR local: INTEGER;
BEGIN

END;

END Main;

Module block: scope of gjQQgl
and K as INTEGER.

Nested block: scope of local and
Kas REAL;
gfQbilJ. is also visible, but K as
INTEGER is not.

Nested block: scope of local;
gjQQgl and K are also visible
as INTEGER.

Figure 9.1: Blocks

Lifetime of variables

175

Blocks regulate not only the scope of identifiers but also the lifetime of
variables. A variable's life begins on activation of the block (when control
reaches the block's BEGIN) in which the variable is declared. Storage for
local variables is allocated only at run time, when the block is executed.
After the end of the block the variables vanish; their storage is deallocated.
The lifetime of variables that are global to a main module is the duration
of execution of the whole program. (We introduce data that outlive the
duration of program execution in Chapter 14.)

The declarations in local blocks can also encompass types and con
stants. Here we do not speak of lifetime because these constructs, in
contrast to variables, are static in nature and do not change during
program execution.

Syntax of blocks

Block12 = {Declaration13 }"BEGIN" Stmts23 "END".
Stmt24 = Block12 I

Thus a block consists of declarations and a statement sequence. How
ever, a statement can be a block itself. This recursion in the syntax ex
presses that blocks can be nested. Blocks define the rules that determine
the visibility of identifiers and the lifetime of variables.

176

MODULE GCD EXPORTS Main;

IMPORT SIO;

VAR a, b, res: CARDINAL;

BEGIN
a := SIO.GetintO;
b := SIO.GetintO;

VAR
x: CARDINAL := a;
y: CARDINAL := b;

BEGIN
WHILE x#y DO

9. Structuring algorithms

(*3.12.93. LB*)

(*start of block*)
(*x is "born" and is initialized to the value ofa*)
(*y is "born" and is initialized to the value ofb*)

(*x and y can be modified by the algorithm*)

IF x > y THEN x := x - y ELSE Y := Y - x END;
END;
res:= x;

END;

SIO.Putlnt(res);
END GCD.

(*copies the result to the global variable res*)
(*end of nested block, x und y disappear*)

Example 9.2: Nested blocks

As an example we will re-implement the already familiar algorithm of
Euclid (Example 5.13 from page 100). To be able to use this algorithm in
a larger context, we need to make a copy of the variables whose greatest
common divisor we calculate. Thus we can prevent the algorithm from
destroying the original values, which we might need later. For this purpose,
Example 5.13 declares two additional global variables, (x and y), which
can then be modified in the algorithm. Variables x and yare only of local
importance for the computation, however. Thus it would be advisable to
restrict their scope and lifetime to their actual application. We can achieve
exactly that with a block (Example 9.2). Variables x and yare declared only
in the inner block. When program execution enters the block (reaches the
block's BEGIN), storage is allocated for these variables; when we exit the
block (reach the block's END) this storage is deallocated again, so that both
variables disappear. We store the result in the global variable res.

Blocks also conceal a trap! In the above example, if we had erroneously
declared the variable res in the enclosed block, then this new incarnation
of res would temporarily eclipse the global declaration (Example 9.3). The
result would be assigned to the local res, and the global variable res would
never receive the GCD. The underlying cause of this error is that our pro
gram communicates with its environment only through global variables. It
reads the input data from global variables and stores the result in a global
variable as well.

9.2. Procedures and functions

VAR
a, b, res: CARDINAL;

BEGIN

VAR
x: CARDINAL := a; y: CARDINAL := b;
res: CARDINAL;

BEGIN
WHILE x#y DO

177

(*start of block*)

(*res is erroneously redeclared*)

IF x > y THEN x:= x - y ELSE y:= y - x END;
END;

res:= x;
END;

(*result stored in LOCAL (I) variable res*)
(*end of block: local res disappears*)

Example 9.3: Error: block stores result in local variable

9.2 Procedures and functions

Blocks alone do not suffice to allow us to assemble programs from smaller
parts. We need to complement the concept. First, we need to be able to
name blocks in order to be able to activate them repeatedly at different
locations. Second, the transfer of input and output values should not oc
cur via ad hoc copying of global variables to local ones and vice versa, but
through a well-defined mechanism - parameter passing. These concepts
are available in most imperative programming languages in the form of
procedures and functions, and they are so basic that the imperative pro
gramming languages are often called procedure-oriented.

In practice, procedures serve to solve a subproblem of a program and
to provide this solution to the rest of the program. We have already used
some built-in procedures and functions such as INC and ROUND. We have
also repeatedly employed the procedures ofthe module SIO. In this section
we will learn how to define our own procedures and functions.

Mathematical functions

In Section 3.4 we noted that the concept of functions in computer science
closely resembles that of mathematics. In mathematics we write y = f(x).
That is, y is the value that results when we apply the function f to x. We
also say that f is a mapping of the domain of x onto the range of y. If
there are multiple parameters, then we must take the Cartesian product
of all parameter types. If z = f(x, y), then f is the mapping of all pairs
(x, y) (with :r and y from the respective domains) onto the range of z. Nat
urally the definition of f is not repeated with each application; we specifY

178 9. Structuring algorithms

it once and thereafter "know" it (compare the trigonometric functions that
are frequently used in geometry).

Functions are implemented in many programming languages through
the construct procedure or function. They have names and can be param
eterized. We can understand them completely in the sense of their math
ematical definition. They map the parameter types onto the result type.
However, there are also significant differences between theoretical func
tions and practical, executable procedures: Procedures take time to exe
cute; they can even run endlessly (if they contain an endless loop), or they
can crash and thus never reach their normal end. Furthermore, a pro
cedure can have side effects (compare Section 9.3.4) in addition to its ac
tual computation (such as reading from the keyboard buffer, if it contains
an invocation of SIO.GetCharO, thus changing the state of the keyboard
buffer; two "identical" invocations of SIO.GetCharO do not return the same
results!).

Procedures and functions in Modula-3

Procedures in Modula-3 are named, parameterized blocks. Syntactically,
functions are a special case of procedures, which is why they are often
called function procedures. Procedures that return a value as their result
(in the sense that sin(n) returns the value 0) are called functions. In the
following we speak generally of procedures unless we need to emphasize
this difference. We employ the expression pure procedures (or proper pro
cedure)to emphasize that a procedure is not a function.

Formal and actual parameters

First let us examine Example 9.4. The Euclidean algorithm is now defined
as a function procedure named Euclid. The procedure must first be de
clared; this specifies its name, the formal parameters and a block. The for
mal parameters serve as place holders for various parameter values within
the block that defines the algorithm. The list of formal parameters, en
closed in parentheses, is specified after the procedure name. In Example
9.4 x and yare formal parameters of type CARDINAL. This defines the
procedure for arbitrary CARDINAL values. The type ofthe result (also CAR

DINAL) is specified after a colon at the end ofthe parameter list. The value
of the result is returned with the RETURN statement.

A procedure declaration, like all other declarations, is only the 'static
explanation of a structure. Declaration does not activate the statements of
the block. Activation occurs through a procedure call (or procedure invoca
tion). The assignment res:= Euclid(a, b) effects the evaluation ofthe expres
sion on the right side, the statement part of the Euclidean algorithm. The

9.2. Procedures and functions 179

VAR
a, b: CARDINAL;
res: CARDINAL;

(*a and b will be actual parameters*)
(*res will store the result"')

PROCEDURE Euclid(x, y: CARDINAL): CARDINAL = (*Procedure signature"')
BEGIN

WHILE x#y DO
IF x > y THEN x:= x - y ELSE y:= y - x END;

END;
RETURN x (*return result as function value*)

END Euclid;

BEGIN

res:= Euclid(a, b);

(*statement part of a block in which the declaration is defined*)

(*a and bare set*)
(*function invocation with actual parameters a and b*)

Example 9.4: Function procedure

formal parameters X and yare replaced by the values of the corresponding
actual parameters a and b. Finally, the result is stored in the variable res.

9.2.1 Procedure declaration

Procedures are declared once. Here we specifY the exact algorithm for
which the procedure stands. This is similar to mathematics: The sine func
tion was defined once, and this allows us to use it illimitably often.

A procedure declaration resembles that of a constant: The declaration
establishes a fixed bond between a name and a block (instead of a literal).
As we will soon see (Section 9.7), we can also declare procedure types and
thus variables of a procedure type.

Many programming languages allow only the definition of procedure
constants. Thus these languages do not distinguish procedure con
stants, types and variables, as they offer only procedures. The avail
ability of procedure types and procedure variables raises the expres
sive power of a programming language significantly.

A procedure declaration consists of a procedure head and a procedure
body. The procedure head consists of the procedure name and the sig
nature. The signature contains the list of formal parameters, and for a
function the return type as well. For formal parameters we specifY their
name, type, passing mode and default value (see Sections 9.3 and 9.5).

The scope of a formal parameter is the block of the procedure in whose
signature it is defined. The identifiers of the formal parameters are invisi
ble outside this procedure.

180 9. Structuring algorithms

The procedure body consists of a block that defines the actual algorithm
of the procedure. This algorithm is executed when the procedure is called.

Syntax of procedure declarations

Declaration13 = ProcedureHead18 ["=" Block12 Ident89] ";" I
ProcedureHead18 = "PROCEDURE" Ident89 Signature19.
Signature19 = "(" Formals20 ")" [":" Type48] ["RAISES" Raises22].
Formals20 = [Formal21 { ";" Formal21 } [";"]].
Formal21 = ["VALUE" I "VAR" I "READONLY"]

IDUst87 ":" Type48 IIDUst87 ":=" ConstExpr65 I
!DUst87 ":" Type48 ":=" ConstExpr65 .

The syntax of declaration of procedure constants is a refinement of the
already specified declaration syntax (Section 3.4.4). The procedure body
can be omitted - but this is permitted only in INTERFACES (see Section
10).

A pure procedure declaration takes the following general form (whereby
formal parameteri stands for a parameter's name, type, passing mode and
default value, joined in the syntactical unit Formal21):

PROCEDURE Name(formal parameterl; ... formal parametern) =
local declarations

BEGIN
statement sequence

END Name;

The identifier after the keyword PROCEDURE and after the END ofthe
procedure block must be the same; this serves as the name ofthe procedure.

The general form of a function procedure is:

PROCEDURE Name(formal ParI; ... formal Parn): return type =
local declarations

BEGIN
statement sequence;
RETURN return value

END Name;

Syntactically, functions differ from pure procedures in that their signa
ture specifies a return type . This can be any type except an open array
(see Section 11.2.3). It is written after the formal parameter list, separated
by a colon. Functions must contain at least one RETURN statement that
specifies the result, i.e., the return value of the function. The return value
is an expression oftype return type.

9.2. Procedures and functions 181

The syntax indicates that the list of formal parameters can be empty.
The declaration of a parameterless procedure takes the following form:
PROCEDURE NameO = ... END Name. A parameterless procedure is still
more powerful than a simple block because it has a name and can thus be
invoked repeatedly.

You might wonder whether the empty parentheses after the name are
absolutely necessary. They are necessary because we must distinguish
a procedure declaration (or a procedure call) from a procedure identi
fier. A procedure identifier without parentheses stands for a procedure
constant or for a procedure variable; a procedure identifier with paren
theses is a procedure declaration or call.

The RAISES clause in the signature is treated in Chapter 15. All other
elements of the signature are handled in detail in the following sections of
this chapter.

9.2.2 Procedure invocation

We invoke a procedure by using the procedure name in our program. The
actual parameters are specified in parentheses after the name. The invo
cation of a pure procedure is a statement (the call statement). By contrast,
a function is invoked in the evaluation of an expression (compare Section
7.1.1) of which it is an operand.

Syntax of the procedure call

CallStmtz6 = EXpr66 "(" [Actual47 { "," Actual47 }] ")".

E773 = E874 { Selector78 }.
E874 = Ident89 I ...
Selector78 = "(" [Actual47 { "," Actual47 }] ")" I
Actual47 = [Ident89 ":="] EXpr66 I Type48.

The EXpr66 in the call statement (CaIlStmt26) must finally yield an identi
fier (ofthe procedure constant or variable to be invoked). A function call is
always an expression; the procedure name derives from E874 and the list of
actual parameters in this case as Selector78' For both kinds of invocation,
the actual parameters are specified in the same way.

The general form of the procedure call is:

procedure name(actual parameter1, ... actual parametern)

The procedure call causes the activation ofthe block of the invoked pro
cedure: The formal parameters are replaced by the corresponding actual

182 9. Structuring algorithms

parameter (Sections 9.3 and 9.5 explain how). The local data of the pro
cedure block are created; i.e., storage space is allocated for them. Control
then passes from the location of the procedure call to the statement part of
the activated block (after the BEGIN of the invoked procedure).

The invocation of a parameterless procedure takes the form: procedure
nameO (e.g., SIO.GetCharO).

The empty parentheses are necessary for the same reason as with the
declaration.

End of a procedure execution

A procedure terminates when it reaches either its END or a RETURN state
ment. A RETURN statement immediately ends execution of the procedure.
On termination of a procedure all its local variables disappear (their stor
age is deallocated).

Syntax of the Return statement

ReturnStmt36 = "RETURN" [Expr66].

Function procedures must terminate with a RETURN statement because
this specifies the return value. Pure procedures can also be terminated
with RETURN, yet we recommend avoiding this practice! This makes the
procedure a block with multiple exits. This significantly complicates vali
dating such blocks 'compared to procedures with a single exit. For a func
tion we also recommend a single RETURN statement as the last statement
of the block. Recursive functions often have multiple exits; the advice does
not apply here (see Section 12).

After termination of an invoked procedure, control flow continues at the
location after the procedure call.

Invocation chain

A procedure can call another procedure, which can call a further procedure,
etc. This produces a chain of procedure calls. The last member of the
chain is the procedure that is active; the others are suspended (see Figure
9.5). A suspended procedure continues execution after the return of control
from the procedure it invoked; it has not completed its work. Therefore all
its local variables are still "alive"; the block defining the algorithm of the
procedure has not terminated.

The local data regions of invoked procedures are allocated sequentially,
and only the last one can be accessed. On a return from a procedure call,
the last data region is deallocated, and the next data region becomes acces
sible. This corresponds to a desktop on which the last files to be deposited

9.3. Modes of parameter passing

MODULE Main;

PROCEDURE Sine(x: REAL): REAL =
BEGIN

RETURN result;
END Sine;

PROCEDURE Compute(input: REAL) =
VAR a: REAL;
BEGIN

a:= Sine(input);

Main Sine

BEGIN

Compute (angle)

~ BEGIN

a:= Sine (input)

~ BEGIN

END Compute; t

183

VAR angle:= 3.1416;

BEGIN
r-------RETURN result

Compute(angle) t
END Main;

END;
W~<---

END;
time

Figure 9.5: Program branches via procedure calls

are processed first. Such storage structure is called a stack. The local data
of the procedures (including parameters) are normally stored according to
the stack principle, in the invocation stack.

We see that procedures (in contrast to simple blocks) can change the
control flow of a program. The statements of a procedure are executed
only on invocation, and through multiple invocations they can be executed
repeatedly. The entire dynamic flow of a program becomes harder to follow.
Therefore it is important that we be certain ofthe correctness of individual
procedures and that we clearly specify their semantics. Then we can view
a procedure call as a single complex statement whose correctness has been
verified (or at least tested) and whose semantics is known.

9.3 Modes of parameter passing

What kinds of parameter passing do we need? We have seen that we can
communicate between blocks via variables of the enclosing block. But we
have also seen that this is unclear and error-prone. The concept of the pro
cedure makes it possible to regulate this communication much better. With

184 9. Structuring algorithms

Input parameters Output parameters

~ ~ ~ t t t
-. /~_/

I-~-:~ block " ~-1 I Procedure block --]

Figure 9.6: The most important kinds of parameters

the specification of the parameters in the signature, we provide the door to
the procedure and so regulate communication. The parameter type corre
sponds to the size of the door: A Boolean door is very tiny, allowing only
true and false as values. A door of type INTEGER has a normal size, and for
RECORD or ARRAY parameters we need a veritable gate. By specifying the
mode of parameter passing, we regulate the direction of communication.
Some doors open only in one direction, either as entries or exits, while oth
ers open in both directions. We categorize the parameter passing modes
exactly according to this metaphor (Figure 9.6):

• Input parameters
These parameters provide a procedure with input values. The actual
parameter of an input parameter must be an expression that is evalu
ated directly before the procedure call and is assigned as initial value
of the corresponding formal parameter. Thus far our examples have
used only this kind of parameter.

• Output parameters
With this kind of parameter a procedure can return a result to the
invoking procedure. Its value is undefined at the time of the proce
dure call; it receives a value within the invoked procedure. The value
assigned to the output parameter in the invoked procedure is also
accessible in the context of the invoking procedure.

• Input / output parameters
These parameters combine both of the above attributes: They receive
a well-defined input value from the invoking procedure and a well
defined output value from the invoked procedure. Input/output pa
rameters are like industrial products that pass through different sta
tions in their processing: Each station receives the product in some
state and modifies this state accordingly.

Modula-3 provides modes of parameter passing - as in most procedural
programming languages - with a somewhat different categorization (Fig
ure 9.7) that rely greatly on their technical implementation of parameter
passing; these are discussed in the following sections.

9.3. Modes of parameter passing

Some programming languages (e.g., Ada) define the kinds of parame
ters exactly in the above categories.

9.3.1 Value parameter

185

We use value parameters to implement input parameters. In the list of
formal parameters of a procedure declaration we can write the keyword
VALUE before a value parameter. For this kind of parameter passing, we
can also omit the keyword since this is the default (see Section 9.5).

Consider a value parameter to be a local variable that receives its ini
tial value from the invoking procedure. The actual parameter is an expres
sion whose type must be assignment compatible with the formal parameter.
This value appears in the formal parameter as soon as the procedure begins
to execute. The invoked procedure can then modify the formal parameter
at will; changes remain local to the invoked procedure.

We can imagine this as follows (Figure 9.7): If the actual parameter
for a value parameter is a variable, then we pass a copy of the contents of
the container (the "drawer"). The invoked procedure can do with it what it
wants; the original contents are not touched.

9.3.2 Variable parameters

Variable parameters implement input/output parameters. In the procedure
declaration we write the keyword VAR before the formal variable parame
ter.

For a variable parameter the actual parameter must be a (writeable)
variable of the same type. On invocation, the formal parameter is replaced
by a reference to this variable. This makes the actual parameter directly
accessible in the invoked procedure. Every modification of the formal pa
rameter is immediately effective in the actual parameter.

Metaphorically, the invoking procedure allows the invoked procedure
access to the container, the "drawer", of the actual parameter. Through the
formal parameter the invoked procedure can directly access the drawer of
the actual parameter. Therefore every modification immediately affects the
actual parameter.

A pure output parameter would mean that the invoking procedure al
lows access to the drawer, but first removes all valuables (for the in
voked procedure, the contents are undefined). A procedure signature
does not unambiguously reveal whether a variable parameter is used
only as output parameter. This can lead to semantic errors if, e.g., the
invoking procedure fails to provide an initial value for an input/output

186

'4
Procedure block

Value parameter

9. Structuring algorithms

Procedure block

Variable parameter

Figure 9.7: Value and variable parameters

parameter. This problem can be avoided by careful documentation
(e.g., as commentary in the signature).

We should also be careful never to use variable parameters for pure
input parameters. This would be like handing over our whole wallet
at the cash register instead of just paying the appropriate amount.
Given boundless trust, this can work well, but in general it is better
not to go this route.

9.3.3 Read-only parameters

We employ read-only parameters for large input parameters. If we want
to pass a whole "cabinet" with numerous "drawers", (composite parameters
such as arrays and records), then copying the entire contents is quite time
consuming. Therefore we prefer to allow the invoked procedure to look
directly into the drawer, but not to modify anything. Here we write the
keyword READONLY before the corresponding formal parameters in the
procedure declaration.

On invocation a read-only parameter receives an actual initial value
- like a value parameter. Within the invoked procedure this value can
only be read. A read-only parameter, similar to a variable parameter, is
usually replaced by a reference to the actual parameter. However, since no
modification is permitted, operations within the invoked procedure have no
access to the actual parameter.

Whether the replacement of a read-only parameter occurs as value or
as reference depends on the actual parameter. If the actual parameter is
a variable, then it is passed as with a variable parameter, as a reference

9.3. Modes of parameter passing 187

to the variable. Otherwise the read-only parameter behaves like a value
parameter.

We must keep in mind this parameter passing technique; otherwise we
can easily fall in a trap: For example, a procedure might have two pa
rameters, one read-only input parameter and one output parameter that
is declared as a variable parameter. If we pass the same variable to the
input parameter as to the output parameter, then the procedure writes to
the variable that it simultaneously reads as input - which can have un
forseeable consequences. If the input parameter were declared as a value
parameter, there would be no problem in passing the same variable for
both parameters - the input parameter is only read as a local copy. See the
example of matrix multiplication (Section 9.3.5).

9.3.4 Information transfer via global variables

The same applies for blocks of procedure declarations as for nested blocks
in the statement part: All identifiers declared in the enclosing blocks are
visible (unless we have redeclared the identifier). In procedures we can
access variables of outer blocks just as in other nested blocks. In Example
9.2 the nested block accesses the variables a, b and res of the outer block.
Likewise the procedure Euclid in Example 9.4 could access these variables.
We call this accessing global variables. Modifying a global variable causes
a side effect - the procedure modifies not only its variable parameters, but
also additional variables.

Although we theoretically could implement input/output parameters as
global access, this is usually poor practice:

• Our procedures are no longer building blocks with fixed input and out
put because now they depend on additional variables. A basic require
ment of structured programming (Section 3.1) was to create building
blocks whose correctness can be checked independently of others.

Procedures that access global data cannot be reused anywhere except
in the context where they are declared (for the global variables are
only there).

• The readability of programs declines significantly because the proce
dure signature alone no longer indicates the inputs and outputs of the
procedure.

• Two identical invocations of the same procedure generally lead to dif
ferent results.

For these reasons, information transfer via global variables between an
invoking procedure and an invoked procedure should be avoided. But why

188 9. Structuring algorithms

is it permitted at all? There are cases where access to global variables is
actually necessary, namely to represent the hidden state space of a mod
ule - the invoking procedure does not know these variables. We will see
examples in Section 10.

9.3.5 Comparing the kinds of parameters

Euclidean algorithm with procedures

Example 9.8 presents the Euclidean algorithm in a program. All logically
distinct subtasks are in separate procedures. The familiar function Eu
clid has two value parameters of type CARDINAL and returns a CARDINAL
value. The actual parameters no longer have to be stored in local variables
to protect the original values from destruction, as in Example 9.2. Passing
value parameters has the same effect.

Functions return only a single value. Therefore we did not define the
procedure Input, which reads a pair of numbers, as a function. We return
the two numbers as variable parameters. Naturally, we could have defined
a function that returns one number and then called it twice, or we could
have chosen a record as the function value, in the form:

TYPE Result = RECORD x, y: INTEGER END;
PROCEDURE InputO: Result = ...

In this case the solution would not have been justified because it is more
complex and there is no reason to combine the variables in a record.

We could have chosen the following pathological solution:

PROCEDURE Input(VAR x: CARDINAL): CARDINAL =

Here the first number is returned as a variable parameter, the second
as a function value. The unsuitability of this asymmetrical solution should
be obvious. Ifwe need to return more than one value, then all result values
should be defined as variable parameters.

I We generally recommend equipping functions only with value parame
ters!

The procedure Output handles the output of the result, whose value it
receives as a value parameter. The parameterless function Terminate tests
whether the program should be terminated (i.e., whether the user inputs
a character that is not a digit). Note that SIO.LookAhead waits until some
character is available in the input stream.

The parameterless procedure Compute combines the control over input
and output as well as the computation of the GCD. Note that thanks to this
procedure our module no longer contains any global variables. Thus we

9.3. Modes of parameter passing

MODULE Procedures EXPORTS Main;

IMPORT SIO;

189

(*3.12.93. LB*)

PROCEDURE Euclid(x, y: CARDINAL): CARDINAL = (*function, value parameters*)
BEGIN

WHILE x # Y DO
IF x > y THEN x:= x - y ELSE y:= y - x END;

END;
RETURN x (*return greatest common divisor as function value*)

END Euclid;

PROCEDURE Input(VAR x, y: CARDINAL) =
BEGIN

x:= SIO.GetlntO; y:= SIO.GetintO;
END Input;

PROCEDURE Output(res: CARDINAL) =
BEGIN

SIO.PutText("Greatest common divisor = ");

SIO.Putlnt(res); SIO.NIO;
END Output;

PROCEDURE TerminateO: BOOLEAN =
CONST Digits = SET OF CHAR{,O' .. 'g'};
BEGIN

RETURN NOT (SIO.LookAheadO IN Digits);
END Terminate;

PROCEDURE ComputeO =
VAR a, b: CARDINAL;
BEGIN

(*procedure with VAR parameters*)

(*return values in x and y*)

(*procedure with value parameters*)

(*output value ofres*)

(*parameterless function*)

(*TRUE if not a digit*)

(*parameterless procedure*)
(*a and b for input values*)

Input(a, b);
Output(Euclid(a, b));

END Compute;

(*after invocation, a and b contain the entered numbers*)
(*value from Euclid as actual paramter for Output*)

BEGIN (*statement part of module block*)
SIO.PutText("Greatest common divisor using Euclidean method\n" &

"Please enter a pair of numbers, or anything else to quit\n");
REPEAT ComputeO UNTIL TerminateO

END Procedures.

Example 9.8: Procedures and functions with various parameters

handle all the communication between procedures via parameter passing.
The scopes are all small and distinct. The statement part of the module is
very simple: Apart from outputting a greeting, it contains only a loop that
controls the repetition of computation.

190 9. Structuring algorithms

Matrix multiplication

Example 9.9 implements the initialization and multiplication of matrices.
The procedure Init returns an initialized array (with rather arbitrary val
ues) in a variable parameter. The matrix looks like this:

(2345)
3 4 5 6
4 5 6 7
5 6 7 8

The procedure Init is called twice to initialize arrays a and b. We could
have defined Init as a function with the signature:

PROCEDURE InitO: Matrix =

In this case, however, the use of a variable parameter is more efficient (the
function variant would need to copy the entire matrix from the local data
region of Init to the invoking procedure).

Procedure Mul receives the arrays to be multiplied via the read-only
parameters x and y and returns the result in variable parameter z. The
elements of z are computed according to the usual rules of matrix multipli
cation:

N

Zi,] = L Xi,k Yk,j
k=l

Through the use of FIRST and LAST, the procedure is kept so general
that it can be used not only for N x N matrices. However, it does not test
whether the fundamental prerequisite of matrix multiplication is fulfilled:
(Lines(x) = Lines(z) 1\ Columns(x) = Lines(y) 1\ Columns(y) = Columns(z)).
The interested reader can extend the procedure Mul accordingly. The result
is output with the imported procedure MatrixIO.WriteMatrix(r):

54 68 82 96
68 86 104 122
82 104 126 148
96 122 148 174

Read-only parameters conceal a trap! If we invoke a procedure using
the same variable as actual parameter for both a read-only and a variable
parameter, the result is unpredictable. The reason is referential substitu
tion. Normally this does not cause an error because the compiler assures
that a read-only parameter is not modified. But if the same variable in the
invoking procedure serves as actual parameter for a variable parameter,
then the compiler is tricked:

9.3. Modes of parameter passing

MODULE MatrixMult EXPORTS Main;

IMPORT MatrixlO;

CONST
N =4;

TYPE
Matrix = ARRAY [1 .. NJ, [1 .. N] OF INTEGER;

VAR

191

(*27.10.93. LB*)

a, b, r: Matrix; (*r: result; a and b to be multiplied*)

PROCEDURE Init(VAR x: Matrix) =
BEGIN

FOR i:= FIRST(x) TO LAST(x) DO
FOR j:= FIRST(x[FIRST(x)]) TO LAST(x[FIRST(x)]) DO

xli, j]:= i + j;
END;

END;
END Init;

PROCEDURE Mul (READONLY x, y: Matrix; VAR z: Matrix) =
BEGIN

FOR i:= FIRST(z) TO LAST(z) DO
FOR j:= FIRST(z[FIRST(z)]) TO LAST(z[FIRST(z)]) DO

WITH sum = z[i, j] DO
sum:= 0;
FOR k:= FIRST(y) TO LAST(y) DO

INC(sum, xli, k] * y[k, j]);
END; (*FOR k*)

END; (*WITH sum = z[i, j]*)
END; (*FOR i*)

END; (*FORj*)
END Mul;

BEGIN
Init(a); Init(b);
Mul(a, b, r);
MatrixIO.WriteMatrix(r);

END MatrixMult.

(*initializes x*)

(*Xi,j = i + j*)

(*rows*)
(*columns*)

(*sum is short for z[i, j]*)

(*rowi x columnj*)
(*z· . = '" X· k *Yk ·*)1 1, J L-.J k I, , J

(*statement part*)

(*r:= a * b*)

Example 9.9: Procedures with complex parameters

192 9. Structuring algorithms

The procedure views the same variable through two "windows"; through
one it is read-only, but through the other modifiable.

Assume that we write the following on invocation:

Mul(a, b, b)

This is an error because b would serve as both read-only and variable pa
rameter.

Parameters x and y could have been value parameters, but this would
diminish the efficiency of the program. This can be necessary, however, if
we want to transfer the result of the multiplication to array b (or a). The
invocation Mul(a, b, b) would only be correct if were to change the signature
of procedure Mul accordingly:

PROCEDURE Mul (x, y: Matrix; VAR z: Matrix)

Another programming error ensues if we specify the input parameters
as variable parameters:

PROCEDURE Mul (VAR x, y, z: Matrix)

In this case the invocation Mul(a, b, b) would also lead to unpredictable
results. The original invocation Mul(a, b, r) would continue to work, but we
must consider the signature incorrect at any rate.

9.4 Identifying the procedures

A question arises: How do we decide which subtasks "earn" their own pro
cedure? For example, does it make sense to write such tiny procedures
as Input or Terminate in Example 9.8? Invoking a procedure does involve
some overhead; parameter passing, invocation and return all cost time and
storage. Would numerous small procedures not encumber our program?

We generally recommend deciding less on the basis of the absolute size
of the logical task. The procedure Input is certainly quite simple; in this
specific case we could have integrated the two statements directly into the
procedure Compute. However, it is clear that input, computation and out
put are decidedly different tasks. Thus we prefer to distinguish them syn
tactically. This becomes especially clear if we want to modify the program
later. For example, if we decide to extend the input procedure to assure
that Input returns only positive numbers, then we could carry out this mod
ification locally in this procedure. All other parts of the program, including
all invocations of Input, remain untouched. This is a very important advan
tage.

As always, we can exaggerate this decomposition into procedures. A
program in which most procedures consist of 1-2 lines is certainly extreme.

9.5. Name, type and default value of a parameter 193

The early recognition of logically different subtasks is a characteristic of
good design. Very large procedures are unfavorable at any rate, yet overly
small procedures should not be the rule either. The deciding criterion
should be the internal logic ofthe problem.

9.5 Name, type and default value of
a parameter

Declaring the name and type of a formal parameter closely resembles a
variable declaration. As the syntax shows, formal parameters can be ini
tialized on declaration; in this context we call the initial value the default
value.

The term default is used in various contexts in computer science and
elsewhere. The general meaning can be explained in the context of
medication prescriptions. A package often bears the instruction: "If
not otherwise prescribed by the doctor, take ... " What follows is the
default value in the sense of computer science.

The default value of a formal parameter applies if a procedure call fails
to specifY a corresponding actual parameter. In this case the default value
substitutes for the missing actual parameter. If the corresponding actual
parameter is specified, the default value has no effect. Default values are
not permitted for variable parameters.

This restriction makes sense: A variable parameter takes effect in the
context of the invoking procedure, and in the procedure declaration we
cannot make general assumptions about the invoking procedure. As
with medication that must be administered by the doctor, the default
"If not otherwise prescribed by the doctor, take ... " makes no sense.

Identifiers of the same type (and same default value) can be combined
in a list, similar to variable declaration. Variable parameters require spec
ification of a type. For other kinds of parameters, either type or default can
be omitted, but not both. If type is omitted, the type of the parameter is
derived from the default value. If both are specified, then the default value
must be in the range ofthe type. We suggest avoiding implicit type specifi
cation (i.e., omitting type specification) here as with variable declarations!

Actual parameters

The general form of a procedure call is:

P(actual Parameter1' ... actual parametern)

194 9. Structuring algorithms

P stands for a procedure expression - normally the name of a procedure
constant or procedure variable. The actual parameters are a list of ex
pressions separated by commas (Section 9.2.2). The list can be empty, but
the parentheses must always be specified. Similar to a record constructor
(see Section 8.2.2), the actual parameters can be specified positionally or
by name.

• Positional specification
For positional specification the actual parameters replace the formal

ones one by one: the first actual parameter replaces the first formal
parameter, the second actual parameter replaces the second formal
parameter, etc. (as we have passed all parameters thus far). The list
of actual parameters can be shorter than that of the formal param
eters, in which case the remaining actual parameters must have a
corresponding default value.

• Specification by name
The specification of actual parameters by name syntactically resem

bles an assignment. The sequence of specification is not relevant. The
formal parameters without a specified value must have a correspond
ing default value.

• Mixed specification
Mixing the above two kinds of specification requires specifying the
positional parameters first. We generally recommend avoiding mixed
specification!

The general pattern for invocation is:

Name(actualJ, actual2, ...)

or

The following invocations are equivalent and all match the signature of the
Euclid procedure of Example 9.4:

Euclid(a, b) == Euclid(x:= a, y:= b) Euclid(y:= b, x:= a)

9.6 Eval statement

For functions that have a side effect, it might be that we want to invoke
only the side effect and not the result. Thus for various systems we often
find outputs like this: "Press any key" (e.g., after insertion of the wrong

9.7. Procedure types 195

diskette, the system waits until the disk is replaced). The program does not
care what the user inputs, but only whether a (any) key has been pressed.

For the above, not infrequent case, Modula-3 provides the EVAL state
ment. It evaluates the subsequent expression (normally a function call)
and discards the result.

Syntax of the Eval statement

EvalStmt29 = "EVAL.:' EXpr66'

We can implement the above example in Modula-3 as follows:

SIO.PutText("Press any key to continue");
EVAL SIO.GetCharO; (*waits until a key is pressed*)

Example 9.10 is program 5.5 (page 94), in which primitive calculator
functions entered at the keyboard can be computed, re-implemented here
with the help of procedures. The procedure GetOperation handles input of
the operands and the operator. It contains two nested procedures. Skip
skips any whitespace (blanks, tabs, linefeeds). Op reads the operator. If
the input begins with a non-numeric character or if the operator is typed
improperly, the program terminates.

9.7 Procedure types

Procedures can also be defined as types. Procedure types allow us to define
variables of a procedure type. Then we can assign various actual proce
dures to a procedure variable. This allows us to bind an algorithm dynam
ically to a name. This becomes quite exciting when we use parameters of
procedure types, which means that we can pass a complete algorithm to a
procedure. We define procedure types with a signature.

Syntax of procedure types

Type48 = ProcedureType53 I ...
ProcedureType53 ="PROCEDURE" Signature19.

9.7.1 Operations with procedures

Assignment

An expression of a procedure type can be assigned - in accordance with
the usual rules of assignment - to a procedure variable if the value of the
expression is in the range of the type of the variable.

196 9. Structuring algorithms

MODULE Operations EXPORTS Main;
IMPORTSIO;

(* 13.12.94. LB*)

TYPE Op = {Add, Sub, Mul, Div, Mod, Halt}; (*arithmetic operations + Halt*)

PROCEDURE GetOperation(VAR x, y: INTEGER; VAR op: Op) = (*reads operation*)
CONST Digit = SET OF CHAR{'O' .. '9'}; (*set of digits*)

PROCEDURE SkiPO =
CONST Blanks = SET OF CHAR{' " '\t', '\n'};
BEGIN

(*skips whitespace*)
(*whitespace*)

WHILE SIO.LookAheadO IN Blanks DO EVAL SIO.GetCharO END
END Skip;

PROCEDURE GetOPO: Op = (*reads and converts operator character*)
BEGIN

SkipO;
CASE SIO.GetCharO OF

I '+' => op:= Op.Add; I '-' => op:= Op.Sub; I '*' => op:= Op.Mul;
I'D', 'd' => op:= Op.Div; I'M', 'm' => op:= Op.Mod;

ELSE op:= Op.Halt;
END; (*CASE operator*)
RETURN op

END GetOp;

BEGIN (*GetOperation*)
SkiPO;
IF NOT (SIO.LookAheadO IN Digit) THEN

op:= Op.Halt; (*input does not begin with digit => Halt*)
ELSE

x:= SIO.GetintO; op:= GetOPO; y:= SIO.GetintO; (*read operation*)
END; (*IF NOT ... *)

END GetOperation;

VAR x, y, z: INTEGER; op: Op;
BEGIN

SIO.PutText("Arithmetic operations in the form x op y\n");
REPEAT

GetOperation(x, y, op);
IF op # Op.Halt THEN

CASE op OF
I Op.Add => z:= x + y; I Op.Sub => z:= x - y; I Op.Mul => z:= x * y;
I Op.Div => z:= x DIV y; I Op.Mod => z:= x MOD y;

END; (*CASE op*)
SIO.PutText(" = "); SIO.Putlnt(z, 1); SIO.NIO;

END; (*IF op*)
UNTIL op = Op.Halt;

END Operations.

Example 9.10: Simple calculator functions

9.7. Procedure types

TYPE Proc = PROCEDURE (t: TEXT := "I am more equal\n");

PROCEDURE P (t: TEXT := "I am even more equal\n") =
BEGIN

SIO.PuITexl(I);
ENDP;

VAR a: Proc;

BEGIN

197

a:= P; (*P has a type different from a, but is assignabe to a*)
IF a = P THEN SIO.PutText("The two are equal\n") END; (*a = Pis TRUE*)
aO; (*outputs "[am more equaZ"*)
PO; (*outputs "[am even more equaZ"*)

Example 9.11: Relationship of default, type and value

Before enumerating the rules of assignment compatibility, let us intro
duce the predefined constant NIL, whose type is compatible with any proce
dure type and whose value means "no procedure". Beyond procedures, NIL
is also defined on reference (pointer) types (see Chapter 11).

An expression of a procedure type PE can be assigned to a procedure
variable pv if either PE = NIL or the following conditions apply:

• The number of parameters ofPE and pv is equal, and the correspond
ing parameters have the same type and are passed in the same way.
Note that the name and default value of the parameters need not
agree.

• Both have the same result type or no result type.

• The set of exceptions generated by PE is a subset of the set of excep
tions of pv (see Section 15).

If these rules are fulfilled, we say that type PE is covered by the type of
variable pv. More simply stated, if the signatures of two procedure types
are the same, then they are equivalent and thus assignment compatible.
If they contain different parameter names and/or default values, then they
are not equivalent, but still assignment compatible. Parameter names and
default values have no influence on the value of a procedure. In Example
9.11 a and P are not of the same type because they have different default
values; nevertheless, they are assignment compatible. Mter the assign
ment a:= P they are equal, yet the respective default values are determined
by the respective signatures. The program outputs the following text:

198

The two are equal
I am more equal
I am even more equal

9. Structuring algorithms

Procedure constants that are assigned to a procedure variable must be
global; i.e., they cannot be nested in any block. The reason that a local pro
cedure cannot be assigned to a procedure variable is a matter of principle:
If a nested procedure could be assigned to a variable, then the invocation of
this procedure might escape the scope (e.g., via a global variable or a vari
able parameter in the enclosing procedure). This would enable invoking a
local procedure outside its context, which must not be permitted.

Relational operations

Assignment compatible procedures can be tested for (in)equality. No other
relational operations are permitted on procedures.

Procedure parameters

As an example, let us assume that we want to apply various procedures
(or functions) to each element of a set. We can write a very general pro
cedure (Process) that iterates through all elements of the set and applies
the procedure specified as parameter to all elements (Example 9.12). The
formal parameter of Process is of type PROCEDURE. We can inject even
more dynamics if the actual parameter is not a procedure constant but a
procedure variable. We can always write the same invocation, Process(s,
p), and, depending on the actual value of p, a broad spectrum of different
computations could be carried out. The output of the above program would
be:

[__ -_l_~ ___ -: ___ -_~ ___ -_: __ ~_~ __________________________ ~l

9. 7. Procedure types

MODULE ProcVar EXPORTS Main;

IMPORTSIO;

TYPE
Range = [-10 .. 10];
Set = SET OF Range;
Apply = PROCEDURE (elem: Range);

PROCEDURE Positive(e: Range) =
BEGIN

IF e > 0 THEN SIO.Putlnt(e) END;
END Positive;

PROCEDURE Negative(e: Range) =
BEGIN

IF e < 0 THEN SIO.Putlnt(e) END;
END Negative;

PROCEDURE Process(s: Set; apply: Apply) =

199

(* 10.12.93. LB*)

(*processes positive elements*)
(*ignores nonpositive elements*)

(*processes negative elements*)
(*ignores non-negative elements*)

BEGIN (*iterates through entire set*)
IF apply # NIL THEN (*applying Nil procedure has no effect*)

FOR r:= FIRST(Range) TO LAST(Range) DO
IF r IN s THEN apply(r) END (*calls apply for each element*)

END; (*FOR r*)
SIO.NIO;

END; (*IF apply # NIL*)
END Process;

PROCEDURE Init(VAR s: Set)=
BEGIN (*fills set with initial values*)

s:= Set{};
FOR r:= FIRST(Range) TO LAST(Range) BY 2 DO

s:= s + Set{r}; (*s becomes the set{-10,-B,-6,-4,-2,2 ,4 ,6 ,B,10}*)
END; (*FOR r*)

END Init;

VAR
s: Set;
p: Apply := Positive;

BEGIN
Init(s);
REPEAT

(*the set that is processed in various ways*)
(*variable p set to procedure Positive*)

Process(s, p); (*In 1st iteration, invokes Positive, in 2nd Negative*)
IF p = Positive THEN p:= Negative ELSE p:= NIL END;

UNTIL P = NIL;
END ProcVar.

Example 9.12: Formal and actual procedure parameters

Chapter 10

Modules

Before we begin with this chapter, let us take an excursion into the world of
home stereo systems: In the 1950s and 1960s high-end high fidelity devices
were usually built into cabinets. The turntable was operated from above,
and the controls for the radio and for volume and tone were at the front
(or also at the top). Loudspeakers were built in underneath and at the
sides. The complete stereo system was a unit. Meanwhile this approach
has been forsaken almost completely. High-quality systems now consist of
a number of separate components; CD player, amplifier, tuner and speakers
each have their own housing. The components are connected via cables
that transmit the audio information. The advantages are obvious: The
buyer can individually configure a system according to price and quality
criteria. If a component breaks down (e.g., the tuner), it can be repaired
individually while the rest ofthe system remains functional. Furthermore,
the individual components are better because specialists have concentrated
on designing each specialized solution.

Why have manufacturers not always specialized in the production of
components? Beyond marketing considerations, there is another problem:
The components must work together, must be compatible. The plugs of
the cables must fit into the input/output sockets of the components, the
electrical currents produced by the components must be handled by the
amplifier, etc. To make this all possible, standards evolved over time; today
we can normally integrate a newly purchased component into an existing
system without any problems.

This modularization continues within the components, and not only
with stereo components. Similarly, producers of other electronic prod
ucts build these from prefabricated, purchased subcomponents. Such
devices are no longer repaired if they break down; the service techni
cian localizes the problem and replaces the defective component.

We are not that far along yet in computer science. We do have a multitude
of standards, especially in the area of communication between computers

202 10. Modules

Compute

Terminal Math

Terminal Math

Figure 10.1: Components of a stereo systems and modules

(e.g., ISO/OS!) and programming languages themselves (e.g., ANSI stan
dards for Pascal, C and Cobol). However, the inner structure of typical
application programs remains inaccessible from the outside and is so com
pletely interwoven that we have no chance of using components from old
programs in order to build new ones (just as was the case with the old in
tegrated stereo system). Still, we are working hard in this area, and one
of the results has been the module concept. A module corresponds roughly
to such a component of a stereo system. It is an enclosed functional unit
that solves part of the overall task. To provide its functionality to the rest
of the system, each module has at least one interface to the outside. This
corresponds roughly to the sockets on the back of a stereo component.

Since computer programs generally consist of many more components
than a stereo system, we have reached the limits of our analogy. We will see
that program modules offer much more than simply dividing the problem
into subtasks. Thus far each of our programs has consisted of a single mod
ule. With modules, we can decompose larger programs into parts that pose
smaller problems and that we compose (under the control of the compiler)
into a program .

• Modules have an interface.
Only things that appear in the interface are available to the clients of
a module. Everything else is invisible to the client, i.e., syntactically
inaccessible .

• Modules have a memory.
Contrary to local variables of procedures, the variables declared
within modules retain their values during the entire program exe
cution. We can simply use variables that are global to the module
in order to store states, but restrict the difficulties created by global
variables (see Section 9.3.4) to a small scope because these variables
are not accessible from outside the module.

203

• The usage of modules can be checked.
It is quite difficult to involve multiple programmers in a project. All
the team members' work must be synthesized, which demands diffi
cult coordination (setting up and upholding conditions as prerequi
sites for modification of common data structures, etc.). Here the com
piler can help by assuring at least that all variables are used in accor
dance with their types, that the parameters of a procedure invocation
match the procedure, and that everything used has been defined.

• Modularization reveals dependencies between program parts.
The interface of a module must be imported explicitly by its client.
This facilitates understanding the static dependencies between pro
gram components.

• Modules are reusable.
Certain parts of typical computer programs are as similar as two
hairs on your head. This applies, e.g., for procedures for screen out
put. Rather than reinventing such procedures, we want to produce
them once - in generalized form - and then reuse them. In modules
we can collect such "independent" procedures. We can package solu
tions needed by multiple projects in module collections (or libraries),
and from there they can be incorporated into various programs.

We have already used such libraries: The modules Math and Text are
part of the Modula-3 standard libraryl provided by the language environ
ment. The module SIO was developed by the authors ofthis book to provide
simple input and output.

The goal is to develop new programs by assembling components from
a collection of existing modules - as with a stereo system. Furthermore,
we need to be able to exchange program components (just as with a stereo
system) to adapt the program to changing requirements.

Information hiding

Type constructors let us structure the data that a program processes. Pro
cedures allow us to decompose larger algorithms to smaller, more man
ageable tasks and to make parts of algorithms reusable. Modules collect
related algorithms (or procedures) and data structures. This makes mod
ules more than a simple collection of procedures because modules also have
an internal state; i.e., they can "remember" things between procedure invo
cations. The interface of the module assures that clients have all necessary
information to control the functionality of the module; clients have no other
form of access to the state of a module. This is information hiding. Both

1 This library was authored by the developers of Modula-3 [HKMN94, Nel9!].

204

INTERFACE M1
PROCEDURE A ()

- ---,

I

MODULE M1 MODULE M2

VAR PROCEDURE A
x

y : a1
z :a2
~ __ ~I-

PROCEDUREB
r------------------------
I

VAR
k
I
m

BEGIN
M1.A ()

10. Modules

Figure 10.2: Visibility within and across module boundaries

algorithms and data are provided to the client not directly, but only in part,
insofar as necessary, via the interface. This has nothing to do with keep
ing secrets or with privacy of data. Instead, it precludes errors that occur
when a client, deliberately or not, writes algorithms that depend on the
inner structure of the imported module. If this inner structure changes
later, then this has unpredictable consequences for the client and leads to
problems that we can avoid as follows: As long as we do not modify the
interface of a module, we can change and improve the internal structure of
the module.

State space

We term the current value of a variable its state, and the possible values
of all variables collectively are the state space of the program. Initializa
tions and assignments change the state space. Variables declared within
a procedure, i.e., local variables, do not change the global state space. The
state space of a procedure, however, consists of its local state space and
the environment in which it is defined (the block in which it is declared;
see Section 9.1). The structuring of the state space with the procedure con
cept resembles one-way mirrored walls; we cannot look into the procedure,
except through the specially provided door of parameter passing, but we
can look out and see the environment. Even more, we can change or even
destroy this state space by modifying global variables.

205

The module concept is comparatively stronger. It allows us to subdivide
the global state space. The enclosing walls of modules are sealed inasmuch
as only those components of a module that are specified in its interface can
be accessed by its clients. Data that are not exported cannot be modified,
deliberately or accidentally, by clients - they are not visible (information
hiding). Figure 10.2 illustrates this situation: A module M2 must use a
procedure exported by Mi to modifY the state of Mi. The state variables
x, y, z themselves are invisible to M2. State changes can occur only via the
commonly agreed interface.

Division of labor and server modules

Almost always a program must solve numerous tasks that sometimes are
scarcely related to one another. Thus it must have a user interface that,
like a filter, assures that the program receives only input data that it can
process. A program frequently has a component that handles the storage
of results on a disk to make them persistent. In addition, results must be
brought into human-readable form and then output to the screen or printer.
And last but not least, the processing part itself contains various compo
nents. Figure 10.3 shows an example of the structure of a program for
statistics computations. It encompasses components for collecting the data
to be evaluated, for controlling the computations (input of the commands
for evaluation), for the computations themselves, and for graphical display
of the results. These components can be quite independent (in that they do
not use each other's services - they process the same common data base).
On the other hand, screen, printer, database and mathematical functions
are more general server modules (or simply servers) that handle the inter
action of the application with the user, printer and hard disk. They do
not need (nor should they) any knowledge of the details of the application.
These server modules can also be used in other applications.

It is very important to solve such distinct subproblems in separate mod
ules, for programs are not simply written once and then preserved for all
time. A modular program is easier to adapt to changed requirements. As
sume that some years after purchasing our program, the user acquires a
new printer. We could be asked to adapt the program to the new printer.
If we have structured our program well, then we only need to exchange
one module. In the whole software system the printer is never accessed
directly. We only access the printer via procedures in the interface of the
printer module. Ifwe change the printer, this module must be adapted or
exchanged. There is no need to modifY the programs that use the printer.
The prerequisite is a well-designed printer interface that does not require
modification for this adaptation.

206 10. Modules

___ :::r===

Computations

Mathematical
functions

Figure 10.3: The components of a statistics program

If we have structured our system well in modules, then this facilitates
maintenance to correct errors or extend functionality. Such components can
be reused in other projects. A poorly modularized system thus becomes sig
nificantly more expensive to develop and maintain than one that consists
of distinct modules with minimal interdependence. This chapter presents
modules as they can be developed in Modula-3.

The module was introduced into programming languages rather late.
With Mesa [MMS79] and the popular Modula-2 [Wir82l, the module
concept, also used by Modula-3, began to prevail. The languages C and
Fortran have always offered separate compilation of program compo
nents, but in these languages the programmer is responsible for avoid
ing name conflicts and for ensuring the proper invocation of the sep
arately compiled components. Other languages, particularly Cobol,
lack features for structuring algorithms and simply build a program
from multiple, independently executable subprograms that invoke one
another. Modula-2 provides an interface for each module, which the
compiler monitors. The name scopes in a module itself are protected
and distinct from other modules.

10.1 Structure

A module usually consists of an interface and an implementation. For the
clients of the module, the interface makes everything visible that is neces
sary in order to use the module: the type declarations, the identifiers and
the signatures of the procedures that the module provides. We say that

10.1. Structure 207

the module exports these declarations. Everything else, i.e., the code of the
procedures, the necessary internal variables, etc., belong to the implemen
tation, which represents the realization of the interface and is not visible
to client modules.

10.1.1 Interface

An interface resembles the modules that we already know. Instead of the
keyword MODULE, they begin with INTERFACE, followed by the name and
the declaration part. The interface terminates with END, the interface
name and a period:

Syntax

Interface2 = ["UNSAFE"] "INTERFACE" Idents9 ";" { ImportlO }
{ Declaration13 } "END" Idents9 ".".

In contrast to modules, an interface contains no block, i.e., no statement
part. It can contain type, constant, variable and procedure declarations:

• Type declarations
Type declarations in the interface permit the client of a module to de
clare variables of a type that the module can process. Hence the types
of the parameters of the exported procedures must also be exported
in all cases (unless they are predefined types).

• Procedure declarations
Only the name and signature of a procedure may appear in the inter
face. This suffices to allow clients to invoke the procedure; they know
the procedure's name and its parameter list.

• Constant and variable declarations
Variables declared in the interface can be read and written both by
the implementor of the interface and by its clients. Thus they are
global variables whose scope extends beyond the module. Constants
can be made accessible to clients in a similar way.

Variables are seldom exported. It is almost always better to export
one procedure that returns the value of the variable and another that
permits setting the variable's value. The variable itself remains part
of the hidden state of the module. This allows the module to better
control access to the variables, e.g., in order to check conditions to
assure that the variable was set at an appropriate time and with a
sensible value.

208

INTERFACE Interface;

CaNST
Constant = 1;

TYPE
Type = RECORD a, b: INTEGER END;

PROCEDURE Procedure(par1: INTEGER; VAR par2: Type);
(*exported procedure; uses Type, also exported *)

END Interface.

10. Modules

(*exported Constant *)

(*exported type *)

Example lOA: The interface ofa module

Figure lOA shows an example of an interface that exports a type Type,
a constant Constant and a procedure Procedure. Since the procedure has a
parameter of type RECORD, this type must also be exported - the compiler
requires this, and a client could not use the procedure otherwise.

The keyword UNSAFE designates an unsafe interface. Unsafe inter
faces and modules permit additional language elements and disable cer
tain checks on the part of the compiler and the language environment.
Particularly in the area of system programming, this is sometimes neces
sary. Unsafe languages elements are often language-environment specific;
also, they can produce errors that cannot occur in normal modules. There
fore unsafe modules and interfaces must be designated as such. We do
not treat this subject here, but Appendix B.7 describes unsafe modules in
detail.

10.1.2 Implementation

Most of the components of the syntax of an implementation module are
already familiar:

Syntax

Module3 = ["UNSAFE"] "MODULE" Ident89 ["EXPORTS" IDList87]

";" { ImportlO } Block12
Ident89 ".".

Similar to unsafe interfaces, here the keyword UNSAFE designates
unsafe modules (see Section 10.1.1 and Appendix B.7).

An implementation module of an interface must export the interface
using the EXPORTS statement after the name of the module. We have en
countered this statement thus far only as the special case EXPORTS Main.
The implementation module that exports the interface Main is the main
module. The interface Main is not used by any other module. Main is a

10.1. Structure

MODULE Implementation EXPORTS Interface;

VAR state: Type;

209

PROCEDURE Procedure(par1: INTEGER; VAR par2: Type) =
BEGIN

par2.a:= state.a;
par2.b:= Constant + par1;

END Procedure;

BEGIN
state.a:= 0;
state.b:= 0;

END Implementation.

(*reads hidden inner state *)
(*visible declaration from interface! *)

(*statement part of module *)

Example 10.5: The implementation of the interface

feature of the language environment. Only the main module stands alone
and can be launched as a program from the language environment.

The EXPORTS statement can be omitted, in which case the module is the
implementation for the interface ofthe same name.

We can export multiple interfaces, thereby creating multiple entries to
the module. This allows us, e.g., to separate write operations (which change
data) from read operations. Then we provide the interface for the write op
erations only to privileged clients, while the read operations are generally
accessible. All identifiers declared in these multiple interfaces must be
distinct. There is an exception to this rule: procedure names can occur
in multiple interfaces of a module. This allows us to set default values of
parameters of a procedure differently in the read interface from those in
the write interface. On the other hand, several modules can export the
same interface. This enables distributing the implementation of a complex
server with a simple interface across multiple implementation modules.
The compiler and linker check whether exactly one implementation (in one
ofthe implementation modules) corresponds to each exported procedure.

In any case, all declarations ofthe interfaces are visible to the exporting
modules. Example 10.5 shows an implementation of the interface for Ex
ample 10.4: Because the interface becomes part of the module through the
EXPORTS statement, the type name Type and the constant Constant can be
used directly. The implementation of Procedure is specified here.

The statement part of an implementation module handles initializa
tions; it is executed only once at the start of the program. The initial
ization sequence for modules is always imported modules before importing
modules. Thus during the initialization of a module it can always employ
the services of imported modules: the latter are already initialized and so
functional. Cyclical imports (module A imports an interface from module B
and vice versa) mean that we cannot rely on the sequence (which becomes

210 10. Modules

random). However, such mutual dependencies are normally a sign of poor
module structure. Cyclical import of interfaces is forbidden.

10.1.3 Compilation units

Both interface and implementation can be spread across multiple source
code files. It is even possible that a module consists of only an interface - if
it exports only type declarations and no procedures. Each source code file
forms a (compilation unit) that can be processed by itself by the compiler.

Since Modula-3 permits multiple implementation modules for an in
terface, the term "module" becomes somewhat fuzzy: It is either a func
tional unit of a program - with interfaces and implementations collec
tively - or a Modula-3 MODULE, i.e., a compilation unit. In Modula-2
the interfaces are also called "modules" (definition module), but we do
not use the term in this way. To distinguish between functional unit
and compilation unit, we use the term "implementation module".

10.2 Using modules

A module that employs the services of another module must explicitly im
port the other's interface using the IMPORT statement. Thereby it imports
the declarations that it needs before declaring its own local identifiers
(which are invisible to clients). The compiler thus has all the informa
tion it needs to test whether the client uses the imported modules properly
(e.g., whether the variables and expressions passed as parameters to an
imported procedure each have the right type). In accordance with the prin
ciple of information hiding, the compiler checks only the interface of the
imported module. The implementation need not even be available!

The IMPORT statement either lists only the names ofthe imported mod
ules or completely specifies all identifiers of the procedures, constants,
types and variables that we want to use from an imported module.

Syntax

ImportlO = "FROM" Ident89 "IMPORT" IDList87 ";"

I "IMPORT" Importltemll { "," Importltemll } ";".
Importltemll = Ident89 [AS Ident89].

Normally we import an interface as a whole. An example that we have
already used is

IMPORT SIO;

10.2. Using modules 211

To use a name from the imported module, we write the interface name as
qualifier before it:

SIO. PutText("Use imported procedure!");

However, we can also import individual names of an interface, which we
then use without qualification:

FROM SIO IMPORT PutText;

PutText("Use imported procedure!");

This notation is shorter and has the advantage of indicating exactly
what each client imports from a server. However, it also has drawbacks:
Examining the procedure call does not reveal where PutText is defined (im
ported or in this module). In addition, name clashes can result from dif
ferent modules using the same name. For example, PutText is exported by
a number of modules that deal with input/output. If we always prefix the
name of the interface from which the procedure stems, then we achieve
clarity about which PutText is intended in each case. This also prevents
name clashes if a module needs to import procedures named PutText from
several modules simultaneously.

We can also import modules under an alias: With this version of the
IMPORT statement we always import the module as a whole and under
a different name. Instead of just specifying the module name after the
keyword IMPORT, we write module AS newName.

IMPORT SIO AS Out;

Out.PutText("Use imported procedure!");

Thus we can abbreviate names of epic length (such as IntegerTolnte
gerTable from the Modula-3 library) to make the source code more compact
(and to save tedious typing). The construct also helps to quickly exchange
modules: For testing purposes we might want to replace one module with
another that generates additional information which is relevant only for
the program developer. We could use this alternative module with a single
code change - and reverse the change again later.

The different versions ofthe IMPORT statement can also be mixed. It is
possible to import an entire module and additionally to import individual
components explicitly from the same module. Example 10.6 shows how the
example interface is imported and how its exported elements are used.

In the remainder of this chapter, we examine more closely the use of
the module concept.The possibility to organize software systems in mod-

212

MODULE Client EXPORTS Main;

IMPORT Interface;

VAR
a: Interface.Type;

BEGIN
Interface.Procedure(lnterface.Constant, a);

END Client.

10. Modules

(*CW*)

(*importing the exported declarations *)

(*using the imported Type *)

(*invoke imported procedure *)

Example 10.6: Usage of Interface

ules (with corresponding interfaces) can be used in various forms to design
software systems:

• Structuring the data space

• Type creation

• Development of toolkits

10.2.1 Structuring the data space

Modules have a state; they can contain data that "live" throughout the en
tire execution of the program.

Data capsules

If the state space of a software system is structured in such a way that the
states of a server module can only be accessed through its own exported
functions and procedures, but never through direct access or modification
of variables, then we call this a data capsule.

A piggy bank2 is a perfect, very simple example of the separation of
state spaces through information hiding. We can insert money, but never
know how much is there. It is also not possible to remove money from
the piggy bank, to exchange coins, or to cheat in any way. The only other
permissible operation is smashing the piggy bank. However, if we carry
out this operation, we have our money again, but no piggy bank.

Based on this description, we propose the interface PiggyBank in Ex
ample 10.7. It encompasses only the procedure Deposit, which takes the
deposited cash amount as parameter, and the function procedure Smash,
which returns the contents of the piggy bank.

The module Saving (Example 10.8) can now use this interface. It per
mits depositing any amount of money. In a loop the user is prompted for
the amount of deposit. This is hardly elegant, but to keep the program

2This example was used by Prof. Rossak in an introductory lecture.

10.2. Using modu,les

INTERFACE PiggyBank;

PROCEDURE Deposit(cash: CARDINAL);
PROCEDURE SmashO: CARDINAL;

END PiggyBank.

Example 10.7: The interface ofa ''piggy bank"

MODULE Saving EXPORTS Main;

FROM PiggyBank IMPORT Deposit, Smash;
FROM SIO IMPORT Getlnt, Putlnt, PutText, NI;

VAR cash: INTEGER;

BEGIN
PutText("Amount of deposit (negative smashes the piggy bank): \n");
REPEAT

cash := GetlntO;
IF cash >= 0 THEN

Deposit(cash)
ELSE

PutText("The smashed piggy bank contained $");
Putlnt(SmashO);
NIO

END;
UNTIL cash < 0

END Saving.

Example 10.8: Using the piggy bank

213

(*RM*)

(*RM*)

(*Saving *)

simple, entering a negative amount smashes the piggy bank. Observe that
neither does the client module Saving know nor does the interface give any
clue how the piggy bank collects the deposited money. To reveal this secret,
we would have to read the implementation module of the piggy bank (in
Example 10.9).

In the implementation module we find the bodies of both the procedures
Deposit and Smash. In addition, the implementation module has variable
contents, which represents the encapsulated state ofthe piggy bank and is
not visible in this form to the outside. Smash sets the contents of the piggy
bank to a negative value (which is senseless for a piggy bank). Deposit
checks each time whether the piggy bank is okay. The ASSERT pragma (see
Appendix B.8.5) assures that the condition "piggy bank still okay" is met
(if not, the ASSERT terminates the program with a run-time error). Once
the piggy bank has been smashed, it cannot be restored. Any further invo
cation of either procedure causes program termination. What the ASSERT

pragma does in Deposit corresponds to the initialization of the local vari
able oldContents in Smash - it fails because of the assignment of a negative

214

MODULE PiggyBank;

VAR contents: INTEGER;

PROCEDURE Deposit(cash: CARDINAL) =
(*changes the state of the piggy bank *)

BEGIN
<* ASSERT contents >= 0*>
contents := contents + cash

END Deposit;

PROCEDURE SmashO: CARDINAL =
VAR oldContents: CARDINAL := contents;
BEGIN

contents := -1 ;
RETURN oldContents

END Smash;

BEGIN
contents := 0

END PiggyBank.

10. Modules

(*RMICW*)

(*state of the piggy bank *)

(*piggy bank still okay? *)

(*contents before smashing *)

(*smash piggy bank *)

(*initialization of state variables in body *)

Example 10.9: The implementation of the piggy bank

value to a CARDINAL type, also producing a run-time error.
Deposit always adds to contents; Smash assumes that some contents

exist. Where are the contents actually defined? For simple state spaces
- as with our piggy bank - we can couple initialization with the variable
declaration by writing:

VAR contents: CARDINAL := 0;

More commonly, initializations of the local state space takes place in the
statement part of the data capsule. This statement part is executed at
the start of the program. Once this initialization has been completed, the
module "lives" only through the invocation of its procedures from the client
module.

The importance of structuring the data space by division into several
state spaces in multiple modules is related primarily to the security it af
fords in the event of modifications. We need not fear accidentally changing
a variable that is still needed elsewhere for other purposes. Thereby we
can drastically reduce the need to check which variables are accessible in
which situation and thus have to be watched during programming.

10.2. Using modules 215

10.2.2 Type creation

A type consists of a data representation and the operations defined on it.
Chapter 8 introduced various possibilities for defining new types. So what
is new here?

With the type constructors provided by the programming language, we
can define the kinds of data types that the language designers foresaw for
us. We can combine a number of predefined, built-in types to larger struc
tures in arrays, records and sets. The access operations on these data types
are likewise predefined. The data types themselves are programming types
of the language that have no semantics governing their use. What hap
pens if our application includes line sequences (polygons) that represent
graphical objects, series of temperature measurements or information on
the water depth of a lake at different locations? We can manage the data of
all three categories with arrays and/or records, perhaps even using arrays
with identical structures. However, usage within the program would be
quite different.

Coordinates, temperatures and water depths are all represented as
REAL values. For a sequence of temperature measurements, we might be
interested in the mean and the deviation - which would be totally irrele
vant information for coordinate values. Water depth is a function of the
location, whereas temperature measurements at a location are a function
of time. Although the data representation might (by chance) be identical,
the operations are quite different; therefore measurement sequences and
polygons are quite different types. Thus it would make sense to define an
application-specific type for for each ofthese three categories. This is where
the module concept comes in.

Computations with fractions

As an example of the definition of data types, let us now define a type for
the rational numbers (call it Fraction). Modula-3 provides only INTEGER
and REAL types, but we can have fractions if we need them.

Let us consider the representation of fractions independently of their
implementation, on paper. A horizontal line separates the numerator at
the top from the denominator beneath it:

numerator
denominator

Actually, a fraction is a number pair (numerator, denominator) for which
the basic arithmetic operations

addition, subtraction, multiplication and division

216 10. Modules

INTERFACE Fraction; (*RM*)
(*defines the data type for rational numbers *)

TYPE T = RECORD
num : INTEGER;
den: INTEGER;

END;

PROCEDURE Init (VAR fraction: T; num: INTEGER; den: INTEGER := 1);
PROCEDURE Plus (x, y : T) : T;
PROCEDURE Minus (x, y : T) : T;
PROCEDURE Times (x, y : T) : T;
PROCEDURE Divide(x, y : T) : T;

PROCEDURE Numerator (x : T): INTEGER;
PROCEDURE Denominator (x: T): INTEGER;

END Fraction.

(*x + y *)
(*x-y *)
(*x * y *)
(*x / y *)

(*returns the numerator of x *)
(*returns the denominator of x *)

Example 10.10: Interface for fraction computations

are defined. For the sake of simplicity, we ignore additional operations such
as reduction.

The interested reader should implement reduction with the help of the
Euclidean algorithm (see Example 9.4 on page 179).

To implement fractions, we need an interface that provides such number
pairs as a type along with its associated operations.

From the interface Fraction we export primarily the type T, which pro
vides the number pair (numerator, denominator) as a record. Furthermore,
we export procedures to manipulate such T records.

Normally the name ofthe central type defined in a module in a Modula-
3 program is simply called T. Programs that uphold this convention
then import the module as a whole (with IMPORT module;) and access
the type accordingly as module.T. This convention emphasizes that a
type must be seen collectively with its data representation and the
operations defined thereon. The same idea is followed in assigning
names to the operation procedures: The Name Plus itself has little ex
pressive power (What are we adding?) - only the module name lends
it this expressive power (Fraction.Plus).

But how can a client of Fraction create examples (instances) of fractions?
It can declare variables of type Fraction.T. However, these need to have ini
tial values. This is the job of the procedure Init. In addition, after manipu
lation of a Fraction, whatever its implementation, we need to be able to out
put it. We achieve this by defining the function procedures Numerator and
Denominator, which return the numerator or denominator, respectively, of

10.2. Using modules

MODULE Fractions EXPORTS Main;

IMPORT Fraction;
FROM SIO IMPORT Putlnt, NI;

217

(*RM*)

VAR a, b, c, d: Fraction.T;

BEGIN

(*declaration of variables of type Fraction.T*)

(*Fractions*)
(*Initialization of Fraction variables*)

Fraction.lnit(a, 3, 4);
Fraction.lnit(b, 1, 4);
Fraction.lnit(c, 1);

d := Fraction.Plus(a, b);
Putlnt(Fraction.Numerator(d)); Putlnt(Fraction.Denominator(d)); NIO;

d := Fraction.Plus(b, c);
Putlnt(Fraction.Numerator(d)); Putlnt(Fraction.Denominator(d)); NIO

END Fractions.

Example 10.11: Fraction arithmetic

(*2.*)
(*1*)

4
(*1 *)

(*~ + ~*)

(*~+1*)

a fraction as INTEGER. Hence we need no special procedures, e.g., to dis
play fractions on the screen; we already have server modules to output the
standard types.

The module Fractions uses the type defined in the interface Fraction.
Since we import Fraction as a whole, we must always qualifY the compo
nents of the interface using the interface name, i.e., Fraction. For the sake
of simplicity, we have initialized the fractions a, b, and c with constants.
Naturally we could have employed read operations here instead.

Now let us examine the implementation module ofthe data type Fraction
(Example 10.12). The implementations ofthe individual operations require
no explanation. The implementation module knows and uses the actual
realization of the type T for fractions; therefore the corresponding record
components are accessed directly by the parameters of the procedures.

In fact, in this version even the client knows the representation of a
fraction as a record. The type, including its internal componentwise rep
resentation, was exported in the interface. However, we did not access the
fields of the record in the client module. Therefore this representation can
be changed later. Indeed only the implementation module of Fraction needs
to know this representation; the client can manipulate fractions only with
the help of exported procedures. Through the use of opaque data types,
described in Section 11.4.1, such "self-control" of the client is no longer nec
essary. The realization of the type no longer appears in the interface.

Note furthermore that modules that implement data types usually have
an empty body. The initialization of the instances of the created data type
are left up to the client.

218 10. Modules

MODULE Fraction; (*RM*)

PROCEDURE Init (VAR fraction: T; num, den: INTEGER) =

BEGIN (*initialization of a fraction *)
fraction.num := num; fraction.den := den

END Init;

PROCEDURE Plus (x, y: T) : T =
VAR sum: T;
BEGIN

IF x.den # y.den THEN
x.num := x.num * y.den; y.num := y.num * x.den;
sum.den := x.den * y.den

ELSE sum.den := x.den
END;
sum.num := x.num + y.num;
RETURN sum

END Plus;

PROCEDURE Minus(x, y : T) : T =
BEGIN

y.num := - y.num;
RETURN Plus(x, y)

END Minus;

(*adds fractions (no reduction) *)

(*subtracts fractions *)

(*internally uses module services *)

PROCEDURE Times (x, y : T) : T =
VAR prod: T;

(*multiplies fractions (no reduction) *)

BEGIN
prod.num := x.num * y.num; prod.den := x.den * y.den;
RETURN prod

END Times;

PROCEDURE Divide(x, y : T) : T =
VAR inv: T;
BEGIN

inv.num := y.den; inv.den := y.num;
RETURN Times(x, inv)

END Divide;

PROCEDURE Numerator (x: T): INTEGER =
BEGIN

RETURN x.num
END Numerator;

PROCEDURE Denominator (x: T): INTEGER =
BEGIN

RETURN x.den
END Denominator;

BEGIN
END Fraction.

(*divides fractions *)

(*returns numerator of fraction *)

(*returns denominator offraction *)

(*empty body *)

Example 10.12: Implementation offraction arithmetic

10.3. An example with graphic elements

INTERFACE Polygon;

TYPE

219

(*CW*)

Point = RECORD x, y: LONG REAL END;
T = ARRAY OF Point;

(*coordinates in mm *)

PROCEDURE Shift(VAR p: T; dx, dy: LONG REAL);
(*move a Polygon along axes *)

PROCEDURE Center(READONLY p: T): Point;
(*compute center of gravity (mean of x- and y-coordinatesj *)

PROCEDURE Rotate(VAR p: T; c: Point; a: LONG REAL);
(*rotate Polygon around Point c with angle a (in radiants) *)

END Polygon.

Example 10.13: The interface of the Polygon module

10.2.3 Creating toolboxes

A collection of functionally independent, but semantically related proce
dures is called a toolbox. Examples include collections of search or sorting
procedures or functions that control input/output operations.

Toolkits only partly exploit the structuring possibilities of the module
concept because toolkits manage only a set of procedures, but no data. Still,
they are an important aid for keeping order in a complex software system.

10.3 An example with graphic elements

We close this chapter with another example to illuminate the various as
pects of modules. We will develop two small components of a system for
manipulation of graphic elements. Our task is to represent and manipu
late two-dimensional objects of the real world (such as a technical drawing)
in a program, with the goal of processing them on screen (although we do
not go into detail on screen input/output here).

1. Graphic elements
A technical designer might use a ruler, a curve template and a com
pass to construct various lines ofthe design object. Theoretically, how
ever, a ruler alone could suffice. Curves and arcs can be assembled
from numerous short straight segments. These segments only need
to be sufficiently short to meet any requirements for precision.

We will employ precisely this approach for the internal representation
of all line segments. We store only straight line segments by storing
the coordinates of all corners. This structure is called a polygon (com
pare the polygons defined differently in Section 8.1).

220

MODULE Graphic EXPORTS Main;

IMPORT Polygon, Viewport, Math;

CONST Deg45 = FLOAT(Math.Pi, LONGREAL)/4.0dO;

VAR rectangle: ARRAY [1 . .4] OF Polygon.Point;
center: Polygon. Point;

BEGIN
(*We have a graphic monitor with 1200 x 800 pixels and want

to be able to store undistorted standard letter-size pages (8.5x 11 inches).
The page height should extend across the total height of the screen. *)

Viewport.Proportion(1200, 800);

10. Modules

(*CW*)

(*45° *)

(*compute width for undistorted display *)
Viewport.Set(x:= O.OdO, y:= O.OdO, height:= 11.0dO);

(*Coordinates ofa rectangle on a 8.5xll page: *)
rectangle[1].x:= 10.0dO; rectangle[1].y:= 10.0dO;
rectangle[2].x:= 20.0dO; rectangle[2].y:= 10.0dO;
rectangle[3].x:= 20.0dO; rectangle[3].y:= 20.0dO;
rectangle[4].x:= 10.0dO; rectangle[4].y:= 20.0dO;

(*Invoke operations: *)
center:= Polygon.Center(rectangle);
Polygon.shift(rectangle, 5.0dO,5.0dO);
Polygon.Rotate(rectangle, center, Deg45);

END Graphic.

Example 10.14: Polygon operations

2. Operations
As operations for processing drawings on screen, we have chosen shift
ing and rotation of elements. Other operations that we do not handle
here include enlarging, mirroring, decomposing and composing ele
ments of polygons. However, we do facilitate such extensions by pro
viding an auxiliary operation, the computation of the center. Once
we know the center, enlarging and mirroring are easy to solve in a
manner similar to shifting and rotation.

Example 10.13 shows our Modula-3 realization of polygons. Polygons
are arrays of Point records. The module defines the type Polygon.T and the
operations thereon.

The open array parameter (see Section 11.2.3) of the procedures assure
that we can process polygons of any length. The client stores the polygons
of required length as variables of type ARRAY··· OF Polygon. Point (see
Example 10.14).

We omit operations for initializing and reading polygons. The client
must declare variables oftype ARRAY··· OF Polygon.Point and initial
ize them directly. To read the points of a polygon, the client accesses

10.3. An example with graphic elements

elements of the array directly as well. In this respect the module fails
to completely meet our requirements for data type definitions because
these basic operations are left to the client. Therefore we can consider
the module to be a toolbox that provides algorithms for the manipula
tion of special arrays.

221

Finally, Example 10.15 lists the implementation ofthe operations. The
interested reader should explore whether the manipulations of the coordi
nates ofthe polygons really produce the desired effects.

Interface Viewport (Example 10.16) shows a very simple data capsule
in its pure form. The state space of this module consists of a viewport
definition.

To be able to display the polygons from module Polygon (Example 10.13)
on screen, we need to map the coordinate system of the real world from
which the polygons stem, onto the pixel coordinates of the screen. Hence
we define the viewport, which is a rectangle in the world coordinate system
that just barely fits onto the screen.

The coordinates of the viewports can be reset and read. The proce
dure Viewport.Set precludes nonsensical entries for viewport coordinates
(see Example 10.17). In our example the ASSERT pragma (see in Appendix
B.8.5) assures that the conditions specified in the interface as comments
are upheld (if not, then ASSERT halts the program with a run-time error).
However, Viewport.Set can do more than just transfer the values from out
side to the state space of the module: To achieve undistorted representa
tions, the widthlheight proportion of the viewports must correspond to that
of the graphic monitor. With Viewport.Proportion the widthlheight propor
tion of the graphic monitor can be set comfortably; we only have to specify
the pixels displayed in x and y directions.

Viewport.Proportion is an example of how the module concept helps to de
couple the interface to the outside from the implementation.
Viewport.Proportion translates the parameters to an internal representa
tion (the variable proportion as LONGREAL), visible only within the module
Viewport.

Viewport.Set can use information on the size proportions of the graphic
monitor to compute from either ofthe parameters width or height the other
parameter. Instead of the second parameter we simply pass
Viewport.Undistorted. The ASSERT pragma again assures that at least one
of the two parameters has a sensible value.

222

MODULE Polygon;

IMPORT Math;

PROCEDURE Shift(VAR p: T; dx, dy: LONG REAL) =
BEGIN

FOR i:= FIRST(p) TO LAST(p) DO
p[i].x:= p[i].x + dx; p[i].y:= p[i].y + dy;

END; (*FOR i*)
END Shift;

PROCEDURE Center(READONLY p: T): Point =
VAR sumX, sumY:= O.OdO; result: Point;
BEGIN

FOR i:= FIRST(p) TO LAST(p) DO
sumX:= sumX + p[i].x; sumY:= sumY + p[i].y;

END (*FOR i*);
WITH n = FLOAT(NUMBER(p), LONG REAL) DO

result.x:= sumX / n;
result.y:= sumY / n;

END; (*WITH n*)
RETURN result;

END Center;

10. Modules

(*CW*)

PROCEDURE Rotate(VAR p: T; c: Point; a: LONGREAL) = (*a in radiants *)
VAR a2, length: LONG REAL;
BEGIN

FOR i:= FIRST(p) TO LAST(p) DO
WITH px = p[i].x, py = p[i].y DO

(* length of line between point of rotation and target position *)
length:= Math.sqrt((px-c.x)*(px-c.x) + (py-c.y)*(py-c.y));

(*angle between center-to-target line and x-axis *)
IF length # O.OdO THEN

IF px-c.x < O.OdO THEN
a2:= Math.acos(-(py-c.y)/Iength) + a + FLOAT(Math.Pi, LONG REAL)

ELSE
a2:= Math.asin((py-c.y)/Iength) + a

END; (*IF*)
(*new point results from length and a2 via cos und sin laws *)

p[i].x:= Math.cos(a2)*length+c.x;
p[i].y:= Math.sin(a2)*length+c.y;

END; (*IF length*)
END; (*WITH px*)

END; (*FOR i*)
END Rotate;

BEGIN (*statement part of module is empty *)

END Polygon.

Example 10.15: Implementation of polygon operations

10.4. Modularization 223

INTERFACE Viewport; (*CW*)

CONST Undistorted = O.OdO;

PROCEDURE Set(x, y: LONGREAL:= O.OdO;
width, height: LONGREAL:= Undistorted);

(*Set sets this excerpt from the real world that is to be
displayed on the screen. x, y is the left top corner in world coordinates;
width is the dimension of the window along the x-axis and
height along the y-axis.
width and height must be > 0; one of the two parameters can be set to Undistorted;
its value will then be computed with Proportion. *)

PROCEDURE Get(VAR x, y, width, height: LONG REAL);
(*read the viewport coordinates *)

PROCEDURE Proportion(width: CARDINAL:= 640; depth: CARDINAL:= 480);
I (*set the proportion ~;;;Z of width to height of the graphic window *)

I END Viewport.

Example 10.16: A data capsule: specifying the uiewports

10.4 Modularization

We have seen that we can decompose programs into modules. However,
the module concept of the programming language alone by far does not
suffice to reach our goal of modular program development. We must exer
cise extreme care to design modules and their interfaces so that we achieve
small, interchangeable components - modules - that have strictly delin
eated functionality. We have learned the concepts of data capsules, user
defined data types and toolkits (which build on the module concept). The
following comments should help in deciding what should be combined in
modules:

• Keep the interface small!
We gain flexibility with smaller units. Modules often offer too much
functionality and have too many prerequisites to be able to work. Let
us go back to our stereo system analogy. Professional devices separate
the amplifier into preamplifier, equalizer (to generate and regulate
the sound) and power amplifier (to generate the necessary power).
The power amplifier must be adapted to the speakers, the preampli
fier to the sound source. The equalizer does not always provide the re
quired additional functionality that we want to introduce. The more
the conditions around an amplifier can change, the more we depend
on splitting up the functionality, because producers cannot offer an
integrated device to cover every situation.

224 10. Modules

MODULE Viewport;

VAR

(*CW*)

vx, vy, vwidth, vheight: LONGREAL:= O.OdO;
proportion: LONGREAL:= 640.0dO/480.0dO;

PROCEDURE Set(x, y, width, height: LONGREAL) =
BEGIN

(*Viewport in world coordinates *)
(*pro'[Jortion width of monitor *) I

h,ght

<*ASSERT NOT (width = height AND width = Undistorted) AND
NOT (width # Undistorted AND width < O.OdO) AND
NOT (height # Undistorted AND height < O.OdO) *>

vx:= x;
vy:= y;
IF width = Undistorted

THEN vwidth:= height*proportion
ELSE vwidth:= width

END;
IF height = Undistorted

THEN vheight:= width/proportion
ELSE vheight:= height

END
END Set;

PROCEDURE Get(VAR x, y, width, height: LONG REAL) =
BEGIN

x:= vx; y:= vy; width:= vwidth; height:= vheight;
END Get;

PROCEDURE Proportion (width: CARDINAL:= 640; depth: CARDINAL:= 480) =
BEGIN

proportion:= FLOAT(width, LONG REAL) / FLOAT(depth, LONG REAL);
END Proportion;

BEGIN (*initialization of state space in variable declarations *)

END Viewport.

Example 10.17: Implementation of the viewport definition

• Separate functionality!
From the requirement of narrow interfaces we directly derive the
next: A module should solve only one subproblem. This significantly
facilitates modification and reuse in other programs.

Programming novices often make the error of including the format
ting of the results of a computation in the module that handles the
computation. The computation might be controllable via a clean, nar
row interface - but when aspects such as screen formatting or error
handling are handled in the same module, this restricts its reusabil
ity. To use the computations in a new program, we also have to import
the screen output (which might or might not work there).

lOA. Modularization

This problem often arises in error handling. Serious errors cause
a message on screen, while a "normal" unsuccessful termination
is returned as a status and handled by the client. This might be
rather practical for the invoking module (it is freed of bothersome
work), but it has serious drawbacks: This gives us a module that
depends on its connection to a certain terminal, although other
wise it has nothing at all to do with the monitor and keyboard.
Such dependency seriously encumbers the reuse of such a module
in another context (which, in fact, was one of the declared ad
vantages of modularization). And, what is worse, this blurs the
functionality of the module. The client relies on error handling
occurring in part in the module. If we modify such a module, we
must find all the locations in the clients where no error handling
occurs - and these can be very difficult to localize. How to treat
errors that we do not want to handle immediately is covered in
Section 15.

225

Our philosophy should be to have narrow interfaces that provide only
what is absolutely necessary for one subtask. Large collective modules that
solve multiple tasks unnecessarily encumber modifications of a software
system. It is important to keep modules free of dependencies that have
nothing to do with the task. On the other hand, modules can become too
small, so that a client always needs multiple servers for a single task. This
also impedes comprehensibility and modifiability because it causes numer
ous dependencies across module boundaries.

