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To Joseph Weizenbaum 



Foreword 
by Joseph Weizenbaum 

Since the dawn of the age of computers, people have cursed the difficulty 
of programming. Over and over again we encounter the suggestion that 
we should be able to communicate to a computer in natural language what 
we want it to do. Unfortunately, such advice rests upon a misconception 
of both the computer and its task. The computer might not be stupid, but 
it is stubborn. That is, the computer does what all the details of its pro
gram command it to do, i.e., what the programmer "tells" it to do. And this 
can be quite different from what the programmer intended. The misun
derstanding with respect to tasks posed to the computer arises from the 
failure to recognize that such tasks can scarcely be expressed in natural 
language, if indeed at all. For example, can we practice music, chemistry 
or mathematics without their respective special symbolic languages? 

Yet books about computers and programming languages can be written 
more or less reasonably, even if they are not quite poetic or lyrical. This 
book can serve as an example of this art and as a model for anyone at
tempting to teach inherently difficult subject matters to others. 

Klagenfurt, April 1995 



Preface 

Striving to make learning to program easier, this book addresses primarily 
students beginning a computer science major. For our program examples, 
we employ a new, elegant programming language, Modula-3. However, 
most of the concepts that we introduce apply and are relevant indepen
dently of the specific programming language. 

This book can either accompany an introductory lecture on program
ming or serve self-study purposes. Both cases absolutely demand hands-on 
programming practice in addition to reading the book. Perusing a book on 
programming in dry dock without ever navigating the challenging waters 
of programming would be like reading about how to playa violin without 
ever touching the instrument. Learning to program means mastering both 
theory and practice, preferably simultaneously. 

Newcomers to a computer science major bring with them a broad range 
of different backgrounds. Some have no computer literacy, while others can 
handle certain application programs such as word processors or spread
sheets. Still others have programming experience, although the breadth 
and depth of their skills varies greatly. This book assumes no particular 
prerequisites. A reader armed with normal high school mathematics and 
rudimentary computer literacy should be able to understand this book. We 
begin with fundamental concepts and only stepwise introduce the more dif
ficult, higher-level concepts that build on them. To avoid the risk of bore
dom, students with a higher level of programming experience should feel 
free to skim over exhaustive explanations that are already clear to them. 

Organization of the Book 

The book consists offive parts: 

1. Introduction 
In the first chapter we cast light on the term programming from var
ious perspectives and show their relative importance in the field of 
computer science. The second chapter introduces a formal notation 
for the precise specification of the syntax of programming languages. 
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2. Introduction to Programming 
Chapters 3 to 10 introduce the classical programming concepts. Be
ginning with a sequence of statements and many simple and user
defined static types, these chapters move on to arm the reader with 
procedures, functions and modules to be able to correctly structure 
even complex problems. On completion of Chapter 10, the reader 
should be able to write many challenging programs. 

3. Advanced Programming 
Here we introduce a number of concepts that particularly support the 
development of program systems that need to react to ever changing 
sets of data. We present dynamic data structures as well as recur
sion at the algorithmic and data-structure level. The reader also be
comes familiar with persistent data and exception handling. Chapter 
13 treats object-oriented programming, which has conquered an ever 
growing share of the field of software system development. Another 
steadily rising field, parallel programming, highlights Chapter 16. 

4. Appendices 
Through the appendices we have striven to ease the task of Modula-3 
programming. Appendix A describes a complete non-trivial program 
to manage music CD's. Appendix B, intended as a reference for the 
pros, offers a complete but very compact description of the semantics 
of Modula-3. It is a reprint of the original Modula-3 language defini
tion [CDG+S9]. Further appendices describe the most important in
terfaces to the Modula-3 development environment and provide con
cise descriptions of various such environments. The appendices also 
include detailed instructions on installing and configuring a Modula-3 
development environment and the software included with this book. 

5. Included Software 
All examples in the book have been tested. They are either executable 
themselves or parts of executable programs. We provide these to the 
reader at no charge. All Modula-3 programs (including the Modula-3 
compiler) can be started from an integrated, interactive, user-friendly 
environment. 
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Chapter 1 

What is programming? 

1.1 An informal introduction 

The question seems superfluous: Programming means writing programs, 
right? But what are programs? In essence, programs contain a sequence of 
instructions that produce desired behavior on a computer. This still sounds 
simple. Does this mean that programming is also simple? Unfortunately, 
we cannot answer this question in the affirmative just like that. 

Just what is the difficulty in programming? We can most readily formu
late it as follows: Programming is difficult because humans are so intelli
gent and computers so unintelligent. As a result, there seems to be a gen
eral difficulty in issuing instructions: If we try to issue instructions to an 
intelligent being, we encounter the problem that the affected being might 
not agree with our intentions - precisely because the being is intelligent. 
If we issue instructions to an unintelligent being (such as a computer), 
then we must assume that it does not even understand our instructions. If 
we want to assure that our instructions are actually and impeccably exe
cuted, then we must descend to the level of the unintelligent being. In other 
words, we must provide very precise specifications of our wishes, down to 
the last detail. And here we encounter the difficulty of programming: Hu
mans must communicate their wishes with unaccustomed precision, which 
more or less contradicts the very nature of most people. 

Does this make programming hopelessly formidable? This is not the 
case. As we shall see, people can learn to structure programs so system
atically that even a very complex set of instructions can be reduced to a 
comprehensible structure. Thus we can decompose our programs into cor
respondingly small and comprehensible units, allowing us always to con
centrate on the essential. 

Here the notation that we use is particularly important. We know 
that the ancient Greeks did not posses our modern mathematical notation 
[Co169]. Although they practiced mathematics on a very high level, their 
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computational skills were by no means as efficient as what we have to
day. (Perhaps efficiency was not even their goal, but that is another story.) 
For lack of adequate notation, they calculated in a way akin to when we 
do computations in our head today. The semiautomatic (and hence only 
semiconscious) calculations that we carry out with pencil and paper, e.g., 
when we multiply two larger numbers, was made possible only through the 
introduction of modern notation. 

1.1.1 Algorithms 

How we apply a set of exact rules, e.g., to multiply larger numbers, can also 
be termed algorithmic computation. 

I An algorithm is a precise, unambiguous specification of a finite, effective 
procedure. 

But what does this statement mean? Let us first clarify some of the 
terms. 

• The essence of a procedure is that it can be executed stepwise - by a 
human or even a machine . 

• Finite has dual meaning: First, the description of an algorithm must 
be finite. Second, its execution must be finite; i.e., it must terminate 
at some time. 

You might wonder why it is necessary to require that a description 
must be finite. You might assert that an endless description cannot 
be produced anyway; that would require endlessly long paper! This 
is not the case. A description might contain a loop, e.g., from which 
there is no exit. 

A student once behaved very conspicuously during a written exam
ination until the examiner finally approached him and found a sus
picious paper on his desk. The following words were written on the 
paper: "Perpetuum mobile - description on the reverse side". The 
examiner turned the paper over to find the words: "Perpetuum mo
bile - description on the reverse side". This is not an algorithm (un
fortunately, or we would have implemented the perpetuum mobile). 
Neither the description nor the procedure terminates. 

In the following example the description terminates, but the proce
dure does not always terminate. We give someone instructions on 
how to find the way out of a systematically structured labyrinth: 

"Go to the first possible branch. If it goes left, follow it. 
Otherwise continue straight. Keep going straight until you 
reach a T-junction and then take a right turn there. 
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Repeat the whole procedure until you see the light. If you 
reach a dead end, then turn around and continue as though 
the interruption had not occurred." 

3 

Whether this procedure terminates depends on the labyrinth. If it 
has no exit, the procedure does not terminate. Hence this is no al
gorithm. Since in computer science inexhaustibly looping procedures 
are often very important, they are sometimes called nonterminating 
algorithms. 

• Effective means that the algorithm actually has an effect, returns a 
result. Some twenty years ago, when computer time was very ex
pensive, a good friend of one of the authors wrote an excellent pro
gram that carried out important computations with utmost precision. 
The program ran a whole weekend around the clock. However, the 
programmer forgot to write the output instructions that would have 
printed the results. This was not exactly effective, and his boss was 
not at all pleased. 

Effectiveness is closely related to finiteness: An endless function cer
tainly does not return a result. However, it can have an effect, a side 
effect. If the author of the above program had forgotten the instruc
tions that terminate the program instead of the output instructions, 
then the program would have been very effective, exhausting all the 
paper in the printer, yet without a result. His boss would have been 
no more pleased in this case. 

• Unambiguous means that with every step the executing agent knows 
exactly what is to be done and always has exactly one next step. When 
the Oracle of Delphi tells me, "Know thyself", then this is certainly 
great wisdom, but not unambiguous and hence no algorithm. There 
is no unambiguous procedure for this purpose. Probably there can 
be no such procedure, for while I try to know myself, I change as a 
consequence of the search. Perhaps this is exactly the purpose of the 
instruction. 

• The meaning of precise naturally depends on the receiver of our in
structions. For example, we might request of a high school graduate, 
"Please tell us how many months you have lived." Although we have 
formulated the task with sufficient precision, we have said nothing 
about the procedure. In such a case we have formulated only the 
function, but not the algorithm. By contrast, we could say, "Multiply 
your age in years by the number of months in a year and add to that 
the number of months that have elapsed since your last birthday." 
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Here the procedure (the algorithm) for how to proceed is also formu
lated precisely. Yet if we confront a computer, such a formulation in 
everyday language would lack sufficient precision. 

There have been efforts in the realm of artificial intelligence to make 
computers "intelligent" enough to execute such instructions formu
lated in human language. We do not treat this research here. 

This brings us to the point where we inevitably need to turn to the sub
ject of computers. Above we defamed computers as unintelligent beings. 
Why? Computers are praised as the most intelligent of machines! Com
puters actually do enjoy a unique position among machines because they 
possess amazing flexibility. Consider one of the most wonderful machines, 
the clock. The clock has a well defined function for which it can be used. 
It can tell us what time it is, but nothing more. Somewhat more flexible 
devices do exist. A table, e.g., permits us to store a variety of things on it 
(although not everything). Despite the endless variety of applications for 
tables, their function remains clearly defined and restricted. 

1.1.2 Switches and symbols 

Let us illustrate the flexibility ofthe computer with the following compari
son. Take a simple light switch; its function is very much restricted in that 
it turns a light on or off. Now imagine a light switch that is not connected 
to a light. If we assign some arbitrary meaning to the up and down po
sitions (states), then we can employ it for various functions. For example, 
we could make an agreement with our children: "If the switch is up, then 
please do not disturb me. If it is down, we can go out and play." We could 
invent any number of such interpretations. And if a single switch does not 
suffice, we can simply use more. 

We thus achieve enormous flexibility by liberating the switching func
tion to allow any assigned interpretation. For a wired light switch, its 
interpretation is inherent: up means a lighted room and down means dark 
(or vice versa). But severed from their usual function, these two states can 
mean anything. 

Actually a computer consists of nothing more than a vast number of 
(very fast, minute) switching elements. Part of these switches constitute 
the central processing unit (CPU, which consists of the arithmetic / logic 
unit (ALU) and the control unit) and the rest form the memory. 

The switching elements of the processing unit have predefined func
tions: The CPU can execute a set of predefined primitive instructions (in
cluding, e.g., addition of two numbers according to a specified algorithm). 
The CPU is the active element, or the engine of a computer. 
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The switching elements of the memory unit can again be classified into 
two parts: the program region and the data region. 

Programs employ the instructions of the CPU to describe certain behav
ior. Ifwe liken the CPU to the engine of an automobile, then the program is 
the map that guides us to various destinations. The execution of a program 
corresponds to a specific excursion. To carry out a given trip, the driver 
must interpret this map. Similarly, the CPU interprets the instructions of 
a program. (Here we neglect the fact that humans generally interpret more 
intelligently than computers: A quick glimpse at the map might suffice for 
a human, while the CPU must process the instructions step by step.) 

The engine (CPU) for a certain automobile (computer) remains the same. 
However, the map (program) can change any number of times as new maps 
become necessary for new destinations. Also, a specific route (program ex
ecution) can be repeated any number of times. 

The instructions of a program relate to data in the same memory unit 
(called working storage or main memory). This means that every execution 
of a program with different data can produce somewhat different results. 
For example, if we write a program to determine the arithmetic mean of 
two numbers, then the program should return 3 for 2 and 4, and for 10 
and 20 the result would be 15. Or, to continue the auto simile, we could 
consider the state of traffic lights, other automobiles, and the streets to be 
traveled as our data. The traffic situation changes with each trip. 

Our data comprise a set of possible states, the state space. We usu
ally perceive this state space as consisting of smaller state units - state 
variables. Each such unit represents one dimension in this hypothetical 
space. Each traffic light, for example, has its possible states (red, amber 
and green), and ten traffic lights form a ten-dimensional state space. 

At any given time, the state space has a certain configuration (the cur
rent state of the lights) which represents the current state. For example, if 
our data region consists oftwo switches, then the total state space contains 
four possible configurations: both up, both down, the first down and the 
second up, and the first up and the second down. 

The alert reader might ask what the current state is if we are just 
in the process of toggling a switch. Obviously we need to introduce 
infinitely many intermediate states in order to be able to do justice 
to the process of switching itself To avoid this, we prefer to refine our 
statement that the state space has a certain configuration at any given 
time. At any moment only means at any moment when the switching 
elements have fixed their states. In the interim periods, when the state 
space is in the process of changing from one state to the other, we will 
simply look the other way. 

We identify state variables by name or by address. We call the contents of 
a state variable (a concrete configuration of a smaller state unit) its value. 
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Figure 1.1: Turing machine 

As indicated, these values can represent, or symbolize, anything. Therefore 
computers are often called symbol-manipulating machines. 

If we view all of memory as one unit, then we can say that during the 
execution of a program computers can change their own state space auto
matically - either in an endless loop or until some point is reached that 
is regarded as end state or termination state. Hence computers are often 
called automata. The name automobile reflects the fact that the vehicle 
propels itself as a horseless carriage. Because the computer controls it
self, a computer resembles an automobile that reads maps itself, selects 
and drives the route independently, and eventually even controls the traf
fic lights as well. (Perhaps the future will offer such automobiles.) 

Before examining the architecture of modern computers in more detail, 
we should ask what all a computer can compute. 

1.1.3 Turing machine 

In his famous paper [Tur36] Alan Turing developed a hypothetical com
puter that could do the following (Figure 1.1): 

• Read symbols from a tape of infinite length where at least two differ
ent symbol values must be possible, e.g., 0 and 1. 

• Replace an existing value with a new one. 

• Move the tape left or right. 

• Make a transition to a new state based on the existing state and the 
value that was read. 

The machine begins at a certain position on a tape that contains the input. 
The machine's respective action depends on the input symbol at this loca
tion and on the current state of the machine itself The machine has only 
a fixed number of states between which it can change back and forth (de
pending on the contents of the tape). With every state transition, it writes 
a new symbol onto the tape (i.e., at every processing step), and the tape is 
moved on. The action might also be to stop the tape and thus the machine; 
the tape content at this time represents the result. 
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Figure 1.2: Computability 

The interpretation, i.e., the specification of which symbol triggers the 
writing of which new symbol and which movement, is stored on the same 
tape (expressed with similar symbols), e.g., by storing state numbers. Thus 
one tape (we could call it a program) can turn the machine into an adding 
machine, while another tape makes the same machine a prime number 
generator, and so on. 

Naturally the Turing machine is no real computer; it is a mathematical 
abstraction that requires in-depth study to understand it in full [Tur36, 
Hop79]. It represents the first successful attempt to formalize the term 
computability. 

1.1.4 Computability 

As unlikely as it might seem, this apparently simple machine can, in all 
probability, compute everything that is computable. We add the constraint 
"in all probability" because this hypothesis, made by Alonso Church, has 
yet to be proven or refuted. The constraint "that is computable" indicates 
that by no means everything is computable. This even applies in mathe
matics, where we might expect otherwise. Many scientists, beginning with 
Kurt Godel, have proven this. We can even say that more things are un
computable than are computable. 

Even such a "simple" function as one that can decide whether arbitrary 
functions always terminate cannot be computed. For if we had such a 
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function h, then we could define another function h that terminates 
precisely and exclusively at that point when h claims that h does not 
terminate. Now if we ask h whether h terminates, then either h 
responds in the affirmative - in which case h does not terminate - or 
vice versa. This is quite amazing, isn't it? 

The number of uncomputable functions is non-enumerably infinite, 
while the number of computable functions is "only" enumerably in
finite [Hop79]. And this does not encompass what is uncomputable 
outside of mathematics. 

Furthermore, many computable functions can only be computed very inef
ficiently. The time required to compute many functions rises exponentially 
(e.g., by a power of two) with the size of the problem. Assuming that a 
function requires 4 time units for 2 data values, then 3 data values would 
escalate the time to 8, and 4 values would demand 16. For 10 data values 
the function exceeds 1000 time units. Although such functions might be 
theoretically computable, in practical terms they prove impossible to pro
cess for larger problems. Problems that we handle as programmers must 
be not only finite but also efficiently computable (Figure 1.2). 

This indicates that the domain of programming is definitely restricted. 
This needs to be stated at the beginning of an introductory textbook to 
programming. Still, we hope that this realization will not deflate anyone's 
motivation to learn programming. The use of computers makes it possi
ble to produce many things to make one's own life and others' lives easier. 
However, when the computer is applied to domains that are principally un
computable, this application becomes senseless and even damaging. Most 
domains of human life are uncomputable - and they should not be made 
computable by force. Nothing is more boring than a conversation in which 
we always know what the partner will say next. On the other hand, nothing 
can be finer than a conversation in which the participants grace each other 
with new, unexpected ideas. The experience is intensified if we ourselves 
give birth to new ideas. The value of human life is its very uncomputability 
(whereby we do not mean hysteria). 

The difference between medication and poison often depends on the 
dose. The same applies to the application of computers. People who study 
computer science should be aware of this fact in order to be able to promote 
the reasonable use of computers and to prevent their senseless application. 

"A machine only becomes useful when it has grown independent of the 
knowledge that led to its discovery," Dtirrenmatt stated ironically in his 
drama The Physicists. And he draws the consequences: "Hence today any 
fool can make a light bulb glow - or an atomic bomb explode." We hope that 
our book will help to foster the reader's capability to understand both the 
power and the limits of programming. 
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Figure 1.3: Structure of a computer 

1.2 The von Neumann computer 

Alan Turing's computer was never built in the form described above (page 
6) (for one reason because a tape of infinite length proves rather difficult 
to realize). The first modern computers that appeared in the late 1940s 
had a somewhat different architecture. The classical von Neumann com
puter (see Figure 1.31), named after the Hungarian-American mathemati
cian John von Neumann consisted of: 

• Memory 

• Central processing unit or CPU (= arithmeticllogical unit (ALU) + 
control unit) 

• Input and output units (lIO) 

The memory can represent any state space, and it can be modified arbitrar
ily. This memory is divided into memory cells (also called words), which can 
be addressed individually. 

The memory cells consist of smaller atomic units called bits. A bit cor
responds to a single switch and can have two states, which are represented 

IThe original von Neumann architecture had no bus, but all modern computers do have 
a bus system. 
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as 0 and 1. The bit is the smallest unit of representation in the binary 
number system [AU92]. Eight bits combine to form a byte. Most modern 
computers employ memory words that consist of 32 or 64 bits (i.e., 4 or 8 
bytes). 

The computer depicted in Figure 1.3 functions as follows: From an in
put unit we load an initializing state into memory. Part ofthis state (the 
program) remains unchanged in storage as long as the instructions that 
it specifies are being executed. Another part of the state, the data, can 
be changed. The execution is governed by the CPU, which interprets the 
program's instructions sequentially. 

Ifthe CPU encounters an instruction, e.g., which tells it to add the data 
located at addresses 100 and 200, then it loads the operands into its inter
nal registers, carries out the addition, and stores the result in an internal 
register. Then the CPU processes the next instruction, which might tell 
it, e.g., to write the result of the previous addition to address 300 of mem
ory. Instructions are carried out in this way until the CPU encounters a 
halt instruction. The intriguing aspect is that the program and its data 
are accommodated in the same memory. Hence we can imagine programs 
that process other programs (or even themselves) as data. Here we begin 
to perceive an exciting flexibility. 

"This idea often scared me in the beginning," stated Konrad Zuse 
[Zus92l, the designer of one of the first - if not the very first - modern 
computers. "Because until then with the computers Zl-Z4 one could under
stand what was going on. You could even follow the calculations. In the 
moment that I allowed the computed data to influence the program - for 
that only a small wire connection the arithmetic unit and the stored pro
gram is required - I could no longer monitor the calculations. I had a lot 
of respect for that little wire, because I felt as soon as this wire is there, 
Mephisto stands behind me. ... With it a programmer can do the most 
amazing things." 

Note here that in this context Zuse did not mean exactly the same 
thing with "stored program" as we understand today. He meant in 
particular the ability to recompute the addresses (or indices) of the 
data, which he considered to be a program modifidation. 

The programs ofa von Neumann computer consist of the basic instructions 
of the computing machine. The most important of such instructions are: 

• Simple arithmetic operations (such as addition and multiplication) 

• Logical operations (such as comparison) 
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• Assignments (where one storage cell accepts the state value of an
other) 

• Conditional and unconditional branches (the condition usually being 
the result of the preceding operation) 

The architecture of the von Neumann computer is very powerful, almost as 
powerful as the Turing machine. However, there are important differences: 

• Storage is finite for the von Neumann computer. 

• The von Neumann computer has a general concept of input/output, 
which enables communication with the user. 

• Von Neumann computers are relatively easy and efficient to imple
ment. 

• More important (at least from the viewpoint of programmers) is that 
the von Neumann is relatively easy to program - even though pro
gramming in the early years ofthe computer (the 1950s) in retrospect 
seems unbelievably difficult, inefficient and especially error-prone. 

Ifwe try to employ a Turing machine to program even simple mathematical 
functions (i.e., to translate them into the basic instructions of the Turing 
machine), we find that this soon becomes quite cumbersome and clumsy. 

1.3 Rigid thought structures 

The instructions of a von Neumann machine more closely resemble human 
thinking. This is no wonder, as they were derived from thought structures. 
We can program a von Neumann computer with such instructions as: 

Instruction i1: 
Take a symbol x and compare it with a symbol y. 

If they are equal, jump to instruction i2; else jump to instruction i3 

Instruction i2: 

Instruction i3: 

The actual notation that must be used is not as relaxed as in our example. 
We show the actu':ll appearance of such a program later. 

The basic arithmetic operations (addition, multiplication) and predicate 
logic (negation, conjunction, disjunction) are fundamental elements of the 
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instruction set. The basic structure of programs is essentially based on 
such constructs as: "if ... then ... " and "repeat ... until ... ". These constructs 
reflect certain thought patterns. 

It is noteworthy that these rigid thought structures are stored in the 
computer independently of the respective content. We must emphasize 
that it is by no means as self-evident as it might seem to be able to store 
thought structures. This requires that humans formulate these structures 
abstractly and independently of the content. This in turn requires the ca
pacity of humans to observe their own thinking process, yet this contains a 
fundamental contradiction [Kiih84, Kiih90]. We can observe our thinking 
only with our thinking itself - no other tool is available. How can thinking 
observe itself? When we attempt such observation, then we note that the 
observing thinking always comes too late - thoughts are already present. 
Thinking cannot grasp the process of thinking. However, it can apparently 
observe its own past. Once the thought is there, we can observe it in terms 
of both content and structure. Hence thinking seems to be occurring in at 
least two dimensions: in the present, where it is currently active, and in 
the past, where what has been thought becomes conscious and observable 
from the perspective of the present. 

This leaves the question of why the present dimension escapes observa
tion. It would be a contradiction to say that such observation is principally 
impossible. First, we cannot doubt the existence of the present because the 
past could not exist without a corresponding, preceding present. Second, 
we cannot principally preclude the possibility of observing something that 
surely exists - to make a certain statement in that direction would require 
already having observed it. Hence we are confronted with a practical im
pediment: Our attention does not suffice to consciously grasp the presence 
ofthinking - actually our own present. Our attention remains dark at first, 
and the light of consciousness always comes too late and shines on the al
ready frozen dimension of the past. Therefore many thinkers doubt the 
existence ofthis present and try to derive the origin of thinking from some
thing beyond thinking, such as from philosophical matter or the collective 
unconscwus. 

Consider, however, that the process-oriented, present form of thinking 
cannot be darker than the light of consciousness - indeed, it could be that 
this light is so bright that it blinds us at first. The results of thinking -
our own thoughts - are clear to us, which is the only thing that is really 
clear to us. Thus the origin, the source of thinking cannot be principally 
unclear, unapproachable, incomprehensible. We cannot trace thinking to 
something that is principally incomprehensible. The "darkness" of philo
sophical matter or of the collective unconscious is principal in nature (so 
defined), while the darkness of present thinking is only practical. People 
cannot think something that they do not understand themselves. (They 
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can say things that they do not understand, but that is another matter.) In 
order to cast our own light on the moment of origin of understanding, we 
would have to remove practical impediments. 

These practical impediments consist of the weakness of our attentive
ness. This is reflected in the fact that our attentiveness is too weak, too 
scattered to stick to a specific subject for an arbitrarily long time. Normally 
even a short time proves impossible; our attention is quickly diverted. In 
order to bear its own presence in its living, process-oriented character, our 
attentiveness would have to be much stronger. Enhancing our attentive
ness and thus leading it to its own present dimension - to our own present 
dimension - could be achieved nowadays by any halfway healthy person by 
practice. Whether we do this is a matter of free choice. In A Guide for the 
Perplexed [Sch78] E. F. Schumacher writes that today's humanity and to
day's science have lost their vertical component. Finding it again is within 
the realm of free choice. 

The usual form of thinking known today is thus perhaps not its final 
form - and probably not the first. Small children apparently have a con
sciousness different from that of adults. Likewise earlier humankind also 
seems to have had a different, more "archaic" consciousness that encom
passed different abilities, different qualities [Kuh84, Kuh90]. The ancient 
Greeks were excellent mathematicians, but they did not invent the com
puter. They also did not compute as efficiently as we do. Instead, they ex
perienced the qualities of numbers; e.g., for Pythagoras mathematics had 
the character of a cult or religion. The history of mathematics bears wit
ness to an ever increasing ability to abstract [Co169], always associated 
with the loss of certain other qualities. The computer appears at a certain 
phase of our development in which the ability to abstract has reached its 
highest level and is also generally accessible. 

Computers can store rigid thought structures and thus simulate intel
ligent behavior. They can effectively emulate the past dimension of in
telligence, which is the mechanics that have loosed themselves from the 
process. However, this is not intelligence, for computers lack at least two 
fundamental features of intelligence: 

1. The ability to produce new ideas 

2. The capacity to make free decisions 

The "intelligence" of a computer always derives from human intelligence 
and cannot regenerate itself [Bos89]. In response to the frequent ques
tion of whether a computer can emulate human behavior such as human 
thinking, we can respond: In its highest forms, as when we discover some
thing new, certainly not. However, we humans can become so mechanical 
and schematic in our thinking and behavior that little difference remains 
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between us and a computer. Yet even at our worst we have the potential 
to free ourselves from such automation and to direct our intellect in com
pletely new directions. 

1.4 Programming in the small 

For the programmer the most important consequence of the above consid
erations is that programming, viewed very generally, is nothing more than 
the translation of ideas into an unusually precise form. The programmer 
must cast human concepts into the mold prescribed by the structure of the 
computer. 

This general definition of programming takes on a broad variety of con
crete forms. In computer science much effort was expended to make this 
translation easier through the development of both methods, and program
ming languages. 

1.4.1 Software production methods 

Let us first define the scope of the term programming as we employ it in 
this book. We shall outline the phases in the development of an idea to a 
complete program, indeed to a program system, or software system. 

Conception of an idea 

First an idea emerges on the part of us or our client. We first need to 
examine whether this problem lends itself to solution by computer. If the 
problem is principally uncomputable, then we must forsake our search for 
a computer solution. Of course, this basic uncomputability might only arise 
later. We might also find that the problem could be solved by computer, but 
we decide that we prefer not to solve it, e.g., because the solution would 
cause harm to persons. In this case we should also abandon our search for 
a solution. 

This aspect was addressed as follows by J. Weizenbaum in a lecture 
in Budapest. If you go to a doctor and ask to have a finger removed, the 
doctor would certainly ask why. If you respond that your head hurts, then 
the doctor will surely want to examine you for the cause of your headache. 
By contrast, if a client approaches a software developer with the request 
to produce software to compute the ballistic trajectory of objects with high 
precision, then the software developer normally only asks when the client 
needs it and how much the client is willing to pay. It would be better if the 
software developer would also first ask why. If the client expresses a desire 
to improve a weapons system to finally obliterate a neighboring country 
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from the face of the earth, then the technical problem becomes a complex 
social and moral problem that cannot be solved at a technical level. 

In the absence of such impediments, we can advance to the next phase. 

Analysis 

The fundamental question is: What are the actual requirements? Fre
quently a client can only formulate wishes very vaguely, such as an im
provement in bookkeeping or increased productivity in the company's man
ufacturing. These are admirable wishes, but they do not suffice to derive 
a program. We need to study the complete production process and formu
late the rough requirement in the form of a number of smaller constituent 
requirements. We need to localize bottlenecks where we can employ auto
matic controls to achieve improvements. However, we must note that a 
local optimization can have unexpected negative side effects on the over
all system: For example, the bottleneck might move from the improved 
production station to its successor, which might be overwhelmed by the 
improvement. 

A client might also approach a software developer with a very specific 
wish: Produce software that does this and that. In such a case the de
veloper should also ask why. One of the authors of this book was once 
contracted to produce software to implement a certain communication pro
tocol. The work would have easily taken a year. But the author first de
termined the actual requirement behind the wish. The result was that the 
client did not need the new software at all, and the requirements could be 
met by slight adaptation of existing software within two days. 

In summary, in this phase we analyze the problem to be solved, at first 
completely independently ofthe details ofthe final the solution. 

Specification 

Once we have understood the problem in detail, we derive a number of spe
cific requirements. Now we are able to say exactly what we want to achieve. 
We formulate our problem solution as a (possibly very large) set of sub
functions. We normally describe such a subfunction by specifYing possible 
input data (parameters) of a function and stating which results (output) the 
function should produce. Furthermore, we specifY the conditions that the 
inputs and outputs must fulfill. Outputs of subfunctions serve as inputs for 
other functions. Since it is difficult to assure that the set of outputs of one 
function are compatible with the set of inputs of the next, we can employ 
computer-aided tools and dedicated specification languages[PST91j. 

This phase usually overlaps chronologically with the preceding phase. 
The result is a document that should contain all components to be realized. 
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Design 

This phase produces a detailed plan for the solution of the of the specified 
problem. Here is where we begin to consider how to solve the problem. 
This plan should remain as independent as possible of concrete implemen
tation details, but we do need to consider the requirements on the computer 
system. From the data set, the functions, and the nature of utilization (e.g., 
around the clock, once daily, once annually; by a certain client, by many 
clients, etc.) we can determine the necessary capacity, performance and 
security of the computer system. Which specific type of computer affords 
these features should not affect the design in this phase. The costs of the 
solution must be compatible with the client's budget. 

Implementation 

Now the design is translated into a form that the computer can process. 
Here we might first check which software components are already available 
(either from the client or from third-party vendors); these can be reused, 
perhaps in modified form. Reuse is possible already during specification or 
design; reuse is still practiced seldom, yet increasingly. 

The missing components must be programmed. The actual program
ming occurs rather late in the software life cycle[Som92], and it is fre
quently a smaller part of the time investment. This is a general rule which 
- like all rules - does not always apply. The individual components must 
be validated: We must be convinced of their correctness. This can occur 
via formal methods (the proof of a software component similar to a math
ematical theorem), or by thorough testing (to determine how the software 
reacts to certain typical and atypical inputs). We are best advised to use a 
reasonable com bination of both approaches. 

Integration and testing 

The individual components must be synthesized and the overall system 
must be tested. An important quality attribute of the design, as well as of 
the software tools employed, is whether this step is easy or - as so often 
happens - it becomes hopelessly complex. In the latter case we would need 
to begin a redesign - or we put poor software on the market, which certainly 
has been known to happen. 

Installation and maintenance 

Last but not least, the software is installed for use. It begins a second 
life: Software must often be maintained over years or decades. For poorly 
planned projects, the errors begin to emerge here. Either some detail fails 
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to work that was not detected during implementation, or something has 
been omitted. Now the nature of the errors determines the consequences: 
If the analysis was sloppy, this might now necessitate rethinking and re
designing large parts of the software system. The farther back in the de
velopment process that an error occurred, the more difficult and expensive 
is the remedy. 

Detected errors and new wishes need to be handled continuously. Al
most never are programs written once and then put into service without 
modification. Particularly the design ofthe system must thus pay attention 
to modifiability. Typical modifications include extensions and adaptations 
to newly purchased hardware. 

Top-down and bottom-up 

The distinction between the development phases is not always clear, and 
we sometimes need to repeat certain phases. The method outlined here 
is only one of many possibilities for carrying out a software project. It 
basically represents a top-down approach: First we view the whole, de
compose and refine it, and then sequentially solve the subproblems. The 
opposite direction, a bottom-up approach, means obtaining or construct
ing functional components that can hopefully combine to a useful whole. 
For certain problems this proves quite practical: If we have a store of pre
fabricated parts, we can sometimes simply assemble them. This requires 
that we can slightly modify the problem to be solved so that it matches 
our available parts. (For more about the software development process, see 
[Som92]). 

We could say that the top-down method puts analysts and designers 
in a "divine" position: They attempt to create a world from above. The 
opposite approach (bottom-up) in its extreme form regards the world 
from an ant's perspective, seeing only the details and hoping that they 
fit together to a whole. As in the Indian saying where different people 
are confronted with different parts of an elephant's body - one hold
ing the tail, another the trunk, the third a leg - each individual is 
convinced that elephants look like what they are perceiving. 

1.4.2 Writing simple programs 

This book concentrates primarily on the production of relatively simple pro
grams where at least the specifications are already available. Design and 
validation will usually be quite simple. Hence this book is restricted to pro
gramming in the small. Our primary concern will be devising algorithms 
and corresponding data structures for given problems. Thereby we further 
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restrict the yet too general definition of programming. We define programs 
according to Niklaus Wirth as follows: 

I Programs consist of data structures and the algorithms that operate on 
them. 

The restriction to programming in the small does not mean that we 
want to develop our programs ad hoc. Quite the contrary: 

I We shall practice in the small how to design programs systematically and 
with good style. 

Good style in this context has less to do with aesthetics, but is a quality 
attribute that is most difficult to define. A program reflects good style if it 
is structured comprehensibly and economically. In the words of E.F. Schu
macher, "Small is beautiful" [Sch89]. This applies even if the scope ofthe 
problem is quite large: We must particularly assure that large problems 
are decomposed into multiple smaller ones and that the overall structure 
ofthe solution as a whole remains comprehensible. We adapt Schumacher's 
quotation for the purposes of this book: "Clear is beautiful." This principle 
will payoff in the development of large software systems! 

1.5 Levels of programming 

1.5.1 Formal and human languages 

Programming today differs radically from that of the early days of the com
puter in the 1950s due to the introduction of various formal languages. For
mal languages used for programming are called programming languages. 
Their purpose is to make programming easier, more efficient and especially 
more secure (less error-prone). 

Note that the expression formal language (and the derived expression 
programming language) can be confusing because it gives the impression 
of affinity to human languages. In part they were actually derived from 
the observation of human languages by researchers such as N. Chomsky. 
Formal languages also have an alphabet (the set of characters that may 
appear), a syntax (a set of rules that govern correct sentence formation) and 
semantics (rules that attempt to distinguish meaningful from meaningless 
sentences). However, there are fundamental differences. 

The rules of formal languages - similar to those of a game - are deter
mined in advance. Before playing chess, we must study the rules. In the 
immensely more complex "game oflanguage", as Ludwig Wittgenstein calls 
it, we participate before we learn any rules. The rules of human languages 
are determined along the way. Not a single human language possesses a 
complete grammar, and the usage of human grammars is unconscious (or 
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what terms superconscious [Kiih90]). A small child of five or so can usually 
speak its native language(s) perfectly (is competent, in Chomsky's terms). 
But the child has no idea of grammar and is not even aware of its existence. 
With formal languages the opposite is true. Here the alphabet, syntax and 
semantics, all rules, are determined in advance. Using a formal language 
requires (especially at first, similar to learning a foreign language) that 
these rules be applied very consciously. 

Furthermore, human languages are inherently ambiguous - otherwise 
there would be no poetry, no puns or other humor. The purpose of for
mal languages, and so of programming languages, is that their grammar 
is specified unambiguously. Although some formal languages fail to ful
fill this requirement, we consider this their shortcoming rather than some 
enrichment. The requirement of freedom from ambiguity again shows the 
fundamental difficulty of programming: In human communication, ambi
guity can often be the most important component (imagine the intolerable 
poverty of life without poetry and humor). Yet communication with the 
computer demands unambiguity. Although unambiguity is often required 
in human spheres as well, it is never completely achieved there, not even 
in the military. 

However, there are significant commonalities between good program
ming languages and human languages. A true wonder oflinguistics is that 
children learn their native language from surprisingly little data. A great 
deal can be guessed - even if some errors occur in the process. This is pos
sible because hunlan languages, despite all exceptions, are as consistent as 
from a casting. Good programming languages are also consistent in this 
sense - seeing a given property, we can, with a certain level of experience, 
infer another. Still, we discourage this approach to learning a program
ming language and suggest instead a systematic method, whereby theoret
ical considerations should always precede trial and error! With chess it is 
also better to learn the rules first, then perhaps some methods ofthe grand 
masters; only later can one develop into a real chess player. Simply trying 
aimlessly quickly exhausts a partner's patience. The computer is more pa
tient in this sense, but observe that we also write our programs for people, 
usually other people. 

For human languages we have deliberately avoided the widespread ex
pression natural language. We consider human languages far from natu
ral. This is reflected in the fact that they are not inherited. A baby can 
learn any language as its native language. If a child grows up without a 
human environment, it does not learn to speak - it does not even walk up
right [Kuh90]. While a deaf dog barks exactly like other dogs, a deaf child 
does not automatically learn a language. This leads us to ask: If human 
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languages are neither artificial (like formal languages) nor natural (like 
dog barking), where do they come from? We leave this question open as a 
stimulus. 

1.5.2 Assembler 

Above we mentioned the programming style of the pioneering period of 
computing. Today we call this style low-level programming, or program
ming close to machine level. At the lowest level of programming the basic 
instructions of the computer and the addresses of the data are mapped, or 
coded, directly onto the internal switching elements ofthe computer. Such 
programs are only sequences of numbers or codes. This is the level of ma
chine language or machine code. 

The next step is known as assembly language, or assembler, where the 
basic instructions can be specified in the form of short, easy-to-remember 
names. Also, the data addresses need not be written directly; instead, the 
programmer uses short, symbolic names (as is the practice in mathemat
ics), which are automatically mapped onto concrete addresses by the pro
gram translator (the assembler). This programming style dominated pro
gramming for decades. Although its importance has declined over time, it 
will likely remain necessary for certain purposes. 

The following is the short program segment that was loosely formulated 
on page 11, here in a typical assembler notation: 

i1: LOAD X 

CMPy 
BEQi2 
BRAi3 

i2: 

i3: 

The first instruction loads the storage cell at address x into the central 
processor, into the accumulator register of the arithmeticllogic unit. The 
second instruction (where CMP means compare) compares the contents of 
the storage cell at address y with the value in the register. If the compar
ison indicates equality, control jumps to i2 (BEQ means branch on equal). 
Otherwise program flow continues at i3 (BRA stands for branch). Machine 
code would look even worse, consisting of nothing but a sequence of num
bers (binary numbers coded in octal or hexadecimal form - quite inhuman). 
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1.5.3 High-level programming languages 

Programming languages on a higher level of abstraction (high-level pro
gramming languages) afford more complex commands and data structures. 

Various taxonomies can be applied to high-level programming lan
guages. Some authors distinguish generations oflanguages. However, 
we do not discuss this further here. 

This book explains programming with the help of a new, modern program
ming language, the high-level programming language Modula-3 [Ne191, 
Har921. It was developed at the Systems Research Center (SRC) of Digital 
Equipment Corporation (DEC) in Palo Alto, California. The most impor
tant attributes of Modula-3 are: 

• It is an imperative programming language. 

• It has a secure type system. 

• It is a structured programming language. 

• It is object-oriented. 

Imperative programming languages 

Imperative programming languages focus on the algorithm. The program
mer must specifY the algorithm precisely (as in the example on page 3, 
where we specified the method for computing age in months: "Multiply 
your age in years by the number of months in a year ... "). The programming 
language offers many aids for expressing an algorithm, but the program
mer bears sole responsibility for the correctness of the algorithm itself 

A more than two decade old story tells of a fledgling computer user 
who complained indignantly to the system programming group of his 
computing center: The computer failed to give an error message when 
he erroneously entered the sine function in a formula instead of the co
sine! Even today such errors are seldom detected automatically. The 
computer can check whether sine is written correctly and whether the 
parameter values are in a permissible range, but not whether the pro
grammer meant to write sine. 

A fundamentally different approach (or paradigm) employs only functions. 
Here the user does not want to deal with memory and commands at either 
a low or high level, but simply enters mathematical functions in the usual 
form. With an adequately powerful function concept built particularly on 
recursion (see Chapter 2), this approach can actually be implemented. This 
paradigm is employed in functional programming languages. 
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The logical programming languages represent a different paradigm. 
Here the programmer must specifY initial statements and derivation rules 
so that the computer can automatically derive the correct consequences. 

We do not discuss the functional and logical paradigms further in this 
book. We refer interested readers to the literature (e.g., [WH83, CM81]). 

Imperative programming languages (often called procedural) are the 
oldest form and are particularly useful for an introduction because they 
require the programmer to express the algorithms explicitly. Functional 
and logical programming languages partially hide the inner behavior of the 
computer. Although this might often be useful, for a novice it is particularly 
important to become familiar with the details. 

The imperative programming languages have seen a very interesting 
development. The first such programming language, Fortran, (from 
Formula translator) made an important breakthrough at the end of the 
1950s. Fortran represented the first successful attempt at translating a 
formal notation that very much resembled the accustomed mathematical 
formulas, automatically and efficiently into machine language. This began 
a new dimension for programming because for the first time the program
mer was freed from many details of machine language and could better 
concentrate on the content ofthe algorithm. 

The programming language Cobol brought another development by en
abling easier expression of commercial applications rather than mathemat
ical formulas. Cobol emphasized such aspects as easy generation of format
ted tables. 

Mter the initial euphoria, difficulties soon emerged with the new lan
guages. They were not defined precisely enough. Furthermore, they con
tain a number of features that encourage certain programming errors and 
make them hard to detect. An attempt to build larger software systems 
with these languages soon reveals their drawbacks. 

This makes it all the more surprising that Fortran and Cobol are still 
so widespread today. These programming languages do not even rep
resent the technology of yesterday, but reach back even farther. The 
improvements made in these languages over the years have been cos
metic in nature and tend more to disguise the errors than to remedy 
them. Without a doubt, the most important reason for the longevity 
of these dinosaurs is the large installed base (estimated as hundreds 
of thousands of programs consisting of billions of lines of code). At 
any rate, universities have been responsible for assuring that develop
ment continues and that new and improved programming languages 
continue to gain acceptance. 
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Formally defined languages 

Such experience caused researchers to think about the precise specifica
tion of programming languages. This led to the Backus-Naur notation 
(presented in Chapter 2), which is a metalanguage (itself a formal lan
guage) that helps to specifY further formal languages. Naturally this only 
makes sense if the metalanguage is significantly simpler than the for
mal languages being described. Although Backus-Naur notation can de
scribe (without extreme complexity) only the syntax of a programming lan
guage, it still brought important quality improvements in programming 
languages. 

The language Algol-60 was the first programming language with a for
mally specified syntax, making its definition concise and unambiguous. 
Even today Algol-60 remains exemplary in many ways. For a long time Al
gol served as the publication language for precisely specifYing algorithms 
in scientific literature. Many other languages borrow from Algol-60 (the 
Algol family), e.g., Algol-68 and especially Pascal. 

The significant difference between Pascal and Algol-68 is not so 
much Pascal's introduction of new concepts, but rather its restraint in 
the use of new concepts, which enabled the realization of compilers for 
Pascal programs with comparably little effort. What is more impor
tant, this made it easier for a programmer to learn such a language 
and to completely master it. 

A strict type system: the Pascal family 

Pascal [Wir711 has itself become the progenitor of a series oflanguages (the 
Pascal family), such as Modula-2 [Wir82J, Oberon [WG92, RW92J, Oberon-
2 [Mos931 and the language used in this book, Modula-3 [NeI91, Har921. 
Pascal's most significant innovation over Algol-60 was that Pascal vested 
great importance not only in control structures but also in the design of 
data structures. 

Pascal was the first widespread language with a strict type system. On 
the one hand, this means (in simplified form) that for all data the program
mer must declare in advance the type - the permissible value range and the 
allowed operations. This enables the compiler to check the correct use of 
the data. It is no longer possible to add apples and oranges, as with earlier 
programming languages. This is an important example of how restriction 
can achieve increased security. On the other hand, Pascal compensates for 
this strictness by providing flexibility in the definition of new data types. 
In Pascal the programmer can define custom types beyond the predefined 
types built into the language. 
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Structured programming 

Modula-3 is a structured programming language. 
The theory of structured programming builds on the works of E.W. Di

jkstra and O. Dahl [Dij68a, DDH72]. We do not explain structured pro
gramming here, but do note that all languages of the Pascal family incor
porate this theory. We can summarize the essence of the theory by saying 
that it restricts programming to constructs that form closed and well un
derstood units. The advantage of this approach is that we can check the 
correctness of smaller components individually and then construct a larger 
system from such checked components. This requires rules of composition 
that assure that we do not destroy the already tested components during 
the synthesis. 

Structured programming languages provide special constructs, struc
tures, for structured programming. In Modula-3 the classical concepts of 
structured programming have attained a very high degree of maturity. 

Object orientation 

The newest members ofthe Pascal family - including Modula-3 - are object
oriented. Pascal recognized the importance of data structures and elevated 
the design of data structures to equal importance with control structures. 
Object-oriented programming languages go farther: They combine asso
ciated data structures and operations into a syntactic and semantic unit. 
Details of object-oriented programming are covered in Chapter 13. 

Note that in object-oriented programming languages a very important 
aspect of programming comes to light: modeling. Computers, as the name 
indicates, were originally conceived as computing machines. (To be more 
specific, during World War II the goal was to decode encrypted enemy mes
sages.) Due to their flexibility, computers are capable of representing ab
stract models of very different systems. Both the structure and the behav
ior of systems can be modeled on computers. Naturally the model must be 
conceived by humans, but just as models can be built from wood or plaster, 
they can be constructed as software. Object-oriented programming lan
guages provide especially expressive concepts for modeling the structure 
and behavior of systems. 

1.6 Programming and computer science 

Programming (in the restricted sense above) is only a modest aspect of 
computer science. Some use the term informatics nowadays instead of com
puter science to emphasize that this is a science with a spectrum that ex
tends beyond the computer itself While on the one hand increasingly many 
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people spend an increasing amount of time on a computer, the activity of 
many computer scientists is shifting to tasks (e.g., analysis, specification, 
etc.) that only indirectly involve a computer. You can study many aspects 
of computer science without ever having seen a computer. 

1.6.1 The responsibility of computer scientists 

Even programming does not necessarily require a computer. One of the 
most important computer scientists, Edsger W. Dijkstra, proposes a method 
[DFS88] by which programming should be learned as a purely mathemat
ical discipline, initially only with the help of pencil and paper (and think
ing, of course). The correctness of programs is not tested on a computer but 
verified by means of mathematical proof The underlying idea is that the 
programmer should learn to accept complete responsibility for the correct
ness of a program. The availability of (ever faster) computers creates an 
immense temptation to immediately test programs on the machine instead 
of thinking them through to the last detail. However, we can never exhaus
tively test a complex program. Testing helps us to detect a certain number 
of errors. Still, we can never preclude additional errors that were not de
tected during testing. Only careful thinking can give us greater certainty. 
Thinking is also error prone, for to err is human. Still, if we ourselves as 
authors of a programs cannot comprehend it, then how can we expect it to 
function properly as if by magic? 

Such a position would also be morally dubious. In a lecture in Zurich 
Edsger W. Dijkstra said: ''An adult with a healthy hand is responsible for 
his own handwriting." Likewise, authors are responsible for their own pro
grams and should not attempt to shift this responsibility to the computer. 

In this book we do not assume the computerless approach of Dijkstra. 
However, we do assume his position of moral responsibility. 



Chapter 2 

Metalanguages 

As stated in the introduction, the syntax of a formal language should be 
defined with the help of a simple metalanguage. The syntax specifies the 
rules for correct sentence construction. Human communication allows a 
great deal of liberty, but communication with a computer demands follow
ing strict rules. Yet if the rules themselves are defined imprecisely, this 
makes following them almost impossible. 

The lack of a formal definition of Fortran syntax actually created a 
great many difficulties in the construction ofthe first Fortran compiler. 

2.1 Definition of formal languages 

To start with an example, let us take a formal language, a notation familiar 
to everyone: the notation of arithmetic. We all know that arithmetic allows 
us to use numbers and symbols that stand for numbers. In addition, we 
can form arithmetic expressions with the help of operators. We know that 
a + b or (a + b) * (c - 2) are legal expressions!. Expressions like a + b * c 
and a * b / c are also legal, although it is not necessarily clear 

• Whether a + b * c should be interpreted as (a + b)e or as a + (be) -
that is, whether multiplication has higher precedence than addition, 
or vice versa, or whether they have equal precedence . 

• Whether a * b / c should be interpreted as ~ or as a%; that is, assum
ing that multiplication and division have equal precedence, as usual, 
whether evaluation is to proceed from left to right (left-associatively) 
or from right to left (right-associatively). Ifb is not divisible by c with
out a remainder, this makes a significant difference! 

IThe * character is used in computer science for multiplication. 
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We also understand that expressions such as a + * + b) and a + $% are 
incorrect. The assimilated rules that we apply in the evaluation of the 
correctness of such expressions are usually quite unconscious and incom
pletely formulated. Can we formulate these rules explicitly, concisely and 
unambiguously? For this purpose we introduce another formal language 
- a metalanguage - that serves to define other formal languages. Natu
rally it must be simpler (significantly simpler, if possible) than the formal 
languages that it is to define; otherwise we lose more than we gain. 

The first such formalism employed to define programming languages 
(for Algol-60 in 1960) was the Backus-Naur form (BNF). Later it experi
enced many extensions (extended Backus-Naur form EBNF). We first intro
duce the language scope of the original BNF; however, we use the notation 
of the newer and more widespread EBNF. We base our introduction to BNF 

on Methodology of Programming by Edsger W. Dijkstra and W. H. J. Feijen 
[DFS88]. 

The following symbols can occur in a BNF definition: 

• Symbols ofthe BNF itself, called metasymbols. 

• Symbols belonging to the language being defined. These are written 
in quotation marks ("). They stand for themselves alone; that is, they 
are utilized in the same form as they appear in the definition. 

• Names of syntactical units that are then themselves described with 
BNF rules. 

A BNF definition resembles a mathematical equation. To the left of the 
equal sign (=) we have the name ofthe syntactical unit to be defined (orig
inal BNF employed the symbol ::= to underscore the difference from the 
usual equal sign). At the right we have the symbols that define the syntac
tical units at the left. These can be any BNF symbols. The following rules 
apply: 

1. Two or more consecutive symbols (e.g., X y z) form a sequence that 
must appear in exactly the same order on application of the definition 
(x before y before z without omission). 

2. Two symbols separated by the metasymbol I designate alternatives 
from which to choose in applying the definition. Sequence binds stron
ger than the alternative; thus x y I z means that either xy or z is 
possible, but not xyz or xz. 

3. Definitions terminate with a period. 

This suffices for now in order to precisely define the syntax of quite complex 
formal languages. 
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2.2 Digits and numbers 

Our first example is the definition of digits: 

Digit = "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7" I "8" I "9" . 

This definition states that a digit consists of either a 0 or a 1 or a 2, etc. 
This was simple so far. Now let us define the syntax of a natural (non

negative) number. A number consists of any number of digits. Can we 
express this in BNF? We write as follows: 

NaturalNumber = Digit I Digit Digit I Digit Digit Digit. 

This allows precise definition of numbers under 1000. But how do we con
tinue? Since we could have infinitely long numbers, we would need to write 
the definition on endlessly long paper. Instead, we introduce new symbols, 
the curly braces { and }, as repetition symbols. Everything within { and} 
can be repeated any number of times (including zero). Now we can write: 

NaturalNumber = Digit {Digit} . 

This definition states that a number consists of at least one digit, followed 
by any number of additional digits. Note that the following definition would 
be incorrect because a number cannot consist of no digit at all: 

NaturalNumber = {Digit} . 

Introducing the braces is practical, but not absolutely necessary, to mas
ter the problem of infinite repetition. The following definition would also 
suffice: 

NaturalNumber = Digit I Digit NaturalNumber. 

Perhaps this looks curious. The same syntactical unit (NaturaINumber) ap
pears on both sides of the definition. Such definition, where one element 
is defined in part by itself, is called recursive. Can something be defined 
by itself? Certainly this alone does not suffice! Such a definition as the 
following is senseless: 

NaturalNumber = NaturalNumber. 

However, the unit to be defined can be included in its own definition. This 
allows us to express infinite definitions in finite (and usually very short) 
form. The above recursive definition states that a natural number consists 
of either a single digit or a digit followed by a natural number. This con
stituent natural number again consists of either a single digit or a digit 
followed by a natural number, and so on any number of times. At some 
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point, however, the first alternative (NaturalNumber = Digit) must apply so 
that the digit generation terminates. 

Any digit from 0 to 9 thus is a natural number itself (e.g., 2 is a natural 
number). If we write a digit in front of it, we still have a natural number 
(e.g., 62 is another natural number). Ifwe place another digit in front of 
this, we still have a natural number (e.g., 862), and so on. 

It should be clear that it does not matter whether we generate numbers 
by adding digits to the front or the back. Thus the following definition 
proves just as adequate: 

NaturalNumber = Digit I NaturalNumber Digit. 

2.3 Names 

Now let us approach the task of precisely defining the syntax of arithmetic 
expressions. In order to be able to use symbolic names (for variables) in 
addition to numbers, we need to define letters and names. 

Letter = "a" I "b" I ... I "z" I "A"I "8" I ... I "Z". 

The ellipsis (" ... ") serves as an abbreviation for an obvious case. To be 
absolutely precise, we would have to list all letters (which is no problem 
since their number is finite). The ellipsis spares us a bit of writing; it 
belongs neither to BNF nor to the notation we are defining. 

Our definition states that a letter can be any lower-case or upper-case 
character in the alphabet. We can further define a name (or identifier) 
following the pattern of the numbers. Let us begin as follows: 

Name = Digit I Name Digit I Letter I Name Letter. 

This definition states that a name consists of any sequence of letters and 
digits. This means that a 1, 1 a, x, and xyz as well as 1 and 625 are all 
valid names. However, this is inconvenient because we cannot distinguish 
numbers from names. 

Exact definition alone does not protect us from errors: Our definition 
provides a precise syntax, but falters semantically. It is not even in
herently incorrect, but only clashes with our definition of numbers. 

To solve this problem, most such grammars require that names begin with 
a letter, which can then be followed by digits and/or letters. Thus a1 would 
be valid, but not 1 a. 

Hence we must amend our definition slightly: 

Name = Letter I Name Letter I Name Digit. 
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This definition states that a name consists either of a single letter or a 
sequence of letters and/or digits beginning with a letter. A name must 
always begin with a letter. 

We could also express the definition of names without recursion with 
the help of braces: 

Name = Letter {Letter I Digit }. 

2.4 Arithmetic expressions 

Now we can define the syntax of arithmetic expressions. Arithmetic expres
sions consist of terms connected by additive operators. The terms contain 
factors bound by multiplicative operators. A factor can be a number, an 
identifier or an expression in parentheses. Our definition in BNF takes the 
following form: 

1 addop = "+" I "-" . 
2 mulop = "*" I "f' . 
3 Expression = Term I Expression addop Term. 
4 Term = Factor I Term mulop factor. 
5 Factor = NaturalNumber I Name I "(" Expression ")". 

Now let us examine the examples of incorrect expressions given on page 28: 
The expression a + * + b) is invalid because a term cannot begin with *. A + 
(an addop) must always be followed by a term (see rule 3). The expression 
a + $% is even easier to reject because the characters $ and % are not valid. 

What about the interpretation of a + b * c? Can our syntax answer 
this question? Does it express the precedence of operators? Which is the 
correct interpretation, (a + b)c or a + (bc)? Let us test this by deriving 
the expression from the rules according to both interpretations. For our 
derivation we assume that we have a valid expression and then attempt to 
replace the names of the syntactic units with the help of the rules until we 
reach the character string that we want to interpret, or until we fail. If we 
need to replace multiple names, we will always take the one at the extreme 
left. 

In the first case ((a + b)c) we could derive our expression from the defi
nition as follows: 

Expression -+ Term -+ Term mulop Factor -+ ? 

First we apply the first alternative of rule 3 (since we are striving for the 
interpretation (a + b)c, the second alternative does not apply). Then we 
choose the second alternative of rule 4 to represent our expression as a 
product. Here we reach a dead end because a + b is not a valid term. 
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Now let us try our derivation with the interpretation a + (bc): 

Expression ---+ Expression addop Term ---+ Term addop Term ---+ 
Factor addop Term ---+ Name addop Term ---+ a addop Term ---+ a 
+ Term ---+ a + Term mulop Factor ---+ a + Factor mulop Factor ---+ 
a + Name mulop Factor ---+ a + b mulop Factor ---+ a + b * Factor 
---+ a + b * Name ---+ a + b * c. 

With the second interpretation we have succeeded in finding a correspond
ing alternative of the definition to derive the expression a + b * c from the 
definition. On the basis ofthis example it seems that our formal definition 
also expresses the precedence of operators: The precedence of multiplica
tive operators is higher than that of additive operators. 

If we examine the expression syntax more closely, it becomes clear why 
this is so: In the second alternative of rule 3 we see that the additive op
erators can connect only whole expressions and terms. The multiplicative 
operations must already be combined as a term. 

Now let us consider the expression a * b / c. Do we interpret it as a~ 
or as !':!!.? The second alternative of rule 4 states that a term is always to 

c 
the left and a factor to the right of a multiplicative operator. Likewise the 
second alternative of rule 3 states that in additive operators the expression 
is to the left and the term to the right. Given equal precedence, operators 
are left-associative (they combine from left to right to become operands). 
In our example the first case would be right-associative; hence the second 
case conforms to the definition. We can derive the expression as follows: 

Expression ---+ Term ---+ Term mulop Factor ---+ Term mulop Fac
tor mulop Factor ---+ Factor mulop Factor mulop Factor ---+ Name 
mulop Factor mulop Factor ---+ a mulop Factor mulop Factor ---+ a 
* Factor mulop Factor ---+ a * Name mulop Factor ---+ a * b mulop 
Factor ---+ a * b / Factor ---+ a * b / Name ---+ a * b / c. 

Our syntax definition thus also expresses the rule of left-associativity for 
operators with equal precedence. 

Note that in this case the recursive definition cannot be replaced by the 
use of repetition symbols. The case where any number of parentheses can 
appear before or after a symbol- e.g., (X))) - is easy to describe. However, 
if the parentheses are to appear only pairwise as in mathematical expres
sions - e.g., (((a + b) * c) + 1) - then we cannot express this with repetition 
symbols alone. 
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Notation Meaning 
x y I Sequence (y follows x) 

x I y I Alternatives (either x or y) 
[xl Option (x not at all or once) 

{x} Repetition (x not at all or any number of times) 
(x) Group (combines a set of symbols) 

"abc" Terminal (abc is a symbol of the 
ammar to be defined) 

Table 2.1: EBNF definition 
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Here we add a BNF extension that we will later use in the introduction 
of Modula-3. We base Table 2.1 on [Har92, Ne191] to show its definition, 
whereby x and yare intended to represent an arbitrary syntactic unit. This 
definition contains some redundancy. The advantage of this extended defi
nition (as will later become obvious) is that the syntax to be defined (here 
Modula-3) becomes more concise and readable. 



Chapter 3 

The structure of programs 

The intention of this chapter is to provide an overview of program com
ponents that will be explained in detail in later chapters. We introduce 
the structure of computer programs and the most important structuring 
concepts in general and for Modula-3 in particular. In the last part of the 
chapter we develop our first Modula-3-programs. This chapter addresses 
almost everything, but finishes explaining almost nothing. The readers 
should retain questions for the next chapters, and on completion of the 
book should be able to answer them. 

3.1 Structuring 

The programs of the 1950s were monolithic chunks of code, all one piece. 
AB long as a program consists of not more than 100 lines and executes a sin
gle (albeit complex) computation, this approach can work well. However, 
once the programs grow larger, they must be structured. Today's software 
systems consist of tens of thousands, even hundreds of thousands or mil
lions oflines of code. Under such circumstances, structuring the programs 
becomes a necessity that is decisive for the quality of nontrivial software. 
Novices frequently fail to understand when a program is rejected in an ex
ercise or an examination even though it "works" - it was just somewhat 
"dirty". Dirty, i.e., poorly structured, programs create chaos and cause im
mense damage as soon as they have to work together with other parts of a 
larger system. Since the end of the 1960s, this awareness has increasingly 
found its way into the consciousness of computer scientists and has formed 
a foundation of university education in programming. 

The basic idea of structured programming is to construct programs from 
components whose correctness can be checked independently of other 
components. A correctly functioning component must not sabotage oth
ers, i.e., must not affect their correctness. 
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Smaller and larger components must all comply with this principle. 
Thereby we achieve a division oflabor and can decompose a complex prob
lem into smaller ones that are easier to solve. The smallest components of 
problem solutions are variables, simple types and individual instructions; 
larger components include procedures, objects and modules. Some of these 
are introduced in this chapter, and the remainder ofthe book handles them 
in detail. But first let us examine the path a program takes from its devel
opment to its execution on a computer. 

3.2 Language environment 

Programming languages are formal languages that permit us to precisely 
express problem solutions. Programming languages have another impor
tant characteristic: Source code in a programming language can automat
ically and efficiently be brought into a form that a digital computer can 
execute. Such source code is translatable and executable. 

This is a fundamental property of programming languages. Formal lan
guages that lack this characteristic are not real programming languages. 
When we speak of programming languages, we mean automatically and 
efficiently translatable formal languages. For historical reasons, the auto
matic translation of programs is called compilation and the translator is 
called a compiler. Compilation means the assembly of various components. 
The expression stems from times when programs were not translated, but 
only certain subfunctions were automatically incorporated. Compiler tech
nology has experienced immense evolution over the last three decades and 
now is one of the theoretically best founded areas of computer science. Here 
we only discuss some elementary points. The interested reader should refer 
to the literature [ASU85]. 

The purpose of translating a formal language is not always the gener
ation of an executable computer program. Formal languages are also 
used to precisely specify problems and, as explained in Chapter 2, to 
represent other formal languages. The purpose of automatic transla
tion in this context (ifit is done at all) is to check the completeness and 
consistency of the specification. 

A system that transforms program code written in a certain programming 
language into executable programs is called a language environment. The 
purpose of a language environment is to transform programs from the form 
in which they were written (a form adapted to human needs) into a form 
that a computer can process. Thus programs have various phases of trans
formation (see Figure 3.1). 
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> > 

LinkfT Lca:Jar 

:Sou roe code Compiled program Loadable program Executable program 

Figure 3.1: Phases of program translation 

1. The program text or source code 
The text written in a programming language such as Modula-3 is 
called program text or source code. The source code is normally writ
ten by a programmer. 

There are systems that can automatically generate source code 
of a high-level programming language from a formal specification 
language that is on a higher abstraction level than the program
ming languages we present here. We do not discuss such systems 
here. Furthermore, there are even systems (compiler-compilers) 
that can generate the source code for compilers for other program
ming languages [ASU85j. 

Large programs are normally not compiled as one unit, but in smaller 
compilation units. The particular decomposition depends on the pro
gramming language. 

2. The compiled program 
The compiler translates the source code into a form that comes close 
to the machine language and proves nearly unreadable for humans 
(aside from determined hackers and compiler developers). The com
piled code (or object code) is enriched with additional control infor
mation that is necessary, e.g., to link programs components that were 
compiled separately, to a single program. Additional control informa
tion assists the program loader. 

3. The loadable program 
The linker generates the loadable program. The main function of the 
linker is to link the separately compiled program components. In the 
loadable program, the (separately compiled) compilation units are al
ready linked. 

4. The executable program 
The executable form of a program generally ensues only upon loading 
into main memory. The program must be started from the language 
environment. During execution an executable program receives run
time support from this environment. 
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Corresponding to these forms, the conversion of source code to an exe
cutable program usually encompasses four main steps: 

1. Compilation 

2. Linking 

3. Loading 

4. Execution 

In various language environments these functions can be implemented in 
different ways. Often individual functions are merged. Some systems em
bed linking in the loader, i.e., link at load time. This saves the explicit link 
step and adds flexibility. Some very new systems even incorporate part of 
the translation in the linkerlloader [Fra94], adding even more flexibility. 

Most systems distinguish these four steps internally, but the user re
ceives interactive help to combine several steps into a sequence. Compiling 
and linking, as well as loading and execution, are each controlled with a 
single command1 . 

3.3 The statics and dynamics of a program 

The previous section showed on the one hand that a program is textual 
source code and on the other hand that it can be executed by a computer 
after appropriate translation. The structuring of a program thus has two 
aspects: static and dynamic. The static aspect regards the structuring of 
the source code, while the dynamic aspect affects program execution. 

We illuminate these aspects with the following example: A company 
has a static structure that determines its management hierarchy, depart
ments, groups, etc. This structure changes relatively seldom; it is tuned to 
the company's underlying global goals. However, the various units must 
cooperate with one another, and how this cooperation takes place is by no 
means determined by the static structure. Instead, it depends on the re
spective tasks, which departments interact with which, who provides and 
consumes services, how information and materials flow between organi
zational units, etc. The static structures (at least for healthy companies) 
tend to be much simpler than the dynamic rules, which adapt to changing 
demands. 

Accordingly, programs also have a static structure that reflects the un
derlying goals and that only seldom change for a correctly designed pro
gram. The dynamics of a program, resulting from the respective input 
data that reflect demands, builds on the static structure. 

lOur language environment, e.g., provides commands for automating the compilation 
of multiple components and their linking; see Appendix D. 
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3.3.1 Data and data types 

As Chapter 1.1 showed, programs contain instructions that manipulate 
data. We also saw that a computer can store the data in the form of a state 
space, with freedom in the interpretation of the individual states. This 
flexibility proves to be too great to allow us to reasonably handle it. We 
want to restrict the possible interpretations. We categorize the data and 
define data types. Some programming languages are quite relaxed in this 
sense. They provide more flexibility at the expense of security. We prefer 
strict languages like Modula-3 that permit only typed data. Every pro
gramming language has some predefined (built-in) types, and most permit 
the programmer to use type constructors to create additional types. 

Data types 

• A data type defines a set of permissible values. 

• It specifies the set of operations on these values. 

One data type, e.g., that occurs in practically every programming language 
defines the set of whole numbers. This type is usually called INTEGER 
and is usually predefined. The numbers 0, 1, 625 and -2300 are all of this 
type, but real numbers such as 2.5 are not. The set of integers is always 
finite (in contrast to the set of whole numbers in mathematics) because a 
computer can only store finite sizes. Most programming languages specifY 
a general integer type and leave it to the respective language environment 
to set the limits of this set. This approach can create difficulties if different 
environments offer a programming language with different value ranges. 
This can mean that a number might be legal in one environment, but create 
a range overflow in another. In order to create software that can be ported 
to any other environment (with the same programming language), we need 
to pay particular attention to this aspect. 

In addition to integers, most programming languages provide other 
built-in types, such as: 

• real numbers 

• readable text 

• characters 

• logical values 

In addition to the set of permissible values, data types also define the op
erations allowed on the data of a given data type. Even if we know that in
tegers are whole numbers within a certain range, this does not unambigu
ously restrict which operations are permissible. We consider it self-evident 
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Figure 3.2: Variables in computer science 

that addition and subtraction are permitted on whole numbers. However, 
we need to clarify what happens when we add two numbers whose sum 
leads to an overflow of the integer range (because it cannot be represented). 
Another question is whether multiplication for two integers is defined in 
advance, or whether it needs to be realized by repeated addition. Division 
presents a more complicated problem. How do we divide numbers that are 
not divisible without a remainder? How do we obtain the remainder? What 
is the remainder when we divide a positive number by a negative number? 

Another example is the logical type, usually called Boolean after the 
English mathematician George Boole. Here the complete range consists of 
two values: true and false. We will see how useful this type is after we 
specify the operations (such as logical" and V relations). 

Hence we conclude the following: A type is really defined only when we 
specify the set and semantics of the allowable operations in addition to the 
permissible range. The definitions of such types are often called abstract 
data types (see Section 11.4). 

Data types serve to categorize data. They define a general pattern, or 
scheme, the type. We still need to create (or instantiate) the concrete data 
itself, i.e., the examples or instantiations belonging to a type. 

Variables 

The concept of variables in programming is quite different from that in 
mathematics. In mathematics a variable x stands for a value. If we say 
about a right triangle that a2 + b2 = c2 , we mean that if a, band c assume 
the values of the length of sides and the hypotenuse of a right triangle, 
then the above equation applies. An equation such as x = x + 1 does not 
apply for any real value. 

In computer science variables are containers for values [AU92]. They 
have a name, a type and a stored value (see Figure 3.2). The name x repre-
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sents a container and a value. The semantics of a programming language 
always clearly define what is meant in each case. 

All programming languages contain an assignment operation that re
sembles an equation, but means that the value ofthe right side is assigned 
to the variable designated in the left side. An assignment such as x = 1 
means that the container X is to store the value 1. The assignment x = x + 
1 indicates that 1 is added to the value of X and the result is stored in con
tainer x. Thus the purpose is to increment the value stored in x by 1. This 
has nothing to do with the mathematical interpretation. To underscore the 
difference between these interpretations, many programming languages, 
including Modula-3, replace the equal sign with a special assignment oper
ator (:=) (see Section 3.4.4). 

All variables together constitute the state space of a program. The vari
able containers can be created as fixed or be generated at run time. (The 
scope ofthe state space can change dynamically; see Chapter 11.) 

Constants 

Constants are values that are set on creation of a program and do not 
change during program execution. All values written directly into the 
source code (such as numbers and texts) are constants. We call such con
stants literals. However, we can also assign names to constants and access 
their values via their names; such constants are often called symbolic con
stants. Like variables, constants have a type. 

3.3.2 Algorithms and procedures 

In the introduction we discussed the algorithm, which precisely and unam
biguously expresses a finite, effective procedure. Programming languages 
provide constructs to express algorithms. Whether such algorithms are re
ally finite, effective, unambiguous, etc. rests in the hands of the program
mer. 

In most programming languages the essential building block for for
mulating algorithms is the procedure or the function. With the help of 
their own data and statements, procedures define an algorithm (or subalgo
rithm). We can assign names to procedures and functions and parametrize 
them to make the algorithms reusable. On each execution of the proce
dure, we can substitute new parameter values to allow application of the 
algorithm to different data of the same type. The mathematical formula 
y = f(x) expresses that for various x values f defines corresponding y val
ues. f(a) represents f(x) for a certain a. In an imperative programming 
language f(a) means that at the position where f(a) occurs in a program, 
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the function f starts with the current value of a, executes, and returns the 
result. 

Consider the example of the arithmetic mean of two numbers. The al
gorithm is very simple: Add the two numbers and divide the sum by two. 
The function construct permits us to assign this algorithm a name such as 
Mean. The function requires passing two parameters for the two numbers 
to be averaged, and it returns the mean. The statement 

z := Mean(x, y) 

starts the computation and, after execution of the function, assigns the 
result to the variable z. 

Procedures have many more applications than for computations in the 
form we showed here. Also, they do not necessarily return a value. A 
function or function procedure is a special procedure that returns a value 
- it stands for a value. Procedures that do not return a value (sometimes 
called pure procedures) form a statement. Chapter 9 handles both variants 
in detail. 

3.4 Structure of Modula-3 programs 

To make these considerations more concrete, we need an overview of the 
most important structuring elements in Modula-3. In the process, we will 
develop our first Modula-3 programs. These programs will not do much 
of practical use, but that is not our goal initially. We begin by equipping 
ourselves for our later launch to distant planets. 

By way of preview, we list the most important structuring elements: 

• Module: A program consists of modules. 

• Block: A module contains blocks. 

• Declaration: A block contains declarations (definitions) ... 

• Statement: ... and statements (instructions to the computer). 

3.4.1 The module 

A Modula-3-program consists of a number of modules. The module is the 
smallest compilation unit in Modula-3. 

Many programming languages support the module concept, e.g., 
Modula-2, Oberon-2 and Ada. In Ada they are called packages. The 
name ofthe programming language Modula is an abbreviation of Mod
ular Language. 
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I 
Module Program EXPORTS Main; 
IMPORTS ModuleA, Module8; 

_~L_ 
1_ Interf~~e ModuleA; J 

~ __ ~ __ ~_~ ___ ~L __ ~ __ ~~~_ 

MODULE ModuleA; 
EXPORTS ModuleA; 

,--~- -----D~~~-
MODULE Module8; 
EXPORTS MOd. ule8; 
IMPORTS ModuleC; 

Interface ModuleC; 

MODULE ModuleC; I 
EXPORTS ModuleC; I 

L ~_~_I 

Figure 3.3: A module hierarchy 
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A program is a main module that relies on the services of other modules. 
These service modules in turn can employ the services of additional mod
ules, etc. This creates a module hierarchy. The root of this hierarchy is 
always the main module. In principle, modules could exchange services 
bidirectionally (e.g., module A employs the services of module Band B 
those of A); however, in a good design, this is very rare. 

Theoretically a Modula-3 program could consist of a single module (the 
main module). As we soon will see, even the smallest practical programs 
already consist of two modules. The number of modules rises rapidly with 
the complexity of the tasks that a program must fulfill. 

A module normally has two parts, an interface and an implementation. 
These are stored in separate files. The interface specifies the elements that 
it provides (exports) to other modules, i.e., the services that a module offers. 
Other modules can import and employ these services. The implementation 
contains the realization of the exported elements. The internal details of 
the implementation are hidden from the environment (information hid
ing). Other modules can only access the interface of a module, but not its 
implementation. This corresponds to the basic requirement of structured 
programming: It must not be possible to sabotage a functioning module 
from outside it. 

By sabotage we mean introducing programming errors, not malevo
lent sabotage. Likewise information hiding does not imply classified 
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government secrets, but a language feature that syntactically protects 
the internal details of a module from other modules. Information hid
ing is practical even if one programmer develops all modules alone. 
Here this programmer knows all the details of the implementations, 
yet applying information hiding can significantly reduce the error
proneness of the program. Programmers usually learn to appreciate 
this only when they have to carry out a larger software project with
out information hiding. 

Until we cover the technique of modularization in Chapter 10, we will 
restrict ourselves to developing only main modules. However, we will em
ploy the services of certain available modules (e.g., module SIO). 

3.4.2 Hello, world 

A frequent first step in introducing a programming language is the Hello 
World program. This is a program that outputs a greeting ("Hello, world!") 
on the monitor: 

Example 3.4: Hello World program 

MODULE Hello EXPORTS Main; 
IMPORTSIO; 

BEGIN 
SIO.PutText("Hello, world!\n") 

END Hello. 

In the simplest manner, this program demonstrates the use of module 
building blocks. We developed a module named Hello. It exports the prede
fined, empty interface Main; this labels it as a main module. The IMPORT 

statement indicates that we intend to employ the services of the module 
SIO, which means "simple input/output". The module provides services to 
the input/output of data, including the procedure PutText for output oftext. 
The text is the parameter of the procedure and is specified here as a con
stant. Character strings enclosed in quotation marks are text constants. 
The character string "\n" has a special meaning: It moves the cursor to 
the start of the next line (a carriage return with line feed). We can com
pile, link, load and execute the module Hello. (SIO need not be compiled; 
it is part of the language environment and ready for use). We receive the 
following output on the monitor: 

[ Hello, world! J 
It is probably quite easy to understand how the Hello module works. 

But how do we know that we have to write "IMPORT SIO" to import SIO? 
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"Use module SIO" would say the same thing. This is a matter of syntax, 
i.e., the rules for how to write Modula-3 source code. To define the syntax, 
we use EBNF, as described in Chapter 2: 

Simplified syntax of modules 2 

Module3 = "MODULE" Idents9 [ "EXPORTS" IDUsts7 ] ";" 

{ ImportlO } Block12 Idents9 ".". 

The identifiers MODULE and EXPORTS are symbols of the programming 
language itself; i.e., they are used in Modula-3 source code exactly as they 
occur within the quotation marks in the syntax. The character strings 
MODULE and EXPORTS constitute keywords; these strings are reserved 
and may only be used for their intended purpose (e.g., MODULE to intro
duce a module definition). Most programming languages have such key
words, which are usually rather few in number. With a little programming 
experience they tend to be learned automatically. In Modula-3 all keywords 
are written in all capital letters (hence "Module" is not a keyword because 
Modula-3 is case-sensitive). 

The syntactic unit Idents9 stands for any name specified by the program
mer (compare Section 2.3), whereby keywords are precluded. It indicates 
the name of the module. The same name must be repeated at the end ofthe 
module. The requirement that the name be the same at the beginning and 
end ofthe module is not evident from the syntax (because Idents9 in the syn
tax stands for any name). Therefore we have to describe this requirement 
verbally. 

Names chosen by the programmer can be in any mix of upper-case and 
lower-case characters. However, we should avoid names consisting of only 
capital letters in order to keep keywords optically distinguishable. 3 In this 
book module names always begin with a capital letter. 

Such rules constitute important conventions that make source code more 
readable. The compiler processes all names in the same way. Another aid 
promoting readability is textual indentation ofthe source code after BEGIN 
and the undenting after END in a block. This makes the block optically dis
tinguishable (for human readers) and easier to understand. 

A module consists of its name followed by an optional list of exported 
interfaces, then a number of optional imports and finally a block. We have 

2The syntactic constructs are provided with indices to simplify orientation in the com
plete syntax description ofthe language (see Appendix B.8.) 

3The first module that we encountered, 810, is the first exception to the rule. We use 
the module as though it were part of the system and thus use the capital letters in the 
name. 
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already mentioned that a module must have (i.e., export) at least one in
terface. If a module does not specify its list of exported interfaces, then it is 
assumed that it exports an interface equivalent to the name ofthe module. 

The syntax of a block is very simple: 

Syntax of a block 

Block12 = { Declaration13 }"BEGIN" Stmts23 "END". 
Stmts23 = [ Stmh4 { ";" Stmt24 } [ ";" ]]. 

Stmt24 stands for a statement (see page 49), Stmts23 for a sequence of 
statements. Our statement in the Hello World program is the invocation 
of the procedure PutText from module SIO. We do not discuss the syntax of 
the import list or the procedure invocation here. It suffices to say that the 
keyword IMPORT can be followed by a list of module names (separated by 
commas) and a semicolon. Since our first example imports not an individ
ual procedure but the whole interface of SIO, when we use the procedure 
PutText in the body of the procedure, we must precede its name with the 
name of its module. We call this qualifying the name ofthe procedure with 
the name of the module. We write the parameter of the procedure (the 
greeting text) between parentheses after the procedure name. 

Interested readers can check the syntax definition in Appendix B.8 to 
determine whether the IMPORT statement and the procedure invoca
tion in the example abide by the syntax. 

3.4.3 Source code 

The source code (the text) of a program must serve human needs and the 
machine (more precisely, the translation program) equally well. This whole 
book deals with how to formulate programs properly so that we obtain the 
desired results after compilation. To make the source code comprehensible 
for human readers, we use blanks, blank lines and tabulators (collectively 
called white space). We indent certain parts and group elements of the 
source code that belong together (see Example 3.5). We can insert any 
amount of white space between syntactic units. 

We can also insert explanatory comments directly in the source code. 
The symbol pair (* and *) serves as special bracketing for enclosing a com
ment. Comments can be placed wherever white space is allowed. Com
ments serve to inform the human reader of source code. They are not 
strictly part of the program (the compiler simply skips everything between 
commentary brackets). Commentary can significantly increase the read
ability of a program. In the next example we use comments to explain the 
purpose of each line ofthe program. 
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MODULE Mean EXPORTS Main; (*Author: LB, October 15,1994 *) 
(*The program computes the arithmetic mean of three numbers. *) 

IMPORT SIO; 

VAR 
x, y, z: INTEGER; 
mean: INTEGER; 

(*We import the services of Simple I/O *) 

(*x,y and z contain the values whose mean we will compute*) 
(*We store the result in the variable mean *) 

BEGIN 
SIO.PutText("Arithmetic mean of three numbers\n"); 
SIO.PutText("Please enter three numbers: "); 

(*This begins the statement part*) 
(*Greeting text on the monitor*) 
(*Prompts the user for inputs*) 

x:= SIO.GetintO; 
y:= SIO.GetintO; 
z:= SIO.GetlntO; 

(*Reads a value into x*) 
(*Reads a value into y*) 
(*Reads a value into z*) 

mean:= (x + y + z) DIV 3; (*Computes the mean and stores it in the variable mean *) 

SIO.PutText("Arithmetic mean = "); 
SIO.Putlnt(mean); 
SIO.PutText("\n"); 

END Mean. 

(*Outputs the arithmetic mean*) 
(*Moves to the start of the next line on the screen*) 

Example 3.5: Arithmetic mean of three numbers 

Comments can be used in many ways. If multiple programmers are 
working on a project, comments prove to be one of the most impor
tant aids for reading source code written by someone else. All source 
code should bear a header with the name of its author and the date of 
completion as well as a brief description of its purpose. Project team 
members decide what else is to be commented, or commentary policy 
is dictated by company regulations. Usual objects of commentary in
clude the purposes of variables and procedures as well as the logic of 
difficult algorithms. 

Commenting can be exaggerated. Comments also inflate the source 
code and can, if they reiterate the obvious, devalue the readability of 
source code. 

In this book comments serve to support explanations in the text. Com
ments such as "This begins the statement part" are certainly out of 
place in real programs! 

3.4.4 Computing the arithmetic mean 

Next we examine how variables and assignments are used in Modula-3. 
We will write a program to compute the arithmetic mean of three num
bers. Again we provide the solution (Example 3.5), which we discuss in 
this section. 
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Declarations 

Example 3.5 demonstrates the use of variables in Modula-3. As we showed 
above (page 46), a module contains a block which consists of declarations 
and statements. The idea of a declaration is to define names (identifiers) for 
later use. The following lines declare the names x, y and z as variables of 
type INTEGER. 

VAR 
x, y, z: INTEGER; 

This declaration also creates containers for the declared names, whose 
values are initially undefined. 

I The programmer must initialize each variable, i.e., provide it with a start 
value. 

In our example initialization takes place by reading the values via 
SIO.GetlntO· 

Simplified syntax of variable declarations 

Declaration13 = ... I "VAR" VariableDecl17 ";" I ... 
VariableDecl17 = IDList87 ( ":" Type48 I ... ) . 
IDList87 = Idents9 { "," Idents9 }. 

This excerpt from the syntax of declarations shows that the declaration 
of variables follows the keyword VAR. This declaration takes the (simpli
fied) form of a list of (variable) names, a colon and a type. (We do not 
discuss the syntax of types here. In our example the name of the type is 
the predefined type INTEGER.) 

In Modula-3 all variables that are used in the statement part of a block 
must be declared. This is not the case in every programming language (e.g., 
Fortran and PU1). However, the requirement to declare all variables has 
important advantages: 

1. The Compiler can test whether we use only variables that we intend 
to use (rather than artifacts ensuing from spelling errors). 

It is a well known story that a Venus rocket was lost in space 
because a Fortran program with a guidance function contained a 
spelling error that created a phantom variable that stole the value 
of the intended variable. Such an error is impossible in languages 
like Modula-3, which require explicit declaration. 
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2. The compiler can test whether a variable is used only according to its 
type. (By contrast, some programming languages allow the "addition" 
of a text with a number. The result is naturally nonsense.) 

3. The compiler knows how to reserve storage for the variables. 

Not only all variables but also all types and procedures must be de
clared. Generally speaking, declarations associate a name (which is visible 
only within the block in which it is declared) and a definition. 

Statements 

With statements we have collected the most important components of 
Modula-3 programs: We have a module that contains a block. The block 
consists of declarations and a statements sequence (see page 46). 

Simplified syntax of statements 

Stmt24 = AssignStmt25 I CallStmt26 I ... 
AssignStmt25 = EXpr66 ":=" EXpr66. 

A statement (Stmt24 ) can be an assignment (AssignStmt25 ), a procedure 
call (CaIlStmt26 ), or another kind of statement not listed above. We have 
already seen that the statement part can contain a sequence of statements 
separated by";". The statements of a statement sequence are executed 
sequentially. The output ofthe two texts with which Example 3.5 begins is 
such a statement sequence consisting of two procedure calls (SIO.PutText): 

SIO.PutText("Arithmetic mean of three numbers\n"); 
SIO.PutText("Please enter three numbers: "); 

The following statement is an assignment (AssignStmt25 ): 

x:= SIO.GetintO; 

The expression (EXpr66) to the left of the assignment operator (:=) must 
specifY a variable container to which the expression on the right side can 
be assigned. For now let us assume that the expression is simply the name 
of a variable. The right side is an expression that determines the value. 
In this case we have a function call. SIO.GetintO reads a number from the 
keyboard and returns the value. The effect of the statement is that the 
number that the user enters is assigned to the variable x. 

The following statement is also an assignment: 

mean := (x+y+z) DIV 3 
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INTERFACE SIO; (*Simple Input/Output 13.04.94. LB*) 

PROCEDURE GetTextO: TEXT; 
(*Reads a sequence of non blank characters and returns them. *) 

PROCEDURE PutText(t: TEXT); 
(*Writes the characters from t to the output stream. *) 

PROCEDURE GetlntO: INTEGER; 
(*Reads all adjacent digits from the input stream and returns the result 

as an INTEGER. *) 

PROCEDURE Putlnt(i: INTEGER; length := 3); 
(*Outputs i as a sequence of digits to the output stream. 

If the number of digits in i is less than length, then blanks are added at the beginning 
to bring the total output characters to length. *) 

PROCEDURE NIO; 
(*Outputs a line feed. *) 

END SIO. 

Example 3.6: Simplified excerpt from the SID interface 

Here the expression on the right is an arithmetic expression (compare Sec
tion 2.4) quite similar to the familiar ones from mathematics. The only 
unusual element is the keyword DIV, which represents integer division. 
DIV divides the first operand (x + y + z) by the second (3). The result is 
stored in the variable mean. 

The program ends by outputting the result. SIO.Putlnt outputs an inte
ger. One possible execution of this program is the following4 : 

Arithmetic mean of three numbers 
Please enter three numbers: -4928 
Arithmetic mean = 11 

3.4.5 SIO interface 

How can we use the name SIO.PutText and others in Example 3.5 without 
declaring them? Obviously, specifying the import list serves this function: 

IMPORT SIO 

Thereby we import a number of declarations into our module, i.e., make 
them visible in the module. These declarations define the services of the 

IUser input is in italics. 
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module, in our case, input/output procedures. The part of the module SIO 
that is public (i.e., visible for other modules) - its interface - is stored in a 
separate source code file. Figure 3.6 shows a (simplified) excerpt from the 
SIO interface. 

Commentary is absolutely essential in interfaces in order to explain the 
provided services to users of the module. The interface exports the listed 
procedures. The Get procedures read from the keyboard and return a cor
responding function value. The Put procedures output the value of their 
parameters on the monitor. (Section 14.2.3 shows how the same procedures 
can also read from and write to files.) The complete interface is printed in 
Appendix C.3.3. 



Chapter 4 

Predefined data types 

Section 3.3.1 introduced some predefined data types. Now we handle all 
predefined data types in Modula-3 individually. 

4.1 Integers 

Without a doubt the most basic and most frequently used data type is that 
ofthe whole numbers. The type for whole numbers in Modula-3, as in most 
programming languages, is called INTEGER. Modula-3 defines a separate 
type for non-negative whole numbers, CARDINAL. INTEGER numbers can 
assume any whole-number value within the range (upper and lower limits) 
imposed by the language environment. CARDINAL numbers can assume 
any whole-number value between 0 and the upper limit imposed by the 
language environment. 

Ordinal types 

These whole number types are ordinal types, which means that they are 
ordered: Every whole number, excepting the limit values, has exactly one 
predecessor and one successor (smaller or larger by one, respectively). We 
will encounter a number of other ordinal types. However, there are data 
types that do not reflect this property (e.g., character strings and floating
point numbers, presented in this chapter). 

4.1.1 Range 

We specify the range of whole-number types in square brackets: [lower limit 
.. upper limit], whereby the two limit values are inclusive. 

In the PC environment for Modula-3, the range of INTEGER numbers is 
[-2147483648 .. 2147483647] and for CARDINAL numbers [0 .. 2147483647]. 
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The values of these remarkably large numbers might seem completely 
arbitrary. However, some insight into the fine points of binary repre
sentation [AU92J quickly shows that these values expressed as powers 
oftwo seem much rounder: [_231 .. 231 -IJ and [0 .. 231 -IJ. The range 
for type INTEGER reflects that 1 bit of a storage word is used for the 
sign, the rest for the numeric value. 64-bit computers provide a range 
ofl-263 .. 263 - IJ. 

A Modula-3 programmer need not know anything about the details of 
the internal representation (although this knowledge certainly does no 
harm). The programmer only needs to know that INTEGER numbers are 
whole numbers in the specified range. If a particular computation might 
exceed the range oftype INTEGER, the limits can be checked in the program 
with predefined (built-in) functions. 

4.1.2 Operations 

As mentioned, in addition to its range each predefined data type has a set 
of operations permissible on it. For whole numbers Modula-3 offers a group 
of arithmetic and a group of relational operations. In addition, there are a 
number of predefined functions for whole numbers. 

Most ofthese operations (such as addition, testing for equality, etc.) are 
also defined for other data types (such as floating-point numbers), but with 
different semantics. 

Predefined functions 

The predefined function FIRST returns the lowest value of an ordinal type; 
the function LAST returns the highest. We can query these values as nor
mal INTEGER values in our computations and assure that their range is not 
exceeded. The function LAST also lets us define the type CARDINAL more 
precisely: Its range is [0 .. LAST(INTEGER)]. 

Since whole number types are ordinal, it makes sense to be able to sim
ply specify the next or the previous number for a given x. This can be done 
with the predefined procedures INC and DEC. 

INC(x) is equivalent to x:= x + 1. 
DEC(x) is equivalent to x:= x - 1. 
INC(x, y) is equivalent to x:= x + y. 
DEC(x, y) is equivalent to x:= x - y. 

This might seem extraneous: Why do we need a predefined procedure 
for operations that can so readily be derived from existing operations? The 
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MODULE MinMax EXPORTS Main; 

IMPORT SIO; 

(*Ranges. October 20, 1994. LB*) 

CONST MaxPlaces = 11; 

BEGIN 

(* Maximum number of decimal places*) 

SIO.PutText("Minlnteger = "); 
SIO.Putlnt(FIRST(INTEGER). MaxPlaces); SIO.NIO; 

SIO.PutText("Maxlnteger = "); 
SIO.Putlnt(LAST(INTEGER). MaxPlaces); SIO.NIO; 

END MinMax. 

Example 4.1: Outputting the range limits of type INTEGER 

importance of INC and DEC is that they apply to all ordinal types (see also 
Sections 6.1 and 6.2). 

Furthermore, these built-in procedures are usually more efficient than 
arithmetic expressions because the variable only needs to be accessed 
once. In the expression x:= x+ 1 the variable is accessed twice: to read 
its value and to write the new value. 

The predefined function ABS provides the absolute value of an INTEGER 
number. 

Note that ABS(FIRST(lNTEGER)) cannot be represented because ofthe 
asymmetry of the upper and lower bounds of INTEGER numbers. The 
explanation points to the coding of INTEGER numbers as twos comple
ments [AU92]. 

Example 4.1 outputs the range limits of type INTEGER on the monitor. 
Output is right-justified because the second parameter of Putlnt has been 
set accordingly. 

The example also shows the advantages of using symbolic constants. 
The value of MaxPlaces is the maximum number of decimal places plus one 
place for the possible sign. This value depends on the respective language 
environment and finally on the underlying computer. On a 32-bit computer 
the maximum number of places is 10, while a 64-bit computer allows 19. 
To port the program to a computer with a different number of maximum 
places, it suffices to adapt the value of this constant (e.g., MaxPlaces = 20 
for a 64-bit computer) and recompile the module. Nothing else changes. 

The monitor output on a 32-bit computer is: 

Minlnteger 
Maxlnteger 

-2147483648 
2147483647 
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Arithmetic operations 

Modula-3 predefines the following arithmetic operations (in parentheses 
we provide the notation used in the language): 

• addition (+) 

• subtraction (-) 

• multiplication (*) 

• integer division (DIV) 

• remainder after integer division (MOD) 

The result of an integer expression is always an integer. The + and -
signs can also be used as unary operators (signs). We can omit the unary + 
sign (+x equals x). 

Rules of precedence (compare Sections 2.4 and 7.1) are defined as usual: 
Addition and subtraction have the least, *, DIV and MOD medium, and the 
unary sign has the greatest connective strength. 

If x is divisible by y without a remainder, then x DIV y yields exactly the 
quotient; otherwise x DIV y returns the nearest whole number that is less 
than the quotient. 

MOD computes the remainder for integer division. The semantics of 
MOD are defined so that the following equation always applies: 

x MOD Y = x - y * (x DIV y) 

Ify> 0, then x MOD y returns a result in the range [0 .. y -1]; for y < 0 
the result is in the range [y + 1 .. 0]. 

MOD is often used to determine whether a number is even or odd. X 

MOD 2 always yields 0 for even and 1 for odd X, even if X is negative. 

The following table provides an overview of the behavior of DIV and 
MOD for positive and negative operands: 

x y x DIVy xMODy 
9 4 2 1 

-9 -4 2 -1 
9 -4 -3 -3 

-9 4 -3 3 

It is important to note that the semantics of arithmetic operations often 
deviate from the meaning familiar from mathematics. The reason is the 
fact that a computer can store only finitely large numbers. 



4.1. Integers 

Hence, e.g., the associative law of addition does not always apply: 

(x + y) + z = x + (y + z) 

Consider the following statement sequence: 

VAR 
x, y, Z, w: INTEGER; 

x:= LAST(INTEGER); 
y:= 1; 
z:= -2; 

a) w:= x + (y + z); b) w:= (x + y) + Z; 
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In case a) y + Z is computed first (yielding -1), which can easily be added 
to the maximum INTEGER value (yielding LAST(INTEGER) - 1). In case b) 
x + y is computed first, attempting to add one to the maximum INTEGER 
value. Thus the interim result cannot be represented in the system. What 
happens? The language definition of Modula-3 (and most programming 
languages) leaves this question open, and the decision is left to the lan
guage environment. Either program execution can be terminated with an 
overflow, or computation continues. For efficiency reasons, language envi
ronments usually choose the second variant. 

By the way, in the above example the second variant works with no 
problem; w has the same value in both cases. The reason is two's comple
ment representation [AU92j. The essence of this representation is that the 
number line joins at the two ends, actually forming a circle. This means: 

LAST(INTEGER) + 1 = FIRST(INTEGER) 
FIRST(INTEGER) - 1 = LAST(INTEGER) 

Thus case b) yields: 

(x + y) + z = FIRST(INTEGER) - 2 = LAST(INTEGER) - 1 

This attractive property only affects additive operations. (x + y) * z with 
the original values, e.g., would lead to a nonsensical result (0). In this case 
terminating the program due to overflow would be more adequate than 
continuing computation. 

Another example shows that we must proceed with caution with integer 
division as well. 

(x * y) DIV Y = (x DIV y) * Y = x 
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MODULE Integers EXPORTS Main; 

IMPORT SIO; 

(*Integer operations, Sept. 12, 1993. LB*) 

VAR 
i, j: INTEGER; 

BEGIN 
SIO.PutText("Basic arithmetic functions\n"); 
SIO.PutText("Please enter two numbers: "); 

(*Statement part*) 

i:= SIO.GetintO; 
j:= SIO.GetlntO; 

(*Assigns the entered number to i *) 
(* Assigns the entered number to j *) 

SIO.Putlnt(i); SIO.PutText(" + "); SIO.PutlntU); SIO.PutText(" = "); 
SIO.Putlnt(i + j); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText("- "); SIO.PutlntU); SIO.PutText(" = "); 
SIO.Putlnt(i - j); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText(" * "); SIO.PutlntU); SIO.PutText(" = "); 
SIO.Putlnt(i * j); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText(" DIV "); SIO.PutlntU); SIO.PutText(" = "); 
SIO.Putlnt(i DIV j); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText(" MOD "); SIO.PutlntU); SIO.PutText(" = "); 
SIO.Putlnt(i MOD j); SIO.NIO; 

END Integers. 

Example 4.2: Integer operations 

only applies if x is divisible by y without a remainder. Let us examine what 
happens with the following values: 

x:= 11; y:= 4; 
a) z:= (x * y) DIV y; b) z:= (x DIV y) * y; 

In case a) the result is z = 11 (or z = x), but in case b) z = 8. Ifwe begin 
with x = 8, the result is the same in both cases (z = 8). If x starts with the 
value LAST(INTEGER), then case a) would produce an error because x*y 
obviously cannot be represented. (Here again an overflow error would be 
preferable over an erroneous result.) Example 4.2 permits the user to play 
with the basic operations. Here is a possible sequence: 

Basic arithmetic operations 
Please enter two numbers: 12-5 

12 + - 5 7 
12 
12 * 

-5 
-5 

17 
-60 

12 DIV -5 -3 
12 MOD -5 -3 
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x = Y is true if X and y have the same value, otherwise false. 
X # Y is true if X and y do not have the same value, otherwise false. 

X < Y is true if the value ofx is less than that ofy, otherwise false. 
X > y is true ifthe value of X is greater than that of y, otherwise false. 

X > = Y is true if X = Y or X > y, otherwise false. 
X <= Y is true if x = y or X < y, otherwise false. 

Table 4.3: Relational operations 

Relational operations 

Modula-3 also specifies a group of relational operations for integers. 

• equal (=) 

• unequal (#) 

• greater than (> ) 

• less than «) 
• greater than or equal (>=) 

• less than or equal «=) 
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Many of these operators are defined for multiple types. The operators 
= and # apply to all types. The semantics of the operations depend on 
the type, so we explain them separately in each context. The result of a 
relational operation is always either true or false with no other possibility. 
Thus the logical data type BOOLEAN (see Section 4.2) serves as the result 
type for relational operations. 

Relational operations are defined for INTEGER values in the accustomed 
way (see Table 4.3). x <= Y is equivalent to y >= x. If both x < y and x > 
y prove false then x = y is true. Hence if x = Y is true, then x # y must be 
false and vice versa. Since whole numbers represent an ordinal type, all 
relational operations are unambiguous. 

For floating-point numbers, as we will see in Section 4.5, this is not 
always so simple. 

We will consider examples of relational operations later, in the next sub
section along with the logical data type, and particularly with statements 
that contain a condition. 
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4.2 Logical type 

4.2.1 Range 

The type name for logical values in Modula-3 is BOOLEAN. Logical data 
can assume only one of two predefined values true and false. For logical 
values Modula-3 predefines the constant values TRUE and FALSE. 

Many programming languages (such as Fortran, Algol-60 and C) lack 
the logical data type. The range is so minute that many believe that 
logical values can be simulated easily with integers. We could inter
pret the value 0 as false and the value 1 as true, and this would take 
care of the logical data type. However, the logical data type incorpo
rates much more semantics. 

The presence of an explicit logical type has the following advantages: 

1. Logical values can be explicitly distinguished from arithmetic values. 
This makes programs more readable and less error-prone. This also 
precludes happening to interpret the same variable once as a logical 
value and another time as a number. 

2. The operations of Boolean algebra can be defined for logical data. 

4.2.2 Operations 

The following logical operations are defined (with Modula-3-notation in 
parentheses): 

• Negation (NOT) 

• Or (OR) 

• And (AND) 

The meaning of these operations can most readily be depicted in a truth 
table (where p and q are oftype BOOLEAN): 

p q NOTq pORq pANDq 
true true false true true 
true false true true false 
false true false true false 
false false true false false 
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MODULE Booleans EXPORTS Main; 

IMPORTSIO; 

VAR 
p, q: BOOLEAN; 
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(*Boolean operations, Sept. 14, 1993. LB*) 

BEGIN (*Statement part*) 
SIO.PutText("Basic Boolean functions\n"); 
SIO.PutText("Please enter two Boolean values: "); 

p:= SIO.GetBooIO; 
q:= SIO.GetBooIO; 

SIO.PutBool(p); SIO.PutText(" OR "); SIO.PutBool(q); SIO.PutText(" = "); 
SIO.PutBool(p OR q); SIO.NIO; 

SIO.PutBool(p); SIO.PutText(" AND "); SIO.PutBool(q); SIO.PutText(" = "); 
SIO.PutBool(p AND q); SIO.NIO; 

SIO.PutText("NOT "); SIO.PutBool(p); SIO.PutText(" = "); 
SIO.PutBool(NOT p); SIO.NIO; 

END Booleans. 

Example 4.4: Boolean operations 

In words (where x {=> condition is an abbreviation for: "x is true if and only 
if condition applies; otherwise x is false"): 

NOT q {=> q false 
p OR q {=> p or q or both true 
p AND q {=> both p and q true 

According to the rules of precedence (also see Section 7.1) OR has the 
least connective strength among the Boolean operators, AND is medium 
and NOT has the greatest strength. Hence the following applies: 

P OR NOT q AND r = p OR ((NOT q) AND r) 

The relational operations also apply to Boolean values because by defi
nition true> false. The operators >, <, >= and <= are applied to Boolean 
values only in exceptional cases. 

At this time we cannot do a lot with logical values. However, they be
come especially important in conditional statements. To assist in writing 
an executable program, we introduce two further procedures from our SIO 
interface to read and display logical values (TRUE and FALSE): 

PROCEDURE GetBoolO: BOOLEAN; 
PROCEDURE PutBool(b: BOOLEAN); 

(*Reads a Boolean value*) 
(*Writes TRUE or FALSE*) 
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MODULE RelOps EXPORTS Main; 

IMPORT SIO; 

(*Relational operations, Sept. 12, 1993. LB*) 

VAR 
i, j: INTEGER; 
greater, less, equal: BOOLEAN; 

BEGIN 
SIO.PutText("Relational operations\nPlease enter two numbers: "); 

i:= SIO.GetintO; 
j:= SIO.GetlntO; 

(*Statement part*) 

greater:= i > j; 
less:= i < j; 
equal:= i = j; 

(*greater is true if i > j*) 
(*Iess is true ifi <j*) 

(*equal is true if i = j*) 

SIO.Putlnt(i); SIO.PutText(" > "); SIO.PutlntU); SIO.PutText(" is "); 
SIO.PutBool(greater); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText(" < "); SIO.Putlnt(j); SIO.PutText(" is "); 
SIO.PutBool(less); SIO.NIO; 

SIO.Putlnt(i); SIO.PutText(" = "); SIO.PutlntU); SIO.PutText(" is "); 
SIO.PutBool(equal); SIO.NIO; 

END RelOps. 

Example 4.5: Relational operations 

GetBool and PutBool function like Getlnt and Putlnt; the only difference 
is that they handle logical instead of numeric values. With the help of this 
extension, we can develop a variant of Example 4.2 (Example 4.4). 

Example 4.5 shows how to assign the results of relational operations to 
logical variables. However, it is not always necessary to assign the result 
of a relational operation to a variable. The above program can readily be 
shortened if we specify the relational operations directly as parameters 
of PutBool. (Since relational operations return Boolean values, they can 
occur wherever Boolean values or expressions are required.) Instead of 
SIO.PutBool(greater), we could write SIO.PutBool(i > j). A possible program 
execution could take the following form: 

Relative operations 
Please enter two numbers: 23-5 
23 > -5 is TRUE 
23 < -5 is FALSE 
23 - 5 is FALSE 

In Example 4.5 we declared both INTEGER and BOOLEAN variables. We 
used the Boolean variables to store results of relational operations. Dif-
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ferent types cannot be mixed arbitrarily. Statements such as the following 
would be senseless: 

i := j + greater; equal:= i; 

We cannot add a number to a Boolean value and we cannot assign a 
number to a Boolean variable, etc. In programming languages with a strict 
type system, the compiler automatically detects such statements as seman
tic errors. 

A counterexample is the programming language C, which has no 
Boolean type, but permits logical operations with integers. The se
mantics are completely in the hands of the programmer, and if this 
human erroneously applies different semantics to the same variable, 
the compiler has no chance to detect this (because the logical variables 
are formally integers as well). Although no programming language 
can detect every senseless action (that would be nice), we should at 
least preclude those errors that can be detected. 

4.3 Characters 

Programs process not only numbers and logical values, but also character 
strings. Modula-3 offers two predefined data types for this purpose: TEXT 

and CHAR. We begin with the data type for individual characters, the type 
CHAR. 

4.3.1 Range 

The type CHAR designates a finite, ordered set of characters. In many re
spects, this set is similar to the integers. CHAR also represents an ordinal 
type (compare Section 4.1). 

One difference is that the number of possible character values is usually 
much smaller than the possible integer values. 

There are normally 256 different character values. Those who know 
the binary representation of characters will immediately recognize 
that this reflects the number of different values that can be repre
sented in a byte, or in 8 bits, because 28 = 256. 

The other important difference is that we do not interpret these values 
as numbers. Most of these are readable characters, such as upper-case 
and lower-case letters of the alphabet, digits and special characters on the 



64 

\n line feed 
\ t tabulator 
\' 
\\ 

apostrophe 
backslash 

4. Predefined data types 

\f form feed 
\r carriage return 
\" quotation mark 

Table 4.6: Escape sequences for special characters 

keyboard of a computer, e.g., . I ; !. Additional, nonprintable characters 
serve to control input/output devices, e.g., a special character for line feed. 

We have already introduced the line feed as text. All characters can be 
specified as (very short) text (see Section 4.4). 

Which CHAR value corresponds to which character depends on the code 
system of the respective computer. Most computers (except IBM main
frames) use the ASCII code system [AU92]. In Modula-3, coding corre
sponds to the ISO Latin-1 code (an extension of the ASCII codes). Normally 
a programmer does not even need to know this. The language system han
dles the internal details of character coding. 

Character literals can be defined with the help ofthe apostrophe ('). Any 
character (except the apostrophe character itself) can be specified between 
apostrophe characters. 

'A' stands for capital A, 
'z' for lower-case z, 
'@'for@and 
'1' for the character 1. 

The difference between the character '1' and the number 1 is important: 
The number 1 is of type INTEGER and can occur in arithmetic expressions. 
The character '1' is of type CHAR and can only be used as a character. 

The above notation for character literals obviously works only for print
able characters, and we cannot specify the apostrophe character itself Non
printable and other special characters must be specified via a detour, the 
escape sequences. An escape sequence consists ofa backslash (\) followed by 
either a special character or a three-digit number. The special characters 
and their meanings are listed in Table 4.6. 

The carriage return character moves to the start position of the current 
line on the monitor or on the printer. The designation stems from 
times when computers were operated without monitors, but connected 
to electric typewriters. 

To specify any special character, the \ can be followed by an octal num
ber with exactly three digits [AU92] corresponding to the code value of the 
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VAR i, j: INTEGER; ch: CHAR; b: BOOLEAN; 

BEGIN 
i:= ORD('1 '); 
ch:= VAL(66, CHAR); 
j:= ORD(TRUE); 
b:= VAL(O, BOOLEAN); 

(*ordinal value ofT (49) is assigned to i *) 
(*character with ordinal value 66 ('B') is assigned to ch *) 

(*ordinal value of TRUE (1) is assigned toj *) 

(*b is assigned the Boolean value with ordinal value 0 (FALSE)*) 

Example 4.7: The standard functions ORD and VAL 

desired character (from the ISO code table). For example, '\012' stands for 
the carriage return (because the code value of carriage return = 1010 
128)' and '\061' indicates '1' (because the code value of '1' = 4910 = 618). 

4.3.2 Operations 

The usual arithmetic operations are not permitted on characters. However, 
because characters, similar to integers, represent an ordinal type, the rela
tional operations (with the same syntax and semantics as for integers) are 
defined on characters. 

Nevertheless, there is one difficulty: It is not self-evident which char
acter is larger or smaller. Is 'A' greater or less than ';'? Is 'z' > 'Z', or 
vice versa? This could depend on the underlying code system, although we 
just stated that a programmer need not know it. Therefore it makes sense 
not to employ such relational operations without restriction in programs. 
However, we can be sure that the following conditions always apply: 

'A' < '8' < 'C' < ... 'X' < 'Y' < 'Z' 
'a' < 'b' < 'c' < ... 'x' < 'y' < 'z' 
'0' < '1' < '2' < ... '7' < '8' < '9' 

Additional details regarding the order of characters can be taken from the 
ISO Latin-l code table, but the authors dissuade from doing so. In all other 
cases it is best to avoid using the ordering of characters and at most com
paring them for equality or inequality. 

As we will later see, we can define (unordered) sets of characters that 
facilitate the formation of groups or classes of characters, e.g., the set 
of control characters, the set of punctuation marks, etc. (see Section 
8.3). 
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CONST 
Conv = ORDeA') - ORDea'); 

VAR 
(*difference between ordinal values of 'A: and 'a' *) 

ch: CHAR; 

BEGIN 
ch:= SIO.GetCharO; 
ch:= VAL(ORD(ch) + Conv, CHAR); 
SIO.PutChar(ch); 

(*Reads a character and assigns it to ch *) 
(*Converts ch to upper case *) 

(*Outputs ch *) 

Example 4.8: Converting a lower-case letter 

Predefined functions 

The predefined functions FIRST and LAST are also defined for type CHAR. 
They return the character with the smallest and largest code number, re
spectively (normally these are special characters that the programmer sel
dom needs). 

Likewise the predefined functions INC and DEC can be used as with 
numbers to compute the successor and predecessor, respectively, of a char
acter. INC('8') returns 'C'; DECC8') is 'A'. The result of DECCA') depends 
on the character coding. We should avoid writing programs that depend on 
which character precedes 'A', 'a' or '0', and likewise with the successor of 
'Z', etc. INC(LAST(CHAR)) and DEC(FIRST(CHAR)) produce an error. 

Two additional predefined functions permit conversion between inte
gers and characters. The function ORD requires a parameter of any ordi
nal type (in our case, type CHAR) and returns its code value - the ordinal 
number - ofthe character as an INTEGER number, e.g., ORDC1 ') = 49. 

The function VAL is the inverse function of ORD. It takes an integer 
as parameter along with any ordinal type (in our case, type CHAR). The 
integer is interpreted as the code value of the specified type. The result is 
the corresponding value ofthe specified type, e.g., VAL(49, CHAR) = '1 '. 

Given that i is of type INTEGER and ch of type CHAR, the following al
ways apply: 

ORD(VAL(i, CHAR)) = i 
VAL(ORD(ch), CHAR)) = ch. 

Example 4.7 sets the value of i to the ordinal value of the character '1' 
(which is ASCII code 49, not 1). The value of ch is set to the character with 
ordinal value 66 (which is the letter 'B') in ASCII code. The example also 
shows how ORD and VAL can be used for another ordinal type (BOOLEAN). 

For the input/output of individual characters we introduce two addi
tional procedures of the interface SIO: 
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PROCEDURE GetCharO: CHAR; 
PROCEDURE PutChar(ch: CHAR); 

(*Reads a character*) 
(*Outputs a character*) 
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GetChar reads a character and returns it as its function value. PutChar 
outputs the character in ch. Example 4.8 transforms a lower-case letter 
into upper case. (The code fragment does not test whether the character 
read is actually a lower-case letter.) 

4.4 Texts 

A text is a sequence of characters. Hence many programming languages do 
not offer the predefined type TEXT because corresponding type constructors 
permit specifYing a character string from individual characters. However, 
Modula-3 includes the predefined type TEXT. 

4.4.1 Range 

A text consists of any number of characters (including none). The respec
tive language environment constrains the maximum size, but this ceiling 
is normally so high that the restriction proves negligible. 

Text literals can be specified between double quotation marks ("). A 
text literal can include any characters except the quotation mark (") and 
the backslash, which must be specified indirectly as escape sequences. A 
text literal must be contained on one line, but it may include the escape 
sequences for carriage return and line feed (see Table 4.6). 

The following are examples of valid text literals: 

"This is a Modula-3 text" 
"\n" 
"This text ends with a line feed\n" 
"\"To thine own self be true\"\n" 
"The above quote is from Shakespeare's Hamlet\n" 

Ifwe display these text literals on the monitor with SIO.PutText, we obtain: 

This is a Modula-3 text 
This text ends with a line feed 
"To thine own self be true" 
The above quote is from Shakespeare's Hamlet 
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By contrast, the following text literals are not valid: 

"This is a Modula-3 text 
and this is its continuation" 
""Quote"" 

It is important to note the difference between text constants (of type 
TEXT) and character constants (of type CHAR): 

CONST 
CharConst = 'A'; 
TextConst = "A"; 

Both declarations are legal. TextConst declares a text of length 1, while 
CharConst declares a character. They have different types, and only the 
operations are restricted to those of the respective type. However, it is easy 
to convert between the types (see the following subsection). 

4.4.2 Operations 

For Modula-3 texts, the language specifies an infix operator (written di
rectly between texts) as well as a number of operations in the form of the 
predefined interface Text. This interface is not part of the language itself, 
but it must be present with the same syntax and semantics in every envi
ronment. 

The concatenation operator & 

Concatenation means sequentially merging two character strings. This al
lows us to merge any number of texts to a single text. If we execute the 
program in Example 4.9, we obtain the output: 

This is a Modula-3 text, 
this is its continuation, 

and this is its end. 

Of the operations provided by the standard interface Text, Example 4.10 
lists the most important. The complete interface is included in Appendix 
C.l.l. 

Equal returns a logical true value if and only if the contents of two texts 
specified as parameters is the same (where upper- and lower-case letters 
are considered different). Length returns the length of a text (as the num
ber of contained characters). GetChar allows extraction of a character at 
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MODULE Texts EXPORTS Main; 

IMPORTSIO; 

CONST 
LF = "\n"; 
T1 = "This is a Modula-3 text,"; 
T2 = "this is its continuation,"; 
T3 = "and this is its end."; 
T4 = T1 & LF & T2 & LF & LF & T3 & LF; 
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(*Concatenation, Sept. 15, 1993. LB*) 

(*LF stands for line feed *) 

BEGIN (*statement part *) 

SIO.PutText(T 4); 
END Texts. 

Example 4.9: A program with the concatenation operator 

INTERFACE Text; (*Copyright Digital Equipment Corporation *) 

PROCEDURE Equal(t, u: T): BOOLEAN; 
(*Returns TRUE ift and u have the same length and the same content. *) 

PROCEDURE Length(t: T): CARDINAL; 
(* Returns the number of characters in t. *) 

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR; 
(*Returns the character at position i (where first character has position 0) in t. 

Ifi >= Length(t), a run-time error results. *) 

PROCEDURE FromChar(ch: CHAR): T; 
(*Returns a text consisting of the character ch. *) 

END Text. 

Example 4.10: Excerpt from the Text interface 

position i in a text t (the valid range for i being [0 .. Length(t)-1]). FromChar 
transforms a character to a text. 

Before we examine an example of the use of these functions, we need 
to add an important note. Of the relational operations, equality (=) and 
inequality (#) are also valid for texts. However, it might happen that the 
expressions text1 = text2 or text1 # text2 (assuming that text1 and text2 are 
of type TEXT) functions differently than we anticipate. 
It is possible that text1 = text2 yields false (or text 1 # text2 true) although the 
two character strings are equal. The Equal function of the Text interface 
always functions according to expectations. Therefore we should always 
use this function for the comparison of two texts. 

The reason for this curious behavior in text comparisons cannot be 
explained fully at this time. The type TEXT does not really repre
sent texts, but pointers (references) to texts (see Section 11.5). The 
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MODULE TextComparison EXPORTS Main; 

IMPORT SIO, Text; 

(*Text comparison, 11.05.94. LB*) 

CONST 
T1 = "This is a Modula-3 text"; 
T2 = "his is a Modula-3 text"; 

VAR 
text1 , text2: TEXT; 

BEGIN 
text1 := "T"; 

(*statement part *) 

text2:= text1 & T2; 
SI0.PutText(T1 & "\n"); 
SI0.PutText(text2 & "\n"); 

(*contents oftext2: This is a Modula-3 text*) 

SI0.PutBool(T1 = text2); SIO.NIO; 
SI0.PutBool(Text.Equal(T1, text2)); SIO.NIO; 

END TextComparison . 

Example 4.11: Text comparison 

(*outputs FALSE*) 
(*outputs TRUE*) 

relational operations (= and #) compare only these pointers, while the 
Equal function compares the actual contents of the texts. 

Example 4.11 makes this distinction clear. After the value assignment T1 
and text2 reference two different character strings which are equal but not 
the same. The expression T1 = text2 returns false, whereas Text. Equal(T1 , 
text2) yields true: 

This is a Modula-3 text 
This is a Modula-3 text 
FALSE 

TRUE 

Now let us write a small program that presents the user with three 
tasks. If the tasks are completed correctly, the program displays TRUE, 

otherwise FALSE. 

The tasks are: 

• Input a text of a certain length. 

• Input the same text again. 

• Enter a text that ends with a certain character. 

Example 4.12 lists the program. Note that in the third task EndChar must 
be converted to type TEXT using Text.FromChar so that the concatenation 
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MODULE TextExercise EXPORTS Main; 

IMPORT SIO, Text; 

(*Exercises with texts, Sept. 15, 1993. LB*) 

CONST 
EndChar = ':; 
Length = 3; 
T1 = "Please enter a text of length"; 
T2 = "Please_re-enter _the_same_text"; 
T3 = "Please enter a text that ends with "'; 
T4 = ", \n"; 

VAR 

(*end character for 3rd exercise*) 
(*length of text in 1st exercise*) 

text: TEXT; b: BOOLEAN; ch: CHAR; len: INTEGER; 

BEGIN 
SI0.PutText(T1 ); 
SIO.Putlnt(Length); SIO.NIO; 
text := SIO.GetTextO; 

(*statement part*) 
(*request a text of length ... *) 

(*"Length" (= 3)*) 

b := Text.Length(text) = Length; 
SIO.PutBool(b); SIO.NIO; 

(*b = TRUE iflength of text is correct*) 

SI0.PutText(T2 & "\n"); 
text := SIO.GetTextO; 
b := Text.Equal(text, T2); 
SIO.PutBool(b); SIO.NIO; 

SI0.PutText(T3 & Text. FromChar(EndChar) & T4); 
text := SIO.GetTextO; 
len := Text.Length(text); 
ch := Text.GetChar(text, len - 1); 
b := ch = EndChar; 
SIO.PutBool(b); SIO.NIO; 

END TextExercise. 

(*b = TRUE if text = T2*) 

(*ch is the last character*) 
(*b = TRUE if ch = EndChar*) 

Example 4.12: The program gives the user exercises 

SI0.PutText(T3 & Text.FromChar(EndChar) & T4); 
text:= SIO.GetTextO; 
SIO.PutBool(Text.GetChar(text, Text.Length(text) - 1) = EndChar); 
SIO.NIO; 

Example 4.13: Abbreviation of the third exercise in Example 4.12 
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operator can merge it into a text. The expression T3 & EndChar & T 4 would 
be incorrect because we cannot use a value of type CHAR directly as text. 

We could have spared ourselves some variables and lines of code by 
passing the functions directly as parameter values. Example 4.12 repre
sents an abbreviated form of the third task in Example 4.13. 

The preferred solution is often a matter of taste. Shorter programs are 
often more comprehensible, but it is hard to say whether this is the case 
here. At any rate, note that we certainly could not have omitted the vari
able text, which stores the entered text. A solution such as the following is 
incorrect: 

SIO.PutBool(Text.GetChar(SIO.GetTextO, 
Text.Length(SIO.GetText()) -1) = EndChar); 

The input is requested twice, although we only need it once. 

In this case, if the user had entered a longer text the second time, 
the program would even crash because Text.GetChar would attempt to 
read from a position that does not exist in the first text. 

4.5 Floating-point numbers 

Real numbers playa very important role in mathematics. Therefore most 
programming languages provide them as a predefined type. However, rep
resenting real numbers in a computer creates additional difficulties. 

Whole numbers are infinite only in size: Every whole number has a pre
decessor and a successor. The real numbers, we could say, are also infinite 
in their density (between any two real numbers there exists another real 
number). Whole numbers form a denumerably infinite set, while the set of 
real numbers is nondenumerable [Tru88]. In other words, the real numbers 
form a continuum. 

A real number can contain an infinite number of digits. When we ap
proximate a real number with a finite number of places after the decimal, 
then we must always consider the precision of our approximation when us
ing such values. The approximated representation of real numbers in a 
computer is called floating-point representation. 

Assume that we have a four-digit decimal floating-point-arithmetic. 
This means that the decimal point can "float" left or right, but we still have 
only four positions. The largest number that we can represent is 9999 and 
the smallest number is 0.001. The numbers 0.00011, 0.00012, 0.000111, 
0.000112, etc. cannot be distinguished in our four-digit arithmetic. Nonrep
resentable numbers are rounded to a representable number. This means 
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that practically all computations with floating-point numbers are subject 
to rounding errors. 

In floating-point representation a real number x is described with two 
whole numbers, the exponent and the mantissa [Wir73]: 

x = mantissa * baseexponent 

The values of base, mantissa and exponent depend on the respective 
computer system. The base is either 10 or a small power of 2. The di
mension of the mantissa and the exponent determine the range and the 
precision of the representation. Typically many more places are reserved 
for the mantissa than for the exponent. 

A normal form is defined by the following condition: 

1 mantissa 
--<. . <1 
base - maXlmum mantlssa 

This condition assures that the floating point is always to the left of 
the first digit that is not zero in the mantissa. In this form the den
sity of representatives in intervals of the real number axis declines 
exponentially with increasing x. For base 10, e.g., the interval 0.1 -
1 contains the same number of representatives as the interval 1000 -
10000. 

A digital computer can only represent finite numbers and only with fi
nite precision. Thus floating-point numbers in a computer differ signifi
cantly from real numbers in mathematics. The field of numerics deals with 
computation with floating-point numbers [IK66, YG66]. We can only com
pute with imprecise numbers if we integrate the imprecision in the com
putation. We must know exactly how far the results of a computation can 
deviate from the theoretical, precise value. (We could say that we must 
compute with particular precision using imprecise numbers.) This book 
does not treat numerics in detail, but only describes how floating-point 
numbers are declared and used in Modula-3. 

4.5.1 Range 

The range for floating-point numbers is both greater and more fine-grain 
than for integers. Modula-3 provides three predefined types (REAL, LONG
REAL and EXTENDED), which differ only in range and precision. The small
est range is for REAL, the largest for EXTENDED. The characteristic data 
of the individual types, such as the smallest and largest positive repre
sentable value, is stored in the in standard interfaces for each type (see 
Appendix C.1.4). The limits are symmetric to 0 (contrary to the integers). 
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Thus it suffices to specifY the smallest and largest positive values. By 
smallest positive number we mean the smallest number x, such that 0 is 
separate and distinct from 0 + xl. The limits depend on the language envi
ronment. In many language environments, e.g., the limits for LONGREAL 
and EXTENDED are the same. 

4.5.2 Floating-point literals 

Floating-point literals can be represented in the form of rational numbers 
with decimal points, optionally followed by an exponent part, interpreted 
as a power of ten. 

Syntax of floating-point literals 

Number94 = ... I Digit98 { Digit98 } "." Digit98 { Digit98 } [ Exponent95 ]. 
Exponent95 = ( "E" I "e" I "D" I "d" I "X" I "x" ) [ "+" I "-"] Digit98 { Digit98 }. 

A leading sign is not reflected here as part of the number because it 
is not part of the syntax of the number, but is part of an expression (see 
Section 7.1). The sign of the exponent is part of the number. 

The exponent part begins with a letter E, D, or X, which specifies the 
type of the number. E stands for type REAL, D for LONGREAL (double pre
cision), and X for EXTENDED. 
The following are correct examples of floating-point numbers: 

1.1 
1.1DO 
1.1XO 
1.5e2 
-1.5x+2 
1.5E-3 

is of type REAL 
the same value oftype LONGREAL 
the same value oftype EXTENDED 
type is REAL, value = 150 
type is EXTENDED, value = -150 
type is REAL, value = 0.0015 

The following are illegal examples of floating-point literals: 

1 
1. 
1.1D 
1.5 e2 
1.5e 2 

This is an integer. 
Digit must follow the decimal point. 
A digit must follow the exponent letter. 
A number must not contain a blank. 
A number must not contain a blank. 

Table 4.14 shows typical values for the limits of representable values of 
floating-point types. 

IThis value usually refers to the normal form. 
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MinPos MaxPos 
REAL 1.17549435E-38 

LONG REAL 2.2250738585072014D-308 
3.40282347E +38 

1.7976931348623157D+308 

Table 4.14: Typical ranges for floating-point types 

4.5.3 Operations 

Arithmetic operations 

The usual arithmetic operations are predefined for floating-point numbers 
(Modula-3 notation is given in parentheses): 

• addition (+) 

• subtraction (-) 

• multiplication (*) 

• division (/) 

The result of a floating-point expression is always a floating-point value. 
The + and - signs can also be used as unary operators. The + sign can be 
omitted (+x = x). 

The rules of precedence (see Section 7.1) are defined as usual, with addi
tion and subtraction having the least, multiplication and division medium, 
and the unary sign the greatest connective strength. 

The semantics of the arithmetic, as might be expected, deviates from 
the usual semantics customary arithmetic. 

Similar to integers, an overflow can occur if the result of a computation 
is too large (or too small in negative direction). Floating-point numbers can 
also produce an underflow if the absolute value of a result is so small that 
it cannot be represented. 

The following rules apply for the basic operations [Wir73]: 

1. Commutativity of addition and multiplication 

x+y=y+x 
x*y =y*x 

and if x >= y >= 0, then (x - y) + y = x 

2. Symmetry around 0 

x-y =x+(-y)=-(y-x) 
(-x) * y = X * (-y) = -(x * y) 
(-x) / y = x / (-y) = -(x / y) 



76 

3. Monotony 
if 0 <= X <= a and 0 <= Y <= b, 
then the following always apply: 

X + Y <= a + b 
X * Y <= a * b 
x-b <= a-y 
x / b <= a / y 

4. Predefined data types 

We do not discuss additional rules that derive from these [Wir73j. 
It is important to know that the associative and distributive laws do 

not always apply. Additive operations prove particularly hazardous. If we 
subtract nearly equal numbers from one another, the difference can become 
so small that it cannot be represented. Similar problems arise, e.g., when 
we add two very different numbers. The smaller number can fall under the 
precision limit of the larger number and thus be ignored in the addition. 
This effect is called cancellation. Ifwe add the smaller number to the larger 
one ten times, the value of the larger number might not change. However, 
if we had first added ten times the smaller number, the sum could be large 
enough to change the larger number. 

For the following example (based on [Wir73]) let us return to our four
digit floating-point arithmetic. The initial value for the floating-point num
bers x, y and z are: X = 8.800, Y = 2.200 and z = -0.999. This gives us the 
following results: 

(x + y) + z = 11.00 + (-0.999) = 10.01 
x + (y + z) = 8.800 + 1.201 = 10.00 

Division also demands caution. Division by a very small number (even 
an intermediate result in an expression) can cause an overflow. The lan
guage environment detects division by 0 and reports a run-time error. 

Relational operations 

Relational operations for floating-point numbers are similar to those for 
integers. The semantics demand some attention, however, especially for 
equality (and inequality). 

A floating-point number stands for an infinite sequence of real numbers 
up to the next representable number. If two floating-point numbers are 
"equal", this only means that the difference between them is not larger 
than the smallest representable value. This means that we should avoid 
testing equality. Instead of x = y, it is always better to employ relational 
operations in the form ABS(x - y) < f, whereby f represents the necessary 
preCISIOn. 



4.5. Floating-point numbers 

Built-in function Direction 
FLOAT(i) INTEGER --+ REAL 

FLOAT(r, LONGREAL) REAL --+ LONG REAL 

ROUND(r) REAL --+ INTEGER 

TRUNC(r) REAL --+ INTEGER 

FLOOR(r) REAL --+ INTEGER 

CEILlNG(r) REAL --+ INTEGER 
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Note 
Converts an integer to a 
floating-point number. 
The value of the number is 
preserved. 

Converts a REAL number to a 
LONGREAL type. The value 
of the number is preserved. 

Returns the integer closest to 
r. 
Truncates (cuts off) the digits 
after the decimal point. 

Returns the largest integer i 
such that i :::; r. 
Returns the smallest integer i 
such that i ~ r. 

Table 4.15: Type conversions between rea Is and INTEGER 

Another - unexpected - phenomenon is that x <= y is not always the 
same as NOT (x > y). 

Handling these and similar difficulties is one of the most important 
tasks of numerics. This field offers algorithms that accommodate these 
restrictions of the computers. We repeat the warning: 

I ?omputations with floating-point numbers demand knowledge of numer
ICS. 

Conversions 

Modula-3 has predefined functions to convert floating-point numbers to in
tegers and vice versa. Table 4.15 specifies the direction of type conversion 
and how the conversion is done. (Let i be of type INTEGER and r of type 
REAL). The function FLOAT can also convert between the different floating
point types (REAL, LONGREAL and EXTENDED) in all directions (Table 4.15 
includes an example for the case REAL --+ LONGREAL). 

There is obviously a significant difference between converting an inte
ger to a floating-point number or vice versa. In the former case the value 
is preserved, while the latter generally sacrifices precision. Thus there are 
a number of functions for the latter conversion direction, allowing control 
over the rounding. Likewise there is a difference between converting a less 
precise floating-point representation to a more precise floating-point rep-
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resentation (which preserves the value) or vice versa (which can induce a 
loss of precision). 

If r >= 0 then TRUNC(r) = FLOOR(r), and if r < 0 then TRUNC(r) = 
CEILlNG(r). The rounding border for ROUND is exactly in the middle, i.e., 
ROUND(0.5) = 1. 

The following examples give an impression ofthe above functions: 

CEILlNG(1.499E2) = 150 
ROUND(1.499E2) = 150 
TRUNC(1.499E2) = 149 
FLOOR(1.499E2) = 149 

CEILlNG(-1.519E2) = -151 
ROUND(-1.519E2) =-152 
TRUNC(-1.519E2) = -151 
FLOOR(-1.519E2) = -152 

Additional predefined functions such as FIRST, LAST and ABS are also 
defined for floating-point numbers. LAST returns the highest positive value 
an, and FIRST is simply -LAST. 

ABS returns the absolute value of a floating-point number: ABS(r) = r if 
r >= 0; ABS(r) = -r if r < o. 

Mathematical functions 

For floating-point numbers every language environment offers a large num
ber of mathematical functions in the form of prefabricated interfaces. They 
frequently contain basic functions, such as square root and trigonometric 
functions. Many language environments also offer a great deal more, such 
as help for various numeric functions, for statistics, etc. 

4.5.4 Input and output of floating-point numbers 

To write example programs with floating-point numbers, we need to be 
able to read and output floating-point numbers. Here we use the following 
procedures from the SIO interface: 

PROCEDURE GetRealO: REAL; (*Reads a floating-point number*) 
PROCEDURE PutReal(r: REAL); (*Outputs a floating-point number *) 
PROCEDURE GetLongRealO: LONG REAL; (*Reads a long floating-point number') 
PROCEDURE PutLongReal(r: LONG REAL); (*Outputs a long floating-point number*) 

The syntax of floating-point numbers that we input at the keyboard 
is more relaxed than that of Modula-3 literals: Whole numbers are also 
accepted and converted to floating-point numbers. Example 4.16 shows a 
program that reads, writes and converts floating-point numbers. A possible 
execution of the program could be the following: 
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MODULE Reals EXPORTS Main; 

IMPORTSIO; 

(*Realoperations, Sept. 15, 93. LB*) 

VAR 
real: REAL; 

BEGIN 
SIO.PutText("Range and conversion of floating-point numbers\n"); 
SIO.PutText("MaxReal = "); SIO.PutReal(LAST(REAL)); 
SIO.PutText(" MaxLongReal = "); SIO.PutLongReal(LAST(LONGREAL)); 

SIO.PutText("\nPlease enter a floating-point number: "); 
real:= SIO.GetReaIO; (*the entered number is assigned to real*) 

SIO.PutText("ROUND("); SIO.PutReal(real); SIO.PutText(,,) = "); 
SIO.Putlnt(ROUND(real)); SIO.NIO; 

SIO.PutText("TRUNC("); SIO.PutReal(real); SIO.PutText(") = "); 
SIO.Putlnt(TRUNC(real)); SIO.NIO; 

SIO.PutText("FLOOR("); SIO.PutReal(real); SIO.PutText(") = "); 
SIO.Putlnt(FLOOR(real)); SIO.NIO; 

SIO.PutText("CEIL ("); SIO.PutReal(real); SIO.PutText(") = "); 
SIO.Putlnt(CEILlNG(real)); SIO.NIO; 

END Reals. 

Example 4.16: Input/output and conversion offloating-point numbers 

Range and conversion of floating-point numbers 
MaxReal = 3.402823E38 MaxLongReal = 1.797693D308 
Please enter a floating-point number: 3.501 
ROUND(3.50l) 4 
TRUNC(3.50l) 3 
FLOOR(3.50l) 3 
CEIL (3.501) 4 

AB our second example for floating-point numbers, we will solve a quad
ratic equation [Wir73]. Here we need functions for raising to powers and 
for taking the square root. Such functions are available in the interface 
Math of the Modula-3 language environment. For example, Math.pow(x, y) 
returns x Y , Math.sqrt(x) returns Vx for X > 0 (for X ::::; 0 Math.sqrt(x) always 
returns 0). 

The solution to the quadratic equation 

ax2 + bx + c = 0 

can be found with the familiar formula: 

-b+ Vb2 - 4ac 

2a 2a 
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MODULE Square EXPORTS Main; 

IMPORT SIO, Math; 

CONST 
Two = 2.0DO; 
Four= 4.0DO; 

VAR 
a, b, c, d, e, f, x1, x2: LONG REAL; 

BEGIN 
SIO.PutText("Quadratic equation\nPlease enter a, b, c: "); 

a:= SIO.GetLongReaIO; 
b:= SIO.GetLongReaIO; 
c:= SIO.GetLongReaIO; 

e:= Math.pow(b, Two) - Four*a*c; 
d:= Math.sqrt(e); 
f:= Two * a; 

x1:= (-b + d) / f; 
x2:= (-b - d) / f; 

SI0.PutText("x1 = "); SI0.PutLongReal(x1); SIO.NIO; 
SI0.PutText("x2 = "); SI0.PutLongReal(x2); SIO.NIO; 

END Square. 

4. Predefined data types 

(*Sept. 15, 1993. LB*) 

(*2 as longreal constant*) 
(*4 as longreal constant*) 

(*input of a*) 
(*input of b*) 
(*input of c*) 

(*e:= b2 - 4ac*) 
(*d:= -.!b2 - 4ac*) 

(*{"= 2a*) 

Example 4.17: Solving a quadratic equation 

Example 4.17 shows the solution. The variables e, d and t, which serve 
to store intermediate results, are particularly interesting. Their use not 
only makes our program more comprehensible, but also faster, because we 
carry out only once the (possibly extensive) computations that occur in the 
formula repeatedly. The functions of the Math interface use data of type 
LONGREAL; thus we use the corresponding LONGREAL procedures of the 
SIO interface. The following is a possible execution of Example 4.17: 

Quadratic equation 
Please enter a, b, c: 2103 
xl -0.320550528229663 
x2 = -4.6794494717703365 

The solution in Example 4.17 has several weaknesses: For input values 
where b2-4ac becomes negative, it produces an incorrect result instead of 
an error message. Furthermore, it does not test for a=O and so accepts the 
formula from familiar mathematics without criticism [Wir72]. For subtrac
tions with very divergent or with nearly equal values, the cancelation effect 
mentioned above can occur, making the result worthless. For example, if 
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the values ofb2 and 4ac are so far apart that within the representable pre
cision Vb2 - 4ac = V1Ji, then the one result is 0 and the other -~. This 
indicates that we could achieve much more precise results with other algo
rithms. 



Chapter 5 

Statements 

The preceding chapter presented a number of data types. Regarding state
ments, however, we have only briefly considered the assignment, the proce
dure call and the statement sequence (compare Section 3.4.4). This chapter 
reviews assignments and sequences and then describes in detail the state
ments for branches and loops. Procedure invocation is handled later in 
combination with the declaration of procedures (see Section 9.2). 
Later chapters introduce additional special statements as we need them. 

5.1 The assignment 

The assignment statement serves the purpose of assigning a value to a 
variable. Here we repeat the syntax of the assignment statement from 
Section 3.4.4: 

Syntax of the assignment statement 

AssignStmh5 = EXpr66 ":=" EXpr66. 

First the expression on the left side is evaluated, which determines the 
target address (the container for the value). In by far most cases this is 
simply the name of a variable. If the target address is not known in ad
vance, then it can be determined at run time (e.g., see arrays in Section 8.1 
or references in Section 11.5). 

Then the expression on the right side is evaluated and its value is as
signed to the target address. The original value of the variable on the left 
side is lost after the assignment. 

The preceding chapter presented several examples of assignments. Here 
we show how the value of two variables, x and y, can be interchanged (or 
swapped). If we were to write x:= y and y:= x, we would overwrite one of 
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the original values, losing the value in x. Thus we must introduce an aux
iliary variable as a temporary repository for one of the two values (thus 
sometimes called a triangular swap): 

VAR 
x, y, repository: INTEGER; 

BEGIN 

repository := x; x:= y; y:= repository; 

It would be easy to underrate the importance of the assignment state
ment at first glance; after all, it serves simply to copy some value from 
one location to another. This makes it all the more surprising that - as 
proven by extensive measurements - about half of all executed computer 
commands are assignments [Tan90]. Thus the assignment statement has 
fundamental importance, but does not suffice to express complex behavior. 

5.2 Structured statements 

This raises the question of what kinds of statements we need to express 
complex algorithms. Assume the example of systematically escaping from 
a labyrinth (Chapter 1.1). The statements were: 

"Go to the first possible branch. If it goes left, follow it. Other
wise continue straight. Keep going straight until you reach a 
T-junction and then take a right turn there. 

Repeat the whole procedure until you see light. If you reach a 
dead end, then turn around and continue as though the inter
ruption had not occurred." 

What kinds of statements does this example contain? The whole de
scription represents a sequence of statements. That is, first we must "go to 
the first possible branch", and only then do we take the next step. How
ever, this sequence does not suffice, for the statements are sometimes as
sociated with conditions, such as "If [the branch] goes left, follow it". At 
certain points the procedure presents alternatives or branches: Have we 
already reached a "left branch"? If so, then we must turn left; otherwise 
we continue straight. Conditions also control repetitions, or loops, in the 
algorithm: "Keep going straight until you reach a T-junction". The sub
steps need to be repeated until some terminal condition - "you reach a 
T-junction" - is met. 

Finally, the entire procedure represents a loop. All steps must be re
peated, possibly even endlessly (for our procedure would never get us out 
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REPEAT 
go_to_branch 
IF no light yet THEN 

IF found left branch THEN 
goJeft 

ELSE 
go_straight 

END 
END 
WHILE no light yet AND no T-junction found 

go_to_branch 
END 
IF no light yet THEN gOJight END 

UNTIL light seen 

Example 5.1: Procedure for escaping from a labyrinth 
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of some labyrinths!). The repetition stops when the terminal condition -
"you see light" - occurs. 

The types of statements provided by structured imperative program
ming languages actually fall into these three categories: 

• Sequence 

• Loop 

• Branch 

Loops and branches collectively are called structured statements. They 
serve to bracket other statement sequences in order either to allow their 
repeated execution or to select a certain sequence thereof 

These types of statements can occur in any combination. For example, 
loops can contain further loops, branches can contain sequences, sequences 
can contain loops, etc. If structured statements contain statements, we call 
this nesting of statements. Such nesting should be reflected optically in 
the typed source code using indentation. Hence statements in a sequence 
appear in line vertically. In Example 5.1 we wrote the algorithm like struc
tured statements and indented accordingly. Note that the global termi
nal condition - stop when you see light - must be checked after each step 
because it can apply after each movement. For example, if the terminal 
condition occurs after the first statement, goJo_branch, then none of the 
subsequent movement statements is executed, for all further steps first 
check whether the light condition has been met. 
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GoTos 

Unstructured imperative programming languages usually provide a GoTo 
statement that permits expressing both loops and branches. This can take 
the following form: "If a>b then GoTo statement!> else GoTo statement2". 

Thus the conditional GoTo statement is very powerful, indeed too power
ful. It enables a jump to any position in a program, e.g., into the middle 
of a loop or branch. This property makes the GoTo statement a source of 
errors because it encumbers reading the programmer's intended loops or 
branches from the spaghetti of GoTo statements. If we execute a state
ment sequence repeatedly, then it seldom makes sense to jump to some 
position within this sequence from the outside. Although an experienced 
programmer can avoid senseless jumps, it is far better if the programming 
language precludes such errors. Structured statements completely replace 
GoTos and also permit jumps only within a structured framework. 

E. W Dijkstra [Dij68al first warned of the danger of unrestricted Go
Tos. He did not stop at identifying the danger, but developed the con
cept of structured programming, which triggered a new epoch in pro
gramming. 

Structured programming languages deliberately restrict programming 
to the above constructs because these constructs enable us to assure that 
statements always have a single entry point and a single exit. This applies 
not only to simple statements, but also to composite, complex statements. 
We can always rest assured that every statement has a well-defined start
ing point and end point; a jump to the middle is impossible. 

This enables us to validate the correctness ofthe individual statements 
independently. For each statement, we can say which state what we expect 
before its execution, or which preconditions must apply. As a result, for each 
statement we can specify which postconditions will apply after execution of 
the statement. Thus we can validate the correctness of a statement inde
pendently. On assembly of statements to increasingly complex statements, 
we only need to validate the preconditions and postconditions. There is no 
danger oftrespassing into a statement from outside it. 

It is easy to see the advantage of validating the correctness of a compo
nent consisting of 10 to 50 lines of code compared to validating a complete 
program system consisting of hundreds of thousands of lines of code in 
which jumps can occur to arbitrary locations. 

We do not explain validation methodology in detail here. Validation 
can involve methodical testing methods or formal methods. Proving the 
correctness of a program with purely formal methods is called verification 
[DFS88]. 

We must emphasize that restricting the form of statements alone does 
not suffice to master the complexity of larger programs. As long as all 
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statements of a program share a common (global) state space, precise val
idation of a large program remains hopeless. Thus, as we have already 
addressed, we need to structure not only the statements but also the state 
space. In Modula-3 the most important structuring tool for the state space 
is the module, which we have already introduced briefly (see Chapter 10). 
However, at this point we will handle only the statements. 

5.3 Sequence 

Statements that must be executed one after the other form a sequence. 
We handled the syntax of the sequence (or statement sequence) with the 
introduction to the block concept: 

Syntax of the statement sequence 

Stmts23 = [ Stmt24 { ";" Stmt24 } [ ";" ] ]. 

Modula-3 permits combining any number of statements, separated by 
semicolons, to a statement sequence. The statements in a sequence are 
executed in the order of their appearance. This does not require a sepa
rate example, as the programs presented so far all contained statement 
sequences. 

5.4 Branches 

Branches (or selections) bracket a set of statement sequences and, depend
ing on certain circumstances, select exactly one of these sequences for exe
cution. Modula-3 has two kinds of branches, the If statement and the Case 
statement. 

5.4.1 If statement 

The IF statement permits testing a sequence of conditions whose evalu
ation provides the basis for selecting the appropriate statement sequence 
(the 
matching alternative). 

To assign to the variable min the smaller of the values x and y (all of 
type INTEGER) in Modula-3, we can write the following: 

IF x < y THEN min := x ELSE min := y END; 

The statement following the reserved word THEN executes if the evalu
ation ofthe condition x < y yields true. Otherwise (x < y yields false) the 
statement following ELSE executes. 
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Syntax of the If statement 

IfStmt31 = "IF" Expr66 "THEN" Stmts23 

{ "ELSIF" Expr66 "THEN" Stmts23 } ["ELSE" Stmts23 1 "END". 

An IF statement generally takes the following form: 

IF b1 THEN statement sequence1 
ELSIF b2 THEN statement sequence2 
ELSIF b3 THEN statement sequence3 

ELSIF bn THEN statement sequencen 
ELSE statement sequenceo 
END; 

Each condition bi is a Boolean expression (compare Section 4.2). They 
are evaluated sequentially until one returns the value true. If such a condi
tion bi is found, then the corresponding statement sequencei executes, thus 
completing the IF statement (with the program continuing after the END of 
the IF statement). Ifno true condition is found and there is an ELSE clause, 
then the statement sequenceo after the reserved word ELSE executes. If 
no true condition is found and there is no ELSE clause, then no statement 
sequence is executed within the IF statement. 

The following statement: 

IF b1 THENA1 ELSIF b2 THENA2 ELSEAO END 

simply represents a short form of: 

IF b 1 THEN A 1 ELSE IF b2 THEN A2 ELSE AO END END 

Since each new ELSE IF requires an additional END to terminate the 
nested IF statement, the compact form is preferable if we need to test more 
than one condition. 

We can infer that if an IF statement contains more than one true con
dition, the first such condition triggers selection. This does not apply 
in all programming languages. Among the languages conceived for 
parallel processing, some treat multiple true conditions by arbitrary 
selection from among the statement sequences with true conditions 
(guarded statements by Dijkstra [Dij75], e.g., in SR [And91]). This 
introduces a certain nondeterminism into the execution of selection 
statements, which can be useful in nonsequential programs (see Chap
ter 16). 
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CONST 
Cony = ORDCA') - ORDCa'); 

VAR 
ch: CHAR; 

BEGIN 
ch:= SIO.GetCharO; 
IF (ch >= 'a') AND (ch <= 'z') THEN 

ch:= VAL(ORD(ch) + ConY, CHAR); 
END; 
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(*difference between ordinal values of 'A: and 'a'*) 

(*reads a character and assigns it to ch *) 
(*value of ch is a lower-case letter*) 

(*converts to upper case*) 

SIO.PutChar(ch); (*outputs ch*) 

Example 5.2: Testing a condition with an If statement 

Example 4.8 showed how to transform lower-case letters into upper 
case. Let us extend this example with a test to assure that we apply the 
transformation only to lower-case letters. All other characters should pro
duce no action (Example 5.2). This calls for an IF statement without an 
ELSE clause. 

Assume that we want to determine the order of magnitude of the posi
tive number x, to the thousands position: 

IFx >= OTHEN 
IF X < 10 THEN SIO.PutText("one-digit") 
ELSIF X < 100 THEN SIO.PutText("two-digit") 
ELSIF X < 1000 THEN SIO.PutText("three-digit") 
ELSE SIO.PutText("at least four-digit") 
END; (*IF (x < 10)*) 

ELSE 
SIO. PutText("negative") 

END; (*IF x >= 0*) 

This program fragment exploits the fact that the ELSIF conditions are 
evaluated sequentially; the tests are not independent. For example, if we 
exchange the ELSIF branches that test x < 100 and x < 1000, then the pro
gram would identifY any number between 10 and 999 as three-digit. In this 
case three-digit would mean at most three digits rather than exactly three 
digits. We can eliminate this sequential dependency by always testing the 
full range, thus making the tests disjunct: 

IF (x >= 0) AND (x < 10) THEN SIO.PutText("one-digit") 
ELSIF (x >= 10) AND (x < 100) THEN SIO.PutText("two-digit") 
ELSIF (x >= 100) AND (x < 1000) THEN SIO.PutText("three-digit") 
ELSIF (x >= 1000) THEN SIO.PutText("at least four-digit") 
ELSE SIO. PutText("negative") 
END; (*IF (x >= 0) ... *) 
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MODULE Ifs1 EXPORTS Main; 

IMPORTSIO; 

(*Sept. 20, 1993. LB*) 

VAR i: INTEGER; 

BEGIN (*statement part*) 
SIO.PutText( "Test of divisibility by 2 to 5\n" & 

"Please enter a number: "); 
i:= SIO.GetintO; 
SIO.PutText("Your number is divisible by"); 

IF 
«i MOD 2) = 0) OR «i MOD 3) = 0) OR«i MOD 4) = 0) OR «i MOD 4) = 0) 

THEN (*at least one of the conditions holds*) 
IF (i MOD 2) = 0 THEN SIO.Putlnt(2) END; (*divisible by 2*) 
IF (i MOD 3) = 0 THEN SIO.Putlnt(3) END; (*divisible by 3*) 
IF (i MOD 4) = 0 THEN SIO.Putlnt(4) END; (*divisible by 4*) 
IF (i MOD 5) = 0 THEN SIO.Putlnt(5) END; (*divisible by 5*) 

ELSE (*no condition holds*) 
SIO.PutText("none of the numbers from 2 to 5") 

END; (*[F (i MOD 2) = 0 ... *) 

SIO.NIO; 
END Ifs1. 

Example 5.3: If statements nested to a depth of 1 

This variant permits every interchange of ELSIF branches, but at the 
price of more effort in constructing and evaluating the conditions. 

In Modula-3 all structured statements have an easily recognizable 
start and an end (in the form of keywords); the end of a structured 
statement is not always so easy to recognize because most structured 
statements employ the same keyword (END). Thus we recommend com
menting the end of a structured statement as in the examples above. 

IF-ELSIF-ELSIF statements test all conditions until the first one is true. 
All subsequent ones are ignored. This essentially differs from putting the 
conditions in individual IF-THEN statements. To make this clear, let us 
write a program that reads a number and determines whether the number 
is divisible by 2, 3, 4 and/or 5 (Example 5.3). First we test whether any 
conditions can be fulfilled at all. If not, we output a corresponding message 
(in the ELSE branch). If any conditions can be fulfilled, then we test each 
condition individually. The simple IF-THEN statements are nested in the 
IF-THEN-ELSE statement. 

The solution in Example 5.3 is correct, but not especially elegant be
cause each condition is tested redundantly. 
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MODULE Haho EXPORTS Main; 

IMPORTSIO; 

VAR 
ch: CHAR; i: CARDINAL; 

BEGIN 
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(*Sept. 20, 1993. LB*) 

(*i: counter for position*) 

(*statement part*) 
SIO.PutText("Please enter a line beginning with 'Haho':\n"); 

i:= 1; 
ch:= SIO.GetCharO; 

IF (ch = 'H') OR (ch = 'h') THEN 
INC(i); ch:= SIO.GetCharO; 
IF (ch = 'A') OR (ch = 'a') THEN 

INC(i); ch:= SIO.GetCharO; 
IF (ch = 'H') OR (ch = 'h') THEN 

INC(i); ch:= SIO.GetCharO; 
IF (ch = '0') OR (ch = '0') THEN 

INC(i); SIO.PutText("Correct\n"); 
END; (*IF (ch = '0'). .. *) 

END; (*IF (ch = 'H') ... *) 
END; (*IF (ch = 'A') ... *) 

END; (*IF (ch = 'H') ... *) 

IF i < 5 THEN 
SIO.PutText("The position of the first deviation is "); 
SIO.Putlnt(i); SIO.NIO 

END; (*IF i < 5*) 

END Haho. 

(* 1st character is at 1st position*) 
(*read 1st character*) 

(* 1st letter is H or h *) 

(*2nd letter is A or a*) 

(*3rd letter is H or h*) 

(*4th letter is 0 or 0*) 

(*A difference was detected*) 

Example 5.4: Repeatedly nested If statements 

One possible program flow is the following: 

Test of divisibility by 2 to 5 
Please enter a number: 30 
Your number is divisible by 2 3 5 

A series of conditions that are to be tested until one of them produces 
false presents a different kind of problem. Here we offer another program 
that reads a character string and tests whether it begins with "Haho", with
out case sensitivity, so that we accept "Haho", "haho", "HAHO" etc. We can
not use Text.Equal because this procedure is case sensitive. If a character 
string does not begin with "Haho", then we output the first position where 
the first deviation occurred. This requires nesting the individual IF-THEN 
statements (see Example 5.4). The variable i always contains the position 
of the next character. Mter each successful test of a character, i is incre
mented by one. For matching words, i ascends to 5, and for nonmatching 
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words it represents the first deviating position. The following is a possible 
program flow: 

Please enter a line beginning with 'Haho' 
haha 
The position of the first deviation is 4 

5.4.2 Case statement 

The CASE statement computes an expression whose value determines the 
selection of a statement sequence from a set of statement sequences. 

Menu input typical of many interactive programs could take the follow
ing form: 

SIO.PutText("Choose one of the following: "); 
SIO.PutText("(1) first, (2) second, (3) third menu item."); 

CASE SIO.GetintO OF 
1 => SIO.PutText("first menu item") 

12 => SIO.PutText("second menu item") 
13 => SIO.PutText("third menu item") 

ELSE SIO.PutText("improper input") 
END; 

Rather than a computation, here the expression consists of the return 
value of the function SIO.Getlnt. Depending on whether the user inputs 1, 
2 or 3, the corresponding statement executes. If the user inputs any other 
number, the statement in the ELSE branch executes. 

Syntax of the Case statement 

CaseStmt27 = "CASE" Expr66 "OF" [Case42 ] { "1" Case42 } 
["ELSE" Stmts23 ] "END". 

Case42 = Labels43 { "," Labels43 } "=>" Stmts23 . 
Labels43 = ConstExpr65 ["00" ConstExpr65 ]. 

Thus a Case statement sequence generally takes the following form: 

CASE expression OF 
I List 1 => statement sequence 1 

I List2 => statement sequence2 

Listn => statement sequencen 
ELSE statement sequenceo 
END (*CASE expression*) 
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The type of the expression must be an ordinal type (i.e., not REAL or 
TEXT). Listi represents a list of individual values (in the form of constant 
expressions) or ranges. A range is specified as lower bound .. upper bound, 
whereby the bounds themselves are part of the range. The ELSE branch 
is optional. All values that occur in any of the CASE lists of a given CASE 
statement must be disjunct. The order of specification of the individual 
values or ranges, contrary to the IF-ELSIF-ELSIF statement, is arbitrary. 

During execution of the Case statement the expression is evaluated 
first. Ifthere exists a Listi containing a matching value (of which there can 
be only one), then the corresponding statement sequencei executes. If there 
is no such list and an ELSE branch was specified, then statement sequenceo 
executes. 

If there is no list that contains the value and no ELSE branch, then a 
run-time error results. This is a significant difference compared to the IF 
statement. Ifthere is no valid condition in an IF statement, then the state
ment has no effect apart from the evaluation of the condition itself The 
CASE statement assumes an error if none of the lists contains the value of 
the CASE expression. In such cases it is always best to generate a run-time 
error. In this way the programmer can more easily localize and correct the 
error. Ifthe program were to protract execution and possibly continue com
putations with erroneous data, the error would be more difficult to localize. 

For this reason we should consider the run-time error imposed by the 
language environment not as an irritation, but as an aid. Although a 
program crash proves frustrating, unfortunately it is usually our own 
fault. 

As an example of a CASE statement, let us rewrite our program for the 
basic operations of integer arithmetic so that it selects only one operation 
specified by the user. DIV and MOD must be specified by their first letters 
(upper or lower case). Our first attempt is Example 5.5. 

This solution represents a situation that unfortunately sometimes oc
curs in practice as well. It functions correctly for correct user input, but 
crashes if the user enters an incorrect operation character. Hence we can 
generally conclude that a CASE statement without an ELSE branch should 
only be used if every possible value of the CASE expression occurs in one of 
the CASE lists. 

The compiler outputs a warning when translating a CASE statement 
that does not cover all possible values: CASE s ta temen t does not 
handle all possible values. This makes it easy to find such 
dangerous CASE statements. 

We can easily correct our error by inserting an ELSE branch (Example 
5.6). This solution is still not correct because it returns the result k even in 
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MODULE Case EXPORTS Main; 

IMPORTSIO; 

VAR 
i, j, k: INTEGER; 
operator: CHAR; 

BEGIN 
SIO.PutText( "Basic arithmetic functions\n" & 

5. Statements 

(*Sept. 20, 1993. LB*) 

(*i and) are the operands, k the result*) 
(*contains the entered operator "code"*) 

(*statement part*) 

"Please enter two numbers and an operator\n"); 

i:= SIO.GetintO; 
j:= SIO.GetintO; 
operator:= SIO.GetCharO; 

CASE operator OF 
1'+' => k:= i + j; 
I '-' => k:= i - j; 
I ,.' => k:= i • j; 
I'D', 'd' => k:= i DIV j; 
I'M', 'm'=> k:= i MOD j; 

END; (*CASE operator*) 

SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO; 

END Case. 

Example 5.5: Case statement without Else branch (danger of run-time error) 

the event of a user error, although the value of k would then be undefined. 
We can attain a better solution using nested CASE statements (Example 
5.7). The outer CASE statement filters out cases with erroneous input. The 
inner CASE statement no longer needs to handle errors, so that all possible 
values of the CASE expression are now covered in the CASE lists. 

This solution suffers from the repeated evaluation of expressions in a 
way similar to the flaw in Example 5.3. Similar considerations apply. 
Additionally, CASE statements with few cases - such as our outer CASE 
statement - should better be avoided. 

Two possible executions of Example 5.7 (omitting the greeting text) 
follow: 

[ 2334. 1 
~I_n_v __ a_l_i_d __ o_p_e_r __ a_t_o_r ________________________________ ___ 

[ 2334 * 1 
~R_e __ s_u_l_t ____ 7_8_2 ______________________________________ ~ 
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CASE operator OF 
I '+' => k:= i + j; 
I '-' => k:= i - j; 
I ,., => k:= i • j; 
I'D', 'd' => k:= i DIV j; 
I'M', 'm'=> k:= i MOD j; 
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ELSE SIO.PutText("lnvalid operator\n"); (*k remains undefined!*) 
END; (*CASE operator*) 
SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO; 

Example 5.6: Case statement with Else branch 

CASE operator OF 
1'+', '-', ,*, , 'D', 'd', 'M', 'm' => 
CASE operator OF 

I '+' => k:= i + j; 
I '-' => k:= i - j; 
I ,., => k:= i • j; 
I'D', 'd' => k:= i DIV j; 
I'M', 'm' => k:= i MOD j; 

END; (*CASE operator*) 

(*if operator is correct*) 
(*now the list contains all possible ualues*) 

SIO.PutText("Result = "); SIO.Putlnt(k); SIO.NIO; 
ELSE (*ifthe operator character was a typing error*) 

SIO.PutText("lnvalid operator\n"); 
END; 

Example 5.7: Case statements with error handling 

IF operator = '+' THEN k:= i + j; 
ELSIF operator = '-' THEN k:= i - j; 
ELSIF operator = ,., THEN k:= i • j; 
ELSIF (operator = 'D') OR (operator = 'd') THEN k:= i DIV j; 
ELSIF (operator = 'M') OR (operator = 'm') THEN k:= i MOD j; 
ELSE SIO.PutText("lnvalid operator\n"); 
END; (*IF operator*) 

Example 5.8: Ifreplacing Case 
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CASE SIO.GetCharO OF 
I 'A' .. 'Z' => SIO.PutText("capitalletter\n"); 
I 'a' .. 'z' => SIO.PutText("lower-case letter\n"); 
I '0' .. 'g' => SIO.PutText("number\n"); 

ELSE SIO.PutText("other\n"); 
END; (*CASE SIO.GetChar()*) 

Example 5.9: Case statement with range lists 

IF (SIO.GetCharO >= 'A') AND (SIO.GetCharO <= 'Z') THEN 
SIO.PutText("capitalletter\n"); 

ELSIF (SIO.GetCharO >= 'a') AND (SIO.GetCharO <= 'z') THEN 
(*On each invocation a new character is read - which we do not want!*) 

5. Statements 

Example 5.10: Case improperly replaced by If - side effect! 

ch:= SIO.GetCharO; 
IF (ch >= 'A') AND (ch <= 'Z') THEN 

SIO.PutText("capitalletter\n"); 
ELSIF (ch >= 'a') AND (ch <= 'z') THEN 

SIO.PutText("lower-case letter\n"); 
ELSIF (ch >= '0') AND (ch <= 'g') THEN 

SIO.PutText("number\n"); 
ELSE 

SIO.PutText("other\n"); 
END; (*IF SIo. GetChar() *) 

Example 5.11: Case replaced by If - side effect disabled 

In the program fragment in Example 5.9 the CASE statement classifies 
the entered characters into categories and outputs a corresponding text. 
The invocation of SIO.GetChar is used directly as the CASE expression. 

5.4.3 Equivalence of If and Case 

IF statements can be transformed to CASE statements and vice versa. There 
are situations where either IF or CASE is absolutely preferable. Otherwise 
this is a matter of taste. 

The CASE statement of Example 5.6 is easy to replace with an IF state
ment (Example 5.8). 
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Which variant we choose is a matter of taste here; however, the corre
sponding CASE statement is more readable. If the expression in the CASE 

statement is complicated and time consuming, then a CASE statement is 
more efficient because the expression is only computed once. If there are 
but a few cases to distinguish, then preference usually goes to an IF state
ment. If the CASE expression triggers a side effect (i.e., the expression not 
only returns a value, but also changes the state space), then the CASE 

statement cannot be replaced so easily with an IF statement. For exam
ple, if we naively convert the CASE statement in Example 5.9 one-to-one to 
an IF statement, this would simply be incorrect because we would invoke 
GetChar at each prompt (Example 5.10). Invoking GetChar causes a typical 
side effect: on each invocation the procedure reads a new character from 
the keyboard. The resulting program behaves differently from Example 
5.9. We can easily disable this side effect by introducing an auxiliary vari
able (ch) (Example 5.11). The resulting IF construct is equivalent to the 
CASE version (although less efficient). 

5.5 Loops 

Loops (or repetition statements) repeat the statements that they bracket 
(the loop body). Either a loop is infinite or it ends on a certain condition, 
the loop condition. The role of a loop condition can be seen from two view
points. It is either the condition that controls whether the loop body is to 
be repeated, or the condition to terminate the repetition. In the first case 
we also call the loop condition entry condition; in the second case termina
tion condition. For a given loop the following always applies: termination 
condition = NOT entry condition. 

In some loops the loop body executes at least once, while in others the 
loop body might not execute at all. Modula-3 offers four types of loops that 
differ primarily in the specification of the loop condition 

• While (Section 5.5.1) 

• Repeat (Section 5.5.3) 

• For (Section 5.5.4) 

• Loop (Section 5.5.5) 

5.5.1 While loop 

This repetitive control structure evaluates the loop condition before execut
ing the loop body. Take the example of integer division, with dividend di
vided by divisor, both of type CARDINAL. A naive algorithm might subtract 
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dividend from divisor until no further subtraction is possible because divisor 
has become larger than dividend. The number of subtractions represents 
the result of integer division: 

result := 0; 
WHILE dividend> divisor DO 

INC(result); dividend := dividend - divisor 
END; 

AB long as the condition dividend> divisor is true, the statements after 
the keyword DO are executed. The condition must be tested before execu
tion of the statements because the divisor could be larger than the dividend 
from the start; the result of this integer division would be 0; itis computed 
correctly by the loop (because no computation is done at all). Mter the 
computation, the division remainder is contained in the variable dividend. 

Syntax of the While loop 

WhileStmt40 = "WHILE" Expr66 "DO" Stmts23 "END" . 

Expr66 must be a Boolean expression. The WHILE loop executes as fol
lows: First Expr66 the loop condition is evaluated. Ifit is true, then the loop 
body (Stmts23 ) is executed and then the condition is reevaluated. This is re
peated until the condition is false. Then the WHILE statement terminates 
and the program resumes at the line after the END. At this location the 
loop condition is certainly false. If the condition is initially false, the loop 
body does not execute at all. On the other hand, if the condition never be
comes false, then the loop body executes infinitely! It is the programmer's 
responsibility to assure that the loop condition is set to false at some point 
in the loop body. The WHILE statement only tests the condition, but does 
not set it. 

As our first example of the WHILE statement, let us generalize Example 
3.5 (page 47) such that the program computes the arithmetic mean of a 
number sequence of any length (Example 5.12). We need to be able to 
read any number of numbers in a loop, and the entry of a stop character 
indicates the end of the sequence. We will store the sum of the sequence in 
the variable sum. On each repetition of the loop we read a new number and 
increase the count of numbers n by 1 and sum by the value of the number. 
The termination condition is the entry of the stop character. 

Note the initializations before the WHILE loop: To be able to use a 
counter in a loop, it must be set to a start value before the loop begins! 
We test for the stop character using the function SIO.LookAhead, which re
turns the next character in the input stream without removing it. Thus, 
e.g., if the next character is a digit, then the number is read with Getlnt. 
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MODULE ArithMean EXPORTS Main; (*04.11.94. LB*) 
(*The program computes the arithmetic mean of a series of numbers*) 

IMPORT SIO, Text; 

CONST 
Stop = '.'; 

VAR 
x, n: INTEGER; 
sum: INTEGER; 
mean: REAL; 

BEGIN 

(*terminates the input stream*) 

(*x: current value, n: number ofvalues*) 
(*stores the sum of the input numbers*) 

(*arithmetic mean is type REAL*) 

SIO.PutText( "Arithmetic mean of a series of numbers\n" & 
''Terminate input with" & Text.FromChar(Stop) & "\n"); 

sum:= 0; 
n:= 0; 

WHILE SIO.LookAheadO # Stop DO 
x:= SIO.GetintO; 
INC(sum, x); 
INC(n); 

END; (*WHILE x # Stop*) 

IF n > 0 THEN 
mean:= FLOAT(sum) / FLOAT(n); 
SIO.PutText("Arithmetic mean = "); 
SIO.PutReal(mean); SIO.NIO 

ELSE 
SIO.PutText("Empty input stream\n") 

END; (*IF n i 0*) 
END ArithMean. 

(*sum initialized to 0*) 
(*n initialized to 0*) 

(*Termination condition: the stop character*) 
(*reads a number into x*) 

(*increments sum by x*) 
(*increments n by 1*) 

Example 5.12: Arithmetic mean ofa series of numbers 

At the end of the loop we output the arithmetic mean as a REAL num
ber because the sum divided by the count might not be divisible without a 
remainder. One possible execution of the program (without the greeting) 
might be the following: 

-10085050164. 
Arithmetic mean 4.6666665 
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MODULE Euclid EXPORTS Main; 
IMPORTSIO; 

VAR 

5. Statements 

(*20.09.93. LB*) 

a, b, x, y: CARDINAL; 
BEGIN 

(*a, b: input values; x, y: working variables*) 
(*statement part*) 

SIO.PutText("Euclidean algorithm\n Enter 2 positive numbers: "); 

a:= SIO.GetintO; 
b:= SIO.GetintO; 

(*first number assigned to a*) 
(*second number assigned to b*) 

x:= a; y:= b; (*x and y can be changed by the algorithm *) 

WHILE x# Y DO 
IF x > y THEN x:= x - y ELSE y:= y - x END; 

END; (*WHILE x # y*) 

SIO.PutText("Greatest common divisor of "); 
SIO.Putlnt(a); SIO.PutText(" and "); SIO.Putlnt(b); 
SIO.PutText(" = "); SIO.Putlnt(x); SIO.NIO; 

END Euclid. 

Example 5.13: The Euclidean algorithm (without input validation) 

Euclidean algorithm 

The next example features the famous algorithm of Euclid to find the great
est common divisor (GCD) oftwo positive numbers. The algorithm is spec
ified as follows: 

1. Compare the two numbers. If they are equal, the GCD is the same. 

2. If the numbers are not equal, subtract the smaller number from the 
larger one and replace the larger number by the result of the sub
straction. 

3. Continue at step 1. 

The algorithm stops upon finding the GCD - at the latest when the 
numbers are both 1. 

The algorithm did not become famous without cause, for it represents 
one of the first algorithms ever. The geometric inspiration is quite 
obvious: The algorithm can be executed geometrically with relative 
ease. 

With the help of a WHILE loop we can quite easily express the algorithm 
(let X > 0 and y > 0): 

WHILE x #y DO 
IF x > y THEN x:= x - y ELSE y:= y - x END; 

END; (*WHILE x # y*) 
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MODULE Euclid2 EXPORTS Main; 

IMPORTSIO; 

VAR 

101 

(* 17.05.94. LB*) 

a, b: INTEGER; 
x, y: CARDINAL; 

(*input values *) 
(*working variables *) 

BEGIN 
SIO.PutText("Euclidean algorithm\nEnter 2 positive numbers: "); 

a:= SIO.GetintO; 
WHILE a <= 0 DO 

SIO.PutText("Please enter a positive number: "); a:= SIO.GetintO; 
END; (*WHILE a < 0*) 

b:= SIO.GetintO; 
WHILE b <= 0 DO 

SIO.PutText("Please enter a positive number: "); b:= SIO.GetintO; 
END; (*WHILE b < 0*) 

(*statement part*) 

x:= a; y:= b; (*x and y can be changed by the algorithm *) 
WHILE x# y DO 

IF x > y THEN x:= x - y ELSE y:= y - x END; 
END; (*WHILE x # y*) 

SIO.PutText("Greatest common divisor = "); SIO.Putlnt(x); SIO.NIO; 
END Euclid2. 

Example 5.14: The Euclidean algorithm with controlled input 

In Example 5.13 the algorithm is embedded in a program. Since we 
know that the algorithm is defined for positive numbers, we declare the 
variables as type CARDINAL. 

Program 5.13 has one shortcoming: If the user enters a negative num
ber, the program crashes (at run time the language environment detects 
that we are attempting to assign a negative value to a variable of type 
CARDINAL). Even worse, if one of the entered numbers is zero, then the 
program falls into an infinite loop. For example, if the second entry is 
0, then X is always decremented by 0; the termination condition is never 
met. Although negative numbers and zero are actually erroneous input, 
the punishment is too severe. We must always assume that an interactive 
user can make a mistake. In such cases we should request a new entry in
stead ofletting the program crash. Program example 5.14 eliminates this 
shortcoming. Mter entry of each number, a WHILE loop requests input of 
a new number until a positive number is entered. If the number is correct 
from the start, this WHILE loop has no effect. Note that we had to change 
the type of the input variables a and b to INTEGER to prevent the program 
from still crashing on assignment of a possibly negative number. 
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The actual algorithm in Example 5.14 is surprisingly the smallest part 
of the program. This is also typical of larger program systems: The 
various management tasks (inputJoutput, error handling, etc.) often 
require a much larger portion of the code than the actual computa
tions. 

5.5.2 Loop invariants 

As another example we will develop an algorithm that multiplies two natu
ral numbers using only addition and subtraction. The algorithm is actually 
quite simple: x * y is equivalent to x + x ... + x (y times). We introduce two 
auxiliary variables: result to store the result and steps to count the number 
of steps (Example 5.15). 

Example 5.15: Multiplication using only addition and subtraction 

result:= 0; 
step:= y; 
WHILE step> 0 DO 

result:= result + x; step:= step - 1 ; 
END; (*WHILE*) 

Now we can pose the question: Can we be sure that this algorithm is 
correct? How can we be sure? Ifwe attempt to test the algorithm for all pos
sible numbers, then even the fastest computer in the world would require 
centuries. Even for such a simple case, exhaustive testing is impossible. 
We must find assurance in another way, i.e., with a more mathematical ap
proach. Although we do not discuss formal verification [DFS88] in detail, 
we will show how to check the correctness of a loop semiformally. We use 
the following idea: 

• We formulate the required result (call it Q) using predicate logic. 

• We look for a condition that applies during the entire execution of the 
loop (an invariant). We can write this loop invariant (call it 1) for 
the WHILE loop as follows (we put the invariant in parentheses {} to 
indicate that it is not directly part of the algorithm): 

{I} WHILE condition DO statements {I} END 

• We look for a termination condition B such that the result Q ensues 
from B /\ I (written B/\ I =::} Q). Note that the termination condi
tion for the WHILE loop is the negation of the WHILE condition. The 
WHILE loop executes until the WHILE condition becomes false, or the 
termination condition becomes true. 
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• Now we can be sure that if our loop terminates at some time, then 
it must return the correct result. I applies for each iteration of the 
loop, B applies after the loop, and BI\I imply the correct result. If 
we prove this for a given algorithm, then we have proven the partial 
correctness of the algorithm. 

• Finally, we also show that the algorithm terminates. Then we have 
proven the total correctness. 

Now let us try to apply this procedure to Example 5.15. 

• The required result is easy to formulate: 

Q : result = x * y. 

• We find the invariant as follows: Before the first execution of the loop 
result = 0 and step = y. With each iteration result is increased by x and 
step is decreased by 1. The algorithm is defined for natural numbers; 
i.e., x and y must not be negative. Hence we can derive the additional 
requirement that step must not become negative (the loop body is only 
executed if step> 0). Thus the following condition always applies: 

I : (result + (step * x) = x * y) 1\ (step >= 0) 

• Furthermore, the following applies: Ifstep = 0, then result = x * y. This 
gives us the termination condition 

B: step = O. 

The WHILE condition thus becomes step # o. We could have written 
the loop in the form WHILE step # 0 DO ... END. Our variant is more 
robust because the loop is simply skipped if step erroneously receives 
a negative value. 

• This already demonstrates the partial correctness. I is a valid invari
ant, and if B is true as well, then I becomes the result. For example, 
if y = 0 then the loop body is not executed - result = 0 is the correct 
answer. 

• For the total correctness we must still prove that the loop actually 
terminates. Here we must show that we approach the termination 
condition with each iteration. In this case this means that steps> 0 
must become false at some point. Since steps> 0 always applies at 
the start ofthe loop body and steps is reduced by 1 with each iteration, 
it must eventually become O. 
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It would also be possible to find other algorithms that meet the same 
invariant and termination condition and yet are still different. [WG92, 
RW92] offer such an algorithm, which is somewhat more complicated, 
yet still more efficient (it requires less iterations) and fulfills the same 
conditions. 

Assertions 

Modula-3 allows specification of assertions at any location in a statement 
sequence. We can use assertions, e.g., to formulate loop invariants. Strictly 
speaking, this feature is not part ofthe language, just as the invariants are 
not part of the algorithm. Modula-3 permits assertions with the following 
syntax: 

Assertion = "<*" "ASSERT" Expr66 "*>" . 

Expr66 is a Boolean expression. If it is true, the program continues to 
run. If it is false, a run-time error is generated which terminates the pro
gram with an error message. 

We could extend the program fragment in Example 5.15 so that we spec
ify the loop invariant directly as an assertion (Example 5.16). 

As language elements, assertions belong to the pragmas. Pragmas are 
used primarily to control the functioning of the compiler. Pragmas 
are always bracketed in the special symbols <* and *>. One pragma, 
e.g., allows disabling compiler warnings, while another permits link
ing program components that were written in another programming 
language (e.g., in C) (see Appendix B.8.5). 

The observant reader might be wondering why we cannot test the as
sertion with an IF statement, as in Example 5.17. This would be possible. 
However, using assertions as pragmas indicates that testing the condition 
is not part of the algorithm, but belongs other dimensions: on the one hand 
to the documentation and simultaneously to the the improvement of secu
rity. Another advantage of specifying assertions in the form of pragmas is 
that they can be ignored by setting a compiler option. We can direct the 
compiler (with the option -A) to ignore all assertions (to handle them as 
comments). Thus a program might contain many assertions during its de
velopment phase. Once we are convinced that our program is correct, the 
assertions can simply be "compiled out"; then they only serve as comments, 
but no longer affect the size or execution speed of the compiled program. If 
we had chosen the version with the IF statement, we would have to man
ually remove the assertions in the final phase. Such obstacles would nor
mally lead programmers to prefer to do without assertions, thus saving not 
only their own energy but also storage and CPU time. Naturally the loss is 
much greater for serious applications: Faulty programs result! 
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result := 0; 
step:= y; 
<* ASSERT (result + (step * x) = x * y) *> 
WHILE step> 0 DO 

result := result + x; step:= step - 1 ; 
<* ASSERT (result + (step * x) = x * y) *> 

END; (*WHILE*) 

Example 5.16: Multiplication algorithm with assertion 

result:= 0; 
step:= y; 
WHILE step> 0 DO 

IF (result + (step * x) = x * y) THEN 
result:= result + x; step:= step - 1 ; 

ELSE 
SIO.PutText("ASSERTION ERROR -- CAUTION!"); 

END (*IF*) 
END; (*WHILE*) 

Exam pIe 5.17: If statement instead of assertion (unfavorable) 

5.5.3 Repeat loop 
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This loop statement has its termination condition after the execution ofthe 
loop body. 

The following algorithm determines whether the positive number can
didate is a prime number. The variable i is initialized to 1 and then in
cremented by 1 in each iteration until either candidate can be divided by 
i without a remainder (hence not a prime number) or until the following 
applies: 

i2 > candidate 

Variables i and candidate of the code fragment are of type CARDINAL: 

i:= 1; 
REPEAT 

i:= i + 1 
UNTIL ((candidate MOD i) = 0) OR (i * i > candidate); 
IF i * i > candidate THEN 

SIO.PutText("Prime number") 
END; 

The statement between the keywords REPEAT and UNTIL executes until 
the termination condition is fulfilled. An interesting aspect of this exam
ple is that the actual work is done in the evaluation of the termination 
condition, while the loop body itself simply consists of an addition. 
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MODULE Prim EXPORTS Main; 

IMPORTSIO; 

VAR candidate, i: INTEGER; 

BEGIN 
SIO.PutText("Prime number test\n"); 
REPEAT 

SIO.PutText("Please enter a positive number; enter 0 to quit. "); 
candidate:= SIO.Getlnt(); 
IF candidate> 2 THEN 

i:= 1; 
REPEAT 

i:= i + 1 
UNTIL ((candidate MOD i) = 0) OR (i • i > candidate); 

5. Statements 

(*21.09.93. LB*) 

IF (candidate MOD i) = 0 THEN SIO.PutText("Not a prime number\n") 
ELSE SIO.PutText("Prime number\n") 
END; (*IF (candidate MOD iJ = 0 ... *) 

ELSIF candidate> 0 THEN 
SIO.PutText("Prime number\n") (* 1 and 2 are prime*) 

END; (*IF candidate> 2*) 
UNTIL candidate <= 0; 

END Prim. 

Example 5.18: Prime number testing with Repeat 

Syntax of the Repeat loop 

RepeatStmh5 = "REPEAT" Stmts23 "UNTIL..:' Expr66. 

Expr66 (the condition) is a Boolean expression. First the loop body ex
ecutes; then the condition is evaluated. If the condition is false, the loop 
body is repeated until the condition becomes true. This terminates the RE

PEAT statement, and execution resumes with the next statement. 
Contrary to the WHILE statement, the loop body of the REPEAT state

ment always executes at least once (because the condition is tested only 
after the first iteration). Furthermore, a WHILE statement repeats as long 
as the condition is true, while a REPEAT statement executes as long as the 
condition is false. If the condition is never true, the loop body repeats in
finitely. The REPEAT statement - similar to the WHILE statement - only 
tests the loop condition, but does not set it. 

In Example 5.18 the prime number algorithm is imbedded in a program 
that enables us to use the algorithm repeatedly. The algorithm is embedded 
in an outer REPEAT loop that terminates the program on an entry ~ o. 

Let us rewrite the multiplication algorithm of Example 5.15 using a 
REPEAT loop. The loop invariant remains intact; only the termination con
dition changes. In Example 5.19 we list the complete program source code. 
The program explicitly asks whether the user wants to use the algorithm 
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MODULE Mul EXPORTS Main; 

IMPORTSIO; 

VAR 
x, y, result, step: INTEGER; 
stop: CHAR; 

BEGIN 
REPEAT 

SIO.PutText("Multiplication of two positive numbers: "); 

REPEAT 
x:= SIO.GetintO; 

107 

(*21.09.93. LB*) 

(*controls termination *) 

IF x <= 0 THEN SIO.PutText("Enter a positive number: ") END; 
UNTIL x > 0; (*Reads until a positive number is entered*) 
REPEAT 

y:= SIO.GetlntO; 
IF y <= 0 THEN SIO.PutText("Enter a positive number: ") END; 

UNTIL y > 0; (*Reads until a positive number is entered*) 

result:= 0; 
step:= y; 
REPEAT 

result:= result + x; step:= step - 1 ; 
<* ASSERT (result + (step * x) = x * y) *> 

UNTIL step = 0; 

SIO.PutText("x * y = "); SIO.Putlnt(result); SIO.NI(); 
SIO.PutText("Do you want to continue? yin "); 
stop:= SIO.GetChar(); 

UNTIL (stop = 'N') OR (stop = 'n'); (*on all other characters we continue*) 
END Mul. 

Example 5.19: Multiplication and input control with Repeat 

again. The algorithm with the WHILE loop also functioned properly for y=O. 
The variant with the REPEAT loop only functions correctly ify > o. On y = 
o after the first iteration we would have step = - 1. We have now inserted 
the test y > 0 into the entry component. In this case the WHILE variant is 
better. 

The following reflects a possible execution: 

Multiplication of two positive numbers: -32 
Enter a positive number: 3 
x * y = 6 
Do you want to continue? yin n 
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5.5.4 For loop 

This kind of loop is used in cases where the number of iterations is known 
in advance. For example, to write all numbers from 1 to 100 on the screen, 
we could simply write the following: 

FOR i:= 1 TO 100 DO SIO.Putlnt(i) END; 

In this loop a (read-only) variable i is automatically declared and ini
tialized to 1. Then the loop body (the statement after the keyword DO) ex
ecutes, the variable automatically is incremented by 1, and the loop body 
executes again. This repeats until the variable becomes greater than 100. 
Let us examine this more precisely: 

Syntax of the For loop 

ForStmt3o = "FOR" Ident89 ":=" EXpr66 "TO" EXpr66 
[ "BY" EXpr66 1 "00" Stmts23 "END". 

The general form of a FOR statement is: 

FOR id := startValue TO endValue BY step DO statement sequence END 

IdentS9 represents the control variable (or counter). It is declared only 
through its occurrence in a FOR statement, and it disappears again after 
the statement. Its scope (see Section 9.1) is restricted to the loop body of 
the FOR statement. The three expressions (EXpr66) must be of an ordinal 
type (e.g., INTEGER or CHAR, but not REAL or TEXT). 

The FOR statement executes as follows: First - and only once - the three 
expressions are evaluated. The first (after the := symbol) is the start value 
ofthe control variable, the second (after the keyword TO) is the final value, 
and the third (after BY) is the step for incrementing the control variable. 
On omission of the optional BY phrase, the step is set to 1. 

Step is always of type INTEGER, even if the control variable is, e.g., of 
type CHAR. The control variable is incremented as though the state
ment INC (control variable, step) concluded the loop. 

With a positive step the loop runs incrementally; with a negative step it 
decrements. With step = 0 the loop is infinite. 

The value of the control variable is set to the start value. For an in
cremental loop the statement tests whether the control variable::; the fi
nal value; for a decrementalloop, whether the control variable:::: the final 
value. If the corresponding condition is true the loop body executes. Next 
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the control variable is incremented by the step (which amounts to decre
menting for a negative step) and everything repeats as long as the final 
value is not exceeded. If the start value is greater than the final value at 
the start of an incremental loop (or smaller for a decrementalloop), then 
the loop body does not execute at all. 

The control variable is set internally only and cannot be modified by the 
programmer (it is read-only). 

The FOR loop - contrary to WHILE and REPEAT loops - assures that 
the loop progresses toward the termination condition. Thus it is easy to 
demonstrate that a FOR loop terminates: If step # 0, it always terminates 
(assuming that all statements in the loop body terminate). 

Some programming languages (e.g., Modula-2) restrict the step to a 
constant expression. Then the compiler can always detect the case step 
= 0 and generates an error message on compilation. This guarantees 
that a For loop always terminates. Naturally the drawback of this 
solution is that the step cannot be computed at run time. 

In Modula-3 the FOR loop is defined especially cleanly. In many other, 
otherwise respectably defined programming languages, the FOR loop 
has two traps, due to the fact that the control variable is a normal 
variable: 

1. Although it is strongly discouraged, the programmer can modify 
the control variable within the loop. The consequences are un
predictable. Take an example like the following: 

FOR i:= 1 TO N DO i:= i - 1; ... END; 

This is obviously an infinite loop. Fortunately Modula-3 prohibits 
such actions. 

2. The value of the control variable is undefined after the loop. If 
the programmer nevertheless makes some assumption about its 
value, the compiler cannot detect this. What makes the situation 
worse is that this value depends on the respective compiler. This 
means that the program might run properly in one language en
vironment but incorrectly in another. This problem cannot occur 
in Modula-3 because the control variable no longer exists after 
the loop. 

As an example of a FOR loop, let us rewrite our multiplication exercise 
once again: 

result := 0; 
FOR step := y TO 1 BY -1 DO result := result + x; END; 
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As expected, this algorithm is easiest to specifY with the FOR loop be
cause we know in advance that we need to add X to itself exactly y times. We 
no longer need to define the variable step; it can serve as control variable. 

We could replace the decrementalloop with an incremental one: 

result := 0; 
FOR step := 1 TO Y DO result := result + X; END; 

For our next example we will write a program that outputs every fifth 
number to 32. With a FOR loop the solution is a single line: 

FOR i:= 1 TO 32 BY 5 DO SIO.Putlnt(i) END; 

This yields the following output: 

[~1 __ 6 __ 1_1 __ 1_6 __ 2_1 __ 2_6 __ 3_1 ______________________________ J 

We present additional examples of FOR loops after introducing arrays 
(Section 8.1). 

5.5.5 Loop statement 

The LOOP statement is an endless loop; however, departure is possible at 
any location using the EXIT statement. 

Syntax of the Loop statement 

LoopStmt33 = "LOOP" Stmts23 "END". 
ExitStmhs = "EXIT". 

The statements within LOOP statement are repeated until an EXIT state
ment is encountered. An EXIT causes immediate departure from the loop 
and continuation of program execution after the end of the respective loop. 
In nested loops the EXIT statement exits only the inner loop, i.e., the loop 
in which the EXIT appears. 

Taken precisely, EXIT raises the predefined Exit exception (see Sec
tion 15). 

Although we present the EXIT statement in the context of the LOOP 

statement, it can occur in any loop. It can exit any loop. Use EXIT only as 
an emergency exit! This applies particularly for loops other than LOOP. You 
can exit a FOR, REPEAT or WHILE loop at any location with EXIT. However, 
the verification method using invariants applies only if all statements have 
only one entry point and one exit point. 
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I We highly recommend using the EXIT statement only in the context of a 
LOOP statement. 

The EXIT statement violates our initial requirements because it permits 
departure from a loop at an arbitrary location. Although the LOOP state
ment still has only one exit point (at the END of the loop), the IF statement 
that typically contains the EXIT statement has at least two exit points. 

LOOP 

IF X < 0 THEN EXIT ELSE DEC(x) END (* Jumps to end if x < 0 *) 

END (*LOOP*) 

A LOOP statement can also have no exit point, which means that it does 
not terminate. 

You might ask what necessitates programming infinite loops. In most 
cases infinite loops make no sense and are due to programming errors. 
However, there are exceptions, especially in the area of parallel program
ming (see Chapter 16), where infinite loops prove quite practical. Consider, 
e.g., our language environment, tirelessly waiting for our commands, or 
programs that send and receive messages around the clock in a communi
cation network. For such cases it is quite appropriate to have a distinct 
language construct where the normal case is an infinite loop and termina
tion (EXIT) is the exception. For normal sequential programs, however, the 
LOOP statement should be avoided! 

Now let us write a program that can apply the Euclidean algorithm to 
any number of positive number pairs. The user can end the program by en
tering a number :s: O. On such an entry, we want the program to terminate 
immediately rather than prompting for the second number. For such pur
poses the LOOP statement makes expression somewhat easier than with 
other loops (Example 5.20). For the sake of completeness, we will rewrite 
the Euclidean algorithm using a LOOP statement. The following is a possi
ble program execution: 

Euclidean algorithm: Enter pairs of numbers 
3612280 
Greatest common divisor = 3 
Greatest common divisor = 4 
End of Euclidean algorithm 

In general LOOP statements that contain only a single EXIT statement 
at the beginning or end can always be replaced easily with a WHILE or 
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MODULE Loop EXPORTS Main; 

IMPORTSIO; 

VAR 

5. Statements 

(* 18.05.94. LB*) 

a, b, x, y: INTEGER; (*a, b: input value; x, y: working variables*) 

BEGIN (*statement part*) 
SIO.PutText("Euclidean algorithm: Enter pairs of numbers\n"); 

LOOP 
a:= SIO.GetintO; 
IF a <= 0 THEN EXIT END; (*immediatelyexits the outer Loop*) 

b:= SIO.GetintO; 
IF b <= 0 THEN EXIT END; (*immediatelyexits the outer Loop*) 

x:= a; y:= b; (*a and b are certainly> 0*) 
LOOP 

IF x > y THEN x:= x - y ELSIF Y > x THEN y:= y - x ELSE EXIT END 
END; (*inner LOOP*) 
SIO.PutText("Greatest common divisor ="); SIO.Putlnt(x); SIO.NIO; 

END; (*outer LOOP*) 

SIO.PutText("End of Euclidean algorithm\n"); 
END Loop. 

Example 5.20: Input control and the Euclidean algorithm with Loop and Exit 

REPEAT statement. Exit points at various locations in a large outer loop 
are easier to implement with a LOOP statement. Despite this seductive 
power, we repeat our warning that the LOOP and EXIT statements should 
be avoided so as not to encumber the verification of our programs unneces
sarily. 

5.5.6 Equivalence of the repetition statements 

The most powerful repetition statement is obviously the LOOP statement. 
Generally the LOOP statement cannot simply be replaced with the other 
repetition statements (as is the case inversely). WHILE and REPEAT loops 
are equally flexible; they can always be converted to one another easily. 
The FOR loop offers the least flexibility and so can always be replaced easily 
with other loops; nevertheless, it has particular advantages in processing 
arrays (Section 8.1). 

Arrays are data structures consisting of similar elements and requir
ing that the number of elements be known before the the creation of an 
array. This is why FOR loops - which require knowing the number of 
steps in advance - usually provide an ideal tool for processing arrays. 
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VAR k: INTEGER; 
BEGIN 
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k:= 3; (*Variable "k" outside the For loop*) 
FOR k:= 1 TO k' k BY k DO SIO.Putlnt(k) END; 
SIO.Putlnt(k); (*this is the outer k, not the control variable "k"!*) 

Example 5.21: Exotic For loop 

The following shows how to express WHILE and REPEAT statements us
ing IF and LOOP statements: 

WHILE B DO A END == LOOP IF B THEN A ELSE EXIT END END 

REPEAT A UNTIL B == LOOP A; IF B THEN EXIT END END 

Note that the EXIT statement occurs only once in each of these cases. 
WHILE and REPEAT statements can also be converted to one another easily: 

WHILE B DOA END == IF B THEN REPEAT A UNTIL NOT BEND 

REPEAT A UNTIL B == A; WHILE NOT B DO A END 

Now let us express the FOR loop using IF and WHILE statements (we 
omit exception handling here; refer to the complete specification in [NeI91]): 

FOR id := startValue TO endValue BY step DO A END == 
startValue, endValue and step are computed once and stored 
internally in pseudovariables (E and S). The variable id can 
only be modified internally. 

id := startValue; E:= endValue; S:= step; 
IF S >= 0 THEN 

WHILE id <= E DO A; INC(id, S) END (*increment id*) 
ELSE 

WHILE id >= E DOA; INC(id, S) END (*decrement id*) 
END (*IF S >= 0*) 

On the basis of this definition we can correctly interpret the somewhat 
pathological program fragment in (Example 5.21). Outside the FOR loop 
the variable k has the value 3. Since the expressions are evaluated before 
execution of the loop, we have start Value = 1, endValue = 9 and step = 
3. Within the loop body the k declared outside is invisible and the k used 
as control variable is a different variable! Mter the FOR loop the control 
variable k ceases to exist. The program fragment will produce the following 
output on the screen: 
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[~1 __ 4 __ 7 __ 3 _________________________________________ J 

This example is not intended to say that the FOR loop should be used in 
this way. It should merely say that the behavior of the loop can be derived 
unambiguously from the definition even for this curious case - a property 
that not every language definition shares. 



Chapter 6 

User-defined simple types 

Thus far we have used only predefined (built-in) types. We have declared 
constants and variables, but no types. 

We have seen that assigning data to types brings many advantages. 
However, if we only had the predefined data types to work with, we could 
write only relatively simple programs. A particular strength of many pro
gramming languages (especially the Pascal family) is the possibility for the 
programmer to define custom types based on the predefined types using 
type constructors. This principle applies recursively, i.e., further types can 
derive from these custom (or user-defined) types. 

Such custom types are normally defined using type declarations, with 
a name assigned by the user. This type name can then be used in vari
able declarations as a type name. Modula-3 even allows specifYing a type 
directly in the variable declaration, which creates a nameless type. We 
will initially avoid this manner of implicit type declaration and explicitly 
declare all user-defined types. 

This chapter introduces two simple user-defined types: the enumeration 
and the subrange. 

6.1 Enumeration 

In practice we often require a list of names (identifiers). For example, we 
might write a program that manages our classes. To assign designations 
to the classes, we might number them, e.g., Mathematics = 1, Software = 2, 
etc. However, it would be more elegant to use the designators Mathematics 
and Software themselves in a program. This is where enumerations come 
in. We define an enumeration by listing a sequence of identifiers. 
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TYPE 
Abc1 = {a, b, c}; 
Abc2 = {a, b, c, d, e, f, g, h, i, j, k, I, m}; 
Abc3 = {n, 0, p, q, r, s, t, u, v, w, x, y, z}; 
Friends = {Eleanor, Peter, Robert, Albert}; 
Classes = {Software, Mathematics, English, Business}; 
Empty = {}; 

Example 6.1: Declaration of enumerations 

Syntax of the enumeration 

EnumType51 = "{" [ IDListS7 l "y. 
IDListS7 = Idents9 { "," Idents9 }. 

Thus an enumeration (EnumType51) consists ofa list (IDListS7 ) ofidenti
fiers (ldents9 ) delimited by commas, all enclosed in braces. The values of an 
enumeration are exactly the listed identifiers. These identifiers form a set 
that is ordered by the sequence of their occurrence in the list. Enumera
tions are ordinal types. Given the enumeration: 

T = { identifier], identifier2, ... , identifiern }; 

Thus identifieri < identifieri+l holds for all I ::; i ::; n - 1. Example 6.1 
shows some enumerations. Note that an enumeration can be empty (as 
Empty in the example). 

What is the sense of an empty enumeration? Perhaps not much, but it 
can be used as a null value enumeration. The existence of a null value 
sometimes facilitates the general description of a problem. An empty 
enumeration could represent the list of classes for a college major that 
does not exist (yet). 

The elements of an enumeration can be referenced with an expression 
of the form Typname.identifier. The identifier is qualified by the type name. 
Thus Friends.Eleanor, Abc1.a, Abc2.a, Abc3.n and Classes. Mathematics are 
all valid and distinct identifiers. 

You might find it annoying that we must write the type name before 
the identifier, analogous to having to write the number 1 as INTE
GER.1. In many other languages, such as Pascal and Modula-2, the 
identifiers in the list must be used without any qualification. The ad
vantage of the Modula-3 solution is that it prevents name conflicts. 
A name conflict occurs when multiple identifiers with different mean
ings bear the same name (such as Abc1.a and Abc2.a). Such a name 
conflict can occur especially easily if we import an enumeration from 
another module and its values conflict with the identifiers of the im
porting module. In such a case we would have to rename our own 
identifier. This uncomfortable situation cannot occur in Modula-3. 
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Why do we need enumerations at all? An ordered set of identifiers could 
easily be simulated with the declaration of constants, e.g.: 

CONST 
a = 0; b = 1 ; c = 2; d = 3; ... 
Peter = 0; Robert = 1; Albert = 2; Eleanor = 3; 
Software = 0; Mathematics = 1; English = 2; Business = 3; 

It is easy to see how error-prone this method is. Ifwe had erroneously 
written Albert = 1 instead of Albert = 2, then Albert and Robert would be 
equal. This error cannot occur with enumerations; the identifiers within 
a list are disjunct. What is more important, in the constant solution the 
identifiers represent normal INTEGER values. The relational operation 
Mathematics = Robert would return true which as a rule is quite ridicu
lous. Furthermore, we could incorporate these numbers in an arbitrary 
arithmetic operation; the compiler would compile c * Eleanor + English -
Albert, although it makes no sense. Such operations are precluded with 
enumerations. 

One important application of enumerations is to represent the states of 
a small state space. Enumerations often serve as the index range of an ar
ray (see Chapter 8.1). They have an inherent similarity to CASE statement 
(an enumeration defines a finite collection of values; a CASE statement se
lects from such). Thus enumerations can often be processed ideally with a 
CASE statement. 

6.1.1 Predefined enumerations 

In Modula-3 the types BOOLEAN and CHAR are declared as predefined enu
meration types. This is important because this directly implies that both 
types specify an order. Type BOOLEAN is defined as {FALSE, TRUE}, thus 
FALSE < TRUE. 

The reserved identifiers TRUE and FALSE can be understood as syn
onymous for BOOLEAN.TRUE and BOOLEAN. FALSE. Since the identi
fiers are reserved, a name conflict is precluded. 

The values of type CHAR are defined in the code table. We also do not 
qualifY the values of type CHAR with the type name; instead, we use the 
notation that we already introduced for character literals (see Section 4.3). 

6.1.2 Range 

The range of an enumeration that is not predefined is specified by the pro
grammer. The possible values of a variable in a given enumeration are 
exactly the identifiers specified in the list. 
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TYPE 
Days = {Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday, Sunday}; 
Classes = {Software, Mathematics, English, Business}; 

VAR 
day: Days; 
class: Classes; 

(*stores the current day*) 
(*stores the current class*) 

BEGIN (*Enumerations*) 

IF (day = Days.Tuesday) AND (class = Classes. Mathematics) THEN 
SIO.PutText("Take along compass\n") (*Tuesdays is geometry*) 

ELSIF (day < Days.Saturday) AND (class = Classes. English) THEN 
SIO.PutText("Take along dictionary\n") 

ELSIF day> Days.Friday THEN 
SIO.PutText("Enjoy rest, rehabilitation and recreation\n") 

END; (*IF day ... *) 

Example 6.2: Use of enumerations 

6.1.3 Operations 

Relational operations 

Relational operations are executed relative to the ordinal number of the 
identifier. This number represents the position of the identifier in the dec
laration list, with the first identifier having ordinal number 0 (compare 
type CHAR in Section 4.3). The ordinal numbers are normal non-negative 
integers; hence the syntax and semantics of relational operations for enu
merations is identical to that for integers. If the variable class is of type 
Classes (see Example 6.1), then the test class < Classes. English for class 
= Classes. Software or class = Classes. Mathematics returns true, otherwise 
false. 

In Example 6.2 we assume that the variables day and class contain a 
correct value before they are tested. 

Predefined functions 

All predefined functions that apply to ordinal types also work for enumer
ations: If T is an enumeration, then 

FIRST(T) is the smallest element of type T 
LAST(T) is the largest element of type T 
NUMBER(T) is the number of elements of type T 
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With the declarations of Example 6.2: 

FIRST(Classes) = Software 
LAST(Classes) = Business 
NUMBER(Classes) = 4 

Since enumerations are ordinal types, ORO and VAL (see Section 4.3.2) 
can also be used. If e is an enumeration variable or constant, then ORO(e) 
is the ordinal number ofthe current enumeration value. If ° is the ordinal 
number of an enumeration value of enumeration T, then VAL(o, T) is the 
corresponding enumeration value. Therefore: 

VAL(ORO(e), T) = e 

For a particular value: 

ORO(Classes.English) = 2, VAL(2, Classes) = Classes. English 

Thus the ORO and VAL functions can be used to convert enumeration 
values to ordinal numbers and back. In a carefully designed program 
such conversions are seldom necessary, and if so, then usually for the in
put/output of enumeration elements. 

We can determine the predecessor and successor of an enumeration 
value as follows: 

INC(e), OEC(e) 

This sets the value of e to the next (previous) identifier in the list. If the 
variable is class = Classes. English, then after INC(class) the value of class 
has changed to Classes. Business, and after DEC (class) the value of class 
is Classes. Mathematics. If the value of the parameter of INC or DEC is the 
value of LAST or FIRST ofthe enumeration, respectively, then the language 
environment generates a run-time error - as we would expect. 

Input and output of enumeration elements 

The identifiers of an enumeration are visible only within the program. We 
cannot simply input and output them. We must employ either correspond
ing texts or the ordinal numbers. Example 6.3 shows a module that con
verts ordinal numbers to enumeration elements and later transforms the 
enumeration elements to texts. We can often process an enumeration easily 
with the FOR statement, e.g., to output all ordinal values of an enumera
tion: 

FOR day := FIRST(Days) TO LAST(Days) DO SIO.Putlnt(ORD(day)) END 
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MODULE Enumerations EXPORTS Main; 

IMPORT SIO; 

TYPE 
Days = {Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday, Sunday}; 
VAR 

day: Days; ord: INTEGER; 

6. User-defined simple types 

BEGIN (*Enumerations*) 
REPEAT (*Reads until a valid ordinal number is input*) 

SIO.PutText("Please enter an ordinal number for a weekday: "); 
ord:= SIO.GetintO; 

UNTIL (ord >= ORD(FIRST(Days))) AND (ord <= ORD(LAST(Days))); 

day:= VAL(ord, Days); 

CASE day OF 

(*Converts the ordinal number to a weekday*) 

I Days.Monday 
I Days.Tuesday 
I Days.wednesday 
I Days.Thursday 
I Days.Friday 
I Days.Saturday 
I Days.Sunday 

END; (*CASE*) 

END Enumerations. 

=> SIO.PutText("Monday\n"); 
=> SIO.PutText("Tuesday\n"); 
=> SIO.PutText("Wednesday\n"); 
=> SIO.PutText("Thursday\n"); 
=> SIO.PutText("Friday\n"); 
=> SIO.PutText("Saturday\n"); 
=> SIO.PutText("Sunday\n"); 

Example 6.3: Input / output with enumeration 

6.2 Subranges 

In many applications the values of certain variables fall within limits that 
are known in advance. In representing the days ofthe months, for example, 
we can be sure that the values must fall between 1 and 31. If a variable 
that stores a day assumes the value 35, we can be certain that our program 
contains an error (whereby we do not consider the 35th of May by Erich 
Kdstner). It would be nice to have the language environment detect such 
errors automatically. Thus we need a means to specify a restricted range. 
This is the purpose of the subrange, which allows us to restrict the range of 
an ordinal type. We call the original type that we want to restrict the base 
type. 

Subranges are not really distinct types. They are subtypes of the base 
type (see Section 7.4). 

Syntax of the subrange 

SubrangeType57 = "[" ConstExpr65 " .. " ConstExpr65 "]". 
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TYPE 
SubR1 
SubR2 
SubR3 
Workdays 
Weekend 
Weekdays 
SingleValue 
Empty 

= [-1 .. 16]; 
= [Abc2.a .. Abc2.f]; 
= [Abc3.p .. Abc3.x]; 
= [Days. Monday .. Days.Saturday]; 
= [Days.Saturday .. Days.Sunday]; 
= [Days. Monday .. Days.Sunday]; 
= [1 .. 1]; 
= [1 .. 0]; 
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(*base type: Integer *) 

(*base type: Abc2 *) 

(*base type: Abc3 *) 

(*base type: Days *) 

(*base type: Days *) 
(*base type: Days *) 

(*base type: Integer *) 
(*base type: Integer *) 

Example 6.4: Declaration of subranges 

The two constant expressions (ConstExpr65) serve as (inclusive) lower 
and upper bounds. The two bounds must be of the same type. If the lower 
bound is greater than the upper bound, we have an empty subrange. 

The empty subrange is similar to the empty enumeration. It proves 
useful as a null value. 

Thus a subrange is written as: 

Subrange = [lowerBound .. upperBound]; 

Example 6.4 shows some valid subrange declarations (in part with ref
erence to the declarations in Examples 6.1 and 6.2). 

Type SubR1 specifies a subrange of INTEGER. Variables of type SubR1 
can take on values between -1 and 16. The values of a variable of type 
SubR2 are defined between Abc2.a and Abc2.f, and for a variable of type 
Workdays between Days. Monday and Days.Saturday. Type Weekday encom
passes the entire range of type Days as defined in Example 6.3. Such a 
subrange seldom makes sense, but is permissible. On the other hand, it 
is not permissible to assign a variable of a subrange a value outside the 
specified subrange. If the invalid value is a constant expression, the com
piler will report the error at compile time. Ifthe invalid value is a variable 
expression, then the language environment detects the error only at run 
time and generates a run-time error. 

Let us declare the following variables: 

VAR 
day: Days; (*enumeration*) 
workday: Workdays; (*subrange*) 
weekendDay: Weekend; (*subrange*) 

Note that the three types Days, Workdays and Weekend intersect on 
Days.Saturday. All ofthe following statements are correct: 
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day := Days.Saturday; 
workday := day; 
weekendDay := day; 
weekend Day := workday; 

6. User-defined simple types 

However, if the first statement were day := Days. Friday, then the last 
two statements would be invalid (and would produce run-time errors). 

Are subranges really useful? Ifwe already have the type INTEGER, why 
do we need another type to specifY a subrange thereof? We could employ 
appropriate statements to test whether the value is in the desired range. 
This is true, although we might have to carry out this test quite often, and, 
more important, we might forget such a test. Yet if a subrange is defined 
once in the declaration, the test is always carried out automatically. The 
importance of subranges rests in improved program security. 

If the application itself indicates that the value of a variable must lie 
within a certain subrange, then it makes sense to declare the variable as a 
subrange. Then the program is automatically interrupted on an erroneous 
assignment, and some faulty value cannot cascade through our program. 
Here again, this type of error handling proves useful only for localizing 
program errors. If the value of variables is determined interactively by 
the user, we must explicitly test the input. For example, if we prompt for 
a date, the program must not crash if the user inputs May 35, but must 
(politely) request another input. 

In Example 6.5 we first output all possible values ofthe type WorkHours. 
The last assignment (workhour := hour) generates a run-time error because 
the value of hour is outside the range of Work Hours (hour = LAST(WorkHours) 
+ 1). The inverse assignment (hour := workhour) can never go wrong because 
the range Hours fully encompasses WorkHours (also see Section 7.4). 

6.2.1 Operations 

A subrange allows exactly the same operations as its base type. 

This rule derives from the fact that subranges have a subtype relation
ship to their base type (see Section 7.4). 

6.2.2 Predefined subranges 

Predefined enumerations were introduced in (Section 6.1.1). There is also 
one predefined subrange. Type CARDINAL is actually defined as 

TYPE 
CARDINAL = [0 .. LAST(INTEGER)] 
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TYPE 
WorkHours = [8 .. 18]; 
Hours = [0 .. 24]; 

VAR 

(*working hours*) 
(*hours in a day*) 

hour: Hours; 
workhour: WorkHours; 

BEGIN 
FOR a:= FIRST(WorkHours) TO LAST(WorkHours) DO SIO.Putlnt(a) END; 

hour:= LAST(WorkHours); 
workhour:= hour; 
INC(hour); 
workhour:= hour; 

(*output all*) 
(*hour := 18*) 

(*workhour := 18*) 
(*hour:= 19*) 

(*run·time error because 19 is not in range [8 .. 18)*) 

Example 6.5: Range check with subranges 

Modula-2, the predecessor ofModula-3, defined type CARDINAL not as 
a subrange of INTEGER, but so as to exploit the entire word length of 
the hardware platform for the representation of a non-negative num
ber. This meant double the range size (the sign bit was not wasted), 
for a 16-bit machine 216 instead of 215 . This advantage has become 
negligible with increasing word length (32- and 64-bit machines) in 
contrast to the drawback that the semantics of CARDINAL in Modula-2 
was not clearly defined. Therefore in Modula-2 INTEGER and CARDI

NAL were assignment compatible but not expression compatible (see 
Section 7.1). 
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Expressions and declarations 

A major advantage of the type concept is that we cannot arbitrarily mix 
data of different types. This guards the integrity of the semantics of the 
data (we cannot add numbers to texts, use Boolean values in arithmetic 
expressions, etc.). 

This chapter precisely specifies the rules for compatibility of different 
data types within an expression and in an assignment. However, first we 
need to describe precisely the syntax and semantics of expressions, decla
rations and assignments. 

7.1 Expressions 

Thus far we have used expressions rather intuitively. We all know the syn
tax and semantics of school arithmetic, and we have built on this knowl
edge. For example, we all know that expressions consist of operands and 
operators. In the expression a + b * c we have the operands a, band c and 
the operators + and *. 

However, we have already encountered some examples where both syn
tax and semantics deviate from the familiar. This section presents the 
syntax and semantics of expressions in Modula-3, to the extent that we 
already know the operand types and their operations (see Figure 7.1). 

7.1.1 Syntax of expressions 

In reading the syntax of expressions, we must note that the syntax alone 
does not suffice to distinguish valid expressions from invalid ones: expres
sions for all types are combined in a single syntax and mixed. Whether a 
syntactically correct expression is valid as well, can be determined at com
pile time or possibly even only at run time (see Section 7.6). For example, 
the "expression" 3.1415 AND NUMBER("hello") > LAST(14) is syntactically 
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ConstExpr65 
EXpr66 
E167 
E268 
E369 
E470 
E571 

E672 

E773 
E874 

= EXpr66. 
= E167 {"OR" E167 }. 
= E268 { "AND" E268 }. 
= { "NOT" } E369 . 

7. Expressions and declarations 

= E470 { ("=" I "#" I "<" I "<=" I ">" I ">=" I "IN") E470 }. 
= E571 { ( "+" I "-" I "&" ) E571 }. 

= E672 { ( "*" I "f' I "DIV" I "MOD" ) E672 }. 

= {"+" I "-"} E773 · 
= E874 { Selector78 }. 
= Ident89 I Number94 I CharLiteral91 I TextLiteral92 

I Constructor79 I "(" EXpr66 ")". 
Selector78 = "." Ident89 I "A" I "[" EXpr66 { "," EXpr66 } "]" 

I "(" [ Actual47 { "," Actual47 } ")". 
Constructor79 = Type48 "{" [ SetCons80 I RecordCons82 I ArrayCons84 1 "}". 

Ident89 
LeUerlOO 
Digit98 

= LeUerlOO { LeUerlOO I Digit98 I "-" }. 
= "An I "8" I .. I "z" I "a" I "b" I .. I "z". 
= "0" I "1" I .. 1"9", 

Figure 7.1: Syntax of expressions 

correct, although it is completely absurd (the parameters of the predefined 
functions are invalid, and AND applies only to Boolean expressions). How
ever, we cannot determine this from the syntax. 

The basic element of syntax is expression operator expression. Syntac
tic units E167 to E672 serve to produce the operators. With the help of 
E773 , E874 , Selector78 and Constructor79 the individual (sub)expressions are 
formed. 

Let us begin bottom-up with E874 . An expression can be a name (identi
fier), a literal, a Constructor79 or an expression in parentheses. A Modula-
3 identifier (ldent89) is a sequence of letters and digits that must begin 
with a letter. An interesting feature is the use of the underscore ("_") 
within an identifier. This enables keeping longer identifiers readable (e.g., 
thisjs_substantialiy Jong) - although we should keep identifiers short but 
pregnant, and generally avoid the underscore. The syntax of number, char
acter and text literals was covered in the introduction ofthe respective data 
types. 

Let us go farther up in the syntax. An E773 is an E874 , possibly followed 
by a series of selectors. This allows us to form the values of enumera
tion types: Weekday. Friday. These are called qualified identifiers. We will 
encounter other, similar selectors later to help us process arrays and pro
cedure invocations and to access record and object fields. 

An E672 is an E773 with an optional leading sign to represent negative 
numbers. Here Modula-3's syntax is quite generous and even allows using 
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multiple leading signs (mathematically correct, but otherwise nonsensical). 
Expression E571 consists of one or more E672 , joined by multiplicative op
erators. This means that, e.g., -a * -b + c and -a * -b + + - + c are valid 
expressions. 

And so it continues to EXpr66, which consists of a E167 or of E167 ex
pressions joined by OR operators. The syntax of a constant expression 
(ConstExpr65) is the same as for EXpr66. However, it must be possible to 
evaluate all the corresponding operands at compile time. Thus a constant 
expression cannot contain variables (except as parameters of certain pre
defined functions, such as FIRST, LAST and NUMBER). 

The syntax also expresses the rules of precedence (compare Section 
2.4). The order of the syntactic rules exactly reflects the precedence rules; 
the weakest operator is OR (see EXpr66), and the strongest is the leading 
sign (E672 ). The infix operators (located between two operands) are left
associative; i.e., on equal priority they are evaluated from left to right. 
Thus, e.g., a * b * c is interpreted as (ab)c rather than as a{bc). 

Parentheses have the highest priority (see E874 ). When we are unsure 
ofthe precedence, we should resort to parentheses. They often increase the 
readability of programs, and at no cost. Rather than a OR b < c OR d AND 
e, we should write a OR (b < c) OR (d AND e) 

7.1.2 Evaluation of expressions 

An expression defines a computation that results in either a value or a 
variable. In an assignment, e.g., the expression must yield a variable on the 
left side and a value on the right side (see Section 7.5). A simple expression 
consists of an identifier or a literal. More complex expressions are formed 
using the operators and constructors defined in the syntax. 

An expression is evaluated recursively. Consider, e.g., the expression a 
+ b. The operands a and b are themselves expressions, e.g., a = x * y and 
b = z DIV w. x, y, z and ware likewise expressions that again can con
tain operators and constructors. This continues until we arrive at simple 
expressions whose values are immediately available. The order of compu
tation of operands in an operation is undefined except for OR and AND (see 
next section). 

Caution: This comment does not refer to the precedence of operations, 
nor to whether they are left- or right-associative. Instead it is a matter of 
the order in which the operations are evaluated. Given an expression like 
a + b for computation, we cannot know whether a or b is evaluated first. 
Remember that a and b are expressions themselves. 

The concrete semantics of expressions are handled with the respective 
data types (e.g., as the semantics of arithmetic and logical expressions was 
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handled in Section 4). Here we complement the description of logical ex
pressions in Section 4 with additional rules. 

7.1.3 Evaluation of logical expressions 

For OR and AND operations, the language definition requires left-to-right 
and lazy evaluation. The latter means that the second operand is evalu
ated only if the result of the expression is not fixed after evaluation of the 
first operand. For an OR expression, if the first operand yields true, or 
for an AND expression the first operand is false then the second operand 
is no longer relevant; evaluation can be terminated (and Modula-3 does 
end evaluation). The following pseudocode conveys this somewhat more 
formally (with p and q being logical expressions): 

p AND q == IF NOT p THEN FALSE ELSE q END 
p OR q == IF p THEN TRUE ELSE q END 

The following example shows the advantage of this rule: 

IF (x # 0) AND ((y DIV x) ::: 10) THEN S1 ELSE S2 END; 

If x::: 0, then the first operand yields false and evaluation of the AND 
expression terminates immediately (since the result of the overall expres
sion can only be false). Thus the second operand is not computed and the 
division by zero is not executed. 

Without this rule (as, e.g., in the programming language Pascal) y DIV 
x could be computed first, division by 0 would generate a run-time 
error. 

In general, the laws of predicate logic apply for logical operations. The 
scope of these laws is restricted in Modula-3 through the above rules. In 
principle, e.g., the law of commutativity applies, yet we have just seen that 
(x # 0) AND ((y DIV x) ::: 10) is not the same as ((y DIV x) ::: 10) AND (x 
# 0). Another restriction can result if the logical values are computed by 
functions that have a side effect. The following AND expression is anything 
but commutative: 

SIO.GetCharO:::'A' AND SIO.GetCharO:::'B' 

Depending on what the user inputs first, the expression requires input 
of one or two letters. Ifwe turn the expression around, the user must begin 
with "B" instead of "N' to make the whole expression true 

Thus the following laws hold only if the logical expressions p, q and r 
can be evaluated in finite time without a run-time error or side effect: 



7.2. Declarations 

1. Commutativity: 

P ORq =q OR P 
p AND q= q AND p 

2. Associativity: 

(p OR q) OR r = p OR (q OR r) 
(p AND q) AND r = p AND (q AND r) 

3. Distributivity: 

(p AND q) OR r = (p OR r) AND (q OR r) 
(p OR q) AND r = (p AND r) OR (q AND r) 

4. The de Morgan laws: 

NOT (p OR q) = NOT p AND NOT q 
NOT (p AND q) = NOT p OR NOT q 

7.2 Declarations 
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Declarations were introduced briefly in Section 3.4.4. We also employed 
declarations in almost all our examples. They serve to introduce new names 
for constants, variables and types. Now we will treat these three kinds of 
declarations more exactly. Later we will discover declarations for addi
tionallanguage elements. 

Syntax of declarations 

Declaration13 ="CONST" { ConstDeci14 ";" } 
I "TYPE" { TypeDeci15 ";" } 
I "VAR" { VariableDecl17 ";" } 

7.2.1 Constant declarations 

ConstDecl14 = Ident89 [ ":" Type48 1 "=" ConstExpr65. 

A constant declaration (ConstDeci14) firmly associates an identifier (on 
the left side of the equal sign) with a value (to the right of the equal sign). 
In other parts of the program, this identifier serves as a synonym for this 
value. The value is specified with a constant expression. The following are 
examples of constant declarations: 
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CONST 
A = 10; 
B = 2 * A; 
C = A + 5 * B; 
D = LAST(INTEGER) - C; 

7. Expressions and declarations 

These declarations give us B = 20 and C = 110. Naturally we could have 
written C = 110 directly. The advantage in using expressions is that if A 
changes, then Band C change, too. The value of a constant can only be 
changed, of course, by editing and recompiling the program source code. D 
immediately demonstrates the advantage of formulating expressions. 

Consider the following declarations: 

TYPE 
Workdays 

CONST 
= [Days. Monday .. Days.Saturday]; 

Worktime = 8; (*hours of work per day*) 
Weekdays = NUMBER(Workdays); (*workdays in a week*) 
HoursPerWeek = Weekdays * Worktime; (*hours of work per week*) 

The value of HoursPerWeek is 48. If we change the type declaration for 
Workdays to 

TYPE 
Workdays = [Days.Monday .. Days. Friday]; 

then the value of HoursPerWeek (after recompilation) changes to 40. 
The following example shows some non-arithmetic expressions: 

CONST 
Ch1 
Ch2 
B 

='A'; 
= LAST(CHAR); 
='a' > 'A'; 

Ext = NUMBER(CHAR) > 256; 
CountryCode = "01-"; 
AreaCode = "201-"; 
Family = CountryCode & AreaCode & "310-6588"; 
Office = CountryCode & AreaCode & "270-5509"; 

The value of Ch2 contains the last character in the character set. B 
is a Boolean constant; its value is true if character 'a' has a higher code 
than 'N.. Ext is also a Boolean constant; its value is true iftype CHAR uses 
extended coding (more than 1 byte). Family and Office are text constants 
whose values are "01-201-310-6588" and "01-201-270-5509", respectively. 
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The syntax of constant expressions also shows that after the name of 
the constant, separated by a colon, we can explicitly declare a type. As we 
have seen, in general, the type of a constant derives from the expression on 
the right side ofthe equal sign. However, this is not always true. For a non
negative whole number, e.g., we cannot tell whether it is of type INTEGER or 
CARDINAL. However, in the following declaration the type is unambiguous: 

CONST A : CARDINAL = 0; 

In such a case the unambiguity does not help much; we can do as much 
with a CARDINAL zero as with an INTEGER zero. However, it can be advan
tageous to specifY that this constant must have a value from the range of 
CARDINAL. The following example shows this more clearly: 

CONST 
Vacation Planning: [1 .. 12] = 7; (*we plan our vacation *) 

VacationMonth: [1 .. 12] = Vacation Planning + 1; 

Both constants depict a month as a number between 1 and 12. But 
we have made an error here: If we change VacationPlanning to 12, Vaca
tionMonth is assigned an invalid number. The compiler detects this error 
because we have specified the valid range. A proper solution would be: 

VacationMonth: [1 .. 12] = Vacation Planning MOD 12 + 1; 

7.2.2 Type declarations 

TypeDecl15 = Ident89 ( "=" I "<:" ) Type48. 

The general forms of a type declaration are thus: 

TYPE 
identifier = type; 
identifier <: type; 

This binds an identifier to a type. This identifier can now be used any
where in a program where a type can occur (such as in the optional part 
of the constant declaration). Later we will see how complex types can be 
constructed by the programmer (Sections 8.1 and 8.2). 

The second form serves to define a type only partially as a subtype of an
other type. (This kind oftype declaration is needed primarily in interfaces. 
We treat them in Section 7.4.) 
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7.2.3 Variable declarations 

VariableDecl17 = IDLists7 ( ":" Type4s ":=" Expr66 [ ":" Type4s [":=" Expr66 ). 
IDLists7 = Idents9 { "," Idents9 }. 

Closer consideration ofthe syntax of variable declarations reveals some 
new aspects. We have the following three variants: 

a, b, c: type; 
a, b, c: type := expression; 
a, b, c := expression; 

We associate a list of identifiers with a type and possibly with an initial 
value as well. Thus far we have always used the first form. The other two 
forms allow us to initialize a variable on declaration. The value of the 
expression is assigned to all variables in the identifier list (to the left of the 
colon). The initialization of all variables in a block (also see Section 9.1) 
occurs - in the order of the declarations - before the execution of the first 
statement of the statement part. 

Imagine these initializations as a series of assignments ''hidden'' in the 
keyword BEGIN. 

VAR 
i, j : INTEGER := 1; 
b : BOOLEAN := FALSE; 
t : TEXT := "This is a text"; 

BEGIN (*statement part*) 

At the first statement after BEGIN we have i = 1, j = 1, b = FALSE and t = 
"This is a text". 

Note that a variable is initialized only once on declaration. If a variable 
is used in a loop nested within a loop such that the outer loop must repeat
edly initialize its value for the inner loop, then initialization on declaration 
is the wrong approach! 

The third form of variable declaration specifies only the initialization; 
the type is implicitly specified by the initial value. Implicit type specifi
cation can make the programmer uncertain about the type of a variable. 
Thus we will avoid the third form for the time. 

The syntax also indicates that we can specifY the type directly in the 
variable declaration. In this case the type is nameless. The following ex
ample demonstrates this. 

VAR a, b, c: [1 .. 16]; 

We recommend avoiding this form for the time. 
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CONST 
N = 10; 

TYPE 
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T1 = [1 .. 10]; 
T2 = [1 .. N]; 
T3 = [1 .. 2 * 2 * 2 + 2]; 
T4 = T1; 

(*equivalent to T2, T3, T4*) 
(*equivalent to Tl, T3, T4*) 
(*equivalent to Tl, T2, T4*) 
(*equivalent to Tl, T2, T3*) 

T5 = {a, b, c}; 
T6 = {a, b, c}; 
T7 = {a, b, d}; 

(*equivalent to T6*) 
(*equivalent to T5*) 

(*not equivalent to the other types*) 

Example 7.2: Equivalent types 

In fact, the following declaration would be almost silly: 

VAR e, t, g: {Monday, Tuesday, Wednesday}; 

The components of an enumeration cannot even be accessed without a 
type name. A possibility to use the variables e, t, 9 at all is to addition
ally declare a named type with the same components, e.g., 

TYPE Days = {Monday, Tuesday, Wednesday}; 

due to structural equivalence (Section 7.3), this type is equivalent to 
the type of e, t and g. 

Note also that the kinds of declarations that we suggested avoiding for 
the time do have their justification in certain cases where they appear in 
a restricted context and where their scope is small and comprehensible 
(Section 9.1). 

7.3 Equivalence of types 

Modula-3 employs structural equivalence of types. Two types are equiva
lent if their expanding results in the same type. Expanding means that all 
constant expressions are replaced by their values and all type names are 
replaced by their definitions. In Example 7.2 the types T1, T2, T3 and T4 
are mutually equivalent. T5 is also equivalent to T6. T7 is not equivalent 
to any of the specified types. 

Many programming languages, e.g., Pascal and Modula-2, employ 
name equivalence. Here types are equivalent only ifthey are explicitly 
declared as such. In Example 7.2 only T1 and T 4 are name equivalent; 
all others are considered different types from this perspective. 



134 7. Expressions and declarations 

7.4 Subtypes 

Modula-3 supports a general concept of subtyping. We use the special sym
bol "<:" to specify the subtype relationship. 

I If Sub and Super are two types and the relationship Sub <: Super exists, 
then all values of Sub are also values of Super. 

In this case Sub is a subtype of Super, and Super is the supertype of SUb. 
In Modula-3 a type can have any number of subtypes, but only one super
type. (There are programming languages where a type can have multiple 
supertypes.) The subtype relationship is often called the Is-a relationship: 
A value of a subtype is a value of its supertype. Given the relationship 
Workdays <: Weekdays, then all Workdays are Weekdays. The inverse need 
not apply; all days of the week are not workdays, thank goodness. 