In the design of a program, if we always keep in mind the reusability of
components, then we might come closer to real modular programming.

Chapter 11

Dynamic data structures

We can categorize the data types discussed so far as follows:

• Predefined scalar data types, such as INTEGER, REAL and CHAR that
are built into the language environment

• User-defined scalar data types, such as enumerations and subranges

• User-defined composite data types, such as records, arrays and sets

These are all static data structures in the sense that their structure
and storage requirements must be specified when the program is coded.
For arrays, however, this size can vary within the limits prescribed by the
language environment. Arrays also have a certain dynamic aspect due to
the indexed access to its elements. Ifwe want to manage a large amount of
data in main memory, then initially arrays are our only option. However,
arrays also suffer from the restriction of static size and structure.

Static data structures are difficult and inefficient to adapt to many prob
lems. Example 8.20 (page 161) began to sketch a student data management
system. Our underlying data structure was an array of records (the vari
able students). As long as we construct this data structure only once and
then iterate through it repeatedly, this array structure proves adequate
- apart from the inconvenient aspect that we must define the maximum
number of students in advance. What happens if the number of students
changes over time, as is the case in a real university? Some students leave
the university and new ones arrive. The behavior of the whole system is
dynamic. Again and again, new records must be created and old ones need
to be retired. The size of the data set and the connections between the
records change continuously. Such dynamism of data proves quite typical
of practical problems.

This chapter presents dynamic data structures. We call data structures
dynamic if both their size and their structure can change at run time. Dy
namic structure does not imply arbitrary changes; naturally, we provide

228 11. Dynamic data structures

push pop

~ ~

top~

Figure 11.1: Stack storage

a certain basic structure. However, this structure must be able to adapt
flexibly to the data (more in Section 11.5).

Many programs must process any amount of data. Clearly, real com
puters can process only as much data as their available memory permits.
When we say "any amount", we mean "restricted only by available stor
age". Nevertheless, even programs like these hold only part of the overall
amount of data that they process in main memory; the remaining data are
on some background storage medium (usually the hard disk). In this chap
ter we limit discussion to data structures that are stored in main memory
(which can also include virtual memory [Tan92]).

For managing dynamic data structures, Modula-3 provides the concept
of references, or pointers. Before we discuss pointers, let us examine to
what extent we can express dynamism with already familiar languages
constructs - particularly with arrays - within prescribed quantitative lim
its.

11.1 Dynamism in static data structures

Here we introduce stacks and queues as data structures that - within the
bounds of an array - can store any number of data elements. Then we will
see how to process the elements of an array with explicit storage of links
rather than with index arithmetic.

11.1.1 Implementation of stacks as arrays

Stacks, or last-in, first-out (LIFO) queues, are structures that are open at
one end (top) and closed at the other (bottom). New elements are added
at the top of the stack, and they are removed again from this same end
(Figure 11.1). The last element added is the first to be removed.

The stack metaphor for this storage structure alludes to a stack of trays
or plates in a cafeteria, where customers take clean trays and plates from

11.1. Dynamism in static data structures 229

the top of each stack and employees return clean trays and plates to the
top of the corresponding stack l .

Stacks are not completely new here. In Section 9.2.2 we mentioned
that the data regions of procedures are ordered according to the stack
principle.

First we define the operations associated with stacks. If we store the
contents of a stack in an array info and the variable top always points to
the top element of the stack (top is 0 when the stack is empty; otherwise
top is the index of the top element on the stack), then we can specify the
following operations (ET is the element type that is stored in the stack):

• push(elem: ET):
INC(top); info[top] := elem;

• popO: ET:
Iftop # 0 then: DEC(top); Return info[top+1]

• emptyO: BOOLEAN:
Return top = 0

However, this defines an infinite stack, which is certainly a fine abstrac
tion, but impossible to implement. Therefore we introduce the operation
Full, which returns true if the stack is full. To implement the stack as an
independent data capsule, we can declare an interface like the one in Ex
ample 11.2. A client of the stack need not know how large the stack really
is; it suffices to assure that we do not try to remove something from an
empty stack or to append something to a full stack (Example 11.4). In pro
gram StackUser, if we enter a series of numbers, the program will accept
input until the stack is full. Then the program returns the numbers in
reverse order - which should not be a surprise.

We can implement stacks as arrays for which we make practically no
use of the array's direct access feature (Example 11.3). Instead, we let the
stack grow form an initial position and maintain an additional information
element (top), which indicates the position in the array of the topmost el
ement. In the implementation we employ no explicit test of the boundary
conditions (push on a full or pop on an empty stack). If these are not ob
served by the client, the value of top exceeds the array's index range; then
the run-time system of the language environment prevents any attempt to
reference nonexistent array elements, and the program terminates with a
run-time error.

IThis cafeteria analogy also provides some of the vocabulary of stacks. With a spring
loaded rack for plates, the top plates maintains the same height, regardless of how many
plates the rack contains. When we add a plate, we push the stack down; when we remove
a plate, we thereby pop the next plate up. See Figure 11.31

230

INTERFACE Stack;

TYPE ET = INTEGER;

PROCEDURE Push(elem : ET);
PROCEDURE PopO: ET;
PROCEDURE EmptyO: BOOLEAN;
PROCEDURE FuIlO: BOOLEAN;

END Stack.

11. Dynamic data structures

(* 14.07.94 RM, LB*)

(*element type*)

(*adds element to top of stack*)
(*removes and returns top element*)

(*returns true if stack is empty*)
(*returns true if stack is full*)

Example 11.2: Interface definition of a stack

MODULE Stack;

CONST

(* 14.07.94 RM, LB*)

Max = 16; (*maximum number of elements on stack*)
TYPE

S = RECORD
info: ARRAY [1 .. Max] OF ET;
top: CARDINAL := 0; (*initialize stack to empty*)

END; (*S*)

VAR stack: S; (*instance of stack*)

PROCEDURE Push(elem:ET) =
BEGIN

INC(stack.top); stack.info[stack.top]:= elem
END Push;

PROCEDURE PopO: ET =
BEGIN

DEC(stack.top); RETURN stack.info[stack.top + 1]
END Pop;

PROCEDURE EmptyO: BOOLEAN =
BEGIN

RETURN stack.top = 0
END Empty;

PROCEDURE FuIlO: BOOLEAN =
BEGIN

RETURN stack. top = Max
END Full;

BEGIN
END Stack.

Example 11.3: Implementation of a stack

11.1. Dynamism in static data structures

MODULE StackUser EXPORTS Main;

FROM Stack IMPORT Push, Pop, Empty, Full;
FROM SIO IMPORT Getlnt, Putlnt, PutText, NI;

BEGIN
PutText("Stack User. Please enter numbers:\n");
WHILE NOT FuliO DO

231

(*14.02.95. LB*)

Push(GetintO) (*add entered number to stack*)
END;
WHILE NOT EmptyO DO

Putlnt(PopO) (*remove number from stack and return it*)
END;
NIO;

END StackUser.

Example 11.4: Client of a stack

I· ..
already read A A free

out in

Figure 11.5: An "infinite" FIFO queue

11.1.2 FIFO queues in arrays

We retain our assumption that we know the maximum number of elements
that we need to manage, but we forsake the "unfair" assumption of "last
come, first served"; instead we consider a "fair" queue like at a British bus
stop, a first-in, first-out (FIFO) queue. We define the operations in the form
of an interface (Example 11.7) and employ the element type TEXT.

For the implementation we can initially pose the following considera
tions (see Figure 11.5):

• We need a write pointer (in) that indicates the position where a new
element can be added.

• Analogously, we need a read pointer (out) that indicates where the
next element can be removed.

• in 2': out must always hold; the read pointer must never exceed the
write pointer.

• in = out means that the FIFO queue is empty.

232

INTERFACE Fifo;

TYPE ET = TEXT;

PROCEDURE Enqueue(elem:ET);
PROCEDURE DequeueO: ET;
PROCEDURE EmptyO: BOOLEAN;
PROCEDURE FuIlO: BOOLEAN;

END Fifo.

11. Dynamic data structures

(* 14.07.94 RM, LB*)

(*element type*)

(*adds element to end*)
(*removes and returns first element*)

(*returns true if queue is empty*)
(*returns true if queue is full*)

Example 11.7: Interface definition ofa queue

MODULE Fifo; (*14.07.94 RM, LB*)

CONST Max = 16; (* Maximum number of elements in FIFO queue*)
TYPE

Fifo = RECORD
info: ARRAY [0 .. Max - 1] OF ET;
in, out, n: CARDINAL := 0;

END; (*Fifo*)

VAR w: Fifo;

PROCEDURE Enqueue(elem:ET) =
BEGIN

w.info[w.in]:= elem;
w.in:= (w.in + 1) MOD Max;
INC(w.n);

END Enqueue;

PROCEDURE DequeueO: ET =
VAR e: ET;
BEGIN

e:= w.info[w.out];
w.out:= (w.out + 1) MOD Max;
DEC(w.n);
RETURN e;

END Dequeue;

PROCEDURE EmptyO: BOOLEAN =
BEGIN

RETURN w.n = 0;
END Empty;

PROCEDURE FuIlO: BOOLEAN =
BEGIN

RETURN w.n = Max
END Full;

BEGIN
END Fifo.

(*contains FIFO queue*)

(*stores new element*)
(*increments in-pointer in ring*)

(*increments number of stored elements*)

(*removes oldest element*)
(*increments out-pointer in ring*)

(*decrements number of stored elements*)
(*returns the read element*)

Example 11.8: Implementation of a queue

11.1. Dynamism in static data structures 233

empty fields

" "
in out

occupied fields

Figure 11.6: FIFO queue implemented as a ring

This works well as long as we do not insert more than the maximum
number of elements. If elements are subsequently both inserted and re
moved, then the group of elements that are still in the queue slowly rises
- in the direction of higher indices. When the in index reaches the last ele
ment of the array, this does not mean that the array is full. At the other end
of the array, at the smaller index values, there are meanwhile free places
that we can use now. We can use these places either by shifting the queue
element-by-element back to the start ofthe array, or more elegantly by let
ting our read and write pointers gently glide across the array boundaries.
We can achieve the latter by viewing our array not as a linear structure,
but as a circular structure in which the first address directly succeeds the
last address (Figure 11.6). Rather than simply incrementing the pointer by
one position, we carry out addition in the residue class determined by the
size of the array [Tru88].

For addition within the residual class defined by the array size N, we use
the modulo operation MOD. The expression (i + 1) MOD N always produces
a number in the range [0 .. N -1]. For i = N -1, (i + 1) MOD N = o. Thus the
value of the expression demonstrates circular behavior: the largest value
is followed by the smallest.

However, the ring structure produces a conflict with the considerations
above:

• It is still true that the read pointer must not overtake the write
pointer, but this does not mean that in 2: out always applies. If the
write pointer has begun again at the start, then in :::; out (as in Figure
11.6).

• in = out no longer means that the queue is empty. If the write pointer
catches up to the read pointer from behind (it must not pass!), then in
= out, although the queue is presently full.

Therefore we introduce a counter that stores the number of elements,
producing the solution in Example 11.8. Example 11.9 shows a client.

234 11. Dynamic data structures

MODULE FifoUser EXPORTS Main;

FROM Fifo IMPORT Enqueue, Dequeue, Empty, Full;
FROM SIO IMPORT GetText, PutText, NI;

BEGIN
PutText("FIFO User. Please enter texts:\n");
WHILE NOT FuliO DO

Enqueue(GetTextO)
END;
WHILE NOT EmptyO DO

PutText(DequeueO & " ")
END;
NIO;

END FifoUser.

Example 11.9: Client of a queue

(* 14.07.94. LB*)

CONST
MaxStudent = 32;

TYPE
(*maximum number of students in class*)

Index = [1 .. MaxStudent);
Student = RECORD

VAR

lastname, firstname: TEXT;
END; (*Student*)

class: ARRAY Index OF Student;
next: Index := 1;

Example 11.10: Student data structures

What happens if we try to stuff more elements into the queue than space
allows? This implementation does not raise a run-time error; instead, the
oldest elements are simply overwritten by the newer ones. Section 16 intro
duces a variant of the FIFO queue that in such a case forces the industrious
producer to wait.

11.1.3 Example: Rotating shifts

The example of a circular queue finds many applications. Here we use it
to organize rotating work shifts. A number of elements are to be selected
sequentially, with no element being selected a second time until all others
have had their turn.

Shifting window

The students in a high school class could organize the task of cleaning the
blackboard so that the job rotates from one student to the next, and a given
student, after completing the job, takes a turn again only after all other

11.1. Dynamism in static data structures 235

Window

Figure 11.11: A shiftable window

Frank (3) No. Name Duty transfers to

{- 1 Susan 2
Susan (1) 2 Fred 4

3 Frank 1
{- 4 Elizabeth 3

Fred (2)

{-
Elizabeth (4)

Figure 11.12: Blackboard duty schedule: Graph and representation as array

students have taken their next turns. Example 11.10 shows the possible
data structures. Similar to our ring management above, the next student
to serve as board cleaner results from residual class computation:

next := (next MOD MaxStudent) + 1

Here we employ the technique of circular closed arrays to implement a
shiftable window on this array (see Figure 11.11). The window is shifted
one position to the right each time (toward higher index values) and marks
the next student. Once the maximum index value is reached, the window
is reset to the beginning.

11.1.4 Explicit address management with pointers

All our examples so far have shown that the array is an ideal data structure
if the following conditions hold true:

1. The number of elements is known in advance, or at least reliably pre
dictable.

2. The number of elements changes little or not at all at run time.

3. The indexes of the elements to be processed can be computed with an
arithmetic expression.

236 11. Dynamic data structures

The last point reflects the strength of arrays. They provide comfortable
and efficient solutions to problems where we can compute which elements
to select and process. The most important example of such problems is ma
trix computations. Our simple modulo arithmetic to compute the rotation
of blackboard duty also falls into this category.

Let us assume that after some time the students find this strict schema
too boring. They prefer to decide themselves the order of succession, nat
urally upholding the principle of fairness. The students propose a graph
that assures that all students take their turns, but in an arbitrary order.
The left side of Figure 11.12 shows such a schedule.

The students promise that when they are currently doing duty, they
will remind their successor of impending duty. To store such a structure,
each student must contain a reference to the respective successor. For this
reference, we use the index value, i.e., the position, which amounts to the
address of the successor. We call such a reference a pointer. The student
record must be extended to include such a pointer (Example 11.13). The
procedure Init initializes the array class. For the sake of simplicity, we ini
tialize the array statically. Note that the boundaries ofthe constant array
FirstNames result from the initialization values. Type Index interprets the
number of names in FirstNames as the upper array boundary. Both the
names in the class (we use only first names) and the schedule are coded
statically according to Figure 11.12.

The interested reader should consider how to handle the initializa
tion interactively. For example, in one iteration through the array,
all names could be read, and a second iteration could prompt for the
names of each successor.

The procedure Iterate moves through the array along the chain of duty.
Instead of using the modulo function, we determine the next student with
the value ofthe next field. The successor within the array is no longer com
puted arithmetically, but determined, independently of the physical posi
tion of the element, by an additional field in the element record. Note the
fundamental difference between Init and Iterate. Init processes class as an
array, from FIRST to LAST, or with fixed indices. Iterate processes the array
with the help of an additional path that is determined by the linking of
the values of the field next in the respective data record. The window that
marks the next student with duty must "jump". The "target address" of
the jump is indicated in the field next (see the right part of Figure 11.12).
Procedure Iterate assumes that the duty chain forms a ring that contains
all index values exactly once. If this assumption does not apply, then the
procedure exhibits erroneous behavior. The output of Example 11.13 is:

(susan => Fred => Elizabeth => Frank => J
------~

11.1. Dynamism in static data structures 237

MODULE Students EXPORTS Main; (* 15.07.94 LB *)

IMPORT SIO;
CONST (*list of students *)

FirstNames = ARRAY OF TEXT{"Susan", "Fred", "Frank", "Elizabeth"};
TYPE

Index
Student

Class
VAR

= [1 .. NUMBER(FirstNames)];
= RECORD

firstname, lastname: TEXT := "";
next: Index;

END; (*Student*)
= ARRAY Index OF Student;

class: Class;

PROCEDURE Init(VAR cl: Class) =
BEGIN

(*index type for class*)

("'pointer to next*)

(*array of student data*)

(*stores student data of class*)

FOR v:= FIRST(lndex) TO LAST(lndex) DO cl[v].firstname:= FirstNames[v-1] END;
cl[1].next:= 2; (*Fred follows Susan*)
cl[2].next:= 4; (*Elizabeth follows Fred*)
cl[4].next:= 3; (*Frank follows Elizabeth*)
cl[3].next:= 1; (*Susan follows Frank*)

END Init;

PROCEDURE Iterate(READONLY cl: Class) =
VAR next: Index := FIRST(lndex);
BEGIN

REPEAT
SIO.PutText(cl[next].firstname & " => ");
next:= cl[next].next;

UNTIL next = FIRST(lndex);
SIO.NIO;

END Iterate;

BEGIN
Init(class);
Iterate(class);

END Students.

("'iteration begins at index 1*)

(*output first name*)
(*next student in schedule*)

(*circle is complete*)

Example 11.13: Student data structures linked by pointers

This solution adds flexibility. However, the price of this flexibility is
the added storage required for this next-duty pointer to the next logical
successor and the drawback that we can no longer simply compute whose
turn is on the fifth or the 57th day. To determine this, we have to iterate
through the chain of successors.

With this increased flexibility we also lose security. Where the shifting
window made it easy to see that we cover the whole array (all students), the
explicit passing of duty requires us to first prove that we reach all students.

238

MODULE StudentList EXPORTS Main;

IMPORT SIO;

TYPE
StudentRef = REF Student;
Student = RECORD

VAR

lastname, firstname: TEXT := "";
next: StudentRef;

END; (*Student*)

class: StudentRef := NIL;

PROCEDURE Init(VAR head: StudentRef) =
VAR new: StudentRef;
BEGIN

11. Dynamic data structures

(* 15.07.94 LB *)

(*reference to student record*)

(*points to next*)

(*points to start of student list*)

SIO.PutText("Enter names in reverse order of schedule; terminate with "EOF"\n");
WHILE NOT SIO.EndO DO (*EndO is TRUE i{"EOF" is read*)

new:= NEW(StudentRef); (*student record created, address in new*)
new.firstname:= SIO.GetTextO; (*firstname set in student record*)
new.next:= head; (*new record points to previous head*)
head:= new; (*new record is at start of list*)

END; (*WHILE*)
END Init;

PROCEDURE Iterate(head: StudentRef) =
BEGIN

WHILE head # NIL DO
SIO.PutText(head.fistname & " => ");
head:= head.next;

END; (*WHILE*)
SIO.NIO;

END Iterate;

BEGIN
Init(class);
Iterate(class);

END StudentList.

(*output first name*)
(*sets next student in schedule*)

Example 11.14: Linked list with references, elements appended at the front

11.1.5 Address management by the system

In the above example we imposed a structure - a list that contains the
sequence of blackboard duty - over the array structure. Here we added the
field (next) to the student record, which enabled indirect index computation.
Would it not be simpler and more efficient if the programming language
supported the construction of such a structure as a list? For this purpose,
Modula-3 provides a type constructor for pointers (references) along with
the corresponding operations. Before the detailed explanation in Section
11.2, we present the basic idea and an introductory example.

11.1. Dynamism in static data structures

class

I firstname

next

Figure 11.15: Effect of New

239

la,,"~~; r-.· _ s::tE~ EI;~lbefu~

Figure 11.16: Student list built with references

We can create a pointer to any type by preceding the type with the key
word REF. The original type is called the referenced type. Thus in Example
11.14 the type StudentRef is a reference to the record type Student. The
reference to the next element (field next) and the variable class are also of
type Student Ref.

The variable class is initialized with the value NIL. The NIL value can be
assigned to any pointer variable; it means that the pointer points nowhere
(we have encountered the NIL value already in procedures, with a similar
meaning). Note that if we forget to initialize a pointer, its value can be
undefined. But if a pointer variable has the value NIL, then its value is
certainly defined. This distinction is very important because the value NIL
can be tested and thus always leads to well-defined behavior. (Even if the
programmer forgets, at least the language environment notices the opera
tion that attempts to follow a NIL pointer). An uninitialized pointer, on the
other hand, can produce undefined behavior. Therefore the Modula-3 lan
guage environment automatically initializes pointer variables to NIL. Still,
it is better not to rely on this and to explicitly initialize our variables.

A fundamental operation on a pointer variable is the invocation of the
predefined function NEW. It requires a pointer type as parameter. Invoking
NEW effects the following:

• Memory appropriate to the size required for the referenced type is
allocated somewhere in the system memory region .

• The address of this memory is returned as function value.

240

PROCEDURE Init(VAR head: StudentRef) =
VAR new, last: StudentRef;
BEGIN

11. Dynamic data structures

SIO.PutText("Enter names according to schedule; terminate with "EOF"\n");
WHILE NOT SIO.EndO DO

new:= NEW(StudentRef);
new.lastname:= SIO.GetTextO;
new.next:= NIL;

IF head = NIL THEN
head:= new; last:= new;

ELSE
last.next:= new; last:= new;

END; (*IF head = NIL*)
END; (*WHILE*>'

END Init;

(*create student record; address in new*)
(*name set in student record*)

(*add new to end*)

(*add to head of empty list*)
(*both point to only element*)

(*add to end of non-empty list*)

Example 11.17: Linked list with references, elements are added at end

The statement new := NEW(StudentRef) creates a new student record
and assigns its address to the variable new (Figure 11.15). Thereafter we
can use the pointer variable to reference the elements of the referenced
type. The expression new.firstname designates the field firstname of the
record to which new points.

The Init procedure in Example 11.14 builds a data structure that con
sists of a chain of student records. Input is controlled using the Boolean
function SIO.EndO: It returns true if it encounters an "End-Of-File" sig
naP. The head, or root, of the record chain is stored in the variable class
(Figure 11.16). A new record is always added at the head of the list. This is
why we iterate through the records in reverse order. We can easily change
this by adding new elements at the end rather than at the beginning ofthe
list. We store the pointer to the last element added in the variable last. The
new element is always added at the position last.next (Example 11.17).

Compared to the procedure of the same name in Example 11.13, Iterate
has become simpler. It is also robust: it can even be invoked with an empty
student list, in which case it does nothing.

What has improved over our array solution? First, we have eliminated
the constant MaxStudent. We no longer need any assumptions about the
number of students - the program remains the same for two or for 2000
students. A less obvious advantage is that pointers allow us to easily add
new students to the list and remove others. We examine list structures in
more detail in Section 11.5.1.

20na Unix keyboard this is the key combination Ctrl+D and on MS-DOS PCs this is
Ctrl+Z.

11.2. Dynamic data in Modula-3 241

11.2 Dynamic data in Modula-3

A pointer, or reference, is either NIL or it points to some (usually nameless)
region of memory in which a value of a certain type is stored.

Syntax of the pointer type

RefType55 = ["UNTRACED"] [Brand58] "REF" Type48'
Brand58 = "BRANDED" [ConstExpr65].

UNTRACED is explained in Section 11.2.1 and BRANDED in Section 11.4.1.
In Modula-3, reference types are bound to another type, the referenced

type. A reference contains an address, but this address is always of data
whose type is already known at compile time. Why is this important? If a
pointer were to reference data whose type were unknown at compile time,
then the compiler could not check whether the referenced element actually
exists. Then we might easily encounter the error that our search for an
unknown address produces a pointer to data of another type.

Imagine that you want to buy an ice cream, open a door labeled "Ice
Cream Shop", and find yourself in an office supply store, or perhaps
on an unknown island such as Jules Verne's "L'ile mysterieuse". Type
binding guarantees that a pointer always references data of a known
element.

11.2.1 Allocation and deallocation

Until this chapter, we have allocated memory for our data by means ofvari
able declarations. Data that are global to a module are created at the start
ofthe module. Thus these are often called static data. Data declared locally
to an enclosed block are created automatically on entry into the block and
are destroyed on leaving the block. These are often called semidynamic
data. Data that are created (allocated) and then destroyed (deallocated) on
demand are called dynamic data. Allocation in Modula-3 occurs explicitly
(with the function NEW), while deallocation occurs implicitly, i.e., automat
ically (see below).

Observe that we are now speaking of static and dynamic data in another
context than before. Here it is not a matter of the structure and size of a
data type, but of creating data by allocating memory for them. It makes
sense to store the anchor, or root, of a dynamic data structure (e.g., of a list)
statically, i.e., in a module variable (such as the variable class in Example
11.14). This is the normal case. As many advantages as dynamic data
structures have, we do need one fixed point (like the pulleys of Archimedes).

242

TYPE
StudentRef = REF Student;
Student = RECORD

catalogNo: INTEGER;
firstname, lastname: TEXT;

END; (*Student*)

VAR ref1, ref2: StudentRef;

BEGIN
ref1:= NEW(StudentRef);

ref1.catalogNo:= 1;

11. Dynamic data structures

(*Reftype bound to type Student*)

(*create data record with address in refl*)

(*set fields of new data record*)
ref1.firstname:= "Peter"; ref1.lastname:= "Tall";

ref2:= NEW(StudentRef, catalogNo:= 2,
firstname:= "Julie", lastname:= "Short");

ref2:= ref1;

ref1:= NIL;
ref2:= NIL;

(*data record created and initialized*)

(*ref2 now points to first record; thus second cannot be referenced*)

(*first record can still be referenced with ref2*)
(*now 2nd record is also inaccessible*)

Example 11.18: Allocating and deallocating memory for dynamic data

Allocation

We can create an example of a referenced data type with the predefined
function NEW. The signature of NEW is:

NEW(referenced type, ...);

The first parameter is obligatory. If the type is a reference to a record
type, then optional initializations of record fields can follow. They must
be specified by name; no positional initialization is permitted here. If the
referenced type is an open array, then the size ofthe open dimensions must
be specified here (see Section 11.2.3).

As we have seen, NEW has two effects:

1. It allocates memory for data of the referenced type (creates a new
data container), which is actually a side effect.

2. It returns a pointer to the allocated memory.

Example 11.18 shows how to create and use dynamic data. First a
record is created and its address is assigned to ref1. Then the fields of

11.2. Dynamic data in Modula-3

ref 1
~I----~ ~~

I P:'
ref 1

~f---"" ~I r Peter

Tall

ref 2

~ 2

Julie

Short

ref 2

~

Figure 11.19: Effect of the pointer assignment ref2 := refl

243

the referenced type are set. On allocation of the next record, (referenced by
ref2) we initialize the fields with the optional parameters of NEW.

The reader might wonder how this mysterious, system-internal alloca
tion of memory works. A language environment that provides dynamic
data must have its own memory management -linked to the operating
system of the computer. This memory management requests blocks of
free memory from the operating system. Memory management also
handles blocks that become free, either returning them to the oper
ating system or keeping them in reserve to cover later requests from
the program. The organization of the free memory region from which
NEW allocates space for variables is called the heap because this data
region lacks regular structure and grows in accordance with require
ments. The name alludes to a data structure [Sed93] that is used often
(but not always) for managing free memory.

Reference assignment and relational operations

The normal rules of assignment apply to assignments to references. How
ever, note that the value of a reference is an address. The assignment ref2
:= ref1 in Example 11.18 does not mean that the data fields of the first
record are copied to those ofthe second. Instead, the statement causes ref2
to point to the same record as ref1 (Figure 11.19). Thus the record to which
ref2 previously pointed becomes inaccessible (no other pointer references
it). Mter the assignment ref1 := NIL, the first record can still be referenced
with ref2. After ref2 := NIL the first record also becomes inaccessible.

Similar considerations apply to relational operations on references (tests
for equality and inequality are permitted). If two references are equal, this
means that they point to the same record. If they are unequal, then they
point to different records, which still might have the same contents. Sec
tion 4.4 showed that comparing texts can prove curious: Texts that we con
sider "equal" are unequal. Therefore we mentioned the function Text. Equal,

244 11. Dynamic data structures

which always behaves "correctly". Now we can clarify this phenomenon: In
Modula-3 TEXT is a reference. Thus if we compare two variables of type
TEXT, they might reference two different text examples that have the same
content. But the function Text. Equal always compares the contents of refer
enced texts - which can be arduous.

Dereferencing

We access allocated data by dereferencing. Thus far we have always
achieved this by specifying the reference variable, but this does not al
ways work. The syntax of dereferencing is part ofthe syntax of expressions
(see Section 7.1.1). If r is a variable of a reference type, then (stands for
whatever r references. We say "r dereferenced". If the Aoperator (the deref
erencing operator) is followed by further selectors (a "[" for indexing or a"."
for access to a record field), then we can omit the Aoperator. This makes the
following statements equivalent:

ref 1 " .firstname := "Peter";
ref1.firstname := "Peter";

This abbreviation is particularly important when accessing fields of
objects, as Section 13 will show. To emphasize the presence of a pointer,
it is often useful to write the "operator.

The "operator is requisite if we are accessing the referenced data as a
whole. For example, to assign the entire record referenced by ref1 to a
variable of record type Student, we could write:

VAR
student: Student;
ref1: REF Student;

BEGIN

(*student is a record*)
(*refl points to a record *)

(*copy record to which refl points to the variable student*)
student := ref1";

Note that this assignment is not a pointer assignment; ref 1 " designates
the referenced data rather than the pointer. It copies the whole record to
which ref1 points to the variable student.

Deallocation

References are normally controlled by the run-time system ofthe language
environment; we call such pointers traced references. If previously ref
erenced data become inaccessible at some point (because all referencing

11.2. Dynamic data in Modula-3 245

pointers are reassigned or set to NIL), then their allocated memory is auto
matically deallocated by the language environment and so freed for other
use. This part of the run-time system is called the garbage collector. In
Modula-3, deallocation of dynamic memory occurs implicitly; the program
mer need not (indeed cannot) handle it.

Many programming languages (and their environments) lack garbage
collection. In this case it is the job of the programmer to release unused
memory. This can lead to two errors. The programmer can forget to deal
locate, which leads to inflated memory consumption, even of all available
memory. On the other hand, the programmer can release memory that
is still referenced by a pointer somewhere else in the program. If such a
dangling pointer is used later, then it can reference a region of memory
that meanwhile has been reallocated. This leads to unpredictable behavior
(at best a program crash). Systems with garbage collection preclude such
errors.

Automatic deallocation of memory can be undesirable in certain cases,
especially in system programming, such as within an operating system.
Certain systems programs require explicit control over the release of dy
namic data as well (just consider the garbage collector itself, which can also
be written in Modula-3). For pointers not controlled by the garbage collec
tor (untraced reference), the language provides the keyword UNTRACED.
Untraced references are not disposed of automatically, but only explicitly
with the predefined DISPOSE function. However, DISPOSE can only be used
in unsafe modules (see Section 10.1.1 and Appendix B.7) because it can
cause dangling pointers.

11.2.2 Operations with references

Let us summarize the operations on references:

1. Allocation with NEW.

2. Dereferencing to access the referenced data.

3. Testing for equality or inequality. Any other relational operation
makes no sense in safe modules. System programs can also test con
trolled references in unsafe modules for greater than or less than.
How to interpret the result depends strongly on the architecture of
the computer and its memory management.

4. Assignment with the usual rules of assignment compatibility. Section
11.3 (on subtyping) treats assignment in more detail.

246 11. Dynamic data structures

11.2.3 Open (dynamic) arrays

In Section 8.1 we termed array types whose index ranges are specified at
compile time static arrays. However, Modula-3 permits us to delay speci
fication of the size of individual dimensions until run time. We call such
arrays open or dynamic arrays. Note that their structure remains a "nor
mal" array structure; only their size is dynamic. The size is specified only
once, at run time, and from then on nothing changes.

Array syntax allows us to leave the type ofthe index undefined, or open,
in the declaration of an array type, e.g.:

TYPE
Vector = ARRAY OF REAL;
Matrix = ARRAY OF ARRAY OF INTEGER;

An open array can only be used in certain contexts:

1. as formal parameter

2. as referenced type

3. as element type of another array

4. as type in an array constructor

This means, e.g., that we cannot declare a variable of type Matrix, but
we can declare a variaable of type REF Matrix. Open arrays can be created
only with a reference, thus only with the help of NEW. We must supply as
parameters the sizes of the open dimensions sequentially, for example:

VAR
n: INTEGER := SIO.GetintO;
m: INTEGER := SIO.GetintO;
vector := NEW(REF Vector, n);
matrix := NEW(REF Matrix, n, m);

('reads size')
(. size of second dimension')

('creates vector with n elements')
('creates (nxm) matrix')

If an open dimension acquires size n at run time, then its index type is
[0 .. n-1] (a subrange of INTEGER). Example 11.20 stores student data in an
array whose size is determined only at run time. Student data are read and
output. We can use the WITH statement to dereference class[i] to abbreviate
and accelerate its performance (the expression class[i] is computed only
once). Here again, we can use the built-in FIRST and LAST functions. Note
that its argument must be of type array (rather than a pointer type to an
array type); therefore we must write classA

•

11.2. Dynamic data in Modula-3 247

MODULE DynArr EXPORTS Main; (*15.015.94. LB*)

FROM SIO IMPORT PutText, Putlnt, Getlnt, GetText;

TYPE
Class = REF ARRAY OF Student;
Student = RECORD

catalogNo: INTEGER;
firstname, lastname: TEXT;

END; (*Student*)

VAR class: Class; n: CARDINAL;

BEGIN
PutText("Enter the number of students and their names\n");
n:= GetlntO;
class:= NEW(Class, n);
FOR i:= FIRST(classA

) TO LAST(classA

) DO
WITH cI = class[i] DO

cl,catalogNo:= i;
cl.firstname:= GetTextO; cl.lastname:= GetTextO;

END; (*WITH cl*)
END; (*FOR i*)
FOR i:= FIRST(classA

) TO LAST(classA

) DO
WITH cl = class[i] DO

Putlnt(cl,catalogNo); PutText(": ");
PutText(cl.firstname & "" & cl.lastname & "\n");

END; (*WITH cl*)
END; (*FOR i*)

END DynArr.

(*read number of students*)
(*array of students created*)

Example 11.20: Allocation and usage of an open array

11.2.4 Arrays of references

We can enhance the dynamics of Example 11.20 by storing references to
student data in the array rather than the data themselves. This particu
larly makes sense if the records are very large (often the case in practice).
If we want to reorder the data (e.g., sort by name), we can sort the array
of pointers without needing to move the voluminous data itself Here the
pointer functions as a sort of surrogate.

Such a solution is not entirely for free: We must explicitly allocate
storage for the referenced data, and access becomes one step more in
direct. Therefore we recommend arrays of pointers only for really large
records.

Example 11.21 is a modification of the program in Example 11.20.
Class is no longer an array of students, but an array of student refer
ences (the fact that Class is itself an open array plays no role in this con
text). Accordingly, the student records must be created explicitly. Other-

248 11. Dynamic data structures

MODULE DynDyn EXPORTS Main;

FROM SIO IMPORT PutText, Putlnt, Getlnt, GetText;

TYPE
Class = REF ARRAY OF REF Student;
Student = RECORD

catalogNo: INTEGER;
firstname, lastname: TEXT;

END; (*Student*)

VAR class: Class; n: CARDINAL;

BEGIN
PutText("Enter the number of students and their names\n");

(* 15.015.94. LB*)

n:= GetintO; (*read number of students*)
class:= NEW(Class, n); (*array of students created*)
FOR i:= FIRST(class") TO LAST(class") DO

WITH cl = class[i] DO
cl:= NEW(REF Student); (*student record created*)
cLcatalogNo:= i;
cl.firstname:= GetTextO; cLlastname:= GetTextO;

END; (*WITH cl*)
END; (*FOR i*)
FOR i:= FIRST(class") TO LAST(class") DO

WITH cl = class[i] DO
Putlnt(cLcatalogNo); PutText(": ");
PutText(cl.firstname & "" & cl.lastname & "\n");

END; (*WITH cl*)
END; (*FOR i*)

END DynDyn.

Example 11.21: (Open) array of pointers

wise, the program quite resembles Example 11.20. Expressions such as
class[i).catalogNo now mean something different because class no longer
designates a student record, but a pointer to such. More precisely, we could
write classA[r.catalogNo. However, since the semantics of the first nota
tion is unambiguous from the declarations, Modula-3 permits the shorter
notation.

11.3 Subtypes

Before we continue discussing operations with references, let us examine
the subtype concept of Modula-3 in more detail. This concept takes on new
dimensions in combination with references. We complete our discussion of
the concept in the context of objects in Chapter 13.

The basic principle was already introduced in Section 7.4: Given the
two types Sub and Super with the relation Sub <: Super, all values of Sub

11.3. Subtypes 249

are also values of Super. The subtype relation is reflexive and transitive.
For many types, Modula-3 defines concrete subtype rules. (We already

saw those for subranges in Section 7.4).

11.3.1 Subtype rule for references

NULL <: REF T <: REFANY
NULL <: UNTRACED REF T <: ADDRESS

In words, all traced references are subtypes of type REFANY (and all un
traced references are subtypes of ADDRESS). Thus REFANY (or ADDRESS)
is the supertype, the root, of all reference types. NULL is a subtype of all
references. The only value in its range is NIL. This means that every refer
ence type contains NIL. Thus we can assign NIL to any reference variable.

Simulated genericity

Recall the rules of assignment compatibility in Section 7.5 on page 135.
Rule 2 (R <: L) states that the type ofthe right side of an assignment must
be a subtype of the left side. In the case of references, this opens immense
flexibility. We can assign any reference to a variable of type REFANY. As
we know, for value parameters the actual parameter must be assignment
compatible with the formal parameter. Thus if we define a procedure with
formal parameters of type REFANY, we can invoke this procedure with ac
tual parameters of any reference type. This allows us to create procedures
that work with different types. This is a specialized and restricted imple
mentation of the concept of genericity.

A component (e.g., a module or a procedure) is generic if its services are
type-independent, but still type-safe. The most common solution is to pro
vide the component with type parameters which are then made concrete
on use. For this purpose Modula-3 provides the generic module, which can
be parameterized with module names (see Appendix B.5.4). The use of RE
FANY parameters amounts to a "cheap" imitation of genericity - although
it works only for reference types. An example is given in Section 11.4.3.

Assignment of a supertype value

Rule 4 of the assignment compatibility rules (Section 7.5, page 136), states
that in the case of references and arrays a value of a supertype can be
assigned to a variable of a subtype if certain conditions are met. What are
these conditions? Take the program excerpt in Example 11.22. It is clear
that we can assign r2 to the variable any without problems because Student
<: REFANY. The statements r1 := any and adr := any can be legal- according

250 11. Dynamic data structures

TYPE
Student = REF RECORD lastname, firstname: TEXT END;
Address= REF RECORD street: TEXT; number: CARDINAL END;

VAR
r1: Student;
r2 := NEW(Student, firstname:= "Julie", lastname:= "Tall");
adr := NEW(Address, street:= "Washington", number:= 21);
any: REFANY;

BEGIN
any:= r2;
r1:= any;
adr:= any;

(*always safe assignment*)
(*legal because type of any = Student*)

(*produces run-time error*)

Example 11.22: Assignment ora supertype with a run-time error

to Rule 4. In the first case the assignment can be carried out because any
contains a value of type Student, which is assignment compatible with r1.
This is not the case with the second assignment (adr := any). any still points
to student data, and these cannot be assigned to a variable of type address.
Thus this statement produces a run-time error.

The example allows us to derive the general condition in Rule 4: A value
of a supertype Super can be assigned to a variable of a subtype Sub if it falls
in the range of Sub. This condition can be tested at run time.

We can formulate this condition in a different way. We can say that
after the assignment any := r2 the variable any has changed not only its
value but also its type. Its actual type (or dynamic type) has changed from
REFANY to Student. We also distinguish between the declared (static) and
the actual type. The actual type of the expression on the right side of the
assignment must always be assignment compatible with the declared type
ofthe variable on the left side (the actual type ofthe variable is irrelevant
since it is overwritten by the assignment).

Rule 4 is closely related to Rule 3, which relates to subranges. We can
assign a value of type Day to a variable of type Workday if and only if the
value falls in the range of workdays.

Additional examples of assignment between different but compatible
types are presented in the context of objects (Section 13).

11.3.2 Subtype rule for arrays

Array type Sub is a subtype of array type Super if they have the same
number of dimensions, if they share the same base type (element type in
the last dimension), and if for each dimension either both are open arrays
or Sub is fixed (fixed number of elements) and Super open, or both are fixed
and have the same number of elements. Thus an open dimension is always
a supertype of a corresponding fixed dimension. In Example 11.23 the fol-

11.4. Abstract and encapsulated data types

TYPE
FixedMatrix = ARRAY [1 .. 100], [1 .. 100] OF REAL;
FixedVector = ARRAY [1 .. 100] OF REAL;
SmaliVector = ARRAY [1 .. 50J OF REAL;
Matrix = ARRAY OF ARRAY OF REAL;
Vector = ARRAY OF REAL;

VAR
v: REF Vector := NEW(REF Vector, 100);
m: REF Matrix := NEW(REF Matrix, 100, 100);
tv: FixedVector; sv: SmaliVector; tm: FixedMatrix;

251

BEGIN
vA := tv;
mA := tm;
tv:= VA;

tm:= rnA;
vA := sv; (*run-time error due to different structure*)

Example 11.23: Assignment compatibility of arrays

lowing apply: FixedMatrix <: Matrix, FixedVector <: Vector and SmaliVector
<: Vector.

Assignment compatibility of arrays

Rules 2 and 4 apply for assignment compatibility of arrays (Section 7.5 on
page 136), but they are always restricted by an additional rule: Assignment
compatible arrays must have the same shape. Therefore the assignment
vA := sv in Example 11.23 produces a run-time error. The other assignments
are legal.

11.4 Abstract and encapsulated data types

Let us summarize what a data type entails (also see Section 10.2.2):

• Range
The range determines the values contained in the type. Values can
certainly occur in multiple types.

• Operations
These specify what can be done with the values. Additional operations
are not permitted. For built-in numeric types the language provides
assignment, arithmetic operations and relational operations. For our
custom-defined types, we provide operations such as push and pop for
our stack.

252 11. Dynamic data structures

The specification of the range and the operations as well as any addi
tional conditions suffices to exactly define a data type. Most programming
languages, including Modula-3, provide no means for complete specification
of a data type. To define a new type, we specify its range and operations
in an interface. The exact specification results later from the implemen
tation of the procedures. Consider, e.g., a date type: We cannot directly
specify that the value of the days in January range to 31, but in Febru
ary they usually only go to 28. For the operations, we can only specify the
signatures; everything else can only be recorded in comments.

Indeed there are programming languages (e.g., Eiffel [Mey89]) that of
fer more than Modula-3 in this respect. On the other hand, there are
specification languages (such as Z [PST91]) whose explicit goal is to
serve as a specification tool. There are also specification languages
that are more or less integrated into a programming language envi
ronment (e.g., Larch in C and Modula-3 [GH93]).

Another problem is that until now we could not prevent clients of the
type from applying operations that were not intended (compare Example
10.10 on page 216).

Abstract data types solve these problems. They have the following fea
tures:

• They have a name.

• The operations are completely enumerated (including initialization).

• The semantics ofthe operations is also fully specified (e.g., in an alge
braic form).

• Their data are accessible only through the specified operations. This
is achieved by hiding the actual structures of the data.

With the help of the name, individual examples (also called instances) of
the abstract data type can be declared. These are variables whose range
corresponds to the abstract type.

If the specification of the semantics is missing, then we speak of encap
sulated data types. In practice, this distinction is often neglected.

11.4.1 Opaque data types

The principle of information hiding, where a module hides its data from
its clients, is already familiar (Section 10.2.1). This allows us to prevent
an erroneous client from destroying the data. This principle guarantees

11.4. Abstract and encapsulated data types 253

INTERFACE FractionType; (*19.12.94. RM, LB*)
(*defines the data type of rational numbers *)

TYPE T <: REFANY;

PROCEDURE Create
PROCEDURE Plus
PROCEDURE Minus
PROCEDURE Mult
PROCEDURE Divide
PROCEDURE Numerator
PROCEDURE Denominator

(*T is a subtype of Refany; its structure is hidden*)

END FractionType.

(z: INTEGER; n: INTEGER:= 1): T;
(x. y : T) : T;
(x. y : T) : T;
(x. y : T) : T;
(x. y: T) : T;
(x : T): INTEGER;
(x : T): INTEGER;

Example 11.24: Fraction as encapsulated data type

(*x + y *)
(*x - y *)

(*x * y *)
(*x : y *)

increased security through regulation of the scope. Hidden variables are
invisible to clients.

Now we introduce something new: Instead of variables (the data itself),
the structure of the data - wholly or in part - can be hidden. Clients can
create any number of instances of the respective type in their own scopes.
Access to these instances is restricted because the client only partially
knows the structure.

An undisciplined client could directly access the fields of a variable of
type Fraction.T in Example 10.10 (page 216). This would not be possible
if the client knew only the operations and not the data fields. This would
force the client to use only the operations declared in the interface.

This is where the concept of opaque types comes in. The idea is as
follows: We publish the type name (e.g., T) and declare that T is a subtype of
another type. This additional type is either a predefined type (e.g., REFANY)

or the public part ofthe type (e.g., called Public). The opaque part of a type
must naturally be revealed somewhere. This revelation is best done in a
scope that is closed to the client.

As an example we will re-implement the module Fraction as an encapsu
lated data type. In Example 10.10 the interface exposed the inner structure
ofthe fraction type. Example 11.24 shows the new interface. Type T is now
declared as a subtype of REFANY. We changed the name of the procedure
Init to Create. The procedure Create first creates a new instance of type
FractionType.T, then initializes its fields, and finally returns the reference
to the instance as a function value. Otherwise the interface is the same as
in Example 10.10.

The client (Example 11.25) can now generate any number of fractions
with the help of the Create function. The rest of the client remains un
changed. The most important change is that the client can no longer access
the data fields of the fractions. The client has all instances of the numbers

254 11. Dynamic data structures

MODULE FractionClient EXPORTS Main; (*19.12.94. RM, LB*)

FROM FractionType IMPORT T, Create, Plus, Numerator, Denominator;
FROM SIO IMPORT Putlnt, PutText, NI;

VAR a, b, c, d: T;

BEGIN

(*declaration of variables of type FractionType. T*)

(*Fractions *)
(*initialization offraction variables: *)

a:= Create(3, 4);
b:= Create(1 , 4);
c:= Create(1);

d := Plus(a, b);
Putlnt(Numerator(d)); PutText("/");
Putlnt(Denominator(d), 1); NIO;

d := Plus(b, c);
Putlnt(Numerator(d)); PutText("f');
Putlnt(Denominator(d), 1); NIO;

END FractionClient.

(*~*)
(*1*)

4
(*1 *)

(*~ + ~*)

(*~+1*)

Example 11.25: Client of encapsulated data type FractionType. T

available, but can access them only through the procedures defined in in
terface FractionType.

However, this statement is not quite accurate! Assignment and rela
tional operations (test for equality) always apply to all references. For in
stance, in Example 11.25 we could write IF a = b THEN· ... In the client,
however, we cannot write a.num := 1.

To explain how opaque data types are implemented, we first need to
examine the term revelation more closely.

11.4.2 Revelation

A revelation reveals, within a certain scope, parts of a type that were un
defined until then. Revelations can occur only in interfaces or in the outer
block of implementation modules.

Syntax the revelation declaration

Declaration13 = ... I "REVEAt..:' Idents9 ("=" I "<:") Type4S.

There are two kinds of revelation: partial and complete. For an opaque
type we can specifY any number of partial and exactly one complete reve
lation.

A complete revelation takes the following form:

REVEAL T = type expression

11.4. Abstract and encapsulated data types

MODULE FractionType;

REVEAL T = BRANDED REF RECORD
num, den: INTEGER

END;

PROCEDURE Create (x: INTEGER; y: INTEGER := 1): T =

255

(*19.12.94. RM, LB*)

(*opaque structure ofT*)

BEGIN (*creates and initializes a fraction*)
RETURN NEW(T, num:= x, den:= y); (*creates and initializes an instance ofT*)

END Create;

PROCEDURE Plus (x, y: T) : T =
VAR sum := NEW(T);
BEGIN

IF x.den # y.den THEN
x.num := x.num • y.den;
y.num := y.num • x.den;
sum.den := x.den • y.den

ELSE
sum.den := x.den

END;
sum.num := x.num + y.num;
RETURN sum

END Plus;

PROCEDURE Minus(x, y : T) : T =
BEGIN

y.num := - y.num;
RETURN Plus(x, y)

END Minus;

(*adds fractions (no reduction)*)
(*returns result in sum*)

(*subtracts fractions*)
(*internally already uses services of this module*)

Example 11.26: Revelation of an opaque data type

T must be an opaque type. type expression must not be a simple type
name, but must actually define a type. The revelation states that type
expression is the concrete type of opaque type T. If T is a subtype of any
type S, then type expression <: S must also apply.

This condition is checked by the language environment. Since rev
elations are defined across module boundaries, it can generally be
checked only at link time.

A complete revelation exposes the internal structure of T. It is (nor
mally) specified in an implementation module (see Example 11.26). The
outer type constructor of type expression must be a branded reference type.
The specification BRANDED marks a type to distinguish it from all other
types. This suppresses structural type equivalence (compare Section 7.3).
The optional ConstExpr65 after the keyword BRANDED must be a text
constant; if specified, this text unambiguously identies the type. If it is

256 11. Dynamic data structures

not specified, then the system generates an internal identification that is
unique during a program execution.

Explicit branding particularly makes sense when variables of a
BRANDED type can outlive the lifetime of the whole program execu
tion (are persistent).

It is easy to understand why the revelation of opaque types must be
distinguished from all other types. Otherwise it might happen that a client
- e.g., by pure chance - defines a type that has exactly the same structure
as the opaque type. Now if the client - again by chance - employs this
type instead of the opaque type, this suddenly grants access to the fields
that should be opaque. As improbable as such a double chance might be,
it must be explicitly precluded. The branding mechanism prevents this
problem because it allows the compiler to detect the incorrect assignment
in this case, and the client cannot employ the structurally equivalent type
instead of the branded opaque type.

The declaration from Example 11.26 reveals the internal structure ofT:

REVEAL T = BRANDED REF RECORD num, den: INTEGER END

It is known only in the scope of this implementation module; clients have
no access to the fields num and den. Because the type has a brand, it is not
equivalent to any other type declared as REF RECORD num, den: INTEGER
END.

Opaque data types (except objects; see Section 13) can be created only
where their inner structure is known, i.e., in the scope of the complete
revelation. This restriction is understandable since NEW cannot simply
allocate memory for an unknown record.

The partial revelation expresses only that a type is a subtype of another
type. We use partial revelations - normally - in interfaces. They can reveal
a little more information about an opaque type without exposing its final
structure. The form of a partial revelation is:

REVEAL T <: type

type can be any type. The s of an opaque type must be linearly ordered
via the subtype relation; i.e., the following must apply:

REVEAL type <: type1 /\ REVEAL type <: type2 ::::}
type1 <: type2 v type2 <: type1

This additional language element provides the expressive features to
hide not only algorithms but also type definitions in server modules.

11.4. Abstract and encapsulated data types 257

11.4.3 An abstract and a generic stack

The stack in Example 11.2 (page 230) has the following shortcomings:

1. It consists of a single stack example.

2. The type of the elements is fixed (INTEGER).

3. The maximum size of the stack is preset.

Now let us design a stack that corrects these drawbacks. Our stack
must have the following properties (see Example 11.28):

1. Encapsulation
It exports an opaque type and the operations thereon. The client can
create any number of stacks and use them with complete type secu
rity. In short, we will redesign the stack as an encapsulated data
type.

2. Genericity
The stack must handle data of various (although not completely ar
bitrary) types. It uses simulated genericity by using REFANY (see
11.3.1). We can store data of any pointer type on the stack in Exam
ple 11.28 (see Example 11.27).

3. Arbitrary size
We remove the Full operation from the interface. We feign an infi
nite stack in the hope that the client will not store so many elements
that total memory is exhausted. We could explicitly test this condi
tion, but for the sake of simplicity we omit the test, which is language
environment dependent.

Example 11.28 shows the corresponding interface. It exports the opaque
type T and the element type ET. All procedures receive a parameter that
determines the actual stack (compare Example 11.2, page 230). We receive
a new, empty stack with the procedure Create.

Example 11.27 demonstrates the usage ofthe abstract and generic stack.
Two stacks are defined; stackFraction will store rational numbers; stack
Complex, complex numbers. Both stacks are initialized on declaration to
NIL (i.e., empty). Since both numeric types are defined as references to
records, they are assignment compatible with REFANY. The output of Ex
ample 11.27 looks like this:

[
1/4 1/3 1/2 1/1 1

4:_6 __ 3_:_4_._5 __ 2_:_3 __ 1_:_1_._5 __________________________ ~

258 11. Dynamic data structures

MODULE StacksClient EXPORTS Main;

IMPORT Stacks;
IMPORT FractionType;
FROM Stacks IMPORT Push, Pop, Empty;
FROM SIO IMPORT Putlnt, PutText, NI, PutReal, PutChar;

TYPE Complex = REF RECORD r, i: REAL END;

VAR
stackFraction: Stacks.T:= Stacks.Create();
stackComplex : Stacks.T:= Stacks.Create();

c: Complex; f: FractionType.T;
BEGIN

PutText("Stacks Client\n");
FOR i:= 1 TO 4 DO

(*LB *)

Push(stackFraction, FractionType.Create(1, i)); (*stores numbers +*)
END;
FOR i:= 1 T04 DO

Push(stackComplex, NEW(Complex, r:= FLOAT(i), i:= 1.5 * FLOAT(i)));
END;
WHILE NOT Empty(stackFraction) DO

f:= Pop(stackFraction);
Putlnt(FractionType.Numerator(f)); PutText("f'); Putlnt(FractionType.Denominator(f), 1);

END;
NI();
WHILE NOT Empty(stackComplex) DO

c:= Pop(stackComplex);
PutReal(c.r); PutChar(':'); PutReal(c.i);PutText(" ");

END;
NI();

END StacksClient.

Example 11.27: Client of an abstract generic stack

Note that here we have achieved flexibility in part at the cost of se
curity. The system can test that we store only references on this stack;
however, it cannot test whether we store correct references. If we acciden
tally put complex numbers on stackFraction, the system could not detect the
error. With "real" genericity we could correct this deficit; this would mean
that we would use the element type as a formal parameter of the encap
sulated data type and that on declaration of the variables we could specifY
their concrete, actual type. In this case the compiler could certainly detect
whether we are putting complex numbers on the fractions stack, or vice
versa.

How can we store something other than references (e.g., INTEGERS) on
the stack in Example 11.28? This is possible only via a detour, namely a
pointer to INTEGER. We could declare the following type: Int = REF IN
TEGER. Such a solution is obviously not really satisfYing because now we

11.4. Abstract and encapsulated data types 259

iNTERFACE Stacks;

TYPE
T <: REFANY;
ET= REFANY;

I PROCEDURE CreateO: T;
i

(* 14.07.94 RM, LB*)

(*type of stack*)
(*type of elements*)

(*creates and intializes a new stack*)

PROCEDURE Push(VAR stack: T; elem: ET); (*adds element to stack*)
PROCEDURE Pop(VAR stack: T): ET;

(*removes and returns top element, or NIL for empty stack*)
PROCEDURE Empty(stack: T): BOOLEAN; (*returns TRUE for empty stack*)

END Stacks.

Example 11.28: Interface of an abstract generic stack

MODULE Stacks;

REVEAL
T = BRANDED REF RECORD

info: ET; next: T;
END; (*T*)

PROCEDURE CreateO: T =
BEGIN

(* 14.07.94 RM, LB*)

RETURN NIL; (*a new, empty stack is simply Nil *)

END Create;

PROCEDURE Push(VAR stack: T; elem:ET) =
VAR new: T := NEW(T, info:= elem, next:= stack); (*create element*)
BEGIN

stack:= new (*add element at top*)
END Push;

PROCEDURE Pop(VAR stack: T): ET =
VAR first: ET := NIL; (*Pop returns Nil for empty stack*)
BEGIN

IF stack # NIL THEN
first:= stack.info;
stack:= stack. next;

END; (*IF stack # NIL*)
RETURN first;

END Pop;

PROCEDURE Empty(stack: T): BOOLEAN =
BEGIN

RETURN stack = NIL
END Empty;

BEGIN
END Stacks.

(*copy info from first element*)
(*remove first element*)

Example 11.29: Implementation of an abstract generic stack

260 11. Dynamic data structures

can access the value of a number only indirectly. This is less efficient than
direct access, and the readability of the program suffers.

Example 11.29 shows the implementation of the stack. The procedure
Push creates a new stack element and adds it to the front. The elements
are initialized on invocation of NEW. The function Pop removes and returns
the first element; for an empty stack it returns NIL.

11.4.4 Rules for the design of encapsulated data types

From the examples above we can derive the general rules for the design of
encapsulated data types in Modula-3:

1. Module for type design
We define an interface which specifies the type name and the opera
tions defined on it (in the form of procedure signatures). All procedure
signatures must contain a parameter of the given type. It is advisable
to offer an explicit procedure for the creation of elements ofthe encap
sulated type. This procedure can also initialize the data fields of the
opaque type.

2. Opaque type
The type whose name is declared in the interface must be opaque;
the details are revealed elsewhere (with a REVEAL declaration), nor
mally in the implementation part. However, since Modula-3 also per
mits partial revelation, it is possible that the revelation might be dis
tributed across multiple modules. Thus we could specify type 1 as a
subtype of type2, which again is a subtype of type3, etc. The purpose
is to show more and more of the structure of the type - but not ev
erything. Finally, there must be exactly one complete revelation (with
the = sign). This must be marked as BRANDED so that no client can
"steal" the type by chance.

3. Hidden procedure body
The bodies of the procedures listed in the interface are hidden in the
implementation part. The clients must not make any explicit and
also should not make any implicit assumptions about the implemen
tations.

Although this last requirement is important, it is difficult to maintain.
If the author of the client module knows the implementation of the opaque
procedure bodies, then certain properties of the implementation can all
too readily - perhaps unconsciously - find their way into the usage of the
operations. Only a formal specification can protect us to some extent, but
even there can be no guarantee against unconscious assumptions.

11.5. Dynamic structures 261

11.5 Dynamic structures

Let us summarize and enhance our knowledge of dynamic data structures.
We use dynamic data structures because we want to manage any num

ber of elements connected arbitrarily. The concept of pointer types provides
all that we need, and it is in fact more powerful than necessary. With point
ers, we can dynamically construct arbitrary, "wild" data structures. How
ever, this would be just as dangerous as jumping around within a program
(which we banished in Section 5, and which Modula-3 does not permit at
all). Actually, some authors designate the pointer as the Goto statement
of data structures. Therefore we must restrict ourselves to well-defined
dynamic data structures.

The names of statically created variables give them an unambiguous
reference point. Naturally, to manage any number of dynamically created
elements, we cannot assign an endless number of names, especially not
dynamically. A record that we create dynamically with NEW has no name
itself References allow us to access a nameless variable via its address.
The reference variable "knows" the memory location just as with static data
the variable identifier knows the memory location. To prevent confusion of
these addresses by the programmer, they are hidden. We can only work
through the entire structure as with the thread of Ariadne, starting with
the name of the first data element, and we must take the utmost care that
we do not lose grasp of our thread!

We achieve a dynamic structure by linking unnamed variables. The
variables are all records of the same type, each has a field whose contents
point to the next variable in the structure. We need only a single pointer
to the first unnamed variable, stored in a static named variable. By se
quentially reading the field that points to the next record, we can move on
to read or modifY the entire structure. This structure is called a list (see
11.5.1).

Naturally multiple chains of pointers can ensue from one information
node. Likewise such a chain can emanate from each element of an ar
ray of references. A general network of branches from nodes can be used
to represent various graphs [Tru88]. If such branches are restricted ac
cordingly, the result is a tree, discussed in Section 12.2.1. Lists, trees and
graphs occur in many forms. In general, however, they are well-studied and
well-understood structures. They can help us avoid the dangers mentioned
above. References are necessary to achieve dynamic data structures. How
ever, we must always very carefully design dynamic data structures and
that we make them no more "dynamic" than really necessary!

Some programming languages (e.g., Lisp [M+62] and Orca [Bal90])
directly support certain dynamic data structures, such as lists and
graphs; then we can do without explicit pointers.

262 11. Dynamic data structures

head[__ -~

next
"----------'

Figure 11.30: Singly linked list

11.5.1 Lists

In a singly linked linear list we connect a number of records of a fixed, but
otherwise arbitrary record type. Our record might look like this:

TYPE RT = REF RECORD
lastname, firstname: TEXT;
age: CARDINAL;
next: RT;

END

The type RT contains a field itself that is of type RT and points to the
next element (of type RT) in the list. This field allows us to construct an ar
bitrary list of records. The start (head) of such a chain is a simple variable
of type RT (Figure 11.30). The end of the chain is a record whose pointer
field contains the value NIL. We can interpret this as the last element
pointing to an adjoining empty list.

Note that this recursive type structure is possible only because RT is
a reference type. A static record type T = RECORD· .. n: T END is illegal ~
this type would have to contain infinite memory. Appendix B.4 specifies the
exact rules for when type structures are permitted that contain themselves.

This brings us to the following basic structure for singly linked lists:
Each list consists of the empty list, or of an element that is followed by a
(possibly empty) list. Based on this recursive definition of a list, we can
now define additional invariants.

The considerations for proving the correctness of dynamic ~ and thus
in principle unlimited ~ data structures are quite similar to those that
we proposed in establishing loop invariants (see Section 5.5.2) ~ in
principle likewise unlimited.

11.5. Dynamic structures 263

top

Figure 11.31: Stack constructed with pointers

last

Figure 11.32: Queue constructed with pointers

Such a list invariant could take the following form: For every list oper
ation it must hold that before its execution a (possibly empty) list existed
and after its execution a (possibly empty) list must exist again. We can
use this recursive structure later for simple formulations of recursive algo
rithms (see Section 12.1.5). For the time we limit ourselves to the iterative
processing of lists, which is generally more efficient anyway.

11.5.2 Kinds of lists

Our first, intuitively designed example of references (Example 11.14) was
related to the stack (Figure 11.31). We were dissatisfied with it because
it stored students in reverse order (normal for stacks). The simplicity of a
dynamic stack stems from its execution of operations basically only on the
(current) top stack element. For example, head := head. next would remove
the top element. Iterating through an entire stack structure is possible
only by sequentially removing the elements (which destroys the stack).

A somewhat more powerful list structure is the queue (Figure 11.32).
We use queues in Example 11.17 to store student data in the correct order.
We can implement a queue with the help of a pointer to the start (first) and
one to the end (last) of the queue. In an empty queue first and last are set

264 11. Dynamic data structures

first last

111\ -.J< >[-}-~~~~---
Figure 11.33: Doubly linked list

to NIL. When we add the first element to an empty queue, both pointers
reference this new element. Once the queue is no longer empty, inserting
a new element means setting the successor field of the last element added
(to which last points) to the new element and then also setting last to this
new element. Thereby we achieve a structure in which first points to the
first and last to the last element. The first element points to the second,
the next-to-the-last to the last, and the last to NIL. In this situation we can
easily remove the first element from the queue with the statement first :=
first.next. Removing the last element of the queue requires more complex
actions: Starting with first, we must iterate through all elements.

As another basic data structure, we introduce the doubly linked list.
This structure allows insertion and removal at both ends with only a single
access each. To enable double linking, we again need two pointers, first and
last (or one pointer and circular linking). In addition, each element requires
a forward and a backward pointer for double linking.

We often use lists to implement sorted lists. Structurally a sorted list
corresponds to a singly linked list. On the level of data declaration it does
not differ from a stack-like list. However, the operations differ. Insertion
must incorporate the sorting criterion. Searching means iterating through
the list until either the element is found or the "next element" according to
the search criterion is already "greater" than the target.

11.5.3 Singly linked, sorted linear list

We define a singly linked, sorted list of INTEGER values as an encapsulated
data type. In interface 11.34 we define type T with the basic operations
Insert and Remove. Insert inserts an element into the list. In parameter
found, Remove returns false if and only ifthe list contains no element with
the specified value. Otherwise it removes the first occurrence of such an
element.

The procedure type Action has a parameter oftype INTEGER. Iterate in
vokes action for all elements sequentially and passes the stored value as
actual parameter. In Example 11.14 we first constructed the list of stu-

11.5. Dynamic structures 265

INTERFACE Intlist;

TYPE

(* 16.07.94. RM, LB*)

T <: REFANY;
Action = PROCEDURE(value: INTEGER);

PROCEDURE CreateO: T;
(*returns a new, empty list *)

PROCEDURE Insert(VAR list: T; value: INTEGER);
(*inserts new element in list and maintains order *)

PROCEDURE Remove(VAR list: T; value: INTEGER; VAR found: BOOLEAN);
(*deletes (first) element with value from sorted list,

or returns false in found if the element was not found *)

PROCEDURE Iterate(list: T; action: Action);
(*applies action to all elements (with key value as parameter) *)

END Intlist.

Example 11.34: Interface for sorted lists

dents and then output it. We could have defined another procedure in the
interface (Output). However, if we want to keep the interface ofthe list gen
eral, then such a procedure is too specialized (compare Chapter 10). It must
handle the concrete form of the output, which has nothing to do with the
list. Therefore we prefer to introduce the procedure Iterate, which takes a
processing procedure as parameter. This processing procedure (the action)
is then invoked by the list module for all list elements. The concrete form
ofthe output is left up to the clients. Additional auxiliary procedures, such
as Search, should also be considered.

It is up to the implementor of an encapsulated data type to determine
how to actually order the individual elements in the list, as long as Iterate
presents the elements in the correct order. It is usually simpler, however,
to consider the desired sequence when inserting. The advantage is that
this facilitates searching for an element. In particular, in the case of a
fruitless search, we do not need to iterate to the end ofthe whole structure,
but can terminate once we find a value that, with respect to the target,
would violate the sorting order. We still need to clarify what happens if
we encounter identical values in regard to our sorting order. Let us just
assume that in this case the later arrival is inserted later in the list.

The basic algorithm for construction and insertion consists of finding
the insertion position and inserting there. The graphical representation,
as in Figure 11.35, with elements in boxes and pointers as arrows to them,
proves an immense help in designing and understanding algorithms for
dynamic data structures.

266 11. Dynamic data structures

list

~preViOUS ~current

-3 key
r----=*"~

next I-----------i.' / 'I J-1------i9

~~J ±
~ new.next:= cunent

new

previous.next:= new

Figure 11.35: Insertion of the element "3" in a sorted list

In pseudocode (a sort of source code where we simply replace the miss
ing details with textual description) the algorithm could take the following
form:

(*Find insertion position:*)
auxPointer := head
WHILE auxPointer.key <= new.key DO

revise auxPointer to next
END

(*insert:*)
connect to predecessor of auxPointer

Before implementing it in Modula-3, we need to refine this algorithm.
For the sake of simplicity, we assumed the general case. In specific cases
we need to consider that the action "connect to predecessor" depends on
whether there is a predecessor; this is not the case in an empty list. There
fore we must either handle special cases or assure from the start for the
lifetime of the data structure that the list is never empty.

It is quite simple to assure that a list is never empty. Before the first
and after the last element, we insert marks that have unreal key val
ues (e.g., the names "aaaaaa" and "zzzzzz" for lexicographic sorting).
On insertion and removal, the marks do not disturb the algorithm. The
marks behave like "normal" elements that are never referenced. On
initializing the list, we must assure that we create the marks. How
ever, this complicates the test of whether the list is empty.

To remove a record we must again either add a test on empty or as
sure that the list can never be empty. The removal operation could take

11.5. Dynamic structures 267

previous.next:= current.next
list

~ previous ~current

key

next

-3 ~-~~ .. ··C-;-c4, f···· iC2l
Figure 11.36: Removing the element "4" from a sorted list

place by manipulating the predecessor of the element to be removed (see
Figure 11.36). Therefore with each search step we access not the element
itself, but its predecessor. We check its predecessor pointer (previous) to
determine whether the predecessor is the target value to be removed. An
alternative to this procedure would be to do a normal search, but to have
the delete pointer trail the search pointer by one element (as in Example
11.38).

The sorting criterion in Example 11.38 is the value of a key. The element
with the smallest key value is at the head of the list, the second-smallest
key value is the second, etc.

In our example list we can accommodate "any" number of INTEGER val
ues. In practice we usually store large records in a list, and these contain
one or more keys by which the list can be sorted.

A client (Example 11.37) can declare any number of instances of type
Intlist.T (Example 11.37 has only one instance, the variable list). It must be
created and initialized with Intlist.Create. The client of the sorted INTEGER
list can add any number of numbers to the list, display the entire list, and
remove individual elements. The client must handle outputting individual
elements. The procedure Output implements this function. It is passed as
a parameter to Iterate and then, through the list, can access every element.

Normally the invocation chain goes from client to the server. The
client that is higher in the module hierarchy invokes the services of
the server. We often call an invocation that goes from the server to the
client an upcall because its direction is opposite, i.e., "upward" in the
module hierarchy.

In the input control part of the program, elements to be inserted receive
preferential treatment. When we enter a number, it is inserted. All other
actions are bound to single-character commands. D displays the list; R n
removes the element with key value n.

268 11. Dynamic data structures

MODULE ListUser EXPORTS Main;

IMPORT Intlist;
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI, LookAhead, GetChar;

VAR
list: Intiist.T := Intlist.CreateO;
lines: CARDINAL := 0; ch: CHAR;

PROCEDURE Output(value: INTEGER) =
BEGIN

Putlnt(value);
lines:= (lines + 1) MOD 16;
IF lines = 0 THEN NIO END; (*after 16 values, start new line*)

END Output;

BEGIN
PutText("ListUser\n" &

"Enter a number to insert, R number to remove, D for display, Q to quit\n");
REPEAT

ch:= LookAheadO;
CASE ch OF

1'0' .. '9', '+', '-' => Intlist.insert(list, Getlnt());

(*ListUser*)

I 'R', 'r' => EVAL GetCharO; (*skip command character*)
VAR found: BOOLEAN;
BEGIN

Intlist.Remove(list, GetintO, found);
IF NOT found THEN PutText("False\n") END;

END;
I'D', 'd'=> EVAL GetCharO; (*skip command character *)

Intlist.lterate(list, Output);
lines:= 0; NIO; (*reinitialize line counter*)

ELSE
EVAL GetCharO;

END; (*CASE ch*l
UNTIL (ch = 'Q') OR (ch = 'q');

END ListUser.

(*skip everything else*)

Example 11.37: Client of the sorted list

A possible program execution (without greeting text) could take the fol
lowing form:

5 3 7 -4 12 0 1 DR 3 D
-4 0 1 3 5 7 12
-4 0 1 5 7 12

Example 11.38 shows the implementation. On insertion and removal,
we use the variables current and previous to iterate through the list so that
previous always points to the element before the current element. Thus

11.5. Dynamic structures 269

on both insertion and removal we can always carry out the corresponding
pointer operations. The implementation of Insert shows that when keys are
equal, the latecomer is inserted after those of the same value that came
earlier (the WHILE statement continues to search if key values are equal).

Exam Ie 11.38: 1m lementation 0 sorted lists
MODULE Intlist; (*16.07.94. RM, LB*)

REVEAL
T = BRANDED REF RECORD

key: INTEGER;
next: T := NIL;

END; (*T*)

PROCEDURE Insert(VAR list: T; value:INTEGER) =
VAR current, previous: T;

new: T := NEW(T, key:= value);
BEGIN

IF list = NIL THEN list:= new
ELSIF value < list.key THEN

new.next:= list; list:= new;
ELSE

current:= list; previous:= current;

(*reveal inner structure ofT*)

(*key value*)
(*pointer to next element*)

(*create new element*)

(*first element*)
(*insert at beginning*)

(*find position for insertion*)

WHILE (current # NIL) AND (current.key <= value) DO
previous:= current; current:= current.next; (*previous hobbles after*)

END; (*after the loop previous points to the insertion point*)
new.next:= current; (*current = NIL if insertion point is the end*)
previous.next:= new; (*insert new element*)

END; (*IF list = NIL*)
END Insert;

PROCEDURE Remove(VAR list: T; value:INTEGER; VAR found: BOOLEAN) =
VAR current, previous: T;
BEGIN

IF list = NIL THEN found:= FALSE
ELSE (*start search*)

current:= list; previous:= current;
WHILE (current # NIL) AND (current.key # value) DO

previous:= current; current:= current.next; (*previous hobbles after*)
END; (*holds: current = NIL or current.key = value, but not both*)
IF current = NIL THEN

found:= FALSE (*value not found*)
ELSE

found:= TRUE;
IF current = list THEN list:= current.next
ELSE previous.next:= current.next
END;

END; (*IF current = NIL*)
END; (*IF list = NIL*)

END Remove;

(*value found*)
(*element found at beginning*)

270

PROCEDURE CreateO: T =
BEGIN

RETURN NIL;
END Create;

PROCEDURE Iterate(list: T; action: Action) =
BEGIN

WHILE list # NIL DO
action(list.key); list:= list.next;

END;
END Iterate;

BEGIN
END Intlist.

11. Dynamic data structures

(*creation is trivial; empty list is NIL*)

(*Intlist *)

Chapter 12

Recursion

Did you ever stand between two mirrors? If the two mirrors are about
the same size and approximately parallel, you can see yourself from both
the front and the back. Even more, in the background of your back view
is the other mirror with the front view. And the front mirror reflects not
only your face but also the mirror behind you, which in turn reflects your
back as well as the reflection of your reflection in the front mirror, which
in turn reflects everything. Assuming that the mirrors are of good quality,
this creates the illusion of being in an infinitely deep hallway in which you
appear endlessly often and ever smaller until you fade into darkness. How
could we describe this more simply? You see an image that contains itself.
The distance between the two mirrors causes the image within the image
to continue to shrink. It also contains the edge of the mirror, which itself
does not reflect; therefore it was not actually reflected infinitely.

We also see this phenomenon in the self-portraits of several painters
who depicted themselves in the act of painting; however, in the painting
they were not painting just any subject, but the very picture that they
were painting at that time. Thus the painting must depict the painter and,
again, the picture itself. Naturally the included picture is also smaller
than the actual self-portrait, usually so much smaller that after three or
four such steps the contained self-portrait no longer reflects detail and so
degenerates to a line sketch, thereby terminating the recursion.

What do such physical phenomena and artistic frivolity have to do with
computer science? A great deal. Recursive procedures and functions -
which contain invocations of themselves - provide some of the most power
ful means part known for representing algorithms. They are just as pow
erful as the Turing machine described in the introduction (Section 1.1.3).

We have encountered a recursive definition already in Chapter 2. We
defined the natural numbers as follows:

NaturalNumber = Digit I Digit NaturalNumber .

272 12. Recursion

Here the left side ofthe definition is a component of the right side. Why
is this not a circular definition? We provided for the following:

• We had a nonrecursive exit .

• The part that contained the left side (the recursive alternative) also
contained another component (here Digit) that ensured that the natu
ral number on the left side would be longer than that on the right side.
(We can represent the number 56 as Digit NaturalNumber, whereby
Digit = 5 and NaturalNumber = Digit = 6.)

Both these conditions are necessary to ensure that a recursive defini
tion is well-founded. Every recursive definition must consist of at least two
components, (at least) one of them recursive and (at least) one nonrecur
sive.

1. In addition to its actually recursive part, the recursive alternative
contains another part that ensures that applying the definition pro
duces a residual recursive part of ever diminishing size, so that finally
a (or the) nonrecursive alternative applies.

2. The nonrecursive alternatives can be resolved directly (without fur
ther branching). Because they are often simple, we term this the triv
ial case.

It is difficult to prove that a substitution process converges to a nonre
cursive case. In the definition of a natural number the leading digit fulfilled
this condition.

In the following we show how to employ recursion to program elegant al
gorithms and powerful data structures. Note that this does not require any
new Modula-3language elements: the procedure concept suffices to formu
late recursive algorithms. The concept of references suffices for recursive
data structures, which in turn are best processed by recursive algorithms.

Many older programming languages such as Basic, Fortran and Cobol
do not support recursive programming. This encumbers problem solv
ing in some domains so much that writing certain software (e.g., for
program translation, pattern recognition and expert systems) prove
practically insurmountable in these languages. Other programming
languages, including Lisp and Prolog, feature recursion as a primary
structuring element. Modula-3 takes an intermediate position, offer
ing recursion alongside other structuring elements.

12.1. Recursive algorithms 273

12.1 Recursive algorithms

12.1.1 Fundamentals of recursive programming

Why, from a syntactic viewpoint, can we write recursive procedures at all?
The name of a procedure is visible within its block; therefore we can invoke
the procedure itself just as any other procedure. This opens quite some
possibilities.

To assure the correctness and termination of a recursive program, we
must abide by the rules presented above. Every recursive program contains
at least one nonrecursive alternative (possibly empty), and if the recursive
alternative is selected, we must assure that preceding (and possibly subse
quent) steps eventually lead us into the nonrecursive branch.

Thus recursive procedures are structured according to the following pat
tern:

PROCEDURE Rek (...) ... =

BEGIN

IF· .. THEN Rek (...) END;

END Rek;

A classic example of recursive algorithms is the definition offactorial:

n! = n(n - I)!
O! = 1

We can map this definition directly onto the procedure Factorial (Exam
ple 12.1).

Let us examine the invocation Factorial(4). First the condition n = 0
is false, so the procedure begins to compute the expression n * Factorial(n-
1); for our specific values this is 4 * Factorial(3). The expression contains
the function call Factorial(3); the function is thus invoked again, this time
with n = 3. The next invocation continues with Factorial(2), and so on until
the invocation Factorial(O). Now the function returns the value 1. This
means that evaluation of the expression 1 * Factorial(O) can be completed,
returning 1. This invocation stems from the evaluation of the expression
(2 * Factorial(1)), which yields 2 * 1, and so on until the first expression, 4 *
Factorial(3), returns 4 * 3 * 2 = 24.

However, we could also compute the factorial iteratively using the fol
lowing formula:

for n 21

for n = 0

274

PROCEDURE Factorial (n: CARDINAL): CARDINAL =

BEGIN
IF n = 0 THEN RETURN 1
ELSE RETURN n • Factorial(n-1)
END (*IF*)

END Factorial;

12. Recursion

(*trivial case *)
(*recursive branch *)

Example 12.1: Recursive computation of the factorial n!

The corresponding iterative program segment is:

VAR fact: CARDINAL := 1;
BEGIN

FOR i := 1 TO n DO fact := fact * i END;
END

Another example of a recursive definition or a recursive algorithm is the
computation ofthe nth power of x:

Here, too, we are more familiar with the corresponding iterative formula
tion:

xn = { 'IU x for n 2': 1

for n = 0

All these recursive algorithms might be elegant. Still, the correspond
ing iterative algorithms seem more familiar and thus simpler. What, then,
is the actual value of recursion?

Let us try to understand the procedure Reverse in Example 12.2. What
does Reverse really do? We maintain that it inverts a character string of
any length. A possible execution of the program could be:

Please enter a character string:
Blanks are characters, too!
loot ,sretcarahc era sknalB

How does this program succeed with only a single variable of the very
simple type CHAR? The secret is in the stack of the run-time system of
the language environment. AE we learned in the introduction of the pro
cedure concept, each procedure call requires storing the local variables,
the actual parameters and the return address for resuming execution after
the invocation. Naturally this also applies for the recursive invocation of

12.1. Recursive algorithms

MODULE TextReversal EXPORTS Main;

FROM SIO IMPORT GetChar, PutChar, PutText;

PROCEDURE ReverseO =
VAR ch : CHAR;
BEGIN

ch := GetCharO;
IF ch # '\n' THEN

ReverseO;
PutChar(ch)

END
END Reverse;

BEGIN
PutText("Please enter a character string:\n");
ReverseO;

END TextReversal .

Example 12.2: Text reversal

275

(* 18.07.94. RM; LB*)

(*TextReversal*)

a procedure as well. Thus after Reverse reads "B" and detects that it is
not the return character, we move into the THEN branch, where we rescue
all local information onto the stack before the next invocation of Reverse.
When this recursive invocation (and all the recursive calls stemming from
it) have been processed, control is returned (as after every procedure call)
to the invoking environment. The subsequent statement outputs the con
tents of the local variable ch, which has been rescued onto the stack for
each recursive invocation. The reversal of the word results because each
invoked Reverse procedure itself invoked Reverse recursively between the
read and output operations. The return character entered after the last
printable character neither invokes a new procedure call nor generates out
put. In fact, viewed statically, it does nothing at all! This represents the
trivial case and ensures a nonrecursive invocation of Reverse. This breaks
the recursion chain, and the procedure call of Reverse that accepted the
last character before the return character (here the character "!") can print
its local variable ch and then pass control to its invoking environment.

Fibonacci numbers

Every recursive solution has an equivalent iterative solution. In many
cases, however, the recursive solution is easier to formulate and its cor
rectness is easier to check. On the other hand, the iterative solution often
enjoys the advantage of greater efficiency, both in terms of the time asso
ciated with the administrative overhead of a procedure call and because,
as the following example will show, indiscriminate application of recursion
can lead to unnecessary recomputation of already available results.

276 12. Recursion

t~ofs~~_~~
dl:

dl:

dl: B
--~--.--'-------'-

Figure 12.3: Invocation stack of Reverse after entry of "Blank"

An example of a problem that can be solved quite easily, yet quite ineffi
ciently with a recursive approach is the computation of Fibonacci numbers.
Fibonacci numbers were introduced by the monk and mathematician Fi
bonacci in 13th century to describe biological processes (e.g., the reproduc
tion of rabbits). Fibonacci numbers are defined with a recursive formula:

fib(n) = fib(n - 1) + fib(n - 2) where fib(O) = 1, fib(l) = 1.

This formula shows that the recursion extends over two steps. The next
respective Fibonacci number is the sum of its two immediate Fibonacci
predecessors. (The biological assumption is that females oftwo generations
are fertile). Thus we need two initial values or nonrecursive definitions for
the trivial cases: fib(O) = 1 (we begin with one pair) and fib(l) = 1 (the
initial pair gave birth to another pair in period 1; in period 2 - fib(2) - both
pairs can bear young.)

A recursive solution for the computation of Fibonacci numbers is quite
simple. We only need to transform the mathematical definition to Modula-3
syntax to obtain the solution given in procedure Fibonacci (Example 12.4).
But consider the execution sequence of this procedure for a call with the
parameter 5. Fibonacci(5} invokes Fibonacci(4} and Fibonacci(3}. Then
Fibonacci(4} invokes Fibonacci(3} and Fibonacci(2}. This makes the sec
ond invocation of Fibonacci(3}. Since each of these evaluations invokes Fi
bonacci(2} and Fibonacci(1}, Fibonacci(2} is invoked three times in all. The
execution tree of Fibonacci(5} is depicted in Figure 12.5.

These recomputations of values that have already been computed else
where do not constitute a general characteristic of recursive programming;
instead, they result from the functional style employed here. However, this
style is closely related to recursive programming.

12.1. Recursive algorithms 277

PROCEDURE Fibonacci(n : CARDINAL) : CARDINAL =
BEGIN

IF n <= 1 THEN RETURN 1
(*Fibonacci *)

(*n = 0 or n = 1*)
ELSE RETURN Fibonacci(n-1) + Fibonacci(n-2)
END (*IF *)

END Fibonacci;

Example 12.4: Procedure to compute Fibonacci numbers

fib (5)

~ ~
/ fib (4~ /fib (3) ~

fib (3) fib (2) fib (2) fib (1)

/ ~ / ~ / ~
fib (2) fib (1) fib(1) fib (0) fib (1) fib (0)

/~
fib (1) fib (0)

Figure 12.5: The recursion tree generated by Fibonacci(5)

The reader should attempt to design and program an iterative solution
to compute Fibonacci numbers and then compare this to the recursive
solution. The iterative solution is likewise simple and consists primar
ily of a FOR loop in which we add the last two values generated. We
have to be much more careful than with the recursive solution to en
sure that in computing fib(n) we replace the value of fib(n-2), but not
offib(n-l).