At the moment we can give only one example of the subtype relation
ship: The subrange types (Section 6.2) are actually not independent types, 
but subtypes of their base types. The following rules apply to subranges: 

[u .. 0] <: B 
[u .. 0] <: [U .. 0] 

whereby B is the common base type of u and 0 

if [u .. 0] is a subset of [U .. 0] 

For example, given the subrange 

TYPE 
SubR1 = [3 .. 8]; 
SubR2 = [0 .. 2]; 

we have the relationships Ub1 <: INTEGER and Ub2 <: INTEGER. Actually, 
all values of Ub1 and Ub2 are also values of INTEGER (but obviously not 
vice versa). What is the relationship between Ub1 and Ub2? Neither of 
the ranges is a subset of the other (indeed, they are disjunct); there is no 
subtype relationship between these two types. An assignment involving 
variables of types Ub1 and Ub2 is not permitted (see Section 7.5). 

Take an example where the ranges overlap, e.g., the types Workdays and 
Weekend from Example 6.4. We have the following relationships: 

Workdays <: Days 
Weekend <: Days 

Workdays and Weekend are subtypes of the same base type, but do not 
share a subtype relationship to one anotherCneither range is a subset of the 
other). We can still make an assignment between variables of these types 
because the ranges overlap. However, such an assignment can produce 
an error if the assigned value is not in the range of the target variable. In 
general, the following holds: Variable of ordinal types whose ranges overlap 
can be assigned to one another (see Section 7.5). 
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Reflexivity and transitivity 

The subtype relationship is reflexive and transitive. Formal stated: 

T<: T 
T <: U 1\ U <: V=> T <: V 

In words, every type is its own subtype and supertype. In addition, if type 
T is a subtype of U and U is a subtype of V, then T is also a subtype of V. 
For example, let T1 = [1 .. 100], T2 = [10 .. 80] and T3 = [30 .. 50]. Then T3 
<: T2 and T2 <: T1. This implies that T3 <: T1 - which is easy to see. 

However, T <: U and U <: T does not imply that U and T are equal (see 
Section 7.4). 

Operations on subtypes 

All operations defined for a supertype are also defined for the subtype. This 
means that for operands of a subrange type all operations of the corre
sponding base type apply. For example, for operands oftype T1 = [1 .. 100] 
we can employ all INTEGER operations. 

In general it is possible to define additional operations for subtypes. We 
will employ this feature when we handle object types (see Section 13). 

7.5 Assignment compatibility 

We repeat the syntax of the assignment: 

AssignStmt25 = EXpr66 ":=" EXpr66. 

The expression on the left side ofthe colon (often abbreviated LRS for left
hand side expression) must result in a variable. The expression on the right 
side (RRS for right-hand-side expression) returns a value. This value must 
be assignment compatible with the variable on the left side and be within 
its range. 

You might wonder why the syntax specifies an expression on the left 
side rather than simply Idents9 . The meaning of the more general syntax 
will become clear stepwise as we become familiar with more complex LHS 
expressions (e.g., indexed array elements, Section 8.1). 

When are assignments legal? An expression A of type R is assignment 
compatible with a variable var of type L (i.e., var := A is legal) if one of the 
following conditions applies: 

1. Rand L are equivalent (see Section 7.3), or 

2. R <: Lor 
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3. Rand L are ordinal types that overlap in at least one value, and the 
value of A is in the range of L, or 

4. L <: Rand R is an array type or a reference type for which certain 
conditions apply (see Sections 8.1, 10, and 11). 

Rule 1 is the simplest case: If the types are the same, then trivially 
any value of the one expression is a possible value of the other expression. 
Rule 4 is mentioned here for the sake of completeness and will be explained 
later. 

Rule 2 expresses the fact that in the subtype relationship all values of 
the subtype are also values of the supertype (all Workdays are days, but 
not all Days are Workdays). 

For Rules 2 and 3 we have already seen examples in the context of sub
ranges (Section 6.2). If the variable workday is of type Workdays and day 
of type Days, then it is clear that the assignment day := workday cannot go 
wrong because all possible values of workday can also be values of day. 

Violations of Rules 3 and 4 can be checked in part at compile time; oth
erwise they can only be tested at run time when the current values are 
known. 

In order to detect errors at run time, the compiler must make the 
necessary preparations. It generates control statements that check 
Rule 3 at run time. For example, if we assign a variable int of type IN
TEGER to a variable of type [1 .. 16], then at compile time the compiler 
cannot know whether the value of int falls in the subrange. However, 
the compiler can generate another command or commands to test this 
condition at run time (e.g., exactly before the assignment in question). 
Such tests represent additional overhead for the length and speed of 
programs, but this generally proves negligible given the speed of mod
ern digital computers. Furthermore, most compilers allow removal of 
the test with a compiler option, in which case the compiled program 
becomes shorter and faster, but at the expense of run-time checks. 
We discourage removing the run-time checks in general. However, 
there are situations that demand the increased efficiency delivered 
by removing the run-time checks; such program components must be 
checked especially carefully by the developer. 

7.6 Expression compatibility 

With expressions of the form operandI operator operand2 we have a prob
lem similar to that of assignment compatibility: What kinds of operands 
can we mix, and for which kinds is this impossible. For example, can we 
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add INTEGER numbers to CARDINAL numbers? The rules of expression 
compatibility provide the answer. 

In Modula-3 the operands of such expressions must share a common su
pertype (an exception is the IN operation; see Section 8.3). Before evalua
tion ofthe expression, the operands are converted to this common type. For 
types that have no subtype relationship with any other type (e.g., REAL), 
this means that both operands must be ofthe same type. However, CARDI
NAL <: INTEGER; therefore INTEGERs can be added to CARDINALs. 

The following example is correct because addition of 51 and 52 takes 
place in the range of INTEGER: 

VAR 
51: [1 .. 2] := 2; 
52: [3 .. 4] := 3; 
i: INTEGER; 

BEGIN 
i:= 51 + 52; (*type of the expression sl+s2 is INTEGER, value is 5*) 

To combine operands of different types in an expression (e.g., mixing REALs 
and INTEGERs), we must employ the conversion functions (see Section 6). 
In Modula-3 expressions there is no implicit type conversion, but there 
is explicit type conversion. The lack of implicit type conversions helps to 
minimize programming errors. 

A number of programming languages offer implicit type conversion. 
The most spectacular example is PLl1, where totally different oper
ands can occur mixed in an expression. At first glance this seems like 
a comfortable feature, but it can invoke the most unexpected errors. 

Other languages (like Oberon-2 [WG92, RW92, Miis93J) define a regu
lated and sensibly restricted implicit type conversion (type inclusion). 
In Oberon-2 the numeric types form a hierarchy. The larger and more 
precise the range of a numeric type is, the higher it is in the hierar
chy. Expressions with operands belonging to different numeric types 
are evaluated in the range of the hierarchically higher operand. For 
example, to add an INTEGER and a REAL number, the INTEGER is au
tomatically converted to REAL. 

Result type 

The result type of an expression (usually called the type ofthe expression) 
with two operands is not necessarily the type of its operands. The results 
depends on the operator. Addition, for example, maps all INTEGER sub
ranges onto a result oftype INTEGER (even if both operands have the same 
subrange type). The relational operators (greater than, less than, etc.) map 
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all permitted operand types onto the result type BOOLEAN. We discuss the 
result type of an operator with the introduction of the respective operator. 

I The rules of type equivalence together with the compatibility rules form 
the basic framework of the type system. 

These rules regulate which expressions are valid and which assignment 
is permissible. This system of rules allows the compiler to report all imper
missible expressions and assignments. This helps to automatically detect 
a number of programming errors and thus to significantly increase the se
curity of programs. 
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Composite static types 

Thus far all data (constants and variables) seemed like our own personal 
acquaintances. We declared each one and assigned them individual values. 
This allows us to solve a number of tasks. Certainly we could solve more 
challenging tasks, for, as far as statements are concerned, we already have 
quite a powerful arsenal. With loop statements we can carry out unlimited 
(in principle infinite) computations. However, regarding data we are still 
quite behind: We cannot define data collections (or data aggregates) yet. 
Our data types so far were all scalar. A variable of a scalar type can contain 
only a single value at a given time. 

With the help of type constructors we can create various aggregates. 
Without a computer we would use a table, a list or file cards to manage 
information. We need a table, for example, to record the daily sales of a 
business for every day of the year. A list could help us to describe the con
tents of a warehouse. We use file cards to collect heterogeneous information 
such as birth dates, addresses and employee salaries. In programs we can 
store tables in the form of arrays, file cards as records, and lists in the form 
of dynamic data structures (see in Section 11.5). In addition, programming 
languages provide us with sets, which are especially important in mathe
matics. Likewise arrays originally came to programming languages due to 
the need to represent mathematical vectors and matrices. 

This chapter presents the static type constructors - arrays, records and 
sets. These types are static because their size is known in advance. This 
applies to most tables (e.g., we know how many days of the year we need 
to reserve for storage of sales) and for file cards. For the warehouse list 
this generally does not apply; Although we might know approximately how 
many articles we can store, the momentary number varies greatly, and we 
cannot specify an exact upper limit. Here we need dynamic data structures, 
which we will tackle later. 

Computers are used primarily for storing and managing large amounts 
of data. We are frequently confronted with applications such as bank-
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ing systems and reservation systems. They manage an enormous set 
of data in a database. This book does not cover database systems; we 
limit ourselves to the basic concepts for data structuring as provided 
by programming languages and on which database technology builds. 

An introduction to databases can be found in [Ul182, Dat901, as well 
as in a wealth of other literature. It is interesting that in recent years 
object-oriented databases [KM94] have brought the concepts of pro
gramming languages and those of database technology closer. 

8.1 Arrays 

An array is an ordered collection of elements ofthe same type which can be 
accessed collectively as a whole. The elements are "numbered" - although 
not necessarily with numbers - and an element can be selected individually 
via this "number" (its index). 

Without arrays, many programming tasks are impossible to solve. We 
cannot store the above sales table by declaring 365 individual variables (of 
type REAL). Instead, we would like to store 365 REAL numbers together 
and access them via the number of the day. Hence we could write: 

TYPE 
Days = [1 .. 365]; 
Sales = ARRAY Days OF REAL; 

VAR 
sales: Sales; 

Now the variable sales can store 365 individual values. Days is the 
index type and corresponds to the columns in the table. This "column type" 
allows us to access the individual elements as follows: 

sales[10]:= 105000.0; 

This assigns a value to the tenth element of the array. 

Syntax of the array type 

ArrayTypel!1 = "ARRAY" [Typelx { "," Type48 } ] "OF" Type48' 

The type after the keyword OF is the element type; the others are the 
illc/ex types. Index types must be ordinal types (e.g., subrange or enumera
tion l. Static arrays - whose size is specified on declaration - require specifi
cation of at least one index type. The number of indices reflects the number 
nfdimellsiolls of the array. The length ofa static array can be computed at 
cnmpilt, time. 
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A a y 

a [1] a [2] a [3] a [4] a [5] 

Figure 8.1: Unidimensional array of characters 

TYPE 
Index = [1 .. 5]; 
Array = ARRAY Index OF CHAR; 

VAR 

(*index type*) 
(*array type*) 

a: Array; (*"a" can store 5 characters*) 
BEGIN 

FOR i:= FIRST(lndex) TO LAST(lndex) DO a[i]:= SIO.GetCharO END; 
FOR i:= FIRST(lndex) TO LAST(lndex) DO SIO.PutChar(a[ij) END; 

Example 8.2: Accessing an array of characters 

8.1.1 Unidimensional arrays 

Assume that IndexType is an ordinal type (e.g., [1 .. 10]), and ElementType 
is an arbitrary type. We can specify a unidimensional array as follows: 

TYPE A 1 = ARRAY IndexType OF ElementType 

Unidimensional arrays are often called vectors after their mathematical 
roots. 

An element of an array can be accessed by indexing The index expres
sion is written in square brackets after the name ofthe array variable. The 
expression must be assignment compatible with the index type. The value 
of the index expression determines the element to be selected. This allows 
the language environment to test whether the array has been indexed with 
an appropriate index value: If we attempt to access an array with index 
type [1 .. 10] using the index value 11, we would produce an error because 
11 is not contained in the index type. 

This range check is even more important in the context of array indices 
than for variables of a subrange type. If a variable has an erroneous 
value, that is bad enough. However, an incorrect index in an array 
additionally leads to accessing memory regions that do not belong to 
the array. This means that some other variable can be overwritten 
randomly - probably with fatal consequences for the program. 

The type Array in Example 8.2 defines an array that consists of five 
elements of type CHAR. The first FOR loop assigns arbitrary characters to 
the elements of the array; the second FOR loop outputs the contents of the 
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1 2 3 16 
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I 
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:1 33 34 35 ... 48 
a[32,1] aI32,2] aI32,3] aI32,16] 

32 

Figure 8.3: Bidimensional array of Integers 

array. If we were to input the letters of the word "Array", the program 
would output the character sequence "Array" (Figure 8.1), 

The example also demonstrates how naturally the FOR loop lends itself 
to processing arrays. With the help of the FIRST and LAST functions we can 
easily iterate through the array. 

We could have written the FOR loop as follows: 

FOR i:= 1 TO 5 DO a[i]:= SIO.GetCharO END 

However, this solution has the drawback that changes in the index 
also necessitate changes in the loop. To extend index to [1 .. 100], 
we would also have to change the loop to FOR i:= 1 TO 100 DO "'. 
Such adaptation is undesirable; it is both work-intensive and error
prone, The solution in Example 8.2 requires no such adaptation: FIRST 
and LAST always return the current boundary values, thus restricting 
adaptation to a single location. 

8.1.2 Multidimensional arrays 

Arrays with more than one index are called multidimensional arrays. Bidi
mensional arrays have special importance because they are particularly 
suited to representing matrices. Figure 8.3 shows such a bidimensional ar
ray (in this case with values corresponding to the sum of row and column 
indices). 

A bidimensional array type can be declared in two ways: 

1. TYPE A2 = ARRAY Index1 OF ARRAY Index2 OF Element 

2. TYPE A2 = ARRAY Index1, Index2 OF Element 
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TYPE 
Row = [1 .. 32]; 
Column = [1 .. 16]; 
Matrix = ARRAY Row, Column OF INTEGER; 

VAR 
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(*row index*) 
(*column index*) 

(*array type*) 

matrix: Matrix; (*"matrix" can store 32 x 16 numbers*) 
BEGIN 

FOR i:= FIRST(Row) TO LAST(Row) DO 
FOR j:= FIRST(Column) TO LAST(Column) DO 

matrix[i, j):= i + j; 
END; (*FORj*) 

END; (*FOR i*) 

Example 8.4: Bidimensional array of Integers 

The first notation emphasizes that the element type of the first array 
is itself an array, while the second form more directly expresses the bidi
mensional character. We usually use the second notation. The first form is 
necessary if a bidimensional array is constructed as a unidimensional ar
ray of another named array (such as the type Plane in Example 8.5). Both 
notations can be generalized - as the syntax indicates - for arrays with any 
number of dimensions, and the two notations can even be mixed. 

In a multidimensional array an element of the nth dimension can be 
accessed as follows: 

The following simplified form is better: 

The exact syntax for indexing is defined in the syntax for expressions 
(compare Section 7.1.1). Below we show the corresponding excerpt from 
the expression syntax. 

Syntax for indexing arrays 

E773 = E874 { Selector78 }. 

Selector78 = "[" EXpr66 { "," EXpr66 } "]" I ... 

Example 8.4 type Matrix defines a bidimensional array. Type Row de
fines the index type for rows and type Column for columns. The variable 
matrix stores in each element the sum of its index values (Figure 8.3). 
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Shape 

Following the pattern of the bidimensional array, we can define arrays of 
any dimension. We term the element type of the "last" array the base type 
of the array. The shape of a multidimensional array is the sequence of the 
cardinality of its dimensions. A type that is not an array has an empty 
shape. In the following example A 1, A2 and A3 have the same shape, but 
A4 has a different shape. 

TYPE 
A1 = ARRAY [1 .. 2], [3 .. 5] OF INTEGER; 
A2 = ARRAY [0 .. 1], [7 .. 9] OF INTEGER; 
A3 = ARRAY ['A' .. 'B'], ['X .. 'Z'] OF INTEGER; 
A4 = ARRAY [0 .. 1], [6 .. 9] OF INTEGER; 

8.1.3 Array constructors 

With the help of array constructors we can define array values. These are 
quite useful if we want to initialize an array on declaration. 

The exact syntax is part of the syntax for expressions (see Figure 7.1, 
page 126): 

Syntax of array constructors 

E874 = Ident89 I Number94 I CharLiteral91 I TextLiteral92 
I Constructor79 I "(" Expr66 ")". 

Constructor79 = Type48 "{" [ArrayCons84 I ... ] "}". 
ArrayCons84 = Expr66 {"," Expr66 } [ "," " .. " ]. 

In an ArrayCons84 we can specify a list of expressions that are assigned 
to the elements of the array sequentially. Specifying " .. " causes all non
initialized elements to assume the value of the last expression (which is 
computed only once and not recomputed for each subsequent element). Ar
ray constructors can be assigned to array constants and array variables. 
If no " .. " is specified, then the constructor must contain exactly as many 
elements as the array to which the constructor is assigned. 

Example 8.5 demonstrates the use of multidimensional arrays and ar
ray constructors. A point in N-dimensional space can be represented in 
mathematics as a sequence of coordinates. In a program we use an array. 
Note, however, that the dimension ofthe array is something quite different 
from the dimensions of mathematical space. The N coordinates of a point 
can be stored in one array dimension. 

Example 8.5 employs arrays to represent points inN-dimensional space. 
The origin of this space is a point whose coordinates are all O. The example 
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CONST 
N =3; 

TYPE 
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Point = ARRAY [1 .. N] OF REAL; 
Plane = ARRAY [1 .. 2] OF Point; 

(*point in N-dimensional space*) 

CONST 
Origin = Point {O.O, .. }; 
XNorm = Point {1.0, 0.0, .. }; 
YNorm = Point {O.O, 1.0,0.0, .. }; 
XNormPlane= Plane {Origin, XNorm}; 

VAR 

(*all elements set to 0.0*) 
(*all elements from 2nd set to 0.0 *) 

(*all elements from 3rd set to 0.0*) 

aPlane:= Plane {Point{-1.0, 1.0,0.0, .. }, POint{1.0, 1.0,0.0, .. } }; 

Example 8.5: Initialization of a bidimensional array 

shows how we declare the constant Origin of type Point. If all elements of 
the array are not the same, then the same notation still can be used to 
indicate that the elements starting at a certain position are all the same 
(see constants XNorm and YNorm in Example 8.5). 

This method even allows leaving the dimension of the space open: We 
can set the constant N to every value 2: 3. After recompilation of the 
source code, the constants Origin, XNorm and YNorm are declared cor
rectly again for the new space! 

A polygon in N-dimensional space consists of a fixed number of points 
that we can represent as an array of points. A plane in Example 8.5 is a 
bidimensional array; a point is an array of coordinates; a plane an array of 
points. 

The declaration of variable aPlane is also an example of omitting the 
explicit specification ofthe type of the variable and implicitly determining 
it through the initialization value (see Section 7.2.3). The array construc
tor makes this obvious anyway. On the other hand, we could justifiably 
consider the following declaration as "pompous"l: 

aPlane: Plane:= Plane{Point{-1.0,1.0,O.O, .. }, Point{1.0,1.0,O.O, .. } }; 

Example 8.6 defines a polygon consisting of M points. The variable circle 
is initialized such that it approximates a circle. To make the approximation 
more fine-grained, it suffices to increase M. 

8.1.4 Operations on arrays 

Assignment 

Arrays can be assigned to one another if they have the same base type and 
the same shape (same number of elements in each dimension; see above, 

lThis designation for exaggerated formalism is used by Niklaus Wirth. 
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MODULE Array3 EXPORTS Main; 
IMPORT Math; 

CONST 
N = 3; M = 100; 

TYPE 
Point = ARRAY [1 .. N] OF LONG REAL; 
Polygon = ARRAY [1 .. M] OF Point; 

VAR 

8. Composite static types 

(*Math exports mathematical functions*) 

(*point in N-dimensional space*) 
(*polygon in N-dimensional space*) 

circle: Polygon; (*use polygon to approximate circle*) 
radius: LONG REAL := 10.000; alpha: LONGREAL:= 0.000; 
step: LONGREAL:= 6.2800 / FLOAT(NUMBER(Polygon), LONGREAL); 

BEGIN 
FOR i:= FIRST(circle) TO LAST(circle) DO 

circle[i, 1]:= Math.sin(alpha)*radius; 
circle[i, 2]:= Math.cos(alpha)*radius; 
FOR j:= 3 TO N DO circle[i, j]:= 0.000 END; (*circle in x/y plane*) 
alpha:= alpha+step; 

END; 

Example 8.6: Circle approximated by a polygon 

Section 8.1.2). This enables the assignment of the constant array Circuit to 
the variable triangle in Example 8.7. 

Relational operations 

Assignment-compatible arrays can be tested for (in)equality. Two arrays 
are equal if they have an equal number of elements and their elements are 
pairwise equal (see Example 8.7). No other relational operations are valid 
on arrays. 

Predefined functions 

The FIRST and LAST functions apply to array types as well as to vari
ables of type array. They return the first and last value, respectively, of 
the index type of the array. For multidimensional arrays these function 
can be applied to each dimension individually. Thus we could have writ
ten Example 8.4 in the more general form of Example 8.8. The expression 
FIRST(matrix[FIRST(matrix)]) determines the first element in the second di
mension. The index expression between the square brackets serves to se
lect the second dimension; here we can use an arbitrary element of the first 
dimension. The expression FIRST(matrix[LAST(matrix)]), e.g., is equivalent 
to the previous one. 

The function NUMBER can also be applied to arrays and returns the 
number of elements (ofthe first dimension ofthe array) (Example 8.8). 
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CONST 
N=2; 

TYPE 
Point = ARRAY [1 .. N] OF REAL; 
Triangle = ARRAY [1 .. 3] OF Point; 
Cities = {Vienna, Salzburg, Klagenfurt}; 
CityTriangle = ARRAY Cities OF Point; 

CONST 
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Circuit = CityTriangle{Point{1.4, 2.5}, POint{ 4.5, O.6}, Point{3.2, 3.2}}; 
VAR 

triangle: Triangle; 
BEGIN 

triangle:= Circuit; 

IF triangle # Circuit THEN 

(*assignment of arrays *) 

(*comparison of arrays *) 

Example 8.7: Assignment and relational operations on arrays 

TYPE 
Line = [1 .. 32]; 
Column= [1 .. 16]; 
Matrix = ARRAY Line, Column OF INTEGER; 

VAR 

(*line index*) 
(*column index*) 

(*array type*) 

matrix: Matrix; (*"matrix" can contain 32 x 16 numbers*) 
BEGIN 

FOR i:= FIRST(matrix) TO LAST(matrix) DO (*from 1 to 32*) 
FOR j:= FIRST(matrix[FIRST(matrix)]) TO LAST(matrix[FIRST(matrix)]) DO 

matrix[i, jJ:= i + j; 
END; (*FORj*) 

END; (*FOR i*) 

(*from 1 to 16*) 

SIO.Putlnt(NUMBER(matrix)); (*number of elements in 1st dimension: 32*) 
SIO.Putlnt(NUMBER(matrix[FIRST(matrix)])); (*elements in 2nd dimension: 16*) 

Example 8.8: Predefined functions on multidimensional arrays 

The function SUBARRAY crops out part of an array. Its general form is: 

SUBARRAY(a: Array; from, count: CARDINAL) 

The result of SUB ARRAY is a variable whose type is array of the element 
type of a (if a is multidimensional, then SUBARRAY applies to the first di
mension). Imagine this variable overlapping part of a. SUBARRAY thus 
returns part of the array itself, not a copy thereof 

The result contains count elements, whereby the first from elements of 
the original array remain untouched. For from = 0 the subarray is overlaid 
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TYPE 
Array1 = ARRAY [1 .. 100] OF INTEGER; 
Array2 = ARRAY [1 .. 10] OF INTEGER; 

VAR 

8. Composite static types 

a1:= Array1 {O, .. }; 
a2:= Array2{1, .. }; 

BEGIN 

(*"al" stores 100 numbers (all initialized to 0) *) 
(*"a2" stores only 10 numbers*) 

(*copy a2 to a1 starting at index 11: *) 

SUBARRAY(a1, 10, NUMBER(a2»:= a2; 
(*assign the first 10 elements of a1 to array a2: *) 

a2:= SUBARRAY(a1, 0, NUMBER(a2»; 
(*replace a1 l1 .. a1 l5 : *) 

FOR i:= 0 TO 4 DO SUBARRAY(a1, 10, 5)[i]:= 3 * i END; 
(*shifts 5 values from index 11 by 1 element: *) 

SUBARRAY(a1, 11,5):= SUBARRAY(a1, 10,5); 

Example 8.9: The use of the subarray function 

beginning at FIRST(a), for from = 1 from FIRST(a)+ 1, etc. SUBARRAY(a, 0, 
NUMBER(a)) overlays the complete sub array over the entire array a. The 
index type ofthe result is [0 .. count-1]. In Example 8.9 we see various uses 
of SUBARRAY: We can even assign overlapping ranges within an array to 
one another - the exact definition of SUB ARRAY permits this (see Language 
Description B.2.3). 

8.1.5 Example: Schedule 

In Example 8.10 we set up a small class schedule for students. We define 
a matrix whose rows represent days and whose columns reflect the hours. 
(We optimistically assume that classes take place only Monday through 
Friday and only between 7:00 and 20:00 hours.) The two constant arrays 
DayNames and Class Names contain text constants. First we initialize the 
schedule to the value None. Then we record several entries in the schedule 
and output the schedule for all mornings. 

The output of the name of a class employs nested indexing: Class
Name[schedule[day, hour]]. The expression schedule[day, hour]- its type is 
Classes - indexes the array ClassNames, which contains the corresponding 
text. 

We neglected elegant formatting in our output. For a program in
tended for a broad market, this would be an important factor. For our 
example, an attractive table would be appropriate, with days as col
umn headers and the hours labeling rows. To achieve this, we would 
have to reverse the order of the FOR loops because the variable sched
ule contains the days in its first dimension and the hours in its second. 
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MODULE ClassSchedule EXPORTS Main; 

IMPORTSIO; 

(*27.05.94. LB*) 

TYPE 
Days 
Hours 
Morning 
Classes 
Schedule 

CONST 

= {Monday, Tuesday, Wednesday, Thursday, Friday}; 
= [7 .. 20]; 
= [8 .. 12]; 
= {None, English, Software, Mathematics}; 
= ARRAY Days, Hours OF Classes; 

DayNames = ARRAY Days OF TEXT { 
"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"}; 

ClassNames= ARRAY Classes OF TEXT { 
"None", "English", "Software", "Mathematics"}; 

VAR 
schedule: Schedule; 

BEGIN 
FOR day:= FIRST(Days) TO LAST(Days) DO 

FOR hour:= FIRST(Hours) TO LAST(Hours) DO 
schedule[day, hour]:= Classes. None; 

END; (*FOR hour*) 
END; (*FOR day*) 

FOR hour:= 8 TO 18 DO 
schedule[Days.Monday, hour]:= Classes. English; 

END; (*FOR hour*) 

(*Software Tuesday to Friday at 10*) 
FOR day:= Days.Tuesday TO Days.Friday DO 

schedule[day, 10]:= Classes.Software; 
END; (*FOR day*) 

schedule[Days.Tuesday, 8]:= Classes. Mathematics; 
schedule[Days.Friday, 9]:= Classes. Mathematics; 

(*print schedule for mornings *) 
FOR day:= FIRST(Days) TO LAST(Days) DO 

SIO.PutText(DayNames[day] & "\n"); 
FOR hour:= FIRST(Morning) TO LAST(Morning) DO 

SIO.Putlnt(hour); 
SIO.PutText(":" & ClassNames[schedule[day, hour]]); 

END; (*FOR hour*) 
SIO.NIO; 

END; (*FOR day*) 
END ClassSchedule. 

(*stores the schedule*) 

(*initialize to None*) 

(*English nearly all day*) 

Example 8.10: Class schedule as bidimensional array 
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As reader you might object that you could produce such a schedule 
more efficiently on paper by hand, and that you do not need a computer 
for this. This is true. Example 8.10 was intended to demonstrate the 
basic data structures and several elementary operations. We still lack 
sufficient knowledge to produce a program that properly manages a 
schedule. For example, we would have to make a real schedule persis
tent; i.e., it must not simply disappear after execution of the program, 
as in Example 8.8 (see Chapter 14). 

8.1.6 Linear search in an array 

Next let us solve a classic problem in computer science: searching for an 
element in an array. It is easy to guess why searching is a classic problem. 
We store the information in our computers for a reason: We want to be able 
to use the stored information, and this means that we must be able to find 
it. Let us assume for now that the data are stored completely randomly 
in an array (i.e., there is no relationship between an element value and 
its position in the array - in contrast to a sorted array, where "smaller" 
elements appear before "larger" ones.) Thus to find a value, we must search 
the array linearly from the start, one element at a time. 

First let us formulate the task precisely. Given an array a of INTEGERs 
with an index range between 1 and N and the target value x, we want to 
find the first occurrence of this value in a. The precondition is: 

N > 0 1\ (:3j: 1 :S j :S N : a[j] = x) 

In words, N must be positive, and the value x must occur in a. In ad
dition, we implicitly assume that a, x and N do not change during the 
execution of the search procedure. 

The assumption that the target element actually occurs in the array 
is not so unrealistic: We can increment N by 1 and copy x to the last 
position. Then we always find x, and we know that if x is found at 
the last position, then it was not contained in the original array. This 
approach is called the sentinel method. 

The program must fulfill the following postcondition: 

ali] = x 1\ (\fj : 1 ::::: j < i: a[j] #- x) 

The first expression (before 1\) states that x was found at position i; the 
second states that x occurs at no position with a smaller index. Let us 
derive the algorithm from this postcondition. We need a loop that linearly 
searches the entire array until the target element is found. The second 
expression of the postcondition can serve as our loop invariant, because 
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this relationship must be preserved during the entire search. We will use 
the invariant I: 

I : (V j : 1 :::; j < i : a[j] =I- x) 

The first expression ofthe postcondition could serve as termination con
dition for the loop. We will use a WHILE loop with the following form (see 
Section 5.5): 

{I} WHILE condition DO statements {I} END 

The WHILE condition will be the negation of the termination condition 
(i.e., ali] =I- x). Now the body of the While loop is easy to see: We want to 
search the entire array linearly, so we need to increment the index by 1 in 
each iteration. The final algorithm becomes: 

{precondition == N> 0 /\ (3j: 1 :::; j :::; N : a[j] = xl} 
i:= 1; 
{I} 
WHILE ali] =I- x DO 

INC(i) 
{I} 

END; 
{I /\ a[ i] = x == postcondition} 

A detailed proof of the partial correctness of the above algorithm can 
be found in [DFS88]. It is easy to demonstrate termination (and thus the 
total correctness): Since we postulated x E a, and since i searches the 
array linearly from the start, ali] =I- x cannot remain true forever, and the 
WHILE loop must terminate. Example 8.11 shows a corresponding solution 
in Modula-3. 

In Example 8.12 we search a text array. In the first WHILE loop we 
read texts into array a, where we will later search. Since we might not 
completely fill the array, we use the variable last to store the index of the 
last valid value. If the Stop character is input at the start, then the search 
is not carried out at all (i <= last is never true). In the search we do not use 
a sentinel, thus complicating the termination condition. 

The test of the termination condition relies on lazy evaluation (Section 
7.1.3). Ifwe exchange the two conditions, then we might try to access 
an element that does not exist. 
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CONST 
N = 10; (*number of elements in array*) 

TYPE 
Array = ARRAY [1 .. N+1] OF INTEGER; 

(*the position N+l is reserved for the sentinel*) 
VAR 

a: Array; 
x, i: INTEGER; 

BEGIN 
(* ... a and x are initialized appropiately ... *) 

a[LAST(a)]:= x; 
i:= FIRST(a); 
WHILE x # ali] DO INC(i) END; 
IF i = LAST(a) THEN SIO.PutText("NOT found"); 
ELSE SIO.PutText("Found at position: "); SIO.Putlnt(i) 
END; 

(*the array to be searched*) 
(*x contains the target value*) 

(*statement part*) 

(*sentinel at position N+l*) 

Example 8.11: Linear search with sentinel 

The following reflects a possible execution of the program: 

Please enter a text, or terminate input with 
Peter Paul Martha Julia Eleanor. 
Search text : = Julia 
Found at position: 4 

For large quantities of data, linear searching can become too prolonged. 
On the average, we have to search half ofthe array, and in the worst case all 
of it. Ifwe order the data according to some principle, then we can employ 
much faster methods. Thanks to the alphabetic order ofthe telephone book, 
e.g., we can quickly find the corresponding first letter. Ifwe are looking up 
the name Newman, then we open the telephone book approximately at the 
middle. If we happen to open to the letter K, then we do not continue to 
search in the first half, but only after K. On second try we might flip to P, 
and on the third attempt we might land at N. This is not linear searching. 
Ifwe encounter persons of the same name, we might then have to continue 
with a linear search. We do not discuss improved search methods here, but 
refer the reader to a number of algorithms in the literature [Knu81, Sed93, 
Wir76]. 

8.1.7 Sorting an array 

We have seen that the precondition for rapid searching is the existence of 
some order in the array. This means that we have to sort our data. 
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MODULE LinearSearch2 EXPORTS Main; 

IMPORT SIO, Text; 

CONST 
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(*1.12.94. LB*) 

N = 128; 
Stop = "."; 

TYPE 

(*maximum number of elements in array*) 
(*end of input stream*) 

Array = ARRAY [1 .. N] OF TEXT; 
VAR 

a: Array; 
x: TEXT; 
i, last: INTEGER; 

(*the array, in which to search*) 
(*current text or search text*) 

(*Iast: last valid index*) 

BEGIN (*statement part*) 
SIO.PutText("Please enter a text, or terminate input with" & Stop & "\n"); 
last:= FIRST(a) - 1; x:= SIO.GetTextO; 
WHILE NOT Text. Equal(x, Stop) AND (last < LAST(a)) DO 

INC(last); a[last]:= x; x:= SIO.GetTextO; 
END; (*WHILE NOT Text.Equal .. , *) 

SIO.PutText("Search text := "); 
x:= SIO.GetTextO; 

i:= FIRST(a); 

(*x contains the search text*) 

WHILE (i <= last) AND NOT Text. Equal(a[iJ, x) DO INC(i) END; 
IF i > last THEN SIO.PutText("NOT found"); 
ELSE SIO.PutText("Found at position: "); SIO.Putlnt(i) 
END; (*IF i > last*) 
SIO.NIO; 

END LinearSearch2. 

Example 8.12: Linear search without a sentinel 

How do we sort an array of texts? How would we sort texts if they were 
written on file cards? Perhaps the simplest method is the following: We find 
the (alphabetically) smallest element and swap it with the first element. 
This assures that the (new) first element is in the correct position. Next we 
repeat the procedure with the second, third, etc. element. This produces an 
increasingly long sorted sequence at the start of the array. After we have 
progressed to the next-to-the-Iast element, the last element must also be 
correctly positioned, i.e., the largest. 

We can easily implement this algorithm with a nested FOR loop (Ex
ample 8.13). For input we use the same statements as in Example 8.12. 
The outer FOR loop iterates through the array from the first to the next
to-the-Iast element. The inner loop seeks the smallest element within the 
unsorted rest. To the variable min we always assign the index value of the 
smallest element (at the start we assume that ai is the smallest). If we 
find an element aj < amin' then we set min toj. Mter each iteration ofthe 
inner loop we swap ai with amin- To compare texts, we use the Compare 



154 

TYPE 
Array = ARRAY [1 .. N) OF TEXT; 

VAR 
a: Array; 
x: TEXT; 
last, min: INTEGER; 

BEGIN 

FOR i:= FIRST(a) TO last - 1 DO 

8. Composite static types 

(*the array in which to search*) 
(*auxiliary variable*) 

(*Iast: last valid index, min: current minimum*) 

min:= i; (*index of smallest element*) 
FOR j:= i + 1 TO last DO 

IF Text.Compare(aUl, a[min]) = -1 THEN min:= j END; (*IF aj < amin *) 
END; (*FORj*) 
x:= a[min); a[min):= ali); a[i):= x; (*swap ai and amm *) 

END; (*FOR i*) 
FOR i:= FIRST(a) TO last DO 

SIO.PutText(a[i) & " "); (*outputs sorted array*) 
END; (*FOR i*) 
SIO.NI(); 

Example 8.13: Sorting by selecting the smallest element 

procedure of the Text interface. If text1 and text2 are of type TEXT, then 
Compare(text1, text2) returns 0 if the content of text1 is equal to that of 
text2, -1 if text1 comes before text2 in lexical order ("less than"), or +1 if 
text1 comes after text2. 

The following is a possible execution of the program: 

Please enter a text, or terminate input with . 
Peter Paul Ely Martha Julia Alma. 
Alma Ely Julia Martha Paul Peter 

This sorting algorithm is quite simple, but not particularly efficient. For 
n elements we would have to iterate through the array on the average ~2 
times. For more efficient sorting algorithms, we refer the interested reader 
to the literature [Knu81, Sed93, Wir76]. 

8.2 Records 

A record serves to combine components of different types. Such heteroge
neous combination makes sense when the components are logically related. 
The components receive a symbolic name with which they can be accessed. 
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Access to such components is thus static; i.e., they are already known at 
compile time. 

To collect information on the employees of a company, as on file cards, 
we can write as follows: 

TYPE 
EmpData = RECORD 

name, firstname: TEXT; 
salary: REAL; 

END; 
VAR 

employee: EmpData; 

The variable employee can now be stored as a single value. All infor
mation on an employee can be accessed together via employee. We use 
selectors to access individual components. To initialize the variable, we 
can write as follows: 

employee.name:= "Smith"; 
employee. firstname:= "Fred"; 
employee.salary:= 20000.0; 

We could say that the components of a record become part of a larger 
context, but do not lose their individual attributes such as name and type. 
The components of an array, by contrast, are more uniform; they are all of 
the same type and are identified with indices (actually with a "number" or 
address). However, the indices of an array can be computed dynamically, 
while the names of the components ofa record are static. 

Syntax of record types 

RecordTypes4 = "RECORD" FieldsS9 "END". 
FieldsS9 = [Field60 { ";" Field60 } [ ";" ] ] . 
Field60 = IDUst87 ( ":" Type48 I ":=" ConstExpr6s 

I ":" Type48 ":=" ConstExpr6s ). 

The general form of a record type is thus: 

TYPE T = RECORD field list END 

The list of fields is very similar to a variable declaration. This is not an 
accident, but actually the goal: In a record we combine declarations. Ini
tialization of the fields on declaration is restricted to constant expressions. 
Initialization is carried out on creation of a variable of type record. Exam
ple 8.15 shows how points on a (bidimensional) screen can be represented 
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x y color [red] color [green] color [blue] 

q: [_-~~--~_1"-__ "_--'-_~~-_"-__ :1 [:=1=00="====1 0=0 = L---~~;J 1 

Figure 8.14: Record with simple and composite fields 

TYPE 
Colors = {red, green, blue}; 
Intensity = [0 .. 100]; 
ColorValues= ARRAY Colors OF Intensity; 
Point = RECORD 

VAR 

x, y: INTEGER := 0; 
color:= ColorValues {O, .. }; 

END; (*Point*) 

(*primary colors*) 
(*intensity in percent*) 

(*black*) 

P: Point; (*p.x = 0, p.y = 0, all p.color; = 0*) 
q: Point; (*q.x = 0, q.y = 0, all q.color; = 0*) 

BEGIN (*q receives new coordinates and color*) 
q.x:= 10; q.y:= 10; (*q is shifted by 10 in both directions*) 
FOR f:= FIRST(Colors) TO LAST(Colors) DO q.color[f]:= 100 END; (*q turns white*) 

Example 8.15: Record declaration 

in a graphic program. In this example a point has two coordinates and 
one color value each for three primary colors (red, green and blue). The 
coordinates are initialized to 0 and the color to black. 

The reader should note the difference between the Point type in the 
array in Example 8.5 and the Point type used in Example 8.15: We 
use the record here because the number of point coordinates is fixed 
and additional information (the color) needs to be stored with each 
point. 

8.2.1 Record selectors 

The elements of a record are accessed via qualified identifiers. The field 
name must be preceded by the name of the variable to which the field be
longs - separated by a period. To initialize coordinate x of variable q in 
Example 8.15 and Figure 8.14, we would write the following: 

q.x := 10 

In the event of nested records, the entire path of field names must be 
specified (see, e.g., the expression poly[i].p2.x in Example 8.19). The syntax 
of access to record fields (like indexing of arrays) is defined in the expres
sion syntax (see Selector78 in Figure 7.1, page 126). 
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8.2.2 Record constructors 

Record values can be defined with the help of record constructors. For the 
exact syntax, we repeat the relevant excerpt from the syntax of expres
SiOns: 

Syntax 

Constructor79 = Type48 "{" [ RecordCons82 I ... J "}". 
RecordConSR2 = RecordEltS3 { "," RecordEltS3 }. 
RecordElt83 = [ Ident89 ":=" J EXpr66. 

A record constructor defines a list of values to be assigned to the record 
fields. With the help of record constructors we can establish the value of 
record constants and record variables. For fields for which the type decla
ration did not define a value, a value must be specified in the constructor. 
Fields values that were given a value in their type declaration need not be 
defined in the constructor. Here the value of the type declaration is used. 
Mter the assignment of a constructor all fields of the target record receive 
a valid value. The values of the constructors can be specified positionally 
or by name. 

1. Positional specification 
The values are assigned sequentially to the record fields: the first 
value to the first field, the second value to the second field, etc. If 
the list of values is shorter than the number of fields, then the spec
ifications of the type declaration apply to the remaining fields. For 
example, if the type Point is declared as in Example 8.15, then 

Point{20,30} 

defines a point with X = 20 and y = 30. The color value remains as 
specified in the type declaration. 

2. Specification by name 
This specification is syntactically similar to a value assignment. The 
sequence of the specifications is arbitrary in this case. The fields for 
which no assignment is made assume their values from the type dec
laration. The following constructor defines the same point as above: 

Point{y:= 30, x:= 20} 

3. Mixed specification 
For a mixed specification, the positional specifications must be made 
first. We suggest avoiding mixed specifications because they are gen
erally hard to read. 
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TYPE 
Colors = {red, green, blue}; 
Intensity = [0 .. 100]; 
ColorValues= ARRAY Colors OF Intensity; 
Point = RECORD 

CONST 

x, y: INTEGER; 
color: ColorValues; 

END; (*Point*) 

Black = ColorValues {O, .. }; 
White = ColorValues {100, .. }; 
Yellow = ColorValues {100, 100, o}; 
Origin = Point{x:= 0, y:= 0, color:= Black}; 

VAR 
p: Point := Origin; 
q:= Point {x:= 10, y:= 10, color:= White}; 

BEGIN 
p.x:= p.x + 10; 
p.y:= p.y + 15; 
p.color:= Yellow; 

8. Composite static types 

(*primary colors*) 
(*intensity in percent*) 

(*Intensity value minimal => black*) 
(*Intensity value maximal => white*) 

(*red and green make yellow*) 
(*record constructor*) 

(*record constructor*) 

(*shift p toward x by 10*) 
(*shift p toward y by 15*) 
(*set color ofp to yellow*) 

Example 8.16: Record types, constructors and selectors 

Figure 8.17: A zigzag line stored in the variable ''poly'' 

poly [1] 

Figure 8.18: Array of records with various fields 
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CaNST 
Red 
Step 

TYPE 
Colors 
Intensity 
ColorValues 
Point 

= ColorValues {100, 0, O}; 
= 10; 

= {red, green, blue}; 
= [0 .. 100]; 
= ARRAY Colors OF Intensity; 
= RECORD 

x, y: INTEGER; 
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(*red color*) 

(*primary colors*) 
(*intensity in percent*) 

color: ColorValues := Red; 
END; (*Point*) 

Line 

Group 
VAR 

= RECORD 
p1, p2: Point; 

END; (*Line*) 
= ARRAY [1..16] OF Line; 

P := Point{x:= 0, y:= O}; 
line := Line{p1:= p, p2:= Point{x:= Step, y:= Step}}; 

poly: Group; 
change: INTEGER := Step; 

BEGIN 

(*linejoints point(O,O) with point(10,10) with a red line*) 
(*poly consists of a number of lines*) 

(*change of direction on Yaxis*) 

poly[FIRST(poly)]:= line; 
FOR i:= FIRST(poly) + 1 TO LAST(poly) DO 

poly[i].p1:= poly[i - 1].p2; 
poly[i].p2.x := poly[i - 1].p2.x + Step; 
change:= - change; 
poly[i].p2.y := poly[i - 1].p2.y + change; 

END; (*FOR i*) 

(*poly[lljoins (0,0) with (10,10)*) 

(*poly[i]'p1 takes p2 from predecessor*) 
(*forward along X axis*) 

(*changes direction with each iteration*) 
(*up and down along Yaxis*) 

Example 8.19: Nested records with constructors 

In Example 8.16 Black, White and Yellow are array constants whose val
ues are set by array constructors. Origin is a record constant whose value is 
defined by a record constructor. Variables p and q are both of type Point. p 
is initialized to the value Origin, and q is initialized by a record constructor. 
In the statement part the attributes of the declared points can be changed 
as needed. Example 8.19 introduces lines and groups oflines in bidimen
sional space. A Line consists of two points. We define a group as an array 
oflines. The variable poly represents a red zigzag line (see Figure 8.17 and 
8.18). 
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8.2.3 Operations with records 

Assignment 

Records can be assigned to one another if all their fields have the same 
names and types and have been declared in the same order in the record, 
which makes them structurally equivalent (see Section 7.3). In the follow
ing example R1 and R2 are equivalent, but different from R3 (the fields of 
R3 have the same types, but different names): 

TYPE 
R1 = RECORD a: INTEGER; b: REAL END; 
R2 = RECORD a: INTEGER; b: REAL END; 
R3 = RECORD x: INTEGER; y: REAL END; 

The initialization values belong to the record type. Thus the following 
types are different and thus not assignment compatible: 

R4 = RECORD a: CARDINAL := 0 END; 
R5 = RECORD a: CARDINAL END 

On assignment between records, all fields of the RHS record (the right 
side of the assignment) are copied to the corresponding fields of the LHS 
record (on the left side). 

Relational operations 

Assignment compatible records can be tested for (in)equality. No other 
relational operation is permitted. 

8.2.4 With statement 

Before we examine a larger example, we introduce a new statement that 
allows us to use aliases for complex selectors that we need more than 
once. Thus we can make the source code more compact and readable -
and we save some typing. Besides, it makes our programs more efficient 
because certain internal access computations associated with the selectors 
for record components and above all array indexing, only have to be carried 
out once. 

Syntax of the With statement 

WithStmt41 = "WITH" Binding46 { "," Binding46 } "DO" Stmts23 "END". 
Binding46 = Idents9 "=" Expr66. 
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MODULE Students EXPORTS Main; 

IMPORT SIO; 
CONST 
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(*5.11.93. LB*) 

SubjectName = ARRAY Subjects OF TEXT {"English", "Software", "Mathematics"}; 
MaxStudents = 300; (*maximum number of students*) 

TYPE 
Subjects 
Tests 
Student 

= {English, Software, Mathematics}; 
= RECORD t1, t2: CARDINAL := 0 END; 
= RECORD 

name, firstName: TEXT := ""; 
studentNumber: CARDINAL := 0; 
tests: ARRAY Subjects OF Tests; 

END; (*Student*) 
= ARRAY [1 .. MaxStudentsj OF Student; Students 

StatData 
Statistics 

= RECORD count, score: CARDINAL:= 0 END; 
= ARRAY Subjects OF StatData; 

(*test statistics*) 
(*statistics by subject*) 

VAR 
students: Students; 
count: CARDINAL := 0; 
statistics:= Statistics{ StatData {}, .. }; 

BEGIN 
SIO.PutText("Student Data Management\n"); 

(*stores all student data*) 
(*current number of records*) 

(*statistics of test results by subject*) 

(*initialize student data and the number of students*) 

FOR s:= 1 TO count DO (*upper boundary = current count*) 
WITH st = students[sj DO (*st is for students[s}*) 

IF st.studentNumber # 0 THEN (*no test without student number*) 
FOR f:= FIRST(Subjects) TO LAST(Subjects) DO 

WITH stat = statistics[f], t = sUests[fj DO 
INC(stat.count, 2); 
INC(stat.score, U1); 
INC(stat.score, U2); 

END; (*WITH stat, t*) 
END; (*FOR f*) 

END; (*IF st.studentNumber # 0*) 
END; ("WITH st = students[s}*) 

END; (*FOR s*) 

(*t=students[s}.tests[f1*) 
(*exactly two tests per subject*) 

(*add test 1*) 
(*add test 2*) 

FOR f:= FIRST(Subjects) TO LAST(Subjects) DO 
SIO.PutText("Average for" & SubjectName[fj & " = "); 
SIO.PutReal(FLOAT(statistics[fj.score) / FLOAT(statistics[fj.count)); 
SIO.NIO; 

END; (*FOR f*) 
END Students. 

Example 8.20: Output of test statistics 
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The general form of a WITH statement: 

WITH identifier = expression DO statement sequence END 

The identifier is declared via the WITH statement; its scope (see Section 
9) extends to the END of the statement. The identifier is used as an abbre
viation (nickname) for the expression. If the expression returns a value, 
then the identifier within the WITH statement stands for this value, and no 
new value can be assigned to the identifier (it is a read-only variable). If 
the expression yields a (read/write) variable, then the identifier is actually 
only another (shorter) name for the variable. 

8.2.5 Example: Student data management 

Let us develop a small student data management system: For each student, 
we want to store the name, first name and student number. For each class, 
the students must take exactly two tests (perhaps a too rigid assumption). 
The points scored on the tests are to be stored. Student who lack a valid 
(nonzero) student number are not considered in the assessment. 

In Example 8.20 we assume that the student data has already been 
recorded. For larger and more complex data sets, we usually read the input 
data from a file (see Chapter 14) rather than from the keyboard. The data 
to be read must be tested for syntax (correct format) as well as semantics. 
The semantic test attempts to detect and reject senseless values. For a 
student number, e.g., we could require that all student numbers in the 
year 1995 begin with 95. Such a condition is easy to test. 

Our program computes the mean of the test results within a subject. 
The initialization of the variable statistics was specified on declaration. 
This initialization must be moved to the statement part if we intend to 
use the variable repeatedly. For the subject-related statistics we must iter
ate through all the collected student data (the current number of students 
is stored on input in the variable count). For students with a valid student 
number, we increment the statistical counter. Note that we store the num
ber of valid tests in the field count of the record StatData, which should not 
be confused with the variable count. 

In processing the array students we did not use FIRST and LAST because 
we explicitly assume that the lower boundary of the array is always 1 (we 
need not consider the case that numbering of the students begins at -5 or 
100). Assume that we input of the following data (here we use the Euro
pean 1 (A) to 5 (F»: 
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FirstName Name StudentNo. English Software Mathematics 
Amelia Smith 9400 2 5 
Oscar Small 9401 4 5 
Julia Jones 9402 4 1 
Peter Piper 0000 4 1 

The program would give us the following output: 

Average for English = 3.5 
Average for Software = 2.8333333 
Average for Mathematics = 3.5 

8.3 Sets 

3 4 4 5 
3 2 2 3 
3 2 3 4 
3 2 3 4 

Sets are generally very powerful constructs. Modula-3, like many other 
programming languages, restricts sets to those of ordinal types. We also 
limit our discussion to this view of sets. 

Sets are an unordered collection of elements. Thus we cannot index the 
elements (there is no ith element). We can designate an element of a set 
only as itself To read an element from an array, we specify its position 
(the index). With a set we proceed differently: We insert an element or test 
whether a certain element (that we already know) is contained in the set. 

,As surprising as it may seem, this gives us a very powerful tool. 

Sets are closer to human memory than array storage is. People do not 
search in their memories as though they knew the position that con
tains the information, but did not know the contents. When people 
remember something, they already have the information. When peo
ple cannot remember something (such as the name of the medication 
against forgetfulness), they cannot iterate through a linear search of 
memory. The efforts that people make in such a case are quite mys
terious. They seem to know something, but actually do not know it -
a situation that has little to do with the storage of information in a 
computer. 

A typical example of the use of sets in computer programs is the storage 
of switch values. To store in a variable the current position of the mouse 
keys of our computer, we could do the following: 

TYPE 
Keys = {left, middle, right}; 
Mouse = SET OF Keys; 

VAR 
mouse: Mouse; 
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The pressed keys, but not the others, are contained in the set mouse. To 
initialize the variable mouse to "no key pressed", we can write: 

mouse := Mouse{}; 

Thereby we assign to the variable an empty set of type Mouse. To add 
the middle mouse key (to any keys currently pressed), we write: 

mouse := mouse + Mouse{Keys.Middle}; 

This joins the current set of pressed keys with the set containing only 
the element Keys. Middle. The following statement tests whether the middle 
key is pressed. 

IF Keys.Middle IN mouse THEN (*middle mouse key pressed*) END; 

The programming language 8ETL [8+86] builds fundamentally on 
sets. Many database languages also feature sets as "first-dass-citizens", 
i.e., as full-fledged, unrestricted language construct. This means that 
we can define sets of any data type. Note that sets are one of the 
most basic mathematical constructs, and many other constructs can 
be expressed as special cases of sets. However, it is quite difficult to 
implement sets as full-fledged and efficient features. 

Syntax of sets 

SetType56 = "SET" "OF" Type4s. 

Type4S, the base type of sets, must be an ordinal type. The elements that 
are added to a set must be assignment compatible with this type. 

8.3.1 Range 

Since the base type itself represents a value set, the range of a set is a 
power set (a set of sets). This power set represents the set of all possible 
sets of the base type. If we create a set over the range [0 .. 1], then the 
following values are contained in the range of the power set: 

{} {O} {1} {O,1} 

In words, the range encompasses the empty set, the sets containing either ° or 1, and the set containing both elements. 
Sets are unordered; thus the set {O,l} can also be written as {1,O}. An 

element can occur only once in a set: {O,l,l} is identical to {O,l}. 
Ifthe cardinality (number of possible values) ofthe base type is N, then 

the cardinality of the set formed therefrom is 2!'. This necessitates a re
striction of the base type range. A set of type INTEGER, e.g., can never be 
represented fully. In general it makes sense to create sets of base types 
with modest cardinality. 
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For internal representation of sets we need at least one bit per ele
ment; this bit specifies whether the element is contained in the set. 
This simple representation would not be possible if sets were not so 
restricted. For example, if a SET OF RECORD ... were possible, then 
one bit per element would not suffice because the contents of the indi
vidual fields (or at least a pointer to them) would be necessary. How
ever, with the help of user modules it is possible to design general and 
powerful sets (see Appendix A). 

Even for a very thrifty representation we need 32 bits for a SET OF 
[1 .. 32]. For the complete representation of SET OF INTEGER on a 32-bit 
computer we would need 232 bits, or 512 Mbytes, of memory. 

8.3.2 Set constructors 

Set values can be defined with the help of set constructors. 

Syntax 

Constructor79 = Type4S "{" [ SetConsso I ... J "}". 
SetConsso = SetElts1 { "," SetElts1 }. 
SetElts1 = EXpr66 [ " .. " EXpr66 ]. 
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A set constructor lists values or ranges to be contained in the set. Ex
ample 8.21 demonstrates the use of set constructors. The constant All con
tains all elements in the range [1..16], Null is an empty set, and Several 
= {1,3,S,6,7,14,1S,16}. The initialization of variable s (to {r1,11,r2}) is an 
example showing that a set constructor can also contain variable names. 

8.3.3 Operations on sets 

In addition to assignment, special set operations (analogous to the arith
metic operations) and relations are defined on sets. 

Assignment 

A set value can be assigned to a set variable if and only if their base types 
are equivalent. This means that only equivalent set types are assignment 
compatible. 

In Example 8.22 the types Set1 and Set2 are not equivalent. Possible 
values of Set1 are {} {1} {2} {1, 2}, while for Set2 they are {} {2} {3} 
{2, 3}; therefore s1 and s2 are not assignment compatible. 
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TYPE 
Range = [1 .. 16]; 
Set = SET OF Range; 

CONST 
All = Set{1 .. 16}; 
Null = Set{}; 
Several = Set{1, 3, 5 .. 7, 14 .. 16}; 

VAR 
r1: Range := 10; r2: Range := 12; 
8 := Set{r1, 11, r2}; 

8. Composite static types 

(*contains all elern.ents from 1 to 16*) 
(*empty*) 

(*contains: 1, 3, 5, 6, 7, 14, 15, 16*) 

(*s = Set{10,1l,12}*) 

Example 8.21: Set constructors 

TYPE 
Set1 = SET OF [1 .. 2]; 
Set2 = SET OF [2 .. 3]; 

VAR 
81:= Set1 {2}; 82:= Set2{2}; 

81:= 82; (*impermissible, for Set1 is not compatible with Set2*) 

Example 8.22: Different set types 

Set operations 

For sets, Modula-3 defines the operations listed in Table 8.24 (where Sand 
T are operands of the same set type). The parentheses enclose the lan
guage's prescribed notation. Figure 8.23 visualizes the effect of the set op
erations for nondisjunct sets with the help of Euler-Venn diagrams [Tru88]. 
An Euler-Venn diagram represents sets as ovals. The set operations are de
picted by shading. The diagram of S * T, e.g., shows the intersection (the 
set of all elements belonging to both sets) as shaded. 

Example 8.25 shows several set operations. 

Relations 

For sets the usual relations are defined with the accustomed syntax and 
with semantics corresponding to set theory. In Table 8.26 Sand Tare 
operands of the same set type. The parentheses enclose the language's 
prescribed notation. 

Example 8.27 shows how to output the contents of a set with the help of 
the IN relation. 
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S*T 

S-T 

SIT 

Figure 8.23: Set operations depicted as Euler-Venn diagrams 

Union (+) S + T = {xl(x E S) V (x E Tn 
in words: S + T is the set of all elements that 
occur in S or in T or in both sets. 

Difference (-) S - T = {xl(x E S) 1\ (x tic Tn 
in words: S - T is the set of all elements that 
occur in S but not in T. 

Intersection (*) S * T = {xl(x E S) 1\ (x E Tn 
in words: S * T is the set of all elements that 
occur both in S and in T. 

Symmetric 
Difference (/) SIT = {xl(x E S 1\ x tic T) V (x E T 1\ x tic S)} 

in words: SIT is the set of all elements that 
occur in S or in T, but not in both 

Table 8.24: Set operations 

Equality (=) S = T true i Sand T contain the same ele
ments. 

Inequality (#) 

Subset «=) 

Proper Subset ( <) 

S =f:. T iff NOT(S = T) 

S <= T iffVs E S: sET 
iff all elements in S also occur in T 
S < Tiff (S <= T)ANO(S#T) 

Superset (>=) S >= TiffT <= S 

Proper Superset (» S > T iff T < S 

Contained (IN) e IN S iff e E S 
is true if element e is contained in set S. E 
must be assignment compatible with the base 
type of S. Note that the IN relation deviates 
from the other relations because it does not 
combine two operands of the same type. 

2if f stands for "if and only if" 

Table 8.26: Set relations 
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TYPE 
Range = [1 .. 16]; 
Set = SET OF Range; 

CONST 
Half = Set{FIRST(Range) .. LAST(Range) DIV 2}; 

VAR 
set1, set2, set3 := Set{}; 

BEGIN 
FOR e:= FIRST(Range) TO LAST(Range) BY 2 DO 

set1 := set1 + Set {e} 
END; 
set2:= Half - set1 ; 
set1 := set1 - Half + set2; 
set3:= set1 * set2; 
set3:= set1 + set2; 
set3:= set1 / set2; 
set3:= set1 - set2; 

8. Composite static types 

(* 1,2,3,4,5,6,7,8*) 

(*set1 = 1,3,5,7,9,11,13,15*) 
(*set2 = 2,4,6,8*) 

(*set1 = 2,4,6,8,9,11,13,15*) 
(*set3 =2,4,6,8*) 

(*set3 = 2,4,6,8,9,11,13,15*) 
(*set3 = 9,11,13,15*) 
(*set3 = 9,11,13,15*) 

Example 8.25: Set operations 

FOR e:= FIRST(Range) TO LAST(Range) DO 
IF e IN set3 THEN SIO.Putlnt(e) END; 

END; (*FOR e*) 

(*over all possible elements *) 

(*ifpresent in set, output *) 

Example 8.27: Outputting a set 

8.3.4 Example: Input of numbers 

Let us write a program that reads an INTEGER. We will use SIO.GetChar, 
but not SIO.Getlnt (Example 8.28). The number is a sequence of digits, 
possibly preceded by blanks or tabs; such leading white space is simply 
skipped. The sequence might also contain a leading sign. If no inter
pretable digit sequence is entered, an error message should be generated. 
We will keep statistics on any characters appearing after the digit se
quence. 

The program in Example 8.28 shows a very useful application of sets. 
As mentioned in Section 4.3, type CHAR does have a defined order, 
yet the current ordinal value of a character depends on the code table 
used. (Although this is also specified explicitly in Modula-3, it is still 
better to keep our program independent of code tables.) 
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MODULE Sets EXPORTS Main; 
IMPORTSIO; 
TYPE 
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(*29.10.93. LB*l 

CharacterSet = SET OF CHAR; 
CONST 

(*set of all possible characters*) 

Caps 
LowCase 
Letters 
Digits 
Blanks 
Sign 
Stop 

VAR 

= CharacterSet{,A' .. 'Z'}; 
= CharacterSet{,a' .. 'z'}; 
= Caps + LowCase; 
= CharacterSet{,O' .. '9'}; 
= CharacterSet{, " '\1'}; 
= CharacterSet{,-', '+'}; 
= '\n'; 

ch: CHAR; negative: BOOLEAN := FALSE; 
result: INTEGER := 0; 
letters, digits, others: CARDINAL := 0; 

BEGIN 
SIO.PutText("Please enter a number\n"); 
REPEAT ch:= SIO.GetCharO UNTIL NOT ch IN Blanks; 
IF ch IN Sign THEN 

negative:= ch = '-'; 
REPEAT ch:= SIO.GetCharO UNTIL NOT ch IN Blanks; 

END; (*IF ch IN Sign*) 
IF ch IN Digits THEN 

(*capitalletters* ) 
(*lower case*) 
(*allletters*) 

(*digits*) 
(*blanks & tabs*) 

(*leading sign*) 

(*Result*) 
(*counters for statistics*) 

(*filters blanks and tabs*) 

(*minus sign*) 
(*filters blanks & tabs *) 

WHILE ch IN Digits DO (*reads the digits of the number*) 
result:= 10 * result + (ORD(ch) - ORDCO'»; (*ch is the last digit*) 
ch:= SIO.GetCharO; (*next character*) 

END; (*result is the unsigned value of the input number*) 
IF negative THEN result:= -result END; 
WHILE ch # Stop DO (*reads to stop character*) 

IF ch IN Letters THEN INC(letters) 
ELSIF ch IN Digits THEN INC(digits) 
ELSE INC(others) 
END; (*IF ch IN*) 
ch:= SIO.GetCharO; 

END; 
(*next character*) 

(*all characters have been processed*) 
SIO.PutText("lnput number = "); 
SIO.Putlnt(result); 
SIO.PutText("\nStatistics on subsequent characters:\n"); 
SIO.PutText("Letters = "); SIO.Putlnt(letters); 
SIO.PutText(" Digits = "); SIO.Putlnt(digits); 
SIO.PutText(" Others = "); SIO.Putlnt(others); 
SIO.NIO; 

ELSE 
SIO.PutText("No interpretable number\n") 

END; (*ch IN Digits*) 
END Sets. 

Example 8.28: Reading a number using GetChar 
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8.4 Comparison of arrays, records and sets 

Now we are familiar with all Modula-3 type constructors for defining static, 
composite types. Most imperative programming languages provide analo
gous constructors. In summary, let us compare the characteristics of these 
constructors 

• Size 
All constructors are static in the sense that their size or the number of 
elements that they can accommodate is known in advance (at compile 
time). The special case of dynamic arrays is not considered at this 
point (see Section 11.2.3). 

• Element types 
Arrays and sets are homogeneous structures. They store values of 
a single element type. Records are heterogeneous structures; they 
combine elements (components) of different types. 

• Access to elements 
Access to record components is static; which component is selected in 
an expression is known at compile time. It is not possible to make 
computations at run time to determine which element will be ac
cessed. 

Arrays are dynamically indexed: At run time we can compute which 
element to select. 

We cannot directly access the elements of a set. It is only possible to 
test whether an element is contained in the set. 

• Order of elements 
The sequence of the components of a record and of an array are stati
cally fixed. The index values of an array are ordered; there is a "first 
element" and a sequence of additional elements. The elements can be 
resorted dynamically by swapping their values. The elements of a set 
are not ordered; there is no "first element" in a set. 

8.5 Packed data types 

Packed data types serve to directly influence the internal representation of 
a data type. Usually the compiler employs an internal representation that 
is optimized primarily for speed of access (with respect to the underlying 
hardware architecture). However, sometimes we find it more important to 
optimize the use of storage, especially if we are processing a large amount 
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of data, e.g., a very large array of records. Then we are no longer ambiva
lent about whether all bits are used optimally. 

Packed data types are also employed when the format of the data is 
externally imposed (e.g., the format of incoming data for a communication 
channel). In such a case we can adapt the internal representation of our 
data directly to the external requirements. 

A third application could be to drive a monochrome monitor directly 
from the main memory. In this case we manage a bidimensional array of 
BOOLEANs (e.g., true for black and false for white), whereby we must be 
sure that the Boolean value is represented in a single bit (which is usually 
not the case because in most computers bit addressing tends to be rather 
slow). 

Syntax of packed data types 

PackedType50 = "BITS" ConstExpr65 "FOR" Type4s, 

ConstExpr65 specifies the number of bits to be reserved for Type4s. 
A bidimensional array of bits could take the following form: 

TYPE 
Bitmap = ARRAY Index, Index2 OF BITS 1 FOR BOOLEAN 

Or the format of a network package could look like this: 

TYPE 
Packet = RECORD 

addr: BITS 8 FOR [0 .. 255]; (*an 8-bit address*) 
number1, number2: BITS 3 FOR [0 .. 7]; (*two 3-bit counters*) 
controlBits: ARRAY [0 .. 1] OF BITS 1 FOR BOOLEAN; (*2 bits*) 
info: ARRAY [3 .. 128] OF BITS 8 FOR [0 .. 255]; (*125-byte info*) 

END; (*Packet*) 

The compiler is allowed to restrict the specification of bits. For example, 
it is not likely that a compiler on a machine with 32-bit word length would 
permit a type such as Int33 = BITS 33 FOR INTEGER. 

The following applies for packed types and their unpacked versions: 

BITS n FOR T <: T 1\ T <: BITS n FOR T 

A type and its packed version are mutual subtypes; they are assign
ment compatible, and still not the same. The purpose of this rule is easy 
to perceive. Packed data types are represented differently in storage (nor
mally more compactly) from normal types. However, they can be converted 
to each other and are thus assignment compatible. Formal variable pa
rameters of an unpacked type cannot be passed as actual parameters to 
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variables of the same type in packed version (this requires type identity; 
see Section 9.3.2). 

The examples also show that packed data types are important only in 
advanced system-level programming, which is not the subject of this book. 
They also require precise knowledge ofthe internal representation ofvari
ous data types. We mention them here for the sake of completeness and do 
not use them any more. 



Chapter 9 

Structuring algorithms 

The previous chapter remedied a deficit in data structuring. Now we can 
define powerful data structures, data aggregates. With the help of struc
tured statements we are capable of programming complex computations. 
But now let us critically examine the overall structure of our programs. 

Our programs so far consisted of a main module, which itself consists 
of a block. In this block we first have all declarations in any order. A 
statement sequence of any length follows the keyword BEGIN. As long as 
the entire program expresses a single algorithm, there is no objection to 
this structure. However, if we assemble a large number of algorithms to 
a program - as usually is the case in practice - then there is a need to 
combine related declarations and statements to a syntactic unit. In addi
tion, we want to be able to reuse algorithms. This necessitates managing 
algorithms as named units. 

First we will more closely examine blocks, which do not immediately 
solve this problem. Still, they represent an important step toward proce
dures, which as named blocks represent invokable algorithms, and which 
we will discuss next. 

9.1 Block structure 

A block is the scope of a series of declarations. Thus far we had only one 
block per main module, so the scope of all names was accordingly the whole 
module. Many declarations (e.g., variables) are relevant only locally; they 
are needed for only a few statements. With the help of nested blocks we 
can restrict the definition of such local declarations to exactly the necessary 
scope. 

Syntactically a block is a Stmh4. Blocks can occur wherever statements 
are allowed. A block in a statement sequence is executed as soon as the 
preceding statement has been completed (see Section 5.3). Thus blocks do 
not change the control structure of the statements. The control structure 
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continues to be determined by the static source code: The statement part 
of a block, like any other statement, is executed at its position in the source 
code. 

This concept stems from the language Algol-60, which dates back to 
the 1960s. 

Scope of identifiers 

A block is the scope for identifiers, i.e., for names. Blocks can be nested to 
any depth. An identifier is defined, or visible, from the beginning to the end 
of the block in which it is declared. This also encompasses all nested blocks 
- unless the same name is redeclared in the nested block. Let us examine 
the code for a triangular swap (compare Section 5.1, page 84): 

VAR x, y: INTEGER; 
BEGIN 

x:= 1; y:= 2; 
VAR repos:= x; 
BEGIN 

x:= y; y:= repos; 
END (*inner block*) 

(* ... *) 
END; (*outer block*) 

(*repository needed only for the swap*) 

Variables x and yare defined in both bIos. Variable repos, needed exclu
sively for the swap, is defined only in the inner block. 

Figure 9.1 depicts three blocks. The module block (also called global 
block) contains two nested blocks. The figure shows what happens when 
a name is redefined in an inner block that has already been declared in 
an outer block (variable x). In this case the redeclared identifier eclipses 
the one in the enclosing block, making the outer variable invisible in the 
inner block. In Figure 9.1 both the identifiers local are visible only in their 
own blocks (they are local to their blocks). Outside their blocks they are 
undefined. This means that variable local in the first block has nothing 
to do with the variable in the second block that happens to bear the same 
name. This is analogous to two persons named Smith living in the same 
building but in different apartments. The identifiers global and x, declared 
in the global block, are defined in the entire module. However, in the first 
block, identifier x is redeclared. This eclipses the global x in this inner 
block. (When we speak of "castle" and "king" in chess, these terms have a 
meaning different from the usual; in the local context of chess, a castle is 
not a large building!) 
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MODULE Main; 

VAR global; INTEGER; 
x: INTEGER 

BEGIN 

VARi~~al: IN"TEGER;-i 
x: REAL; 

BEGIN 

END; 

VAR local: INTEGER; 
BEGIN 

END; 

END Main; 

Module block: scope of gjQQgl 
and K as INTEGER. 

Nested block: scope of local and 
Kas REAL; 
gfQbilJ. is also visible, but K as 
INTEGER is not. 

Nested block: scope of local; 
gjQQgl and K are also visible 
as INTEGER. 

Figure 9.1: Blocks 

Lifetime of variables 
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Blocks regulate not only the scope of identifiers but also the lifetime of 
variables. A variable's life begins on activation of the block (when control 
reaches the block's BEGIN) in which the variable is declared. Storage for 
local variables is allocated only at run time, when the block is executed. 
After the end of the block the variables vanish; their storage is deallocated. 
The lifetime of variables that are global to a main module is the duration 
of execution of the whole program. (We introduce data that outlive the 
duration of program execution in Chapter 14.) 

The declarations in local blocks can also encompass types and con
stants. Here we do not speak of lifetime because these constructs, in 
contrast to variables, are static in nature and do not change during 
program execution. 

Syntax of blocks 

Block12 = {Declaration13 }"BEGIN" Stmts23 "END". 
Stmt24 = Block12 I .... 

Thus a block consists of declarations and a statement sequence. How
ever, a statement can be a block itself. This recursion in the syntax ex
presses that blocks can be nested. Blocks define the rules that determine 
the visibility of identifiers and the lifetime of variables. 
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MODULE GCD EXPORTS Main; 

IMPORT SIO; 

VAR a, b, res: CARDINAL; 

BEGIN 
a := SIO.GetintO; 
b := SIO.GetintO; 

VAR 
x: CARDINAL := a; 
y: CARDINAL := b; 

BEGIN 
WHILE x#y DO 

9. Structuring algorithms 

(*3.12.93. LB*) 

(*start of block*) 
(*x is "born" and is initialized to the value ofa*) 
(*y is "born" and is initialized to the value ofb*) 

(*x and y can be modified by the algorithm*) 

IF x > y THEN x := x - y ELSE Y := Y - x END; 
END; 
res:= x; 

END; 

SIO.Putlnt(res); 
END GCD. 

(*copies the result to the global variable res*) 
(*end of nested block, x und y disappear*) 

Example 9.2: Nested blocks 

As an example we will re-implement the already familiar algorithm of 
Euclid (Example 5.13 from page 100). To be able to use this algorithm in 
a larger context, we need to make a copy of the variables whose greatest 
common divisor we calculate. Thus we can prevent the algorithm from 
destroying the original values, which we might need later. For this purpose, 
Example 5.13 declares two additional global variables, (x and y), which 
can then be modified in the algorithm. Variables x and yare only of local 
importance for the computation, however. Thus it would be advisable to 
restrict their scope and lifetime to their actual application. We can achieve 
exactly that with a block (Example 9.2). Variables x and yare declared only 
in the inner block. When program execution enters the block (reaches the 
block's BEGIN), storage is allocated for these variables; when we exit the 
block (reach the block's END) this storage is deallocated again, so that both 
variables disappear. We store the result in the global variable res. 

Blocks also conceal a trap! In the above example, if we had erroneously 
declared the variable res in the enclosed block, then this new incarnation 
of res would temporarily eclipse the global declaration (Example 9.3). The 
result would be assigned to the local res, and the global variable res would 
never receive the GCD. The underlying cause of this error is that our pro
gram communicates with its environment only through global variables. It 
reads the input data from global variables and stores the result in a global 
variable as well. 
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VAR 
a, b, res: CARDINAL; 

BEGIN 

VAR 
x: CARDINAL := a; y: CARDINAL := b; 
res: CARDINAL; 

BEGIN 
WHILE x#y DO 
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(*start of block*) 

(*res is erroneously redeclared*) 

IF x > y THEN x:= x - y ELSE y:= y - x END; 
END; 

res:= x; 
END; 

(*result stored in LOCAL (I) variable res*) 
(*end of block: local res disappears*) 

Example 9.3: Error: block stores result in local variable 

9.2 Procedures and functions 

Blocks alone do not suffice to allow us to assemble programs from smaller 
parts. We need to complement the concept. First, we need to be able to 
name blocks in order to be able to activate them repeatedly at different 
locations. Second, the transfer of input and output values should not oc
cur via ad hoc copying of global variables to local ones and vice versa, but 
through a well-defined mechanism - parameter passing. These concepts 
are available in most imperative programming languages in the form of 
procedures and functions, and they are so basic that the imperative pro
gramming languages are often called procedure-oriented. 

In practice, procedures serve to solve a subproblem of a program and 
to provide this solution to the rest of the program. We have already used 
some built-in procedures and functions such as INC and ROUND. We have 
also repeatedly employed the procedures ofthe module SIO. In this section 
we will learn how to define our own procedures and functions. 

Mathematical functions 

In Section 3.4 we noted that the concept of functions in computer science 
closely resembles that of mathematics. In mathematics we write y = f(x). 
That is, y is the value that results when we apply the function f to x. We 
also say that f is a mapping of the domain of x onto the range of y. If 
there are multiple parameters, then we must take the Cartesian product 
of all parameter types. If z = f(x, y), then f is the mapping of all pairs 
(x, y) (with :r and y from the respective domains) onto the range of z. Nat
urally the definition of f is not repeated with each application; we specifY 
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it once and thereafter "know" it (compare the trigonometric functions that 
are frequently used in geometry). 

Functions are implemented in many programming languages through 
the construct procedure or function. They have names and can be param
eterized. We can understand them completely in the sense of their math
ematical definition. They map the parameter types onto the result type. 
However, there are also significant differences between theoretical func
tions and practical, executable procedures: Procedures take time to exe
cute; they can even run endlessly (if they contain an endless loop), or they 
can crash and thus never reach their normal end. Furthermore, a pro
cedure can have side effects (compare Section 9.3.4) in addition to its ac
tual computation (such as reading from the keyboard buffer, if it contains 
an invocation of SIO.GetCharO, thus changing the state of the keyboard 
buffer; two "identical" invocations of SIO.GetCharO do not return the same 
results!). 

Procedures and functions in Modula-3 

Procedures in Modula-3 are named, parameterized blocks. Syntactically, 
functions are a special case of procedures, which is why they are often 
called function procedures. Procedures that return a value as their result 
(in the sense that sin(n) returns the value 0) are called functions. In the 
following we speak generally of procedures unless we need to emphasize 
this difference. We employ the expression pure procedures (or proper pro
cedure)to emphasize that a procedure is not a function. 

Formal and actual parameters 

First let us examine Example 9.4. The Euclidean algorithm is now defined 
as a function procedure named Euclid. The procedure must first be de
clared; this specifies its name, the formal parameters and a block. The for
mal parameters serve as place holders for various parameter values within 
the block that defines the algorithm. The list of formal parameters, en
closed in parentheses, is specified after the procedure name. In Example 
9.4 x and yare formal parameters of type CARDINAL. This defines the 
procedure for arbitrary CARDINAL values. The type ofthe result (also CAR

DINAL) is specified after a colon at the end ofthe parameter list. The value 
of the result is returned with the RETURN statement. 

A procedure declaration, like all other declarations, is only the 'static 
explanation of a structure. Declaration does not activate the statements of 
the block. Activation occurs through a procedure call (or procedure invoca
tion). The assignment res:= Euclid(a, b) effects the evaluation ofthe expres
sion on the right side, the statement part of the Euclidean algorithm. The 



9.2. Procedures and functions 179 

VAR 
a, b: CARDINAL; 
res: CARDINAL; 

(*a and b will be actual parameters*) 
(*res will store the result"') 

PROCEDURE Euclid(x, y: CARDINAL): CARDINAL = (*Procedure signature"') 
BEGIN 

WHILE x#y DO 
IF x > y THEN x:= x - y ELSE y:= y - x END; 

END; 
RETURN x (*return result as function value*) 

END Euclid; 

BEGIN 

res:= Euclid(a, b); 

(*statement part of a block in which the declaration is defined*) 

(*a and bare set*) 
(*function invocation with actual parameters a and b*) 

Example 9.4: Function procedure 

formal parameters X and yare replaced by the values of the corresponding 
actual parameters a and b. Finally, the result is stored in the variable res. 

9.2.1 Procedure declaration 

Procedures are declared once. Here we specifY the exact algorithm for 
which the procedure stands. This is similar to mathematics: The sine func
tion was defined once, and this allows us to use it illimitably often. 

A procedure declaration resembles that of a constant: The declaration 
establishes a fixed bond between a name and a block (instead of a literal). 
As we will soon see (Section 9.7), we can also declare procedure types and 
thus variables of a procedure type. 

Many programming languages allow only the definition of procedure 
constants. Thus these languages do not distinguish procedure con
stants, types and variables, as they offer only procedures. The avail
ability of procedure types and procedure variables raises the expres
sive power of a programming language significantly. 

A procedure declaration consists of a procedure head and a procedure 
body. The procedure head consists of the procedure name and the sig
nature. The signature contains the list of formal parameters, and for a 
function the return type as well. For formal parameters we specifY their 
name, type, passing mode and default value (see Sections 9.3 and 9.5). 

The scope of a formal parameter is the block of the procedure in whose 
signature it is defined. The identifiers of the formal parameters are invisi
ble outside this procedure. 
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The procedure body consists of a block that defines the actual algorithm 
of the procedure. This algorithm is executed when the procedure is called. 

Syntax of procedure declarations 

Declaration13 = ProcedureHead18 [ "=" Block12 Ident89 ] ";" I .... 
ProcedureHead18 = "PROCEDURE" Ident89 Signature19. 
Signature19 = "(" Formals20 ")" [ ":" Type48 ] [ "RAISES" Raises22 ]. 
Formals20 = [ Formal21 { ";" Formal21 } [ ";" ]]. 
Formal21 = [ "VALUE" I "VAR" I "READONLY" ] 

IDUst87 ":" Type48 IIDUst87 ":=" ConstExpr65 I 
!DUst87 ":" Type48 ":=" ConstExpr65 . 

The syntax of declaration of procedure constants is a refinement of the 
already specified declaration syntax (Section 3.4.4). The procedure body 
can be omitted - but this is permitted only in INTERFACES (see Section 
10). 

A pure procedure declaration takes the following general form (whereby 
formal parameteri stands for a parameter's name, type, passing mode and 
default value, joined in the syntactical unit Formal21 ): 

PROCEDURE Name(formal parameterl; ... formal parametern ) = 
local declarations 

BEGIN 
statement sequence 

END Name; 

The identifier after the keyword PROCEDURE and after the END ofthe 
procedure block must be the same; this serves as the name ofthe procedure. 

The general form of a function procedure is: 

PROCEDURE Name(formal ParI; ... formal Parn): return type = 
local declarations 

BEGIN 
statement sequence; 
RETURN return value 

END Name; 

Syntactically, functions differ from pure procedures in that their signa
ture specifies a return type . This can be any type except an open array 
(see Section 11.2.3). It is written after the formal parameter list, separated 
by a colon. Functions must contain at least one RETURN statement that 
specifies the result, i.e., the return value of the function. The return value 
is an expression oftype return type. 
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The syntax indicates that the list of formal parameters can be empty. 
The declaration of a parameterless procedure takes the following form: 
PROCEDURE NameO = ... END Name. A parameterless procedure is still 
more powerful than a simple block because it has a name and can thus be 
invoked repeatedly. 

You might wonder whether the empty parentheses after the name are 
absolutely necessary. They are necessary because we must distinguish 
a procedure declaration (or a procedure call) from a procedure identi
fier. A procedure identifier without parentheses stands for a procedure 
constant or for a procedure variable; a procedure identifier with paren
theses is a procedure declaration or call. 

The RAISES clause in the signature is treated in Chapter 15. All other 
elements of the signature are handled in detail in the following sections of 
this chapter. 

9.2.2 Procedure invocation 

We invoke a procedure by using the procedure name in our program. The 
actual parameters are specified in parentheses after the name. The invo
cation of a pure procedure is a statement (the call statement). By contrast, 
a function is invoked in the evaluation of an expression (compare Section 
7.1.1) of which it is an operand. 

Syntax of the procedure call 

CallStmtz6 = EXpr66 "(" [ Actual47 { "," Actual47 } ] ")". 

E773 = E874 { Selector78 }. 
E874 = Ident89 I ... 
Selector78 = "(" [ Actual47 { "," Actual47 } ] ")" I .... 
Actual47 = [ Ident89 ":="] EXpr66 I Type48. 

The EXpr66 in the call statement (CaIlStmt26 ) must finally yield an identi
fier (ofthe procedure constant or variable to be invoked). A function call is 
always an expression; the procedure name derives from E874 and the list of 
actual parameters in this case as Selector78' For both kinds of invocation, 
the actual parameters are specified in the same way. 

The general form of the procedure call is: 

procedure name(actual parameter1, ... actual parametern) 

The procedure call causes the activation ofthe block of the invoked pro
cedure: The formal parameters are replaced by the corresponding actual 
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parameter (Sections 9.3 and 9.5 explain how). The local data of the pro
cedure block are created; i.e., storage space is allocated for them. Control 
then passes from the location of the procedure call to the statement part of 
the activated block (after the BEGIN of the invoked procedure). 

The invocation of a parameterless procedure takes the form: procedure 
nameO (e.g., SIO.GetCharO). 

The empty parentheses are necessary for the same reason as with the 
declaration. 

End of a procedure execution 

A procedure terminates when it reaches either its END or a RETURN state
ment. A RETURN statement immediately ends execution of the procedure. 
On termination of a procedure all its local variables disappear (their stor
age is deallocated). 

Syntax of the Return statement 

ReturnStmt36 = "RETURN" [ Expr66 ]. 

Function procedures must terminate with a RETURN statement because 
this specifies the return value. Pure procedures can also be terminated 
with RETURN, yet we recommend avoiding this practice! This makes the 
procedure a block with multiple exits. This significantly complicates vali
dating such blocks 'compared to procedures with a single exit. For a func
tion we also recommend a single RETURN statement as the last statement 
of the block. Recursive functions often have multiple exits; the advice does 
not apply here (see Section 12). 

After termination of an invoked procedure, control flow continues at the 
location after the procedure call. 

Invocation chain 

A procedure can call another procedure, which can call a further procedure, 
etc. This produces a chain of procedure calls. The last member of the 
chain is the procedure that is active; the others are suspended (see Figure 
9.5). A suspended procedure continues execution after the return of control 
from the procedure it invoked; it has not completed its work. Therefore all 
its local variables are still "alive"; the block defining the algorithm of the 
procedure has not terminated. 

The local data regions of invoked procedures are allocated sequentially, 
and only the last one can be accessed. On a return from a procedure call, 
the last data region is deallocated, and the next data region becomes acces
sible. This corresponds to a desktop on which the last files to be deposited 
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MODULE Main; 

PROCEDURE Sine(x: REAL): REAL = 
BEGIN 

RETURN result; 
END Sine; 

PROCEDURE Compute(input: REAL) = 
VAR a: REAL; 
BEGIN 

a:= Sine(input); 

Main Sine 

BEGIN 

Compute (angle) 

~ BEGIN 

a:= Sine (input) 

~ BEGIN 

END Compute; t 
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VAR angle:= 3.1416; 

BEGIN 
r-------RETURN result 

Compute(angle) t 
END Main; 

END; 
W~<---

END; 
time 

Figure 9.5: Program branches via procedure calls 

are processed first. Such storage structure is called a stack. The local data 
of the procedures (including parameters) are normally stored according to 
the stack principle, in the invocation stack. 

We see that procedures (in contrast to simple blocks) can change the 
control flow of a program. The statements of a procedure are executed 
only on invocation, and through multiple invocations they can be executed 
repeatedly. The entire dynamic flow of a program becomes harder to follow. 
Therefore it is important that we be certain ofthe correctness of individual 
procedures and that we clearly specify their semantics. Then we can view 
a procedure call as a single complex statement whose correctness has been 
verified (or at least tested) and whose semantics is known. 

9.3 Modes of parameter passing 

What kinds of parameter passing do we need? We have seen that we can 
communicate between blocks via variables of the enclosing block. But we 
have also seen that this is unclear and error-prone. The concept of the pro
cedure makes it possible to regulate this communication much better. With 
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Input parameters Output parameters 

~ ~ ~ t t t 
-. /~_/ 

I-~-:~ block " ~-1 I Procedure block --] 

Figure 9.6: The most important kinds of parameters 

the specification of the parameters in the signature, we provide the door to 
the procedure and so regulate communication. The parameter type corre
sponds to the size of the door: A Boolean door is very tiny, allowing only 
true and false as values. A door of type INTEGER has a normal size, and for 
RECORD or ARRAY parameters we need a veritable gate. By specifying the 
mode of parameter passing, we regulate the direction of communication. 
Some doors open only in one direction, either as entries or exits, while oth
ers open in both directions. We categorize the parameter passing modes 
exactly according to this metaphor (Figure 9.6): 

• Input parameters 
These parameters provide a procedure with input values. The actual 
parameter of an input parameter must be an expression that is evalu
ated directly before the procedure call and is assigned as initial value 
of the corresponding formal parameter. Thus far our examples have 
used only this kind of parameter. 

• Output parameters 
With this kind of parameter a procedure can return a result to the 
invoking procedure. Its value is undefined at the time of the proce
dure call; it receives a value within the invoked procedure. The value 
assigned to the output parameter in the invoked procedure is also 
accessible in the context of the invoking procedure. 

• Input / output parameters 
These parameters combine both of the above attributes: They receive 
a well-defined input value from the invoking procedure and a well
defined output value from the invoked procedure. Input/output pa
rameters are like industrial products that pass through different sta
tions in their processing: Each station receives the product in some 
state and modifies this state accordingly. 

Modula-3 provides modes of parameter passing - as in most procedural 
programming languages - with a somewhat different categorization (Fig
ure 9.7) that rely greatly on their technical implementation of parameter 
passing; these are discussed in the following sections. 
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Some programming languages (e.g., Ada) define the kinds of parame
ters exactly in the above categories. 

9.3.1 Value parameter 
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We use value parameters to implement input parameters. In the list of 
formal parameters of a procedure declaration we can write the keyword 
VALUE before a value parameter. For this kind of parameter passing, we 
can also omit the keyword since this is the default (see Section 9.5). 

Consider a value parameter to be a local variable that receives its ini
tial value from the invoking procedure. The actual parameter is an expres
sion whose type must be assignment compatible with the formal parameter. 
This value appears in the formal parameter as soon as the procedure begins 
to execute. The invoked procedure can then modify the formal parameter 
at will; changes remain local to the invoked procedure. 

We can imagine this as follows (Figure 9.7): If the actual parameter 
for a value parameter is a variable, then we pass a copy of the contents of 
the container (the "drawer"). The invoked procedure can do with it what it 
wants; the original contents are not touched. 

9.3.2 Variable parameters 

Variable parameters implement input/output parameters. In the procedure 
declaration we write the keyword VAR before the formal variable parame
ter. 

For a variable parameter the actual parameter must be a (writeable) 
variable of the same type. On invocation, the formal parameter is replaced 
by a reference to this variable. This makes the actual parameter directly 
accessible in the invoked procedure. Every modification of the formal pa
rameter is immediately effective in the actual parameter. 

Metaphorically, the invoking procedure allows the invoked procedure 
access to the container, the "drawer", of the actual parameter. Through the 
formal parameter the invoked procedure can directly access the drawer of 
the actual parameter. Therefore every modification immediately affects the 
actual parameter. 

A pure output parameter would mean that the invoking procedure al
lows access to the drawer, but first removes all valuables (for the in
voked procedure, the contents are undefined). A procedure signature 
does not unambiguously reveal whether a variable parameter is used 
only as output parameter. This can lead to semantic errors if, e.g., the 
invoking procedure fails to provide an initial value for an input/output 



186 

'4 
Procedure block 

Value parameter 

9. Structuring algorithms 

Procedure block 

Variable parameter 

Figure 9.7: Value and variable parameters 

parameter. This problem can be avoided by careful documentation 
(e.g., as commentary in the signature). 

We should also be careful never to use variable parameters for pure 
input parameters. This would be like handing over our whole wallet 
at the cash register instead of just paying the appropriate amount. 
Given boundless trust, this can work well, but in general it is better 
not to go this route. 

9.3.3 Read-only parameters 

We employ read-only parameters for large input parameters. If we want 
to pass a whole "cabinet" with numerous "drawers", (composite parameters 
such as arrays and records), then copying the entire contents is quite time
consuming. Therefore we prefer to allow the invoked procedure to look 
directly into the drawer, but not to modify anything. Here we write the 
keyword READONLY before the corresponding formal parameters in the 
procedure declaration. 

On invocation a read-only parameter receives an actual initial value 
- like a value parameter. Within the invoked procedure this value can 
only be read. A read-only parameter, similar to a variable parameter, is 
usually replaced by a reference to the actual parameter. However, since no 
modification is permitted, operations within the invoked procedure have no 
access to the actual parameter. 

Whether the replacement of a read-only parameter occurs as value or 
as reference depends on the actual parameter. If the actual parameter is 
a variable, then it is passed as with a variable parameter, as a reference 
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to the variable. Otherwise the read-only parameter behaves like a value 
parameter. 

We must keep in mind this parameter passing technique; otherwise we 
can easily fall in a trap: For example, a procedure might have two pa
rameters, one read-only input parameter and one output parameter that 
is declared as a variable parameter. If we pass the same variable to the 
input parameter as to the output parameter, then the procedure writes to 
the variable that it simultaneously reads as input - which can have un
forseeable consequences. If the input parameter were declared as a value 
parameter, there would be no problem in passing the same variable for 
both parameters - the input parameter is only read as a local copy. See the 
example of matrix multiplication (Section 9.3.5). 

9.3.4 Information transfer via global variables 

The same applies for blocks of procedure declarations as for nested blocks 
in the statement part: All identifiers declared in the enclosing blocks are 
visible (unless we have redeclared the identifier). In procedures we can 
access variables of outer blocks just as in other nested blocks. In Example 
9.2 the nested block accesses the variables a, b and res of the outer block. 
Likewise the procedure Euclid in Example 9.4 could access these variables. 
We call this accessing global variables. Modifying a global variable causes 
a side effect - the procedure modifies not only its variable parameters, but 
also additional variables. 

Although we theoretically could implement input/output parameters as 
global access, this is usually poor practice: 

• Our procedures are no longer building blocks with fixed input and out
put because now they depend on additional variables. A basic require
ment of structured programming (Section 3.1) was to create building 
blocks whose correctness can be checked independently of others. 

Procedures that access global data cannot be reused anywhere except 
in the context where they are declared (for the global variables are 
only there). 

• The readability of programs declines significantly because the proce
dure signature alone no longer indicates the inputs and outputs of the 
procedure. 

• Two identical invocations of the same procedure generally lead to dif
ferent results. 

For these reasons, information transfer via global variables between an 
invoking procedure and an invoked procedure should be avoided. But why 
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is it permitted at all? There are cases where access to global variables is 
actually necessary, namely to represent the hidden state space of a mod
ule - the invoking procedure does not know these variables. We will see 
examples in Section 10. 

9.3.5 Comparing the kinds of parameters 

Euclidean algorithm with procedures 

Example 9.8 presents the Euclidean algorithm in a program. All logically 
distinct subtasks are in separate procedures. The familiar function Eu
clid has two value parameters of type CARDINAL and returns a CARDINAL 
value. The actual parameters no longer have to be stored in local variables 
to protect the original values from destruction, as in Example 9.2. Passing 
value parameters has the same effect. 

Functions return only a single value. Therefore we did not define the 
procedure Input, which reads a pair of numbers, as a function. We return 
the two numbers as variable parameters. Naturally, we could have defined 
a function that returns one number and then called it twice, or we could 
have chosen a record as the function value, in the form: 

TYPE Result = RECORD x, y: INTEGER END; 
PROCEDURE InputO: Result = ... 

In this case the solution would not have been justified because it is more 
complex and there is no reason to combine the variables in a record. 

We could have chosen the following pathological solution: 

PROCEDURE Input(VAR x: CARDINAL): CARDINAL = 

Here the first number is returned as a variable parameter, the second 
as a function value. The unsuitability of this asymmetrical solution should 
be obvious. Ifwe need to return more than one value, then all result values 
should be defined as variable parameters. 

I We generally recommend equipping functions only with value parame
ters! 

The procedure Output handles the output of the result, whose value it 
receives as a value parameter. The parameterless function Terminate tests 
whether the program should be terminated (i.e., whether the user inputs 
a character that is not a digit). Note that SIO.LookAhead waits until some 
character is available in the input stream. 

The parameterless procedure Compute combines the control over input 
and output as well as the computation of the GCD. Note that thanks to this 
procedure our module no longer contains any global variables. Thus we 
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MODULE Procedures EXPORTS Main; 

IMPORT SIO; 
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(*3.12.93. LB*) 

PROCEDURE Euclid(x, y: CARDINAL): CARDINAL = (*function, value parameters*) 
BEGIN 

WHILE x # Y DO 
IF x > y THEN x:= x - y ELSE y:= y - x END; 

END; 
RETURN x (*return greatest common divisor as function value*) 

END Euclid; 

PROCEDURE Input(VAR x, y: CARDINAL) = 
BEGIN 

x:= SIO.GetlntO; y:= SIO.GetintO; 
END Input; 

PROCEDURE Output(res: CARDINAL) = 
BEGIN 

SIO.PutText("Greatest common divisor = "); 

SIO.Putlnt(res); SIO.NIO; 
END Output; 

PROCEDURE TerminateO: BOOLEAN = 
CONST Digits = SET OF CHAR{,O' .. 'g'}; 
BEGIN 

RETURN NOT (SIO.LookAheadO IN Digits); 
END Terminate; 

PROCEDURE ComputeO = 
VAR a, b: CARDINAL; 
BEGIN 

(*procedure with VAR parameters*) 

(*return values in x and y*) 

(*procedure with value parameters*) 

(*output value ofres*) 

(*parameterless function*) 

(*TRUE if not a digit*) 

(*parameterless procedure*) 
(*a and b for input values*) 

Input(a, b); 
Output(Euclid(a, b)); 

END Compute; 

(*after invocation, a and b contain the entered numbers*) 
(*value from Euclid as actual paramter for Output*) 

BEGIN (*statement part of module block*) 
SIO.PutText("Greatest common divisor using Euclidean method\n" & 

"Please enter a pair of numbers, or anything else to quit\n"); 
REPEAT ComputeO UNTIL TerminateO 

END Procedures. 

Example 9.8: Procedures and functions with various parameters 

handle all the communication between procedures via parameter passing. 
The scopes are all small and distinct. The statement part of the module is 
very simple: Apart from outputting a greeting, it contains only a loop that 
controls the repetition of computation. 
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Matrix multiplication 

Example 9.9 implements the initialization and multiplication of matrices. 
The procedure Init returns an initialized array (with rather arbitrary val
ues) in a variable parameter. The matrix looks like this: 

( 2345) 
3 4 5 6 
4 5 6 7 
5 6 7 8 

The procedure Init is called twice to initialize arrays a and b. We could 
have defined Init as a function with the signature: 

PROCEDURE InitO: Matrix = 

In this case, however, the use of a variable parameter is more efficient (the 
function variant would need to copy the entire matrix from the local data 
region of Init to the invoking procedure). 

Procedure Mul receives the arrays to be multiplied via the read-only 
parameters x and y and returns the result in variable parameter z. The 
elements of z are computed according to the usual rules of matrix multipli
cation: 

N 

Zi,] = L Xi,k Yk,j 
k=l 

Through the use of FIRST and LAST, the procedure is kept so general 
that it can be used not only for N x N matrices. However, it does not test 
whether the fundamental prerequisite of matrix multiplication is fulfilled: 
(Lines(x) = Lines(z) 1\ Columns(x) = Lines(y) 1\ Columns(y) = Columns(z)). 
The interested reader can extend the procedure Mul accordingly. The result 
is output with the imported procedure MatrixIO.WriteMatrix(r): 

54 68 82 96 
68 86 104 122 
82 104 126 148 
96 122 148 174 

Read-only parameters conceal a trap! If we invoke a procedure using 
the same variable as actual parameter for both a read-only and a variable 
parameter, the result is unpredictable. The reason is referential substitu
tion. Normally this does not cause an error because the compiler assures 
that a read-only parameter is not modified. But if the same variable in the 
invoking procedure serves as actual parameter for a variable parameter, 
then the compiler is tricked: 
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MODULE MatrixMult EXPORTS Main; 

IMPORT MatrixlO; 

CONST 
N =4; 

TYPE 
Matrix = ARRAY [1 .. NJ, [1 .. N] OF INTEGER; 

VAR 
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(*27.10.93. LB*) 

a, b, r: Matrix; (*r: result; a and b to be multiplied*) 

PROCEDURE Init(VAR x: Matrix) = 
BEGIN 

FOR i:= FIRST(x) TO LAST(x) DO 
FOR j:= FIRST(x[FIRST(x)]) TO LAST(x[FIRST(x)]) DO 

xli, j]:= i + j; 
END; 

END; 
END Init; 

PROCEDURE Mul (READONLY x, y: Matrix; VAR z: Matrix) = 
BEGIN 

FOR i:= FIRST(z) TO LAST(z) DO 
FOR j:= FIRST(z[FIRST(z)]) TO LAST(z[FIRST(z)]) DO 

WITH sum = z[i, j] DO 
sum:= 0; 
FOR k:= FIRST(y) TO LAST(y) DO 

INC(sum, xli, k] * y[k, j]); 
END; (*FOR k*) 

END; (*WITH sum = z[i, j]*) 
END; (*FOR i*) 

END; (*FORj*) 
END Mul; 

BEGIN 
Init(a); Init(b); 
Mul(a, b, r); 
MatrixIO.WriteMatrix(r); 

END MatrixMult. 

(*initializes x*) 

(*Xi,j = i + j*) 

(*rows*) 
(*columns*) 

(*sum is short for z[i, j]*) 

(*rowi x columnj*) 
(*z· . = '" X· k *Yk ·*)1 1, J L-.J k I, , J 

(*statement part*) 

(*r:= a * b*) 

Example 9.9: Procedures with complex parameters 
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The procedure views the same variable through two "windows"; through 
one it is read-only, but through the other modifiable. 

Assume that we write the following on invocation: 

Mul(a, b, b) 

This is an error because b would serve as both read-only and variable pa
rameter. 

Parameters x and y could have been value parameters, but this would 
diminish the efficiency of the program. This can be necessary, however, if 
we want to transfer the result of the multiplication to array b (or a). The 
invocation Mul(a, b, b) would only be correct if were to change the signature 
of procedure Mul accordingly: 

PROCEDURE Mul (x, y: Matrix; VAR z: Matrix) 

Another programming error ensues if we specify the input parameters 
as variable parameters: 

PROCEDURE Mul (VAR x, y, z: Matrix) 

In this case the invocation Mul(a, b, b) would also lead to unpredictable 
results. The original invocation Mul(a, b, r) would continue to work, but we 
must consider the signature incorrect at any rate. 

9.4 Identifying the procedures 

A question arises: How do we decide which subtasks "earn" their own pro
cedure? For example, does it make sense to write such tiny procedures 
as Input or Terminate in Example 9.8? Invoking a procedure does involve 
some overhead; parameter passing, invocation and return all cost time and 
storage. Would numerous small procedures not encumber our program? 

We generally recommend deciding less on the basis of the absolute size 
of the logical task. The procedure Input is certainly quite simple; in this 
specific case we could have integrated the two statements directly into the 
procedure Compute. However, it is clear that input, computation and out
put are decidedly different tasks. Thus we prefer to distinguish them syn
tactically. This becomes especially clear if we want to modify the program 
later. For example, if we decide to extend the input procedure to assure 
that Input returns only positive numbers, then we could carry out this mod
ification locally in this procedure. All other parts of the program, including 
all invocations of Input, remain untouched. This is a very important advan
tage. 

As always, we can exaggerate this decomposition into procedures. A 
program in which most procedures consist of 1-2 lines is certainly extreme. 
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The early recognition of logically different subtasks is a characteristic of 
good design. Very large procedures are unfavorable at any rate, yet overly 
small procedures should not be the rule either. The deciding criterion 
should be the internal logic ofthe problem. 

9.5 Name, type and default value of 
a parameter 

Declaring the name and type of a formal parameter closely resembles a 
variable declaration. As the syntax shows, formal parameters can be ini
tialized on declaration; in this context we call the initial value the default 
value. 

The term default is used in various contexts in computer science and 
elsewhere. The general meaning can be explained in the context of 
medication prescriptions. A package often bears the instruction: "If 
not otherwise prescribed by the doctor, take ... " What follows is the 
default value in the sense of computer science. 

The default value of a formal parameter applies if a procedure call fails 
to specifY a corresponding actual parameter. In this case the default value 
substitutes for the missing actual parameter. If the corresponding actual 
parameter is specified, the default value has no effect. Default values are 
not permitted for variable parameters. 

This restriction makes sense: A variable parameter takes effect in the 
context of the invoking procedure, and in the procedure declaration we 
cannot make general assumptions about the invoking procedure. As 
with medication that must be administered by the doctor, the default 
"If not otherwise prescribed by the doctor, take ... " makes no sense. 

Identifiers of the same type (and same default value) can be combined 
in a list, similar to variable declaration. Variable parameters require spec
ification of a type. For other kinds of parameters, either type or default can 
be omitted, but not both. If type is omitted, the type of the parameter is 
derived from the default value. If both are specified, then the default value 
must be in the range ofthe type. We suggest avoiding implicit type specifi
cation (i.e., omitting type specification) here as with variable declarations! 

Actual parameters 

The general form of a procedure call is: 

P(actual Parameter1' ... actual parametern) 
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P stands for a procedure expression - normally the name of a procedure 
constant or procedure variable. The actual parameters are a list of ex
pressions separated by commas (Section 9.2.2). The list can be empty, but 
the parentheses must always be specified. Similar to a record constructor 
(see Section 8.2.2), the actual parameters can be specified positionally or 
by name. 

• Positional specification 
For positional specification the actual parameters replace the formal 

ones one by one: the first actual parameter replaces the first formal 
parameter, the second actual parameter replaces the second formal 
parameter, etc. (as we have passed all parameters thus far). The list 
of actual parameters can be shorter than that of the formal param
eters, in which case the remaining actual parameters must have a 
corresponding default value. 

• Specification by name 
The specification of actual parameters by name syntactically resem

bles an assignment. The sequence of specification is not relevant. The 
formal parameters without a specified value must have a correspond
ing default value. 

• Mixed specification 
Mixing the above two kinds of specification requires specifying the 
positional parameters first. We generally recommend avoiding mixed 
specification! 

The general pattern for invocation is: 

Name(actualJ, actual2, ... ) 

or 

The following invocations are equivalent and all match the signature of the 
Euclid procedure of Example 9.4: 

Euclid(a, b) == Euclid(x:= a, y:= b) Euclid(y:= b, x:= a) 

9.6 Eval statement 

For functions that have a side effect, it might be that we want to invoke 
only the side effect and not the result. Thus for various systems we often 
find outputs like this: "Press any key" (e.g., after insertion of the wrong 
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diskette, the system waits until the disk is replaced). The program does not 
care what the user inputs, but only whether a (any) key has been pressed. 

For the above, not infrequent case, Modula-3 provides the EVAL state
ment. It evaluates the subsequent expression (normally a function call) 
and discards the result. 

Syntax of the Eval statement 

EvalStmt29 = "EVAL.:' EXpr66' 

We can implement the above example in Modula-3 as follows: 

SIO.PutText("Press any key to continue"); 
EVAL SIO.GetCharO; (*waits until a key is pressed*) 

Example 9.10 is program 5.5 (page 94), in which primitive calculator 
functions entered at the keyboard can be computed, re-implemented here 
with the help of procedures. The procedure GetOperation handles input of 
the operands and the operator. It contains two nested procedures. Skip 
skips any whitespace (blanks, tabs, linefeeds). Op reads the operator. If 
the input begins with a non-numeric character or if the operator is typed 
improperly, the program terminates. 

9.7 Procedure types 

Procedures can also be defined as types. Procedure types allow us to define 
variables of a procedure type. Then we can assign various actual proce
dures to a procedure variable. This allows us to bind an algorithm dynam
ically to a name. This becomes quite exciting when we use parameters of 
procedure types, which means that we can pass a complete algorithm to a 
procedure. We define procedure types with a signature. 

Syntax of procedure types 

Type48 = ProcedureType53 I ... 
ProcedureType53 ="PROCEDURE" Signature19. 

9.7.1 Operations with procedures 

Assignment 

An expression of a procedure type can be assigned - in accordance with 
the usual rules of assignment - to a procedure variable if the value of the 
expression is in the range of the type of the variable. 
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MODULE Operations EXPORTS Main; 
IMPORTSIO; 

(* 13.12.94. LB*) 

TYPE Op = {Add, Sub, Mul, Div, Mod, Halt}; (*arithmetic operations + Halt*) 

PROCEDURE GetOperation(VAR x, y: INTEGER; VAR op: Op) = (*reads operation*) 
CONST Digit = SET OF CHAR{'O' .. '9'}; (*set of digits*) 

PROCEDURE SkiPO = 
CONST Blanks = SET OF CHAR{' " '\t', '\n'}; 
BEGIN 

(*skips whitespace*) 
(*whitespace*) 

WHILE SIO.LookAheadO IN Blanks DO EVAL SIO.GetCharO END 
END Skip; 

PROCEDURE GetOPO: Op = (*reads and converts operator character*) 
BEGIN 

SkipO; 
CASE SIO.GetCharO OF 

I '+' => op:= Op.Add; I '-' => op:= Op.Sub; I '*' => op:= Op.Mul; 
I'D', 'd' => op:= Op.Div; I'M', 'm' => op:= Op.Mod; 

ELSE op:= Op.Halt; 
END; (*CASE operator*) 
RETURN op 

END GetOp; 

BEGIN (*GetOperation*) 
SkiPO; 
IF NOT (SIO.LookAheadO IN Digit) THEN 

op:= Op.Halt; (*input does not begin with digit => Halt*) 
ELSE 

x:= SIO.GetintO; op:= GetOPO; y:= SIO.GetintO; (*read operation*) 
END; (*IF NOT ... *) 

END GetOperation; 

VAR x, y, z: INTEGER; op: Op; 
BEGIN 

SIO.PutText("Arithmetic operations in the form x op y\n"); 
REPEAT 

GetOperation(x, y, op); 
IF op # Op.Halt THEN 

CASE op OF 
I Op.Add => z:= x + y; I Op.Sub => z:= x - y; I Op.Mul => z:= x * y; 
I Op.Div => z:= x DIV y; I Op.Mod => z:= x MOD y; 

END; (*CASE op*) 
SIO.PutText(" = "); SIO.Putlnt(z, 1); SIO.NIO; 

END; (*IF op*) 
UNTIL op = Op.Halt; 

END Operations. 

Example 9.10: Simple calculator functions 
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TYPE Proc = PROCEDURE (t: TEXT := "I am more equal\n"); 

PROCEDURE P (t: TEXT := "I am even more equal\n") = 
BEGIN 

SIO.PuITexl(I); 
ENDP; 

VAR a: Proc; 

BEGIN 
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a:= P; (*P has a type different from a, but is assignabe to a*) 
IF a = P THEN SIO.PutText("The two are equal\n") END; (*a = Pis TRUE*) 
aO; (*outputs "[ am more equaZ"*) 
PO; (*outputs "[ am even more equaZ"*) 

Example 9.11: Relationship of default, type and value 

Before enumerating the rules of assignment compatibility, let us intro
duce the predefined constant NIL, whose type is compatible with any proce
dure type and whose value means "no procedure". Beyond procedures, NIL 
is also defined on reference (pointer) types (see Chapter 11). 

An expression of a procedure type PE can be assigned to a procedure 
variable pv if either PE = NIL or the following conditions apply: 

• The number of parameters ofPE and pv is equal, and the correspond
ing parameters have the same type and are passed in the same way. 
Note that the name and default value of the parameters need not 
agree. 

• Both have the same result type or no result type. 

• The set of exceptions generated by PE is a subset of the set of excep
tions of pv (see Section 15). 

If these rules are fulfilled, we say that type PE is covered by the type of 
variable pv. More simply stated, if the signatures of two procedure types 
are the same, then they are equivalent and thus assignment compatible. 
If they contain different parameter names and/or default values, then they 
are not equivalent, but still assignment compatible. Parameter names and 
default values have no influence on the value of a procedure. In Example 
9.11 a and P are not of the same type because they have different default 
values; nevertheless, they are assignment compatible. Mter the assign
ment a:= P they are equal, yet the respective default values are determined 
by the respective signatures. The program outputs the following text: 
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The two are equal 
I am more equal 
I am even more equal 

9. Structuring algorithms 

Procedure constants that are assigned to a procedure variable must be 
global; i.e., they cannot be nested in any block. The reason that a local pro
cedure cannot be assigned to a procedure variable is a matter of principle: 
If a nested procedure could be assigned to a variable, then the invocation of 
this procedure might escape the scope (e.g., via a global variable or a vari
able parameter in the enclosing procedure). This would enable invoking a 
local procedure outside its context, which must not be permitted. 

Relational operations 

Assignment compatible procedures can be tested for (in)equality. No other 
relational operations are permitted on procedures. 

Procedure parameters 

As an example, let us assume that we want to apply various procedures 
(or functions) to each element of a set. We can write a very general pro
cedure (Process) that iterates through all elements of the set and applies 
the procedure specified as parameter to all elements (Example 9.12). The 
formal parameter of Process is of type PROCEDURE. We can inject even 
more dynamics if the actual parameter is not a procedure constant but a 
procedure variable. We can always write the same invocation, Process(s, 
p), and, depending on the actual value of p, a broad spectrum of different 
computations could be carried out. The output of the above program would 
be: 

[ __ -_l_~ ___ -: ___ -_~ ___ -_: __ ~_~ __________________________ ~l 
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MODULE ProcVar EXPORTS Main; 

IMPORTSIO; 

TYPE 
Range = [-10 .. 10]; 
Set = SET OF Range; 
Apply = PROCEDURE (elem: Range); 

PROCEDURE Positive(e: Range) = 
BEGIN 

IF e > 0 THEN SIO.Putlnt(e) END; 
END Positive; 

PROCEDURE Negative(e: Range) = 
BEGIN 

IF e < 0 THEN SIO.Putlnt(e) END; 
END Negative; 

PROCEDURE Process(s: Set; apply: Apply) = 
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(* 10.12.93. LB*) 

(*processes positive elements*) 
(*ignores nonpositive elements*) 

(*processes negative elements*) 
(*ignores non-negative elements*) 

BEGIN (*iterates through entire set*) 
IF apply # NIL THEN (*applying Nil procedure has no effect*) 

FOR r:= FIRST(Range) TO LAST(Range) DO 
IF r IN s THEN apply(r) END (*calls apply for each element*) 

END; (*FOR r*) 
SIO.NIO; 

END; (*IF apply # NIL*) 
END Process; 

PROCEDURE Init(VAR s: Set)= 
BEGIN (*fills set with initial values*) 

s:= Set{}; 
FOR r:= FIRST(Range) TO LAST(Range) BY 2 DO 

s:= s + Set{r}; (*s becomes the set{-10,-B,-6,-4,-2,2 ,4 ,6 ,B,10}*) 
END; (*FOR r*) 

END Init; 

VAR 
s: Set; 
p: Apply := Positive; 

BEGIN 
Init(s); 
REPEAT 

(*the set that is processed in various ways*) 
(*variable p set to procedure Positive*) 

Process(s, p); (*In 1st iteration, invokes Positive, in 2nd Negative*) 
IF p = Positive THEN p:= Negative ELSE p:= NIL END; 

UNTIL P = NIL; 
END ProcVar. 

Example 9.12: Formal and actual procedure parameters 



Chapter 10 

Modules 

Before we begin with this chapter, let us take an excursion into the world of 
home stereo systems: In the 1950s and 1960s high-end high fidelity devices 
were usually built into cabinets. The turntable was operated from above, 
and the controls for the radio and for volume and tone were at the front 
(or also at the top). Loudspeakers were built in underneath and at the 
sides. The complete stereo system was a unit. Meanwhile this approach 
has been forsaken almost completely. High-quality systems now consist of 
a number of separate components; CD player, amplifier, tuner and speakers 
each have their own housing. The components are connected via cables 
that transmit the audio information. The advantages are obvious: The 
buyer can individually configure a system according to price and quality 
criteria. If a component breaks down (e.g., the tuner), it can be repaired 
individually while the rest ofthe system remains functional. Furthermore, 
the individual components are better because specialists have concentrated 
on designing each specialized solution. 

Why have manufacturers not always specialized in the production of 
components? Beyond marketing considerations, there is another problem: 
The components must work together, must be compatible. The plugs of 
the cables must fit into the input/output sockets of the components, the 
electrical currents produced by the components must be handled by the 
amplifier, etc. To make this all possible, standards evolved over time; today 
we can normally integrate a newly purchased component into an existing 
system without any problems. 

This modularization continues within the components, and not only 
with stereo components. Similarly, producers of other electronic prod
ucts build these from prefabricated, purchased subcomponents. Such 
devices are no longer repaired if they break down; the service techni
cian localizes the problem and replaces the defective component. 

We are not that far along yet in computer science. We do have a multitude 
of standards, especially in the area of communication between computers 
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Figure 10.1: Components of a stereo systems and modules 

(e.g., ISO/OS!) and programming languages themselves (e.g., ANSI stan
dards for Pascal, C and Cobol). However, the inner structure of typical 
application programs remains inaccessible from the outside and is so com
pletely interwoven that we have no chance of using components from old 
programs in order to build new ones (just as was the case with the old in
tegrated stereo system). Still, we are working hard in this area, and one 
of the results has been the module concept. A module corresponds roughly 
to such a component of a stereo system. It is an enclosed functional unit 
that solves part of the overall task. To provide its functionality to the rest 
of the system, each module has at least one interface to the outside. This 
corresponds roughly to the sockets on the back of a stereo component. 

Since computer programs generally consist of many more components 
than a stereo system, we have reached the limits of our analogy. We will see 
that program modules offer much more than simply dividing the problem 
into subtasks. Thus far each of our programs has consisted of a single mod
ule. With modules, we can decompose larger programs into parts that pose 
smaller problems and that we compose (under the control of the compiler) 
into a program . 

• Modules have an interface. 
Only things that appear in the interface are available to the clients of 
a module. Everything else is invisible to the client, i.e., syntactically 
inaccessible . 

• Modules have a memory. 
Contrary to local variables of procedures, the variables declared 
within modules retain their values during the entire program exe
cution. We can simply use variables that are global to the module 
in order to store states, but restrict the difficulties created by global 
variables (see Section 9.3.4) to a small scope because these variables 
are not accessible from outside the module. 
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• The usage of modules can be checked. 
It is quite difficult to involve multiple programmers in a project. All 
the team members' work must be synthesized, which demands diffi
cult coordination (setting up and upholding conditions as prerequi
sites for modification of common data structures, etc.). Here the com
piler can help by assuring at least that all variables are used in accor
dance with their types, that the parameters of a procedure invocation 
match the procedure, and that everything used has been defined. 

• Modularization reveals dependencies between program parts. 
The interface of a module must be imported explicitly by its client. 
This facilitates understanding the static dependencies between pro
gram components. 

• Modules are reusable. 
Certain parts of typical computer programs are as similar as two 
hairs on your head. This applies, e.g., for procedures for screen out
put. Rather than reinventing such procedures, we want to produce 
them once - in generalized form - and then reuse them. In modules 
we can collect such "independent" procedures. We can package solu
tions needed by multiple projects in module collections (or libraries), 
and from there they can be incorporated into various programs. 

We have already used such libraries: The modules Math and Text are 
part of the Modula-3 standard libraryl provided by the language environ
ment. The module SIO was developed by the authors ofthis book to provide 
simple input and output. 

The goal is to develop new programs by assembling components from 
a collection of existing modules - as with a stereo system. Furthermore, 
we need to be able to exchange program components (just as with a stereo 
system) to adapt the program to changing requirements. 

Information hiding 

Type constructors let us structure the data that a program processes. Pro
cedures allow us to decompose larger algorithms to smaller, more man
ageable tasks and to make parts of algorithms reusable. Modules collect 
related algorithms (or procedures) and data structures. This makes mod
ules more than a simple collection of procedures because modules also have 
an internal state; i.e., they can "remember" things between procedure invo
cations. The interface of the module assures that clients have all necessary 
information to control the functionality of the module; clients have no other 
form of access to the state of a module. This is information hiding. Both 

1 This library was authored by the developers of Modula-3 [HKMN94, Nel9!]. 
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10. Modules 

Figure 10.2: Visibility within and across module boundaries 

algorithms and data are provided to the client not directly, but only in part, 
insofar as necessary, via the interface. This has nothing to do with keep
ing secrets or with privacy of data. Instead, it precludes errors that occur 
when a client, deliberately or not, writes algorithms that depend on the 
inner structure of the imported module. If this inner structure changes 
later, then this has unpredictable consequences for the client and leads to 
problems that we can avoid as follows: As long as we do not modify the 
interface of a module, we can change and improve the internal structure of 
the module. 

State space 

We term the current value of a variable its state, and the possible values 
of all variables collectively are the state space of the program. Initializa
tions and assignments change the state space. Variables declared within 
a procedure, i.e., local variables, do not change the global state space. The 
state space of a procedure, however, consists of its local state space and 
the environment in which it is defined (the block in which it is declared; 
see Section 9.1). The structuring of the state space with the procedure con
cept resembles one-way mirrored walls; we cannot look into the procedure, 
except through the specially provided door of parameter passing, but we 
can look out and see the environment. Even more, we can change or even 
destroy this state space by modifying global variables. 
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The module concept is comparatively stronger. It allows us to subdivide 
the global state space. The enclosing walls of modules are sealed inasmuch 
as only those components of a module that are specified in its interface can 
be accessed by its clients. Data that are not exported cannot be modified, 
deliberately or accidentally, by clients - they are not visible (information 
hiding). Figure 10.2 illustrates this situation: A module M2 must use a 
procedure exported by Mi to modifY the state of Mi. The state variables 
x, y, z themselves are invisible to M2. State changes can occur only via the 
commonly agreed interface. 

Division of labor and server modules 

Almost always a program must solve numerous tasks that sometimes are 
scarcely related to one another. Thus it must have a user interface that, 
like a filter, assures that the program receives only input data that it can 
process. A program frequently has a component that handles the storage 
of results on a disk to make them persistent. In addition, results must be 
brought into human-readable form and then output to the screen or printer. 
And last but not least, the processing part itself contains various compo
nents. Figure 10.3 shows an example of the structure of a program for 
statistics computations. It encompasses components for collecting the data 
to be evaluated, for controlling the computations (input of the commands 
for evaluation), for the computations themselves, and for graphical display 
of the results. These components can be quite independent (in that they do 
not use each other's services - they process the same common data base). 
On the other hand, screen, printer, database and mathematical functions 
are more general server modules (or simply servers) that handle the inter
action of the application with the user, printer and hard disk. They do 
not need (nor should they) any knowledge of the details of the application. 
These server modules can also be used in other applications. 

It is very important to solve such distinct subproblems in separate mod
ules, for programs are not simply written once and then preserved for all 
time. A modular program is easier to adapt to changed requirements. As
sume that some years after purchasing our program, the user acquires a 
new printer. We could be asked to adapt the program to the new printer. 
If we have structured our program well, then we only need to exchange 
one module. In the whole software system the printer is never accessed 
directly. We only access the printer via procedures in the interface of the 
printer module. Ifwe change the printer, this module must be adapted or 
exchanged. There is no need to modifY the programs that use the printer. 
The prerequisite is a well-designed printer interface that does not require 
modification for this adaptation. 
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Figure 10.3: The components of a statistics program 

If we have structured our system well in modules, then this facilitates 
maintenance to correct errors or extend functionality. Such components can 
be reused in other projects. A poorly modularized system thus becomes sig
nificantly more expensive to develop and maintain than one that consists 
of distinct modules with minimal interdependence. This chapter presents 
modules as they can be developed in Modula-3. 

The module was introduced into programming languages rather late. 
With Mesa [MMS79] and the popular Modula-2 [Wir82l, the module 
concept, also used by Modula-3, began to prevail. The languages C and 
Fortran have always offered separate compilation of program compo
nents, but in these languages the programmer is responsible for avoid
ing name conflicts and for ensuring the proper invocation of the sep
arately compiled components. Other languages, particularly Cobol, 
lack features for structuring algorithms and simply build a program 
from multiple, independently executable subprograms that invoke one 
another. Modula-2 provides an interface for each module, which the 
compiler monitors. The name scopes in a module itself are protected 
and distinct from other modules. 

10.1 Structure 

A module usually consists of an interface and an implementation. For the 
clients of the module, the interface makes everything visible that is neces
sary in order to use the module: the type declarations, the identifiers and 
the signatures of the procedures that the module provides. We say that 
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the module exports these declarations. Everything else, i.e., the code of the 
procedures, the necessary internal variables, etc., belong to the implemen
tation, which represents the realization of the interface and is not visible 
to client modules. 

10.1.1 Interface 

An interface resembles the modules that we already know. Instead of the 
keyword MODULE, they begin with INTERFACE, followed by the name and 
the declaration part. The interface terminates with END, the interface 
name and a period: 

Syntax 

Interface2 = [ "UNSAFE" ] "INTERFACE" Idents9 ";" { ImportlO } 
{ Declaration13 } "END" Idents9 ".". 

In contrast to modules, an interface contains no block, i.e., no statement 
part. It can contain type, constant, variable and procedure declarations: 

• Type declarations 
Type declarations in the interface permit the client of a module to de
clare variables of a type that the module can process. Hence the types 
of the parameters of the exported procedures must also be exported 
in all cases (unless they are predefined types). 

• Procedure declarations 
Only the name and signature of a procedure may appear in the inter
face. This suffices to allow clients to invoke the procedure; they know 
the procedure's name and its parameter list. 

• Constant and variable declarations 
Variables declared in the interface can be read and written both by 
the implementor of the interface and by its clients. Thus they are 
global variables whose scope extends beyond the module. Constants 
can be made accessible to clients in a similar way. 

Variables are seldom exported. It is almost always better to export 
one procedure that returns the value of the variable and another that 
permits setting the variable's value. The variable itself remains part 
of the hidden state of the module. This allows the module to better 
control access to the variables, e.g., in order to check conditions to 
assure that the variable was set at an appropriate time and with a 
sensible value. 
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INTERFACE Interface; 

CaNST 
Constant = 1; 

TYPE 
Type = RECORD a, b: INTEGER END; 

PROCEDURE Procedure(par1: INTEGER; VAR par2: Type); 
(*exported procedure; uses Type, also exported *) 

END Interface. 

10. Modules 

(*exported Constant *) 

(*exported type *) 

Example lOA: The interface ofa module 

Figure lOA shows an example of an interface that exports a type Type, 
a constant Constant and a procedure Procedure. Since the procedure has a 
parameter of type RECORD, this type must also be exported - the compiler 
requires this, and a client could not use the procedure otherwise. 

The keyword UNSAFE designates an unsafe interface. Unsafe inter
faces and modules permit additional language elements and disable cer
tain checks on the part of the compiler and the language environment. 
Particularly in the area of system programming, this is sometimes neces
sary. Unsafe languages elements are often language-environment specific; 
also, they can produce errors that cannot occur in normal modules. There
fore unsafe modules and interfaces must be designated as such. We do 
not treat this subject here, but Appendix B.7 describes unsafe modules in 
detail. 

10.1.2 Implementation 

Most of the components of the syntax of an implementation module are 
already familiar: 

Syntax 

Module3 = [ "UNSAFE" ] "MODULE" Ident89 [ "EXPORTS" IDList87 ] 

";" { ImportlO } Block12 
Ident89 ".". 

Similar to unsafe interfaces, here the keyword UNSAFE designates 
unsafe modules (see Section 10.1.1 and Appendix B.7). 

An implementation module of an interface must export the interface 
using the EXPORTS statement after the name of the module. We have en
countered this statement thus far only as the special case EXPORTS Main. 
The implementation module that exports the interface Main is the main 
module. The interface Main is not used by any other module. Main is a 
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MODULE Implementation EXPORTS Interface; 

VAR state: Type; 
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PROCEDURE Procedure(par1: INTEGER; VAR par2: Type) = 
BEGIN 

par2.a:= state.a; 
par2.b:= Constant + par1; 

END Procedure; 

BEGIN 
state.a:= 0; 
state.b:= 0; 

END Implementation. 

(*reads hidden inner state *) 
(*visible declaration from interface! *) 

(*statement part of module *) 

Example 10.5: The implementation of the interface 

feature of the language environment. Only the main module stands alone 
and can be launched as a program from the language environment. 

The EXPORTS statement can be omitted, in which case the module is the 
implementation for the interface ofthe same name. 

We can export multiple interfaces, thereby creating multiple entries to 
the module. This allows us, e.g., to separate write operations (which change 
data) from read operations. Then we provide the interface for the write op
erations only to privileged clients, while the read operations are generally 
accessible. All identifiers declared in these multiple interfaces must be 
distinct. There is an exception to this rule: procedure names can occur 
in multiple interfaces of a module. This allows us to set default values of 
parameters of a procedure differently in the read interface from those in 
the write interface. On the other hand, several modules can export the 
same interface. This enables distributing the implementation of a complex 
server with a simple interface across multiple implementation modules. 
The compiler and linker check whether exactly one implementation (in one 
ofthe implementation modules) corresponds to each exported procedure. 

In any case, all declarations ofthe interfaces are visible to the exporting 
modules. Example 10.5 shows an implementation of the interface for Ex
ample 10.4: Because the interface becomes part of the module through the 
EXPORTS statement, the type name Type and the constant Constant can be 
used directly. The implementation of Procedure is specified here. 

The statement part of an implementation module handles initializa
tions; it is executed only once at the start of the program. The initial
ization sequence for modules is always imported modules before importing 
modules. Thus during the initialization of a module it can always employ 
the services of imported modules: the latter are already initialized and so 
functional. Cyclical imports (module A imports an interface from module B 
and vice versa) mean that we cannot rely on the sequence (which becomes 
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random). However, such mutual dependencies are normally a sign of poor 
module structure. Cyclical import of interfaces is forbidden. 

10.1.3 Compilation units 

Both interface and implementation can be spread across multiple source 
code files. It is even possible that a module consists of only an interface - if 
it exports only type declarations and no procedures. Each source code file 
forms a (compilation unit) that can be processed by itself by the compiler. 

Since Modula-3 permits multiple implementation modules for an in
terface, the term "module" becomes somewhat fuzzy: It is either a func
tional unit of a program - with interfaces and implementations collec
tively - or a Modula-3 MODULE, i.e., a compilation unit. In Modula-2 
the interfaces are also called "modules" (definition module), but we do 
not use the term in this way. To distinguish between functional unit 
and compilation unit, we use the term "implementation module". 

10.2 Using modules 

A module that employs the services of another module must explicitly im
port the other's interface using the IMPORT statement. Thereby it imports 
the declarations that it needs before declaring its own local identifiers 
(which are invisible to clients). The compiler thus has all the informa
tion it needs to test whether the client uses the imported modules properly 
(e.g., whether the variables and expressions passed as parameters to an 
imported procedure each have the right type). In accordance with the prin
ciple of information hiding, the compiler checks only the interface of the 
imported module. The implementation need not even be available! 

The IMPORT statement either lists only the names ofthe imported mod
ules or completely specifies all identifiers of the procedures, constants, 
types and variables that we want to use from an imported module. 

Syntax 

ImportlO = "FROM" Ident89 "IMPORT" IDList87 ";" 

I "IMPORT" Importltemll { "," Importltemll } ";". 
Importltemll = Ident89 [ AS Ident89 ]. 

Normally we import an interface as a whole. An example that we have 
already used is 

IMPORT SIO; 



10.2. Using modules 211 

To use a name from the imported module, we write the interface name as 
qualifier before it: 

SIO. PutText("Use imported procedure!"); 

However, we can also import individual names of an interface, which we 
then use without qualification: 

FROM SIO IMPORT PutText; 

PutText("Use imported procedure!"); 

This notation is shorter and has the advantage of indicating exactly 
what each client imports from a server. However, it also has drawbacks: 
Examining the procedure call does not reveal where PutText is defined (im
ported or in this module). In addition, name clashes can result from dif
ferent modules using the same name. For example, PutText is exported by 
a number of modules that deal with input/output. If we always prefix the 
name of the interface from which the procedure stems, then we achieve 
clarity about which PutText is intended in each case. This also prevents 
name clashes if a module needs to import procedures named PutText from 
several modules simultaneously. 

We can also import modules under an alias: With this version of the 
IMPORT statement we always import the module as a whole and under 
a different name. Instead of just specifying the module name after the 
keyword IMPORT, we write module AS newName. 

IMPORT SIO AS Out; 

Out.PutText("Use imported procedure!"); 

Thus we can abbreviate names of epic length (such as IntegerTolnte
gerTable from the Modula-3 library) to make the source code more compact 
(and to save tedious typing). The construct also helps to quickly exchange 
modules: For testing purposes we might want to replace one module with 
another that generates additional information which is relevant only for 
the program developer. We could use this alternative module with a single 
code change - and reverse the change again later. 

The different versions ofthe IMPORT statement can also be mixed. It is 
possible to import an entire module and additionally to import individual 
components explicitly from the same module. Example 10.6 shows how the 
example interface is imported and how its exported elements are used. 

In the remainder of this chapter, we examine more closely the use of 
the module concept.The possibility to organize software systems in mod-
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MODULE Client EXPORTS Main; 

IMPORT Interface; 

VAR 
a: Interface.Type; 

BEGIN 
Interface.Procedure(lnterface.Constant, a); 

END Client. 

10. Modules 

(*CW*) 

(*importing the exported declarations *) 

(*using the imported Type *) 

(*invoke imported procedure *) 

Example 10.6: Usage of Interface 

ules (with corresponding interfaces) can be used in various forms to design 
software systems: 

• Structuring the data space 

• Type creation 

• Development of toolkits 

10.2.1 Structuring the data space 

Modules have a state; they can contain data that "live" throughout the en
tire execution of the program. 

Data capsules 

If the state space of a software system is structured in such a way that the 
states of a server module can only be accessed through its own exported 
functions and procedures, but never through direct access or modification 
of variables, then we call this a data capsule. 

A piggy bank2 is a perfect, very simple example of the separation of 
state spaces through information hiding. We can insert money, but never 
know how much is there. It is also not possible to remove money from 
the piggy bank, to exchange coins, or to cheat in any way. The only other 
permissible operation is smashing the piggy bank. However, if we carry 
out this operation, we have our money again, but no piggy bank. 

Based on this description, we propose the interface PiggyBank in Ex
ample 10.7. It encompasses only the procedure Deposit, which takes the 
deposited cash amount as parameter, and the function procedure Smash, 
which returns the contents of the piggy bank. 

The module Saving (Example 10.8) can now use this interface. It per
mits depositing any amount of money. In a loop the user is prompted for 
the amount of deposit. This is hardly elegant, but to keep the program 

2This example was used by Prof. Rossak in an introductory lecture. 
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INTERFACE PiggyBank; 

PROCEDURE Deposit(cash: CARDINAL); 
PROCEDURE SmashO: CARDINAL; 

END PiggyBank. 

Example 10.7: The interface ofa ''piggy bank" 

MODULE Saving EXPORTS Main; 

FROM PiggyBank IMPORT Deposit, Smash; 
FROM SIO IMPORT Getlnt, Putlnt, PutText, NI; 

VAR cash: INTEGER; 

BEGIN 
PutText("Amount of deposit (negative smashes the piggy bank): \n"); 
REPEAT 

cash := GetlntO; 
IF cash >= 0 THEN 

Deposit( cash) 
ELSE 

PutText("The smashed piggy bank contained $"); 
Putlnt(SmashO); 
NIO 

END; 
UNTIL cash < 0 

END Saving. 

Example 10.8: Using the piggy bank 
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(*RM*) 

(*RM*) 

(*Saving *) 

simple, entering a negative amount smashes the piggy bank. Observe that 
neither does the client module Saving know nor does the interface give any 
clue how the piggy bank collects the deposited money. To reveal this secret, 
we would have to read the implementation module of the piggy bank (in 
Example 10.9). 

In the implementation module we find the bodies of both the procedures 
Deposit and Smash. In addition, the implementation module has variable 
contents, which represents the encapsulated state ofthe piggy bank and is 
not visible in this form to the outside. Smash sets the contents of the piggy 
bank to a negative value (which is senseless for a piggy bank). Deposit 
checks each time whether the piggy bank is okay. The ASSERT pragma (see 
Appendix B.8.5) assures that the condition "piggy bank still okay" is met 
(if not, the ASSERT terminates the program with a run-time error). Once 
the piggy bank has been smashed, it cannot be restored. Any further invo
cation of either procedure causes program termination. What the ASSERT 

pragma does in Deposit corresponds to the initialization of the local vari
able oldContents in Smash - it fails because of the assignment of a negative 
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MODULE PiggyBank; 

VAR contents: INTEGER; 

PROCEDURE Deposit(cash: CARDINAL) = 
(*changes the state of the piggy bank *) 

BEGIN 
<* ASSERT contents >= 0*> 
contents := contents + cash 

END Deposit; 

PROCEDURE SmashO: CARDINAL = 
VAR oldContents: CARDINAL := contents; 
BEGIN 

contents := -1 ; 
RETURN oldContents 

END Smash; 

BEGIN 
contents := 0 

END PiggyBank. 

10. Modules 

(*RMICW*) 

(*state of the piggy bank *) 

(*piggy bank still okay? *) 

(*contents before smashing *) 

(*smash piggy bank *) 

(*initialization of state variables in body *) 

Example 10.9: The implementation of the piggy bank 

value to a CARDINAL type, also producing a run-time error. 
Deposit always adds to contents; Smash assumes that some contents 

exist. Where are the contents actually defined? For simple state spaces 
- as with our piggy bank - we can couple initialization with the variable 
declaration by writing: 

VAR contents: CARDINAL := 0; 

More commonly, initializations of the local state space takes place in the 
statement part of the data capsule. This statement part is executed at 
the start of the program. Once this initialization has been completed, the 
module "lives" only through the invocation of its procedures from the client 
module. 

The importance of structuring the data space by division into several 
state spaces in multiple modules is related primarily to the security it af
fords in the event of modifications. We need not fear accidentally changing 
a variable that is still needed elsewhere for other purposes. Thereby we 
can drastically reduce the need to check which variables are accessible in 
which situation and thus have to be watched during programming. 
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10.2.2 Type creation 

A type consists of a data representation and the operations defined on it. 
Chapter 8 introduced various possibilities for defining new types. So what 
is new here? 

With the type constructors provided by the programming language, we 
can define the kinds of data types that the language designers foresaw for 
us. We can combine a number of predefined, built-in types to larger struc
tures in arrays, records and sets. The access operations on these data types 
are likewise predefined. The data types themselves are programming types 
of the language that have no semantics governing their use. What hap
pens if our application includes line sequences (polygons) that represent 
graphical objects, series of temperature measurements or information on 
the water depth of a lake at different locations? We can manage the data of 
all three categories with arrays and/or records, perhaps even using arrays 
with identical structures. However, usage within the program would be 
quite different. 

Coordinates, temperatures and water depths are all represented as 
REAL values. For a sequence of temperature measurements, we might be 
interested in the mean and the deviation - which would be totally irrele
vant information for coordinate values. Water depth is a function of the 
location, whereas temperature measurements at a location are a function 
of time. Although the data representation might (by chance) be identical, 
the operations are quite different; therefore measurement sequences and 
polygons are quite different types. Thus it would make sense to define an 
application-specific type for for each ofthese three categories. This is where 
the module concept comes in. 

Computations with fractions 

As an example of the definition of data types, let us now define a type for 
the rational numbers (call it Fraction). Modula-3 provides only INTEGER 
and REAL types, but we can have fractions if we need them. 

Let us consider the representation of fractions independently of their 
implementation, on paper. A horizontal line separates the numerator at 
the top from the denominator beneath it: 

numerator 
denominator 

Actually, a fraction is a number pair (numerator, denominator) for which 
the basic arithmetic operations 

addition, subtraction, multiplication and division 
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INTERFACE Fraction; (*RM*) 
(*defines the data type for rational numbers *) 

TYPE T = RECORD 
num : INTEGER; 
den: INTEGER; 

END; 

PROCEDURE Init (VAR fraction: T; num: INTEGER; den: INTEGER := 1); 
PROCEDURE Plus (x, y : T) : T; 
PROCEDURE Minus (x, y : T) : T; 
PROCEDURE Times (x, y : T) : T; 
PROCEDURE Divide(x, y : T) : T; 

PROCEDURE Numerator (x : T): INTEGER; 
PROCEDURE Denominator (x: T): INTEGER; 

END Fraction. 

(*x + y *) 
(*x-y *) 
(*x * y *) 
(*x / y *) 

(*returns the numerator of x *) 
(*returns the denominator of x *) 

Example 10.10: Interface for fraction computations 

are defined. For the sake of simplicity, we ignore additional operations such 
as reduction. 

The interested reader should implement reduction with the help of the 
Euclidean algorithm (see Example 9.4 on page 179). 

To implement fractions, we need an interface that provides such number 
pairs as a type along with its associated operations. 

From the interface Fraction we export primarily the type T, which pro
vides the number pair (numerator, denominator) as a record. Furthermore, 
we export procedures to manipulate such T records. 

Normally the name ofthe central type defined in a module in a Modula-
3 program is simply called T. Programs that uphold this convention 
then import the module as a whole (with IMPORT module;) and access 
the type accordingly as module.T. This convention emphasizes that a 
type must be seen collectively with its data representation and the 
operations defined thereon. The same idea is followed in assigning 
names to the operation procedures: The Name Plus itself has little ex
pressive power (What are we adding?) - only the module name lends 
it this expressive power (Fraction.Plus). 

But how can a client of Fraction create examples (instances) of fractions? 
It can declare variables of type Fraction.T. However, these need to have ini
tial values. This is the job of the procedure Init. In addition, after manipu
lation of a Fraction, whatever its implementation, we need to be able to out
put it. We achieve this by defining the function procedures Numerator and 
Denominator, which return the numerator or denominator, respectively, of 
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MODULE Fractions EXPORTS Main; 

IMPORT Fraction; 
FROM SIO IMPORT Putlnt, NI; 
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(*RM*) 

VAR a, b, c, d: Fraction.T; 

BEGIN 

(*declaration of variables of type Fraction.T*) 

(*Fractions*) 
(*Initialization of Fraction variables*) 

Fraction.lnit(a, 3, 4); 
Fraction.lnit(b, 1, 4); 
Fraction.lnit(c, 1); 

d := Fraction.Plus(a, b); 
Putlnt(Fraction.Numerator(d)); Putlnt(Fraction.Denominator(d)); NIO; 

d := Fraction.Plus(b, c); 
Putlnt(Fraction.Numerator(d)); Putlnt(Fraction.Denominator(d)); NIO 

END Fractions. 

Example 10.11: Fraction arithmetic 

(*2.*) 
(*1*) 

4 
(*1 *) 

(*~ + ~*) 

(*~+1*) 

a fraction as INTEGER. Hence we need no special procedures, e.g., to dis
play fractions on the screen; we already have server modules to output the 
standard types. 

The module Fractions uses the type defined in the interface Fraction. 
Since we import Fraction as a whole, we must always qualifY the compo
nents of the interface using the interface name, i.e., Fraction. For the sake 
of simplicity, we have initialized the fractions a, b, and c with constants. 
Naturally we could have employed read operations here instead. 

Now let us examine the implementation module ofthe data type Fraction 
(Example 10.12). The implementations ofthe individual operations require 
no explanation. The implementation module knows and uses the actual 
realization of the type T for fractions; therefore the corresponding record 
components are accessed directly by the parameters of the procedures. 

In fact, in this version even the client knows the representation of a 
fraction as a record. The type, including its internal componentwise rep
resentation, was exported in the interface. However, we did not access the 
fields of the record in the client module. Therefore this representation can 
be changed later. Indeed only the implementation module of Fraction needs 
to know this representation; the client can manipulate fractions only with 
the help of exported procedures. Through the use of opaque data types, 
described in Section 11.4.1, such "self-control" of the client is no longer nec
essary. The realization of the type no longer appears in the interface. 

Note furthermore that modules that implement data types usually have 
an empty body. The initialization of the instances of the created data type 
are left up to the client. 
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MODULE Fraction; (*RM*) 

PROCEDURE Init (VAR fraction: T; num, den: INTEGER) = 

BEGIN (*initialization of a fraction *) 
fraction.num := num; fraction.den := den 

END Init; 

PROCEDURE Plus (x, y: T) : T = 
VAR sum: T; 
BEGIN 

IF x.den # y.den THEN 
x.num := x.num * y.den; y.num := y.num * x.den; 
sum.den := x.den * y.den 

ELSE sum.den := x.den 
END; 
sum.num := x.num + y.num; 
RETURN sum 

END Plus; 

PROCEDURE Minus(x, y : T) : T = 
BEGIN 

y.num := - y.num; 
RETURN Plus(x, y) 

END Minus; 

(*adds fractions (no reduction) *) 

(*subtracts fractions *) 

(*internally uses module services *) 

PROCEDURE Times (x, y : T) : T = 
VAR prod: T; 

(*multiplies fractions (no reduction) *) 

BEGIN 
prod.num := x.num * y.num; prod.den := x.den * y.den; 
RETURN prod 

END Times; 

PROCEDURE Divide(x, y : T) : T = 
VAR inv: T; 
BEGIN 

inv.num := y.den; inv.den := y.num; 
RETURN Times(x, inv) 

END Divide; 

PROCEDURE Numerator (x: T): INTEGER = 
BEGIN 

RETURN x.num 
END Numerator; 

PROCEDURE Denominator (x: T): INTEGER = 
BEGIN 

RETURN x.den 
END Denominator; 

BEGIN 
END Fraction. 

(*divides fractions *) 

(*returns numerator of fraction *) 

(*returns denominator offraction *) 

(*empty body *) 

Example 10.12: Implementation offraction arithmetic 



10.3. An example with graphic elements 

INTERFACE Polygon; 

TYPE 
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(*CW*) 

Point = RECORD x, y: LONG REAL END; 
T = ARRAY OF Point; 

(*coordinates in mm *) 

PROCEDURE Shift(VAR p: T; dx, dy: LONG REAL); 
(*move a Polygon along axes *) 

PROCEDURE Center(READONLY p: T): Point; 
(*compute center of gravity (mean of x- and y-coordinatesj *) 

PROCEDURE Rotate(VAR p: T; c: Point; a: LONG REAL); 
(*rotate Polygon around Point c with angle a (in radiants) *) 

END Polygon. 

Example 10.13: The interface of the Polygon module 

10.2.3 Creating toolboxes 

A collection of functionally independent, but semantically related proce
dures is called a toolbox. Examples include collections of search or sorting 
procedures or functions that control input/output operations. 

Toolkits only partly exploit the structuring possibilities of the module 
concept because toolkits manage only a set of procedures, but no data. Still, 
they are an important aid for keeping order in a complex software system. 

10.3 An example with graphic elements 

We close this chapter with another example to illuminate the various as
pects of modules. We will develop two small components of a system for 
manipulation of graphic elements. Our task is to represent and manipu
late two-dimensional objects of the real world (such as a technical drawing) 
in a program, with the goal of processing them on screen (although we do 
not go into detail on screen input/output here). 

1. Graphic elements 
A technical designer might use a ruler, a curve template and a com
pass to construct various lines ofthe design object. Theoretically, how
ever, a ruler alone could suffice. Curves and arcs can be assembled 
from numerous short straight segments. These segments only need 
to be sufficiently short to meet any requirements for precision. 

We will employ precisely this approach for the internal representation 
of all line segments. We store only straight line segments by storing 
the coordinates of all corners. This structure is called a polygon (com
pare the polygons defined differently in Section 8.1). 
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MODULE Graphic EXPORTS Main; 

IMPORT Polygon, Viewport, Math; 

CONST Deg45 = FLOAT(Math.Pi, LONGREAL)/4.0dO; 

VAR rectangle: ARRAY [1 . .4] OF Polygon.Point; 
center: Polygon. Point; 

BEGIN 
(*We have a graphic monitor with 1200 x 800 pixels and want 

to be able to store undistorted standard letter-size pages (8.5x 11 inches). 
The page height should extend across the total height of the screen. *) 

Viewport.Proportion(1200, 800); 

10. Modules 

(*CW*) 

(*45° *) 

(*compute width for undistorted display *) 
Viewport.Set(x:= O.OdO, y:= O.OdO, height:= 11.0dO); 

(*Coordinates ofa rectangle on a 8.5xll page: *) 
rectangle[1].x:= 10.0dO; rectangle[1].y:= 10.0dO; 
rectangle[2].x:= 20.0dO; rectangle[2].y:= 10.0dO; 
rectangle[3].x:= 20.0dO; rectangle[3].y:= 20.0dO; 
rectangle[4].x:= 10.0dO; rectangle[4].y:= 20.0dO; 

(*Invoke operations: *) 
center:= Polygon.Center(rectangle); 
Polygon.shift(rectangle, 5.0dO,5.0dO); 
Polygon.Rotate(rectangle, center, Deg45); 

END Graphic. 

Example 10.14: Polygon operations 

2. Operations 
As operations for processing drawings on screen, we have chosen shift
ing and rotation of elements. Other operations that we do not handle 
here include enlarging, mirroring, decomposing and composing ele
ments of polygons. However, we do facilitate such extensions by pro
viding an auxiliary operation, the computation of the center. Once 
we know the center, enlarging and mirroring are easy to solve in a 
manner similar to shifting and rotation. 

Example 10.13 shows our Modula-3 realization of polygons. Polygons 
are arrays of Point records. The module defines the type Polygon.T and the 
operations thereon. 

The open array parameter (see Section 11.2.3) of the procedures assure 
that we can process polygons of any length. The client stores the polygons 
of required length as variables of type ARRAY··· OF Polygon. Point (see 
Example 10.14). 

We omit operations for initializing and reading polygons. The client 
must declare variables oftype ARRAY··· OF Polygon.Point and initial
ize them directly. To read the points of a polygon, the client accesses 
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elements of the array directly as well. In this respect the module fails 
to completely meet our requirements for data type definitions because 
these basic operations are left to the client. Therefore we can consider 
the module to be a toolbox that provides algorithms for the manipula
tion of special arrays. 
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Finally, Example 10.15 lists the implementation ofthe operations. The 
interested reader should explore whether the manipulations of the coordi
nates ofthe polygons really produce the desired effects. 

Interface Viewport (Example 10.16) shows a very simple data capsule 
in its pure form. The state space of this module consists of a viewport 
definition. 

To be able to display the polygons from module Polygon (Example 10.13) 
on screen, we need to map the coordinate system of the real world from 
which the polygons stem, onto the pixel coordinates of the screen. Hence 
we define the viewport, which is a rectangle in the world coordinate system 
that just barely fits onto the screen. 

The coordinates of the viewports can be reset and read. The proce
dure Viewport.Set precludes nonsensical entries for viewport coordinates 
(see Example 10.17). In our example the ASSERT pragma (see in Appendix 
B.8.5) assures that the conditions specified in the interface as comments 
are upheld (if not, then ASSERT halts the program with a run-time error). 
However, Viewport.Set can do more than just transfer the values from out
side to the state space of the module: To achieve undistorted representa
tions, the widthlheight proportion of the viewports must correspond to that 
of the graphic monitor. With Viewport.Proportion the widthlheight propor
tion of the graphic monitor can be set comfortably; we only have to specify 
the pixels displayed in x and y directions. 

Viewport.Proportion is an example of how the module concept helps to de
couple the interface to the outside from the implementation. 
Viewport.Proportion translates the parameters to an internal representa
tion (the variable proportion as LONGREAL), visible only within the module 
Viewport. 

Viewport.Set can use information on the size proportions of the graphic 
monitor to compute from either ofthe parameters width or height the other 
parameter. Instead of the second parameter we simply pass 
Viewport.Undistorted. The ASSERT pragma again assures that at least one 
of the two parameters has a sensible value. 
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MODULE Polygon; 

IMPORT Math; 

PROCEDURE Shift(VAR p: T; dx, dy: LONG REAL) = 
BEGIN 

FOR i:= FIRST(p) TO LAST(p) DO 
p[i].x:= p[i].x + dx; p[i].y:= p[i].y + dy; 

END; (*FOR i*) 
END Shift; 

PROCEDURE Center(READONLY p: T): Point = 
VAR sumX, sumY:= O.OdO; result: Point; 
BEGIN 

FOR i:= FIRST(p) TO LAST(p) DO 
sumX:= sumX + p[i].x; sumY:= sumY + p[i].y; 

END (*FOR i*); 
WITH n = FLOAT(NUMBER(p), LONG REAL) DO 

result.x:= sumX / n; 
result.y:= sumY / n; 

END; (*WITH n*) 
RETURN result; 

END Center; 

10. Modules 

(*CW*) 

PROCEDURE Rotate(VAR p: T; c: Point; a: LONGREAL) = (*a in radiants *) 
VAR a2, length: LONG REAL; 
BEGIN 

FOR i:= FIRST(p) TO LAST(p) DO 
WITH px = p[i].x, py = p[i].y DO 

(* length of line between point of rotation and target position *) 
length:= Math.sqrt((px-c.x)*(px-c.x) + (py-c.y)*(py-c.y)); 

(*angle between center-to-target line and x-axis *) 
IF length # O.OdO THEN 

IF px-c.x < O.OdO THEN 
a2:= Math.acos(-(py-c.y)/Iength) + a + FLOAT(Math.Pi, LONG REAL) 

ELSE 
a2:= Math.asin((py-c.y)/Iength) + a 

END; (*IF*) 
(*new point results from length and a2 via cos und sin laws *) 

p[i].x:= Math.cos(a2)*length+c.x; 
p[i].y:= Math.sin(a2)*length+c.y; 

END; (*IF length*) 
END; (*WITH px*) 

END; (*FOR i*) 
END Rotate; 

BEGIN (*statement part of module is empty *) 

END Polygon. 

Example 10.15: Implementation of polygon operations 
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INTERFACE Viewport; (*CW*) 

CONST Undistorted = O.OdO; 

PROCEDURE Set( x, y: LONGREAL:= O.OdO; 
width, height: LONGREAL:= Undistorted); 

(*Set sets this excerpt from the real world that is to be 
displayed on the screen. x, y is the left top corner in world coordinates; 
width is the dimension of the window along the x-axis and 
height along the y-axis. 
width and height must be > 0; one of the two parameters can be set to Undistorted; 
its value will then be computed with Proportion. *) 

PROCEDURE Get(VAR x, y, width, height: LONG REAL); 
(*read the viewport coordinates *) 

PROCEDURE Proportion(width: CARDINAL:= 640; depth: CARDINAL:= 480); 
I (*set the proportion ~;;;Z of width to height of the graphic window *) 

I END Viewport. 

Example 10.16: A data capsule: specifying the uiewports 

10.4 Modularization 

We have seen that we can decompose programs into modules. However, 
the module concept of the programming language alone by far does not 
suffice to reach our goal of modular program development. We must exer
cise extreme care to design modules and their interfaces so that we achieve 
small, interchangeable components - modules - that have strictly delin
eated functionality. We have learned the concepts of data capsules, user
defined data types and toolkits (which build on the module concept). The 
following comments should help in deciding what should be combined in 
modules: 

• Keep the interface small! 
We gain flexibility with smaller units. Modules often offer too much 
functionality and have too many prerequisites to be able to work. Let 
us go back to our stereo system analogy. Professional devices separate 
the amplifier into preamplifier, equalizer (to generate and regulate 
the sound) and power amplifier (to generate the necessary power). 
The power amplifier must be adapted to the speakers, the preampli
fier to the sound source. The equalizer does not always provide the re
quired additional functionality that we want to introduce. The more 
the conditions around an amplifier can change, the more we depend 
on splitting up the functionality, because producers cannot offer an 
integrated device to cover every situation. 
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MODULE Viewport; 

VAR 

(*CW*) 

vx, vy, vwidth, vheight: LONGREAL:= O.OdO; 
proportion: LONGREAL:= 640.0dO/480.0dO; 

PROCEDURE Set(x, y, width, height: LONGREAL) = 
BEGIN 

(*Viewport in world coordinates *) 
(*pro'[Jortion width of monitor *) I 

h,ght 

<*ASSERT NOT (width = height AND width = Undistorted) AND 
NOT (width # Undistorted AND width < O.OdO) AND 
NOT (height # Undistorted AND height < O.OdO) *> 

vx:= x; 
vy:= y; 
IF width = Undistorted 

THEN vwidth:= height*proportion 
ELSE vwidth:= width 

END; 
IF height = Undistorted 

THEN vheight:= width/proportion 
ELSE vheight:= height 

END 
END Set; 

PROCEDURE Get(VAR x, y, width, height: LONG REAL) = 
BEGIN 

x:= vx; y:= vy; width:= vwidth; height:= vheight; 
END Get; 

PROCEDURE Proportion (width: CARDINAL:= 640; depth: CARDINAL:= 480) = 
BEGIN 

proportion:= FLOAT(width, LONG REAL) / FLOAT(depth, LONG REAL); 
END Proportion; 

BEGIN (*initialization of state space in variable declarations *) 

END Viewport. 

Example 10.17: Implementation of the viewport definition 

• Separate functionality! 
From the requirement of narrow interfaces we directly derive the 
next: A module should solve only one subproblem. This significantly 
facilitates modification and reuse in other programs. 

Programming novices often make the error of including the format
ting of the results of a computation in the module that handles the 
computation. The computation might be controllable via a clean, nar
row interface - but when aspects such as screen formatting or error 
handling are handled in the same module, this restricts its reusabil
ity. To use the computations in a new program, we also have to import 
the screen output (which might or might not work there). 
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This problem often arises in error handling. Serious errors cause 
a message on screen, while a "normal" unsuccessful termination 
is returned as a status and handled by the client. This might be 
rather practical for the invoking module (it is freed of bothersome 
work), but it has serious drawbacks: This gives us a module that 
depends on its connection to a certain terminal, although other
wise it has nothing at all to do with the monitor and keyboard. 
Such dependency seriously encumbers the reuse of such a module 
in another context (which, in fact, was one of the declared ad
vantages of modularization). And, what is worse, this blurs the 
functionality of the module. The client relies on error handling 
occurring in part in the module. If we modify such a module, we 
must find all the locations in the clients where no error handling 
occurs - and these can be very difficult to localize. How to treat 
errors that we do not want to handle immediately is covered in 
Section 15. 
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Our philosophy should be to have narrow interfaces that provide only 
what is absolutely necessary for one subtask. Large collective modules that 
solve multiple tasks unnecessarily encumber modifications of a software 
system. It is important to keep modules free of dependencies that have 
nothing to do with the task. On the other hand, modules can become too 
small, so that a client always needs multiple servers for a single task. This 
also impedes comprehensibility and modifiability because it causes numer
ous dependencies across module boundaries. 

In the design of a program, if we always keep in mind the reusability of 
components, then we might come closer to real modular programming. 



Chapter 11 

Dynamic data structures 

We can categorize the data types discussed so far as follows: 

• Predefined scalar data types, such as INTEGER, REAL and CHAR that 
are built into the language environment 

• User-defined scalar data types, such as enumerations and subranges 

• User-defined composite data types, such as records, arrays and sets 

These are all static data structures in the sense that their structure 
and storage requirements must be specified when the program is coded. 
For arrays, however, this size can vary within the limits prescribed by the 
language environment. Arrays also have a certain dynamic aspect due to 
the indexed access to its elements. Ifwe want to manage a large amount of 
data in main memory, then initially arrays are our only option. However, 
arrays also suffer from the restriction of static size and structure. 

Static data structures are difficult and inefficient to adapt to many prob
lems. Example 8.20 (page 161) began to sketch a student data management 
system. Our underlying data structure was an array of records (the vari
able students). As long as we construct this data structure only once and 
then iterate through it repeatedly, this array structure proves adequate 
- apart from the inconvenient aspect that we must define the maximum 
number of students in advance. What happens if the number of students 
changes over time, as is the case in a real university? Some students leave 
the university and new ones arrive. The behavior of the whole system is 
dynamic. Again and again, new records must be created and old ones need 
to be retired. The size of the data set and the connections between the 
records change continuously. Such dynamism of data proves quite typical 
of practical problems. 

This chapter presents dynamic data structures. We call data structures 
dynamic if both their size and their structure can change at run time. Dy
namic structure does not imply arbitrary changes; naturally, we provide 
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push pop 

~ ~ 

top~ 

Figure 11.1: Stack storage 

a certain basic structure. However, this structure must be able to adapt 
flexibly to the data (more in Section 11.5). 

Many programs must process any amount of data. Clearly, real com
puters can process only as much data as their available memory permits. 
When we say "any amount", we mean "restricted only by available stor
age". Nevertheless, even programs like these hold only part of the overall 
amount of data that they process in main memory; the remaining data are 
on some background storage medium (usually the hard disk). In this chap
ter we limit discussion to data structures that are stored in main memory 
(which can also include virtual memory [Tan92]). 

For managing dynamic data structures, Modula-3 provides the concept 
of references, or pointers. Before we discuss pointers, let us examine to 
what extent we can express dynamism with already familiar languages 
constructs - particularly with arrays - within prescribed quantitative lim
its. 

11.1 Dynamism in static data structures 

Here we introduce stacks and queues as data structures that - within the 
bounds of an array - can store any number of data elements. Then we will 
see how to process the elements of an array with explicit storage of links 
rather than with index arithmetic. 

11.1.1 Implementation of stacks as arrays 

Stacks, or last-in, first-out (LIFO) queues, are structures that are open at 
one end (top) and closed at the other (bottom). New elements are added 
at the top of the stack, and they are removed again from this same end 
(Figure 11.1). The last element added is the first to be removed. 

The stack metaphor for this storage structure alludes to a stack of trays 
or plates in a cafeteria, where customers take clean trays and plates from 
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the top of each stack and employees return clean trays and plates to the 
top of the corresponding stack l . 

Stacks are not completely new here. In Section 9.2.2 we mentioned 
that the data regions of procedures are ordered according to the stack 
principle. 

First we define the operations associated with stacks. If we store the 
contents of a stack in an array info and the variable top always points to 
the top element of the stack (top is 0 when the stack is empty; otherwise 
top is the index of the top element on the stack), then we can specify the 
following operations (ET is the element type that is stored in the stack): 

• push(elem: ET): 
INC(top); info[top] := elem; 

• popO: ET: 
Iftop # 0 then: DEC(top); Return info[top+1] 

• emptyO: BOOLEAN: 
Return top = 0 

However, this defines an infinite stack, which is certainly a fine abstrac
tion, but impossible to implement. Therefore we introduce the operation 
Full, which returns true if the stack is full. To implement the stack as an 
independent data capsule, we can declare an interface like the one in Ex
ample 11.2. A client of the stack need not know how large the stack really 
is; it suffices to assure that we do not try to remove something from an 
empty stack or to append something to a full stack (Example 11.4). In pro
gram StackUser, if we enter a series of numbers, the program will accept 
input until the stack is full. Then the program returns the numbers in 
reverse order - which should not be a surprise. 

We can implement stacks as arrays for which we make practically no 
use of the array's direct access feature (Example 11.3). Instead, we let the 
stack grow form an initial position and maintain an additional information 
element (top), which indicates the position in the array of the topmost el
ement. In the implementation we employ no explicit test of the boundary 
conditions (push on a full or pop on an empty stack). If these are not ob
served by the client, the value of top exceeds the array's index range; then 
the run-time system of the language environment prevents any attempt to 
reference nonexistent array elements, and the program terminates with a 
run-time error. 

IThis cafeteria analogy also provides some of the vocabulary of stacks. With a spring
loaded rack for plates, the top plates maintains the same height, regardless of how many 
plates the rack contains. When we add a plate, we push the stack down; when we remove 
a plate, we thereby pop the next plate up. See Figure 11.31 
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INTERFACE Stack; 

TYPE ET = INTEGER; 

PROCEDURE Push(elem : ET); 
PROCEDURE PopO: ET; 
PROCEDURE EmptyO: BOOLEAN; 
PROCEDURE FuIlO: BOOLEAN; 

END Stack. 

11. Dynamic data structures 

(* 14.07.94 RM, LB*) 

(*element type*) 

(*adds element to top of stack*) 
(*removes and returns top element*) 

(*returns true if stack is empty*) 
(*returns true if stack is full*) 

Example 11.2: Interface definition of a stack 

MODULE Stack; 

CONST 

(* 14.07.94 RM, LB*) 

Max = 16; (*maximum number of elements on stack*) 
TYPE 

S = RECORD 
info: ARRAY [1 .. Max] OF ET; 
top: CARDINAL := 0; (*initialize stack to empty*) 

END; (*S*) 

VAR stack: S; (*instance of stack*) 

PROCEDURE Push(elem:ET) = 
BEGIN 

INC(stack.top); stack.info[stack.top]:= elem 
END Push; 

PROCEDURE PopO: ET = 
BEGIN 

DEC(stack.top); RETURN stack.info[stack.top + 1] 
END Pop; 

PROCEDURE EmptyO: BOOLEAN = 
BEGIN 

RETURN stack.top = 0 
END Empty; 

PROCEDURE FuIlO: BOOLEAN = 
BEGIN 

RETURN stack. top = Max 
END Full; 

BEGIN 
END Stack. 

Example 11.3: Implementation of a stack 
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MODULE StackUser EXPORTS Main; 

FROM Stack IMPORT Push, Pop, Empty, Full; 
FROM SIO IMPORT Getlnt, Putlnt, PutText, NI; 

BEGIN 
PutText("Stack User. Please enter numbers:\n"); 
WHILE NOT FuliO DO 
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(*14.02.95. LB*) 

Push(GetintO) (*add entered number to stack*) 
END; 
WHILE NOT EmptyO DO 

Putlnt(PopO) (*remove number from stack and return it*) 
END; 
NIO; 

END StackUser. 

Example 11.4: Client of a stack 

I· .. 
already read A A free 

out in 

Figure 11.5: An "infinite" FIFO queue 

11.1.2 FIFO queues in arrays 

We retain our assumption that we know the maximum number of elements 
that we need to manage, but we forsake the "unfair" assumption of "last 
come, first served"; instead we consider a "fair" queue like at a British bus 
stop, a first-in, first-out (FIFO) queue. We define the operations in the form 
of an interface (Example 11.7) and employ the element type TEXT. 

For the implementation we can initially pose the following considera
tions (see Figure 11.5): 

• We need a write pointer (in) that indicates the position where a new 
element can be added. 

• Analogously, we need a read pointer (out) that indicates where the 
next element can be removed. 

• in 2': out must always hold; the read pointer must never exceed the 
write pointer. 

• in = out means that the FIFO queue is empty. 
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INTERFACE Fifo; 

TYPE ET = TEXT; 

PROCEDURE Enqueue(elem:ET); 
PROCEDURE DequeueO: ET; 
PROCEDURE EmptyO: BOOLEAN; 
PROCEDURE FuIlO: BOOLEAN; 

END Fifo. 

11. Dynamic data structures 

(* 14.07.94 RM, LB*) 

(*element type*) 

(*adds element to end*) 
(*removes and returns first element*) 

(*returns true if queue is empty*) 
(*returns true if queue is full*) 

Example 11.7: Interface definition ofa queue 

MODULE Fifo; (*14.07.94 RM, LB*) 

CONST Max = 16; (* Maximum number of elements in FIFO queue*) 
TYPE 

Fifo = RECORD 
info: ARRAY [0 .. Max - 1] OF ET; 
in, out, n: CARDINAL := 0; 

END; (*Fifo*) 

VAR w: Fifo; 

PROCEDURE Enqueue(elem:ET) = 
BEGIN 

w.info[w.in]:= elem; 
w.in:= (w.in + 1) MOD Max; 
INC(w.n); 

END Enqueue; 

PROCEDURE DequeueO: ET = 
VAR e: ET; 
BEGIN 

e:= w.info[w.out]; 
w.out:= (w.out + 1) MOD Max; 
DEC(w.n); 
RETURN e; 

END Dequeue; 

PROCEDURE EmptyO: BOOLEAN = 
BEGIN 

RETURN w.n = 0; 
END Empty; 

PROCEDURE FuIlO: BOOLEAN = 
BEGIN 

RETURN w.n = Max 
END Full; 

BEGIN 
END Fifo. 

(*contains FIFO queue*) 

(*stores new element*) 
(*increments in-pointer in ring*) 

(*increments number of stored elements*) 

(*removes oldest element*) 
(*increments out-pointer in ring*) 

(*decrements number of stored elements*) 
(*returns the read element*) 

Example 11.8: Implementation of a queue 
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empty fields 

" " 
in out 

occupied fields 

Figure 11.6: FIFO queue implemented as a ring 

This works well as long as we do not insert more than the maximum 
number of elements. If elements are subsequently both inserted and re
moved, then the group of elements that are still in the queue slowly rises 
- in the direction of higher indices. When the in index reaches the last ele
ment of the array, this does not mean that the array is full. At the other end 
of the array, at the smaller index values, there are meanwhile free places 
that we can use now. We can use these places either by shifting the queue 
element-by-element back to the start ofthe array, or more elegantly by let
ting our read and write pointers gently glide across the array boundaries. 
We can achieve the latter by viewing our array not as a linear structure, 
but as a circular structure in which the first address directly succeeds the 
last address (Figure 11.6). Rather than simply incrementing the pointer by 
one position, we carry out addition in the residue class determined by the 
size of the array [Tru88]. 

For addition within the residual class defined by the array size N, we use 
the modulo operation MOD. The expression (i + 1) MOD N always produces 
a number in the range [0 .. N -1]. For i = N -1, (i + 1) MOD N = o. Thus the 
value of the expression demonstrates circular behavior: the largest value 
is followed by the smallest. 

However, the ring structure produces a conflict with the considerations 
above: 

• It is still true that the read pointer must not overtake the write 
pointer, but this does not mean that in 2: out always applies. If the 
write pointer has begun again at the start, then in :::; out (as in Figure 
11.6). 

• in = out no longer means that the queue is empty. If the write pointer 
catches up to the read pointer from behind (it must not pass!), then in 
= out, although the queue is presently full. 

Therefore we introduce a counter that stores the number of elements, 
producing the solution in Example 11.8. Example 11.9 shows a client. 
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MODULE FifoUser EXPORTS Main; 

FROM Fifo IMPORT Enqueue, Dequeue, Empty, Full; 
FROM SIO IMPORT GetText, PutText, NI; 

BEGIN 
PutText("FIFO User. Please enter texts:\n"); 
WHILE NOT FuliO DO 

Enqueue(GetTextO) 
END; 
WHILE NOT EmptyO DO 

PutText(DequeueO & " ") 
END; 
NIO; 

END FifoUser. 

Example 11.9: Client of a queue 

(* 14.07.94. LB*) 

CONST 
MaxStudent = 32; 

TYPE 
(*maximum number of students in class*) 

Index = [1 .. MaxStudent); 
Student = RECORD 

VAR 

lastname, firstname: TEXT; 
END; (*Student*) 

class: ARRAY Index OF Student; 
next: Index := 1; 

Example 11.10: Student data structures 

What happens if we try to stuff more elements into the queue than space 
allows? This implementation does not raise a run-time error; instead, the 
oldest elements are simply overwritten by the newer ones. Section 16 intro
duces a variant of the FIFO queue that in such a case forces the industrious 
producer to wait. 

11.1.3 Example: Rotating shifts 

The example of a circular queue finds many applications. Here we use it 
to organize rotating work shifts. A number of elements are to be selected 
sequentially, with no element being selected a second time until all others 
have had their turn. 

Shifting window 

The students in a high school class could organize the task of cleaning the 
blackboard so that the job rotates from one student to the next, and a given 
student, after completing the job, takes a turn again only after all other 
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Window 

Figure 11.11: A shiftable window 

Frank (3) No. Name Duty transfers to 

{- 1 Susan 2 
Susan (1) 2 Fred 4 

3 Frank 1 
{- 4 Elizabeth 3 

Fred (2) 

{-
Elizabeth (4) 

Figure 11.12: Blackboard duty schedule: Graph and representation as array 

students have taken their next turns. Example 11.10 shows the possible 
data structures. Similar to our ring management above, the next student 
to serve as board cleaner results from residual class computation: 

next := (next MOD MaxStudent) + 1 

Here we employ the technique of circular closed arrays to implement a 
shiftable window on this array (see Figure 11.11). The window is shifted 
one position to the right each time (toward higher index values) and marks 
the next student. Once the maximum index value is reached, the window 
is reset to the beginning. 

11.1.4 Explicit address management with pointers 

All our examples so far have shown that the array is an ideal data structure 
if the following conditions hold true: 

1. The number of elements is known in advance, or at least reliably pre
dictable. 

2. The number of elements changes little or not at all at run time. 

3. The indexes of the elements to be processed can be computed with an 
arithmetic expression. 
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The last point reflects the strength of arrays. They provide comfortable 
and efficient solutions to problems where we can compute which elements 
to select and process. The most important example of such problems is ma
trix computations. Our simple modulo arithmetic to compute the rotation 
of blackboard duty also falls into this category. 

Let us assume that after some time the students find this strict schema 
too boring. They prefer to decide themselves the order of succession, nat
urally upholding the principle of fairness. The students propose a graph 
that assures that all students take their turns, but in an arbitrary order. 
The left side of Figure 11.12 shows such a schedule. 

The students promise that when they are currently doing duty, they 
will remind their successor of impending duty. To store such a structure, 
each student must contain a reference to the respective successor. For this 
reference, we use the index value, i.e., the position, which amounts to the 
address of the successor. We call such a reference a pointer. The student 
record must be extended to include such a pointer (Example 11.13). The 
procedure Init initializes the array class. For the sake of simplicity, we ini
tialize the array statically. Note that the boundaries ofthe constant array 
FirstNames result from the initialization values. Type Index interprets the 
number of names in FirstNames as the upper array boundary. Both the 
names in the class (we use only first names) and the schedule are coded 
statically according to Figure 11.12. 

The interested reader should consider how to handle the initializa
tion interactively. For example, in one iteration through the array, 
all names could be read, and a second iteration could prompt for the 
names of each successor. 

The procedure Iterate moves through the array along the chain of duty. 
Instead of using the modulo function, we determine the next student with 
the value ofthe next field. The successor within the array is no longer com
puted arithmetically, but determined, independently of the physical posi
tion of the element, by an additional field in the element record. Note the 
fundamental difference between Init and Iterate. Init processes class as an 
array, from FIRST to LAST, or with fixed indices. Iterate processes the array 
with the help of an additional path that is determined by the linking of 
the values of the field next in the respective data record. The window that 
marks the next student with duty must "jump". The "target address" of 
the jump is indicated in the field next (see the right part of Figure 11.12). 
Procedure Iterate assumes that the duty chain forms a ring that contains 
all index values exactly once. If this assumption does not apply, then the 
procedure exhibits erroneous behavior. The output of Example 11.13 is: 

( susan => Fred => Elizabeth => Frank => J 
------~ 
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MODULE Students EXPORTS Main; (* 15.07.94 LB *) 

IMPORT SIO; 
CONST (*list of students *) 

FirstNames = ARRAY OF TEXT{"Susan", "Fred", "Frank", "Elizabeth"}; 
TYPE 

Index 
Student 

Class 
VAR 

= [1 .. NUMBER(FirstNames)]; 
= RECORD 

firstname, lastname: TEXT := ""; 
next: Index; 

END; (*Student*) 
= ARRAY Index OF Student; 

class: Class; 

PROCEDURE Init(VAR cl: Class) = 
BEGIN 

(*index type for class*) 

("'pointer to next*) 

(*array of student data*) 

(*stores student data of class*) 

FOR v:= FIRST(lndex) TO LAST(lndex) DO cl[v].firstname:= FirstNames[v-1] END; 
cl[1].next:= 2; (*Fred follows Susan*) 
cl[2].next:= 4; (*Elizabeth follows Fred*) 
cl[4].next:= 3; (*Frank follows Elizabeth*) 
cl[3].next:= 1; (*Susan follows Frank*) 

END Init; 

PROCEDURE Iterate(READONLY cl: Class) = 
VAR next: Index := FIRST(lndex); 
BEGIN 

REPEAT 
SIO.PutText(cl[next].firstname & " => "); 
next:= cl[next].next; 

UNTIL next = FIRST(lndex); 
SIO.NIO; 

END Iterate; 

BEGIN 
Init(class); 
Iterate(class); 

END Students. 

("'iteration begins at index 1*) 

(*output first name*) 
(*next student in schedule*) 

(*circle is complete*) 

Example 11.13: Student data structures linked by pointers 

This solution adds flexibility. However, the price of this flexibility is 
the added storage required for this next-duty pointer to the next logical 
successor and the drawback that we can no longer simply compute whose 
turn is on the fifth or the 57th day. To determine this, we have to iterate 
through the chain of successors. 

With this increased flexibility we also lose security. Where the shifting 
window made it easy to see that we cover the whole array (all students), the 
explicit passing of duty requires us to first prove that we reach all students. 
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MODULE StudentList EXPORTS Main; 

IMPORT SIO; 

TYPE 
StudentRef = REF Student; 
Student = RECORD 

VAR 

lastname, firstname: TEXT := ""; 
next: StudentRef; 

END; (*Student*) 

class: StudentRef := NIL; 

PROCEDURE Init(VAR head: StudentRef) = 
VAR new: StudentRef; 
BEGIN 

11. Dynamic data structures 

(* 15.07.94 LB *) 

(*reference to student record*) 

(*points to next*) 

(*points to start of student list*) 

SIO.PutText("Enter names in reverse order of schedule; terminate with "EOF"\n"); 
WHILE NOT SIO.EndO DO (*EndO is TRUE i{"EOF" is read*) 

new:= NEW(StudentRef); (*student record created, address in new*) 
new.firstname:= SIO.GetTextO; (*firstname set in student record*) 
new.next:= head; (*new record points to previous head*) 
head:= new; (*new record is at start of list*) 

END; (*WHILE*) 
END Init; 

PROCEDURE Iterate(head: StudentRef) = 
BEGIN 

WHILE head # NIL DO 
SIO.PutText(head.fistname & " => "); 
head:= head.next; 

END; (*WHILE*) 
SIO.NIO; 

END Iterate; 

BEGIN 
Init(class); 
Iterate(class); 

END StudentList. 

(*output first name*) 
(*sets next student in schedule*) 

Example 11.14: Linked list with references, elements appended at the front 

11.1.5 Address management by the system 

In the above example we imposed a structure - a list that contains the 
sequence of blackboard duty - over the array structure. Here we added the 
field (next) to the student record, which enabled indirect index computation. 
Would it not be simpler and more efficient if the programming language 
supported the construction of such a structure as a list? For this purpose, 
Modula-3 provides a type constructor for pointers (references) along with 
the corresponding operations. Before the detailed explanation in Section 
11.2, we present the basic idea and an introductory example. 
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Figure 11.15: Effect of New 
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Figure 11.16: Student list built with references 

We can create a pointer to any type by preceding the type with the key
word REF. The original type is called the referenced type. Thus in Example 
11.14 the type StudentRef is a reference to the record type Student. The 
reference to the next element (field next) and the variable class are also of 
type Student Ref. 

The variable class is initialized with the value NIL. The NIL value can be 
assigned to any pointer variable; it means that the pointer points nowhere 
(we have encountered the NIL value already in procedures, with a similar 
meaning). Note that if we forget to initialize a pointer, its value can be 
undefined. But if a pointer variable has the value NIL, then its value is 
certainly defined. This distinction is very important because the value NIL 
can be tested and thus always leads to well-defined behavior. (Even if the 
programmer forgets, at least the language environment notices the opera
tion that attempts to follow a NIL pointer). An uninitialized pointer, on the 
other hand, can produce undefined behavior. Therefore the Modula-3 lan
guage environment automatically initializes pointer variables to NIL. Still, 
it is better not to rely on this and to explicitly initialize our variables. 

A fundamental operation on a pointer variable is the invocation of the 
predefined function NEW. It requires a pointer type as parameter. Invoking 
NEW effects the following: 

• Memory appropriate to the size required for the referenced type is 
allocated somewhere in the system memory region . 

• The address of this memory is returned as function value. 
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PROCEDURE Init(VAR head: StudentRef) = 
VAR new, last: StudentRef; 
BEGIN 

11. Dynamic data structures 

SIO.PutText("Enter names according to schedule; terminate with "EOF"\n"); 
WHILE NOT SIO.EndO DO 

new:= NEW(StudentRef); 
new.lastname:= SIO.GetTextO; 
new.next:= NIL; 

IF head = NIL THEN 
head:= new; last:= new; 

ELSE 
last.next:= new; last:= new; 

END; (*IF head = NIL*) 
END; (*WHILE*>' 

END Init; 

(*create student record; address in new*) 
(*name set in student record*) 

(*add new to end*) 

(*add to head of empty list*) 
(*both point to only element*) 

(*add to end of non-empty list*) 

Example 11.17: Linked list with references, elements are added at end 

The statement new := NEW(StudentRef) creates a new student record 
and assigns its address to the variable new (Figure 11.15). Thereafter we 
can use the pointer variable to reference the elements of the referenced 
type. The expression new.firstname designates the field firstname of the 
record to which new points. 

The Init procedure in Example 11.14 builds a data structure that con
sists of a chain of student records. Input is controlled using the Boolean 
function SIO.EndO: It returns true if it encounters an "End-Of-File" sig
naP. The head, or root, of the record chain is stored in the variable class 
(Figure 11.16). A new record is always added at the head of the list. This is 
why we iterate through the records in reverse order. We can easily change 
this by adding new elements at the end rather than at the beginning ofthe 
list. We store the pointer to the last element added in the variable last. The 
new element is always added at the position last.next (Example 11.17). 

Compared to the procedure of the same name in Example 11.13, Iterate 
has become simpler. It is also robust: it can even be invoked with an empty 
student list, in which case it does nothing. 

What has improved over our array solution? First, we have eliminated 
the constant MaxStudent. We no longer need any assumptions about the 
number of students - the program remains the same for two or for 2000 
students. A less obvious advantage is that pointers allow us to easily add 
new students to the list and remove others. We examine list structures in 
more detail in Section 11.5.1. 

20na Unix keyboard this is the key combination Ctrl+D and on MS-DOS PCs this is 
Ctrl+Z. 
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11.2 Dynamic data in Modula-3 

A pointer, or reference, is either NIL or it points to some (usually nameless) 
region of memory in which a value of a certain type is stored. 

Syntax of the pointer type 

RefType55 = ["UNTRACED" ] [ Brand58 ] "REF" Type48' 
Brand58 = "BRANDED" [ConstExpr65 ]. 

UNTRACED is explained in Section 11.2.1 and BRANDED in Section 11.4.1. 
In Modula-3, reference types are bound to another type, the referenced 

type. A reference contains an address, but this address is always of data 
whose type is already known at compile time. Why is this important? If a 
pointer were to reference data whose type were unknown at compile time, 
then the compiler could not check whether the referenced element actually 
exists. Then we might easily encounter the error that our search for an 
unknown address produces a pointer to data of another type. 

Imagine that you want to buy an ice cream, open a door labeled "Ice 
Cream Shop", and find yourself in an office supply store, or perhaps 
on an unknown island such as Jules Verne's "L'ile mysterieuse". Type 
binding guarantees that a pointer always references data of a known 
element. 

11.2.1 Allocation and deallocation 

Until this chapter, we have allocated memory for our data by means ofvari
able declarations. Data that are global to a module are created at the start 
ofthe module. Thus these are often called static data. Data declared locally 
to an enclosed block are created automatically on entry into the block and 
are destroyed on leaving the block. These are often called semidynamic 
data. Data that are created (allocated) and then destroyed (deallocated) on 
demand are called dynamic data. Allocation in Modula-3 occurs explicitly 
(with the function NEW), while deallocation occurs implicitly, i.e., automat
ically (see below). 

Observe that we are now speaking of static and dynamic data in another 
context than before. Here it is not a matter of the structure and size of a 
data type, but of creating data by allocating memory for them. It makes 
sense to store the anchor, or root, of a dynamic data structure (e.g., of a list) 
statically, i.e., in a module variable (such as the variable class in Example 
11.14). This is the normal case. As many advantages as dynamic data 
structures have, we do need one fixed point (like the pulleys of Archimedes). 
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TYPE 
StudentRef = REF Student; 
Student = RECORD 

catalogNo: INTEGER; 
firstname, lastname: TEXT; 

END; (*Student*) 

VAR ref1, ref2: StudentRef; 

BEGIN 
ref1:= NEW(StudentRef); 

ref1.catalogNo:= 1; 

11. Dynamic data structures 

(*Reftype bound to type Student*) 

(*create data record with address in refl*) 

(*set fields of new data record*) 
ref1.firstname:= "Peter"; ref1.lastname:= "Tall"; 

ref2:= NEW(StudentRef, catalogNo:= 2, 
firstname:= "Julie", lastname:= "Short"); 

ref2:= ref1; 

ref1:= NIL; 
ref2:= NIL; 

(*data record created and initialized*) 

(*ref2 now points to first record; thus second cannot be referenced*) 

(*first record can still be referenced with ref2*) 
(*now 2nd record is also inaccessible*) 

Example 11.18: Allocating and deallocating memory for dynamic data 

Allocation 

We can create an example of a referenced data type with the predefined 
function NEW. The signature of NEW is: 

NEW(referenced type, ... ); 

The first parameter is obligatory. If the type is a reference to a record 
type, then optional initializations of record fields can follow. They must 
be specified by name; no positional initialization is permitted here. If the 
referenced type is an open array, then the size ofthe open dimensions must 
be specified here (see Section 11.2.3). 

As we have seen, NEW has two effects: 

1. It allocates memory for data of the referenced type (creates a new 
data container), which is actually a side effect. 

2. It returns a pointer to the allocated memory. 

Example 11.18 shows how to create and use dynamic data. First a 
record is created and its address is assigned to ref1. Then the fields of 
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Figure 11.19: Effect of the pointer assignment ref2 := refl 
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the referenced type are set. On allocation of the next record, (referenced by 
ref2) we initialize the fields with the optional parameters of NEW. 

The reader might wonder how this mysterious, system-internal alloca
tion of memory works. A language environment that provides dynamic 
data must have its own memory management -linked to the operating 
system of the computer. This memory management requests blocks of 
free memory from the operating system. Memory management also 
handles blocks that become free, either returning them to the oper
ating system or keeping them in reserve to cover later requests from 
the program. The organization of the free memory region from which 
NEW allocates space for variables is called the heap because this data 
region lacks regular structure and grows in accordance with require
ments. The name alludes to a data structure [Sed93] that is used often 
(but not always) for managing free memory. 

Reference assignment and relational operations 

The normal rules of assignment apply to assignments to references. How
ever, note that the value of a reference is an address. The assignment ref2 
:= ref1 in Example 11.18 does not mean that the data fields of the first 
record are copied to those ofthe second. Instead, the statement causes ref2 
to point to the same record as ref1 (Figure 11.19). Thus the record to which 
ref2 previously pointed becomes inaccessible (no other pointer references 
it). Mter the assignment ref1 := NIL, the first record can still be referenced 
with ref2. After ref2 := NIL the first record also becomes inaccessible. 

Similar considerations apply to relational operations on references (tests 
for equality and inequality are permitted). If two references are equal, this 
means that they point to the same record. If they are unequal, then they 
point to different records, which still might have the same contents. Sec
tion 4.4 showed that comparing texts can prove curious: Texts that we con
sider "equal" are unequal. Therefore we mentioned the function Text. Equal, 
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which always behaves "correctly". Now we can clarify this phenomenon: In 
Modula-3 TEXT is a reference. Thus if we compare two variables of type 
TEXT, they might reference two different text examples that have the same 
content. But the function Text. Equal always compares the contents of refer
enced texts - which can be arduous. 

Dereferencing 

We access allocated data by dereferencing. Thus far we have always 
achieved this by specifying the reference variable, but this does not al
ways work. The syntax of dereferencing is part ofthe syntax of expressions 
(see Section 7.1.1). If r is a variable of a reference type, then ( stands for 
whatever r references. We say "r dereferenced". If the Aoperator (the deref
erencing operator) is followed by further selectors (a "[" for indexing or a"." 
for access to a record field), then we can omit the Aoperator. This makes the 
following statements equivalent: 

ref 1 " .firstname := "Peter"; 
ref1.firstname := "Peter"; 

This abbreviation is particularly important when accessing fields of 
objects, as Section 13 will show. To emphasize the presence of a pointer, 
it is often useful to write the "operator. 

The "operator is requisite if we are accessing the referenced data as a 
whole. For example, to assign the entire record referenced by ref1 to a 
variable of record type Student, we could write: 

VAR 
student: Student; 
ref1: REF Student; 

BEGIN 

(*student is a record*) 
(*refl points to a record *) 

(*copy record to which refl points to the variable student*) 
student := ref1"; 

Note that this assignment is not a pointer assignment; ref 1 " designates 
the referenced data rather than the pointer. It copies the whole record to 
which ref1 points to the variable student. 

Deallocation 

References are normally controlled by the run-time system ofthe language 
environment; we call such pointers traced references. If previously ref
erenced data become inaccessible at some point (because all referencing 
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pointers are reassigned or set to NIL), then their allocated memory is auto
matically deallocated by the language environment and so freed for other 
use. This part of the run-time system is called the garbage collector. In 
Modula-3, deallocation of dynamic memory occurs implicitly; the program
mer need not (indeed cannot) handle it. 

Many programming languages (and their environments) lack garbage 
collection. In this case it is the job of the programmer to release unused 
memory. This can lead to two errors. The programmer can forget to deal
locate, which leads to inflated memory consumption, even of all available 
memory. On the other hand, the programmer can release memory that 
is still referenced by a pointer somewhere else in the program. If such a 
dangling pointer is used later, then it can reference a region of memory 
that meanwhile has been reallocated. This leads to unpredictable behavior 
(at best a program crash). Systems with garbage collection preclude such 
errors. 

Automatic deallocation of memory can be undesirable in certain cases, 
especially in system programming, such as within an operating system. 
Certain systems programs require explicit control over the release of dy
namic data as well (just consider the garbage collector itself, which can also 
be written in Modula-3). For pointers not controlled by the garbage collec
tor (untraced reference), the language provides the keyword UNTRACED. 
Untraced references are not disposed of automatically, but only explicitly 
with the predefined DISPOSE function. However, DISPOSE can only be used 
in unsafe modules (see Section 10.1.1 and Appendix B.7) because it can 
cause dangling pointers. 

11.2.2 Operations with references 

Let us summarize the operations on references: 

1. Allocation with NEW. 

2. Dereferencing to access the referenced data. 

3. Testing for equality or inequality. Any other relational operation 
makes no sense in safe modules. System programs can also test con
trolled references in unsafe modules for greater than or less than. 
How to interpret the result depends strongly on the architecture of 
the computer and its memory management. 

4. Assignment with the usual rules of assignment compatibility. Section 
11.3 (on subtyping) treats assignment in more detail. 
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11.2.3 Open (dynamic) arrays 

In Section 8.1 we termed array types whose index ranges are specified at 
compile time static arrays. However, Modula-3 permits us to delay speci
fication of the size of individual dimensions until run time. We call such 
arrays open or dynamic arrays. Note that their structure remains a "nor
mal" array structure; only their size is dynamic. The size is specified only 
once, at run time, and from then on nothing changes. 

Array syntax allows us to leave the type ofthe index undefined, or open, 
in the declaration of an array type, e.g.: 

TYPE 
Vector = ARRAY OF REAL; 
Matrix = ARRAY OF ARRAY OF INTEGER; 

An open array can only be used in certain contexts: 

1. as formal parameter 

2. as referenced type 

3. as element type of another array 

4. as type in an array constructor 

This means, e.g., that we cannot declare a variable of type Matrix, but 
we can declare a variaable of type REF Matrix. Open arrays can be created 
only with a reference, thus only with the help of NEW. We must supply as 
parameters the sizes of the open dimensions sequentially, for example: 

VAR 
n: INTEGER := SIO.GetintO; 
m: INTEGER := SIO.GetintO; 
vector := NEW(REF Vector, n); 
matrix := NEW(REF Matrix, n, m); 

('reads size') 
(. size of second dimension') 

('creates vector with n elements') 
('creates (nxm) matrix') 

If an open dimension acquires size n at run time, then its index type is 
[0 .. n-1] (a subrange of INTEGER). Example 11.20 stores student data in an 
array whose size is determined only at run time. Student data are read and 
output. We can use the WITH statement to dereference class[i] to abbreviate 
and accelerate its performance (the expression class[i] is computed only 
once). Here again, we can use the built-in FIRST and LAST functions. Note 
that its argument must be of type array (rather than a pointer type to an 
array type); therefore we must write classA

• 
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MODULE DynArr EXPORTS Main; (*15.015.94. LB*) 

FROM SIO IMPORT PutText, Putlnt, Getlnt, GetText; 

TYPE 
Class = REF ARRAY OF Student; 
Student = RECORD 

catalogNo: INTEGER; 
firstname, lastname: TEXT; 

END; (*Student*) 

VAR class: Class; n: CARDINAL; 

BEGIN 
PutText("Enter the number of students and their names\n"); 
n:= GetlntO; 
class:= NEW(Class, n); 
FOR i:= FIRST(classA

) TO LAST(classA

) DO 
WITH cI = class[i] DO 

cl,catalogNo:= i; 
cl.firstname:= GetTextO; cl.lastname:= GetTextO; 

END; (*WITH cl*) 
END; (*FOR i*) 
FOR i:= FIRST(classA

) TO LAST(classA

) DO 
WITH cl = class[i] DO 

Putlnt(cl,catalogNo); PutText(": "); 
PutText(cl.firstname & "" & cl.lastname & "\n"); 

END; (*WITH cl*) 
END; (*FOR i*) 

END DynArr. 

(*read number of students*) 
(*array of students created*) 

Example 11.20: Allocation and usage of an open array 

11.2.4 Arrays of references 

We can enhance the dynamics of Example 11.20 by storing references to 
student data in the array rather than the data themselves. This particu
larly makes sense if the records are very large (often the case in practice). 
If we want to reorder the data (e.g., sort by name), we can sort the array 
of pointers without needing to move the voluminous data itself Here the 
pointer functions as a sort of surrogate. 

Such a solution is not entirely for free: We must explicitly allocate 
storage for the referenced data, and access becomes one step more in
direct. Therefore we recommend arrays of pointers only for really large 
records. 

Example 11.21 is a modification of the program in Example 11.20. 
Class is no longer an array of students, but an array of student refer
ences (the fact that Class is itself an open array plays no role in this con
text). Accordingly, the student records must be created explicitly. Other-



248 11. Dynamic data structures 

MODULE DynDyn EXPORTS Main; 

FROM SIO IMPORT PutText, Putlnt, Getlnt, GetText; 

TYPE 
Class = REF ARRAY OF REF Student; 
Student = RECORD 

catalogNo: INTEGER; 
firstname, lastname: TEXT; 

END; (*Student*) 

VAR class: Class; n: CARDINAL; 

BEGIN 
PutText("Enter the number of students and their names\n"); 

(* 15.015.94. LB*) 

n:= GetintO; (*read number of students*) 
class:= NEW(Class, n); (*array of students created*) 
FOR i:= FIRST(class") TO LAST(class") DO 

WITH cl = class[i] DO 
cl:= NEW(REF Student); (*student record created*) 
cLcatalogNo:= i; 
cl.firstname:= GetTextO; cLlastname:= GetTextO; 

END; (*WITH cl*) 
END; (*FOR i*) 
FOR i:= FIRST(class") TO LAST(class") DO 

WITH cl = class[i] DO 
Putlnt(cLcatalogNo); PutText(": "); 
PutText(cl.firstname & "" & cl.lastname & "\n"); 

END; (*WITH cl*) 
END; (*FOR i*) 

END DynDyn. 

Example 11.21: (Open) array of pointers 

wise, the program quite resembles Example 11.20. Expressions such as 
class[i).catalogNo now mean something different because class no longer 
designates a student record, but a pointer to such. More precisely, we could 
write classA[r.catalogNo. However, since the semantics of the first nota
tion is unambiguous from the declarations, Modula-3 permits the shorter 
notation. 

11.3 Subtypes 

Before we continue discussing operations with references, let us examine 
the subtype concept of Modula-3 in more detail. This concept takes on new 
dimensions in combination with references. We complete our discussion of 
the concept in the context of objects in Chapter 13. 

The basic principle was already introduced in Section 7.4: Given the 
two types Sub and Super with the relation Sub <: Super, all values of Sub 
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are also values of Super. The subtype relation is reflexive and transitive. 
For many types, Modula-3 defines concrete subtype rules. (We already 

saw those for subranges in Section 7.4). 

11.3.1 Subtype rule for references 

NULL <: REF T <: REFANY 
NULL <: UNTRACED REF T <: ADDRESS 

In words, all traced references are subtypes of type REFANY (and all un
traced references are subtypes of ADDRESS). Thus REFANY (or ADDRESS) 
is the supertype, the root, of all reference types. NULL is a subtype of all 
references. The only value in its range is NIL. This means that every refer
ence type contains NIL. Thus we can assign NIL to any reference variable. 

Simulated genericity 

Recall the rules of assignment compatibility in Section 7.5 on page 135. 
Rule 2 (R <: L) states that the type ofthe right side of an assignment must 
be a subtype of the left side. In the case of references, this opens immense 
flexibility. We can assign any reference to a variable of type REFANY. As 
we know, for value parameters the actual parameter must be assignment 
compatible with the formal parameter. Thus if we define a procedure with 
formal parameters of type REFANY, we can invoke this procedure with ac
tual parameters of any reference type. This allows us to create procedures 
that work with different types. This is a specialized and restricted imple
mentation of the concept of genericity. 

A component (e.g., a module or a procedure) is generic if its services are 
type-independent, but still type-safe. The most common solution is to pro
vide the component with type parameters which are then made concrete 
on use. For this purpose Modula-3 provides the generic module, which can 
be parameterized with module names (see Appendix B.5.4). The use of RE
FANY parameters amounts to a "cheap" imitation of genericity - although 
it works only for reference types. An example is given in Section 11.4.3. 

Assignment of a supertype value 

Rule 4 of the assignment compatibility rules (Section 7.5, page 136), states 
that in the case of references and arrays a value of a supertype can be 
assigned to a variable of a subtype if certain conditions are met. What are 
these conditions? Take the program excerpt in Example 11.22. It is clear 
that we can assign r2 to the variable any without problems because Student 
<: REFANY. The statements r1 := any and adr := any can be legal- according 
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TYPE 
Student = REF RECORD lastname, firstname: TEXT END; 
Address= REF RECORD street: TEXT; number: CARDINAL END; 

VAR 
r1: Student; 
r2 := NEW(Student, firstname:= "Julie", lastname:= "Tall"); 
adr := NEW(Address, street:= "Washington", number:= 21); 
any: REFANY; 

BEGIN 
any:= r2; 
r1:= any; 
adr:= any; 

(*always safe assignment*) 
(*legal because type of any = Student*) 

(*produces run-time error*) 

Example 11.22: Assignment ora supertype with a run-time error 

to Rule 4. In the first case the assignment can be carried out because any 
contains a value of type Student, which is assignment compatible with r1. 
This is not the case with the second assignment (adr := any). any still points 
to student data, and these cannot be assigned to a variable of type address. 
Thus this statement produces a run-time error. 

The example allows us to derive the general condition in Rule 4: A value 
of a supertype Super can be assigned to a variable of a subtype Sub if it falls 
in the range of Sub. This condition can be tested at run time. 

We can formulate this condition in a different way. We can say that 
after the assignment any := r2 the variable any has changed not only its 
value but also its type. Its actual type (or dynamic type) has changed from 
REFANY to Student. We also distinguish between the declared (static) and 
the actual type. The actual type of the expression on the right side of the 
assignment must always be assignment compatible with the declared type 
ofthe variable on the left side (the actual type ofthe variable is irrelevant 
since it is overwritten by the assignment). 

Rule 4 is closely related to Rule 3, which relates to subranges. We can 
assign a value of type Day to a variable of type Workday if and only if the 
value falls in the range of workdays. 

Additional examples of assignment between different but compatible 
types are presented in the context of objects (Section 13). 

11.3.2 Subtype rule for arrays 

Array type Sub is a subtype of array type Super if they have the same 
number of dimensions, if they share the same base type (element type in 
the last dimension), and if for each dimension either both are open arrays 
or Sub is fixed (fixed number of elements) and Super open, or both are fixed 
and have the same number of elements. Thus an open dimension is always 
a supertype of a corresponding fixed dimension. In Example 11.23 the fol-
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TYPE 
FixedMatrix = ARRAY [1 .. 100], [1 .. 100] OF REAL; 
FixedVector = ARRAY [1 .. 100] OF REAL; 
SmaliVector = ARRAY [1 .. 50J OF REAL; 
Matrix = ARRAY OF ARRAY OF REAL; 
Vector = ARRAY OF REAL; 

VAR 
v: REF Vector := NEW(REF Vector, 100); 
m: REF Matrix := NEW(REF Matrix, 100, 100); 
tv: FixedVector; sv: SmaliVector; tm: FixedMatrix; 
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BEGIN 
vA := tv; 
mA := tm; 
tv:= VA; 

tm:= rnA; 
vA := sv; (*run-time error due to different structure*) 

Example 11.23: Assignment compatibility of arrays 

lowing apply: FixedMatrix <: Matrix, FixedVector <: Vector and SmaliVector 
<: Vector. 

Assignment compatibility of arrays 

Rules 2 and 4 apply for assignment compatibility of arrays (Section 7.5 on 
page 136), but they are always restricted by an additional rule: Assignment 
compatible arrays must have the same shape. Therefore the assignment 
vA := sv in Example 11.23 produces a run-time error. The other assignments 
are legal. 

11.4 Abstract and encapsulated data types 

Let us summarize what a data type entails (also see Section 10.2.2): 

• Range 
The range determines the values contained in the type. Values can 
certainly occur in multiple types. 

• Operations 
These specify what can be done with the values. Additional operations 
are not permitted. For built-in numeric types the language provides 
assignment, arithmetic operations and relational operations. For our 
custom-defined types, we provide operations such as push and pop for 
our stack. 
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The specification of the range and the operations as well as any addi
tional conditions suffices to exactly define a data type. Most programming 
languages, including Modula-3, provide no means for complete specification 
of a data type. To define a new type, we specify its range and operations 
in an interface. The exact specification results later from the implemen
tation of the procedures. Consider, e.g., a date type: We cannot directly 
specify that the value of the days in January range to 31, but in Febru
ary they usually only go to 28. For the operations, we can only specify the 
signatures; everything else can only be recorded in comments. 

Indeed there are programming languages (e.g., Eiffel [Mey89]) that of
fer more than Modula-3 in this respect. On the other hand, there are 
specification languages (such as Z [PST91]) whose explicit goal is to 
serve as a specification tool. There are also specification languages 
that are more or less integrated into a programming language envi
ronment (e.g., Larch in C and Modula-3 [GH93]). 

Another problem is that until now we could not prevent clients of the 
type from applying operations that were not intended (compare Example 
10.10 on page 216). 

Abstract data types solve these problems. They have the following fea
tures: 

• They have a name. 

• The operations are completely enumerated (including initialization). 

• The semantics ofthe operations is also fully specified (e.g., in an alge
braic form). 

• Their data are accessible only through the specified operations. This 
is achieved by hiding the actual structures of the data. 

With the help of the name, individual examples (also called instances) of 
the abstract data type can be declared. These are variables whose range 
corresponds to the abstract type. 

If the specification of the semantics is missing, then we speak of encap
sulated data types. In practice, this distinction is often neglected. 

11.4.1 Opaque data types 

The principle of information hiding, where a module hides its data from 
its clients, is already familiar (Section 10.2.1). This allows us to prevent 
an erroneous client from destroying the data. This principle guarantees 
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INTERFACE FractionType; (*19.12.94. RM, LB*) 
(*defines the data type of rational numbers *) 

TYPE T <: REFANY; 

PROCEDURE Create 
PROCEDURE Plus 
PROCEDURE Minus 
PROCEDURE Mult 
PROCEDURE Divide 
PROCEDURE Numerator 
PROCEDURE Denominator 

(*T is a subtype of Refany; its structure is hidden*) 

END FractionType. 

(z: INTEGER; n: INTEGER:= 1): T; 
(x. y : T) : T; 
(x. y : T) : T; 
(x. y : T) : T; 
(x. y: T) : T; 
(x : T): INTEGER; 
(x : T): INTEGER; 

Example 11.24: Fraction as encapsulated data type 

(*x + y *) 
(*x - y *) 

(*x * y *) 
(*x : y *) 

increased security through regulation of the scope. Hidden variables are 
invisible to clients. 

Now we introduce something new: Instead of variables (the data itself), 
the structure of the data - wholly or in part - can be hidden. Clients can 
create any number of instances of the respective type in their own scopes. 
Access to these instances is restricted because the client only partially 
knows the structure. 

An undisciplined client could directly access the fields of a variable of 
type Fraction.T in Example 10.10 (page 216). This would not be possible 
if the client knew only the operations and not the data fields. This would 
force the client to use only the operations declared in the interface. 

This is where the concept of opaque types comes in. The idea is as 
follows: We publish the type name (e.g., T) and declare that T is a subtype of 
another type. This additional type is either a predefined type (e.g., REFANY) 

or the public part ofthe type (e.g., called Public). The opaque part of a type 
must naturally be revealed somewhere. This revelation is best done in a 
scope that is closed to the client. 

As an example we will re-implement the module Fraction as an encapsu
lated data type. In Example 10.10 the interface exposed the inner structure 
ofthe fraction type. Example 11.24 shows the new interface. Type T is now 
declared as a subtype of REFANY. We changed the name of the procedure 
Init to Create. The procedure Create first creates a new instance of type 
FractionType.T, then initializes its fields, and finally returns the reference 
to the instance as a function value. Otherwise the interface is the same as 
in Example 10.10. 

The client (Example 11.25) can now generate any number of fractions 
with the help of the Create function. The rest of the client remains un
changed. The most important change is that the client can no longer access 
the data fields of the fractions. The client has all instances of the numbers 
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MODULE FractionClient EXPORTS Main; (*19.12.94. RM, LB*) 

FROM FractionType IMPORT T, Create, Plus, Numerator, Denominator; 
FROM SIO IMPORT Putlnt, PutText, NI; 

VAR a, b, c, d: T; 

BEGIN 

(*declaration of variables of type FractionType. T*) 

(*Fractions *) 
(*initialization offraction variables: *) 

a:= Create(3, 4); 
b:= Create(1 , 4); 
c:= Create(1); 

d := Plus(a, b); 
Putlnt(Numerator(d)); PutText("/"); 
Putlnt(Denominator(d), 1); NIO; 

d := Plus(b, c); 
Putlnt(Numerator(d)); PutText("f'); 
Putlnt(Denominator(d), 1); NIO; 

END FractionClient. 

(*~*) 
(*1*) 

4 
(*1 *) 

(*~ + ~*) 

(*~+1*) 

Example 11.25: Client of encapsulated data type FractionType. T 

available, but can access them only through the procedures defined in in
terface FractionType. 

However, this statement is not quite accurate! Assignment and rela
tional operations (test for equality) always apply to all references. For in
stance, in Example 11.25 we could write IF a = b THEN· ... In the client, 
however, we cannot write a.num := 1. 

To explain how opaque data types are implemented, we first need to 
examine the term revelation more closely. 

11.4.2 Revelation 

A revelation reveals, within a certain scope, parts of a type that were un
defined until then. Revelations can occur only in interfaces or in the outer 
block of implementation modules. 

Syntax the revelation declaration 

Declaration13 = ... I "REVEAt..:' Idents9 ("=" I "<:" ) Type4S. 

There are two kinds of revelation: partial and complete. For an opaque 
type we can specifY any number of partial and exactly one complete reve
lation. 

A complete revelation takes the following form: 

REVEAL T = type expression 
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MODULE FractionType; 

REVEAL T = BRANDED REF RECORD 
num, den: INTEGER 

END; 

PROCEDURE Create (x: INTEGER; y: INTEGER := 1): T = 

255 

(*19.12.94. RM, LB*) 

(*opaque structure ofT*) 

BEGIN (*creates and initializes a fraction*) 
RETURN NEW(T, num:= x, den:= y); (*creates and initializes an instance ofT*) 

END Create; 

PROCEDURE Plus (x, y: T) : T = 
VAR sum := NEW(T); 
BEGIN 

IF x.den # y.den THEN 
x.num := x.num • y.den; 
y.num := y.num • x.den; 
sum.den := x.den • y.den 

ELSE 
sum.den := x.den 

END; 
sum.num := x.num + y.num; 
RETURN sum 

END Plus; 

PROCEDURE Minus(x, y : T) : T = 
BEGIN 

y.num := - y.num; 
RETURN Plus(x, y) 

END Minus; 

(*adds fractions (no reduction)*) 
(*returns result in sum*) 

(*subtracts fractions*) 
(*internally already uses services of this module*) 

Example 11.26: Revelation of an opaque data type 

T must be an opaque type. type expression must not be a simple type 
name, but must actually define a type. The revelation states that type 
expression is the concrete type of opaque type T. If T is a subtype of any 
type S, then type expression <: S must also apply. 

This condition is checked by the language environment. Since rev
elations are defined across module boundaries, it can generally be 
checked only at link time. 

A complete revelation exposes the internal structure of T. It is (nor
mally) specified in an implementation module (see Example 11.26). The 
outer type constructor of type expression must be a branded reference type. 
The specification BRANDED marks a type to distinguish it from all other 
types. This suppresses structural type equivalence (compare Section 7.3). 
The optional ConstExpr65 after the keyword BRANDED must be a text 
constant; if specified, this text unambiguously identies the type. If it is 
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not specified, then the system generates an internal identification that is 
unique during a program execution. 

Explicit branding particularly makes sense when variables of a 
BRANDED type can outlive the lifetime of the whole program execu
tion (are persistent). 

It is easy to understand why the revelation of opaque types must be 
distinguished from all other types. Otherwise it might happen that a client 
- e.g., by pure chance - defines a type that has exactly the same structure 
as the opaque type. Now if the client - again by chance - employs this 
type instead of the opaque type, this suddenly grants access to the fields 
that should be opaque. As improbable as such a double chance might be, 
it must be explicitly precluded. The branding mechanism prevents this 
problem because it allows the compiler to detect the incorrect assignment 
in this case, and the client cannot employ the structurally equivalent type 
instead of the branded opaque type. 

The declaration from Example 11.26 reveals the internal structure ofT: 

REVEAL T = BRANDED REF RECORD num, den: INTEGER END 

It is known only in the scope of this implementation module; clients have 
no access to the fields num and den. Because the type has a brand, it is not 
equivalent to any other type declared as REF RECORD num, den: INTEGER 
END. 

Opaque data types (except objects; see Section 13) can be created only 
where their inner structure is known, i.e., in the scope of the complete 
revelation. This restriction is understandable since NEW cannot simply 
allocate memory for an unknown record. 

The partial revelation expresses only that a type is a subtype of another 
type. We use partial revelations - normally - in interfaces. They can reveal 
a little more information about an opaque type without exposing its final 
structure. The form of a partial revelation is: 

REVEAL T <: type 

type can be any type. The s of an opaque type must be linearly ordered 
via the subtype relation; i.e., the following must apply: 

REVEAL type <: type1 /\ REVEAL type <: type2 ::::} 
type1 <: type2 v type2 <: type1 

This additional language element provides the expressive features to 
hide not only algorithms but also type definitions in server modules. 
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11.4.3 An abstract and a generic stack 

The stack in Example 11.2 (page 230) has the following shortcomings: 

1. It consists of a single stack example. 

2. The type of the elements is fixed (INTEGER). 

3. The maximum size of the stack is preset. 

Now let us design a stack that corrects these drawbacks. Our stack 
must have the following properties (see Example 11.28): 

1. Encapsulation 
It exports an opaque type and the operations thereon. The client can 
create any number of stacks and use them with complete type secu
rity. In short, we will redesign the stack as an encapsulated data 
type. 

2. Genericity 
The stack must handle data of various (although not completely ar
bitrary) types. It uses simulated genericity by using REFANY (see 
11.3.1). We can store data of any pointer type on the stack in Exam
ple 11.28 (see Example 11.27). 

3. Arbitrary size 
We remove the Full operation from the interface. We feign an infi
nite stack in the hope that the client will not store so many elements 
that total memory is exhausted. We could explicitly test this condi
tion, but for the sake of simplicity we omit the test, which is language 
environment dependent. 

Example 11.28 shows the corresponding interface. It exports the opaque 
type T and the element type ET. All procedures receive a parameter that 
determines the actual stack (compare Example 11.2, page 230). We receive 
a new, empty stack with the procedure Create. 

Example 11.27 demonstrates the usage ofthe abstract and generic stack. 
Two stacks are defined; stackFraction will store rational numbers; stack
Complex, complex numbers. Both stacks are initialized on declaration to 
NIL (i.e., empty). Since both numeric types are defined as references to 
records, they are assignment compatible with REFANY. The output of Ex
ample 11.27 looks like this: 

[
1/4 1/3 1/2 1/1 1 

_4_:_6 __ 3_:_4_._5 __ 2_:_3 __ 1_:_1_._5 __________________________ ~ 
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MODULE StacksClient EXPORTS Main; 

IMPORT Stacks; 
IMPORT FractionType; 
FROM Stacks IMPORT Push, Pop, Empty; 
FROM SIO IMPORT Putlnt, PutText, NI, PutReal, PutChar; 

TYPE Complex = REF RECORD r, i: REAL END; 

VAR 
stackFraction: Stacks.T:= Stacks.Create(); 
stackComplex : Stacks.T:= Stacks.Create(); 

c: Complex; f: FractionType.T; 
BEGIN 

PutText("Stacks Client\n"); 
FOR i:= 1 TO 4 DO 

(*LB *) 

Push(stackFraction, FractionType.Create(1, i)); (*stores numbers +*) 
END; 
FOR i:= 1 T04 DO 

Push(stackComplex, NEW(Complex, r:= FLOAT(i), i:= 1.5 * FLOAT(i))); 
END; 
WHILE NOT Empty(stackFraction) DO 

f:= Pop(stackFraction); 
Putlnt(FractionType.Numerator(f)); PutText("f'); Putlnt(FractionType.Denominator(f), 1); 

END; 
NI(); 
WHILE NOT Empty(stackComplex) DO 

c:= Pop(stackComplex); 
PutReal(c.r); PutChar(':'); PutReal(c.i);PutText(" "); 

END; 
NI(); 

END StacksClient. 

Example 11.27: Client of an abstract generic stack 

Note that here we have achieved flexibility in part at the cost of se
curity. The system can test that we store only references on this stack; 
however, it cannot test whether we store correct references. If we acciden
tally put complex numbers on stackFraction, the system could not detect the 
error. With "real" genericity we could correct this deficit; this would mean 
that we would use the element type as a formal parameter of the encap
sulated data type and that on declaration of the variables we could specifY 
their concrete, actual type. In this case the compiler could certainly detect 
whether we are putting complex numbers on the fractions stack, or vice 
versa. 

How can we store something other than references (e.g., INTEGERS) on 
the stack in Example 11.28? This is possible only via a detour, namely a 
pointer to INTEGER. We could declare the following type: Int = REF IN
TEGER. Such a solution is obviously not really satisfYing because now we 
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iNTERFACE Stacks; 

TYPE 
T <: REFANY; 
ET= REFANY; 

I PROCEDURE CreateO: T; 
i 

(* 14.07.94 RM, LB*) 

(*type of stack*) 
(*type of elements*) 

(*creates and intializes a new stack*) 

PROCEDURE Push(VAR stack: T; elem: ET); (*adds element to stack*) 
PROCEDURE Pop(VAR stack: T): ET; 

(*removes and returns top element, or NIL for empty stack*) 
PROCEDURE Empty(stack: T): BOOLEAN; (*returns TRUE for empty stack*) 

END Stacks. 

Example 11.28: Interface of an abstract generic stack 

MODULE Stacks; 

REVEAL 
T = BRANDED REF RECORD 

info: ET; next: T; 
END; (*T*) 

PROCEDURE CreateO: T = 
BEGIN 

(* 14.07.94 RM, LB*) 

RETURN NIL; (*a new, empty stack is simply Nil *) 

END Create; 

PROCEDURE Push(VAR stack: T; elem:ET) = 
VAR new: T := NEW(T, info:= elem, next:= stack); (*create element*) 
BEGIN 

stack:= new (*add element at top*) 
END Push; 

PROCEDURE Pop(VAR stack: T): ET = 
VAR first: ET := NIL; (*Pop returns Nil for empty stack*) 
BEGIN 

IF stack # NIL THEN 
first:= stack.info; 
stack:= stack. next; 

END; (*IF stack # NIL*) 
RETURN first; 

END Pop; 

PROCEDURE Empty(stack: T): BOOLEAN = 
BEGIN 

RETURN stack = NIL 
END Empty; 

BEGIN 
END Stacks. 

(*copy info from first element*) 
(*remove first element*) 

Example 11.29: Implementation of an abstract generic stack 
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can access the value of a number only indirectly. This is less efficient than 
direct access, and the readability of the program suffers. 

Example 11.29 shows the implementation of the stack. The procedure 
Push creates a new stack element and adds it to the front. The elements 
are initialized on invocation of NEW. The function Pop removes and returns 
the first element; for an empty stack it returns NIL. 

11.4.4 Rules for the design of encapsulated data types 

From the examples above we can derive the general rules for the design of 
encapsulated data types in Modula-3: 

1. Module for type design 
We define an interface which specifies the type name and the opera
tions defined on it (in the form of procedure signatures). All procedure 
signatures must contain a parameter of the given type. It is advisable 
to offer an explicit procedure for the creation of elements ofthe encap
sulated type. This procedure can also initialize the data fields of the 
opaque type. 

2. Opaque type 
The type whose name is declared in the interface must be opaque; 
the details are revealed elsewhere (with a REVEAL declaration), nor
mally in the implementation part. However, since Modula-3 also per
mits partial revelation, it is possible that the revelation might be dis
tributed across multiple modules. Thus we could specify type 1 as a 
subtype of type2, which again is a subtype of type3, etc. The purpose 
is to show more and more of the structure of the type - but not ev
erything. Finally, there must be exactly one complete revelation (with 
the = sign). This must be marked as BRANDED so that no client can 
"steal" the type by chance. 

3. Hidden procedure body 
The bodies of the procedures listed in the interface are hidden in the 
implementation part. The clients must not make any explicit and 
also should not make any implicit assumptions about the implemen
tations. 

Although this last requirement is important, it is difficult to maintain. 
If the author of the client module knows the implementation of the opaque 
procedure bodies, then certain properties of the implementation can all 
too readily - perhaps unconsciously - find their way into the usage of the 
operations. Only a formal specification can protect us to some extent, but 
even there can be no guarantee against unconscious assumptions. 
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11.5 Dynamic structures 

Let us summarize and enhance our knowledge of dynamic data structures. 
We use dynamic data structures because we want to manage any num

ber of elements connected arbitrarily. The concept of pointer types provides 
all that we need, and it is in fact more powerful than necessary. With point
ers, we can dynamically construct arbitrary, "wild" data structures. How
ever, this would be just as dangerous as jumping around within a program 
(which we banished in Section 5, and which Modula-3 does not permit at 
all). Actually, some authors designate the pointer as the Goto statement 
of data structures. Therefore we must restrict ourselves to well-defined 
dynamic data structures. 

The names of statically created variables give them an unambiguous 
reference point. Naturally, to manage any number of dynamically created 
elements, we cannot assign an endless number of names, especially not 
dynamically. A record that we create dynamically with NEW has no name 
itself References allow us to access a nameless variable via its address. 
The reference variable "knows" the memory location just as with static data 
the variable identifier knows the memory location. To prevent confusion of 
these addresses by the programmer, they are hidden. We can only work 
through the entire structure as with the thread of Ariadne, starting with 
the name of the first data element, and we must take the utmost care that 
we do not lose grasp of our thread! 

We achieve a dynamic structure by linking unnamed variables. The 
variables are all records of the same type, each has a field whose contents 
point to the next variable in the structure. We need only a single pointer 
to the first unnamed variable, stored in a static named variable. By se
quentially reading the field that points to the next record, we can move on 
to read or modifY the entire structure. This structure is called a list (see 
11.5.1). 

Naturally multiple chains of pointers can ensue from one information 
node. Likewise such a chain can emanate from each element of an ar
ray of references. A general network of branches from nodes can be used 
to represent various graphs [Tru88]. If such branches are restricted ac
cordingly, the result is a tree, discussed in Section 12.2.1. Lists, trees and 
graphs occur in many forms. In general, however, they are well-studied and 
well-understood structures. They can help us avoid the dangers mentioned 
above. References are necessary to achieve dynamic data structures. How
ever, we must always very carefully design dynamic data structures and 
that we make them no more "dynamic" than really necessary! 

Some programming languages (e.g., Lisp [M+62] and Orca [Bal90]) 
directly support certain dynamic data structures, such as lists and 
graphs; then we can do without explicit pointers. 
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head[ __ -~ 

next 
"----------' 

Figure 11.30: Singly linked list 

11.5.1 Lists 

In a singly linked linear list we connect a number of records of a fixed, but 
otherwise arbitrary record type. Our record might look like this: 

TYPE RT = REF RECORD 
lastname, firstname: TEXT; 
age: CARDINAL; 
next: RT; 

END 

The type RT contains a field itself that is of type RT and points to the 
next element (of type RT) in the list. This field allows us to construct an ar
bitrary list of records. The start (head) of such a chain is a simple variable 
of type RT (Figure 11.30). The end of the chain is a record whose pointer 
field contains the value NIL. We can interpret this as the last element 
pointing to an adjoining empty list. 

Note that this recursive type structure is possible only because RT is 
a reference type. A static record type T = RECORD· .. n: T END is illegal ~ 
this type would have to contain infinite memory. Appendix B.4 specifies the 
exact rules for when type structures are permitted that contain themselves. 

This brings us to the following basic structure for singly linked lists: 
Each list consists of the empty list, or of an element that is followed by a 
(possibly empty) list. Based on this recursive definition of a list, we can 
now define additional invariants. 

The considerations for proving the correctness of dynamic ~ and thus 
in principle unlimited ~ data structures are quite similar to those that 
we proposed in establishing loop invariants (see Section 5.5.2) ~ in 
principle likewise unlimited. 
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top 

Figure 11.31: Stack constructed with pointers 

last 

Figure 11.32: Queue constructed with pointers 

Such a list invariant could take the following form: For every list oper
ation it must hold that before its execution a (possibly empty) list existed 
and after its execution a (possibly empty) list must exist again. We can 
use this recursive structure later for simple formulations of recursive algo
rithms (see Section 12.1.5). For the time we limit ourselves to the iterative 
processing of lists, which is generally more efficient anyway. 

11.5.2 Kinds of lists 

Our first, intuitively designed example of references (Example 11.14) was 
related to the stack (Figure 11.31). We were dissatisfied with it because 
it stored students in reverse order (normal for stacks). The simplicity of a 
dynamic stack stems from its execution of operations basically only on the 
(current) top stack element. For example, head := head. next would remove 
the top element. Iterating through an entire stack structure is possible 
only by sequentially removing the elements (which destroys the stack). 

A somewhat more powerful list structure is the queue (Figure 11.32). 
We use queues in Example 11.17 to store student data in the correct order. 
We can implement a queue with the help of a pointer to the start (first) and 
one to the end (last) of the queue. In an empty queue first and last are set 
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first last 

111\ -.J< >[-}-~~~~---
Figure 11.33: Doubly linked list 

to NIL. When we add the first element to an empty queue, both pointers 
reference this new element. Once the queue is no longer empty, inserting 
a new element means setting the successor field of the last element added 
(to which last points) to the new element and then also setting last to this 
new element. Thereby we achieve a structure in which first points to the 
first and last to the last element. The first element points to the second, 
the next-to-the-last to the last, and the last to NIL. In this situation we can 
easily remove the first element from the queue with the statement first := 
first.next. Removing the last element of the queue requires more complex 
actions: Starting with first, we must iterate through all elements. 

As another basic data structure, we introduce the doubly linked list. 
This structure allows insertion and removal at both ends with only a single 
access each. To enable double linking, we again need two pointers, first and 
last (or one pointer and circular linking). In addition, each element requires 
a forward and a backward pointer for double linking. 

We often use lists to implement sorted lists. Structurally a sorted list 
corresponds to a singly linked list. On the level of data declaration it does 
not differ from a stack-like list. However, the operations differ. Insertion 
must incorporate the sorting criterion. Searching means iterating through 
the list until either the element is found or the "next element" according to 
the search criterion is already "greater" than the target. 

11.5.3 Singly linked, sorted linear list 

We define a singly linked, sorted list of INTEGER values as an encapsulated 
data type. In interface 11.34 we define type T with the basic operations 
Insert and Remove. Insert inserts an element into the list. In parameter 
found, Remove returns false if and only ifthe list contains no element with 
the specified value. Otherwise it removes the first occurrence of such an 
element. 

The procedure type Action has a parameter oftype INTEGER. Iterate in
vokes action for all elements sequentially and passes the stored value as 
actual parameter. In Example 11.14 we first constructed the list of stu-
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INTERFACE Intlist; 

TYPE 

(* 16.07.94. RM, LB*) 

T <: REFANY; 
Action = PROCEDURE(value: INTEGER); 

PROCEDURE CreateO: T; 
(*returns a new, empty list *) 

PROCEDURE Insert(VAR list: T; value: INTEGER); 
(*inserts new element in list and maintains order *) 

PROCEDURE Remove(VAR list: T; value: INTEGER; VAR found: BOOLEAN); 
(*deletes (first) element with value from sorted list, 

or returns false in found if the element was not found *) 

PROCEDURE Iterate(list: T; action: Action); 
(*applies action to all elements (with key value as parameter) *) 

END Intlist. 

Example 11.34: Interface for sorted lists 

dents and then output it. We could have defined another procedure in the 
interface (Output). However, if we want to keep the interface ofthe list gen
eral, then such a procedure is too specialized (compare Chapter 10). It must 
handle the concrete form of the output, which has nothing to do with the 
list. Therefore we prefer to introduce the procedure Iterate, which takes a 
processing procedure as parameter. This processing procedure (the action) 
is then invoked by the list module for all list elements. The concrete form 
ofthe output is left up to the clients. Additional auxiliary procedures, such 
as Search, should also be considered. 

It is up to the implementor of an encapsulated data type to determine 
how to actually order the individual elements in the list, as long as Iterate 
presents the elements in the correct order. It is usually simpler, however, 
to consider the desired sequence when inserting. The advantage is that 
this facilitates searching for an element. In particular, in the case of a 
fruitless search, we do not need to iterate to the end ofthe whole structure, 
but can terminate once we find a value that, with respect to the target, 
would violate the sorting order. We still need to clarify what happens if 
we encounter identical values in regard to our sorting order. Let us just 
assume that in this case the later arrival is inserted later in the list. 