It would certainly be a mistake to conclude from this example that a re
cursive solution is fundamentally inefficient, memory-consuming and slow.
In many cases, unlike in this example, its efficiency differs little from the
iterative solution, and any loss of efficiency is more than compensated for
by greater comprehensibility of program correctness and the reduced writ
ing overhead. Thus we should always consider whether the first solution
that comes to mind - be it recursive or nonrecursive - is the appropriate so
lution for the specific task, for the data volume to be processed, and for the
frequency of execution of the program. If we consider the overall costs of a
program over its life cycle, including the cost of possible errors, then we are
more likely to choose a recursive over a nonrecursive solution than if we
simply count how many procedure calls are associated with the recursive
solution.

278 12. Recursion

End recursion

Since recursion represents a popular means for problem-solving especially
in the field of artificial intelligence (AI), the AI community has studied the
question of efficiency of recursive solutions and found forms that can be
programmed recursively - such as in Lisp [M+62j - but that are automat
ically transformed to an iterative solution. This is easily possible with tail
recurswn.

PROCEDURE TailRecursion (n: ... , ...) : ... =
BEGIN

IF trivialCase THEN· ..
ELSE

RETURN TaiIRecursion(n-1, ...)
END (*IF*)

END TailRecursion;

By tail recursion we mean a form of recursion where no other action is
necessary (except returning control to the invoking environment) after the
recursive invocation, and the last recursive invocation returns the desired
result. Our function Factorial in Example 12.1 belongs to this group.

12.1.2 Using recursion

We can employ recursion as an implementation method whenever the prob
lem is recursive in nature. There are two possibilities:

1. Not only does the algorithm apply to the problem as a whole, but
also the problem can be decomposed and the algorithm again can be
applied to these smaller parts. The Fibonacci numbers serve as such
an example (all mathematical sequences and series can principally
be computed in this way). The same applies to sorting problems: If
we can sort a large array, then naturally we must be able to sort two
smaller ones. Thus if we can split the array such that the one half
contains all the smaller elements (as yet unsorted) while the other
half contains the larger ones, then we can apply the sorting algorithm
recursively to each half (see Section 12.1.3).

2. Data structures are defined recursively. Consider lists (Section 11.5.1).
A list consists of a node and a pointer to a successor, which in turn
represents a list. If an algorithm works for the list as a whole, then it
must also work for the list represented by the successor (see Section
12.1.5).

12.1. Recursive algorithms 279

Another important example is a syntax parser, which is a program
to process input that has complex syntax. Every compiler requires a
parser. Since the syntax is usually defined recursively, a recursively
structured parser is easier to build. Consider the expression syntax:
an addition has two operands, each of which is itself an expression.

To design or to understand a recursive algorithm, as with proofs, you
can find help in complete induction [Tru88]:

1. Find the recursive case. Here we assume that the problem is of ar
bitrary size. We attempt to separate one part such that the decom
position produces one or more subproblems whose basic structure is
equivalent to the original problem description, but which have a nar
rower scope, or a lesser order (e.g., rr?=l i = m?~l i)i).

2. Define the end condition. That is, find the special case that can be
solved immediately without recursion (e.g., rr;=l i = 1).

3. Test the convergence of the solution. Here we must first test whether
the recursion we located in the first step actually reduces the magni
tude ofthe problem. In addition, we must test whether this reduction
ensures that we always reach the nonrecursive case, as found in the
second step.

The reader should now attempt to use this approach to find the error in
the following procedure, which claims for a given n to compute the sum of
all odd numbers 5:n:

Example 12.6: Erroneous recursive procedure

PROCEDURE FauxPas(n: CARDINAL): CARDINAL =
BEGIN

IF n = 1 THEN RETURN 1
ELSE RETURN n + FauxPas(n-2)
END

END FauxPas;

Unfortunately, this approach does not always help with recursive data
structures. Sometimes we need multiple indirect recursion; here proce
dures do not invoke themselves, but are invoked by an invoked procedure.
The syntax parser for an arithmetic expression does not invoke itself, but
is invoked for each operand of the expression. We can only understand
such invocation structures if we have understood the recursion in the data
structure. Then for each procedure involved we must determine indepen
dently that it has a nonrecursive part or invokes another procedure that
has a nonrecursive part.

280 12. Recursion

Error detection

To help us gain an initial understanding of a simple recursive procedure,
we can carry out a manual simulation. This helps us to understand what
occurs in the computer (how the invocation stack is built up and reduced,
etc.). However, this approach exceeds our capacities as soon as the proce
dure becomes a bit more complex. Thus we must concentrate on under
standing whether and how the recursion converges.

How can we find an error in a procedure that seems to be correct to the
best of our knowledge, but that runs infinitely (or terminates with some
incomprehensible error message, such as when the system reports that all
memory has been consumed)?

To determine exactly what the procedure does, it helps to insert test
output commands at critical locations. Such critical points certainly in
clude the start of the procedure and before each recursive invocation. In
particular, we need to cover each recursive and nonrecursive branches of
the procedure. Stopping the program at each such point (e.g., with EVAL
SIO.GetChar) allows us to follow the invocations exactly. The following out
put data usually prove helpful:

• The parameter values on each invocation

• The values that determine which branch the procedure selects

• Possibly the level of recursion

To reflect the level of recursion, we need an additional parameter (e.g.,
level: CARDINAL). Each recursive invocation then increments this param
eter (level + 1).

In any case, of course, we must ensure that, after localizing the error,
we remove not only the test output but also the recursion level parameter.
(Otherwise someone reading our procedure or its environment could waste
valuable time puzzling over the function of this left-over test code.) Even
better, the languages environment might provide automatic support for in
serting test expressions in our program and later removing or deactivating
them.

We have addressed methods for error localization only sketchily. The
ideas by no means apply only to recursive algorithms, but here it is often
particularly difficult to follow program flow. Many language environments
provide debuggers (derived from the term bug for a program error). These
allow stepwise execution of programs and interactive display of program
states. For many programmers, debuggers have earned a reputation for
delaying error localization because they tend to be employed before an er
roneous program has been thought through exactly. Sommerville provides
insight into methodical error localization in [Som92].

12.1. Recursive algorithms 281

12.1.3 Quicksort

In Section 8.1, Example 8.13, we saw a simple sorting procedure with the
drawback that the algorithm's overhead rises quadratically with an in
creasing number of elements. The analysis of the efficiency of algorithms
is a very important subject with a multitude of available literature, e.g.,
[Knu81, Sed93, Wir76], but we do not discuss efficiency here. We only show
one of the most famous sorting procedures, developed by C. A. R. Hoare.
Because of its excellent speed (in most cases), it is called Quicksort.

The Quicksort algorithm is a classic example of recursion. It builds on
the divide-and-conquer principle. The basic idea is that we decompose a
problem recursively into subproblems until it becomes trivial. The Quick
sort algorithm divides an array to be sorted into two parts, whereby all
elements of one part are smaller than those of the other. These parts are
themselves decomposed until the magnitude of the problem, here the size
of the array to be sorted, becomes so small that sorting becomes trivial.
The algorithm is described as follows:

1. Take any element x, e.g., the element in the middle.

2. Approach the middle from both sides. If you find an element on the
left that is greater and on the right one that is smaller than x, then
swap the two. This assures that we move both elements closer to their
final positions.

3. Repeat the above step until you reach the middle.

4. Apply the above algorithm recursively to the left and right halves of
the array until the array becomes trivial.

In the first three steps the array is partitioned. Afterwards it consists of
two parts: the left part contains all elements that are smaller than x, the
right side all those larger. Example 12.7 shows an implementation.

The excellent performance ofthe algorithm stems from the partitioning
phase, where elements often "leap" across larger distances, directly putting
them close to their final positions. Consider the following sequence:

10 25 13 85 3 -2 4 7 77 1

First the element a[4], i.e. 3, is selected. The first partitioning swaps the
following pairs: (10, 1) (25, -2) and (13, 3). In the new order all elements to
the left of 3 are smaller, those to the right of three are larger than 3: 1 -2 3
85 13254 7 77 10. The array is not sorted yet. We need to apply partitioning
to all subarrays. For sub arrays of size 2, naturally, partitioning produces
complete sorting of the sub array. The number of iterations through the

282 12. Recursion

PROCEDURE Quicksort(VAR a: ARRAY OF ElemType; left, right: CARDINAL) =
VAR i, j: INTEGER; x, w: ElemType;
BEGIN

(*Partitioning:*)
i:= left;
j:= right;
x:= a[(left + right) DIV 2);
REPEAT

WHILE ali) < x DO INC(i) END;
WHILE aU) > x DO DECO) END;
IF i <=jTHEN

w:= ali); a[i):= aU); aU):= w;
INC(i); DECO);

END; (*IFi <=j*)
UNTIL i > j;

(*recursiue application of partitioning to subarrays:*)
IF left < j THEN Quicksort(a, left, j) END;
IF i < right THEN Quicksort(a, i, right) END;

END Quicksort;

(*i iterates upwards from left*)
(*j iterates down from right*)

(*x is the middle element*)

(*skip elements < x in left part*)
(*skip elements> x in right part*)

(*swap am and a[j]*)

Example 12.7: Quicksort

array rises logarithmically rather than quadratically with respect to array
size. A more precise analysis can be found in the literature cited above.

We would add one programming note on Example 12.7: The procedure
is parameterized with an open array, so that it can be employed without
changes for an array of any size. Therefore on the first invocation of Quick
sort we specifY the actual values for left and right as follows:

Quicksort(array, 0, NUMBER(array)-1)

Using FIRST and LAST here would be wrong because the formal param
eter a is an open array that is always indexed from o. The index boundaries
of array are thus lost within the procedure.

12.1.4 The Towers of Hanoi

The game Towers of Hanoi provides an interesting exercise. We have three
"towers", i.e., three posts: Start, Finish and Temp. The Start post holds a
number of disks of different sizes, sorted by size with the largest at the
bottom. The task is to transfer the disks to Finish so that they are stacked
there in the same order. We can move only one disk at a time, and no disk
can ever be placed on a smaller one. The post Temp serves as temporary
storage. We have no other help. The initial situation with four disks looks
like this:

12.1. Recursive algorithms

Start Finish Temp

I
I
I
I
I

283

This task seems to be a clear case for recursion. We want to decompose
the problem until it reduces to moving a single disk (divide-and-conquer).
Our first goal is to transfer all except the bottom disk onto the temporary
post, making use of the Finish post and preserving the order so that no disk
ever rests on a smaller one. Then we can transfer the largest disk to Finish.
This reduces the problem by one disk. Then Temp and Finish swap roles,
and we can repeat the procedure for the next largest disk. The strategy of
the solution for n disks looks like this:

• n = 0: Do nothing - trivial case .

• n > 0:

1. Transfer tower of size n-1 from Start to Temp (by means of Finish).

2. Move disk from Start to Finish - its correct position

3. Transfer tower of size n-1 from Temp to Finish (by means of Start).

The program is shown in Example 12.8. The actual solution rests in the
simple recursive procedure Tower. Everything else, the cumbersome data
structures and the long procedures, only serve to display the problem on
screen.

This is another example showing that the "peripherals" often cost more
overhead than the actual solution to a problem. Naturally, we could
have settled for a much simpler solution - such as outputting a number
with each step. However, this would have unchallenging, and certainly
boring.

284

Example 12.8: The Towers of Hanoi

MODULE Hanoi EXPORTS Main;

FROM SIO IMPORT PutChar, GetChar, NI;

CONST
Height = 4;

TYPE
Post = {Start, Finish, Temp};
State = RECORD

VAR

top: [O .. Height] := 0;
disks:= ARRAY [1 .. Height] OF [O .. Height] {O, .. }

END; (*State*)

posts: ARRAY Post OF State;

PROCEDURE Line(num: CARDINAL; pattern: CHAR := ' ') =
BEGIN

WHILE num > 0 DO PutChar(pattern); DEC(num) END;
END Line;

PROCEDURE Disk(d: [O .. Height]) =
BEGIN

IF d = 0 THEN
Line(Height); Line(1, 'I'); Line(Height);

ELSE
Line(Height-d); Line(3 + 2*(d-1), '='); Line(Height-d);

END;
END Disk;

PROCEDURE DisplayO =
BEGIN

FOR p:= FIRST(posts) TO LAST(posts) DO Disk(O) END; NIO;
FOR line:= Height TO 1 BY -1 DO

FOR p:= FIRST(posts) TO LAST(posts) DO
Disk(posts[p].disks[line]);

END;
NIO;

END;
NIO; EVAL GetCharO;

END Display;

PROCEDURE Transfer(from, to: Post) =
BEGIN

WITH f = posts[from], t = posts[to] DO
INC(l.top);
t.disks[l.top]:= f.disks[f.top];
f.disks[f.top]:= 0;
DEC(f.top);

END; (*WITH f, t*)
END Transfer;

12. Recursion

(* 18.07.94*)

(*empty disk*)

(*draw disk pattern *)

12.1. Recursive algorithms

PROCEDURE Tower(height:[O .. Heightj ; from, to, between: Post) =
BEGIN

IF height> 0 THEN
Tower(height - 1, from, between, to);
Transfer{from, to); Display();
Tower(height - 1, between, to, from);

END;
END Tower;

285

BEGIN (*main programm Hanoi*)
posts[Post.Startj.top:= Height;
FOR h:= 1 TO Height DO

posts[Post.Startj.disks[hj:= Height - (h - 1)
END;
Display();
Tower(Height, Post.Start, Post.Finish, Post.Temp);

END Hanoi.

The program halts after each step (by means of EVAL GetCharO). We
resume execution by pressing the return key. Mter the first iteration we
have the following output:

The following is the last output:

12.1.5 Recursive list management

In Section 11 we saw that lists are fundamentally recursive. Each list
consists of a first element and a rest, which is itself a (smaller) list. Nev
ertheless, we handled our first list management iteratively. However, we
might expect that lists with recursive procedures are easier to process. Let
us transform the procedures of the iterative solution (Example 11.38 on
page 269). Naturally we maintain the same interface and clients, changing
only the implementation.

First we must find the nonrecursive cases. All procedures share a col
lective trivial case, the empty list. In addition, we have the case where

286

MODULE RecList;

REVEAL
T = BRANDED REF RECORD

key: INTEGER;
next: T := NIL;

END; (*T*)

PROCEDURE CreateO: T =
BEGIN

RETURN NIL;
END Create;

PROCEDURE Insert(VAR list: T; value:INTEGER) =
VAR new: T;
BEGIN

IF list = NIL THEN list:= NEW(T, key := value)
ELSIF value < list.key THEN

new := NEW(T, key := value);
new. next := list;
list:= new;

ELSE
Insert(list.next, value);

END; (*IF list = NIL*)
END Insert;

12. Recursion

(*16.07.94. RM, LB*)

(*Inner structure ofT reuealed*)

(*keyword*)
(*pointer to next element*)

(*new node*)

(*seek position for insertion *)

PROCEDURE Remove(VAR Iist:T; value:INTEGER; VAR found:BOOLEAN) =
BEGIN

IF list = NIL THEN (*empty list*)
found := FALSE

ELSIF value = list.key THEN
found := TRUE;
list := list.next

ELSE
Remove(list.next, value, found);

END;
END Remove;

PROCEDURE Iterate(list:T; action:Action) =
BEGIN

IF list # NIL THEN
action(list.key); Iterate(list.next, action);

END;
END Iterate;

BEGIN
END RecList.

Example 12.9: Sorted list with recursive procedures

(*RecList*)

12.2. Recursive data structures 287

we locate the position for insertion or the element to be deleted. Then we
have nothing more to do than to reduce the list until it becomes a trivial
case. We achieve this by recursively invoking the procedure with the actual
parameter values list.next. This results in the (actually stunningly simple)
solutions in Example 12.9. The entire iterative parts of the procedures
in Example 11.38 have been reduced to single recursive invocations. Note
that list is a variable parameter. On first invocation, the variable containing
the pointer to the head of the list is passed to it. On the following recursive
invocations, the next field of the previous element is passed, pointing to the
next element in the list. Thus from the viewpoint of the procedure, the list
grows smaller by one element with each step, and insertion and deletion
always occur at the head of the current list.

The transformation from Iterate to a recursive function is easy - but the
iterative form might be even simpler.

12.2 Recursive data structures

Lists already provide one example of processing recursive data structures
with recursive procedures. In this section we delve deeper into the appli
cation of the recursion principle to data structures. The prototype of such
recursive data structures is the tree.

12.2.1 Trees

Linear lists are dynamic: within the physical limitations of our computer's
memory, we can form chains of any length, linking any number of infor
mation nodes. This is the list's greatest advantage over the array. At the
same time, this is its drawback: What if a list really does contain tens of
thousands, or even hundreds of thousands of elements (absolutely realis
tic numbers in practice)? Then sequential iteration through a linear list
can take unacceptably long. Thus we need other dynamic structures that,
although they might be more complex, can be searched more quickly and
better serve large amounts of data.

The basic idea is that we must multiply link the information nodes
somehow; we are not satisfied with the simple relations predecessor and
successor, but need something more. Ifwe connect the nodes freely with one
another (we call the links edges, then we have a general graph, which plays
an important role both in mathematics and in computer science
[Tru88, Sed931. Because increased freedom has its price, we begin with
some restrictions. One important subclass of graphs is trees. A tree is a
graph in which every node except for the root has exactly one predecessor
(parent). The root has no predecessor. Each node can have any number of

288 12. Recursion

Root

c c
Figure 12.10: A general tree as an acyclic graph

Book

----~-~~
Introduction Chapter 1 Chapter 2 Chapter n Summary Index

/\~
Section 1.1 Section 1.2 Section 1.3

/I~
1.2.1 1.2.2 1.2.3 1.2.4

Figure 12.11: Structure of a book

successors (children). A tree is always acyclic; i.e., it contains no links that
contain the same node repeatedly (no topological cycles).

The most frequent representation of trees is depicted in Figure 12.10.
This treelike representation also reveals the origin of the name tree. This
similarity is based on the fact that the branching structure of a natural
tree - apart from seldom exceptions usually induced by external influences
- is also acyclic.

Note that in Figure 12.10 the root is at the top. Mathematicians and
computer scientists apparently share a tendency to turn matters on
their heads.

In programs, we implement trees using pointers. Pointers reference one
node from another, which makes trees directed graphs; every edge has one
direction. Furthermore, we have one unambiguous entry point into a data
structure consisting of such pointers: the pointer that we statically declare
in the program that employs this data structure. Continuing our botanical
metaphor, we call this entry point the root, while nodes without a successor
are called leaves. (The analogy has its problems, but since nature cannot
defend itself against such analogies, we adhere to this terminology. We
trust that the tree spirits will forgive us.)

12.2. Recursive data structures 289

Peter & Maria

//
i

'~'~~"
Carl & Anna John William & Lisa

Frank Joseph Fred Paul

Figure 12.12: A family tree

Now let us consider how we could design such a tree. Obviously each
node must contain information to allow us to reach its successors. Further
more, a node should contain some kind of signpost information that tells
us when we have reached our goal and when we must visit another imme
diate successor node. This suggests implementing a node as a record and
entering the edges as fields oftype REF RECORD··· in this record.

This definition defines any node. Thus in principle it applies for the
root, for an inner node and for leaves. The only difference is that the root
lacks a predecessor and the leaves have no successors, while inner nodes
have exactly one predecessor and at least one successor. The structure of a
book serves as one example ofa tree (Figure 12.11).

Family trees

Consider the family tree beginning with Peter and Maria in Figure 12.12.
Family trees have strongly influenced the terminology of trees as data
structures. Hence we call the node "Peter & Maria" the parent of "John",
while "John" and "William & Lisa" are children of "Peter & Maria". This
sounds less curious if we express it more precisely: The node designated as
"John" is the child node of the node designated as "Peter & Maria". Fur
thermore, "John" and "William & Lisa" are sibling nodes.

Note that, because the graph is acyclic, each node's parent is determined
unambiguously. On the other hand, a given parent node generally has
multiple children. Clearly, each child node represents the root of an entire
subtree. Thus the recursive definition really is justified. Note also that in
our trees we forbid incestuous relations, thereby precluding violations of
the acyclic condition of the tree structure.

Paths

A path in a graph is a sequence of edges starting at one node and leading
to some end node. Accordingly the path length is the number of edges on a

290 12. Recursion

~
I I Root

Height = 4 Left child

Leaf Leaf Leaf Leaf

Figure 12.13: A binary tree

path, which corresponds to the number of successor nodes along the path
from the first node. The number of nodes on the longest path starting at
the root is the height of the tree. The height of an empty tree is 0; the
height of a tree consisting of only a root is 1.

12.2.2 Binary trees and search trees

A binary tree, the simplest form of tree (Figure 12.13), has at most two
successors for each node. We can best implement such a binary tree using
records whose successors left and right point to the respective left and right
subtrees. However, let us approach this solution gradually.

Search methods and implicit trees

Assume that we have a sequence of records stored in an array of fixed
length. These records describe articles that we have in stock, where each
article is uniquely identified by an article number. The articles are stored
in the array in ascending order of article number. However, since these
article numbers were assigned according to some ingenious system, article
1374 need not by any means be at position 1374. (Indeed, we do not even
have that many articles.) We can only be assured that all articles with
smaller article numbers fall before article 1374 and all with larger article
numbers fall afterward. How can we search quickly and efficiently?

Certainly, searching the array from the first position to the correct one
is not ideal. In the case of a nonexistent article, our search would always
stop at the last position. Indeed, we do not read the telephone book from
front to back to find the entry for "Zorro". We open the book somewhere
close to where we expect to find the name and then move stepwise forward
or back, usually in decreasing increments, until we find the correct page.

12.2. Recursive data structures 291

o 2 3 4 5 6 7 8 9 10 11

Figure 12.14: Binary search in an array

We can formalize this procedure in the following algorithm (in pseu
docode):

WHILE search element not found DO
divide and test partition element
IF search element = partition element THEN

found
ELSIF search element < partition elementTHEN

search before partition element
ELSE (*search element> partition element*)

search after partition element
END (*IF search element = partition element*)

END (*WHILE*)

This leaves the following questions to be answered:

• Do we want to formulate the algorithm iteratively or recursively?

• Do we have information that can help us decide where to partition?

For the sake of simplicity, let us answer the first question in favor of a
recursive solution. We must answer the second question in the negative; in
such a case we can demonstrate that halving the search field proves best.
Thus we select the element in the middle of the field still to be searched
as our partition element. Let us try this using the data in Figure 12.14
by searching for some values. The program in Example 12.15 employs this
principle.

In Example 12.15, we do not use an array of nodes that contain key
values as well as other data fields, such as:

TYPE Node = RECORD key: INTEGER; data·· ·END

Instead, we declare an array of integers. However, such an integer can
serve as a key for a record of any complexity, serving as the criterion
for sorting and searching.

The procedure Search returns the index value of the element found.
If the element is not found, it returns a value (Maxlnd) outside the index
range ([O .. Maxlnd - 1]).

292 12. Recursion

PROCEDURE Search(READONLY arr: ARRAY [0 .. Maxlnd -1] OF INTEGER;
left, right: [0 .. Maxlnd - 1];
argument: INTEGER): [O .. Maxlnd] =

VAR middle := left + (right - left) DIV 2;
BEGIN

IF argument = arr[middle] THEN RETURN middle
ELSIF argument < arr[middle] THEN

IF left < middle
THEN RETURN Search(arr, left, middle - 1, argument)

(*binary search *)
(*found*)

(*search in left half*)

ELSE RETURN Maxlnd (*left boundary reaches middle: not found*)
END (*IF left < middle*)

ELSE
IF middle < right

THEN RETURN Search(arr, middle + 1, right, argument)

(*search in right half*)

ELSE RETURN Maxlnd (*middle reaches right boundary: not found*)
END (*IF middle < right*)

END (*IF argument = arr{middle]*)
END Search;

Example 12.15: Binary search

First we check at index 5; from there, depending on the target value, we
move on left or right, thereby reaching index position 2 or 8. From there
we continue our search according to the procedure. Thus the recursive al
gorithm always follows a prescribed path through our data structure. Each
element is viewed as a watershed: its value determines whether we con
tinue searching right or left.

We could elevate this observation to a principle. For the search algo
rithm we obtain the structure in Figure 12.16. Obviously we see a tree
evolving. The indices in Figure 12.16 have lost importance. We could re
place them with pointers by storing with the key a corresponding pointer
to the respective left and right successors. This tree indicates that we need
at most four search steps (the height of the tree) to find any element (or
establish its non-existence).

12.2.3 Binary search trees

We define a binary search tree (or ordered binary tree, Figure 12.17) as
a binary tree where for each of its nodes all elements in the left subtree
are smaller than the node itself, and all elements in the right subtree are
greater than or equal to the node itself:

For all nodes of the tree we require that:
- all keys in the left subtree < key in node 1\

- all keys in the right 2: key in node

12.2. Recursive data structures 293

47 8

/"'" 30

\
32 6 61 10

\ / \
35 7 55 g 7211

Figure 12.16: Search path depicted as a tree

50

/~
20 70

/"'" /"'" 10 35 60 90

/\ \
5 15 40

Figure 12.17: A binary search tree

By this definition any duplicates are inserted in the right subtree. Note
that we achieve an equivalent definition if we insert duplicates in the left
subtree, i.e., if we change the < sign in the first line of the definition to :s:
and the 2': sign in the second line to >.

During our search for a value in the tree, if we have opted for the left
subtree, then we can be assured that all values in the right subtree are
too large. This definition ensures that we can find the target value (or
determine that it is not present) in relatively few steps - for n nodes ap
proximately log2 n steps.

Implementation forms

Now how can we implement search trees? Although arrays present one pos
sibility, let us turn to the classical implementation of binary search trees.
As in Example 12.18, this form uses references. Since we need no external
access to any element except the root, it suffices to statically declare a sin
gle variable of type Tree in the program. The rest of the tree is a dynamic
data structure like those we encountered with lists; the only difference is

294 12. Recursion

that the tree structure spreads out in two dimensions, making the data
structure somewhat more complex.

Example 12.18: Search tree as dynamic data structure

TYPE
Tree = REF RECORD

info: INTEGER;
left, right: Tree;

END; (*Tree*)
VAR myTree: Tree;

Here the field info represents any information that contains some key
value, or, more precisely, a key function. In Section 13.4.4 we will see
means of representation that allow us to actually store complex informa
tion in a search tree.

12.2.4 Traversing a tree

Instead of individual elements, sometimes we need to process a tree as a
whole, e.g., to output all elements on screen. For this purpose we obviously
must begin at the root. From there we can process the left and right sub
trees. However, we can choose the order in which to process the tree: We
can process the data stored in the root before we visit the subtrees, between
our visits to the left and right subtrees, or after visiting both subtrees. In
each subtree we do recursively the same as in the root. Another decision is
whether to first traverse left or right (or alternately left and right, but we
omit this case). This makes a total of three basic strategies for tree traver
sal with two variants for each. We select the appropriate strategy to suit
our problem domain.

The three traversal strategies (in the following pseudocode we use the
names of the strategies as the names for the recursive traversal proce
dures) are:

• Preorder: Visit root first

visit root; visit root;
Preorder(leftSubtree); Preorder(rightSubtree);
Preorder(rightSubtree); Preorder(leftSubtree);

• Inorder: Visit root between subtrees

Inorder(leftSubtree) ;
visit root;
Inorder(rightSubtree);

Inorder(rightSubtree);
visit root;
I norder(leftSubtree);

12.2. Recursive data structures

Figure 12.19: The tree of an arithmetic expression

• Postorder: Visit root last

Postorder(leftSubtree); Postorder(rightSubtree);
Postorder(rightSubtree); Postorder(leftSubtree);
visit root; visit root;

295

If we traverse the search tree in Figure 12.17 (left first), we obtain the
following order of visitation:

Preorder: 50, 20, 10, 5, 15, 35, 40, 70, 60, 90.
Inorder: 5, 10, 15, 20, 35, 40, 50, 60, 70, 90.
Postorder: 5, 15, 10, 40, 35, 20, 60, 90, 70, 50.

One obvious application of inorder emerges: outputting the entire search
tree as a sorted sequence.

For searching, we most often use the preorder strategy: Is the target
element in the root? Ifnot, continue searching to the left or right. Preorder
and postorder strategies become more comprehensible if we consider the
tree that emanates from the operators and numbers of an arithmetic ex
pression (Figure 12.19). In this type oftree the leaves are always numeric
values and the other nodes are always operators. Output in inorder 2 + 5 *
3 does not specifY whether to compute (2 + 5) * 3 or 2 + (5 * 3).

Preorder output (+ 2 * 5 3) contains this information. It corresponds to
functional notation. Ifwe had the functions Plus and Times, we could write
Plus(2, Times(5, 3)), the function names leading, the operators trailing as
parameters.

Output in postorder corresponds to RPN (reverse Polish notation), as
employed by some calculators: 253 * +. This processing strategy accom
modates how a computer works. First we need all the parameters of an op
eration. When an operator is processed, the parameters are simply taken
from the stack. In this case, we would stack 2, 5 and 3. Then the * sign in
dicates multiplication of the top two elements on the stack and pushing the
result onto the stack. The + sign functions similarly, giving us the result
17 on the stack.

296

INTERFACE Bin Tree;

TYPE
Direction = {Left, Right};
Order = {Pre, In, Post};
Action = PROCEDURE (e: ElemT; depth: INTEGER);

T <: REFANY;
ElemT = INTEGER;

PROCEDURE CreateO: T;
(*Initializes new instance oftree*)

PROCEDURE Search(tree: T; e: ElemT): BOOLEAN;

12. Recursion

(*05.07.94. CW; LB*)

(*traversal direction *)
(*traversal strategy*)

(*hidden tree type*)
(*element type*)

("'searches for an element e in tree. Returns true if present, else false*)

PROCEDURE Insert(VAR tree: T; e: ElemT);
(*Inserts e in tree*)

PROCEDURE Delete(VAR tree: T; e: ElemT): BOOLEAN;
(*Deletes an element e in tree. Returns true ifpresent, else false*)

PROCEDURE Traverse(tree: T;

END BinTree.

action: Action;
order := Order. In;
direction := Direction.Right);

(*Traverses tree*)
(*Applies Action to each node*)

(*default*)

Example 12.20: Interface of the binary search tree

12.2.5 Implementation of the binary search tree

In this section we implement a binary search tree as encapsulated data
type (see the INTERFACE in Example 12.20). The procedure Traverse is
somewhat unconventional: Parameters make it possible to select the strat
egy and the traversal direction. These parameters have default values.
Traverse expects a procedure parameter of type Action. Then on traversal
action is invoked for each node. The client of the interface can thus carry
out various actions, e.g., printing the nodes (hence the whole tree).

Many actions require knowing the level of the current node. The level
of the root is 0, of its children 1. The maximum level in a tree is termed its
height or depth; the level of a node corresponds to the path length from the
root to that node; compare Section 12.2.1.

The client in Example 12.21 reads the keys of a tree from a file and
stores the result in a file (see Section 14 and Appendix C.3.3). The client's
output of the tree is largely formatted: the root is at the far left, the levels
are represented as tabs, the right subtree is at the top, and the left sub
tree is at the bottom. (If we turn the printout by 90 degrees, we have the
usual graph representation.) The default values of the procedure Traverse
(inorder, right to left) support this simple output. The output of the tree in

12.2. Recursive data structures

MODULE BinUser EXPORTS Main;

IMPORT SIO, SF, Bin Tree;

VAR
in: SIO.Reader := SF.OpenRead("dat");
out: SIO.writer := SF.OpenWriteO;
tree: BinTree.T := BinTree.CreateO;

PROCEDURE Print(x: BinTree.ElemT; depth: INTEGER) =
BEGIN

FOR i:= 0 TO depth - 1 DO SIO.PutText(" ", out) END;
SIO.Putlnt(x, 3, out); SIO.NI(out);

END Print;

BEGIN
WHILE NOT SIO.End(in) DO

BinTree.lnsert(tree, SIO.Getlnt(in));
END;
BinTree.Traverse(tree, Print);
SIO.PutText(,,\n\n", out);

SIO.PutText("Enter the key of the node to be deleted\n");
WHILE NOT SIO.EndO DO

297

(*21.07.94. LB*)

(*Input in file "dat"*)
(*User specifies output file*)

(*BinUser*)

IF BinTree.Delete(tree, SIO.Getint()) THEN (*found*)
BinTree.Traverse(tree, Print); SIO.PutText("\n\n", out);

ELSE (*not found*)
SIO.PutText("\nNot found\n")

END; (*IF found*)
END; (*WHILE NOT SIO.EndO*)
SF.CloseWrite(out); (*Ouput file becomes persistent on closing*)

END BinUser.

Example 12.21: Client of the binary search tree

Figure 12.17 would be:

90
70

60
50

40
35

20
15

10
5

The client in Example 12.22 tries all traversal parameters. For inorder
it outputs a tree; otherwise it outputs a sequence of numbers. The output
of the same tree (see Figure 12.17) with traversal direction left to right

298 12. Recursion

(default is right to left) would be:

5

10
15

20
35

40
50

60
70

90

As regards the implementation, we assume that trees are sufficiently
recursive to formulate the algorithms for searching, insertion, deletion and
traversal recursively. The iterative solutions are also easy to find, yet the
simplicity of the recursive algorithms is more convincing than for lists.

The trivial case is an empty tree. All algorithms (similar to with lists)
are based on the idea of decomposing the tree - naturally not literally, but
from the viewpoint of the respective procedure - until it becomes trivial,
i.e., empty.

The algorithm for searching can thus be formulated as follows:

IF empty THEN not present
ELSE

IF key < root key THEN search in left subtree
ELSIF key> root key THEN search in right subtree
ELSE found
END (*IF key·· .*)

END (*IF empty*)

Naturally the root changes with each traversal until we reach either an
empty tree (not found) or the subtree whose root contains the target key.

The algorithm for insertion is almost as easy. Here we apply the same
recursive principle to reach the position (certainly a leaf) where the new
node must be inserted (see Example 12.24).

Deletion is a more difficult task. Here it does not suffice to simply find
the target node. Ifthis node is a leaf, it can be deleted immediately (Figure
12.23 a). However, if it is any other node, then its parent must take over
the child's subtree (otherwise we literally dismantle our tree by pruning
branches (subtrees), which we must avoid).

If the target node has only one subtree, the matter is still simple: with
the pointer that pointed to the target, the parent of the target node can
take over the target's subtree (Figure 12.23 b). However, if the target node
has two subtrees, then we have complications: with one pointer, the parent

12.2. Recursive data structures

MODULE Traversal EXPORTS Main;

IMPORT SIO, SF, Bin Tree, Text;

VAR
in: SIO.Reader := SF.OpenRead(prompt:= "Input file for tree: ");
out: SIO.Writer := SF.OpenWrite(prompt:= "Output file for traversal: ");
tree: BinTree.T := BinTree.CreateO;
print: BinTree.Action;

PROCEDURE PrintTree(x: BinTree.ElemT; level: INTEGER) =
BEGIN

FOR i:= 0 TO level-1 DO SIO.PutText("", out) END;
SIO.Putlnt(x, 3, out); SIO.NI(out);

END PrintTree;

PROCEDURE PrintSequence(x: BinTree.ElemT; level: INTEGER) =
BEGIN

SIO.Putlnt(x, 1, out); SIO.PutText(", ", out);
END PrintSequence;

BEGIN
WHILE NOT SIO.End(in) DO

BinTree.lnsert(tree, SIO.Getlnt(in»;
END; (*WHILE NOT SIo.End(in)*)

FOR 0:= FIRST(BinTree.Order) TO LAST(BinTree.Order) DO
FOR d:= FIRST(BinTree.Direction) TO LAST (BinTree.Direction) DO

IF 0 = BinTree.Order.ln THEN

299

(*22.07.94. LB*)

(*Traversal*)

print:= PrintTree
ELSE

(*prints elements in tree format*)

print:= PrintSequence
END; (*IF 0*)

BinTree.Traverse(tree, print, 0, d);

SIO.PutText("\n\n", out);
END; (*FOR d*)

END; (*FOR 0*)

SF.CloseWrite(out);
END Traversal.

(*prints elements in sequence*)

(*traverses*)

Example 12.22: Client traverses the search tree in various ways

cannot assume two subtrees. Therefore the endangered subtrees must re
ceive a new root in such a way that the order relation defining a search tree
is upheld. Thus either the largest node of the left subtree or the smallest
node of the right subtree must substitute as the new root to replace the
target node (Figure 12.23 c). Note that removing this "replacement node"
is always simple because one of its successors must be empty (otherwise it
would not be the largest or smallest.

300 12. Recursion

(a) 50 50

/~ /~
20 70 20 70

/ \, /\ /\ /\
10 35 60 90 10 35 60 90

/~ / / /
/

/

5 15 30 5 30

(b) 50 50
//~/ ~ /~

20 70 20 70

/ \, / \\ /\ /\
10 35 60 90 5 35 60 90

ci) / /
30 30

(c) 50

V~ 20 70

! 356/\0

/

35

/~
20 70

/\ / \
5 30 60 90

30

Figure 12.23: Deletion of nodes 15, 10 and 50

12.2. Recursive data structures 301

The procedure Delete in Example 12.24 demonstrates the implementa
tion ofthe deletion operation. Ifthe target node has two subtrees «(tree. left
NIL) A (tree. right # NIL), then this invokes the procedure Left Largest. It
finds the largest element in the left subtree and uses it to replace the target
node.

Example 12.24: Implementation of a binary search tree

MODULE BinTree;

REVEAL
T = BRANDED REF RECORD

key: ElemT;
left, right: T := NIL;

END; (*T*)

PROCEDURE CreateO: T =
BEGIN

RETURN NIL
END Create;

(*05.07.94. CW; LB*) (*Binary Tree*)

(*An empty tree is simply "'Nil'" *)

PROCEDURE Search(tree: T; e: ElemT): BOOLEAN =
BEGIN

IF tree = NIL THEN RETURN FALSE
ELSIF tree. key = e THEN RETURN TRUE
ELSIF e < tree.key THEN RETURN Search(tree.left, e)
ELSE RETURN Search(tree.right, e)
END; (*IF tree ... *)

END Search;

PROCEDURE Traverse(tree: T; action: Action;
order := Order. In; direction := Direction.Right) =

PROCEDURE PreL(x: T; depth: INTEGER) =

BEGIN
IF x # NIL THEN

action(x.key, depth);
PreL(x.left, depth + 1);
PreL(x.right, depth + 1);

END; (*IF x # NIL*)
END PreL;

PROCEDURE PreR(x: T; depth: INTEGER) =
BEGIN

IF x # NIL THEN
action(x.key, depth);
PreR(x.right, depth + 1);
PreR(x.left, depth + 1);

END; (*IF x # NIL*)
END PreR;

302

PROCEDURE InL(x: T; depth: INTEGER) =
BEGIN

IF x # NIL THEN
InL(x.left, depth + 1);
action(x.key, depth);
InL(x.right, depth + 1);

END; (*IF x # NIL*)
END InL;

PROCEDURE InR(x: T; depth: INTEGER) =
BEGIN

IF x # NIL THEN
InR(x.right, depth + 1);
action(x.key, depth);
InR(x.left, depth + 1);

END; (*IF x # NIL*)
END InR;

PROCEDURE PostL(x: T; depth: INTEGER) =
BEGIN

IF x # NIL THEN
PostL(x.left, depth + 1);
PostL(x.right, depth + 1);
action(x.key, depth);

END; (*IF x # NIL*)
END PostL;

PROCEDURE PostR(x: T; depth: INTEGER) =
BEGIN

IF x # NIL THEN
PostR(x.right, depth + 1);
PostR(x.left, depth + 1);
action(x.key, depth);

END; (*IF x # NIL*)
END PostR;

BEGIN
IF direction = Direction.Left THEN

CASE order OF
I Order. Pre => PreL(tree, 0);
I Order.ln => InL(tree, 0);
I Order. Post => PostL(tree, 0);

END (*CASE order*)
ELSE

CASE order OF
I Order. Pre => PreR(tree, 0);
I Order.ln => InR(tree, 0);
I Order. Post => PostR(tree, 0);

END (*CASE order*)
END (*IF direction*)

END Traverse;

12. Recursion

(*Traverse*)

(*direction = Direction.Right*)

12.2. Recursive data structures

PROCEDURE Delete(VAR tree: T; e: ElemT): BOOLEAN =

PROCEDURE LeftLargest(VAR x: T) =
VAR y: T;
BEGIN

303

IF x.right = NIL THEN
y:= tree;
tree:= x;
x:= x.left;
tree.left:= y.left;
tree.right:= y.right;

ELSE
LeftLargest(x. right)

END;

(*x points to largest element left*)
(*y now points to target node*)

(*tree assumes the largest node to the left*)
(*Largest node left replaced by its left subtree*)

(*tree assumes subtrees ... *)
(* ... of deleted node*)

(*Largest element left not found*)
(*Continue search to the right*)

END Left Largest;

BEGIN
IF tree = NIL THEN RETURN FALSE
ELSIF e < tree.key THEN RETURN Delete(tree.left, e)
ELSIF e > tree. key THEN RETURN Delete(tree.right, e)
ELSE

IF tree.left = NIL THEN tree:= tree.right;
ELSIF tree.right = NIL THEN tree:= tree. left;

(*found*)

ELSE (*Target node has two nonempty subtrees*)
LeftLargest(tree.left) (*Search in left subtree*)

END; (*IF tree.left ... *)
RETURN TRUE

END; (*IF tree ... *)
END Delete;

PROCEDURE Insert(VAR tree: T; e: ElemT) =
BEGIN

IF tree = NIL THEN tree:= NEW(T, key:= e);
ELSIF e < tree. key THEN Insert(tree.left, e)
ELSE Insert(tree.right, e)
END; (*IF tree ... *)

END Insert;

BEGIN
END BinTree.

Chapter 13

Objects

Many view the concept of object orientation as the culmination of tradi
tional, structured programming concepts (many of which we have already
come to know in this book), while many see it as something totally new.
Both views are legitimate. First we introduce object orientation as a com
pletely new concept, and then we embed it in the already familiar world of
Modula-3.

13.1 Object-oriented modeling

Behind object orientation there is a certain view of how to model part of
reality.

Permit us a philosophical comment right at the start. In computer
science we often say that we map a part of reality onto a model. We
should be aware that we cannot find reality without an observer. When
I say that this is the real world, then my statement, my observation,
is part of it. This does not mean that the world is unreal or subjective,
but only that the respective observer's complete world view is also part
of that world. For example, we have good reason to assume that the
world of a two-year-old child differs significantly from that of a forty
year-old adult, whereby obviously neither of the two need be more or
less real. The fundamental difference between the "real" world and
some modeled world seems to be that in the "real" world our view is
unconscious, while in modeling we attempt to assume some conscious
view. The process of thinking itself remains unconscious in modeling
as well, but the basic concepts on which we build our model are con
scious.

Object-oriented modeling takes the following view: The (modeled) world
consists of a set of objects that represent self-contained units. They know

306 13. Objects

Object

Programs

Figure 13.1: Objects

their own microworld where their states are stored in fields and their pos
sible behavior patterns in methods (Figure 13.1). Objects can communicate
with the outside world, i.e., with other objects, by sending and receiving
messages. These objects are classified so that all objects of the same kind
belong to one class (i.e., they have the same type).

This kind of modeling proves quite useful for a number of technical
problems. Ifwe apply them to human domains, we have a particularly
gloomy view of society: all individuals are classified strictly according
to attributes, but are self-contained and encapsulated, and communi
cate with the outside world only via exactly specified, existing chan
nels.

To access such an object, we must send it a message, which can contain
parameters. In object orientation, the procedure that processes a given
message is called a method and is invisible to the outside, just as the ob
ject's data is hidden. The answer is returned in the form of a message.
This is the only way to access an object. The messages and their param
eters are specified in advance. Thus an object equates to a data capsule
(see Section 10.2.1), with the difference that we can create any number of
objects of a given type, but can have only one - the - data capsule. With
the introduction of encapsulated data types (Section 11.4), we gained the
ability to repeatedly create encapsulated data, but we still had to provide
the operations separately from the data.

However, the real advance of objects over data capsules and encapsu
lated data types is extensibility, enabled by the combination of data and

13.1. Object-oriented modeling 307

Vehicle

/

Automobile Truck

Figure 13.2: Class hierarchy ofuehicles

the methods that process them. From existing object definitions we can
derive new ones by specifYing, "Take this definition and add the following
data fields and the following methods". This forms a subclass ofthe original
class, or superclass.

Subclasses have an Is-a relationship to their superclass: each object of
a subclass is likewise an object of the corresponding superclass.

If we take the class Vehicles, we can derive the classes Cars and Trucks
(see Figure 13.2). We can say that every car (passenger vehicle) or truck
(cargo vehicle) is a vehicle (but not inversely, for not every vehicle is a car).
Extensibility is a great advantage. For a system of classes, we can continue
to add subclasses, making a system with new, additional features, without
sacrificing the original features. This also enables us to delay certain deci
sions. Over time, the class of cars can be extended with various subclasses
and thus specialized (e.g., cars for city traffic, cars for difficult terrain, etc.):
they all remain cars and inherit all the features of a car.

A particular advantage of object-oriented modeling is its handling of
complexity. Everything in this book so far has been moving in this direc
tion. We have acquired ever more powerful language tools to better struc
ture our solutions. Our efforts have taken two directions: on the one hand,
we enhanced our data structures; on the other hand, our control structures.
In the concept of encapsulated data type we combined these directions. Ob
ject orientation refines and extends this concept.

Object-oriented modeling encompasses a large part ofthe life cycle of a
software project. It includes methods for object-oriented analysis (OOA),
design (ODD) and implementation [RBP+91]. Object-oriented modeling
has strongly affected and modified perceptions of the life cycle [Mey891.

308 13. Objects

In the introduction we briefly mentioned the top-down and bottom-up
methods of system development. In the object-oriented view it is easier
to change one's orientation frequently: sometimes the developer views
the whole from the top; sometimes the details of individual compo
nents take precedence. In particular, it is easier to build semifinished
systems that are complemented continually. Here semifinished does
not mean that we develop cars with only two wheels at first, but that
we can specify that the car has an engine with certain features, with
out needing to have a finished engine ready. Furthermore, later we
can add a subclass for electric cars, which might not even have been
foreseen when the information system was developed.

In this book we limit ourselves to object-oriented programming, which
primarily concerns translation of an existing model to a (Modula-3) pro
gram.

Object orientation is certainly quite fashionable nowadays. Therefore
there is an overwhelming amount ofliterature on the subject and nearly as
many opinions on exactly what object orientation is and what it is not. We
cannot engage in this discussion here; we attempt to present the concepts
that seem to command a broad consensus. However, the reader should not
be too surprised to encounter differing perceptions on this subject. (For ad
ditional reading, we recommend [Mey89], [RBP+91], [KM94] and [Mas93].)

13.2 Object-oriented programming

In object-oriented programming objects consist of a set of object fields (also
called instance variables), which define the state space of the object and
methods , which describe the behavior of the object. Objects have a type,
and individual objects are instances of this type. Objects are classified ac
cording to their class membership. Many languages, including Modula-3,
have an absolute root class to which all objects belong per definition.

The term class is used in differing ways. (We can even observe some
thing of a "war between the classes".) Some see a class as the type,
i.e., the schema, of an object group, while others mean concrete col
lections of objects (of compatible type). The first view tends to fall in
the domain of programming languages, while the second is common
in database fields. Here, by class we mean simply the type of the ob
jects, but we do want to call attention to this important difference in
terminology.

13.2.1 Encapsulation

The object concept, as already pointed out, is a further development of the
concept of abstract data types; thus encapsulation is naturally a funda-

13.2. Object-oriented programming 309

Vehicle

Automobile

/

Sedan Convertible

Figure 13.3: Class Car serves as abstract superclass

mental feature of classes. In a strict sense, a class interface should contain
only messages (more precisely, the signatures of messages, i.e., their names
and parameter lists); the fields must be hidden. Nevertheless, many object
oriented programming languages do permit direct access to the fields of an
object.

Classes (object types) have a dual role: they have clients on the one
hand and heirs (subclasses) on the other. Clients use the services of a class,
or have a uses relationship. The client of a class Car can use cars in ac
cordance with the interface. For clients, a restricted view usually suffices;
they normally see only part of the class interface.

The heirs (subclasses) inherit and extend the features of their super
class. They have an is-a relationship to the superclass (a car is a vehicle; a
convertible is a car). They need more knowledge of the inner structure of
the superclass than does the client. Hence a class must normally present a
somewhat more detailed interface for its subclasses than for its clients.

13.2.2 Inheritance

A subclass inherits all features of its superclass and can extend the super
class. Thus subclasses normally extend the set of fields and methods of the
superclass. Inheritance proves especially suited to specialization of a more
general class. A car is a specialization of vehicles; a convertible could be

310 13. Objects

a specialization of a car. Here we could discuss which is the more general
case, a sedan with a hard roof or a convertible. To resolve this conflict,
we can define an abstract superclass Car, which simply serves to allow us
to derive concrete subclasses, such as Sedan and Convertible (Figure 13.3).
With the help of inheritance, we can produce a hierarchy of classes. The
subclass relationship corresponds exactly to the subtype relationship that
we already know.

13.2.3 Polymorphism

We call variables that can take on various forms (that is, that can have
different types) polymorphous. Procedures with polymorphous parameters
are called polymorphous procedures.

Because an object of a subclass is also an object of its superclass, wher
ever an object of the superclass can be used, we can use an object of a
subclass instead - but not inversely! Thus we can assign to any variable or
parameter of a given type a value of any subtype of this type. This makes
the object variables or parameters polymorphous. An object variable can
change its type at run time. We can assign a Truck instance to a Vehicle
variable. Note that it is not the object instance that changes its type, but
the variable that can contain references to various object instances. We
call the actual type the dynamic type and the declared type the static type.
Assignment is not permitted between objects if the dynamic type of the
right-hand expression is neither a subtype nor a supertype of the declared
type of the left-hand expression. To this extent polymorphism is restricted:
Vehicle variables cannot be assigned to Person objects. Simply stated, as
signments are possible only along the type hierarchy that begins at the
declared type.

Methods are polymorphous procedures: they can be applied to any ob
ject of a class hierarchy. For example, once we have defined a method
to determine the speed of vehicles, it can be applied to cars, trucks and
convertibles. Polymorphism in object-oriented languages is restricted to
types within a class hierarchy. (For more on polymorphism in general, see
[Mey89, CW87].)

13.2.4 Dynamic binding

A polymorphous procedure can be applied to objects of various classes
(within the same class hierarchy). Often we need to adapt an algorithm
more or less to accommodate the specific subclass. Therefore we can over
ride methods of a superclass in its subclasses. Overriding means exchang
ing the algorithm of a method. If a truck's acceleration is different from
that of a sedan (trucks record speed in a logbook), then the subclasses Truck

13.2. Object-oriented programming 311

and Sedan can override the method to determine speed. The new method is
invoked by the same message, but does something different, depending on
whether the message was sent to a Sedan or a Truck object. The dynamic
binding mechanism guarantees that - depending on which subclass an ob
ject belongs to - the correct method is always applied. An algorithm that
determines the speed of different vehicles simply sends an object the "set
speed" message. Which method is actually invoked depends on the type of
the object. Thus the methods are not statically bound at compile time, but
dynamically at run time, when actual class membership is available.

13.2.5 Object-oriented applications

The spectrum of object-oriented applications is growing daily. In addition
to object-oriented programming languages, e.g., object-oriented database
systems [KM94] are ever more widespread. The first object-oriented ap
plication domain of all was simulation. The first application was imple
mented in the programming language Simula-67 [DDH72], which was the
first object-oriented programming language. In simulation we attempt to
imitate the static structure and the dynamic behavior of some microcosm.
We can develop simulations of a queue at a bank or of a production pro
cess. In such a simulation we can represent the individual machines and
workpieces to be processed as objects. Each has its own state space and be
havior. In terms of both space and time, each has a relatively independent
existence. At times they need to exchange messages and synchronize their
flow (see Section 16). Particularly this application domain puts inheritance
to good use: there are typically abstract object superclasses (e.g., all tools,
all machines, all queues, etc.) with certain commonalities; concrete object
classes can be derived from these superclasses (e.g., the queue for a certain
kind of machine for a specific kind of workpiece).

Another widespread application domain is object-oriented user inter
faces. The actual dissemination of object-oriented concepts can be attrib
uted to the success of the language Smalltalk [GR83] and menu-driven
user interfaces, which were both developed at the end of the 1970s at the
Xerox Palo Alto Research Center (Xerox PARC); this is why books on object
oriented programming even today most often use the example of user in
terfaces. The basic idea is that the user can select an object on the screen
and then sends it a message, thus triggering some action (e.g., deletion,
copying, etc.). The user first selects the object and then adds action. This
action can be object-specific (more precisely, class-specific); i.e., the action of
a subclass can be a refinement or specialization of an action of a superclass.
(By contrast, in the procedural way of thinking, the action - the procedure
- is always the focus and can be applied to various objects.)

312 13. Objects

This idea, together with the concepts of encapsulation, inheritance and
polymorphism, has a very significant feature: identical actions are exe
cuted by the same program code (code sharing), and for similar actions only
the deviating parts are processed by additional code. The major improve
ment here is by no means only that programs become shorter (which is
also the case). Even before object-oriented programming, a very important
quality attribute of a user interface was consistency, whereby the same
or similar services should not be presented in different ways. The user
should be able to learn certain conventions quickly, e.g., deletion with the
delete key, selection with the left mouse button. It is unacceptable to re
quire different actions on a case-by-case basis. Before object orientation
these features were achieved by introducing very strict conventions for the
development of a software product; programmers abided by these conven
tions to varying degrees. The object-oriented approach goes to the core of
the problem: if all delete operations are executed by the same code, then
deletion will always present the same appearance to the user. If certain
subclasses require some modification of the deletion operation from the su
perclass, then at least the common parts are processed by the same code,
and only the class-specific aspects are handled by the subclass. Polymor
phous procedures can process variants of classes, and new variants can be
added later without modifying existing code.

This should not give the impression that object orientation is a panacea
for all programming problems. For example, it is not easy to design a thor
oughly object-oriented user interface, that is, to find an adequate hierarchy
of abstract classes. The following sections should make this clearer.

In the following we show how the basic concepts presented above (and
some additional ones) find expression in Modula-3.

13.3 Object types in Modula-3

We have already mentioned the similarity of subclass and subtype relation
ships. Naturally this is no coincidence: Modula-3's subtype concept was
deliberately so designed. We need absolutely no new language elements
in order to meet the first requirement of object-oriented programming -
encapsulation. The Modula-3 implementations of encapsulated data types
presented in Section 11.4 (e.g., the encapsulated stack type in Example
11.28) are based on subtyping and hidden data types. However, this does
not suffice to describe inheritance, polymorphism and dynamic binding.
Here Modula-3 offers a new type constructor (OBJECT), which provides all
significant object features.

13.3. Object types in Modula-3 313

13.3.1 Declaration of object types

Modula-3 objects are instances of object types (classes), which consist of
fields (also called instance variables or attributes) and methods.

Syntax of object types

ObjectType52 = [TypeName85 I ObjectType52] [Brand58]
"OBJECT" Fields59
["METHODS" Methods61]

Methods61
Method62
Overrides63
Override64

["OVERRIDES" Overrides63] "END".
= [Method62 { ";" Method62 } [";"]].
= Ident89 Signature19 [":=" ConstExpr65].
= [Override64 { ";" Override64 } [";"]].
= Ident89 ":=" ConstExpr65'

The typical form of an object type declaration is:

TYPE Object = Super OBJECT
fields

METHODS
methods

OVERRIDES
overridden methods

END

Object is a subtype of Super. Ifwe omit the supertype -which the syntax
allows - Object would be a subtype of the predefined type ROOT, the root
of all classes. Object inherits all attributes and methods from Super. This
means that each instance of Object contains fields and methods of the same
name as those in Super. Let us formulate an abstract vehicle class:

Vehicle = OBJECT
position: RECORD x, y: REAL END;
speed: REAL;
load: REAL;

METHODS
newPos(x, y: REAL);
setSpeed(mph: REAL);
loadFreight(kg: REAL);
unloadFreight(kg: REAL);

END;

(*coordinates*)
(*current speed*)

(*weight of load in kg*)

(* set position *)
(*set speed*)

(*add to load*)
(*subtract from load*)

Thus our vehicles have position and speed and store the weight of their
load. The fields are defined in a similar way as in records (see Section 8.2).

314 13. Objects

The method declarations specify the possible messages that the object class
understands, along with their parameters. We can extend this vehicle class
to an abstract car by additionally storing the number of passengers:

Car = Vehicle OBJECT
passengers: [0 .. 9]:= 0;

METHODS
getln(number: [1 .. 9]);
getOut(number: [1 .. 9]);

END;

(*number ofpassengers*)

(*add to passengers*)
(*subtract from passengers*)

At some point the methods must be set to concrete procedures; otherwise
they are NIL. We can write:

METHODS
getln(number: [1 .. 9]):= Getln;

Thus the method named getln is set directly to the procedure Getln in
the object declaration. This procedure thereby implements the method and
must accept as its first parameter the current object (see Section 13.3.3).

A subtype developer who is quite satisfied with the object Car but who
cannot use the method for setting speed (for cars that feature cruise con
trol) can use the OVERRIDES clause to specify a custom method:

SpecialCar = Car OBJECT
OVERRIDES

setSpeed:= SetCruiseControl;
END;

This creates another subclass that is identical to class Car except that
it has a different setS peed method. Observe that here we only reference
names; the message signature has already been defined in the superclass.

13.3.2 Implementation of objects

Objects in Modula-3 are always references. They are implemented inter
nally as pointers to special records. In addition to the object fields, these
records also have a pointer to a method table (see Figure 13.4). The inter
nal representation of a subtype is exactly the same; only the list of fields
and methods can be extended. It is clear that a method written for objects
of type Vehicle can also process objects of type Car because Cars have the

13.3. Object types in Modula-3 315

vehicle l ____ =-=-j i
,------~-~

> -----~r-~
position newPos

speed load Freight

load setS peed

Figure 13.4: Schema of the implementation of objects

same structure, and their extension does not matter. All fields that the ve
hicle method requires are present in Cars with the same type at the same
position in the record. The method does not access the extending fields (in
fact, we could say that it is not even "aware" of their existence). Extending
the class with new methods works analogously.

Subtyping simply copies all methods of the supertype into the new
method table. We have seen that they can be used likewise for the new
type. Only overridden methods are not copied. They are entered anew in
the table at the corresponding position.

Dynamic binding of methods to the current object results because each
method is looked up in the object itself. Sending the message setSpeed
invokes the procedure that is entered at the corresponding position in the
method table of the current object. For practical reasons, the method table
is stored statically with the type (for objects of the same type, the methods
are always the same). However, the pointer to the method table must be
stored in each object.

13.3.3 Implementation of methods

Example 13.5 shows the implementation of a stack object. The type Stack
contains the field top, which points to the stack. The stack is structured
as a list of Nodes. The methods that define the operations on the stack
are implemented as ordinary procedures. Apart from the first parameter,
the signature of such a procedure must cover the signature of the method
which it implements. That is, apart from parameter names, the default
values and the raises set (see Chapter 15), the parameters and the return
type must be identical if we omit the first parameter of the procedure. The
first parameter identifies the current object, i.e., the receiver, to whom the
message is sent. If the type of the object is T, then the type of the receiver
must be a supertype of T (normally T itself). This parameter must be a
value parameter (which prevents a method from destroying its receiver).

316

MODULE StackObj EXPORTS Main;

TYPE
ET = INTEGER;
Stack = OBJECT

top: Node := NIL;
METHODS

push(elem:ET):= Push;
popO :ET:= Pop;
emptyO: BOOLEAN:= Empty;

END; (*Stack*)
Node = REF RECORD info: ET; next Node END;

PROCEDURE Push(stack: Stack; elem:ET) =
VAR new: Node := NEW(Node, info:= elem);
BEGIN

new.next:= stack. top;
stack.top:= new;

END Push;

PROCEDURE Pop (stack: Stack): ET =
VAR first: ET;
BEGIN

first:= stack.top.info;
stack.top:= stack.top.next;
RETURN first

END Pop;

PROCEDURE Empty(stack: Stack): BOOLEAN =
BEGIN

RETURN stack. top = NIL
END Empty;

VAR
stack1, stack2: Stack := NEW(Stack);
i1, i2: INTEGER;

BEGIN
stack1.push(2);
stack2.push(6);
i1:= stack1.popO;
i2:= stack2.popO;

END StackObj.

13. Objects

(*24.01.95. LB*)

(*Type of elements*)

(*points to stack*)

(*Push implements push*)
(*Pop implements pop*)

(*Empty implements empty*)

(*stack: receiver object (self)*)
(*Element instantiate*)

(*new element added to top*)

(*stack: receiver object (self)*)

(*Info copied from first element*)
(*first element removed*)

(*stack: receiver object (self)*)

(*2 stack objects created*)

(*2 pushed onto stack1 *)
(*6 pushed onto stack2*)

(*pop element from stack1 *)
(*pop element from stack2*)

Example 13.5: Stack implemented as object type

With this parameter the object identifies itself within the implementing
procedure. Therefore this parameter is often called self (In many pro
gramming languages SELF is a keyword; Modula-3 leaves the naming to
the programmer.)

13.3. Object types in Modula-3 317

13.3.4 Accessing object components

As with record types, the fields and methods of an object type are accessed
with qualified identifiers. We can read and write to fields and invoke meth
ods. For example, if 0 is an object variable with a field t and a method
m, then the field can be accessed as o.t and the method can be invoked as
o.m(actual parameters).

In Example 13.5 we declare two Stack objects and create them with
NEW. The created objects can then be accessed through their methods.

In the terminology we have used thus far we need to replace the expres
sion method invocation with message passing. We say that we send mes
sage m to object 0; 0 is the receiver of the message. The expression method
invocation reflects the most common implementation: methods are imple
mented as procedures (not only in Modula-3), and sending a message to an
object amounts to a procedure invocation. However, we must be aware that
the concept of message passing differs from that of procedure invocation.
This difference finds expression in the syntax: the form of a procedure in
vocation is P(o, actual parameters), which means that the same procedure
can be applied to various objects; the form of a corresponding method call
is o.m(actual parameters), which means that the method corresponding to
the dynamic type of 0 is applied. The most important difference is that the
procedure invocation is statically bound, while a method call is dynamically
bound. Thus the procedure invocation P(o, actual parameters) employs the
same algorithm, whereas o.m(actual parameters) can harbor any of various
algorithms, depending on the current class of o.

In Example 13.5 we could have written Push(stack1,2) instead of
stack1.push(2). The difference will become obvious later when we handle
encapsulation, inheritance, polymorphism and dynamic binding.

The syntax indicates a difference between the (already mentioned) pro
cedural and the object-oriented ways of thinking: In procedural program
ming languages (such as Pascal, Modula-2, C and Fortran) the algorithm
is the focus. We develop an algorithm and invoke it with various parame
ters. The object to be processed is itself a parameter. First comes the "verb"
(what is to be done), then the "object" (what is to be processed). In object
oriented programming languages (such as Modula-3, Eiffel, Oberon-2 and
C++) the focus is on the object; what is to be done with it follows.

13.3.5 Creating objects

As we mentioned above, Modula-3 objects are always references to un
named "special records". Thus objects must be instantiated with the prede
fined NEW function. Here the fields of the object can be set to values other

318 13. Objects

than the default values (compare creating references to Record types, Sec
tion 11.2.1). Invoking

car := NEW(Car, passengers := 1)

creates a new Car object and sets the passengers field.
A specialty of Modula-3 permits creating objects of an unnamed sub

type, with very similar syntax. We could have created an instance of type
SpecialCar, as defined on page 314 as follows:

myCar := NEW(Car, setS peed := setCruiseControl)

This amounts to a short form of:

myCar := NEW(Car OBJECT OVERRIDES setSpeed := SetCruiseControl)

On creation of a new object with NEW, its fields are created as well. The
methods of a given class are the same for every object of the class; hence
they only need to be physically created once. This does not conflict with
inheritance or with the ability to override methods in a subclass. Thus
methods belong to the whole class and so to the type. Therefore the meth
ods can also be invoked via their type name. If 0 is an object type and m is
a method thereof, then O.m invokes this method. Methods are invoked in
this way on a supercall (see page 323).

An assignment between objects is subject to the rules of assignment
compatibility (Sections 7.5 and 11.3). For assignment between objects, ref
erence semantics apply. That is, if 01 and 02 are assignment compatible ob
jects, then after the assignment 01:= 02 the object 01 references the same
set of fields and methods as 02.

Objects cannot be dereferenced. In order to duplicate the set of fields,
we would have to copy the fields individually (01.f1:= 02.f1; 01.f2:= 02.f2;
etc.). Methods cannot and need not be copied.

13.3.6 Subtyping rules for objects

We are already familiar with most subtyping rules. For objects, the follow
ing additional rules are defined:

ROOT <: REFANY
UNTRACED ROOT <: ADDRESS
NULL <: T OBJECT··· END <: T <: ROOT

These definitions indicate that all objects are references. All traced objects
are subtypes of ROOT, the root of all object types. The type NULL is a
subtype of every object type, so that every object can assume the value NIL.

13.4. Encapsulation of object types 319

As with references that are not objects, objects are automatically managed
by the garbage collector, so that storage for traced object instances to which
there is no reference is automatically deallocated. Untraced object types
are subtypes of UNTRACED ROOT, and their storage must be deallocated
explicitly (with the DISPOSE procedure, which is permitted only in unsafe
modules (see Appendix B. 7».

13.4 Encapsulation of object types

Thus far we have encountered objects only in their completely exposed
form. However, we cannot present objects to clients in this way; this would
violate the principle of information hiding. It would be quite senseless on
the one hand to show clients the method getln and on the other hand to
allow free access to the passengers field. Yet we already know all language
elements needed to enable encapsulation of Modula-3 objects in the sense
of object-oriented programming. Now let us put them together.

Let us transform the example of the piggy bank in Section 10.2.1 to
a piggy bank object (Example 13.7). We will implement the piggy bank
object as an encapsulated data type. We can omit the procedures Deposit
and Smash since the corresponding methods (deposit and smash) are now
integral parts of type T. No assignments follow the method signatures, so
that they are initialized to NIL. The implementation of these methods is
deferred [Mey891; they must be overridden by a subtype (which is done
most simply in a separate implementation module).

The method smash can disable the piggy bank object, but cannot dispose
of it (as by setting it to NIL) because the receiver parameter must always
be a value parameter. The client must dispose of an object. (Objects are
also created by clients.)

Creation and initialization of encapsulated objects

In Section 11.4 we expressly recommended that the interface of an encap
sulated data type always include a procedure that creates and initializes
instances of a hidden type. The implementation of this procedure should
be in the implementation module, where the declaration of the type is fully
revealed. Indeed, the latter is necessary because "ordinary" pointers (non
objects) can only be created in the scope of their full revelation.

The interface of the piggy bank object (Example 13.7) had no Create
procedure, but instead an init method. We deferred creation to the client
(Example 13.6). This is possible because objects can be created even if their
type is hidden. But why does it make sense to separate creation and ini
tialization of objects? The answer is in inheritance. Along a type hierarchy

320

MODULE PiggyBank EXPORTS Main;

IMPORT PiggyObj;
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI;

TYPE
PiggyBanks = ARRAY [0 .. 1] OF PiggyObj.T;

VAR
sty: PiggyBanks;
amount, index: INTEGER;
active := NUMBER(PiggyBanks);

13. Objects

(*22.06.94. RM, LB*)

(*sty of piggy banks*)

(*number of intact piggy banks*)

BEGIN (*PiggyBank2*)
PutText("Piggy bank:\n" &

"Positive amount is deposited; negative amount smashes bank.\n" &
"Odd amounts go in piggy bank 1; even amounts go in piggy bank O. \n");

FOR s:= FIRST(sty) TO LAST(sty) DO
sty[s]:= NEW(PiggyObj.T).initO;

END;
(*create and initialize object)*)

WHILE active> 0 DO
amount:= GetlntO;
index:= ABS(amount) MOD NUMBER(sty);
IF amount >= 0 THEN

IF sty[index] # NIL THEN sty[index].deposit(amount) END
ELSE

PutText("Contents of piggy bank-"); Putlnt(index, 1);

(*deposit*)

(*smash*)

Putlnt(sty[index].smashO, 6); NIO;
sty[index]:= NIL;
DEC(active);

(*object actually destroyed*)
(*reduce number of intact piggy banks*)

END; (*IF amount >= 0*)
END; (*WHILE active> 0 smash all piggy banks*)

END PiggyBank.

Example 13.6: Usage of the piggy bank object type

each subtype can add new fields to the inherited ones. The farther down
the hierarchy a subtype is, the more "heavyweight" it becomes. We must
create an object where it is heaviest, where no further subtypes are added,
normally at the client level. The hidden fields still need to be initialized by
their owner. Therefore, for each object that is defined in an interface, we
provide an init method. In trivial cases where all fields are initialized with
constant values, we can omit the init method (in the case of the piggy bank,
we could have spared ourselves the init method for this reason).

Immediately after creation of an object, the client must invoke the ob
ject's init method. Before this method initializes the fields that are visible to
it, it can invoke the init method of its supertype, which can invoke its super
type's method, and so on. In this way initialization can progress through
to the root type (see also the redefinition of methods in Section 13.4.3). In

13.4. Encapsulation of object types

INTERFACE PiggyObj;

TYPE
T <: Public;
Public = OBJECT

METHODS
init(): T;
deposit(cash: CARDINAL);
smash(): CARDINAL;

END; (*Public*)
END PiggyObj.

321

(*22.06.94. RM, LB*)

(*deposit cash*)
(*return contents and block piggy bank*)

Example 13.7: Interface ofthe piggy bank object type

MODULE PiggyObj;

REVEAL
T = Public BRANDED OBJECT

contents: INTEGER;
OVERRIDES

init:= Init;
deposit:= Deposit;
smash:= Smash;

END; (*T*)

PROCEDURE Init(t: T): T =
BEGIN

t.contents:= 0;
RETURN t

END Init;

PROCEDURE Deposit(t: T; amount: CARDINAL) =
BEGIN

<* ASSERT t.contents >= 0 *>
INC(t.contents, amount);

END Deposit;

PROCEDURE Smash(t: T): CARDINAL =
VAR s: CARDINAL := t.contents;
BEGIN

t.contents:= -1 ;
RETURN s

END Smash;

BEGIN
END PiggyObj.

(*22.06.94. RM, LB*)

(*error in smashed piggy bank*)

(*record piggy bank contents*)

(*piggy bank is disabled*)

Example 13.8: Implementation of the piggy bank object type

322 13. Objects

adherence to a widespread convention, the init method usually has a sig
nature like a function with a return type T. As its result init returns the
object to be initialized. Since the init method can only be applied to an ob
ject already created (with NEW), a pure procedure signature would suffice;
we already know the object to be initialized. However, the function form
has two advantages:

1. The client can invoke the init method directly on declaration, e.g.,

VAR sp := NEW(PiggyObj.T).initO;

If init were defined as a pure procedure, then the client would have to
write:

VAR sp := NEW(PiggyObj.T);
BEGIN

sp.initO;

The former notation has the advantage that the invocation of the init
method is less often forgotten, which avoids a frequent and unpleas
ant error.

2. A possible failure of an initialization can be signaled with the return
value NIL. This allows immediately undoing the instantiation.

A sty full of piggy bank objects

The client module (Example 13.6) shows how the objects are created and
initialized, how their methods are invoked, and how they are finally dis
posed of The following is a possible execution of the program in Example
13.6 (without greeting):

12345678910 -1 -2
Contents of piggy bank-1 25
Contents of piggy bank-O 30

In the implementation of the piggy bank object type (Example 13.8), the
methods defined in the interface are overridden by a concrete implementa
tion. Note that init allows us to "repair" a "smashed" piggy bank object.

323 13.4. Encapsulation of object types
--~--~--~---------------------------------

13.4.1 Inheritance

Now let us extend our piggy bank so that it accepts only deposits of valid
coins; we will call our extension a coin bank. Invalid amounts are not ac
cepted, and the coin bank is intelligent enough to record the sum of invalid
amounts. We can implement this kind of coin bank as a specialization of
our piggy bank. It requires an additional method to calculate the sum of
invalid amounts, and we must adapt the method deposit accordingly (Ex
ample 13.9 and 13.10). The interface introduces the constant Valid, which
defines the set of valid coins. The type CoinBank.T is a subtype of Piggy
Obj.T. Therefore the coin bank contains all fields and methods of a piggy
bank. The hidden field contents is also present, although not directly ac
cessible. The modified specification of the method deposit is in the form of
a comment. The method missed is new.

The implementation in Example 13.10 overrides deposit with a new pro
cedure that calls the deposit method of the superclass (PiggyObj.T) for valid
amounts (the supermethod is designated by explicit specification of its type
name). Invocation of a method of a superclass is called a supercaZZ. Note
that we must pass the receiver object as the first parameter in order to
invoke a method via its type name. To invoke the (parameterless) method
m "normally" via an object 0 of type T, we write o.mO. However, for a su
percall we write T.m(o). A supercall is actually a procedure invocation:
we thereby circumvent dynamic binding and directly invoke the procedure
that implements the method m in type T. The method missed returns the
sum of invalid amounts, which is stored in a new, hidden field.

The usage of a coin bank very much resembles that of a piggy bank.
Example 13.11 has an instance of a coin bank. Note that it is important
that we explicitly specified the type (CoinBank.T) in the declaration of the
variable bank. Ifwe had only written VAR bank := NEW(CoinBank.T).initO,
then the static type of the variable bank would derive from the declared
return type of initO, i.e., PiggyObj.T. In this case the method invocation
bank.missedO would not be possible because a PiggyObj.T object does not
recognize this method - although in principle the dynamic type of bank
would permit this. This example shows that it really is advisable to always
explicitly specify the type (except in trivial cases).

The declaration of the variable bank in Example 13.11 poses another
question. Here we assign an object of subtype CoinBank.T a value of its su
pertype (the return type PiggyObj.T of in it). Section 11.3 showed that this is
permissible if the value on the right side of the assignment is in the range
of the type on the left side. Is this condition met? We can only answer this
question by precisely following the execution of the above assignment. The
invocation of NEW(CoinBank.T) creates a (nameless) object of type Coin
Bank.T. We send this object the init message (we invoke its init method),

324

INTERFACE CoinBank;

IMPORT PiggyObj;

CONST
Valid = SET OF [1 .. 20] {1, 2, 5, 10, 20};

TYPE
T <: Public;
Public = PiggyObj.T OBJECT

METHODS
missedO: CARDINAL;

END; (*Public*)
END CoinBank.

13. Objects

(*22.06.94. RM, LB*)

(*valid coins*)

(*subtype of PiggyObj. T*)

(*deposit accepts only valid coins*)
(*sum of invalid amounts*)

Example 13.9: Coin bank object type is a subtype ofPiggyObj.T

MODULE CoinBank;

IMPORT PiggyObj;

REVEAL
T = Public BRANDED OBJECT

invalidAmount: CARDINAL := 0;
OVERRIDES

missed := Missed;
deposit:= Deposit;

END; (*T*)

PROCEDURE Deposit(bank: T; sum: CARDINAL) =
BEGIN

IF sum IN Valid THEN
PiggyObj.T.deposit(bank, sum)

ELSE
INC(bank.invalidAmount, sum);

END;
END Deposit;

PROCEDURE Missed(bank: T) : CARDINAL =
BEGIN

RETURN bank.invalidAmount
END Missed;

BEGIN
END CoinBank.

(*22.06.94. RM, LB*)

(*additional field*)

(*method of superclass (supercall)*)

(*CoinBank*)

Example 13.10: Implementation of the coin bank object type

which returns the same object. The type of the object instance remains
CoinBank.T. Thus the actual return value of in it is of type CoinBank.T. Thus
the assignment is correct.

13.4. Encapsulation of object types

IMPORT CoinBank;

VAR
bank: CoinBank.T := NEW(CoinBank.T).initO;
sum, contents, missed: INTEGER;

BEGIN

IF sum >= 0 THEN
bank.deposit(sum)

ELSE
missed:= bank.missedO;
contents:= bank.smashO;

325

(*create & initialize*)

(*deposit*)
(*sum for deposit*)

(*smash*)
(*first removes missed coins*)

(*removes contents of coin bank*)

Example 13.11: Usage of subclass CoinBank

13.4.2 Polymorphism and dynamic binding

In the above example we developed first the class of piggy banks and then
its subclass, the class of coin banks. Thus every coin bank is a piggy bank,
but a specialized one. Thus we can use polymorphous variables and pro
cedures. To really exploit this feature, we need some new language con
structs that will help us to determine the dynamic type of an object or to
access an object according to its dynamic type. NARROW and ISTYPE are
built-in functions; TYPE CASE is a new statement. The dynamic type of a
reference variable can be tested only at run time ifits static type is a traced
reference type or an object type (even untraced).

Narrow

The signature of NARROW is:

NARROW(x: Reference; T: ReferenceType): T

Note that the second parameter of NARROW is a type (such a signature
is not permitted for user-defined procedures in Modula-3). The type must
be a traced reference type or an object type. NARROW tests whether X is
contained in type T. If not, it generates a run-time error. If so, X is returned
unchanged, but no longer with its original static type, but as a T object.
NARROW is typically used in cases where T is a subtype of the static type
of X (hence the name: it restricts the type range to the subtype). Assume
the following declarations (P1 and P2 are procedures and are not specified
further):

326

TYPE
Super = OBJECT METHODS m10 := P1 END;
Sub = Super OBJECT METHODS m20 := P2 END;

VAR
super := NEW(Super);
sub := NEW(Sub);

13. Objects

super has a method (m1); sub has inherited this method and has the addi
tional method m2. The following method invocations and assignments are
no problem:

super.m10;
sub.m10;
sub.m20;
super := sub; (*Dynamic type of super becomes Sub*)

The last statement assigned sub to super. Thus the dynamic type of
super changes to Sub; in other words, super later points to a Sub object.
The method m2 can also be applied to super. However, the compiler does
not permit the invocation super.m20 because the declared (static) type of
super is Super, which does not recognize the method m2. The NARROW

function can help in this situation:

NARROW(super, Sub).m20;

With the NARROW function we maintain that an object (super) is contained
in the specified type (Sub) and thus the additional fields and methods (m2)
are present. For this reason the compiler permits the above assignment:
the programmer assumes liability that the object actually is contained in
the type. If this assertion is false (e.g., if the assignment super := sub is
missing), then NARROW produces a run-time error.

Istype

Situations can occur (especially in polymorphous functions) where we do
not know the dynamic type of a variable or a parameter. In such cases
NARROW is too strict; it generates a run-time error if the dynamic type is
unsuitable. Here it would be better if we could test the dynamic type at
run time. For this purpose Modula-3 provides ISTYPE and TYPECASE. The
signature of ISTYPE is:

ISTYPE(x: Reference; T: ReferenceType): BOOLEAN

ISTYPE returns true if and only if x is contained in type T. The type must
be a traced reference type or an object type. In the above example

ISTYPE(super, Sub)

would return false before the assignment super:= sub, but afterwards true.

13.4. Encapsulation of object types 327

Typecase

ISTYPE allows us to formulate conditional statements. To allow testing
the type of an expression analogously to testing the value of an expression,
Modula-3 provides the TYPE CASE statement. Its syntax closely resembles
that of the CASE statement; the major difference is that the values of the
CASE marks must be types.

Syntax

TCaseStmh7 = "TYPECASE" Expr66 "OF" [Tcase45]
{ "1" Tcase45 } ["ELSE" Stmts23] "END".

Tcase45 = Type48 { "," Type48 } ["(" Ident89 ")"] "=>" Stmts23 •

The general form of a TYPE CASE statement is:

TYPECASE expression OF
I type 1 (auxiliary variable 1) => statement 1

I typen (auxiliary variablen) => statementn

ELSE statemento
END

The type of the expression must be a traced reference type or an object
type. All typei must be subtypes of this type. The ELSE branch and the aux
iliary variables are optional. The scope of auxiliary variablei is statementi'
Types that have no auxiliary variables and select the same statement can
be combined in a list. Therefore we can write the following:

I typei => statement

I typek => statement

in shorter form as follows:

typei' ... typek => statement

The TYPECASE statement executes as follows: First the expression is com
puted. If the result is contained in several of the enumerated types, then
the alternative is selected that appears first (typei with the smallest i). This
means that in the TYPECASE statement we must consider the order of the
alternatives. If type 1 <: type2 <: type3, then in the TYPECASE statement
type 1 should appear first. If type3 were to appear first, then this alternative
would snatch all objects of types type1 to type3' This means that type NULL
should only appear as first and type ROOT only as last alternative.

Despite its syntactic resemblance, the TYPE CASE statement differs sig
nificantly from the CASE statement: Not only does it evaluate types instead

328 13. Objects

of values, it is also sensitive to the order of alternatives. Since the latter
is not true of the CASE statement, in this aspect TYPE CASE resembles the
IF-ELSIF statement more.

The type of the auxiliary variablei (if present) is typei; it is initialized
with the value of the expression. If the expression is contained in none of
the listed types, then the ELSE branch is executed if available; otherwise a
run-time error is generated.

For the equivalence of TYPE CASE and IF statements with ISTYPE tests,
similar considerations apply as for the equivalence of CASE and IF state
ments (Section 5.4.3). Usually they can be transformed back and forth
without difficulty; however, we do need to watch for any side effects.

Example 13.12 declares instances of both a piggy bank and a coin bank.
The procedures Deposit and Withdraw are polymorphous. Each has a for
mal parameter of type PiggyObj.T. According to the rules of assignment
compatibility, any subtypes are permitted as actual parameters, including
coin banks. The procedure Deposit first invokes the method deposit. The
mechanism of dynamic binding assures the selection of the unrestricted
deposit method for piggy bank objects, but the restricted one for coin bank
objects. In this procedure let us generate an error message in the event of
an invalid deposit attempt for a coin bank. Hence we test the dynamic type
of the parameter s with ISTYPE. The procedure Withdraw employs TYPE
CASE (although it could just as well use ISTYPE) to determine the dynamic
type of parameter p. If the type is CoinBank.T, we can invoke the method
missed. Note the order: if we exchange the two alternatives, then TYPE
CASE would always execute alternative PiggyObj.T.

A possible execution of Example 13.12 (without greeting) is the follow
ing:

123456789 10 -1
Invalid amount for coin bank 3
Invalid amount for coin bank 4
Contents of piggy bank = 40
Invalid attempts = 7 Contents of coin bank 8

13.4.3 Generalization

Let us develop a savings account which permits more flexibility than a
piggy bank. We want to allow any number of deposits and withdrawals
and to be able to query the account balance. We will not consider the com
putation of interest here.