The basic algorithm for construction and insertion consists of finding 
the insertion position and inserting there. The graphical representation, 
as in Figure 11.35, with elements in boxes and pointers as arrows to them, 
proves an immense help in designing and understanding algorithms for 
dynamic data structures. 
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list 
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Figure 11.35: Insertion of the element "3" in a sorted list 

In pseudocode (a sort of source code where we simply replace the miss
ing details with textual description) the algorithm could take the following 
form: 

(*Find insertion position:*) 
auxPointer := head 
WHILE auxPointer.key <= new.key DO 

revise auxPointer to next 
END 

(*insert:*) 
connect to predecessor of auxPointer 

Before implementing it in Modula-3, we need to refine this algorithm. 
For the sake of simplicity, we assumed the general case. In specific cases 
we need to consider that the action "connect to predecessor" depends on 
whether there is a predecessor; this is not the case in an empty list. There
fore we must either handle special cases or assure from the start for the 
lifetime of the data structure that the list is never empty. 

It is quite simple to assure that a list is never empty. Before the first 
and after the last element, we insert marks that have unreal key val
ues (e.g., the names "aaaaaa" and "zzzzzz" for lexicographic sorting). 
On insertion and removal, the marks do not disturb the algorithm. The 
marks behave like "normal" elements that are never referenced. On 
initializing the list, we must assure that we create the marks. How
ever, this complicates the test of whether the list is empty. 

To remove a record we must again either add a test on empty or as
sure that the list can never be empty. The removal operation could take 
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previous.next:= current.next 
list 

~ previous ~current 

key 

next 

-3 ~-~~ .. ··C-;-c4, f···· iC2l 
Figure 11.36: Removing the element "4" from a sorted list 

place by manipulating the predecessor of the element to be removed (see 
Figure 11.36). Therefore with each search step we access not the element 
itself, but its predecessor. We check its predecessor pointer (previous) to 
determine whether the predecessor is the target value to be removed. An 
alternative to this procedure would be to do a normal search, but to have 
the delete pointer trail the search pointer by one element (as in Example 
11.38). 

The sorting criterion in Example 11.38 is the value of a key. The element 
with the smallest key value is at the head of the list, the second-smallest 
key value is the second, etc. 

In our example list we can accommodate "any" number of INTEGER val
ues. In practice we usually store large records in a list, and these contain 
one or more keys by which the list can be sorted. 

A client (Example 11.37) can declare any number of instances of type 
Intlist.T (Example 11.37 has only one instance, the variable list). It must be 
created and initialized with Intlist.Create. The client of the sorted INTEGER 
list can add any number of numbers to the list, display the entire list, and 
remove individual elements. The client must handle outputting individual 
elements. The procedure Output implements this function. It is passed as 
a parameter to Iterate and then, through the list, can access every element. 

Normally the invocation chain goes from client to the server. The 
client that is higher in the module hierarchy invokes the services of 
the server. We often call an invocation that goes from the server to the 
client an upcall because its direction is opposite, i.e., "upward" in the 
module hierarchy. 

In the input control part of the program, elements to be inserted receive 
preferential treatment. When we enter a number, it is inserted. All other 
actions are bound to single-character commands. D displays the list; R n 
removes the element with key value n. 
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MODULE ListUser EXPORTS Main; 

IMPORT Intlist; 
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI, LookAhead, GetChar; 

VAR 
list: Intiist.T := Intlist.CreateO; 
lines: CARDINAL := 0; ch: CHAR; 

PROCEDURE Output(value: INTEGER) = 
BEGIN 

Putlnt(value); 
lines:= (lines + 1) MOD 16; 
IF lines = 0 THEN NIO END; (*after 16 values, start new line*) 

END Output; 

BEGIN 
PutText("ListUser\n" & 

"Enter a number to insert, R number to remove, D for display, Q to quit\n"); 
REPEAT 

ch:= LookAheadO; 
CASE ch OF 

1'0' .. '9', '+', '-' => Intlist.insert(list, Getlnt()); 

(*ListUser*) 

I 'R', 'r' => EVAL GetCharO; (*skip command character*) 
VAR found: BOOLEAN; 
BEGIN 

Intlist.Remove(list, GetintO, found); 
IF NOT found THEN PutText("False\n") END; 

END; 
I'D', 'd'=> EVAL GetCharO; (*skip command character *) 

Intlist.lterate(list, Output); 
lines:= 0; NIO; (*reinitialize line counter*) 

ELSE 
EVAL GetCharO; 

END; (*CASE ch*l 
UNTIL (ch = 'Q') OR (ch = 'q'); 

END ListUser. 

(*skip everything else*) 

Example 11.37: Client of the sorted list 

A possible program execution (without greeting text) could take the fol
lowing form: 

5 3 7 -4 12 0 1 DR 3 D 
-4 0 1 3 5 7 12 
-4 0 1 5 7 12 

Example 11.38 shows the implementation. On insertion and removal, 
we use the variables current and previous to iterate through the list so that 
previous always points to the element before the current element. Thus 
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on both insertion and removal we can always carry out the corresponding 
pointer operations. The implementation of Insert shows that when keys are 
equal, the latecomer is inserted after those of the same value that came 
earlier (the WHILE statement continues to search if key values are equal). 

Exam Ie 11.38: 1m lementation 0 sorted lists 
MODULE Intlist; (*16.07.94. RM, LB*) 

REVEAL 
T = BRANDED REF RECORD 

key: INTEGER; 
next: T := NIL; 

END; (*T*) 

PROCEDURE Insert(VAR list: T; value:INTEGER) = 
VAR current, previous: T; 

new: T := NEW(T, key:= value); 
BEGIN 

IF list = NIL THEN list:= new 
ELSIF value < list.key THEN 

new.next:= list; list:= new; 
ELSE 

current:= list; previous:= current; 

(*reveal inner structure ofT*) 

(*key value*) 
(*pointer to next element*) 

(*create new element*) 

(*first element*) 
(*insert at beginning*) 

(*find position for insertion*) 

WHILE (current # NIL) AND (current.key <= value) DO 
previous:= current; current:= current.next; (*previous hobbles after*) 

END; (*after the loop previous points to the insertion point*) 
new.next:= current; (*current = NIL if insertion point is the end*) 
previous.next:= new; (*insert new element*) 

END; (*IF list = NIL*) 
END Insert; 

PROCEDURE Remove(VAR list: T; value:INTEGER; VAR found: BOOLEAN) = 
VAR current, previous: T; 
BEGIN 

IF list = NIL THEN found:= FALSE 
ELSE (*start search*) 

current:= list; previous:= current; 
WHILE (current # NIL) AND (current.key # value) DO 

previous:= current; current:= current.next; (*previous hobbles after*) 
END; (*holds: current = NIL or current.key = value, but not both*) 
IF current = NIL THEN 

found:= FALSE (*value not found*) 
ELSE 

found:= TRUE; 
IF current = list THEN list:= current.next 
ELSE previous.next:= current.next 
END; 

END; (*IF current = NIL*) 
END; (*IF list = NIL*) 

END Remove; 

(*value found*) 
(*element found at beginning*) 
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PROCEDURE CreateO: T = 
BEGIN 

RETURN NIL; 
END Create; 

PROCEDURE Iterate(list: T; action: Action) = 
BEGIN 

WHILE list # NIL DO 
action(list.key); list:= list.next; 

END; 
END Iterate; 

BEGIN 
END Intlist. 

11. Dynamic data structures 

(*creation is trivial; empty list is NIL*) 

(*Intlist *) 



Chapter 12 

Recursion 

Did you ever stand between two mirrors? If the two mirrors are about 
the same size and approximately parallel, you can see yourself from both 
the front and the back. Even more, in the background of your back view 
is the other mirror with the front view. And the front mirror reflects not 
only your face but also the mirror behind you, which in turn reflects your 
back as well as the reflection of your reflection in the front mirror, which 
in turn reflects everything. Assuming that the mirrors are of good quality, 
this creates the illusion of being in an infinitely deep hallway in which you 
appear endlessly often and ever smaller until you fade into darkness. How 
could we describe this more simply? You see an image that contains itself. 
The distance between the two mirrors causes the image within the image 
to continue to shrink. It also contains the edge of the mirror, which itself 
does not reflect; therefore it was not actually reflected infinitely. 

We also see this phenomenon in the self-portraits of several painters 
who depicted themselves in the act of painting; however, in the painting 
they were not painting just any subject, but the very picture that they 
were painting at that time. Thus the painting must depict the painter and, 
again, the picture itself. Naturally the included picture is also smaller 
than the actual self-portrait, usually so much smaller that after three or 
four such steps the contained self-portrait no longer reflects detail and so 
degenerates to a line sketch, thereby terminating the recursion. 

What do such physical phenomena and artistic frivolity have to do with 
computer science? A great deal. Recursive procedures and functions -
which contain invocations of themselves - provide some of the most power
ful means part known for representing algorithms. They are just as pow
erful as the Turing machine described in the introduction (Section 1.1.3). 

We have encountered a recursive definition already in Chapter 2. We 
defined the natural numbers as follows: 

NaturalNumber = Digit I Digit NaturalNumber . 
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Here the left side ofthe definition is a component of the right side. Why 
is this not a circular definition? We provided for the following: 

• We had a nonrecursive exit . 

• The part that contained the left side (the recursive alternative) also 
contained another component (here Digit) that ensured that the natu
ral number on the left side would be longer than that on the right side. 
(We can represent the number 56 as Digit NaturalNumber, whereby 
Digit = 5 and NaturalNumber = Digit = 6.) 

Both these conditions are necessary to ensure that a recursive defini
tion is well-founded. Every recursive definition must consist of at least two 
components, (at least) one of them recursive and (at least) one nonrecur
sive. 

1. In addition to its actually recursive part, the recursive alternative 
contains another part that ensures that applying the definition pro
duces a residual recursive part of ever diminishing size, so that finally 
a (or the) nonrecursive alternative applies. 

2. The nonrecursive alternatives can be resolved directly (without fur
ther branching). Because they are often simple, we term this the triv
ial case. 

It is difficult to prove that a substitution process converges to a nonre
cursive case. In the definition of a natural number the leading digit fulfilled 
this condition. 

In the following we show how to employ recursion to program elegant al
gorithms and powerful data structures. Note that this does not require any 
new Modula-3language elements: the procedure concept suffices to formu
late recursive algorithms. The concept of references suffices for recursive 
data structures, which in turn are best processed by recursive algorithms. 

Many older programming languages such as Basic, Fortran and Cobol 
do not support recursive programming. This encumbers problem solv
ing in some domains so much that writing certain software (e.g., for 
program translation, pattern recognition and expert systems) prove 
practically insurmountable in these languages. Other programming 
languages, including Lisp and Prolog, feature recursion as a primary 
structuring element. Modula-3 takes an intermediate position, offer
ing recursion alongside other structuring elements. 
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12.1 Recursive algorithms 

12.1.1 Fundamentals of recursive programming 

Why, from a syntactic viewpoint, can we write recursive procedures at all? 
The name of a procedure is visible within its block; therefore we can invoke 
the procedure itself just as any other procedure. This opens quite some 
possibilities. 

To assure the correctness and termination of a recursive program, we 
must abide by the rules presented above. Every recursive program contains 
at least one nonrecursive alternative (possibly empty), and if the recursive 
alternative is selected, we must assure that preceding (and possibly subse
quent) steps eventually lead us into the nonrecursive branch. 

Thus recursive procedures are structured according to the following pat
tern: 

PROCEDURE Rek ( ... ) ... = 

BEGIN 

IF· .. THEN Rek ( ... ) END; 

END Rek; 

A classic example of recursive algorithms is the definition offactorial: 

n! = n(n - I)! 
O! = 1 

We can map this definition directly onto the procedure Factorial (Exam
ple 12.1). 

Let us examine the invocation Factorial(4). First the condition n = 0 
is false, so the procedure begins to compute the expression n * Factorial(n-
1); for our specific values this is 4 * Factorial(3). The expression contains 
the function call Factorial(3); the function is thus invoked again, this time 
with n = 3. The next invocation continues with Factorial(2), and so on until 
the invocation Factorial(O). Now the function returns the value 1. This 
means that evaluation of the expression 1 * Factorial(O) can be completed, 
returning 1. This invocation stems from the evaluation of the expression 
(2 * Factorial(1 )), which yields 2 * 1, and so on until the first expression, 4 * 
Factorial(3), returns 4 * 3 * 2 = 24. 

However, we could also compute the factorial iteratively using the fol
lowing formula: 

for n 21 

for n = 0 
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PROCEDURE Factorial (n: CARDINAL): CARDINAL = 

BEGIN 
IF n = 0 THEN RETURN 1 
ELSE RETURN n • Factorial(n-1) 
END (*IF*) 

END Factorial; 

12. Recursion 

(*trivial case *) 
(*recursive branch *) 

Example 12.1: Recursive computation of the factorial n! 

The corresponding iterative program segment is: 

VAR fact: CARDINAL := 1; 
BEGIN 

FOR i := 1 TO n DO fact := fact * i END; 
END 

Another example of a recursive definition or a recursive algorithm is the 
computation ofthe nth power of x: 

Here, too, we are more familiar with the corresponding iterative formula
tion: 

xn = { 'IU x for n 2': 1 

for n = 0 

All these recursive algorithms might be elegant. Still, the correspond
ing iterative algorithms seem more familiar and thus simpler. What, then, 
is the actual value of recursion? 

Let us try to understand the procedure Reverse in Example 12.2. What 
does Reverse really do? We maintain that it inverts a character string of 
any length. A possible execution of the program could be: 

Please enter a character string: 
Blanks are characters, too! 
loot ,sretcarahc era sknalB 

How does this program succeed with only a single variable of the very 
simple type CHAR? The secret is in the stack of the run-time system of 
the language environment. AE we learned in the introduction of the pro
cedure concept, each procedure call requires storing the local variables, 
the actual parameters and the return address for resuming execution after 
the invocation. Naturally this also applies for the recursive invocation of 
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MODULE TextReversal EXPORTS Main; 

FROM SIO IMPORT GetChar, PutChar, PutText; 

PROCEDURE ReverseO = 
VAR ch : CHAR; 
BEGIN 

ch := GetCharO; 
IF ch # '\n' THEN 

ReverseO; 
PutChar(ch) 

END 
END Reverse; 

BEGIN 
PutText("Please enter a character string:\n"); 
ReverseO; 

END TextReversal . 

Example 12.2: Text reversal 
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(* 18.07.94. RM; LB*) 

( *TextReversal*) 

a procedure as well. Thus after Reverse reads "B" and detects that it is 
not the return character, we move into the THEN branch, where we rescue 
all local information onto the stack before the next invocation of Reverse. 
When this recursive invocation (and all the recursive calls stemming from 
it) have been processed, control is returned (as after every procedure call) 
to the invoking environment. The subsequent statement outputs the con
tents of the local variable ch, which has been rescued onto the stack for 
each recursive invocation. The reversal of the word results because each 
invoked Reverse procedure itself invoked Reverse recursively between the 
read and output operations. The return character entered after the last 
printable character neither invokes a new procedure call nor generates out
put. In fact, viewed statically, it does nothing at all! This represents the 
trivial case and ensures a nonrecursive invocation of Reverse. This breaks 
the recursion chain, and the procedure call of Reverse that accepted the 
last character before the return character (here the character "!") can print 
its local variable ch and then pass control to its invoking environment. 

Fibonacci numbers 

Every recursive solution has an equivalent iterative solution. In many 
cases, however, the recursive solution is easier to formulate and its cor
rectness is easier to check. On the other hand, the iterative solution often 
enjoys the advantage of greater efficiency, both in terms of the time asso
ciated with the administrative overhead of a procedure call and because, 
as the following example will show, indiscriminate application of recursion 
can lead to unnecessary recomputation of already available results. 
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t~ofs~~_~~ 
dl: 

dl: 

dl: B 
--~--.--'-------'-

Figure 12.3: Invocation stack of Reverse after entry of "Blank" 

An example of a problem that can be solved quite easily, yet quite ineffi
ciently with a recursive approach is the computation of Fibonacci numbers. 
Fibonacci numbers were introduced by the monk and mathematician Fi
bonacci in 13th century to describe biological processes (e.g., the reproduc
tion of rabbits). Fibonacci numbers are defined with a recursive formula: 

fib(n) = fib(n - 1) + fib(n - 2) where fib(O) = 1, fib(l) = 1. 

This formula shows that the recursion extends over two steps. The next 
respective Fibonacci number is the sum of its two immediate Fibonacci 
predecessors. (The biological assumption is that females oftwo generations 
are fertile). Thus we need two initial values or nonrecursive definitions for 
the trivial cases: fib(O) = 1 (we begin with one pair) and fib(l) = 1 (the 
initial pair gave birth to another pair in period 1; in period 2 - fib(2) - both 
pairs can bear young.) 

A recursive solution for the computation of Fibonacci numbers is quite 
simple. We only need to transform the mathematical definition to Modula-3 
syntax to obtain the solution given in procedure Fibonacci (Example 12.4). 
But consider the execution sequence of this procedure for a call with the 
parameter 5. Fibonacci(5} invokes Fibonacci(4} and Fibonacci(3}. Then 
Fibonacci(4} invokes Fibonacci(3} and Fibonacci(2}. This makes the sec
ond invocation of Fibonacci(3}. Since each of these evaluations invokes Fi
bonacci(2} and Fibonacci(1}, Fibonacci(2} is invoked three times in all. The 
execution tree of Fibonacci(5} is depicted in Figure 12.5. 

These recomputations of values that have already been computed else
where do not constitute a general characteristic of recursive programming; 
instead, they result from the functional style employed here. However, this 
style is closely related to recursive programming. 
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PROCEDURE Fibonacci(n : CARDINAL) : CARDINAL = 
BEGIN 

IF n <= 1 THEN RETURN 1 
(*Fibonacci *) 

(*n = 0 or n = 1*) 
ELSE RETURN Fibonacci(n-1) + Fibonacci(n-2) 
END (*IF *) 

END Fibonacci; 

Example 12.4: Procedure to compute Fibonacci numbers 

fib (5) 

~ ~ 
/ fib (4~ /fib (3) ~ 

fib (3) fib (2) fib (2) fib (1) 

/ ~ / ~ / ~ 
fib (2) fib (1) fib(1) fib (0) fib (1) fib (0) 

/~ 
fib (1) fib (0) 

Figure 12.5: The recursion tree generated by Fibonacci(5) 

The reader should attempt to design and program an iterative solution 
to compute Fibonacci numbers and then compare this to the recursive 
solution. The iterative solution is likewise simple and consists primar
ily of a FOR loop in which we add the last two values generated. We 
have to be much more careful than with the recursive solution to en
sure that in computing fib(n) we replace the value of fib(n-2), but not 
offib(n-l). 

It would certainly be a mistake to conclude from this example that a re
cursive solution is fundamentally inefficient, memory-consuming and slow. 
In many cases, unlike in this example, its efficiency differs little from the 
iterative solution, and any loss of efficiency is more than compensated for 
by greater comprehensibility of program correctness and the reduced writ
ing overhead. Thus we should always consider whether the first solution 
that comes to mind - be it recursive or nonrecursive - is the appropriate so
lution for the specific task, for the data volume to be processed, and for the 
frequency of execution of the program. If we consider the overall costs of a 
program over its life cycle, including the cost of possible errors, then we are 
more likely to choose a recursive over a nonrecursive solution than if we 
simply count how many procedure calls are associated with the recursive 
solution. 



278 12. Recursion 

End recursion 

Since recursion represents a popular means for problem-solving especially 
in the field of artificial intelligence (AI), the AI community has studied the 
question of efficiency of recursive solutions and found forms that can be 
programmed recursively - such as in Lisp [M+62j - but that are automat
ically transformed to an iterative solution. This is easily possible with tail 
recurswn. 

PROCEDURE TailRecursion (n: ... , ... ) : ... = 
BEGIN 

IF trivialCase THEN· .. 
ELSE 

RETURN TaiIRecursion(n-1, ... ) 
END (*IF*) 

END TailRecursion; 

By tail recursion we mean a form of recursion where no other action is 
necessary (except returning control to the invoking environment) after the 
recursive invocation, and the last recursive invocation returns the desired 
result. Our function Factorial in Example 12.1 belongs to this group. 

12.1.2 Using recursion 

We can employ recursion as an implementation method whenever the prob
lem is recursive in nature. There are two possibilities: 

1. Not only does the algorithm apply to the problem as a whole, but 
also the problem can be decomposed and the algorithm again can be 
applied to these smaller parts. The Fibonacci numbers serve as such 
an example (all mathematical sequences and series can principally 
be computed in this way). The same applies to sorting problems: If 
we can sort a large array, then naturally we must be able to sort two 
smaller ones. Thus if we can split the array such that the one half 
contains all the smaller elements (as yet unsorted) while the other 
half contains the larger ones, then we can apply the sorting algorithm 
recursively to each half (see Section 12.1.3). 

2. Data structures are defined recursively. Consider lists (Section 11.5.1). 
A list consists of a node and a pointer to a successor, which in turn 
represents a list. If an algorithm works for the list as a whole, then it 
must also work for the list represented by the successor (see Section 
12.1.5). 
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Another important example is a syntax parser, which is a program 
to process input that has complex syntax. Every compiler requires a 
parser. Since the syntax is usually defined recursively, a recursively 
structured parser is easier to build. Consider the expression syntax: 
an addition has two operands, each of which is itself an expression. 

To design or to understand a recursive algorithm, as with proofs, you 
can find help in complete induction [Tru88]: 

1. Find the recursive case. Here we assume that the problem is of ar
bitrary size. We attempt to separate one part such that the decom
position produces one or more subproblems whose basic structure is 
equivalent to the original problem description, but which have a nar
rower scope, or a lesser order (e.g., rr?=l i = m?~l i)i). 

2. Define the end condition. That is, find the special case that can be 
solved immediately without recursion (e.g., rr;=l i = 1). 

3. Test the convergence of the solution. Here we must first test whether 
the recursion we located in the first step actually reduces the magni
tude ofthe problem. In addition, we must test whether this reduction 
ensures that we always reach the nonrecursive case, as found in the 
second step. 

The reader should now attempt to use this approach to find the error in 
the following procedure, which claims for a given n to compute the sum of 
all odd numbers 5:n: 

Example 12.6: Erroneous recursive procedure 

PROCEDURE FauxPas(n: CARDINAL): CARDINAL = 
BEGIN 

IF n = 1 THEN RETURN 1 
ELSE RETURN n + FauxPas(n-2) 
END 

END FauxPas; 

Unfortunately, this approach does not always help with recursive data 
structures. Sometimes we need multiple indirect recursion; here proce
dures do not invoke themselves, but are invoked by an invoked procedure. 
The syntax parser for an arithmetic expression does not invoke itself, but 
is invoked for each operand of the expression. We can only understand 
such invocation structures if we have understood the recursion in the data 
structure. Then for each procedure involved we must determine indepen
dently that it has a nonrecursive part or invokes another procedure that 
has a nonrecursive part. 
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Error detection 

To help us gain an initial understanding of a simple recursive procedure, 
we can carry out a manual simulation. This helps us to understand what 
occurs in the computer (how the invocation stack is built up and reduced, 
etc.). However, this approach exceeds our capacities as soon as the proce
dure becomes a bit more complex. Thus we must concentrate on under
standing whether and how the recursion converges. 

How can we find an error in a procedure that seems to be correct to the 
best of our knowledge, but that runs infinitely (or terminates with some 
incomprehensible error message, such as when the system reports that all 
memory has been consumed)? 

To determine exactly what the procedure does, it helps to insert test 
output commands at critical locations. Such critical points certainly in
clude the start of the procedure and before each recursive invocation. In 
particular, we need to cover each recursive and nonrecursive branches of 
the procedure. Stopping the program at each such point (e.g., with EVAL 
SIO.GetChar) allows us to follow the invocations exactly. The following out
put data usually prove helpful: 

• The parameter values on each invocation 

• The values that determine which branch the procedure selects 

• Possibly the level of recursion 

To reflect the level of recursion, we need an additional parameter (e.g., 
level: CARDINAL). Each recursive invocation then increments this param
eter (level + 1). 

In any case, of course, we must ensure that, after localizing the error, 
we remove not only the test output but also the recursion level parameter. 
(Otherwise someone reading our procedure or its environment could waste 
valuable time puzzling over the function of this left-over test code.) Even 
better, the languages environment might provide automatic support for in
serting test expressions in our program and later removing or deactivating 
them. 

We have addressed methods for error localization only sketchily. The 
ideas by no means apply only to recursive algorithms, but here it is often 
particularly difficult to follow program flow. Many language environments 
provide debuggers (derived from the term bug for a program error). These 
allow stepwise execution of programs and interactive display of program 
states. For many programmers, debuggers have earned a reputation for 
delaying error localization because they tend to be employed before an er
roneous program has been thought through exactly. Sommerville provides 
insight into methodical error localization in [Som92]. 
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12.1.3 Quicksort 

In Section 8.1, Example 8.13, we saw a simple sorting procedure with the 
drawback that the algorithm's overhead rises quadratically with an in
creasing number of elements. The analysis of the efficiency of algorithms 
is a very important subject with a multitude of available literature, e.g., 
[Knu81, Sed93, Wir76], but we do not discuss efficiency here. We only show 
one of the most famous sorting procedures, developed by C. A. R. Hoare. 
Because of its excellent speed (in most cases), it is called Quicksort. 

The Quicksort algorithm is a classic example of recursion. It builds on 
the divide-and-conquer principle. The basic idea is that we decompose a 
problem recursively into subproblems until it becomes trivial. The Quick
sort algorithm divides an array to be sorted into two parts, whereby all 
elements of one part are smaller than those of the other. These parts are 
themselves decomposed until the magnitude of the problem, here the size 
of the array to be sorted, becomes so small that sorting becomes trivial. 
The algorithm is described as follows: 

1. Take any element x, e.g., the element in the middle. 

2. Approach the middle from both sides. If you find an element on the 
left that is greater and on the right one that is smaller than x, then 
swap the two. This assures that we move both elements closer to their 
final positions. 

3. Repeat the above step until you reach the middle. 

4. Apply the above algorithm recursively to the left and right halves of 
the array until the array becomes trivial. 

In the first three steps the array is partitioned. Afterwards it consists of 
two parts: the left part contains all elements that are smaller than x, the 
right side all those larger. Example 12.7 shows an implementation. 

The excellent performance ofthe algorithm stems from the partitioning 
phase, where elements often "leap" across larger distances, directly putting 
them close to their final positions. Consider the following sequence: 

10 25 13 85 3 -2 4 7 77 1 

First the element a[4], i.e. 3, is selected. The first partitioning swaps the 
following pairs: (10, 1) (25, -2) and (13, 3). In the new order all elements to 
the left of 3 are smaller, those to the right of three are larger than 3: 1 -2 3 
85 13254 7 77 10. The array is not sorted yet. We need to apply partitioning 
to all subarrays. For sub arrays of size 2, naturally, partitioning produces 
complete sorting of the sub array. The number of iterations through the 
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PROCEDURE Quicksort(VAR a: ARRAY OF ElemType; left, right: CARDINAL) = 
VAR i, j: INTEGER; x, w: ElemType; 
BEGIN 

(*Partitioning:*) 
i:= left; 
j:= right; 
x:= a[(left + right) DIV 2); 
REPEAT 

WHILE ali) < x DO INC(i) END; 
WHILE aU) > x DO DECO) END; 
IF i <=jTHEN 

w:= ali); a[i):= aU); aU):= w; 
INC(i); DECO); 

END; (*IFi <=j*) 
UNTIL i > j; 

(*recursiue application of partitioning to subarrays:*) 
IF left < j THEN Quicksort(a, left, j) END; 
IF i < right THEN Quicksort(a, i, right) END; 

END Quicksort; 

(*i iterates upwards from left*) 
(*j iterates down from right*) 

(*x is the middle element*) 

(*skip elements < x in left part*) 
(*skip elements> x in right part*) 

(*swap am and a[j]*) 

Example 12.7: Quicksort 

array rises logarithmically rather than quadratically with respect to array 
size. A more precise analysis can be found in the literature cited above. 

We would add one programming note on Example 12.7: The procedure 
is parameterized with an open array, so that it can be employed without 
changes for an array of any size. Therefore on the first invocation of Quick
sort we specifY the actual values for left and right as follows: 

Quicksort(array, 0, NUMBER(array)-1) 

Using FIRST and LAST here would be wrong because the formal param
eter a is an open array that is always indexed from o. The index boundaries 
of array are thus lost within the procedure. 

12.1.4 The Towers of Hanoi 

The game Towers of Hanoi provides an interesting exercise. We have three 
"towers", i.e., three posts: Start, Finish and Temp. The Start post holds a 
number of disks of different sizes, sorted by size with the largest at the 
bottom. The task is to transfer the disks to Finish so that they are stacked 
there in the same order. We can move only one disk at a time, and no disk 
can ever be placed on a smaller one. The post Temp serves as temporary 
storage. We have no other help. The initial situation with four disks looks 
like this: 
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Start Finish Temp 

I 
I 
I 
I 
I 
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This task seems to be a clear case for recursion. We want to decompose 
the problem until it reduces to moving a single disk (divide-and-conquer). 
Our first goal is to transfer all except the bottom disk onto the temporary 
post, making use of the Finish post and preserving the order so that no disk 
ever rests on a smaller one. Then we can transfer the largest disk to Finish. 
This reduces the problem by one disk. Then Temp and Finish swap roles, 
and we can repeat the procedure for the next largest disk. The strategy of 
the solution for n disks looks like this: 

• n = 0: Do nothing - trivial case . 

• n > 0: 

1. Transfer tower of size n-1 from Start to Temp (by means of Finish). 

2. Move disk from Start to Finish - its correct position 

3. Transfer tower of size n-1 from Temp to Finish (by means of Start). 

The program is shown in Example 12.8. The actual solution rests in the 
simple recursive procedure Tower. Everything else, the cumbersome data 
structures and the long procedures, only serve to display the problem on 
screen. 

This is another example showing that the "peripherals" often cost more 
overhead than the actual solution to a problem. Naturally, we could 
have settled for a much simpler solution - such as outputting a number 
with each step. However, this would have unchallenging, and certainly 
boring. 
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Example 12.8: The Towers of Hanoi 

MODULE Hanoi EXPORTS Main; 

FROM SIO IMPORT PutChar, GetChar, NI; 

CONST 
Height = 4; 

TYPE 
Post = {Start, Finish, Temp}; 
State = RECORD 

VAR 

top: [O .. Height] := 0; 
disks:= ARRAY [1 .. Height] OF [O .. Height] {O, .. } 

END; (*State*) 

posts: ARRAY Post OF State; 

PROCEDURE Line(num: CARDINAL; pattern: CHAR := ' ') = 
BEGIN 

WHILE num > 0 DO PutChar(pattern); DEC(num) END; 
END Line; 

PROCEDURE Disk(d: [O .. Height]) = 
BEGIN 

IF d = 0 THEN 
Line(Height); Line(1, 'I'); Line(Height); 

ELSE 
Line(Height-d); Line(3 + 2*(d-1), '='); Line(Height-d); 

END; 
END Disk; 

PROCEDURE DisplayO = 
BEGIN 

FOR p:= FIRST(posts) TO LAST(posts) DO Disk(O) END; NIO; 
FOR line:= Height TO 1 BY -1 DO 

FOR p:= FIRST(posts) TO LAST(posts) DO 
Disk(posts[p].disks[line]); 

END; 
NIO; 

END; 
NIO; EVAL GetCharO; 

END Display; 

PROCEDURE Transfer(from, to: Post) = 
BEGIN 

WITH f = posts[from], t = posts[to] DO 
INC(l.top); 
t.disks[l.top]:= f.disks[f.top]; 
f.disks[f.top]:= 0; 
DEC(f.top); 

END; (*WITH f, t*) 
END Transfer; 

12. Recursion 

(* 18.07.94*) 

(*empty disk*) 

(*draw disk pattern *) 
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PROCEDURE Tower(height:[O .. Heightj ; from, to, between: Post) = 
BEGIN 

IF height> 0 THEN 
Tower(height - 1, from, between, to); 
Transfer{from, to); Display(); 
Tower(height - 1, between, to, from); 

END; 
END Tower; 
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BEGIN (*main programm Hanoi*) 
posts[Post.Startj.top:= Height; 
FOR h:= 1 TO Height DO 

posts[Post.Startj.disks[hj:= Height - (h - 1) 
END; 
Display(); 
Tower(Height, Post.Start, Post.Finish, Post.Temp); 

END Hanoi. 

The program halts after each step (by means of EVAL GetCharO). We 
resume execution by pressing the return key. Mter the first iteration we 
have the following output: 

The following is the last output: 

12.1.5 Recursive list management 

In Section 11 we saw that lists are fundamentally recursive. Each list 
consists of a first element and a rest, which is itself a (smaller) list. Nev
ertheless, we handled our first list management iteratively. However, we 
might expect that lists with recursive procedures are easier to process. Let 
us transform the procedures of the iterative solution (Example 11.38 on 
page 269). Naturally we maintain the same interface and clients, changing 
only the implementation. 

First we must find the nonrecursive cases. All procedures share a col
lective trivial case, the empty list. In addition, we have the case where 
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MODULE RecList; 

REVEAL 
T = BRANDED REF RECORD 

key: INTEGER; 
next: T := NIL; 

END; (*T*) 

PROCEDURE CreateO: T = 
BEGIN 

RETURN NIL; 
END Create; 

PROCEDURE Insert(VAR list: T; value:INTEGER) = 
VAR new: T; 
BEGIN 

IF list = NIL THEN list:= NEW(T, key := value) 
ELSIF value < list.key THEN 

new := NEW(T, key := value); 
new. next := list; 
list:= new; 

ELSE 
Insert(list.next, value); 

END; (*IF list = NIL*) 
END Insert; 

12. Recursion 

(*16.07.94. RM, LB*) 

(*Inner structure ofT reuealed*) 

(*keyword*) 
(*pointer to next element*) 

(*new node*) 

(*seek position for insertion *) 

PROCEDURE Remove(VAR Iist:T; value:INTEGER; VAR found:BOOLEAN) = 
BEGIN 

IF list = NIL THEN (*empty list*) 
found := FALSE 

ELSIF value = list.key THEN 
found := TRUE; 
list := list.next 

ELSE 
Remove(list.next, value, found); 

END; 
END Remove; 

PROCEDURE Iterate(list:T; action:Action) = 
BEGIN 

IF list # NIL THEN 
action(list.key); Iterate(list.next, action); 

END; 
END Iterate; 

BEGIN 
END RecList. 

Example 12.9: Sorted list with recursive procedures 

(*RecList*) 
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we locate the position for insertion or the element to be deleted. Then we 
have nothing more to do than to reduce the list until it becomes a trivial 
case. We achieve this by recursively invoking the procedure with the actual 
parameter values list.next. This results in the (actually stunningly simple) 
solutions in Example 12.9. The entire iterative parts of the procedures 
in Example 11.38 have been reduced to single recursive invocations. Note 
that list is a variable parameter. On first invocation, the variable containing 
the pointer to the head of the list is passed to it. On the following recursive 
invocations, the next field of the previous element is passed, pointing to the 
next element in the list. Thus from the viewpoint of the procedure, the list 
grows smaller by one element with each step, and insertion and deletion 
always occur at the head of the current list. 

The transformation from Iterate to a recursive function is easy - but the 
iterative form might be even simpler. 

12.2 Recursive data structures 

Lists already provide one example of processing recursive data structures 
with recursive procedures. In this section we delve deeper into the appli
cation of the recursion principle to data structures. The prototype of such 
recursive data structures is the tree. 

12.2.1 Trees 

Linear lists are dynamic: within the physical limitations of our computer's 
memory, we can form chains of any length, linking any number of infor
mation nodes. This is the list's greatest advantage over the array. At the 
same time, this is its drawback: What if a list really does contain tens of 
thousands, or even hundreds of thousands of elements (absolutely realis
tic numbers in practice)? Then sequential iteration through a linear list 
can take unacceptably long. Thus we need other dynamic structures that, 
although they might be more complex, can be searched more quickly and 
better serve large amounts of data. 

The basic idea is that we must multiply link the information nodes 
somehow; we are not satisfied with the simple relations predecessor and 
successor, but need something more. Ifwe connect the nodes freely with one 
another (we call the links edges, then we have a general graph, which plays 
an important role both in mathematics and in computer science 
[Tru88, Sed931. Because increased freedom has its price, we begin with 
some restrictions. One important subclass of graphs is trees. A tree is a 
graph in which every node except for the root has exactly one predecessor 
(parent). The root has no predecessor. Each node can have any number of 
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c c 
Figure 12.10: A general tree as an acyclic graph 
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Figure 12.11: Structure of a book 

successors (children). A tree is always acyclic; i.e., it contains no links that 
contain the same node repeatedly (no topological cycles). 

The most frequent representation of trees is depicted in Figure 12.10. 
This treelike representation also reveals the origin of the name tree. This 
similarity is based on the fact that the branching structure of a natural 
tree - apart from seldom exceptions usually induced by external influences 
- is also acyclic. 

Note that in Figure 12.10 the root is at the top. Mathematicians and 
computer scientists apparently share a tendency to turn matters on 
their heads. 

In programs, we implement trees using pointers. Pointers reference one 
node from another, which makes trees directed graphs; every edge has one 
direction. Furthermore, we have one unambiguous entry point into a data 
structure consisting of such pointers: the pointer that we statically declare 
in the program that employs this data structure. Continuing our botanical 
metaphor, we call this entry point the root, while nodes without a successor 
are called leaves. (The analogy has its problems, but since nature cannot 
defend itself against such analogies, we adhere to this terminology. We 
trust that the tree spirits will forgive us.) 
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Figure 12.12: A family tree 

Now let us consider how we could design such a tree. Obviously each 
node must contain information to allow us to reach its successors. Further
more, a node should contain some kind of signpost information that tells 
us when we have reached our goal and when we must visit another imme
diate successor node. This suggests implementing a node as a record and 
entering the edges as fields oftype REF RECORD··· in this record. 

This definition defines any node. Thus in principle it applies for the 
root, for an inner node and for leaves. The only difference is that the root 
lacks a predecessor and the leaves have no successors, while inner nodes 
have exactly one predecessor and at least one successor. The structure of a 
book serves as one example ofa tree (Figure 12.11). 

Family trees 

Consider the family tree beginning with Peter and Maria in Figure 12.12. 
Family trees have strongly influenced the terminology of trees as data 
structures. Hence we call the node "Peter & Maria" the parent of "John", 
while "John" and "William & Lisa" are children of "Peter & Maria". This 
sounds less curious if we express it more precisely: The node designated as 
"John" is the child node of the node designated as "Peter & Maria". Fur
thermore, "John" and "William & Lisa" are sibling nodes. 

Note that, because the graph is acyclic, each node's parent is determined 
unambiguously. On the other hand, a given parent node generally has 
multiple children. Clearly, each child node represents the root of an entire 
subtree. Thus the recursive definition really is justified. Note also that in 
our trees we forbid incestuous relations, thereby precluding violations of 
the acyclic condition of the tree structure. 

Paths 

A path in a graph is a sequence of edges starting at one node and leading 
to some end node. Accordingly the path length is the number of edges on a 
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Figure 12.13: A binary tree 

path, which corresponds to the number of successor nodes along the path 
from the first node. The number of nodes on the longest path starting at 
the root is the height of the tree. The height of an empty tree is 0; the 
height of a tree consisting of only a root is 1. 

12.2.2 Binary trees and search trees 

A binary tree, the simplest form of tree (Figure 12.13), has at most two 
successors for each node. We can best implement such a binary tree using 
records whose successors left and right point to the respective left and right 
subtrees. However, let us approach this solution gradually. 

Search methods and implicit trees 

Assume that we have a sequence of records stored in an array of fixed 
length. These records describe articles that we have in stock, where each 
article is uniquely identified by an article number. The articles are stored 
in the array in ascending order of article number. However, since these 
article numbers were assigned according to some ingenious system, article 
1374 need not by any means be at position 1374. (Indeed, we do not even 
have that many articles.) We can only be assured that all articles with 
smaller article numbers fall before article 1374 and all with larger article 
numbers fall afterward. How can we search quickly and efficiently? 

Certainly, searching the array from the first position to the correct one 
is not ideal. In the case of a nonexistent article, our search would always 
stop at the last position. Indeed, we do not read the telephone book from 
front to back to find the entry for "Zorro". We open the book somewhere 
close to where we expect to find the name and then move stepwise forward 
or back, usually in decreasing increments, until we find the correct page. 
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o 2 3 4 5 6 7 8 9 10 11 

Figure 12.14: Binary search in an array 

We can formalize this procedure in the following algorithm (in pseu
docode): 

WHILE search element not found DO 
divide and test partition element 
IF search element = partition element THEN 

found 
ELSIF search element < partition elementTHEN 

search before partition element 
ELSE (*search element> partition element*) 

search after partition element 
END (*IF search element = partition element*) 

END (*WHILE*) 

This leaves the following questions to be answered: 

• Do we want to formulate the algorithm iteratively or recursively? 

• Do we have information that can help us decide where to partition? 

For the sake of simplicity, let us answer the first question in favor of a 
recursive solution. We must answer the second question in the negative; in 
such a case we can demonstrate that halving the search field proves best. 
Thus we select the element in the middle of the field still to be searched 
as our partition element. Let us try this using the data in Figure 12.14 
by searching for some values. The program in Example 12.15 employs this 
principle. 

In Example 12.15, we do not use an array of nodes that contain key 
values as well as other data fields, such as: 

TYPE Node = RECORD key: INTEGER; data·· ·END 

Instead, we declare an array of integers. However, such an integer can 
serve as a key for a record of any complexity, serving as the criterion 
for sorting and searching. 

The procedure Search returns the index value of the element found. 
If the element is not found, it returns a value (Maxlnd) outside the index 
range ([O .. Maxlnd - 1]). 
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PROCEDURE Search( READONLY arr: ARRAY [0 .. Maxlnd -1] OF INTEGER; 
left, right: [0 .. Maxlnd - 1]; 
argument: INTEGER): [O .. Maxlnd] = 

VAR middle := left + (right - left) DIV 2; 
BEGIN 

IF argument = arr[middle] THEN RETURN middle 
ELSIF argument < arr[middle] THEN 

IF left < middle 
THEN RETURN Search(arr, left, middle - 1, argument) 

(*binary search *) 
(*found*) 

(*search in left half*) 

ELSE RETURN Maxlnd (*left boundary reaches middle: not found*) 
END (*IF left < middle*) 

ELSE 
IF middle < right 

THEN RETURN Search(arr, middle + 1, right, argument) 

(*search in right half*) 

ELSE RETURN Maxlnd (*middle reaches right boundary: not found*) 
END (*IF middle < right*) 

END (*IF argument = arr{middle]*) 
END Search; 

Example 12.15: Binary search 

First we check at index 5; from there, depending on the target value, we 
move on left or right, thereby reaching index position 2 or 8. From there 
we continue our search according to the procedure. Thus the recursive al
gorithm always follows a prescribed path through our data structure. Each 
element is viewed as a watershed: its value determines whether we con
tinue searching right or left. 

We could elevate this observation to a principle. For the search algo
rithm we obtain the structure in Figure 12.16. Obviously we see a tree 
evolving. The indices in Figure 12.16 have lost importance. We could re
place them with pointers by storing with the key a corresponding pointer 
to the respective left and right successors. This tree indicates that we need 
at most four search steps (the height of the tree) to find any element (or 
establish its non-existence). 

12.2.3 Binary search trees 

We define a binary search tree (or ordered binary tree, Figure 12.17) as 
a binary tree where for each of its nodes all elements in the left subtree 
are smaller than the node itself, and all elements in the right subtree are 
greater than or equal to the node itself: 

For all nodes of the tree we require that: 
- all keys in the left subtree < key in node 1\ 

- all keys in the right 2: key in node 
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Figure 12.16: Search path depicted as a tree 
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Figure 12.17: A binary search tree 

By this definition any duplicates are inserted in the right subtree. Note 
that we achieve an equivalent definition if we insert duplicates in the left 
subtree, i.e., if we change the < sign in the first line of the definition to :s: 
and the 2': sign in the second line to >. 

During our search for a value in the tree, if we have opted for the left 
subtree, then we can be assured that all values in the right subtree are 
too large. This definition ensures that we can find the target value (or 
determine that it is not present) in relatively few steps - for n nodes ap
proximately log2 n steps. 

Implementation forms 

Now how can we implement search trees? Although arrays present one pos
sibility, let us turn to the classical implementation of binary search trees. 
As in Example 12.18, this form uses references. Since we need no external 
access to any element except the root, it suffices to statically declare a sin
gle variable of type Tree in the program. The rest of the tree is a dynamic 
data structure like those we encountered with lists; the only difference is 
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that the tree structure spreads out in two dimensions, making the data 
structure somewhat more complex. 

Example 12.18: Search tree as dynamic data structure 

TYPE 
Tree = REF RECORD 

info: INTEGER; 
left, right: Tree; 

END; (*Tree*) 
VAR myTree: Tree; 

Here the field info represents any information that contains some key 
value, or, more precisely, a key function. In Section 13.4.4 we will see 
means of representation that allow us to actually store complex informa
tion in a search tree. 

12.2.4 Traversing a tree 

Instead of individual elements, sometimes we need to process a tree as a 
whole, e.g., to output all elements on screen. For this purpose we obviously 
must begin at the root. From there we can process the left and right sub
trees. However, we can choose the order in which to process the tree: We 
can process the data stored in the root before we visit the subtrees, between 
our visits to the left and right subtrees, or after visiting both subtrees. In 
each subtree we do recursively the same as in the root. Another decision is 
whether to first traverse left or right (or alternately left and right, but we 
omit this case). This makes a total of three basic strategies for tree traver
sal with two variants for each. We select the appropriate strategy to suit 
our problem domain. 

The three traversal strategies (in the following pseudocode we use the 
names of the strategies as the names for the recursive traversal proce
dures) are: 

• Preorder: Visit root first 

visit root; visit root; 
Preorder(leftSubtree); Preorder(rightSubtree); 
Preorder( rightSubtree); Preorder(leftSubtree); 

• Inorder: Visit root between subtrees 

Inorder(leftSubtree) ; 
visit root; 
Inorder( rightSubtree); 

Inorder( rightSubtree); 
visit root; 
I norder(leftSubtree); 
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Figure 12.19: The tree of an arithmetic expression 

• Postorder: Visit root last 

Postorder(leftSubtree); Postorder( rightSubtree); 
Postorder( rightSubtree); Postorder(leftSubtree); 
visit root; visit root; 
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If we traverse the search tree in Figure 12.17 (left first), we obtain the 
following order of visitation: 

Preorder: 50, 20, 10, 5, 15, 35, 40, 70, 60, 90. 
Inorder: 5, 10, 15, 20, 35, 40, 50, 60, 70, 90. 
Postorder: 5, 15, 10, 40, 35, 20, 60, 90, 70, 50. 

One obvious application of inorder emerges: outputting the entire search 
tree as a sorted sequence. 

For searching, we most often use the preorder strategy: Is the target 
element in the root? Ifnot, continue searching to the left or right. Preorder 
and postorder strategies become more comprehensible if we consider the 
tree that emanates from the operators and numbers of an arithmetic ex
pression (Figure 12.19). In this type oftree the leaves are always numeric 
values and the other nodes are always operators. Output in inorder 2 + 5 * 
3 does not specifY whether to compute (2 + 5) * 3 or 2 + (5 * 3). 

Preorder output (+ 2 * 5 3) contains this information. It corresponds to 
functional notation. Ifwe had the functions Plus and Times, we could write 
Plus(2, Times(5, 3)), the function names leading, the operators trailing as 
parameters. 

Output in postorder corresponds to RPN (reverse Polish notation), as 
employed by some calculators: 253 * +. This processing strategy accom
modates how a computer works. First we need all the parameters of an op
eration. When an operator is processed, the parameters are simply taken 
from the stack. In this case, we would stack 2, 5 and 3. Then the * sign in
dicates multiplication of the top two elements on the stack and pushing the 
result onto the stack. The + sign functions similarly, giving us the result 
17 on the stack. 
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INTERFACE Bin Tree; 

TYPE 
Direction = {Left, Right}; 
Order = {Pre, In, Post}; 
Action = PROCEDURE (e: ElemT; depth: INTEGER); 

T <: REFANY; 
ElemT = INTEGER; 

PROCEDURE CreateO: T; 
(*Initializes new instance oftree*) 

PROCEDURE Search(tree: T; e: ElemT): BOOLEAN; 

12. Recursion 

(*05.07.94. CW; LB*) 

(*traversal direction *) 
(*traversal strategy*) 

(*hidden tree type*) 
(*element type*) 

("'searches for an element e in tree. Returns true if present, else false*) 

PROCEDURE Insert(VAR tree: T; e: ElemT); 
(*Inserts e in tree*) 

PROCEDURE Delete(VAR tree: T; e: ElemT): BOOLEAN; 
(*Deletes an element e in tree. Returns true ifpresent, else false*) 

PROCEDURE Traverse(tree: T; 

END BinTree. 

action: Action; 
order := Order. In; 
direction := Direction.Right); 

(*Traverses tree*) 
(*Applies Action to each node*) 

(*default*) 

Example 12.20: Interface of the binary search tree 

12.2.5 Implementation of the binary search tree 

In this section we implement a binary search tree as encapsulated data 
type (see the INTERFACE in Example 12.20). The procedure Traverse is 
somewhat unconventional: Parameters make it possible to select the strat
egy and the traversal direction. These parameters have default values. 
Traverse expects a procedure parameter of type Action. Then on traversal 
action is invoked for each node. The client of the interface can thus carry 
out various actions, e.g., printing the nodes (hence the whole tree). 

Many actions require knowing the level of the current node. The level 
of the root is 0, of its children 1. The maximum level in a tree is termed its 
height or depth; the level of a node corresponds to the path length from the 
root to that node; compare Section 12.2.1. 

The client in Example 12.21 reads the keys of a tree from a file and 
stores the result in a file (see Section 14 and Appendix C.3.3). The client's 
output of the tree is largely formatted: the root is at the far left, the levels 
are represented as tabs, the right subtree is at the top, and the left sub
tree is at the bottom. (If we turn the printout by 90 degrees, we have the 
usual graph representation.) The default values of the procedure Traverse 
(inorder, right to left) support this simple output. The output of the tree in 
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MODULE BinUser EXPORTS Main; 

IMPORT SIO, SF, Bin Tree; 

VAR 
in: SIO.Reader := SF.OpenRead("dat"); 
out: SIO.writer := SF.OpenWriteO; 
tree: BinTree.T := BinTree.CreateO; 

PROCEDURE Print(x: BinTree.ElemT; depth: INTEGER) = 
BEGIN 

FOR i:= 0 TO depth - 1 DO SIO.PutText(" ", out) END; 
SIO.Putlnt(x, 3, out); SIO.NI(out); 

END Print; 

BEGIN 
WHILE NOT SIO.End(in) DO 

BinTree.lnsert(tree, SIO.Getlnt(in)); 
END; 
BinTree.Traverse(tree, Print); 
SIO.PutText(,,\n\n", out); 

SIO.PutText("Enter the key of the node to be deleted\n"); 
WHILE NOT SIO.EndO DO 
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(*21.07.94. LB*) 

(*Input in file "dat"*) 
(*User specifies output file*) 

(*BinUser*) 

IF BinTree.Delete(tree, SIO.Getint()) THEN (*found*) 
BinTree.Traverse(tree, Print); SIO.PutText("\n\n", out); 

ELSE (*not found*) 
SIO.PutText("\nNot found\n") 

END; (*IF found*) 
END; (*WHILE NOT SIO.EndO*) 
SF.CloseWrite(out); (*Ouput file becomes persistent on closing*) 

END BinUser. 

Example 12.21: Client of the binary search tree 

Figure 12.17 would be: 

90 
70 

60 
50 

40 
35 

20 
15 

10 
5 

The client in Example 12.22 tries all traversal parameters. For inorder 
it outputs a tree; otherwise it outputs a sequence of numbers. The output 
of the same tree (see Figure 12.17) with traversal direction left to right 
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(default is right to left) would be: 

5 

10 
15 

20 
35 

40 
50 

60 
70 

90 

As regards the implementation, we assume that trees are sufficiently 
recursive to formulate the algorithms for searching, insertion, deletion and 
traversal recursively. The iterative solutions are also easy to find, yet the 
simplicity of the recursive algorithms is more convincing than for lists. 

The trivial case is an empty tree. All algorithms (similar to with lists) 
are based on the idea of decomposing the tree - naturally not literally, but 
from the viewpoint of the respective procedure - until it becomes trivial, 
i.e., empty. 

The algorithm for searching can thus be formulated as follows: 

IF empty THEN not present 
ELSE 

IF key < root key THEN search in left subtree 
ELSIF key> root key THEN search in right subtree 
ELSE found 
END (*IF key·· .*) 

END (*IF empty*) 

Naturally the root changes with each traversal until we reach either an 
empty tree (not found) or the subtree whose root contains the target key. 

The algorithm for insertion is almost as easy. Here we apply the same 
recursive principle to reach the position (certainly a leaf) where the new 
node must be inserted (see Example 12.24). 

Deletion is a more difficult task. Here it does not suffice to simply find 
the target node. Ifthis node is a leaf, it can be deleted immediately (Figure 
12.23 a). However, if it is any other node, then its parent must take over 
the child's subtree (otherwise we literally dismantle our tree by pruning 
branches (subtrees), which we must avoid). 

If the target node has only one subtree, the matter is still simple: with 
the pointer that pointed to the target, the parent of the target node can 
take over the target's subtree (Figure 12.23 b). However, if the target node 
has two subtrees, then we have complications: with one pointer, the parent 
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MODULE Traversal EXPORTS Main; 

IMPORT SIO, SF, Bin Tree, Text; 

VAR 
in: SIO.Reader := SF.OpenRead(prompt:= "Input file for tree: "); 
out: SIO.Writer := SF.OpenWrite(prompt:= "Output file for traversal: "); 
tree: BinTree.T := BinTree.CreateO; 
print: BinTree.Action; 

PROCEDURE PrintTree(x: BinTree.ElemT; level: INTEGER) = 
BEGIN 

FOR i:= 0 TO level-1 DO SIO.PutText("", out) END; 
SIO.Putlnt(x, 3, out); SIO.NI(out); 

END PrintTree; 

PROCEDURE PrintSequence(x: BinTree.ElemT; level: INTEGER) = 
BEGIN 

SIO.Putlnt(x, 1, out); SIO.PutText(", ", out); 
END PrintSequence; 

BEGIN 
WHILE NOT SIO.End(in) DO 

BinTree.lnsert(tree, SIO.Getlnt(in»; 
END; (*WHILE NOT SIo.End(in)*) 

FOR 0:= FIRST(BinTree.Order) TO LAST(BinTree.Order) DO 
FOR d:= FIRST(BinTree.Direction) TO LAST (BinTree.Direction) DO 

IF 0 = BinTree.Order.ln THEN 
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(*22.07.94. LB*) 

(*Traversal*) 

print:= PrintTree 
ELSE 

(*prints elements in tree format*) 

print:= PrintSequence 
END; (*IF 0*) 

BinTree.Traverse(tree, print, 0, d); 

SIO.PutText("\n\n", out); 
END; (*FOR d*) 

END; (*FOR 0*) 

SF.CloseWrite(out); 
END Traversal. 

(*prints elements in sequence*) 

(*traverses*) 

Example 12.22: Client traverses the search tree in various ways 

cannot assume two subtrees. Therefore the endangered subtrees must re
ceive a new root in such a way that the order relation defining a search tree 
is upheld. Thus either the largest node of the left subtree or the smallest 
node of the right subtree must substitute as the new root to replace the 
target node (Figure 12.23 c). Note that removing this "replacement node" 
is always simple because one of its successors must be empty (otherwise it 
would not be the largest or smallest. 



300 12. Recursion 

(a) 50 50 

/~ /~ 
20 70 20 70 

/ \, /\ /\ /\ 
10 35 60 90 10 35 60 90 

/~ / / / 
/ 

/ 

5 15 30 5 30 

(b) 50 50 
//~/ ~ /~ 

20 70 20 70 

/ \, / \\ /\ /\ 
10 35 60 90 5 35 60 90 

ci) / / 
30 30 

(c) 50 

V~ 20 70 

! 356/\0 

/ 

35 

/~ 
20 70 

/\ / \ 
5 30 60 90 

30 

Figure 12.23: Deletion of nodes 15, 10 and 50 
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The procedure Delete in Example 12.24 demonstrates the implementa
tion ofthe deletion operation. Ifthe target node has two subtrees «(tree. left 
# NIL) A (tree. right # NIL), then this invokes the procedure Left Largest. It 
finds the largest element in the left subtree and uses it to replace the target 
node. 

Example 12.24: Implementation of a binary search tree 

MODULE BinTree; 

REVEAL 
T = BRANDED REF RECORD 

key: ElemT; 
left, right: T := NIL; 

END; (*T*) 

PROCEDURE CreateO: T = 
BEGIN 

RETURN NIL 
END Create; 

(*05.07.94. CW; LB*) (*Binary Tree*) 

(*An empty tree is simply "'Nil'" *) 

PROCEDURE Search(tree: T; e: ElemT): BOOLEAN = 
BEGIN 

IF tree = NIL THEN RETURN FALSE 
ELSIF tree. key = e THEN RETURN TRUE 
ELSIF e < tree.key THEN RETURN Search(tree.left, e) 
ELSE RETURN Search(tree.right, e) 
END; (*IF tree ... *) 

END Search; 

PROCEDURE Traverse(tree: T; action: Action; 
order := Order. In; direction := Direction.Right) = 

PROCEDURE PreL(x: T; depth: INTEGER) = 

BEGIN 
IF x # NIL THEN 

action(x.key, depth); 
PreL(x.left, depth + 1); 
PreL(x.right, depth + 1); 

END; (*IF x # NIL*) 
END PreL; 

PROCEDURE PreR(x: T; depth: INTEGER) = 
BEGIN 

IF x # NIL THEN 
action(x.key, depth); 
PreR(x.right, depth + 1); 
PreR(x.left, depth + 1); 

END; (*IF x # NIL*) 
END PreR; 
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PROCEDURE InL(x: T; depth: INTEGER) = 
BEGIN 

IF x # NIL THEN 
InL(x.left, depth + 1); 
action(x.key, depth); 
InL(x.right, depth + 1); 

END; (*IF x # NIL*) 
END InL; 

PROCEDURE InR(x: T; depth: INTEGER) = 
BEGIN 

IF x # NIL THEN 
InR(x.right, depth + 1); 
action(x.key, depth); 
InR(x.left, depth + 1); 

END; (*IF x # NIL*) 
END InR; 

PROCEDURE PostL(x: T; depth: INTEGER) = 
BEGIN 

IF x # NIL THEN 
PostL(x.left, depth + 1); 
PostL(x.right, depth + 1); 
action(x.key, depth); 

END; (*IF x # NIL*) 
END PostL; 

PROCEDURE PostR(x: T; depth: INTEGER) = 
BEGIN 

IF x # NIL THEN 
PostR(x.right, depth + 1); 
PostR(x.left, depth + 1); 
action(x.key, depth); 

END; (*IF x # NIL*) 
END PostR; 

BEGIN 
IF direction = Direction.Left THEN 

CASE order OF 
I Order. Pre => PreL(tree, 0); 
I Order.ln => InL(tree, 0); 
I Order. Post => PostL(tree, 0); 

END (*CASE order*) 
ELSE 

CASE order OF 
I Order. Pre => PreR(tree, 0); 
I Order.ln => InR(tree, 0); 
I Order. Post => PostR(tree, 0); 

END (*CASE order*) 
END (*IF direction*) 

END Traverse; 

12. Recursion 

(*Traverse*) 

(*direction = Direction.Right*) 
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PROCEDURE Delete(VAR tree: T; e: ElemT): BOOLEAN = 

PROCEDURE LeftLargest(VAR x: T) = 
VAR y: T; 
BEGIN 
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IF x.right = NIL THEN 
y:= tree; 
tree:= x; 
x:= x.left; 
tree.left:= y.left; 
tree.right:= y.right; 

ELSE 
LeftLargest(x. right) 

END; 

(*x points to largest element left*) 
(*y now points to target node*) 

(*tree assumes the largest node to the left*) 
(*Largest node left replaced by its left subtree*) 

(*tree assumes subtrees ... *) 
(* ... of deleted node*) 

(*Largest element left not found*) 
(*Continue search to the right*) 

END Left Largest; 

BEGIN 
IF tree = NIL THEN RETURN FALSE 
ELSIF e < tree.key THEN RETURN Delete(tree.left, e) 
ELSIF e > tree. key THEN RETURN Delete(tree.right, e) 
ELSE 

IF tree.left = NIL THEN tree:= tree.right; 
ELSIF tree.right = NIL THEN tree:= tree. left; 

(*found*) 

ELSE (*Target node has two nonempty subtrees*) 
LeftLargest(tree.left) (*Search in left subtree*) 

END; (*IF tree.left ... *) 
RETURN TRUE 

END; (*IF tree ... *) 
END Delete; 

PROCEDURE Insert(VAR tree: T; e: ElemT) = 
BEGIN 

IF tree = NIL THEN tree:= NEW(T, key:= e); 
ELSIF e < tree. key THEN Insert(tree.left, e) 
ELSE Insert(tree.right, e) 
END; (*IF tree ... *) 

END Insert; 

BEGIN 
END BinTree. 



Chapter 13 

Objects 

Many view the concept of object orientation as the culmination of tradi
tional, structured programming concepts (many of which we have already 
come to know in this book), while many see it as something totally new. 
Both views are legitimate. First we introduce object orientation as a com
pletely new concept, and then we embed it in the already familiar world of 
Modula-3. 

13.1 Object-oriented modeling 

Behind object orientation there is a certain view of how to model part of 
reality. 

Permit us a philosophical comment right at the start. In computer 
science we often say that we map a part of reality onto a model. We 
should be aware that we cannot find reality without an observer. When 
I say that this is the real world, then my statement, my observation, 
is part of it. This does not mean that the world is unreal or subjective, 
but only that the respective observer's complete world view is also part 
of that world. For example, we have good reason to assume that the 
world of a two-year-old child differs significantly from that of a forty
year-old adult, whereby obviously neither of the two need be more or 
less real. The fundamental difference between the "real" world and 
some modeled world seems to be that in the "real" world our view is 
unconscious, while in modeling we attempt to assume some conscious 
view. The process of thinking itself remains unconscious in modeling 
as well, but the basic concepts on which we build our model are con
scious. 

Object-oriented modeling takes the following view: The (modeled) world 
consists of a set of objects that represent self-contained units. They know 
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Object 

Programs 

Figure 13.1: Objects 

their own microworld where their states are stored in fields and their pos
sible behavior patterns in methods (Figure 13.1). Objects can communicate 
with the outside world, i.e., with other objects, by sending and receiving 
messages. These objects are classified so that all objects of the same kind 
belong to one class (i.e., they have the same type). 

This kind of modeling proves quite useful for a number of technical 
problems. Ifwe apply them to human domains, we have a particularly 
gloomy view of society: all individuals are classified strictly according 
to attributes, but are self-contained and encapsulated, and communi
cate with the outside world only via exactly specified, existing chan
nels. 

To access such an object, we must send it a message, which can contain 
parameters. In object orientation, the procedure that processes a given 
message is called a method and is invisible to the outside, just as the ob
ject's data is hidden. The answer is returned in the form of a message. 
This is the only way to access an object. The messages and their param
eters are specified in advance. Thus an object equates to a data capsule 
(see Section 10.2.1), with the difference that we can create any number of 
objects of a given type, but can have only one - the - data capsule. With 
the introduction of encapsulated data types (Section 11.4), we gained the 
ability to repeatedly create encapsulated data, but we still had to provide 
the operations separately from the data. 

However, the real advance of objects over data capsules and encapsu
lated data types is extensibility, enabled by the combination of data and 
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Vehicle 

/ 

Automobile Truck 

Figure 13.2: Class hierarchy ofuehicles 

the methods that process them. From existing object definitions we can 
derive new ones by specifYing, "Take this definition and add the following 
data fields and the following methods". This forms a subclass ofthe original 
class, or superclass. 

Subclasses have an Is-a relationship to their superclass: each object of 
a subclass is likewise an object of the corresponding superclass. 

If we take the class Vehicles, we can derive the classes Cars and Trucks 
(see Figure 13.2). We can say that every car (passenger vehicle) or truck 
(cargo vehicle) is a vehicle (but not inversely, for not every vehicle is a car). 
Extensibility is a great advantage. For a system of classes, we can continue 
to add subclasses, making a system with new, additional features, without 
sacrificing the original features. This also enables us to delay certain deci
sions. Over time, the class of cars can be extended with various subclasses 
and thus specialized (e.g., cars for city traffic, cars for difficult terrain, etc.): 
they all remain cars and inherit all the features of a car. 

A particular advantage of object-oriented modeling is its handling of 
complexity. Everything in this book so far has been moving in this direc
tion. We have acquired ever more powerful language tools to better struc
ture our solutions. Our efforts have taken two directions: on the one hand, 
we enhanced our data structures; on the other hand, our control structures. 
In the concept of encapsulated data type we combined these directions. Ob
ject orientation refines and extends this concept. 

Object-oriented modeling encompasses a large part ofthe life cycle of a 
software project. It includes methods for object-oriented analysis (OOA), 
design (ODD) and implementation [RBP+91]. Object-oriented modeling 
has strongly affected and modified perceptions of the life cycle [Mey891. 
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In the introduction we briefly mentioned the top-down and bottom-up 
methods of system development. In the object-oriented view it is easier 
to change one's orientation frequently: sometimes the developer views 
the whole from the top; sometimes the details of individual compo
nents take precedence. In particular, it is easier to build semifinished 
systems that are complemented continually. Here semifinished does 
not mean that we develop cars with only two wheels at first, but that 
we can specify that the car has an engine with certain features, with
out needing to have a finished engine ready. Furthermore, later we 
can add a subclass for electric cars, which might not even have been 
foreseen when the information system was developed. 

In this book we limit ourselves to object-oriented programming, which 
primarily concerns translation of an existing model to a (Modula-3) pro
gram. 

Object orientation is certainly quite fashionable nowadays. Therefore 
there is an overwhelming amount ofliterature on the subject and nearly as 
many opinions on exactly what object orientation is and what it is not. We 
cannot engage in this discussion here; we attempt to present the concepts 
that seem to command a broad consensus. However, the reader should not 
be too surprised to encounter differing perceptions on this subject. (For ad
ditional reading, we recommend [Mey89], [RBP+91], [KM94] and [Mas93].) 

13.2 Object-oriented programming 

In object-oriented programming objects consist of a set of object fields (also 
called instance variables), which define the state space of the object and 
methods , which describe the behavior of the object. Objects have a type, 
and individual objects are instances of this type. Objects are classified ac
cording to their class membership. Many languages, including Modula-3, 
have an absolute root class to which all objects belong per definition. 

The term class is used in differing ways. (We can even observe some
thing of a "war between the classes".) Some see a class as the type, 
i.e., the schema, of an object group, while others mean concrete col
lections of objects (of compatible type). The first view tends to fall in 
the domain of programming languages, while the second is common 
in database fields. Here, by class we mean simply the type of the ob
jects, but we do want to call attention to this important difference in 
terminology. 

13.2.1 Encapsulation 

The object concept, as already pointed out, is a further development of the 
concept of abstract data types; thus encapsulation is naturally a funda-



13.2. Object-oriented programming 309 
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Figure 13.3: Class Car serves as abstract superclass 

mental feature of classes. In a strict sense, a class interface should contain 
only messages (more precisely, the signatures of messages, i.e., their names 
and parameter lists); the fields must be hidden. Nevertheless, many object
oriented programming languages do permit direct access to the fields of an 
object. 

Classes (object types) have a dual role: they have clients on the one 
hand and heirs (subclasses) on the other. Clients use the services of a class, 
or have a uses relationship. The client of a class Car can use cars in ac
cordance with the interface. For clients, a restricted view usually suffices; 
they normally see only part of the class interface. 

The heirs (subclasses) inherit and extend the features of their super
class. They have an is-a relationship to the superclass (a car is a vehicle; a 
convertible is a car). They need more knowledge of the inner structure of 
the superclass than does the client. Hence a class must normally present a 
somewhat more detailed interface for its subclasses than for its clients. 

13.2.2 Inheritance 

A subclass inherits all features of its superclass and can extend the super
class. Thus subclasses normally extend the set of fields and methods of the 
superclass. Inheritance proves especially suited to specialization of a more 
general class. A car is a specialization of vehicles; a convertible could be 
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a specialization of a car. Here we could discuss which is the more general 
case, a sedan with a hard roof or a convertible. To resolve this conflict, 
we can define an abstract superclass Car, which simply serves to allow us 
to derive concrete subclasses, such as Sedan and Convertible (Figure 13.3). 
With the help of inheritance, we can produce a hierarchy of classes. The 
subclass relationship corresponds exactly to the subtype relationship that 
we already know. 

13.2.3 Polymorphism 

We call variables that can take on various forms (that is, that can have 
different types) polymorphous. Procedures with polymorphous parameters 
are called polymorphous procedures. 

Because an object of a subclass is also an object of its superclass, wher
ever an object of the superclass can be used, we can use an object of a 
subclass instead - but not inversely! Thus we can assign to any variable or 
parameter of a given type a value of any subtype of this type. This makes 
the object variables or parameters polymorphous. An object variable can 
change its type at run time. We can assign a Truck instance to a Vehicle 
variable. Note that it is not the object instance that changes its type, but 
the variable that can contain references to various object instances. We 
call the actual type the dynamic type and the declared type the static type. 
Assignment is not permitted between objects if the dynamic type of the 
right-hand expression is neither a subtype nor a supertype of the declared 
type of the left-hand expression. To this extent polymorphism is restricted: 
Vehicle variables cannot be assigned to Person objects. Simply stated, as
signments are possible only along the type hierarchy that begins at the 
declared type. 

Methods are polymorphous procedures: they can be applied to any ob
ject of a class hierarchy. For example, once we have defined a method 
to determine the speed of vehicles, it can be applied to cars, trucks and 
convertibles. Polymorphism in object-oriented languages is restricted to 
types within a class hierarchy. (For more on polymorphism in general, see 
[Mey89, CW87].) 

13.2.4 Dynamic binding 

A polymorphous procedure can be applied to objects of various classes 
(within the same class hierarchy). Often we need to adapt an algorithm 
more or less to accommodate the specific subclass. Therefore we can over
ride methods of a superclass in its subclasses. Overriding means exchang
ing the algorithm of a method. If a truck's acceleration is different from 
that of a sedan (trucks record speed in a logbook), then the subclasses Truck 
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and Sedan can override the method to determine speed. The new method is 
invoked by the same message, but does something different, depending on 
whether the message was sent to a Sedan or a Truck object. The dynamic 
binding mechanism guarantees that - depending on which subclass an ob
ject belongs to - the correct method is always applied. An algorithm that 
determines the speed of different vehicles simply sends an object the "set 
speed" message. Which method is actually invoked depends on the type of 
the object. Thus the methods are not statically bound at compile time, but 
dynamically at run time, when actual class membership is available. 

13.2.5 Object-oriented applications 

The spectrum of object-oriented applications is growing daily. In addition 
to object-oriented programming languages, e.g., object-oriented database 
systems [KM94] are ever more widespread. The first object-oriented ap
plication domain of all was simulation. The first application was imple
mented in the programming language Simula-67 [DDH72], which was the 
first object-oriented programming language. In simulation we attempt to 
imitate the static structure and the dynamic behavior of some microcosm. 
We can develop simulations of a queue at a bank or of a production pro
cess. In such a simulation we can represent the individual machines and 
workpieces to be processed as objects. Each has its own state space and be
havior. In terms of both space and time, each has a relatively independent 
existence. At times they need to exchange messages and synchronize their 
flow (see Section 16). Particularly this application domain puts inheritance 
to good use: there are typically abstract object superclasses (e.g., all tools, 
all machines, all queues, etc.) with certain commonalities; concrete object 
classes can be derived from these superclasses (e.g., the queue for a certain 
kind of machine for a specific kind of workpiece). 

Another widespread application domain is object-oriented user inter
faces. The actual dissemination of object-oriented concepts can be attrib
uted to the success of the language Smalltalk [GR83] and menu-driven 
user interfaces, which were both developed at the end of the 1970s at the 
Xerox Palo Alto Research Center (Xerox PARC); this is why books on object
oriented programming even today most often use the example of user in
terfaces. The basic idea is that the user can select an object on the screen 
and then sends it a message, thus triggering some action (e.g., deletion, 
copying, etc.). The user first selects the object and then adds action. This 
action can be object-specific (more precisely, class-specific); i.e., the action of 
a subclass can be a refinement or specialization of an action of a superclass. 
(By contrast, in the procedural way of thinking, the action - the procedure 
- is always the focus and can be applied to various objects.) 
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This idea, together with the concepts of encapsulation, inheritance and 
polymorphism, has a very significant feature: identical actions are exe
cuted by the same program code (code sharing), and for similar actions only 
the deviating parts are processed by additional code. The major improve
ment here is by no means only that programs become shorter (which is 
also the case). Even before object-oriented programming, a very important 
quality attribute of a user interface was consistency, whereby the same 
or similar services should not be presented in different ways. The user 
should be able to learn certain conventions quickly, e.g., deletion with the 
delete key, selection with the left mouse button. It is unacceptable to re
quire different actions on a case-by-case basis. Before object orientation 
these features were achieved by introducing very strict conventions for the 
development of a software product; programmers abided by these conven
tions to varying degrees. The object-oriented approach goes to the core of 
the problem: if all delete operations are executed by the same code, then 
deletion will always present the same appearance to the user. If certain 
subclasses require some modification of the deletion operation from the su
perclass, then at least the common parts are processed by the same code, 
and only the class-specific aspects are handled by the subclass. Polymor
phous procedures can process variants of classes, and new variants can be 
added later without modifying existing code. 

This should not give the impression that object orientation is a panacea 
for all programming problems. For example, it is not easy to design a thor
oughly object-oriented user interface, that is, to find an adequate hierarchy 
of abstract classes. The following sections should make this clearer. 

In the following we show how the basic concepts presented above (and 
some additional ones) find expression in Modula-3. 

13.3 Object types in Modula-3 

We have already mentioned the similarity of subclass and subtype relation
ships. Naturally this is no coincidence: Modula-3's subtype concept was 
deliberately so designed. We need absolutely no new language elements 
in order to meet the first requirement of object-oriented programming -
encapsulation. The Modula-3 implementations of encapsulated data types 
presented in Section 11.4 (e.g., the encapsulated stack type in Example 
11.28) are based on subtyping and hidden data types. However, this does 
not suffice to describe inheritance, polymorphism and dynamic binding. 
Here Modula-3 offers a new type constructor (OBJECT), which provides all 
significant object features. 
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13.3.1 Declaration of object types 

Modula-3 objects are instances of object types (classes), which consist of 
fields (also called instance variables or attributes) and methods. 

Syntax of object types 

ObjectType52 = [TypeName85 I ObjectType52 ] [ Brand58 ] 
"OBJECT" Fields59 
["METHODS" Methods61 ] 

Methods61 
Method62 
Overrides63 
Override64 

["OVERRIDES" Overrides63] "END". 
= [ Method62 { ";" Method62 } [";" ]]. 
= Ident89 Signature19 [ ":=" ConstExpr65 ]. 
= [ Override64 { ";" Override64 } [";" ]]. 
= Ident89 ":=" ConstExpr65' 

The typical form of an object type declaration is: 

TYPE Object = Super OBJECT 
fields 

METHODS 
methods 

OVERRIDES 
overridden methods 

END 

Object is a subtype of Super. Ifwe omit the supertype -which the syntax 
allows - Object would be a subtype of the predefined type ROOT, the root 
of all classes. Object inherits all attributes and methods from Super. This 
means that each instance of Object contains fields and methods of the same 
name as those in Super. Let us formulate an abstract vehicle class: 

Vehicle = OBJECT 
position: RECORD x, y: REAL END; 
speed: REAL; 
load: REAL; 

METHODS 
newPos(x, y: REAL); 
setSpeed(mph: REAL); 
loadFreight(kg: REAL); 
unloadFreight(kg: REAL); 

END; 

(*coordinates*) 
(*current speed*) 

(*weight of load in kg*) 

(* set position *) 
(*set speed*) 

(*add to load*) 
(*subtract from load*) 

Thus our vehicles have position and speed and store the weight of their 
load. The fields are defined in a similar way as in records (see Section 8.2). 
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The method declarations specify the possible messages that the object class 
understands, along with their parameters. We can extend this vehicle class 
to an abstract car by additionally storing the number of passengers: 

Car = Vehicle OBJECT 
passengers: [0 .. 9]:= 0; 

METHODS 
getln(number: [1 .. 9]); 
getOut(number: [1 .. 9]); 

END; 

(*number ofpassengers*) 

(*add to passengers*) 
(*subtract from passengers*) 

At some point the methods must be set to concrete procedures; otherwise 
they are NIL. We can write: 

METHODS 
getln(number: [1 .. 9]):= Getln; 

Thus the method named getln is set directly to the procedure Getln in 
the object declaration. This procedure thereby implements the method and 
must accept as its first parameter the current object (see Section 13.3.3). 

A subtype developer who is quite satisfied with the object Car but who 
cannot use the method for setting speed (for cars that feature cruise con
trol) can use the OVERRIDES clause to specify a custom method: 

SpecialCar = Car OBJECT 
OVERRIDES 

setSpeed:= SetCruiseControl; 
END; 

This creates another subclass that is identical to class Car except that 
it has a different setS peed method. Observe that here we only reference 
names; the message signature has already been defined in the superclass. 

13.3.2 Implementation of objects 

Objects in Modula-3 are always references. They are implemented inter
nally as pointers to special records. In addition to the object fields, these 
records also have a pointer to a method table (see Figure 13.4). The inter
nal representation of a subtype is exactly the same; only the list of fields 
and methods can be extended. It is clear that a method written for objects 
of type Vehicle can also process objects of type Car because Cars have the 
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Figure 13.4: Schema of the implementation of objects 

same structure, and their extension does not matter. All fields that the ve
hicle method requires are present in Cars with the same type at the same 
position in the record. The method does not access the extending fields (in 
fact, we could say that it is not even "aware" of their existence). Extending 
the class with new methods works analogously. 

Subtyping simply copies all methods of the supertype into the new 
method table. We have seen that they can be used likewise for the new 
type. Only overridden methods are not copied. They are entered anew in 
the table at the corresponding position. 

Dynamic binding of methods to the current object results because each 
method is looked up in the object itself. Sending the message setSpeed 
invokes the procedure that is entered at the corresponding position in the 
method table of the current object. For practical reasons, the method table 
is stored statically with the type (for objects of the same type, the methods 
are always the same). However, the pointer to the method table must be 
stored in each object. 

13.3.3 Implementation of methods 

Example 13.5 shows the implementation of a stack object. The type Stack 
contains the field top, which points to the stack. The stack is structured 
as a list of Nodes. The methods that define the operations on the stack 
are implemented as ordinary procedures. Apart from the first parameter, 
the signature of such a procedure must cover the signature of the method 
which it implements. That is, apart from parameter names, the default 
values and the raises set (see Chapter 15), the parameters and the return 
type must be identical if we omit the first parameter of the procedure. The 
first parameter identifies the current object, i.e., the receiver, to whom the 
message is sent. If the type of the object is T, then the type of the receiver 
must be a supertype of T (normally T itself). This parameter must be a 
value parameter (which prevents a method from destroying its receiver). 
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MODULE StackObj EXPORTS Main; 

TYPE 
ET = INTEGER; 
Stack = OBJECT 

top: Node := NIL; 
METHODS 

push(elem:ET):= Push; 
popO :ET:= Pop; 
emptyO: BOOLEAN:= Empty; 

END; (*Stack*) 
Node = REF RECORD info: ET; next Node END; 

PROCEDURE Push(stack: Stack; elem:ET) = 
VAR new: Node := NEW(Node, info:= elem); 
BEGIN 

new.next:= stack. top; 
stack.top:= new; 

END Push; 

PROCEDURE Pop (stack: Stack): ET = 
VAR first: ET; 
BEGIN 

first:= stack.top.info; 
stack.top:= stack.top.next; 
RETURN first 

END Pop; 

PROCEDURE Empty(stack: Stack): BOOLEAN = 
BEGIN 

RETURN stack. top = NIL 
END Empty; 

VAR 
stack1, stack2: Stack := NEW(Stack); 
i1, i2: INTEGER; 

BEGIN 
stack1.push(2); 
stack2.push(6); 
i1:= stack1.popO; 
i2:= stack2.popO; 

END StackObj. 

13. Objects 

(*24.01.95. LB*) 

(*Type of elements*) 

(*points to stack*) 

(*Push implements push*) 
(*Pop implements pop*) 

(*Empty implements empty*) 

(*stack: receiver object (self)*) 
(*Element instantiate*) 

(*new element added to top*) 

(*stack: receiver object (self)*) 

(*Info copied from first element*) 
(*first element removed*) 

(*stack: receiver object (self)*) 

(*2 stack objects created*) 

(*2 pushed onto stack1 *) 
(*6 pushed onto stack2*) 

(*pop element from stack1 *) 
(*pop element from stack2*) 

Example 13.5: Stack implemented as object type 

With this parameter the object identifies itself within the implementing 
procedure. Therefore this parameter is often called self (In many pro
gramming languages SELF is a keyword; Modula-3 leaves the naming to 
the programmer.) 
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13.3.4 Accessing object components 

As with record types, the fields and methods of an object type are accessed 
with qualified identifiers. We can read and write to fields and invoke meth
ods. For example, if 0 is an object variable with a field t and a method 
m, then the field can be accessed as o.t and the method can be invoked as 
o.m(actual parameters). 

In Example 13.5 we declare two Stack objects and create them with 
NEW. The created objects can then be accessed through their methods. 

In the terminology we have used thus far we need to replace the expres
sion method invocation with message passing. We say that we send mes
sage m to object 0; 0 is the receiver of the message. The expression method 
invocation reflects the most common implementation: methods are imple
mented as procedures (not only in Modula-3), and sending a message to an 
object amounts to a procedure invocation. However, we must be aware that 
the concept of message passing differs from that of procedure invocation. 
This difference finds expression in the syntax: the form of a procedure in
vocation is P(o, actual parameters), which means that the same procedure 
can be applied to various objects; the form of a corresponding method call 
is o.m(actual parameters), which means that the method corresponding to 
the dynamic type of 0 is applied. The most important difference is that the 
procedure invocation is statically bound, while a method call is dynamically 
bound. Thus the procedure invocation P(o, actual parameters) employs the 
same algorithm, whereas o.m(actual parameters) can harbor any of various 
algorithms, depending on the current class of o. 

In Example 13.5 we could have written Push(stack1,2) instead of 
stack1.push(2). The difference will become obvious later when we handle 
encapsulation, inheritance, polymorphism and dynamic binding. 

The syntax indicates a difference between the (already mentioned) pro
cedural and the object-oriented ways of thinking: In procedural program
ming languages (such as Pascal, Modula-2, C and Fortran) the algorithm 
is the focus. We develop an algorithm and invoke it with various parame
ters. The object to be processed is itself a parameter. First comes the "verb" 
(what is to be done), then the "object" (what is to be processed). In object
oriented programming languages (such as Modula-3, Eiffel, Oberon-2 and 
C++) the focus is on the object; what is to be done with it follows. 

13.3.5 Creating objects 

As we mentioned above, Modula-3 objects are always references to un
named "special records". Thus objects must be instantiated with the prede
fined NEW function. Here the fields of the object can be set to values other 
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than the default values (compare creating references to Record types, Sec
tion 11.2.1). Invoking 

car := NEW(Car, passengers := 1) 

creates a new Car object and sets the passengers field. 
A specialty of Modula-3 permits creating objects of an unnamed sub

type, with very similar syntax. We could have created an instance of type 
SpecialCar, as defined on page 314 as follows: 

myCar := NEW(Car, setS peed := setCruiseControl) 

This amounts to a short form of: 

myCar := NEW(Car OBJECT OVERRIDES setSpeed := SetCruiseControl) 

On creation of a new object with NEW, its fields are created as well. The 
methods of a given class are the same for every object of the class; hence 
they only need to be physically created once. This does not conflict with 
inheritance or with the ability to override methods in a subclass. Thus 
methods belong to the whole class and so to the type. Therefore the meth
ods can also be invoked via their type name. If 0 is an object type and m is 
a method thereof, then O.m invokes this method. Methods are invoked in 
this way on a supercall (see page 323). 

An assignment between objects is subject to the rules of assignment 
compatibility (Sections 7.5 and 11.3). For assignment between objects, ref
erence semantics apply. That is, if 01 and 02 are assignment compatible ob
jects, then after the assignment 01:= 02 the object 01 references the same 
set of fields and methods as 02. 

Objects cannot be dereferenced. In order to duplicate the set of fields, 
we would have to copy the fields individually (01.f1:= 02.f1; 01.f2:= 02.f2; 
etc.). Methods cannot and need not be copied. 

13.3.6 Subtyping rules for objects 

We are already familiar with most subtyping rules. For objects, the follow
ing additional rules are defined: 

ROOT <: REFANY 
UNTRACED ROOT <: ADDRESS 
NULL <: T OBJECT··· END <: T <: ROOT 

These definitions indicate that all objects are references. All traced objects 
are subtypes of ROOT, the root of all object types. The type NULL is a 
subtype of every object type, so that every object can assume the value NIL. 
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As with references that are not objects, objects are automatically managed 
by the garbage collector, so that storage for traced object instances to which 
there is no reference is automatically deallocated. Untraced object types 
are subtypes of UNTRACED ROOT, and their storage must be deallocated 
explicitly (with the DISPOSE procedure, which is permitted only in unsafe 
modules (see Appendix B. 7». 

13.4 Encapsulation of object types 

Thus far we have encountered objects only in their completely exposed 
form. However, we cannot present objects to clients in this way; this would 
violate the principle of information hiding. It would be quite senseless on 
the one hand to show clients the method getln and on the other hand to 
allow free access to the passengers field. Yet we already know all language 
elements needed to enable encapsulation of Modula-3 objects in the sense 
of object-oriented programming. Now let us put them together. 

Let us transform the example of the piggy bank in Section 10.2.1 to 
a piggy bank object (Example 13.7). We will implement the piggy bank 
object as an encapsulated data type. We can omit the procedures Deposit 
and Smash since the corresponding methods (deposit and smash) are now 
integral parts of type T. No assignments follow the method signatures, so 
that they are initialized to NIL. The implementation of these methods is 
deferred [Mey891; they must be overridden by a subtype (which is done 
most simply in a separate implementation module). 

The method smash can disable the piggy bank object, but cannot dispose 
of it (as by setting it to NIL) because the receiver parameter must always 
be a value parameter. The client must dispose of an object. (Objects are 
also created by clients.) 

Creation and initialization of encapsulated objects 

In Section 11.4 we expressly recommended that the interface of an encap
sulated data type always include a procedure that creates and initializes 
instances of a hidden type. The implementation of this procedure should 
be in the implementation module, where the declaration of the type is fully 
revealed. Indeed, the latter is necessary because "ordinary" pointers (non
objects) can only be created in the scope of their full revelation. 

The interface of the piggy bank object (Example 13.7) had no Create 
procedure, but instead an init method. We deferred creation to the client 
(Example 13.6). This is possible because objects can be created even if their 
type is hidden. But why does it make sense to separate creation and ini
tialization of objects? The answer is in inheritance. Along a type hierarchy 
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MODULE PiggyBank EXPORTS Main; 

IMPORT PiggyObj; 
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI; 

TYPE 
PiggyBanks = ARRAY [0 .. 1] OF PiggyObj.T; 

VAR 
sty: PiggyBanks; 
amount, index: INTEGER; 
active := NUMBER(PiggyBanks); 

13. Objects 

(*22.06.94. RM, LB*) 

(*sty of piggy banks*) 

(*number of intact piggy banks*) 

BEGIN (*PiggyBank2*) 
PutText("Piggy bank:\n" & 

"Positive amount is deposited; negative amount smashes bank.\n" & 
"Odd amounts go in piggy bank 1; even amounts go in piggy bank O. \n"); 

FOR s:= FIRST(sty) TO LAST(sty) DO 
sty[s]:= NEW(PiggyObj.T).initO; 

END; 
(*create and initialize object)*) 

WHILE active> 0 DO 
amount:= GetlntO; 
index:= ABS(amount) MOD NUMBER(sty); 
IF amount >= 0 THEN 

IF sty[index] # NIL THEN sty[index].deposit(amount) END 
ELSE 

PutText("Contents of piggy bank-"); Putlnt(index, 1); 

(*deposit*) 

(*smash*) 

Putlnt(sty[index].smashO, 6); NIO; 
sty[index]:= NIL; 
DEC(active); 

(*object actually destroyed*) 
(*reduce number of intact piggy banks*) 

END; (*IF amount >= 0*) 
END; (*WHILE active> 0 smash all piggy banks*) 

END PiggyBank. 

Example 13.6: Usage of the piggy bank object type 

each subtype can add new fields to the inherited ones. The farther down 
the hierarchy a subtype is, the more "heavyweight" it becomes. We must 
create an object where it is heaviest, where no further subtypes are added, 
normally at the client level. The hidden fields still need to be initialized by 
their owner. Therefore, for each object that is defined in an interface, we 
provide an init method. In trivial cases where all fields are initialized with 
constant values, we can omit the init method (in the case of the piggy bank, 
we could have spared ourselves the init method for this reason). 

Immediately after creation of an object, the client must invoke the ob
ject's init method. Before this method initializes the fields that are visible to 
it, it can invoke the init method of its supertype, which can invoke its super
type's method, and so on. In this way initialization can progress through 
to the root type (see also the redefinition of methods in Section 13.4.3). In 
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INTERFACE PiggyObj; 

TYPE 
T <: Public; 
Public = OBJECT 

METHODS 
init(): T; 
deposit(cash: CARDINAL); 
smash(): CARDINAL; 

END; (*Public*) 
END PiggyObj. 
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(*22.06.94. RM, LB*) 

(*deposit cash*) 
(*return contents and block piggy bank*) 

Example 13.7: Interface ofthe piggy bank object type 

MODULE PiggyObj; 

REVEAL 
T = Public BRANDED OBJECT 

contents: INTEGER; 
OVERRIDES 

init:= Init; 
deposit:= Deposit; 
smash:= Smash; 

END; (*T*) 

PROCEDURE Init(t: T): T = 
BEGIN 

t.contents:= 0; 
RETURN t 

END Init; 

PROCEDURE Deposit(t: T; amount: CARDINAL) = 
BEGIN 

<* ASSERT t.contents >= 0 *> 
INC(t.contents, amount); 

END Deposit; 

PROCEDURE Smash(t: T): CARDINAL = 
VAR s: CARDINAL := t.contents; 
BEGIN 

t.contents:= -1 ; 
RETURN s 

END Smash; 

BEGIN 
END PiggyObj. 

(*22.06.94. RM, LB*) 

(*error in smashed piggy bank*) 

(*record piggy bank contents*) 

(*piggy bank is disabled*) 

Example 13.8: Implementation of the piggy bank object type 
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adherence to a widespread convention, the init method usually has a sig
nature like a function with a return type T. As its result init returns the 
object to be initialized. Since the init method can only be applied to an ob
ject already created (with NEW), a pure procedure signature would suffice; 
we already know the object to be initialized. However, the function form 
has two advantages: 

1. The client can invoke the init method directly on declaration, e.g., 

VAR sp := NEW(PiggyObj.T).initO; 

If init were defined as a pure procedure, then the client would have to 
write: 

VAR sp := NEW(PiggyObj.T); 
BEGIN 

sp.initO; 

The former notation has the advantage that the invocation of the init 
method is less often forgotten, which avoids a frequent and unpleas
ant error. 

2. A possible failure of an initialization can be signaled with the return 
value NIL. This allows immediately undoing the instantiation. 

A sty full of piggy bank objects 

The client module (Example 13.6) shows how the objects are created and 
initialized, how their methods are invoked, and how they are finally dis
posed of The following is a possible execution of the program in Example 
13.6 (without greeting): 

12345678910 -1 -2 
Contents of piggy bank-1 25 
Contents of piggy bank-O 30 

In the implementation of the piggy bank object type (Example 13.8), the 
methods defined in the interface are overridden by a concrete implementa
tion. Note that init allows us to "repair" a "smashed" piggy bank object. 
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13.4.1 Inheritance 

Now let us extend our piggy bank so that it accepts only deposits of valid 
coins; we will call our extension a coin bank. Invalid amounts are not ac
cepted, and the coin bank is intelligent enough to record the sum of invalid 
amounts. We can implement this kind of coin bank as a specialization of 
our piggy bank. It requires an additional method to calculate the sum of 
invalid amounts, and we must adapt the method deposit accordingly (Ex
ample 13.9 and 13.10). The interface introduces the constant Valid, which 
defines the set of valid coins. The type CoinBank.T is a subtype of Piggy
Obj.T. Therefore the coin bank contains all fields and methods of a piggy 
bank. The hidden field contents is also present, although not directly ac
cessible. The modified specification of the method deposit is in the form of 
a comment. The method missed is new. 

The implementation in Example 13.10 overrides deposit with a new pro
cedure that calls the deposit method of the superclass (PiggyObj.T) for valid 
amounts (the supermethod is designated by explicit specification of its type 
name). Invocation of a method of a superclass is called a supercaZZ. Note 
that we must pass the receiver object as the first parameter in order to 
invoke a method via its type name. To invoke the (parameterless) method 
m "normally" via an object 0 of type T, we write o.mO. However, for a su
percall we write T.m(o). A supercall is actually a procedure invocation: 
we thereby circumvent dynamic binding and directly invoke the procedure 
that implements the method m in type T. The method missed returns the 
sum of invalid amounts, which is stored in a new, hidden field. 

The usage of a coin bank very much resembles that of a piggy bank. 
Example 13.11 has an instance of a coin bank. Note that it is important 
that we explicitly specified the type (CoinBank.T) in the declaration of the 
variable bank. Ifwe had only written VAR bank := NEW(CoinBank.T).initO, 
then the static type of the variable bank would derive from the declared 
return type of initO, i.e., PiggyObj.T. In this case the method invocation 
bank.missedO would not be possible because a PiggyObj.T object does not 
recognize this method - although in principle the dynamic type of bank 
would permit this. This example shows that it really is advisable to always 
explicitly specify the type (except in trivial cases). 

The declaration of the variable bank in Example 13.11 poses another 
question. Here we assign an object of subtype CoinBank.T a value of its su
pertype (the return type PiggyObj.T of in it). Section 11.3 showed that this is 
permissible if the value on the right side of the assignment is in the range 
of the type on the left side. Is this condition met? We can only answer this 
question by precisely following the execution of the above assignment. The 
invocation of NEW(CoinBank.T) creates a (nameless) object of type Coin
Bank.T. We send this object the init message (we invoke its init method), 
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INTERFACE CoinBank; 

IMPORT PiggyObj; 

CONST 
Valid = SET OF [1 .. 20] {1, 2, 5, 10, 20}; 

TYPE 
T <: Public; 
Public = PiggyObj.T OBJECT 

METHODS 
missedO: CARDINAL; 

END; (*Public*) 
END CoinBank. 

13. Objects 

(*22.06.94. RM, LB*) 

(*valid coins*) 

(*subtype of PiggyObj. T*) 

(*deposit accepts only valid coins*) 
(*sum of invalid amounts*) 

Example 13.9: Coin bank object type is a subtype ofPiggyObj.T 

MODULE CoinBank; 

IMPORT PiggyObj; 

REVEAL 
T = Public BRANDED OBJECT 

invalidAmount: CARDINAL := 0; 
OVERRIDES 

missed := Missed; 
deposit:= Deposit; 

END; (*T*) 

PROCEDURE Deposit(bank: T; sum: CARDINAL) = 
BEGIN 

IF sum IN Valid THEN 
PiggyObj.T.deposit(bank, sum) 

ELSE 
INC(bank.invalidAmount, sum); 

END; 
END Deposit; 

PROCEDURE Missed(bank: T) : CARDINAL = 
BEGIN 

RETURN bank.invalidAmount 
END Missed; 

BEGIN 
END CoinBank. 

(*22.06.94. RM, LB*) 

(*additional field*) 

(*method of superclass (supercall)*) 

(*CoinBank*) 

Example 13.10: Implementation of the coin bank object type 

which returns the same object. The type of the object instance remains 
CoinBank.T. Thus the actual return value of in it is of type CoinBank.T. Thus 
the assignment is correct. 
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IMPORT CoinBank; 

VAR 
bank: CoinBank.T := NEW(CoinBank.T).initO; 
sum, contents, missed: INTEGER; 

BEGIN 

IF sum >= 0 THEN 
bank.deposit(sum) 

ELSE 
missed:= bank.missedO; 
contents:= bank.smashO; 
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(*create & initialize*) 

(*deposit*) 
(*sum for deposit*) 

(*smash*) 
(*first removes missed coins*) 

(*removes contents of coin bank*) 

Example 13.11: Usage of subclass CoinBank 

13.4.2 Polymorphism and dynamic binding 

In the above example we developed first the class of piggy banks and then 
its subclass, the class of coin banks. Thus every coin bank is a piggy bank, 
but a specialized one. Thus we can use polymorphous variables and pro
cedures. To really exploit this feature, we need some new language con
structs that will help us to determine the dynamic type of an object or to 
access an object according to its dynamic type. NARROW and ISTYPE are 
built-in functions; TYPE CASE is a new statement. The dynamic type of a 
reference variable can be tested only at run time ifits static type is a traced 
reference type or an object type (even untraced). 

Narrow 

The signature of NARROW is: 

NARROW(x: Reference; T: ReferenceType): T 

Note that the second parameter of NARROW is a type (such a signature 
is not permitted for user-defined procedures in Modula-3). The type must 
be a traced reference type or an object type. NARROW tests whether X is 
contained in type T. If not, it generates a run-time error. If so, X is returned 
unchanged, but no longer with its original static type, but as a T object. 
NARROW is typically used in cases where T is a subtype of the static type 
of X (hence the name: it restricts the type range to the subtype). Assume 
the following declarations (P1 and P2 are procedures and are not specified 
further): 
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TYPE 
Super = OBJECT METHODS m10 := P1 END; 
Sub = Super OBJECT METHODS m20 := P2 END; 

VAR 
super := NEW(Super); 
sub := NEW(Sub); 

13. Objects 

super has a method (m1); sub has inherited this method and has the addi
tional method m2. The following method invocations and assignments are 
no problem: 

super.m10; 
sub.m10; 
sub.m20; 
super := sub; (*Dynamic type of super becomes Sub*) 

The last statement assigned sub to super. Thus the dynamic type of 
super changes to Sub; in other words, super later points to a Sub object. 
The method m2 can also be applied to super. However, the compiler does 
not permit the invocation super.m20 because the declared (static) type of 
super is Super, which does not recognize the method m2. The NARROW 

function can help in this situation: 

NARROW(super, Sub).m20; 

With the NARROW function we maintain that an object (super) is contained 
in the specified type (Sub) and thus the additional fields and methods (m2) 
are present. For this reason the compiler permits the above assignment: 
the programmer assumes liability that the object actually is contained in 
the type. If this assertion is false (e.g., if the assignment super := sub is 
missing), then NARROW produces a run-time error. 

Istype 

Situations can occur (especially in polymorphous functions) where we do 
not know the dynamic type of a variable or a parameter. In such cases 
NARROW is too strict; it generates a run-time error if the dynamic type is 
unsuitable. Here it would be better if we could test the dynamic type at 
run time. For this purpose Modula-3 provides ISTYPE and TYPECASE. The 
signature of ISTYPE is: 

ISTYPE(x: Reference; T: ReferenceType): BOOLEAN 

ISTYPE returns true if and only if x is contained in type T. The type must 
be a traced reference type or an object type. In the above example 

ISTYPE(super, Sub) 

would return false before the assignment super:= sub, but afterwards true. 
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Typecase 

ISTYPE allows us to formulate conditional statements. To allow testing 
the type of an expression analogously to testing the value of an expression, 
Modula-3 provides the TYPE CASE statement. Its syntax closely resembles 
that of the CASE statement; the major difference is that the values of the 
CASE marks must be types. 

Syntax 

TCaseStmh7 = "TYPECASE" Expr66 "OF" [Tcase45 ] 
{ "1" Tcase45 } [ "ELSE" Stmts23 ] "END". 

Tcase45 = Type48 { "," Type48 } [ "(" Ident89 ")" ] "=>" Stmts23 • 

The general form of a TYPE CASE statement is: 

TYPECASE expression OF 
I type 1 (auxiliary variable 1) => statement 1 

I typen (auxiliary variablen ) => statementn 

ELSE statemento 
END 

The type of the expression must be a traced reference type or an object 
type. All typei must be subtypes of this type. The ELSE branch and the aux
iliary variables are optional. The scope of auxiliary variablei is statementi' 
Types that have no auxiliary variables and select the same statement can 
be combined in a list. Therefore we can write the following: 

I typei => statement 

I typek => statement 

in shorter form as follows: 

typei' ... typek => statement 

The TYPECASE statement executes as follows: First the expression is com
puted. If the result is contained in several of the enumerated types, then 
the alternative is selected that appears first (typei with the smallest i). This 
means that in the TYPECASE statement we must consider the order of the 
alternatives. If type 1 <: type2 <: type3, then in the TYPECASE statement 
type 1 should appear first. If type3 were to appear first, then this alternative 
would snatch all objects of types type1 to type3' This means that type NULL 
should only appear as first and type ROOT only as last alternative. 

Despite its syntactic resemblance, the TYPE CASE statement differs sig
nificantly from the CASE statement: Not only does it evaluate types instead 
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of values, it is also sensitive to the order of alternatives. Since the latter 
is not true of the CASE statement, in this aspect TYPE CASE resembles the 
IF-ELSIF statement more. 

The type of the auxiliary variablei (if present) is typei; it is initialized 
with the value of the expression. If the expression is contained in none of 
the listed types, then the ELSE branch is executed if available; otherwise a 
run-time error is generated. 

For the equivalence of TYPE CASE and IF statements with ISTYPE tests, 
similar considerations apply as for the equivalence of CASE and IF state
ments (Section 5.4.3). Usually they can be transformed back and forth 
without difficulty; however, we do need to watch for any side effects. 

Example 13.12 declares instances of both a piggy bank and a coin bank. 
The procedures Deposit and Withdraw are polymorphous. Each has a for
mal parameter of type PiggyObj.T. According to the rules of assignment 
compatibility, any subtypes are permitted as actual parameters, including 
coin banks. The procedure Deposit first invokes the method deposit. The 
mechanism of dynamic binding assures the selection of the unrestricted 
deposit method for piggy bank objects, but the restricted one for coin bank 
objects. In this procedure let us generate an error message in the event of 
an invalid deposit attempt for a coin bank. Hence we test the dynamic type 
of the parameter s with ISTYPE. The procedure Withdraw employs TYPE
CASE (although it could just as well use ISTYPE) to determine the dynamic 
type of parameter p. If the type is CoinBank.T, we can invoke the method 
missed. Note the order: if we exchange the two alternatives, then TYPE
CASE would always execute alternative PiggyObj.T. 

A possible execution of Example 13.12 (without greeting) is the follow
ing: 

123456789 10 -1 
Invalid amount for coin bank 3 
Invalid amount for coin bank 4 
Contents of piggy bank = 40 
Invalid attempts = 7 Contents of coin bank 8 

13.4.3 Generalization 

Let us develop a savings account which permits more flexibility than a 
piggy bank. We want to allow any number of deposits and withdrawals 
and to be able to query the account balance. We will not consider the com
putation of interest here. 

The question is, can we define such a savings account as a specialization 
or extension of the piggy bank? The method deposit can be used for making 
deposits. But the method smash creates some problems: it destroys the 
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MODULE BankPoly EXPORTS Main; 

IMPORT PiggyObj, Coin Bank; 
FROM SIO IMPORT PutText, Putlnt, Getlnt, NI; 

PROCEDURE Deposit(p: PiggyObj.T; amount CARDINAL) = 
BEGIN 
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(*27.06.94. LB*) 

p. deposit( amount); 
IF ISTYPE(p, CoinBank.T) 

(*the correct method is selected automatically*) 
(*tests whether p is of type CoinBank.T*) 

(*and whether the amount is invalid*) AND NOT amount IN CoinBank.Valid 
THEN 

PutText("lnvalid amount for coin bank = "); Putlnt(amount); NIO; 
END; (*IF ISTYPE(p, CoinBank.T}. .. *) 

END Deposit; 

PROCEDURE Withdraw(p: PiggyObj.T) = 
VAR t TEXT; 
BEGIN 

TYPECASE P OF 
I CoinBank.T(c) => t= "coin"; 

PutText("lnvalid attempts = "); 

(*tests the dynamic type ofp*) 
(*coin bank*) 

Putlnt(c.missedO); (*c designates p as coin bank object*) 
PutText(" "); 

I PiggyObj.T => t= "piggy"; 
END; (*TYPECASE p*) 
PutText("Contents of " & t & " bank" & " = "); 
Putlnt(p.smashO); 
NIO; 

END Withdraw; 

VAR 
coin: CoinBank.T := NEW(CoinBank.T).initO; 
piggy: PiggyObj.T := NEW(PiggyObj.T).initO; 
amount INTEGER; 

BEGIN 
PutText("CoinBank accepts only valid cOins.\n" & 

(*piggy bank*) 

(*smash was not overridden*) 

(*creation & initialization *) 
(*creation & initialization *) 

"Positive amounts are deposited; negativ amount smashes bank.\n" & 
"Amounts < 6 go to coin bank, others to piggy bank.\n"); 

REPEAT 
amount= GetintO; 
IF amount >= 0 THEN (*deposit*) 

IF amount < 6 THEN Deposit(coin, amount) ELSE Deposit(piggy, amount) END; 
ELSE (*smash*) 

Withdraw(piggy); Withdraw(coin); 
END; (*IF amount >= 0*) 

UNTIL amount < 0; 
END BankPoly. 

Example 13.12: Polymorphous procedures 
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INTERFACE Saving; 
CONST 

(*25.06.94. LB*) 

Max = 1.0e1 0; 
TYPE 

T <: Public; 
Public = OBJECT 

METHODS 
init (initial Balance: REAL := 0.0; 

maxBalance: REAL := Max; 
maxDeficit: REAL := 0.0): T; 

balanceO: REAL; 

transact(amount: REAL): BOOLEAN; 

(*suffices for now*) 

(*0 :s; initialBalance :s; maxBalance*) 
(*0 :s; maxBalance :s; Max*) 

(*0 :s; maxDeficit :s; Max*) 

(*returns account balance*) 

(*maxDeficit :s; amount + balance :s; maxBalance; balance is invisible! *) 
(*Returns TRUE if and only if the transaction succeeds*) 

END; (*Public*) 
END Saving. 

Example 13.13: Generalized superclass for saving 

piggy bank. This method is certainly not suitable for checking the balance 
of a savings account. This brings us to a typical problem of object-oriented 
programming: we can specialize a class only if it is general enough, which 
does not apply for the class PiggyBank. Now we have the following pos
sibilities: we fully reveal the internal structure so that the heirs can use 
the fields in other ways, or each time we request our account balance we 
destroy our "piggy bank" and generate a new one. However, we choose yet 
another approach that is often unavoidable: we redesign our class hierar
chy. 

This experience could bring some readers to reject object-oriented pro
gramming because the promised flexibility seems to falter. We want to 
warn against premature resignation just as much as exaggerated eu
phoria. Object-orientation has many merits, but we need to learn how 
to use them properly. Generalizing a superclass whose first design was 
too specialized is part of the daily work of an object-oriented program
mer. The situation is more delicate: A superclass that is much too 
general is also of no value. If everything is generic, if all design deci
sions are deferred, then this is just as bad as decisions made too early 
and too rigidly. We are left with the old wisdom of finding the golden 
middle. 

The class of the "generalized piggy bank" should be formulated such 
that both savings accounts and piggy banks can be derived as special
izations thereof Our first decision is to change the type of the deposits 
from INTEGER to REAL (Example 13.13). This means that we can handle 
amounts in cents and we can easily add interest computation later. 
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MODULE Client EXPORTS Main; (*22.06.94. LB*) 

IMPORT Saving; 
FROM 810 IMPORT PutText, PutReal, GetReal, LookAhead, GetChar, NI; 

VAR 
sp: Saving.T := NEW(Saving.T).init(initiaIBalance:= 200.0, maxDeficit:= 100.0); 
ch: CHAR; 

BEGIN (*Client*) 
PutText("Savings transactions\n" & 

"Press numbers for transactions, B for balance, Q to quit\n"); 
REPEAT 

ch:= LookAheadO; 
CASE ch OF 

(*tests first character without removing it*) 

1'0' .. '9', '+', '-' => (*number*) 
IF NOT sp.transact(GetReal()) THEN PutText("Error\n") END; 

I 'B', 'b', 'Q', 'q' => (*balance orquit*) 
PutText("Account balanace = "); PutReal(sp.balance()); NIO; 
EVAL GetCharO; (*moves reader position*) 

ELSE (*character is neither number nor command*) 
EVAL GetCharO; (*read on*) 

END; (*CASE ch*) 
UNTIL (ch = 'Q') OR (ch = 'q'); 

END Client. 

Example 13.14: A client of class Saving 

We define an init method with a number of parameters with default val
ues. The permitted ranges for the parameters are given as comments. We 
define two other methods: transact and balance. transact permits both de
posits and withdrawals; the leading sign of the amount determines the 
direction of the transaction. The comment specifies the valid range of the 
amount. Since the field status is invisible to clients, the method balance 
returns the current account balance. 

Example 13.14 shows a client ofthe interface Saving; the implementa
tion is in Example 13.15. The client can make transactions on the account 
and request the account balance. A possible execution of Example 13.14 
(without greeting) could be: 

[ 1020 -1522 q 1 
~A_C_c __ o_u_n_t __ b_a_l_a_n __ c_e __ = __ 2_3_7 ____________________________ ~ 

The implementation of the init method provides no protection against 
improper invocation. The conditions of the correct initialization are spec
ified in the interface as comments. The reader should consider how to 
make init robust with respect to incorrect invocation. The method trans
act tests whether the requested transaction is permissible. Note that the 
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MODULE Saving; 

REVEAL 
T = Public BRANDED OBJECT 

status: REAL; 
max: REAL; 
min: REAL; 

OVERRIDES 
init:= Init; 
transact:= Transact; 
balance:= Balance; 

END; (*T*) 

PROCEDURE Init(self: T; initialBalance: REAL := 0.0; 
maxBalance: REAL := Max; 
maxDeficit: REAL := 0.0): T = 

BEGIN 

13. Objects 

(*22.06.94. LB*) 

(*current account balance*) 
(*maximum balance*) 
(*minimum balance*) 

self.status:= initialBalance; 
self.max:= maxBalance; 
self.min:= -maxDeficit; 
RETURN self; 

(*initially max must not be negative*) 
(*initially min must not be positive*) 

END Init; 

PROCEDURE Transact(self: T; amount: REAL): BOOLEAN = 
BEGIN 

IF amount >= 0.0 AND amount <= self. max - self. status OR 
amount < 0.0 AND amount >= self. min - self. status 

THEN (*deposit or withdrawal*) 
self.status:= self.status + amount; 
RETURN TRUE 

ELSE 
RETURN FALSE 

END; (*IF amount >= 0.0 ... *) 
END Transact; 

PROCEDURE Balance(self: T): REAL = 
BEGIN 

RETURN self. status 
END Balance; 

BEGIN 
END Saving. 

(*transaction not permitted*) 

Example 13.15: Implementation of class Saving 

tests are formulated not in the form self. status + amount <= self.max, but 
in the equivalent form amount <= (self. max - self.status). This prevents an 
overflow in the event that self. status + amount> LAST(REAL) (although few 
of us are threatened by this danger). 

With the help of the generalized type Saving.T, we can define the var
ious subtypes. For example, a piggy bank type would have to override 
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INTERFACE SavingsAccount; 

IMPORT Saving; 

TYPE 
T <: Public; 
Public = Saving.T OBJECT 

METHODS 
oldBalanceO: REAL; 

END; (*Public*) 

END SavingsAccount. 
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(*01.07.94. LB*) 

(*T is a subtype of Saving. T*) 

(*returns previous balance*) 

Example 13.16: SavingsAcct.T is a subtype ofSaving.T 

MODULE SavingsAccount; 

IMPORT Saving; 

REVEAL 
T = Public BRANDED OBJECT 

previous: REAL; 
OVERRIDES 

init:= Init; 
oldBalance:= Old Balance; 

END; (*T*) 

(*01.07.94. LB*) 

(*stores previous balance*) 

PROCEDURE Init(self: T; initialBalance, maxBalance, max Deficit: REAL): Saving.T = 
BEGIN 

EVAL Saving.T.init(self, initialBalance, maxBalance, maxDeficit); (*supercall*) 
self.previous:= self.balanceO; (*fields of super class already initialized*) 
RETURN self (*returns self as Saving. T*) 

END Init; 

PROCEDURE OldBalance(self: T): REAL = 
VAR p: REAL := self. previous; 
BEGIN 

self.previous:= self.balanceO; 
RETURN p 

END OldBalance; 

BEGIN 
END SavingsAccount. 