The question is, can we define such a savings account as a specialization
or extension of the piggy bank? The method deposit can be used for making
deposits. But the method smash creates some problems: it destroys the

13.4. Encapsulation of object types

MODULE BankPoly EXPORTS Main;

IMPORT PiggyObj, Coin Bank;
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI;

PROCEDURE Deposit(p: PiggyObj.T; amount CARDINAL) =
BEGIN

329

(*27.06.94. LB*)

p. deposit(amount);
IF ISTYPE(p, CoinBank.T)

(*the correct method is selected automatically*)
(*tests whether p is of type CoinBank.T*)

(*and whether the amount is invalid*) AND NOT amount IN CoinBank.Valid
THEN

PutText("lnvalid amount for coin bank = "); Putlnt(amount); NIO;
END; (*IF ISTYPE(p, CoinBank.T}. .. *)

END Deposit;

PROCEDURE Withdraw(p: PiggyObj.T) =
VAR t TEXT;
BEGIN

TYPECASE P OF
I CoinBank.T(c) => t= "coin";

PutText("lnvalid attempts = ");

(*tests the dynamic type ofp*)
(*coin bank*)

Putlnt(c.missedO); (*c designates p as coin bank object*)
PutText(" ");

I PiggyObj.T => t= "piggy";
END; (*TYPECASE p*)
PutText("Contents of " & t & " bank" & " = ");
Putlnt(p.smashO);
NIO;

END Withdraw;

VAR
coin: CoinBank.T := NEW(CoinBank.T).initO;
piggy: PiggyObj.T := NEW(PiggyObj.T).initO;
amount INTEGER;

BEGIN
PutText("CoinBank accepts only valid cOins.\n" &

(*piggy bank*)

(*smash was not overridden*)

(*creation & initialization *)
(*creation & initialization *)

"Positive amounts are deposited; negativ amount smashes bank.\n" &
"Amounts < 6 go to coin bank, others to piggy bank.\n");

REPEAT
amount= GetintO;
IF amount >= 0 THEN (*deposit*)

IF amount < 6 THEN Deposit(coin, amount) ELSE Deposit(piggy, amount) END;
ELSE (*smash*)

Withdraw(piggy); Withdraw(coin);
END; (*IF amount >= 0*)

UNTIL amount < 0;
END BankPoly.

Example 13.12: Polymorphous procedures

330 13. Objects

INTERFACE Saving;
CONST

(*25.06.94. LB*)

Max = 1.0e1 0;
TYPE

T <: Public;
Public = OBJECT

METHODS
init (initial Balance: REAL := 0.0;

maxBalance: REAL := Max;
maxDeficit: REAL := 0.0): T;

balanceO: REAL;

transact(amount: REAL): BOOLEAN;

(*suffices for now*)

(*0 :s; initialBalance :s; maxBalance*)
(*0 :s; maxBalance :s; Max*)

(*0 :s; maxDeficit :s; Max*)

(*returns account balance*)

(*maxDeficit :s; amount + balance :s; maxBalance; balance is invisible! *)
(*Returns TRUE if and only if the transaction succeeds*)

END; (*Public*)
END Saving.

Example 13.13: Generalized superclass for saving

piggy bank. This method is certainly not suitable for checking the balance
of a savings account. This brings us to a typical problem of object-oriented
programming: we can specialize a class only if it is general enough, which
does not apply for the class PiggyBank. Now we have the following pos
sibilities: we fully reveal the internal structure so that the heirs can use
the fields in other ways, or each time we request our account balance we
destroy our "piggy bank" and generate a new one. However, we choose yet
another approach that is often unavoidable: we redesign our class hierar
chy.

This experience could bring some readers to reject object-oriented pro
gramming because the promised flexibility seems to falter. We want to
warn against premature resignation just as much as exaggerated eu
phoria. Object-orientation has many merits, but we need to learn how
to use them properly. Generalizing a superclass whose first design was
too specialized is part of the daily work of an object-oriented program
mer. The situation is more delicate: A superclass that is much too
general is also of no value. If everything is generic, if all design deci
sions are deferred, then this is just as bad as decisions made too early
and too rigidly. We are left with the old wisdom of finding the golden
middle.

The class of the "generalized piggy bank" should be formulated such
that both savings accounts and piggy banks can be derived as special
izations thereof Our first decision is to change the type of the deposits
from INTEGER to REAL (Example 13.13). This means that we can handle
amounts in cents and we can easily add interest computation later.

13.4. Encapsulation of object types 331

MODULE Client EXPORTS Main; (*22.06.94. LB*)

IMPORT Saving;
FROM 810 IMPORT PutText, PutReal, GetReal, LookAhead, GetChar, NI;

VAR
sp: Saving.T := NEW(Saving.T).init(initiaIBalance:= 200.0, maxDeficit:= 100.0);
ch: CHAR;

BEGIN (*Client*)
PutText("Savings transactions\n" &

"Press numbers for transactions, B for balance, Q to quit\n");
REPEAT

ch:= LookAheadO;
CASE ch OF

(*tests first character without removing it*)

1'0' .. '9', '+', '-' => (*number*)
IF NOT sp.transact(GetReal()) THEN PutText("Error\n") END;

I 'B', 'b', 'Q', 'q' => (*balance orquit*)
PutText("Account balanace = "); PutReal(sp.balance()); NIO;
EVAL GetCharO; (*moves reader position*)

ELSE (*character is neither number nor command*)
EVAL GetCharO; (*read on*)

END; (*CASE ch*)
UNTIL (ch = 'Q') OR (ch = 'q');

END Client.

Example 13.14: A client of class Saving

We define an init method with a number of parameters with default val
ues. The permitted ranges for the parameters are given as comments. We
define two other methods: transact and balance. transact permits both de
posits and withdrawals; the leading sign of the amount determines the
direction of the transaction. The comment specifies the valid range of the
amount. Since the field status is invisible to clients, the method balance
returns the current account balance.

Example 13.14 shows a client ofthe interface Saving; the implementa
tion is in Example 13.15. The client can make transactions on the account
and request the account balance. A possible execution of Example 13.14
(without greeting) could be:

[1020 -1522 q 1
~A_C_c __ o_u_n_t __ b_a_l_a_n __ c_e __ = __ 2_3_7 ____________________________ ~

The implementation of the init method provides no protection against
improper invocation. The conditions of the correct initialization are spec
ified in the interface as comments. The reader should consider how to
make init robust with respect to incorrect invocation. The method trans
act tests whether the requested transaction is permissible. Note that the

332

MODULE Saving;

REVEAL
T = Public BRANDED OBJECT

status: REAL;
max: REAL;
min: REAL;

OVERRIDES
init:= Init;
transact:= Transact;
balance:= Balance;

END; (*T*)

PROCEDURE Init(self: T; initialBalance: REAL := 0.0;
maxBalance: REAL := Max;
maxDeficit: REAL := 0.0): T =

BEGIN

13. Objects

(*22.06.94. LB*)

(*current account balance*)
(*maximum balance*)
(*minimum balance*)

self.status:= initialBalance;
self.max:= maxBalance;
self.min:= -maxDeficit;
RETURN self;

(*initially max must not be negative*)
(*initially min must not be positive*)

END Init;

PROCEDURE Transact(self: T; amount: REAL): BOOLEAN =
BEGIN

IF amount >= 0.0 AND amount <= self. max - self. status OR
amount < 0.0 AND amount >= self. min - self. status

THEN (*deposit or withdrawal*)
self.status:= self.status + amount;
RETURN TRUE

ELSE
RETURN FALSE

END; (*IF amount >= 0.0 ... *)
END Transact;

PROCEDURE Balance(self: T): REAL =
BEGIN

RETURN self. status
END Balance;

BEGIN
END Saving.

(*transaction not permitted*)

Example 13.15: Implementation of class Saving

tests are formulated not in the form self. status + amount <= self.max, but
in the equivalent form amount <= (self. max - self.status). This prevents an
overflow in the event that self. status + amount> LAST(REAL) (although few
of us are threatened by this danger).

With the help of the generalized type Saving.T, we can define the var
ious subtypes. For example, a piggy bank type would have to override

13.4. Encapsulation of object types

INTERFACE SavingsAccount;

IMPORT Saving;

TYPE
T <: Public;
Public = Saving.T OBJECT

METHODS
oldBalanceO: REAL;

END; (*Public*)

END SavingsAccount.

333

(*01.07.94. LB*)

(*T is a subtype of Saving. T*)

(*returns previous balance*)

Example 13.16: SavingsAcct.T is a subtype ofSaving.T

MODULE SavingsAccount;

IMPORT Saving;

REVEAL
T = Public BRANDED OBJECT

previous: REAL;
OVERRIDES

init:= Init;
oldBalance:= Old Balance;

END; (*T*)

(*01.07.94. LB*)

(*stores previous balance*)

PROCEDURE Init(self: T; initialBalance, maxBalance, max Deficit: REAL): Saving.T =
BEGIN

EVAL Saving.T.init(self, initialBalance, maxBalance, maxDeficit); (*supercall*)
self.previous:= self.balanceO; (*fields of super class already initialized*)
RETURN self (*returns self as Saving. T*)

END Init;

PROCEDURE OldBalance(self: T): REAL =
VAR p: REAL := self. previous;
BEGIN

self.previous:= self.balanceO;
RETURN p

END OldBalance;

BEGIN
END SavingsAccount.

(*copy previous balance*)

(*set previous balance to new balance*)

Example 13.17: Implementation of the savings account

the methods transact and balance such that negative transactions (with
drawals) are ignored and the first request for the account balance blocks all
further transactions. We could achieve a blockage, for example, by reini
tializing the Saving object with sp.init(O.O, 0.0, 0.0). This blocks all further
transactions on the account, as with smashing a piggy bank. We gain the
additional advantage that on an attempt to deposit to a blocked account,

334

IMPORT SavingsAccount;
VAR

13. Objects

acct: SavingsAccount.T := NEW(SavingsAccount.T).init(maxDeficit:= 300.0);
amount, old Balance, balance: REAL; success: BOOLEAN;

BEGIN (*Saving*)

success:= acct. transact(amount); (*amount transacted*)

oldBalance:= acct.oldBalanceO;
balance:= acct.balanceO;

Example 13.18: Client of the savings account

the transact method returns false instead of generating a run-time error.
Requesting the account balance is not blocked (balance always returns 0),
but we could achieve this by overriding the method.

To model a savings account with various balances and interest com
putations would be no problem now. However, let us make things easier:
let us define a savings account with one additional feature, requesting the
previous balance. We could invoke this method once a week to determine
how much we have spent in that week. This request should then set the
previous balance to the new one. In the interface we need only a single
additional method, old Balance (Example 13.16).

In the implementation we still need a hidden field that stores the pre
vious account balance (Example 13.17). On each request, this field is set to
the new account balance. We also have to override init because the field pre
vious must also be initialized, since the fields of Saving.T were initialized
by a supercall. The client is shown in Example 13.18.

Redefinition of methods and fields

Now let us construct a coin bank using the class Saving; our coin bank
should accept only valid coins. How can we achieve this? We can develop a
new method that accepts only amounts contained in a tailored enumeration
type, e.g.:

TYPE
Coins = {Penny, Nickel, Dime, Quarter, Half, Dollar};
Coin Bank = Saving.T OBJECT

METHODS
depositCoins(amount: Coins);

END;

This solution has the drawback that, although the method depositCoins ac
cepts only valid coins, the inherited method transact is still present, and

13.4. Encapsulation of object types

INTERFACE CoinSaver;
IMPORT Saving;
TYPE

T
Coins
Valid
Public

<: Public;
{Penny, Nickel, Dime, Quarter, Half, Dollar, Invalid};
[Cains. Penny .. Coins. Dollar];
Saving.T OBJECT
METHODS

transact(amount: Valid): BOOLEAN;
END; (*Public*)

335

(*02.07.94. LB*)

(*redefined!*)

PROCEDURE Coin(t: TEXT): Coins; (*auxiliary procedure*)
(*tests whether t is a coin name. Returns coin value (possibly Invalid)*)
END CoinSaver.

Example 13.19: CoinSaver redefines the method transact

an undisciplined client could still deposit any amount. Another possibility
is to override transact so that it always returns false for invalid amounts.
This is an improvement, but not quite what we want. We want a coin bank
that simply recognizes nothing but coins. Here we must modifY the sig
nature of the method transact, which is not permitted in overriding. Thus
we must redefine the method so that it has the same name but a different
signature. Modula-3 permits redefinition of both methods and fields (in the
latter case, e.g., we can define the same name with a different type).

The redefinition of a method (or of a field) resembles the case where we
redefine a name within a nested block. The new name eclipses the old.

In redefining a name in a subtype, however, we can still access the
eclipsed name with the NARROW statement. This is a rather unusual use
of NARROW: instead of restricting the type to a subtype, we access the su
pertype (in this case "broaden" would be a more descriptive name).

Example 13.19 shows the interface ofthe new coin bank (we will call it
coin saver); Example 13.20 shows the implementation, and Example 13.21
shows a client. These examples demonstrate the use of a supertype and its
derivatives. Depending on the amount and the type of the input (numeric
or text), the deposit goes into either the piggy bank or the coin bank, or the
general saver (from the superclass Saver).

The module CoinSaver provides an auxiliary procedure that tests
whether a text contains a valid coin name. If so, it converts the text to the
corresponding coin value; otherwise it returns Coins. Invalid. Unambiguous
abbreviations are permitted (e.g., the character string "Di" identifies the
dime; "D" alone is rejected because it could also designate a dollar coin).
This auxiliary procedure facilitates the client's input of coins. A possible

336

MODULE CoinSaver;
IMPORT Saving, Text;
REVEAL

T = Public BRANDED OBJECT
OVERRIDES

transact:= Transact;
END; (*T*)

PROCEDURE Transact(self: T; amount: Valid): BOOLEAN =
VAR number: REAL;
BEGIN

CASE amount OF
I Coins. Penny => number:= 1.0;
I Coins. Nickel => number:= 5.0;
I Coins. Dime => number:= 10.0;
I Coins. Quarter => number:= 20.0;
I Coins. Half => number:= 50.0;
I Coins. Dollar => number:= 100.0;

END; (*CASE amount*)
RETURN NARROW(self, Saving.T).transact(number);

END Transact;

PROCEDURE Coin(t: TEXT): Coins =
CONST V = ARRAY Valid OF TEXT

{"Penny", "Nickel", "Dime", "Quarter", "Half", "Dollar"};
VAR coin: Valid; found := 0; c := FIRST(Coins);

13. Objects

(*02.07.94. LB*)

(*transact from Saving*)

BEGIN (*Reads coin (possibly abbreviated)*)
WHILE (c <= LAST(Valid» AND (found < 2) DO

IF Text.Equal(t, Text.Sub(V[c], 0, Text.Length(t») THEN
coin:= c; INC(found);

END; (*IF Text.Equal(t, ... *)
INC(c);

END; (*WHILE c*)
IF found = 1 THEN RETURN coin ELSE RETURN Coins. Invalid END;

END Coin;

BEGIN
END CoinSaver.

(*CoinSaver*)

Example 13.20: The implementation overrides the redefined method

execution of Example 13.21 (greeting text omitted) could be:

1 2 5 300 500 D Dollar Dime Penny q
D is not a valid coin
Total in coin saver = 111
Total in savings account 8
Total in general saver = 800

We can summarize the difference between overriding and redefining as
follows: Overriding a method leaves its name and signature untouched;

13.4. Encapsulation of object types 337

MODULE PolyClient EXPORTS Main; (*02.07.94. LB*)
IMPORT CoinSaver, SavingsAccount, Saving;
FROM SIO IMPORT GetReal, PutReal, LookAhead, GetText, PutText, GetChar, NI;

PROCEDURE Output(s: Saving.T) =
VAR t: TEXT;
BEGIN

TYPECASE s OF (*tests dynamic type of s*)
I CoinSaver.T => t= "coin saver";
I SavingsAccount.T => t= "savings account";
I Saving.T => t= "general saver";

END; (*TYPECASE s*)
PutText(,'Total in " & t & " = "); PutReal(s.balance()); NIO;

END Output;

CONST
Numbers = SET OF CHAR {'O' .. 'g', '+', '-'};
Blanks = SET OF CHAR {' " '\1', '\n'};

VAR
saver: CoinSaver.T := NEW(CoinSaver.T).initO;
acct SavingsAccount.T := NEW(SavingsAccount.T).initO;
sav: Saving.T := NEW(Saving.T).initO;
coin: CoinSaver.Coins; amount: REAL; ch: CHAR; t: TEXT;

BEGIN (*PolyClient*)
PutText("AmounI<100 -> savings account; amount>=100 -> general saver/Q=quit\n");
REPEAT

ch:= LookAheadO;
IF (ch = 'q') OR (ch = 'Q') THEN

Output(saver); Output(acct); Output(sav);
ELSE

IF ch IN Numbers THEN
amount= GetRealO;
IF amount < 100.0 THEN

EVAL acct.transact(amount)
ELSE

EVAL sav.transact(amount)
END; (*IF amount < 100.0*)

ELSIF ch IN Blanks THEN EVAL GetCharO;
ELSE

REPEAT
t:= GetTextO; coin:= COinSaver.Coin(t);
IF coin = CoinSaver.Coins.lnvalid THEN

PutText(t & " is not a valid coin\n")
END;

UNTIL coin # CoinSaver.Coins.lnvalid;
EVAL saver.transact(coin)

END; (*IF ch IN Numbers*)
END; (*IF ch = ... *)

UNTIL (ch = 'q') OR (ch = 'Q');
END PolyClient.

(*check next character*)
(*quit*)

(*number*)

(*amount to savings account*)
(*no error control*)

(*amount to general saver*)
(*no error control*)

(*skip blanks*)
(*text - amount to coin saver*)

(*no error control*)

Example 13.21: Client of CoinSaver, SavingsAcct and Saving

338 13. Objects

there is actually only one method with different forms, and dynamic bind
ing assures that the correct variant is found. Redefining gives the subtype
a completely new method, but with the same name as in the supertype.
This means that redefinition breaks the chain of dynamic binding.

Assume that we had overridden the method balance in the coin saver.
Then within the polymorphous procedure Output of Example 13.21, for coin
bank objects the overridden method would be selected (due to dynamic
binding). But if we had redefined balance (e.g., such that it returns a coin
array such as balanceO: ARRAY Valid OF CARDINAL) then the call s.balance
in the procedure Output would not find this method; instead it would find
the method that corresponds to the declared type of the parameter s (i.e.,
Saving.T), which is the supermethod. Naturally this is correct, since the
new method has a different signature - what should Put Real do with a
value of the coin array? We can invoke the new method either with a vari
able of the redefining type (or its subtypes), e.g., saver.balanceO, or with
NARROW (NARROW(s, CoinSaver.T}.balanceO).

The redefinition of methods and fields can make a program quite incom
prehensible; therefore it should be used with extreme caution! However,
there are two cases where redefinition proves quite useful or even indis
pensable:

1. It can be useful to redefine the init method with a different signature.
On the one hand, this allows us to change the return type of the init
method to the type of the actual subtype. In Example 13.9, if we had
redefined the init method with the signature initO: CoinBank.T, then
the declarations VAR bank: CoinBank.T := NEW(CoinBank.T}.initO and
VAR bank := NEW(CoinBank.T}.initO would be equivalent. In this case
redefinition contributes to the comprehensibility of our program. On
the other hand, it is often necessary to provide the init method in a
subtype with new parameters that were not needed in the supertype.
Since the init method is normally invoked only once in the life cycle of
an object, forfeiting dynamic binding here is no real loss.

2. Sometimes we employ redefinition without knowing it, when we re
define an invisible method of a hidden type by chance. In this case we
have not lost anything because the invisible method was inaccessible
anyway.

We must advise that we have not yet achieved our goal in our example.
We can still circumvent our coin saver: with the following statement, the
client (Example 13.21) could still access the supermethod and deposit an
arbitrary amount in the coin saver:

EVAL NARROW(saver, Saving.T}.transact(amount}

13.4. Encapsulation of object types 339

INTERFACE Tree;

TYPE
Direction = {Ascend, Descend};
Order = {Pre, In, Post};

(*21.01.95 Cw, LB*) (*root class Tree*)

(*ascending or descending*)
(*traversal strategy*)

(*action at node*) Action = PROCEDURE (e: REFANY; depth: INTEGER);

Compare = PROCEDURE (d1, d2: REFANY): [-1 .. 1]; (*order relation *)
(*Compare the contents (or key values) to which dl and d2 point*)

(* Result: 0 if dl = d2; -1 if d1 < d2; 1 if dl > d2*)

ElemT = REFANY;

T= OBJECT
METHODS

init(compare: Compare): T;
search (e: ElemT): ElemT;

insert (e: ElemT);

delete (e: ElemT): ElemT;

traverse (action: Action;
order := Order.ln;

(*initialization sets order relation *)
(*searches for element like e*)
(*returns e iffound, else NIL *)

(*inserts e in tree*)
(*multiple insertions of an are element possible*)

(*deletes element like e*)
(*returns e if deleted, else NIL *)

(*action at each node*)

direction := Direction.Ascend);
(*traversal strategy*)

(*traversal direction *)
END; (*T*)

END Tree.

Example 13.22: Interface of the root class Tree

However, this is only possible if the client also imports the interface Sav
ing, which would not be necessary otherwise. If a client imports only the
interface CoinSaver, then there is no possibility to deposit anything but a
valid coin in the coin saver. This should demonstrate that we should never
import unnecessary interfaces. Better compilers output a warning if names
or interfaces are not used. We should observe these warnings; unused com
ponents can cause someone reading our program much pondering.

13.4.4 The tree class hierarchy

Using a larger example, we will now show how to build a class hierarchy.
Section 12.2.1 introduced trees. This section describes how to define a class
hierarchy that permits us to handle various kinds of nodes and trees.

The root class

Our very first task is to find a root class containing exactly the fields and
methods that all imaginable heirs and clients share. How well we succeed
in finding such a root class depends in part on how well we can predict

340 13. Objects

all future subclasses. This is relatively easy for common problems such
as trees. For larger problems with which we are less familiar, it becomes
improbable that we can find the root class on first try. In such cases we
have to develop the root class in several steps.

In the case of trees, we can say that the methods search, insert, delete
and traverse certainly apply for all kinds of trees. First they are all de
ferred, since their implementation depends on the kind of tree (binary
tree, B-tree, AVL-tree, etc.; see [Knu81, Sed93, Wir76]). Therefore these
methods should not be implemented, but only declared, in the root class.
Naturally we do need to establish the semantics, at least in the from of
comments, in the root class already.

Genericity

So far, so good! We also want to keep our abstract tree generic. In this case,
this means that it should remain independent of both the kind of tree and
the type of the nodes. It would be easiest if we could provide the encap
sulated data type with a type parameter. Although Modula-3 has no type
parameter, it does offer the possibility to specifY module parameters (see
Appendix B.5A). If we adhere to the convention that the type name of an
encapsulated data type is always T, then we can have a type parameter in
the form ModuleName.T. Hence we can define the interface ofthe root class
as a generic interface with a formal module parameter (call it Element).
The type of the nodes would then be Element.T. The module Element then
requires concrete actual parameter modules.

However, we will take a different approach. We will simulate genericity
through subtyping (similar to Section 11.4.3, Example 11.29). Therefore
as element type for the root class we initially choose the root of all pointer
types: REFANY. In the clients that define the various node types, we will
replace this type with corresponding subtypes.

This decision does not complete our work. Normally some order is de
fined on a tree. The concrete choice of the order relation depends on the
type of the nodes, which only the respective clients or heirs know. Until
now we have simply known the type of the node (e.g., ElemT = INTEGER),
so that the order relation was clear. For example, we know exactly how to
compare two INTEGERs. Ifwe had chosen the solution with a generic mod
ule, we would have to require that every variant of Element must also pro
vide a Compare procedure to compare two elements (ofthe type Element.T).
For our simulated genericity we choose the solution requiring that the com
parison procedure must be specified as a parameter in the init method. This
gives us the basics of the interface of the root class (Example 13.22).

Naturally the interface quite resembles that in Example 12.20. One
difference is that ElemT is no longer an INTEGER but a REFANY. In a nar-

13.4. Encapsulation of object types 341

INTERFACE BinaryTree;

IMPORT Tree;

(*06.07.94. Cw, LB*)

TYPE T <: Tree.T; (*T is a subtype of Tree. T*)

END BinaryTree.

Example 13.23: Client interface of a binary tree

row sense, this has nothing to do with object orientation: the concept of
genericity is orthogonal to object orientation (i.e., they are independent).

There are programming languages that feature genericity, but are not
object-oriented, such as the original definition of Ada.

The other difference is that this interface is more abstract than that
in Example 12.20. Because the central type is an OBJECT, not only the
concrete implementation but also the possibility of subclasses is deferred.
There is no implementation module Tree. All methods are deferred and
must be overridden in subclasses.

Subclass of binary trees

AB the first subclass of the root class Tree, let us define the most important
kind of tree, the binary tree. We know how to construct a binary tree from
Section 12.2.2. The question is only what should appear in the interface.
The first suggestion is: actually nothing; the interface Tree already con
tains everything that a client needs. The data structure that defines the
left and right branches could be hidden in the implementation part.

However, if we decide to go that route, then we might not be able to
derive a subclass of binary trees. AVL-trees [Wir76], e.g., are binary trees
for which a restriction applies to the height of the subtrees of each node
(the height of the left and right subtrees of any node must not differ by
more than 1). This produces nicely balanced trees, which generally makes
searching significantly faster than in an unbalanced tree. To be able to
implement an AVL-tree (fairly sensibly), we need access to the underlying
structure of the binary tree. This leads us to the following decision: for
binary trees we will specify two interfaces: one for clients and the other for
future subclasses.

Aside from naming conventions, the Modula-3 language environment
provides no support for distinguishing these interfaces. The accepted
Modula-3 convention is to name the client interface after the problem
(e.g., BinaryTree); the name of the interface that reveals the internal
representation ofthe data structure ends with "Rep" (e.g., BinTreeRep).
Administrative measures can be taken in the respective operating sys
tem to assure that only authorized modules can access Reps.

342 13. Objects

Persons:
Wanda

Peter
Paul

Martha
Bob

Bob

Books:
134

38
38

13
12

2

Figure 13.25: Output of BinaryClient

Example 13.23 shows the client interface. Here we export the new type.
The client need not know any more about binary trees than that they exist;
hence everything else is hidden.

Clients of the binary tree class

Example 13.24 shows a client of this interface. The module imports only
BinaryTree. It need not and should not import BinTreeRep! Naturally the
programmer must be familiar with the interface Tree to know the method
names and signatures. However, only BinaryTree needs to be imported.

We define the two types (Person and Book). The key of a person record
is a text (the name); the key of a book record is a number (catalog num
ber). In both cases, additional information is collected in the info field. The
client anticipates an input file in which names and catalog numbers ap
pear pairwise (we neglect other information). We store the person records
in personTree and the book records in bookTree.

For each key type we must specify the respective comparison procedure,
(CompareNumber or CompareName). (Here we simply rely on the Integer
and Text interfaces provided by the language environment; these abide by
the same conventions for the return value as the method compare). For
each type we also specify the action to be executed on traversal. Here we
define the common procedure Output, which works for both types. However,
we could have written separate output procedures for names and catalog
numbers. The procedure Output also shows an example of the use of level
parameters.

The client creates the person and book records and stores them in the
corresponding trees. Finally, both trees are output with the root node at the

13.4. Encapsulation of object types 343

MODULE BinaryClient EXPORTS Main; (*06.07.94 LB *)
IMPORT SIO, SF, BinaryTree, Text, Integer;

TYPE
Person = REF RECORD name: TEXT; info: REFANY END;
Book = REF RECORD catalogNumber: CARDINAL; info: REFANY END;

VAR
in: SIO.Reader := SF.OpenReadO; (*in must contain name Inumber pairs*)
personTree: BinaryTree.T := NEW(BinaryTree.T).init(CompareName);
bookTree: BinaryTree.T := NEW(BinaryTree.T).init(CompareNumber);
person: Person; book: Book;

PROCEDURE CompareNumber(e1, e2: REFANY): [-1 .. 1] =
BEGIN

WITH i1= NARROW(e1, Book).catalogNumber,
i2 = NARROW(e2, Book).catalogNumber DO

RETURN Integer.Compare(i1, i2) (*integer comparison from standard library*)
END

END CompareNumber;

PROCEDURE CompareName(e1, e2: REFANY): [-1 .. 1] =
BEGIN

WITH t1 = NARROW(e1, Person).name,
t2 = NARROW(e2, Person).name DO

RETURN Text.Compare(t1, t2) (*text comparison from standard library*)
END

END CompareName;

PROCEDURE Output(x: REFANY; level: INTEGER) =
BEGIN

FOR i:= 0 TO leveH DO SIO.PutText(" ") END;
IF ISTYPE(x, Book) THEN

SIO.Putlnt(NARROW(x, Book).catalogNumber, 3); SIO.NIO;
ELSE

SIO.PutText(NARROW(x, Person).name & " "); SIO.NIO;
END;

END Output;

BEGIN (*BinaryClient*)
WHILE NOT SIO.End(in) DO

person:= NEW(Person); person.name:= SIO.GetText(in);
personTree.insert(person); (*construct person tree*)
book:= NEW(Book); book.catalogNumber:= SIO.Getlnt(in);
bookTree.insert(book); (*construct book tree*)

END; (*WHILE NOT SIo.End*)
SIO.PutText("Persons:"); SIO.NIO;
personTree.traverse(Output); (*output person tree*)
SIO.NIO; SIO.PutText("Books:"); SIO.NIO;
bookTree.traverse(Output); (*output book tree*)

END BinaryClient.

Example 13.24: Client ofthe binary tree interface

344

INTERFACE BinTreeRep;

IMPORT Tree, BinaryTree;

REVEAL
BinaryTree.T <: Public;

TYPE
Public = Tree.T OBJECT

root: NodeT:= NIL;
compare: Tree.Compare;

END; (*Public*)

NodeT = OBJECT
left, right: NodeT := NIL;
info: REFANY := NIL;

END; (*NodeT*)

END BinTreeRep.

13. Objects

(*06.07.94. CW; LB*)

(*public for subclasses «: Tree. T)*)
(*root of binary tree*)
(*compare function *)

(*type ofnode*)
(*pointer to child nodes*)

Example 13.26: Subclass interface of the binary tree

left, then each level indented by several blanks. Assume that the input file
contains the following entries: Peter 12 Bob 38 Paul 134 Wanda 2 Martha 13
Bob 38. Figure 13.25 shows the output of the program.

13.4.5 Subclasses of binary trees

Example 13.26 shows the BinTreeRep interface, which reveals the data
structures required by a subclass. The declaration of BinaryTree.T is an
example of a partial revelation (compare Section 11.4).

The root of the tree is no longer stored with the client, which now has
only a reference to the overall structure, the object instance itself There
fore we store the root in a field root pointing to a node type that contains
the usual pointers left and right along with any other information. We could
have defined the node type as a REF RECORD···; however, this would pre
vent deriving a subclass from the node type. We might not want to derive a
subclass - at the moment we do not know. In such a case it is always better
to choose the more general solution, i.e., the object type: for an object type
we need not define a subclass; for a record type we cannot.

The types still do not have to be specified fully here; they are completed
in the implementation module. Since the algorithms of a binary tree are
already familiar (Section 12.2.1, Example 12.24), we show only the inter
esting parts of the implementation (Example 13.27). Due to the root field,
the implementation of Search, Insert and Delete have become somewhat
more complicated (we show only Insert). We must start our recursion not
at tree, but at tree.root. Therefore the procedures themselves are not re
cursive, but they invoke a nested recursive procedure. The tests in the

13.4. Encapsulation of object types

MODULE BinaryTree EXPORTS BinaryTree, BinTreeRep;
IMPORT Tree;
REVEAL

T = Public BRANDED OBJECT
OVERRIDES

init:= Init;
search:= Search;
delete:= Delete;
insert:= Insert;
traverse:= Traverse;

END; (*T*)

PROCEDURE Init(tree: T; compare: Tree.Compare): Tree.T =
BEGIN

tree.root:= NIL; tree.compare:= compare;
RETURN tree;

END Init;

PROCEDURE Insert(tree: T; e: Tree.ElemT) =

PROCEDURE InsertElem(VAR node: NodeT; new: Tree.ElemT) =
BEGIN

IF node = NIL THEN
node:= NEW(NodeT, info:= new)

345

ELSIF tree.compare(node.info, new) > 0 THEN (*new < node.info*)
InsertElem(node.left, new)

ELSE (*new >= node.info*)
InsertElem(node.right, new)

END;
END InsertElem;

BEGIN
InsertElem(tree.root, e)

END Insert;

BEGIN
END BinaryTree.

(*Insert*)

Example 13.27: Structure of the binary tree implementation

node for the direction to continue searching are executed with the compare
procedure, which must be specified in the initialization procedure.

The subclasses of binary trees are easy to add to the interface Bin
TreeRep. To implement an AVL-tree, we need an additional interface to al
low creation of AVL-trees (Example 13.29). This quite resembles the client
interface of BinaryTree. The AVLTreeRep interface is quite simple (Example
13.30); all we need is an additional field in each node that expresses the
degree of balanced ness of a tree (see [Wir76]).

The client ofthe AVL-tree is practically identical to a client ofthe binary
tree; it must only import the tree type AVLTree instead of BinaryTree. In

346 13. Objects

Persons:
Wanda

Peter
Paul

Martha
Bob

Bob

Books:
134

38
38

13
12

2

Figure 13.28: Output of a balanced tree

the module in Example 13.24, if we replace BinaryTree with AVLTree, then
our names and catalog numbers are stored in a balanced AVL-tree instead
of an ordinary tree. For the same input as before (Peter 12 Bob 38 Paul
134 Wanda 2 Martha 13 Bob 38), this program generates more aesthetic,
balanced trees (Figure 13.28).

Since the implementation of insert and delete for an AVL-tree is some
what complicated, we show only the basic structure of the implementation
module (Example 13.31). The interested reader can find the detailed algo
rithm in [Wir76] and a complete Modula-3 implementation in the software
package included with this book.

13.4. Encapsulation of object types

INTERFACE AVLTree;

IMPORT BinaryTree;
TYPE T <: BinaryTree.T;

END AVLTree.

347

(*08.07.94. ew, LB*)

(*T is a subtype of BinaryTree. T *)

Example 13.29: Client interface of an AVL tree

INTERFACE AVLTreeRep;

IMPORT BinTreeRep;
TYPE

NodeT = BinTreeRep.NodeT OBJECT
balance: [-1 .. 1];

END; (*NodeT*)

END AVLTreeRep.

(*06.07.94. ew, LB*)

(*public for subclasses*)
(*degree of balancedness*)

Example 13.30: Subclass interface of an AVL tree

MODULE AVLTree EXPORTS AVLTree, AVLTreeRep;

IMPORT BinaryTree, BinTreeRep;

REVEAL
T = BinaryTree.T BRANDED OBJECT

OVERRIDES
delete:= Delete;
insert:= Insert;

END;

PROCEDURE Insert(tree: T; e: REFANY) =

PROCEDURE Delete(tree: T; e: REFANY): REFANY =

BEGIN
END AVLTree.

(*08.07.94. ew*)

Example 13.31: Implementation of an AVL tree

Chapter 14

Persistent data structures

All programs that we have written thus far suffer from a serious flaw: we
cannot terminate them without losing all our data. We developed refined
structures to allocate memory for our data elegantly and efficiently. But as
soon as the program terminates - or in the event of a power failure - we
lose all data. In the main memory of our computer, all data are temporary;
they can only be accessed by a running program and require the power sup
ply ofthe computer. For this reason practically all computers are equipped
with storage media that can retain data even without a continuous power
supply. We call these hard disks or diskettes - collectively background stor
age. We must store our data on such background storage to allow them to
survive the end ofthe program. We call such nontemporary data persistent.

In most language environments, the only way to transfer data from
main memory to background storage is by way of the operating system.
The operating system stores them in files on the hard disk or other storage
medium. Later we can request that the operating system restore access
from our program to a certain file. This chapter deals with this mecha
nism.

Databases

In files we normally store only data structures that can be transferred from
background storage to main memory or vice versa in a single step. If the
data structures to be managed are very complex and larger than available
main memory can store, e.g., the customer and product file of a large com
pany, then this mechanism no longer suffices. Then we use special database
systems that not only store the data but also provide long-range data man
agement. They feature interactive ad hoc data queries; i.e., we can retrieve
data without having to write a program. In addition, database systems
offer data security: they can handle the crash of a program without suf
fering a loss of data. Also, they feature regular data backup on multiple

350 14. Persistent data structures

Directory

File.dat

current position ~

Figure 14.1: Data structure of a file in the operating system

media to prevent data loss due to hardware failure. The structure and use
of such databases is a separate and important field of computer science
[Ull82, Dat90]. In this book we treat only the storage of smaller amounts
of data in individual files.

14.1 Files

From the viewpoint of the computer operating system, a file is a sequence
of information units (usually bytes). Special drivers (operating system pro
grams) transfer such a sequence to a suitable device, the background stor
age [FI85]. This allows the data to survive even a power shutoff. To assure
that the file can be found later, the operating system stores a directory on
the same device, containing an entry with the name of the file and the
position of the data on the device.

This means that to make data persistent, we must transform them into
a sequence of characters (bytes) and write it to a file. To read persistent
data, we must read and interpret a sequence of characters from a file.

14.1.1 Accessing files

There are two fundamental modes for reading or writing files: sequential
and direct. Reading a file sequentially transfers the data like music from an
audio cassette: from start to finish, one after the other, without the option
to skip parts or to begin somewhere in the middle. Direct access more
closely resembles playing an individual song from a CD: reading begins
at the specified start position; during reading a jump can be made to a
different position in the file to continue reading there. The comparison is
similar for writing a file.

The difference between these modes hinges on the possibility of explicit
positioning. For such positioning, the operating system maintains a pointer

14.1. Files 351

for each file it processes, to manage the current read/write position (see Fig
ure 14.1). Mter each character is read/written, this pointer is incremented.
For direct access, this pointer is explicitly set by the user program.

14.1.2 Access functions

As a rule, programs never process files directly, but employ operating sys
tem functions.

• Open or create a file
This function opens a named file for reading or creates a file for writ
ing. To open a file, the operating system first reads the directory ofthe
device, and then, via the file name, determines the physical position
of the data (Figure 14.1). On opening, the current read/write position
is set to the beginning of the file. Opening a file for writing deletes any
existing data. If the named file does not exist, the operating system
creates a new, empty file.

Two additional functions allow changing the contents of a file: open
for appending and for read/write. In the former case, the new data is
simply written at the end ofthe existing file. In this case, on opening,
the write position is set after the last character of the file. Opening a
file as read/write allows both read and write operations and provides
functions to set the file position (see below).

• Read from a file, write to a file
The read functions read the contents of a file; the write functions mod
ify the contents. Every read or write operation references the current
read/write position. After reading or writing, the pointer position is
incremented.

• Test for end of file
Reading past the end of file (EOF) is an error; therefore the lan
guage environment provides a function to test whether EOF has been
reached. Writing beyond EOF extends the file.

• Set read / write position
For devices that support random access, the operating system pro
vides a function to allow setting the read/write pointer explicitly from
a program. This allows reading or modifying part of a file without
touching the rest.

• Closing a file
To assure the persistency of all changes to a file, (i.e., by writing them

352 14. Persistent data structures

to the device), the file must be closed (due to file buffering in main
memory; see Section 14.2.1).

However, even after finishing reading a file, it should on principle be
closed. Figure 14.1 shows that some data structures are necessary to
handle files. Their memory should always be deallocated after they
are no longer needed; closing a file does this deallocation.

14.1.3 Files and main memory

For the programmer, both files and main memory serve as storage media
for data. However, they differ significantly:

Access
Main memory
type-safe
fast

Capacity limited space
Longevity temporary

Files
untyped

slow
much space

persistent

For the programmer, the greatest difference is that we access main
memory with variables whose types are supported by the compiler. We
process data in files only indirectly by invoking functions of the language
environment. The compiler handles mapping the values of variables onto
the structure of main memory; we do not notice this. For files, the program
mer is responsible for handling this mapping (although with the support of
the language environment). Other differences primarily concern the physi
cal properties of the media, which make the one or the other more suitable,
depending on our tasks.

14.1.4 File types

Most operating systems do write typeless data to a file (actually, they know
only one type, the character), yet they distinguish several data types. The
type of a file determines what kind of data can be stored in the file. Fre
quently operating systems distinguish between binary files and text files.
Text files store information in human-readable form; thus we must format
all data. To access files that are processed only by programs requires no
reformatting. Here we store the data directly as they are stored in main
memory. This is not only faster - we omit formatting - but also more com
pact. We store such data in binary files.

Other examples of file types include executable programs and directo
ries. Finally, other input/output devices are handled as files with special
file types. For the programmer, reading from the keyboard and writing to

14.2. Files in Modula-3 353

the screen or printer behaves just like reading from or writing to a file in
background storage.

Most mainframe operating systems also offer additional access methods
as file types [Tan92]. Depending on whether we read or write the data
characterwise or recordwise, we must select the appropriate access method.
For recordwise access to a file we exchange a certain number of characters
with the device determined by a fixed record length. We can adjust the
record length so that it exactly matches our data unit (e.g., a person record).
The current position then becomes a record number.

14.2 Files in Modula-3

Modula-3 itself provides no language constructs to handle files. As in most
other programming languages, this does not mean that we have to commu
nicate directly with the operating system: the Modula-3 language environ
ment provides the objects and procedures that take care of the details of
invoking operating system functions for us.

Older programming languages (including Pascal [Wir71]) support file
handling in the language. The advantages of automatic data conver
sion between variables in main memory and data in files are coun
terbalanced by drawbacks: either the details of the programming lan
guage develop a greater dependency on the respective operating sys
tem, or the language supports only a small part ofthe features that the
operating system provides. The former often leads to a multitude of
dialects ofthe language that offer constructs customized to the respec
tive operating system. If the language offers too few features, then the
programmer resorts to direct communication with the operating sys
tem and only employs the language constructs partially. Both are un
satisfactory and result in programs that are hard to port to other plat
forms. Therefore file management is usually taken out of the realm
of the programming language and placed in standard libraries, where
adaptations to the respective operating system are easier to carry out
than in the compiler. Additional machine-dependent libraries provide
the programmer with further functions of the respective platform.

14.2.1 Input and output streams

The Modula-3 language environment provides input and output streams
for file access. These are defined in the standard library, where they are
called reader and writer. These are objects that can be associated with a
file on initialization. It is also possible to associate an output stream with
a monitor or printer or an input stream with an input device such as a
keyboard.

354

MODULE ReadFile EXPORTS Main;

IMPORT Rd, FileRd, SIO, SF;

CONST FileName = "input.dat";

VAR rd: Rd.T;
t TEXT;

BEGIN
IF SF.FileExists(FileName) THEN

rd:= FileRd.Open(FileName);
WHILE NOT Rd.EOF(rd) DO

t= Rd.GetLine(rd);
SIO.PutText(t); SIO.NIO;

END;
Rd.Close(rd)

END (*IF*)
END ReadFile.

14. Persistent data structures

(*reader object *)

(*establish link to file *)
(*check for end offile *)
(*read to end of line *)

(*close file *)

Example 14.2: Displaying the file input.dat on screen

Assume that the background storage contains a file named i npu t . da t.
The following statement associates an input stream with this file:

VAR rd: Rd.T;
BEGIN

rd := FileRd.Open("input.dat");

rd is the object that represents the input stream. The procedure
FileRd.Open1 initializes the input stream and associates it with the file.
We use rd only as a pointer to the file. To read from the file, we can write
either:

t= Rd.GetLine(rd);

or:

c:= Rd.GetChar(rd);

GetLine reads the file to the next end-of-line character and assigns the data
to the variable t of type TEXT. GetChar reads only a single character from
the file. The following tests whether the end of file has been reached:

Rd.EOF(rd)

1 In earlier version 2 of the Modula-3 standard library, the functionality of the modules
FileRd and FileWr was contained in the module FileStream.

14.2. Files in Modula-3

MODULE WriteFile EXPORTS Main;

IMPORT Wr, FileWr;

CaNST FileName = "output.dat";

VAR wr: Wr.T;
BEGIN

wr:= FileWr.Open(FileName);
Wr.PutText(wr, "first line\n");
Wr.PutText(wr, "2\n");
Wr. PutText(wr, "--End--\n");
Wr.Close(wr)

END Write File.

355

(*writer object *)

(*establish link to file *)
(*output to file *)

(*close file *)

Example 14.3: Writing the file "output.dat"

Reading a file almost always occurs in a WHILE loop, as shown in Example
14.2; this example shows a program that reads the contents of a text file
inpu t . da t and displays it on screen.

Before reading a file, it is usually necessary to test whether the file is
even accessible. Example 14.2 uses the function SF.FileExits for this pur
pose. It returns true if the file is readable. The module SF (simple files)
contains some utility functions that make frequently needed file handling
functions simpler than the more flexible but more complicated functions of
the library (see Appendix C.3.4).

Writing a file works analogously: we associate an output stream with
a background storage file. The file need not exist; it is created automat
ically. If it exists, then it is overwritten and its old contents are lost.
Wr.PutText or Wr.PutChar writes the file. Example 14.3 shows how to write
a file ou tpu t . da t with three text lines.

The interfaces to modules Rd and Wr are in Appendices C.3.1 and C.3.2.
These are abstract modules in that they only define the behavior of in
put and output streams. The procedures in these modules invoke methods
that all input or output streams must have. Rd.T and Wr.T objects contain
these methods only as empty shells. It is the responsibility of anyone who
implements subtypes of Rd.T and Wr.T to breathe life into these methods.
The modules FileRd and FileWr implement such subtypes. They behave like
Rd.T or Wr.T, and they possess the necessary methods to read/write files via
operating system services. In this way the Modula-3 library determines a
concept for reading and writing physical media and assures uniformity. We
can write to monitors, printers or files in the same way. Even communica
tion between programs is possible with special input and output streams
(we can connect streams to channels; see Section 16.5.4). Table 14.4 shows
the names of some input/output devices along with the modules that im
plement the corresponding input and output stream objects.

356 14. Persistent data structures

Read/write files FileRd/FileWr
Write to screen Stdio: pre-initialized output stream stdout
Read keyboard Stdio: pre-initialized input stream stdin

Write to printer Depends on operating system; usually via
FileWr with a special file name

Table 14.4: Modules that implement input/output streams

To describe the various characteristics of different media, they are as
signed certain attributes. These can be queried and affect the functionality
of several procedures in Rd and Wr:

• Seekable
The procedure Seek enables changing the read/write position of an
open file in background storage. Not all streams are seekable (key
board and screen are not). This attribute can be tested with the func
tion procedure Seekable. The current position can be queried with
Index.

• Intermittent
Some input streams cannot constantly provide new data (although
the "end" of the stream has not been reached); invoking Rd.GetChar
for an intermittent input stream blocks the program until new data
are ready. The keyboard is an example of such a stream: while the
user is considering what to enter, the program must wait. This at
tribute can be tested with Rd.lntermittent.

• Buffered
Often data are not written to an output stream immediately in order
to improve the speed of transfer. Writing to a hard disk, e.g., takes
just as long for a whole block of data as for an individual byte. There
fore the data are kept in main memory in a buffer and actually written
only when they amount to a whole block. Typical block sizes for hard
disks are 512, 1024 or 4096 bytes.

This means that we must take care that the program does not termi
nate before the buffer has been written. Wr.Flush explicitly writes, or
flushes, the buffer (before it is full), thus making the data persistent.
Wr.Close automatically flushes the buffer.

Whether there is a buffer between a program and the output stream
can be tested with Wr.Buffered. For an unbuffered output stream, on
each invocation of a write function the invoking program must wait
until the data have been physically stored. An input stream must
always be buffered because the data are provided with the speed of

14.2. Files in Modula-3

PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) =
BEGIN

FOR i:= FIRST(r) TO LAST(r) DO

357

Wr.PutText(wr, Fmt.lnt(i) & "" & Fmt.Real(r[i)) & "\n"); (*index value *)
END; (*FOR*)

END PutRealArray;

Example 14.5: Storing a REAL array (initial version)

the device (or the user's typing speed), which might be faster than
the program can read. The input buffer functions as a circular queue
(compare Section 11.1.2): if the program is faster than the device (i.e.,
the buffer is empty), then the program must wait. If the input device
is faster, then the data in the buffer are collected in the buffer. If the
buffer is full, the input device must be delayed.

As documented in Appendices C.3.1 and C.3.2, input and output streams
provide other information and functions. We do not treat these in detail
here. The reader/writer concept is described in greater detail in [NeI91].

14.2.2 Fmt and Scan

Both Rd and Wr contain only procedures to read and write characters (type
TEXT is a character sequence). These modules handle the transfer of raw
data. To store numbers or Boolean values, we first need to format them; i.e.,
to transform them into a form that Wr can process we need to convert the
values into their TEXT representations (e.g., the Boolean value true to the
TEXT value "TRUE"). Inversely, reading requires converting the text back to
its respective type. We speak of scanning the text to obtain our data. Using
text files consumes more storage space for the file (see Section 14.1.4), but
has the advantage that the file contents are readable by humans.

The modules Fmt and Scan convert the basic types to TEXT and vice
versa. Appendices C.2.1 and C.2.2 show these modules. Example 14.5
writes an array of REAL numbers as index/value pairs to a pre-initialized
output stream.

Example 14.6 reads this array from a pre-initialized input stream. It
amounts to the mirror image of PutRealArray in Example 14.5. The proce
dure contains awkward expressions because it cannot anticipate how many
characters (digits) either the array index or the value will have. The proce
dure thus exploits the fact that we store the indices and values as follows:

index blank value EOL

The procedure first reads the input stream to the next end-of-line char
acter (EOL) and transfers the data to the TEXT variable t. Then it seeks the

358 14. Persistent data structures

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) =
VAR i, delimiter: CARDINAL; t TEXT;

Fmt

BEGIN
WHILE NOT Rd.EOF(rd) DO

t= Rd.GetLine(rd);
delimiter:= Text.FindChar(t, ' '); (*between index and value *)
i:= Scan.lnt(Text.Sub(t, 0, delimiter»; (*convert index *)
r[i]:= Scan.Real(Text.Sub(t, delimiter+ 1, Text.Length(t)-delimiter-1»; (*value *)

END; (*WHILE*)
END GetRealArray;

Example 14.6: Reading a REAL array (initial version)

VAR i: INTEGER;

Fmtlnt Scan.lnt Scan

FileWr

1
FileWr.Open(File) t
~

Rd.GetText{Reader) Rd

FileRd.~en(File) FileRd

\ Wr Wr.PutText{Writer) ~

/' Ule
Figure 14.7: Reading and writing an integer variable

blank that separates the index from the value and converts the first part
of t to an integer, then the rest to a real number.

The procedure Text.FindChar(t, c) searches TEXT variable t for the char
acter c and returns the position of its first occurrence from the start oft
as a cardinal number. Ifthere is no such character, then the procedure
returns -1. Positions of characters in texts begin at O.

The procedure Text.Sub(t, p, I) has three parameters: a TEXT variable t,
and a position p and a length 1 as cardinal values. Starting at position
p, it extracts from t a number 1 of characters and returns them as TEXT.

GetRealArray is somewhat sensitive. The file must contain exactly the
data that the procedure anticipates; e.g., it must not contain additional
blanks. Furthermore, the size of the array in the file must correspond ex
actly to the parameter array r.

Figure 14.7 summarizes which modules are involved in reading and
writing an INTEGER variable.

14.2. Files in Modula-3 359

CONST NumbLength = 10;

PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) =
BEGIN

FOR i:= FIRST(r) TO LAST(r) DO (*write with fixed length *)

Wr.PutText(wr, Fmt.Pad(Fmt.lnt(i), NumbLength) &

END; (*FOR*)
END PutRealArray;

Fmt.Pad(Fmt.Real(r[ij), NumbLength) &"\n");

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) =
VAR i: CARDINAL;
BEGIN

WHILE NOT Rd.EOF(rd) DO
i:= Scan.lnt(Rd.GetText(rd, NumbLength));
r[i]:= Scan.Real(Rd.GetText(rd, NumbLength));
EVAL Rd.GetLine(rd);

END; (*WHILE*)
END GetRealArray;

(*convert index*)
(*convert value*)

(*skip EOL*)

Example 14.8: Reading and writing with fixed file format (2nd version)

Fixed file formats

GetRealArray is so complicated because it must accommodate digit
sequences of various lengths. If we assume that the input file itself was
produced by a program, then we can extend the list of preconditions for
the proper functioning of GetRealArray: we simply require that all num
bers in the file have a fixed number of characters. We can achieve this for
all numbers with leading zeros or blanks (Scan.Getlnt handles both eas
ily); naturally the number of characters per number must be large enough
to represent the largest possible number. Example 14.8 shows the proce
dures PutRealArray and GetRealArray for writing and reading a file with
fixed column format. PutRealArray employs the function Fmt.Pad to assure
the required column width. GetRealArray can now assume a fixed file struc
ture:

(10 characters for index) (10 characters for value) EOL

We no longer need a delimiter (blank). However, memory requirements
rise considerably and can amount to a multiple of that in our earlier version
(consider a file consisting of 90% zero values).

Error handling

We sacrifice a great deal of security when we read data structures from
files: files lie outside the realm of the program and cannot be tested by

360 14. Persistent data structures

the compiler. If our program depends on the presence of data structures in
files, then we must test whether the file exists and whether its contents are
correct. The former is rather simple (before initializing the input stream,
we test the existence ofthe file). However, we can only test the correctness
of the contents if, on each access to file and on each scan of a character
sequence, we test whether the operation was successful. This can make
programs quite unreadable (GetRealArray alone has three such operations
around which IF statements would have to entwine; compare Example 15.1
on page 372).

Modula-3 supports the concept of exception handling, which allows shift
ing error handling (Chapter 15). All operations on input and output
streams are tested by the procedures in Rd, Wr, Fmt and Scan. In excep
tional situations, these procedures generate exceptions, which terminate
execution of the procedure and must be handled by one of the procedures
in the invocation chain (see Chapter 15). Exceptional situations include
reading past the end of file or attempting to write to a device that is full
and cannot accept more data; for the module Scan, e.g., it is exceptional to
find a letter in a TEXT representing a number.

14.2.3 Simple-IO

We already know Fmt and Scan, which handle the necessary conversions
between the flat data structure of an operating system file and our type
bound data. At the language environment level, conversion and read
ing/writing are strictly separated. This has the advantage that we need
not change read/write operations to store a variable with a newly defined
type: we only need to re-implement the corresponding conversion proce
dures that transform the type into a character sequence and back.

In our programs this argument bears less weight because we generally
want one procedure to store a variable and one to read it. The module
SIO shows how such procedures are written and how they process human
input.

The authors developed 810 for this book. The module offers very sim
ple keyboard input and screen output (as we have used it so far), yet it
also serves as an example of general input/output processing.

Since we can also associate an input stream with the keyboard instead
of a file, it makes sense to develop read procedures such that they can read
not only from existing files but also keyboard input. However, we cannot
expect the user to enter numbers with leading zeros and a fixed number of
digits.

Our first version of GetRealArray in Example 14.6 can handle num
bers of different lengths. However, it functions only with a certain file

14.2. Files in Modula-3

structure (number, blank, number, EOL). If the user types a tabulator
instead of a blank, nothing works because the procedure cannot find
the start of the next number.

361

Appendix C.3.3 shows the complete interface ofSIO. The predefined nu
meric types (except EXTENDED) and TEXT and BOOLEAN each have a proce
dure that reads a value from the input stream and one that writes a value
to the output stream. In contrast to the read procedures we have seen
so far, the SIO.Get· .. procedures (except SIO.GetChar) handle input much
more tolerantly: first they skip all blanks (including all tabulators and
EOL characters, collectively called white space). As soon as they encounter
a printable character, they read on to the next whites pace and interpret the
contents. This makes these procedures suitable for user input at the key
board. SIO.GetChar just reads and returns the next character. All other
read procedures in SIO skip the first character that cannot be part of the
value being read (normally a blank). SIO.TermChar returns the value of
this delimiter character.

We can "look ahead" to see a character that has not been read yet by
reading it with SIO.LookAhead, thereby returning it to the input stream.
This procedure can be implemented with Rd.UngetChar. Input streams
are always buffered; the buffer enables returning characters to the input
stream. The function Available returns true if there are unread characters
available in the respective buffer.

The functions Length and Seek have been assumed by module Rd. End
corresponds to Rd.EOF. Example 14.9 shows the procedures GetRealArray
and PutRealArray, which now use SIO: in particular, reading can be ex
pressed much more convincingly with such procedures.

Implementation of SIO

The Simple-IO procedures have default values for input and output
streams; we have not used or showed them so far. If the parameter rd
or wr is omitted (or passes a NIL pointer), then these procedures read from
the keyboard or write to the screen. As additional convenience, the input
of numeric values can be repeated: if the user types a character string
that cannot be interpreted as a number (e.g., because it contains letters),
then the procedure outputs an error message, and input must be repeated.
Naturally, this only works when reading from the keyboard. If the pro
cedures read something uninterpretable from a file, then they generate
an exception. Example 14.10 shows the implementation of the procedures
SIO.Getlnt and SIO.Putint. The declaration RAISES {Error} means that the
function can generate an exception (see Chapter 15).

All procedures that write to output streams empty the write buffer with
each operation (see Section 14.2.1) when we write to the screen.

362 14. Persistent data structures

PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) =
BEGIN

FOR i:= FIRST(r) TO LAST(r) DO
SIO.Putlnt(i, 10, wr);
SIO.PutChar(, " wr);
SIO.PutReal(r[i), wr);
SIO.NI(wr);

END; (*FOR*)
END PutRealArray;

(*index on writer *)
(*whitespace as delimiter *)

(*real value to writer *)

(*whitespace as delimiter *)

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) =
VAR i: CARDINAL;
BEGIN

WHILE NOT SIO.End(rd) DO
i:= SIO.Getlnt(rd);
r[i):= SIO.GetReal(rd);

END; (*WHILE*)
END GetRealArray;

(*read index *)
(*read value *)

Example 14.9: Reading and writing with Simple-IO (3rd version)

Treating screen output as a file produces a somewhat pathological ef
fect that also buffers screen output, although this does not yield an
improvement in processing speed. Therefore programmers must al
ways be sure to empty the screen output buffer to assure the timely
display of the contents. When we use Simple-lO, we can ignore this.

Scanning input streams with Lex

The read procedures of Simple-IO employ the library module Lex. This
module provides procedures for reading and interpreting characters from
an input stream. Lex.Skip is used to skip whitespace in the input stream.
Lex.lnt reads all characters that could be part of an integer and terminates
at the first character that is not a digit. If the first character that Lex.lnt
reads is not a digit, then the procedure generates the exception Lex.Error.
SIO.Getint handles the exception and repeats the read operation (only if it
was read from the keyboard). Exceptions are explained in Chapter 15.

14.3 Persistent variables

Often we need files only to store our data structures. Here, when the pro
gram terminates, we want to avoid losing the values that one or more vari
ables reference. We want to make the variables persistent; therefore we
write them to a background storage file - not because we value the file.
There are other cases: a text editor generates a file that is processed by
completely different programs (e.g., a compiler).

14.3. Persistent variables 363

MODULE SIO; (* 10.05.94. LB*)

TYPE
Kind = {Integer, Real, LongReal, Boolean}

PROCEDURE Getlnt(rd: Reader := NIL): INTEGER RAISES {Error} =
VAR i: INTEGER; count: CARDINAL := MaxError; (*MaxError = 3 *)

BEGIN
IF rd = NIL THEN rd:= Stdio.stdin END;
LOOP

TRY
IF End(rd) THEN RAISE Error END;
Lex.Skip(rd);
i:= Lex.lnt(rd);
EXIT

EXCEPT
Lex.Error, Rd. Failure, FloatMode.Trap =>

FormatError(rd, Kind.lnteger, count); (*handles input format errors *)
END; (*TRY*)

END; (*LOOP*)
ConsumeNext(rd); (*consumes and saves following dilimiter *)

RETURN i;
END Getlnt;

PROCEDURE Putlnt(i: INTEGER; length:= 3; wr: Writer := NIL) =
BEGIN

IF wr = NIL THEN wr:= Stdio.stdout END;
Wr.PutText(wr, Fmt.Pad(Fmtlnt(i), length));
IF wr = Stdio.stdout THEN Wr.Flush(wr) END;

END Putlnt;

Example 14.10: Part of the implementation of Simple-fO

In this section we want to discuss persistent variables. Thus far we
have encountered only variables whose lifetime extends at most over the
duration of execution of a program (the state space of the modules; see
Section 10.2.1). However, we could extend the hierarchy of state spaces -
auxiliary variables of a nested block, local variables of a procedure, global
variables of a module - by one level, one state space, that is accessible to
multiple programs and outlives the execution of individual programs. (Sim
ilar ideas have been realized in database-oriented programming languages
[KMP+83, KM94, SM92]). We call this the external state space.

What is necessary to support persistent variables? Before the program
executes, the current values of persistent variables must be read from a
database; i.e., the program assumes part of the external state space. While
the program executes, these variables are treated as normal variables.
However, before the program terminates, the values in the database must

364 14. Persistent data structures

be updated to the last values of the program variables; this updates the
external state space.

PERSISTENTVAR max: INTEGER

Unfortunately, the Modula-3 compiler cannot handle such declarations.
Still, we can easily envision it. In the following we explain a concept for
attaining these semantics with the help of objects.

14.3.1 Implementation

We write the values of persistent variables to a global text file. This file is
global in the sense that multiple programs can store their variables in the
same file. However, we store not only the value but also the associated iden
tifier. We give this file the somewhat inflated name "database of persistent
variables"2. With the launching of each program that employs persistent
variables, there is a check whether the identifiers associated with the vari
ables already have values stored in the database. If so, then these values
are used for initializing the variables that are declared as persistent. The
structure of the database is quite simple, consisting of lines in the following
form:

identifier: value EOL

The value can be surrounded by whites pace. Such a database could also be
created and maintained with a text editor.

We store persistent variables in objects that have a setup method to seek
a value in the database. Ifthis method is invoked immediately on declara
tion of variables, then we have the desired effect of automatic initialization
with the current value ofthe persistent variables:

VAR max:= NEW(Persistent.integer, key:="max").setupO

As the database identifier for a variable, we simply use the name of the
variable. Since the compiler does not support persistent variables, the pro
grammer must assure that their values are updated in the database before
the program terminates. The final statement in the program (preferably
protected in a TRY-FINALLY statement; see Section 15.3) is the invocation
of an operation that updates the value of all persistent variables in the
database:

Persistent.EndO

2In the version introduced here, this file has little in common with a database. Here it
serves as a place holder for a much larger, more complex system that would represent the
external state space in a realistic application [BEW94].

14.3. Persistent variables 365

TRY
Persistent.Start("test.db");

(*Persistent.End must be invoked in any case *)

(*Persistent variables *)
VAR

i := NEW(Persistent.integer, key := "int").setupO;
r := NEW(Persistent.Real, key := "real").setup();
t := NEW(Persistent.Text, key := "text").setup();

BEGIN
SIO.PutText("int: ");
SIO.PutText("real: ");
SIO.PutText("text: ");

SIO.Putlnt(Lval); SIO.NI();
SIO.PutReal(r.val);SIO.NIO;
SIO.PutText(t.val); SIO.NI();

(*Access to variable via val field *)
INC(Lval);
r.val := r.val + 1.0;
t.val := t.val & "."

END;

(*Update database *)

FINALLY
Persistent. End()

END;

Example 14.11: Use of persistent variables

The setup method enters all persistent variables in a list that is then pro
cessed by the End procedure. Example 14.11 shows a program that modifies
an INTEGER, a REAL and a TEXT variable on each invocation.

Be aware that we still lack some aspects of a realistic solution for the
implementation sketched here: For the time, we ignore the problem
that multiple programs can, in some overlapping order, read the value
of a persistent variable and then update its value (only the last value
holds). We assume that only a single program is running that could
change the external state space. We would also need a mechanism
that guarantees that only one program can change a given persistent
variable at a certain time.

Furthermore, we would need a well-conceived naming scheme for data
base identifiers (the keys) of persistent variables: various producers of
service modules would have to reach agreement to avoid accidentally
using the same identifier for quite different persistent variables, which
could then overwrite one another. We do not deal with this problem
here.

Example 14.12 shows the interface of the module Persistent. The type
Persistent.T is the supertype for all objects that manage persistent vari
ables. Essentially, this object contains the setup method that seeks the

366 14. Persistent data structures

INTERFACE Persistent;

IMPORT Rd, Wr, Lex;

CONST
DefaultPersistentDB = "/software/lib/m3PersDB/persistentDB";
DefaultPersistentRefany = "/software/lib/m3PersDB/persistentRefany.";

TYPE T <: Public;
Integer <: Publiclnteger;
Char <: PublicChar;
Boolean <: PublicBoolean;
Real <: PublicReal;
Text <: PublicText;
Refany <: PublicRefany;

Public = OBJECT key: TEXT
METHODS setupO RAISES {Lex.Error} END;

Publiclnteger = T OBJECT val:= 0
METHODS setupO: Integer RAISES {Lex.Error} END;

PublicChar = T OBJECT val:= VAL(O, CHAR)
METHODS setupO: Char RAISES {Lex.Error} END;

PublicBoolean = T OBJECT val:= FALSE
METHODS setupO: Boolean RAISES {Lex. Error} END;

Public Real = T OBJECT val:= 0.0
METHODS setupO: Real RAISES {Lex. Error} END;

PublicText = T OBJECT val:= ""
METHODS setupO: Text RAISES {Lex.Error} END;

PublicRefany = T OBJECT val: REFANY:= NIL
METHODS setupO: Refany RAISES {Lex.Error} END;

PROCEDURE EndO RAISES {Wr.Failure};

PROCEDURE Start(persistentDB:= DefaultPersistentDB;
persistentRefany:= DefaultPersistentRefany)

RAISES {Rd.Failure};
END Persistent.

Example 14.12: Simulation of persistent variables

(*CW*)

database value matching the key. Example 14.13 reveals the type Persis
tent.T. The value is stored as a TEXT value and is converted to the respec
tive type with an internal method textToVal. The setup method invokes the
method textToVal on reading the database. valToText is invoked by Persis
tent.End before updating the database.

The attribute val exists only for subtypes of Persistent.T (Persistent.
Integer, e.g., has an INTEGER attribute val). These subtypes must override
the two type-dependent conversion methods textToVal and valToText with
the conversion procedures that they need.

14.3. Persistent variables

INTERFACE PersistentRep;

IMPORT Persistent, Lex;

REVEAL
Persistent.T = Persistent.Public BRANDED OBJECT

textVal: TEXT;
METHODS

valToText 0;
textToVal 0 RAISES {Lex. Error};

OVERRIDES
setup := Setup;

END;

PROCEDURE Setup (self: PersistentT) RAISES {Lex.Error};

END PersistentRep.

Example 14.13: Revelation of Persistent. T

Pickles

367

(*CW*)

The module Persistent can also store persistent variables of type REFANY.
Note that it is critical to store not only a pointer but also the data which
it references! Here the Modula-3 standard library offers a comfortable fea
ture: the module Pickle (also called Pkl in older library versions) [NeI911;
the following is its simplified interface:

INTERFACE Pickle;

IMPORT Rd, Wr;

PROCEDURE Write(wr: Wr.T; ref: REFANY);
PROCEDURE Read(rd: Rd.T): REFANY;

END Pickle.

Pickle.Write writes all data that are accessible via the pointer ref to an
output stream. Pickle. Read reads data from an input stream and recon
structs them in main memory to match the structure that was written
with Pickle. Write. These procedures allow implementing the type Persis
tent. Refany just as easily as other types of the interface Persistent.

For the interested reader, we present an excerpt from the implemen
tation of the module Persistent (Example 14.14). The excerpt contains the
part that handles the INTEGER subtype of Persistent.T. The other subtypes
function analogously.

368 14. Persistent data structures

Example 14.14: Part of the implementation of the module Persistent

MODULE Persistent EXPORTS Persistent, PersistentRep;

IMPORT SIO, SF, Fmt, Lex, Scan, Rd, Wr, TextTextTbl, Ref List, Pickle;
FROM Text IMPORT Equal, FindChar, GetChar;

REVEAL
Integer = Publiclnteger BRANDED OBJECT

OVERRIDES
setup := IntSetup;
valToText := IntvalToText;
textToVal := TextTolntval

END;

(*revelation of persistent integer*)

(*install type·dependent methods*)

PROCEDURE Setup (self: T) RAISES {Lex.Error} =
VAR value: TEXT;
BEGIN

(*enter in list of all persistent variables*)
persVars := RefList.Cons(self, persVars);

(*first read text string belonging to self.key*)
IF persValues.get(self.key, value) THEN

self.textVal := value;
self.textToVaIO;

END;
END Setup;

(*store text string*)
(*convert text string to respective type*)

PROCEDURE IntSetup (self: Integer): Integer RAISES {Lex. Error} =
BEGIN

NARROW(self, T).setupO; (*start overridden method*)
RETURN self;

END IntSetup;

PROCEDURE IntvalToText (self: Integer) =
BEGIN (*type-dependent conversion for integer values -t TEXT *)

self.textVal := Fmt.lnt(self.val);
END IntvalToText;

PROCEDURE TextTolntval (self: Integer) RAISES {Lex.Error} =
BEGIN (*type-dependent conversion for integer values TEXT -t*)

self.val := Scan.lnt(self.textVal);
END TextTolntval;

(***********************)
(*Persistent database *)
(***********************)

CONST
PrintableChars = Lex.Blanks + Lex.NonBlanks

+ SET OF CHAR{VAL(128, CHAR) .. LAST(CHAR)};

14.3. Persistent variables

(*global data*)
VAR

369

dbName, pklDataPrefix: TEXT;
persValues := NEW(TextTextTbI.T);
persVars: RefList.T := NIL;

(*database name and prefix for Pickle files*)
(*hash table Persvarnames to values*)

(*list of names ofpers. variables*)

PROCEDURE ReadDB (dbName: TEXT) RAISES {Rd.Failure} =
VAR

rd: Rd.T;
name, value: TEXT;

BEGIN
TRY

IF SF.FileExists(dbName) THEN (*no values without database file*)
rd := SF.OpenRead(dbName);
Lex.Skip(rd);

(*Read database file completely: *)
WHILE NOT Rd.EOF(rd) DO

name := Lex.Scan(rd, Lex.NonBlanks - SET OF CHAR{':'});
EVAL SIO.GetChar(rd); (*skip : *)

Lex.Skip(rd);
(*Read value (can be enclosed in quotes) *)

IF NOT Rd.EOF(rd) AND SIO.LookAhead(rd) = "" THEN
EVAL SIO.GetChar(rd); (*skip " *)
value := Lex.Scan(rd, PrintableChars - SET OF CHAR{""});
EVAL SIO.GetChar(rd); (*skip second" *)

ELSE
value := Lex.Scan(rd, PrintableChars - Lex.Blanks);

END;
Lex.Skip(rd);

(*Enter key / value pair in hash table *)
EVAL persValues.put(name, value);

END;
END;
Rd.Close(rd);

(*Unexpected end offile and Lex error converted to Rd. Failure: *)
EXCEPT

Rd.EndOfFile=>
RAISE Rd.Failure(AtomList.List1 (

Atom.FromText("unexpected EOF in persDB "& dbName)));
I Lex.Error=>

RAISE Rd.Failure(
AtomList.List1 (Atom.FromText("formatting error in persDB" & dbName)));

END;
END ReadDB;

370 14. Persistent data structures

PROCEDURE WriteDB (dbName: TEXT) RAISES {Wr.Failure} =
VAR

wr:= SF.OpenWrite(dbName. overwrite:= TRUE);
name, value: TEXT; iter:= persValues.iterateO;

BEGIN
(*Read hash table and write to database file *)

WHILE iter.next(name. value) DO
IF Equal(value) OR

FindChar(value. '\t'»=O OR FindChar(value .•• »= 0
THEN (*value contains whitespace *)

Wr.PutText (wr. name & ": \ & value & "\"\n");
ELSE

Wr.PutText (wr. name & ": .. & value & "\n");
END;

END;
Wr.Close (wr);

END WriteDB;

(***********************)
(*Setup /Write Database *)
(* **************':'*******)

PROCEDURE Start(persistentDB:= DefaultPersistentDB;
persistentRefany:= DefaultPersistentRefany)

RAISES {Rd.Failure}=
BEGIN

dbName:= persistentDB; pkIDataPrefix:= persistentRefany;
ReadDB(dbName);

END Start;

PROCEDURE EndO RAISES {Wr.Failure} =
VAR var: T;
BEGIN

WHILE persVars # NIL DO
var:= NARROW(persVars.head. T);
var.vaIToTextO;
EVAL persValues.put(var.key. var.textVal);
persVars:= persVars.tail;

(*replace old or write new*)

END;
WriteDB(dbName);

END End;

BEGIN
TRY

StartO; (*read database (with default name) *)

EXCEPT Rd.Failure(err)=>
SIO.PutText("\nPersistent: .. & RdUtils.FailureText(err) & "\n");
<'ASSERT FALSE'> (*generate run-time error*)

END;
END Persistent.

Chapter 15

Exception handling

Thus far we have concentrated on writing programs as correctly as possi
ble. However, each program is embedded in a larger context and must com
municate with its environment. We make a number of assumptions about
the environment (indeed, we incorporate these assumptions into our pro
grams) that must apply in order for our program to work at all: input data
must be present, there must be space on the hard disk for writing results,
numeric values must be in certain valid ranges, etc. However, certainly
some exception situations arise where these assumptions do not apply. The
program must handle these situations also, without crashing or producing
erroneous results. In addition, we could design the program so that it tests
all possible errors in every situation. However, this strategy would prove
quite involved and unnatural.

John Searle pondered about the nature of common sense knowledge,
saying: "Every morning when I enter my office, I assume that there
is no abyss behind the door. But do I really make this assumption?
Obviously not: I simply enter. Still, if there were an abyss behind the
door, I would nevertheless react to it." We can construe this abyss as
an exception situation. It is clear that we must also behave correctly
in such exception situations.

Instead oftesting for each action whether it was completed successfully,
let us make provisions for exceptional cases. These provisions will only be
activated if an exception actually occurs; otherwise they do not encumber
normal program flow. Therefore this kind of exception handling makes
programs both more comprehensible and more efficient.

15.1 Exceptions in a program

Exceptions are program states that are not anticipated under normal con
ditions of program execution. For this reason we prefer not to make their

372

VAR
rd1, rd2: Rd.T;
error: BOOLEAN;
values1, values2: ARRAY [1..10] OF REAL;

BEGIN
(*Open files *)

15. Exception handling

IF SF.FileExists(File1) THEN (*Does file exist? *)
rd1 := SF.OpenRead(File1);
IF SF.FileExists(File2) THEN

rd2:= SF.OpenRead(File2);
GetReaIArray(rd1, values1, error); (*error indicates success or failure *)
IF error THEN SIO.PutText("lnput file has wrong format"); SIO.NIO
ELSE

GetReaIArray(rd2, values1, error);
IF error THEN SIO.PutText("lnput file has wrong format"); SIO.NIO
ELSE (*process only if input was successful *)

Process(values1, values2);

END (*IF error*)
END (*IF error*)

ELSE
SIO.PutText(File2 & " cannot be read"); SIO.NIO;
error:= TRUE;

END (*IF FileExists*)
ELSE

SIO.PutText(File1 & "cannot be read"); SIO.NIO;
error:= TRUE;

END (*IF FileExists*)

Example 15.1: Error handling without exceptions

handling part ofthe algorithm. Ifwe read a series of INTEGER values from
a file, we do not want to be bothered with testing whether the input con
tains non-numeric characters; we could not do anything with these anyway,
and we would need to terminate program execution. If several files are
to be read, then it can be quite bothersome to test before each operation
whether an error has already occurred.

The code fragment in Example 15.1 shows the situation. The program
consists of repeatedly nested IF statements and uses a variable error. Dis
tributed throughout the program are tests of the success of operations. All
this has nothing to do with the actual algorithm; indeed, this encumbers
understanding the algorithm.

The concept of exception handling enables us to develop algorithms as
though everything would go well. If an error occurs, then we say that an ex
ception situation has occurred: we generate an exception. Then, since the

15.1. Exceptions in a program 373

EXCEPTION FileError(TEXT); (*declaration of exception conditions *)

VAR rd1, rd2: Rd.T;
values1, values2: ARRAY [1..10) OF REAL;

BEGIN
TRY

(* Does file exist? *)
IF NOT SF.FileExists(File1) THEN RAISE FileError(File1) END;
IF NOT SF.FileExists(File2) THEN RAISE FileError(File2) END;

(*Read file *)
rd1:= SF.OpenRead(File1);
rd2:= SF.OpenRead(File2);
GetReaIArray(rd1, values1);
GetReaIArray(rd2, values2);

(*Process file *)
Process(values1, values2);

EXCEPT
I FileError(fname)=>

SIO.PutText(fname &" cannot be read"); SIO.NIO;
I SIO.Error=>

SIO.PutText("lnput file has wrong format"); SIO.NIO;
END; (*TRY-EXCEPT*)

Example 15.2: Error handling with exceptions

algorithm can no longer function properly, we terminate normal execution.
The program branches to handlers, which then react to the situation.

Example 15.2 shows a program fragment that does the same as the frag
ment in Example 15.1, but handles exception errors with exceptions. The
statements where exceptions can occur are guarded with a TRY-EXCEPT
statement (see Section 15.2.4). This amounts to a bracketing of the state
ments. If an error occurs (which still must be detected), then a RAISE
statement generates an exception. This terminates execution of the state
ments between TRY and EXCEPT. Similar to a CASE statement, the EX
CEPT branch tests which exception has occurred. If there was no exception,
then the EXCEPT branch is not executed. Just as in Example 15.1, Example
15.2 tests the existence of the input files. However, the second version is
formulated more clearly because error handling is distinct form the actual
algorithm.

Naturally, exception situations are often detected by server modules on
the system level: the hard disk might produce a read error while reading a
file (perhaps due to dust at that position); this is recognized by the proce
dure that invoked the operating system service to read the file and that was

374 15. Exception handling

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL)
RAISES {SIO.Error} = (*delegates SIO.Error *)

VAR
i: CARDINAL;

BEGIN
WHILE NOT SIO.End(rd) DO

i:= SIO.Getint(rd);
r[i]:= SIO.GetReal(rd);

END; (*WHILE*)
END GetRealArray;

(*read index: SIO.Error can occur *)
(*read value: SIO.Error can occur *)

Example 15.3: Delegation of exceptions

notified by the server module ofthe failure ofthe read operation. However,
this procedure cannot really handle the exception. Such a service proce
dure to read data from files cannot know what effect the lack of these data
means to the invoking application. The file could contain important config
uration data without which the program cannot execute. Perhaps the data
can be retrieved elsewhere. Thus, on occurrence of an exception, the pro
cedure terminates and reports the situation to the invoking procedure. For
the invoking procedure, this has the same effect as a RAISE statement: its
algorithm is also terminated. It either also delegates the exception condi
tion to its invoking procedure, or it handles it in the TRY-EXCEPT statement
that invoked the procedure. In Example 15.2 the procedure GetRealArray
does not handle the exception generated in SIO module, but delegates them
(see also Example 15.3). The situation is finally handled in the procedure
that invoked GetRealArray. After the exception is handled, the exception
condition is reset and the program continues normal execution after the
corresponding TRY-EXCEPT statement.

To indicate that a procedure should not handle an exception situation
but only delegate it, we enter the name of the exception in a list after the
keyword RAISES. Example 15.3 shows the procedure GetRealArray (famil
iar from Chapter 14), where we have now specified delegation of exceptions.

Many programming languages provide no (usable) exception mecha
nism. This tends to produce programs that are either slower and less
comprehensible due to numerous explicit error tests, or - what can be
worse - error situations are not handled with adequate care.

Other programming languages with exception handling permit error
handling to ignore the exception and to resume program execution at
the point where the exception occurred. Modula-3 does not permit re
sumption. If the procedure that generated the exception is left during
the search for a handler, then there is no way back. However, care
ful planning of exception handling lets us always achieve the desired
effects.

15.2. Exception handling in Modula-3

15.2 Exception handling in Modula-3

15.2.1 Exceptions, run-time errors,
programming errors

375

Not every error that hinders a program from functioning is an exception
situation in the sense of this chapter. We term errors made by the pro
grammer programming errors: due to an incorrect algorithm or an erro
neous structure, the program fails to meet specifications. Exception han
dling does not allow us to manage this kind of error; only careful problem
analysis and program planning combined with careful verification and test
ing can avoid such errors. In addition, we distinguish run-time errors and
exceptions:

• Run-time errors
These are due to a programming error and are detected by the run
time system of the language environment. Run-time errors can be
seen as predefined exceptions generated by the language environment
in certain situations. Examples of run-time errors include accessing
an array element with an index beyond the index range, assigning a
negative value to a CARDINAL variable, dereferencing a NIL pointer,
and an overflow in REAL arithmetic.

None of the three available Modula-3 language environments al
lows intercepting exception situations detected by the run-time
system. Run-time errors always cause program termination.

• Exceptions
We speak of exceptions in the context of an error situation detected
by a program itself (rather than by the underlying language environ
ment, operating system or hardware). On detection of such an error
situation, the program explicitly generates an exception. This need
not occur directly in a procedure written by the programmer, but can
frequently occur in a module of the Modula-3 library.

As sketched here, the border between run-time errors and exceptions is
less a conceptual one and more a matter of implementation. Whether a cer
tain situation can be handled by the program as an exception or demands
immediate program termination as a run-time error (see Appendix C.1.6)
depends on the compiler and the language environment.

Modula-3 provides explicit language constructs for declaring, raising
and handling exceptions. The Modula-3 library predefines a number of
exceptions, and we can add definitions of others. There are two basic op
erations on exceptions: raising and handling. An exception is raised by a
RAISE statement and intercepted and handled by a TRY-EXCEPT statement.

376 15. Exception handling

15.2.2 Declaration of exceptions

Exceptions are identified via their names. An exception declaration takes
the following form:

Declaration13 = ... I"EXCEPTION" { ExceptionDecl16 ";" }I ...
ExceptionDecl16 = Ident89 ["(" Type48 ") "].

The identifier Ident89 is the name of the exception. An exception can
have a parameter whose type is specified on declaration of the exception.
For example, the SIO interface defines the parameterless exception Error
(see Appendix C.3.3 on page 542). This enables clients of the module to
access the exceptions that the procedures ofthe module generate. Example
15.2 handles SIO.Error in its TRY-EXCEPT statement.

Exporting the EXCEPTION declaration in an interface allows clients to
raise the exception themselves.

15.2.3 Generation of exceptions

An exception is raised by a RAISE statement:

RaiseStmh4 = "RAISE" QuallD86 ["(" Expr66 ")"].

Expr66 computes the parameters ofthe exception. Its type was specified
on declaration ofthe exception. Parameterless exceptions omit this expres
sion along with the parentheses. The RAISE statement raises an exception
and thereby begins the search for a corresponding handler.

15.2.4 Exception handling

To handle exceptions, we bracket the statement sequence in which a given
exception could occur within a TRY-EXCEPT statement and specify a list of
handlers. A handler is simply a statement sequence. The syntax of the
TRY-EXCEPT statement is:

TryXptStmt38 = "TRY" Stmts23 "EXCEPT" [Handler44] { "I" Handler44 }
["ELSE" Stmts23] "END".

Handler44 = QuallD86 { "," QuallD86 } ["(" Ident89 ")"] "=>" Stmts23 .

15.2. Exception handling in Modula-3 377

This enables writing statements that generally take the following form:

TRY
guarded statements

EXCEPT
I exceptionJ(parameterJ) => handlerJ

I exceptionn (parameter n) => handlern
ELSE handlero
END

The TRY-EXCEPT statement executes as follows:

1. If no exception occurs in the guarded statements, then they execute
as though there were no enclosing TRY-EXCEPT statement. Mter ex
ecution of the statements, program execution resumes after the END
ofthe TRY-EXCEPT statement.

2. If an exception does occur in the guarded statements, then the state
ment sequence terminates and control passes to the EXCEPT branch.
If exceptioni occurred, then the variable parameteri is set to the value
of the expression ofthe parameter ofthe RAISE statement, and execu
tion resumes at handleri. handleri is a statement sequence; it is also
the scope of the variable parameteri. The type of this variable is the
same as was specified on declaration of the exception.

Thus the exception was handled. The exception condition no longer
applies, and program execution continues after the END of the TRY
EXCEPT statement.

3. However, if an exception occurs in the guarded statements and it does
not appear in the list, then handlero of the ELSE branch executes,
the exception condition is reset, and execution resumes after the TRY
EXCEPT statement.

If there is no ELSE branch (i.e., the TRY-EXCEPT statement fails to
provide a handler), then either the exception is delegated or the pro
gram terminates with a run-time error (see Section 15.2.5).

Exceptions that occur in the handler are not guarded. We can inter
cept such exceptions if we write the TRY-EXCEPT statement as a guarded
statement of a further TRY-EXCEPT statement.

15.2.5 Delegating exceptions

If we do not handle an exception in a procedure, but only want to inform
the invoking procedure of the occurrence of an exception condition, then

378 15. Exception handling

we must specify this in the procedure declaration. The complete syntax of
procedure signatures is:

ProcedureHead18 = "PROCEDURE" Ident89 Signature19.
Signature19 = "(" Formals2o ")" [":" Type48] ["RAISES" Raises22].
Raises22 = "{" [Quail D86 { "," Quail D86 }] "}".

Hence the RAISES set represents a second exit from the procedure: ei
ther the procedure terminates normally and returns any data in variable
parameters or as return value, or it generates an exception, which has the
same effect in the invoking procedure as an explicit RAISE statement:

PROCEDURE Action1
(VAR error: BOOLEAN) =

BEGIN

IF error condition THEN
error := TRUE;

END;

END Action1;

Action1 (error);
IF error THEN RAISE exception;

PROCEDURE Action20
RAISES {exception}=

BEGIN

IF error condition THEN
RAISE exception;

END;

END Action2;

Action20;

Action 1 and Action2 in the above pseudocode both test for the occurrence
of an exception condition. Action1 reports the exception condition with a
Boolean variable, Action2 with an exception. The explicit RAISE statement
and the delegated exception have the same effect: the procedure that in
voked Action 1 /2 terminates and the search for a handler begins.

This can occur across multiple levels ofthe invocation chain. Whenever
an exception occurs in a procedure (whether via a RAISE statement or in an
invoked procedure that delegates handling), it is delegated if, first, there
is no handler in the procedure itself (see Section 15.2.4) and, second, if its
name appears in the RAISES set of the procedure. If an exception that can
not be delegated occurs outside a TRY-EXCEPT statement or if the EXCEPT
branch has neither a handler nor an ELSE, then the program terminates
with a run-time error.

Now let us describe completely the search for a handler:

1. If the exception occurs in a statement guarded by a TRY-EXCEPT
statement and a handler or an ELSE branch exists there, then con-

15.3. Delaying exception handling 379

trol passes to the handler, the exception condition is reset, and pro
gram execution continues after the TRY-EXCEPT statement (see Sec
tion 15.2.4).

2. Ifthe exception occurs in a statement guarded by a TRY-EXCEPT state
ment and neither a corresponding handler nor an ELSE branch exists
there, then the procedure terminates and, if its name appears in the
RAISES set of the procedure, the exception condition is delegated.

3. If the exception does not occur in a guarded statement, then the pro
cedure terminates and, if its name appears in the RAISES set of the
procedure, the exception condition is delegated.

4. If the exception can be neither handled nor delegated, then program
execution terminates with a run-time error.

If an exception was delegated, then the same search for a handler be
gins anew. Exceptions frequently pass through a whole sequence up the
invocation chain. Example 15.3 shows how the exception SIO.Error is only
delegated. SIO.Error occurs when one of the two procedures SIO.Getlnt or
SIO.GetReal reads a character string that cannot be interpreted as a num
ber (see Example 14.10, page 363). GetRealArray does not handle this error.
The semantics of the problem for GetRealArray are such that the array can
not be read completely; for this procedure there is no handling for this
problem. Instead of raising an exception itself, GetRealArray simply dele
gates the exception and lets the invoking procedure handle it (in Example
15.2 it is "handled" simply with an error message). In Section 15.4 we
discuss planning exception handling for larger programs so that exception
situations are always handled where sufficient information is available on
the effects of the problem.

15.3 Delaying exception handling

The occurrence of an exception causes the immediate termination of the
current procedure and all other procedures in the invocation chain that
propagate the exception. However, for many algorithms, simply termining
execution and propagating the exception condition is not acceptable error
handling. For example, the Modula-3 compiler creates temporary files that
can become quite large, but are relevant only during compilation. These
files should be deleted - even if an exception condition occurs during com
pilation.

In environments where multiple programs share a computer system,
reliable cleanup is very important after program execution. A program

380 15. Exception handling

must temporarily reserve a given service so that it is not disturbed by com
peting programs. Outputting to a printer is such a service that obviously
can be used by only one program at a time; other jobs must wait (Chapter
16 discusses such synchronization problems in detail). Naturally this also
means that each program must release the resource when finished. If an
exception occurs in a printing program after the reservation of the printer,
then in any event the printer must be released again before the printing
program is terminated - otherwise the printer would remain blocked. In
a more general sense, the following sequence occurs frequently in software
systems:

Reserve resource
Process
Release resource

Delegating exceptions in the processing part is obviously impossible;
it would terminate the total algorithm and leave the resources blocked.
Therefore we guard such statements with the TRY-FINALLY statement:

Reserve resource
TRY

Process
FINALLY

Release resource
END;

Delegation of the exception is delayed by this statement: after the oc
currence of the exception, the guarded statements (between the keywords
TRY and FINALLY) abort, the part after FINALLY executes, and then the
search for a handler for the exception begins. The FINALLY branch always
executes, even if no exception occurs.

If the only exception that can occur during processing is Error, then the
TRY-FINALLY statement corresponds to the following TRY-EXCEPT state
ment:

Reserve resource
TRY

Process
EXCEPT

Error=> Release resource; RAISE Error
END;
Release resource

15.3. Delaying exception handling

PROCEDURE IntegerCopyO RAISES {SIO.Error} =
VAR

in:= SF.OpenReadO;
out:= SF.OpenWriteO;
count: CARDINAL:= 0;

BEGIN
TRY

WHILE NOT SIO.End(in) DO
SIO.Putlnt(SIO.Getlnt(in), 6, out);

381

(*opens input file *)
(*opens output file *)

(*counts successfully read values *)

IF SIO.TermChar(in) = '\n' THEN SIO.NI(out) END;
INC(count);

END; (*WHILE*)
FINALLY

SIO.Putlnt(count);
SIO.PutText(" values copied"); SIO.NIO;
SF.CloseRead(in); SF.CloseWrite(out);

END; (*TRY FINALLY*)
END IntegerCopy;

BEGIN
SIO.PutText("File copy program\n");
TRY

IntegerCopyO;

(*always close files *)

EXCEPT (*any exception handling after closing *)
SIO.Error => SIO.PutText("!Error!\n");

END;

Example 15.4: Delaying exceptions: the file is always closed

If any of multiple exceptions could occur, then the code "Release re
source" would have to be duplicated further. A solution with an ELSE

branch is impossible because then we lose information about which excep
tion occurred. This demonstrates that the problem of delaying exception
handling with the TRY-EXCEPT statement can only be solved with code du
plication and that the TRY-FINALLY statement proves to be a great advan
tage here.

The same distinction between run-time errors and exceptions, as de
scribed in Section 15.2.4, applies for the TRY-FINALLY statement: de
pending on the implementation ofthe language environment, run-time
errors cause immediate program termination (without processing the
FINALLY branch first), while exceptions always invoke the FINALLY

branch.

The authors are convinced that this is a shortcoming of the current
Modula-3 environments. Here the distinction between exceptions and
run-time errors makes no sense; resources should always be released
regardless of this distinction.

382 15. Exception handling

Syntax of the TRY-FINALLY statement

TryFinStmt39 = "TRY" Stmts23 "FINALLY" Stmts23 "END".

Example 15.4 demonstrates the delay of exceptions. The procedure
IntegerCopy opens a file for reading and one for writing and copies inte
ger values from one file to the other. If an exception occurs (e.g., if the
input file contains a non-numeric character), then both files are properly
closed before the procedure terminates; i.e., all data that had already been
copied into the output file before the error occurred are stored. If the input
file is difficult to reach (e.g., a modem transfer), then this behavior is desir
able. When the operation restarts, only the missing data need to be copied
(although our example lacks a mechanism for automatic resumption).

15.4 Strategies for exception handling

The importance of exception handling becomes clear only in larger systems,
which require us to plan carefully the strategy for various exception situa
tions. In particular, we need a structure of responsibilities.

Exception handling needs to be planned into the system architecture.
In a properly designed system, each module handles a clearly defined task.
In the definition of module duties, the responsibilities for error situations
must also be specified.

In determining the strategy for exception handling, we encounter a fun
damental contradiction. Assume that an exception interrupts a long invo
cation chain that crosses module boundaries. If we handle the exception
locally (i.e., in the procedure where the situation was detected), this sim
plifies our program structure. However, at this location we know almost
nothing about the application that initiated the invocation chain. Only the
highest level of invocation best knows the consequences of the exception
on program execution. To handle the exceptions there, we must propagate
them through the entire invocation chain. Although this complicates the
program structure somewhat, the exception mechanism of the language
does ease such delegation considerably.

In general we must take care to handle immediately those exceptions
that need no knowledge about the application. Other exceptions that can
not be handled locally should be propagated upwards until the responsible
level handles them. Thus for each procedure definition we must choose
from the following possibilities:

• Handling without exceptions
Naturally not every exception situation must be handled as an excep
tion. Many problems can be intercepted more simply with IF state-

15.4. Strategies for exception handling 383

ments, with propagation ofthe information via a return value or vari
able parameter.

• Procedures with local exception handling
Mter the invocation of a procedure with local exception handling, the
program always has a normal state (i.e., no exception condition ap
plies). The procedure must have handled every problem, or it termi
nated the action and thus restored a normal state.

• Complete delegation of exception conditions
Procedures have two tasks: if they terminate normally, then they
leave a valid program state; if this is not possible, they terminate
with an exception that the invoking procedure must handle.

• Partial handling of exception conditions
Procedures with partial handling appear quite frequently in service
modules. They detect an exception that they cannot handle. How
ever, before they terminate, they ensure that the state of the server
remains consistent. Often the service procedure then generates a new
exception with its own name, declared in the service module. The
client thus remains capsuled off from the module (information hid
ing), but is informed of the failure of the operation.

In the course of the invocation chain, all these possibilities could occur.
Consider one final example. On storage of a text in a word processor, we
might encounter the following invocation chain (starting at the bottom): in
writing a character, a procedure of the language environment determines
that the capacity of the hard disk has been exhausted and generates a cor
responding exception. The procedure that stores the entire text in a loop
delegates this exception upwards. The exported procedure for storing a doc
ument handles this exception by generating an appropriate error message.
This procedure generates its own, new exception and passes the error mes
sage as parameter. The menu function of the main program handles this
exception by outputting the error message. No exception is propagated fur
ther.

Chapter 16

Parallel programming

Thus far we have always (implicitly) assumed that the statements of a
statement sequence execute one after the other. Programs consisting of
such statement sequences are termed sequential. However, in practice
some problems are difficult or impossible to solve with a sequential pro
gram. Here we can resort to parallel programming, which is actually the
more general view: sequential programs can be viewed a special (although
very important) case of parallel programs.

We might feel a bit like Orgon in Moliere's Tartuffe as he first heard of
poetry and discovered that his whole life long he had been speaking in
prose. Even so, we find that we have been writing sequential programs
until now. This fact becomes interesting only because we now know
that there is something else - parallel programs.

16.1 Motivation for parallelism

Better utilization of existing resources

Parallelism was first introduced in the 1960s, motivated by the fact that
input/output consume by orders of magnitude more time than internal op
erations. Although input/output has become faster since then, the same
applies to internal operations; hence the relationship has remained much
the same. While one program is waiting for input/output, it makes sense
to let another program do something useful. When input/output in the for
mer program is finished, then the latter can be interrupted, and the former
program can be continued. The concept of interruption has significantly
improved the throughput (number of programs processed per unit of time)
of computers while simultaneously introducing new problems. One prob
lem was that a program can be interrupted almost unnoticed and continued
later. As we shall see, this is not always easy.

386 16. Parallel programming

Assume that your work is interrupted because the computer beeps: an
e-mail has arrived. While you read the e-mail, someone knocks and
enters your office: here we already have the second level of interrup
tion. Now. if the telephone starts ringing as well, then we have the
third level of nesting. We must handle each interruption individually
and then return to the previous task. Clearly an interruption cannot
take effect at any arbitrary time: sometimes it has to wait.

Modern computers also employ parallelism to better manage their re
sources when the application programs themselves are sequential. This
requires that such parallelism be fully transparent for user programs; in
fact, the authors of user programs should not even need to be aware of the
parallelism.

Transparent parallelism has many applications. Most operating sys
tems share the computer among several programs such that while one pro
gram is waiting for input/output, another program carries out computation.

Likewise the hardware level employs much parallelism. All newer pro
cessors, e.g., employ pipelining: various phases of the execution of in
structions (such as loading an instruction, decoding an instruction, loading
operands, etc.) can overlap. While one command is being decoded, the next
can be loaded, and so on. The superscalar processors, which are finding
ever increasing application, can even start multiple instructions simulta
neously.

Inherently parallel applications

Consider a flight reservation system. Passengers at various counters
around the world can make reservations for the same flight. All these reser
vations must be processed through the same software system. A customer
in Klagenfurt would be quite unhappy to have to wait while a passenger in
San Francisco books. A ticketing system must process these jobs simulta
neously, in parallel.

This example points out a fundamental difficulty of parallel program
ming: What happens if a passenger in Klagenfurt and one in San Francisco
want to book the same flight, which has only one seat available? Clearly
one of the two must win. In any case, we must avoid selling the same
seat twice. We can readily imagine the following: First Klagenfurt checks
whether there is a seat available. Shortly thereafter the query arrives from
San Francisco and also finds the seat available. On the basis of this infor
mation, both locations reserve the seat. Because this must never happen,
the methods of parallel programming provide solutions to avoid such con
flicts.

We could identifY many applications that are inherently parallel: all
systems that simultaneously serve multiple customers (banks, warehouses,

16.1. Motivation for parallelism 387

etc.); systems that control airplanes, ships, train stations, etc.; telecommu
nications systems that operate (possibly huge) networks of telephone and
computer connections and that must simultaneously assure a large num
ber of connections.

Accelerating algorithms

Some algorithms can be formulated as both sequential and parallel, yet
processing them on even the fastest sequential computer takes too long.
What "too long" means depends on the problem. Consider the weather
forecast: to be able to compute an accurate forecast requires numerous
computations. Yet what good is a perfect forecast if we deliver the results
too late? A program that uses Wednesday's data to compute Thursday's
weather forecast, but delivers the forecast on Friday, is not quite what we
had in mind.

In such a case we can take one oftwo approaches: either we improve our
model so that it requires less computation, or we accelerate the computer.
The former approach is more economical in the long run and also intellec
tually more challenging. In practice the second approach is often preferred.
The computer industry invests a great deal to make computers ever faster.
However, accelerating the classical von Neumann machines (see Section
1.2) has reached physical limits. This phenomenon, called the von Neu
mann bottleneck, is imposed by the von Neumann architecture. Although
John von Neumann addressed the possibility of parallel processing already
in the 1950s, the von Neumann architecture is fundamentally sequential:
the arithmetic and logic unit (ALU) reads and interprets the instructions
in main memory sequentially.

Today's top processors operate at over 200 MHz; i.e., they take less
than five nanoseconds (10-9 seconds) to execute an operation (e.g., an
addition). There is good reason to believe that there is not much room
for improvement.

The reader might wonder whether there is a need to accelerate further.
The question is justified, but cannot be discussed here in detail. Par
allel computers are becoming more widespread, and parallelism will
gain in importance in the future.

At this time parallelism seems to represent the only possibility to signif
icantly accelerate computers. This includes transparent parallelism hidden
in the computer architecture or the lower levels of the operating system, as
well as explicit parallelism, which enables the programmer to express al
gorithms in parallel form and map them onto a parallel architecture.

388 16. Parallel programming

16.2 Parallel programs

Parallel programs can best be expressed as a collection of cooperating se
quential processes.

I A process is a virtual processor that executes its instructions sequentially
and has its own state space.

A process is thus an active element. We can imagine that each process
has its own (real or virtual) processor (its own engine). A process executes
its sequential statements parallel to other processes. Here we are not in
terested in fully independent processes, but in ones that communicate with
one another.

When two computers do different things in two different rooms, we
could speak of parallel processes, but this would be of no particular
interest. The situation becomes interesting when there is some con
nection between the two.

A process can synchronize its execution with that of other processes; i.e.,
processes can wait for one another. As needed, they can also communicate
with one another by exchanging data via shared variables or via communi
cation channels using messages.

A related collection of processes forms a parallel program. In general,
we do not know which statements of the individual processes overlap. Usu
ally we cannot make any assumptions about the temporal execution of in
dividual processes.

If the processes actually do have their own physical processors, then we
speak of truly parallel processes. If the processes run on a single processor,
hence only virtually have their own processors, then we speak of quasi
parallel processes or concurrent processes.

Both cases require a mechanism that handles synchronization and com
munication. This mechanism is usually in the form of a scheduler that
coordinates execution of the processes. The scheduler for quasi-parallel
processes must also implement the virtual processors, thus assuring that
the processes run (quasi) as though each had its own processor.

I For the development of parallel programs, the same rules apply, regard
less of whether the processes are truly parallel or quasi-parallel.

Validating the correctness of a parallel program should be independent
of whether the program is truly parallel or quasi-parallel. Therefore in
this chapter we use the term parallelism unless we need to emphasize the
distinction.

In the light of efficiency considerations, the difference becomes signifi
cant. A quasi-parallel program is generally slower than an equivalent se
quential program. Nevertheless, the development of such programs makes

16.2. Parallel programs 389

sense if no equivalent sequential program can be found or if the sequential
variant would be too complicated. A truly parallel program can (but need
not) prove faster than an equivalent sequential program. Synchronization
restricts the degree of parallelism. Every (sensible) parallel program has
sequential components; if the sequential share is quite large, then paral
lelism can yield little acceleration. In addition, communication can slow
down parallelism. If the processes spend more time waiting for messages
than in processing them, then parallelism cannot help much. With an awk
ward design, the truly parallel variant (executed on a number of indepen
dent processors) can actually become slower than its sequential counter
part. In many designs, efficiency considerations can be decisive.

In the following, we concentrate on the fundamental concepts that are
independent of the kind of parallelism. The following ground rule applies
for all parallel programs:

The verification of a parallel program must preclude any assumptions
about the absolute or relative speed of the involved processes.

A very intriguing area of computer science, real-time programming,
deals with problems that require considering the execution time of a
program. Consider, e.g., an on-line control (on-line meaning that the
computer participates directly in the controlled process, e.g., the secu
rity system of a power plant). Here events occur to which the computer
must react within specified time limits. In real-time systems it does
not suffice to simply deliver correct results; the timing must also be
correct. These assumptions about the timing of execution make ver
ification more difficult by posing additional requirements. We do not
discuss the problems of real-time systems.

Lightweight and heavyweight processes

Processes are often classified as heavyweight or lightweight processes.
Heavyweight processes have their own state space (address space), while
several lightweight processes share a global state space. Heavyweight pro
cesses could be running on different computers that share communication
channels. Lightweight processes are generally on the same computer and
can communicate via shared variables. Switching between lightweight
processes is a relatively inexpensive action. When heavyweight processes
share a computer, switching becomes more difficult (and more expensive).
Lightweight processes are often called threads (from thread of control); we
will usually use this terminology.

The best-known example of heavyweight processes are those of the
Unix operating system (most larger operating systems have similar
processes). Unix processes each occupy their own address space (in

390 16. Parallel programming

virtual memory) and are quite independent of one another, apart from
the fact that they use the same resources, under the management of
the operating system. They can also communicate, although their com
munication is quite awkward.

Unix processes within a processor are quasi-parallel. Given a supply of
Unix computers, several processes can run truly parallel, while others
are quasi-parallel. Thus we can write parallel programs that execute
in quasi-parallel as well as in truly parallel mode or even mixed.

16.3 Threads in Modula-3

Modula-3 supports the concept of parallel threads. A sequential Modula-
3-program consists of a single thread (the main thread). It is possible
to create additional threads that are all executed in quasi-parallel mode.
Threads can either run in an endless loop or terminate. Once the main
thread terminates, this ends all threads generated by it.

16.3.1 Schedulers of Modula-3 environments

The existing language environments feature schedulers only for quasi
parallel threads. The scheduler embedded in the run-time system manages
allocation ofthe processor to the threads. In principle, the allocation strat
egy (scheduling) can be quite different in various environments. We gener
ally assume that the strategy is fair; i.e., if a thread is ready to run, it will
get its turn and need not wait endlessly for the processor. The scheduler
of most Modula-3 language environments employs time slice scheduling. A
thread cannot monopolize the processor for longer than the specified time
slice (e.g., 50 msec). When a time slice expires, execution ofthe thread is in
terrupted and the processor is allocated to another thread; this reallocation
of resources from one process by the scheduler is called pre-emption. The
waiting threads are generally managed with a ring-shaped closed struc
ture; the scheduler switches from one thread to another along the ring. In
this way the scheduler can assure that no waiting thread must wait end
lessly for the processor.

For technical reasons, the Modula-3 scheduler currently running on
DOSPCs is non-pre-emptive and thus cannot fulfill the condition of
fairness. If a thread does not relinquish control, it can monopolize
the processor. Hence the threads themselves must be fair and from
time to time relinquish the processor on behalf of others.

If the threads use any form of synchronization (Section 16.4.4), then
the scheduler automatically handles this relinquishing of the proces
sor, for synchronization always occurs via the scheduler. If they re-

16.3. Threads in Modula-3

quire no synchronization, then they must periodically relinquish con
trol explicitly using the Scheduler.Yield l procedure. If all processes
behave fairly in this way, then fair scheduling can be achieved.

16.3.2 Creating threads

391

The Modula-3 language environment provides the interface Thread in the
collection of standard interfaces (Appendix C.1.2 on page 527).

Fork

The procedure Fork creates a new thread and returns a new instance of
Thread.T.

TYPE Closure = OBJECT METHODS applyO: REFANY END;

PROCEDURE Fork (c1: Closure): T;

The new thread is executed (quasi-)parallel to the creating thread.
Fork accepts as parameter a closure, whose type must be a subtype of
Thread.Closure. The type Thread.Closure first defines an empty closure;
the corresponding subtype must fill the closure. In particular, the apply
method must be overridden with the procedure that is to be executed by
the newly created thread. The signature of apply is kept very general; it
has no parameter and returns a function value oftype REFANY. Ifwe want
a different signature, we must extend the Closure accordingly (see Example
16.4).

The statements in threads are implemented by the procedure that over
rides the apply method in the thread closure. This is quite an ordinary
procedure. We could say that threads are procedures that are launched
not by invocation but by Fork. This is why it makes sense for Modula-3 to
provide not a separate language construct but only a special interface for
threads.

The invocation of Thread.Fork effects the following:

• Fork instructs the scheduler to start the procedure specified in the clo
sure parameter as a new thread and returns a value of type Thread.T,
which identifies the new thread .

• Thereby the statements of the apply procedure are executed in paral
lel with the invoking procedure.

1 In the old version of the Modula-3 library the procedure is exported by the module
Thread.

392 16. Parallel programming

main thread

Fork A

main A

A C

Join B

main A

Join A

main

Figure 16.1: Forking and joining threads

Join

We can join two threads with a Join invocation.

PROCEDURE Join (thread: T): REFANY;

Thread.Join expects a parameter of type Thread.T, which identifies the
thread that the invoking thread is to join. If the identified thread has not
finished its work, the thread invoking Join must wait. Mter the Join the two
threads are merged to a single control flow (see Figure 16.1). Thread.Join
returns the return value ofthe procedure executed by apply.

Shared data

Modula-3 threads share an address space. Like all other procedures, a
procedure launched as a thread can access the module's global variables
in their common scope. They can also create dynamic data whose root is
stored in a global variable. Multiple threads can access global variables
and dynamic data collectively (and simultaneously). This can cause con
flicts (see Section 16.4).

16.3. Threads in Modula-3

IMPORT Thread, Lists, SIO, SF;

VAR
thread: Thread.T;
cl := NEW (Thread. Closure, apply:= Start);
Iist1, list2: Lists.T;

393

(*Thread instance*)
(*Closure instance*)

(*two lists*)

PROCEDURE Start(self: Thread.Closure): REFANY =
BEGIN

RETURN Lists.Get(SF.OpenRead("in1 "));
END Start;

BEGIN
thread:= Thread.Fork(cI);
list2:= Lists.Get(SF.OpenRead("in2"));
list1 := Thread.Join(thread);

(*reads a list from "inl"*)

(*creates a thread; launches Start*)
(*reads list from "in2"*)

(*waits for thread; stores its result*)

Example 16.2: Reading two lists in parallel

Private data

The procedures started as threads can invoke other procedures and thus
initiate an arbitrary invocation chain. Local data regions of an invocation
chain are created according to the stack principle (see Section 9.2.2).

If threads are to exist in parallel, we must ensure that they all can
process their invocation chains. The resulting local data regions must be
inaccessible for other threads. Thus Fork always creates a new invocation
stack for the local data regions of a new thread.

We can launch the same procedure repeatedly with Fork (see Example
16.5). The created threads all execute the same statements, but have their
own local data and so different states; thus the execution ofthe statements
of each thread is determined individually by its state space.

Examples of Fork and Join

Example 16.2 reads two lists from two files (in1 and in2) (quasi-)simul
taneously. Two threads enable parallel reading. The variable cl is created,
and the function Start implements the apply method. Start returns a list.
The interface Lists (not specified further here) provides the procedures Get
and Put to read or output a list. The first statement of the program assigns
to the variable thread the value returned by Fork. The invocation of Fork
creates a thread that executes Start, i.e., reads the list from in1. The main
thread continues to run in parallel and simultaneously reads the second
list from in2 into the variable list2. With a Join, it waits for the result of the
other thread. Afterwards we have only the main thread.

394 16. Parallel programming

PROCEDURE Max(a, b: INTEGER): INTEGER = (*maximum of two numbers*)
BEGIN

IF a > b THEN RETURN a ELSE RETURN bEND
END Max;

VAR
a: ARRAY [1 . .4] OF INTEGER;
max: INTEGER;

BEGIN

(*stores the data*)
(*max stores the maximum of all a[i]*)

max:= Max(Max(a[1], a[2]) , Max(a[3], a[4])); (*maximum offour numbers*)

Example 16.3: Maximum of four numbers (sequentially)

TYPE
Closure = Thread.Closure OBJECT

a, b, result: INTEGER;
OVERRIDES

apply:= Start
END; (*Closure*)

VAR
cl := NEW(Closure);
thread: Thread.T;
a: ARRAY [1 . .4] OF INTEGER;
max: INTEGER;

(*parameters and result in Closure*)

(*stores data*)
(*max stores maximum of all a[i]*)

PROCEDURE Start(cl: Closure): REFANY =
BEGIN

(*invokes Max*)

cl.result:= Max(cl.a, cl.b);
RETURN NIL

END Start;

BEGIN
cl.a:= a[1]; cl.b:= a[2];
thread:= Thread.Fork(cI);
max:= Max(a[3], a[4]);
EVAL Thread.Join(thread);
max:= Max(max, cl.result);

(*result stored in Closure*)
(*return value not used*)

(*parameters set in Closure*)
(*created thread starts; computes Max(a[1], a[2])*)

(*main thread computes maximum ofrest*)
(*partial results available*)

(*final result computed*)

Example 16.4: Maximum of four numbers in parallel

The next two examples compute the maximum of four numbers. Ex
ample 16.3 shows a sequential solution; Example 16.4, a parallel solution.
The parallel solution computes the maximum of a[1] and a[2] in parallel
to the computation of the maximum of a[3] and a[4]; the parameters and
the return value are stored in the closure. The same Max procedure is also
invoked in the parallel version. The return value ofthe apply method is not
used.

16.3. Threads in Modula-3

MODULE NTh reads EXPORTS Main;

IMPORT Thread, SIO;
FROM Scheduler IMPORT Yield;

CONST
N = 10;

TYPE
Threads = [1 .. N];
Closure = Thread.Closure OBJECT

id: Threads;
OVERRIDES

apply:= Printld;
END; (*Closure*)

PROCEDURE Printld(cl: Closure): REFANY =
BEGIN

REPEAT
SIO. Putlnt(cl.id);
IF cLid = LAST(Threads) THEN SIO.NIO END;

395

(*identifies thread*)

YieldO; (*yields to other threads*)
UNTIL SIO.AvailableO;
RETURN NIL; (*return value not used*)

END Printld;

PROCEDURE ForkO =
BEGIN

FOR i:= FIRST(Threads) TO LAST(Threads) - 1 DO
EVAL Thread.Fork(NEW(Closure, id:= i)) (*N-l threads aregenerated*)

END;
EVAL Printld(NEW(Closure, id:= LAST(Threads))); (*N-th thread = main*)

END Fork;

BEGIN
ForkO; (*start all threads*)

END NTh reads.

Example 16.5: N threads, explicit assignment with Yield

Example 16.5 creates N threads. Each thread receives its own identi
fier (id). In a loop, they output their identifiers until any key is pressed
on the keyboard. SIO.Available does not block the invoking thread (as does
SIO.GetChar), but always returns immediately and returns true if and only
if input data are present (i.e., if a key has been pressed). Once a key is
pressed, the thread that is occupying the processor at that moment termi
nates and returns to its invoking procedure (Fork). After this invocation
there are no further statements and the whole parallel program termi
nates.

Note that the last thread is not started with Thread.Fork but as a pro
cedure. This makes the Nth thread the main thread. Ifwe had started the

396 16. Parallel programming

Nth thread with Thread.Fork as well, then the main thread would termi
nate immediately after the invocation of Fork - and with it all others. To
avoid this, we would have to find some artificial way to hinder the main
thread.

The invocation of Yield serves to voluntarily relinquish the processor to
the other ready threads. This allows us to modify the system's scheduling
strategy; all threads repeatedly offer the others the possibility to output
their data.

Synchronization and communication

All examples so far made the (implicit) assumption that the processes are
independent of one another. As long as this is true, parallel programming
remains rather simple. While you read a book, numerous other people can
read other books; you do not need to know anything about it (as in reading
two lists from two different files). On the other hand, a group of students
could also be taking notes in their own notebooks simultaneously from a
blackboard. Problems could arise if they write at different speeds and the
blackboard is to be erased; the erasing should wait until all are finished.

Reading a book together at different speeds can cause difficulties in
turning pages (for young people of different sexes reading the same book
together can have severe consequences anyway, as we see in Dante's Divine
Comedy and Goethe's Wahlverwandschaften). It becomes more difficult if
another person wants to write in your notebook. We could arrange, e.g.,
that each person writes one page and then hands the notebook to the other.
This makes writing a single page atomic; for all other processes, an atomic
action in a process appears as an indivisible unit. Although it can carry out
multiple state transitions internally, these must be invisible to other pro
cesses. Viewed from outside, we can speak of the state of an atomic action
before and after, but there is no in between.

When processes produce data for or consume data from one another,
they must communicate (e.g., by having one person write on the black
board and the others reading the text). These processes must also coor
dinate their work - synchronize (e.g., because only one may write on the
blackboard). Using Join is one simple way to synchronize; thereby one
thread waits for another to end. Synchronization becomes more interest
ing when the processes (or threads) access common resources. This can
be quite innocuous (such as reading a common blackboard), but more ex
act synchronization might be necessary in other cases (as in writing in a
shared notebook).

Shared resources can be accessed via shared variables or via message
passing. Lightweight processes usually (but not necessarily) employ the
former kind of communication; heavyweight processes, the latter.

16.4. Shared variables 397

imain

I
I

11 2 N·1 IN

Sa rrier

Sa rrier

~

Figure 16.6: Synchronization with barriers

16.4 Shared variables

Communication between processes is innocuous as long as shared vari
ables are only read. If a shared variable is modified, we have a conflict.
For example, if two threads simultaneously write to a shared variable, we
could have a nonsensical result. Assume, e.g., that two threads write to
the shared variable r: RECORD a, b: INTEGER END. thread! writes r.a:=
1; r.b:= 2, thread2 writes r.b:= 3; r.a:= 4. The actual sequence of the com
mands is: r.a:= 1; r.b:= 3; r.b:= 2; r.a:= 4. The result is: r.a=4, r.b=2. This
result ensued from the combination of the two threads, yet neither of the
two threads wanted to store these data in r. Such cases must be avoided.
The following sections deal with this problem.

16.4.1 Data-parallel algorithms

In data-parallel algorithms, multiple processes process a shared array. The
algorithm itself must ensure that the processes do not write to the same
location simultaneously (thereby creating nonsensical data). Generally a
process is permitted to read a location that is being written by another
process. In such cases we must ensure that the reading process waits until
the writing process is finished, so that no semifinished data are read.

To synchronize multiple processes, we often employ synchronization
with barriers. Join can join only two threads, but this irrevocably, for after
wards there is but a single thread. Barriers represent significantly more
powerful tools. A barrier can synchronize the control flow of any number of
processes (threads): they wait for each other at the barrier. The processes

398 16. Parallel programming

INTERFACE Barrier; (*11.10.93. LB*)
(*A join on a barrier blocks num-1 invoking threads.

On the numth invocation all threads are released and the barrier is reinitialized. *)

TYPE
T <: Public;
Public = MUTEX OBJECT METHODS joinO END;

PROCEDURE Create(num: [1 .. LAST(CARDINAL)]): T;
(*Creates a new barrier initialized to num. *)
END Barrier.

Example 16.7: Barrier interface

are not destroyed, but remain active: when the last thread reaches the
barrier, all threads continue in parallel until the next barrier (see Figure
16.6).

Example 16.7 shows an interface that defines a barrier. Create creates
and initializes a new barrier. The number ofthreads that meet at a barrier
must be at least 1, but to make sense would be greater than 1. Example
16.8 demonstrates the use of barriers for a matrix multiplication (see also
sequential matrix multiplication in Example 9.9). For each element in the
result matrix, we create a thread that computes this element independently
of the other elements. Note that the threads read some of the same data,
but modifY only their respective elements. With barrier.joinO each thread
waits for the others. The main thread can use the same barrier to wait for
the others. Afterwards all threads continue to run in parallel.

We must note again that for all our demonstrated algorithms, in prin
ciple it does not matter whether they are executed truly parallel or
quasi-parallel. From the view of practice, however, data-parallel algo
rithms are only relevant with true parallelism, where they can achieve
speed improvements. The example of matrix multiplication clarifies
this. Assume a, band r all have dimension N x N, and the computa
tion of an element (DotProduct) requires a time of T time units, then
execution time for sequential multiplication is N 2 x T. If parallel mul
tiplication executes on a parallel computer whose processors have fast
access to shared memory and which has at least N 2 processors, then
we need only a time of T and a bit of management time at the start
and end until all threads have joined at the barrier. If the parallel
computer has less processors, then the algorithm requires more time.

As our next example of data-parallelism, we will compute the prefix of
a vector (array) [And91]. The prefix of vector a is a vector sum whose ith
element is sumi = l:;=first(a) aj. For a = (1,2,3,4,5,6,7,8) we have sum =
(1,3,6,10,15,21,28,36). The sequential solution is shown in Example 16.9;
a parallel solution, in Example 16.10. The idea of the parallel algorithm is

16.4. Shared variables

TYPE
Matrix = ARRAY OF ARRAY OF INTEGER;
Closure = Thread.Closure OBJECT

VAR

row, col: INTEGER;
OVERRIDES

apply:= StartMul
END; (*Closure*)

a, b, r: REF Matrix;
barrier: Barrier.T; num: CARDINAL;

PROCEDURE InitMatriees(VAR a, b: REF Matrix) =

PROCEDURE DotProduet(row, col: INTEGER;

399

(*r:= a x b*)
(*num: start value of barrier*)

(*initializes a and b*)

READONLY a, b: Matrix): INTEGER = (*computes an element in result matrix*)
VAR sum: INTEGER := 0;
BEGIN

FOR i:= FIRST(b) TO LAST(b) DO INC(sum, arrow, i] * b[i, col]) END;
RETURN sum

END DotProduet;

PROCEDURE StartMul(el: Closure): REFANY =
BEGIN

r[el.row, cLeol]:= DotProduet(cLrow, cLeol, aA
, bA

); (*computes 1 element*)
barrier.joinO; (*waits until all threads are ready*)
RETURN NIL (*return value of apply is not needed*)

END StartMul;

PROCEDURE ForkO = (*creates thread for each result element*)
BEGIN

FOR i:= FIRST(rA

) TO LAST(rA

) DO
FOR j:= FIRST(r[O]) TO LAST(r[O]) DO

EVAL Thread.Fork(NEW(Closure, row:= i, eol:= j));
END;

END;
END Fork;

BEGIN
InitMatriees(a, b); (*loads a und b with initial values*)
r:= NEW(REF Matrix, NUMBER(aA

), NUMBER(b[O])); (*allocates r*)
num:= NUMBER(() * NUMBER(r[O]) + 1; (*number of result elements + 1*)
barrier:= Barrier.Create(num); (*creates and initializes barrier*)
ForkO; (*thread created for each element in result*)
barrier.joinO; (*main thread waits for result*)

Example 16.8: Matrix multiplication with barriers

400 16. Parallel programming

TYPE
Vector = ARRAY OF INTEGER;

PROCEDURE Pref(a: REF Vector; VAR sum: REF Vector) =
BEGIN

sum := NEW(REF Vector, NUMBER(aft));
sum[FIRST(sumft)]:= a[FIRST(aft)];
FOR i:= FIRST(sumft)+1 TO LAST(sumft) DO sum[i]:= sum[i-1] + ali] END;

END Pref;

Example 16.9: Prefix of an array - sequential

to add, in each iteration, a left neighbor two iterations away; this neighbor
has meanwhile accumulated the sum of its left neighbors. Thus in log2{n)
steps we compute the prefix.

16.4.2 Critical regions and mutual exclusion

Data-parallelism implies a certain kind of synchronization. If the parallel
processes are to modify the shared variables freely, then we must explicitly
ensure the consistency ofthe variables. We addressed this problem already
in the reservation of seats on a flight. Assume that two processes simulta
neously execute the following statement (where avail is the number of free
seats):

IF avail> 0 THEN DEC(avail)
ELSE ... (*no more seats available*) END

On a typical computer this statement is translated into corresponding ma
chine code:

L1

LOAD
CMP
BLE
DECR
STORE

avail,RO
RO
L1
RO
RO,avail

(*load avail into register RO*)
(*compare RO to 0*)
(*jump to L1 if avail <= 0*)
(*decrement RO by 1*)
(*store new value*)

(*no more seats available*)

For every computer, we can assume that access to individual storage cells
is atomic (hence parallel processes cannot simultaneously access a storage
cell). Therefore the load and store instructions cannot conflict. However,
the parallel processes all have their own set of registers (at least virtually).
Hence the two processes might each read the value of avail into their re
spective RO registers, simultaneously decrement these registers, and then

16.4. Shared variables

TYPE
Vector = ARRAY OF INTEGER;
CI = Thread.Closure OBJECT

id: CARDINAL;
OVERRIDES

VAR

apply:= ApplyPref
END;

barrier, stop: Barrier.T;
a, sum, old: REF Vector;
n: CARDINAL;

PROCEDURE Pref(i: INTEGER) =
VAR d: INTEGER := 1;
BEGIN

sum[i]:= ali];
barrier.joinO;
WHILE d < n DO

401

(*identifies a thread**)

(*thread algorithm*)

(*stop is used at end*)
(*sum[ij:= a[iJ + a[i-lJ + ... *)

(*number of elements*)

(*algorithm for threads*)
(*distance to next neighbor*)

(*now all threads can begin*)

old[i]:= sum[i]; (*copy of current sum value*)
barrier.joinO; (*in each iteration, wait for others*)
IF (i - d) >= FIRST(old A

) THEN INC(sum[i], old[i-d]) END;
barrier.joinO; (*in each iteration, wait for others*)
d:= 2 • d; (*double distance*)

END; (*WHILE d < n*)
stop.joinO;

END Pref;

PROCEDURE ApplyPref(cl: CI): REFANY =
BEGIN

Pref(cl.id); RETURN NIL
END ApplyPref;

PROCEDURE ForkO =
BEGIN

FOR i:= FIRST(aA

) TO LAST(aA

) DO
EVAL Thread.Fork(NEW(CI, id:= i))

END;
END Fork;

BEGIN
Init(a, n);
barrier:= Barrier.Create(n);
stop:= Barrier.Create(n+ 1);
ForkO;
stop.joinO;

(*at end, all join in main thread*)

(*a thread for all elements*)

(*loads initial value ofa and sets n*)
(*used in computation*)
(*controls termination *)

(*starts threads for prefix computation*)
(*at end, all join in main thread*)

Example 16.10: Prefix of an array - parallel

402 16. Parallel programming

each write the new value back to avail. Regardless of which process wins
the race, the result will be incorrect, for avail will have been decremented
by 1 rather than 2.

Regions where shared variables can be modified by multiple processes
are called critical regions. We require that only a single process can be in
a critical region at a time. If one process is in the critical region, all other
processes are prevented from entering. This property is called mutual ex
clusion. In other words, in a critical region, parallelism is disabled and the
processes are sequentialized. In the flight reservation example, the pro
cess that represents the first passenger would have to exclude the second
process until the first reservation is complete.

We can define the use of critical regions with the following steps:

1. Entry into critical region

2. Access to critical data

3. Exit from critical region

4. Execute remaining algorithm

The following conditions apply:

• Mutual exclusion
At most one process is in the critical region.

• No deadlock
If multiple processes need to enter a critical region, then one of them
will actually succeed in doing so. The processes must not impede each
other, as when the processes circularly wait for each other (a deadlock
situation).

• No unnecessary waiting
Processes outside the critical region must not prevent others from
entering the critical region (not even by terminating).

• No endless delay
When a process wants to enter the critical region, it must succeed in
a finite number of tries. This means that in time all processes will be
able to enter the critical region.

16.4.3 Type Mutex and the Lock statement

For the implementation of critical regions that meet the above conditions,
Modula-3 provides the data type MUTEX and the LOCK statement. MUTEX

is an object type. A LOCK statement can be executed on a MUTEX variable,

16.4. Shared variables 403

thus defining a critical region with mutual exclusion. A LOCK statement
has the following general form (where mu is of type MUTEX and S stands
for an arbitrary statement sequence):

LOCK mu DO SEND

The semantics of the LOCK statement correspond exactly to the above
conditions. At a given time, only one thread can be in the statement part
of a LOCK statement. If multiple threads try to enter simultaneously, then
the first one gets through and the others are put in a wait state (their path
is blocked - hence the name lock). When a thread exits (when it reaches the
END of the LOCK statement), the next thread can enter (the first waiting
thread is switched from waiting to ready). If a thread generates an excep
tion in the critical region, then it is forced to exit the critical region. Thus
an erroneous thread cannot hinder the others from entering the critical re
gion at some time. The following pseudocode explains the semantics of the
LOCK statement:

Thread.Acquire(mu); TRY S FINALLY Thread.Release(mu) END

Thread.Acquire implements the entry into and Thread. Release the exit
from the critical region. The exit takes place even if an exception occurs
within S.

These statements could also be written by the programmer. The pro
cedures Acquire and Release are actually provided by the Thread interface
(see Appendix C.1.2). However, programs are more secure if everything is
handled automatically by the LOCK statement.

Consider a case where a thread executes the following code pattern:

LOOP

LOCK mutex DO
statements ...
IF termination condition THEN EXIT END

END; (*LOCK*)

END; (*LOOP*)

The EXIT statement has a feature that we have not discussed yet: In ad
dition to the jump to the end of the loop, it generates an EXIT exception.
This exception is intercepted by the hidden TRY-FINALLY statement of the
LOCK statement, and mutex is unlocked. This allows the next thread to en
ter. Likewise the RETURN statement generates a RETURN exception before
actually leaving the procedure.

Example 16.11 shows a very simplified algorithm for the flight reserva
tion. The LOCK statement ensures that the field avail is a protected critical

404 16. Parallel programming

TYPE
Flight = MUTEX OBJECT

avail: CARDINAL;

END; (*Flight*)

PROCEDURE Reserve(flighl: Flight): BOOLEAN =
BEGIN

(*Flight is a subtype of Mutex*)
(*number of available seats*)

(*other fields*)

LOCK flight DO (*start of critical region*)
IF flight.avail > 0 THEN DEC(flight.avail); RETURN TRUE
ELSE RETURN FALSE
END; (*IF*)

END;
END Reserve;

(*end of critical region *)

Example 16.11: Reservations protected by Lock

region. It is important that common access (both reading and updating
avail) be protected with LOCK. The following solution would be wrong:

IF flight.avail > 0 THEN LOCK DEC(flight.avail) END; RETURN TRUE END

Without LOCK before reading, two threads might execute the IF statement
simultaneously, which would enable an erroneous reservation.

What is particularly bothersome about such errors is that they can
remain undetected for a long time. While the concepts of parallel pro
gramming were not yet mature, many such programs evolved that pro
duced seldom, mysterious errors. Nowadays the methods for avoiding
such errors are well-known. Our discussion treats only a part ofthem.

Conditional synchronization

Critical regions afford only limited possibilities for synchronization. Con
sider the very frequent case where a number of parallel producers generate
data that are processed by a number of parallel consumers. For example, a
mainframe anticipates input data from many terminals and redirects them
to many applications such as editors, databases, etc. In such a case we use
one (or more) buffers where the data are stored temporarily to compensate
for the differences in speed between various processes. In the optimal case
the buffer is always about half full, i.e., a producer always has room to
deliver new data and a consumer always finds certain data. The state of
the buffer must be kept consistent; therefore the buffer must be updated
within a critical region. Problems begin when the buffer deviates too far
in one direction or the other from half full. For example, assume that the

16.4. Shared variables 405

buffer is full and a producer needs to deliver data. To test the state of the
buffer, the producer must enter the critical region. Within the critical re
gion the producer determines that data cannot be delivered. What should
be done? Here we would want the producer to wait until a consumer re
moves data and thereby makes room. This would require the producer to
leave the critical region and to re-enter as soon as the anticipated condition
is fulfilled. This is where the concept of conditional synchronization comes
In.

Many tools have been proposed that implement both mutual exclusion
and conditional synchronization [And911. We handle only the two most
important: monitors and semaphores.

16.4.4 Monitor

Monitors were proposed by C. A. R. Hoare[Hoa741. They integrate the
above concepts with the concept of data capsules into a programming lan
guage. As Hoare proposed them, monitors have the following features:

• Monitors are abstract data types that reveal only their operations.
Mutual exclusion is ensured on these operations (also called monitor
procedures). This means that at most one process can be within a
monitor .

• Within monitors we can use the type condition. Two basic operations
are defined on a condition variable c: wait(c) and signal(c). The un
derlying idea is the following: A process must explicitly test the state
of the monitor to determine whether conditions are fulfilled for the
process's task. If so, the process carries out its task; if not, it goes
into a wait state and temporarily leaves the monitor. This enables
other processes to enter; these might change the state space so that
the anticipated conditions are fulfilled. Processes waiting on such a
condition must be awakened from their dormant state by an explicit
signal from another process. The semantics of operations according
to Hoare is as follows:

- wait(c)
The invocation of wait causes the invoking process to temporarily
leave the monitor and to enter a queue.

- signal(c)
If at least one process is waiting for condition c, then the invoca
tion ofsignal(c) removes the first waiting process from the queue,
puts it in a ready state, and restarts it without delay. This means
that no other process can enter the monitor between the wak
ing and the starting of the dormant process because this process

406 16. Parallel programming

could reverse the condition. The process invoking signal must
leave the monitor (for mutual exclusion). If the signal(c) invoca
tion is at the end of a monitor procedure (which is often the case),
then fulfillment of the last condition is trivial.

Ifsignal(c) is invoked while there is no process in the queue for c,
then signal has no effect.

Modula-3 supports the concept of monitors with a somewhat modified
semantics with the following features:

• There is no explicit monitor type; with the help of modules, monitors
can be formulated as encapsulated data types. This has the drawback
that mutual exclusion is not ensured automatically on monitor proce
dures; instead, the programmer must employ LOCKs. Another dis
advantage is that the compiler cannot check whether condition vari
ables are used only within monitors. The advantage of this approach
is that mutual exclusion can be controlled at a finer level. Frequently
a monitor procedure need not only process critical regions but also
handle much additional work (with its local variables). Here mutual
exclusion is not required and unnecessarily reduces the degree of par
allelism .

• The condition type and the corresponding operations are provided by
the Thread interface.

- The semantics of Wait matches the classical definition by Hoare,
with the exception that here the MUTEX variable that holds the
lock must be specified explicitly.

- The semantics of Signal is somewhat more relaxed. The awak
ened process need not continue execution immediately. It is also
possible for another thread to enter the critical region and modify
the condition. Therefore the awakened process must test the con
dition again. If the condition has become false meanwhile, then
the process must wait again. Theoretically, this could leave a
process rotating forever in such a loop (the phenomenon is called
starvation). However, this is quite improbable. The advantage of
this approach is increased flexibility; in particular, it is easy to
produce a BROADCAST operation that wakes all processes wait
ing for a condition. The original strict semantics of signal pre
cludes a BROADCAST operation because we can only restart one
process without delay. However, after finishing its work, this pro
cess can send a signal that wakes the next, and so on.

16.4. Shared variables 407

INTERFACE Buffer; (* 15.10.93. LB*)
TYPE

T <: Public;
Data = INTEGER;

Public = MUTEX OBJECT

END Buffer.

METHODS
init(size: CARDINAL := 64): T;
getO: Data;
put(data: Data);

END; (*Public*)

(*invoke at start!*)
(*blocked when buffer is empty*)

(*blocked when buffer is full*)

Example 16.12: Interface ofa buffer

Example 16.12 shows the definition of an encapsulated data type Buffer.T.
A Buffer must be initialized (with a certain size); thereafter the operations
get and put can be used in any order. Buffer ensures that get waits when
the buffer is empty and that put waits when the buffer is full, until the
condition of the operation is fulfilled.

Example 16.13 demonstrates the use of Buffer. A number of threads
produce data (for the sake of simplicity, their own thread identifiers) that
are read and processed by a consumer. The consumer halts when it reads
the Stop character (first it outputs statistics on the traffic). Mterwards Join
of the main thread resumes and the whole program terminates.

Example 16.14 shows the implementation of the buffer, which is orga
nized as a circular buffer (see Section 11).

We could have set the fields in, out and n to 0 on declaration. However,
if we want to re-initialize the variable of type Buffer.T repeatedly -
with various buffer sizes - then we must place all initializations in the
init method. The other fields cannot be set on type declaration anyway
because they do not receive a constant value.

The condition variables non Full and nonEmpty control the dynamic be
havior of the system. When the buffer is full, the producers must wait for
nonFull; when the buffer is empty, the consumers must wait for non Empty.
Mter each successful put, nonEmpty can be signaled; after every successful
get, nonFul1.

Instead of Thread. Signal, we can use Thread.Broadcast to remove from
the queue all threads waiting for a condition. In this case it brings us
no advantage because a put can only place one element in the buffer
that can be taken by a get. In fact, this solution signals more than
necessary. A signal is actually only necessary when a buffer was empty

408

MODULE BufUser EXPORTS Main;

IMPORT Buffer, SIO, Thread;
FROM Scheduler IMPORT Yield;

CONST Stop = LAST(CARDINAL);
TYPE

Producers = [1 .. 61;
CIProd = Thread.Closure OBJECT

id: CARDINAL
OVERRIDES

apply:= Producer
END;

VAR buffer := NEW(Buffer.T).initO;

PROCEDURE Producer(cl: CIProd): REFANY =
VAR id: CARDINAL := cl.id;
BEGIN

REPEAT
buffer.put(id); YieldO;

UNTIL SIO.AvaiiableO;
buffer.put(Stop);
RETURN NIL;

END Producer;

16. Parallel programming

(*15.10.93. LB*)

(*signals end oftransfer*)

(*producers*)

(*thread identifier*)

(*thread algorithm*)

(*create and initialize buffer*)

(*yield resource to other processes*)
(*terminates when a key is pressed*)

(*signals end oftransfer*)

PROCEDURE Consumer(cI: Thread.Closure): REFANY =
VAR i: INTEGER; statistics:= ARRAY Producers OF INTEGER {D, .. };

PROCEDURE PutStatisticsO =

BEGIN
REPEAT

i:= buffer.getO; IF i # Stop THEN INC(statistics[i]) END;

(*output statistics*)

UNTIL i = Stop; (*i = Stop => consumer terminates*)
PutStatisticsO; (*output statistics*)
RETURN NIL;

END Consumer;

BEGIN
FOR i:= FIRST(Producers) TO LAST (Producers) DO

EVAL Thread.Fork(NEW(CIProd, id:= i)); (*create producer*)
END; (*FOR*)
EVAL Thread.Join(Thread.Fork(NEW(Thread.Closure, apply:= Consumer)));

END BufUser.

Example 16.13: Communication via a buffer

16.4. Shared variables 409

MODULE Buffer;
IMPORT Thread;
REVEAL

(* 15.10.93. LB*)

T = Public BRANDED OBJECT
in, out, n: CARDINAL;
nonEmpty, non Full: Thread.Condition;
data: REF ARRAY OF Data;

OVERRIDES
init:= Init;
get:= Get;
put:= Put;

END; (*Public*)

PROCEDURE Init(t: T; size: CARDINAL := 64): T =
BEGIN

tin:= 0; t.out:= 0; t.n:= 0;
t.data:= NEW(REF ARRAY OF Data, size);

(*for circular buffer management*)
(*change signals*)
(*buffer contents*)

t.nonEmpty:= NEW(Thread.Condition); t.nonFull:= NEW (Thread. Condition);
RETURN t

END Init;

PROCEDURE Get(buffer: T): Data =
VAR d: Data;
BEGIN

LOCK buffer DO
WITH N = NUMBER(buffer.dataA

) DO
WHILE buffer.n = 0 DO Thread.Wait(buffer, buffer.nonEmpty) END;
<* ASSERT buffer.n > 0*> (*here the buffer is definitely not empty*)
d:= buffer.data[buffer.out]; (*read from buffer*)
buffer.out:= (buffer.out + 1) MOD N; DEC(buffer.n);

END; (*WITH N*)
END; (*LOCK buffer*)
Thread.Signal(buffer.nonFull); (*wakes a possibly waiting producer*)
RETURN d;

END Get;

PROCEDURE Put(buffer: T; data: Data) =
BEGIN

LOCK buffer DO
WITH N = NUMBER(buffer.dataA

) DO
WHILE buffer.n = N DO Thread.wait(buffer, buffer.nonFull) END;
<* ASSERT buffer.n < N*> (*here the buffer is definitely not full*)
buffer.data[buffer.in]:= data; (*new element into buffer*)
buffer.in:= (buffer.in + 1) MOD N; INC(buffer.n);

END; (*WITH N*)
END; (*LOCK buffer;*)
Thread.Signal(buffer.nonEmpty); (*wakes a possibly waiting consumer*)

END Put;

BEGIN
END Buffer.

Example 16.14: Buffer implementation with a monitor

410

MODULE Barrier;

IMPORT Thread;

REVEAL T = Public BRANDED OBJECT
n, count: INTEGER;
cond: Thread.Condition;

OVERRIDES
join:= Join;

END;

16. Parallel programming

(* 11.10.93. LB*)

PROCEDURE Create(num: [1 .. LAST(CARDINAL))): T =
BEGIN

RETURN NEW(T, n:= num - 1, count:= num - 1, cond:= NEW(Thread.Condition));
END Create;

PROCEDURE Join(b: T) =
BEGIN

LOCK b DO
IF b.count > 0 THEN

DEC(b.count);
ThreadWait(b, b.cond);

ELSE
b.count:= b.n;
Th read. Broadcast(b.cond)

END; (*IF b.count*)
END; (*LOCK b*)

END Join;

BEGIN
END Barrier.

(*waits until nth thread arrives*)
(*all n threads havejoined*)

(*count reset to n*)
(*advance all threads*)

Example 16.15: Barrier implementation with a monitor

or full before the signal. Dummy signals do not affect the correctness
ofthe program, but they do dampen the efficiency. Thus, e.g., we could
replace the line

Thread.Signal(buffer.nonFull)

with the following:

IF buffer.n = N-1 THEN Thread.Signal(buffer.nonFull) END

This branch should occur within the LOCK statement.

Note that the buffer-empty and buffer-full conditions must be tested in
a loop. With the original strict signal semantics, an IF statement would
suffice because we can be sure that no other process can change the condi
tion. Thus we could have replaced the WHILE loops around the invocation

16.4. Shared variables 411

Figure 16.16: The table of the dining philosophers

of Wait with two IF branches. The corresponding IF statement in the Get
procedure could be:

IF buffer.n = 0 THEN Thread.Wait(buffer, buffer.nonEmpty) END

Example 16.15 shows the implementation of barriers with the help of
monitors.

The dining philosophers

Our last example of monitors is Dijkstra's famous example of the dining
philosophers [Dij68b]. Five philosophers are sitting at a table; in front of
each philosopher is a plate and to the left of it a fork (Figure 16.16). The
philosophers are either lost in thought or they are hungry and want to eat.
However, the spaghetti in the middle ofthe table are so extremely long that
a philosopher requires two forks to serve them.

What happens if two neighboring philosophers become hungry at the
same time? Assume that both first reach for the left fork, then both for
the right fork. One of the philosophers will fail because his right fork
has already been picked up by the other philosopher. What is worse, if
all philosophers become hungry at the same time and all reach for their
respective left forks, then... . Each philosopher would have to wait until
his neighbor puts down his fork, but since all are waiting, all remain hun
gry. This is a typical resource allocation problem. We have less resources
than necessary; therefore, unless we manage them carefully, a deadlock
can occur.

The deadlock occurs here because a number of processes - by way of a
number of resources - are circularly waiting for one another. There are a
number of methods for avoiding or resolving deadlock [Tan92], but we can
not treat them in detail here. In this example the solution is not difficult:
when he becomes hungry, a philosopher must first ensure - within a crit
ical region - that both left and right forks are free. If this is the case, he
must reserve them both in the same critical region. Example 16.17 shows
the interface, Example 16.18 the implementation of an appropriate "fork
management" system. The array avail contains for each philosopher the

412 16. Parallel programming

INTERFACE Fork; (*10.03.94. LB*)

CONST N = 5; (*number of philosophers*)

PROCEDURE PickUp(id: INTEGER); (*blocked until invoking philosopher can eat*)

PROCEDURE PutDown(id: INTEGER); (*put down fork*)

END Fork.

MODULE Fork;

IMPORT Thread;

VAR

Example 16.17: Fork interface

(*10.03.94. LB*)

mutex:= NEW(MUTEX);
avail:= ARRAY [0 .. N-1] OF [0 .. 2] {2, .. };
available:= NEW(Thread.Condition);

(*used for critical region *)
(*avail[i] available forks for Phili *)

(*signals that 2 forks are available*)

PROCEDURE PickUp(id: INTEGER) =
BEGIN

LOCK mutex DO
WHILE avail[id] # 2 DO Thread.Wait(mutex, available) END;
DEC(avail[(id - 1) MOD N]); DEC(avail[(id + 1) MOD N]);

END; (*LOCK*)
END PickUp;

PROCEDURE PutDown(id: INTEGER) =
BEGIN

LOCK mutex DO
INC(avail[(id - 1) MOD N]); INC(avail[(id + 1) MOD N]);
Thread.Broadcast(available);

END; (*LOCK*)
END PutDown;

BEGIN
END Fork.

Example 16.18: Fork implementation as monitor

number of free forks. The ith philosopher may eat if avail[i] = 2; otherwise
he must wait for the signal available. When a fork is laid down, all (both)
possibly waiting philosophers are notified with Thread.Broadcast. The ex
pressions (id - 1) MOD Nand (id + 1) MOD N compute the index of the left
and right neighbors, respectively.

The solution in Example 16.18 does preclude deadlock, but it is not quite
correct yet. We could encounter a scenario where two non-neighboring
philosophers alternatingly eat. Then the philosopher between them never
gets to eat because he never has two free forks (here the term starvation
is quite literal). We could solve the problem easily by providing separate

16.4. Shared variables

MODULE Philosophers EXPORTS Main;

IMPORT Thread, Fork,

CONST

413

(*LB*)

N = Fork.N;
TYPE

(*number of philosopher processes*)

Closure = Thread.Closure OBJECT
id: CARDINAL;

OVERRIDES
apply:= Start

END;
VAR

cis: ARRAY [O .. N-1] OF Closure;

PROCEDURE Philosopher(id: INTEGER) =
BEGIN

LOOP
Think(id);
Fork.PickUp(id);
Eat(id);
Fork.PutDown(id);

END
END Philosopher;

PROCEDURE Start(self: Closure): REFANY =
BEGIN

Philosopher(self.id); RETURN NIL
END Start;

BEGIN
FOR i:= 0 TO N-1 DO cls(i]:= NEW(Closure, id:= i) END;
FOR i:= 0 TO N-1 DO EVAL Thread.Fork(cls[i]) END;

(*dining philosophers*)

(*N threads started*)

Example 16.19: Implementation of the dining philosophers

rooms for thinking and for eating. No more than four philosophers may
enter the dining room, and after eating they must leave the room. Thereby
no one can be excluded permanently if we have a FIFO queue at the door.

Example 16.19 demonstrates the behavior ofthe philosophers, whereby
the procedures Eat and Think and the program as a whole are not elabo
rated.

16.4.5 Semaphores

No discussion of parallelism can omit semaphores; they were the first
methodical approach to the solution of the problems of mutual exclusion
and conditional synchronization, and their use is widespread even today
[And91]. Semaphores were introduced by Dijkstra [Dij68b).

414 16. Parallel programming

The idea of the semaphore comes from a railway metaphor: Assume
a railway station with five tracks, allowing up to five trains to be in the
station area simultaneously. Thereafter the semaphore must be switched
to block further trains until one or more trains have left the station again.
The semaphore value is the current number of trains that can still enter
the station.

We define semaphores as abstract data types with an INTEGER value, to
which we assign an initial value (l) (in our example, the number oftracks).
Two atomic operations, P(s) and V(s) , are defined on a semaphore s. P
stands for testing and V for leaving (they actually stand for the correspond
ing Dutch words assigned by Dijkstra, himself from Holland). The number
of successfully completed P or V operations is designated as np and nv
(where np could be the number of trains that entered the station and nv
the number that have left the station). np::::: nV+ I always holds. The total
number of trains that have ever entered the station can be larger than the
number that have left by at most the number of tracks. The semaphore
value is defined as s = 1+ nV - np. Thus a semaphore has the invariant
s 2: o.

We can best express the semantics of P and V with the following pseu
docode:

• P(s): wait until s > 0; s:= s - 1

• V(s): s:= s + 1

Semaphores enable expression of both mutual exclusion and conditional
synchronization. For mutual exclusion we must use a semaphore with the
initial value 1 (a binary semaphore).

With the semaphore invariant defined as above, we remain unprotected
against a subtle error: the occurrence of false leave signals. For example,
if an error caused three more V operations than necessary, the semaphore
would allow a total of 8 trains to enter the station, which would be quite
undesirable. We can protect against such an error with a more stringent
invariant, i.e., 0 ::::: s ::::: I. For implementation reasons, this is often omitted.
The stricter semantics usually applies to binary semaphores, e.g., 0 ::::: s :::::
1. In this case we can best represent the semaphore value as BOOLEAN;

the V operation sets the value to true. Thus false V sequences have no
effect because they do not change the semaphore value (true remains true,
regardless how often it is set).

Although Modula-3 does not provide semaphores, they are easy to im
plement. Example 16.20 shows an interface and Example 16.21 an imple
mentation (corresponding to the general, less stringent semantics).

Example 16.22 shows a re-implementation of the buffer with sema
phores. The interface and usage of the module Buffer remain unchanged!

16.4. Shared variables

INTERFACE Semaphore;

TYPE
T <: Public;
Public = MUTEX OBJECT

METHODS
init(i: CARDINAL := 1): T;
PO;
VO;

END;
END Semaphore.

MODULE Semaphore;

IMPORT Thread;

REVEAL

Example 16.20: Semaphore interface

T = Public BRANDED OBJECT

415

(*10.03.94. LB*)

(*10.03.94. LB*)

s: CARDINAL;
w: Thread.Condition;

(*initial value of semaphore*)
(*queue*)

OVERRIDES
init:= Init;
P:= Test;
V:= Leave;

END; (*T*)

PROCEDURE Init(sem: T; i: CARDINAL := 1): T =
BEGIN

sem.s:= i; sem.w:= NEW(Thread.Condition);
RETURN sem;

END Init;

PROCEDURE Test(sem: T) =
BEGIN

LOCK sem DO
WHILE sem.s = 0 DO Thread.wait(sem, sem.w) END; DEC(sem.s);

END; (*LOCK*)
END Test;

PROCEDURE Leave(sem: T) =
BEGIN

LOCKsem DO
INC(sem.s); Thread.Signal(sem.w);

END; (*LOCK*)
END Leave;

BEGIN
END Semaphore.

Example 16.21: Semaphore implementation

416

MODULE Buffer;
IMPORT Semaphore;
REVEAL

T = Public BRANDED OBJECT
in, out: CARDINAL;
empty, full, mutex: Semaphore.T;
data: REF ARRAY OF Data;

OVERRIDES
init:= Init;
get:= Get;
put:= Put;

END; (*Public*)

16. Parallel programming

(* 10.03.94 LB*)

(*for circular buffer management*)

(*buffer contents*)

PROCEDURE Init(t: T; size: CARDINAL := 64): T =
BEGIN

Un:= 0; t.out:= 0;
t.data:= NEW(REF ARRAY OF Data, size);
t.empty:= NEW(Semaphore.T).init(size);
t.full:= NEW(Semaphore.T).init(O);
t.mutex:= NEW(Semaphore.T).init(1);
RETURN t

END Init;

PROCEDURE Get(buffer: T): Data =
VAR d: Data;
BEGIN

(*number of empty positions*)
(*number offilled positions*)

(*mutex is a binary semaphore*)

buffer.fuII.PO;
buffer. mutex. PO;
d:= buffer.data[buffer.outj;

(*blocks if the buffer is empty (no filled position)*)
(*enter critical region *)

(*read from buffer*)
buffer.out:= (buffer.out + 1) MOD NUMBER(buffer.dataA

);

buffer.mutex.VO;
buffer.empty.VO;
RETURN d;

END Get;

PROCEDURE Put(buffer: T; data: Data) =
BEGIN

buffer.empty.PO;
buffer.mutex.PO;
buffer.data[buffer.inj:= data;

(*leave critical region *)
(*increment number of empty positions*)

(*blocks if buffer is full (no empty position)*)
(*enter critical region*)

(*new element into buffer*)
buffer.in:= (buffer.in + 1) MOD NUMBER(buffer.dataA

);

buffer.mutex.VO;
buffer.fuII.VO;

END Put;

BEGIN
END Buffer.

(* leave critical region *)
(*increment number offilled positions*)

Example 16.22: Implementation of the buffer with semaphores

16.4. Shared variables 417

The number of elements is stored in semaphores: full stores the number of
filled positions (starting at 0) in the buffer; empty, the number of empty
positions (starting with the total buffer size). The field n from the solution
in Example 16.14 becomes extraneous. Mutual exclusion is ensured by the
semaphore mutex. The procedures Get and Put are largely symmetrical in
this solution as well. First the state of the buffer is tested (Get tests for
full, Put for empty positions). If the buffer state is correct, the thread that
invoked Get or Put can enter the critical region (protected by mutex). Note
that the sequence of the P operations is relevant: if Get were to first contain
buffer.mutex.PO and then buffer.fuII.PO, then an empty buffer would cause
deadlock because mutex would block any further thread (including a pro
ducer that could effect the desired state transition). The sequence of the V
operations is almost irrelevant: reversing them would not cause an error.

Our solution has the advantage that after buffer.mutex.vO a waiting
thread can enter immediately. We could improve this solution by ob
serving that Get and Put never access the same position in the buffer
and that Get uses only buffer.out and Put uses only buffer. in. They al
ways access disjunct parts of the shared variables. Thus we can pro
tect Get and Put with different mutex semaphores and so can permit
simultaneous reading and writing.

Perhaps you noticed from the above specifications that the operations
P and Thread.Wait, as well as V and Thread.Signal are very similar. How
ever, there is a significant difference: a semaphore stores a state, while a
condition does not. A V increments the semaphore value even if no cor
responding P was executed; by contrast, a Thread.Signal has no effect if no
thread is waiting for the condition. Thus it is correct for the semaphore ver
sion of Get to start with simply buffer.fuII.PO. Ifa producer has already put
something in the buffer, then the value of full is certainly greater than 0,
so that the consumer (the thread invoking Get) can continue immediately.
In the monitor version, however, Get must first explicitly test the num
ber of filled positions. If Get were to start with an analogous statement
Thread.Wait(buffer, buffer.nonEmpty), this could cause Get to wait endlessly.
If all producers were there earlier and sent their signals into empty space,
then the consumer can wait endlessly. However, if a producer comes later,
the consumer is awakened. Such a solution would behave quite unpre
dictably: depending on timing, it would behave correctly sometimes and
erroneously at other times. This must be avoided in any case in parallel
programming.

These considerations show that the condition type is more primitive and
basic than the semaphore. Thus semaphores can easily be implemented
with monitors, while the reverse is quite cumbersome (although possible).
Monitors have the additional advantage that they combine the idea of en
capsulation with synchronization.

418 16. Parallel programming

16.5 Message passing

We explained communication via shared variables with the analogy ofread
ing a shared blackboard or writing in a shared notebook. By contrast,
the model of message passing resembles communication by telephone and
mail. Communication occurs via channels. We usually identify our part
ner by identifying the channel (similar to a telephone number or house
address). Then we communicate by sending and receiving messages. It can
be shown that the two communication models are equally powerful: either
can fully simulate the other.

Message passing is certainly simpler and more basic because it makes
less assumptions. This model corresponds directly to the frequent case
where the linked computers have no shared memory (as in computer net
works and with many of today's common parallel computers). The draw
back of this model is the difficulty in writing correct programs with mes
sage passing (just as it is more difficult to write correct programs in an
assembly language than in a higher programming language). Therefore
many approaches have hidden the underlying message traffic under an ad
ditionallayer that emulates the presence of shared variables [BaI90j. Nat
urally, such an additional layer should be efficient; thus there have been
approaches to implement them directly in the hardware. The inverse case,
using shared variables to simulate message passing, only makes sense in
special cases. Such a special case exists when we want to study concepts of
the message passing model on a single computer, as in the following exam
ples. Message communication can run synchronously or asynchronously.

16.5.1 Client/server model

Most applications of message passing build on the client/server model
[And91j. In this model a server provides public services; numerous clients
can employ these services as needed. A file server, e.g., provides data for
use by multiple programs on different computers; a printer server manages
a central printer, etc. We have parallelism because the clients are mutually
independent and the server must handle them all simultaneously in such
a way that each client has the impression of exclusive use of the server.

A basic problem of this model is that the clients must find the server to
be able to utilize its channels. This usually requires an additional server,
a name server whose name and channels are known to all participants.
Servers must be registered with the name server to make their services
publicly available. Via the name server, the clients can establish connec
tions to other servers (through the name of the specific server) and so re
ceive the necessary communication channels.

16.5. Message passing 419

16.5.2 Synchronous message communication

In synchronous communication, first a rendezvous is arranged and then
communication flows - as with telephoning. Synchronization occurs before
each meSS/lge passing (between polite people, a whole telephone conversa
tion elapses synchronously, one speaking while the other listens). Modula-3
does not directly support this model; programming languages that directly
support synchronous communication include Ada and Occam. The theoret
ical foundations of such languages were laid by Hoare, among others, in
the language CSP [Hoa8S].

Remote procedure call

A special case of synchronous communication is the remote procedure call
(RPC) [NeI81]. Here a procedure invocation takes place on computer A,
but the execution of the procedure body takes place on another computer
B. Ideally, from the viewpoint of the invoking procedure, there should be
no difference between local and remote procedures.

Most Modula-3 language environments support this concept with net
work objects2, whose methods can be invoked by processes in a different ad
dress space (possibly on a physically different computer) [BNOW94]. The
invocation of a remote method is just as type-safe as a local invocation.

Implementing the RPC concept is not easy. For an ordinary procedure
invocation we implicitly assume that the invoking procedure crashes when
the invoked procedure crashes. For a remote procedure invocation, the
crash of one of the two procedures is quite possible. If the invoked proce
dure (the server) crashes, then the invoking procedure is hung in a proce
dure invocation that fails to return control. If the invoking procedure (the
client) crashes, we have an orphaned procedure body that cannot return
control to the invoking procedure. For the solution to these problems, we
find numerous proposals in the literature [NeI81, And91].

16.5.3 Asynchronous message communication

Asynchronous communication resembles correspondence by mail, where
the messages are simply sent and the reply can come at some later time
(if at all). Asynchronous communication is the more general case; syn
chronous communication is easy to simulate with the asynchronous model
(the inverse is also easily possible with the availability of threads).

"The MS-DOS Modula-31anguage environments do not contain the network object.

420 16. Parallel programming

INTERFACE Channel; (* 11.03.94. LB*)

TYPE
Message = REFANY;

T <: Public;
Public = MUTEX OBJECT

METHODS
initO: T;
send(message: Message);
receiveO: Message;

END;

END Channel.

(*sends message via channel*)
(*receives message via channel*)

Example 16.23: Interface of a channel

16.5.4 Channels

The communication medium for message passing is the channel. Example
16.23 shows the interface ofthe abstract data type Channel. Processes can
send and receive messages via the channels. The type of a message can
be any reference. This allows sending data structures of any complexity
through a channel.

Example 16.24 demonstrates such processes. The module Chan User in
Example 16.24 resembles the module BufUser in Example 16.13. This is no
accident: communication via a buffer corresponds approximately to mes
sage passing. The concrete type of the message is a reference to a record
that contains an identifier and a time stamp from the sender. The receiver
prints this time stamp (the procedure PrintTime is not elaborated).

Here we have neglected the aspects of the name server: the channel
is simply declared as a global variable. However, the participating
processes do not write directly to this channel, but only use it as a
transmission medium.

Example 16.25 demonstrates an implementation of Channel. The im
plementation is based on shared memory. However, it is possible to modifY
the implementation - maintaining the same interface - so that send and
receive are mapped onto real communication channels, e.g., of a computer
network.

Implementing the transmission of complex data structures is not quite
trivial. Ifwe transmitted only the reference, as in Example 16.25, this
would be useless because the receiver would not find the referenced
data in its own memory. However, Pickles (see Section 14.3.1) facil
itates such an implementation. Just as "pickled" data can be stored
in a file and read from there again, it can be sent and received on a
network.

16.5. Message passing 421

MODULE Chan User EXPORTS Main;

IMPORT Channel, SIO, Thread, Time;

CONST

(* 12.03.94. LB*)

Stop = NIL; (*signal end oftransmission*)

TYPE
Message = REF RECORD

id: CARDINAL; time: Time.T
END;

VAR
channel := NEW(ChanneLT).initO; (*create and initialize channel*)

PROCEDURE Producer(cl: Thread.Closure): REFANY =
VAR message := NEW(Message, id:= 1); (*the field id is set only once*)
BEGIN

REPEAT
message.time:= Time.NowO;
channeLsend(message) ;
Thread.Pause(O.5DO);

UNTIL SIO.AvaiiableO;
channeLsend(Stop);
RETURN NIL;

END Producer;

(*the field time contains the sender's timestamp*)
(*send message*)

(*wait briefly*)
(*terminate when any key is pressed*)

(*signal end oftransmission*)

PROCEDURE PrintTime(time: Time.T) =

PROCEDURE Consumer(cl: Thread.Closure): REFANY =
VAR message: Message;
BEGIN

REPEAT
message:= channeLreceiveO; (*receive message*)
IF message # Stop THEN PrintTime(message.time) END;

UNTIL message = Stop; (*Stop => consumer terminates*)
RETURN NIL;

END Consumer;

BEGIN
EVAL Thread.Fork(NEW(Thread.Closure, apply:= Producer));
EVAL Thread.Join(Thread.Fork(NEW(Thread.Closure, apply:= Consumer)));
SIO.PutText("Stopped\n");

END ChanUser.

Example 16.24: Communication via a channel

422 16. Parallel programming

MODULE Channel;

IMPORT Thread;

REVEAL
T = Public BRANDED OBJECT

(* 11.03.94. LB*)

empty: BOOLEAN;
message: Message;
wait: Thread.Condition;

(*channel state: false if message present*)
(*channel stores a single message*)

OVERRIDES
init := Init;
send := Send;
receive := Receive;

END;

PROCEDURE Init(chan: T): T =
BEGIN

chan.empty:= TRUE; chan.wait:= NEW(Thread.Condition);
RETURN chan

END Init;

PROCEDURE Send(chan: T; message: Message) =
BEGIN

LOCK chan DO
WHILE NOT chan.empty DO ThreadWait(chan, chan.wait) END;
chan.message:= message; (*copy message to channel*)
chan.empty:= FALSE; (*message present in channel*)
Thread.Signal(chan.wait); (*wake possibly waiting receiver*)

END; (*LOCK*)
END Send;

PROCEDURE Receive(chan: T): Message =
VAR message: Message;
BEGIN

LOCK chan DO
WHILE chan.empty DO ThreadWait(chan, chan.wait) END;
message:= chan. message; (*read message from channel*)
chan.empty:= TRUE; (*no message in channel*)
Thread.Signal(chan.wait); (*wake possibly waiting receiver*)

END; (*LOCK*)
RETURN message;

END Receive;

BEGIN
END Channel.

Example 16.25: Implementation of a message channel

16.5. Message passing 423

The implemented channel can store only one message. If the channel
is occupied by a previous message, the sender is blocked until a receiver
fetches the message. If the channel buffer is empty, then the sender can
continue execution after depositing the message. Thus the channel func
tions asynchronously, although, due to its low buffer capacity, it resembles
a synchronous channel. Ifthe channel had a larger buffer capacity, then its
asynchronous nature would be more obvious.

Conclusion

In the course of studying, readers of this book might have been confronted
with the following questions: Why should we learn programming at all?
And if so, then why in Modula-3? In conclusion, we attempt to answer
these questions.

Why programming?

Today many computer scientists and those who apply computer science
believe that programming is a matter of secondary importance: the truly
important phases of software development are analysis, specification and
design; programming just adds the nuts and bolts.

In the early days ofthe computer age, many viewed programming as an
art. Accordingly the programmer's job enjoyed high esteem. As software
systems grew ever larger and more complex, the intuitive art of program
ming no longer sufficed. The importance of the preparatory phases increas
ingly won recognition. In the battle against the traditional view, many
expressed opinions were polemic and somewhat exaggerated. Thereby pro
gramming lost its primary role.

We are convinced that it is high time for reconciliation in this area and
for the recognition of the importance of all phases of software development
as equal. Clearly, without a good analysis, a software project is doomed
to failure from the start. However, it should also be clear that in the end
software is produced by programmers. If they are poorly trained or unmo
tivated, this renders even the best analysis worthless.

In a lecture in March 1995 at the University of Klagenfurt, Niklaus
Wirth analyzed the phenomenon of software chaos. He challenged that the
ever rising complexity of software is not necessary, and indeed that it is
bound to the loss of certain engineering qualities, such as an appreciation
of efficiency and simplicity. We consider it the duty of every computer sci
entist to learn to program cleanly and with style - even if a later career
might involve little programming.

426 16. Parallel programming

Why Modula-3?

If the role of programming is seen as secondary, then the choice of a pro
gramming language often drops to tertiary importance. Naturally the pro
gramming language is only a tool. In most other areas of life, the impor
tance of good tools is widely recognized. In the domain of software, the se
lection of a programming language normally involves considering nothing
more than general availability. This leads to preserving antiquated pro
gramming languages. Today's most-used programming languages (such as
C, Fortran and Cobol) are all more than twenty years old (Cobol and Fortan
almost forty). Their greatest weakness is their security mechanisms: they
afford only very restricted static controls.

We chose Modula-3 for this book because the language integrates the
knowledge accumulated over the last twenty years in the area oflanguage
design in a clean and elegant manner. Although we do not maintain that
this applies only to Modula-3, the number of such programming languages
is not excessive. At any rate, it is important that the first programming
language that a computer scientist learns - so to say, the native language
- have these attributes.

Niklaus Wirth addressed the responsibility of universities in this mat
ter. If the universities chase after practice instead of publicizing new de
velopments, then the hope for any improvement in the chaotic software
situation shall be in vain.

Ifwe have succeeded in contributing to such an improvement, then our
work has been worth the effort. We wish the reader lots of fun in program
ming in Modula-3.

Appendix A

A small database

So far we have developed many small programs, but we have not solved
any more extensive tasks. Now we will attack a larger, cohesive example.
Although our solution still contains many simplifications, it does represent
a nontrivial program. We challenge the reader to extend the program ac
cording to needs and taste.

As regards methodology, space limitations require us to undertake dras
tic simplifications. We must skip the phases of the life cycle introduced
in Chapter 1.1 and attempt to reach the program stage relatively quickly.
However, we will discuss requirements and solution ideas in advance and
describe them clearly. The source code of our solution is listed starting
at page 443. We recommend that the reader, after reading the following
considerations, delve into the details ofthe program.

A.I The task

Let us implement a management system for audio CDs. You might wonder
why we restrict ourselves to CDs. Why don't we include our vinyl and sheet
music? Why not build a general management system that can handle any
objects, including CDs? Naturally we could do that. However, we would
get bogged down in detail and would never finish. Instead, we prefer to
concentrate initially on a well-defined, restricted task, the CD management
system.

What do we expect our CD management system to do? We can best
define its tasks in terms of the queries that we would pose to the system.
Take some example questions:

• Which CDs do I have?

• By which composers do I have at least one CD?

• Which artists perform on my CDs?

428 A. A small database

• Which Mozart CDs do I have?

• Which CDs do I have with violin concerts by Bach?

• Which CDs do I have with Yehudi Menuhin?

The answers to the first three questions are lists of CDs, composers and
performers, respectively. The answers to the other questions are subsets
of the set of CDs. An operation that yields a subset of a set on the basis
of specified criteria (such as the name of a composer or an instrument) is
called a selection. Naturally, we can pose much more complex questions:
"Are there CDs on which Bruno Walter directs Mozart and plays Schubert
on piano?" Or: "Is the average price of Mozart CDs greater than for CDs
by Bela Bartok?" Before we set our fantasy free, let us concentrate on the
simpler questions above. However, the system should not preclude later
refinement. We want to store our data in objects and find an object model
that applies independently of the specific query and that can be extended
later.

A.2 The object model

Let us begin to define our object model. First we need a schema that de
scribes the object types and their relationships. We have the following ob
ject categories:

• CDs

• Works

• Composers

• Performers

A CD should have an identifier such as "Bach Concerts" or "Mozart Cham
ber Music". We can use this identifier to classify the CDs. Works have
a title, e.g., "The William Tell Overture". To enable easily distinguishing
CDs, we require that the concatenation of the CD identifier with all titles of
works on the CD must be unique. Ifwe have Mozart's "Trio Divertimento,
K. 563" as the sole work on each of two CDs, then we must change one of
the two CD identifiers, e.g., to "Mozart Chamber Music 2".