(*copy previous balance*) 

(*set previous balance to new balance*) 

Example 13.17: Implementation of the savings account 

the methods transact and balance such that negative transactions (with
drawals) are ignored and the first request for the account balance blocks all 
further transactions. We could achieve a blockage, for example, by reini
tializing the Saving object with sp.init(O.O, 0.0, 0.0). This blocks all further 
transactions on the account, as with smashing a piggy bank. We gain the 
additional advantage that on an attempt to deposit to a blocked account, 
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IMPORT SavingsAccount; 
VAR 

13. Objects 

acct: SavingsAccount.T := NEW(SavingsAccount.T).init(maxDeficit:= 300.0); 
amount, old Balance, balance: REAL; success: BOOLEAN; 

BEGIN (*Saving*) 

success:= acct. transact( amount); (*amount transacted*) 

oldBalance:= acct.oldBalanceO; 
balance:= acct.balanceO; 

Example 13.18: Client of the savings account 

the transact method returns false instead of generating a run-time error. 
Requesting the account balance is not blocked (balance always returns 0), 
but we could achieve this by overriding the method. 

To model a savings account with various balances and interest com
putations would be no problem now. However, let us make things easier: 
let us define a savings account with one additional feature, requesting the 
previous balance. We could invoke this method once a week to determine 
how much we have spent in that week. This request should then set the 
previous balance to the new one. In the interface we need only a single 
additional method, old Balance (Example 13.16). 

In the implementation we still need a hidden field that stores the pre
vious account balance (Example 13.17). On each request, this field is set to 
the new account balance. We also have to override init because the field pre
vious must also be initialized, since the fields of Saving.T were initialized 
by a supercall. The client is shown in Example 13.18. 

Redefinition of methods and fields 

Now let us construct a coin bank using the class Saving; our coin bank 
should accept only valid coins. How can we achieve this? We can develop a 
new method that accepts only amounts contained in a tailored enumeration 
type, e.g.: 

TYPE 
Coins = {Penny, Nickel, Dime, Quarter, Half, Dollar}; 
Coin Bank = Saving.T OBJECT 

METHODS 
depositCoins(amount: Coins); 

END; 

This solution has the drawback that, although the method depositCoins ac
cepts only valid coins, the inherited method transact is still present, and 
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INTERFACE CoinSaver; 
IMPORT Saving; 
TYPE 

T 
Coins 
Valid 
Public 

<: Public; 
{Penny, Nickel, Dime, Quarter, Half, Dollar, Invalid}; 
[Cains. Penny .. Coins. Dollar]; 
Saving.T OBJECT 
METHODS 

transact(amount: Valid): BOOLEAN; 
END; (*Public*) 
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(*02.07.94. LB*) 

(*redefined!*) 

PROCEDURE Coin(t: TEXT): Coins; (*auxiliary procedure*) 
(*tests whether t is a coin name. Returns coin value (possibly Invalid)*) 
END CoinSaver. 

Example 13.19: CoinSaver redefines the method transact 

an undisciplined client could still deposit any amount. Another possibility 
is to override transact so that it always returns false for invalid amounts. 
This is an improvement, but not quite what we want. We want a coin bank 
that simply recognizes nothing but coins. Here we must modifY the sig
nature of the method transact, which is not permitted in overriding. Thus 
we must redefine the method so that it has the same name but a different 
signature. Modula-3 permits redefinition of both methods and fields (in the 
latter case, e.g., we can define the same name with a different type). 

The redefinition of a method (or of a field) resembles the case where we 
redefine a name within a nested block. The new name eclipses the old. 

In redefining a name in a subtype, however, we can still access the 
eclipsed name with the NARROW statement. This is a rather unusual use 
of NARROW: instead of restricting the type to a subtype, we access the su
pertype (in this case "broaden" would be a more descriptive name). 

Example 13.19 shows the interface ofthe new coin bank (we will call it 
coin saver); Example 13.20 shows the implementation, and Example 13.21 
shows a client. These examples demonstrate the use of a supertype and its 
derivatives. Depending on the amount and the type of the input (numeric 
or text), the deposit goes into either the piggy bank or the coin bank, or the 
general saver (from the superclass Saver). 

The module CoinSaver provides an auxiliary procedure that tests 
whether a text contains a valid coin name. If so, it converts the text to the 
corresponding coin value; otherwise it returns Coins. Invalid. Unambiguous 
abbreviations are permitted (e.g., the character string "Di" identifies the 
dime; "D" alone is rejected because it could also designate a dollar coin). 
This auxiliary procedure facilitates the client's input of coins. A possible 
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MODULE CoinSaver; 
IMPORT Saving, Text; 
REVEAL 

T = Public BRANDED OBJECT 
OVERRIDES 

transact:= Transact; 
END; (*T*) 

PROCEDURE Transact(self: T; amount: Valid): BOOLEAN = 
VAR number: REAL; 
BEGIN 

CASE amount OF 
I Coins. Penny => number:= 1.0; 
I Coins. Nickel => number:= 5.0; 
I Coins. Dime => number:= 10.0; 
I Coins. Quarter => number:= 20.0; 
I Coins. Half => number:= 50.0; 
I Coins. Dollar => number:= 100.0; 

END; (*CASE amount*) 
RETURN NARROW(self, Saving.T).transact(number); 

END Transact; 

PROCEDURE Coin(t: TEXT): Coins = 
CONST V = ARRAY Valid OF TEXT 

{"Penny", "Nickel", "Dime", "Quarter", "Half", "Dollar"}; 
VAR coin: Valid; found := 0; c := FIRST(Coins); 

13. Objects 

(*02.07.94. LB*) 

(*transact from Saving*) 

BEGIN (*Reads coin (possibly abbreviated)*) 
WHILE (c <= LAST(Valid» AND (found < 2) DO 

IF Text.Equal(t, Text.Sub(V[c], 0, Text.Length(t») THEN 
coin:= c; INC(found); 

END; (*IF Text.Equal(t, ... *) 
INC(c); 

END; (*WHILE c*) 
IF found = 1 THEN RETURN coin ELSE RETURN Coins. Invalid END; 

END Coin; 

BEGIN 
END CoinSaver. 

(*CoinSaver*) 

Example 13.20: The implementation overrides the redefined method 

execution of Example 13.21 (greeting text omitted) could be: 

1 2 5 300 500 D Dollar Dime Penny q 
D is not a valid coin 
Total in coin saver = 111 
Total in savings account 8 
Total in general saver = 800 

We can summarize the difference between overriding and redefining as 
follows: Overriding a method leaves its name and signature untouched; 
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MODULE PolyClient EXPORTS Main; (*02.07.94. LB*) 
IMPORT CoinSaver, SavingsAccount, Saving; 
FROM SIO IMPORT GetReal, PutReal, LookAhead, GetText, PutText, GetChar, NI; 

PROCEDURE Output(s: Saving.T) = 
VAR t: TEXT; 
BEGIN 

TYPECASE s OF (*tests dynamic type of s*) 
I CoinSaver.T => t= "coin saver"; 
I SavingsAccount.T => t= "savings account"; 
I Saving.T => t= "general saver"; 

END; (*TYPECASE s*) 
PutText(,'Total in " & t & " = "); PutReal(s.balance()); NIO; 

END Output; 

CONST 
Numbers = SET OF CHAR {'O' .. 'g', '+', '-'}; 
Blanks = SET OF CHAR {' " '\1', '\n'}; 

VAR 
saver: CoinSaver.T := NEW(CoinSaver.T).initO; 
acct SavingsAccount.T := NEW(SavingsAccount.T).initO; 
sav: Saving.T := NEW(Saving.T).initO; 
coin: CoinSaver.Coins; amount: REAL; ch: CHAR; t: TEXT; 

BEGIN (*PolyClient*) 
PutText("AmounI<100 -> savings account; amount>=100 -> general saver/Q=quit\n"); 
REPEAT 

ch:= LookAheadO; 
IF (ch = 'q') OR (ch = 'Q') THEN 

Output(saver); Output(acct); Output(sav); 
ELSE 

IF ch IN Numbers THEN 
amount= GetRealO; 
IF amount < 100.0 THEN 

EVAL acct.transact(amount) 
ELSE 

EVAL sav.transact(amount) 
END; (*IF amount < 100.0*) 

ELSIF ch IN Blanks THEN EVAL GetCharO; 
ELSE 

REPEAT 
t:= GetTextO; coin:= COinSaver.Coin(t); 
IF coin = CoinSaver.Coins.lnvalid THEN 

PutText(t & " is not a valid coin\n") 
END; 

UNTIL coin # CoinSaver.Coins.lnvalid; 
EVAL saver.transact(coin) 

END; (*IF ch IN Numbers*) 
END; (*IF ch = ... *) 

UNTIL (ch = 'q') OR (ch = 'Q'); 
END PolyClient. 

(*check next character*) 
(*quit*) 

(*number*) 

(*amount to savings account*) 
(*no error control*) 

(*amount to general saver*) 
(*no error control*) 

(*skip blanks*) 
(*text - amount to coin saver*) 

(*no error control*) 

Example 13.21: Client of CoinSaver, SavingsAcct and Saving 
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there is actually only one method with different forms, and dynamic bind
ing assures that the correct variant is found. Redefining gives the subtype 
a completely new method, but with the same name as in the supertype. 
This means that redefinition breaks the chain of dynamic binding. 

Assume that we had overridden the method balance in the coin saver. 
Then within the polymorphous procedure Output of Example 13.21, for coin 
bank objects the overridden method would be selected (due to dynamic 
binding). But if we had redefined balance (e.g., such that it returns a coin 
array such as balanceO: ARRAY Valid OF CARDINAL) then the call s.balance 
in the procedure Output would not find this method; instead it would find 
the method that corresponds to the declared type of the parameter s (i.e., 
Saving.T), which is the supermethod. Naturally this is correct, since the 
new method has a different signature - what should Put Real do with a 
value of the coin array? We can invoke the new method either with a vari
able of the redefining type (or its subtypes), e.g., saver.balanceO, or with 
NARROW (NARROW(s, CoinSaver.T}.balanceO). 

The redefinition of methods and fields can make a program quite incom
prehensible; therefore it should be used with extreme caution! However, 
there are two cases where redefinition proves quite useful or even indis
pensable: 

1. It can be useful to redefine the init method with a different signature. 
On the one hand, this allows us to change the return type of the init 
method to the type of the actual subtype. In Example 13.9, if we had 
redefined the init method with the signature initO: CoinBank.T, then 
the declarations VAR bank: CoinBank.T := NEW(CoinBank.T}.initO and 
VAR bank := NEW(CoinBank.T}.initO would be equivalent. In this case 
redefinition contributes to the comprehensibility of our program. On 
the other hand, it is often necessary to provide the init method in a 
subtype with new parameters that were not needed in the supertype. 
Since the init method is normally invoked only once in the life cycle of 
an object, forfeiting dynamic binding here is no real loss. 

2. Sometimes we employ redefinition without knowing it, when we re
define an invisible method of a hidden type by chance. In this case we 
have not lost anything because the invisible method was inaccessible 
anyway. 

We must advise that we have not yet achieved our goal in our example. 
We can still circumvent our coin saver: with the following statement, the 
client (Example 13.21) could still access the supermethod and deposit an 
arbitrary amount in the coin saver: 

EVAL NARROW(saver, Saving.T}.transact(amount} 
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INTERFACE Tree; 

TYPE 
Direction = {Ascend, Descend}; 
Order = {Pre, In, Post}; 

(*21.01.95 Cw, LB*) (*root class Tree*) 

(*ascending or descending*) 
(*traversal strategy*) 

(*action at node*) Action = PROCEDURE (e: REFANY; depth: INTEGER); 

Compare = PROCEDURE (d1, d2: REFANY): [-1 .. 1]; (*order relation *) 
(*Compare the contents (or key values) to which dl and d2 point*) 

(* Result: 0 if dl = d2; -1 if d1 < d2; 1 if dl > d2*) 

ElemT = REFANY; 

T= OBJECT 
METHODS 

init(compare: Compare): T; 
search (e: ElemT): ElemT; 

insert (e: ElemT); 

delete (e: ElemT): ElemT; 

traverse ( action: Action; 
order := Order.ln; 

(*initialization sets order relation *) 
(*searches for element like e*) 
(*returns e iffound, else NIL *) 

(*inserts e in tree*) 
(*multiple insertions of an are element possible*) 

(*deletes element like e*) 
(*returns e if deleted, else NIL *) 

(*action at each node*) 

direction := Direction.Ascend); 
(*traversal strategy*) 

(*traversal direction *) 
END; (*T*) 

END Tree. 

Example 13.22: Interface of the root class Tree 

However, this is only possible if the client also imports the interface Sav
ing, which would not be necessary otherwise. If a client imports only the 
interface CoinSaver, then there is no possibility to deposit anything but a 
valid coin in the coin saver. This should demonstrate that we should never 
import unnecessary interfaces. Better compilers output a warning if names 
or interfaces are not used. We should observe these warnings; unused com
ponents can cause someone reading our program much pondering. 

13.4.4 The tree class hierarchy 

Using a larger example, we will now show how to build a class hierarchy. 
Section 12.2.1 introduced trees. This section describes how to define a class 
hierarchy that permits us to handle various kinds of nodes and trees. 

The root class 

Our very first task is to find a root class containing exactly the fields and 
methods that all imaginable heirs and clients share. How well we succeed 
in finding such a root class depends in part on how well we can predict 



340 13. Objects 

all future subclasses. This is relatively easy for common problems such 
as trees. For larger problems with which we are less familiar, it becomes 
improbable that we can find the root class on first try. In such cases we 
have to develop the root class in several steps. 

In the case of trees, we can say that the methods search, insert, delete 
and traverse certainly apply for all kinds of trees. First they are all de
ferred, since their implementation depends on the kind of tree (binary 
tree, B-tree, AVL-tree, etc.; see [Knu81, Sed93, Wir76]). Therefore these 
methods should not be implemented, but only declared, in the root class. 
Naturally we do need to establish the semantics, at least in the from of 
comments, in the root class already. 

Genericity 

So far, so good! We also want to keep our abstract tree generic. In this case, 
this means that it should remain independent of both the kind of tree and 
the type of the nodes. It would be easiest if we could provide the encap
sulated data type with a type parameter. Although Modula-3 has no type 
parameter, it does offer the possibility to specifY module parameters (see 
Appendix B.5A). If we adhere to the convention that the type name of an 
encapsulated data type is always T, then we can have a type parameter in 
the form ModuleName.T. Hence we can define the interface ofthe root class 
as a generic interface with a formal module parameter (call it Element). 
The type of the nodes would then be Element.T. The module Element then 
requires concrete actual parameter modules. 

However, we will take a different approach. We will simulate genericity 
through subtyping (similar to Section 11.4.3, Example 11.29). Therefore 
as element type for the root class we initially choose the root of all pointer 
types: REFANY. In the clients that define the various node types, we will 
replace this type with corresponding subtypes. 

This decision does not complete our work. Normally some order is de
fined on a tree. The concrete choice of the order relation depends on the 
type of the nodes, which only the respective clients or heirs know. Until 
now we have simply known the type of the node (e.g., ElemT = INTEGER), 
so that the order relation was clear. For example, we know exactly how to 
compare two INTEGERs. Ifwe had chosen the solution with a generic mod
ule, we would have to require that every variant of Element must also pro
vide a Compare procedure to compare two elements (ofthe type Element.T). 
For our simulated genericity we choose the solution requiring that the com
parison procedure must be specified as a parameter in the init method. This 
gives us the basics of the interface of the root class (Example 13.22). 

Naturally the interface quite resembles that in Example 12.20. One 
difference is that ElemT is no longer an INTEGER but a REFANY. In a nar-



13.4. Encapsulation of object types 341 

INTERFACE BinaryTree; 

IMPORT Tree; 

(*06.07.94. Cw, LB*) 

TYPE T <: Tree.T; (*T is a subtype of Tree. T*) 

END BinaryTree. 

Example 13.23: Client interface of a binary tree 

row sense, this has nothing to do with object orientation: the concept of 
genericity is orthogonal to object orientation (i.e., they are independent). 

There are programming languages that feature genericity, but are not 
object-oriented, such as the original definition of Ada. 

The other difference is that this interface is more abstract than that 
in Example 12.20. Because the central type is an OBJECT, not only the 
concrete implementation but also the possibility of subclasses is deferred. 
There is no implementation module Tree. All methods are deferred and 
must be overridden in subclasses. 

Subclass of binary trees 

AB the first subclass of the root class Tree, let us define the most important 
kind of tree, the binary tree. We know how to construct a binary tree from 
Section 12.2.2. The question is only what should appear in the interface. 
The first suggestion is: actually nothing; the interface Tree already con
tains everything that a client needs. The data structure that defines the 
left and right branches could be hidden in the implementation part. 

However, if we decide to go that route, then we might not be able to 
derive a subclass of binary trees. AVL-trees [Wir76], e.g., are binary trees 
for which a restriction applies to the height of the subtrees of each node 
(the height of the left and right subtrees of any node must not differ by 
more than 1). This produces nicely balanced trees, which generally makes 
searching significantly faster than in an unbalanced tree. To be able to 
implement an AVL-tree (fairly sensibly), we need access to the underlying 
structure of the binary tree. This leads us to the following decision: for 
binary trees we will specify two interfaces: one for clients and the other for 
future subclasses. 

Aside from naming conventions, the Modula-3 language environment 
provides no support for distinguishing these interfaces. The accepted 
Modula-3 convention is to name the client interface after the problem 
(e.g., BinaryTree); the name of the interface that reveals the internal 
representation ofthe data structure ends with "Rep" (e.g., BinTreeRep). 
Administrative measures can be taken in the respective operating sys
tem to assure that only authorized modules can access Reps. 
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Persons: 
Wanda 

Peter 
Paul 

Martha 
Bob 

Bob 

Books: 
134 

38 
38 

13 
12 

2 

Figure 13.25: Output of BinaryClient 

Example 13.23 shows the client interface. Here we export the new type. 
The client need not know any more about binary trees than that they exist; 
hence everything else is hidden. 

Clients of the binary tree class 

Example 13.24 shows a client of this interface. The module imports only 
BinaryTree. It need not and should not import BinTreeRep! Naturally the 
programmer must be familiar with the interface Tree to know the method 
names and signatures. However, only BinaryTree needs to be imported. 

We define the two types (Person and Book). The key of a person record 
is a text (the name); the key of a book record is a number (catalog num
ber). In both cases, additional information is collected in the info field. The 
client anticipates an input file in which names and catalog numbers ap
pear pairwise (we neglect other information). We store the person records 
in personTree and the book records in bookTree. 

For each key type we must specify the respective comparison procedure, 
(CompareNumber or CompareName). (Here we simply rely on the Integer 
and Text interfaces provided by the language environment; these abide by 
the same conventions for the return value as the method compare). For 
each type we also specify the action to be executed on traversal. Here we 
define the common procedure Output, which works for both types. However, 
we could have written separate output procedures for names and catalog 
numbers. The procedure Output also shows an example of the use of level 
parameters. 

The client creates the person and book records and stores them in the 
corresponding trees. Finally, both trees are output with the root node at the 
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MODULE BinaryClient EXPORTS Main; (*06.07.94 LB *) 
IMPORT SIO, SF, BinaryTree, Text, Integer; 

TYPE 
Person = REF RECORD name: TEXT; info: REFANY END; 
Book = REF RECORD catalogNumber: CARDINAL; info: REFANY END; 

VAR 
in: SIO.Reader := SF.OpenReadO; (*in must contain name Inumber pairs*) 
personTree: BinaryTree.T := NEW(BinaryTree.T).init(CompareName); 
bookTree: BinaryTree.T := NEW(BinaryTree.T).init(CompareNumber); 
person: Person; book: Book; 

PROCEDURE CompareNumber(e1, e2: REFANY): [-1 .. 1] = 
BEGIN 

WITH i1= NARROW(e1, Book).catalogNumber, 
i2 = NARROW(e2, Book).catalogNumber DO 

RETURN Integer.Compare(i1, i2) (*integer comparison from standard library*) 
END 

END CompareNumber; 

PROCEDURE CompareName(e1, e2: REFANY): [-1 .. 1] = 
BEGIN 

WITH t1 = NARROW(e1, Person).name, 
t2 = NARROW(e2, Person).name DO 

RETURN Text.Compare(t1, t2) (*text comparison from standard library*) 
END 

END CompareName; 

PROCEDURE Output(x: REFANY; level: INTEGER) = 
BEGIN 

FOR i:= 0 TO leveH DO SIO.PutText(" ") END; 
IF ISTYPE(x, Book) THEN 

SIO.Putlnt(NARROW(x, Book).catalogNumber, 3); SIO.NIO; 
ELSE 

SIO.PutText(NARROW(x, Person).name & " "); SIO.NIO; 
END; 

END Output; 

BEGIN (*BinaryClient*) 
WHILE NOT SIO.End(in) DO 

person:= NEW(Person); person.name:= SIO.GetText(in); 
personTree.insert(person); (*construct person tree*) 
book:= NEW(Book); book.catalogNumber:= SIO.Getlnt(in); 
bookTree.insert(book); (*construct book tree*) 

END; (*WHILE NOT SIo.End*) 
SIO.PutText("Persons:"); SIO.NIO; 
personTree.traverse(Output); (*output person tree*) 
SIO.NIO; SIO.PutText("Books:"); SIO.NIO; 
bookTree.traverse(Output); (*output book tree*) 

END BinaryClient. 

Example 13.24: Client ofthe binary tree interface 



344 

INTERFACE BinTreeRep; 

IMPORT Tree, BinaryTree; 

REVEAL 
BinaryTree.T <: Public; 

TYPE 
Public = Tree.T OBJECT 

root: NodeT:= NIL; 
compare: Tree.Compare; 

END; (*Public*) 

NodeT = OBJECT 
left, right: NodeT := NIL; 
info: REFANY := NIL; 

END; (*NodeT*) 

END BinTreeRep. 

13. Objects 

(*06.07.94. CW; LB*) 

(*public for subclasses «: Tree. T)*) 
(*root of binary tree*) 
(*compare function *) 

(*type ofnode*) 
(*pointer to child nodes*) 

Example 13.26: Subclass interface of the binary tree 

left, then each level indented by several blanks. Assume that the input file 
contains the following entries: Peter 12 Bob 38 Paul 134 Wanda 2 Martha 13 
Bob 38. Figure 13.25 shows the output of the program. 

13.4.5 Subclasses of binary trees 

Example 13.26 shows the BinTreeRep interface, which reveals the data 
structures required by a subclass. The declaration of BinaryTree.T is an 
example of a partial revelation (compare Section 11.4). 

The root of the tree is no longer stored with the client, which now has 
only a reference to the overall structure, the object instance itself There
fore we store the root in a field root pointing to a node type that contains 
the usual pointers left and right along with any other information. We could 
have defined the node type as a REF RECORD···; however, this would pre
vent deriving a subclass from the node type. We might not want to derive a 
subclass - at the moment we do not know. In such a case it is always better 
to choose the more general solution, i.e., the object type: for an object type 
we need not define a subclass; for a record type we cannot. 

The types still do not have to be specified fully here; they are completed 
in the implementation module. Since the algorithms of a binary tree are 
already familiar (Section 12.2.1, Example 12.24), we show only the inter
esting parts of the implementation (Example 13.27). Due to the root field, 
the implementation of Search, Insert and Delete have become somewhat 
more complicated (we show only Insert). We must start our recursion not 
at tree, but at tree.root. Therefore the procedures themselves are not re
cursive, but they invoke a nested recursive procedure. The tests in the 
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MODULE BinaryTree EXPORTS BinaryTree, BinTreeRep; 
IMPORT Tree; 
REVEAL 

T = Public BRANDED OBJECT 
OVERRIDES 

init:= Init; 
search:= Search; 
delete:= Delete; 
insert:= Insert; 
traverse:= Traverse; 

END; (*T*) 

PROCEDURE Init(tree: T; compare: Tree.Compare): Tree.T = 
BEGIN 

tree.root:= NIL; tree.compare:= compare; 
RETURN tree; 

END Init; 

PROCEDURE Insert(tree: T; e: Tree.ElemT) = 

PROCEDURE InsertElem(VAR node: NodeT; new: Tree.ElemT) = 
BEGIN 

IF node = NIL THEN 
node:= NEW(NodeT, info:= new) 
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ELSIF tree.compare(node.info, new) > 0 THEN (*new < node.info*) 
InsertElem(node.left, new) 

ELSE (*new >= node.info*) 
InsertElem(node.right, new) 

END; 
END InsertElem; 

BEGIN 
InsertElem(tree.root, e) 

END Insert; 

BEGIN 
END BinaryTree. 

(*Insert*) 

Example 13.27: Structure of the binary tree implementation 

node for the direction to continue searching are executed with the compare 
procedure, which must be specified in the initialization procedure. 

The subclasses of binary trees are easy to add to the interface Bin
TreeRep. To implement an AVL-tree, we need an additional interface to al
low creation of AVL-trees (Example 13.29). This quite resembles the client 
interface of BinaryTree. The AVLTreeRep interface is quite simple (Example 
13.30); all we need is an additional field in each node that expresses the 
degree of balanced ness of a tree (see [Wir76]). 

The client ofthe AVL-tree is practically identical to a client ofthe binary 
tree; it must only import the tree type AVLTree instead of BinaryTree. In 
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Persons: 
Wanda 

Peter 
Paul 

Martha 
Bob 

Bob 

Books: 
134 

38 
38 

13 
12 

2 

Figure 13.28: Output of a balanced tree 

the module in Example 13.24, if we replace BinaryTree with AVLTree, then 
our names and catalog numbers are stored in a balanced AVL-tree instead 
of an ordinary tree. For the same input as before (Peter 12 Bob 38 Paul 
134 Wanda 2 Martha 13 Bob 38 ), this program generates more aesthetic, 
balanced trees (Figure 13.28). 

Since the implementation of insert and delete for an AVL-tree is some
what complicated, we show only the basic structure of the implementation 
module (Example 13.31). The interested reader can find the detailed algo
rithm in [Wir76] and a complete Modula-3 implementation in the software 
package included with this book. 
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INTERFACE AVLTree; 

IMPORT BinaryTree; 
TYPE T <: BinaryTree.T; 

END AVLTree. 
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(*08.07.94. ew, LB*) 

(*T is a subtype of BinaryTree. T *) 

Example 13.29: Client interface of an AVL tree 

INTERFACE AVLTreeRep; 

IMPORT BinTreeRep; 
TYPE 

NodeT = BinTreeRep.NodeT OBJECT 
balance: [-1 .. 1]; 

END; (*NodeT*) 

END AVLTreeRep. 

(*06.07.94. ew, LB*) 

(*public for subclasses*) 
(*degree of balancedness*) 

Example 13.30: Subclass interface of an AVL tree 

MODULE AVLTree EXPORTS AVLTree, AVLTreeRep; 

IMPORT BinaryTree, BinTreeRep; 

REVEAL 
T = BinaryTree.T BRANDED OBJECT 

OVERRIDES 
delete:= Delete; 
insert:= Insert; 

END; 

PROCEDURE Insert(tree: T; e: REFANY) = 

PROCEDURE Delete(tree: T; e: REFANY): REFANY = 

BEGIN 
END AVLTree. 

(*08.07.94. ew*) 

Example 13.31: Implementation of an AVL tree 



Chapter 14 

Persistent data structures 

All programs that we have written thus far suffer from a serious flaw: we 
cannot terminate them without losing all our data. We developed refined 
structures to allocate memory for our data elegantly and efficiently. But as 
soon as the program terminates - or in the event of a power failure - we 
lose all data. In the main memory of our computer, all data are temporary; 
they can only be accessed by a running program and require the power sup
ply ofthe computer. For this reason practically all computers are equipped 
with storage media that can retain data even without a continuous power 
supply. We call these hard disks or diskettes - collectively background stor
age. We must store our data on such background storage to allow them to 
survive the end ofthe program. We call such nontemporary data persistent. 

In most language environments, the only way to transfer data from 
main memory to background storage is by way of the operating system. 
The operating system stores them in files on the hard disk or other storage 
medium. Later we can request that the operating system restore access 
from our program to a certain file. This chapter deals with this mecha
nism. 

Databases 

In files we normally store only data structures that can be transferred from 
background storage to main memory or vice versa in a single step. If the 
data structures to be managed are very complex and larger than available 
main memory can store, e.g., the customer and product file of a large com
pany, then this mechanism no longer suffices. Then we use special database 
systems that not only store the data but also provide long-range data man
agement. They feature interactive ad hoc data queries; i.e., we can retrieve 
data without having to write a program. In addition, database systems 
offer data security: they can handle the crash of a program without suf
fering a loss of data. Also, they feature regular data backup on multiple 
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Directory 

File.dat 

current position ~ 

Figure 14.1: Data structure of a file in the operating system 

media to prevent data loss due to hardware failure. The structure and use 
of such databases is a separate and important field of computer science 
[Ull82, Dat90]. In this book we treat only the storage of smaller amounts 
of data in individual files. 

14.1 Files 

From the viewpoint of the computer operating system, a file is a sequence 
of information units (usually bytes). Special drivers (operating system pro
grams) transfer such a sequence to a suitable device, the background stor
age [FI85]. This allows the data to survive even a power shutoff. To assure 
that the file can be found later, the operating system stores a directory on 
the same device, containing an entry with the name of the file and the 
position of the data on the device. 

This means that to make data persistent, we must transform them into 
a sequence of characters (bytes) and write it to a file. To read persistent 
data, we must read and interpret a sequence of characters from a file. 

14.1.1 Accessing files 

There are two fundamental modes for reading or writing files: sequential 
and direct. Reading a file sequentially transfers the data like music from an 
audio cassette: from start to finish, one after the other, without the option 
to skip parts or to begin somewhere in the middle. Direct access more 
closely resembles playing an individual song from a CD: reading begins 
at the specified start position; during reading a jump can be made to a 
different position in the file to continue reading there. The comparison is 
similar for writing a file. 

The difference between these modes hinges on the possibility of explicit 
positioning. For such positioning, the operating system maintains a pointer 
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for each file it processes, to manage the current read/write position (see Fig
ure 14.1). Mter each character is read/written, this pointer is incremented. 
For direct access, this pointer is explicitly set by the user program. 

14.1.2 Access functions 

As a rule, programs never process files directly, but employ operating sys
tem functions. 

• Open or create a file 
This function opens a named file for reading or creates a file for writ
ing. To open a file, the operating system first reads the directory ofthe 
device, and then, via the file name, determines the physical position 
of the data (Figure 14.1). On opening, the current read/write position 
is set to the beginning of the file. Opening a file for writing deletes any 
existing data. If the named file does not exist, the operating system 
creates a new, empty file. 

Two additional functions allow changing the contents of a file: open 
for appending and for read/write. In the former case, the new data is 
simply written at the end ofthe existing file. In this case, on opening, 
the write position is set after the last character of the file. Opening a 
file as read/write allows both read and write operations and provides 
functions to set the file position (see below). 

• Read from a file, write to a file 
The read functions read the contents of a file; the write functions mod
ify the contents. Every read or write operation references the current 
read/write position. After reading or writing, the pointer position is 
incremented. 

• Test for end of file 
Reading past the end of file (EOF) is an error; therefore the lan
guage environment provides a function to test whether EOF has been 
reached. Writing beyond EOF extends the file. 

• Set read / write position 
For devices that support random access, the operating system pro
vides a function to allow setting the read/write pointer explicitly from 
a program. This allows reading or modifying part of a file without 
touching the rest. 

• Closing a file 
To assure the persistency of all changes to a file, (i.e., by writing them 
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to the device), the file must be closed (due to file buffering in main 
memory; see Section 14.2.1). 

However, even after finishing reading a file, it should on principle be 
closed. Figure 14.1 shows that some data structures are necessary to 
handle files. Their memory should always be deallocated after they 
are no longer needed; closing a file does this deallocation. 

14.1.3 Files and main memory 

For the programmer, both files and main memory serve as storage media 
for data. However, they differ significantly: 

Access 
Main memory 
type-safe 
fast 

Capacity limited space 
Longevity temporary 

Files 
untyped 

slow 
much space 

persistent 

For the programmer, the greatest difference is that we access main 
memory with variables whose types are supported by the compiler. We 
process data in files only indirectly by invoking functions of the language 
environment. The compiler handles mapping the values of variables onto 
the structure of main memory; we do not notice this. For files, the program
mer is responsible for handling this mapping (although with the support of 
the language environment). Other differences primarily concern the physi
cal properties of the media, which make the one or the other more suitable, 
depending on our tasks. 

14.1.4 File types 

Most operating systems do write typeless data to a file (actually, they know 
only one type, the character), yet they distinguish several data types. The 
type of a file determines what kind of data can be stored in the file. Fre
quently operating systems distinguish between binary files and text files. 
Text files store information in human-readable form; thus we must format 
all data. To access files that are processed only by programs requires no 
reformatting. Here we store the data directly as they are stored in main 
memory. This is not only faster - we omit formatting - but also more com
pact. We store such data in binary files. 

Other examples of file types include executable programs and directo
ries. Finally, other input/output devices are handled as files with special 
file types. For the programmer, reading from the keyboard and writing to 
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the screen or printer behaves just like reading from or writing to a file in 
background storage. 

Most mainframe operating systems also offer additional access methods 
as file types [Tan92]. Depending on whether we read or write the data 
characterwise or recordwise, we must select the appropriate access method. 
For recordwise access to a file we exchange a certain number of characters 
with the device determined by a fixed record length. We can adjust the 
record length so that it exactly matches our data unit (e.g., a person record). 
The current position then becomes a record number. 

14.2 Files in Modula-3 

Modula-3 itself provides no language constructs to handle files. As in most 
other programming languages, this does not mean that we have to commu
nicate directly with the operating system: the Modula-3 language environ
ment provides the objects and procedures that take care of the details of 
invoking operating system functions for us. 

Older programming languages (including Pascal [Wir71]) support file 
handling in the language. The advantages of automatic data conver
sion between variables in main memory and data in files are coun
terbalanced by drawbacks: either the details of the programming lan
guage develop a greater dependency on the respective operating sys
tem, or the language supports only a small part ofthe features that the 
operating system provides. The former often leads to a multitude of 
dialects ofthe language that offer constructs customized to the respec
tive operating system. If the language offers too few features, then the 
programmer resorts to direct communication with the operating sys
tem and only employs the language constructs partially. Both are un
satisfactory and result in programs that are hard to port to other plat
forms. Therefore file management is usually taken out of the realm 
of the programming language and placed in standard libraries, where 
adaptations to the respective operating system are easier to carry out 
than in the compiler. Additional machine-dependent libraries provide 
the programmer with further functions of the respective platform. 

14.2.1 Input and output streams 

The Modula-3 language environment provides input and output streams 
for file access. These are defined in the standard library, where they are 
called reader and writer. These are objects that can be associated with a 
file on initialization. It is also possible to associate an output stream with 
a monitor or printer or an input stream with an input device such as a 
keyboard. 
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MODULE ReadFile EXPORTS Main; 

IMPORT Rd, FileRd, SIO, SF; 

CONST FileName = "input.dat"; 

VAR rd: Rd.T; 
t TEXT; 

BEGIN 
IF SF.FileExists(FileName) THEN 

rd:= FileRd.Open(FileName); 
WHILE NOT Rd.EOF(rd) DO 

t= Rd.GetLine(rd); 
SIO.PutText(t); SIO.NIO; 

END; 
Rd.Close(rd) 

END (*IF*) 
END ReadFile. 

14. Persistent data structures 

(*reader object *) 

(*establish link to file *) 
(*check for end offile *) 
(*read to end of line *) 

(*close file *) 

Example 14.2: Displaying the file input.dat on screen 

Assume that the background storage contains a file named i npu t . da t. 
The following statement associates an input stream with this file: 

VAR rd: Rd.T; 
BEGIN 

rd := FileRd.Open("input.dat"); 

rd is the object that represents the input stream. The procedure 
FileRd.Open1 initializes the input stream and associates it with the file. 
We use rd only as a pointer to the file. To read from the file, we can write 
either: 

t= Rd.GetLine(rd); 

or: 

c:= Rd.GetChar(rd); 

GetLine reads the file to the next end-of-line character and assigns the data 
to the variable t of type TEXT. GetChar reads only a single character from 
the file. The following tests whether the end of file has been reached: 

Rd.EOF(rd) 

1 In earlier version 2 of the Modula-3 standard library, the functionality of the modules 
FileRd and FileWr was contained in the module FileStream. 
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MODULE WriteFile EXPORTS Main; 

IMPORT Wr, FileWr; 

CaNST FileName = "output.dat"; 

VAR wr: Wr.T; 
BEGIN 

wr:= FileWr.Open(FileName); 
Wr.PutText(wr, "first line\n"); 
Wr.PutText(wr, "2\n"); 
Wr. PutText(wr, "--End--\n"); 
Wr.Close(wr) 

END Write File. 
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(*writer object *) 

(*establish link to file *) 
(*output to file *) 

(*close file *) 

Example 14.3: Writing the file "output.dat" 

Reading a file almost always occurs in a WHILE loop, as shown in Example 
14.2; this example shows a program that reads the contents of a text file 
inpu t . da t and displays it on screen. 

Before reading a file, it is usually necessary to test whether the file is 
even accessible. Example 14.2 uses the function SF.FileExits for this pur
pose. It returns true if the file is readable. The module SF (simple files) 
contains some utility functions that make frequently needed file handling 
functions simpler than the more flexible but more complicated functions of 
the library (see Appendix C.3.4). 

Writing a file works analogously: we associate an output stream with 
a background storage file. The file need not exist; it is created automat
ically. If it exists, then it is overwritten and its old contents are lost. 
Wr.PutText or Wr.PutChar writes the file. Example 14.3 shows how to write 
a file ou tpu t . da t with three text lines. 

The interfaces to modules Rd and Wr are in Appendices C.3.1 and C.3.2. 
These are abstract modules in that they only define the behavior of in
put and output streams. The procedures in these modules invoke methods 
that all input or output streams must have. Rd.T and Wr.T objects contain 
these methods only as empty shells. It is the responsibility of anyone who 
implements subtypes of Rd.T and Wr.T to breathe life into these methods. 
The modules FileRd and FileWr implement such subtypes. They behave like 
Rd.T or Wr.T, and they possess the necessary methods to read/write files via 
operating system services. In this way the Modula-3 library determines a 
concept for reading and writing physical media and assures uniformity. We 
can write to monitors, printers or files in the same way. Even communica
tion between programs is possible with special input and output streams 
(we can connect streams to channels; see Section 16.5.4). Table 14.4 shows 
the names of some input/output devices along with the modules that im
plement the corresponding input and output stream objects. 
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Read/write files FileRd/FileWr 
Write to screen Stdio: pre-initialized output stream stdout 
Read keyboard Stdio: pre-initialized input stream stdin 

Write to printer Depends on operating system; usually via 
FileWr with a special file name 

Table 14.4: Modules that implement input/output streams 

To describe the various characteristics of different media, they are as
signed certain attributes. These can be queried and affect the functionality 
of several procedures in Rd and Wr: 

• Seekable 
The procedure Seek enables changing the read/write position of an 
open file in background storage. Not all streams are seekable (key
board and screen are not). This attribute can be tested with the func
tion procedure Seekable. The current position can be queried with 
Index. 

• Intermittent 
Some input streams cannot constantly provide new data (although 
the "end" of the stream has not been reached); invoking Rd.GetChar 
for an intermittent input stream blocks the program until new data 
are ready. The keyboard is an example of such a stream: while the 
user is considering what to enter, the program must wait. This at
tribute can be tested with Rd.lntermittent. 

• Buffered 
Often data are not written to an output stream immediately in order 
to improve the speed of transfer. Writing to a hard disk, e.g., takes 
just as long for a whole block of data as for an individual byte. There
fore the data are kept in main memory in a buffer and actually written 
only when they amount to a whole block. Typical block sizes for hard 
disks are 512, 1024 or 4096 bytes. 

This means that we must take care that the program does not termi
nate before the buffer has been written. Wr.Flush explicitly writes, or 
flushes, the buffer (before it is full), thus making the data persistent. 
Wr.Close automatically flushes the buffer. 

Whether there is a buffer between a program and the output stream 
can be tested with Wr.Buffered. For an unbuffered output stream, on 
each invocation of a write function the invoking program must wait 
until the data have been physically stored. An input stream must 
always be buffered because the data are provided with the speed of 
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PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) = 
BEGIN 

FOR i:= FIRST(r) TO LAST(r) DO 
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Wr.PutText(wr, Fmt.lnt(i) & "" & Fmt.Real(r[i)) & "\n"); (*index value *) 
END; (*FOR*) 

END PutRealArray; 

Example 14.5: Storing a REAL array (initial version) 

the device (or the user's typing speed), which might be faster than 
the program can read. The input buffer functions as a circular queue 
(compare Section 11.1.2): if the program is faster than the device (i.e., 
the buffer is empty), then the program must wait. If the input device 
is faster, then the data in the buffer are collected in the buffer. If the 
buffer is full, the input device must be delayed. 

As documented in Appendices C.3.1 and C.3.2, input and output streams 
provide other information and functions. We do not treat these in detail 
here. The reader/writer concept is described in greater detail in [NeI91]. 

14.2.2 Fmt and Scan 

Both Rd and Wr contain only procedures to read and write characters (type 
TEXT is a character sequence). These modules handle the transfer of raw 
data. To store numbers or Boolean values, we first need to format them; i.e., 
to transform them into a form that Wr can process we need to convert the 
values into their TEXT representations (e.g., the Boolean value true to the 
TEXT value "TRUE"). Inversely, reading requires converting the text back to 
its respective type. We speak of scanning the text to obtain our data. Using 
text files consumes more storage space for the file (see Section 14.1.4), but 
has the advantage that the file contents are readable by humans. 

The modules Fmt and Scan convert the basic types to TEXT and vice 
versa. Appendices C.2.1 and C.2.2 show these modules. Example 14.5 
writes an array of REAL numbers as index/value pairs to a pre-initialized 
output stream. 

Example 14.6 reads this array from a pre-initialized input stream. It 
amounts to the mirror image of PutRealArray in Example 14.5. The proce
dure contains awkward expressions because it cannot anticipate how many 
characters (digits) either the array index or the value will have. The proce
dure thus exploits the fact that we store the indices and values as follows: 

index blank value EOL 

The procedure first reads the input stream to the next end-of-line char
acter (EOL) and transfers the data to the TEXT variable t. Then it seeks the 
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PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) = 
VAR i, delimiter: CARDINAL; t TEXT; 

Fmt 

BEGIN 
WHILE NOT Rd.EOF(rd) DO 

t= Rd.GetLine(rd); 
delimiter:= Text.FindChar(t, ' '); (*between index and value *) 
i:= Scan.lnt(Text.Sub(t, 0, delimiter»; (*convert index *) 
r[i]:= Scan.Real(Text.Sub(t, delimiter+ 1, Text.Length(t)-delimiter-1»; (*value *) 

END; (*WHILE*) 
END GetRealArray; 

Example 14.6: Reading a REAL array (initial version) 

VAR i: INTEGER; 

Fmtlnt Scan.lnt Scan 

FileWr 

1 
FileWr.Open(File) t 
~ 

Rd.GetText{Reader) Rd 

FileRd.~en(File) FileRd 

\ Wr Wr.PutText{Writer) ~ 

/' Ule 
Figure 14.7: Reading and writing an integer variable 

blank that separates the index from the value and converts the first part 
of t to an integer, then the rest to a real number. 

The procedure Text.FindChar(t, c) searches TEXT variable t for the char
acter c and returns the position of its first occurrence from the start oft 
as a cardinal number. Ifthere is no such character, then the procedure 
returns -1. Positions of characters in texts begin at O. 

The procedure Text.Sub(t, p, I) has three parameters: a TEXT variable t, 
and a position p and a length 1 as cardinal values. Starting at position 
p, it extracts from t a number 1 of characters and returns them as TEXT. 

GetRealArray is somewhat sensitive. The file must contain exactly the 
data that the procedure anticipates; e.g., it must not contain additional 
blanks. Furthermore, the size of the array in the file must correspond ex
actly to the parameter array r. 

Figure 14.7 summarizes which modules are involved in reading and 
writing an INTEGER variable. 
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CONST NumbLength = 10; 

PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) = 
BEGIN 

FOR i:= FIRST(r) TO LAST(r) DO (*write with fixed length *) 

Wr.PutText(wr, Fmt.Pad(Fmt.lnt(i), NumbLength) & 

END; (*FOR*) 
END PutRealArray; 

Fmt.Pad(Fmt.Real(r[ij), NumbLength) &"\n"); 

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) = 
VAR i: CARDINAL; 
BEGIN 

WHILE NOT Rd.EOF(rd) DO 
i:= Scan.lnt(Rd.GetText(rd, NumbLength)); 
r[i]:= Scan.Real(Rd.GetText(rd, NumbLength)); 
EVAL Rd.GetLine(rd); 

END; (*WHILE*) 
END GetRealArray; 

(*convert index*) 
(*convert value*) 

(*skip EOL*) 

Example 14.8: Reading and writing with fixed file format (2nd version) 

Fixed file formats 

GetRealArray is so complicated because it must accommodate digit 
sequences of various lengths. If we assume that the input file itself was 
produced by a program, then we can extend the list of preconditions for 
the proper functioning of GetRealArray: we simply require that all num
bers in the file have a fixed number of characters. We can achieve this for 
all numbers with leading zeros or blanks (Scan.Getlnt handles both eas
ily); naturally the number of characters per number must be large enough 
to represent the largest possible number. Example 14.8 shows the proce
dures PutRealArray and GetRealArray for writing and reading a file with 
fixed column format. PutRealArray employs the function Fmt.Pad to assure 
the required column width. GetRealArray can now assume a fixed file struc
ture: 

(10 characters for index) (10 characters for value) EOL 

We no longer need a delimiter (blank). However, memory requirements 
rise considerably and can amount to a multiple of that in our earlier version 
(consider a file consisting of 90% zero values). 

Error handling 

We sacrifice a great deal of security when we read data structures from 
files: files lie outside the realm of the program and cannot be tested by 



360 14. Persistent data structures 

the compiler. If our program depends on the presence of data structures in 
files, then we must test whether the file exists and whether its contents are 
correct. The former is rather simple (before initializing the input stream, 
we test the existence ofthe file). However, we can only test the correctness 
of the contents if, on each access to file and on each scan of a character 
sequence, we test whether the operation was successful. This can make 
programs quite unreadable (GetRealArray alone has three such operations 
around which IF statements would have to entwine; compare Example 15.1 
on page 372). 

Modula-3 supports the concept of exception handling, which allows shift
ing error handling (Chapter 15). All operations on input and output 
streams are tested by the procedures in Rd, Wr, Fmt and Scan. In excep
tional situations, these procedures generate exceptions, which terminate 
execution of the procedure and must be handled by one of the procedures 
in the invocation chain (see Chapter 15). Exceptional situations include 
reading past the end of file or attempting to write to a device that is full 
and cannot accept more data; for the module Scan, e.g., it is exceptional to 
find a letter in a TEXT representing a number. 

14.2.3 Simple-IO 

We already know Fmt and Scan, which handle the necessary conversions 
between the flat data structure of an operating system file and our type
bound data. At the language environment level, conversion and read
ing/writing are strictly separated. This has the advantage that we need 
not change read/write operations to store a variable with a newly defined 
type: we only need to re-implement the corresponding conversion proce
dures that transform the type into a character sequence and back. 

In our programs this argument bears less weight because we generally 
want one procedure to store a variable and one to read it. The module 
SIO shows how such procedures are written and how they process human 
input. 

The authors developed 810 for this book. The module offers very sim
ple keyboard input and screen output (as we have used it so far), yet it 
also serves as an example of general input/output processing. 

Since we can also associate an input stream with the keyboard instead 
of a file, it makes sense to develop read procedures such that they can read 
not only from existing files but also keyboard input. However, we cannot 
expect the user to enter numbers with leading zeros and a fixed number of 
digits. 

Our first version of GetRealArray in Example 14.6 can handle num
bers of different lengths. However, it functions only with a certain file 
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structure (number, blank, number, EOL). If the user types a tabulator 
instead of a blank, nothing works because the procedure cannot find 
the start of the next number. 
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Appendix C.3.3 shows the complete interface ofSIO. The predefined nu
meric types (except EXTENDED) and TEXT and BOOLEAN each have a proce
dure that reads a value from the input stream and one that writes a value 
to the output stream. In contrast to the read procedures we have seen 
so far, the SIO.Get· .. procedures (except SIO.GetChar) handle input much 
more tolerantly: first they skip all blanks (including all tabulators and 
EOL characters, collectively called white space). As soon as they encounter 
a printable character, they read on to the next whites pace and interpret the 
contents. This makes these procedures suitable for user input at the key
board. SIO.GetChar just reads and returns the next character. All other 
read procedures in SIO skip the first character that cannot be part of the 
value being read (normally a blank). SIO.TermChar returns the value of 
this delimiter character. 

We can "look ahead" to see a character that has not been read yet by 
reading it with SIO.LookAhead, thereby returning it to the input stream. 
This procedure can be implemented with Rd.UngetChar. Input streams 
are always buffered; the buffer enables returning characters to the input 
stream. The function Available returns true if there are unread characters 
available in the respective buffer. 

The functions Length and Seek have been assumed by module Rd. End 
corresponds to Rd.EOF. Example 14.9 shows the procedures GetRealArray 
and PutRealArray, which now use SIO: in particular, reading can be ex
pressed much more convincingly with such procedures. 

Implementation of SIO 

The Simple-IO procedures have default values for input and output 
streams; we have not used or showed them so far. If the parameter rd 
or wr is omitted (or passes a NIL pointer), then these procedures read from 
the keyboard or write to the screen. As additional convenience, the input 
of numeric values can be repeated: if the user types a character string 
that cannot be interpreted as a number (e.g., because it contains letters), 
then the procedure outputs an error message, and input must be repeated. 
Naturally, this only works when reading from the keyboard. If the pro
cedures read something uninterpretable from a file, then they generate 
an exception. Example 14.10 shows the implementation of the procedures 
SIO.Getlnt and SIO.Putint. The declaration RAISES {Error} means that the 
function can generate an exception (see Chapter 15). 

All procedures that write to output streams empty the write buffer with 
each operation (see Section 14.2.1) when we write to the screen. 
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PROCEDURE PutReaIArray(wr: Wr.T; READONLY r: ARRAY OF REAL) = 
BEGIN 

FOR i:= FIRST(r) TO LAST(r) DO 
SIO.Putlnt(i, 10, wr); 
SIO.PutChar(, " wr); 
SIO.PutReal(r[i), wr); 
SIO.NI(wr); 

END; (*FOR*) 
END PutRealArray; 

(*index on writer *) 
(*whitespace as delimiter *) 

(*real value to writer *) 

(*whitespace as delimiter *) 

PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) = 
VAR i: CARDINAL; 
BEGIN 

WHILE NOT SIO.End(rd) DO 
i:= SIO.Getlnt(rd); 
r[i):= SIO.GetReal(rd); 

END; (*WHILE*) 
END GetRealArray; 

(*read index *) 
(*read value *) 

Example 14.9: Reading and writing with Simple-IO (3rd version) 

Treating screen output as a file produces a somewhat pathological ef
fect that also buffers screen output, although this does not yield an 
improvement in processing speed. Therefore programmers must al
ways be sure to empty the screen output buffer to assure the timely 
display of the contents. When we use Simple-lO, we can ignore this. 

Scanning input streams with Lex 

The read procedures of Simple-IO employ the library module Lex. This 
module provides procedures for reading and interpreting characters from 
an input stream. Lex.Skip is used to skip whitespace in the input stream. 
Lex.lnt reads all characters that could be part of an integer and terminates 
at the first character that is not a digit. If the first character that Lex.lnt 
reads is not a digit, then the procedure generates the exception Lex.Error. 
SIO.Getint handles the exception and repeats the read operation (only if it 
was read from the keyboard). Exceptions are explained in Chapter 15. 

14.3 Persistent variables 

Often we need files only to store our data structures. Here, when the pro
gram terminates, we want to avoid losing the values that one or more vari
ables reference. We want to make the variables persistent; therefore we 
write them to a background storage file - not because we value the file. 
There are other cases: a text editor generates a file that is processed by 
completely different programs (e.g., a compiler). 
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MODULE SIO; (* 10.05.94. LB*) 

TYPE 
Kind = {Integer, Real, LongReal, Boolean} 

PROCEDURE Getlnt(rd: Reader := NIL): INTEGER RAISES {Error} = 
VAR i: INTEGER; count: CARDINAL := MaxError; (*MaxError = 3 *) 

BEGIN 
IF rd = NIL THEN rd:= Stdio.stdin END; 
LOOP 

TRY 
IF End(rd) THEN RAISE Error END; 
Lex.Skip(rd); 
i:= Lex.lnt(rd); 
EXIT 

EXCEPT 
Lex.Error, Rd. Failure, FloatMode.Trap => 

FormatError(rd, Kind.lnteger, count); (*handles input format errors *) 
END; (*TRY*) 

END; (*LOOP*) 
ConsumeNext(rd); (*consumes and saves following dilimiter *) 

RETURN i; 
END Getlnt; 

PROCEDURE Putlnt(i: INTEGER; length:= 3; wr: Writer := NIL) = 
BEGIN 

IF wr = NIL THEN wr:= Stdio.stdout END; 
Wr.PutText(wr, Fmt.Pad(Fmtlnt(i), length)); 
IF wr = Stdio.stdout THEN Wr.Flush(wr) END; 

END Putlnt; 

Example 14.10: Part of the implementation of Simple-fO 

In this section we want to discuss persistent variables. Thus far we 
have encountered only variables whose lifetime extends at most over the 
duration of execution of a program (the state space of the modules; see 
Section 10.2.1). However, we could extend the hierarchy of state spaces -
auxiliary variables of a nested block, local variables of a procedure, global 
variables of a module - by one level, one state space, that is accessible to 
multiple programs and outlives the execution of individual programs. (Sim
ilar ideas have been realized in database-oriented programming languages 
[KMP+83, KM94, SM92]). We call this the external state space. 

What is necessary to support persistent variables? Before the program 
executes, the current values of persistent variables must be read from a 
database; i.e., the program assumes part of the external state space. While 
the program executes, these variables are treated as normal variables. 
However, before the program terminates, the values in the database must 



364 14. Persistent data structures 

be updated to the last values of the program variables; this updates the 
external state space. 

PERSISTENTVAR max: INTEGER 

Unfortunately, the Modula-3 compiler cannot handle such declarations. 
Still, we can easily envision it. In the following we explain a concept for 
attaining these semantics with the help of objects. 

14.3.1 Implementation 

We write the values of persistent variables to a global text file. This file is 
global in the sense that multiple programs can store their variables in the 
same file. However, we store not only the value but also the associated iden
tifier. We give this file the somewhat inflated name "database of persistent 
variables"2. With the launching of each program that employs persistent 
variables, there is a check whether the identifiers associated with the vari
ables already have values stored in the database. If so, then these values 
are used for initializing the variables that are declared as persistent. The 
structure of the database is quite simple, consisting of lines in the following 
form: 

identifier: value EOL 

The value can be surrounded by whites pace. Such a database could also be 
created and maintained with a text editor. 

We store persistent variables in objects that have a setup method to seek 
a value in the database. Ifthis method is invoked immediately on declara
tion of variables, then we have the desired effect of automatic initialization 
with the current value ofthe persistent variables: 

VAR max:= NEW(Persistent.integer, key:="max").setupO 

As the database identifier for a variable, we simply use the name of the 
variable. Since the compiler does not support persistent variables, the pro
grammer must assure that their values are updated in the database before 
the program terminates. The final statement in the program (preferably 
protected in a TRY-FINALLY statement; see Section 15.3) is the invocation 
of an operation that updates the value of all persistent variables in the 
database: 

Persistent.EndO 

2In the version introduced here, this file has little in common with a database. Here it 
serves as a place holder for a much larger, more complex system that would represent the 
external state space in a realistic application [BEW94]. 
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TRY 
Persistent.Start("test.db"); 

(*Persistent.End must be invoked in any case *) 

(*Persistent variables *) 
VAR 

i := NEW(Persistent.integer, key := "int").setupO; 
r := NEW(Persistent.Real, key := "real").setup(); 
t := NEW(Persistent.Text, key := "text").setup(); 

BEGIN 
SIO.PutText("int: "); 
SIO.PutText("real: "); 
SIO.PutText("text: "); 

SIO.Putlnt(Lval); SIO.NI(); 
SIO.PutReal(r.val);SIO.NIO; 
SIO.PutText(t.val); SIO.NI(); 

(*Access to variable via val field *) 
INC(Lval); 
r.val := r.val + 1.0; 
t.val := t.val & "." 

END; 

(*Update database *) 

FINALLY 
Persistent. End() 

END; 

Example 14.11: Use of persistent variables 

The setup method enters all persistent variables in a list that is then pro
cessed by the End procedure. Example 14.11 shows a program that modifies 
an INTEGER, a REAL and a TEXT variable on each invocation. 

Be aware that we still lack some aspects of a realistic solution for the 
implementation sketched here: For the time, we ignore the problem 
that multiple programs can, in some overlapping order, read the value 
of a persistent variable and then update its value (only the last value 
holds). We assume that only a single program is running that could 
change the external state space. We would also need a mechanism 
that guarantees that only one program can change a given persistent 
variable at a certain time. 

Furthermore, we would need a well-conceived naming scheme for data
base identifiers (the keys) of persistent variables: various producers of 
service modules would have to reach agreement to avoid accidentally 
using the same identifier for quite different persistent variables, which 
could then overwrite one another. We do not deal with this problem 
here. 

Example 14.12 shows the interface of the module Persistent. The type 
Persistent.T is the supertype for all objects that manage persistent vari
ables. Essentially, this object contains the setup method that seeks the 
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INTERFACE Persistent; 

IMPORT Rd, Wr, Lex; 

CONST 
DefaultPersistentDB = "/software/lib/m3PersDB/persistentDB"; 
DefaultPersistentRefany = "/software/lib/m3PersDB/persistentRefany."; 

TYPE T <: Public; 
Integer <: Publiclnteger; 
Char <: PublicChar; 
Boolean <: PublicBoolean; 
Real <: PublicReal; 
Text <: PublicText; 
Refany <: PublicRefany; 

Public = OBJECT key: TEXT 
METHODS setupO RAISES {Lex.Error} END; 

Publiclnteger = T OBJECT val:= 0 
METHODS setupO: Integer RAISES {Lex.Error} END; 

PublicChar = T OBJECT val:= VAL(O, CHAR) 
METHODS setupO: Char RAISES {Lex.Error} END; 

PublicBoolean = T OBJECT val:= FALSE 
METHODS setupO: Boolean RAISES {Lex. Error} END; 

Public Real = T OBJECT val:= 0.0 
METHODS setupO: Real RAISES {Lex. Error} END; 

PublicText = T OBJECT val:= "" 
METHODS setupO: Text RAISES {Lex.Error} END; 

PublicRefany = T OBJECT val: REFANY:= NIL 
METHODS setupO: Refany RAISES {Lex.Error} END; 

PROCEDURE EndO RAISES {Wr.Failure}; 

PROCEDURE Start( persistentDB:= DefaultPersistentDB; 
persistentRefany:= DefaultPersistentRefany) 

RAISES {Rd.Failure}; 
END Persistent. 

Example 14.12: Simulation of persistent variables 

(*CW*) 

database value matching the key. Example 14.13 reveals the type Persis
tent.T. The value is stored as a TEXT value and is converted to the respec
tive type with an internal method textToVal. The setup method invokes the 
method textToVal on reading the database. valToText is invoked by Persis
tent.End before updating the database. 

The attribute val exists only for subtypes of Persistent.T (Persistent. 
Integer, e.g., has an INTEGER attribute val). These subtypes must override 
the two type-dependent conversion methods textToVal and valToText with 
the conversion procedures that they need. 
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INTERFACE PersistentRep; 

IMPORT Persistent, Lex; 

REVEAL 
Persistent.T = Persistent.Public BRANDED OBJECT 

textVal: TEXT; 
METHODS 

valToText 0; 
textToVal 0 RAISES {Lex. Error}; 

OVERRIDES 
setup := Setup; 

END; 

PROCEDURE Setup (self: PersistentT) RAISES {Lex.Error}; 

END PersistentRep. 

Example 14.13: Revelation of Persistent. T 

Pickles 
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(*CW*) 

The module Persistent can also store persistent variables of type REFANY. 
Note that it is critical to store not only a pointer but also the data which 
it references! Here the Modula-3 standard library offers a comfortable fea
ture: the module Pickle (also called Pkl in older library versions) [NeI911; 
the following is its simplified interface: 

INTERFACE Pickle; 

IMPORT Rd, Wr; 

PROCEDURE Write(wr: Wr.T; ref: REFANY); 
PROCEDURE Read(rd: Rd.T): REFANY; 

END Pickle. 

Pickle.Write writes all data that are accessible via the pointer ref to an 
output stream. Pickle. Read reads data from an input stream and recon
structs them in main memory to match the structure that was written 
with Pickle. Write. These procedures allow implementing the type Persis
tent. Refany just as easily as other types of the interface Persistent. 

For the interested reader, we present an excerpt from the implemen
tation of the module Persistent (Example 14.14). The excerpt contains the 
part that handles the INTEGER subtype of Persistent.T. The other subtypes 
function analogously. 
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Example 14.14: Part of the implementation of the module Persistent 

MODULE Persistent EXPORTS Persistent, PersistentRep; 

IMPORT SIO, SF, Fmt, Lex, Scan, Rd, Wr, TextTextTbl, Ref List, Pickle; 
FROM Text IMPORT Equal, FindChar, GetChar; 

REVEAL 
Integer = Publiclnteger BRANDED OBJECT 

OVERRIDES 
setup := IntSetup; 
valToText := IntvalToText; 
textToVal := TextTolntval 

END; 

(*revelation of persistent integer*) 

(*install type·dependent methods*) 

PROCEDURE Setup (self: T) RAISES {Lex.Error} = 
VAR value: TEXT; 
BEGIN 

(*enter in list of all persistent variables*) 
persVars := RefList.Cons(self, persVars); 

(*first read text string belonging to self.key*) 
IF persValues.get(self.key, value) THEN 

self.textVal := value; 
self.textToVaIO; 

END; 
END Setup; 

(*store text string*) 
(*convert text string to respective type*) 

PROCEDURE IntSetup (self: Integer): Integer RAISES {Lex. Error} = 
BEGIN 

NARROW(self, T).setupO; (*start overridden method*) 
RETURN self; 

END IntSetup; 

PROCEDURE IntvalToText (self: Integer) = 
BEGIN (*type-dependent conversion for integer values -t TEXT *) 

self.textVal := Fmt.lnt(self.val); 
END IntvalToText; 

PROCEDURE TextTolntval (self: Integer) RAISES {Lex.Error} = 
BEGIN (*type-dependent conversion for integer values TEXT -t*) 

self.val := Scan.lnt(self.textVal); 
END TextTolntval; 

(***********************) 
(*Persistent database *) 
(***********************) 

CONST 
PrintableChars = Lex.Blanks + Lex.NonBlanks 

+ SET OF CHAR{VAL(128, CHAR) .. LAST(CHAR)}; 
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(*global data*) 
VAR 
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dbName, pklDataPrefix: TEXT; 
persValues := NEW(TextTextTbI.T); 
persVars: RefList.T := NIL; 

(*database name and prefix for Pickle files*) 
(*hash table Persvarnames to values*) 

(*list of names ofpers. variables*) 

PROCEDURE ReadDB (dbName: TEXT) RAISES {Rd.Failure} = 
VAR 

rd: Rd.T; 
name, value: TEXT; 

BEGIN 
TRY 

IF SF.FileExists(dbName) THEN (*no values without database file*) 
rd := SF.OpenRead(dbName); 
Lex.Skip(rd); 

(*Read database file completely: *) 
WHILE NOT Rd.EOF(rd) DO 

name := Lex.Scan(rd, Lex.NonBlanks - SET OF CHAR{':'}); 
EVAL SIO.GetChar(rd); (*skip : *) 

Lex.Skip(rd); 
(*Read value (can be enclosed in quotes) *) 

IF NOT Rd.EOF(rd) AND SIO.LookAhead(rd) = "" THEN 
EVAL SIO.GetChar(rd); (*skip " *) 
value := Lex.Scan(rd, PrintableChars - SET OF CHAR{""}); 
EVAL SIO.GetChar(rd); (*skip second" *) 

ELSE 
value := Lex.Scan(rd, PrintableChars - Lex.Blanks); 

END; 
Lex.Skip(rd); 

(*Enter key / value pair in hash table *) 
EVAL persValues.put(name, value); 

END; 
END; 
Rd.Close(rd); 

(*Unexpected end offile and Lex error converted to Rd. Failure: *) 
EXCEPT 

Rd.EndOfFile=> 
RAISE Rd.Failure(AtomList.List1 ( 

Atom.FromText("unexpected EOF in persDB "& dbName))); 
I Lex.Error=> 

RAISE Rd.Failure( 
AtomList.List1 (Atom.FromText("formatting error in persDB" & dbName))); 

END; 
END ReadDB; 
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PROCEDURE WriteDB (dbName: TEXT) RAISES {Wr.Failure} = 
VAR 

wr:= SF.OpenWrite(dbName. overwrite:= TRUE); 
name, value: TEXT; iter:= persValues.iterateO; 

BEGIN 
(*Read hash table and write to database file *) 

WHILE iter.next(name. value) DO 
IF Equal(value ..... ) OR 

FindChar(value. '\t'»=O OR FindChar(value .•• »= 0 
THEN (*value contains whitespace *) 

Wr.PutText (wr. name & ": \ .... & value & "\"\n"); 
ELSE 

Wr.PutText (wr. name & ": .. & value & "\n"); 
END; 

END; 
Wr.Close (wr); 

END WriteDB; 

(***********************) 
(*Setup /Write Database *) 
(* **************':'*******) 

PROCEDURE Start( persistentDB:= DefaultPersistentDB; 
persistentRefany:= DefaultPersistentRefany) 

RAISES {Rd.Failure}= 
BEGIN 

dbName:= persistentDB; pkIDataPrefix:= persistentRefany; 
ReadDB(dbName); 

END Start; 

PROCEDURE EndO RAISES {Wr.Failure} = 
VAR var: T; 
BEGIN 

WHILE persVars # NIL DO 
var:= NARROW(persVars.head. T); 
var.vaIToTextO; 
EVAL persValues.put(var.key. var.textVal); 
persVars:= persVars.tail; 

(*replace old or write new*) 

END; 
WriteDB(dbName); 

END End; 

BEGIN 
TRY 

StartO; (*read database (with default name) *) 

EXCEPT Rd.Failure(err)=> 
SIO.PutText("\nPersistent: .. & RdUtils.FailureText(err) & "\n"); 
<'ASSERT FALSE'> (*generate run-time error*) 

END; 
END Persistent. 
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Exception handling 

Thus far we have concentrated on writing programs as correctly as possi
ble. However, each program is embedded in a larger context and must com
municate with its environment. We make a number of assumptions about 
the environment (indeed, we incorporate these assumptions into our pro
grams) that must apply in order for our program to work at all: input data 
must be present, there must be space on the hard disk for writing results, 
numeric values must be in certain valid ranges, etc. However, certainly 
some exception situations arise where these assumptions do not apply. The 
program must handle these situations also, without crashing or producing 
erroneous results. In addition, we could design the program so that it tests 
all possible errors in every situation. However, this strategy would prove 
quite involved and unnatural. 

John Searle pondered about the nature of common sense knowledge, 
saying: "Every morning when I enter my office, I assume that there 
is no abyss behind the door. But do I really make this assumption? 
Obviously not: I simply enter. Still, if there were an abyss behind the 
door, I would nevertheless react to it." We can construe this abyss as 
an exception situation. It is clear that we must also behave correctly 
in such exception situations. 

Instead oftesting for each action whether it was completed successfully, 
let us make provisions for exceptional cases. These provisions will only be 
activated if an exception actually occurs; otherwise they do not encumber 
normal program flow. Therefore this kind of exception handling makes 
programs both more comprehensible and more efficient. 

15.1 Exceptions in a program 

Exceptions are program states that are not anticipated under normal con
ditions of program execution. For this reason we prefer not to make their 



372 

VAR 
rd1, rd2: Rd.T; 
error: BOOLEAN; 
values1, values2: ARRAY [1..10] OF REAL; 

BEGIN 
(*Open files *) 

15. Exception handling 

IF SF.FileExists(File1) THEN (*Does file exist? *) 
rd1 := SF.OpenRead(File1); 
IF SF.FileExists(File2) THEN 

rd2:= SF.OpenRead(File2); 
GetReaIArray(rd1, values1, error); (*error indicates success or failure *) 
IF error THEN SIO.PutText("lnput file has wrong format"); SIO.NIO 
ELSE 

GetReaIArray(rd2, values1, error); 
IF error THEN SIO.PutText("lnput file has wrong format"); SIO.NIO 
ELSE (*process only if input was successful *) 

Process(values1, values2); 

END (*IF error*) 
END (*IF error*) 

ELSE 
SIO.PutText(File2 & " cannot be read"); SIO.NIO; 
error:= TRUE; 

END (*IF FileExists*) 
ELSE 

SIO.PutText(File1 & "cannot be read"); SIO.NIO; 
error:= TRUE; 

END (*IF FileExists*) 

Example 15.1: Error handling without exceptions 

handling part ofthe algorithm. Ifwe read a series of INTEGER values from 
a file, we do not want to be bothered with testing whether the input con
tains non-numeric characters; we could not do anything with these anyway, 
and we would need to terminate program execution. If several files are 
to be read, then it can be quite bothersome to test before each operation 
whether an error has already occurred. 

The code fragment in Example 15.1 shows the situation. The program 
consists of repeatedly nested IF statements and uses a variable error. Dis
tributed throughout the program are tests of the success of operations. All 
this has nothing to do with the actual algorithm; indeed, this encumbers 
understanding the algorithm. 

The concept of exception handling enables us to develop algorithms as 
though everything would go well. If an error occurs, then we say that an ex
ception situation has occurred: we generate an exception. Then, since the 
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EXCEPTION FileError(TEXT); (*declaration of exception conditions *) 

VAR rd1, rd2: Rd.T; 
values1, values2: ARRAY [1..10) OF REAL; 

BEGIN 
TRY 

(* Does file exist? *) 
IF NOT SF.FileExists(File1) THEN RAISE FileError(File1) END; 
IF NOT SF.FileExists(File2) THEN RAISE FileError(File2) END; 

(*Read file *) 
rd1:= SF.OpenRead(File1); 
rd2:= SF.OpenRead(File2); 
GetReaIArray(rd1, values1); 
GetReaIArray(rd2, values2); 

(*Process file *) 
Process(values1, values2); 

EXCEPT 
I FileError(fname)=> 

SIO.PutText(fname &" cannot be read"); SIO.NIO; 
I SIO.Error=> 

SIO.PutText("lnput file has wrong format"); SIO.NIO; 
END; (*TRY-EXCEPT*) 

Example 15.2: Error handling with exceptions 

algorithm can no longer function properly, we terminate normal execution. 
The program branches to handlers, which then react to the situation. 

Example 15.2 shows a program fragment that does the same as the frag
ment in Example 15.1, but handles exception errors with exceptions. The 
statements where exceptions can occur are guarded with a TRY-EXCEPT 
statement (see Section 15.2.4). This amounts to a bracketing of the state
ments. If an error occurs (which still must be detected), then a RAISE 
statement generates an exception. This terminates execution of the state
ments between TRY and EXCEPT. Similar to a CASE statement, the EX
CEPT branch tests which exception has occurred. If there was no exception, 
then the EXCEPT branch is not executed. Just as in Example 15.1, Example 
15.2 tests the existence of the input files. However, the second version is 
formulated more clearly because error handling is distinct form the actual 
algorithm. 

Naturally, exception situations are often detected by server modules on 
the system level: the hard disk might produce a read error while reading a 
file (perhaps due to dust at that position); this is recognized by the proce
dure that invoked the operating system service to read the file and that was 
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PROCEDURE GetReaIArray(rd: Rd.T; VAR r: ARRAY OF REAL) 
RAISES {SIO.Error} = (*delegates SIO.Error *) 

VAR 
i: CARDINAL; 

BEGIN 
WHILE NOT SIO.End(rd) DO 

i:= SIO.Getint(rd); 
r[i]:= SIO.GetReal(rd); 

END; (*WHILE*) 
END GetRealArray; 

(*read index: SIO.Error can occur *) 
(*read value: SIO.Error can occur *) 

Example 15.3: Delegation of exceptions 

notified by the server module ofthe failure ofthe read operation. However, 
this procedure cannot really handle the exception. Such a service proce
dure to read data from files cannot know what effect the lack of these data 
means to the invoking application. The file could contain important config
uration data without which the program cannot execute. Perhaps the data 
can be retrieved elsewhere. Thus, on occurrence of an exception, the pro
cedure terminates and reports the situation to the invoking procedure. For 
the invoking procedure, this has the same effect as a RAISE statement: its 
algorithm is also terminated. It either also delegates the exception condi
tion to its invoking procedure, or it handles it in the TRY-EXCEPT statement 
that invoked the procedure. In Example 15.2 the procedure GetRealArray 
does not handle the exception generated in SIO module, but delegates them 
(see also Example 15.3). The situation is finally handled in the procedure 
that invoked GetRealArray. After the exception is handled, the exception 
condition is reset and the program continues normal execution after the 
corresponding TRY-EXCEPT statement. 

To indicate that a procedure should not handle an exception situation 
but only delegate it, we enter the name of the exception in a list after the 
keyword RAISES. Example 15.3 shows the procedure GetRealArray (famil
iar from Chapter 14), where we have now specified delegation of exceptions. 

Many programming languages provide no (usable) exception mecha
nism. This tends to produce programs that are either slower and less 
comprehensible due to numerous explicit error tests, or - what can be 
worse - error situations are not handled with adequate care. 

Other programming languages with exception handling permit error 
handling to ignore the exception and to resume program execution at 
the point where the exception occurred. Modula-3 does not permit re
sumption. If the procedure that generated the exception is left during 
the search for a handler, then there is no way back. However, care
ful planning of exception handling lets us always achieve the desired 
effects. 
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15.2 Exception handling in Modula-3 

15.2.1 Exceptions, run-time errors, 
programming errors 
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Not every error that hinders a program from functioning is an exception 
situation in the sense of this chapter. We term errors made by the pro
grammer programming errors: due to an incorrect algorithm or an erro
neous structure, the program fails to meet specifications. Exception han
dling does not allow us to manage this kind of error; only careful problem 
analysis and program planning combined with careful verification and test
ing can avoid such errors. In addition, we distinguish run-time errors and 
exceptions: 

• Run-time errors 
These are due to a programming error and are detected by the run
time system of the language environment. Run-time errors can be 
seen as predefined exceptions generated by the language environment 
in certain situations. Examples of run-time errors include accessing 
an array element with an index beyond the index range, assigning a 
negative value to a CARDINAL variable, dereferencing a NIL pointer, 
and an overflow in REAL arithmetic. 

None of the three available Modula-3 language environments al
lows intercepting exception situations detected by the run-time 
system. Run-time errors always cause program termination. 

• Exceptions 
We speak of exceptions in the context of an error situation detected 
by a program itself (rather than by the underlying language environ
ment, operating system or hardware). On detection of such an error 
situation, the program explicitly generates an exception. This need 
not occur directly in a procedure written by the programmer, but can 
frequently occur in a module of the Modula-3 library. 

As sketched here, the border between run-time errors and exceptions is 
less a conceptual one and more a matter of implementation. Whether a cer
tain situation can be handled by the program as an exception or demands 
immediate program termination as a run-time error (see Appendix C.1.6) 
depends on the compiler and the language environment. 

Modula-3 provides explicit language constructs for declaring, raising 
and handling exceptions. The Modula-3 library predefines a number of 
exceptions, and we can add definitions of others. There are two basic op
erations on exceptions: raising and handling. An exception is raised by a 
RAISE statement and intercepted and handled by a TRY-EXCEPT statement. 
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15.2.2 Declaration of exceptions 

Exceptions are identified via their names. An exception declaration takes 
the following form: 

Declaration13 = ... I"EXCEPTION" { ExceptionDecl16 ";" }I ... 
ExceptionDecl16 = Ident89 [ "(" Type48 ") "]. 

The identifier Ident89 is the name of the exception. An exception can 
have a parameter whose type is specified on declaration of the exception. 
For example, the SIO interface defines the parameterless exception Error 
(see Appendix C.3.3 on page 542). This enables clients of the module to 
access the exceptions that the procedures ofthe module generate. Example 
15.2 handles SIO.Error in its TRY-EXCEPT statement. 

Exporting the EXCEPTION declaration in an interface allows clients to 
raise the exception themselves. 

15.2.3 Generation of exceptions 

An exception is raised by a RAISE statement: 

RaiseStmh4 = "RAISE" QuallD86 ["(" Expr66 ")"]. 

Expr66 computes the parameters ofthe exception. Its type was specified 
on declaration ofthe exception. Parameterless exceptions omit this expres
sion along with the parentheses. The RAISE statement raises an exception 
and thereby begins the search for a corresponding handler. 

15.2.4 Exception handling 

To handle exceptions, we bracket the statement sequence in which a given 
exception could occur within a TRY-EXCEPT statement and specify a list of 
handlers. A handler is simply a statement sequence. The syntax of the 
TRY-EXCEPT statement is: 

TryXptStmt38 = "TRY" Stmts23 "EXCEPT" [ Handler44 ] { "I" Handler44 } 
[ "ELSE" Stmts23 ] "END". 

Handler44 = QuallD86 { "," QuallD86 } [ "(" Ident89 ")" ] "=>" Stmts23 . 
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This enables writing statements that generally take the following form: 

TRY 
guarded statements 

EXCEPT 
I exceptionJ(parameterJ) => handlerJ 

I exceptionn (parameter n) => handlern 
ELSE handlero 
END 

The TRY-EXCEPT statement executes as follows: 

1. If no exception occurs in the guarded statements, then they execute 
as though there were no enclosing TRY-EXCEPT statement. Mter ex
ecution of the statements, program execution resumes after the END 
ofthe TRY-EXCEPT statement. 

2. If an exception does occur in the guarded statements, then the state
ment sequence terminates and control passes to the EXCEPT branch. 
If exceptioni occurred, then the variable parameteri is set to the value 
of the expression ofthe parameter ofthe RAISE statement, and execu
tion resumes at handleri. handleri is a statement sequence; it is also 
the scope of the variable parameteri. The type of this variable is the 
same as was specified on declaration of the exception. 

Thus the exception was handled. The exception condition no longer 
applies, and program execution continues after the END of the TRY
EXCEPT statement. 

3. However, if an exception occurs in the guarded statements and it does 
not appear in the list, then handlero of the ELSE branch executes, 
the exception condition is reset, and execution resumes after the TRY
EXCEPT statement. 

If there is no ELSE branch (i.e., the TRY-EXCEPT statement fails to 
provide a handler), then either the exception is delegated or the pro
gram terminates with a run-time error (see Section 15.2.5). 

Exceptions that occur in the handler are not guarded. We can inter
cept such exceptions if we write the TRY-EXCEPT statement as a guarded 
statement of a further TRY-EXCEPT statement. 

15.2.5 Delegating exceptions 

If we do not handle an exception in a procedure, but only want to inform 
the invoking procedure of the occurrence of an exception condition, then 
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we must specify this in the procedure declaration. The complete syntax of 
procedure signatures is: 

ProcedureHead18 = "PROCEDURE" Ident89 Signature19. 
Signature19 = "(" Formals2o ")" [ ":" Type48 ] [ "RAISES" Raises22 ]. 
Raises22 = "{" [ Quail D86 { "," Quail D86 }] "}". 

Hence the RAISES set represents a second exit from the procedure: ei
ther the procedure terminates normally and returns any data in variable 
parameters or as return value, or it generates an exception, which has the 
same effect in the invoking procedure as an explicit RAISE statement: 

PROCEDURE Action1 
(VAR error: BOOLEAN) = 

BEGIN 

IF error condition THEN 
error := TRUE; 

END; 

END Action1; 

Action1 (error); 
IF error THEN RAISE exception; 

PROCEDURE Action20 
RAISES {exception}= 

BEGIN 

IF error condition THEN 
RAISE exception; 

END; 

END Action2; 

Action20; 

Action 1 and Action2 in the above pseudocode both test for the occurrence 
of an exception condition. Action1 reports the exception condition with a 
Boolean variable, Action2 with an exception. The explicit RAISE statement 
and the delegated exception have the same effect: the procedure that in
voked Action 1 /2 terminates and the search for a handler begins. 

This can occur across multiple levels ofthe invocation chain. Whenever 
an exception occurs in a procedure (whether via a RAISE statement or in an 
invoked procedure that delegates handling), it is delegated if, first, there 
is no handler in the procedure itself (see Section 15.2.4) and, second, if its 
name appears in the RAISES set of the procedure. If an exception that can
not be delegated occurs outside a TRY-EXCEPT statement or if the EXCEPT 
branch has neither a handler nor an ELSE, then the program terminates 
with a run-time error. 

Now let us describe completely the search for a handler: 

1. If the exception occurs in a statement guarded by a TRY-EXCEPT 
statement and a handler or an ELSE branch exists there, then con-
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trol passes to the handler, the exception condition is reset, and pro
gram execution continues after the TRY-EXCEPT statement (see Sec
tion 15.2.4). 

2. Ifthe exception occurs in a statement guarded by a TRY-EXCEPT state
ment and neither a corresponding handler nor an ELSE branch exists 
there, then the procedure terminates and, if its name appears in the 
RAISES set of the procedure, the exception condition is delegated. 

3. If the exception does not occur in a guarded statement, then the pro
cedure terminates and, if its name appears in the RAISES set of the 
procedure, the exception condition is delegated. 

4. If the exception can be neither handled nor delegated, then program 
execution terminates with a run-time error. 

If an exception was delegated, then the same search for a handler be
gins anew. Exceptions frequently pass through a whole sequence up the 
invocation chain. Example 15.3 shows how the exception SIO.Error is only 
delegated. SIO.Error occurs when one of the two procedures SIO.Getlnt or 
SIO.GetReal reads a character string that cannot be interpreted as a num
ber (see Example 14.10, page 363). GetRealArray does not handle this error. 
The semantics of the problem for GetRealArray are such that the array can
not be read completely; for this procedure there is no handling for this 
problem. Instead of raising an exception itself, GetRealArray simply dele
gates the exception and lets the invoking procedure handle it (in Example 
15.2 it is "handled" simply with an error message). In Section 15.4 we 
discuss planning exception handling for larger programs so that exception 
situations are always handled where sufficient information is available on 
the effects of the problem. 

15.3 Delaying exception handling 

The occurrence of an exception causes the immediate termination of the 
current procedure and all other procedures in the invocation chain that 
propagate the exception. However, for many algorithms, simply termining 
execution and propagating the exception condition is not acceptable error 
handling. For example, the Modula-3 compiler creates temporary files that 
can become quite large, but are relevant only during compilation. These 
files should be deleted - even if an exception condition occurs during com
pilation. 

In environments where multiple programs share a computer system, 
reliable cleanup is very important after program execution. A program 
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must temporarily reserve a given service so that it is not disturbed by com
peting programs. Outputting to a printer is such a service that obviously 
can be used by only one program at a time; other jobs must wait (Chapter 
16 discusses such synchronization problems in detail). Naturally this also 
means that each program must release the resource when finished. If an 
exception occurs in a printing program after the reservation of the printer, 
then in any event the printer must be released again before the printing 
program is terminated - otherwise the printer would remain blocked. In 
a more general sense, the following sequence occurs frequently in software 
systems: 

Reserve resource 
Process 
Release resource 

Delegating exceptions in the processing part is obviously impossible; 
it would terminate the total algorithm and leave the resources blocked. 
Therefore we guard such statements with the TRY-FINALLY statement: 

Reserve resource 
TRY 

Process 
FINALLY 

Release resource 
END; 

Delegation of the exception is delayed by this statement: after the oc
currence of the exception, the guarded statements (between the keywords 
TRY and FINALLY) abort, the part after FINALLY executes, and then the 
search for a handler for the exception begins. The FINALLY branch always 
executes, even if no exception occurs. 

If the only exception that can occur during processing is Error, then the 
TRY-FINALLY statement corresponds to the following TRY-EXCEPT state
ment: 

Reserve resource 
TRY 

Process 
EXCEPT 

Error=> Release resource; RAISE Error 
END; 
Release resource 
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PROCEDURE IntegerCopyO RAISES {SIO.Error} = 
VAR 

in:= SF.OpenReadO; 
out:= SF.OpenWriteO; 
count: CARDINAL:= 0; 

BEGIN 
TRY 

WHILE NOT SIO.End(in) DO 
SIO.Putlnt(SIO.Getlnt(in), 6, out); 
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(*opens input file *) 
(*opens output file *) 

(*counts successfully read values *) 

IF SIO.TermChar(in) = '\n' THEN SIO.NI(out) END; 
INC(count); 

END; (*WHILE*) 
FINALLY 

SIO.Putlnt(count); 
SIO.PutText(" values copied"); SIO.NIO; 
SF.CloseRead(in); SF.CloseWrite(out); 

END; (*TRY FINALLY*) 
END IntegerCopy; 

BEGIN 
SIO.PutText("File copy program\n"); 
TRY 

IntegerCopyO; 

(*always close files *) 

EXCEPT (*any exception handling after closing *) 
SIO.Error => SIO.PutText("!Error!\n"); 

END; 

Example 15.4: Delaying exceptions: the file is always closed 

If any of multiple exceptions could occur, then the code "Release re
source" would have to be duplicated further. A solution with an ELSE 

branch is impossible because then we lose information about which excep
tion occurred. This demonstrates that the problem of delaying exception 
handling with the TRY-EXCEPT statement can only be solved with code du
plication and that the TRY-FINALLY statement proves to be a great advan
tage here. 

The same distinction between run-time errors and exceptions, as de
scribed in Section 15.2.4, applies for the TRY-FINALLY statement: de
pending on the implementation ofthe language environment, run-time 
errors cause immediate program termination (without processing the 
FINALLY branch first), while exceptions always invoke the FINALLY 

branch. 

The authors are convinced that this is a shortcoming of the current 
Modula-3 environments. Here the distinction between exceptions and 
run-time errors makes no sense; resources should always be released 
regardless of this distinction. 
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Syntax of the TRY-FINALLY statement 

TryFinStmt39 = "TRY" Stmts23 "FINALLY" Stmts23 "END". 

Example 15.4 demonstrates the delay of exceptions. The procedure 
IntegerCopy opens a file for reading and one for writing and copies inte
ger values from one file to the other. If an exception occurs (e.g., if the 
input file contains a non-numeric character), then both files are properly 
closed before the procedure terminates; i.e., all data that had already been 
copied into the output file before the error occurred are stored. If the input 
file is difficult to reach (e.g., a modem transfer), then this behavior is desir
able. When the operation restarts, only the missing data need to be copied 
(although our example lacks a mechanism for automatic resumption). 

15.4 Strategies for exception handling 

The importance of exception handling becomes clear only in larger systems, 
which require us to plan carefully the strategy for various exception situa
tions. In particular, we need a structure of responsibilities. 

Exception handling needs to be planned into the system architecture. 
In a properly designed system, each module handles a clearly defined task. 
In the definition of module duties, the responsibilities for error situations 
must also be specified. 

In determining the strategy for exception handling, we encounter a fun
damental contradiction. Assume that an exception interrupts a long invo
cation chain that crosses module boundaries. If we handle the exception 
locally (i.e., in the procedure where the situation was detected), this sim
plifies our program structure. However, at this location we know almost 
nothing about the application that initiated the invocation chain. Only the 
highest level of invocation best knows the consequences of the exception 
on program execution. To handle the exceptions there, we must propagate 
them through the entire invocation chain. Although this complicates the 
program structure somewhat, the exception mechanism of the language 
does ease such delegation considerably. 

In general we must take care to handle immediately those exceptions 
that need no knowledge about the application. Other exceptions that can
not be handled locally should be propagated upwards until the responsible 
level handles them. Thus for each procedure definition we must choose 
from the following possibilities: 

• Handling without exceptions 
Naturally not every exception situation must be handled as an excep
tion. Many problems can be intercepted more simply with IF state-
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ments, with propagation ofthe information via a return value or vari
able parameter. 

• Procedures with local exception handling 
Mter the invocation of a procedure with local exception handling, the 
program always has a normal state (i.e., no exception condition ap
plies). The procedure must have handled every problem, or it termi
nated the action and thus restored a normal state. 

• Complete delegation of exception conditions 
Procedures have two tasks: if they terminate normally, then they 
leave a valid program state; if this is not possible, they terminate 
with an exception that the invoking procedure must handle. 

• Partial handling of exception conditions 
Procedures with partial handling appear quite frequently in service 
modules. They detect an exception that they cannot handle. How
ever, before they terminate, they ensure that the state of the server 
remains consistent. Often the service procedure then generates a new 
exception with its own name, declared in the service module. The 
client thus remains capsuled off from the module (information hid
ing), but is informed of the failure of the operation. 

In the course of the invocation chain, all these possibilities could occur. 
Consider one final example. On storage of a text in a word processor, we 
might encounter the following invocation chain (starting at the bottom): in 
writing a character, a procedure of the language environment determines 
that the capacity of the hard disk has been exhausted and generates a cor
responding exception. The procedure that stores the entire text in a loop 
delegates this exception upwards. The exported procedure for storing a doc
ument handles this exception by generating an appropriate error message. 
This procedure generates its own, new exception and passes the error mes
sage as parameter. The menu function of the main program handles this 
exception by outputting the error message. No exception is propagated fur
ther. 
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Parallel programming 

Thus far we have always (implicitly) assumed that the statements of a 
statement sequence execute one after the other. Programs consisting of 
such statement sequences are termed sequential. However, in practice 
some problems are difficult or impossible to solve with a sequential pro
gram. Here we can resort to parallel programming, which is actually the 
more general view: sequential programs can be viewed a special (although 
very important) case of parallel programs. 

We might feel a bit like Orgon in Moliere's Tartuffe as he first heard of 
poetry and discovered that his whole life long he had been speaking in 
prose. Even so, we find that we have been writing sequential programs 
until now. This fact becomes interesting only because we now know 
that there is something else - parallel programs. 

16.1 Motivation for parallelism 

Better utilization of existing resources 

Parallelism was first introduced in the 1960s, motivated by the fact that 
input/output consume by orders of magnitude more time than internal op
erations. Although input/output has become faster since then, the same 
applies to internal operations; hence the relationship has remained much 
the same. While one program is waiting for input/output, it makes sense 
to let another program do something useful. When input/output in the for
mer program is finished, then the latter can be interrupted, and the former 
program can be continued. The concept of interruption has significantly 
improved the throughput (number of programs processed per unit of time) 
of computers while simultaneously introducing new problems. One prob
lem was that a program can be interrupted almost unnoticed and continued 
later. As we shall see, this is not always easy. 
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Assume that your work is interrupted because the computer beeps: an 
e-mail has arrived. While you read the e-mail, someone knocks and 
enters your office: here we already have the second level of interrup
tion. Now. if the telephone starts ringing as well, then we have the 
third level of nesting. We must handle each interruption individually 
and then return to the previous task. Clearly an interruption cannot 
take effect at any arbitrary time: sometimes it has to wait. 

Modern computers also employ parallelism to better manage their re
sources when the application programs themselves are sequential. This 
requires that such parallelism be fully transparent for user programs; in 
fact, the authors of user programs should not even need to be aware of the 
parallelism. 

Transparent parallelism has many applications. Most operating sys
tems share the computer among several programs such that while one pro
gram is waiting for input/output, another program carries out computation. 

Likewise the hardware level employs much parallelism. All newer pro
cessors, e.g., employ pipelining: various phases of the execution of in
structions (such as loading an instruction, decoding an instruction, loading 
operands, etc.) can overlap. While one command is being decoded, the next 
can be loaded, and so on. The superscalar processors, which are finding 
ever increasing application, can even start multiple instructions simulta
neously. 

Inherently parallel applications 

Consider a flight reservation system. Passengers at various counters 
around the world can make reservations for the same flight. All these reser
vations must be processed through the same software system. A customer 
in Klagenfurt would be quite unhappy to have to wait while a passenger in 
San Francisco books. A ticketing system must process these jobs simulta
neously, in parallel. 

This example points out a fundamental difficulty of parallel program
ming: What happens if a passenger in Klagenfurt and one in San Francisco 
want to book the same flight, which has only one seat available? Clearly 
one of the two must win. In any case, we must avoid selling the same 
seat twice. We can readily imagine the following: First Klagenfurt checks 
whether there is a seat available. Shortly thereafter the query arrives from 
San Francisco and also finds the seat available. On the basis of this infor
mation, both locations reserve the seat. Because this must never happen, 
the methods of parallel programming provide solutions to avoid such con
flicts. 

We could identifY many applications that are inherently parallel: all 
systems that simultaneously serve multiple customers (banks, warehouses, 
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etc.); systems that control airplanes, ships, train stations, etc.; telecommu
nications systems that operate (possibly huge) networks of telephone and 
computer connections and that must simultaneously assure a large num
ber of connections. 

Accelerating algorithms 

Some algorithms can be formulated as both sequential and parallel, yet 
processing them on even the fastest sequential computer takes too long. 
What "too long" means depends on the problem. Consider the weather 
forecast: to be able to compute an accurate forecast requires numerous 
computations. Yet what good is a perfect forecast if we deliver the results 
too late? A program that uses Wednesday's data to compute Thursday's 
weather forecast, but delivers the forecast on Friday, is not quite what we 
had in mind. 

In such a case we can take one oftwo approaches: either we improve our 
model so that it requires less computation, or we accelerate the computer. 
The former approach is more economical in the long run and also intellec
tually more challenging. In practice the second approach is often preferred. 
The computer industry invests a great deal to make computers ever faster. 
However, accelerating the classical von Neumann machines (see Section 
1.2) has reached physical limits. This phenomenon, called the von Neu
mann bottleneck, is imposed by the von Neumann architecture. Although 
John von Neumann addressed the possibility of parallel processing already 
in the 1950s, the von Neumann architecture is fundamentally sequential: 
the arithmetic and logic unit (ALU) reads and interprets the instructions 
in main memory sequentially. 

Today's top processors operate at over 200 MHz; i.e., they take less 
than five nanoseconds (10-9 seconds) to execute an operation (e.g., an 
addition). There is good reason to believe that there is not much room 
for improvement. 

The reader might wonder whether there is a need to accelerate further. 
The question is justified, but cannot be discussed here in detail. Par
allel computers are becoming more widespread, and parallelism will 
gain in importance in the future. 

At this time parallelism seems to represent the only possibility to signif
icantly accelerate computers. This includes transparent parallelism hidden 
in the computer architecture or the lower levels of the operating system, as 
well as explicit parallelism, which enables the programmer to express al
gorithms in parallel form and map them onto a parallel architecture. 



388 16. Parallel programming 

16.2 Parallel programs 

Parallel programs can best be expressed as a collection of cooperating se
quential processes. 

I A process is a virtual processor that executes its instructions sequentially 
and has its own state space. 

A process is thus an active element. We can imagine that each process 
has its own (real or virtual) processor (its own engine). A process executes 
its sequential statements parallel to other processes. Here we are not in
terested in fully independent processes, but in ones that communicate with 
one another. 

When two computers do different things in two different rooms, we 
could speak of parallel processes, but this would be of no particular 
interest. The situation becomes interesting when there is some con
nection between the two. 

A process can synchronize its execution with that of other processes; i.e., 
processes can wait for one another. As needed, they can also communicate 
with one another by exchanging data via shared variables or via communi
cation channels using messages. 

A related collection of processes forms a parallel program. In general, 
we do not know which statements of the individual processes overlap. Usu
ally we cannot make any assumptions about the temporal execution of in
dividual processes. 

If the processes actually do have their own physical processors, then we 
speak of truly parallel processes. If the processes run on a single processor, 
hence only virtually have their own processors, then we speak of quasi
parallel processes or concurrent processes. 

Both cases require a mechanism that handles synchronization and com
munication. This mechanism is usually in the form of a scheduler that 
coordinates execution of the processes. The scheduler for quasi-parallel 
processes must also implement the virtual processors, thus assuring that 
the processes run (quasi) as though each had its own processor. 

I For the development of parallel programs, the same rules apply, regard
less of whether the processes are truly parallel or quasi-parallel. 

Validating the correctness of a parallel program should be independent 
of whether the program is truly parallel or quasi-parallel. Therefore in 
this chapter we use the term parallelism unless we need to emphasize the 
distinction. 

In the light of efficiency considerations, the difference becomes signifi
cant. A quasi-parallel program is generally slower than an equivalent se
quential program. Nevertheless, the development of such programs makes 
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sense if no equivalent sequential program can be found or if the sequential 
variant would be too complicated. A truly parallel program can (but need 
not) prove faster than an equivalent sequential program. Synchronization 
restricts the degree of parallelism. Every (sensible) parallel program has 
sequential components; if the sequential share is quite large, then paral
lelism can yield little acceleration. In addition, communication can slow 
down parallelism. If the processes spend more time waiting for messages 
than in processing them, then parallelism cannot help much. With an awk
ward design, the truly parallel variant (executed on a number of indepen
dent processors) can actually become slower than its sequential counter
part. In many designs, efficiency considerations can be decisive. 

In the following, we concentrate on the fundamental concepts that are 
independent of the kind of parallelism. The following ground rule applies 
for all parallel programs: 

The verification of a parallel program must preclude any assumptions 
about the absolute or relative speed of the involved processes. 

A very intriguing area of computer science, real-time programming, 
deals with problems that require considering the execution time of a 
program. Consider, e.g., an on-line control (on-line meaning that the 
computer participates directly in the controlled process, e.g., the secu
rity system of a power plant). Here events occur to which the computer 
must react within specified time limits. In real-time systems it does 
not suffice to simply deliver correct results; the timing must also be 
correct. These assumptions about the timing of execution make ver
ification more difficult by posing additional requirements. We do not 
discuss the problems of real-time systems. 

Lightweight and heavyweight processes 

Processes are often classified as heavyweight or lightweight processes. 
Heavyweight processes have their own state space (address space), while 
several lightweight processes share a global state space. Heavyweight pro
cesses could be running on different computers that share communication 
channels. Lightweight processes are generally on the same computer and 
can communicate via shared variables. Switching between lightweight 
processes is a relatively inexpensive action. When heavyweight processes 
share a computer, switching becomes more difficult (and more expensive). 
Lightweight processes are often called threads (from thread of control); we 
will usually use this terminology. 

The best-known example of heavyweight processes are those of the 
Unix operating system (most larger operating systems have similar 
processes). Unix processes each occupy their own address space (in 
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virtual memory) and are quite independent of one another, apart from 
the fact that they use the same resources, under the management of 
the operating system. They can also communicate, although their com
munication is quite awkward. 

Unix processes within a processor are quasi-parallel. Given a supply of 
Unix computers, several processes can run truly parallel, while others 
are quasi-parallel. Thus we can write parallel programs that execute 
in quasi-parallel as well as in truly parallel mode or even mixed. 

16.3 Threads in Modula-3 

Modula-3 supports the concept of parallel threads. A sequential Modula-
3-program consists of a single thread (the main thread). It is possible 
to create additional threads that are all executed in quasi-parallel mode. 
Threads can either run in an endless loop or terminate. Once the main 
thread terminates, this ends all threads generated by it. 

16.3.1 Schedulers of Modula-3 environments 

The existing language environments feature schedulers only for quasi
parallel threads. The scheduler embedded in the run-time system manages 
allocation ofthe processor to the threads. In principle, the allocation strat
egy (scheduling) can be quite different in various environments. We gener
ally assume that the strategy is fair; i.e., if a thread is ready to run, it will 
get its turn and need not wait endlessly for the processor. The scheduler 
of most Modula-3 language environments employs time slice scheduling. A 
thread cannot monopolize the processor for longer than the specified time 
slice (e.g., 50 msec). When a time slice expires, execution ofthe thread is in
terrupted and the processor is allocated to another thread; this reallocation 
of resources from one process by the scheduler is called pre-emption. The 
waiting threads are generally managed with a ring-shaped closed struc
ture; the scheduler switches from one thread to another along the ring. In 
this way the scheduler can assure that no waiting thread must wait end
lessly for the processor. 

For technical reasons, the Modula-3 scheduler currently running on 
DOSPCs is non-pre-emptive and thus cannot fulfill the condition of 
fairness. If a thread does not relinquish control, it can monopolize 
the processor. Hence the threads themselves must be fair and from 
time to time relinquish the processor on behalf of others. 

If the threads use any form of synchronization (Section 16.4.4), then 
the scheduler automatically handles this relinquishing of the proces
sor, for synchronization always occurs via the scheduler. If they re-
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quire no synchronization, then they must periodically relinquish con
trol explicitly using the Scheduler.Yield l procedure. If all processes 
behave fairly in this way, then fair scheduling can be achieved. 

16.3.2 Creating threads 
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The Modula-3 language environment provides the interface Thread in the 
collection of standard interfaces (Appendix C.1.2 on page 527). 

Fork 

The procedure Fork creates a new thread and returns a new instance of 
Thread.T. 

TYPE Closure = OBJECT METHODS applyO: REFANY END; 

PROCEDURE Fork (c1: Closure): T; 

The new thread is executed (quasi-)parallel to the creating thread. 
Fork accepts as parameter a closure, whose type must be a subtype of 
Thread.Closure. The type Thread.Closure first defines an empty closure; 
the corresponding subtype must fill the closure. In particular, the apply 
method must be overridden with the procedure that is to be executed by 
the newly created thread. The signature of apply is kept very general; it 
has no parameter and returns a function value oftype REFANY. Ifwe want 
a different signature, we must extend the Closure accordingly (see Example 
16.4). 

The statements in threads are implemented by the procedure that over
rides the apply method in the thread closure. This is quite an ordinary 
procedure. We could say that threads are procedures that are launched 
not by invocation but by Fork. This is why it makes sense for Modula-3 to 
provide not a separate language construct but only a special interface for 
threads. 

The invocation of Thread.Fork effects the following: 

• Fork instructs the scheduler to start the procedure specified in the clo
sure parameter as a new thread and returns a value of type Thread.T, 
which identifies the new thread . 

• Thereby the statements of the apply procedure are executed in paral
lel with the invoking procedure. 

1 In the old version of the Modula-3 library the procedure is exported by the module 
Thread. 
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Figure 16.1: Forking and joining threads 

Join 

We can join two threads with a Join invocation. 

PROCEDURE Join (thread: T): REFANY; 

Thread.Join expects a parameter of type Thread.T, which identifies the 
thread that the invoking thread is to join. If the identified thread has not 
finished its work, the thread invoking Join must wait. Mter the Join the two 
threads are merged to a single control flow (see Figure 16.1). Thread.Join 
returns the return value ofthe procedure executed by apply. 

Shared data 

Modula-3 threads share an address space. Like all other procedures, a 
procedure launched as a thread can access the module's global variables 
in their common scope. They can also create dynamic data whose root is 
stored in a global variable. Multiple threads can access global variables 
and dynamic data collectively (and simultaneously). This can cause con
flicts (see Section 16.4). 
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IMPORT Thread, Lists, SIO, SF; 

VAR 
thread: Thread.T; 
cl := NEW (Thread. Closure, apply:= Start); 
Iist1, list2: Lists.T; 
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(*Thread instance*) 
(*Closure instance*) 

(*two lists*) 

PROCEDURE Start(self: Thread.Closure): REFANY = 
BEGIN 

RETURN Lists.Get(SF.OpenRead("in1 ")); 
END Start; 

BEGIN 
thread:= Thread.Fork(cI); 
list2:= Lists.Get(SF.OpenRead("in2")); 
list1 := Thread.Join(thread); 

(*reads a list from "inl"*) 

(*creates a thread; launches Start*) 
(*reads list from "in2"*) 

(*waits for thread; stores its result*) 

Example 16.2: Reading two lists in parallel 

Private data 

The procedures started as threads can invoke other procedures and thus 
initiate an arbitrary invocation chain. Local data regions of an invocation 
chain are created according to the stack principle (see Section 9.2.2). 

If threads are to exist in parallel, we must ensure that they all can 
process their invocation chains. The resulting local data regions must be 
inaccessible for other threads. Thus Fork always creates a new invocation 
stack for the local data regions of a new thread. 

We can launch the same procedure repeatedly with Fork (see Example 
16.5). The created threads all execute the same statements, but have their 
own local data and so different states; thus the execution ofthe statements 
of each thread is determined individually by its state space. 

Examples of Fork and Join 

Example 16.2 reads two lists from two files (in1 and in2) (quasi-)simul
taneously. Two threads enable parallel reading. The variable cl is created, 
and the function Start implements the apply method. Start returns a list. 
The interface Lists (not specified further here) provides the procedures Get 
and Put to read or output a list. The first statement of the program assigns 
to the variable thread the value returned by Fork. The invocation of Fork 
creates a thread that executes Start, i.e., reads the list from in1. The main 
thread continues to run in parallel and simultaneously reads the second 
list from in2 into the variable list2. With a Join, it waits for the result of the 
other thread. Afterwards we have only the main thread. 
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PROCEDURE Max(a, b: INTEGER): INTEGER = (*maximum of two numbers*) 
BEGIN 

IF a > b THEN RETURN a ELSE RETURN bEND 
END Max; 

VAR 
a: ARRAY [1 . .4] OF INTEGER; 
max: INTEGER; 

BEGIN 

(*stores the data*) 
(*max stores the maximum of all a[i]*) 

max:= Max(Max(a[1], a[2]) , Max(a[3], a[4])); (*maximum offour numbers*) 

Example 16.3: Maximum of four numbers (sequentially) 

TYPE 
Closure = Thread.Closure OBJECT 

a, b, result: INTEGER; 
OVERRIDES 

apply:= Start 
END; (*Closure*) 

VAR 
cl := NEW(Closure); 
thread: Thread.T; 
a: ARRAY [1 . .4] OF INTEGER; 
max: INTEGER; 

(*parameters and result in Closure*) 

(*stores data*) 
(*max stores maximum of all a[i]*) 

PROCEDURE Start(cl: Closure): REFANY = 
BEGIN 

(*invokes Max*) 

cl.result:= Max(cl.a, cl.b); 
RETURN NIL 

END Start; 

BEGIN 
cl.a:= a[1]; cl.b:= a[2]; 
thread:= Thread.Fork(cI); 
max:= Max(a[3], a[4]); 
EVAL Thread.Join(thread); 
max:= Max(max, cl.result); 

(*result stored in Closure*) 
(*return value not used*) 

(*parameters set in Closure*) 
(*created thread starts; computes Max(a[1], a[2])*) 

(*main thread computes maximum ofrest*) 
(*partial results available*) 

(*final result computed*) 

Example 16.4: Maximum of four numbers in parallel 

The next two examples compute the maximum of four numbers. Ex
ample 16.3 shows a sequential solution; Example 16.4, a parallel solution. 
The parallel solution computes the maximum of a[1] and a[2] in parallel 
to the computation of the maximum of a[3] and a[4]; the parameters and 
the return value are stored in the closure. The same Max procedure is also 
invoked in the parallel version. The return value ofthe apply method is not 
used. 
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MODULE NTh reads EXPORTS Main; 

IMPORT Thread, SIO; 
FROM Scheduler IMPORT Yield; 

CONST 
N = 10; 

TYPE 
Threads = [1 .. N]; 
Closure = Thread.Closure OBJECT 

id: Threads; 
OVERRIDES 

apply:= Printld; 
END; (*Closure*) 

PROCEDURE Printld(cl: Closure): REFANY = 
BEGIN 

REPEAT 
SIO. Putlnt(cl.id); 
IF cLid = LAST(Threads) THEN SIO.NIO END; 
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(*identifies thread*) 

YieldO; (*yields to other threads*) 
UNTIL SIO.AvailableO; 
RETURN NIL; (*return value not used*) 

END Printld; 

PROCEDURE ForkO = 
BEGIN 

FOR i:= FIRST(Threads) TO LAST(Threads) - 1 DO 
EVAL Thread.Fork(NEW(Closure, id:= i)) (*N-l threads aregenerated*) 

END; 
EVAL Printld(NEW(Closure, id:= LAST(Threads))); (*N-th thread = main*) 

END Fork; 

BEGIN 
ForkO; (*start all threads*) 

END NTh reads. 

Example 16.5: N threads, explicit assignment with Yield 

Example 16.5 creates N threads. Each thread receives its own identi
fier (id). In a loop, they output their identifiers until any key is pressed 
on the keyboard. SIO.Available does not block the invoking thread (as does 
SIO.GetChar), but always returns immediately and returns true if and only 
if input data are present (i.e., if a key has been pressed). Once a key is 
pressed, the thread that is occupying the processor at that moment termi
nates and returns to its invoking procedure (Fork). After this invocation 
there are no further statements and the whole parallel program termi
nates. 

Note that the last thread is not started with Thread.Fork but as a pro
cedure. This makes the Nth thread the main thread. Ifwe had started the 
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Nth thread with Thread.Fork as well, then the main thread would termi
nate immediately after the invocation of Fork - and with it all others. To 
avoid this, we would have to find some artificial way to hinder the main 
thread. 

The invocation of Yield serves to voluntarily relinquish the processor to 
the other ready threads. This allows us to modify the system's scheduling 
strategy; all threads repeatedly offer the others the possibility to output 
their data. 

Synchronization and communication 

All examples so far made the (implicit) assumption that the processes are 
independent of one another. As long as this is true, parallel programming 
remains rather simple. While you read a book, numerous other people can 
read other books; you do not need to know anything about it (as in reading 
two lists from two different files). On the other hand, a group of students 
could also be taking notes in their own notebooks simultaneously from a 
blackboard. Problems could arise if they write at different speeds and the 
blackboard is to be erased; the erasing should wait until all are finished. 

Reading a book together at different speeds can cause difficulties in 
turning pages (for young people of different sexes reading the same book 
together can have severe consequences anyway, as we see in Dante's Divine 
Comedy and Goethe's Wahlverwandschaften). It becomes more difficult if 
another person wants to write in your notebook. We could arrange, e.g., 
that each person writes one page and then hands the notebook to the other. 
This makes writing a single page atomic; for all other processes, an atomic 
action in a process appears as an indivisible unit. Although it can carry out 
multiple state transitions internally, these must be invisible to other pro
cesses. Viewed from outside, we can speak of the state of an atomic action 
before and after, but there is no in between. 

When processes produce data for or consume data from one another, 
they must communicate (e.g., by having one person write on the black
board and the others reading the text). These processes must also coor
dinate their work - synchronize (e.g., because only one may write on the 
blackboard). Using Join is one simple way to synchronize; thereby one 
thread waits for another to end. Synchronization becomes more interest
ing when the processes (or threads) access common resources. This can 
be quite innocuous (such as reading a common blackboard), but more ex
act synchronization might be necessary in other cases (as in writing in a 
shared notebook). 

Shared resources can be accessed via shared variables or via message 
passing. Lightweight processes usually (but not necessarily) employ the 
former kind of communication; heavyweight processes, the latter. 
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Figure 16.6: Synchronization with barriers 

16.4 Shared variables 

Communication between processes is innocuous as long as shared vari
ables are only read. If a shared variable is modified, we have a conflict. 
For example, if two threads simultaneously write to a shared variable, we 
could have a nonsensical result. Assume, e.g., that two threads write to 
the shared variable r: RECORD a, b: INTEGER END. thread! writes r.a:= 
1; r.b:= 2, thread2 writes r.b:= 3; r.a:= 4. The actual sequence of the com
mands is: r.a:= 1; r.b:= 3; r.b:= 2; r.a:= 4. The result is: r.a=4, r.b=2. This 
result ensued from the combination of the two threads, yet neither of the 
two threads wanted to store these data in r. Such cases must be avoided. 
The following sections deal with this problem. 

16.4.1 Data-parallel algorithms 

In data-parallel algorithms, multiple processes process a shared array. The 
algorithm itself must ensure that the processes do not write to the same 
location simultaneously (thereby creating nonsensical data). Generally a 
process is permitted to read a location that is being written by another 
process. In such cases we must ensure that the reading process waits until 
the writing process is finished, so that no semifinished data are read. 

To synchronize multiple processes, we often employ synchronization 
with barriers. Join can join only two threads, but this irrevocably, for after
wards there is but a single thread. Barriers represent significantly more 
powerful tools. A barrier can synchronize the control flow of any number of 
processes (threads): they wait for each other at the barrier. The processes 
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INTERFACE Barrier; (*11.10.93. LB*) 
(*A join on a barrier blocks num-1 invoking threads. 

On the numth invocation all threads are released and the barrier is reinitialized. *) 

TYPE 
T <: Public; 
Public = MUTEX OBJECT METHODS joinO END; 

PROCEDURE Create(num: [1 .. LAST(CARDINAL)]): T; 
(*Creates a new barrier initialized to num. *) 
END Barrier. 

Example 16.7: Barrier interface 

are not destroyed, but remain active: when the last thread reaches the 
barrier, all threads continue in parallel until the next barrier (see Figure 
16.6). 