Both composers and performers are persons, so it might make sense to
define a common superclass Person. This neglects the reality that an or
chestra or choir consists of more than a single person. We can designate a
person by last name and first name. Groups of persons, such as an orches
tra, also have a name, but no first name.

A. 2. The object model 429

I
Element

I
<:

I I

I
Person

I I
Work l1+

1
1+1

1

CD

1 <: 1+ 1+

rcol",~ I I

Performer I
10+

1 0+

Figure A.l: Relationships between the object types

All objects should have methods to read and display them.
The next important question regards the relationships between the ba

sic types:

• CDs contain works

• Works have composers and performing artists.

We could maintain that the relationship to works can be quite different
for composers and performers: the composer remains the same, while the
performer can vary. If we were managing sheet music, there would be no
performer. Thus we could link performers to CDs rather than to works. De
spite this objection, we retain the above relationships: they are quite sim
ple and usually describe the situation well. However, these considerations
do show that establishing an object model (or data model) is definitely a
creative process during which we make decisions that might not be so clear
at first, yet are of great importance to the realization of the system.

Now we can graphically represent the desired structure (see Figure
A.l). We expressed the subtype relationship with the Modula-3 symbol
«:). The relationship where objects of one class contain objects of another
is expressed with a connecting line between the corresponding boxes. The
specification 0+ or 1+ refers to the cardinality of the relationship. The
specification 1+ at both ends of the connecting line between work and CD
indicates that a CD contains at least one work and a work must be present
on at least one CD (otherwise it is irrelevant for our system). The specifica
tion 0+ on the connecting line between work and composer indicates that a
work can have multiple composers, or possibly none (where the composer
is unknown or uninteresting).

I

430 A. A small database

Element.T

init (): T
hash (limit: CARDINAL)
equal (e2: T): BOOLEAN
input (rd:SIO.Reader): T
output (wr: SIO.writer)

1 <:

I I I
Person.T Work.T ~ CD.T

--

name: TEXT
title: TEXT

identifier: TEXT
firstname: TEXT ,--- performers: List. T

'-- works: List. T composers: List.T
-- --------

input (persons: Set.T; input (cds: Set.T;
rd: SIO.Reader) rd: SIO.Reader)

r
1<: j I

~_ Composer.T h Performer.T

[style: Styles

Figure A2: Detailed object model

Figure Al depicts all classes we have defined so far as subclasses of
the base type (Element). This base type collects all attributes and methods
that all objects of the system share. For all objects, we require an unam
biguous identification (often called oid for object identifier). This lets us
determine whether two objects are equal or identical (one and the same).
Two objects ofthe same type are equal if all their attributes have the same
value. Two objects are identical if they are equal and they share the same
object identifier. This distinction can be quite useful. Consider two per
sons named John Smith but living at different addresses. Assuming that
all persons are represented as objects having the attributes name and ad
dress, the objects for the two John Smiths are neither equal nor identical.
If the two parties move into the same house, their objects become equal but
not identical. Elements need to have such an unambiguous identification.

Figure A2 shows the object model in more detail. Each box has three
parts: the first contains the name of the object types, the second the at
tributes (object fields), and the third the methods. A part can be empty. The
figure includes two types that we have not defined yet, List.T and Set.T. We
are familiar with lists and sets, and the definitions of these types follows

A. 3. Interfaces of the object model 431

later. For the time it suffices to know that they can store arbitrary objects;
i.e., Set.T sets are not restricted to ordinal types.

We will use lists to store smaller data collections, such as the works on
a CD or the composers of a work. For larger data collections, lists are much
too inefficient, so we will use sets instead (see Section A.5.2).

Our most important set is the set of all CDs. It must contain all relevant
data. To make checking data input simpler and faster (see input strategy,
Section A.4.1), we additionally introduce the set of all composers and the
set of all performers.

Figure A.2 maps the relationship contains onto lists. In our original
schema we did not specifY whether we can explicitly store a relationship
in both directions. For example, we can map the relationship between CDs
and works onto two lists: a CD contains a list of works and a work has
a list of CDs on which it appears. However, for reasons of consistency, we
choose the simpler variant: we store relationships in only one direction and
so avoid redundant representation. Although this approach can slow down
certain queries, our model is much clearer and thriftier with memory. In
particular, it is easier to keep the lists free of contradiction, i.e., to guard
their consistency. For example, to delete a CD, it suffices to delete it from
the set of CDs. Since we do not store lists of CDs on which a work appears,
we need not bother to delete the CD from each list of CDs for each respec
tive work that the CD contains; in general, such redundant representation
would encumber the preservation of consistency.

A CD contains a list of works. A work contains a list of composers and a
list of performers. Composers and performers are persons. Composers also
have a style. We use no other attributes for performers.

A.3 Interfaces of the object model

From our schema we can derive our interfaces directly. Despite comments,
the semantics of the operations is often imprecise. In case of doubt, we
will have to examine the corresponding implementation. In practice this is
often unacceptable. However, this appendix seeks to encourage the reader
to peruse the source code. All interfaces describe an encapsulated data
type with possible additional services. Corresponding to our convention,
the main type in each interface is always called T.

A.3.1 Interface of the base object

The interface Elem (page 443) defines the supertype of all objects that we
manage. On initialization, each object of type Elem.T receives a unique
identification. The method equal returns true if and only if two elements

432 A. A small database

have the same identifier. The method hash returns a mapping of the iden
tifier onto the range [0 .. limit]. We use the methods equal and hash in the
implementation of object sets.

The type Elem.T defines additional methods for inputting and outputting
an element.

The Interface Elem affords a number of types that the other modules
can use. The type Compare defines a relational procedure for two elements.
Procedures of this type serve as sorting functions for generic lists.

The type Action defines a closure around an action that can be applied to
an element. Instead of an Elem.T-object, naturally we can use an object of
any subtype. We will use this closure to apply an action to all elements of a
list or of a set. The method action must be overridden with a corresponding
procedure. The closure provides an environment for the procedure (similar
to our THREAD closures in Chapter 16).

The type Selector is a closure around a Boolean function that can be
applied to an element. We will use it to select elements from a list or a
set if the method select evaluates to true. This method must be overridden
with an appropriate function procedure.

A.3.2 The specific interfaces

The interfaces Person, Composer, Work and CD (starting on page 443) de
fine the interfaces specific to the CD management system. They were de
rived directly from Figure A.2 and should be self-explanatory.

The only point that still might need some explanation is the redefini
tion of the method input. The types Person.T and CD.T redefine this method
with an additional parameter of type Set.T. For technical reasons, this pa
rameter cannot be specified in the superclass (Elem.T): this would cause
the mutual import ofthe interfaces Elem and Set (pages 443, 444), which is
not permitted. The set parameter contains a reference to the set in which
the input procedures can search for an already existing object. New objects
of a given class are added to this set. However, this parameter need not
be specified (the default is NIL), allowing us to switch off this convenience
service. To make this clearer, we define our user interface in the following
section.

A.4. User interface 433

A.4 User interface

Our goal for the user interface is to enable the user to do the following:

1. Input new CDs.

2. Remove existing CDs.

3. Make queries.

Due to space considerations, we do not require a graphic user interface l .

AA.l Input strategy

The input must meet the following requirements:

• It must be possible to input data either interactively form the key
board or by reading a properly prepared file. We must provide the
interactive user with a certain measure of convenience and protec
tion against user errors. For input files, we can set up relatively strict
rules.

• The basic input unit is the CD. Inputting a CD occurs in two steps:

1. Input a CD identifier.

2. Input the works. Ifwe already have a CD with this identifier and
the same work titles, then the interactive user is asked whether
this CD is really new (e.g., a different performer is possible). If
so, then a different CD identifier must be input (otherwise the
CD is not entered in the database). For input from a file, such a
CD is considered as already existing and is not added to the set
of CDs.

• Inputting a work requires the following steps:

1. Input the title.

2. Input the composers.

3. Input the performers.

• Inputting composers and performers occurs as follows:

1. Input the last name.

1 However, reimplementing the user interface as a graphical one should be possible; see
the programs accompanying the book (Appendix D).

434 A. A small database

2. If the person is in the database, then the user views a suggestion
for the first name(s). The user can confirm this or enter a new
first name (such as Carl Philipp Emanuel if the name Bach does
not mean Johann Sebastian Bach).

3. For composers we will also input the style (in the case of interac
tive input the style will be requested only for new composers) .

• For the interactive user, we want to alleviate the job of inputting by
accepting shorthand notation for data that are already known to the
system (assuming that the abbreviation is unambiguous). Input will
not be case sensitive .

• The structure of input is to be adapted primarily to the requirements
of the interactive user. Therefore we define the following extremely
simple input structure, where the user can answer each question in
two ways:

1. With new input (such as the first name of a composer)

2. With a default input that is always activated in the same way
(e.g., with the return key): The meaning of the default value
depends on the context, but can be described generally as "no
further input for this component". An empty title of a work, e.g.,
means that the CD contains no further works; an empty CD iden
tifier indicates that we want to terminate CD input.

The interactive input of a CD takes the following form (where Johann Se
bastian Bach is already in the database):

CD identifier: Bach Oratorium
Ti tIe of work: Passion Music according to St. Matthew

Composer (s) =>
Person's name: Bach

Johann Sebastian Bach
Do the first names match? "Return"

Person's name: "Return"
Performer (s) =>

Person's name: van Egmond
First names: Piet

Person's name: Utrecht Symphony Orchestra
First names: "Return"

Person's name: "Return"
Ti tIe of work: "Return"

CD identifier:

A.4. User interface 435

The above input could be prepared in a file as follows (where lines begin
ning with a period (".") are considered default input; comments can be
added to make the file easily readable):

Bach Oratorium
Passion Music according to St.Matthew
Bach
Johann Sebastian
baroque

End Composers
van Egmond
Piet
Utrecht Symphony Orchestra

End performers
End works

Note that a simple and consistent input strategy can save the user a lot of
frustration. This is not meant to say that we could not define a much more
comfortable input system than what we have just described. The reader
should feel free to improve the example in this direction!

A.4.2 Output

Output will be in the form of formatted, sorted lists. CD lists are sorted
alphabetically and lists within a CD chronologically according to the order
of input (usually the same as on the CD). For each output it should be
possible to redirect data to a file. The above CD should be output as follows:

Bach Oratorium
Passion Music according to St.Matthew
Johann Sebastian Bach (baroque)
Piet van Egmond, Utrecht Symphony Orchestra

436

I
-----------rr

__ T~~_~

"----I _In -E!
[ObjList

L_~e~

A. A small database

Figure A.3: The module structure

A.5 Implementation

The building blocks of our implementation will be modules. The architec
ture is determined by the following considerations:

• The applications of the system are specified as main modules. We
define two prefabricated applications: one for input and one for fre
quent queries. For additional queries, additional applications can be
developed.

• The types of the object model form a module hierarchy. This results
on the one hand from the type hierarchy and on the other hand from
the relationships between the types.

• The data are stored in persistent sets.

• Several auxiliary modules are available, e.g., to handle frequent se
lections, for command input, for menu output, etc.

This produces a module structure (Figure A.3). The arrows indicate
the direction of import; the importing module is always the one to which
the arrow points. Elem is imported by all modules of the object model.
The auxiliary modules, such as Selection, Texts and In, can be imported
wherever needed. The same applies for ObjList and Set. Set is classified
primarily under the Database module, but it can be imported everywhere.

A. 5. Implementation 437

During implementation we have to take care which services build on
which others. Thus far we have progressed top-down: we began with basic
requirements and made them more concrete. Now we will invert the game:
we must compose the system bottom-up. The services that are visible to
the user build on internal services. This is similar to building a house: the
drafts consider primarily the requirements and the environment. Here the
facade might be of particular importance. However, it is advisable to begin
construction with the foundation rather than the roof

A.5.1 Persistent sets

Our task is a typical database application. Databases are designed for
storing data and their relationships and for providing the data for various
queries. We could end our design now and refer the reader to a familiar
database system that would help to solve the task. But if we stay with
our idea of solving the task with Modula-3 (which is certainly advisable as
an example of programming in Modula-3), then we still have the follow
ing alternatives: either we link our Modula-3 environment to an existing
database system, or we build one. For the first alternative we would have to
develop a corresponding Modula-3 interface (we can link external programs
with the help of the EXTERNAL pragma (see Appendix B.8.5)). Since our
task is relatively simple, we will attempt our own solution.

Chapter 14 introduced persistent variables. We postulated that we
want to store our data in sets of objects. If we make these sets persistent,
then we have the basic functionality of a database system - storing and
providing data long-range. Naturally, we must not forget that database
systems offer much more: tools to ensure data consistency, simultaneous
access for multiple users, and transactions [KM94], to name a few. How
ever, we will settle for persistent sets (and call ours a poor man's database
system).

The Database interface

The interface Database (page 445) exports three persistent sets: for CDs,
composers and performers. To prevent involuntary destruction of our per
sistent data, the variables themselves are hidden. We export only functions
that return the corresponding sets (more precisely, references to them).

To launch the database (by loading the persistent variables), we must
invoke Persistent.Startup. We place this invocation in a separate module
(Startup, pages 446 and 461), which we import in module Database (page
461). The Startup interface is empty; the import simply causes the loading
ofthe implementation and the execution of its body.

438 A. A small database

A.5.2 Sets

Interface Set (page 444) shows the definition of the abstract data type
Set.T. Sets of type Set.T are an unordered collection of any kind of objects.

In the initialization of a set (in it), we can provide a (hint) on how large
we estimate the set. This specification helps the implementation to find an
efficient solution. If we seriously underestimate (i.e., by orders of magni
tude), then it will become relatively slow; if we seriously overestimate it,
then we squander memory.

The method insert inserts an element in the set if it is not already con
tained; delete removes an element if it is contained. The operation in tests
whether an element is contained in a set. The method pick selects an arbi
trary element from the set, or returns NIL if the set is empty. apply iterates
through the entire set and applies the action procedure specified in pa
rameter a to each element. Observe that by definition sets are unordered,
and therefore the sequence in which apply progresses is undefined. ex
ists returns an element for which the selection function (s.select) evaluates
to true or NIL if no such element exists. The select method returns the
subset on whose elements the selection function evaluates to true; if no
selection criterion is specified (s = NIL), all elements are selected, thus cre
ating a copy. Note that set.exists(s) is a short form of set.select(s).pickO.
The method sort creates a sorted list from a set. The usual set operations
(union, intersection, etc.) have the same semantics as described in Section
8.3.

The implementation (module Set, page 453) employs a hash table. For
a complete description of hashing, refer to, e.g., [Knu81, Sed93, Wir761; we
limit ourselves to the bare necessities here. A hash function maps a domain
of any kind (in our case, the object identifiers) onto a predefined range (in
our case, spanned by the size of the hash table). The simplest hash function
is value MOD limit. We implement the hash table as an array of lists.

The hash function maps the oid onto an index of the hash table. If we
attempt to insert an existing object into a set or if we test whether it is
contained in the set, the hash function gives us the index of the list in
which the object could be. On insertion, we must insert the element in
this list; on searching, we search in the same. If the number of elements
is about the same as the size of the hash table, (computed from the hint
parameter of the init method), then we have a good chance that the lists will
be quite short. With a uniform distribution ofthe object identifiers, all hash
values are equally probable. If our set grows orders of magnitude beyond
our estimate, the lists become relatively long; in this case we can copy our
entire hash table into a new, larger hash table (but this is not implemented
in module Set). The advantage of using a hash table compared to lists
is that we have many small lists instead of one large one, and we can very

A. 5. Implementation 439

quickly find the right list. The remainder ofthe Set implementation should
be clear from the source code.

A.5.3 Object lists

The interface ObjList (page 445) defines the list operations. In init we can
specify a comparison function (compare). If compare is specified, the list is
sorted accordingly; otherwise (compare = NIL) the list retains its chronologi
cal nature: elements are added at the end and removed from the beginning.
We insert elements with insert and remove them with delete; delete returns
the removed element, or NIL ifno such element could be removed.

In addition to the usual list operations, ObjList.T contains operations
that we have defined on sets. The apply method is applied sequentially to
all elements. select returns a list with elements for which the selection cri
terion (s.select) evaluates to true. Ifthere is no selection function (s = NIL),
select creates a copy. The semantics of exists is also similar to that for sets.
The method equal compares two lists. If the comparison function (com
pare) is specified, it is used in the comparison; otherwise the list elements
are simply tested for reference equality. Given a positive result, in the first
case the lists are equal with respect to the explicit comparison criterion; in
the second case the list elements are identical. The implementation oflists
is specified in module ObjList (page 457).

A.5.4 Auxiliary modules

Auxiliary modules are available to all other modules. The module In (page
446, 466) exports two Boolean functions that indicate whether input will
be interactive or from a file and whether to use a text as default input (see
Section A.4.1).

The module Texts (page 446, 461) provides procedures for various text
conversions and searching as well as for inputting a command from a com
mand menu. For example, Texts.Part tests whether the first of two text pa
rameters is shorthand for the second. This operation is not case sensitive,
and blanks are ignored. All text input uses this procedure. Texts.Search
tests whether a text is shorthand for a text of a text list. Texts.Commandln
reads a command from a menu list.

A.5.5 Selections

We can carry out any kind of selection on our data by defining a correspond
ing selection closure. The most important and most frequent selections are
provided in module Selection (page 446,460). The selection closure (Selec
tor) contains all parameters that we need for the provided selections. The

440 A. A small database

field kind describes the kind of selection: e.g., CD identifier, composer name,
etc. The parameter t contains the target text value (most selections search
for a text), e.g., the target CD identifier or composer name. If we search
for a style (e.g., all CDs by Romantic composers), then we need the param
eter style. There are many examples of how to apply selections in various
programs, e.g., in module Queries (page 466); therefore we present only a
small example here. For the selection of all CDs whose titles begin with
"viol", we have the following implementation:

VAR
selector := NEW(Selection.Selector, kind:= Selection.Kind.Title, t= "viol");
viol: Set.T;

BEGIN
viol:= Database.CDs().select(selector); (*selects works for viol ... *)

The implementation of selections (page 460) consists in essence of a sin
gle recursive function which selects the appropriate measures on the basis
of the actual parameter (whose supertype is Elem.T) and the chosen kind
of selection. The above selection of titles beginning with "viol" executes as
follows: The select method applies the selection function (page 460) to each
element - here to every CD. The function Select is invoked with parameters
oftype CD.T; it determines that the chosen kind of selection is Title, so the
selection must be forwarded to the list of works. Thus Select invokes the
select method for works. Here the same selector is specified (s), inducing
a recursive invocation of the Select function, which is now applied to each
work in the list works. Thereby the type of the actual parameter is work.T.
The work title can now be checked easily and the corresponding Boolean
value is returned. However, we are not interested in the individual works;
with this function we always select whole CDs. Therefore we apply the size
method to the results of the works list selection. If it returns a positive
number, then the selection by work titles for the specified CD ends with
true, otherwise with false.

For selections by composers and performers, the depth of recursion goes
one deeper, along the lists composers and performers for each work. The
surprising compactness and power of the Select function is based on the
fact that we have defined the selection operation with the same syntax and
very similar semantics for both sets and lists.

A.5.6 Implementation modules of the object model

We have already discussed the interfaces of the object model. The imple
mentations consist primarily ofthe implementations ofthe in and out meth
ods. The out method is usually trivial. The module work (page 449) shows

A. 5. Implementation 441

an example of how to use the action closure to output the continuation of a
list, delimited by commas (e.g., Jascha Heifetz, Gregor Piatigorsky, William
Primrose).

Implementing the input methods is significantly more complex. The
tasks of the in method are to read relevant values for the respective type
(e.g., for a composer, the name and style), to insert the object in the cor
responding set (e.g., set of composers), and to return a value. The return
value is determined as follows:

1. For new objects (as yet unknown to the database), the initial value,
i.e., the value of the receiver of the in method, is returned.

2. If the object whose input is being processed is found in the database,
then it is retrieved and returned as return value.

3. The value NIL is returned if there is no input.

The implementations ofthe input methods are based on our input strat
egy (Section A.4.1); they handle the services defined in that strategy. For
example, if a composer or a performer is found in the corresponding file
(where the file itself is a parameter of the in method), then the first names
are suggested. For the input of works, we do not need such a help: al
though we can anticipate that someone might have many Mozart CDs, it is
unlikely that these include twenty versions of "Eine kleine Nachtmusik".
This justifies repeated typing. On the input of a CD, we have a great deal
to test. According to our object model, CDs with an empty list of works
should not be accepted. The concatenation of the CD identifier with each
work title must be unique; we must test this condition here as well.

The input method may generate the Elem.Error exception anywhere. The
exception is propagated up to the application (module Input, see below).
Each module complements the text parameter of the exception with its
own error message. The application can output this text, whereby the user
knows the exact location of the errors. The user can terminate input of
an element at any time with the end-of-file key (control-Z or control-D).
Mter the output of an error message, the application can continue without
problems.

A.5.7 Input

Inputting is implemented in the procedure Input.Add (page 463). The pro
cedure provides a simple loop for inputting CDs and also handles input
errors. For example, if we press the end-of-file key while inputting a work,
we obtain the following error message:

442 A. A small database

(Error during input->CDln->Workln J l ______ _

The module Input enables deleting elements from the sets of CDs, com
posers or performers. The following must be observed: Since deletion from
a database is a delicate matter, it can only be done interactively and with
explicit confirmation. The user enters the short form of elements (e.g., the
CD identifier); the corresponding CDs are selected to an alphabetically
sorted list (candidates). The elements of this list are displayed one after
the other for the user, who must confirm the deletion of each element.

Deletion does not ensure the consistency of the sets CDs, Composers
and Performers. This means that if we delete all CDs by Brahms, Brahms
still remains in set of composers. Likewise, if we delete Yehudi Menuhin
from the set of performers, we retain his CDs nevertheless (and queries
will find them). This sounds unacceptable at first, but it is not as bad as it
seems. The relevant information resides in the set CDs, while the other two
sets only serve to accelerate input control. We could redefine the seman
tics ofthese two sets as follows: they contain all composers and performers
for whom we ever entered a CD; we should never delete anything from
them except erroneous entries. However, the reader should consider how
we could implement consistent management of the three sets. A simple
solution would be to make the sets of composers and performers nonpersis
tent and to generate these sets anew at certain times, such as on launching
the application. In our case, this solution would suffice.

When the user quits the input module, the system (procedure Save) asks
whether changes should be saved. This is an additional security measure.

A.5.8 Queries

We have developed the entire system for the purpose of making queries.
The module Queries (page 466) contains a collection of the most important
queries. This module builds on the services of the module Selection (page
446,460), which handles the difficult part of the work. The module Queries
needs to handle only inputting the commands, setting the kind of selection
and outputting the results.

The core of the module consist of two lines in the procedure Search:

cds:= Database.CDsO.select(selector); (*selects from CDs*)
SortedOutput(cds, CD.Compare, wr); (*CDs in alphabetical order*)

A. 6. Interfaces

A.6 Interfaces

INTERFACE Elem;
IMPORTSIO;
EXCEPTION Error(TEXT);
TYPE

T
Public

<: Public;
OBJECT
METHODS

443

(*23.02.95. LB *)

(*signals input error*)

(*all elements must be subtype of Elem. T*)

initO: T; (*init must be invoked as first operation!*)
hash(limit: CARDINAL): CARDINAL; (*hash value in [O .. limit]*)
equal(e2: T): BOOLEAN; (*true if self and e2 are identical*)
input(rd: SIO.Reader := NIL): T RAISES {Error}; (*for reading*)
output(wr: SIO.writer := NIL); (*for output*)

END; (*Public*)

Compare = PROCEDURE(e1, e2: T): [-1 .. 1];
Action = OBJECT

METHODS
action(e: T)

END; (*Action*)
Selector = OBJECT

METHODS

END Elem.

select(e: T): BOOLEAN
END; (*Selector*)

INTERFACE Person;
IMPORT Elem, Set, SIO;
TYPE

T
Public

<: Public;
Elem.T OBJECT

name, firstname: TEXT:= "";
METHODS

(*-1: e1 < e2; 0: e1 = e2; 1: e1 > e2*)

(*closure for actions on elements*)
(*can be applied to an element*)

(*closure for selection on elements*)

(*if true: e is selected*)

(*22.02.95. LB *)

(*can be empty*)

input(persons: Set.T := NIL; (*in redefined!*)
rd: SIO.Reader := NIL): T RAISES {Elem.Error};

END;
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1]; (*comparison criterion: name*)

END Person.

444

INTERFACE Composer;
IMPORT Person;
TYPE

A. A small database

(*22.02.95. LB *)

Style {old, baroque, classical, romantic, modern, none};
T <: Public;
Public Person.T OBJECT

CONST

style := Style.none;
END;

(*style initialized to "none"*)

StyleText = ARRAY [Style.old .. Style. modern] OF TEXT
{"old", "baroque", "classical", "romantic", "modern"};

END Composer.

INTERFACE Work;
IMPORT Elem, ObjList;
TYPE

T
Public

<: Public;
Elem.T OBJECT

title: TEXT := "";
composers: ObjList.T;
performers: ObjList.T;

END; (*Public*)
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1];

END Work.

INTERFACE CD;
IMPORT Elem, Set, ObjList, SIO;
TYPE

T <: Public;
Public Elem.T OBJECT

identifier: TEXT := "";
works: ObjList.T;

METHODS

(*22.02.95. LB *)

(*title ofwork*)
(*list of composers*)

(*list of performers*)

(*comparison criterion: work title*)

(*25.03.95. LB*)

(*CD identifier*)
(*list of works on CD*)

input(cds: SetT := NIL; (*input: redefined!*)
rd: SIO.Reader := NIL): T RAISES {Elem.Error};

END; (*Public*)
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1]; (*criterion: identifier*)

END CD.

INTERFACE Set;
IMPORT Elem, ObjList;
CONST

MinSize = 128;
TYPE

T <Public;
Public = OBJECT METHODS

init(hint: CARDINAL := MinSize): T;

(*23.03.95. LB, KHE *)

(*minimum size of hash table*)

(*must be 1st operation!*)

it. 6. Interfaces 445

END Set.

insert(x: Elem.T);
delete(x: Elem.T);
in(x: Elem.T): BOOLEAN;
sizeO: CARDINAL;
pickO: Elem.T;
apply(a: Elem.Action);

(*inserts x if it does not already exist*)
(*removes x ifpresent*)

(*true if x is in set*)
(*number of elements in set*)

(*returns arbitrary element of set or NIL*)
(*applies a to all elements*)

exists(s: Elem.Selector): Elem.T;
(*returns an element e such that s.select(e) is true, else NIL*)

select(s: Elem.Selector): T;
(*returns the set whose elements s.select evaluates as true*)

(*if s = NIL, all are selected: generates a copy*)
equal(set2: T): BOOLEAN;

(*true if size und all elements of two sets are equal*)
union(set2 : T) : T;
intersection(set2 : T) : T;
difference(set2 : T) : T;

(*self V set2*)
(*self !\ set2*)
(*self - set2*)

sort(compare: Elem.Compare): ObjList.T;
(*from a set, creates a list sorted by compare*)

END; (*Public*)

INTERFACE ObjList;
IMPORT Elem;
TYPE

(*23.02.95. LB*)

T
Public

<: Public;
OBJECT
METHODS

init(compare: Elem.Compare): T; (*compare: sort criterion*)
(*if compare = NIL, elements sorted chronologically*)

insert(elem: Elem.T); (*inserts keeping order*)
delete(elem: Elem.T): Elem.T; (*removes elem, ifpresent*)
sizeO: CARDINAL; (*number of elements of list *)
equal(list2: T; compare: Elem.Compare): BOOLEAN;

(*compares two lists for equality or identity of elements*)
(*equality tested if compare # NIL *)

apply(a: Elem.Action); (*applya to each element*)
select(s: Elem.Selector): T;

(*returns a list for whose elements s.select evaluates true*)
(*if s = NIL, all elements selected; copy created*)

exists(s: Elem.Selector): Elem.T;
(*returns an element for which s.select evaluates true, else NIL*)

END; (*Public*)
END ObjList.

INTERFACE Database;
IMPORT Set;
PROCEDURE CDsO: Set.T;
PROCEDURE ComposersO: Set.T;
PROCEDURE PerformersO: Set.T;

END Database.

(*Exports the sets of the database. 08.03.95. LB*)

(*set of all CDs*)
(*set of all composers*)

(*set of all performers*)

446 A. A small database

INTERFACE Startup; (*Exports nothing: its body must execute. 10.04.95. LB*)
END Startup.

INTERFACE Selection; (*Auxiliary module for frequent selections. 08.04.95. LB*)
IMPORT Elem, Composer;
TYPE

Kind {Identifier, Title, Name, Comp, Style, Perf}; (*kind of selection *)
(*selected by CD identifier, work title, person name, *)

(*composer name, style, performer name*)
Selector
SelPub

<: SelPub;

END Selection.

Elem.Selector OBJECT
kind: Kind;
t: TEXT;
style: Composer. Style;

END; (*SelPub*)

(*Kind of Selection*)
(*required by most selections*)

(*for selection by style*)

INTERFACE Texts; (*Auxiliary module for text and command handling. 22.03.95. LB*)

PROCEDURE Convert(text: TEXT): TEXT;
(*converts lower case to upper case and filters out blanks*)

PROCEDURE Part(t1 , t2: TEXT): BOOLEAN;
(*returns true if Convert(tJ) is a substring of Convert(t2)*)

PROCEDURE Search(text: TEXT; in: ARRAY OF TEXT): INTEGER;
(*returns position offirst occurrence of text in in, or -1 if not found*)

PROCEDURE Commandln(READONLY menu: ARRAY OF TEXT): INTEGER;
(*reads command from menu; returns index of command, or < 0, on default line*)

END Texts.

INTERFACE In;
IMPORT SIO;

CONST Delimiter = '.';

(*Auxiliary module for input handling 28.03.95. LB*)

PROCEDURE Interactive(rd: SIO.Reader): BOOLEAN;
(*returns true if standard input used*)

PROCEDURE Default(t: TEXT): BOOLEAN;
(*default text is empty, or begins with delimiter*)

END In.

A. 7. Implementation modules 447

A.7 Implementation modules
MODULE Elem;

IMPORT Persistent, Startup;
REVEAL

(*23.02.95. LB *)

(*Startup imported because ofuniqueNumber!*)

T = Public BRANDED OBJECT
objectlD: CARDINAL := 0; (*0 for uninitialized objects*)

VAR

OVERRIDES
init:= Init;
hash:= Hash;
equal:= Equal;

END; (*T*)

uniqueNumber:= NEW(Persistent.lnteger, key:= "Elem.uniqueNumber", val:= O).setupO;

PROCEDURE Init(t: T): T =
BEGIN

INC(uniqueNumber.val);
t.objectlD:= uniqueNumber.val;
RETURN t

END Init;

PROCEDURE Equal(e1, e2: T): BOOLEAN =
BEGIN

<* ASSERT e1.objectlD > 0 AND e2.objectiD > 0 *>
RETURN e1.objectiD = e2.objectiD

END Equal;

(*objectID ist unique and> 0*)

PROCEDURE Hash(e: T; limit: CARDINAL): CARDINAL =
BEGIN

<* ASSERT e.objectlD > 0 *>
RETURN e.objectiD MOD limit

END Hash;

BEGIN
END Elem.

MODULE Person;
IMPORT Elem, Text, Set, SIO, In, Selection;
FROM SIO IMPORT GetLine, PutText;

REVEAL
T = Public BRANDED OBJECT

OVERRIDES
input:= Personlnput;
output:= PersonOutput;

END; (*T*)

PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1] = (*compares last names*)
BEGIN

RETURN Text.Compare(NARROW(e1, T).name, NARROW(e2, T).name)
END Compare;

448 A. A small database

PROCEDURE Personlnput(p: T; persons: Set.T := NIL; (*reads person data*)
rd: SIO.Reader := NIL): T RAISES {Elem.Error} =

VAR name: TEXT; found: T := NIL;
selector:= NEW(Selection.Selector, kind:= Selection. Kind. Name);

BEGIN
IF In.lnteractive(rd) THEN PutText(" Person's name: ") END;
TRY

name:= GetLine(rd);
IF NOT In.Default(name) THEN

p.name:= name;
selector.t:= name;
IF persons # NIL THEN found:= persons.exists(selector) END;
IF found # NIL THEN (*person already in set persons*)

IF In.lnteractive(rd) THEN
PersonOutput(found); PutText("\n Do the first names match? ")

END; (*IF In.Interactive(rd)*)
name:= GetLine(rd);
selector.t:= selector.t & name;
found:= persons.exists(selector);
IF In.Default(name) OR (found # NIL) THEN

(*read first name(s)*)
(*search text: complete name*)

(*search again*)

p:= found (*default or found again: return old value*)
ELSE p.firstname:= name; (*new first name*)
END; (*IF In.Default ... *)

ELSE (*person not found: request first name*)
IF In.lnteractive(rd) THEN PutText(" Firstnames: ") END;
p.firstname:= GetLine(rd);

END; (*IF found # NIL*)
IF persons # NIL THEN persons.insert(p) END; (*effective only ifp # found*)

ELSE p:= NIL (*p = NIL indicates empty input for person*)
END; (*IF NOT In.Default(name)*)
RETURN p;

EXCEPT
SIO.Error => RAISE Elem.Error("Personlnput")

END; (*TRY*)
END Personlnput;

PROCEDURE PersonOutput(p: T; wr: SIO.writer := NIL) =
BEGIN

PutText(p.firstname & " " & p.name, wr);
END PersonOutput;

BEGIN
END Person.

MODULE Composer;
IMPORT Elem, Person, SIO, Set, In, Texts;
REVEAL

T = Public BRANDED OBJECT
OVERRIDES

input:= Composerlnput;
output:= ComposerOutput;

END; (*T*)

(*outputs person data*)

(*22.03.95. LB*)

A. 7. Implementation modules

PROCEDURE Composerlnput(k: T; composers: Set.T := NIL;
rd: SIO.Reader := NIL): Person.T RAISES {Elem.Error} =

VAR t: TEXT; found: INTEGER;

449

k2: T := k; (*k2 contains original value of k*)
BEGIN

TRY
k:= Person.T.input(k, composers, rd);
IF k # NIL THEN

(*supercall: reads person data*)

IF In.lnteractive(rd) THEN
IF k = k2 THEN (*k = k2: Composer is new; enter style*)

SIO.PutText(" Style: ");
found:= Texts.Commandln(StyleText);
IF found >= 0 THEN k.style:= VAL(found, Style) END;

END; (*IF k = k2 *)
ELSE (*ifnot interactive, read style from file*)

t= SIO.GetLine(rd);
IF NOT In.Default(t) THEN

found:= Texts.Search(t, StyleText); (*seek input in StyleText*)
IF found >= 0 THEN k.style:= VAL(found, Style) END;

END;(*IF NOT In.Default(t)*)
END; (*IF In.Interactive{rd)*)

END; (*IF k # NIL. .. *)
RETURN k;

EXCEPT
I SIO.Error => RAISE Elem.Error("Composerlnput");
I Elem.Error(text) => RAISE Elem.Error("Composerlnput->" & text);
END; (*TRY*)

END Composerlnput;

PROCEDURE ComposerOutput(k: T; wr: SIOWriter := NIL) =
BEGIN

Person.T.output(k, wr); (*Supercall: output person data*)
IF k.style # Style. none THEN

SIO.PutText(" (" & StyleText[k.stylej & ") ", wr)
END; (*IF k.style*)

END ComposerOutput;

BEGIN
END Composer.

MODULE Work;
IMPORT Elem, Composer, Person, SIO, Database, ObjList, Text, In;
REVEAL

T = Public BRANDED OBJECT
OVERRIDES

init:= Init;
input:= Worklnput;
output:= WorkOutput;

END; (*T*)

(*20.03.95. LB*)

450 A. A small database

PROCEDURE Init(work: T): Elem.T =
BEGIN

work:= Elem.T.init(work);
work.composers:= NEW(ObjList.T).init(NIL);
work.performers:= NEW(ObjList.T).init(NIL);
RETURN work

END Init;

(*supercall: initializes Elem object*)
(*list sorted chronologically by input*)

(*list sorted chronologically*)

PROCEDURE Compare(e1. e2: Elem.T): [-1 .. 1] = (*compares work titles*)
BEGIN

RETURN Text.Compare(NARROW(e1. T).title. NARROW(e2. T).title)
END Compare;

PROCEDURE Worklnput(work: T; rd: SIO.Reader := NIL): Elem.T
RAISES {Elem.Error} =

VAR t TEXT; c: Composer.T; p: Person.T;
BEGIN

TRY
IF In.lnteractive(rd) THEN SIO.PutText(" Title of work: ") END;
t= SIO.GetLine(rd); (*reads title*)
IF NOT In.Default(t) THEN

work.title:= t;
IF In.lnteractive(rd) THEN SIO.PutLine(" Composer(s) => ") END;
REPEAT (*reads list of composers"')

c:= NEW(Composer.T).initO;
c:= c.input(Database.ComposersO. rd); (*reads composer data*)
IF c # NIL THEN work.composers.insert(c) END;

UNTIL c ~ NIL;
IF In.lnteractive(rd) THEN SIO.PutLine(" Performer(s) => ") END;
REPEAT (*reads list ofperformers*)

p:= NEW(Person.T).initO;
p:= p.input(Database.PerformersO. rd); (*reads performer data*)
IF p # NIL THEN work.performers.insert(p) END;

UNTIL P = NIL;
ELSE work:= NIL
END; (*IF NOT In.Default(t)*)
RETURN work

EXCEPT
I SIO.Error => RAISE Elem.Error("Worklnput");
I Elem.Error(text) => RAISE Elem.Error("Worklnput->" & text);
END; (*TRY*)

END Worklnput;

TYPE
Action = Elem.Action OBJECT

enumeration.
nonempty: BOOLEAN;
w: SIO.writer := NIL

OVERRIDES
action:= Output;

END; (*Action*)

(*closure for the action output*)
(*controls output of list of names*)

(*suppresses unnecessary blank lines*)

(*output action for list elements*)

A. 7. Implementation modules 451

PROCEDURE Output(a: Action; e: Elem.T) =
BEGIN

(*outputs person*)

a.nonempty:= TRUE; (*set only for non-empty lines*)
IF a.enumeration THEN SIO.PutText(", ", a.w) ELSE a.enumeration:= TRUE END;
e.output(a.w);

END Output;

PROCEDURE WorkOutput(work: T; wr: SIO.writer := NIL) =
VAR output := NEW(Action, w:= wr); (*example of closure for output*)
BEGIN

SIO.PutLine(work.title, wr);
output.enumeration:= FALSE; output.nonempty:= FALSE;
work.composers.apply(output); (*applies output to list of composers*)
IF output.nonempty THEN SIO.NI(wr) END; (*no line feed for empty list*)
output.enumeration:= FALSE; output.nonempty:= FALSE;
work.performers.apply(output); (*applies output to list ofperformers*)
IF output.nonempty THEN SIO.NI(wr) END; (*no line feed for empty list*)

END WorkOutput;

BEGIN
END Work.

MODULE CD;
IMPORT SIO, Set, Work, Elem, Text, ObjList, In;
REVEAL

T = Public BRANDED OBJECT
OVERRIDES

init:= Init;
input:= CDlnput;
output:= CDOutput;

END; (*T*)

PROCEDURE Init(cd: T): Elem.T =
BEGIN

(*20.03.95. LB*)

cd:= Elem.T.init(cd);
cd.works:= NEW(ObjListT).init(NIL);
RETURN cd

(*supercall: initializes element data*)
(*chronologicallist ofworks*)

END Init;

PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1] =
BEGIN

(*compares CD identifiers*)

RETURN Text.Compare(NARROW(e1, T).identifier, NARROW(e2, T).identifier)
END Compare;

TYPE TitleSel = Elem.Selector OBJECT cd: T OVERRIDES select:= TW END;
(*closure for selection of similar CDs*)

PROCEDURE TW(s: TitleSel; e: Elem.T): BOOLEAN =
(*compares CD identifier and titles in list of works*)

BEGIN
RETURN Text.Equal(s.cd.identifier, NARROW(e, T).identifier) AND

NAR ROW (e, T). works.equal(s.cd. works, Work. Compare)
ENDTW;

452 A. A small database

PROCEDURE CDlnput(cd: T; cds: SetT := NIL; (*reads and inserts CD*)
rd: SIO.Reader := NIL): T RAISES {Elem.Error} =

VAR work: Work.T; identifier: TEXT;
selector:= NEW(TitieSel);
existentCD: T;

(*to find CDs with same list ofworks*)
(*CD with same identifier and same list ofworks*)

BEGIN
TRY

IF In.lnteractive(rd) THEN SIO.PutText("CD identifier: ") END;
identifier:= SIO.GetLine(rd); (*reads CD identifier*)
IF NOT In.Default(identifier) THEN (*default ends input*)

cd.identifier:= identifier;
REPEAT (*reads all works for CD*)

work:= NEW(Work.T).initO;
work:= work.input(rd);
IF work # NIL THEN cd.works.insert(work) END;

UNTIL work = NIL;

(*reads data for work*)

IF cd.works.sizeO > 0 THEN
IF cds # NIL THEN

(*CDs without works are not recorded!*)
(*search for CD with same titles*)

selector.cd:= cd;
existentCD:= cds.exists(selector);
IF existentCD = NIL THEN cds.insert(cd);
ELSIF In.lnteractive(rd) THEN

(*compare identifier and title*)
(*does not exist: insert*)

(*if already exists: ask user*)
REPEAT

SIO.PutLine("CD with same identifier and same titles already exists:');
existentCD.outputO;
SIO.PutLine("lf this is a new CD, please provide a new identifier: ");
identifier:= SIO.GetLine(rd);
IF NOT In.Default(identifier) THEN

cd.identifier:= identifier;
existentCD:= cds.exists(selector); (*now unambiguous?*)

END; (*IF NOT In. Default*)
UNTIL (existentCD = NIL) OR In.Default(identifier);
IF existentCD = NIL THEN cds.insert(cd) END; (*unambiguous: insert*)

END; (*IF In.Interactive*)
END (*IF cds # NIL*)

ELSE cd:= NIL; (*CD without works is not permitted*)
END; (*IF cd.works.sizeO > 0*)

ELSE cd:= NIL
END; (*IF NOT In.Default*)
RETURN cd

EXCEPT
I SIO.Error => RAISE Elem.Error("CDlnput");
I Elem.Error(text) => RAISE Elem.Error("CDlnput->" & text);
END; (*TRY*)

END CDlnput;

TYPE Action = Elem.Action OBJECT w: SIO.writer := NIL END;

PROCEDURE Output(a: Action; e: Elem.T) =
BEGIN

e.output(a.w);
END Output;

(*terminate CD input*)

(*output work*)

A. 7. Implementation modules

PROCEDURE CDOutput(cd: T; wr: SIO.writer := NIL) =
VAR output := NEW(Action, action:= Output, w:= wr);
BEGIN

SIO.PutLine(cd.identifier, wr);

453

(*output CD*)

cd. works.apply(output);
SIO.PutLine("----------------------,", wr);

END CDOutput;

BEGIN
END CD.

MODULE Set;

IMPORT Elem, ObjList;

TYPE
Node = REF RECORD

REVEAL

next: Node := NIL;
e: Elem.T;

END; (*node*)

T = Public BRANDED OBJECT
a: REF ARRAY OF Node;
num : CARDINAL;

OVERRIDES
init:= Init;
in:= In;
insert:= Insert;
delete:= Delete;
equal:= Equal;
size:= Size;
pick:= Pick;
apply:= Apply;
exists:= Exists;
select:= Selection;
union := Union;
intersection:= Intersection;
difference:= Difference;
sort:= Sort;

END; (*Set. T*)

PROCEDURE Init(self: T; hint: CARDINAL := MinSize): T =
BEGIN

self.a:= NEW(REF ARRAY OF Node, MAX(hint, MinSize));

(*23.02.95. LB, KHE *)

(*node in list*)

(*hash table*)
(*number of elements*)

(*minimum hash table size is MinSize*)
FOR i:= FIRST(self.a') TO LAST(self.a') DO self.a[i):= NIL END;
self.num:= 0;
RETURN self

END Init;

454

PROCEDURE In(self: T; x: Elem.T): BOOLEAN =
VAR cur: Node;
BEGIN

A. A small database

(*true if x is contained in self*)
(*current node*)

cur:= self.a[x.hash(NUMBER(self.aA »]; (*hash index picks desired list*)
WHILE cur # NIL AND NOT x.equal(cur.e) DO cur:= cur. next END; (*search in list*)
RETURN (cur # NIL)

END In;

PROCEDURE Insert (self: T; x : Elem.T) =

VAR cur: Node;
BEGIN

(*inserts x in self ifnot already present*)
(*current node*)

WITH head = self.a[x.hash(NUMBER(self.aA »] DO
cur:= head;
WHILE cur # NIL AND NOT x.equal(cur.e) DO cur:= cur.next END;

(*hash index*)

IF cur = NIL THEN (*ifnot present: insert at front*)
head:= NEW(Node, next:= head, e:= x); INC(self.num);

END (*IF cur = NIL*)
END (*WITH head*)

END Insert;

PROCEDURE Delete (self: T; x: Elem.T) = (*deletes x ifpresent*)
VAR cur, prey: Node;
BEGIN

IF x # NIL THEN (*nothing to remove in empty list*)
WITH head = self.a [x.hash(NUMBER(self.a A

))] DO (*hash index*)
cur:= head; prey:= NIL;
WHILE cur # NIL AND NOT x.equal(cur.e) DO

prey:= cur; cur:= cur. next
END; (*WHILE cur*)
IF cur # NIL THEN (*iffound: remove*)

IF prey = NIL THEN head:= cur. next ELSE prey.next:= cur.next END;
DEC(self.num);

END (*IF cur*)
END (*WITH head*)

END (*IF x # NIL*)
END Delete;

PROCEDURE Size (self: T): CARDINAL =
BEGIN

RETURN self.num
END Size;

PROCEDURE Apply(self: T; a: Elem.Action) =
VAR cur: Node;
BEGIN

IF self.num > 0 THEN
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO

cur:= self.a [b];

(*number of elements in set*)

(*apply a.action to all elements*)
(*current node*)

WHILE cur # NIL DO a.action(cur.e); cur:= cur.next END
END (*FOR b*)

(*applies action*)

END (*IF selfnum > 0*)
END Apply;

A. 7. Implementation modules 455

PROCEDURE Equal (self: T; set2: T): BOOLEAN =
(*true if number of elements and all elements of self and set2 are equal*)

VAR cur: Node; (*current node*)
size: CARDINAL := 0;

BEGIN
IF self.num = set2.num THEN (*ifnumber equal, compare elements*)

FOR b:= FIRST (self.aA
) TO LAST (self.aA

) DO
cur:= self.a[b];
WHILE (cur # NIL) DO

IF NOT set2.in(cur.e) THEN RETURN FALSE END;
INC (size); cur:= cur.next

END (*WHILE cur*)
END; (*FOR b*)
RETURN size = self.num

ELSE
RETURN FALSE

END (*IF selfnum*)
END Equal;

PROCEDURE Exists(self : T; s: Elem.Selector): Elem.T =
(*retuTns an e for which s.select(e) is true, or NIL (ifno such element is present)*)

VAR cur: Node; (*current node*)
BEGIN

IF s = NIL THEN RETURN self.pick() (*take any element*)
ELSE

IF self.num > 0 THEN
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO

cur:= self.a[b];
WHILE cur # NIL DO

IF s.select(cur.e) THEN RETURN cur.e END;
cur:= cur.next

END; (*WHILE cur*)
END; (*FOR b*)

END; (*IF selfnum > 0*)
RETURN NIL

END; (*IF s = NIL*)
END Exists;

PROCEDURE Pick(self : T) : Elem.T =

(*select an element*)

(*returns an arbitrary element, or NIL for empty set*)
VAR cur: Node;

i:= FIRST(self.aA

);

BEGIN
IF self.num = 0 THEN RETURN NIL
ELSE

REPEAT cur:= self.a[i]; INC(i) UNTIL cur # NIL;
RETURN cur.e

END (*IF selfnum = 0*)
END Pick;

456 A. A small database

PROCEDURE Selection(self : T; s: Elem.Selector): T =
(*returns the set of elements e for which s.select(e) evaluates true*)

VAR cur: Node;
res: T := NEW(T).init(self.num);

BEGIN
IF s = NIL THEN Add(res, self)
ELSE

IF self.num > 0 THEN
FOR b:= FIRST(self.aA

) TO LAST(self.aA

) DO
cur:= self.a[b];
WHILE cur # NIL DO

IF s.select(cur.e) THEN res.insert(cur.e) END;
cur:= cur. next

END (*WHILE cur*)
END (*FOR b*)

END (*IF selfnum i 0*)
END; (*IFf=NIL*)
RETURN res

END Selection;

(*current node*)
(*res: result set*)

(*if s = NIL, create copy*)

PROCEDURE Add(self: T; set2 : T) = (*inserts all elements ofset2 in self*)
VAR obj: Node;
BEGIN

IF set2.num > 0 THEN (*empty set need not be added*)
FOR b:= FIRST(set2.aA

) TO LAST(set2.aA
) DO

obj:= set2.a[b];
WHILE obj # NIL DO

self.insert(obj.e); obj:= obj.next
END (*WHILE obj*)

END (*FOR b*)
END (*IF set2*)

END Add;

PROCEDURE Difference(self : T; set2 : T) : T = (*self - set2*)
VAR res: T := NEW(T).init(self.num); obj: Node;
BEGIN

IF self # set2 THEN
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO

obj:= self.a[b];
WHILE obj # NIL DO

IF NOT set2.in(obj.e) THEN res.insert(obj.e) END;
obj:=obj.next

END (*WHILE obj*)
END (*FOR b*)

END; (*IF self*)
RETURN res

END Difference;

A. 7. Implementation modules

PROCEDURE Intersection(self : T; set2 : T): T =
VAR res: T := NEW(T).init(MIN(self.num. set2.num)); obj: Node;
BEGIN

IF self =' set2 THEN Add(res, self)
ELSE

FOR b:= FIRST(self.a") TO LAST(self.a") DO
obj:= self.a[b];
WHILE obj # NIL DO

IF set2.in(obj.e) THEN res.insert(obj.e) END;
obj:=obj.next

END (*WHILE obj*)
END (*FOR b*)

END; (*IF self = set2*)
RETURN res

END Intersection;

PROCEDURE Union(self : T; set2 : T) : T =

457

(*self 1\ set2*)

(*self V set2*)
VAR res: T := NEW(T).init(self.num + set2.num + (MinSize DIV 2));
BEGIN

Add(res, self); Add(res, set2); RETURN res
END Union;

PROCEDURE Sort(self: T; compare: Elem.Compare): ObjList.T =
(*from set self, creates a list sorted by compare*)

VAR list: ObjList.T:= NEW(ObjList.T).init(compare); obj: Node;
BEGIN

IF self.num > 0 THEN
FOR b:= FIRST(self.a") TO LAST(self.a") DO

obj:= self.a[b];
WHILE obj # NIL DO

listinsert(obj.e); obj:=obj.next (*insertion in list ensures sorting*)
END (*WHILE obj*)

END (*FOR b*)
END; (*IF self*)
RETURN list

END Sort;

BEGIN
END Set.

MODULE ObjList;

IMPORT Elem;

REVEAL
T = Public BRANDED OBJECT

head: Node := NIL;
compare: Elem.Compare := NIL;
num: CARDINAL := 0;

(*23.02.95. LB*)

(*inner structure of T revealed*)

(*head of list*)
(*order function*)

(*number of elements*)

458

OVERRIDES
init:= Init;
insert:= Insert;
delete:= Delete;
equal:= Equal;
apply:= Apply;
select:= Select;
exists:= Exists;
size:= Size;

END; (*T*)

TYPE
Node = REF RECORD

e: Elem.T;
next: Node := NIL;

END; (*node*)

PROCEDURE Init(list: T; compare: Elem.Compare): T =
BEGIN

list.head:= NIL; list.compare:= compare; list.num:= 0;
RETURN list;

END Init;

PROCEDURE Insert(list: T; elem: Elem.T) =
VAR new: Node := NEW(Node, e:= elem);

PROCEDURE I(VAR x: Node) =
BEGIN

A. A small database

(*inserts keeping order*)
(*create new node*)

IF x = NIL THEN x:= new; INC(list.num); (*insert at head*)
ELSIF list.compare # NIL AND list.compare(elem, x.e) = -1 THEN

new.next:= x; x:= new; INC(list.num); (*insert at correct position *)
ELSE I(x.next); (*continue searching recursively*)
END; (*IF x = NIL*)

END I;

BEGIN 1(list.head)
END Insert;

PROCEDURE Delete(list: T; elem: Elem.T): Elem.T =
(*delete and return elem ifpresent, else return NIL*)

PROCEDURE D(VAR x: Node): Elem.T =
VAR e: Elem.T;
BEGIN

IF x = NIL THEN RETURN NIL (*element not present*)
ELSIF (Iist.compare = NIL) OR (Iist.compare(elem, x.e) = 0) THEN

e:= x.e; x:= x.next; DEC(list.num); RETURN e (*found and deleted*)
ELSE RETURN D(x.next) (*continue searching recursively*)
END; (*IFx =NIL*)

END D;

BEGIN RETURN D(list.head)
END Delete;

A. 7. Implementation modules 459

PROCEDURE Equal(list: T; Iist2: T; compare: Elem.Compare): BOOLEAN =
(*compares two lists for equality or identity of elements*)

VAR x: Node := list.head; y: Node := Iist2.head;
BEGIN

WHILE (x # NIL) AND (y # NIL) AND
(((compare = NIL) AND (x.e = y.e)) OR
((compare # NIL) AND (compare(x.e, y.e) = 0))) DO

x:= x.next;y:= y.next;
END;

(*equal references*)
(*equal by criterion *)

RETURN (x = NIL) AND (y = NIL)
END Equal;

(*both lists exhausted: equal*)

PROCEDURE Exists(list: T; s: Elem.Selector): Elem.T = (*selects one element*)
VAR x: Node := list.head;
BEGIN

IF s = NIL THEN RETURN x.e (*no selection criterion: return first element*)
ELSE

WHILE (x # NIL) AND (NOT s.select(x.e)) DO x:= x.next END;
IF x = NIL THEN RETURN NIL ELSE RETURN x.e END;

END; (*IF s = NIL*)
END Exists;

PROCEDURE Select(list: T; s: Elem.Selector): T = (*select sublist*)
VAR x: Node := list.head; res: T := NEW(T).init(list.compare);
BEGIN

WHILE x # NIL DO
IF (s = NIL) OR s.select(x.e) THEN

res.insert(x.e) (*if selection criterion fulfilled or not specified*)
END;
x:= x.next;

END; (*WHILE x*)
RETURN res

END Select;

PROCEDURE Apply(list: T; a: Elem.Action) =
VAR x: Node := list.head;
BEGIN

WHILE x # NIL DO
a.action(x.e); x:= x.next

END;
END Apply;

PROCEDURE Size(list: T): CARDINAL =
BEGIN

RETURN list.num
END Size;

BEGIN
END ObjList.

(*applies a.action to all elements*)

(*length of list*)

(*ObjList *)

460 A. A small database

MODULE Selection; (*08.04.95. LB*)

IMPORT Elem, Person, Composer, Work, CD, Texts;

REVEAL
Selector = SelPub BRANDED OBJECT OVERRIDES select:= Select END;

PROCEDURE CheckName(t: TEXT; p: Person.T): BOOLEAN =
(*checks names in both formats: firstname lastname and vice versa*)

BEGIN
RETURN Texts.Part(t, p.name & p.firstname) OR Texts.Part(t, p.firstname & p.name)

END CheckName;

PROCEDURE Select(s: Selector; e: Elem.T): BOOLEAN =
BEGIN

(*various selections*)

TYPECASE e OF
t CD.T(cd) => (* kinds of selection: by identifier or by works*)

IF s.kind = Kind.ldentifier THEN
RETURN Texts.Part(s.t, cd. identifier);

ELSE
RETURN cd.works.select(s).sizeO > 0;

(*check identifier*)
(*continue search in list ofworks*)

(*returns true if at least one element in the list is selected*)
END; (*IF s.kind = Kind.Identifier*)

t Work.T(work) => (*kinds of selection: by title, composers, performers*)
CASE s.kind OF
t Kind.Title =>

RETURN Texts.Part(s.t, work.title); (*check work title*)
I Kind.Comp, Kind.Style => (*continue search in list of composers*)

RETURN work.composers.select(s).sizeO > 0;
(*returns true if at least one element in the list was selected*)

I Kind.Perf => (*continue search in list ofperformers*)
RETURN work.performers.select(s).sizeO > 0;

(*returns true if at least one element in the list was selected*)
ELSE RETURN FALSE (*return false for unexpected kind*)
END; (*CASE s.kind*)

I Composer.T(composer) => (*kinds of selection: by style or name*)
IF s.kind = Kind.Style THEN

RETURN s.style = composer.style
ELSE

RETURN CheckName(s.t, composer);
END; (*IF s.kind = Kind.Style*)

(*check composer names*)

I Person.T(person) =>
RETURN CheckName(s.t, person);

ELSE RETURN FALSE
END; (*TYPECASE e OF*)

END Select;

BEGIN
END Selection.

(*kind of selection: by performer name*)
(*check names*)

(*return false for unexpected kind*)

A. 7. Implementation modules 461

MODULE Database; (*08.03.95. LB*)

IMPORT Persistent. Set, Startup;
VAR

cds:= NEW(Persistent.Refany,

(*Startup must be imported!*)

key:= "Database. cds", val:= NEW(SetT).init(500)).setupO;
composers:= NEW(Persistent.Refany,

key:= "Database.composers", val:= NEW(Set.T).init(500)).setupO;
performers:= NEW(Persistent.Refany,

key:= "Database. performers", val:= NEW(Set.T).init(1000)).setupO;

PROCEDURE CDsO: SetT =
BEGIN

RETURN cds.val
END CDs;

PROCEDURE ComposersO: SetT =
BEGIN

RETURN composers.val
END Composers;

PROCEDURE PerformersO: Set.T =
BEGIN

RETURN performers. val
END Performers;

BEGIN
END Database.

MODULE Startup;
IMPORT Persistent;

BEGIN

(* 15.03.95. LB*)

Persistent.Start("DB", "DB");
END Startup.

(*read persistent variables from DB*)

MODULE Texts; (*Auxiliary module for text and command handling. 29.03.05. LB*)

FROM Text IMPORT Equal, Length, Sub, FromChar, GetChar;
IMPORT In, SIO;

PROCEDURE MenuOutput(READONLY menu: ARRAY OF TEXT) =
CONST Sep = " / ";
BEGIN

FOR i:= FIRST(menu) TO LAST(menu) DO
IF (i + 1) MOD 6 = 0 THEN SIO.NIO END; (*new line after 6 commands*)
SIO.PutText(menu[ij & Sep);

END;
END MenuOutput;

462 A. A small database

PROCEDURE Commandln(READONLY menu: ARRAY OF TEXT;): INTEGER =
(*outputs menu and reads unambiguous short command from menu*)

VAR line: TEXT; index: INTEGER;
BEGIN

TRY
REPEAT (*outputs menu until correct selection or default*)

MenuOutput(menu);
line:= SIO.GetLineO;
IF In.Default(line) THEN index:=-1
ELSE

index:= Search(line, menu);
IF index < 0 THEN SIO.PutLine("unknown or ambiguous") END;

END; (*IF In.Default(line)*)
UNTIL In.Default(line) OR (index >= 0);
RETURN index;

EXCEPT SIO.Error => SIO.PutLine("error in Command. Input"); RETURN-1
END; (*TRY*)

END Commandln;

PROCEDURE Convert(t: TEXT): TEXT =
(*converts lower case to upper case and filters out blanks*)

CONST Code = ORD('A') - ORD('a'); (*difference upper - lower case*)
Lower = SET OF CHAR{'a' .. 'z'}; Blanks = SET OF CHAR{' " '\t'};

VAR t2: TEXT := ""; ch: CHAR;
BEGIN

FOR i:= 0 TO Length(t) - 1 DO
ch:= GetChar(t, i);
IF ch IN Lower THEN (*convert lower to upper case*)

t2:= t2 & FromChar(VAL(ORD(ch) + Code, CHAR));
ELSIF NOT (ch IN Blanks) THEN (*filter out blanks*)

t2:= t2 & FromChar(ch);
END; (*IF (ch IN Lower)*)

END; (*FOR i*)
RETURN t2

END Convert;

PROCEDURE Search(text: TEXT; in: ARRAY OF TEXT;): INTEGER =
\ (*iftext is found exactly once in in: returns its index, else returns -1*)

VAR index:= 0; found := 0; position: INTEGER;
BEGIN

text:= Convert(text); (*convert letters in text and in to upper case*)
FOR i:= FIRST(in) TO LAST(in) DO in[i]:= Convert(in[i]) END;
WHILE (index < NUMBER(in)) AND (found < 2) DO

IF Part(text, in[index]) THEN position:= index; INC(found) END;
INC(index);

END; (*WHILE (index ... *)
IF found = 1 THEN RETURN position ELSE RETURN - 1 END;

END Search;

A. 7. Implementation modules 463

PROCEDURE Part(t1, t2: TEXT): BOOLEAN =
BEGIN

(*true ift1 is part oft2*)

t1:= Convert(t1); t2:= Convert(t2);
RETURN Equal(t1, Sub(t2, 0, Length(t1)))

END Part;
BEGIN
END Texts.

MODULE Input EXPORTS Main; (*30.03.95. LB*)
IMPORT Persistent, Database, Elem, ObjList, Text, Selection,

CD, Person, SIO, SF, In, Set, Texts;
FROM SIO IMPORT Reader, Writer, GetLine, PutText, PutLine, Putlnt, NI;

PROCEDURE AddO =
VAR cd: CD.T; rd: Reader := SF.OpenReadO;
BEGIN

(*add new CDs to CD set*)

TRY
TRY

REPEAT

(*on input error, procedure returns after error message*)
(*file should be closed even in case of error*)

(*reads a series of CDs*)
cd:= NEW(CD.T).initO;
cd:= cd.input(Database.CDsO, rd);

UNTIL cd = NIL;
FINALLY SF.CloseRead(rd);
END; (*TRY*)

EXCEPT

(*reads CD data and adds to database*)

I SIO.Error => IF cd # NIL THEN Database.CDsO.delete(cd) END;
PutLine("\nError in adding CD");

I Elem.Error(text) => IF cd # NIL THEN Database.CDsO.delete(cd) END;
PutLine("\nError in adding CD->" & text);

END; (*TRY*)
END Add;

TYPE
DeleteAction = Elem.Action OBJECT

cdset Set.T;
OVERRIDES

action:= Delete;
END; (*DeleteAction*)

(*closure around delete action *)

PROCEDURE Delete(a: DeleteAction; e: Elem.T) = (*interactive delete action*)
VAR t TEXT;
BEGIN

TRY (*on input error, procedure returns after error message*)
e.outputO; (*display CD or composer or performer*)
PutText(" Do you really want to delete? yes/no ");
t= GetLineO;
IF NOT In.Default(t) AND Texts.Part(t, "yes") THEN

a.cdset.delete(e); PutLine(" -!- deleted -!- ");
END; (*IF NOT In.Default ... *)

EXCEPT SIO.Error => SIO.PutLine(,,\nError during deletion")
END; (*TRY*)

END Delete;

464 A. A small database

PROCEDURE FileDeleteO = (*deletion from persistent set*)
TYPE CDset = {CDs, Comp, Perf};
CONST Menu = ARRAY CDset OF TEXT{"CDs", "Composers", "Performers"};
VAR !: TEXT; index: INTEGER;

candidates: ObjList.T; (*candidates for deletion*)
cdse!: Set.T; (*set from which to delete*)
cmp: Elem.Compare; (*comparison function to sort candidates for deletion*)
selector:= NEW(Selection.Selector); (*selects candidates for deletion*)
output := NEW(OutputAction);
delete := NEW(DeleteAction);

BEGIN
TRY (*on input error, procedure returns after error message*)

REPEAT
SIO.PutText("Delete from set ");
index:= Texts.Commandln(Menu);
IF index >= 0 THEN

PutText(''What is to be deleted (! for all)? ");
!:= GetLineO; selector.!:= t;
IF NOT In.Default(t) THEN

CASE VAL(index, CDset) OF
I CDset.CDs => cdse!:= Database.CDsO;

cmp:= CD. Compare;
selector.kind:= Selection. Kind. Identifier;

I CDset.Comp => cdse!:= Database.ComposersO;
cmp:= Person.Compare;
selector.kind:= Selection.Kind.Comp;

I CDset.Perf => cdse!:= Database.PerformersO;
cmp:= Person. Compare;
selector.kind:= Selection. Kind. Perf;

(*valid command*)

(*search text specijied*)
(*set delete parameter*)

END; (*CASE VAL(index, CDset)*)
IF Text. Equal(t, "!") THEN

candidates:= cdset.sort(cmp);
ELSE

(*entire set suggested for deletion *)

(*candidates are selected*)
candidates:= cdset.select(selector).sort(cmp);

END; (*IF Text.Equal*)
Putlnt(candidates.sizeO);
PutLine(" Candidates for deletion:");
IF candidates.sizeO > 0 THEN

candidates.apply(output);
delete.cdset:= cdset;
candidates.apply(delete);

END; (*IF candidates.size() i 0*)
END; (*IF NOT In. Default*)

END; (*IF index >= 0*)
UNTIL (index < 0) OR In.Default(t) ;

EXCEPT
I SIO.Error => PutLine(,,\nError during deletion");

(*display candidates for deletion *)
(*set action parameter*)

(*apply delete action*)

I Elem.Error(text) => PutLine("\nError during deletion->" & text);
END; (*TRY*)

END FileDelete;

A. 7. Implementation modules

TYPE
OutputAction = Elem.Action OBJECT

w: Writer := NIL;
OVERRIDES

action:= Output;
END; (*OutputAction*)

PROCEDURE Output(a: OutputAction; e: Elem.T) =
BEGIN

e.output(a.w); NI(a.w);
END Output;

PROCEDURE SortedOutput (cd set Set.T; cmp: Elem.Compare;

465

(*applied to every CD*)

wr: Writer := NIL) = (*outputs sorted t;et*)
VAR list: ObjList.T; output= NEW(OutputAction, w:= wr);
BEGIN

TRY (*close file even in case of error*)
list= cdset.sort(cmp);
list.apply(output);
PutText("Total number: ", wr); Putlnt(cdset.sizeO, 1, wr);
PutLine("\nl----------------------''', wr);

FINALLY SF.CloseWrite(wr);
END; (*TRY*)

END SortedOutput;

PROCEDURE CommandlnputO = (*reads and interprets user commands*)
TYPE Commands = {Input, Delete, Output};
CONST CommandMenu = ARRAY Commands OF TEXT {"Input", "Delete", "Output"};
VAR commandlndex: INTEGER;
BEGIN

REPEAT
commandlndex:= Texts.Commandln(CommandMenu);
IF command Index >= 0 THEN

CASE VAL(commandlndex, Commands) OF
I Commands.lnput => AddO (*enter new CDs*)
I Commands. Delete => FileDeleteO (*delete from a set*)
I Commands.Output => (*output set ofCDs*)

SortedOutput(Database.CDsO, CD. Compare, SF.OpenWrite())
END; (*CASE VAL(commandlndex, Command)*)

END; (*IF commandlndex*)
UNTIL command Index < 0;
PutLine("End of data entry -- thanks!");

END Command Input;

PROCEDURE SaveO =
VAR t TEXT;

BEGIN
REPEAT (*user decides whether to save - no default!*)

SIO.PutLine("Save changes? yes/no");
t= SIO.GetLineO;

UNTIL (Texts.Part(t, "no") OR Texts.Part(t, "yes"» AND NOT In.Default(t);
IF Texts.Part(t, "yes") THEN Persistent.EndO END;

END Save;

466 A. A small database

BEGIN
CommandlnputO;
SaveO;

(*read and execute command*)
(*make any changes permanent*)

END Input.

MODULE In; (*Auxiliary module for input handling 28.03.95. LB*)
IMPORT SIO, Stdio, Text;

PROCEDURE Interactive(rd: SIO.Reader): BOOLEAN = (*true for standard input*)
BEGIN RETURN (rd = NIL) OR (rd = Stdio.stdin)
END Interactive;

PROCEDURE Default(t: TEXT): BOOLEAN = (*true for default text*)
BEGIN RETURN (Text.Length(t) = 0) OR (Text.GetChar(t, 0) = Delimiter)
END Default;

BEGIN
END In.

MODULE Queries EXPORTS Main;

IMPORT Composer, Database, CD, Person, ObjList,
SIO, SF, Set, In, Elem, Texts, Selection;

(*29.03.95. LB*)

TYPE OutputAction = Elem.Action OBJECT w: SIO.writer := NIL END;

PROCEDURE Output(a: OutputAction; e: Elem.T) = (*applied to every CD*)
BEGIN e.output(a.w); SIO.NI(a.w);
END Output;

PROCEDURE SortedOutput(cdset: Set.T; cmp: Elem.Compare; wr: SIO.writer) =
VAR list: ObjList.T; output:= NEW(OutputAction, w:= wr, action:= Output);
BEGIN

list:= cdset.sort(cmp);
list.apply(output);
SIO.PutText("Total number: ", wr);
SIO.Putlnt(list.sizeO, 1, wr); SIO.NI(wr);

END SortedOutput;

PROCEDURE AII(command: Global; wr: SIO.writer:= NIL) =
VAR cd set: Set.T; cmp: Elem.Compare;
BEGIN

CASE command OF
I Commands. CDs

I Commands. Composers

I Commands. Performers

=> cdset:= Database.CDsO;
cmp:= CD. Compare;

=> cdset:= Database.ComposersO;
cmp:= Person.Compare;

=> cdset:= Database.PerformersO;
cmp:= Person.Compare;

END; ("CASE command*)
SortedOutput(cdset, cmp, wr);

END All;

(*output whole sets*)

A. 7. Implementation modules 467

PROCEDURE Search(command: Seek; wr: SIO.Writer:= NIL) = (*start selections*)
CONST Menu = ARRAY Seek OF TEXT {"CD Identifier", "Title",

"Composer Name", "Style", "Performer Name"};
VAR t TEXT; cds: Set.T; index: INTEGER; style := Composer.Style.none;

selector := NEW(Selection.Selector);
BEGIN

SIO.PutText(Menu[command] & ": ");
IF command = Commands.S_Style THEN

index:= Texts.Commandln(Composer.StyleText);
(*selection by style*)

(*read style*)
IF index >= 0 THEN style:= VAL(index, Composer. Style) END

ELSE (*other selections: all selected by text*)
t= SIO.GetLineO;
IF In.Default(t) THEN index:=-1
ELSE selector.t= t; index:= 0
END; (*IF Input.Default(t)*)

(*set search text; set index non-negative*)

END; (*IF command = Commands.S~tyle*)
IF index >= 0 THEN

CASE command OF
I Commands.SJdentifier =>

selector.kind:= Selection.Kind.ldentifier;
I Commands.S_Work =>

selector.kind:= Selection.Kind.Title;
I Commands.S_Composer =>

selector.kind:= Selection.Kind.Comp;

(*valid command specified*)

(*select by CD identifier*)

(*select by work title*)

(*select by composer name*)

I Commands.S_Style => (*select by composer style*)
selector.kind:= Selection.Kind.Style; selector.style:= style;

I Commands.S_Performers => (*select by performer name*)
selector.kind:= Selection.Kind.Perf;

END; (*CASE command*)
cds:= Database.CDsO.select(selector);
SortedOutput(cds, CD. Compare, wr);

END; (*IF index i= 0*)
END Search;

TYPE

(*select from CDs*)
(*output CDs sorted alphabetically*)

Commands = {CDs, Composers, Performers, NewFile,

Seek
Global

CONST

SJdentifier, S_Work, S_Composer, S_Style, S_Performers};
= [Commands.SJdentifier .. Commands.S_Performers];
= [Commands. CDs .. Commands. Performers];

Menu = ARRAY Commands OF TEXT
{"CDs", "Composers", "Performers", "NewFile",
"SJdentifier", "S_Work", "S_Composer", "S_Style", "S_Performers"};

468

PROCEDURE CommandlnputO =
VAR wr: SIO.Writer := NIL;

command: Commands; index: INTEGER;
BEGIN

REPEAT
index:= Texts.Commandln(Menu);
IF index >= 0 THEN

command:= VAL(index. Commands);
CASE command OF

A. A small database

(*read user commands*)

I Commands. CDs .. Commands. Performers => AII(command. wr);
I Commands.SJdentifier .. Commands.S_Performers => Search(command. wr);
I Commands.NewFile => (*change file*)

SF.CloseWrite(wr); wr:= SF.OpenWriteO;
END; (*CASE command*)

END; (*IF index>= 0*)
UNTIL index < 0;
SF.CloseWrite(wr);

END Commandlnput;

BEGIN
CommandlnputO

END Queries.

AppendixB

Language Definition 1

B.I Definitions

A Modula-3 program specifies a computation that acts on a sequence of digital
components called locations. A variable is a set of locations that represents a
mathematical value according to a convention determined by the variable's type.
If a value can be represented by some variable of type T, then we say that the
value is a member ofT and T contains the value.

An identifier is a symbol declared as a name for a variable, type, procedure, etc.
The region of the program over which a declaration applies is called the scope of
the declaration. Scopes can be nested. The meaning of an identifier is determined
by the smallest enclosing scope in which the identifier is declared.

An expression specifies a computation that produces a value or variable. Ex
pressions that produce variables are called designators. A designator can denote
either a variable or the value of that variable, depending on the context. Some
designators are readonly, which means that they cannot be used in contexts that
might change the value ofthe variable. A designator that is not readonly is called
writable. Expressions whose values can be determined statically are called con
stant expressions; they are never designators.

A static error is an error that the implementation must detect before program
execution. Violations of the language definition are static errors unless they are
explicitly classified as runtime errors.

A checked runtime error is an error that the implementation must detect and
report at runtime. The method for reporting such errors is implementation
dependent. (If the implementation maps them into exceptions, then a program
could handle these exceptions and continue.)

An unchecked runtime error is an error that is not guaranteed to be de
tected, and can cause the subsequent behavior of the computation to be arbitrary.
Unchecked runtime errors can occur only in unsafe modules.

lThis appendix is copyright by Digital Equipment Corporation and appears here with
their permission.

470 B. Language Definition

B.2 Types

Modula-3 uses structural equivalence, instead of the name equivalence of
Modula-2. Two types are the same if their definitions become the same
when expanded; that is, when all constant expressions are replaced by their
values and all type names are replaced by their definitions. In the case of
recursive types, the expansion is the infinite limit of the partial expansions.
A type expression is generally allowed wherever a type is required.

A type is empty if it contains no values. For example, [1 .. 0] is an empty
type. Empty types can be used to build non-empty types (for example, SET
OF [1 .. 0], which is not empty because it contains the empty set). It is a
static error to declare a variable of an empty type.

Every expression has a statically-determined type, which contains ev
ery value that the expression can produce. The type of a designator is the
type of the variable it produces.

Assignability and type compatibility are defined in terms of a single
syntactically specified subtype relation with the property that ifT is a sub
type of U, then every member of T is a member of U. The subtype relation
is reflexive and transitive.

Every expression has a unique type, but a value can be a member of
many types. For example, the value 6 is a member of both [0 .. 9] and INTE
GER. It would be ambiguous to talk about "the type of a value". Thus the
phrase "type of x" means "type of the expression x", while "x is a member of
T" means "the value ofx is a member ofT".

However, there is one sense in which a value can be said to have a type:
every object or traced reference value includes a code for a type, called
the allocated type of the reference value. The allocated type is tested by
TYPE CASE (Section (-+B.3.18, p. 492).

B.2.1 Ordinal types

There are three kinds of ordinal types: enumerations, subranges, and IN

TEGER. An enumeration type is declared like this:

where the id's are distinct identifiers. The type T is an ordered set of n
values; the expression T.idi denotes the i'th value of the type in increasing
order. The empty enumeration { } is allowed.

Integers and enumeration elements are collectively called ordinal val
ues. The base type of an ordinal value v is INTEGER if v is an integer,
otherwise it is the unique enumeration type that contains v.

B.2. Types 471

A subrange type is declared like this:

TYPE T = [Lo .. Hi]

where Lo and Hi are two ordinal values with the same base type, called the
base type of the subrange. The values of T are all the values from Lo to Hi
inclusive. Lo and Hi must be constant expressions (--+B. 6. 15, p. 516). IfLo
exceeds Hi, the subrange is empty.

The operators ORD and VAL convert between enumerations and inte
gers. The operators FIRST, LAST, and NUMBER applied to an ordinal type
return the first element, last element, and number of elements, respec
tively (Section B.6.13, page 514).

Here are the predeclared ordinal types:

INTEGER
CARDINAL
BOOLEAN
CHAR

All integers represented by the implementation
The subrange [O .. LAST(INTEGER)]
The enumeration {FALSE, TRUE}
An enumeration containing at least 256 elements

The first 256 elements of type CHAR represent characters in the Iso-Latin-
1 code, which is an extension of ASCII. The language does not specifY the
names ofthe elements ofthe CHAR enumeration. The syntax for character
literals is in Section B.6.5, page 508. FALSE and TRUE are predeclared
synonyms for BOOLEAN.FALSE and BOOLEAN.TRUE.

Each distinct enumeration type introduces a new collection of values,
but a subrange type reuses the values from the underlying type. For exam
ple:

TYPE
T1 = {A, B, C};
T2 = {A, B, C};
U1 = [T1.A .. T1.C];
U2 = [T1.A .. T2.C]; (* sic *)
V = {A, B}

T1 and T2 are the same type, since they have the same expanded defini
tion. In particular, T1.C = T2.C and therefore U1 and U2 are also the same
type. But the types T1 and U1 are distinct, although they contain the same
values, because the expanded definition ofT1 is an enumeration while the
expanded definition of U1 is a subrange. The type V is a third type whose
values V.A and V.B are not related to the values T1.A and T1.B.

B.2.2 Floating-point types

There are three floating point types, which in order of increasing range and
precision are REAL, LONGREAL, and EXTENDED. The properties of these
types are specified by required interfaces in Section C.1.5, page 530.

472 B. Language Definition

B.2.3 Arrays

An array is an indexed collection of component variables, called the ele
ments of the array. The indexes are the values of an ordinal type, called the
index type of the array. The elements all have the same size and the same
type, called the element type of the array.

There are two kinds of array types, fixed and open. The length of a fixed
array is determined at compile time. The length of an open array type is
determined at runtime, when it is allocated or bound. The length cannot
be changed thereafter.

The shape of a multi-dimensional array is the sequence of its lengths in
each dimension. More precisely, the shape of an array is its length followed
by the shape of any of its elements; the shape of a non-array is the empty
sequence.

Arrays are assignable if they have the same element type and shape. If
either the source or target of the assignment is an open array, a runtime
shape check is required.

A fixed array type declaration has the form:

TYPE T = ARRAY Index OF Element

where Index is an ordinal type and Element is any type other than an open
array type. The values of type T are arrays whose element type is Element
and whose length is the number of elements of the type Index.

If a has type T, then ali] designates the element of a whose position
corresponds to the position of i in Index. For example, consider the declara
tions:

VAR a := ARRAY [1 .. 3] OF REAL {1.0, 2.0, 3.0};
VAR b: ARRAY [-1 .. 1] OF REAL := a;

Now a = b is TRUE; yet a[1] = 1.0 while b[1] = 3.0. The interpretation of in
dexes is determined by an array's type, not its value; the assignment b := a
changes b's value, not its type. (This example uses variable initialization,
(--+B.4.3, p. 495), and array constructors, (--+B.6.8, p. 508).

An expression ofthe form:

ARRAY Index1' ... ,Indexn OF Element

is shorthand for:

ARRAY Index1 OF··· OF ARRAY Indexn OF Element

This shorthand is eliminated from the expanded type definition used to
define structural equivalence. An expression of the form a[i1' ... , in] is
shorthand for a[i1l· ·[in].

B.2. Types 473

An open array type declaration has the form:

TYPE T = ARRAY OF Element

where Element is any type. The values ofT are arrays whose element type
is Element and whose length is arbitrary. The index type of an open array
is the integer subrange [O .. n-1], where n is the length ofthe array.

An open array type can be used only as the type of a formal parameter,
the referent of a reference type, the element type of another open array
type, or as the type in an array constructor.

B.2.4 Records

A record is a sequence of named variables, called the fields of the record.
Different fields can have different types. The name and type of each field
is statically determined by the record's type. The expression r.f designates
the field named f in the record r.

A record type declaration has the form:

TYPE T = RECORD FieldList END

where FieldList is a list offield declarations, each of which has the form:

fieldName: Type := default

where fieldName is an identifier, Type is any non-empty type other than
an open array type, and default is a constant expression. The field names
must be distinct. A record is a member of T if it has fields with the given
names and types, in the given order, and no other fields. Empty records are
allowed.

The constant default is a default value used when a record is constructed
(--+B.6.B, p. 509) or allocated (--+B.6.9, p. 509). Either ":= default" or ": Type"
can be omitted, but not both. If Type is omitted, it is taken to be the type of
default. Ifboth are present, the value of default must be a member of Type.

When a series offields shares the same type and default, any fieldName
can be a list of identifiers separated by commas. Such a list is shorthand for
a list in which the type and default are repeated for each identifier. That
IS:

fl' ... ,fm: Type := default

is shorthand for:

fz: Type := default; ... ; fm: Type := default

This shorthand is eliminated from the expanded definition of the type. The
default values are included.

474 B. Language Definition

B.2.5 Packed types

A declaration of a packed type has the form:

TYPE T = BITS n FOR Base

where Base is a type and n is an integer-valued constant expression. The
values of type T are the same as the values of type Base, but variables of
type T that occur in records, objects, or arrays will occupy exactly n bits
and be packed adjacent to the preceding field or element. For example, a
variable of type

ARRAY [0 .. 255] OF BITS 1 FOR BOOLEAN

is an array of 256 booleans, each of which occupies one bit of storage.
The values allowed for n are implementation-dependent. An illegal

value for n is a static error. The legality of a packed type can depend on
its context; for example, an implementation could prohibit packed integers
from spanning word boundaries.

B.2.6 Sets

A set is a collection of values taken from some ordinal type (----tB.2.1, p. 470).
A set type declaration has the form:

TYPE T = SET OF Base

where Base is an ordinal type. The values ofT are all sets whose elements
have type Base. For example, a variable whose type is SET OF[0 .. 1] can
assume the following values:

{} {O} {1} {0,1}

Implementations are expected to use the same representation for a SET
OF T as for an ARRAY T OF BITS 1 FOR BOOLEAN. Hence, programmers
should expect SET OF [0 .. 1023] to be practical, but not SET OF INTEGER.

B.2.7 References

A reference value is either NIL or the address of a variable, called the ref
erent. A reference type is either traced or untraced. When all traced refer
ences to a piece of allocated storage are gone, the implementation reclaims
the storage. Two reference types are of the same reference class if they are
both traced or both untraced. A general type is traced if it is a traced ref
erence type, a record type any of whose field types is traced, an array type
whose element type is traced, or a packed type whose underlying unpacked
type is traced.

B.2. Types 475

A declaration for a traced reference type has the form:

TYPE T = REF Type

where Type is any type. The values of T are traced references to variables
oftype Type, which is called the referent type ofT.
A declaration for an untraced reference type has the form:

TYPE T = UNTRACED REF Type

where Type is any untraced2 type. The values of T are the untraced refer
ences to variables of type Type.

In both the traced and untraced cases, the keyword REF can option
ally be preceded by "BRANDED b" where b is a text constant called the
brand. Brands distinguish types that would otherwise be the same; they
have no other semantic effect. All brands in a program must be distinct.
If BRANDED is present and b is absent, the implementation automatically
supplies a unique value for b. Explicit brands are useful for persistent data
storage.