Example 16.7 shows an interface that defines a barrier. Create creates 
and initializes a new barrier. The number ofthreads that meet at a barrier 
must be at least 1, but to make sense would be greater than 1. Example 
16.8 demonstrates the use of barriers for a matrix multiplication (see also 
sequential matrix multiplication in Example 9.9). For each element in the 
result matrix, we create a thread that computes this element independently 
of the other elements. Note that the threads read some of the same data, 
but modifY only their respective elements. With barrier.joinO each thread 
waits for the others. The main thread can use the same barrier to wait for 
the others. Afterwards all threads continue to run in parallel. 

We must note again that for all our demonstrated algorithms, in prin
ciple it does not matter whether they are executed truly parallel or 
quasi-parallel. From the view of practice, however, data-parallel algo
rithms are only relevant with true parallelism, where they can achieve 
speed improvements. The example of matrix multiplication clarifies 
this. Assume a, band r all have dimension N x N, and the computa
tion of an element (DotProduct) requires a time of T time units, then 
execution time for sequential multiplication is N 2 x T. If parallel mul
tiplication executes on a parallel computer whose processors have fast 
access to shared memory and which has at least N 2 processors, then 
we need only a time of T and a bit of management time at the start 
and end until all threads have joined at the barrier. If the parallel 
computer has less processors, then the algorithm requires more time. 

As our next example of data-parallelism, we will compute the prefix of 
a vector (array) [And91]. The prefix of vector a is a vector sum whose ith 
element is sumi = l:;=first(a) aj. For a = (1,2,3,4,5,6,7,8) we have sum = 
(1,3,6,10,15,21,28,36). The sequential solution is shown in Example 16.9; 
a parallel solution, in Example 16.10. The idea of the parallel algorithm is 
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TYPE 
Matrix = ARRAY OF ARRAY OF INTEGER; 
Closure = Thread.Closure OBJECT 

VAR 

row, col: INTEGER; 
OVERRIDES 

apply:= StartMul 
END; (*Closure*) 

a, b, r: REF Matrix; 
barrier: Barrier.T; num: CARDINAL; 

PROCEDURE InitMatriees(VAR a, b: REF Matrix) = 

PROCEDURE DotProduet(row, col: INTEGER; 
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(*r:= a x b*) 
(*num: start value of barrier*) 

(*initializes a and b*) 

READONLY a, b: Matrix): INTEGER = (*computes an element in result matrix*) 
VAR sum: INTEGER := 0; 
BEGIN 

FOR i:= FIRST(b) TO LAST(b) DO INC(sum, arrow, i] * b[i, col]) END; 
RETURN sum 

END DotProduet; 

PROCEDURE StartMul(el: Closure): REFANY = 
BEGIN 

r[el.row, cLeol]:= DotProduet(cLrow, cLeol, aA
, bA

); (*computes 1 element*) 
barrier.joinO; (*waits until all threads are ready*) 
RETURN NIL (*return value of apply is not needed*) 

END StartMul; 

PROCEDURE ForkO = (*creates thread for each result element*) 
BEGIN 

FOR i:= FIRST(rA

) TO LAST(rA

) DO 
FOR j:= FIRST(r[O]) TO LAST(r[O]) DO 

EVAL Thread.Fork(NEW(Closure, row:= i, eol:= j)); 
END; 

END; 
END Fork; 

BEGIN 
InitMatriees(a, b); (*loads a und b with initial values*) 
r:= NEW(REF Matrix, NUMBER(aA

), NUMBER(b[O])); (*allocates r*) 
num:= NUMBER(() * NUMBER(r[O]) + 1; (*number of result elements + 1*) 
barrier:= Barrier.Create(num); (*creates and initializes barrier*) 
ForkO; (*thread created for each element in result*) 
barrier.joinO; (*main thread waits for result*) 

Example 16.8: Matrix multiplication with barriers 
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TYPE 
Vector = ARRAY OF INTEGER; 

PROCEDURE Pref(a: REF Vector; VAR sum: REF Vector) = 
BEGIN 

sum := NEW(REF Vector, NUMBER(aft)); 
sum[FIRST(sumft)]:= a[FIRST(aft)]; 
FOR i:= FIRST(sumft)+1 TO LAST(sumft) DO sum[i]:= sum[i-1] + ali] END; 

END Pref; 

Example 16.9: Prefix of an array - sequential 

to add, in each iteration, a left neighbor two iterations away; this neighbor 
has meanwhile accumulated the sum of its left neighbors. Thus in log2{n) 
steps we compute the prefix. 

16.4.2 Critical regions and mutual exclusion 

Data-parallelism implies a certain kind of synchronization. If the parallel 
processes are to modify the shared variables freely, then we must explicitly 
ensure the consistency ofthe variables. We addressed this problem already 
in the reservation of seats on a flight. Assume that two processes simulta
neously execute the following statement (where avail is the number of free 
seats): 

IF avail> 0 THEN DEC(avail) 
ELSE ... (*no more seats available*) END 

On a typical computer this statement is translated into corresponding ma
chine code: 

L1 

LOAD 
CMP 
BLE 
DECR 
STORE 

avail,RO 
RO 
L1 
RO 
RO,avail 

(*load avail into register RO*) 
(*compare RO to 0*) 
(*jump to L1 if avail <= 0*) 
(*decrement RO by 1*) 
(*store new value*) 

(*no more seats available*) 

For every computer, we can assume that access to individual storage cells 
is atomic (hence parallel processes cannot simultaneously access a storage 
cell). Therefore the load and store instructions cannot conflict. However, 
the parallel processes all have their own set of registers (at least virtually). 
Hence the two processes might each read the value of avail into their re
spective RO registers, simultaneously decrement these registers, and then 
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TYPE 
Vector = ARRAY OF INTEGER; 
CI = Thread.Closure OBJECT 

id: CARDINAL; 
OVERRIDES 

VAR 

apply:= ApplyPref 
END; 

barrier, stop: Barrier.T; 
a, sum, old: REF Vector; 
n: CARDINAL; 

PROCEDURE Pref(i: INTEGER) = 
VAR d: INTEGER := 1; 
BEGIN 

sum[i]:= ali]; 
barrier.joinO; 
WHILE d < n DO 
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(*identifies a thread**) 

(*thread algorithm*) 

(*stop is used at end*) 
(*sum[ij:= a[iJ + a[i-lJ + ... *) 

(*number of elements*) 

(*algorithm for threads*) 
(*distance to next neighbor*) 

(*now all threads can begin*) 

old[i]:= sum[i]; (*copy of current sum value*) 
barrier.joinO; (*in each iteration, wait for others*) 
IF (i - d) >= FIRST(old A

) THEN INC(sum[i], old[i-d]) END; 
barrier.joinO; (*in each iteration, wait for others*) 
d:= 2 • d; (*double distance*) 

END; (*WHILE d < n*) 
stop.joinO; 

END Pref; 

PROCEDURE ApplyPref(cl: CI): REFANY = 
BEGIN 

Pref(cl.id); RETURN NIL 
END ApplyPref; 

PROCEDURE ForkO = 
BEGIN 

FOR i:= FIRST(aA

) TO LAST(aA

) DO 
EVAL Thread.Fork(NEW(CI, id:= i)) 

END; 
END Fork; 

BEGIN 
Init(a, n); 
barrier:= Barrier.Create(n); 
stop:= Barrier.Create(n+ 1); 
ForkO; 
stop.joinO; 

(*at end, all join in main thread*) 

(*a thread for all elements*) 

(*loads initial value ofa and sets n*) 
(*used in computation*) 
(*controls termination *) 

(*starts threads for prefix computation*) 
(*at end, all join in main thread*) 

Example 16.10: Prefix of an array - parallel 
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each write the new value back to avail. Regardless of which process wins 
the race, the result will be incorrect, for avail will have been decremented 
by 1 rather than 2. 

Regions where shared variables can be modified by multiple processes 
are called critical regions. We require that only a single process can be in 
a critical region at a time. If one process is in the critical region, all other 
processes are prevented from entering. This property is called mutual ex
clusion. In other words, in a critical region, parallelism is disabled and the 
processes are sequentialized. In the flight reservation example, the pro
cess that represents the first passenger would have to exclude the second 
process until the first reservation is complete. 

We can define the use of critical regions with the following steps: 

1. Entry into critical region 

2. Access to critical data 

3. Exit from critical region 

4. Execute remaining algorithm 

The following conditions apply: 

• Mutual exclusion 
At most one process is in the critical region. 

• No deadlock 
If multiple processes need to enter a critical region, then one of them 
will actually succeed in doing so. The processes must not impede each 
other, as when the processes circularly wait for each other (a deadlock 
situation). 

• No unnecessary waiting 
Processes outside the critical region must not prevent others from 
entering the critical region (not even by terminating). 

• No endless delay 
When a process wants to enter the critical region, it must succeed in 
a finite number of tries. This means that in time all processes will be 
able to enter the critical region. 

16.4.3 Type Mutex and the Lock statement 

For the implementation of critical regions that meet the above conditions, 
Modula-3 provides the data type MUTEX and the LOCK statement. MUTEX 

is an object type. A LOCK statement can be executed on a MUTEX variable, 
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thus defining a critical region with mutual exclusion. A LOCK statement 
has the following general form (where mu is of type MUTEX and S stands 
for an arbitrary statement sequence): 

LOCK mu DO SEND 

The semantics of the LOCK statement correspond exactly to the above 
conditions. At a given time, only one thread can be in the statement part 
of a LOCK statement. If multiple threads try to enter simultaneously, then 
the first one gets through and the others are put in a wait state (their path 
is blocked - hence the name lock). When a thread exits (when it reaches the 
END of the LOCK statement), the next thread can enter (the first waiting 
thread is switched from waiting to ready). If a thread generates an excep
tion in the critical region, then it is forced to exit the critical region. Thus 
an erroneous thread cannot hinder the others from entering the critical re
gion at some time. The following pseudocode explains the semantics of the 
LOCK statement: 

Thread.Acquire(mu); TRY S FINALLY Thread.Release(mu) END 

Thread.Acquire implements the entry into and Thread. Release the exit 
from the critical region. The exit takes place even if an exception occurs 
within S. 

These statements could also be written by the programmer. The pro
cedures Acquire and Release are actually provided by the Thread interface 
(see Appendix C.1.2). However, programs are more secure if everything is 
handled automatically by the LOCK statement. 

Consider a case where a thread executes the following code pattern: 

LOOP 

LOCK mutex DO 
statements ... 
IF termination condition THEN EXIT END 

END; (*LOCK*) 

END; (*LOOP*) 

The EXIT statement has a feature that we have not discussed yet: In ad
dition to the jump to the end of the loop, it generates an EXIT exception. 
This exception is intercepted by the hidden TRY-FINALLY statement of the 
LOCK statement, and mutex is unlocked. This allows the next thread to en
ter. Likewise the RETURN statement generates a RETURN exception before 
actually leaving the procedure. 

Example 16.11 shows a very simplified algorithm for the flight reserva
tion. The LOCK statement ensures that the field avail is a protected critical 
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TYPE 
Flight = MUTEX OBJECT 

avail: CARDINAL; 

END; (*Flight*) 

PROCEDURE Reserve(flighl: Flight): BOOLEAN = 
BEGIN 

(*Flight is a subtype of Mutex*) 
(*number of available seats*) 

(*other fields*) 

LOCK flight DO (*start of critical region*) 
IF flight.avail > 0 THEN DEC(flight.avail); RETURN TRUE 
ELSE RETURN FALSE 
END; (*IF*) 

END; 
END Reserve; 

(*end of critical region *) 

Example 16.11: Reservations protected by Lock 

region. It is important that common access (both reading and updating 
avail) be protected with LOCK. The following solution would be wrong: 

IF flight.avail > 0 THEN LOCK DEC(flight.avail) END; RETURN TRUE END 

Without LOCK before reading, two threads might execute the IF statement 
simultaneously, which would enable an erroneous reservation. 

What is particularly bothersome about such errors is that they can 
remain undetected for a long time. While the concepts of parallel pro
gramming were not yet mature, many such programs evolved that pro
duced seldom, mysterious errors. Nowadays the methods for avoiding 
such errors are well-known. Our discussion treats only a part ofthem. 

Conditional synchronization 

Critical regions afford only limited possibilities for synchronization. Con
sider the very frequent case where a number of parallel producers generate 
data that are processed by a number of parallel consumers. For example, a 
mainframe anticipates input data from many terminals and redirects them 
to many applications such as editors, databases, etc. In such a case we use 
one (or more) buffers where the data are stored temporarily to compensate 
for the differences in speed between various processes. In the optimal case 
the buffer is always about half full, i.e., a producer always has room to 
deliver new data and a consumer always finds certain data. The state of 
the buffer must be kept consistent; therefore the buffer must be updated 
within a critical region. Problems begin when the buffer deviates too far 
in one direction or the other from half full. For example, assume that the 
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buffer is full and a producer needs to deliver data. To test the state of the 
buffer, the producer must enter the critical region. Within the critical re
gion the producer determines that data cannot be delivered. What should 
be done? Here we would want the producer to wait until a consumer re
moves data and thereby makes room. This would require the producer to 
leave the critical region and to re-enter as soon as the anticipated condition 
is fulfilled. This is where the concept of conditional synchronization comes 
In. 

Many tools have been proposed that implement both mutual exclusion 
and conditional synchronization [And911. We handle only the two most 
important: monitors and semaphores. 

16.4.4 Monitor 

Monitors were proposed by C. A. R. Hoare[Hoa741. They integrate the 
above concepts with the concept of data capsules into a programming lan
guage. As Hoare proposed them, monitors have the following features: 

• Monitors are abstract data types that reveal only their operations. 
Mutual exclusion is ensured on these operations (also called monitor 
procedures). This means that at most one process can be within a 
monitor . 

• Within monitors we can use the type condition. Two basic operations 
are defined on a condition variable c: wait(c) and signal(c). The un
derlying idea is the following: A process must explicitly test the state 
of the monitor to determine whether conditions are fulfilled for the 
process's task. If so, the process carries out its task; if not, it goes 
into a wait state and temporarily leaves the monitor. This enables 
other processes to enter; these might change the state space so that 
the anticipated conditions are fulfilled. Processes waiting on such a 
condition must be awakened from their dormant state by an explicit 
signal from another process. The semantics of operations according 
to Hoare is as follows: 

- wait(c) 
The invocation of wait causes the invoking process to temporarily 
leave the monitor and to enter a queue. 

- signal(c) 
If at least one process is waiting for condition c, then the invoca
tion ofsignal(c) removes the first waiting process from the queue, 
puts it in a ready state, and restarts it without delay. This means 
that no other process can enter the monitor between the wak
ing and the starting of the dormant process because this process 
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could reverse the condition. The process invoking signal must 
leave the monitor (for mutual exclusion). If the signal(c) invoca
tion is at the end of a monitor procedure (which is often the case), 
then fulfillment of the last condition is trivial. 

Ifsignal(c) is invoked while there is no process in the queue for c, 
then signal has no effect. 

Modula-3 supports the concept of monitors with a somewhat modified 
semantics with the following features: 

• There is no explicit monitor type; with the help of modules, monitors 
can be formulated as encapsulated data types. This has the drawback 
that mutual exclusion is not ensured automatically on monitor proce
dures; instead, the programmer must employ LOCKs. Another dis
advantage is that the compiler cannot check whether condition vari
ables are used only within monitors. The advantage of this approach 
is that mutual exclusion can be controlled at a finer level. Frequently 
a monitor procedure need not only process critical regions but also 
handle much additional work (with its local variables). Here mutual 
exclusion is not required and unnecessarily reduces the degree of par
allelism . 

• The condition type and the corresponding operations are provided by 
the Thread interface. 

- The semantics of Wait matches the classical definition by Hoare, 
with the exception that here the MUTEX variable that holds the 
lock must be specified explicitly. 

- The semantics of Signal is somewhat more relaxed. The awak
ened process need not continue execution immediately. It is also 
possible for another thread to enter the critical region and modify 
the condition. Therefore the awakened process must test the con
dition again. If the condition has become false meanwhile, then 
the process must wait again. Theoretically, this could leave a 
process rotating forever in such a loop (the phenomenon is called 
starvation). However, this is quite improbable. The advantage of 
this approach is increased flexibility; in particular, it is easy to 
produce a BROADCAST operation that wakes all processes wait
ing for a condition. The original strict semantics of signal pre
cludes a BROADCAST operation because we can only restart one 
process without delay. However, after finishing its work, this pro
cess can send a signal that wakes the next, and so on. 
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INTERFACE Buffer; (* 15.10.93. LB*) 
TYPE 

T <: Public; 
Data = INTEGER; 

Public = MUTEX OBJECT 

END Buffer. 

METHODS 
init(size: CARDINAL := 64): T; 
getO: Data; 
put(data: Data); 

END; (*Public*) 

(*invoke at start!*) 
(*blocked when buffer is empty*) 

(*blocked when buffer is full*) 

Example 16.12: Interface ofa buffer 

Example 16.12 shows the definition of an encapsulated data type Buffer.T. 
A Buffer must be initialized (with a certain size); thereafter the operations 
get and put can be used in any order. Buffer ensures that get waits when 
the buffer is empty and that put waits when the buffer is full, until the 
condition of the operation is fulfilled. 

Example 16.13 demonstrates the use of Buffer. A number of threads 
produce data (for the sake of simplicity, their own thread identifiers) that 
are read and processed by a consumer. The consumer halts when it reads 
the Stop character (first it outputs statistics on the traffic). Mterwards Join 
of the main thread resumes and the whole program terminates. 

Example 16.14 shows the implementation of the buffer, which is orga
nized as a circular buffer (see Section 11). 

We could have set the fields in, out and n to 0 on declaration. However, 
if we want to re-initialize the variable of type Buffer.T repeatedly -
with various buffer sizes - then we must place all initializations in the 
init method. The other fields cannot be set on type declaration anyway 
because they do not receive a constant value. 

The condition variables non Full and nonEmpty control the dynamic be
havior of the system. When the buffer is full, the producers must wait for 
nonFull; when the buffer is empty, the consumers must wait for non Empty. 
Mter each successful put, nonEmpty can be signaled; after every successful 
get, nonFul1. 

Instead of Thread. Signal, we can use Thread.Broadcast to remove from 
the queue all threads waiting for a condition. In this case it brings us 
no advantage because a put can only place one element in the buffer 
that can be taken by a get. In fact, this solution signals more than 
necessary. A signal is actually only necessary when a buffer was empty 
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MODULE BufUser EXPORTS Main; 

IMPORT Buffer, SIO, Thread; 
FROM Scheduler IMPORT Yield; 

CONST Stop = LAST(CARDINAL); 
TYPE 

Producers = [1 .. 61; 
CIProd = Thread.Closure OBJECT 

id: CARDINAL 
OVERRIDES 

apply:= Producer 
END; 

VAR buffer := NEW(Buffer.T).initO; 

PROCEDURE Producer(cl: CIProd): REFANY = 
VAR id: CARDINAL := cl.id; 
BEGIN 

REPEAT 
buffer.put(id); YieldO; 

UNTIL SIO.AvaiiableO; 
buffer.put(Stop); 
RETURN NIL; 

END Producer; 

16. Parallel programming 

(*15.10.93. LB*) 

(*signals end oftransfer*) 

(*producers*) 

(*thread identifier*) 

(*thread algorithm*) 

(*create and initialize buffer*) 

(*yield resource to other processes*) 
(*terminates when a key is pressed*) 

(*signals end oftransfer*) 

PROCEDURE Consumer(cI: Thread.Closure): REFANY = 
VAR i: INTEGER; statistics:= ARRAY Producers OF INTEGER {D, .. }; 

PROCEDURE PutStatisticsO = 

BEGIN 
REPEAT 

i:= buffer.getO; IF i # Stop THEN INC(statistics[i]) END; 

(*output statistics*) 

UNTIL i = Stop; (*i = Stop => consumer terminates*) 
PutStatisticsO; (*output statistics*) 
RETURN NIL; 

END Consumer; 

BEGIN 
FOR i:= FIRST(Producers) TO LAST (Producers) DO 

EVAL Thread.Fork(NEW(CIProd, id:= i)); (*create producer*) 
END; (*FOR*) 
EVAL Thread.Join(Thread.Fork(NEW(Thread.Closure, apply:= Consumer))); 

END BufUser. 

Example 16.13: Communication via a buffer 
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MODULE Buffer; 
IMPORT Thread; 
REVEAL 

(* 15.10.93. LB*) 

T = Public BRANDED OBJECT 
in, out, n: CARDINAL; 
nonEmpty, non Full: Thread.Condition; 
data: REF ARRAY OF Data; 

OVERRIDES 
init:= Init; 
get:= Get; 
put:= Put; 

END; (*Public*) 

PROCEDURE Init(t: T; size: CARDINAL := 64): T = 
BEGIN 

tin:= 0; t.out:= 0; t.n:= 0; 
t.data:= NEW(REF ARRAY OF Data, size); 

(*for circular buffer management*) 
(*change signals*) 
(*buffer contents*) 

t.nonEmpty:= NEW(Thread.Condition); t.nonFull:= NEW (Thread. Condition); 
RETURN t 

END Init; 

PROCEDURE Get(buffer: T): Data = 
VAR d: Data; 
BEGIN 

LOCK buffer DO 
WITH N = NUMBER(buffer.dataA

) DO 
WHILE buffer.n = 0 DO Thread.Wait(buffer, buffer.nonEmpty) END; 
<* ASSERT buffer.n > 0*> (*here the buffer is definitely not empty*) 
d:= buffer.data[buffer.out]; (*read from buffer*) 
buffer.out:= (buffer.out + 1) MOD N; DEC(buffer.n); 

END; (*WITH N*) 
END; (*LOCK buffer*) 
Thread.Signal(buffer.nonFull); (*wakes a possibly waiting producer*) 
RETURN d; 

END Get; 

PROCEDURE Put(buffer: T; data: Data) = 
BEGIN 

LOCK buffer DO 
WITH N = NUMBER(buffer.dataA

) DO 
WHILE buffer.n = N DO Thread.wait(buffer, buffer.nonFull) END; 
<* ASSERT buffer.n < N*> (*here the buffer is definitely not full*) 
buffer.data[buffer.in]:= data; (*new element into buffer*) 
buffer.in:= (buffer.in + 1) MOD N; INC(buffer.n); 

END; (*WITH N*) 
END; (*LOCK buffer;*) 
Thread.Signal(buffer.nonEmpty); (*wakes a possibly waiting consumer*) 

END Put; 

BEGIN 
END Buffer. 

Example 16.14: Buffer implementation with a monitor 
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MODULE Barrier; 

IMPORT Thread; 

REVEAL T = Public BRANDED OBJECT 
n, count: INTEGER; 
cond: Thread.Condition; 

OVERRIDES 
join:= Join; 

END; 

16. Parallel programming 

(* 11.10.93. LB*) 

PROCEDURE Create(num: [1 .. LAST(CARDINAL))): T = 
BEGIN 

RETURN NEW(T, n:= num - 1, count:= num - 1, cond:= NEW(Thread.Condition)); 
END Create; 

PROCEDURE Join(b: T) = 
BEGIN 

LOCK b DO 
IF b.count > 0 THEN 

DEC(b.count); 
ThreadWait(b, b.cond); 

ELSE 
b.count:= b.n; 
Th read. Broadcast(b.cond) 

END; (*IF b.count*) 
END; (*LOCK b*) 

END Join; 

BEGIN 
END Barrier. 

(*waits until nth thread arrives*) 
(*all n threads havejoined*) 

(*count reset to n*) 
(*advance all threads*) 

Example 16.15: Barrier implementation with a monitor 

or full before the signal. Dummy signals do not affect the correctness 
ofthe program, but they do dampen the efficiency. Thus, e.g., we could 
replace the line 

Thread.Signal(buffer.nonFull) 

with the following: 

IF buffer.n = N-1 THEN Thread.Signal(buffer.nonFull) END 

This branch should occur within the LOCK statement. 

Note that the buffer-empty and buffer-full conditions must be tested in 
a loop. With the original strict signal semantics, an IF statement would 
suffice because we can be sure that no other process can change the condi
tion. Thus we could have replaced the WHILE loops around the invocation 
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Figure 16.16: The table of the dining philosophers 

of Wait with two IF branches. The corresponding IF statement in the Get 
procedure could be: 

IF buffer.n = 0 THEN Thread.Wait(buffer, buffer.nonEmpty) END 

Example 16.15 shows the implementation of barriers with the help of 
monitors. 

The dining philosophers 

Our last example of monitors is Dijkstra's famous example of the dining 
philosophers [Dij68b]. Five philosophers are sitting at a table; in front of 
each philosopher is a plate and to the left of it a fork (Figure 16.16). The 
philosophers are either lost in thought or they are hungry and want to eat. 
However, the spaghetti in the middle ofthe table are so extremely long that 
a philosopher requires two forks to serve them. 

What happens if two neighboring philosophers become hungry at the 
same time? Assume that both first reach for the left fork, then both for 
the right fork. One of the philosophers will fail because his right fork 
has already been picked up by the other philosopher. What is worse, if 
all philosophers become hungry at the same time and all reach for their 
respective left forks, then... . Each philosopher would have to wait until 
his neighbor puts down his fork, but since all are waiting, all remain hun
gry. This is a typical resource allocation problem. We have less resources 
than necessary; therefore, unless we manage them carefully, a deadlock 
can occur. 

The deadlock occurs here because a number of processes - by way of a 
number of resources - are circularly waiting for one another. There are a 
number of methods for avoiding or resolving deadlock [Tan92], but we can
not treat them in detail here. In this example the solution is not difficult: 
when he becomes hungry, a philosopher must first ensure - within a crit
ical region - that both left and right forks are free. If this is the case, he 
must reserve them both in the same critical region. Example 16.17 shows 
the interface, Example 16.18 the implementation of an appropriate "fork 
management" system. The array avail contains for each philosopher the 
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INTERFACE Fork; (*10.03.94. LB*) 

CONST N = 5; (*number of philosophers*) 

PROCEDURE PickUp(id: INTEGER); (*blocked until invoking philosopher can eat*) 

PROCEDURE PutDown(id: INTEGER); (*put down fork*) 

END Fork. 

MODULE Fork; 

IMPORT Thread; 

VAR 

Example 16.17: Fork interface 

(*10.03.94. LB*) 

mutex:= NEW(MUTEX); 
avail:= ARRAY [0 .. N-1] OF [0 .. 2] {2, .. }; 
available:= NEW(Thread.Condition); 

(*used for critical region *) 
(*avail[i] available forks for Phili *) 

(*signals that 2 forks are available*) 

PROCEDURE PickUp(id: INTEGER) = 
BEGIN 

LOCK mutex DO 
WHILE avail[id] # 2 DO Thread.Wait(mutex, available) END; 
DEC(avail[(id - 1) MOD N]); DEC(avail[(id + 1) MOD N]); 

END; (*LOCK*) 
END PickUp; 

PROCEDURE PutDown(id: INTEGER) = 
BEGIN 

LOCK mutex DO 
INC(avail[(id - 1) MOD N]); INC(avail[(id + 1) MOD N]); 
Thread.Broadcast(available); 

END; (*LOCK*) 
END PutDown; 

BEGIN 
END Fork. 

Example 16.18: Fork implementation as monitor 

number of free forks. The ith philosopher may eat if avail[i] = 2; otherwise 
he must wait for the signal available. When a fork is laid down, all (both) 
possibly waiting philosophers are notified with Thread.Broadcast. The ex
pressions (id - 1) MOD Nand (id + 1) MOD N compute the index of the left 
and right neighbors, respectively. 

The solution in Example 16.18 does preclude deadlock, but it is not quite 
correct yet. We could encounter a scenario where two non-neighboring 
philosophers alternatingly eat. Then the philosopher between them never 
gets to eat because he never has two free forks (here the term starvation 
is quite literal). We could solve the problem easily by providing separate 
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MODULE Philosophers EXPORTS Main; 

IMPORT Thread, Fork, 

CONST 
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(*LB*) 

N = Fork.N; 
TYPE 

(*number of philosopher processes*) 

Closure = Thread.Closure OBJECT 
id: CARDINAL; 

OVERRIDES 
apply:= Start 

END; 
VAR 

cis: ARRAY [O .. N-1] OF Closure; 

PROCEDURE Philosopher(id: INTEGER) = 
BEGIN 

LOOP 
Think(id); 
Fork.PickUp(id); 
Eat(id); 
Fork.PutDown(id); 

END 
END Philosopher; 

PROCEDURE Start(self: Closure): REFANY = 
BEGIN 

Philosopher(self.id); RETURN NIL 
END Start; 

BEGIN 
FOR i:= 0 TO N-1 DO cls(i]:= NEW(Closure, id:= i) END; 
FOR i:= 0 TO N-1 DO EVAL Thread.Fork(cls[i]) END; 

(*dining philosophers*) 

(*N threads started*) 

Example 16.19: Implementation of the dining philosophers 

rooms for thinking and for eating. No more than four philosophers may 
enter the dining room, and after eating they must leave the room. Thereby 
no one can be excluded permanently if we have a FIFO queue at the door. 

Example 16.19 demonstrates the behavior ofthe philosophers, whereby 
the procedures Eat and Think and the program as a whole are not elabo
rated. 

16.4.5 Semaphores 

No discussion of parallelism can omit semaphores; they were the first 
methodical approach to the solution of the problems of mutual exclusion 
and conditional synchronization, and their use is widespread even today 
[And91]. Semaphores were introduced by Dijkstra [Dij68b). 
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The idea of the semaphore comes from a railway metaphor: Assume 
a railway station with five tracks, allowing up to five trains to be in the 
station area simultaneously. Thereafter the semaphore must be switched 
to block further trains until one or more trains have left the station again. 
The semaphore value is the current number of trains that can still enter 
the station. 

We define semaphores as abstract data types with an INTEGER value, to 
which we assign an initial value (l) (in our example, the number oftracks). 
Two atomic operations, P(s) and V(s) , are defined on a semaphore s. P 
stands for testing and V for leaving (they actually stand for the correspond
ing Dutch words assigned by Dijkstra, himself from Holland). The number 
of successfully completed P or V operations is designated as np and nv 
(where np could be the number of trains that entered the station and nv 
the number that have left the station). np::::: nV+ I always holds. The total 
number of trains that have ever entered the station can be larger than the 
number that have left by at most the number of tracks. The semaphore 
value is defined as s = 1+ nV - np. Thus a semaphore has the invariant 
s 2: o. 

We can best express the semantics of P and V with the following pseu
docode: 

• P(s): wait until s > 0; s:= s - 1 

• V(s): s:= s + 1 

Semaphores enable expression of both mutual exclusion and conditional 
synchronization. For mutual exclusion we must use a semaphore with the 
initial value 1 (a binary semaphore). 

With the semaphore invariant defined as above, we remain unprotected 
against a subtle error: the occurrence of false leave signals. For example, 
if an error caused three more V operations than necessary, the semaphore 
would allow a total of 8 trains to enter the station, which would be quite 
undesirable. We can protect against such an error with a more stringent 
invariant, i.e., 0 ::::: s ::::: I. For implementation reasons, this is often omitted. 
The stricter semantics usually applies to binary semaphores, e.g., 0 ::::: s ::::: 
1. In this case we can best represent the semaphore value as BOOLEAN; 

the V operation sets the value to true. Thus false V sequences have no 
effect because they do not change the semaphore value (true remains true, 
regardless how often it is set). 

Although Modula-3 does not provide semaphores, they are easy to im
plement. Example 16.20 shows an interface and Example 16.21 an imple
mentation (corresponding to the general, less stringent semantics). 

Example 16.22 shows a re-implementation of the buffer with sema
phores. The interface and usage of the module Buffer remain unchanged! 
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INTERFACE Semaphore; 

TYPE 
T <: Public; 
Public = MUTEX OBJECT 

METHODS 
init(i: CARDINAL := 1): T; 
PO; 
VO; 

END; 
END Semaphore. 

MODULE Semaphore; 

IMPORT Thread; 

REVEAL 

Example 16.20: Semaphore interface 

T = Public BRANDED OBJECT 
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(*10.03.94. LB*) 

(*10.03.94. LB*) 

s: CARDINAL; 
w: Thread.Condition; 

(*initial value of semaphore*) 
(*queue*) 

OVERRIDES 
init:= Init; 
P:= Test; 
V:= Leave; 

END; (*T*) 

PROCEDURE Init(sem: T; i: CARDINAL := 1): T = 
BEGIN 

sem.s:= i; sem.w:= NEW(Thread.Condition); 
RETURN sem; 

END Init; 

PROCEDURE Test(sem: T) = 
BEGIN 

LOCK sem DO 
WHILE sem.s = 0 DO Thread.wait(sem, sem.w) END; DEC(sem.s); 

END; (*LOCK*) 
END Test; 

PROCEDURE Leave(sem: T) = 
BEGIN 

LOCKsem DO 
INC(sem.s); Thread.Signal(sem.w); 

END; (*LOCK*) 
END Leave; 

BEGIN 
END Semaphore. 

Example 16.21: Semaphore implementation 
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MODULE Buffer; 
IMPORT Semaphore; 
REVEAL 

T = Public BRANDED OBJECT 
in, out: CARDINAL; 
empty, full, mutex: Semaphore.T; 
data: REF ARRAY OF Data; 

OVERRIDES 
init:= Init; 
get:= Get; 
put:= Put; 

END; (*Public*) 

16. Parallel programming 

(* 10.03.94 LB*) 

(*for circular buffer management*) 

(*buffer contents*) 

PROCEDURE Init(t: T; size: CARDINAL := 64): T = 
BEGIN 

Un:= 0; t.out:= 0; 
t.data:= NEW(REF ARRAY OF Data, size); 
t.empty:= NEW(Semaphore.T).init(size); 
t.full:= NEW(Semaphore.T).init(O); 
t.mutex:= NEW(Semaphore.T).init(1); 
RETURN t 

END Init; 

PROCEDURE Get(buffer: T): Data = 
VAR d: Data; 
BEGIN 

(*number of empty positions*) 
(*number offilled positions*) 

(*mutex is a binary semaphore*) 

buffer.fuII.PO; 
buffer. mutex. PO; 
d:= buffer.data[buffer.outj; 

(*blocks if the buffer is empty (no filled position)*) 
(*enter critical region *) 

(*read from buffer*) 
buffer.out:= (buffer.out + 1) MOD NUMBER(buffer.dataA

); 

buffer.mutex.VO; 
buffer.empty.VO; 
RETURN d; 

END Get; 

PROCEDURE Put(buffer: T; data: Data) = 
BEGIN 

buffer.empty.PO; 
buffer.mutex.PO; 
buffer.data[buffer.inj:= data; 

(*leave critical region *) 
(*increment number of empty positions*) 

(*blocks if buffer is full (no empty position)*) 
(*enter critical region*) 

(*new element into buffer*) 
buffer.in:= (buffer.in + 1) MOD NUMBER(buffer.dataA

); 

buffer.mutex.VO; 
buffer.fuII.VO; 

END Put; 

BEGIN 
END Buffer. 

(* leave critical region *) 
(*increment number offilled positions*) 

Example 16.22: Implementation of the buffer with semaphores 
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The number of elements is stored in semaphores: full stores the number of 
filled positions (starting at 0) in the buffer; empty, the number of empty 
positions (starting with the total buffer size). The field n from the solution 
in Example 16.14 becomes extraneous. Mutual exclusion is ensured by the 
semaphore mutex. The procedures Get and Put are largely symmetrical in 
this solution as well. First the state of the buffer is tested (Get tests for 
full, Put for empty positions). If the buffer state is correct, the thread that 
invoked Get or Put can enter the critical region (protected by mutex). Note 
that the sequence of the P operations is relevant: if Get were to first contain 
buffer.mutex.PO and then buffer.fuII.PO, then an empty buffer would cause 
deadlock because mutex would block any further thread (including a pro
ducer that could effect the desired state transition). The sequence of the V 
operations is almost irrelevant: reversing them would not cause an error. 

Our solution has the advantage that after buffer.mutex.vO a waiting 
thread can enter immediately. We could improve this solution by ob
serving that Get and Put never access the same position in the buffer 
and that Get uses only buffer.out and Put uses only buffer. in. They al
ways access disjunct parts of the shared variables. Thus we can pro
tect Get and Put with different mutex semaphores and so can permit 
simultaneous reading and writing. 

Perhaps you noticed from the above specifications that the operations 
P and Thread.Wait, as well as V and Thread.Signal are very similar. How
ever, there is a significant difference: a semaphore stores a state, while a 
condition does not. A V increments the semaphore value even if no cor
responding P was executed; by contrast, a Thread.Signal has no effect if no 
thread is waiting for the condition. Thus it is correct for the semaphore ver
sion of Get to start with simply buffer.fuII.PO. Ifa producer has already put 
something in the buffer, then the value of full is certainly greater than 0, 
so that the consumer (the thread invoking Get) can continue immediately. 
In the monitor version, however, Get must first explicitly test the num
ber of filled positions. If Get were to start with an analogous statement 
Thread.Wait(buffer, buffer.nonEmpty), this could cause Get to wait endlessly. 
If all producers were there earlier and sent their signals into empty space, 
then the consumer can wait endlessly. However, if a producer comes later, 
the consumer is awakened. Such a solution would behave quite unpre
dictably: depending on timing, it would behave correctly sometimes and 
erroneously at other times. This must be avoided in any case in parallel 
programming. 

These considerations show that the condition type is more primitive and 
basic than the semaphore. Thus semaphores can easily be implemented 
with monitors, while the reverse is quite cumbersome (although possible). 
Monitors have the additional advantage that they combine the idea of en
capsulation with synchronization. 
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16.5 Message passing 

We explained communication via shared variables with the analogy ofread
ing a shared blackboard or writing in a shared notebook. By contrast, 
the model of message passing resembles communication by telephone and 
mail. Communication occurs via channels. We usually identify our part
ner by identifying the channel (similar to a telephone number or house 
address). Then we communicate by sending and receiving messages. It can 
be shown that the two communication models are equally powerful: either 
can fully simulate the other. 

Message passing is certainly simpler and more basic because it makes 
less assumptions. This model corresponds directly to the frequent case 
where the linked computers have no shared memory (as in computer net
works and with many of today's common parallel computers). The draw
back of this model is the difficulty in writing correct programs with mes
sage passing (just as it is more difficult to write correct programs in an 
assembly language than in a higher programming language). Therefore 
many approaches have hidden the underlying message traffic under an ad
ditionallayer that emulates the presence of shared variables [BaI90j. Nat
urally, such an additional layer should be efficient; thus there have been 
approaches to implement them directly in the hardware. The inverse case, 
using shared variables to simulate message passing, only makes sense in 
special cases. Such a special case exists when we want to study concepts of 
the message passing model on a single computer, as in the following exam
ples. Message communication can run synchronously or asynchronously. 

16.5.1 Client/server model 

Most applications of message passing build on the client/server model 
[And91j. In this model a server provides public services; numerous clients 
can employ these services as needed. A file server, e.g., provides data for 
use by multiple programs on different computers; a printer server manages 
a central printer, etc. We have parallelism because the clients are mutually 
independent and the server must handle them all simultaneously in such 
a way that each client has the impression of exclusive use of the server. 

A basic problem of this model is that the clients must find the server to 
be able to utilize its channels. This usually requires an additional server, 
a name server whose name and channels are known to all participants. 
Servers must be registered with the name server to make their services 
publicly available. Via the name server, the clients can establish connec
tions to other servers (through the name of the specific server) and so re
ceive the necessary communication channels. 
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16.5.2 Synchronous message communication 

In synchronous communication, first a rendezvous is arranged and then 
communication flows - as with telephoning. Synchronization occurs before 
each meSS/lge passing (between polite people, a whole telephone conversa
tion elapses synchronously, one speaking while the other listens). Modula-3 
does not directly support this model; programming languages that directly 
support synchronous communication include Ada and Occam. The theoret
ical foundations of such languages were laid by Hoare, among others, in 
the language CSP [Hoa8S]. 

Remote procedure call 

A special case of synchronous communication is the remote procedure call 
(RPC) [NeI81]. Here a procedure invocation takes place on computer A, 
but the execution of the procedure body takes place on another computer 
B. Ideally, from the viewpoint of the invoking procedure, there should be 
no difference between local and remote procedures. 

Most Modula-3 language environments support this concept with net
work objects2, whose methods can be invoked by processes in a different ad
dress space (possibly on a physically different computer) [BNOW94]. The 
invocation of a remote method is just as type-safe as a local invocation. 

Implementing the RPC concept is not easy. For an ordinary procedure 
invocation we implicitly assume that the invoking procedure crashes when 
the invoked procedure crashes. For a remote procedure invocation, the 
crash of one of the two procedures is quite possible. If the invoked proce
dure (the server) crashes, then the invoking procedure is hung in a proce
dure invocation that fails to return control. If the invoking procedure (the 
client) crashes, we have an orphaned procedure body that cannot return 
control to the invoking procedure. For the solution to these problems, we 
find numerous proposals in the literature [NeI81, And91]. 

16.5.3 Asynchronous message communication 

Asynchronous communication resembles correspondence by mail, where 
the messages are simply sent and the reply can come at some later time 
(if at all). Asynchronous communication is the more general case; syn
chronous communication is easy to simulate with the asynchronous model 
(the inverse is also easily possible with the availability of threads). 

"The MS-DOS Modula-31anguage environments do not contain the network object. 
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INTERFACE Channel; (* 11.03.94. LB*) 

TYPE 
Message = REFANY; 

T <: Public; 
Public = MUTEX OBJECT 

METHODS 
initO: T; 
send(message: Message); 
receiveO: Message; 

END; 

END Channel. 

(*sends message via channel*) 
(*receives message via channel*) 

Example 16.23: Interface of a channel 

16.5.4 Channels 

The communication medium for message passing is the channel. Example 
16.23 shows the interface ofthe abstract data type Channel. Processes can 
send and receive messages via the channels. The type of a message can 
be any reference. This allows sending data structures of any complexity 
through a channel. 

Example 16.24 demonstrates such processes. The module Chan User in 
Example 16.24 resembles the module BufUser in Example 16.13. This is no 
accident: communication via a buffer corresponds approximately to mes
sage passing. The concrete type of the message is a reference to a record 
that contains an identifier and a time stamp from the sender. The receiver 
prints this time stamp (the procedure PrintTime is not elaborated). 

Here we have neglected the aspects of the name server: the channel 
is simply declared as a global variable. However, the participating 
processes do not write directly to this channel, but only use it as a 
transmission medium. 

Example 16.25 demonstrates an implementation of Channel. The im
plementation is based on shared memory. However, it is possible to modifY 
the implementation - maintaining the same interface - so that send and 
receive are mapped onto real communication channels, e.g., of a computer 
network. 

Implementing the transmission of complex data structures is not quite 
trivial. Ifwe transmitted only the reference, as in Example 16.25, this 
would be useless because the receiver would not find the referenced 
data in its own memory. However, Pickles (see Section 14.3.1) facil
itates such an implementation. Just as "pickled" data can be stored 
in a file and read from there again, it can be sent and received on a 
network. 
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MODULE Chan User EXPORTS Main; 

IMPORT Channel, SIO, Thread, Time; 

CONST 

(* 12.03.94. LB*) 

Stop = NIL; (*signal end oftransmission*) 

TYPE 
Message = REF RECORD 

id: CARDINAL; time: Time.T 
END; 

VAR 
channel := NEW(ChanneLT).initO; (*create and initialize channel*) 

PROCEDURE Producer(cl: Thread.Closure): REFANY = 
VAR message := NEW(Message, id:= 1); (*the field id is set only once*) 
BEGIN 

REPEAT 
message.time:= Time.NowO; 
channeLsend(message) ; 
Thread.Pause(O.5DO); 

UNTIL SIO.AvaiiableO; 
channeLsend(Stop); 
RETURN NIL; 

END Producer; 

(*the field time contains the sender's timestamp*) 
(*send message*) 

(*wait briefly*) 
(*terminate when any key is pressed*) 

(*signal end oftransmission*) 

PROCEDURE PrintTime(time: Time.T) = 

PROCEDURE Consumer(cl: Thread.Closure): REFANY = 
VAR message: Message; 
BEGIN 

REPEAT 
message:= channeLreceiveO; (*receive message*) 
IF message # Stop THEN PrintTime(message.time) END; 

UNTIL message = Stop; (*Stop => consumer terminates*) 
RETURN NIL; 

END Consumer; 

BEGIN 
EVAL Thread.Fork(NEW(Thread.Closure, apply:= Producer)); 
EVAL Thread.Join(Thread.Fork(NEW(Thread.Closure, apply:= Consumer))); 
SIO.PutText("Stopped\n"); 

END ChanUser. 

Example 16.24: Communication via a channel 
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MODULE Channel; 

IMPORT Thread; 

REVEAL 
T = Public BRANDED OBJECT 

(* 11.03.94. LB*) 

empty: BOOLEAN; 
message: Message; 
wait: Thread.Condition; 

(*channel state: false if message present*) 
(*channel stores a single message*) 

OVERRIDES 
init := Init; 
send := Send; 
receive := Receive; 

END; 

PROCEDURE Init(chan: T): T = 
BEGIN 

chan.empty:= TRUE; chan.wait:= NEW(Thread.Condition); 
RETURN chan 

END Init; 

PROCEDURE Send(chan: T; message: Message) = 
BEGIN 

LOCK chan DO 
WHILE NOT chan.empty DO ThreadWait(chan, chan.wait) END; 
chan.message:= message; (*copy message to channel*) 
chan.empty:= FALSE; (*message present in channel*) 
Thread.Signal(chan.wait); (*wake possibly waiting receiver*) 

END; (*LOCK*) 
END Send; 

PROCEDURE Receive(chan: T): Message = 
VAR message: Message; 
BEGIN 

LOCK chan DO 
WHILE chan.empty DO ThreadWait(chan, chan.wait) END; 
message:= chan. message; (*read message from channel*) 
chan.empty:= TRUE; (*no message in channel*) 
Thread.Signal(chan.wait); (*wake possibly waiting receiver*) 

END; (*LOCK*) 
RETURN message; 

END Receive; 

BEGIN 
END Channel. 

Example 16.25: Implementation of a message channel 
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The implemented channel can store only one message. If the channel 
is occupied by a previous message, the sender is blocked until a receiver 
fetches the message. If the channel buffer is empty, then the sender can 
continue execution after depositing the message. Thus the channel func
tions asynchronously, although, due to its low buffer capacity, it resembles 
a synchronous channel. Ifthe channel had a larger buffer capacity, then its 
asynchronous nature would be more obvious. 



Conclusion 

In the course of studying, readers of this book might have been confronted 
with the following questions: Why should we learn programming at all? 
And if so, then why in Modula-3? In conclusion, we attempt to answer 
these questions. 

Why programming? 

Today many computer scientists and those who apply computer science 
believe that programming is a matter of secondary importance: the truly 
important phases of software development are analysis, specification and 
design; programming just adds the nuts and bolts. 

In the early days ofthe computer age, many viewed programming as an 
art. Accordingly the programmer's job enjoyed high esteem. As software 
systems grew ever larger and more complex, the intuitive art of program
ming no longer sufficed. The importance of the preparatory phases increas
ingly won recognition. In the battle against the traditional view, many 
expressed opinions were polemic and somewhat exaggerated. Thereby pro
gramming lost its primary role. 

We are convinced that it is high time for reconciliation in this area and 
for the recognition of the importance of all phases of software development 
as equal. Clearly, without a good analysis, a software project is doomed 
to failure from the start. However, it should also be clear that in the end 
software is produced by programmers. If they are poorly trained or unmo
tivated, this renders even the best analysis worthless. 

In a lecture in March 1995 at the University of Klagenfurt, Niklaus 
Wirth analyzed the phenomenon of software chaos. He challenged that the 
ever rising complexity of software is not necessary, and indeed that it is 
bound to the loss of certain engineering qualities, such as an appreciation 
of efficiency and simplicity. We consider it the duty of every computer sci
entist to learn to program cleanly and with style - even if a later career 
might involve little programming. 
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Why Modula-3? 

If the role of programming is seen as secondary, then the choice of a pro
gramming language often drops to tertiary importance. Naturally the pro
gramming language is only a tool. In most other areas of life, the impor
tance of good tools is widely recognized. In the domain of software, the se
lection of a programming language normally involves considering nothing 
more than general availability. This leads to preserving antiquated pro
gramming languages. Today's most-used programming languages (such as 
C, Fortran and Cobol) are all more than twenty years old (Cobol and Fortan 
almost forty). Their greatest weakness is their security mechanisms: they 
afford only very restricted static controls. 

We chose Modula-3 for this book because the language integrates the 
knowledge accumulated over the last twenty years in the area oflanguage 
design in a clean and elegant manner. Although we do not maintain that 
this applies only to Modula-3, the number of such programming languages 
is not excessive. At any rate, it is important that the first programming 
language that a computer scientist learns - so to say, the native language 
- have these attributes. 

Niklaus Wirth addressed the responsibility of universities in this mat
ter. If the universities chase after practice instead of publicizing new de
velopments, then the hope for any improvement in the chaotic software 
situation shall be in vain. 

Ifwe have succeeded in contributing to such an improvement, then our 
work has been worth the effort. We wish the reader lots of fun in program
ming in Modula-3. 



Appendix A 

A small database 

So far we have developed many small programs, but we have not solved 
any more extensive tasks. Now we will attack a larger, cohesive example. 
Although our solution still contains many simplifications, it does represent 
a nontrivial program. We challenge the reader to extend the program ac
cording to needs and taste. 

As regards methodology, space limitations require us to undertake dras
tic simplifications. We must skip the phases of the life cycle introduced 
in Chapter 1.1 and attempt to reach the program stage relatively quickly. 
However, we will discuss requirements and solution ideas in advance and 
describe them clearly. The source code of our solution is listed starting 
at page 443. We recommend that the reader, after reading the following 
considerations, delve into the details ofthe program. 

A.I The task 

Let us implement a management system for audio CDs. You might wonder 
why we restrict ourselves to CDs. Why don't we include our vinyl and sheet 
music? Why not build a general management system that can handle any 
objects, including CDs? Naturally we could do that. However, we would 
get bogged down in detail and would never finish. Instead, we prefer to 
concentrate initially on a well-defined, restricted task, the CD management 
system. 

What do we expect our CD management system to do? We can best 
define its tasks in terms of the queries that we would pose to the system. 
Take some example questions: 

• Which CDs do I have? 

• By which composers do I have at least one CD? 

• Which artists perform on my CDs? 
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• Which Mozart CDs do I have? 

• Which CDs do I have with violin concerts by Bach? 

• Which CDs do I have with Yehudi Menuhin? 

The answers to the first three questions are lists of CDs, composers and 
performers, respectively. The answers to the other questions are subsets 
of the set of CDs. An operation that yields a subset of a set on the basis 
of specified criteria (such as the name of a composer or an instrument) is 
called a selection. Naturally, we can pose much more complex questions: 
"Are there CDs on which Bruno Walter directs Mozart and plays Schubert 
on piano?" Or: "Is the average price of Mozart CDs greater than for CDs 
by Bela Bartok?" Before we set our fantasy free, let us concentrate on the 
simpler questions above. However, the system should not preclude later 
refinement. We want to store our data in objects and find an object model 
that applies independently of the specific query and that can be extended 
later. 

A.2 The object model 

Let us begin to define our object model. First we need a schema that de
scribes the object types and their relationships. We have the following ob
ject categories: 

• CDs 

• Works 

• Composers 

• Performers 

A CD should have an identifier such as "Bach Concerts" or "Mozart Cham
ber Music". We can use this identifier to classify the CDs. Works have 
a title, e.g., "The William Tell Overture". To enable easily distinguishing 
CDs, we require that the concatenation of the CD identifier with all titles of 
works on the CD must be unique. Ifwe have Mozart's "Trio Divertimento, 
K. 563" as the sole work on each of two CDs, then we must change one of 
the two CD identifiers, e.g., to "Mozart Chamber Music 2". 

Both composers and performers are persons, so it might make sense to 
define a common superclass Person. This neglects the reality that an or
chestra or choir consists of more than a single person. We can designate a 
person by last name and first name. Groups of persons, such as an orches
tra, also have a name, but no first name. 
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Figure A.l: Relationships between the object types 

All objects should have methods to read and display them. 
The next important question regards the relationships between the ba

sic types: 

• CDs contain works 

• Works have composers and performing artists. 

We could maintain that the relationship to works can be quite different 
for composers and performers: the composer remains the same, while the 
performer can vary. If we were managing sheet music, there would be no 
performer. Thus we could link performers to CDs rather than to works. De
spite this objection, we retain the above relationships: they are quite sim
ple and usually describe the situation well. However, these considerations 
do show that establishing an object model (or data model) is definitely a 
creative process during which we make decisions that might not be so clear 
at first, yet are of great importance to the realization of the system. 

Now we can graphically represent the desired structure (see Figure 
A.l). We expressed the subtype relationship with the Modula-3 symbol 
«:). The relationship where objects of one class contain objects of another 
is expressed with a connecting line between the corresponding boxes. The 
specification 0+ or 1+ refers to the cardinality of the relationship. The 
specification 1+ at both ends of the connecting line between work and CD 
indicates that a CD contains at least one work and a work must be present 
on at least one CD (otherwise it is irrelevant for our system). The specifica
tion 0+ on the connecting line between work and composer indicates that a 
work can have multiple composers, or possibly none (where the composer 
is unknown or uninteresting). 

I 
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Element.T 

init (): T 
hash (limit: CARDINAL) 
equal (e2: T): BOOLEAN 
input (rd:SIO.Reader): T 
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Figure A2: Detailed object model 

Figure Al depicts all classes we have defined so far as subclasses of 
the base type (Element). This base type collects all attributes and methods 
that all objects of the system share. For all objects, we require an unam
biguous identification (often called oid for object identifier). This lets us 
determine whether two objects are equal or identical (one and the same). 
Two objects ofthe same type are equal if all their attributes have the same 
value. Two objects are identical if they are equal and they share the same 
object identifier. This distinction can be quite useful. Consider two per
sons named John Smith but living at different addresses. Assuming that 
all persons are represented as objects having the attributes name and ad
dress, the objects for the two John Smiths are neither equal nor identical. 
If the two parties move into the same house, their objects become equal but 
not identical. Elements need to have such an unambiguous identification. 

Figure A2 shows the object model in more detail. Each box has three 
parts: the first contains the name of the object types, the second the at
tributes (object fields), and the third the methods. A part can be empty. The 
figure includes two types that we have not defined yet, List.T and Set.T. We 
are familiar with lists and sets, and the definitions of these types follows 
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later. For the time it suffices to know that they can store arbitrary objects; 
i.e., Set.T sets are not restricted to ordinal types. 

We will use lists to store smaller data collections, such as the works on 
a CD or the composers of a work. For larger data collections, lists are much 
too inefficient, so we will use sets instead (see Section A.5.2). 

Our most important set is the set of all CDs. It must contain all relevant 
data. To make checking data input simpler and faster (see input strategy, 
Section A.4.1), we additionally introduce the set of all composers and the 
set of all performers. 

Figure A.2 maps the relationship contains onto lists. In our original 
schema we did not specifY whether we can explicitly store a relationship 
in both directions. For example, we can map the relationship between CDs 
and works onto two lists: a CD contains a list of works and a work has 
a list of CDs on which it appears. However, for reasons of consistency, we 
choose the simpler variant: we store relationships in only one direction and 
so avoid redundant representation. Although this approach can slow down 
certain queries, our model is much clearer and thriftier with memory. In 
particular, it is easier to keep the lists free of contradiction, i.e., to guard 
their consistency. For example, to delete a CD, it suffices to delete it from 
the set of CDs. Since we do not store lists of CDs on which a work appears, 
we need not bother to delete the CD from each list of CDs for each respec
tive work that the CD contains; in general, such redundant representation 
would encumber the preservation of consistency. 

A CD contains a list of works. A work contains a list of composers and a 
list of performers. Composers and performers are persons. Composers also 
have a style. We use no other attributes for performers. 

A.3 Interfaces of the object model 

From our schema we can derive our interfaces directly. Despite comments, 
the semantics of the operations is often imprecise. In case of doubt, we 
will have to examine the corresponding implementation. In practice this is 
often unacceptable. However, this appendix seeks to encourage the reader 
to peruse the source code. All interfaces describe an encapsulated data 
type with possible additional services. Corresponding to our convention, 
the main type in each interface is always called T. 

A.3.1 Interface of the base object 

The interface Elem (page 443) defines the supertype of all objects that we 
manage. On initialization, each object of type Elem.T receives a unique 
identification. The method equal returns true if and only if two elements 
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have the same identifier. The method hash returns a mapping of the iden
tifier onto the range [0 .. limit]. We use the methods equal and hash in the 
implementation of object sets. 

The type Elem.T defines additional methods for inputting and outputting 
an element. 

The Interface Elem affords a number of types that the other modules 
can use. The type Compare defines a relational procedure for two elements. 
Procedures of this type serve as sorting functions for generic lists. 

The type Action defines a closure around an action that can be applied to 
an element. Instead of an Elem.T-object, naturally we can use an object of 
any subtype. We will use this closure to apply an action to all elements of a 
list or of a set. The method action must be overridden with a corresponding 
procedure. The closure provides an environment for the procedure (similar 
to our THREAD closures in Chapter 16). 

The type Selector is a closure around a Boolean function that can be 
applied to an element. We will use it to select elements from a list or a 
set if the method select evaluates to true. This method must be overridden 
with an appropriate function procedure. 

A.3.2 The specific interfaces 

The interfaces Person, Composer, Work and CD (starting on page 443) de
fine the interfaces specific to the CD management system. They were de
rived directly from Figure A.2 and should be self-explanatory. 

The only point that still might need some explanation is the redefini
tion of the method input. The types Person.T and CD.T redefine this method 
with an additional parameter of type Set.T. For technical reasons, this pa
rameter cannot be specified in the superclass (Elem.T): this would cause 
the mutual import ofthe interfaces Elem and Set (pages 443, 444), which is 
not permitted. The set parameter contains a reference to the set in which 
the input procedures can search for an already existing object. New objects 
of a given class are added to this set. However, this parameter need not 
be specified (the default is NIL), allowing us to switch off this convenience 
service. To make this clearer, we define our user interface in the following 
section. 
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A.4 User interface 

Our goal for the user interface is to enable the user to do the following: 

1. Input new CDs. 

2. Remove existing CDs. 

3. Make queries. 

Due to space considerations, we do not require a graphic user interface l . 

AA.l Input strategy 

The input must meet the following requirements: 

• It must be possible to input data either interactively form the key
board or by reading a properly prepared file. We must provide the 
interactive user with a certain measure of convenience and protec
tion against user errors. For input files, we can set up relatively strict 
rules. 

• The basic input unit is the CD. Inputting a CD occurs in two steps: 

1. Input a CD identifier. 

2. Input the works. Ifwe already have a CD with this identifier and 
the same work titles, then the interactive user is asked whether 
this CD is really new (e.g., a different performer is possible). If 
so, then a different CD identifier must be input (otherwise the 
CD is not entered in the database). For input from a file, such a 
CD is considered as already existing and is not added to the set 
of CDs. 

• Inputting a work requires the following steps: 

1. Input the title. 

2. Input the composers. 

3. Input the performers. 

• Inputting composers and performers occurs as follows: 

1. Input the last name. 

1 However, reimplementing the user interface as a graphical one should be possible; see 
the programs accompanying the book (Appendix D). 
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2. If the person is in the database, then the user views a suggestion 
for the first name(s). The user can confirm this or enter a new 
first name (such as Carl Philipp Emanuel if the name Bach does 
not mean Johann Sebastian Bach). 

3. For composers we will also input the style (in the case of interac
tive input the style will be requested only for new composers) . 

• For the interactive user, we want to alleviate the job of inputting by 
accepting shorthand notation for data that are already known to the 
system (assuming that the abbreviation is unambiguous). Input will 
not be case sensitive . 

• The structure of input is to be adapted primarily to the requirements 
of the interactive user. Therefore we define the following extremely 
simple input structure, where the user can answer each question in 
two ways: 

1. With new input (such as the first name of a composer) 

2. With a default input that is always activated in the same way 
(e.g., with the return key): The meaning of the default value 
depends on the context, but can be described generally as "no 
further input for this component". An empty title of a work, e.g., 
means that the CD contains no further works; an empty CD iden
tifier indicates that we want to terminate CD input. 

The interactive input of a CD takes the following form (where Johann Se
bastian Bach is already in the database): 

CD identifier: Bach Oratorium 
Ti tIe of work: Passion Music according to St. Matthew 

Composer (s) => 
Person's name: Bach 

Johann Sebastian Bach 
Do the first names match? "Return" 

Person's name: "Return" 
Performer (s) => 

Person's name: van Egmond 
First names: Piet 

Person's name: Utrecht Symphony Orchestra 
First names: "Return" 

Person's name: "Return" 
Ti tIe of work: "Return" 

CD identifier: 
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The above input could be prepared in a file as follows (where lines begin
ning with a period (".") are considered default input; comments can be 
added to make the file easily readable): 

Bach Oratorium 
Passion Music according to St.Matthew 
Bach 
Johann Sebastian 
baroque 

End Composers 
van Egmond 
Piet 
Utrecht Symphony Orchestra 

End performers 
End works 

Note that a simple and consistent input strategy can save the user a lot of 
frustration. This is not meant to say that we could not define a much more 
comfortable input system than what we have just described. The reader 
should feel free to improve the example in this direction! 

A.4.2 Output 

Output will be in the form of formatted, sorted lists. CD lists are sorted 
alphabetically and lists within a CD chronologically according to the order 
of input (usually the same as on the CD). For each output it should be 
possible to redirect data to a file. The above CD should be output as follows: 

Bach Oratorium 
Passion Music according to St.Matthew 
Johann Sebastian Bach (baroque) 
Piet van Egmond, Utrecht Symphony Orchestra 
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Figure A.3: The module structure 

A.5 Implementation 

The building blocks of our implementation will be modules. The architec
ture is determined by the following considerations: 

• The applications of the system are specified as main modules. We 
define two prefabricated applications: one for input and one for fre
quent queries. For additional queries, additional applications can be 
developed. 

• The types of the object model form a module hierarchy. This results 
on the one hand from the type hierarchy and on the other hand from 
the relationships between the types. 

• The data are stored in persistent sets. 

• Several auxiliary modules are available, e.g., to handle frequent se
lections, for command input, for menu output, etc. 

This produces a module structure (Figure A.3). The arrows indicate 
the direction of import; the importing module is always the one to which 
the arrow points. Elem is imported by all modules of the object model. 
The auxiliary modules, such as Selection, Texts and In, can be imported 
wherever needed. The same applies for ObjList and Set. Set is classified 
primarily under the Database module, but it can be imported everywhere. 
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During implementation we have to take care which services build on 
which others. Thus far we have progressed top-down: we began with basic 
requirements and made them more concrete. Now we will invert the game: 
we must compose the system bottom-up. The services that are visible to 
the user build on internal services. This is similar to building a house: the 
drafts consider primarily the requirements and the environment. Here the 
facade might be of particular importance. However, it is advisable to begin 
construction with the foundation rather than the roof 

A.5.1 Persistent sets 

Our task is a typical database application. Databases are designed for 
storing data and their relationships and for providing the data for various 
queries. We could end our design now and refer the reader to a familiar 
database system that would help to solve the task. But if we stay with 
our idea of solving the task with Modula-3 (which is certainly advisable as 
an example of programming in Modula-3), then we still have the follow
ing alternatives: either we link our Modula-3 environment to an existing 
database system, or we build one. For the first alternative we would have to 
develop a corresponding Modula-3 interface (we can link external programs 
with the help of the EXTERNAL pragma (see Appendix B.8.5)). Since our 
task is relatively simple, we will attempt our own solution. 

Chapter 14 introduced persistent variables. We postulated that we 
want to store our data in sets of objects. If we make these sets persistent, 
then we have the basic functionality of a database system - storing and 
providing data long-range. Naturally, we must not forget that database 
systems offer much more: tools to ensure data consistency, simultaneous 
access for multiple users, and transactions [KM94], to name a few. How
ever, we will settle for persistent sets (and call ours a poor man's database 
system). 

The Database interface 

The interface Database (page 445) exports three persistent sets: for CDs, 
composers and performers. To prevent involuntary destruction of our per
sistent data, the variables themselves are hidden. We export only functions 
that return the corresponding sets (more precisely, references to them). 

To launch the database (by loading the persistent variables), we must 
invoke Persistent.Startup. We place this invocation in a separate module 
(Startup, pages 446 and 461), which we import in module Database (page 
461). The Startup interface is empty; the import simply causes the loading 
ofthe implementation and the execution of its body. 
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A.5.2 Sets 

Interface Set (page 444) shows the definition of the abstract data type 
Set.T. Sets of type Set.T are an unordered collection of any kind of objects. 

In the initialization of a set (in it), we can provide a (hint) on how large 
we estimate the set. This specification helps the implementation to find an 
efficient solution. If we seriously underestimate (i.e., by orders of magni
tude), then it will become relatively slow; if we seriously overestimate it, 
then we squander memory. 

The method insert inserts an element in the set if it is not already con
tained; delete removes an element if it is contained. The operation in tests 
whether an element is contained in a set. The method pick selects an arbi
trary element from the set, or returns NIL if the set is empty. apply iterates 
through the entire set and applies the action procedure specified in pa
rameter a to each element. Observe that by definition sets are unordered, 
and therefore the sequence in which apply progresses is undefined. ex
ists returns an element for which the selection function (s.select) evaluates 
to true or NIL if no such element exists. The select method returns the 
subset on whose elements the selection function evaluates to true; if no 
selection criterion is specified (s = NIL), all elements are selected, thus cre
ating a copy. Note that set.exists(s) is a short form of set.select(s).pickO. 
The method sort creates a sorted list from a set. The usual set operations 
(union, intersection, etc.) have the same semantics as described in Section 
8.3. 

The implementation (module Set, page 453) employs a hash table. For 
a complete description of hashing, refer to, e.g., [Knu81, Sed93, Wir761; we 
limit ourselves to the bare necessities here. A hash function maps a domain 
of any kind (in our case, the object identifiers) onto a predefined range (in 
our case, spanned by the size of the hash table). The simplest hash function 
is value MOD limit. We implement the hash table as an array of lists. 

The hash function maps the oid onto an index of the hash table. If we 
attempt to insert an existing object into a set or if we test whether it is 
contained in the set, the hash function gives us the index of the list in 
which the object could be. On insertion, we must insert the element in 
this list; on searching, we search in the same. If the number of elements 
is about the same as the size of the hash table, (computed from the hint 
parameter of the init method), then we have a good chance that the lists will 
be quite short. With a uniform distribution ofthe object identifiers, all hash 
values are equally probable. If our set grows orders of magnitude beyond 
our estimate, the lists become relatively long; in this case we can copy our 
entire hash table into a new, larger hash table (but this is not implemented 
in module Set). The advantage of using a hash table compared to lists 
is that we have many small lists instead of one large one, and we can very 
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quickly find the right list. The remainder ofthe Set implementation should 
be clear from the source code. 

A.5.3 Object lists 

The interface ObjList (page 445) defines the list operations. In init we can 
specify a comparison function (compare). If compare is specified, the list is 
sorted accordingly; otherwise (compare = NIL) the list retains its chronologi
cal nature: elements are added at the end and removed from the beginning. 
We insert elements with insert and remove them with delete; delete returns 
the removed element, or NIL ifno such element could be removed. 

In addition to the usual list operations, ObjList.T contains operations 
that we have defined on sets. The apply method is applied sequentially to 
all elements. select returns a list with elements for which the selection cri
terion (s.select) evaluates to true. Ifthere is no selection function (s = NIL), 
select creates a copy. The semantics of exists is also similar to that for sets. 
The method equal compares two lists. If the comparison function (com
pare) is specified, it is used in the comparison; otherwise the list elements 
are simply tested for reference equality. Given a positive result, in the first 
case the lists are equal with respect to the explicit comparison criterion; in 
the second case the list elements are identical. The implementation oflists 
is specified in module ObjList (page 457). 

A.5.4 Auxiliary modules 

Auxiliary modules are available to all other modules. The module In (page 
446, 466) exports two Boolean functions that indicate whether input will 
be interactive or from a file and whether to use a text as default input (see 
Section A.4.1). 

The module Texts (page 446, 461) provides procedures for various text 
conversions and searching as well as for inputting a command from a com
mand menu. For example, Texts.Part tests whether the first of two text pa
rameters is shorthand for the second. This operation is not case sensitive, 
and blanks are ignored. All text input uses this procedure. Texts.Search 
tests whether a text is shorthand for a text of a text list. Texts.Commandln 
reads a command from a menu list. 

A.5.5 Selections 

We can carry out any kind of selection on our data by defining a correspond
ing selection closure. The most important and most frequent selections are 
provided in module Selection (page 446,460). The selection closure (Selec
tor) contains all parameters that we need for the provided selections. The 
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field kind describes the kind of selection: e.g., CD identifier, composer name, 
etc. The parameter t contains the target text value (most selections search 
for a text), e.g., the target CD identifier or composer name. If we search 
for a style (e.g., all CDs by Romantic composers), then we need the param
eter style. There are many examples of how to apply selections in various 
programs, e.g., in module Queries (page 466); therefore we present only a 
small example here. For the selection of all CDs whose titles begin with 
"viol", we have the following implementation: 

VAR 
selector := NEW(Selection.Selector, kind:= Selection.Kind.Title, t= "viol"); 
viol: Set.T; 

BEGIN 
viol:= Database.CDs().select(selector); (*selects works for viol ... *) 

The implementation of selections (page 460) consists in essence of a sin
gle recursive function which selects the appropriate measures on the basis 
of the actual parameter (whose supertype is Elem.T) and the chosen kind 
of selection. The above selection of titles beginning with "viol" executes as 
follows: The select method applies the selection function (page 460) to each 
element - here to every CD. The function Select is invoked with parameters 
oftype CD.T; it determines that the chosen kind of selection is Title, so the 
selection must be forwarded to the list of works. Thus Select invokes the 
select method for works. Here the same selector is specified (s), inducing 
a recursive invocation of the Select function, which is now applied to each 
work in the list works. Thereby the type of the actual parameter is work.T. 
The work title can now be checked easily and the corresponding Boolean 
value is returned. However, we are not interested in the individual works; 
with this function we always select whole CDs. Therefore we apply the size 
method to the results of the works list selection. If it returns a positive 
number, then the selection by work titles for the specified CD ends with 
true, otherwise with false. 

For selections by composers and performers, the depth of recursion goes 
one deeper, along the lists composers and performers for each work. The 
surprising compactness and power of the Select function is based on the 
fact that we have defined the selection operation with the same syntax and 
very similar semantics for both sets and lists. 

A.5.6 Implementation modules of the object model 

We have already discussed the interfaces of the object model. The imple
mentations consist primarily ofthe implementations ofthe in and out meth
ods. The out method is usually trivial. The module work (page 449) shows 
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an example of how to use the action closure to output the continuation of a 
list, delimited by commas (e.g., Jascha Heifetz, Gregor Piatigorsky, William 
Primrose). 

Implementing the input methods is significantly more complex. The 
tasks of the in method are to read relevant values for the respective type 
(e.g., for a composer, the name and style), to insert the object in the cor
responding set (e.g., set of composers), and to return a value. The return 
value is determined as follows: 

1. For new objects (as yet unknown to the database), the initial value, 
i.e., the value of the receiver of the in method, is returned. 

2. If the object whose input is being processed is found in the database, 
then it is retrieved and returned as return value. 

3. The value NIL is returned if there is no input. 

The implementations ofthe input methods are based on our input strat
egy (Section A.4.1); they handle the services defined in that strategy. For 
example, if a composer or a performer is found in the corresponding file 
(where the file itself is a parameter of the in method), then the first names 
are suggested. For the input of works, we do not need such a help: al
though we can anticipate that someone might have many Mozart CDs, it is 
unlikely that these include twenty versions of "Eine kleine Nachtmusik". 
This justifies repeated typing. On the input of a CD, we have a great deal 
to test. According to our object model, CDs with an empty list of works 
should not be accepted. The concatenation of the CD identifier with each 
work title must be unique; we must test this condition here as well. 

The input method may generate the Elem.Error exception anywhere. The 
exception is propagated up to the application (module Input, see below). 
Each module complements the text parameter of the exception with its 
own error message. The application can output this text, whereby the user 
knows the exact location of the errors. The user can terminate input of 
an element at any time with the end-of-file key (control-Z or control-D). 
Mter the output of an error message, the application can continue without 
problems. 

A.5.7 Input 

Inputting is implemented in the procedure Input.Add (page 463). The pro
cedure provides a simple loop for inputting CDs and also handles input 
errors. For example, if we press the end-of-file key while inputting a work, 
we obtain the following error message: 
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( Error during input->CDln->Workln J l ______ _ 

The module Input enables deleting elements from the sets of CDs, com
posers or performers. The following must be observed: Since deletion from 
a database is a delicate matter, it can only be done interactively and with 
explicit confirmation. The user enters the short form of elements (e.g., the 
CD identifier); the corresponding CDs are selected to an alphabetically 
sorted list (candidates). The elements of this list are displayed one after 
the other for the user, who must confirm the deletion of each element. 

Deletion does not ensure the consistency of the sets CDs, Composers 
and Performers. This means that if we delete all CDs by Brahms, Brahms 
still remains in set of composers. Likewise, if we delete Yehudi Menuhin 
from the set of performers, we retain his CDs nevertheless (and queries 
will find them). This sounds unacceptable at first, but it is not as bad as it 
seems. The relevant information resides in the set CDs, while the other two 
sets only serve to accelerate input control. We could redefine the seman
tics ofthese two sets as follows: they contain all composers and performers 
for whom we ever entered a CD; we should never delete anything from 
them except erroneous entries. However, the reader should consider how 
we could implement consistent management of the three sets. A simple 
solution would be to make the sets of composers and performers nonpersis
tent and to generate these sets anew at certain times, such as on launching 
the application. In our case, this solution would suffice. 

When the user quits the input module, the system (procedure Save) asks 
whether changes should be saved. This is an additional security measure. 

A.5.8 Queries 

We have developed the entire system for the purpose of making queries. 
The module Queries (page 466) contains a collection of the most important 
queries. This module builds on the services of the module Selection (page 
446,460), which handles the difficult part of the work. The module Queries 
needs to handle only inputting the commands, setting the kind of selection 
and outputting the results. 

The core of the module consist of two lines in the procedure Search: 

cds:= Database.CDsO.select(selector); (*selects from CDs*) 
SortedOutput(cds, CD.Compare, wr); (*CDs in alphabetical order*) 
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A.6 Interfaces 

INTERFACE Elem; 
IMPORTSIO; 
EXCEPTION Error(TEXT); 
TYPE 

T 
Public 

<: Public; 
OBJECT 
METHODS 
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(*23.02.95. LB *) 

(*signals input error*) 

(*all elements must be subtype of Elem. T*) 

initO: T; (*init must be invoked as first operation!*) 
hash(limit: CARDINAL): CARDINAL; (*hash value in [O .. limit]*) 
equal(e2: T): BOOLEAN; (*true if self and e2 are identical*) 
input(rd: SIO.Reader := NIL): T RAISES {Error}; (*for reading*) 
output(wr: SIO.writer := NIL); (*for output*) 

END; (*Public*) 

Compare = PROCEDURE(e1, e2: T): [-1 .. 1]; 
Action = OBJECT 

METHODS 
action(e: T) 

END; (*Action*) 
Selector = OBJECT 

METHODS 

END Elem. 

select(e: T): BOOLEAN 
END; (*Selector*) 

INTERFACE Person; 
IMPORT Elem, Set, SIO; 
TYPE 

T 
Public 

<: Public; 
Elem.T OBJECT 

name, firstname: TEXT:= ""; 
METHODS 

(*-1: e1 < e2; 0: e1 = e2; 1: e1 > e2*) 

(*closure for actions on elements*) 
(*can be applied to an element*) 

(*closure for selection on elements*) 

(*if true: e is selected*) 

(*22.02.95. LB *) 

(*can be empty*) 

input(persons: Set.T := NIL; (*in redefined!*) 
rd: SIO.Reader := NIL): T RAISES {Elem.Error}; 

END; 
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1]; (*comparison criterion: name*) 

END Person. 
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INTERFACE Composer; 
IMPORT Person; 
TYPE 

A. A small database 

(*22.02.95. LB *) 

Style {old, baroque, classical, romantic, modern, none}; 
T <: Public; 
Public Person.T OBJECT 

CONST 

style := Style.none; 
END; 

(*style initialized to "none"*) 

StyleText = ARRAY [Style.old .. Style. modern] OF TEXT 
{"old", "baroque", "classical", "romantic", "modern"}; 

END Composer. 

INTERFACE Work; 
IMPORT Elem, ObjList; 
TYPE 

T 
Public 

<: Public; 
Elem.T OBJECT 

title: TEXT := ""; 
composers: ObjList.T; 
performers: ObjList.T; 

END; (*Public*) 
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1]; 

END Work. 

INTERFACE CD; 
IMPORT Elem, Set, ObjList, SIO; 
TYPE 

T <: Public; 
Public Elem.T OBJECT 

identifier: TEXT := ""; 
works: ObjList.T; 

METHODS 

(*22.02.95. LB *) 

(*title ofwork*) 
(*list of composers*) 

(*list of performers*) 

(*comparison criterion: work title*) 

(*25.03.95. LB*) 

(*CD identifier*) 
(*list of works on CD*) 

input(cds: SetT := NIL; (*input: redefined!*) 
rd: SIO.Reader := NIL): T RAISES {Elem.Error}; 

END; (*Public*) 
PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1]; (*criterion: identifier*) 

END CD. 

INTERFACE Set; 
IMPORT Elem, ObjList; 
CONST 

MinSize = 128; 
TYPE 

T <Public; 
Public = OBJECT METHODS 

init(hint: CARDINAL := MinSize): T; 

(*23.03.95. LB, KHE *) 

(*minimum size of hash table*) 

(*must be 1st operation!*) 
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END Set. 

insert(x: Elem.T); 
delete(x: Elem.T); 
in(x: Elem.T): BOOLEAN; 
sizeO: CARDINAL; 
pickO: Elem.T; 
apply(a: Elem.Action); 

(*inserts x if it does not already exist*) 
(*removes x ifpresent*) 

(*true if x is in set*) 
(*number of elements in set*) 

(*returns arbitrary element of set or NIL*) 
(*applies a to all elements*) 

exists(s: Elem.Selector): Elem.T; 
(*returns an element e such that s.select(e) is true, else NIL*) 

select(s: Elem.Selector): T; 
(*returns the set whose elements s.select evaluates as true*) 

(*if s = NIL, all are selected: generates a copy*) 
equal(set2: T): BOOLEAN; 

(*true if size und all elements of two sets are equal*) 
union(set2 : T) : T; 
intersection(set2 : T) : T; 
difference(set2 : T) : T; 

(*self V set2*) 
(*self !\ set2*) 
(*self - set2*) 

sort(compare: Elem.Compare): ObjList.T; 
(*from a set, creates a list sorted by compare*) 

END; (*Public*) 

INTERFACE ObjList; 
IMPORT Elem; 
TYPE 

(*23.02.95. LB*) 

T 
Public 

<: Public; 
OBJECT 
METHODS 

init(compare: Elem.Compare): T; (*compare: sort criterion*) 
(*if compare = NIL, elements sorted chronologically*) 

insert(elem: Elem.T); (*inserts keeping order*) 
delete(elem: Elem.T): Elem.T; (*removes elem, ifpresent*) 
sizeO: CARDINAL; (*number of elements of list *) 
equal(list2: T; compare: Elem.Compare): BOOLEAN; 

(*compares two lists for equality or identity of elements*) 
(*equality tested if compare # NIL *) 

apply(a: Elem.Action); (*applya to each element*) 
select(s: Elem.Selector): T; 

(*returns a list for whose elements s.select evaluates true*) 
(*if s = NIL, all elements selected; copy created*) 

exists(s: Elem.Selector): Elem.T; 
(*returns an element for which s.select evaluates true, else NIL*) 

END; (*Public*) 
END ObjList. 

INTERFACE Database; 
IMPORT Set; 
PROCEDURE CDsO: Set.T; 
PROCEDURE ComposersO: Set.T; 
PROCEDURE PerformersO: Set.T; 

END Database. 

(*Exports the sets of the database. 08.03.95. LB*) 

(*set of all CDs*) 
(*set of all composers*) 

(*set of all performers*) 
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INTERFACE Startup; (*Exports nothing: its body must execute. 10.04.95. LB*) 
END Startup. 

INTERFACE Selection; (*Auxiliary module for frequent selections. 08.04.95. LB*) 
IMPORT Elem, Composer; 
TYPE 

Kind {Identifier, Title, Name, Comp, Style, Perf}; (*kind of selection *) 
(*selected by CD identifier, work title, person name, *) 

(*composer name, style, performer name*) 
Selector 
SelPub 

<: SelPub; 

END Selection. 

Elem.Selector OBJECT 
kind: Kind; 
t: TEXT; 
style: Composer. Style; 

END; (*SelPub*) 

(*Kind of Selection*) 
(*required by most selections*) 

(*for selection by style*) 

INTERFACE Texts; (*Auxiliary module for text and command handling. 22.03.95. LB*) 

PROCEDURE Convert(text: TEXT): TEXT; 
(*converts lower case to upper case and filters out blanks*) 

PROCEDURE Part(t1 , t2: TEXT): BOOLEAN; 
(*returns true if Convert(tJ) is a substring of Convert(t2)*) 

PROCEDURE Search(text: TEXT; in: ARRAY OF TEXT): INTEGER; 
(*returns position offirst occurrence of text in in, or -1 if not found*) 

PROCEDURE Commandln(READONLY menu: ARRAY OF TEXT): INTEGER; 
(*reads command from menu; returns index of command, or < 0, on default line*) 

END Texts. 

INTERFACE In; 
IMPORT SIO; 

CONST Delimiter = '.'; 

(*Auxiliary module for input handling 28.03.95. LB*) 

PROCEDURE Interactive(rd: SIO.Reader): BOOLEAN; 
(*returns true if standard input used*) 

PROCEDURE Default(t: TEXT): BOOLEAN; 
(*default text is empty, or begins with delimiter*) 

END In. 
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A.7 Implementation modules 
MODULE Elem; 

IMPORT Persistent, Startup; 
REVEAL 

(*23.02.95. LB *) 

(*Startup imported because ofuniqueNumber!*) 

T = Public BRANDED OBJECT 
objectlD: CARDINAL := 0; (*0 for uninitialized objects*) 

VAR 

OVERRIDES 
init:= Init; 
hash:= Hash; 
equal:= Equal; 

END; (*T*) 

uniqueNumber:= NEW(Persistent.lnteger, key:= "Elem.uniqueNumber", val:= O).setupO; 

PROCEDURE Init(t: T): T = 
BEGIN 

INC(uniqueNumber.val); 
t.objectlD:= uniqueNumber.val; 
RETURN t 

END Init; 

PROCEDURE Equal(e1, e2: T): BOOLEAN = 
BEGIN 

<* ASSERT e1.objectlD > 0 AND e2.objectiD > 0 *> 
RETURN e1.objectiD = e2.objectiD 

END Equal; 

(*objectID ist unique and> 0*) 

PROCEDURE Hash(e: T; limit: CARDINAL): CARDINAL = 
BEGIN 

<* ASSERT e.objectlD > 0 *> 
RETURN e.objectiD MOD limit 

END Hash; 

BEGIN 
END Elem. 

MODULE Person; 
IMPORT Elem, Text, Set, SIO, In, Selection; 
FROM SIO IMPORT GetLine, PutText; 

REVEAL 
T = Public BRANDED OBJECT 

OVERRIDES 
input:= Personlnput; 
output:= PersonOutput; 

END; (*T*) 

PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1] = (*compares last names*) 
BEGIN 

RETURN Text.Compare(NARROW(e1, T).name, NARROW(e2, T).name) 
END Compare; 
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PROCEDURE Personlnput(p: T; persons: Set.T := NIL; (*reads person data*) 
rd: SIO.Reader := NIL): T RAISES {Elem.Error} = 

VAR name: TEXT; found: T := NIL; 
selector:= NEW(Selection.Selector, kind:= Selection. Kind. Name); 

BEGIN 
IF In.lnteractive(rd) THEN PutText(" Person's name: ") END; 
TRY 

name:= GetLine(rd); 
IF NOT In.Default(name) THEN 

p.name:= name; 
selector.t:= name; 
IF persons # NIL THEN found:= persons.exists(selector) END; 
IF found # NIL THEN (*person already in set persons*) 

IF In.lnteractive(rd) THEN 
PersonOutput(found); PutText("\n Do the first names match? ") 

END; (*IF In.Interactive(rd)*) 
name:= GetLine(rd); 
selector.t:= selector.t & name; 
found:= persons.exists(selector); 
IF In.Default(name) OR (found # NIL) THEN 

(*read first name(s)*) 
(*search text: complete name*) 

(*search again*) 

p:= found (*default or found again: return old value*) 
ELSE p.firstname:= name; (*new first name*) 
END; (*IF In.Default ... *) 

ELSE (*person not found: request first name*) 
IF In.lnteractive(rd) THEN PutText(" Firstnames: ") END; 
p.firstname:= GetLine(rd); 

END; (*IF found # NIL*) 
IF persons # NIL THEN persons.insert(p) END; (*effective only ifp # found*) 

ELSE p:= NIL (*p = NIL indicates empty input for person*) 
END; (*IF NOT In.Default(name)*) 
RETURN p; 

EXCEPT 
SIO.Error => RAISE Elem.Error("Personlnput") 

END; (*TRY*) 
END Personlnput; 

PROCEDURE PersonOutput(p: T; wr: SIO.writer := NIL) = 
BEGIN 

PutText(p.firstname & " " & p.name, wr); 
END PersonOutput; 

BEGIN 
END Person. 

MODULE Composer; 
IMPORT Elem, Person, SIO, Set, In, Texts; 
REVEAL 

T = Public BRANDED OBJECT 
OVERRIDES 

input:= Composerlnput; 
output:= ComposerOutput; 

END; (*T*) 

(*outputs person data*) 

(*22.03.95. LB*) 
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PROCEDURE Composerlnput(k: T; composers: Set.T := NIL; 
rd: SIO.Reader := NIL): Person.T RAISES {Elem.Error} = 

VAR t: TEXT; found: INTEGER; 
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k2: T := k; (*k2 contains original value of k*) 
BEGIN 

TRY 
k:= Person.T.input(k, composers, rd); 
IF k # NIL THEN 

(*supercall: reads person data*) 

IF In.lnteractive(rd) THEN 
IF k = k2 THEN (*k = k2: Composer is new; enter style*) 

SIO.PutText(" Style: "); 
found:= Texts.Commandln(StyleText); 
IF found >= 0 THEN k.style:= VAL(found, Style) END; 

END; (*IF k = k2 *) 
ELSE (*ifnot interactive, read style from file*) 

t= SIO.GetLine(rd); 
IF NOT In.Default(t) THEN 

found:= Texts.Search(t, StyleText); (*seek input in StyleText*) 
IF found >= 0 THEN k.style:= VAL(found, Style) END; 

END;(*IF NOT In.Default(t)*) 
END; (*IF In.Interactive{rd)*) 

END; (*IF k # NIL. .. *) 
RETURN k; 

EXCEPT 
I SIO.Error => RAISE Elem.Error("Composerlnput"); 
I Elem.Error(text) => RAISE Elem.Error("Composerlnput->" & text); 
END; (*TRY*) 

END Composerlnput; 

PROCEDURE ComposerOutput(k: T; wr: SIOWriter := NIL) = 
BEGIN 

Person.T.output(k, wr); (*Supercall: output person data*) 
IF k.style # Style. none THEN 

SIO.PutText(" (" & StyleText[k.stylej & ") ", wr) 
END; (*IF k.style*) 

END ComposerOutput; 

BEGIN 
END Composer. 

MODULE Work; 
IMPORT Elem, Composer, Person, SIO, Database, ObjList, Text, In; 
REVEAL 

T = Public BRANDED OBJECT 
OVERRIDES 

init:= Init; 
input:= Worklnput; 
output:= WorkOutput; 

END; (*T*) 

(*20.03.95. LB*) 
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PROCEDURE Init(work: T): Elem.T = 
BEGIN 

work:= Elem.T.init(work); 
work.composers:= NEW(ObjList.T).init(NIL); 
work.performers:= NEW(ObjList.T).init(NIL); 
RETURN work 

END Init; 

(*supercall: initializes Elem object*) 
(*list sorted chronologically by input*) 

(*list sorted chronologically*) 

PROCEDURE Compare(e1. e2: Elem.T): [-1 .. 1] = (*compares work titles*) 
BEGIN 

RETURN Text.Compare(NARROW(e1. T).title. NARROW(e2. T).title) 
END Compare; 

PROCEDURE Worklnput(work: T; rd: SIO.Reader := NIL): Elem.T 
RAISES {Elem.Error} = 

VAR t TEXT; c: Composer.T; p: Person.T; 
BEGIN 

TRY 
IF In.lnteractive(rd) THEN SIO.PutText(" Title of work: ") END; 
t= SIO.GetLine(rd); (*reads title*) 
IF NOT In.Default(t) THEN 

work.title:= t; 
IF In.lnteractive(rd) THEN SIO.PutLine(" Composer(s) => ") END; 
REPEAT (*reads list of composers"') 

c:= NEW(Composer.T).initO; 
c:= c.input(Database.ComposersO. rd); (*reads composer data*) 
IF c # NIL THEN work.composers.insert(c) END; 

UNTIL c ~ NIL; 
IF In.lnteractive(rd) THEN SIO.PutLine(" Performer(s) => ") END; 
REPEAT (*reads list ofperformers*) 

p:= NEW(Person.T).initO; 
p:= p.input(Database.PerformersO. rd); (*reads performer data*) 
IF p # NIL THEN work.performers.insert(p) END; 

UNTIL P = NIL; 
ELSE work:= NIL 
END; (*IF NOT In.Default(t)*) 
RETURN work 

EXCEPT 
I SIO.Error => RAISE Elem.Error("Worklnput"); 
I Elem.Error(text) => RAISE Elem.Error("Worklnput->" & text); 
END; (*TRY*) 

END Worklnput; 

TYPE 
Action = Elem.Action OBJECT 

enumeration. 
nonempty: BOOLEAN; 
w: SIO.writer := NIL 

OVERRIDES 
action:= Output; 

END; (*Action*) 

(*closure for the action output*) 
(*controls output of list of names*) 

(*suppresses unnecessary blank lines*) 

(*output action for list elements*) 
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PROCEDURE Output(a: Action; e: Elem.T) = 
BEGIN 

(*outputs person*) 

a.nonempty:= TRUE; (*set only for non-empty lines*) 
IF a.enumeration THEN SIO.PutText(", ", a.w) ELSE a.enumeration:= TRUE END; 
e.output(a.w); 

END Output; 

PROCEDURE WorkOutput(work: T; wr: SIO.writer := NIL) = 
VAR output := NEW(Action, w:= wr); (*example of closure for output*) 
BEGIN 

SIO.PutLine(work.title, wr); 
output.enumeration:= FALSE; output.nonempty:= FALSE; 
work.composers.apply(output); (*applies output to list of composers*) 
IF output.nonempty THEN SIO.NI(wr) END; (*no line feed for empty list*) 
output.enumeration:= FALSE; output.nonempty:= FALSE; 
work.performers.apply(output); (*applies output to list ofperformers*) 
IF output.nonempty THEN SIO.NI(wr) END; (*no line feed for empty list*) 

END WorkOutput; 

BEGIN 
END Work. 

MODULE CD; 
IMPORT SIO, Set, Work, Elem, Text, ObjList, In; 
REVEAL 

T = Public BRANDED OBJECT 
OVERRIDES 

init:= Init; 
input:= CDlnput; 
output:= CDOutput; 

END; (*T*) 

PROCEDURE Init(cd: T): Elem.T = 
BEGIN 

(*20.03.95. LB*) 

cd:= Elem.T.init(cd); 
cd.works:= NEW(ObjListT).init(NIL); 
RETURN cd 

(*supercall: initializes element data*) 
(*chronologicallist ofworks*) 

END Init; 

PROCEDURE Compare(e1, e2: Elem.T): [-1 .. 1] = 
BEGIN 

(*compares CD identifiers*) 

RETURN Text.Compare(NARROW(e1, T).identifier, NARROW(e2, T).identifier) 
END Compare; 

TYPE TitleSel = Elem.Selector OBJECT cd: T OVERRIDES select:= TW END; 
(*closure for selection of similar CDs*) 

PROCEDURE TW(s: TitleSel; e: Elem.T): BOOLEAN = 
(*compares CD identifier and titles in list of works*) 

BEGIN 
RETURN Text.Equal(s.cd.identifier, NARROW(e, T).identifier) AND 

NAR ROW (e, T). works.equal( s.cd. works, Work. Compare) 
ENDTW; 
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PROCEDURE CDlnput(cd: T; cds: SetT := NIL; (*reads and inserts CD*) 
rd: SIO.Reader := NIL): T RAISES {Elem.Error} = 

VAR work: Work.T; identifier: TEXT; 
selector:= NEW(TitieSel); 
existentCD: T; 

(*to find CDs with same list ofworks*) 
(*CD with same identifier and same list ofworks*) 

BEGIN 
TRY 

IF In.lnteractive(rd) THEN SIO.PutText("CD identifier: ") END; 
identifier:= SIO.GetLine(rd); (*reads CD identifier*) 
IF NOT In.Default(identifier) THEN (*default ends input*) 

cd.identifier:= identifier; 
REPEAT (*reads all works for CD*) 

work:= NEW(Work.T).initO; 
work:= work.input(rd); 
IF work # NIL THEN cd.works.insert(work) END; 

UNTIL work = NIL; 

(*reads data for work*) 

IF cd.works.sizeO > 0 THEN 
IF cds # NIL THEN 

(*CDs without works are not recorded!*) 
(*search for CD with same titles*) 

selector.cd:= cd; 
existentCD:= cds.exists(selector); 
IF existentCD = NIL THEN cds.insert(cd); 
ELSIF In.lnteractive(rd) THEN 

(*compare identifier and title*) 
(*does not exist: insert*) 

(*if already exists: ask user*) 
REPEAT 

SIO.PutLine("CD with same identifier and same titles already exists:'); 
existentCD.outputO; 
SIO.PutLine("lf this is a new CD, please provide a new identifier: "); 
identifier:= SIO.GetLine(rd); 
IF NOT In.Default(identifier) THEN 

cd.identifier:= identifier; 
existentCD:= cds.exists(selector); (*now unambiguous?*) 

END; (*IF NOT In. Default*) 
UNTIL (existentCD = NIL) OR In.Default(identifier); 
IF existentCD = NIL THEN cds.insert(cd) END; (*unambiguous: insert*) 

END; (*IF In.Interactive*) 
END (*IF cds # NIL*) 

ELSE cd:= NIL; (*CD without works is not permitted*) 
END; (*IF cd.works.sizeO > 0*) 

ELSE cd:= NIL 
END; (*IF NOT In.Default*) 
RETURN cd 

EXCEPT 
I SIO.Error => RAISE Elem.Error("CDlnput"); 
I Elem.Error(text) => RAISE Elem.Error("CDlnput->" & text); 
END; (*TRY*) 

END CDlnput; 

TYPE Action = Elem.Action OBJECT w: SIO.writer := NIL END; 

PROCEDURE Output(a: Action; e: Elem.T) = 
BEGIN 

e.output(a.w); 
END Output; 

(*terminate CD input*) 

(*output work*) 
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PROCEDURE CDOutput(cd: T; wr: SIO.writer := NIL) = 
VAR output := NEW(Action, action:= Output, w:= wr); 
BEGIN 

SIO.PutLine(cd.identifier, wr); 

453 

(*output CD*) 

cd. works.apply( output); 
SIO.PutLine("----------------------,", wr); 

END CDOutput; 

BEGIN 
END CD. 

MODULE Set; 

IMPORT Elem, ObjList; 

TYPE 
Node = REF RECORD 

REVEAL 

next: Node := NIL; 
e: Elem.T; 

END; (*node*) 

T = Public BRANDED OBJECT 
a: REF ARRAY OF Node; 
num : CARDINAL; 

OVERRIDES 
init:= Init; 
in:= In; 
insert:= Insert; 
delete:= Delete; 
equal:= Equal; 
size:= Size; 
pick:= Pick; 
apply:= Apply; 
exists:= Exists; 
select:= Selection; 
union := Union; 
intersection:= Intersection; 
difference:= Difference; 
sort:= Sort; 

END; (*Set. T*) 

PROCEDURE Init(self: T; hint: CARDINAL := MinSize): T = 
BEGIN 

self.a:= NEW(REF ARRAY OF Node, MAX(hint, MinSize)); 

(*23.02.95. LB, KHE *) 

(*node in list*) 

(*hash table*) 
(*number of elements*) 

(*minimum hash table size is MinSize*) 
FOR i:= FIRST(self.a') TO LAST(self.a') DO self.a[i):= NIL END; 
self.num:= 0; 
RETURN self 

END Init; 
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PROCEDURE In(self: T; x: Elem.T): BOOLEAN = 
VAR cur: Node; 
BEGIN 

A. A small database 

(*true if x is contained in self*) 
(*current node*) 

cur:= self.a[x.hash(NUMBER(self.aA »]; (*hash index picks desired list*) 
WHILE cur # NIL AND NOT x.equal(cur.e) DO cur:= cur. next END; (*search in list*) 
RETURN (cur # NIL) 

END In; 

PROCEDURE Insert (self: T; x : Elem.T) = 

VAR cur: Node; 
BEGIN 

(*inserts x in self ifnot already present*) 
(*current node*) 

WITH head = self.a[x.hash(NUMBER(self.aA »] DO 
cur:= head; 
WHILE cur # NIL AND NOT x.equal(cur.e) DO cur:= cur.next END; 

(*hash index*) 

IF cur = NIL THEN (*ifnot present: insert at front*) 
head:= NEW(Node, next:= head, e:= x); INC(self.num); 

END (*IF cur = NIL*) 
END (*WITH head*) 

END Insert; 

PROCEDURE Delete (self: T; x: Elem.T) = (*deletes x ifpresent*) 
VAR cur, prey: Node; 
BEGIN 

IF x # NIL THEN (*nothing to remove in empty list*) 
WITH head = self.a [x.hash(NUMBER(self.a A

))] DO (*hash index*) 
cur:= head; prey:= NIL; 
WHILE cur # NIL AND NOT x.equal(cur.e) DO 

prey:= cur; cur:= cur. next 
END; (*WHILE cur*) 
IF cur # NIL THEN (*iffound: remove*) 

IF prey = NIL THEN head:= cur. next ELSE prey.next:= cur.next END; 
DEC(self.num); 

END (*IF cur*) 
END (*WITH head*) 

END (*IF x # NIL*) 
END Delete; 

PROCEDURE Size (self: T): CARDINAL = 
BEGIN 

RETURN self.num 
END Size; 

PROCEDURE Apply(self: T; a: Elem.Action) = 
VAR cur: Node; 
BEGIN 

IF self.num > 0 THEN 
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO 

cur:= self.a [b]; 

(*number of elements in set*) 

(*apply a.action to all elements*) 
(*current node*) 

WHILE cur # NIL DO a.action(cur.e); cur:= cur.next END 
END (*FOR b*) 

(*applies action*) 

END (*IF selfnum > 0*) 
END Apply; 
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PROCEDURE Equal (self: T; set2: T): BOOLEAN = 
(*true if number of elements and all elements of self and set2 are equal*) 

VAR cur: Node; (*current node*) 
size: CARDINAL := 0; 

BEGIN 
IF self.num = set2.num THEN (*ifnumber equal, compare elements*) 

FOR b:= FIRST (self.aA
) TO LAST (self.aA

) DO 
cur:= self.a[b]; 
WHILE (cur # NIL) DO 

IF NOT set2.in(cur.e) THEN RETURN FALSE END; 
INC (size); cur:= cur.next 

END (*WHILE cur*) 
END; (*FOR b*) 
RETURN size = self.num 

ELSE 
RETURN FALSE 

END (*IF selfnum*) 
END Equal; 

PROCEDURE Exists(self : T; s: Elem.Selector): Elem.T = 
(*retuTns an e for which s.select(e) is true, or NIL (ifno such element is present)*) 

VAR cur: Node; (*current node*) 
BEGIN 

IF s = NIL THEN RETURN self.pick() (*take any element*) 
ELSE 

IF self.num > 0 THEN 
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO 

cur:= self.a[b]; 
WHILE cur # NIL DO 

IF s.select(cur.e) THEN RETURN cur.e END; 
cur:= cur.next 

END; (*WHILE cur*) 
END; (*FOR b*) 

END; (*IF selfnum > 0*) 
RETURN NIL 

END; (*IF s = NIL*) 
END Exists; 

PROCEDURE Pick(self : T) : Elem.T = 

(*select an element*) 

(*returns an arbitrary element, or NIL for empty set*) 
VAR cur: Node; 

i:= FIRST(self.aA

); 

BEGIN 
IF self.num = 0 THEN RETURN NIL 
ELSE 

REPEAT cur:= self.a[i]; INC(i) UNTIL cur # NIL; 
RETURN cur.e 

END (*IF selfnum = 0*) 
END Pick; 
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PROCEDURE Selection(self : T; s: Elem.Selector): T = 
(*returns the set of elements e for which s.select(e) evaluates true*) 

VAR cur: Node; 
res: T := NEW(T).init(self.num); 

BEGIN 
IF s = NIL THEN Add(res, self) 
ELSE 

IF self.num > 0 THEN 
FOR b:= FIRST(self.aA

) TO LAST(self.aA

) DO 
cur:= self.a[b]; 
WHILE cur # NIL DO 

IF s.select(cur.e) THEN res.insert(cur.e) END; 
cur:= cur. next 

END (*WHILE cur*) 
END (*FOR b*) 

END (*IF selfnum i 0*) 
END; (*IFf=NIL*) 
RETURN res 

END Selection; 

(*current node*) 
(*res: result set*) 

(*if s = NIL, create copy*) 

PROCEDURE Add(self: T; set2 : T) = (*inserts all elements ofset2 in self*) 
VAR obj: Node; 
BEGIN 

IF set2.num > 0 THEN (*empty set need not be added*) 
FOR b:= FIRST(set2.aA

) TO LAST(set2.aA
) DO 

obj:= set2.a[b]; 
WHILE obj # NIL DO 

self.insert(obj.e); obj:= obj.next 
END (*WHILE obj*) 

END (*FOR b*) 
END (*IF set2*) 

END Add; 

PROCEDURE Difference(self : T; set2 : T) : T = (*self - set2*) 
VAR res: T := NEW(T).init(self.num); obj: Node; 
BEGIN 

IF self # set2 THEN 
FOR b:= FIRST(self.aA

) TO LAST(self.aA
) DO 

obj:= self.a[b]; 
WHILE obj # NIL DO 

IF NOT set2.in(obj.e) THEN res.insert(obj.e) END; 
obj:=obj.next 

END (*WHILE obj*) 
END (*FOR b*) 

END; (*IF self*) 
RETURN res 

END Difference; 
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PROCEDURE Intersection(self : T; set2 : T): T = 
VAR res: T := NEW(T).init(MIN(self.num. set2.num)); obj: Node; 
BEGIN 

IF self =' set2 THEN Add(res, self) 
ELSE 

FOR b:= FIRST(self.a") TO LAST(self.a") DO 
obj:= self.a[b]; 
WHILE obj # NIL DO 

IF set2.in(obj.e) THEN res.insert(obj.e) END; 
obj:=obj.next 

END (*WHILE obj*) 
END (*FOR b*) 

END; (*IF self = set2*) 
RETURN res 

END Intersection; 

PROCEDURE Union(self : T; set2 : T) : T = 
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(*self 1\ set2*) 

(*self V set2*) 
VAR res: T := NEW(T).init(self.num + set2.num + (MinSize DIV 2)); 
BEGIN 

Add(res, self); Add(res, set2); RETURN res 
END Union; 

PROCEDURE Sort(self: T; compare: Elem.Compare): ObjList.T = 
(*from set self, creates a list sorted by compare*) 

VAR list: ObjList.T:= NEW(ObjList.T).init(compare); obj: Node; 
BEGIN 

IF self.num > 0 THEN 
FOR b:= FIRST(self.a") TO LAST(self.a") DO 

obj:= self.a[b]; 
WHILE obj # NIL DO 

listinsert(obj.e); obj:=obj.next (*insertion in list ensures sorting*) 
END (*WHILE obj*) 

END (*FOR b*) 
END; (*IF self*) 
RETURN list 

END Sort; 

BEGIN 
END Set. 

MODULE ObjList; 

IMPORT Elem; 

REVEAL 
T = Public BRANDED OBJECT 

head: Node := NIL; 
compare: Elem.Compare := NIL; 
num: CARDINAL := 0; 

(*23.02.95. LB*) 

(*inner structure of T revealed*) 

(*head of list*) 
(*order function*) 

(*number of elements*) 
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OVERRIDES 
init:= Init; 
insert:= Insert; 
delete:= Delete; 
equal:= Equal; 
apply:= Apply; 
select:= Select; 
exists:= Exists; 
size:= Size; 

END; (*T*) 

TYPE 
Node = REF RECORD 

e: Elem.T; 
next: Node := NIL; 

END; (*node*) 

PROCEDURE Init(list: T; compare: Elem.Compare): T = 
BEGIN 

list.head:= NIL; list.compare:= compare; list.num:= 0; 
RETURN list; 

END Init; 

PROCEDURE Insert(list: T; elem: Elem.T) = 
VAR new: Node := NEW(Node, e:= elem); 

PROCEDURE I(VAR x: Node) = 
BEGIN 
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(*inserts keeping order*) 
(*create new node*) 

IF x = NIL THEN x:= new; INC(list.num); (*insert at head*) 
ELSIF list.compare # NIL AND list.compare(elem, x.e) = -1 THEN 

new.next:= x; x:= new; INC(list.num); (*insert at correct position *) 
ELSE I(x.next); (*continue searching recursively*) 
END; (*IF x = NIL*) 

END I; 

BEGIN 1(list.head) 
END Insert; 

PROCEDURE Delete(list: T; elem: Elem.T): Elem.T = 
(*delete and return elem ifpresent, else return NIL*) 

PROCEDURE D(VAR x: Node): Elem.T = 
VAR e: Elem.T; 
BEGIN 

IF x = NIL THEN RETURN NIL (*element not present*) 
ELSIF (Iist.compare = NIL) OR (Iist.compare(elem, x.e) = 0) THEN 

e:= x.e; x:= x.next; DEC(list.num); RETURN e (*found and deleted*) 
ELSE RETURN D(x.next) (*continue searching recursively*) 
END; (*IFx =NIL*) 

END D; 

BEGIN RETURN D(list.head) 
END Delete; 
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PROCEDURE Equal(list: T; Iist2: T; compare: Elem.Compare): BOOLEAN = 
(*compares two lists for equality or identity of elements*) 

VAR x: Node := list.head; y: Node := Iist2.head; 
BEGIN 

WHILE (x # NIL) AND (y # NIL) AND 
(((compare = NIL) AND (x.e = y.e)) OR 
((compare # NIL) AND (compare(x.e, y.e) = 0))) DO 

x:= x.next;y:= y.next; 
END; 

(*equal references*) 
(*equal by criterion *) 

RETURN (x = NIL) AND (y = NIL) 
END Equal; 

(*both lists exhausted: equal*) 

PROCEDURE Exists(list: T; s: Elem.Selector): Elem.T = (*selects one element*) 
VAR x: Node := list.head; 
BEGIN 

IF s = NIL THEN RETURN x.e (*no selection criterion: return first element*) 
ELSE 

WHILE (x # NIL) AND (NOT s.select(x.e)) DO x:= x.next END; 
IF x = NIL THEN RETURN NIL ELSE RETURN x.e END; 

END; (*IF s = NIL*) 
END Exists; 

PROCEDURE Select(list: T; s: Elem.Selector): T = (*select sublist*) 
VAR x: Node := list.head; res: T := NEW(T).init(list.compare); 
BEGIN 

WHILE x # NIL DO 
IF (s = NIL) OR s.select(x.e) THEN 

res.insert(x.e) (*if selection criterion fulfilled or not specified*) 
END; 
x:= x.next; 

END; (*WHILE x*) 
RETURN res 

END Select; 

PROCEDURE Apply(list: T; a: Elem.Action) = 
VAR x: Node := list.head; 
BEGIN 

WHILE x # NIL DO 
a.action(x.e); x:= x.next 

END; 
END Apply; 

PROCEDURE Size(list: T): CARDINAL = 
BEGIN 

RETURN list.num 
END Size; 

BEGIN 
END ObjList. 

(*applies a.action to all elements*) 

(*length of list*) 

(*ObjList *) 
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MODULE Selection; (*08.04.95. LB*) 

IMPORT Elem, Person, Composer, Work, CD, Texts; 

REVEAL 
Selector = SelPub BRANDED OBJECT OVERRIDES select:= Select END; 

PROCEDURE CheckName(t: TEXT; p: Person.T): BOOLEAN = 
(*checks names in both formats: firstname lastname and vice versa*) 

BEGIN 
RETURN Texts.Part(t, p.name & p.firstname) OR Texts.Part(t, p.firstname & p.name) 

END CheckName; 

PROCEDURE Select(s: Selector; e: Elem.T): BOOLEAN = 
BEGIN 

(*various selections*) 

TYPECASE e OF 
t CD.T(cd) => (* kinds of selection: by identifier or by works*) 

IF s.kind = Kind.ldentifier THEN 
RETURN Texts.Part(s.t, cd. identifier); 

ELSE 
RETURN cd.works.select(s).sizeO > 0; 

(*check identifier*) 
(*continue search in list ofworks*) 

(*returns true if at least one element in the list is selected*) 
END; (*IF s.kind = Kind.Identifier*) 

t Work.T(work) => (*kinds of selection: by title, composers, performers*) 
CASE s.kind OF 
t Kind.Title => 

RETURN Texts.Part(s.t, work.title); (*check work title*) 
I Kind.Comp, Kind.Style => (*continue search in list of composers*) 

RETURN work.composers.select(s).sizeO > 0; 
(*returns true if at least one element in the list was selected*) 

I Kind.Perf => (*continue search in list ofperformers*) 
RETURN work.performers.select(s).sizeO > 0; 

(*returns true if at least one element in the list was selected*) 
ELSE RETURN FALSE (*return false for unexpected kind*) 
END; (*CASE s.kind*) 

I Composer.T(composer) => (*kinds of selection: by style or name*) 
IF s.kind = Kind.Style THEN 

RETURN s.style = composer.style 
ELSE 

RETURN CheckName(s.t, composer); 
END; (*IF s.kind = Kind.Style*) 

(*check composer names*) 

I Person.T(person) => 
RETURN CheckName(s.t, person); 

ELSE RETURN FALSE 
END; (*TYPECASE e OF*) 

END Select; 

BEGIN 
END Selection. 

(*kind of selection: by performer name*) 
(*check names*) 

(*return false for unexpected kind*) 
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MODULE Database; (*08.03.95. LB*) 

IMPORT Persistent. Set, Startup; 
VAR 

cds:= NEW(Persistent.Refany, 

(*Startup must be imported!*) 

key:= "Database. cds", val:= NEW(SetT).init(500)).setupO; 
composers:= NEW(Persistent.Refany, 

key:= "Database.composers", val:= NEW(Set.T).init(500)).setupO; 
performers:= NEW(Persistent.Refany, 

key:= "Database. performers", val:= NEW(Set.T).init(1000)).setupO; 

PROCEDURE CDsO: SetT = 
BEGIN 

RETURN cds.val 
END CDs; 

PROCEDURE ComposersO: SetT = 
BEGIN 

RETURN composers.val 
END Composers; 

PROCEDURE PerformersO: Set.T = 
BEGIN 

RETURN performers. val 
END Performers; 

BEGIN 
END Database. 

MODULE Startup; 
IMPORT Persistent; 

BEGIN 

(* 15.03.95. LB*) 

Persistent.Start("DB", "DB"); 
END Startup. 