The following reference types are predeclared:

REFANY
ADDRESS
NULL

Contains all traced references
Contains all untraced references
Contains only NIL

The TYPECASE statement (----'tB.3.18, p. 492) can be used to test the refer
ent type of a REFANY or object, but there is no such test for an ADDRESS.

B.2.8 Procedures

A procedure is either NIL or a triple consisting of:

• the body, which is a statement (----'tB.3, p. 482),

• the signature, which specifies the procedure's formal arguments, re
sult type, and raises set (the set of exceptions that the procedure can
raise),

• the environment, which is the scope with respect to which variable
names in the body will be interpreted (see also B.4, p. 494).

A procedure that returns a result is called a function procedure; a proce
dure that does not return a result is called a proper procedure. A top-level
procedure is a procedure declared in the outermost scope of a module. Any
other procedure is a local procedure.

2This restriction is lifted in unsafe modules (---+B.5.6, p. 503).

476 B. Language Definition

A local procedure can be passed as a parameter but not assigned, since
in a stack implementation a local procedure becomes invalid when the
frame for the procedure containing it is popped.

A procedure constant is an identifier declared as a procedure. (As op
posed to a procedure variable, which is a variable declared with a procedure
type.)

A procedure type declaration has the form:

TYPE T = PROCEDURE sig

where sig is a signature specification, which has the form:

(formal1; ... ; formaln): R RAISES S

where

• Each formali is a formal parameter declaration, as described below.

• R is the result type, which can be any type but an open array type.
The ": R" can be omitted, making the signature that of a proper pro
cedure.

• S is the raises set, which is either an explicit set of exceptions with
the syntax {E 1, ... , En}, or the symbol ANY representing the set of all
exceptions. If" RAISES S" is omitted, "RAISES {}" is assumed.

A formal parameter declaration has the form

Mode Name: Type := Default

where

• Mode is a parameter mode, which can be VALUE, VAR, or READONLY.
If Mode is omitted, it defaults to VALUE.

• Name is an identifier that names the parameter. The parameter na
mes must be distinct.

• Type is the type of the parameter.

• Default is a constant expression, the default value for the parameter.
If Mode is VAR, ":= Default" must be omitted, otherwise either ":= De
fault" or" : Type" can be omitted, but not both. If Type is omitted, it is
taken to be the type of Default. Ifboth are present, the value of Default
must be a member of Type.

When a series of parameters share the same mode, type, and default, namei
can be a list of identifiers separated by commas. Such a list is shorthand for
a list in which the mode, type, and default are repeated for each identifier.
That is:

B.2. Types

Mode v 1, ... , un: Type := Default

is shorthand for:

Mode v1: Type := Default; ... ; Mode Un: Type := Default

477

This shorthand is eliminated from the expanded definition ofthe type. The
default values are included.

A procedure value P is a member ofthe type T ifit is NIL or its signature
is covered by the signature ofT, where signature1 covers signature2 if:

• They have the same number of parameters, and corresponding pa
rameters have the same type and mode.

• They have the same result type, or neither has a result type.

• The raises set of signature 1 contains the raises set of signature2.

The parameter names and defaults affect the type of a procedure, but not
its value. For example, consider the declarations:

PROCEDURE P(txt: TEXT := "P") =
BEGIN

Wr.PutText(Stdio.stdout, txt)
END P;

VAR q: PROCEDURE(txt: TEXT := "Q") := P;

Now P = q is TRUE, yet PO prints "P" and qO prints "Q". The interpretation
of defaulted parameters is determined by a procedure's type, not its value;
the assignment q := P changes q's value, not its type.

In a procedure type, RAISES binds to the closest preceding PROCE
DURE. That is, the parentheses are required in:

TYPE T = PROCEDURE 0: (PROCEDURE ()) RAISES {}

B.2.9 Objects

An object is either NIL or a reference to a data record paired with a method
suite, which is a record of procedures that will accept the object as a first
argument.

An object type determines the types of a prefix of the fields of the data
record, as if "OBJECT" were "REF RECORD" (-+B.2.7, p. 474). But in the
case of an object type, the data record can contain additional fields intro
duced by subtypes of the object type. Similarly, the object type determines
a prefix of the method suite, but the suite can contain additional methods
introduced by subtypes.

478 B. Language Definition

If 0 is an object, then o.t designates the data field named t in o's data
record. Ifm is one ofo's methods, an invocation of the form o.m(...) denotes
an execution of o's m method (~B.3.2, p. 484). An object's methods can be
invoked, but not read or written.

1fT is an object type and m is the name of one ofT's methods, then T.m
denotes T's m method. This notation makes it convenient for a subtype
method to invoke the corresponding method of one of its supertypes.

A field or method in a subtype masks any field or method with the same
name in the supertype. To access such a masked field, use NARROW to
view the subtype variable as a member of the supertype, as illustrated on
page 480.

Object assignment is reference assignment. Objects cannot be derefer
enced, since the static type of an object variable does not determine the
type of its data record. To copy the data record of one object into another,
the fields must be assigned individually.
There are two predeclared object types:

ROOT The traced object type with no fields or methods
UNTRACED ROOT The untraced object type with no fields or methods

The declaration of an object type has the form:

TYPE T=
ST OBJECT Fields METHODS Methods OVERRIDES Overrides END

where ST is an optional supertype, Fields is a list of field declarations, ex
actly as in a record type (~B.2.4, p. 473), Methods is a list of method dec
larations and Overrides is a list of method overrides. The fields of T consist
of the fields of ST followed by the fields declared in Fields. The methods of
T consist of the methods of ST modified by Overrides and followed by the
methods declared in Methods. T has the same reference class as ST.

The names introduced in Fields and Methods must be distinct from one
another and from the names overridden in Overrides. If ST is omitted, it
defaults to ROOT. IfST is untraced, then the fields must not include traced
types. 3 If ST is declared as an opaque type (~B.4. 6, p. 496), the declaration
ofT is legal only in scopes where ST's concrete type is known to be an object
type.

The keyword OBJECT can optionally be preceded by "BRANDED" or by
"BRANDED b", where b is a text literal. The meaning is the same as in
non-object reference types (~B.2. 7, p. 474).

A method declaration has the form:

m sig:= proc

3This restriction is lifted in unsafe modules (-tB.5.6, p. 503).

B.2. Types 479

where m is an identifier, sig is a procedure signature, and proc is a top
level procedure constant. It specifies that T's m method has signature sig
and value proc. If":= proc" is omitted, ":= NIL" is assumed. If proc is non
nil, its first parameter must have mode VALUE and type some supertype
of T, and dropping its first parameter must result in a signature that is
covered (---+B.2.8, p. 477) by sig.

A method override has the form:

m:= proc

where m is the name of a method of the supertype ST and proc is a top-level
procedure constant. It specifies that the m method for T is proc, rather than
ST.m. If proc is non-nil, its first parameter must have mode VALUE and
type some supertype of T, and dropping its first parameter must result in
a signature that is covered by the signature of ST's m method.

Examples. Consider the following declarations:

TYPE
A = OBJECT a: INTEGER; METHODS pO END;
AB = A OBJECT b: INTEGER END;

PROCEDURE Pa(self: A) = ... ;
PROCEDURE Pab(self: AB) = ... ;

The procedures Pa and Pab are candidate values for the p methods of ob
jects of types A and AB. For example:

TYPE T1 = AB OBJECT OVERRIDES P := Pab END

declares a type with an AB data record and a p method that expects an AB.
T1 is a valid subtype of AB. Similarly,

TYPE T2 = A OBJECT OVERRIDES p := Pa END

declares a type with an A data record and a method that expects an A. T2
is a valid subtype of A. A more interesting example is:

TYPE T3 = AB OBJECT OVERRIDES p := Pa END

which declares a type with an AB data record and a p method that expects
an A. Since every AB is an A, the method is not too choosy for the objects in
which it will be placed. T3 is a valid subtype of AB. In contrast,

TYPE T4 = A OBJECT OVERRIDES p:= Pab END

480 B. Language Definition

attempts to declare a type with an A data record and a method that expects
an AB; since not every A is an AB, the method is too choosy for the objects
in which it would be placed. The declaration ofT4 is a static error.

The following example illustrates the difference between declaring a
new method and overriding an existing method. Mter the declarations

TYPE
A = OBJECT METHODS mO := PEND;
B = A OBJECT OVERRIDES m := Q END;
C = A OBJECT METHODS mO := Q END;

VAR
a := NEW(A); b := NEW(B); c := NEW(C);

we have that

a.mO activates P(a)
b.mO activates Q(b)
c.mO activates Q(c)

So far there is no difference between overriding and extending. But c's
method suite has two methods, while b's has only one, as can be revealed if
band c are viewed as members of type A:

NARROW(b, A).mO activates Q(b)
NARROW(c, A).mO activates P(c)

Here NARROW is used to view a variable of a subtype as a value of its
supertype. It is more often used for the opposite purpose, when it requires
a runtime check (--tB.6.13, p. 514).

B.2.10 Subtyping rules

We write T <: U to indicate that T is a subtype of U and U is a supertype
of T. If T <: U, then every value of type T is also a value of type U. The
converse does not hold: for example, a record or array type with packed
fields contains the same values as the corresponding type with unpacked
fields, but there is no subtype relation between them. This section presents
the rules that define the subtyping relation. For ordinal types T and U,
we have T <: U if they have the same basetype and every member of T
is a member of U. That is, subtyping on ordinal types reflects the subset
relation on the value sets.

B.2. Types

For array types,

(ARRAY OF)m ARRAY J 1 OF ... ARRAY I n OF
ARRAY K1 OF ... ARRAY Kp OF T

<: (ARRAY OF)m (ARRAY OF)n
ARRAY 11 OF ... ARRAY Ip OF T

ifNUMBER(li) = NUMBER(Ki) for i = 1,," ,po

481

That is, an array type A is a subtype of an array type AI if they have the
same ultimate element type, the same number of dimensions, and, for each
dimension, either both are open (as in the first m dimensions above), or A
is fixed and AI is open (as in the next n dimensions above), or they are both
fixed and have the same size (as in the last p dimensions above).

NULL <: REF T <: REFANY
NULL <: UNTRACED REF T <: ADDRESS

That is, REFANY and ADDRESS contain all traced and untraced ref
erences, respectively, and NIL is a member of every reference type. These
rules also apply to branded types.

NULL <: PROCEDURE(A): R RAISES S for any A, R, and S.

That is, NIL is a member of every procedure type.

PROCEDURE(A): Q RAISES E <: PROCEDURE(B): R RAISES F
if signature (B): R RAISES F covers signature (A): Q RAISES E.

That is, for procedure types, T <: TI ifthey are the same except for parame
ter names, defaults, and the raises set, and the raises set for T is contained
in the raises set for T/.

ROOT <: REFANY
UNTRACED ROOT <: ADDRESS
NULL <: T OBJECT ... END <: T

That is, every object is a reference, NIL is a member of every object type,
and every subtype is included in its supertype. The third rule also applies
to branded types.

BITS n FOR T <: T and T <: BITS n FOR T

That is, BITS FOR T has the same values as T.

T <: T for all T
T <: U and U <: V implies T <: V for all T, U, V.

482 B. Language Definition

That is, <: is reflexive and transitive.
Note that T <: U and U <: T does not imply that T and U are the same,

since the subtype relation is unaffected by parameter names, default val
ues, and packing.

For example, consider:

TYPE
T = [0 .. 255];
U = BITS 8 FOR [0 .. 255];
AT = ARRAY OF T;
AU = ARRAY OF U;

The types T and U are subtypes of one another but are not the same. The
types AT and AU are unrelated by the subtype relation.

B.2.11 Predeclared opaque types

The language predeclares the two types:

TEXT <: REFANY
MUTEX <: ROOT

which represent text strings and mutual exclusion semaphores, respec
tively. These are opaque types as defined in Section BA.6, page 496. Their
properties are specified in the required interfaces Text (--+G.I.I, p. 525) and
Thread (--+G.I.2, p. 527).

B.3 Statements

Executing a statement produces a computation that can halt (normal out
come), raise an exception, cause a checked runtime error, or loop forever. If
the outcome is an exception, it can optionally be paired with an argument.

We define the semantics of EXIT and RETURN with exceptions called the
exit-exception and the return-exception. The exit-exception takes no argu
ment; the return-exception takes an argument of arbitrary type. Programs
cannot name these exceptions explicitly.

Implementations should speed up normal outcomes at the expense of
exceptions (except for the return-exception and exit-exception). Expending
a thousand instructions per exception raised to save one instruction per
procedure call would be reasonable.

If an expression is evaluated as part of the execution of a statement,
and the evaluation raises an exception, then the exception becomes the
outcome ofthe statement.

The empty statement is a no-op. In this report, empty statements are
written (*skip*).

B.3. Statements 483

B.3.1 Assignment

To specify the typechecking of assignment statements we need to define
"assignable", which is a relation between types and types, between expres
sions and variables, and between expressions and types.

A type T is assignable to a type U if:

• T <: U, or

• U <: T and T is an array or a reference type other than ADDRESS4 , or

• T and U are ordinal types with at least one member in common.

An expression e is assignable to a variable v if:

• the type of e is assignable to the type of v, and

• the value of e is a member of the type of v, is not a local procedure,
and ifit is an array, then it has the same shape as v.

The first point can be checked statically; the others generally require run
time checks. Since there is no way to determine statically whether the
value of a procedure parameter is local or global, assigning a local proce
dure is a runtime rather than a static error.

An expression e is assignable to a type T if e is assignable to some vari
able of type T. (If T is not an open array type, this is the same as saying
that e is assignable to any variable oftype T.)

An assignment statement has the form:

v:= e

where v is a writable designator and e is an expression assignable to the
variable designated by v. The statement sets v to the value of e. The order
of evaluation of v and e is undefined, but e will be evaluated before v
is updated. In particular, if v and e are overlapping sub arrays (--+B.6.3,
p. 507), the assignment is performed in such a way that no element is used
as a target before it is used as a source.

Examples of assignments:

VAR
x: REFANY;
a: REF INTEGER;
b: REF BOOLEAN;

a := b; (* static error *)
x := a; (* no possible error *)
a := x (* possible checked runtime error *)

4This restriction is lifted in unsafe modules (---+B.5.6, p. 503).

484 B. Language Definition

The same comments would apply if x had an ordinal type with non
overlapping subranges a and b, or if X had an object type and a and b
had incompatible subtypes. The type ADDRESS is treated differently from
other reference types, since a runtime check cannot be performed on the
assignment of raw addresses. For example:

VAR
x: ADDRESS;
a: UNTRACED REF INTEGER;
b: UNTRACED REF BOOLEAN;

a := b; (* static error *)
X := a; (* no possible error *)
a := x (* static error in safe modules *)

B.3.2 Procedure call

A procedure call has the form:

P(Bindings)

where P is a procedure-valued expression and Bindings is a list of keyword
or positional bindings. A keyword binding has the form name := actual,
where actual is an expression and name is an identifier. A positional bind
ing has the form actual, where actual is an expression. When keyword and
positional bindings are mixed in a call, the positional bindings must pre
cede the keyword bindings. If the list of bindings is empty, the parentheses
are still required.

The list of bindings is rewritten to fit the signature of P's type as fol
lows: First, each positional binding actual is converted and added to the
list of keyword bindings by supplying the name of the i'th formal param
eter, where actual is the i'th binding in Bindings. Second, for each param
eter that has a default and is not bound after the first step, the binding
name := default is added to the list of bindings, where name is the name of
the parameter and default is its default value. The rewritten list of bindings
must bind only formal parameters and must bind each formal parameter
exactly once. For example, suppose that the type of P (--+B.2.B, p. 475) is

PROCEDURE(ch: CHAR; n: INTEGER := 0)

Then the following calls are all equivalent:

P('a',O)
P('a')
P(ch := 'a')
P(n := 0, ch := 'a')
P('a', n := 0)

B.3. Statements 485

The call PO is illegal, since it doesn't bind ch. The call P(n := 0, 'a') is illegal,
since it has a keyword parameter before a positional parameter.

For a READONLY or VALUE parameter, the actual can be any expression
assignable to the type of the formal (except that the prohibition against
assigning local procedures is relaxed). For a VAR parameter, the actual
must be a writable designator whose type is the same (--+B.2, p. 470) as
that of the formal, or, in case of a VAR array parameter, assignable to that
ofthe formal. Designators are defined in Section (--+B.6.3, p. 506).

A VAR formal is bound to the variable designated by the corresponding
actual; that is, it is aliased. A VALUE formal is bound to a variable with an
unused location and initialized to the value of the corresponding actual. A
READONLY formal is treated as a VAR formal if the actual is a designator
and the type ofthe actual is the same as the type ofthe formal (or an array
type that is assignable to the type of the formal); otherwise it is treated as
a VALUE formal.

Implementations are allowed to forbid VAR or READONLY parameters
of packed types.

To execute the call, the procedure P and its arguments are evaluated,
the formal parameters are bound, and the body of the procedure is exe
cuted. The order of evaluation of P and its actual arguments is undefined.
It is a checked runtime error to call an undefined or NIL procedure.

It is a checked runtime error for a procedure to raise an exception not
included in its raises set5 or for a function procedure to fail to return a
result.

A procedure call is a statement only if the procedure is proper (--+B.2.8,
p. 475). To call a function procedure and discard its result, use EVAL.

A procedure call can also have the form:

o.m(Bindings)

where 0 is an object and m names one of o's methods. This is equivalent to:

(o's m method) (0, Bindings)

B.3.3 Eval

An EVAL statement has the form:

EVALe

where e is an expression. The effect is to evaluate e and ignore the result.
For example:

EVAL Thread.Fork(p)

5If an implementation maps this runtime error into an exception, the exception is im
plicitly included in all RAISES clauses.

486 B. Language Definition

B.3.4 Block statement

A block statement has the form:

Decls BEGIN SEND

where Decls is a sequence of declarations and S is a statement. The block
introduces the constants, types, variables, and procedures declared in Decls
and then executes S. The scope of the declared names is the block. (See
Section B.4, page 494.)

B.3.5 Sequential composition

A statement of the form:

executes S 1, and then if the outcome is normal, executes S 2. If the outcome
of S 1 is an exception, S 2 is ignored.6

B.3.6 Raise

A RAISE statement without an argument has the form:

RAISE e

where e is an exception that takes no argument. The outcome of the state
ment is the exception e. A RAISE statement with an argument has the
form:

RAISE e(x)

where e is an exception that takes an argument and x is an expression
assignable to e's argument type. The outcome is the exception e paired
with the argument x.

6Some programmers use the semicolon as a statement terminator, some as a statement
separator. Similarly, some use the vertical bar in case statements as a case initiator, some
as a separator. Modula-3 allows both styles. This report uses both operators as separators.

B.3. Statements

B.3.7 Try Except

A TRY-EXCEPT statement has the form:

TRY
Body

EXCEPT
id 1 (v 1) => Handler 1

I·· .
I idn (vn) => Handler n
ELSE Handler 0
END

487

where Body and each Handler are statements, each id names an exception,
and each vi is an identifier. The "ELSE Handlero" and each "(vi)" are op
tional. It is a static error for an exception to be named more than once in
the list of id's.

The statement executes Body. If the outcome is normal, the except
clause is ignored. If Body raises any listed exception idi, then Handleri
is executed. If Body raises any other exception and "ELSE Handlero" is
present, then it is executed. In either case, the outcome of the TRY state
ment is the outcome of the selected handler. If Body raises an unlisted
exception and "ELSE Handlero" is absent, then the outcome of the TRY
statement is the exception raised by Body.

Each (Vi) declares a variable whose type is the argument type of the
exception idi and whose scope is Handleri. When an exception idi paired
with an argument x is handled, Vi is initialized to x before Handleri is
executed. It is a static error to include (Vi) if exception idi does not take an
argument.

If (Vi) is absent, then idi can be a list of exceptions separated by commas,
as shorthand for a list in which the rest ofthe handler is repeated for each
exception. That is:

id 1, ... , idn => Handler

is shorthand for:

id 1. => Handler; ... ; idn => Handler

It is a checked runtime error to raise an exception outside the dynamic
scope of a handler for that exception. A "TRY EXCEPT ELSE" counts as a
handler for all exceptions.

488 B. Language Definition

B.3.8 Try Finally

A statement of the form:

TRY 8 1 FINALLY 8 2 END

executes statemenS 1 and then statement 8 2 . If the outcome of 8 1 is nor
mal, the TRY statement is equivalent to 8 1 ; 8 2 . If the outcome of 8 1 is
an exception and the outcome of 8 2 is normal, the exception from 8 1 is re
raised after 8 2 is executed. Ifboth outcomes are exceptions, the outcome of
the TRY is the exception from 8 2 .

B.3.9 Loop

A statement of the form:

LOOP SEND

repeatedly executes S until it raises the exit-exception. Informally it is
like:

TRY S; S; S; ... EXCEPT exit-exception => (*skip*) END

B.3.tO Exit

The statement

EXIT

raises the exit-exception. An EXIT statement must be textually enclosed by
a LOOP, WHILE, REPEAT, or FOR statement.

We define EXIT and RETURN in terms of exceptions in order to specify
their interaction with the exception handling statements. As a pathological
example, consider the following code, which is an elaborate infinite loop:

LOOP
TRY

TRY EXIT FINALLY RAISE E END
EXCEPT

E => (*skip*)
END

END

B.3. Statements 489

B.3.11 Return

A RETURN statement for a proper procedure (--+B.2.8, p. 475) has the form:

RETURN

The statement raises the return-exception without an argument. It is al
lowed only in the body of a proper procedure.

A RETURN statement for a function procedure (--+B.2.8, p. 475) has the
form:

RETURN Expr

where Expr is an expression assignable C--+B.3.1, p. 483) to the result type
of the procedure. The statement raises the return-exception with the argu
ment Expr. It is allowed only in the body of a function procedure.

Failure to return a value from a function procedure is a checked runtime
error.

The effect of raising the return exception is to terminate the current
procedure activation. To be precise, a call on a proper procedure with body
B is equivalent (after binding the arguments) to:

TRY B EXCEPT return-exception => (*skip*) END

A call on a function procedure with body B is equivalent to:

TRY
B; (error: no returned value)

EXCEPT
return-exception (v) => (the result becomes v)

END

B.3.12 If

An IF statement has the form:

IF B1 THEN S1
ELSIF B2 THEN S2

ELSIF Bn THEN Sn
ELSE So
END

where the B's are boolean expressions and the S's are statements. The
"ELSE So" and each "ELSIF Bi THEN S/, are optional.

The statement evaluates the B's in order until some Bi evaluates to
TRUE, and then executes Si' If none of the expressions evaluates to TRUE
and "ELSE So" is present, So is executed. If none of the expressions evalu
ates to TRUE and "ELSE So" is absent, the statement is a no-op (except for
any side-effects ofthe B's).

490 B. Language Definition

B.3.13 While

If B is an expression of type BOOLEAN and S is a statement:

WHILE B DO SEND

is shorthand for:

LOOP IF B THEN S ELSE EXIT END END

B.3.14 Repeat

If B is an expression of type BOOLEAN and S is a statement:

REPEAT S UNTIL B

is shorthand for:

LOOP S; IF B THEN EXIT END END

B.3.15 With

A WITH statement has the form:

WITH id = e DO SEND

where id is an identifier, e an expression, and S a statement. The state
ment declares id with scope S as an alias for the variable e or as a readonly
name for the value e. The expression e is evaluated once, at entry to the
WITH statement.

The statement is like the procedure call P(e), where P is declared as:

PROCEDURE P(mode id: type of e) = BEGIN SEND P;

If e is a writable designator, mode is VAR; otherwise, mode is READONLY.
(-+ B. 6.3, p. 506) explains designators.) The only difference between the
WITH statement and the call P(e) is that free variables, RETURNs, and
EXITs that occur in the WITH statement are interpreted in the context of
the WITH statement, not in the context of P.

A single WITH can contain multiple bindings, which are evaluated se
quentially. That is:

WITH id 1 = el, id2 = e2, ...

is equivalent to:

WITH id l = el DO WITH id2 = e2 DO···

B.3. Statements 491

B.3.t6 For

A FOR statement has the form:

FOR id := first TO last BY step DO SEND

where id is an identifier, first and last are ordinal expressions C----'tB.2.1,
p. 470) with the same base type, step is an integer-valued expression, and
S is a statement. "BY step" is optional; if omitted, step defaults to 1.

The identifier id denotes a readonly C----'tB.6.3, p. 506) variable whose
scope is S and whose type is the common basetype offirst and last.

If id is an integer, the statement steps id through the values first, first +
step, first+2*step, ... , stopping when the value of id passes last. S executes
once for each value; if the sequence of values is empty, S never executes.
The expressions first, last, and step are evaluated once, before the loop is
entered. If step is negative, the loop iterates downward.

The case in which id is an element of an enumeration is similar. In
either case, the semantics are defined precisely by the following rewriting,
in which T is the type of id and in which i, done, and delta stand for variables
that do not occur in the FOR statement:

VAR
i := ORD(first); done := ORD(last); delta := step;

BEGIN
IF delta >= 0 THEN

WHILE i <= done DO
WITH id = VAL(i, T) DO SEND; INC(i, delta)

END
ELSE

WHILE i >= done DO
WITH id = VAL(i, T) DO SEND; INC(i, delta)

END
END

END

If the upper bound of the loop is LAST(INTEGER), it should be rewritten as
a WHILE loop to avoid overflow.

492 B. Language Definition

B.3.17 Case

A CASE statement has the form:

CASE ExprOF
Ll => SI

I···
I Ln => Sn
ELSE So
END

where Expr is an expression whose type is an ordinal type and each L is a
list of constant expressions or ranges of constant expressions denoted by
"el .. el', which represent the values from el to e2 inclusive. If el exceeds e2,
the range is empty. It is a static error if the sets represented by any two L's
overlap or if the value of any of the constant expressions is not a member
of the type of Expr. The "ELSE So" is optional.

The statement evaluates Expr. Ifthe resulting value is in any L i , then
Si is executed. If the value is in no Li and "ELSE So" is present, then it
is executed. If the value is in no Li and "ELSE So" is absent, a checked
runtime error occurs.

B.3.18 Typecase

A TYPECASE statement has the form:

TYPECASE Expr OF
Tl (vI) => SI

I·· .
I Tn (vn) => Sn
ELSE So
END

where Expr is an expression whose type is a reference type, the S's are
statements, the T's are reference types, and the v's are identifiers. It is a
static error if Expr has type ADDRESS or if any T is not a subtype of the
type of Expr. The "ELSE SO" and each "(v)" are optional.

The statement evaluates Expr. If the resulting reference value is a mem
ber of any listed type Ti , then Si is executed, for the minimum such i. (Thus
a NULL case is useful only ifit comes first.) If the value is a member of no
listed type and "ELSE So" is present, then it is executed. If the value is a
member of no listed type and "ELSE So" is absent, a checked runtime error
occurs.

Each (vJ declares a variable whose type is Ti and whose scope is Si. If
Vi is present, it is initialized to the value of Expr before Si is executed.

B.3. Statements 493

If (vd is absent, then Ti can be a list of type expressions separated by
commas, as shorthand for a list in which the rest of the branch is repeated
for each type expression. That is:

T1,···, Tn => S

is shorthand for:

T1 => S I ... I Tn => S

For example:

PROCEDURE ToText(r: REFANY): TEXT =
(* Assume r = NIL or r' is a BOOLEAN or INTEGER. *)

BEGIN
TYPECASE r OF

NULL => RETURN "NI~'
I REF BOOLEAN (rb) => RETURN Fmt.Bool(rb')
I REF INTEGER (ri) => RETURN Fmtlnt(rr}
END

END ToText;

B.3.19 Lock

A LOCK statement has the form:

LOCK mu DO SEND

where S is a statement and mu is an expression. It is equivalent to:

WITH m=mu DO
Thread.Acquire(m);
TRY S FINALLY Thread. Release(m) END

END

where m stands for a variable that does not occur in S. (The Thread inter
face is presented in Section C.1.2, page 527.)

B.3.20 Inc and Dec

INC and DEC statements have the form:

INC(v, n)
DEC(v, n)

494 B. Language Definition

where v designates a variable of an ordinal type7 (---+B.2.1, p. 470) and n
is an optional integer-valued argument. If omitted, n defaults to 1. The
statements increment and decrement v by n, respectively. The statements
are equivalent to:

WITH x = v DO x := VAL(ORD(x) + n, T) END
WITH x = v DO x := VAL(ORD(x) - n, T) END

where T is the type ofv and x stands for a variable that does not appear in
n. As a consequence, the statements check for range errors.

B.4 Declarations

A declaration introduces a name for a constant, type, variable, exception,
or procedure. The scope of the name is the block containing the declaration.
A block has the form:

Decls BEGIN SEND

where Decls is a sequence of declarations and S is a statement, the exe
cutable part ofthe block. A block can appear as a statement or as the body
of a module or procedure. The declarations of a block can introduce a name
at most once, though a name can be redeclared in nested blocks, and a pro
cedure declared in an interface can be redeclared in a module exporting
the interface (---+B.5, p. 498). The order of declarations in a block does not
matter, except to determine the order of initialization of variables.

B.4.1 Types

IfT is an identifier and U a type (~r type expression, since a type expression
is allowed wherever a type is required), then:

TYPE T= U

declares T to be the type U (---+B.2, p. 470).

B.4.2 Constants

If id is an identifier, T a type, and C a constant expression, then:

CONST id: T = C

declares id as a constant with the type T and the value of C. The ": T" can
be omitted, in which case the type of id is the type of C. If T is present it
must contain C.

7In unsafe modules (-+B.5.6, p. 503), INC and DEC are extended to ADDRESS.

B.4. Declarations 495

B.4.3 Variables

If id is an identifier, T a non-empty type (-+B.2, p. 470) other than an open
array type (-+B.2.3, p. 472), and E an expression (-+B.6, p. 504), then:

VAR id: T:= E

declares id as a variable of type T whose initial value is the value of E.
Either ":= E" or ": T" can be omitted, but not both. If T is omitted, it is
taken to be the type of E. If E is omitted, the initial value is an arbitrary
value oftype T. Ifboth are present, E must be assignable to T.

The initial value is a shorthand that is equivalent to inserting the as
signment id := E at the beginning of the executable part of the block. If
several variables have initial values, their assignments are inserted in the
order they are declared. For example:

VAR x: [0 .. 5] := y; y: [0 .. 5] := x; BEGIN SEND

initializes x and y to the same arbitrary value in [0 .. 5]; it is equivalent to:

VAR x: [0 .. 5]; y: [0 .. 5]; BEGIN x := y; y := x; SEND

If a sequence of identifiers share the same type and initial value, id can
be a list of identifiers separated by commas. Such a list is shorthand for
a list in which the type and initial value are repeated for each identifier.
That is:

VAR vI • ...• vn: T:= E

is shorthand for:

VAR vI: T:= E; ... ; VAR vn: T:= E

This means that E is evaluated n times.

B.4.4 Procedures

There are two forms of procedure declaration:

PROCEDURE id sig = B id
PROCEDURE id sig

where id is an identifier, sig is a procedure signature (-+B.2.8, p. 475), and B
is a block (-+B.3.4, p. 486). In both cases, the type of id is the procedure type
determined by sig. The first form is allowed only in modules; the second
form is allowed only in interfaces.

The first form declares id as a procedure constant whose signature is
sig, whose body is B, and whose environment is the scope containing the

496 B. Language Definition

declaration. The parameter names are treated as if they were declared at
the outer level of B; the parameter types and default values are evaluated
in the scope containing the procedure declaration. The procedure name id
must be repeated after the END that terminates the body.

The second form declares id to be a procedure constant whose signature
is sig. The procedure body is specified in a module exporting the interface
(---+B.5, p. 498), by a declaration ofthe first form.

BA.5 Exceptions

If id is an identifier and T a type other than an open array type, then:

EXCEPTION id(T)

declares id as an exception with argument type T. If "(T)" is omitted, the
exception takes no argument. An exception declaration is allowed only in
an interface or in the outermost scope of a module. All declared exceptions
are distinct.

BA.6 Opaque types

An opaque type is a name that denotes an unknown subtype of some given
reference type (---+B.2. 7, p. 474). For example, an opaque subtype of RE
FANY is an unknown traced reference type; an opaque subtype of UN
TRACED ROOT is an unknown untraced object type. The actual type de
noted by an opaque type name is called its concrete type.

Different scopes can reveal different information about an opaque type.
For example, what is known in one scope only to be a subtype of REFANY
could be known in another scope to be a subtype of ROOT.

An opaque type declaration has the form:

TYPE T <: U

where T is an identifier and U an expression denoting a reference type. It
introduces the name T as an opaque type and reveals that U is a supertype
ofT. The concrete type ofT must be revealed elsewhere in the program.

BA.7 Revelations

A revelation introduces information about an opaque type into a scope. Un
like other declarations, revelations introduce no new names.

There are two kinds of revelations, partial and complete. A program
can contain any number of partial revelations for an opaque type; it must
contain exactly one complete revelation.

B.4. Declarations 497

A partial revelation has the form:

REVEAL T <: V

where V is a type expression (possibly just a name) and T is an identifier
(possibly qualified, as on page 499) declared as an opaque type. It reveals
that V is a supertype ofT.

In any scope, the revealed supertypes of an opaque type must be linearly
ordered by the subtype relation. That is, if it is revealed that T <: U1 and
T <: U2, it must also be revealed either that U1 <: U2 or that U2 <: U1.

A complete revelation has the form:

REVEAL T = V

where V is a type expression (not just a name) whose outermost type con
structor is a branded reference or object type (-+B.2. 7 and B.2. 9, p. 474 and
477) and T is an identifier (possibly qualified) that has been declared as an
opaque type. The revelation specifies that V is the concrete type for T. It is
a static error if any type revealed in any scope as a supertype of T is not a
supertype ofV. Generally this error is detected at link time.

Distinct opaque types have distinct concrete types, since V includes a
brand and all brands in a program are distinct.

A revelation is allowed only in an interface or in the outermost scope
of a module. A revelation in an interface can be imported into any scope
where it is required.

For example, consider:

INTERFACE M; TYPE T <: ROOT; PROCEDURE P(x:T): T; END M.

INTERFACE MClass; IMPORT M; REVEAL M.T <: MUTEX; END MClass.

INTERFACE MRep; IMPORT M;
REVEAL M.T = MUTEX BRANDED OBJECT count: INTEGER END;

END MRep.

An importer ofM sees M.T as an opaque subtype of ROOT, and is limited to
allocating objects of type M.T, passing them to M.P, or declaring subtypes
of M.T. An importer of MClass sees that every M.T is a MUTEX, and can
therefore lock objects of type M.T (-+B.2.11 and B.3.19, p. 482 and 493).
Finally, an importer of MRep sees the concrete type, and can access the
count field.

B.4.8 Recursive declarations

A constant, type, or procedure declaration N = E, a variable declaration
N : E, an exception declaration N(E), or a revelation N = E is recursive if N

498 B. Language Definition

occurs in any partial expansion of E. A variable declaration N := I where the
type is omitted is recursive if N occurs in any partial expansion of the type
E of I. Such declarations are allowed if every occurrence of N in any partial
expansion of E is (1) within some occurrence of the type constructor REF
or PROCEDURE, (2) within a field or method type of the type constructor
OBJECT, or (3) within a procedure body.

Examples oflegal recursive declarations:

TYPE
List = REF RECORD x: REAL; link: List END;
T = PROCEDURE(n: INTEGER; p: T);
XList = X OBJECT link: XList END;

CONST
N = BYTESIZE(REF ARRAY [O .. N] OF REAL);

PROCEDURE P(b: BOOLEAN)
BEGIN

IF b THEN P(NOT b) END
END P;
EXCEPTION E(PROCEDURE 0 RAISES {E});
VAR v: REF ARRAY [O .. BYTESIZE(v)] OF INTEGER;

Examples of illegal recursive declarations:

TYPE
T = RECORD x: TEND;
U = OBJECT METHODS mO := U.m END;

CONST
N = N+1;

REVEAL I.T = I.T BRANDED OBJECT END;
VAR v := PO; PROCEDURE PO: ARRAY [O .. LAST(v)] OF T;

Examples oflegal non-recursive declarations:

VAR n := BITSIZE(n);
REVEAL T <: T;

B.5 Modules and interfaces

A module is like a block, except for the visibility of names (----'tB.4, p. 494). An
entity is visible in a block ifit is declared in the block or in some enclosing
block; an entity is visible in a module if it is declared in the module or in
an interface that is imported or exported by the module.

B.S. Modules and interfaces 499

An interface is a group of declarations. Declarations in interfaces are
the same as in blocks, except that any variable initializations must be con
stant, and procedure declarations (-+B.4.4, p. 495) must specify only the
signature, not the body.

A module X exports an interface Int to supply bodies for one or more of
the procedures declared in the interface. A module or interface X imports
an interface Int to make the entities declared in Int visible in X.

A program is a collection of modules and interfaces that contains every
interface imported or exported by any of its modules or interfaces, and in
which no procedure, module, or interface is multiply defined. The effect of
executing a program is to execute the bodies of each of its modules. The
order of execution of the modules is constrained by the initialization rule
on page 503.

The module whose body is executed last is called the main module. Im
plementations are expected to provide a way to specify the main module,
in case the initialization rule does not determine it uniquely. The recom
mended rule is that the main module be the one that exports the interface
Main, whose contents are implementation-dependent.

Program execution terminates when the body of the main module ter
minates, even if concurrent threads of control are still executing.

The names of the modules and interfaces of a program are called global
names. The method for looking up global names - for example, by file
system search paths - is implementation-dependent.

B.5.1 Import statements

There are two forms of import statements. All imports of both forms are
interpreted simultaneously: their order doesn't matter.

The first form is

IMPORTXASY

which imports the interface whose global name is X and gives it the local
name Y. The entities andrevelations declared in X become accessible in the
importing module or interface, but the entities and revelations imported
into X do not. To refer to the entity declared with name N in the interface
X, the importer must use the qualified identifier Y.N.

The statement IMPORT X is short for IMPORT X AS X.
The second form is

FROM X IMPORT N

which introduces N as the local name for the entity declared as N in the
interface X. A local binding for X takes precedence over a global binding.
For example,

500 B. Language Definition

IMPORT X AS Y, Y AS X; FROM X IMPORT N

simultaneously introduces local names Y, X, and N for the entities whose
global names are X, Y, and Y.N, respectively.

It is illegal to use the same local name twice:

IMPORT Y AS X, Z AS X;

is a static error, even if Y and Z are the same.

B.5.2 Interfaces

An interface has the form:

INTERFACE id; Imports; Decls END id.

where id is an identifier that names the interface, Imports is a sequence of
import statements, and Decls is a sequence of declarations (-+B.4, p. 494)
that contains no procedure bodies or non-constant variable initializations.
The names declared in Decls and the visible imported names must be dis
tinct. It is a static error for two or more interfaces to form an import cycle.

B.5.3 Modules

A module has the form:

MODULE id EXPORTS Interiaces; Imports; Block id.

where id is an identifier that names the module, Interiaces is a list of dis
tinct names of interfaces exported by the module, Imports is a list of import
statements, and Block is a block, the body of the module. The name id must
be repeated after the END that terminates the body. "EXPORTS Interiaces"
can be omitted, in which case Interiaces defaults to id.

If module M exports interface Int, then all declared names in Int are
visible without qualification in M. Any procedure declared in Int can be re
declared in M, with a body. The signature in M must be covered by the
signature in Int (-+B.2.B, p. 477). To determine the interpretation of key
word bindings in calls to the procedure, the signature in M is used within
M; the signature in Int is used everywhere else.

Except for the redeclaration of exported procedures, the names declared
at the top level of Block, the visible imported names, and the names de
clared in the exported interfaces must be distinct.

For example, the following is illegal, since two names in exported inter
faces coincide:

B.S. Modules and interfaces 501

INTERFACE X;
PROCEDURE PO;

INTERFACE Y; MODULE M EXPORTS X, Y;
PROCEDURE PO; PROCEDURE PO = ... ;

The following is also illegal, since the visible imported name X coincides
with the top-level name X:

INTERFACE X;
PROCEDURE PO;

MODULE M EXPORTS X; FROM X IMPORT P;
PROCEDURE PO = ... ;

But the following is legal, although peculiar:

INTERFACE X;
PROCEDURE P(...);

MODULE M EXPORTS X; IMPORT X;
PROCEDURE P(...) = ... ;

since the only visible imported name is X, and the coincidence between P
as a top-level name and P as a name in an exported interface is allowed,
assuming the interface signature covers the module signature. Within M,
the interface declaration determines the signature of X.P and the module
declaration determines the signature of P.

B.5.4 Generics

In a generic interface or module, some of the imported interface names are
treated as formal parameters, to be bound to actual interfaces when the
generic is instantiated.

A generic interface has the form

GENERIC INTERFACE G(Fl' ... ,Fn); Body END G.

where G is an identifier that names the generic interface, Fl , ... ,Fn is a
list of identifiers, called the formal imports ofG, and Body is a sequence of
imports followed by a sequence of declarations, exactly as in a non-generic
interface.

An instance of G has the form

INTERFACE X = G(Al ,··· ,An) END X.

where X is the name of the instance and Ai,· .. , An is a list of actual in
terfaces to which the formal imports of G are bound. The instance X is
equivalent to an ordinary interface defined as follows:

INTERFACE X; IMPORT Ai ASF1 ,··· ,An ASFn; Body END X.

A generic module has the form

GENERIC MODULE G(Fl' ... ,Fn); Body END G.

where G is an identifier that names the generic module, F 1, ... , F n is a
list of identifiers, called the formal imports ofG, and Body is a sequence of
imports followed by a block, exactly as in a non-generic module.

502 B. Language Definition

An instance of G has the form

MODULE X EXPORTS E = G(A1 ,··· ,An) END X.

where X is the name of the instance, E is a list of interfaces exported by
X, and A 1, ... ,An is a list of actual interfaces to which the formal imports
of G are bound. "EXPORTS E" can be omitted, in which case it defaults to
"EXPORTS X". The instance X is equivalent to an ordinary module defined
as follows:

MODULE X EXPORTS E; IMPORT A1 ASF1,··· ,An ASFn ; Body
ENDX.

Notice that the generic module itself has no exports; they are supplied only
when it is instantiated.

For example, here is a generic stack package:

GENERIC INTERFACE Stack(Elem);
(* where Elem. T is not an open array type. *)
TYPE T <: REFANY;
PROCEDURE CreateO: T;
PROCEDURE Push(VAR s: T; x: Elem.T);
PROCEDURE Pop(VAR s: T): Elem.T;

END Stack.

GENERIC MODULE Stack(Elem);
REVEAL

T = BRANDED OBJECT n: INTEGER; a: REF ARRAY OF Elem.T END;

PROCEDURE CreateO: T =
BEGIN RETURN NEW(T, n := 0, a := NIL) END Create;

PROCEDURE Push(VAR s: T; x: Elem.T) =
BEGIN

IF s.a = NIL THEN
s.a := NEW(REF ARRAY OF Elem.T, 5)

ELSIF s.n > LAST(s.a") THEN
WITH temp = NEW(REF ARRAY OF Elem.T, 2 * NUMBER(s.a"» DO

FOR i := 0 TO LAST(s.a") DO temp[i] := s.a[i] END;
s.a:= temp

END
END;
s.a[s.n] := x;
INC(s.n)

END Push;

PROCEDURE Pop(VAR s: T): Elem.T =
BEGIN DEC(s.n); RETURN s.a[s.n] END Pop;

BEGIN END Stack.

B.5. Modules and interfaces

To instantiate these generics to produce stacks of integers:

INTERFACE Integer; TYPE T = INTEGER; END Integer.
INTERFACE IntStack = Stack(lnteger) END IntStack.
MODULE IntStack = Stack(lnteger) END IntStack.

503

Implementations are not expected to share code between different instances
of a generic module, since this will not be possible in general.

Implementations are not required to typecheck uninstantiated generics,
but they must typecheck their instances. For example, if one made the
following mistake:

INTERFACE String; TYPE T = ARRAY OF CHAR; END String.
INTERFACE StringStack = Stack(String) END StringStack.
MODULE StringStack = Stack(String) END StringStack.

everything would go well until the last line, when the compiler would at
tempt to compile a version of Stack in which the element type was an open
array. It would then complain that the NEW call in Push does not have
enough parameters.

B.5.5 Initialization

The order of execution of the modules in a program is constrained by the
following rule:

Ifmodule M depends on module Nand N does not depend on M, then N's
body will be executed before M's body, where:

• A module M depends on a module N if M uses an interface that N
exports or if M depends on a module that depends on N .

• A module M uses an interface X if M imports or exports X or if Muses
an interface that imports X.

Except for this constraint, the order of execution is implementationde
pendent.

B.5.6 Safety

The keyword UNSAFE can precede the declaration of any interface or mod
ule to indicate that it is unsafe; that is, uses the unsafe features of the
language (--+B. 7, p. 516). An interface or module not explicitly labeled UN
SAFE is called safe.

504 B. Language Definition

An interface is intrinsically safe if there is no way to produce an un
checked runtime error by using the interface in a safe module. If all mod
ules that export a safe interface are safe, the compiler guarantees the in
trinsic safety of the interface. If any of the modules that export a safe
interface are unsafe, it is the programmer, rather than the compiler, who
makes the guarantee.

It is a static error for a safe interface to import an unsafe one or for a
safe module to import or export an unsafe interface.

B.6 Expressions

An expression prescribes a computation that produces a value or variable.
Syntactically, an expression is either an operand, or an operation applied
to arguments, which are themselves expressions. Operands are identifiers
(-+B.6.3, p. 506), literals (-+B.6.4 and B.6.5, p. 507 and 508), or types (-+B.2,
p. 470). An expression is evaluated by recursively evaluating its arguments
and performing the operation. The order of argument evaluation is unde
fined for all operations except AND and OR.

B.6.1 Conventions for describing operations

To describe the argument and result types of operations, we use a notation
like procedure signatures. But since most operations are too general to be
described by a true procedure signature, we extend the notation in several
ways.

The argument to an operation can be required to have a type in a par
ticular class, such as an ordinal type (-+B.2.1, p. 470), set type (-+B.2.6,
p. 474), etc. In this case the formal specifies a type class instead of a type.
For example:

ORD (x: Ordinal): INTEGER

The formal type Any specifies an argument of any type.
A single operation name can be overloaded, which means that it denotes

more than one operation. In this case, we write a separate signature for
each of the operations. For example:

ASS (x: INTEGER) : INTEGER
(x: Float) : Float

The particular operation will be selected so that each actual argument type
is a subtype of the corresponding formal type or a member of the corre
sponding formal type class.

The argument to an operation can be an expression denoting a type. In
this case, we write Type as the argument type. For example:

B.6. Expressions 505

BYTESIZE (T: Type): CARDINAL

The result type of an operation can depend on its argument values (al
though the result type can always be determined statically). In this case,
the expression for the result type contains the appropriate arguments. For
example:

FIRST (T: FixedArrayType): IndexType(T)

IndexType(T) denotes the index type of the array type T and IndexType(a)
denotes the index type of the array a. The definitions of ElemType(T) and
ElemType(a) are similar.

B.6.2 Operation syntax

The operators that have special syntax are classified and listed in order of
decreasing binding power in the following table:

x.a
f(x) ali] T{x}
p"
+ -
* / DIV MOD
+-&
= # «=>=> IN
NOT
AND
OR

infix dot
applicative (, [, {
postfix"
prefix arithmetics
infix arithmetics
infix arithmetics
infix relations
prefix NOT
infix AND
infix OR

All infix operators are left associative. Parentheses can be used to override
the precedence rules. Here are some examples of expressions together with
their fully parenthesized forms:

M.F(x)
Q(x) -
- p-
-a*b
a*b-c
x IN s - t
NOT x IN s
NOT p AND q
AOR 8ANDC

(M.F)(x)
(Q(x)) -
- (p -)
(- a) * b
(a*b)-c
x IN (s - t)
NOT (x IN s)
(NOT p) AND q
A OR (8 AND C)

dot before application
application before-
- before prefix -
prefix - before *
* before infix -
infix - before IN
IN before NOT
NOT before AND
AND before OR

Operators without special syntax are procedural. An application of a pro
cedural operator has the form op(args), where op is the operation and args
is the list of argument expressions. For example, MAX and MIN are proce
dural operators.

506 B. Language Definition

B.6.3 Designators

An identifier is a writable designator ifit is declared as a variable, is a VAR
or VALUE parameter, is a local of a TYPECASE or TRY EXCEPT statement,
or is a WITH local that is bound to a writable designator. An identifier is a
readonly designator if it is a READONLY parameter, a local ofa FOR state
ment, or a WITH local bound to a non-designator or readonly designator.

The only operations that produce designators are dereferencing, sub
scripting, selection, and SUBARRAy.8 This section defines these operations
and specifies the conditions under which they produce designators.

(' denotes the the referent of r; this operation is called dereferencing.
The expression (is always a writable designator. It is a static error
if the type of r is REFANY, ADDRESS, NULL, an object type, or an
opaque type, and a checked runtime error if r is NIL. The type of (is
the referent type of r (--+B.2. 7, p. 474).

ali] denotes the (i + 1 - FIRST(a))th element ofthe array a (--+B.2.3, p. 472).
The expression ali] is a designator if a is, and is writable if a is. The
expression i must be assignable to the index type of a. The type of
ali] is the element type of a. An expression of the form ali 1, ... , in]
is shorthand for ali 1]-' ·[in]. If a is a reference to an array, then ali] is
shorthand for aA[iJ.

r.t, o.t, I.x, T.m, E.id
If r denotes a record, r.f denotes its t field (--+B.2.4, p. 473). In this
case r.t is a designator if r is, and is writable if r is. The type of r.t is
the declared type of the field. If r is a reference to a record, then r.t is
shorthand for (.f

If 0 denotes an object and t names a data field specified in the type of
0, then o.t denotes that data field of o. In this case o.t is a writable
designator whose type is the declared type of the field. If M denotes
an imported interface, then M.x denotes the entity named x in the in
terface M. In this case M.x is a designator if x is declared as a variable;
such a designator is always writable.

If T is an object type (--+B.2.9, p. 477) and m is the name of one of T's
methods, then T.m denotes the m method of type T. In this case T.m is
not a designator. Its type is the procedure type whose first argument
has mode VALUE and type T, and whose remaining arguments are
determined by the method declaration for m in T. The name of the
first argument is unspecified; thus in calls to T.m, this argument must
be given positionally, not by keyword. T.m is a procedure constant. If

BIn unsafe modules, LOOPHOLE can also produce a designator.

B.6. Expressions 507

E is an enumerated type, then E.id denotes its value named id. In this
case E.id is not a designator. The type of E.id is E.

SUBARRAY(a: Array; from, for: CARDINAL}: ARRAY OF ElemType(a}
SUBARRAY produces a subarray of a. It does not copy the array
(-'tB.2.3, p. 472); it is a designator if a is, and is writable if a is. If a
is a multi-dimensional array, SUBARRAY applies only to the top-level
array. The operation returns the subarray that skips the first from
elements of a and contains the next for elements. Note that if from is
zero, the sub array is a prefix of a, whether the type of a is zero-based
or not. It is a checked runtime error if from+for exceeds NUMBER(a}.
Implementations may restrict or prohibit the SUBARRAY operation
for arrays with packed element types.

B.6.4 Numeric literals

Numeric literals denote constant non-negative integers or reals. The types
ofthese literals are INTEGER, REAL, LONGREAL, and EXTENDED.

A literal INTEGER has the form base_digits, where base is one of"2", "3",
... , "16", and digits is a non-empty sequence ofthe decimal digits 0 through
9 plus the hexadecimal digits A through F. The "base_" can be omitted, in
which case base defaults to 1 O. The digits are interpreted in the given
base. Each digit must be less than base. For example, 16_FF and 255 are
equivalent integer literals.

If no explicit base is present, the value of the literal must be at most
LAST(INTEGER}. Ifan explicit base is present, the value of the literal must
be less than 2word.Size, and its interpretation uses the convention of the
Word interface (-'tC.l.3, p. 528). For example, on a sixteen-bit two's com
plement machine, 16_FFFF and -1 represent the same value.

A literal REAL has the form decimal E exponent, where decimal is a non
empty sequence of decimal digits followed by a decimal point followed by
a non-empty sequence of decimal digits, and exponent is a non-empty se
quence of decimal digits optionally beginning with a + or -. The literal
denotes decimal times 1 Oexponent. If "E exponent" is omitted, exponent de
faults to O.

LONG REAL and EXTENDED literals are like REAL literals, but instead
of E they use D and X respectively.

Case is not significant in digits, prefixes or scale factors. Embedded
spaces are not allowed.

For example, 1.0 and 0.5 are valid, 1. and .5 are not; 6.624E-27 is a
REAL, and 3.1415926535dO a LONG REAL.

508 B. Language Definition

B.6.5 Text and character literals

A character literal is a pair of single quotes enclosing either a single 180-
Latin-l printing character (excluding single quote) or an escape sequence.
The type of a character literal is CHAR.

A text literal is a pair of double quotes enclosing a sequence of 180-
Latin-l printing characters (excluding double quote) and escape sequences.
The type of a text literal is TEXT.

Here are the legal escape sequences and the characters they denote:

\n newline Oinefeed)
\t tab
\r carriage return
\' single quote

\f
\\
\"
\nnn

form feed
backslash
double quote
char with code 8_nnn

A \ followed by exactly three octal digits specifies the character whose code
is that octal value. A \ that is not a part of one of these escape sequences
is a static error.

For example, 'a' and '\" are valid character literals, '" is not; """ and
'Don't \ n' are valid text literals, """ is not.

B.6.6 Nil

The literal "NIL" denotes the value NIL. Its type is NULL.

B.6.7 Function application

A procedure call is an expression if the procedure returns a result. The
type ofthe expression is the result type of the procedure.

B.6.S Set, array, and record constructors

A set constructor has the form:

where S is a set type (---+B.2.6, p. 474) and the e's are expressions or ranges
of the form lo .. hi. The constructor denotes a value of type S containing the
listed values and the values in the listed ranges. The e's, lo's, and hi's must
be assignable to the element type of S.

An array constructor has the form:

B.6. Expressions 509

where A is an array type (--+B.2.3, p. 472) and the e's are expressions. The
constructor denotes a value of type A containing the listed elements in the
listed order. The e's must be assignable to the element type of A. This
means that if A is a multi-dimensional array, the e's must themselves be
array-valued expressions.

If A is a fixed array type and n is at least 1, then en can be followed by
", .. " to indicate that the value of en will be replicated as many times as
necessary to fill out the array. It is a static error to provide too many or too
few elements for a fixed array type.

A record constructor has the form:

R{Bindings}

where R is a record type (--+B.2.4, p. 473) and Bindings is a list of keyword
or positional bindings, exactly as in a procedure call (--+B.3.2, p. 484). The
list of bindings is rewritten to fit the list offields and defaults of R, exactly
as for a procedure call; the record field names play the role of the procedure
formal parameters. The expression denotes a value of type R whose field
values are specified by the rewritten binding.

The rewritten binding must bind only field names and must bind each
field name exactly once. Each expression in the binding must be assignable
to the type of the corresponding record field.

B.6.9 New

An allocation operation has the form:

NEW(T, ...)

where T is a reference type (--+B.2. 7, p. 474) other than REFANY, AD
DRESS, or NULL. The operation returns the address of a newly-allocated
variable of T's referent type; or if T is an object type (--+B.2.9, p. 477), a
newly-allocated data record paired with a method suite. The reference re
turned by NEW is distinct from all existing references. The allocated type
of the new reference is T.

It is a static error if T's referent type is empty. If T is declared as an
opaque type (--+B.4.6, p. 496), NEW(T) is legal only in scopes where T's con
crete type is known completely, or is known to be an object type.

The initial state of the referent generally represents an arbitrary value
of its type. If T is an object type or a reference to a record or open array
then NEW takes additional arguments to control the initial state ofthe new
variable.

510 B. Language Definition

1fT is a reference to an array with k open dimensions, the NEW operation
has the form:

NEW(T, nl, ... ,nk)

where the n's are integer-valued expressions that specifY the lengths of the
new array in its first k dimensions. The values in the array will be arbitrary
values of their type.

If T is an object type or a reference to a record, the NEW operation has
the form:

NEW(T, Bindings)

where Bindings is a list of keyword bindings used to initialize the new fields.
Positional bindings are not allowed.

Each binding f := v initializes the field f to the value v. Fields for which
no binding is supplied will be initialized to their defaults if they have de
faults; otherwise they will be initialized to arbitrary values of their types.

If T is an object type then Bindings can also include method overrides of
the form m := P, where m is a method of T and P is a top-level procedure
constant. This is syntactic sugar for the allocation of a subtype of T that
includes the given overrides, in the given order. For example,
NEW(T, m := P) is sugar for NEW(T OBJECT OVERRIDES m := PEND).

The order of the bindings makes no difference.

B.6.10 Arithmetic operations

The basic arithmetic operations are built into the language; additional op
erations are provided by the required interfaces (-+C.1.5, p. 530). To test or
set the implementation's behavior for overflow, underflow, rounding, and
division by zero, see the required interface FloatMode (-+G.1.6, p. 533).
Modula-3 arithmetic was designed to support the IEEE floating-point stan
dard, but not to require it. To perform arithmetic operations modulo the
word size, programs should use the routines in the required interface Word
(-+G.l.3, p. 528).

Implementations must not rearrange the computation of expressions in
a way that could affect the result. For example, (x+y)+z generally cannot
be computed as x+(y+z), since addition is not associative either for bounded
integers or for floating-point values.

prefix + (x: INTEGER) : INTEGER
(x: Float) : Float

infix + (x,y: INTEGER): INTEGER
(x,y: Float) : Float
(x,y: Set) : Set

B. 6. Expressions 511

As a prefix operator, +x returns x. As an infix operator on numeric argu
ments, + denotes addition. On sets, + denotes set union.

That is, e IN (x + y) if and only if (e IN x) OR (e IN y). The types of x
and y must be the same, and the result is the same type as both. In unsafe
modules, + is extended to ADDRESS.

prefix - (x: INTEGER) : INTEGER
(x: Float) : Float

infix - (x,y: INTEGER) : INTEGER
(x,y: Float) : Float
(x,y: Set) : Set

As a prefix operator, -x is the negative ofx. As an infix operator on numeric
arguments, - denotes subtraction. On sets, - denotes set difference. That
is, e IN (x - y) if and only if (e IN x) AND NOT (e IN y). The types ofx and
y must be the same, and the result is the same type as both. In unsafe
modules, - is extended to ADDRESS.

infix * (x,y: INTEGER) : INTEGER
(x,y: Float) : Float
(x,y: Set) : Set

On numeric arguments, * denotes multiplication. On sets, * denotes inter
section. That is, e IN (x * y) if and only if (e IN x) AND (e IN y). The types of
x and y must be the same, and the result is the same type as both.

infix / (x,y: Float) : Float
(x,y: Set) : Set

On reals, / denotes division. On sets, / denotes symmetric difference. That
is, e IN (x / y) if and only if (e IN x) # (e IN y). The types ofx and y must be
the same, and the result is the same type as both.

infix DIV (x,y: INTEGER) : INTEGER
infix MOD (x,y: INTEGER) : INTEGER

MOD (x, y: Float) : Float

The value x DIV y is the floor of the quotient of x and y; that is, the max
imum integer not exceeding the real number z such that z * y = x. For
integers x and y, the value ofx MOD y is defined to be x - y * (x DIV y).

This means that for positive y, the value ofx MOD y lies in the interval
[0 .. y-1], regardless ofthe sign of x. For negative y, the value of x MOD y
lies in the interval [y+ 1 .. 0], regardless of the sign of x.

512 B. Language Definition

If X and yare floats, the value of x MOD Y is x - Y * FLOOR(x / y). This
may be computed as a Modula-3 expression, or by a method that avoids
overflow if x is much greater than y. The types ofx and y must be the same,
and the result is the same type as both.

ASS (x: INTEGER) : INTEGER
(x: Float) : Float

ASS(x) is the absolute value of x. If x is a float, the type of ASS (x) is the
same as the type of x.

FLOAT (x: INTEGER; T: Type := REAL) : T
(x: Float; T: Type := REAL) : T

FLOAT(x, T) is a floating-point value of type T that is equal to or very near
x. The type T must be a floating-point type; it defaults to REAL. The exact
semantics depend on the thread's current rounding mode, as defined in the
required interface FloatMode (--+C.1.5, p. 530).

FLOOR (x: Float) : INTEGER
CEILING (x: Float) : INTEGER

FLOOR(x) is the greatest integer not exceeding x. CEILlNG(x) is the least
integer not less than x.

ROUND (r: Float) : INTEGER
TRUNC (r: Float) : INTEGER

ROUND(r) is the nearest integer to r; ties are broken according to the con
stant RoundDefault in the required interface FloatMode (--+C.l.6, p. 533).
TRUNC(r) rounds r toward zero; it equals FLOOR(r) for positive rand CEIL
ING(r) for negative r.

MAX, MIN (x,y: Ordinal) : Ordinal
(x,y: Float) : Float

MAX returns the greater of the two values x and y; MIN returns the lesser.
Ifx and yare ordinals (--+B.2.1, p. 470), they must have the same base type,
which is the type of the result. If x and yare floats, they must have the
same type, and the result is the same type as both.

B.6. Expressions 513

B.6.11 Relations

infix =, # (x, y: Any): BOOLEAN

The operator = returns TRUE if x and yare equal. The operator # returns
TRUE if x and yare not equal. It is a static error if the type of x is not
assignable to the type of y or vice versa.

Ordinals are equal if they have the same value. Floats are equal if the
underlying implementation defines them to be; for example, on an IEEE
implementation, +0 equals -0 and NaN does not equal itself References
are equal if they address the same location. Procedures are equal if they
agree as closures; that is, if they refer to the same procedure body and
environment. Sets are equal if they have the same elements. Arrays are
equal if they have the same length and corresponding elements are equal.
Records are equal if they have the same fields and corresponding fields are
equal.

infix <=, >= (x,y: Ordinal) : BOOLEAN
(x,y: Float) : BOOLEAN
(x,y: ADDRESS): BOOLEAN
(x,y: Set) : BOOLEAN

In the first three cases, <= returns TRUE if x is at most as large as y. In
the last case, <= returns TRUE if every element ofx is an element ofy. In
all cases, it is a static error if the type of x is not assignable to the type of
y, or vice versa. The expression x >= y is equivalent to y <= x.

infix >, < (x,y: Ordinal) : BOOLEAN
(x,y: Float) : BOOLEAN
(x,y: ADDRESS): BOOLEAN
(x,y: Set) : BOOLEAN

In all cases, x < y means (x <= y) AND (x # y), and x> y means y < x. It is
a static error if the type of x is not assignable to the type ofy, or vice versa.

Warning: with IEEE floating-point, x <= y is not the same as NOT x > y.

infix IN (e: Ordinal; s: Set): BOOLEAN

Returns TRUE ife is an element of the set s. It is a static error if the type
of e is not assignable to the element type of s. If the value of e is not a
member ofthe element type, no error occurs, but IN returns FALSE.

514 B. Language Definition

B.6.12 Boolean operations

prefix NOT (p: BOOLEAN) : BOOLEAN
infix AND (p,q: BOOLEAN) : BOOLEAN
infix OR (p,q: BOOLEAN) : BOOLEAN

NOT P is the complement of p.
p AND q is TRUE if both p and q are TRUE. If P is FALSE, q is not

evaluated.
p OR q is TRUE if at least one of p and q is TRUE. If p is TRUE, q is not

evaluated.

B.6.13 Type operations

ISTYPE (x: Reference; T: RefType) : BOOLEAN

ISTYPE(x, T) is TRUE if and only if x is a member ofT. T must be an object
type or traced reference type (----'tB.2.7 and B.2.9, p. 474 and 477), and x
must be assignable to T (----'tB.3.1, p. 483).

NARROW (x: Reference; T: RefType): T

NARROW(x, T) returns x after checking that x is a member ofT. If the check
fails, a runtime error occurs. T must be an object type or traced reference
type, and x must be assignable to T.

TYPECODE (T: RefType) : CARDINAL
(r: REFANY) : CARDINAL
(r: UNTRACED ROOT): CARDINAL

Every object type or traced reference type (including NULL) has an asso
ciated integer code. Different types have different codes. The code for a
type is constant for any single execution of a program, but may differ for
different executions. TYPECODE(T) returns the code for the type T and
TYPECODE(r) returns the code for the allocated type ofr. It is a static error
ifT is REFANY or is not an object type or traced reference type.

ORO (element: Ordinal) : INTEGER
VAL (i: INTEGER; T: OrdinalType) : T

ORO converts an element of an enumeration (----'tB.2.1, p. 470) to the integer
that represents its position in the enumeration order. The first value in any
enumeration is represented by zero. If the type of element is a subrange of
an enumeration T, the result is the position of the element within T, not
within the subrange.

B. 6. Expressions 515

VAL is the inverse ofORD; it converts from a numeric position i into the
element that occupies that position in an enumeration. If T is a subrange,
VAL returns the element with the position i in the original enumeration
type, not the subrange. It is a checked runtime error for the value of i to be
out of range for T.

Ifn is an integer, ORD(n) = VAL(n, INTEGER) = n.

NUMBER (T: OrdinalType) : CARDINAL
(A: FixedArrayType) : CARDINAL
(a: Array) : CARDINAL

For an ordinal type T, NUMBER(T) returns the number of elements in T.
For a fixed array type A, NUMBER(A) is defined by NUMBER(lndexType(A)).
Similarly, for an array a, NUMBER(a) is defined by NUMBER(lndexType(a)).
In this case, the expression a will be evaluated only if it denotes an open
array.

FIRST (T: OrdinalType)
(T: FloatType)

LAST

(A: FixedArrayType)
(a: Array)

(T: OrdinalType)
(T: FloatType)
(A: FixedArrayType)
(a: Array)

: BaseType(T)
:T
: BaseType(lndexType(A))
: BaseType(lndexType(a))

: BaseType(T)
:T
: BaseType(lndexType(A))
: BaseType(lndexType(a))

For a non-empty ordinal type T, FIRST returns the smallest value ofT and
LAST returns the largest value. If T is the empty enumeration, FIRST(T)
and LAST(T) are static errors. If T is any other empty ordinal type, the
values returned are implementation-dependent, but they satisfy FIRST(T)
> LAST(T).

For a floating-point type T, FIRST(T) and LAST(T) are the smallest and
largest values of the type, respectively. On IEEE implementations, these
are minus and plus infinity.

For a fixed array type A, FIRST(A) is defined by FIRST(lndexType(A))
and LAST(A) by LAST(lndexType(A)). Similarly, for an array a, FIRST(a)
and LAST(a) are defined by FIRST(lndexType(a)) and LAST(lndexType(a)).
The expression a will be evaluated only ifit is an open array. Note that if a
is an open array, FIRST(a) and LAST(a) have type INTEGER.

BITSIZE (x: Any) : CARDINAL
(T: Type): CARDINAL

516

BYTESIZE (x: Any) : CARDINAL
(T: Type): CARDINAL

ADRSIZE (x: Any) : CARDINAL
(T: Type): CARDINAL

B. Language Definition

These operations return the size of the variable x or of variables of type T.
BITSIZE returns the number of bits, BYTESIZE the number of 8-bit bytes,
and ADRSIZE the number of addressable locations. In all cases, x must be
a designator and T must not be an open array type. A designator x will be
evaluated only if its type is an open array type.

B.6.14 Text operations

infix & (a,b: TEXT): TEXT

The concatenation ofa and b, as defined by Text.Cat (---+C.l.l, p. 525).

B.6.15 Constant Expressions

Constant expressions are a subset of the general class of expressions, re
stricted by the requirement that it must be possible to evaluate the ex
pression statically. All operations are legal in constant expressions except
for ADR, LOOPHOLE, TYPECODE, NARROW, ISTYPE, SUBARRAY, NEW,
dereferencing (explicit or implicit), and the only procedures that can be
applied are the functions in the Word interface (---+C.1.3, p. 528).

A variable can appear in a constant expression only as an argument
to FIRST, LAST, NUMBER, BITSIZE, BYTESIZE, or ADRSIZE, and such a
variable must not have an open array type. Literals and top-level proce
dure constants are legal in constant expressions.

B.7 Unsafe operations

The features defined in this section can potentially cause unchecked run
time errors and are thus forbidden in safe modules (---+B.5.6, p. 503).

An unchecked type transfer operation has the form:

LOOPHOLE(e, T)

where e is an expression whose type is not an open array type and T is a
type. It denotes e's bit pattern interpreted as a variable or value of type T.
It is a designator if e is, and is writable if e is. An unchecked runtime error
can occur if e's bit pattern is not a legal T, or if e is a designator and some
legal bit pattern for T is not legal for e.

B.7. Unsafe operations 517

1fT is not an open array type, BITSIZE(e} must equal BITSIZE(T}. 1fT is
an open array type, its element type must not be an open array type, and
e's bit pattern is interpreted as an array whose length is BITSIZE(e} divided
by BITSIZE(the element type ofT}. The division must come out even.

The following operations are primarily used for address arithmetic:

ADR (VAR x: Any) : ADDRESS

+ (x: ADDRESS, y:INTEGER): ADDRESS
(x: ADDRESS, y:INTEGER): ADDRESS
(x,y: ADDRESS) : INTEGER

ADR(x} is the address of the variable x. The actual argument must be a
designator but need not be writable. The operations + and - treat addresses
as integers. The validity of the addresses produced by these operations is
implementation-dependent. For example, the address of a variable in a
local procedure frame is probably valid only for the duration of the call.
The address of the referent of a traced reference is probably valid only as
long as traced references prevent it from being collected (and not even that
long ifthe implementation uses a compacting collector).

In unsafe modules the INC and DEC statements apply to addresses as
well as ordinals:

INC (VAR x: ADDRESS; n: INTEGER:= 1)
DEC (VAR x: ADDRESS; n: INTEGER:= 1)

These are short for x := x + n and x := x - n, except that X is evaluated only
once.

A DISPOSE statement has the form:

DISPOSE (v)

where v is a writable designator whose type is not REFANY, ADDRESS,
or NULL. If v is untraced, the statement frees the storage for v's referent
and sets v to NIL. Freeing storage to which active references remain is an
unchecked runtime error. If v is traced, the statement is equivalent to v :=
NIL. Ifv is NIL, the statement is a no-op.

In unsafe modules the definition of "assignable" for types is extended:
two reference types T and U are assignable if T <: U or U <: T. The only
effect of this change is to allow a value of type ADDRESS to be assigned to
a variable of type UNTRACED REF T. It is an unchecked runtime error if
the value does not address a variable oftype T.

In unsafe modules the type constructor UNTRACED REF T is allowed
for traced as well as untraced T, and the fields of untraced objects can
be traced. If u is an untraced reference to a traced variable t, then the
validity of the traced references in t is implementation-dependent, since
the garbage collector probably will not trace them through u.

518 B. Language Definition

B.8 Syntax

B.8.t Keywords
AND DO FINALLY METHODS RAISES THEN VAR
ARRAY ELSE FOR MOD READONLY TO WHILE
BEGIN ELSIF FROM MODULE RECORD TRY WITH
BITS END IF NOT REF TYPE
BRANDED EVAL IMPORT OBJECT REPEAT TYPE CASE
BY EXCEPT IN OF RETURN UNSAFE
CASE EXCEPTION INTERFACE OR REVEAL UNTIL
CONST EXIT LOCK PROCEDURE ROOT UNTRACED
DIV EXPORTS LOOP RAISE SET VALUE

B.8.2 Reserved identifiers

Here are the reserved identifiers, which cannot be redeclared:

ABS
ADDRESS
ADR
ADRSIZE
BlTSIZE
BOOLEAN

BYTESIZE
CARDINAL
CEILING
CHAR
DEC
DISPOSE

B.8.3 Operators

FALSE
FIRST
FLOAT
FLOOR
INC
INTEGER

ISTYPE
LAST
LONGFLOAT
LONGREAL
LOOPHOLE
MAX

MIN
MUTEX
NARROW
NEW
NIL
NULL

NUMBER
ORD
REAL
REFANY
ROUND
SUBARRAY

TEXT
TRUE
TRUNC
TYPECODE
VAL

The following characters and character pairs are classified as operators:

+ < #
> { .= <:

* <= (=>

/ >= [&

B.8.4 Comments

A comment is an arbitrary character sequence opened by (* and closed by
*). Comments can be nested and can extend over more than one line.

B.8.5 Pragmas

A pragma is an arbitrary character sequence opened by <* and closed by
*>. Pragmas can be nested and can extend over more than one line. Prag
mas are hints to the implementation; they do not affect the language se
mantics.

We recommend supporting the two pragmas <*INLlNE*> and
<*EXTERNAL*>. The pragma <*INLlNE*> precedes a procedure declara
tion to indicate that the procedure should be expanded at the point of call.

B.B. Syntax 519

The pragma <* EXTERNAL N:L *> precedes an interface or a declaration
in an interface to indicate that the entity it precedes is implemented by
the language L, where it has the name N. If ":L" is omitted, then the im
plementation's default external language is assumed. If "N" is omitted,
then the external name is determined from the Modula-3 name in some
implementation-dependent way.

B.8.6 Conventions for syntax

We use the following notation for defining syntax:

X Y X followed by Y
X I Y X or Y.
[Xl X or empty
{X} A possibly empty sequence of X's

"Followed by" has greater binding power than I; parentheses are used to
override this precedence rule. Non-terminals begin with an upper-case
letter. Terminals are either keywords or quoted operators. The symbols
Idents9 Number94 TextLiteral92 and CharLiteral9l are defined in the token
grammar on page 522. Each production is terminated by a period. The
syntax does not reflect the restrictions that revelations and exceptions can
be declared only at the top level; nor does it include explicit productions for
NEW, INC, and DEC, which parse like procedure calls.

B.8.7 Compilation unit productions

Compilationl = Interface2 I Module3 I Glnterface4
I GModule5 Ilinterface6 IIModule7.

2 Interface2 = ["UNSAFE" 1 "INTERFACE" IdentS9 ";" { ImportlO }
{ Declaration13 } "END" IdentS9 ".".

3 Module3 = ["UNSAFE" 1 "MODULE" IdentS9 ["EXPORTS" IDLists7 1
";" { ImportlO } Blockl2 IdentS9 ".".

4 Glnterface4 = "GENERIC" "INTERFACE" Idents9 GFmlss ";"
{ ImportlO } { Declaration13 } "END" Idents9 ".".

5 GModule5 = "GENERIC" "MODULE" Idents9 GFmlss ";"
{ ImportlO } Blockl2 Idents9 ".".

6 IInterface6 = ["UNSAFE" 1 "INTERFACE" Idents9 "=' , Idents9 GActls9
"END" Idents9 !I" ..

7 IModule7 = ["UNSAFE" 1 "MODULE" Idents9
["EXPORTS" IDUsts7 1 "=" Idents9 GActls9 "END"
Idents9 "" ..

8 GFmlss = "(" [IDUsts7 1 ")".
9 GActisg = "(" [IDUsts7 1 ")".

520

10 ImportlO

11 Importltemll
12 Block12
13 Oeclaration13

B. Language Definition

= "IMPORT" Importltemll { "." Importltemll } "; "
I "FROM" Ident89 "IMPORT" IOUSt87 ";".

= Ident89 [AS Ident89].
= { Oeclaration13 }"BEGIN" Stmts23 "ENO".
= "CONST" { ConstDecl14 ";" } ! "TYP E" { TypeOecl15 ";" }

I "EXCEPTION" { ExceptionOecl16 ";" }
I "VAR" { VariableOecl17 ";" }

I ProcedureHead18 ["=" Block12 Ident89) ";".
I "REVEA~' Idents9 ("=" I "<:") Type48.

14 ConstDecl14 = Ident89 [":" Type48 1"=" ConstExpr65.
15 TypeOecl15 = Ident89 ("=" I "<:") Type48·
16 ExceptionOecl16 = Ident89 [.. (.. Type48 ..) ").
17 VariableOecl17 = IOUSt87 (":" Type48 ":=" EXpr66 I ":" Type48 I ":=" EXpr66).
18 ProcedureHead18= "PROCEOURE" Ident89 Signature19.
19 Signature19 = .. (.. Formals20 ..)" [":" Type48] [• 'RAISES" Raises22].
20 Formals20 = [Formal21 { ";" Formab } [";"]].
21 Formal21 = ["VALUE" I "VAR" I "REAOONLY"] IOUSt87

(":" Type48 I ":=" ConstExpr65
I ":" Type48 ":=" ConstExpr65).

22 Raises22 = .. {" [Qua1l086 { QuallOS6 })"} "I"ANY" .

B.8.8 Statement productions

23 Stmts23
24 Stmt24

25 AssignStmt25
26 CallStmt26
27 CaseStmt27

28 ExitStmhs
29 EvalStmt29
30 ForStmt3o

31 IfStmt31

32 LockStmt32
33 LoopStmh3
34 RaiseStmt34
35 RepeatStmt35
36 ReturnStmt36

= [Stmt24 { ";" Stmt24 } [";")].
= AssignStmt25 I Block12 I CallStmt26 I CaseStmt27

I ExitStmt28 I EvalStmt29 I ForStmt3o I IfStmt31
I LockStmt32 I LoopStmt33 I RaiseStmt34 I RepeatStmt35
I ReturnStmt36 I TryFinStmt39 I TryXptStmt38
I TCaseStmt37 I WhileStmt40 I WithStmt41.

= EXpr66 ":=" EXpr66.
= EXpr66 "c [Actual47 { .. ;. Actual47 })")".
= "CASE" EXpr66 "OF" [Case42] { "I" Case42 }

["ELSE" Stmts23] "ENO".
= "EXIT".
= "EVA~' EXpr66.
= "FOR" Idents9 ":=" EXpr66 "TO" EXpr66

["BY" Expr66] "00" Stmts23 "ENO".
= "IF" Expr66 "THEN" Stmts23

{ "ELSIF" Expr66 ''THEN'' Stmts23 }
["ELSE" Stmts23] "ENO".

= "LOCK" Expr66 "00" Stmts23 "ENO".
= "LOOP" Stmts23 "ENO".
= "RAISE" QuallOS6 ["c Expr66 ..)"].
= "REPEAT" Stmts23 "UNTI~' Expr66.
= "RETURN" [EXpr66].

B.B. Syntax

37 TCaseStmt37

38 TryXptStmt38

39 TryFinStmt39
40 WhileStmt40
41 WithStmt41
42 Case42
43 Labels43
44 Handler44
45 Tcase45
46 Binding46
47 Actual47

= ''TYPECASE'' Expr66 "OF" [Tcase45]
{ ''I'' Tcase45 } ["ELSE" Stmts23] "END".

= ''TRY'' Stmts23 "EXCEPT' [Handler44] { ''I'' Handler44 }
["ELSE" Stmts231 "END".

= ''TRY'' Stmts23 "FINALLY" Stmts23 "END".
= "WHILE" Expr66 "DO" Stmts23 "END".
= "WITH" Binding46 { "," Binding46 } "DO" Stmts23 "END".
= Labels43 { "," Labels43 } "=(." Stmts23.
= ConstExpr65 [" .. " ConstExpr65].
= QuallD86 { "," QuallD86 } ["(" Ident89 ")"] "=(." Stmts23.
= Type48 { "," Type48 } ["(" Ident89 ")"] "=(." Stmts23 .
= Ident89 "=" Expr66.
= [Ident89 ":="] Expr66 I Type48.

B.8.9 Type productions

48 Type48

49 ArrayType49
50 PackedType50
51 EnumType51
52 ObjectType52

= TypeName85 I ArrayType49 I PackedType501 EnumType51
I ObjectType52 I ProcedureType53 I RecordType54
I RefType55 I SetType56 I SubrangeType57 I "(" Type48")".

= "ARRAY" [Type48 { "," Type48 }] "OF" Type48.
= "BITS" ConstExpr65 "FOR" Type48.
= "{" [IDUst87] "y.
= [TypeName85 I ObjectType52] [Brand58 1

"OBJECT' Fields59
["METHODS" Methods61]
["OVERRIDES" Overrides63] "END".

53 ProcedureType53 = "PROCEDURE" Signature19.
54 RecordType54 = "RECORD" Fields59 "END".
55 RefType55 = ["UNTRACED"] [Brand58] "REF" Type4S.
56 SetType56 = "SET' "OF" Type48.
57 SubrangeType57 = "[" ConstExpr65 " .. " ConstExpr65 "] ".
58 Brand58 = "BRANDED" [TextUteral92].
59 Fields59 = [Field6o { ";" Field60 } [";" 11 .
60 Field60 = IDUst87 (":" Type48 I ":=" ConstExpr65 I

61 Methods61
62 Method62
63 Overrides63
64 Override64

":" Type48 ":=" ConstExpr65).
= [Method62 { ";" Method62 } [";"]].
= Ident89 Signature19 [":=" ConstExpr65].
= [Override64 { ";" Override64 } [";"]].
= Ident89 ":=" ConstExpr65.

B.8.10 Expression productions

65 ConstExpr65
66 Expr66

= Expr66.
= E167 {"OR" E167 }.

521

522

67 E167
68 E268
69 E369
70 E470
71 E5n
72 E672
73 E773
74 E874

75 ReloP75
76 AddoP76
77 Mulop77
78 Selector78

79 Constructor79
80 SetCons80
81 SetElt81
82 RecordCons82
83 RecordElt83
84 ArrayCons84

= E268 { "AND" E268 }.
= { "NOT" } E369 .
= E470 { Relop75 E470 }.
= E571 { AddOP76 E571 }.
= E672 { Mulop77 E672 }.
= {"+" I "-"} E773 ·
= E874 { Selector78 }.

B. Language Definition

= Ident89 I Number94 I CharLiteral91 I TextLiteral92
I Constructor79 I "(" EXpr66 ")".

= "=" I "#" I "<" I "<=" I ">" I ">=" 1 "IN",
= "+" I "-" I "&".
= "*" I "f' I "DIV" I "MOD".
= """ I "." IdentS9 i "[" EXpr66 { "," EXpr66 } "]"

I "(" [Actual47 { "," Actual47 } 1 ")".
= Type48 "{" [SetCons80 I RecordConS82 I ArrayConss4 1 "}".
= SetEltSl { "," SetElt81 }.
= EXpr66 [",," EXpr66].
= RecordElts3 { "," RecordElts3 }.

= [Idents9 ":=" 1 EXpr66'
= EXpr66 {"," EXpr66 } ["," ",,"].

B.S.ll Miscellaneous productions

85 TypeNameS5
86 QuallD86
87 IDListS7

= QuallD86 I "ROOT" I "UNTRACED ROOT"
= Idents9 ["." Ident89].
= Idents9 { "," Ident89 }.

B.S.12 Token productions

To read a token, first skip all blanks, tabs, newlines, carriage returns, ver
tical tabs, form feeds, comments, and pragmas. Then read the longest se
quence of characters that forms an operator (as defined in Section B.8.3,
page 518) or an Id or Literal, as defined here. An Id is a case-significant
sequence of letters, digits, and underscores that begins with a letter. An Id
is a keyword if it appears in Section B.8.1, a reserved identifier if it appears
in Section B.8.2, and an ordinary identifier otherwise.

In the following grammar, terminals are characters surrounded by dou
blequotes and the special terminal DQUOTE represents doublequote itself.

88 Literal88
89 Ident89
90 Operator90

= Number94 I CharLiteral91 I TextLiteral92.
= LetterlOO { LetterlOO I Digit98 I "-" }.
= "+" I "-" I "*,, I nt' I ", " I nAn I ":" "=" I "="

I "#" I "<" 1"<" "=" I ">" "=" I ">" I "&"
I "<""," I "="">" I "," I ";" I "I" I ":" I"," "."
I "(" I ")" I "{" I "}" I "[" I "]".

B.B. Syntax

91 CharLiteral91
92 TextLiteral92
93 Escape93

94 Number94

95 Exponent95

96 PrintingChar96
97 HexDigit97

98 Digit98
99 OctaiDigit99
100 Letter 100
101 OtherChar101

= "'" (PrintingChar96 I Escape93 I DQUOTE) ""'.
= DQUOTE { PrintingChar96 I Escape93 I '" " } DQUOTE.
~ , "n" I "\" !It" I "\" "r" I "\" "f" I "\" "\" I "\" "'"

1"\" DQUOTE I "\" OctaiDigit99 0ctaiDigit OctalDigit99.
= Digit98 { Digit98 }

I Digit98 { Digit98 } "-" HexDigit97 { HexDigit97 }
I Digit98 { Digit98 } "." Digit98 { Digit98 } [Exponent95).

= ("E"I"e"I"D"I"d"I"X"I"x") [" +" I "_") Digit98 { Digit98 }.
= Letter 100 I Digit98 I OtherChar 101·
= Digitgg I "An I "8" I "G" I "0" I "E" I "F"

I "a" I "b" I "e" I "d" I "e" I "f",
= "0" I "1" I··· 1"9".
= "0" I "1" 1···1 "7",
= "A" I "B" I··· I "Z" I "a" I "b" I··· I "z".
= " " I "!" I "#" I !I\" I " 0/0" I "&" I "(" 1 ")" I "*,, I "+"

I "," I "-" I "." I "t' I ":" I ";" I "<" I "=" I ">" I"?"
I "@" I "[" I "]" I ,,"n I "-" I '"'' I "{ " I "I" I "}" I " "
I ExtendedChar102.

102 ExtendedChar102 = any char with Iso-Latin-l code in [8240 .. 8_377).

523

Appendix C

Library interfaces

C.I Standard interfaces

The interfaces Thread, Word and Text as well as the floating-point interfaces
Real, LongReal, Extended, Float and FloatMode must be provided by every
language environment. The interfaces listed here represent the minimum
that a Modula-3 language environment must provide; a given environment
can extend them.

The floating-point interfaces allow invocation ofthe floating-point arith
metic of the respective language environment. The terminology employed
stems from ANSI/IEEE Standard 754-1985 for floating-point arithmetic. All
other interfaces are explained in detail in [Ne191], the source of the inter
faces printed here.

C.l.I Text

A variable of type TEXT references a numbered sequence of characters,
where the first character is at position o. The value NIL does not represent
a sequence of characters and is never returned by the following procedures;
passing NIL to these procedures as parameter leads to a run-time error.

526 C. Library interfaces

INTERFACE Text;

IMPORT Word;

(*Copyright (C) 1994, Digital Equipment Corporation. *)

TYPE T = TEXT;

CONST Brand = "Text-1.0";

PROCEDURE Cat(t, u: T): T;
(*Return the concatenation oft and u. *)

PROCEDURE Equal(t, u: T): BOOLEAN;
(*Return TRUE ift and u have the same length and (case-sensitive) contents. *)

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR;
(*Return character i oft. It is a checked runtime error ifi >= Length(t). *)

PROCEDURE Length(t: T): CARDINAL;
(*Return the number of characters in t. *)

PROCEDURE Empty(t: T): BOOLEAN;
(*Equivalent to Length(t) = o. *)

PROCEDURE Sub(t: T; start: CARDINAL; length: CARDINAL := LAST(CARDINAL)): T;
(*Return a sub-sequence oft: empty if start >= Length(t) or

length = 0; otherwise the subsequence ranging from start to the
minimum ofstart+length-1 and Length(t)-1. *)

PROCEDURE SetChars(VAR a: ARRAY OF CHAR; t: T);
(*For each i from 0 to MIN(LAST(a), Length(t)-1), set ali] to GetChar(t, i). *)

PROCEDURE FromChar(ch: CHAR): T;
(*Return a text containing the single character ch. *)

PROCEDURE FromChars(READONLY a: ARRAY OF CHAR): T;
(*Return a text containing the characters of a. *)

PROCEDURE Hash(t: T): Word.T;
(*Return a hash function of the contents oft. *)

PROCEDURE Compare(t1, t2: T): [-1 .. 1];
(*Return -1 ift1 occurs before t2, 0 if Equal(t1, t2), +1 ift1

occurs after t2 in lexicographic order. *)

PROCEDURE FindChar(t: T; c: CHAR; start := 0): INTEGER;
(* If c = t[i] for some i in [start .. Length(t)-11 return the

smallest such i; otherwise, return -1. *)

PROCEDURE FindCharR(t: T; c: CHAR; start := LAST(INTEGER)): INTEGER;
(*If c = t[i] for some i in [0 .. MIN(start, Length(t)-1)],

return the largest such i; otherwise, return -1. *)
END Text.

G.l. Standard interfaces 527

C.1.2 Thread

A variable of type Thread.T identifies a thread. A MUTEX variable is either
not locked or is locked by a thread. A condition variable (i.e., a variable of
type Thread.Condition) is a set of waiting threads. A newly created MUTEX
variable is not locked; a newly created condition variable is empty. NIL is
not a practical value for variables of these three types; it is a checked run
time error to pass the NIL MUTEX, condition, or Thread.T to any procedures
in this interface.

For a detailed explanation ofthese terms, see Chapter 16.

INTERFACE Thread;

TYPE
T <: ROOT;
Mutex = MUTEX;
Condition <: ROOT;

(*Copyright (C) 1989, 1993 Digital Equipment Corporation *)

TYPE Closure = OBJECT METHODS applyO: REFANY END;

PROCEDURE Fork(cl: Closure): T;
(*Return a handle on a newly-created thread executing cl.applyO. *)

PROCEDURE Join(t: T): REFANY;
(*Wait until t has terminated and return its result. It is a

checked runtime error to call this more than once for any t. *)

PROCEDURE Wait(m: Mutex; c: Condition);
(*The calling thread must have m locked. Atomically unlocks m and

waits on c. Then relocks m and returns. *)

PROCEDURE Acquire(m: Mutex);
(*Wait until m is unlocked and then lock it. *)

PROCEDURE Release(m: Mutex);
(*The calling thread must have m locked. Unlocks m. *)

PROCEDURE Broadcast(c: Condition);
(~All threads waiting on c become eligible to run. *)

PROCEDURE Signal(c: Condition);
(*One or more threads waiting on c become eligible to run. *)

PROCEDURE Pause(n: LONG REAL);
(*Wait for n seconds to elapse.

To wait until a specified point in time in the future, say t,
you can use the call Pause(t - Time.Now()) *)

PROCEDURE Self 0: T;
(*Return the handle of the calling thread. *)

528 C. Library interfaces

EXCEPTION Alerted;
(*Used to approximate asynchronous interrupts. *)

PROCEDURE Alert(t: T);
(*Mark t as an alerted thread. *)

PROCEDURE TestAlertO: BOOLEAN;
(*Ifthe calling thread has been marked alerted, return TRUE and

unmark it. *)

PROCEDURE AlertWait(m: Mutex; c: Condition) RAISES {Alerted};
(*Like Wait, but if the thread is marked alerted at the time of

call or sometime during the wait, lock m and raise Alerted. *)

PROCEDURE AlertJoin(t: T): REFANY RAISES {Alerted};
(*Like Join, but if the thread is marked alerted at the time of

call or sometime during the wait, raise Alerted. *)

PROCEDURE AlertPause(n: LONG REAL) RAISES {Alerted};
(*Like Pause, but if the thread is marked alerted at the time of

the call or sometime during the wait, raise Alerted. *)

(*Specifying thread stack size.
Normally Fork uses a default value for the size of the stack of
the new thread. It is possible to change the default value, and also
to specify the value used for a particular call to Fork by supplying
a SizedClosure rather than a Closure. Stack sizes are given as a
number ofWord.Ts. *)

PROCEDURE GetDefaultStackSizeO: CARDINAL;
(*Return the current default stack size for new threads. *)

PROCEDURE MinDefaultStackSize(min: CARDINAL);
("'Change the default stack size for newly forked threads to the

greater of min and the current default stack size. *)

PROCEDURE IncDefaultStackSize(inc: CARDINAL);
(*Increment the default stack size for newly forked threads by inc. *)

TYPE
SizedClosure = Closure OBJECT stackSize: CARDINAL := 0 END;

END Thread.

C.1.3 Word

The type Word.T represents a sequence of Word.Size bits numbered from
o to Word.Size-1. A value of this type is also a natural number resulting
when the bits are interpreted as dual digits (with bit number 0 having the
least place value).

G.l. Standard interfaces 529

INTERFACE Word; (*Copyright (C) 1989, Digital Equipment Corporation *)

TYPE
T = INTEGER; (*encoding is implementation-dependent; e.g., 2's complement. *)

CONST
Size: INTEGER = BITSIZE (T);

PROCEDURE Plus
PROCEDURE Times
PROCEDURE Minus
PROCEDURE Divide
PROCEDURE Mod
PROCEDURE LT
PROCEDURE LE
PROCEDURE GT
PROCEDURE GE
PROCEDURE And
PROCEDURE Or
PROCEDURE Xor
PROCEDURE Not

(x, y: T): T;
(x, y: T): T;
(x, y: T): T;
(x, y: T): T;
(x, y: T): T;
(x, y: T): BOOLEAN;
(x, y: T): BOOLEAN;
(x, y: T): BOOLEAN;
(x, y: T): BOOLEAN;
(x, y: T): T;
(x, y: T): T;
(x, y: T): T;
(x: T): T;

PROCEDURE Shift (x: T; n: INTEGER): T;

(*implementation-dependent *)

(*(x + y) MOD 2Word.Size *)
(*(x * y) MOD 2Word.Size *)
(*(x - y) MOD 2Word.Size *)

(*x divided by y *)
(*xMOD y *)

(*x < y *)

(*x <=y *)
(*x > y *)

(*x >=y *)
(*Bitwise AND of x and y *)

(*Bitwise OR ofx andy *)
(*Bitwise XOR of x and y *)

(*Bitwise complement ofx *)

(*For all i such that both i and i - n are in the range [0 .. Word.8ize -lJ,
bit i of the result equals bit i - n ofx. The other bits of the result are O.
Thus, shifting by n > 0 is like multiplying by 2n *)

PROCEDURE LeftShift (x: T; n: [O .. Size-1]): T;
(*= Shift (x, n) *)

PROCEDURE RightShift (x: T; n: [O .. Size-1]): T;
(*= Shift (x, -n) *)

PROCEDURE Rotate (x: T; n: INTEGER): T;
("'Bit i of the result equals bit (i - n) MOD Word. Size ofx. *)

PROCEDURE LeftRotate (x: T; n: [O .. Size-1]): T;
(*= Rotate (x, n) *)

PROCEDURE RightRotate (x: T; n: [O .. Size-1]): T;
(*= Rotate (x, -n) *)

PROCEDURE Extract (x: T; i, n: CARDINAL): T;
(*Take n bits from x, with bit i as the least significant bit, and return them

as the least significant n bits of a word whose other bits are O.
A checked runtime error if n + i > Word. Size. *)

PROCEDURE Insert (x, y: T; i, n: CARDINAL): T;
(*Return x with n bits replaced, with bit i as the least significant bit, by

the least significant n bits ofy. The other bits ofx are unchanged.
A checked runtime error ifn + i > Word.Size. *)

END Word.

530 C. Library interfaces

C.1.4 Real

The interface Real defines the representation and range of floating-point
numbers in the language environment. There are analogous interfaces for
LongReal and Extended. The values of constants are examples and depend
on the language environment.

INTERFACE Real; (*Copyright (C) 1991, Digital Equipment Corporation *)

(*Properties of REAL (for ANSI/IEEE Standard 754-1985).

This package defines some basic properties of the built-in float type REAL. *)

TYPE T = REAL;

CONST
Base: INTEGER = 2; (*The radix of the floating-point representation for T *)

Precision: INTEGER = 24; (*The number of digits of precision in the given Base for T *)

MaxFinite: T = 3.40282347E+38;
(*The maximum finite value in T. For non- IEEE implementations, this is

the same as LAST(T). *)

MinPos: T = 1.40239846E-45;

MinPosNormal: T = 1.17549435E-38;

(*The minimum positive value in T. *)

(*The minimum positive normal value in T; differs from MinPos only for
implementations with denormalized numbers. *)

CONST
MaxExpDigits = 2;
MaxSignifDigits = 9;

(*MaxExpDigits is the smallest integer with the property that every
finite number of type T can be written in base-10 scientific
notation using an exponent with at most MaxExpDigits.
MaxSignifDigits is the smallest integer with the property that
floating-decimal numbers with MaxSignifDigits are more closely
spaced, all along the number line, than are numbers of type T.
Typically,
MaxExpDigits = ceiling(loglO(loglO(MaxFinite»)
MaxSignifDigits = ceiling(loglO(BasePreCiSiOn» + 1. *)

END Real.

C.1.5 Float

The generic interface Float provides operations required or recommended
by ANSIIIEEE Standard 754-1985. They are instantiated as follows:

C.l. Standard interfaces

INTERFACE RealFloat = Float(Real) END RealFloat.
INTERFACE LongFloat = Float(LongReal) END LongFloat.
INTERFACE ExtendedFloat = Float(Extended) END ExtendedFloat.

531

The comments in the interface only describe how the operations func
tion when their arguments are normal numbers and do not raise excep
tions. The IEEE standard explains in more detail how these operations
should react to non-numeric values (or NaNs: not a number) and to infinite
values (infinity). Language environments whose floating-point arithmetic
does not correspond to the standard should describe these special cases
separately.

GENERIC INTERFACE Float(R);

IMPORT FloatMode;

TYPE T= R.T;

(*Copyright (CJ 1991, Digital Equipment Corporation *)

PROCEDURE Scalb(x: T; n: INTEGER): T RAISES {FloatMode.Trap};
(*Return x2n. *)

PROCEDURE Logb(x: T): T RAISES {FloatMode.Trap};
(*Return the exponent ofx. More precisely, return the unique integer n such that the

ratio ABS(x) / Basen is in the half-open interval [1 .. Base), unless x is
denormalized, in which case return the minimum exponent value for T. *)

PROCEDURE ILogb(x: T): INTEGER;
(*Like Logb, but returns an integer, never raises an exception, and always returns the

n such that ABS(x) / Basen is in the half-open interval [1 .. Base), even for
denormalized numbers. Special cases: it returns FIRST(INTEGER) when x = 0.0,
LAST(INTEGER) when x is plus or minus infinity, and zero when x is NaN *)

PROCEDURE NextAfter(x, y: T): T RAISES {FloatMode.Trap};
(*Return the next representable neighbor ofx in the direction towards y.

ffx = y, return X. *,
PROCEDURE CopySign(x, y: T): T;
(*Return x with the sign ofy. *)

PROCEDURE Finite(x: T): BOOLEAN;
(*Return TRUE if x is strictly between minus infinity and plus infinity.

This always returns TRUE on non-IEEE implementations. *)

PROCEDURE IsNaN(x: T): BOOLEAN;
(*Return FALSE if x represents a numerical (possibly infinite) value, and

TRUE if x does not represent a numerical value. For example, on IEEE
implementations, returns TRUE if x is a NaN, FALSE otherwise. *)

PROCEDURE Sign(x: T): [0 .. 1];
(*Return the sign bit x. For non-IEEE implementations, this is

the same as ORD(x >= 0); for IEEE implementations,
Sign(-O) = 1 and Sign(+O) = O. *)

532 C. Library interfaces

PROCEDURE Differs(x, y: T): BOOLEAN;
(*Return (x < y OR y < x). Thus, for IEEE implementations,

Differs(NaN,x) is always FALSE; for non-IEEE implementations,
Differs(x,y) is the same as x # y. *)

PROCEDURE Unordered(x, y: T): BOOLEAN;
(*Return NOT (x <= y OR y <= x). Thus, for IEEE implementations,

Unordered(NaN, x) is always TRUE; for non-IEEE implementations,
Unordered(x, y) is always FALSE. *)

PROCEDURE Sqrt(x: T): T RAISES {FloatMode.Trap};
(*Return the square root ofT. This must be correctly rounded if

FloatMode.lEEE is TRUE. *)

TYPE IEEEClass = {SignalingNaN, QuietNaN, Infinity, Normal, Denormal, Zero};

PROCEDURE Class(x: T): IEEEClass;
(*Return the IEEE number class containing x. On non-IEEE systems,

the result will be Normal or Zero. *)

PROCEDURE FromDecimal(
sign: [0 .. 1];
READONLY digits: ARRAY OF [0 .. 9];
exp: INTEGER): T RAISES {FloatMode.Trap};

(*Convert from floating-decimal to type T. *)

(*Let F denote the nonnegative, floating-decimal number
digits[O]. digits[1] ... digits[LAST(digits)] * lOexp

= sum(i, digits[i] * 1 O(exp . iJ)

The result of FromDecimal is the number (-1)sign * F, rounded
to a value of type T.
The procedure FromDecimal is a floating-point operation, just
like + and *, in the sense that it rounds its ideal result
correctly, observing the current rounding mode, and it sets flags
and raises traps by the usual rules. On IEEE implementations, it
returns minus zero when F is sufficiently small and sign=1. *)

TYPE
DecimalApprox = RECORD

class: IEEEClass;
sign: [0 .. 1];
len: [1 .. R.MaxSignifDigits];
digits: ARRAY[O .. R.MaxSignifDigits-1] OF [0 .. 9];
exp: INTEGER;
errorSign: [-1 .. 1]

END;

PROCEDURE ToDecimal(x: T): DecimalApprox;
(*Convert from type T to floating-decimal. *)

END Float.

C1. Standard interfaces 533

C.1.6 FloatMode

This interface allows testing the behavior of rounding and numeric excep
tions. Some language environments allow changing this behavior for indi
vidual threads.

INTERFACE FloatMode;

CONST IEEE = TRUE;

(*Copyright (CJ 1991, Digital Equipment Corporation *)

(*TRUE for fully-compliant IEEE implementations. *)

EXCEPTION Failure;
("'Raised by attempts to set modes that are not supported by the implementation. *)

TYPE
RoundingMode = {NearestElseEven, TowardMinuslnfinity, TowardPluslnfinity,

TowardZero, NearestElseAwayFromZero, IBM370, Other};
(*Rounding modes. The first four are the IEEE modes. *)

CONST RoundDefault = RoundingMode.NearestElseEven;
(*Implementation-dependent: the default mode for rounding arithmetic

operations, used by a newly forked thread. This also specifies the
behavior of the ROUND operation in half-way cases. *)

PROCEDURE SetRounding(md: RoundingMode) RAISES {Failure};
(*Change the rounding mode for the calling thread to md, or raise the exception

if this cannot be done. This affects the implicit rounding in floating-point operations;
it does not affect the ROUND operation. Generally this can be done only on IEEE
implementations and only if md is an IEEE mode. *)

PROCEDURE GetRoundingO: RoundingMode;
(*Return the rounding mode for the calling thread. *)

TYPE
Flag = {Invalid, Inexact, Overflow, Underflow,

DivByZero, IntOverflow, IntDivByZero};

(*Associated with each thread is a set of boolean status flags recording whether the
condition represented by the flag has occurred in the thread since the flag was last
reset. The meaning of the first five flags is defined precisely in the IEEE floating
point standard; roughly they mean:

Invalid = invalid argument to an operation.
Inexact = an operation produced an inexact result.
Overflow = a floating-point operation produced a result whose
absolute value is too large to be represented.
Underflow = a floating-point operation produced a result whose
absolute value is too small to be represented.
DivByZero = floating-point division by zero.
IntOverflow = an integer operation produced a result whose
absolute value is too large to be represented.
IntDivByZero = integer DIV or MOD by zero. *)

CONST NoFlags = SET OF Flag {};

534 C. Library interfaces

PROCEDURE GetFlagsO: SET OF Flag;
(*Return the set of flags for the current thread. *)

PROCEDURE SetFlags(s: SET OF Flag): SET OF Flag RAISES {Failure};
(*Set the flags for the current thread to S, and return their previous values. *)

PROCEDURE ClearFlag(f: Flag);
(*Turn off the flag f for the current thread. *)

EXCEPTION Trap(Flag);

TYPE Behavior = {Trap, SetFlag, Ignore};

(*The behavior of an operation that causes one of the flag conditions is either:
Ignore = return some result and do nothing.
SetFlag = return some result and set the condition flag. For
IEEE implementations, the result of the operation is defined by the
standard.
Trap = possibly set the condition flag; in any case raise the
Trap exception with the appropriate flag as the argument. *)

PROCEDURE SetBehavior(f: Flag; b: Behavior) RAISES {Failure};
(*Set the behavior of the current thread for the flag f to be b,

or raise Failure if this cannot be done. *)

PROCEDURE GetBehavior(f: Flag): Behavior;
(*Return the behavior of the current thread for the flag f. *)

(*misc. *)

TYPE
ThreadState = RECORD

behavior: ARRAY Flag OF Behavior;
sticky: ARRAY Flag OF BOOLEAN;

END;
(*One copy per thread, saved by the thread implementation. *)

PROCEDURE InitThread(VAR s: ThreadState);
(*Initialize the current thread to the default floating-point state. *)

END FloatMode.

C.2 Formatting

C.2.1 Fmt

The procedures of interface Fmt permit converting numbers and other data
to text.

C.2. Formatting 535

INTERFACE Fmt; (*Copyright (C) 1994, Digital Equipment Corporation *)

IMPORT Word, Real AS R, LongReal AS LR, Extended AS ER;

PROCEDURE Bool(b: BOOLEAN): TEXT;
(*Format b as "TRUE" or "FALSE". *)

PROCEDURE Char(c: CHAR): TEXT;
(*Return a text containing the character c. *)

TYPE Base = [2 .. 16];

PROCEDURE Int(n: INTEGER; base: Base := 10): TEXT;
PROCEDURE Unsigned(n: Word.T; base: Base := 16): TEXT;
(*Format the signed or unsigned number n in the specified base. *)

(*The value returned by Int or Unsigned never contains upper-case letters, and it never
starts with an explicit base and underscore. For example, to render an unsigned
number N in hexadecimal as a legal Modula-3 literal, you must write something like:
"16_" & Fmt.Unsigned(N, 16) *)

TYPE Style = {Sci, Fix, Auto};

PROCEDURE Real(
x: REAL;
style := Style.Auto;
prec: CARDINAL := R.MaxSignifDigits - 1;
literal := FALSE)

: TEXT;
PROCEDURE LongReal(

x: LONG REAL;
style := Style.Auto;
prec: CARDINAL := LR.MaxSignifDigits - 1;
literal := FALSE)

: TEXT;
PROCEDURE Extended(

x: EXTENDED;
style := Style. Auto;
prec: CARDINAL := ER.MaxSignifDigits - 1;
literal := FALSE)

: TEXT;
(*Format the floating-point number x. *)

("Overview.

Style.Sci gives scientific notation with fields padded to fixed widths, suitable
for making a table. The parameter prec specifies the number of digits after the
decimal point-that is, the relative precision.

Style. Fix gives fixed point, with prec once again specifying the number
of digits after the decimal point-in this case, the absolute precision. The results
of Style. Fix have varying widths, but they will form a table if they are
right-aligned (using Fmt.Pad) in a sufficiently wide field.

536 C. Library interfaces

Style.Auto is not intended for tables. It gives scientific notation with at
most prec digits after the decimal point for numbers that are very big or very
small. There may be fewer than prec digits after the decimal point because
trailing zeros are suppressed. For numbers that are neither too big nor too small, it
formats the same significant digits-at most prec+ 1 of them-in fixed point,
for greater legibility.

All styles omit the decimal point unless it is followed by at least one digit.

Setting literal to TRUE alters all styles as necessary to make the result
a legal Modula-3literal of the appropriate type. *)

TYPE Align = {Left, Right};

PROCEDURE Pad(
text: TEXT;
length: CARDINAL;
padChar: CHAR := ' ';
align: Align := Align.Right): TEXT;

(*lfText.Length(text) >= length, then text is returned unchanged.
Otherwise, text is padded with padChar until it has the given
length. The text goes to the right or left, according to align. *)

PROCEDURE F(fmt: TEXT; t1, t2, t3, t4, t5: TEXT := NIL): TEXT;
(*Uses fmt as a format string. The result is a copy offmt in which all

format specifiers have been replaced, in order, by the text arguments t1,
t2, etc. *)

(* A format specifier contains a field width, alignment and one of two padding
characters. The procedure F evaluates the specifier and replaces it by the
corresponding text argument padded as it would be by a call to Pad with the
specified field width, padding character and alignment.

The syntax of a format specifier is:

%[-l{0-9}s

that is, a percent character followed by an optional minus sign, an optional
number and a compulsory terminating s. If the minus sign is present the alignment
is Align.Left, otherwise it is Align.Right. The alignment corresponds to the
align argument to Pad. The number specifies the field width (this
corresponds to the length argument to Pad). If the number is omitted it
defaults to zero. If the number is present and starts with the digit "0" the
padding character is '0'; otherwise it is the space character. The padding
character corresponds to the padChar argument to Pad. It is a checked
runtime error iffmt is NIL or the number offormat specifiers in
fmt is not equal to the number of non-nil arguments to F. Non-nil arguments
to F must precede any NIL arguments; it is a checked runtime error if they do
not. Ifl1 to 15 are all NIL and fml contains no format specifiers, the result is fmt. *)

C.2. Formatting

(*Examples:

F("%s %s \n", "Hello", "World") 'returns' "Hello World \n".
F("%s", Int(3)) 'returns' "3"
F("%2s", Int(3)) 'returns' " 3"
F("%-2s", Int(3)) 'returns' "3 "
F("%02s", Int(3)) 'returns' "03"
F("%-02s", Int(3)) 'returns' "30"
F("O/os", "%8") 'returns' "%s"
F("%s% tax", Int(3)) 'returns' "3% tax"

The following examples are legal but pointless:

F("%-s", Int(3)) 'returns' "3"
F("%Os", Int(3)) 'returns' "3"
F("%-Os", Int(3)) 'returns' "3"
*)

PROCEDURE FN(fmt: TEXT; READONLY texts: ARRAY OF TEXT): TEXT;
(*Similar to F but accepts an array of text arguments. It is a checked runtime

error if the number offormat specifiers in fmt is not equal to NUMBER(texts)
or if any element of texts is NIL. If NUMBER(texts} == 0 and fmt
contains no format specifiers the result is fmt. *)

(*Example:

FN("%s %s %s %s %s %s %s",
ARRAY OF TEXT {"Too", "many", "arguments", "for", "F", "to", "handle"}}

returns "Too many arguments for F to handle". *)

END Fmt.

537

538 C. Library interfaces

C.2.2 Scan

The procedures of interface Scan support reading numbers and other data
from TEXT variables. The procedures read the txt parameter and convert
its contents to values of the respective target type. Leading blanks and, for
numbers, leading zeros are skipped.

INTERFACE Scan; (*Copyright (C) 1994, Digital Equipment Corporation. *)

IMPORT Word, Lex, FloatMode;

(*Each of these procedures parses a string of characters and converts
it to a binary value. Leading and trailing blanks (ie. characters
in "Lex. Blanks'; are ignored. "Lex.Error" is raised if the first
non-blank substring is not generated by the corresponding "Lex"
grammar or if there are zero or more than one non-blank substrings.
"FloatMode.Trap" is raised as per "Lex". *)

PROCEDURE Bool(txt: TEXT): BOOLEAN RAISES {Lex.Error};

PROCEDURE Int(txt: TEXT; defaultBase: [2 .. 16] := 10): INTEGER
RAISES {Lex.Error, FloatMode.Trap};

PROCEDURE Unsigned(txt: TEXT; defaultBase: [2 .. 16] := 16): Word.T
RAISES {Lex.Error, FloatMode.Trap};

PROCEDURE Real(txt: TEXT): REAL RAISES {Lex.Error, FloatMode.Trap};
PROCEDURE LongReal(txt: TEXT): LONG REAL RAISES {Lex.Error, FloatMode.Trap};
PROCEDURE Extended(txt: TEXT): EXTENDED RAISES {Lex.Error, FloatMode.Trap};

END Scan.

C.3 Input and output streams

Input and output streams (readers and writers) are explained in detail in
[Ne1911. Here we only print the interfaces Rd and Wr.

C.3.1 Rd

A variable of type Rd.T identifies an input stream. After initialization (out
side this interface) the stream is open and has a current position (initially
0). It can be closed later. Reading is not possible from closed streams. The
operation GetChar reads a character from the stream and increments the
position by one. The stream can be seekable or intermittent. An explanation
ofthese terms can be found in Chapter 14.

C3. Input and output streams 539

INTERFACE Rd;

IMPORT AtomList;

(*Copyright (C) 1989, Digital Equipment Corporation *)

FROM Thread IMPORT Alerted;

TYPE T <: ROOT;

EXCEPTION EndOfFile; Failure(AtomListT);

(*Since there are many classes of readers, there are many ways that a
reader can break-for example, the connection to a terminal can be
broken, the disk can signal a read error, etc. All problems of
this sort are reported by raising the exception Failure. The
documentation of a reader class should specify what failures the
class can raise and how they are encoded in the argument to Failure.
Illegal operations cause a checked runtime error. *)

PROCEDURE GetChar(rd: T): CHAR RAISES {EndOfFile, Failure, Alerted};
(*Return the next character from rd. *)

(*Many operations on a reader can wait indefinitely. For example,
GetChar can wait if the user is not typing. In general these waits
are alertable, so each procedure that might wait includes
Thread.Alerted in its RAISES clause. *)

PROCEDURE EOF(rd: T): BOOLEAN RAISES {Failure, Alerted};
(*Return TRUE if rd is at end· of-file. *)

(*Notice that on an intermittent reader, EOF can block. For example, if there are no
characters buffered in a terminal reader, EOF must wait until the user types one before
it can determine whether he typed the special key signalling end·of-file. If you are
using EOF in an interactive input loop, the right sequence of operations is:
· prompt the user;
· call EOF, which probably waits on user input;
· presuming that EOF returned FALSE, read the user's input. *)

PROCEDURE UnGetChar(rd: T) RAISES {};
(*"Push back" the last character read from rd, so that the next

call to GetChar will read it again.
Except there is a special rule: UnGetChar(rd) is guaranteed to
work only if GetChar(rd) was the last operation on rd. Thus
UnGetChar cannot be called twice in a row, or after Seek or
EOF. If this rule is violated, the implementation is allowed (but
not required) to cause a checked runtime error. *)

PROCEDURE CharsReady(rd: T): CARDINAL RAISES {Failure};
(*Return some number of characters that can be read without

indefinite waiting. The "end of file marker" counts as one
character for this purpose, so CharsReady will return 1, not 0,
if EOF(rd) is true. *)

PROCEDURE GetSub(rd: T; VAR str: ARRAY OF CHAR)
: CARDINAL RAISES {Failure, Alerted};

(*Read from rd into str until rd is exhausted or str is filled. *)

540

PROCEDURE GetSubLine(rd: T; VAR str: ARRAY OF CHAR)
: CARDINAL RAISES {Failure, Alerted};

(*Read from rd into str until a newline is read, rd is
exhausted, or str is filled. *)

(*Note that GetLine strips the terminating line break, while
GetSubLine does not. *)

C. Library interfaces

PROCEDURE GetText(rd: T; len: CARDINAL): TEXT RAISES {Failure, Alerted};
(*Read from rd until it is exhausted or len characters have been

read, and return the result as a TEXT. *)

PROCEDURE GetLine(rd: T): TEXT RAISES {EndOfFile, Failure, Alerted};
(*IfEOF(rd) then raise EndOfFile. Otherwise, read characters

until a line break is read or rd is exhausted, and return the
result as a TEXT-but discard the line break ifit is present. *)

PROCEDURE Seek(rd: T; n: CARDINAL) RAISES {Failure, Alerted};
(* If rd is seekable set the current position of rd to n.

Otherwise cause a checked runtime error. *)

PROCEDURE Close(rd: T) RAISES {Failure, Alerted};
(*Release any resources associated with rd and set closed(rd) := TRUE.

The documentation of a procedure that creates a reader should specify
what resources are released when the reader is closed.
This leaves rd closed even if it raises an exception, and is a no-op if
rd is closed. *)

PROCEDURE Index(rd: T): CARDINAL RAISES {};
(* Return the current position of rd *)

PROCEDURE Length(rd: T): INTEGER RAISES {Failure, Alerted};
(*Return the number of characters in rd

If the length is unknown to the implementation of an intermittent
reader, Length(rd) returns -1 *)

PROCEDURE Intermittent(rd: T): BOOLEAN RAISES {};
PROCEDURE Seekable(rd: T): BOOLEAN RAISES {};
PROCEDURE Closed(rd: T): BOOLEAN RAISES {};
(*Return intermittent(rd), seekable(rd), and closed(rd),

respectively. These can be applied to closed readers. *)

END Rd.

C.3.2 Wr

A variable of type Wr. T identifies an output stream. After initialization
(outside this interface) the stream is open and has a current position (ini
tially 0). It can be closed later. A closed stream cannot be written to. The
operation PutChar writes a character to the stream and increments the cur-

G.3. Input and output streams 541

rent position by one. Ifthe current position equals the length ofthe stream,
the stream size is increased by one. New characters overwrite characters
that might have been in the stream before. The stream can be seekable or
buffered. An explanation ofthese terms can be found in Chapter 14.

INTERFACE Wr;

IMPORT AtomList;

(*Copyright (C) 1989, Digital Equipment Corporation *)

FROM Thread IMPORT Alerted;

TYPE T <: ROOT;

EXCEPTION Failure(AtomListT);

(*Since there are many classes of writers, there are many ways that a writer can
break-for example, the network can go down, the disk can fill up, etc. All
problems of this sort are reported by raising the exception Failure. The
documentation of each writer class should specify what failures the class can
raise and how they are encoded in the argument to Failure.

Illegal operations (for example, writing to a closed writer) cause
checked runtime errors. *)

VAR
EOL:TEXT;

(*OnPOSIX, EOLis "\n";on Win32, EO Lis "\r\n". *)

(*End of line. *)

(*Many operations on a writer can wait indefinitely. For example, PutChar
can wait if the user has suspended output to his terminal. These waits can be
alertable, so each procedure that might wait includes Thread.Alerted in
its raises clause. *)

PROCEDURE PutChar(wr: T; ch: CHAR) RAISES {Failure, Alerted};
(*Output ch to wr. *)

PROCEDURE PutText(wr: T; t: TEXT) RAISES {Failure, Alerted};
(*Output t to wr. *)

PROCEDURE PutString(wr: T; READONLY a: ARRAY OF CHAR)
RAISES {Failure, Alerted};

(*Output a to wr. *)

PROCEDURE Seek(wr: T; n: CARDINAL) RAISES {Failure, Alerted};
(*&t the current position ofwr to n. This is an error ifwr is closed. *)

PROCEDURE Flush(wr: T) RAISES {Failure, Alerted};
(*Perform all buffered operations. It is a checked runtime error ifwr is closed. *)

PROCEDURE Close(wr: T) RAISES {Failure, Alerted};
(*Flush wr, release any resources associated with wr, and set

closed(wr) := TRUE. The documentation for a procedure that creates a
writer should specify what resources are released when the writer is closed.
This leaves closed(wr) equal to TRUE even if it raises an exception,
and is a no-op ifwr is closed. *)

542 C. Library interfaces

PROCEDURE Length(wr: T): CARDINAL RAISES {Failure, Alerted};
PROCEDURE Index(wr: T): CARDINAL RAISES {};
PROCEDURE Seekable(wr: T): BOOLEAN RAISES {};
PROCEDURE Closed(wr: T): BOOLEAN RAISES {};
PROCEDURE Buffered(wr: T): BOOLEAN RAISES {};
(*These procedures return len(wr), cur(wr), seekable(wr), closed(wr), and buffered(wr),

respectively. Length and Index cause a checked runtime error ifwr is closed; the other
three procedures do not. *)

END Wr.

C.3.3 Simple input/output (SIO)

The interface SIO provides a number of auxiliary procedures for frequently
used combinations of procedures from the interfaces Rd, Wr, Fmt and Lex;
they are intended to simplify the use of input/output streams. The proce
dures have default values for the input/output stream. If NIL is passed as
the stream, then Stdio.stdout is used as output stream and Stdio.stdin as in
put stream (these streams do not need to be opened and normally write to
the screen and read from the keyboard resp.). The read procedures (except
GetChar) skip all leading blanks and read only to the next blank or to the
next character that cannot be interpreted as the target type. This char
acter is skipped first, but it can be returned with the procedure TermChar
(see comment in interface). The procedure GetChar simply reads the next
character and returns it, without any skipping or interpretation.

INTERFACE SIO; (*8impleInputIOutput 13.04.94. LB*)

(*810 provides a Reader and a Writer type. Data can be read from a reader by
Get-procedures, and can be written by Put-procedures onto a writer. For all elementary
data types Get- and Put-procedures are provided. They advance a (hidden) position
over reader resp. writer stream. The procedure LookAhead returns the next character,
without advancing the reader position.

All Put-procedures flush automtically on stdout. GetText and GetBool terminate with
any white space character. Getlnt, GetReal and GetLongReal terminate with any
character that cannot be interpreted as a number. Leading whitespaces are ignored.
(White spaces are: new line, tab, space, form feed and carriage return.) The
terminating character is removed from the reader, and can be retrieved by the
TermChar function. At the end of the file TermChar returns the null character.

The exception Error is raised normally only for readers not connected to Stdio.stdin.
For Stdio.stdin, which is usually connected to the keyboard, the user is prompted to
type in a new value. He may repeat the input MaxError-times, afterwards Error
is raised. He may also interrupt the input by the end-of-file escape (Cntrl-Z or
Cntrl-D), which causes also an Error exception.

C.3. Input and output streams

SIO provides some additional functions, such as positioning (seeking) in readers,
length and end of readers, flushing of writers etc. Writers are strictly sequential,
positioning is not supported. The default value of the reader or writer parameter is
always NIL, with the effect, selecting the appropriate standard device.
Standard reader is Stdio.stdin, which is normally the keyboard.
Standard writer is Stdio.stdout, which is normally the screen. *)

IMPORT Rd, Wr;

EXCEPTION Error;

TYPE

543

Reader = Rd.T;
Writer = Wr.T;

(*A Reader is an Rd.T*l
(*A Writer is a Wr.T*)

(*Basic procedures*)

PROCEDURE GetChar(rd: Reader := NIL): CHAR RAISES {Error};
("'Returns the next char. *)

PROCEDURE PutChar(ch: CHAR; wr: Writer := NIL);
("'Outputs a single character. *)

PROCEDURE GetText(rd: Reader := NIL): TEXT RAISES {Error};
("'Reads a text. The terminating character is not appended. *)

PROCEDURE PutText(t: TEXT; wr: Writer := NIL);
(*Outputs all characters in t. *)

PROCEDURE GetLine(rd: Reader := NIL): TEXT RAISES {Error};
("'Reads a line and returns it as a text. The terminating nl is not appended. *)

PROCEDURE PutLine(t: TEXT; wr: Writer := NIL);
(*Outputs all characters in t and appends a new line. *)

PROCEDURE Getlnt(rd: Reader:= NIL): INTEGER RAISES {Error};
("'Reads a decimal integer. *)

PROCEDURE Putlnt(i: INTEGER; length := 3; wr: Writer := NIL);
(*Outputs an integer number. The number is right-aligned in a field of length length, i.e.

leading blanks are output if the number of digits < length. *)

PROCEDURE GetReal(rd: Reader:= NIL): REAL RAISES {Error};
(*Reads a real number. *)

PROCEDURE PutReal(r: REAL; wr: Writer := NIL);
(*Outputs a real number. *)

PROCEDURE GetLongReal(rd: Reader := NIL): LONG REAL RAISES {Error};
(*Reads a longreal number. *)

PROCEDURE PutLongReal(r: LONGREAL; wr: Writer := NIL);
(*Outputs a longreal number. *)

PROCEDURE GetBool(rd: Reader := NIL): BOOLEAN RAISES {Error};
(*Reads a Boolean constant.

Legal values are: "TRUE" and "FALSE" and any shorthands of them.
The case of letters is not significant. *)

544

PROCEDURE PutBool(b: BOOLEAN; wr: Writer := NIL);
(*Outputs a Boolean value. *)

(*Additional procedures*)

C. Library interfaces

PROCEDURE LookAhead(rd: Reader:= NIL): CHAR RAISES {Error};
(*Returns the next character, without removing it from the reader. *)

PROCEDURE TermChar(rd: Reader := NIL): CHAR RAISES {Error};
(*Returns the last terminating character or nUll. At the end of the

file TermChar returns the null character. There is a restriction on
the usage of TermChar: it must be applied to the same reader as the
last read operation, otherwise it returns the null character.
Therefore, TermChar should not be used in a multi-threaded program. *)

PROCEDURE NI(wr: Writer := NIL);
(*Outputs a new line. *)

PROCEDURE PutUnsigned(i: INTEGER; length := 6; base: [2 .. 16] := 16;
wr: Writer := NIL);

(*Outputs an unsigned number with given base right-aligned
in a field of length length. *)

PROCEDURE End(rd: Reader := NIL): BOOLEAN;
(*Returns TRUE iff end of reader reached.

On the keyboard, CTRL-Z on the PC, and CTRL-D in Unix. *)

PROCEDURE Flush(wr: Writer := NIL);
(*Flushes the writer on the file. Not necessary for the standard writer. *)

PROCEDURE Available(rd: Reader:= NIL): BOOLEAN;
("Returns TR UE iff some characters are available.

Returns FALSE if the condition cannot be checked properly. *)

PROCEDURE Length(rd: Reader:= NIL): CARDINAL;
("Returns the length of the reader or 0 if the length cannot be computed. *)

PROCEDURE Seek(rd: Reader:= NIL; position: CARDINAL := 0) RAISES {Error};
("Sets the reader on position if it is seekable, is otherwise a no-operation.

Default corresponds to reset a reader. *)

(*Some useful constants*)

CONST
null = '\000';
Blanks = SET OF CHAR f " '\1', '\n', V, '\013', '\f'};
NonBlanks = SET OF CHAR f!' .. ' '};

VAR
MaxError: CARDINAL := 3; (*Max. number of retrial after erronous input*)

END SIO.

C.3. Input and output streams 545

C.3.4 Simple Files (SF)

To simplifY the most frequently used file operations, the interface SF pro
vides a number of procedures.

INTERFACE SF; (*SimpleFiles 14.04.94. LB *)

(*SimpleFiles provides simple procedures to connect readers and writers with files
(Open procedures) and to decouple them (Close procedures). Open Read
connects a reader to an existing file, OpenWrite connects a writer to a new file.
If the file with the given name already exists, the user may type in a new name
or confirm an overwrite. OpenAppend positions the writer at the end of a file.
The text in parameter prompt is displayed on stdout (screen). The file connected
to a writer is made permanent by a CloseWrite. SimpleFiles provides a flexible
mechanism for file naming. If the name parameter is omitted or (NIL) on opening,
then the opening procedures ask the user for a file name. If the user enters an empty
line or Standard (actually = "#"), the file defaults to standard 110, i.e. normally to
keyboard (standard input device) and screen (standard output device). GetFileName
provides more explicit control over file naming. *)

IMPORT Rd, Wr;

CONST
Overwrite = "!";
Standard = "#";
PromptStart = "Type file name ";
PromptEnd =" or NL for standard = ";
InPrompt = PromptStart & "for input" & PromptEnd;
OutPrompt = PromptStart & "for output" & PromptEnd;
AppPrompt = PromptStart & "for append" & PromptEnd;

TYPE
Reader = Rd.T;
Writer = Wr.T;

PROCEDURE OpenRead(name: TEXT := NIL; prompt:= InPrompt): Reader;
(*Connects file name to a reader: if name is NIL or file does not exist, prompts

user for file name until file can be opened; if user enters return or Standard ("#"),
returns Stdio.stdin *)

PROCEDURE OpenWrite(name: TEXT := NIL; prompt:= OutPrompt;
overwrite:= FALSE): Writer;

(*Connects a writer to file name: if name is NIL, prompts user for a file name;
if user enters return or Standard ("#"), returns Stdio.stdout; if file (specified in
name or entered by user) already exists and overwrite is false, prompts user for
another file name or to enter "!" for the constant Overwrite for overwriting; if
parameter overwrite is true, an existing file with same name is overwritten
without user confirmation *)

PROCEDURE OpenAppend(name: TEXT := NIL; prompt:= AppPrompt): Writer;
(*Connects a writer to file name: if name is NIL, asks user for file name;

if user enters return or Standard ("#"J, returns Stdio.stdout; if specifed file does not
exist, creates a new file; iffile already exists, positions writer at end *)

546

PROCEDURE FileExists(name: TEXT): BOOLEAN;
(*returns TRUE iffile name exists *)

PROCEDURE CloseRead(VAR rd: Reader);
(*closes file, assigning NIL to rd unless rd is stdin *)

PROCEDURE CloseWrite(VAR wr: Writer);

C. Library interfaces

(*flushes writer and closes file, assigning NIL to wr unless wr is stdout
(Close MUST be called if the content of the writer should be made permanent!) *)

PROCEDURE GetFileName(prompl:= PromptStart & PromptEnd): TEXT;
(*asks the user for a file name - actually a simple text (this procedure is used by

Open Read and OpenWrite) *)

END SF.

Modula-3 language
environments

AppendixD

This appendix provides an overview of the available Modula-3 language
environments. First of all, we must mention the environment developed by
the researchers who developed Modula-3 at the Digital Equipment Corpo
ration Systems Research Center (DEC/SRC). In order to provide all readers
with a Modula-3language environment, we at the University of Klagenfurt
(Austria) developed a DOS-PC executable version, which we describe below.
Along with the language environment, readers can retrieve the source code
to all examples in this book.

D.I The DEC/SRC language environment

The original Modula-3 language environment consists of a compiler and a
very extensive library. This library encompasses modules for system pro
gramming, distributed programming, the production of rich graphical user
interfaces (complete with animations, video, and speech synthesis), and
much more. Together with source code, it is available free for practically all
Unix platforms (including Linux), and there is a version for WindowslNT
and Windows95.

The environment can be retrieved via anonymous FTP from

gatekeeper.dec.com

in the directory /pub/DEC/Modula - 3. For a detailed description of this
environment, refer to the following World-Wide Web site:

http://www.research.digital.com/SRC/modula-3/html/home.html

This Web site also provides detailed installation instructions.

548 D. Modula-3 language environments

D.2 A language environment for pes

For students at the University of Klagenfurt, we developed a lean version
of the DEC/SRC language environment that runs on a simple DOS-PC. This
version is also available for free. It contains !post modules of the standard
library and a simple graphical user interface as well as a special editor for
developing Modula-3 programs. This section provides an overview of the
installation and operation of this environment.

D.2.1 Installation

The PC language environment requires a PC with an 80386 (or successor)
processor with a mathematics coprocessor. The PC should have at least 6
Mbytes of RAM; otherwise compile times become intolerably long.

The environment can be retrieved per Internet via anonymous FTP or
from the World-Wide Web. The FTP server is:

ftp.ifi.uni-klu.ac.at

The necessary files reside in the directory /pub/Modula - 3. The examples
in this book can be found in directory /pub /Modula - 3/book. This direc
tory also includes a README file that gives the corresponding file name for
each example number.

There are also Web sites describing the PC language environment and
a home page for this book. The PC language environment can be down
loaded from there. In addition, all the manuals for the environment and
all example programs of this book are accessable. The address ofthe M3IPC
Klagenfurt home page is

http://www.ifi.uni-klu.ac.at/Modula-3/rn3pc/rn3pc.htrnl

The book home page is

http://www.ifi.uni-klu.ac.at/Modula-3/rn3book/rn3book.htrnl

The example programs are accessible via

http://www.ifi.uni-klu.ac.at/Modula-3/rn3book/exarnples.html

Readers without Internet access can procure the language environment
on a set of disks (for the price of reimbursed expenses) from the following
address:

Institut fUr Informatik
Universitat Klagenfurt
UniversitatsstraBe 65-67
A-9020 KlagenfurtiAustria

e-mail: m3book@ifi.uni-klu.ac.at

D.2. A language environment for PCs 549

The FTP directory and the first diskette contain the file INSTALL, which
gives precise directions for installation. The diskettes also contain the ex
amples in this book. After completed installation, you will have a directory
that contains the documentation ofthe language environment with instruc
tions for the use of all programs and functions described in this appendix.

D.2.2 The programming editor

If everything is installed correctly, the command m3 edi t from DOS starts
the Modula-3 editor.

The majority of the screen is covered by three windows in which you
can write source code. At the top is a menu bar, from which you can invoke
editor functions via pulldown menus. At the bottom is a status bar and
space for error messages.

Edit the source code of a program by first clicking with the mouse in a
window and then loading a text file into it. Select the menu item File-+
Open 1. You will be prompted for a file name. If the file does not exist, an
empty file is created. Now you can type in the window. With the cursor
keys you can move in the text and correct typing errors. You must save the
source code before you can compile it. Select the menu item File-+Save.

Instead of waiting for the editor to prompt you for a file name or an
other parameter, you can write the parameter in another window: if you
double-click a word in one of the windows (thereby highlighting it), then
this word serves as input for all editor functions that require a param
eter. This proves particularly practical if you need to search elsewhere
in your program for a character string (e.g., a variable name) that al
ready appears on the screen: double-click it and then select the function
Edit-+SearchForward. The editor will display the next occurrence of the
character string in the program.

The documentation directory provides an in-depth description of each
function of the editor. They are also accessable on-line via the above Web
site. You will find a concise description of the editor functions directly in
the Help menu.

Compiling programs

The editor is capable of collecting all the files necessary for the compila
tion of a program (i.e., all interfaces and implementation modules). This
requires specifYing the name of the main module. All modules imported by
the main module (and, in turn, naturally, those imported by the imported
modules) are passed on to the compiler. Enter the main module with the

lClick on item File in the menu bar; this opens a submenu. With the mouse button
pressed, move the mouse down to highlight item Open and then release the mouse button.

550 D. Modula-3 language environments

menu item Build---+MainModule. Use the menu item Build---+BuildProgram
afterwards to compile the program. Even on powerful PCs, this can take
some time.

A PC with a 50 MHz 80486 processor requires one to two minutes to
compile a smaller program (as we go to press). The reason for this
sluggishness is above all the fact that the program is first translated
into a C program, which is then processed by a C compiler. Future
versions should correct this drawback.

In the event of compilation errors, error messages appear in the lower
window. The function Edit---+NextError moves the cursor in the source
code window to the next error location flagged by the compiler. Progress
in this way until you have corrected all errors; then restart by selecting
Build---+BuildProgram. If compilation was successful, you can launch the
program with the function Build---+RunProgram.

D.2.3 The browser

To make the extensive library more accessible, especially for novices, in
voke the browser from the editor. The browser helps to find interfaces in
the library. You can search interfaces by name, by category (e.g., file man
agement, mathematics, etc.), or by keywords. If you know the name of a
procedure, but have forgotten which interface exports it, the browser helps
to find it. You can display the found interfaces immediately in an editor
window. Press another switch to see the implementation of the module.

You can also publish your own interfaces for the browser. This does
require some typing: in a special window, enter the name, category and
keywords of any additional interfaces that you want to make retrievable
with the browser. The documentation directory also contains a detailed
description ofthe browser.

D.2.4 A graphical user interface

The library on which the editor is based is available for developing any kind
of program with a similar user interface. The library is quite simple, essen
tially functioning by linking buttons on the screen with procedures. When
a button is clicked with the mouse, this invokes the corresponding proce
dure. You can build dialog boxes on the screen for user input. This requires
no new procedures; after they are invoked via a button, library procedures
prompt for values. This allows easy installation of multiple simultaneous
functions on the screen. Primary control remains with a screen manager;
the procedures only execute in small slices (e.g., installing additional dialog
boxes on screen) and must terminate immediately (as quickly as possible).

D.2. A language environment for PCs 551

The documentation directory also contains an introduction to this li
brary, as well as some examples.

D.2.5 Restrictions

The PC language environment necessarily always lags a bit behind the
DEC/SRC language environment. Thus the libraries might not be com
pletely up to date with the originals. Network objects, the trestle packet
and most modules that offer Unix operating system services are currently
unavailable in the DOS-PC version. The scheduler for threads on the PC is
not preemptive (i.e., it cannot interrupt running threads). However, all the
programs in Chapter 16 also run on a DOS-PC.

[And91]

Bibliography

Gregory Andrews. Concurrent Programming. Benjamin/
Cummings Publishing Compnay, Inc., 1991.

[ASU85] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1985.

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science.
Computer Science Press, 1992.

[Bal90] Henri Bal. Programming Distributed Systems. Prentice Hall,
1990.

[BEW94] L. Boszormenyi, J. Eder, and C. Weich. PPOST, a parallel
database in main memory. In Proceedings of the Fifth Inter
national Conference on Database and Expert Systems Applica
tions, 1994.

[BNOW94] A. Birell, G. Nelson, S. Owicki, and E. Wobber. Network ob
jects. Research report 115, Digital Systems Research Center,
Palo Alto, 1994.

[Bos89] L. Boszormenyi. Menschlicher Automat und automatischer
Mensch. Informatik Spektrum, 1989.

[CDG+89] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jor
dan, Bill Kalsow, and Greg Nelson. Modula-3 report (revised).
Technical report 52, Digital Systems Research Center, Palo
Alto, 1989.

[CM81] F. W. Clocksin and C. S. Messish. Programming in Prolog.

[Co169]

[CW87]

Springer Verlag, 1981.

Egmont Colerus. Von Pythagoras bis Hilbert. Rowohlt, 1969.

L. Cardelli and P. Wegner. On understanding types, data ab
straction and polymorphism. Computing Surveys, 1987.

554 Bibliography

[Dat90] C. J. Date. An Introduction to Datebase Systems. Addison
Wesley, fifth edition, 1990.

[DDH72] O. Dahl, E. W. Dijkstra, and C. Hoare. Structured Program
ming. Academic Press, 1972.

[DFS88] E. W. Dijkstra, W. H. J. Feijen, and J. Sterringa. A Method of
Programming. Addison-Wesley, 1988.

[Dij68a] E. W. Dijkstra. Go to statement considered harmful. Commu
nications of the ACM, 11(3), 1968.

[Dij68b] E. W. Dijkstra. The structure of the "the" multiprogramming
system. Comm. ACM, 11(5):341-346, 1968.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy, and for
mal derivation of programs. Communications of the ACM,
18(8):453--457, 1975.

[FI85] Caxton C. Foster and Thea Iberall. Computer Architecture. Van
Nostrand Reinhold Company, third edition, 1985.

[Fra94] M. Franz. Technological steps toward a software component
industry. Programming Languages and System Architectures,
1994.

[GH93] John Guttag and James Horning. LARCH: Languages and
Tools for Formal Specification. Springer Verlag, 1993.

[GR83] A. Goldberg and D. Robson. Smalltalk-80, the Language and
its Implementation. Addison-Wesley, 1983.

[Har92] Samuel Harbison. Modula-3. Prentice Hall, 1992.

[HKMN94] Jim Horning, Bill Kalsow, Paul McJones, and Greg Nelson.

[Hoa74]

[Hoa85]

[Hop79]

Some useful Modula-3 interfaces. Research report 113, Digi
tal Systems Research Center, Palo Alto, 1994.

C. A. R. Hoare. Monitors: an operating system structuring
concept. Comm. ACM, 17(10):549-577, 1974.

C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

John Hopcroft. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

Bibliography 555

[IK66]

[KM94]

E. Isaacson and H. B. Keller. Analysis of Numerical Methods.
John Wiley & Sons, 1966.

A. Kemper and G. Moerkotte. Object-Oriented Database Man
agement. Prentice Hall, 1994.

[KMP+83] J. Koch, M. Mall, P. Putfarken, M. Reimer, J. W. Schmidt, and
C. A. Zehnder. Modula-R report. Technical report, ETH Zurich,
1983.

[Knu81] Donald E. Knuth. The Art of Computer Programming.
Addison-Wesley, 1981.

[Kuh84] Georg Kuhlewind. The Stages of Consciousness. Linidsfarne
Press, 1984.

[Kuh90] Georg Kuhlewind. Der sprechende Mensch. Vittorio Kloster
mann, 1990.

[M+62] J. McCarthy et al. The Lisp 1.5 Programmer's Manual. MIT
press, 1962.

[Mey89] Bertrand Meyer. From structured programming to object
oriented design: The road to Eiffel. Structured Programming,
10(1):19-39, 1989.

[MMS79] J. G. Mitchel, W. Maybury, and R. Sweet. Mesa language man
ual. Csl-79-3, Xerox Palo Alto Research Center, 1979.

[Mos93] Hanspeter MossenbOck. Object-Oriented Programming m
Oberon-2. Springer Verlag, 1993.

[NeI81] B. Nelson. Remote procedure call. Csl-81-9, Xerox Palo Alto
Research Center, 1981.

[NeI91] Greg Nelson. Systems Programming with Modula-3. Prentice
Hall,1991.

[PST91] Ben Potter, Jane Sindaire, and David Till. An Introduction to
Formal Specification and Z. Prentice Hall, 1991.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[RW92] Martin Reiser and Niklaus Wirth. Programming in Oberon.
Addison-Wesley, 1992.

556

[S+86]

[Sch78]

[Sch89]

[Sed93]

[SM92]

[Som92]

[Tan90]

[Tan92]

[Tru88]

[Tur36]

[UlI82]

[WG92]

[WH83]

[Wir71]

[Wir73]

[Wir76]

Bibliography

J. Schwartz et al. Programming with Sets, An Introduction to
SETL. Springer Verlag, 1986.

Ernst Friedrich Schumacher. A Guide for the Perplexed.
Harpercollins, 1978.

Ernst Friedrich Schumacher. Small Is Beautiful: Economics
As If People Mattered. Harpercollins, 1989.

R. Sedgewick. Algorithms in Modula-3. Addison-Wesley, 1993.

J. W. Schmidt and F. Matthes. The database programming lan
guage DBPL. Technical report fide/92/46, ESPRIT BRA Project
3070,1992.

I. Sommerville. Software Engineering. Addison-Wesley, 1992.

Andrew Tanenbaum. Structured Computer Organization.
Prentice Hall, 1990.

Andrew Tanenbaum. Modern Operating Systems. Prentice
Hall, 1992.

J. K. Truss. Discrete Mathematics for Computer Scientists. Carl
Hanser Verlag, 1988.

Alain Turing. On computable numbers with an application to
the entscheidunsproblem. In London Math. Soc., pages 230-
265,1936.

J. Ullman. Principles of Database Systems. Computer Science
Press, second edition, 1982.

Niklaus Wirth and Jorg Gutknecht. Project Oberon. Addison
Wesley, 1992.

P. Winston and B. Horn. Lisp. Addison-Wesley, third edition,
1983.

Niklaus Wirth. The programming language pascal. Acta Infor
matica, 1(1):35-63, 1971.

Niklaus Wirth. Systematic programming: an introduction.
Prentice Hall, 1973.

Niklaus Wirth. Algorithms + Data Structures = Programs.
Prentice Hall, 1976.

Bibliography 557

[Wir82]

[YG66]

[Zus92]

Niklaus Wirth. Programming in Modula-2. Springer Verlag,
1982.

D. M. Young and R. T. Gregory. A Survey of Numerical Mathe
matics, volume 2. Addison-Wesley, 1966. Chapter 4.

Konrad Zuse. A past and present view of computer archi
tecture. Berichte des Departements Informatik, ETH Zurich,
1992.

operator, 513
<: declaration, 253, 496
& operator, 68, 516
(* *) (comment), 518
* operator, 511
+ operator, 510
- operator, 511
. operator, 506
.. in set and array constructors, 508
/ operator, 511
<* *> (pragma), 104, 518
<: relation, 134,480
= operator, 513
, operator, 244, 506

ABS, 55,78,512
abstract data types, 40, 251
abstract modules, 355
abstract superclass, 310
actual parameters, 179, 193
actual type, 250
acyclic graph, 288
Ada, 419
addition, 510
ADDRESS, 249,475

assignment of, 484
operations on, 517

address space, 389
ADR,517
ADRSIZE, 515
aggregate, see records or arrays
AI,278
Algol-60, 23, 28, 174
algorithm, 2, 41
aliasing, ofVAR parameters, 485
alignment, see packed types
allocated type, 470
allocation, 509

ALU, 4
analysis phase, 15
AND, 60, 514

Index

apostrophe, in literals, 64, 508
Archimedes, 241
arithmetic operations, 56, 510
arithmetic/logic unit, 4
arrays, 140,472

assigning, 145,483
bidimensional, 142
constructors, 144, 508
element, 140
first and last elements, 146, 515
indexing, 141,472,506
multi-dimensional, 142,472
number of elements in, 146,515
operations, 145
passing as parameters, 485
relational operations, 146
sorting, 152
subarrays, 146,507
subscript, 506
subtyping rules, 481
unidimensional,141
values, 144

artificial intelligence, 4, 278
ASCII, see ISO-Latin-1
assembler, 20
assembly language, 20
assertions with ASSERT, 104
assignable, 483

READONLY/vALUE formals, 485
array subscript, 506
arrays, 472
in = and #, 513
in set operations, 510, 511
in unsafe modules, 517

560

return value, 489
setJarray/record constructors, 508
variable initializations, 495

assignment, 83
assignment compatibility, 135
assignment operation, 41
assignment statements, 483
asynchronous communication, 419
atomic action, 396
attribute, 313
automata, 6

background storage, 228, 349
backslash, 64
backslash, in literals, 64, 508
Backus-Naur form, 28
barrier, 397
base type, 470

array, 144
sets, 164
subrange, 120

BEGIN,49
binary files, 352
binary number system, 10
binary search, 291
binary search tree, 292
binary semaphore, 414
binary tree, 290,341
binding power, of operators, 505
bindings, in procedure call, 484
bit, 9, 63
BITS FOR, 170, 474

in VAR parameters, 485
subtyping rules, 481
with subarrays, 507

BITSIZE,515
blank,361
block, 48, 494

module, 500
procedure, 495
statement, 486

block structure, 173
BNF,28
body, of procedure, 179,475
Boole, George, 40
BOOLEAN, 60, 471

operations on, 514
bottom-up, 17
BRANDED,475
branded reference, 255
broadcast, 406
buffer, 356
buffered stream, 356
bug, 280
BY, 108
byte, 10,63
BYTESIZE, 515

call statement, 181
call, procedure, 181,484
cancellation, 76
CARDINAL, 53, 471

Index

carriage return, in literals, 64, 508
CASE statement, 92, 492
case

in keywords, 518
in literals, 507

CEILING, 77,512
central processing unit, 4
channel, 418, 420
CHAR, 63, 471
character literals, 64, 508
character set, 471
checked runtime error, 469

INC value out of range, 493
NARROW, 514
SUBARRAY, 507
VAL range check, 514
assignability, 483
dereferencing NIL, 506
failure to return a value, 489
nested procedure as method, 510
no branch of CASE, 492
no branch of TYPECASE, 492
uncaught exception, 487
undefined procedure, 485
unlisted exception, 485

children, in a tree, 288
Chomsky, N., 18
Church, Alonso, 7
circular buffer, 407
circularities

Index

in imports lists, 500
in type declarations, 497

class, 306
class hierarchy, 339
client

of a module, 202
of a RPC call, 419
of an object class, 309

clientiserver model, 418
Cobol,22
code sharing, 312
code value, 66
coercions

checked, 514
unchecked, 516

comments, 46, 518
tokenizing, 522

communication, 388, 396
comparison operation, 513
compatibility, 125

assignment, 135
expression, 136

compilation, 36
compilation unit, 37, 42, 210
compiler, 36, 37
compiler-compiler, 37
complete revelation, 496
complexity, 307
composite type, 139
computability, 7
concatenating texts, 68, 516
concrete subclass, 310
concrete types, 496
concurrent processes, 388
condition, 84, 405, 527
condition type, 527
condition variable, 405, 527
conditional GoTo statement, 86
conditional synchronization, 404
CONST,129
constant expression, 129,469,516
constants, 41, 469

declarations, 129,494
numeric, 507
procedure, 476

constructors

array, 144, 508
record, 157,509
set, 165,508

contain (value in type), 469
context, 174
control variable, 108
conventions, 45
conversion

561

characters and integers, 66
enumerations and integers, 66, 514
to floating-point types, 77, 512

counter, 108
covers, method signatures, 315
covers, procedure signatures, 477
CPU, 4
critical region, 400, 402
CSP, 419
current state, 5
cursor, 44
cyclic imports, 209, 500

Diirrematt, 8
Dahl, 0., 24
dangling pointer, 245
data aggregates, 139
Data capsules, 212
data collections, 139
data record, of object, 477
data region, 5
data security, 349
data space, 212
data type, 39
data-parallel algorithms, 397
database system, 140, 349
deadlock, 402, 411
deallocation, 517
debugger, 280
DEC, 54,66, 118,493

on addresses (unsafe), 517
DEC/SRC,21
declaration, 48, 129, 469

recursive, 497
scope of, 494

Declarations, 48
decomposition, 192
decrement, for predecessor, 54

562

default values
in record fields, 155, 473
procedure parameters, 193, 476,

484
deferred methods, 319
delimiters, complete list, 518
denumerably infinite, 72
dereferencing, 244, 506
design phase, 16
designators, 469

operators allowed in, 506
readonly, 506
writable, 506

device drivers, 350
difference, set, 167,511
Digital Equipment Corporation

Systems Research Center, 21
Dijkstra, E.W., 24, 25, 28, 86, 411,

413
dimension, 473
direct file access, 350
directed graph, 288
directory, 350
DISPOSE, 245, 517
DIV, 56, 511
divide-and-conquer, 281, 283
division by zero, 510
division, real, 75, 511
double quote, in literals, 64, 508
doubly linked list, 264
dynamic binding, 310, 311, 325
dynamic data, 241
dynamic data structures, 227, 261
dynamic type, 250, 310

EBNF,28
eclipse, 174
edge, in a tree/graph, 287
effective, 3
Eiffel,252
element type, of array, 472
ELSE,87
ELSIF,87
empty shape, 144
empty type, 470
encapsulated data types, 251

encapsulation, 257, 308
end of file, 351
entry condition, 97
enumerations, 115, 470

Index

first and last elements, 118, 515
number of elements, 118, 515
operations, 118
predefined, 11 7
range, 117
selection, 506
subtyping rules, 480

environment, of procedure, 475
EOF,351
equality operator, 513
equivalence of types, 133
errors, static and runtime, 469
escape sequence, 64
escape sequences, in literals, 64, 508
Euclidean algorithm, 100
Euler-Venn diagram, 166
EVAL,194,485
exception handling, 371

delayed, 379
strategy, 382

exceptions, 371, 482
RAISES set, 378, 485
RAISE, 376, 486
TRY EXCEPT, 376
TRY FINALLY, 379, 488
declarations, 376, 496
delegation, 377
handlers, 376, 487
return and exit, 482

executable program, 37
EXIT statement, 110, 488
exit-exception, 110, 482, 488
expanded definition (oftype), 470
exponent, 73
exporting an interface, 500
EXPORTS, 500
expression, 125,469,504

constant, 516
function procedures in, 508
order of evaluation, 504

expression compatibility, 136
EXTENDED, 73, 471

Index

literals, 507
Extended interface, 530
extended Backus-Naur form, 28
EXTERNAL, 518
external state space, 363

factorial, 273
FALSE,60,471
Feijen, W.H.J., 28
Fibonacci, 276
field

object, 313
record, 155, 473
selection, records/objects, 506

FIFO,231
file, 349

binary, 352
close, 351
create, 351
end,351
open,351
positioning, 351
read,351
seekable, 356
type, 352
write, 351

file access
direct, 350
recordwise, 353
sequential, 350

file format, 359
FileRd module, 355
FileWr module, 355
FIRST,54,66,78, 118, 146,515
first-in, first-out, 231
fixed arrays, 472

subtyping rules, 481
FLOAT, 77, 512
Float generic interface, 530
floating-point, 471

input/output, 78
literals, 74
operations, 75
values, 73

FloatMode interface, 533
FLOOR, 77, 512

flush,356
Fmt interface, 534
Fmt module, 357
FOR statement, 108, 491
form feed, in literals, 64, 508
formal language, 18, 27
formal parameter, 178
Fortran, 22
FROM ... IMPORT ... , 211,499
function, 41, 177, 178

mathematical, 177
function call, 49
function procedures, 42, 178,475

in expressions, 508

563

returning values from, 489
functional programming language, 21

Gtidel, Kurt, 7
garbage collector, 245,474
generalization, 328
generic interface, 501
generic module, 249, 501
genericity, 249, 257, 340
generics, 501
global block, 174
global variable, 187
GoTo statement, 86
graph,261
guarded statement, 88

handlers, for exceptions, 376, 487
hash function, 438
hash table, 438
heap, 243
heavyweight process, 389
Hello, world, 44
hexadecimal literal, 507
hidden procedure body, 260
hierarchy, 310
Hoare, C.A.R, 281, 405, 419
human language, 18

identifiers, 48, 126, 469
lexical structure, 522
qualified, 499
reserved, 518
scope of, 174, 494

564

syntax, 522
IF statement, 87, 489
imperative programming language, 21
implementation, 43
implementation module, 208
implementation phase, 16
import cycle, 500
imports, 210,499
IN,167,513
INC,54,66,118,493,517
increment, for successor, 54
index type, of array, 140, 472
indirect recursion, 279
infinity, 531
infix,68,127
information hiding, 43, 203, 205
inheritence, 307,309
initialization, 48, 132

during allocation, 510
in VAR declaration, 132,495
modules, 503
of variables in interfaces, 498

INLINE,518
Inorder, 294
input parameter, 184
input stream, 353
input/output parameter, 184
installation and maintaince phase, 16
instance, 252, 308
instance variable, 308, 313
instantiation, 40
INTEGER, 53,471
integer, 39, 53

division, 56
integration and testing phase, 16
interface

Extended, 530
Float, 530
FloatMode, 533
Fmt, 534
LongReal, 530
Rd,538
Real,530
Scan,538
SF,545
SIO,542

Text, 525
Thread,527
Word,528
Wr,540

Index

interfaces, 43, 202, 207, 498, 500
exporting, 500
safe, 503
unsafe, 503
variable initializers in, 500

intermittent input stream, 356
intersection, set, 167,511
intrinsically safe, 503
invariant, 102
invocation stack, 183
Is-a relationship, 134, 307
ISO-Latin-1, 64, 471
ISTYPE, 326, 514

jump, 86

keyword,45
keyword binding, 157,484
keywords, complete list, 518

language environment, 36, 37, 547
Larch,252
LAST,54,66,78, 118, 146,515
last-in, first-out, 228
lazy evaluation, 128, 151
left-hand side, 135
Lex module, 362
LHS, 135
libraries, 203, 525
life cycle, 307
lifetime, 175
lightweight process, 389
line feed, in literals, 64, 508
linear search, 150
linker, 37
Lisp, 278
list, 238, 240, 262

doubly linked, 264
literals, 41

character, 63, 508
numeric, 73, 507
syntax, 522
text, 67, 508

Index

loadable program, 37
loading, of program, 37
local procedures, 475

as parameters, 485
assignment of, 198, 483

local variable, 175
location, 469
LOCK statement, 402,493
logical programming language, 22
logical type, 40, 60
LONGREAL, 73,471

literals, 507
LongReal interface, 530
LOOP statement, 110, 488
loop, 97

body, 97
condition, 97
For, 108
Loop, 110
Repeat, 105
While, 97

loop invariants, 102
LOOPHOLE, 516
low-level programming, 20

machine code, 20
Main interface, 44
main module, 43, 44, 499
main thread, 390
maintenance phase, 16
mantissa, 73
masked field, 478
Math module, 79
matrices, 142
MAX, 512
member (value in type), 469
memory, 4
memory cell, 9
memory management, 243
message, 306, 388
message passing, 317, 396, 418
metalanguage, 23, 27, 28
metasymbol, 28
method suite, 477
methods, 306, 308, 506

declaration deferred, 319

declarations, 313, 478
implementation, 315
invocations, 317, 485
override, 318,479
specifying in NEW, 510

MIN,512
MOD, 56, 511
mode, see parameter mode
Modula-2, 23
modularization, 223
module, 201
module concept, 202
modules, 42, 208, 498, 500

for type design, 260
generic, 249
initialization, 503
safe, 503
unsafe, 503

modulus operation, 56
monitor, 405
multi-dimensional arrays, 472
multiplication, 511
MUTEX variable, 402, 527
MUTEX, 402, 482
mutual exclusion, 400, 402

name conflict, 116
name equivalence, 133
name server, 418
NaN,531
NARROW, 325, 514
negation, 60
nesting, 85
network objects, 419
NEW, 242, 509
newline, in literals, 64, 508
NIL, 239, 508
node, of a tree/graph, 287
normal outcome, 482
NOT, 60, 514
not a number, 531
NULL, 318, 475
NUMBER, 118, 146,515
number literals, 126, 507
numerics, 73

Oberon, 23

565

566

Oberon-2, 23
OBJECT, 313
object identifier, 430
object-oriented

applications, 311
databases, 140
modeling, 305
programming, 308

objects, 305, 477
accessing fields/methods, 317, 477
allocating, 317, 510
branded, 478
declarations, 313
fields, 306,308, 317, 506
invoking methods, 317,485
method declarations, 313, 478
methods, 306, 308, 506
subtyping rules, 318, 481
type, 312

Occam, 419
octal literal, 507
oid,430
on-line, 389
OOA,307
OOD,307
opaque types, 252,260,496

rules for design, 260
open arrays, 246, 472

allocating, 510
as formal parameters, 485
loopholing to, 516
subtyping rules, 481

operand, 125
operating system, 386
operators, 125

complete list, 518
precedence, 505
tokenizing, 522

OR, 60,514
ORD, 66, 118, 514
order «, >, ...), 513
order of evaluation, expressions, 127,

504
ordered binary tree, 292
ordinal number, 66, 118
ordinal types, 53, 470

Index

first and last elements, 54, 515
subtyping rules, 480

ordinal value, 66, 470
output parameter, 184
output stream, 353
overflow, 57, 75,510
overloading, of operation, 504
OVERRIDES, 314
overriding methods, 310, 314, 479

package, see module
packed types, 170,474

VAR parameters, 485
parallel program, 388
parallel programming, 385
parameter

actual, 179
default, 193
formal, 178
input, 184
input/output, 184
named, 194
output, 184
passing, 183
positional, 194
read-only, 186

parameter mode, 183, 476
parameter passing, 177, 484
parent, in a tree, 287
partial correctness, 103
partial expansion (oftype), 470
partial revelation, 256, 260, 344, 496,

497
partially opaque type, 256, 496
Pascal, 23
path length

in a graph, 289
in a tree, 296

path, of a graph, 289
persistent, 150
persistent data structures, 349
persistent variable, 362
Pickle, 367
pipelining, 386
Pkl,367
pointer, 236, see reference

Index

polygon, 219
polymorphism, 310, 325
port, 39
positional binding, 157, 484
postcondition, 86
Postorder, 295
pragmas, 104,518
pre-emption, 390
precedence, 27
precedence, of operators, 31, 127,505
precondition, 86
predefined subranges, 122
Preorder, 294
procedural operator, 505
procedural programming language, 22
procedure call, 484
procedure parameter, 198
procedures, 2,41, 177,475

RETURN, 180,489
assignment, 195
assignment of local, 483
body, 179
call, 181,484
constant, 180,476
declarations, 179, 495
discarding results, 194, 485
exporting to interface, 500
head,179
inline, 518
invocations, 181
operations, 195
parameter passing, 183, 476, 484
proper, 178
pure, 178
raises set, 378,475
signatures, 179, 475, 476
subtyping rules, 481
type, 195
variable, 195

process, 388, see thread
program, 1, 10, 18
program region, 5
program system, 14
program text, 37
program translator, 20
program, definition of, 499

567

programming in the small, 17
programming language, 14, 18, 36
proper procedure, 178, 475
pseudocode, 266
pure procedures, 178

qualified identifiers, 116, 156, 499
quasi-parallel processes, 388
queue, 228,263

first-in, first-out, 231
last-in, first-out, 228
LIFO,228

Quicksort, 281
quotataion mark, in literals, 64

RAISE, 376, 486
RAISES, 377,476

dangling, 477
raising unlisted exception, 485

raises set, of procedure, 378,475
range check, 141
Rd interface, 538
read-only

designator, 469, 506
parameter, 186
variable, 109, 162

read/write buffer, 356
read/write position, 351
reader, 353
READONLY parameters, 186,485
REAL, 72, 471

conversions to, 77, 512
converting to integers, 77, 512
literal, 74,507

Real interface, 530
real division, 511
record length, 353
records, 154, 473

constructors, 157,509
defaulting fields, 473
fields, 156, 506
operations, 160
values, 157

recursion, 21, 271
recursive algorithms, 273
recursive data structure, 287

568

recursive declarations, 497
redeclaration, 174
redefinition

field,334
method,334

REF,239
REFANY, 249, 475
reference class, 474
reference semantics, 318
referenced type, 239, 240
references, 69, 228, 241, 474

TYPECASE,492
assigning, 243
assigning ADDRESSes, 517
automatic dereferencing, 506
deallocation, 244
dereferencing, 244, 506
generating with NEW, 241,509
reference class, 474
subtyping rules, 481
traced,244
typecase, 327
typecode of, 514
untraced,245

referent, 474
referent type, 475
reflexivity of subtype, 135,481
register, 10
relational operators, 513
remainder, 56, see MOD
remote procedure call, 419
rendezvous, 419
REPEAT statement, 105,490
resources

common, 396
release, 380
reservation, 380

result type, of procedure, 137,180,476
RETURN statement, 180, 489
return type, see result type
return-exception, 482, 489
reuse, 16
REVEAL,254,496
revelations, 253, 254, 496

imported, 499
reverse Polish notation, 295

RHS, 135
right-hand-side, 135
ROOT, 318,478
root class, 339
root, of a tree, 287
ROUND, 77,512
rounding error, 73

Index

rounding of arithmetic operations, 510
RPC, 419
RPN,295
run-time error, 121, 375, 469

checked, 469
unchecked, 469

run-time support, 37

safety, 503
scalar, 139
scale factors, in numeric literals, 507
Scan interface, 538
Scan module, 357
scanning, 357
scheduler, 388, 390
schema, 308, 428
Schumacher, E.F., 13, 18
scope, 108,162,494

block statement, 486
exceptions, 496
locals in FOR, 491
locals in TRY EXCEPT, 487
locals in TYPE CASE, 492
locals in WITH, 490
of formal parameters, 495
of identifier, 469
of imported symbols, 500
of variable initializations, 495
revelations, 497

search,150
Searle, J., 371
selection, 428
selection of fields, 506
self, 316
semantics, 18
semaphore, 413
semidynamic data, 241
semifinished system, 308
sentinel, 150

Index

sequence, 84,87
sequential composition, 486
sequential file access, 350
server

of a RPC call, 419
server modules, 205
sets, 163, 474

constructors for, 165,508
difference, 167,511
equality, 167,513
IN operator, 167,513
intersection, 167,511
operations, 165
subset, 167,513
symmetric set difference, 167,511
union, 167,510
values, 165

8F interface, 545
shape, of array, 144,472
shared variable, 388, 396
side effect, 3, 97, 187
sign inversion, 511
signature, 179,475,476

covers, 315, 477
Simple-IO,360
Simula-67,311
simulated genericity, 249
simulation, 311
single quote, in literals, 64, 508
810,360

implementation, 361
interface, 542

size, of type, 515
Smalltalk, 311
software, 14
software life cycle, 16
sorting

array, 152
Quicksort, 281

source code, 37,46
specialization, 309
specification, 252

languages, 15
phase, 15

specification language, 37, 252
square root, 78

SRC,21
stack, 183,228,275
standard interfaces, 525
starvation, 406, 412
state space, 5, 41, 204
state variables, 5
statement part, 209
statements, 48, 49, 482
static data, 241
static data structure, 227
static error, 469
static type, 139, 310, 469
storage allocation, 241, 509

DISPOSE, 517
strings, 508

569

structural type equivalence, 133, 160,
470

structure of programs, 35
structured programming, 24, 35, 86,

187
structured statement, 84
style, of programming, 18
SUBARRAY, 147,507
subclass, 307
subranges,120,471

operations, 122
predefined, 122
subtyping rules, 480

subscript operator, 506
subset operation, 513
subtraction, 511
subtypes, 134,248,480

operations on, 135
reflexivity, 135
relation, 134
transitivity, 135

supercall, 323
superclass, 307
supertype, 134, 480

assignment, 249
symbol-manipulating machine, 6
symbolic constant, 41
symmetric set difference, 167,511
synchronization, 388, 396

with barriers, 397
synchronous communication, 419

570

syntax, 18, 519
Systems Research Center, DEC, 21

tab, in literals, 64, 508
tail recursion, 278
task, see thread
termination condition, 97
termination of program, 499
TEXT,67,482
Text interface, 525
text files, 352
Text.Compare, 153
Text.FindChar, 358
Text.Sub, 358
texts, 67

concatenating, 68, 516
escape sequences, 64, 67, 508
literals, 67, 508

THEN,87
Thread interface, 527
thread,389

wait state, 403
throughput, 385
time slice scheduling, 390
TO, 108
tokenizing, 522
toolbox, 219
top-down, 17
top-level procedure, 475
total correctness, 103
Towers of Hanoi, 282
traced

object types, 318,478
references, 244, 474
types, 474

transitivity of subtype, 135,481
tree, 287, 339

class hierarchy, 339
height, 290

tree traversal, 294
triangular swap, 84
trigonometric functions, 78
TRUE, 60, 471
truly parallel processes, 388
TRUNC, 77,512
truth table, 60

TRY EXCEPT, 376, 487
TRY FINALLY, 379, 488
Turing machine, 6
Turing, Alan, 6
type, 115, 139,470

assignable, 483
composite, 139
concrete, 496
declaration of, 131,494
empty, 470
of expression, 469
of variable, 469
opaque,252,496
traced, 244, 474

type coercions
checked,514
unchecked,516

type constructor, 115, 139
type equivalence, 133, 470
type expression, 470

Index

type identification, see revelation
type inclusion, 137
type system, 21, 23
TYPECASE,327,492
TYPECODE, 514

unchecked runtime errors, 469,516
undefined procedure, 485
underflow, 75, 510
union, of sets, 167,510
Unix, 389
UNSAFE, 208, 503
unsafe features, 516
unsafe interface, 208
unsafe module, 208, 245
UNTIL,105
UNTRACED

in reference declarations, 475
in unsafe modules, 517
objects, 319
references, 245

UNTRACED ROOT, 319, 478
upcall,267
uses relationship, 309

VAL,66,118,514

Index

VALUE, 185,485
value, 40, 469
value parameters, 485

type checking, 485
VAR,48
VAR declarations, 132,495
VAR parameters, 185,485
variables, 40, 469, 495

declaration, 48, 132
global, 187
initialization, 48, 132, 495
initialized in interfaces, 500
local,175
procedure, 476

vector, 141
verification, 86, 102
viewport, 221
virtual memory, 228
visibility, 175, see scope
von Neumann bottleneck, 387
von Neumann computer, 9
von Neumann, John, 9

wait state, of thread, 403
Weizenbaum, J., vii, 14
WHILE statement, 97, 490
white space, 46, 361
whole number, 39, 53
Wirth, N., 18, 145, 425
WITH statement, 160, 490
Wittgenstein, Ludwig, 18
Word interface, 528
word,9
word size, of type, 515
Wr interface, 540
writable designator, 469, 506
writer, 353

Xerox PARe, 311

Z,252
zero, division by, 510
Zuse, Konrad, 10

571

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