(*read persistent variables from DB*) 

MODULE Texts; (*Auxiliary module for text and command handling. 29.03.05. LB*) 

FROM Text IMPORT Equal, Length, Sub, FromChar, GetChar; 
IMPORT In, SIO; 

PROCEDURE MenuOutput(READONLY menu: ARRAY OF TEXT) = 
CONST Sep = " / "; 
BEGIN 

FOR i:= FIRST(menu) TO LAST(menu) DO 
IF (i + 1) MOD 6 = 0 THEN SIO.NIO END; (*new line after 6 commands*) 
SIO.PutText(menu[ij & Sep); 

END; 
END MenuOutput; 
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PROCEDURE Commandln(READONLY menu: ARRAY OF TEXT;): INTEGER = 
(*outputs menu and reads unambiguous short command from menu*) 

VAR line: TEXT; index: INTEGER; 
BEGIN 

TRY 
REPEAT (*outputs menu until correct selection or default*) 

MenuOutput(menu); 
line:= SIO.GetLineO; 
IF In.Default(line) THEN index:=-1 
ELSE 

index:= Search(line, menu); 
IF index < 0 THEN SIO.PutLine("unknown or ambiguous") END; 

END; (*IF In.Default(line)*) 
UNTIL In.Default(line) OR (index >= 0); 
RETURN index; 

EXCEPT SIO.Error => SIO.PutLine("error in Command. Input"); RETURN-1 
END; (*TRY*) 

END Commandln; 

PROCEDURE Convert(t: TEXT): TEXT = 
(*converts lower case to upper case and filters out blanks*) 

CONST Code = ORD('A') - ORD('a'); (*difference upper - lower case*) 
Lower = SET OF CHAR{'a' .. 'z'}; Blanks = SET OF CHAR{' " '\t'}; 

VAR t2: TEXT := ""; ch: CHAR; 
BEGIN 

FOR i:= 0 TO Length(t) - 1 DO 
ch:= GetChar(t, i); 
IF ch IN Lower THEN (*convert lower to upper case*) 

t2:= t2 & FromChar(VAL(ORD(ch) + Code, CHAR)); 
ELSIF NOT (ch IN Blanks) THEN (*filter out blanks*) 

t2:= t2 & FromChar(ch); 
END; (*IF (ch IN Lower)*) 

END; (*FOR i*) 
RETURN t2 

END Convert; 

PROCEDURE Search(text: TEXT; in: ARRAY OF TEXT;): INTEGER = 
\ (*iftext is found exactly once in in: returns its index, else returns -1*) 

VAR index:= 0; found := 0; position: INTEGER; 
BEGIN 

text:= Convert(text); (*convert letters in text and in to upper case*) 
FOR i:= FIRST(in) TO LAST(in) DO in[i]:= Convert(in[i]) END; 
WHILE (index < NUMBER(in)) AND (found < 2) DO 

IF Part(text, in[index]) THEN position:= index; INC(found) END; 
INC(index); 

END; (*WHILE (index ... *) 
IF found = 1 THEN RETURN position ELSE RETURN - 1 END; 

END Search; 
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PROCEDURE Part(t1, t2: TEXT): BOOLEAN = 
BEGIN 

(*true ift1 is part oft2*) 

t1:= Convert(t1); t2:= Convert(t2); 
RETURN Equal(t1, Sub(t2, 0, Length(t1))) 

END Part; 
BEGIN 
END Texts. 

MODULE Input EXPORTS Main; (*30.03.95. LB*) 
IMPORT Persistent, Database, Elem, ObjList, Text, Selection, 

CD, Person, SIO, SF, In, Set, Texts; 
FROM SIO IMPORT Reader, Writer, GetLine, PutText, PutLine, Putlnt, NI; 

PROCEDURE AddO = 
VAR cd: CD.T; rd: Reader := SF.OpenReadO; 
BEGIN 

(*add new CDs to CD set*) 

TRY 
TRY 

REPEAT 

(*on input error, procedure returns after error message*) 
(*file should be closed even in case of error*) 

(*reads a series of CDs*) 
cd:= NEW(CD.T).initO; 
cd:= cd.input(Database.CDsO, rd); 

UNTIL cd = NIL; 
FINALLY SF.CloseRead(rd); 
END; (*TRY*) 

EXCEPT 

(*reads CD data and adds to database*) 

I SIO.Error => IF cd # NIL THEN Database.CDsO.delete(cd) END; 
PutLine("\nError in adding CD"); 

I Elem.Error(text) => IF cd # NIL THEN Database.CDsO.delete(cd) END; 
PutLine("\nError in adding CD->" & text); 

END; (*TRY*) 
END Add; 

TYPE 
DeleteAction = Elem.Action OBJECT 

cdset Set.T; 
OVERRIDES 

action:= Delete; 
END; (*DeleteAction*) 

(*closure around delete action *) 

PROCEDURE Delete(a: DeleteAction; e: Elem.T) = (*interactive delete action*) 
VAR t TEXT; 
BEGIN 

TRY (*on input error, procedure returns after error message*) 
e.outputO; (*display CD or composer or performer*) 
PutText(" Do you really want to delete? yes/no "); 
t= GetLineO; 
IF NOT In.Default(t) AND Texts.Part(t, "yes") THEN 

a.cdset.delete(e); PutLine(" -!- deleted -!- "); 
END; (*IF NOT In.Default ... *) 

EXCEPT SIO.Error => SIO.PutLine(,,\nError during deletion") 
END; (*TRY*) 

END Delete; 
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PROCEDURE FileDeleteO = (*deletion from persistent set*) 
TYPE CDset = {CDs, Comp, Perf}; 
CONST Menu = ARRAY CDset OF TEXT{"CDs", "Composers", "Performers"}; 
VAR !: TEXT; index: INTEGER; 

candidates: ObjList.T; (*candidates for deletion*) 
cdse!: Set.T; (*set from which to delete*) 
cmp: Elem.Compare; (*comparison function to sort candidates for deletion*) 
selector:= NEW(Selection.Selector); (*selects candidates for deletion*) 
output := NEW(OutputAction); 
delete := NEW(DeleteAction); 

BEGIN 
TRY (*on input error, procedure returns after error message*) 

REPEAT 
SIO.PutText("Delete from set "); 
index:= Texts.Commandln(Menu); 
IF index >= 0 THEN 

PutText(''What is to be deleted (! for all)? "); 
!:= GetLineO; selector.!:= t; 
IF NOT In.Default(t) THEN 

CASE VAL(index, CDset) OF 
I CDset.CDs => cdse!:= Database.CDsO; 

cmp:= CD. Compare; 
selector.kind:= Selection. Kind. Identifier; 

I CDset.Comp => cdse!:= Database.ComposersO; 
cmp:= Person.Compare; 
selector.kind:= Selection.Kind.Comp; 

I CDset.Perf => cdse!:= Database.PerformersO; 
cmp:= Person. Compare; 
selector.kind:= Selection. Kind. Perf; 

(*valid command*) 

(*search text specijied*) 
(*set delete parameter*) 

END; (*CASE VAL(index, CDset)*) 
IF Text. Equal(t, "!") THEN 

candidates:= cdset.sort(cmp); 
ELSE 

(*entire set suggested for deletion *) 

(*candidates are selected*) 
candidates:= cdset.select(selector).sort(cmp); 

END; (*IF Text.Equal*) 
Putlnt( candidates.sizeO); 
PutLine(" Candidates for deletion:"); 
IF candidates.sizeO > 0 THEN 

candidates.apply(output); 
delete.cdset:= cdset; 
candidates.apply( delete); 

END; (*IF candidates.size() i 0*) 
END; (*IF NOT In. Default*) 

END; (*IF index >= 0*) 
UNTIL (index < 0) OR In.Default(t) ; 

EXCEPT 
I SIO.Error => PutLine(,,\nError during deletion"); 

(*display candidates for deletion *) 
(*set action parameter*) 

(*apply delete action*) 

I Elem.Error(text) => PutLine("\nError during deletion->" & text); 
END; (*TRY*) 

END FileDelete; 



A. 7. Implementation modules 

TYPE 
OutputAction = Elem.Action OBJECT 

w: Writer := NIL; 
OVERRIDES 

action:= Output; 
END; (*OutputAction*) 

PROCEDURE Output(a: OutputAction; e: Elem.T) = 
BEGIN 

e.output(a.w); NI(a.w); 
END Output; 

PROCEDURE SortedOutput (cd set Set.T; cmp: Elem.Compare; 
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(*applied to every CD*) 

wr: Writer := NIL) = (*outputs sorted t;et*) 
VAR list: ObjList.T; output= NEW(OutputAction, w:= wr); 
BEGIN 

TRY (*close file even in case of error*) 
list= cdset.sort(cmp); 
list.apply( output); 
PutText("Total number: ", wr); Putlnt(cdset.sizeO, 1, wr); 
PutLine("\nl----------------------''', wr); 

FINALLY SF.CloseWrite(wr); 
END; (*TRY*) 

END SortedOutput; 

PROCEDURE CommandlnputO = (*reads and interprets user commands*) 
TYPE Commands = {Input, Delete, Output}; 
CONST CommandMenu = ARRAY Commands OF TEXT {"Input", "Delete", "Output"}; 
VAR commandlndex: INTEGER; 
BEGIN 

REPEAT 
commandlndex:= Texts.Commandln(CommandMenu); 
IF command Index >= 0 THEN 

CASE VAL(commandlndex, Commands) OF 
I Commands.lnput => AddO (*enter new CDs*) 
I Commands. Delete => FileDeleteO (*delete from a set*) 
I Commands.Output => (*output set ofCDs*) 

SortedOutput(Database.CDsO, CD. Compare, SF.OpenWrite()) 
END; (*CASE VAL(commandlndex, Command)*) 

END; (*IF commandlndex*) 
UNTIL command Index < 0; 
PutLine("End of data entry -- thanks!"); 

END Command Input; 

PROCEDURE SaveO = 
VAR t TEXT; 

BEGIN 
REPEAT (*user decides whether to save - no default!*) 

SIO.PutLine("Save changes? yes/no"); 
t= SIO.GetLineO; 

UNTIL (Texts.Part(t, "no") OR Texts.Part(t, "yes"» AND NOT In.Default(t); 
IF Texts.Part(t, "yes") THEN Persistent.EndO END; 

END Save; 
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BEGIN 
CommandlnputO; 
SaveO; 

(*read and execute command*) 
(*make any changes permanent*) 

END Input. 

MODULE In; (*Auxiliary module for input handling 28.03.95. LB*) 
IMPORT SIO, Stdio, Text; 

PROCEDURE Interactive(rd: SIO.Reader): BOOLEAN = (*true for standard input*) 
BEGIN RETURN (rd = NIL) OR (rd = Stdio.stdin) 
END Interactive; 

PROCEDURE Default(t: TEXT): BOOLEAN = (*true for default text*) 
BEGIN RETURN (Text.Length(t) = 0) OR (Text.GetChar(t, 0) = Delimiter) 
END Default; 

BEGIN 
END In. 

MODULE Queries EXPORTS Main; 

IMPORT Composer, Database, CD, Person, ObjList, 
SIO, SF, Set, In, Elem, Texts, Selection; 

(*29.03.95. LB*) 

TYPE OutputAction = Elem.Action OBJECT w: SIO.writer := NIL END; 

PROCEDURE Output(a: OutputAction; e: Elem.T) = (*applied to every CD*) 
BEGIN e.output(a.w); SIO.NI(a.w); 
END Output; 

PROCEDURE SortedOutput(cdset: Set.T; cmp: Elem.Compare; wr: SIO.writer) = 
VAR list: ObjList.T; output:= NEW(OutputAction, w:= wr, action:= Output); 
BEGIN 

list:= cdset.sort(cmp); 
list.apply( output); 
SIO.PutText("Total number: ", wr); 
SIO.Putlnt(list.sizeO, 1, wr); SIO.NI(wr); 

END SortedOutput; 

PROCEDURE AII(command: Global; wr: SIO.writer:= NIL) = 
VAR cd set: Set.T; cmp: Elem.Compare; 
BEGIN 

CASE command OF 
I Commands. CDs 

I Commands. Composers 

I Commands. Performers 

=> cdset:= Database.CDsO; 
cmp:= CD. Compare; 

=> cdset:= Database.ComposersO; 
cmp:= Person.Compare; 

=> cdset:= Database.PerformersO; 
cmp:= Person.Compare; 

END; ("CASE command*) 
SortedOutput(cdset, cmp, wr); 

END All; 

(*output whole sets*) 
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PROCEDURE Search(command: Seek; wr: SIO.Writer:= NIL) = (*start selections*) 
CONST Menu = ARRAY Seek OF TEXT {"CD Identifier", "Title", 

"Composer Name", "Style", "Performer Name"}; 
VAR t TEXT; cds: Set.T; index: INTEGER; style := Composer.Style.none; 

selector := NEW(Selection.Selector); 
BEGIN 

SIO.PutText(Menu[command] & ": "); 
IF command = Commands.S_Style THEN 

index:= Texts.Commandln(Composer.StyleText); 
(*selection by style*) 

(*read style*) 
IF index >= 0 THEN style:= VAL(index, Composer. Style) END 

ELSE (*other selections: all selected by text*) 
t= SIO.GetLineO; 
IF In.Default(t) THEN index:=-1 
ELSE selector.t= t; index:= 0 
END; (*IF Input.Default(t)*) 

(*set search text; set index non-negative*) 

END; (*IF command = Commands.S~tyle*) 
IF index >= 0 THEN 

CASE command OF 
I Commands.SJdentifier => 

selector.kind:= Selection.Kind.ldentifier; 
I Commands.S_Work => 

selector.kind:= Selection.Kind.Title; 
I Commands.S_Composer => 

selector.kind:= Selection.Kind.Comp; 

(*valid command specified*) 

(*select by CD identifier*) 

(*select by work title*) 

(*select by composer name*) 

I Commands.S_Style => (*select by composer style*) 
selector.kind:= Selection.Kind.Style; selector.style:= style; 

I Commands.S_Performers => (*select by performer name*) 
selector.kind:= Selection.Kind.Perf; 

END; (*CASE command*) 
cds:= Database.CDsO.select(selector); 
SortedOutput(cds, CD. Compare, wr); 

END; (*IF index i= 0*) 
END Search; 

TYPE 

(*select from CDs*) 
(*output CDs sorted alphabetically*) 

Commands = {CDs, Composers, Performers, NewFile, 

Seek 
Global 

CONST 

SJdentifier, S_Work, S_Composer, S_Style, S_Performers}; 
= [Commands.SJdentifier .. Commands.S_Performers]; 
= [Commands. CDs .. Commands. Performers]; 

Menu = ARRAY Commands OF TEXT 
{"CDs", "Composers", "Performers", "NewFile", 
"SJdentifier", "S_Work", "S_Composer", "S_Style", "S_Performers"}; 
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PROCEDURE CommandlnputO = 
VAR wr: SIO.Writer := NIL; 

command: Commands; index: INTEGER; 
BEGIN 

REPEAT 
index:= Texts.Commandln(Menu); 
IF index >= 0 THEN 

command:= VAL(index. Commands); 
CASE command OF 

A. A small database 

(*read user commands*) 

I Commands. CDs .. Commands. Performers => AII(command. wr); 
I Commands.SJdentifier .. Commands.S_Performers => Search(command. wr); 
I Commands.NewFile => (*change file*) 

SF.CloseWrite(wr); wr:= SF.OpenWriteO; 
END; (*CASE command*) 

END; (*IF index>= 0*) 
UNTIL index < 0; 
SF.CloseWrite(wr); 

END Commandlnput; 

BEGIN 
CommandlnputO 

END Queries. 



AppendixB 

Language Definition 1 

B.I Definitions 

A Modula-3 program specifies a computation that acts on a sequence of digital 
components called locations. A variable is a set of locations that represents a 
mathematical value according to a convention determined by the variable's type. 
If a value can be represented by some variable of type T, then we say that the 
value is a member ofT and T contains the value. 

An identifier is a symbol declared as a name for a variable, type, procedure, etc. 
The region of the program over which a declaration applies is called the scope of 
the declaration. Scopes can be nested. The meaning of an identifier is determined 
by the smallest enclosing scope in which the identifier is declared. 

An expression specifies a computation that produces a value or variable. Ex
pressions that produce variables are called designators. A designator can denote 
either a variable or the value of that variable, depending on the context. Some 
designators are readonly, which means that they cannot be used in contexts that 
might change the value ofthe variable. A designator that is not readonly is called 
writable. Expressions whose values can be determined statically are called con
stant expressions; they are never designators. 

A static error is an error that the implementation must detect before program 
execution. Violations of the language definition are static errors unless they are 
explicitly classified as runtime errors. 

A checked runtime error is an error that the implementation must detect and 
report at runtime. The method for reporting such errors is implementation
dependent. (If the implementation maps them into exceptions, then a program 
could handle these exceptions and continue.) 

An unchecked runtime error is an error that is not guaranteed to be de
tected, and can cause the subsequent behavior of the computation to be arbitrary. 
Unchecked runtime errors can occur only in unsafe modules. 

lThis appendix is copyright by Digital Equipment Corporation and appears here with 
their permission. 
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B.2 Types 

Modula-3 uses structural equivalence, instead of the name equivalence of 
Modula-2. Two types are the same if their definitions become the same 
when expanded; that is, when all constant expressions are replaced by their 
values and all type names are replaced by their definitions. In the case of 
recursive types, the expansion is the infinite limit of the partial expansions. 
A type expression is generally allowed wherever a type is required. 

A type is empty if it contains no values. For example, [1 .. 0] is an empty 
type. Empty types can be used to build non-empty types (for example, SET 
OF [1 .. 0], which is not empty because it contains the empty set). It is a 
static error to declare a variable of an empty type. 

Every expression has a statically-determined type, which contains ev
ery value that the expression can produce. The type of a designator is the 
type of the variable it produces. 

Assignability and type compatibility are defined in terms of a single 
syntactically specified subtype relation with the property that ifT is a sub
type of U, then every member of T is a member of U. The subtype relation 
is reflexive and transitive. 

Every expression has a unique type, but a value can be a member of 
many types. For example, the value 6 is a member of both [0 .. 9] and INTE
GER. It would be ambiguous to talk about "the type of a value". Thus the 
phrase "type of x" means "type of the expression x", while "x is a member of 
T" means "the value ofx is a member ofT". 

However, there is one sense in which a value can be said to have a type: 
every object or traced reference value includes a code for a type, called 
the allocated type of the reference value. The allocated type is tested by 
TYPE CASE (Section (-+B.3.18, p. 492). 

B.2.1 Ordinal types 

There are three kinds of ordinal types: enumerations, subranges, and IN

TEGER. An enumeration type is declared like this: 

where the id's are distinct identifiers. The type T is an ordered set of n 
values; the expression T.idi denotes the i'th value of the type in increasing 
order. The empty enumeration { } is allowed. 

Integers and enumeration elements are collectively called ordinal val
ues. The base type of an ordinal value v is INTEGER if v is an integer, 
otherwise it is the unique enumeration type that contains v. 
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A subrange type is declared like this: 

TYPE T = [Lo .. Hi] 

where Lo and Hi are two ordinal values with the same base type, called the 
base type of the subrange. The values of T are all the values from Lo to Hi 
inclusive. Lo and Hi must be constant expressions (--+B. 6. 15, p. 516). IfLo 
exceeds Hi, the subrange is empty. 

The operators ORD and VAL convert between enumerations and inte
gers. The operators FIRST, LAST, and NUMBER applied to an ordinal type 
return the first element, last element, and number of elements, respec
tively (Section B.6.13, page 514). 

Here are the predeclared ordinal types: 

INTEGER 
CARDINAL 
BOOLEAN 
CHAR 

All integers represented by the implementation 
The subrange [O .. LAST(INTEGER)] 
The enumeration {FALSE, TRUE} 
An enumeration containing at least 256 elements 

The first 256 elements of type CHAR represent characters in the Iso-Latin-
1 code, which is an extension of ASCII. The language does not specifY the 
names ofthe elements ofthe CHAR enumeration. The syntax for character 
literals is in Section B.6.5, page 508. FALSE and TRUE are predeclared 
synonyms for BOOLEAN.FALSE and BOOLEAN.TRUE. 

Each distinct enumeration type introduces a new collection of values, 
but a subrange type reuses the values from the underlying type. For exam
ple: 

TYPE 
T1 = {A, B, C}; 
T2 = {A, B, C}; 
U1 = [T1.A .. T1.C]; 
U2 = [T1.A .. T2.C]; (* sic *) 
V = {A, B} 

T1 and T2 are the same type, since they have the same expanded defini
tion. In particular, T1.C = T2.C and therefore U1 and U2 are also the same 
type. But the types T1 and U1 are distinct, although they contain the same 
values, because the expanded definition ofT1 is an enumeration while the 
expanded definition of U1 is a subrange. The type V is a third type whose 
values V.A and V.B are not related to the values T1.A and T1.B. 

B.2.2 Floating-point types 

There are three floating point types, which in order of increasing range and 
precision are REAL, LONGREAL, and EXTENDED. The properties of these 
types are specified by required interfaces in Section C.1.5, page 530. 
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B.2.3 Arrays 

An array is an indexed collection of component variables, called the ele
ments of the array. The indexes are the values of an ordinal type, called the 
index type of the array. The elements all have the same size and the same 
type, called the element type of the array. 

There are two kinds of array types, fixed and open. The length of a fixed 
array is determined at compile time. The length of an open array type is 
determined at runtime, when it is allocated or bound. The length cannot 
be changed thereafter. 

The shape of a multi-dimensional array is the sequence of its lengths in 
each dimension. More precisely, the shape of an array is its length followed 
by the shape of any of its elements; the shape of a non-array is the empty 
sequence. 

Arrays are assignable if they have the same element type and shape. If 
either the source or target of the assignment is an open array, a runtime 
shape check is required. 

A fixed array type declaration has the form: 

TYPE T = ARRAY Index OF Element 

where Index is an ordinal type and Element is any type other than an open 
array type. The values of type T are arrays whose element type is Element 
and whose length is the number of elements of the type Index. 

If a has type T, then ali] designates the element of a whose position 
corresponds to the position of i in Index. For example, consider the declara
tions: 

VAR a := ARRAY [1 .. 3] OF REAL {1.0, 2.0, 3.0}; 
VAR b: ARRAY [-1 .. 1] OF REAL := a; 

Now a = b is TRUE; yet a[1] = 1.0 while b[1] = 3.0. The interpretation of in
dexes is determined by an array's type, not its value; the assignment b := a 
changes b's value, not its type. (This example uses variable initialization, 
(--+B.4.3, p. 495), and array constructors, (--+B.6.8, p. 508). 

An expression ofthe form: 

ARRAY Index1' ... ,Indexn OF Element 

is shorthand for: 

ARRAY Index1 OF··· OF ARRAY Indexn OF Element 

This shorthand is eliminated from the expanded type definition used to 
define structural equivalence. An expression of the form a[i1' ... , in] is 
shorthand for a[i1l· ·[in ]. 
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An open array type declaration has the form: 

TYPE T = ARRAY OF Element 

where Element is any type. The values ofT are arrays whose element type 
is Element and whose length is arbitrary. The index type of an open array 
is the integer subrange [O .. n-1], where n is the length ofthe array. 

An open array type can be used only as the type of a formal parameter, 
the referent of a reference type, the element type of another open array 
type, or as the type in an array constructor. 

B.2.4 Records 

A record is a sequence of named variables, called the fields of the record. 
Different fields can have different types. The name and type of each field 
is statically determined by the record's type. The expression r.f designates 
the field named f in the record r. 

A record type declaration has the form: 

TYPE T = RECORD FieldList END 

where FieldList is a list offield declarations, each of which has the form: 

fieldName: Type := default 

where fieldName is an identifier, Type is any non-empty type other than 
an open array type, and default is a constant expression. The field names 
must be distinct. A record is a member of T if it has fields with the given 
names and types, in the given order, and no other fields. Empty records are 
allowed. 

The constant default is a default value used when a record is constructed 
(--+B.6.B, p. 509) or allocated (--+B.6.9, p. 509). Either ":= default" or ": Type" 
can be omitted, but not both. If Type is omitted, it is taken to be the type of 
default. Ifboth are present, the value of default must be a member of Type. 

When a series offields shares the same type and default, any fieldName 
can be a list of identifiers separated by commas. Such a list is shorthand for 
a list in which the type and default are repeated for each identifier. That 
IS: 

fl' ... ,fm: Type := default 

is shorthand for: 

fz: Type := default; ... ; fm: Type := default 

This shorthand is eliminated from the expanded definition of the type. The 
default values are included. 
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B.2.5 Packed types 

A declaration of a packed type has the form: 

TYPE T = BITS n FOR Base 

where Base is a type and n is an integer-valued constant expression. The 
values of type T are the same as the values of type Base, but variables of 
type T that occur in records, objects, or arrays will occupy exactly n bits 
and be packed adjacent to the preceding field or element. For example, a 
variable of type 

ARRAY [0 .. 255] OF BITS 1 FOR BOOLEAN 

is an array of 256 booleans, each of which occupies one bit of storage. 
The values allowed for n are implementation-dependent. An illegal 

value for n is a static error. The legality of a packed type can depend on 
its context; for example, an implementation could prohibit packed integers 
from spanning word boundaries. 

B.2.6 Sets 

A set is a collection of values taken from some ordinal type (----tB.2.1, p. 470). 
A set type declaration has the form: 

TYPE T = SET OF Base 

where Base is an ordinal type. The values ofT are all sets whose elements 
have type Base. For example, a variable whose type is SET OF[0 .. 1] can 
assume the following values: 

{} {O} {1} {0,1} 

Implementations are expected to use the same representation for a SET 
OF T as for an ARRAY T OF BITS 1 FOR BOOLEAN. Hence, programmers 
should expect SET OF [0 .. 1023] to be practical, but not SET OF INTEGER. 

B.2.7 References 

A reference value is either NIL or the address of a variable, called the ref
erent. A reference type is either traced or untraced. When all traced refer
ences to a piece of allocated storage are gone, the implementation reclaims 
the storage. Two reference types are of the same reference class if they are 
both traced or both untraced. A general type is traced if it is a traced ref
erence type, a record type any of whose field types is traced, an array type 
whose element type is traced, or a packed type whose underlying unpacked 
type is traced. 
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A declaration for a traced reference type has the form: 

TYPE T = REF Type 

where Type is any type. The values of T are traced references to variables 
oftype Type, which is called the referent type ofT. 
A declaration for an untraced reference type has the form: 

TYPE T = UNTRACED REF Type 

where Type is any untraced2 type. The values of T are the untraced refer
ences to variables of type Type. 

In both the traced and untraced cases, the keyword REF can option
ally be preceded by "BRANDED b" where b is a text constant called the 
brand. Brands distinguish types that would otherwise be the same; they 
have no other semantic effect. All brands in a program must be distinct. 
If BRANDED is present and b is absent, the implementation automatically 
supplies a unique value for b. Explicit brands are useful for persistent data 
storage. 

The following reference types are predeclared: 

REFANY 
ADDRESS 
NULL 

Contains all traced references 
Contains all untraced references 
Contains only NIL 

The TYPECASE statement (----'tB.3.18, p. 492) can be used to test the refer
ent type of a REFANY or object, but there is no such test for an ADDRESS. 

B.2.8 Procedures 

A procedure is either NIL or a triple consisting of: 

• the body, which is a statement (----'tB.3, p. 482), 

• the signature, which specifies the procedure's formal arguments, re
sult type, and raises set (the set of exceptions that the procedure can 
raise), 

• the environment, which is the scope with respect to which variable 
names in the body will be interpreted (see also B.4, p. 494). 

A procedure that returns a result is called a function procedure; a proce
dure that does not return a result is called a proper procedure. A top-level 
procedure is a procedure declared in the outermost scope of a module. Any 
other procedure is a local procedure. 

2This restriction is lifted in unsafe modules (---+B.5.6, p. 503). 
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A local procedure can be passed as a parameter but not assigned, since 
in a stack implementation a local procedure becomes invalid when the 
frame for the procedure containing it is popped. 

A procedure constant is an identifier declared as a procedure. (As op
posed to a procedure variable, which is a variable declared with a procedure 
type.) 

A procedure type declaration has the form: 

TYPE T = PROCEDURE sig 

where sig is a signature specification, which has the form: 

(formal1; ... ; formaln): R RAISES S 

where 

• Each formali is a formal parameter declaration, as described below. 

• R is the result type, which can be any type but an open array type. 
The ": R" can be omitted, making the signature that of a proper pro
cedure. 

• S is the raises set, which is either an explicit set of exceptions with 
the syntax {E 1, ... , En}, or the symbol ANY representing the set of all 
exceptions. If" RAISES S" is omitted, "RAISES {}" is assumed. 

A formal parameter declaration has the form 

Mode Name: Type := Default 

where 

• Mode is a parameter mode, which can be VALUE, VAR, or READONLY. 
If Mode is omitted, it defaults to VALUE. 

• Name is an identifier that names the parameter. The parameter na
mes must be distinct. 

• Type is the type of the parameter. 

• Default is a constant expression, the default value for the parameter. 
If Mode is VAR, ":= Default" must be omitted, otherwise either ":= De
fault" or" : Type" can be omitted, but not both. If Type is omitted, it is 
taken to be the type of Default. Ifboth are present, the value of Default 
must be a member of Type. 

When a series of parameters share the same mode, type, and default, namei 
can be a list of identifiers separated by commas. Such a list is shorthand for 
a list in which the mode, type, and default are repeated for each identifier. 
That is: 
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Mode v 1, ... , un: Type := Default 

is shorthand for: 

Mode v1: Type := Default; ... ; Mode Un: Type := Default 

477 

This shorthand is eliminated from the expanded definition ofthe type. The 
default values are included. 

A procedure value P is a member ofthe type T ifit is NIL or its signature 
is covered by the signature ofT, where signature1 covers signature2 if: 

• They have the same number of parameters, and corresponding pa
rameters have the same type and mode. 

• They have the same result type, or neither has a result type. 

• The raises set of signature 1 contains the raises set of signature2. 

The parameter names and defaults affect the type of a procedure, but not 
its value. For example, consider the declarations: 

PROCEDURE P(txt: TEXT := "P") = 
BEGIN 

Wr.PutText(Stdio.stdout, txt) 
END P; 

VAR q: PROCEDURE(txt: TEXT := "Q") := P; 

Now P = q is TRUE, yet PO prints "P" and qO prints "Q". The interpretation 
of defaulted parameters is determined by a procedure's type, not its value; 
the assignment q := P changes q's value, not its type. 

In a procedure type, RAISES binds to the closest preceding PROCE
DURE. That is, the parentheses are required in: 

TYPE T = PROCEDURE 0: (PROCEDURE ()) RAISES {} 

B.2.9 Objects 

An object is either NIL or a reference to a data record paired with a method 
suite, which is a record of procedures that will accept the object as a first 
argument. 

An object type determines the types of a prefix of the fields of the data 
record, as if "OBJECT" were "REF RECORD" (-+B.2.7, p. 474). But in the 
case of an object type, the data record can contain additional fields intro
duced by subtypes of the object type. Similarly, the object type determines 
a prefix of the method suite, but the suite can contain additional methods 
introduced by subtypes. 
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If 0 is an object, then o.t designates the data field named t in o's data 
record. Ifm is one ofo's methods, an invocation of the form o.m( ... ) denotes 
an execution of o's m method (~B.3.2, p. 484). An object's methods can be 
invoked, but not read or written. 

1fT is an object type and m is the name of one ofT's methods, then T.m 
denotes T's m method. This notation makes it convenient for a subtype 
method to invoke the corresponding method of one of its supertypes. 

A field or method in a subtype masks any field or method with the same 
name in the supertype. To access such a masked field, use NARROW to 
view the subtype variable as a member of the supertype, as illustrated on 
page 480. 

Object assignment is reference assignment. Objects cannot be derefer
enced, since the static type of an object variable does not determine the 
type of its data record. To copy the data record of one object into another, 
the fields must be assigned individually. 
There are two predeclared object types: 

ROOT The traced object type with no fields or methods 
UNTRACED ROOT The untraced object type with no fields or methods 

The declaration of an object type has the form: 

TYPE T= 
ST OBJECT Fields METHODS Methods OVERRIDES Overrides END 

where ST is an optional supertype, Fields is a list of field declarations, ex
actly as in a record type (~B.2.4, p. 473), Methods is a list of method dec
larations and Overrides is a list of method overrides. The fields of T consist 
of the fields of ST followed by the fields declared in Fields. The methods of 
T consist of the methods of ST modified by Overrides and followed by the 
methods declared in Methods. T has the same reference class as ST. 

The names introduced in Fields and Methods must be distinct from one 
another and from the names overridden in Overrides. If ST is omitted, it 
defaults to ROOT. IfST is untraced, then the fields must not include traced 
types. 3 If ST is declared as an opaque type (~B.4. 6, p. 496), the declaration 
ofT is legal only in scopes where ST's concrete type is known to be an object 
type. 

The keyword OBJECT can optionally be preceded by "BRANDED" or by 
"BRANDED b", where b is a text literal. The meaning is the same as in 
non-object reference types (~B.2. 7, p. 474). 

A method declaration has the form: 

m sig:= proc 

3This restriction is lifted in unsafe modules (-tB.5.6, p. 503). 
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where m is an identifier, sig is a procedure signature, and proc is a top
level procedure constant. It specifies that T's m method has signature sig 
and value proc. If":= proc" is omitted, ":= NIL" is assumed. If proc is non
nil, its first parameter must have mode VALUE and type some supertype 
of T, and dropping its first parameter must result in a signature that is 
covered (---+B.2.8, p. 477) by sig. 

A method override has the form: 

m:= proc 

where m is the name of a method of the supertype ST and proc is a top-level 
procedure constant. It specifies that the m method for T is proc, rather than 
ST.m. If proc is non-nil, its first parameter must have mode VALUE and 
type some supertype of T, and dropping its first parameter must result in 
a signature that is covered by the signature of ST's m method. 

Examples. Consider the following declarations: 

TYPE 
A = OBJECT a: INTEGER; METHODS pO END; 
AB = A OBJECT b: INTEGER END; 

PROCEDURE Pa(self: A) = ... ; 
PROCEDURE Pab(self: AB) = ... ; 

The procedures Pa and Pab are candidate values for the p methods of ob
jects of types A and AB. For example: 

TYPE T1 = AB OBJECT OVERRIDES P := Pab END 

declares a type with an AB data record and a p method that expects an AB. 
T1 is a valid subtype of AB. Similarly, 

TYPE T2 = A OBJECT OVERRIDES p := Pa END 

declares a type with an A data record and a method that expects an A. T2 
is a valid subtype of A. A more interesting example is: 

TYPE T3 = AB OBJECT OVERRIDES p := Pa END 

which declares a type with an AB data record and a p method that expects 
an A. Since every AB is an A, the method is not too choosy for the objects in 
which it will be placed. T3 is a valid subtype of AB. In contrast, 

TYPE T4 = A OBJECT OVERRIDES p:= Pab END 
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attempts to declare a type with an A data record and a method that expects 
an AB; since not every A is an AB, the method is too choosy for the objects 
in which it would be placed. The declaration ofT4 is a static error. 

The following example illustrates the difference between declaring a 
new method and overriding an existing method. Mter the declarations 

TYPE 
A = OBJECT METHODS mO := PEND; 
B = A OBJECT OVERRIDES m := Q END; 
C = A OBJECT METHODS mO := Q END; 

VAR 
a := NEW(A); b := NEW(B); c := NEW(C); 

we have that 

a.mO activates P(a) 
b.mO activates Q(b) 
c.mO activates Q(c) 

So far there is no difference between overriding and extending. But c's 
method suite has two methods, while b's has only one, as can be revealed if 
band c are viewed as members of type A: 

NARROW(b, A).mO activates Q(b) 
NARROW(c, A).mO activates P(c) 

Here NARROW is used to view a variable of a subtype as a value of its 
supertype. It is more often used for the opposite purpose, when it requires 
a runtime check (--tB.6.13, p. 514). 

B.2.10 Subtyping rules 

We write T <: U to indicate that T is a subtype of U and U is a supertype 
of T. If T <: U, then every value of type T is also a value of type U. The 
converse does not hold: for example, a record or array type with packed 
fields contains the same values as the corresponding type with unpacked 
fields, but there is no subtype relation between them. This section presents 
the rules that define the subtyping relation. For ordinal types T and U, 
we have T <: U if they have the same basetype and every member of T 
is a member of U. That is, subtyping on ordinal types reflects the subset 
relation on the value sets. 
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For array types, 

(ARRAY OF)m ARRAY J 1 OF ... ARRAY I n OF 
ARRAY K1 OF ... ARRAY Kp OF T 

<: (ARRAY OF)m (ARRAY OF)n 
ARRAY 11 OF ... ARRAY Ip OF T 

ifNUMBER(li) = NUMBER(Ki) for i = 1,," ,po 
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That is, an array type A is a subtype of an array type AI if they have the 
same ultimate element type, the same number of dimensions, and, for each 
dimension, either both are open (as in the first m dimensions above), or A 
is fixed and AI is open (as in the next n dimensions above), or they are both 
fixed and have the same size (as in the last p dimensions above). 

NULL <: REF T <: REFANY 
NULL <: UNTRACED REF T <: ADDRESS 

That is, REFANY and ADDRESS contain all traced and untraced ref
erences, respectively, and NIL is a member of every reference type. These 
rules also apply to branded types. 

NULL <: PROCEDURE(A): R RAISES S for any A, R, and S. 

That is, NIL is a member of every procedure type. 

PROCEDURE(A): Q RAISES E <: PROCEDURE(B): R RAISES F 
if signature (B): R RAISES F covers signature (A): Q RAISES E. 

That is, for procedure types, T <: TI ifthey are the same except for parame
ter names, defaults, and the raises set, and the raises set for T is contained 
in the raises set for T/. 

ROOT <: REFANY 
UNTRACED ROOT <: ADDRESS 
NULL <: T OBJECT ... END <: T 

That is, every object is a reference, NIL is a member of every object type, 
and every subtype is included in its supertype. The third rule also applies 
to branded types. 

BITS n FOR T <: T and T <: BITS n FOR T 

That is, BITS FOR T has the same values as T. 

T <: T for all T 
T <: U and U <: V implies T <: V for all T, U, V. 
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That is, <: is reflexive and transitive. 
Note that T <: U and U <: T does not imply that T and U are the same, 

since the subtype relation is unaffected by parameter names, default val
ues, and packing. 

For example, consider: 

TYPE 
T = [0 .. 255]; 
U = BITS 8 FOR [0 .. 255]; 
AT = ARRAY OF T; 
AU = ARRAY OF U; 

The types T and U are subtypes of one another but are not the same. The 
types AT and AU are unrelated by the subtype relation. 

B.2.11 Predeclared opaque types 

The language predeclares the two types: 

TEXT <: REFANY 
MUTEX <: ROOT 

which represent text strings and mutual exclusion semaphores, respec
tively. These are opaque types as defined in Section BA.6, page 496. Their 
properties are specified in the required interfaces Text (--+G.I.I, p. 525) and 
Thread (--+G.I.2, p. 527). 

B.3 Statements 

Executing a statement produces a computation that can halt (normal out
come), raise an exception, cause a checked runtime error, or loop forever. If 
the outcome is an exception, it can optionally be paired with an argument. 

We define the semantics of EXIT and RETURN with exceptions called the 
exit-exception and the return-exception. The exit-exception takes no argu
ment; the return-exception takes an argument of arbitrary type. Programs 
cannot name these exceptions explicitly. 

Implementations should speed up normal outcomes at the expense of 
exceptions (except for the return-exception and exit-exception). Expending 
a thousand instructions per exception raised to save one instruction per 
procedure call would be reasonable. 

If an expression is evaluated as part of the execution of a statement, 
and the evaluation raises an exception, then the exception becomes the 
outcome ofthe statement. 

The empty statement is a no-op. In this report, empty statements are 
written (*skip*). 
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B.3.1 Assignment 

To specify the typechecking of assignment statements we need to define 
"assignable", which is a relation between types and types, between expres
sions and variables, and between expressions and types. 

A type T is assignable to a type U if: 

• T <: U, or 

• U <: T and T is an array or a reference type other than ADDRESS4 , or 

• T and U are ordinal types with at least one member in common. 

An expression e is assignable to a variable v if: 

• the type of e is assignable to the type of v, and 

• the value of e is a member of the type of v, is not a local procedure, 
and ifit is an array, then it has the same shape as v. 

The first point can be checked statically; the others generally require run
time checks. Since there is no way to determine statically whether the 
value of a procedure parameter is local or global, assigning a local proce
dure is a runtime rather than a static error. 

An expression e is assignable to a type T if e is assignable to some vari
able of type T. (If T is not an open array type, this is the same as saying 
that e is assignable to any variable oftype T.) 

An assignment statement has the form: 

v:= e 

where v is a writable designator and e is an expression assignable to the 
variable designated by v. The statement sets v to the value of e. The order 
of evaluation of v and e is undefined, but e will be evaluated before v 
is updated. In particular, if v and e are overlapping sub arrays (--+B.6.3, 
p. 507), the assignment is performed in such a way that no element is used 
as a target before it is used as a source. 

Examples of assignments: 

VAR 
x: REFANY; 
a: REF INTEGER; 
b: REF BOOLEAN; 

a := b; (* static error *) 
x := a; (* no possible error *) 
a := x (* possible checked runtime error *) 

4This restriction is lifted in unsafe modules (---+B.5.6, p. 503). 
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The same comments would apply if x had an ordinal type with non
overlapping subranges a and b, or if X had an object type and a and b 
had incompatible subtypes. The type ADDRESS is treated differently from 
other reference types, since a runtime check cannot be performed on the 
assignment of raw addresses. For example: 

VAR 
x: ADDRESS; 
a: UNTRACED REF INTEGER; 
b: UNTRACED REF BOOLEAN; 

a := b; (* static error *) 
X := a; (* no possible error *) 
a := x (* static error in safe modules *) 

B.3.2 Procedure call 

A procedure call has the form: 

P(Bindings) 

where P is a procedure-valued expression and Bindings is a list of keyword 
or positional bindings. A keyword binding has the form name := actual, 
where actual is an expression and name is an identifier. A positional bind
ing has the form actual, where actual is an expression. When keyword and 
positional bindings are mixed in a call, the positional bindings must pre
cede the keyword bindings. If the list of bindings is empty, the parentheses 
are still required. 

The list of bindings is rewritten to fit the signature of P's type as fol
lows: First, each positional binding actual is converted and added to the 
list of keyword bindings by supplying the name of the i'th formal param
eter, where actual is the i'th binding in Bindings. Second, for each param
eter that has a default and is not bound after the first step, the binding 
name := default is added to the list of bindings, where name is the name of 
the parameter and default is its default value. The rewritten list of bindings 
must bind only formal parameters and must bind each formal parameter 
exactly once. For example, suppose that the type of P (--+B.2.B, p. 475) is 

PROCEDURE(ch: CHAR; n: INTEGER := 0) 

Then the following calls are all equivalent: 

P('a',O) 
P('a') 
P(ch := 'a') 
P(n := 0, ch := 'a') 
P('a', n := 0) 
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The call PO is illegal, since it doesn't bind ch. The call P(n := 0, 'a') is illegal, 
since it has a keyword parameter before a positional parameter. 

For a READONLY or VALUE parameter, the actual can be any expression 
assignable to the type of the formal (except that the prohibition against 
assigning local procedures is relaxed). For a VAR parameter, the actual 
must be a writable designator whose type is the same (--+B.2, p. 470) as 
that of the formal, or, in case of a VAR array parameter, assignable to that 
ofthe formal. Designators are defined in Section (--+B.6.3, p. 506). 

A VAR formal is bound to the variable designated by the corresponding 
actual; that is, it is aliased. A VALUE formal is bound to a variable with an 
unused location and initialized to the value of the corresponding actual. A 
READONLY formal is treated as a VAR formal if the actual is a designator 
and the type ofthe actual is the same as the type ofthe formal (or an array 
type that is assignable to the type of the formal); otherwise it is treated as 
a VALUE formal. 

Implementations are allowed to forbid VAR or READONLY parameters 
of packed types. 

To execute the call, the procedure P and its arguments are evaluated, 
the formal parameters are bound, and the body of the procedure is exe
cuted. The order of evaluation of P and its actual arguments is undefined. 
It is a checked runtime error to call an undefined or NIL procedure. 

It is a checked runtime error for a procedure to raise an exception not 
included in its raises set5 or for a function procedure to fail to return a 
result. 

A procedure call is a statement only if the procedure is proper (--+B.2.8, 
p. 475). To call a function procedure and discard its result, use EVAL. 

A procedure call can also have the form: 

o.m(Bindings) 

where 0 is an object and m names one of o's methods. This is equivalent to: 

(o's m method) (0, Bindings) 

B.3.3 Eval 

An EVAL statement has the form: 

EVALe 

where e is an expression. The effect is to evaluate e and ignore the result. 
For example: 

EVAL Thread.Fork(p) 

5If an implementation maps this runtime error into an exception, the exception is im
plicitly included in all RAISES clauses. 
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B.3.4 Block statement 

A block statement has the form: 

Decls BEGIN SEND 

where Decls is a sequence of declarations and S is a statement. The block 
introduces the constants, types, variables, and procedures declared in Decls 
and then executes S. The scope of the declared names is the block. (See 
Section B.4, page 494.) 

B.3.5 Sequential composition 

A statement of the form: 

executes S 1, and then if the outcome is normal, executes S 2. If the outcome 
of S 1 is an exception, S 2 is ignored.6 

B.3.6 Raise 

A RAISE statement without an argument has the form: 

RAISE e 

where e is an exception that takes no argument. The outcome of the state
ment is the exception e. A RAISE statement with an argument has the 
form: 

RAISE e(x) 

where e is an exception that takes an argument and x is an expression 
assignable to e's argument type. The outcome is the exception e paired 
with the argument x. 

6Some programmers use the semicolon as a statement terminator, some as a statement 
separator. Similarly, some use the vertical bar in case statements as a case initiator, some 
as a separator. Modula-3 allows both styles. This report uses both operators as separators. 
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B.3.7 Try Except 

A TRY-EXCEPT statement has the form: 

TRY 
Body 

EXCEPT 
id 1 (v 1) => Handler 1 

I·· . 
I idn (vn) => Handler n 
ELSE Handler 0 
END 
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where Body and each Handler are statements, each id names an exception, 
and each vi is an identifier. The "ELSE Handlero" and each "(vi)" are op
tional. It is a static error for an exception to be named more than once in 
the list of id's. 

The statement executes Body. If the outcome is normal, the except 
clause is ignored. If Body raises any listed exception idi, then Handleri 
is executed. If Body raises any other exception and "ELSE Handlero" is 
present, then it is executed. In either case, the outcome of the TRY state
ment is the outcome of the selected handler. If Body raises an unlisted 
exception and "ELSE Handlero" is absent, then the outcome of the TRY 
statement is the exception raised by Body. 

Each (Vi) declares a variable whose type is the argument type of the 
exception idi and whose scope is Handleri. When an exception idi paired 
with an argument x is handled, Vi is initialized to x before Handleri is 
executed. It is a static error to include (Vi) if exception idi does not take an 
argument. 

If (Vi) is absent, then idi can be a list of exceptions separated by commas, 
as shorthand for a list in which the rest ofthe handler is repeated for each 
exception. That is: 

id 1, ... , idn => Handler 

is shorthand for: 

id 1. => Handler; ... ; idn => Handler 

It is a checked runtime error to raise an exception outside the dynamic 
scope of a handler for that exception. A "TRY EXCEPT ELSE" counts as a 
handler for all exceptions. 
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B.3.8 Try Finally 

A statement of the form: 

TRY 8 1 FINALLY 8 2 END 

executes statemenS 1 and then statement 8 2 . If the outcome of 8 1 is nor
mal, the TRY statement is equivalent to 8 1 ; 8 2 . If the outcome of 8 1 is 
an exception and the outcome of 8 2 is normal, the exception from 8 1 is re
raised after 8 2 is executed. Ifboth outcomes are exceptions, the outcome of 
the TRY is the exception from 8 2 . 

B.3.9 Loop 

A statement of the form: 

LOOP SEND 

repeatedly executes S until it raises the exit-exception. Informally it is 
like: 

TRY S; S; S; ... EXCEPT exit-exception => (*skip*) END 

B.3.tO Exit 

The statement 

EXIT 

raises the exit-exception. An EXIT statement must be textually enclosed by 
a LOOP, WHILE, REPEAT, or FOR statement. 

We define EXIT and RETURN in terms of exceptions in order to specify 
their interaction with the exception handling statements. As a pathological 
example, consider the following code, which is an elaborate infinite loop: 

LOOP 
TRY 

TRY EXIT FINALLY RAISE E END 
EXCEPT 

E => (*skip*) 
END 

END 
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B.3.11 Return 

A RETURN statement for a proper procedure (--+B.2.8, p. 475) has the form: 

RETURN 

The statement raises the return-exception without an argument. It is al
lowed only in the body of a proper procedure. 

A RETURN statement for a function procedure (--+B.2.8, p. 475) has the 
form: 

RETURN Expr 

where Expr is an expression assignable C--+B.3.1, p. 483) to the result type 
of the procedure. The statement raises the return-exception with the argu
ment Expr. It is allowed only in the body of a function procedure. 

Failure to return a value from a function procedure is a checked runtime 
error. 

The effect of raising the return exception is to terminate the current 
procedure activation. To be precise, a call on a proper procedure with body 
B is equivalent (after binding the arguments) to: 

TRY B EXCEPT return-exception => (*skip*) END 

A call on a function procedure with body B is equivalent to: 

TRY 
B; (error: no returned value) 

EXCEPT 
return-exception (v) => (the result becomes v) 

END 

B.3.12 If 

An IF statement has the form: 

IF B1 THEN S1 
ELSIF B2 THEN S2 

ELSIF Bn THEN Sn 
ELSE So 
END 

where the B's are boolean expressions and the S's are statements. The 
"ELSE So" and each "ELSIF Bi THEN S/, are optional. 

The statement evaluates the B's in order until some Bi evaluates to 
TRUE, and then executes Si' If none of the expressions evaluates to TRUE 
and "ELSE So" is present, So is executed. If none of the expressions evalu
ates to TRUE and "ELSE So" is absent, the statement is a no-op (except for 
any side-effects ofthe B's). 
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B.3.13 While 

If B is an expression of type BOOLEAN and S is a statement: 

WHILE B DO SEND 

is shorthand for: 

LOOP IF B THEN S ELSE EXIT END END 

B.3.14 Repeat 

If B is an expression of type BOOLEAN and S is a statement: 

REPEAT S UNTIL B 

is shorthand for: 

LOOP S; IF B THEN EXIT END END 

B.3.15 With 

A WITH statement has the form: 

WITH id = e DO SEND 

where id is an identifier, e an expression, and S a statement. The state
ment declares id with scope S as an alias for the variable e or as a readonly 
name for the value e. The expression e is evaluated once, at entry to the 
WITH statement. 

The statement is like the procedure call P(e), where P is declared as: 

PROCEDURE P(mode id: type of e) = BEGIN SEND P; 

If e is a writable designator, mode is VAR; otherwise, mode is READONLY. 
( -+ B. 6.3, p. 506) explains designators.) The only difference between the 
WITH statement and the call P(e) is that free variables, RETURNs, and 
EXITs that occur in the WITH statement are interpreted in the context of 
the WITH statement, not in the context of P. 

A single WITH can contain multiple bindings, which are evaluated se
quentially. That is: 

WITH id 1 = el, id2 = e2, ... 

is equivalent to: 

WITH id l = el DO WITH id2 = e2 DO··· 
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B.3.t6 For 

A FOR statement has the form: 

FOR id := first TO last BY step DO SEND 

where id is an identifier, first and last are ordinal expressions C----'tB.2.1, 
p. 470) with the same base type, step is an integer-valued expression, and 
S is a statement. "BY step" is optional; if omitted, step defaults to 1. 

The identifier id denotes a readonly C----'tB.6.3, p. 506) variable whose 
scope is S and whose type is the common basetype offirst and last. 

If id is an integer, the statement steps id through the values first, first + 
step, first+2*step, ... , stopping when the value of id passes last. S executes 
once for each value; if the sequence of values is empty, S never executes. 
The expressions first, last, and step are evaluated once, before the loop is 
entered. If step is negative, the loop iterates downward. 

The case in which id is an element of an enumeration is similar. In 
either case, the semantics are defined precisely by the following rewriting, 
in which T is the type of id and in which i, done, and delta stand for variables 
that do not occur in the FOR statement: 

VAR 
i := ORD(first); done := ORD(last); delta := step; 

BEGIN 
IF delta >= 0 THEN 

WHILE i <= done DO 
WITH id = VAL(i, T) DO SEND; INC(i, delta) 

END 
ELSE 

WHILE i >= done DO 
WITH id = VAL(i, T) DO SEND; INC(i, delta) 

END 
END 

END 

If the upper bound of the loop is LAST(INTEGER), it should be rewritten as 
a WHILE loop to avoid overflow. 
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B.3.17 Case 

A CASE statement has the form: 

CASE ExprOF 
Ll => SI 

I··· 
I Ln => Sn 
ELSE So 
END 

where Expr is an expression whose type is an ordinal type and each L is a 
list of constant expressions or ranges of constant expressions denoted by 
"el .. el', which represent the values from el to e2 inclusive. If el exceeds e2, 
the range is empty. It is a static error if the sets represented by any two L's 
overlap or if the value of any of the constant expressions is not a member 
of the type of Expr. The "ELSE So" is optional. 

The statement evaluates Expr. Ifthe resulting value is in any L i , then 
Si is executed. If the value is in no Li and "ELSE So" is present, then it 
is executed. If the value is in no Li and "ELSE So" is absent, a checked 
runtime error occurs. 

B.3.18 Typecase 

A TYPECASE statement has the form: 

TYPECASE Expr OF 
Tl (vI) => SI 

I·· . 
I Tn (vn) => Sn 
ELSE So 
END 

where Expr is an expression whose type is a reference type, the S's are 
statements, the T's are reference types, and the v's are identifiers. It is a 
static error if Expr has type ADDRESS or if any T is not a subtype of the 
type of Expr. The "ELSE SO" and each "(v)" are optional. 

The statement evaluates Expr. If the resulting reference value is a mem
ber of any listed type Ti , then Si is executed, for the minimum such i. (Thus 
a NULL case is useful only ifit comes first.) If the value is a member of no 
listed type and "ELSE So" is present, then it is executed. If the value is a 
member of no listed type and "ELSE So" is absent, a checked runtime error 
occurs. 

Each (vJ declares a variable whose type is Ti and whose scope is Si. If 
Vi is present, it is initialized to the value of Expr before Si is executed. 
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If (vd is absent, then Ti can be a list of type expressions separated by 
commas, as shorthand for a list in which the rest of the branch is repeated 
for each type expression. That is: 

T1,···, Tn => S 

is shorthand for: 

T1 => S I ... I Tn => S 

For example: 

PROCEDURE ToText(r: REFANY): TEXT = 
(* Assume r = NIL or r' is a BOOLEAN or INTEGER. *) 

BEGIN 
TYPECASE r OF 

NULL => RETURN "NI~' 
I REF BOOLEAN (rb) => RETURN Fmt.Bool(rb') 
I REF INTEGER (ri) => RETURN Fmtlnt(rr} 
END 

END ToText; 

B.3.19 Lock 

A LOCK statement has the form: 

LOCK mu DO SEND 

where S is a statement and mu is an expression. It is equivalent to: 

WITH m=mu DO 
Thread.Acquire(m); 
TRY S FINALLY Thread. Release(m) END 

END 

where m stands for a variable that does not occur in S. (The Thread inter
face is presented in Section C.1.2, page 527.) 

B.3.20 Inc and Dec 

INC and DEC statements have the form: 

INC(v, n) 
DEC(v, n) 
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where v designates a variable of an ordinal type7 (---+B.2.1, p. 470) and n 
is an optional integer-valued argument. If omitted, n defaults to 1. The 
statements increment and decrement v by n, respectively. The statements 
are equivalent to: 

WITH x = v DO x := VAL(ORD(x) + n, T) END 
WITH x = v DO x := VAL(ORD(x) - n, T) END 

where T is the type ofv and x stands for a variable that does not appear in 
n. As a consequence, the statements check for range errors. 

B.4 Declarations 

A declaration introduces a name for a constant, type, variable, exception, 
or procedure. The scope of the name is the block containing the declaration. 
A block has the form: 

Decls BEGIN SEND 

where Decls is a sequence of declarations and S is a statement, the exe
cutable part ofthe block. A block can appear as a statement or as the body 
of a module or procedure. The declarations of a block can introduce a name 
at most once, though a name can be redeclared in nested blocks, and a pro
cedure declared in an interface can be redeclared in a module exporting 
the interface (---+B.5, p. 498). The order of declarations in a block does not 
matter, except to determine the order of initialization of variables. 

B.4.1 Types 

IfT is an identifier and U a type (~r type expression, since a type expression 
is allowed wherever a type is required), then: 

TYPE T= U 

declares T to be the type U (---+B.2, p. 470). 

B.4.2 Constants 

If id is an identifier, T a type, and C a constant expression, then: 

CONST id: T = C 

declares id as a constant with the type T and the value of C. The ": T" can 
be omitted, in which case the type of id is the type of C. If T is present it 
must contain C. 

7In unsafe modules (-+B.5.6, p. 503), INC and DEC are extended to ADDRESS. 
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B.4.3 Variables 

If id is an identifier, T a non-empty type (-+B.2, p. 470) other than an open 
array type (-+B.2.3, p. 472), and E an expression (-+B.6, p. 504), then: 

VAR id: T:= E 

declares id as a variable of type T whose initial value is the value of E. 
Either ":= E" or ": T" can be omitted, but not both. If T is omitted, it is 
taken to be the type of E. If E is omitted, the initial value is an arbitrary 
value oftype T. Ifboth are present, E must be assignable to T. 

The initial value is a shorthand that is equivalent to inserting the as
signment id := E at the beginning of the executable part of the block. If 
several variables have initial values, their assignments are inserted in the 
order they are declared. For example: 

VAR x: [0 .. 5] := y; y: [0 .. 5] := x; BEGIN SEND 

initializes x and y to the same arbitrary value in [0 .. 5]; it is equivalent to: 

VAR x: [0 .. 5]; y: [0 .. 5]; BEGIN x := y; y := x; SEND 

If a sequence of identifiers share the same type and initial value, id can 
be a list of identifiers separated by commas. Such a list is shorthand for 
a list in which the type and initial value are repeated for each identifier. 
That is: 

VAR vI • ...• vn: T:= E 

is shorthand for: 

VAR vI: T:= E; ... ; VAR vn: T:= E 

This means that E is evaluated n times. 

B.4.4 Procedures 

There are two forms of procedure declaration: 

PROCEDURE id sig = B id 
PROCEDURE id sig 

where id is an identifier, sig is a procedure signature (-+B.2.8, p. 475), and B 
is a block (-+B.3.4, p. 486). In both cases, the type of id is the procedure type 
determined by sig. The first form is allowed only in modules; the second 
form is allowed only in interfaces. 

The first form declares id as a procedure constant whose signature is 
sig, whose body is B, and whose environment is the scope containing the 
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declaration. The parameter names are treated as if they were declared at 
the outer level of B; the parameter types and default values are evaluated 
in the scope containing the procedure declaration. The procedure name id 
must be repeated after the END that terminates the body. 

The second form declares id to be a procedure constant whose signature 
is sig. The procedure body is specified in a module exporting the interface 
(---+B.5, p. 498), by a declaration ofthe first form. 

BA.5 Exceptions 

If id is an identifier and T a type other than an open array type, then: 

EXCEPTION id(T) 

declares id as an exception with argument type T. If "(T)" is omitted, the 
exception takes no argument. An exception declaration is allowed only in 
an interface or in the outermost scope of a module. All declared exceptions 
are distinct. 

BA.6 Opaque types 

An opaque type is a name that denotes an unknown subtype of some given 
reference type (---+B.2. 7, p. 474). For example, an opaque subtype of RE
FANY is an unknown traced reference type; an opaque subtype of UN
TRACED ROOT is an unknown untraced object type. The actual type de
noted by an opaque type name is called its concrete type. 

Different scopes can reveal different information about an opaque type. 
For example, what is known in one scope only to be a subtype of REFANY 
could be known in another scope to be a subtype of ROOT. 

An opaque type declaration has the form: 

TYPE T <: U 

where T is an identifier and U an expression denoting a reference type. It 
introduces the name T as an opaque type and reveals that U is a supertype 
ofT. The concrete type ofT must be revealed elsewhere in the program. 

BA.7 Revelations 

A revelation introduces information about an opaque type into a scope. Un
like other declarations, revelations introduce no new names. 

There are two kinds of revelations, partial and complete. A program 
can contain any number of partial revelations for an opaque type; it must 
contain exactly one complete revelation. 
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A partial revelation has the form: 

REVEAL T <: V 

where V is a type expression (possibly just a name) and T is an identifier 
(possibly qualified, as on page 499) declared as an opaque type. It reveals 
that V is a supertype ofT. 

In any scope, the revealed supertypes of an opaque type must be linearly 
ordered by the subtype relation. That is, if it is revealed that T <: U1 and 
T <: U2, it must also be revealed either that U1 <: U2 or that U2 <: U1. 

A complete revelation has the form: 

REVEAL T = V 

where V is a type expression (not just a name) whose outermost type con
structor is a branded reference or object type (-+B.2. 7 and B.2. 9, p. 474 and 
477) and T is an identifier (possibly qualified) that has been declared as an 
opaque type. The revelation specifies that V is the concrete type for T. It is 
a static error if any type revealed in any scope as a supertype of T is not a 
supertype ofV. Generally this error is detected at link time. 

Distinct opaque types have distinct concrete types, since V includes a 
brand and all brands in a program are distinct. 

A revelation is allowed only in an interface or in the outermost scope 
of a module. A revelation in an interface can be imported into any scope 
where it is required. 

For example, consider: 

INTERFACE M; TYPE T <: ROOT; PROCEDURE P(x:T): T; END M. 

INTERFACE MClass; IMPORT M; REVEAL M.T <: MUTEX; END MClass. 

INTERFACE MRep; IMPORT M; 
REVEAL M.T = MUTEX BRANDED OBJECT count: INTEGER END; 

END MRep. 

An importer ofM sees M.T as an opaque subtype of ROOT, and is limited to 
allocating objects of type M.T, passing them to M.P, or declaring subtypes 
of M.T. An importer of MClass sees that every M.T is a MUTEX, and can 
therefore lock objects of type M.T (-+B.2.11 and B.3.19, p. 482 and 493). 
Finally, an importer of MRep sees the concrete type, and can access the 
count field. 

B.4.8 Recursive declarations 

A constant, type, or procedure declaration N = E, a variable declaration 
N : E, an exception declaration N(E), or a revelation N = E is recursive if N 
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occurs in any partial expansion of E. A variable declaration N := I where the 
type is omitted is recursive if N occurs in any partial expansion of the type 
E of I. Such declarations are allowed if every occurrence of N in any partial 
expansion of E is (1) within some occurrence of the type constructor REF 
or PROCEDURE, (2) within a field or method type of the type constructor 
OBJECT, or (3) within a procedure body. 

Examples oflegal recursive declarations: 

TYPE 
List = REF RECORD x: REAL; link: List END; 
T = PROCEDURE(n: INTEGER; p: T); 
XList = X OBJECT link: XList END; 

CONST 
N = BYTESIZE(REF ARRAY [O .. N] OF REAL); 

PROCEDURE P(b: BOOLEAN) 
BEGIN 

IF b THEN P(NOT b) END 
END P; 
EXCEPTION E(PROCEDURE 0 RAISES {E}); 
VAR v: REF ARRAY [O .. BYTESIZE(v)] OF INTEGER; 

Examples of illegal recursive declarations: 

TYPE 
T = RECORD x: TEND; 
U = OBJECT METHODS mO := U.m END; 

CONST 
N = N+1; 

REVEAL I.T = I.T BRANDED OBJECT END; 
VAR v := PO; PROCEDURE PO: ARRAY [O .. LAST(v)] OF T; 

Examples oflegal non-recursive declarations: 

VAR n := BITSIZE(n); 
REVEAL T <: T; 

B.5 Modules and interfaces 

A module is like a block, except for the visibility of names (----'tB.4, p. 494). An 
entity is visible in a block ifit is declared in the block or in some enclosing 
block; an entity is visible in a module if it is declared in the module or in 
an interface that is imported or exported by the module. 
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An interface is a group of declarations. Declarations in interfaces are 
the same as in blocks, except that any variable initializations must be con
stant, and procedure declarations (-+B.4.4, p. 495) must specify only the 
signature, not the body. 

A module X exports an interface Int to supply bodies for one or more of 
the procedures declared in the interface. A module or interface X imports 
an interface Int to make the entities declared in Int visible in X. 

A program is a collection of modules and interfaces that contains every 
interface imported or exported by any of its modules or interfaces, and in 
which no procedure, module, or interface is multiply defined. The effect of 
executing a program is to execute the bodies of each of its modules. The 
order of execution of the modules is constrained by the initialization rule 
on page 503. 

The module whose body is executed last is called the main module. Im
plementations are expected to provide a way to specify the main module, 
in case the initialization rule does not determine it uniquely. The recom
mended rule is that the main module be the one that exports the interface 
Main, whose contents are implementation-dependent. 

Program execution terminates when the body of the main module ter
minates, even if concurrent threads of control are still executing. 

The names of the modules and interfaces of a program are called global 
names. The method for looking up global names - for example, by file 
system search paths - is implementation-dependent. 

B.5.1 Import statements 

There are two forms of import statements. All imports of both forms are 
interpreted simultaneously: their order doesn't matter. 

The first form is 

IMPORTXASY 

which imports the interface whose global name is X and gives it the local 
name Y. The entities andrevelations declared in X become accessible in the 
importing module or interface, but the entities and revelations imported 
into X do not. To refer to the entity declared with name N in the interface 
X, the importer must use the qualified identifier Y.N. 

The statement IMPORT X is short for IMPORT X AS X. 
The second form is 

FROM X IMPORT N 

which introduces N as the local name for the entity declared as N in the 
interface X. A local binding for X takes precedence over a global binding. 
For example, 
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IMPORT X AS Y, Y AS X; FROM X IMPORT N 

simultaneously introduces local names Y, X, and N for the entities whose 
global names are X, Y, and Y.N, respectively. 

It is illegal to use the same local name twice: 

IMPORT Y AS X, Z AS X; 

is a static error, even if Y and Z are the same. 

B.5.2 Interfaces 

An interface has the form: 

INTERFACE id; Imports; Decls END id. 

where id is an identifier that names the interface, Imports is a sequence of 
import statements, and Decls is a sequence of declarations (-+B.4, p. 494) 
that contains no procedure bodies or non-constant variable initializations. 
The names declared in Decls and the visible imported names must be dis
tinct. It is a static error for two or more interfaces to form an import cycle. 

B.5.3 Modules 

A module has the form: 

MODULE id EXPORTS Interiaces; Imports; Block id. 

where id is an identifier that names the module, Interiaces is a list of dis
tinct names of interfaces exported by the module, Imports is a list of import 
statements, and Block is a block, the body of the module. The name id must 
be repeated after the END that terminates the body. "EXPORTS Interiaces" 
can be omitted, in which case Interiaces defaults to id. 

If module M exports interface Int, then all declared names in Int are 
visible without qualification in M. Any procedure declared in Int can be re
declared in M, with a body. The signature in M must be covered by the 
signature in Int (-+B.2.B, p. 477). To determine the interpretation of key
word bindings in calls to the procedure, the signature in M is used within 
M; the signature in Int is used everywhere else. 

Except for the redeclaration of exported procedures, the names declared 
at the top level of Block, the visible imported names, and the names de
clared in the exported interfaces must be distinct. 

For example, the following is illegal, since two names in exported inter
faces coincide: 
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INTERFACE X; 
PROCEDURE PO; 

INTERFACE Y; MODULE M EXPORTS X, Y; 
PROCEDURE PO; PROCEDURE PO = ... ; 

The following is also illegal, since the visible imported name X coincides 
with the top-level name X: 

INTERFACE X; 
PROCEDURE PO; 

MODULE M EXPORTS X; FROM X IMPORT P; 
PROCEDURE PO = ... ; 

But the following is legal, although peculiar: 

INTERFACE X; 
PROCEDURE P( ... ); 

MODULE M EXPORTS X; IMPORT X; 
PROCEDURE P( ... ) = ... ; 

since the only visible imported name is X, and the coincidence between P 
as a top-level name and P as a name in an exported interface is allowed, 
assuming the interface signature covers the module signature. Within M, 
the interface declaration determines the signature of X.P and the module 
declaration determines the signature of P. 

B.5.4 Generics 

In a generic interface or module, some of the imported interface names are 
treated as formal parameters, to be bound to actual interfaces when the 
generic is instantiated. 

A generic interface has the form 

GENERIC INTERFACE G(Fl' ... ,Fn); Body END G. 

where G is an identifier that names the generic interface, Fl , ... ,Fn is a 
list of identifiers, called the formal imports ofG, and Body is a sequence of 
imports followed by a sequence of declarations, exactly as in a non-generic 
interface. 

An instance of G has the form 

INTERFACE X = G(Al ,··· ,An) END X. 

where X is the name of the instance and Ai,· .. , An is a list of actual in
terfaces to which the formal imports of G are bound. The instance X is 
equivalent to an ordinary interface defined as follows: 

INTERFACE X; IMPORT Ai ASF1 ,··· ,An ASFn; Body END X. 

A generic module has the form 

GENERIC MODULE G(Fl' ... ,Fn); Body END G. 

where G is an identifier that names the generic module, F 1, ... , F n is a 
list of identifiers, called the formal imports ofG, and Body is a sequence of 
imports followed by a block, exactly as in a non-generic module. 



502 B. Language Definition 

An instance of G has the form 

MODULE X EXPORTS E = G(A1 ,··· ,An) END X. 

where X is the name of the instance, E is a list of interfaces exported by 
X, and A 1, ... ,An is a list of actual interfaces to which the formal imports 
of G are bound. "EXPORTS E" can be omitted, in which case it defaults to 
"EXPORTS X". The instance X is equivalent to an ordinary module defined 
as follows: 

MODULE X EXPORTS E; IMPORT A1 ASF1,··· ,An ASFn ; Body 
ENDX. 

Notice that the generic module itself has no exports; they are supplied only 
when it is instantiated. 

For example, here is a generic stack package: 

GENERIC INTERFACE Stack(Elem); 
(* where Elem. T is not an open array type. *) 
TYPE T <: REFANY; 
PROCEDURE CreateO: T; 
PROCEDURE Push(VAR s: T; x: Elem.T); 
PROCEDURE Pop(VAR s: T): Elem.T; 

END Stack. 

GENERIC MODULE Stack(Elem); 
REVEAL 

T = BRANDED OBJECT n: INTEGER; a: REF ARRAY OF Elem.T END; 

PROCEDURE CreateO: T = 
BEGIN RETURN NEW(T, n := 0, a := NIL) END Create; 

PROCEDURE Push(VAR s: T; x: Elem.T) = 
BEGIN 

IF s.a = NIL THEN 
s.a := NEW(REF ARRAY OF Elem.T, 5) 

ELSIF s.n > LAST(s.a") THEN 
WITH temp = NEW(REF ARRAY OF Elem.T, 2 * NUMBER(s.a"» DO 

FOR i := 0 TO LAST(s.a") DO temp[i] := s.a[i] END; 
s.a:= temp 

END 
END; 
s.a[s.n] := x; 
INC(s.n) 

END Push; 

PROCEDURE Pop(VAR s: T): Elem.T = 
BEGIN DEC(s.n); RETURN s.a[s.n] END Pop; 

BEGIN END Stack. 
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To instantiate these generics to produce stacks of integers: 

INTERFACE Integer; TYPE T = INTEGER; END Integer. 
INTERFACE IntStack = Stack(lnteger) END IntStack. 
MODULE IntStack = Stack(lnteger) END IntStack. 
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Implementations are not expected to share code between different instances 
of a generic module, since this will not be possible in general. 

Implementations are not required to typecheck uninstantiated generics, 
but they must typecheck their instances. For example, if one made the 
following mistake: 

INTERFACE String; TYPE T = ARRAY OF CHAR; END String. 
INTERFACE StringStack = Stack(String) END StringStack. 
MODULE StringStack = Stack(String) END StringStack. 

everything would go well until the last line, when the compiler would at
tempt to compile a version of Stack in which the element type was an open 
array. It would then complain that the NEW call in Push does not have 
enough parameters. 

B.5.5 Initialization 

The order of execution of the modules in a program is constrained by the 
following rule: 

Ifmodule M depends on module Nand N does not depend on M, then N's 
body will be executed before M's body, where: 

• A module M depends on a module N if M uses an interface that N 
exports or if M depends on a module that depends on N . 

• A module M uses an interface X if M imports or exports X or if Muses 
an interface that imports X. 

Except for this constraint, the order of execution is implementationde
pendent. 

B.5.6 Safety 

The keyword UNSAFE can precede the declaration of any interface or mod
ule to indicate that it is unsafe; that is, uses the unsafe features of the 
language (--+B. 7, p. 516). An interface or module not explicitly labeled UN
SAFE is called safe. 
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An interface is intrinsically safe if there is no way to produce an un
checked runtime error by using the interface in a safe module. If all mod
ules that export a safe interface are safe, the compiler guarantees the in
trinsic safety of the interface. If any of the modules that export a safe 
interface are unsafe, it is the programmer, rather than the compiler, who 
makes the guarantee. 

It is a static error for a safe interface to import an unsafe one or for a 
safe module to import or export an unsafe interface. 

B.6 Expressions 

An expression prescribes a computation that produces a value or variable. 
Syntactically, an expression is either an operand, or an operation applied 
to arguments, which are themselves expressions. Operands are identifiers 
(-+B.6.3, p. 506), literals (-+B.6.4 and B.6.5, p. 507 and 508), or types (-+B.2, 
p. 470). An expression is evaluated by recursively evaluating its arguments 
and performing the operation. The order of argument evaluation is unde
fined for all operations except AND and OR. 

B.6.1 Conventions for describing operations 

To describe the argument and result types of operations, we use a notation 
like procedure signatures. But since most operations are too general to be 
described by a true procedure signature, we extend the notation in several 
ways. 

The argument to an operation can be required to have a type in a par
ticular class, such as an ordinal type (-+B.2.1, p. 470), set type (-+B.2.6, 
p. 474), etc. In this case the formal specifies a type class instead of a type. 
For example: 

ORD (x: Ordinal): INTEGER 

The formal type Any specifies an argument of any type. 
A single operation name can be overloaded, which means that it denotes 

more than one operation. In this case, we write a separate signature for 
each of the operations. For example: 

ASS (x: INTEGER) : INTEGER 
(x: Float) : Float 

The particular operation will be selected so that each actual argument type 
is a subtype of the corresponding formal type or a member of the corre
sponding formal type class. 

The argument to an operation can be an expression denoting a type. In 
this case, we write Type as the argument type. For example: 
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BYTESIZE (T: Type): CARDINAL 

The result type of an operation can depend on its argument values (al
though the result type can always be determined statically). In this case, 
the expression for the result type contains the appropriate arguments. For 
example: 

FIRST (T: FixedArrayType): IndexType(T) 

IndexType(T) denotes the index type of the array type T and IndexType(a) 
denotes the index type of the array a. The definitions of ElemType(T) and 
ElemType(a) are similar. 

B.6.2 Operation syntax 

The operators that have special syntax are classified and listed in order of 
decreasing binding power in the following table: 

x.a 
f(x) ali] T{x} 
p" 
+ -
* / DIV MOD 
+-& 
= # «=>=> IN 
NOT 
AND 
OR 

infix dot 
applicative (, [, { 
postfix" 
prefix arithmetics 
infix arithmetics 
infix arithmetics 
infix relations 
prefix NOT 
infix AND 
infix OR 

All infix operators are left associative. Parentheses can be used to override 
the precedence rules. Here are some examples of expressions together with 
their fully parenthesized forms: 

M.F(x) 
Q(x) -
- p-
-a*b 
a*b-c 
x IN s - t 
NOT x IN s 
NOT p AND q 
AOR 8ANDC 

(M.F)(x) 
(Q(x)) -
- (p -) 
(- a) * b 
(a*b)-c 
x IN (s - t) 
NOT (x IN s) 
(NOT p) AND q 
A OR (8 AND C) 

dot before application 
application before-
- before prefix -
prefix - before * 
* before infix -
infix - before IN 
IN before NOT 
NOT before AND 
AND before OR 

Operators without special syntax are procedural. An application of a pro
cedural operator has the form op(args), where op is the operation and args 
is the list of argument expressions. For example, MAX and MIN are proce
dural operators. 
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B.6.3 Designators 

An identifier is a writable designator ifit is declared as a variable, is a VAR 
or VALUE parameter, is a local of a TYPECASE or TRY EXCEPT statement, 
or is a WITH local that is bound to a writable designator. An identifier is a 
readonly designator if it is a READONLY parameter, a local ofa FOR state
ment, or a WITH local bound to a non-designator or readonly designator. 

The only operations that produce designators are dereferencing, sub
scripting, selection, and SUBARRAy.8 This section defines these operations 
and specifies the conditions under which they produce designators. 

(' denotes the the referent of r; this operation is called dereferencing. 
The expression ( is always a writable designator. It is a static error 
if the type of r is REFANY, ADDRESS, NULL, an object type, or an 
opaque type, and a checked runtime error if r is NIL. The type of ( is 
the referent type of r (--+B.2. 7, p. 474). 

ali] denotes the (i + 1 - FIRST(a))th element ofthe array a (--+B.2.3, p. 472). 
The expression ali] is a designator if a is, and is writable if a is. The 
expression i must be assignable to the index type of a. The type of 
ali] is the element type of a. An expression of the form ali 1, ... , in] 
is shorthand for ali 1]-' ·[in]. If a is a reference to an array, then ali] is 
shorthand for aA[iJ. 

r.t, o.t, I.x, T.m, E.id 
If r denotes a record, r.f denotes its t field (--+B.2.4, p. 473). In this 
case r.t is a designator if r is, and is writable if r is. The type of r.t is 
the declared type of the field. If r is a reference to a record, then r.t is 
shorthand for (.f 

If 0 denotes an object and t names a data field specified in the type of 
0, then o.t denotes that data field of o. In this case o.t is a writable 
designator whose type is the declared type of the field. If M denotes 
an imported interface, then M.x denotes the entity named x in the in
terface M. In this case M.x is a designator if x is declared as a variable; 
such a designator is always writable. 

If T is an object type (--+B.2.9, p. 477) and m is the name of one of T's 
methods, then T.m denotes the m method of type T. In this case T.m is 
not a designator. Its type is the procedure type whose first argument 
has mode VALUE and type T, and whose remaining arguments are 
determined by the method declaration for m in T. The name of the 
first argument is unspecified; thus in calls to T.m, this argument must 
be given positionally, not by keyword. T.m is a procedure constant. If 

BIn unsafe modules, LOOPHOLE can also produce a designator. 
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E is an enumerated type, then E.id denotes its value named id. In this 
case E.id is not a designator. The type of E.id is E. 

SUBARRAY(a: Array; from, for: CARDINAL}: ARRAY OF ElemType(a} 
SUBARRAY produces a subarray of a. It does not copy the array 
(-'tB.2.3, p. 472); it is a designator if a is, and is writable if a is. If a 
is a multi-dimensional array, SUBARRAY applies only to the top-level 
array. The operation returns the subarray that skips the first from 
elements of a and contains the next for elements. Note that if from is 
zero, the sub array is a prefix of a, whether the type of a is zero-based 
or not. It is a checked runtime error if from+for exceeds NUMBER(a}. 
Implementations may restrict or prohibit the SUBARRAY operation 
for arrays with packed element types. 

B.6.4 Numeric literals 

Numeric literals denote constant non-negative integers or reals. The types 
ofthese literals are INTEGER, REAL, LONGREAL, and EXTENDED. 

A literal INTEGER has the form base_digits, where base is one of"2", "3", 
... , "16", and digits is a non-empty sequence ofthe decimal digits 0 through 
9 plus the hexadecimal digits A through F. The "base_" can be omitted, in 
which case base defaults to 1 O. The digits are interpreted in the given 
base. Each digit must be less than base. For example, 16_FF and 255 are 
equivalent integer literals. 

If no explicit base is present, the value of the literal must be at most 
LAST(INTEGER}. Ifan explicit base is present, the value of the literal must 
be less than 2word.Size, and its interpretation uses the convention of the 
Word interface (-'tC.l.3, p. 528). For example, on a sixteen-bit two's com
plement machine, 16_FFFF and -1 represent the same value. 

A literal REAL has the form decimal E exponent, where decimal is a non
empty sequence of decimal digits followed by a decimal point followed by 
a non-empty sequence of decimal digits, and exponent is a non-empty se
quence of decimal digits optionally beginning with a + or -. The literal 
denotes decimal times 1 Oexponent. If "E exponent" is omitted, exponent de
faults to O. 

LONG REAL and EXTENDED literals are like REAL literals, but instead 
of E they use D and X respectively. 

Case is not significant in digits, prefixes or scale factors. Embedded 
spaces are not allowed. 

For example, 1.0 and 0.5 are valid, 1. and .5 are not; 6.624E-27 is a 
REAL, and 3.1415926535dO a LONG REAL. 
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B.6.5 Text and character literals 

A character literal is a pair of single quotes enclosing either a single 180-
Latin-l printing character (excluding single quote) or an escape sequence. 
The type of a character literal is CHAR. 

A text literal is a pair of double quotes enclosing a sequence of 180-
Latin-l printing characters (excluding double quote) and escape sequences. 
The type of a text literal is TEXT. 

Here are the legal escape sequences and the characters they denote: 

\n newline Oinefeed) 
\t tab 
\r carriage return 
\' single quote 

\f 
\\ 
\" 
\nnn 

form feed 
backslash 
double quote 
char with code 8_nnn 

A \ followed by exactly three octal digits specifies the character whose code 
is that octal value. A \ that is not a part of one of these escape sequences 
is a static error. 

For example, 'a' and '\" are valid character literals, '" is not; """ and 
'Don't \ n' are valid text literals, """ is not. 

B.6.6 Nil 

The literal "NIL" denotes the value NIL. Its type is NULL. 

B.6.7 Function application 

A procedure call is an expression if the procedure returns a result. The 
type ofthe expression is the result type of the procedure. 

B.6.S Set, array, and record constructors 

A set constructor has the form: 

where S is a set type (---+B.2.6, p. 474) and the e's are expressions or ranges 
of the form lo .. hi. The constructor denotes a value of type S containing the 
listed values and the values in the listed ranges. The e's, lo's, and hi's must 
be assignable to the element type of S. 

An array constructor has the form: 
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where A is an array type (--+B.2.3, p. 472) and the e's are expressions. The 
constructor denotes a value of type A containing the listed elements in the 
listed order. The e's must be assignable to the element type of A. This 
means that if A is a multi-dimensional array, the e's must themselves be 
array-valued expressions. 

If A is a fixed array type and n is at least 1, then en can be followed by 
", .. " to indicate that the value of en will be replicated as many times as 
necessary to fill out the array. It is a static error to provide too many or too 
few elements for a fixed array type. 

A record constructor has the form: 

R{Bindings} 

where R is a record type (--+B.2.4, p. 473) and Bindings is a list of keyword 
or positional bindings, exactly as in a procedure call (--+B.3.2, p. 484). The 
list of bindings is rewritten to fit the list offields and defaults of R, exactly 
as for a procedure call; the record field names play the role of the procedure 
formal parameters. The expression denotes a value of type R whose field 
values are specified by the rewritten binding. 

The rewritten binding must bind only field names and must bind each 
field name exactly once. Each expression in the binding must be assignable 
to the type of the corresponding record field. 

B.6.9 New 

An allocation operation has the form: 

NEW(T, ... ) 

where T is a reference type (--+B.2. 7, p. 474) other than REFANY, AD
DRESS, or NULL. The operation returns the address of a newly-allocated 
variable of T's referent type; or if T is an object type (--+B.2.9, p. 477), a 
newly-allocated data record paired with a method suite. The reference re
turned by NEW is distinct from all existing references. The allocated type 
of the new reference is T. 

It is a static error if T's referent type is empty. If T is declared as an 
opaque type (--+B.4.6, p. 496), NEW(T) is legal only in scopes where T's con
crete type is known completely, or is known to be an object type. 

The initial state of the referent generally represents an arbitrary value 
of its type. If T is an object type or a reference to a record or open array 
then NEW takes additional arguments to control the initial state ofthe new 
variable. 
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1fT is a reference to an array with k open dimensions, the NEW operation 
has the form: 

NEW(T, nl, ... ,nk) 

where the n's are integer-valued expressions that specifY the lengths of the 
new array in its first k dimensions. The values in the array will be arbitrary 
values of their type. 

If T is an object type or a reference to a record, the NEW operation has 
the form: 

NEW(T, Bindings) 

where Bindings is a list of keyword bindings used to initialize the new fields. 
Positional bindings are not allowed. 

Each binding f := v initializes the field f to the value v. Fields for which 
no binding is supplied will be initialized to their defaults if they have de
faults; otherwise they will be initialized to arbitrary values of their types. 

If T is an object type then Bindings can also include method overrides of 
the form m := P, where m is a method of T and P is a top-level procedure 
constant. This is syntactic sugar for the allocation of a subtype of T that 
includes the given overrides, in the given order. For example, 
NEW(T, m := P) is sugar for NEW(T OBJECT OVERRIDES m := PEND). 

The order of the bindings makes no difference. 

B.6.10 Arithmetic operations 

The basic arithmetic operations are built into the language; additional op
erations are provided by the required interfaces (-+C.1.5, p. 530). To test or 
set the implementation's behavior for overflow, underflow, rounding, and 
division by zero, see the required interface FloatMode (-+G.1.6, p. 533). 
Modula-3 arithmetic was designed to support the IEEE floating-point stan
dard, but not to require it. To perform arithmetic operations modulo the 
word size, programs should use the routines in the required interface Word 
(-+G.l.3, p. 528). 

Implementations must not rearrange the computation of expressions in 
a way that could affect the result. For example, (x+y)+z generally cannot 
be computed as x+(y+z), since addition is not associative either for bounded 
integers or for floating-point values. 

prefix + (x: INTEGER) : INTEGER 
(x: Float) : Float 

infix + (x,y: INTEGER): INTEGER 
(x,y: Float) : Float 
(x,y: Set) : Set 
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As a prefix operator, +x returns x. As an infix operator on numeric argu
ments, + denotes addition. On sets, + denotes set union. 

That is, e IN (x + y) if and only if (e IN x) OR (e IN y). The types of x 
and y must be the same, and the result is the same type as both. In unsafe 
modules, + is extended to ADDRESS. 

prefix - (x: INTEGER) : INTEGER 
(x: Float) : Float 

infix - (x,y: INTEGER) : INTEGER 
(x,y: Float) : Float 
(x,y: Set) : Set 

As a prefix operator, -x is the negative ofx. As an infix operator on numeric 
arguments, - denotes subtraction. On sets, - denotes set difference. That 
is, e IN (x - y) if and only if (e IN x) AND NOT (e IN y). The types ofx and 
y must be the same, and the result is the same type as both. In unsafe 
modules, - is extended to ADDRESS. 

infix * (x,y: INTEGER) : INTEGER 
(x,y: Float) : Float 
(x,y: Set) : Set 

On numeric arguments, * denotes multiplication. On sets, * denotes inter
section. That is, e IN (x * y) if and only if (e IN x) AND (e IN y). The types of 
x and y must be the same, and the result is the same type as both. 

infix / (x,y: Float) : Float 
(x,y: Set) : Set 

On reals, / denotes division. On sets, / denotes symmetric difference. That 
is, e IN (x / y) if and only if (e IN x) # (e IN y). The types ofx and y must be 
the same, and the result is the same type as both. 

infix DIV (x,y: INTEGER) : INTEGER 
infix MOD (x,y: INTEGER) : INTEGER 

MOD (x, y: Float) : Float 

The value x DIV y is the floor of the quotient of x and y; that is, the max
imum integer not exceeding the real number z such that z * y = x. For 
integers x and y, the value ofx MOD y is defined to be x - y * (x DIV y). 

This means that for positive y, the value ofx MOD y lies in the interval 
[0 .. y-1], regardless ofthe sign of x. For negative y, the value of x MOD y 
lies in the interval [y+ 1 .. 0], regardless of the sign of x. 
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If X and yare floats, the value of x MOD Y is x - Y * FLOOR(x / y). This 
may be computed as a Modula-3 expression, or by a method that avoids 
overflow if x is much greater than y. The types ofx and y must be the same, 
and the result is the same type as both. 

ASS (x: INTEGER) : INTEGER 
(x: Float) : Float 

ASS(x) is the absolute value of x. If x is a float, the type of ASS (x) is the 
same as the type of x. 

FLOAT (x: INTEGER; T: Type := REAL) : T 
(x: Float; T: Type := REAL) : T 

FLOAT(x, T) is a floating-point value of type T that is equal to or very near 
x. The type T must be a floating-point type; it defaults to REAL. The exact 
semantics depend on the thread's current rounding mode, as defined in the 
required interface FloatMode (--+C.1.5, p. 530). 

FLOOR (x: Float) : INTEGER 
CEILING (x: Float) : INTEGER 

FLOOR(x) is the greatest integer not exceeding x. CEILlNG(x) is the least 
integer not less than x. 

ROUND (r: Float) : INTEGER 
TRUNC (r: Float) : INTEGER 

ROUND(r) is the nearest integer to r; ties are broken according to the con
stant RoundDefault in the required interface FloatMode (--+C.l.6, p. 533). 
TRUNC(r) rounds r toward zero; it equals FLOOR(r) for positive rand CEIL
ING(r) for negative r. 

MAX, MIN (x,y: Ordinal) : Ordinal 
(x,y: Float) : Float 

MAX returns the greater of the two values x and y; MIN returns the lesser. 
Ifx and yare ordinals (--+B.2.1, p. 470), they must have the same base type, 
which is the type of the result. If x and yare floats, they must have the 
same type, and the result is the same type as both. 
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B.6.11 Relations 

infix =, # (x, y: Any): BOOLEAN 

The operator = returns TRUE if x and yare equal. The operator # returns 
TRUE if x and yare not equal. It is a static error if the type of x is not 
assignable to the type of y or vice versa. 

Ordinals are equal if they have the same value. Floats are equal if the 
underlying implementation defines them to be; for example, on an IEEE 
implementation, +0 equals -0 and NaN does not equal itself References 
are equal if they address the same location. Procedures are equal if they 
agree as closures; that is, if they refer to the same procedure body and 
environment. Sets are equal if they have the same elements. Arrays are 
equal if they have the same length and corresponding elements are equal. 
Records are equal if they have the same fields and corresponding fields are 
equal. 

infix <=, >= (x,y: Ordinal) : BOOLEAN 
(x,y: Float) : BOOLEAN 
(x,y: ADDRESS): BOOLEAN 
(x,y: Set) : BOOLEAN 

In the first three cases, <= returns TRUE if x is at most as large as y. In 
the last case, <= returns TRUE if every element ofx is an element ofy. In 
all cases, it is a static error if the type of x is not assignable to the type of 
y, or vice versa. The expression x >= y is equivalent to y <= x. 

infix >, < (x,y: Ordinal) : BOOLEAN 
(x,y: Float) : BOOLEAN 
(x,y: ADDRESS): BOOLEAN 
(x,y: Set) : BOOLEAN 

In all cases, x < y means (x <= y) AND (x # y), and x> y means y < x. It is 
a static error if the type of x is not assignable to the type ofy, or vice versa. 

Warning: with IEEE floating-point, x <= y is not the same as NOT x > y. 

infix IN (e: Ordinal; s: Set): BOOLEAN 

Returns TRUE ife is an element of the set s. It is a static error if the type 
of e is not assignable to the element type of s. If the value of e is not a 
member ofthe element type, no error occurs, but IN returns FALSE. 
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B.6.12 Boolean operations 

prefix NOT (p: BOOLEAN) : BOOLEAN 
infix AND (p,q: BOOLEAN) : BOOLEAN 
infix OR (p,q: BOOLEAN) : BOOLEAN 

NOT P is the complement of p. 
p AND q is TRUE if both p and q are TRUE. If P is FALSE, q is not 

evaluated. 
p OR q is TRUE if at least one of p and q is TRUE. If p is TRUE, q is not 

evaluated. 

B.6.13 Type operations 

ISTYPE (x: Reference; T: RefType) : BOOLEAN 

ISTYPE(x, T) is TRUE if and only if x is a member ofT. T must be an object 
type or traced reference type (----'tB.2.7 and B.2.9, p. 474 and 477), and x 
must be assignable to T (----'tB.3.1, p. 483). 

NARROW (x: Reference; T: RefType): T 

NARROW(x, T) returns x after checking that x is a member ofT. If the check 
fails, a runtime error occurs. T must be an object type or traced reference 
type, and x must be assignable to T. 

TYPECODE (T: RefType) : CARDINAL 
(r: REFANY) : CARDINAL 
(r: UNTRACED ROOT): CARDINAL 

Every object type or traced reference type (including NULL) has an asso
ciated integer code. Different types have different codes. The code for a 
type is constant for any single execution of a program, but may differ for 
different executions. TYPECODE(T) returns the code for the type T and 
TYPECODE(r) returns the code for the allocated type ofr. It is a static error 
ifT is REFANY or is not an object type or traced reference type. 

ORO (element: Ordinal) : INTEGER 
VAL (i: INTEGER; T: OrdinalType) : T 

ORO converts an element of an enumeration (----'tB.2.1, p. 470) to the integer 
that represents its position in the enumeration order. The first value in any 
enumeration is represented by zero. If the type of element is a subrange of 
an enumeration T, the result is the position of the element within T, not 
within the subrange. 
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VAL is the inverse ofORD; it converts from a numeric position i into the 
element that occupies that position in an enumeration. If T is a subrange, 
VAL returns the element with the position i in the original enumeration 
type, not the subrange. It is a checked runtime error for the value of i to be 
out of range for T. 

Ifn is an integer, ORD(n) = VAL(n, INTEGER) = n. 

NUMBER (T: OrdinalType) : CARDINAL 
(A: FixedArrayType) : CARDINAL 
(a: Array) : CARDINAL 

For an ordinal type T, NUMBER(T) returns the number of elements in T. 
For a fixed array type A, NUMBER(A) is defined by NUMBER(lndexType(A)). 
Similarly, for an array a, NUMBER(a) is defined by NUMBER(lndexType(a)). 
In this case, the expression a will be evaluated only if it denotes an open 
array. 

FIRST (T: OrdinalType) 
(T: FloatType) 

LAST 

(A: FixedArrayType) 
(a: Array) 

(T: OrdinalType) 
(T: FloatType) 
(A: FixedArrayType) 
(a: Array) 

: BaseType(T) 
:T 
: BaseType(lndexType(A)) 
: BaseType(lndexType(a)) 

: BaseType(T) 
:T 
: BaseType(lndexType(A)) 
: BaseType(lndexType(a)) 

For a non-empty ordinal type T, FIRST returns the smallest value ofT and 
LAST returns the largest value. If T is the empty enumeration, FIRST(T) 
and LAST(T) are static errors. If T is any other empty ordinal type, the 
values returned are implementation-dependent, but they satisfy FIRST(T) 
> LAST(T). 

For a floating-point type T, FIRST(T) and LAST(T) are the smallest and 
largest values of the type, respectively. On IEEE implementations, these 
are minus and plus infinity. 

For a fixed array type A, FIRST(A) is defined by FIRST(lndexType(A)) 
and LAST(A) by LAST(lndexType(A)). Similarly, for an array a, FIRST(a) 
and LAST(a) are defined by FIRST(lndexType(a)) and LAST(lndexType(a)). 
The expression a will be evaluated only ifit is an open array. Note that if a 
is an open array, FIRST(a) and LAST(a) have type INTEGER. 

BITSIZE (x: Any) : CARDINAL 
(T: Type): CARDINAL 
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BYTESIZE (x: Any) : CARDINAL 
(T: Type): CARDINAL 

ADRSIZE (x: Any) : CARDINAL 
(T: Type): CARDINAL 

B. Language Definition 

These operations return the size of the variable x or of variables of type T. 
BITSIZE returns the number of bits, BYTESIZE the number of 8-bit bytes, 
and ADRSIZE the number of addressable locations. In all cases, x must be 
a designator and T must not be an open array type. A designator x will be 
evaluated only if its type is an open array type. 

B.6.14 Text operations 

infix & (a,b: TEXT): TEXT 

The concatenation ofa and b, as defined by Text.Cat (---+C.l.l, p. 525). 

B.6.15 Constant Expressions 

Constant expressions are a subset of the general class of expressions, re
stricted by the requirement that it must be possible to evaluate the ex
pression statically. All operations are legal in constant expressions except 
for ADR, LOOPHOLE, TYPECODE, NARROW, ISTYPE, SUBARRAY, NEW, 
dereferencing (explicit or implicit), and the only procedures that can be 
applied are the functions in the Word interface (---+C.1.3, p. 528). 

A variable can appear in a constant expression only as an argument 
to FIRST, LAST, NUMBER, BITSIZE, BYTESIZE, or ADRSIZE, and such a 
variable must not have an open array type. Literals and top-level proce
dure constants are legal in constant expressions. 

B.7 Unsafe operations 

The features defined in this section can potentially cause unchecked run
time errors and are thus forbidden in safe modules (---+B.5.6, p. 503). 

An unchecked type transfer operation has the form: 

LOOPHOLE(e, T) 

where e is an expression whose type is not an open array type and T is a 
type. It denotes e's bit pattern interpreted as a variable or value of type T. 
It is a designator if e is, and is writable if e is. An unchecked runtime error 
can occur if e's bit pattern is not a legal T, or if e is a designator and some 
legal bit pattern for T is not legal for e. 
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1fT is not an open array type, BITSIZE(e} must equal BITSIZE(T}. 1fT is 
an open array type, its element type must not be an open array type, and 
e's bit pattern is interpreted as an array whose length is BITSIZE(e} divided 
by BITSIZE(the element type ofT}. The division must come out even. 

The following operations are primarily used for address arithmetic: 

ADR (VAR x: Any) : ADDRESS 

+ (x: ADDRESS, y:INTEGER): ADDRESS 
(x: ADDRESS, y:INTEGER): ADDRESS 
(x,y: ADDRESS) : INTEGER 

ADR(x} is the address of the variable x. The actual argument must be a 
designator but need not be writable. The operations + and - treat addresses 
as integers. The validity of the addresses produced by these operations is 
implementation-dependent. For example, the address of a variable in a 
local procedure frame is probably valid only for the duration of the call. 
The address of the referent of a traced reference is probably valid only as 
long as traced references prevent it from being collected (and not even that 
long ifthe implementation uses a compacting collector). 

In unsafe modules the INC and DEC statements apply to addresses as 
well as ordinals: 

INC (VAR x: ADDRESS; n: INTEGER:= 1) 
DEC (VAR x: ADDRESS; n: INTEGER:= 1) 

These are short for x := x + n and x := x - n, except that X is evaluated only 
once. 

A DISPOSE statement has the form: 

DISPOSE (v) 

where v is a writable designator whose type is not REFANY, ADDRESS, 
or NULL. If v is untraced, the statement frees the storage for v's referent 
and sets v to NIL. Freeing storage to which active references remain is an 
unchecked runtime error. If v is traced, the statement is equivalent to v := 
NIL. Ifv is NIL, the statement is a no-op. 

In unsafe modules the definition of "assignable" for types is extended: 
two reference types T and U are assignable if T <: U or U <: T. The only 
effect of this change is to allow a value of type ADDRESS to be assigned to 
a variable of type UNTRACED REF T. It is an unchecked runtime error if 
the value does not address a variable oftype T. 

In unsafe modules the type constructor UNTRACED REF T is allowed 
for traced as well as untraced T, and the fields of untraced objects can 
be traced. If u is an untraced reference to a traced variable t, then the 
validity of the traced references in t is implementation-dependent, since 
the garbage collector probably will not trace them through u. 
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B.8 Syntax 

B.8.t Keywords 
AND DO FINALLY METHODS RAISES THEN VAR 
ARRAY ELSE FOR MOD READONLY TO WHILE 
BEGIN ELSIF FROM MODULE RECORD TRY WITH 
BITS END IF NOT REF TYPE 
BRANDED EVAL IMPORT OBJECT REPEAT TYPE CASE 
BY EXCEPT IN OF RETURN UNSAFE 
CASE EXCEPTION INTERFACE OR REVEAL UNTIL 
CONST EXIT LOCK PROCEDURE ROOT UNTRACED 
DIV EXPORTS LOOP RAISE SET VALUE 

B.8.2 Reserved identifiers 

Here are the reserved identifiers, which cannot be redeclared: 

ABS 
ADDRESS 
ADR 
ADRSIZE 
BlTSIZE 
BOOLEAN 

BYTESIZE 
CARDINAL 
CEILING 
CHAR 
DEC 
DISPOSE 

B.8.3 Operators 

FALSE 
FIRST 
FLOAT 
FLOOR 
INC 
INTEGER 

ISTYPE 
LAST 
LONGFLOAT 
LONGREAL 
LOOPHOLE 
MAX 

MIN 
MUTEX 
NARROW 
NEW 
NIL 
NULL 

NUMBER 
ORD 
REAL 
REFANY 
ROUND 
SUBARRAY 

TEXT 
TRUE 
TRUNC 
TYPECODE 
VAL 

The following characters and character pairs are classified as operators: 

+ < # 
> { .= <: 

* <= ( => 

/ >= [ & 

B.8.4 Comments 

A comment is an arbitrary character sequence opened by (* and closed by 
*). Comments can be nested and can extend over more than one line. 

B.8.5 Pragmas 

A pragma is an arbitrary character sequence opened by <* and closed by 
*>. Pragmas can be nested and can extend over more than one line. Prag
mas are hints to the implementation; they do not affect the language se
mantics. 

We recommend supporting the two pragmas <*INLlNE*> and 
<*EXTERNAL*>. The pragma <*INLlNE*> precedes a procedure declara
tion to indicate that the procedure should be expanded at the point of call. 
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The pragma <* EXTERNAL N:L *> precedes an interface or a declaration 
in an interface to indicate that the entity it precedes is implemented by 
the language L, where it has the name N. If ":L" is omitted, then the im
plementation's default external language is assumed. If "N" is omitted, 
then the external name is determined from the Modula-3 name in some 
implementation-dependent way. 

B.8.6 Conventions for syntax 

We use the following notation for defining syntax: 

X Y X followed by Y 
X I Y X or Y. 
[Xl X or empty 
{X} A possibly empty sequence of X's 

"Followed by" has greater binding power than I; parentheses are used to 
override this precedence rule. Non-terminals begin with an upper-case 
letter. Terminals are either keywords or quoted operators. The symbols 
Idents9 Number94 TextLiteral92 and CharLiteral9l are defined in the token 
grammar on page 522. Each production is terminated by a period. The 
syntax does not reflect the restrictions that revelations and exceptions can 
be declared only at the top level; nor does it include explicit productions for 
NEW, INC, and DEC, which parse like procedure calls. 

B.8.7 Compilation unit productions 

Compilationl = Interface2 I Module3 I Glnterface4 
I GModule5 Ilinterface6 IIModule7. 

2 Interface2 = ["UNSAFE" 1 "INTERFACE" IdentS9 ";" { ImportlO } 
{ Declaration13 } "END" IdentS9 ".". 

3 Module3 = ["UNSAFE" 1 "MODULE" IdentS9 [ "EXPORTS" IDLists7 1 
";" { ImportlO } Blockl2 IdentS9 ".". 

4 Glnterface4 = "GENERIC" "INTERFACE" Idents9 GFmlss ";" 
{ ImportlO } { Declaration13 } "END" Idents9 ".". 

5 GModule5 = "GENERIC" "MODULE" Idents9 GFmlss ";" 
{ ImportlO } Blockl2 Idents9 ".". 

6 IInterface6 = ["UNSAFE" 1 "INTERFACE" Idents9 "=' , Idents9 GActls9 
"END" Idents9 !I" .. 

7 IModule7 = ["UNSAFE" 1 "MODULE" Idents9 
[ "EXPORTS" IDUsts7 1 "=" Idents9 GActls9 "END" 
Idents9 "" .. 

8 GFmlss = "(" [ IDUsts7 1 ")". 
9 GActisg = "(" [ IDUsts7 1 ")". 
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10 ImportlO 

11 Importltemll 
12 Block12 
13 Oeclaration13 

B. Language Definition 

= "IMPORT" Importltemll { "." Importltemll } "; " 
I "FROM" Ident89 "IMPORT" IOUSt87 ";". 

= Ident89 [ AS Ident89 ]. 
= { Oeclaration13 }"BEGIN" Stmts23 "ENO". 
= "CONST" { ConstDecl14 ";" } ! "TYP E" { TypeOecl15 ";" } 

I "EXCEPTION" { ExceptionOecl16 ";" } 
I "VAR" { VariableOecl17 ";" } 

I ProcedureHead18 [ "=" Block12 Ident89 ) ";". 
I "REVEA~' Idents9 ("=" I "<:" ) Type48. 

14 ConstDecl14 = Ident89 [":" Type48 1"=" ConstExpr65. 
15 TypeOecl15 = Ident89 ("=" I "<:" ) Type48· 
16 ExceptionOecl16 = Ident89 [ .. ( .. Type48 .. ) "). 
17 VariableOecl17 = IOUSt87 ( ":" Type48 ":=" EXpr66 I ":" Type48 I ":=" EXpr66 ). 
18 ProcedureHead18= "PROCEOURE" Ident89 Signature19. 
19 Signature19 = .. ( .. Formals20 .. )" [ ":" Type48 ] [ • 'RAISES" Raises22 ]. 
20 Formals20 = [ Formal21 { ";" Formab } [ ";" ] ]. 
21 Formal21 = ["VALUE" I "VAR" I "REAOONLY" ] IOUSt87 

( ":" Type48 I ":=" ConstExpr65 
I ":" Type48 ":=" ConstExpr65 ). 

22 Raises22 = .. {" [Qua1l086 { ..... QuallOS6 })"} "I"ANY" . 

B.8.8 Statement productions 

23 Stmts23 
24 Stmt24 

25 AssignStmt25 
26 CallStmt26 
27 CaseStmt27 

28 ExitStmhs 
29 EvalStmt29 
30 ForStmt3o 

31 IfStmt31 

32 LockStmt32 
33 LoopStmh3 
34 RaiseStmt34 
35 RepeatStmt35 
36 ReturnStmt36 

= [Stmt24 { ";" Stmt24 } [ ";" ) ]. 
= AssignStmt25 I Block12 I CallStmt26 I CaseStmt27 

I ExitStmt28 I EvalStmt29 I ForStmt3o I IfStmt31 
I LockStmt32 I LoopStmt33 I RaiseStmt34 I RepeatStmt35 
I ReturnStmt36 I TryFinStmt39 I TryXptStmt38 
I TCaseStmt37 I WhileStmt40 I WithStmt41. 

= EXpr66 ":=" EXpr66. 
= EXpr66 "c [Actual47 { .. ;. Actual47 } )")". 
= "CASE" EXpr66 "OF" [ Case42 ] { "I" Case42 } 

[ "ELSE" Stmts23] "ENO". 
= "EXIT". 
= "EVA~' EXpr66. 
= "FOR" Idents9 ":=" EXpr66 "TO" EXpr66 

[ "BY" Expr66 ] "00" Stmts23 "ENO". 
= "IF" Expr66 "THEN" Stmts23 

{ "ELSIF" Expr66 ''THEN'' Stmts23 } 
[ "ELSE" Stmts23 ] "ENO". 

= "LOCK" Expr66 "00" Stmts23 "ENO". 
= "LOOP" Stmts23 "ENO". 
= "RAISE" QuallOS6 [ "c Expr66 .. )" ]. 
= "REPEAT" Stmts23 "UNTI~' Expr66. 
= "RETURN" [ EXpr66 ]. 
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37 TCaseStmt37 

38 TryXptStmt38 

39 TryFinStmt39 
40 WhileStmt40 
41 WithStmt41 
42 Case42 
43 Labels43 
44 Handler44 
45 Tcase45 
46 Binding46 
47 Actual47 

= ''TYPECASE'' Expr66 "OF" [Tcase45 ] 
{ ''I'' Tcase45 } ["ELSE" Stmts23 ] "END". 

= ''TRY'' Stmts23 "EXCEPT' [ Handler44] { ''I'' Handler44 } 
[ "ELSE" Stmts231 "END". 

= ''TRY'' Stmts23 "FINALLY" Stmts23 "END". 
= "WHILE" Expr66 "DO" Stmts23 "END". 
= "WITH" Binding46 { "," Binding46 } "DO" Stmts23 "END". 
= Labels43 { "," Labels43 } "=(." Stmts23. 
= ConstExpr65 [ " .. " ConstExpr65 ]. 
= QuallD86 { "," QuallD86 } ["(" Ident89 ")" ] "=(." Stmts23. 
= Type48 { "," Type48 } [ "(" Ident89 ")" ] "=(." Stmts23 . 
= Ident89 "=" Expr66. 
= [ Ident89 ":=" ] Expr66 I Type48. 

B.8.9 Type productions 

48 Type48 

49 ArrayType49 
50 PackedType50 
51 EnumType51 
52 ObjectType52 

= TypeName85 I ArrayType49 I PackedType501 EnumType51 
I ObjectType52 I ProcedureType53 I RecordType54 
I RefType55 I SetType56 I SubrangeType57 I "(" Type48")". 

= "ARRAY" [ Type48 { "," Type48 } ] "OF" Type48. 
= "BITS" ConstExpr65 "FOR" Type48. 
= "{" [ IDUst87 ] "y. 
= [TypeName85 I ObjectType52 ] [ Brand58 1 

"OBJECT' Fields59 
[ "METHODS" Methods61 ] 
[ "OVERRIDES" Overrides63 ] "END". 

53 ProcedureType53 = "PROCEDURE" Signature19. 
54 RecordType54 = "RECORD" Fields59 "END". 
55 RefType55 = ["UNTRACED"] [ Brand58 ] "REF" Type4S. 
56 SetType56 = "SET' "OF" Type48. 
57 SubrangeType57 = "[" ConstExpr65 " .. " ConstExpr65 "] ". 
58 Brand58 = "BRANDED" [TextUteral92 ]. 
59 Fields59 = [Field6o { ";" Field60 } [ ";" 11 . 
60 Field60 = IDUst87 ( ":" Type48 I ":=" ConstExpr65 I 

61 Methods61 
62 Method62 
63 Overrides63 
64 Override64 

":" Type48 ":=" ConstExpr65 ). 
= [ Method62 { ";" Method62 } [";" ] ]. 
= Ident89 Signature19 [ ":=" ConstExpr65 ]. 
= [Override64 { ";" Override64 } [";" ] ]. 
= Ident89 ":=" ConstExpr65. 

B.8.10 Expression productions 

65 ConstExpr65 
66 Expr66 

= Expr66. 
= E167 {"OR" E167 }. 

521 
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67 E167 
68 E268 
69 E369 
70 E470 
71 E5n 
72 E672 
73 E773 
74 E874 

75 ReloP75 
76 AddoP76 
77 Mulop77 
78 Selector78 

79 Constructor79 
80 SetCons80 
81 SetElt81 
82 RecordCons82 
83 RecordElt83 
84 ArrayCons84 

= E268 { "AND" E268 }. 
= { "NOT" } E369 . 
= E470 { Relop75 E470 }. 
= E571 { AddOP76 E571 }. 
= E672 { Mulop77 E672 }. 
= {"+" I "-"} E773 · 
= E874 { Selector78 }. 
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= Ident89 I Number94 I CharLiteral91 I TextLiteral92 
I Constructor79 I "(" EXpr66 ")". 

= "=" I "#" I "<" I "<=" I ">" I ">=" 1 "IN", 
= "+" I "-" I "&". 
= "*" I "f' I "DIV" I "MOD". 
= """ I "." IdentS9 i "[" EXpr66 { "," EXpr66 } "]" 

I "(" [ Actual47 { "," Actual47 } 1 ")". 
= Type48 "{" [ SetCons80 I RecordConS82 I ArrayConss4 1 "}". 
= SetEltSl { "," SetElt81 }. 
= EXpr66 [ ",," EXpr66 ]. 
= RecordElts3 { "," RecordElts3 }. 

= [ Idents9 ":=" 1 EXpr66' 
= EXpr66 {"," EXpr66 } [ "," ",," ]. 

B.S.ll Miscellaneous productions 

85 TypeNameS5 
86 QuallD86 
87 IDListS7 

= QuallD86 I "ROOT" I "UNTRACED ROOT" 
= Idents9 [ "." Ident89 ]. 
= Idents9 { "," Ident89 }. 

B.S.12 Token productions 

To read a token, first skip all blanks, tabs, newlines, carriage returns, ver
tical tabs, form feeds, comments, and pragmas. Then read the longest se
quence of characters that forms an operator (as defined in Section B.8.3, 
page 518) or an Id or Literal, as defined here. An Id is a case-significant 
sequence of letters, digits, and underscores that begins with a letter. An Id 
is a keyword if it appears in Section B.8.1, a reserved identifier if it appears 
in Section B.8.2, and an ordinary identifier otherwise. 

In the following grammar, terminals are characters surrounded by dou
blequotes and the special terminal DQUOTE represents doublequote itself. 

88 Literal88 
89 Ident89 
90 Operator90 

= Number94 I CharLiteral91 I TextLiteral92. 
= LetterlOO { LetterlOO I Digit98 I "-" }. 
= "+" I "-" I "*,, I nt' I ", " I nAn I ":" "=" I "=" 

I "#" I "<" 1"<" "=" I ">" "=" I ">" I "&" 
I "<""," I "="">" I "," I ";" I "I" I ":" I"," "." 
I "(" I ")" I "{" I "}" I "[" I "]". 
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91 CharLiteral91 
92 TextLiteral92 
93 Escape93 

94 Number94 

95 Exponent95 

96 PrintingChar96 
97 HexDigit97 

98 Digit98 
99 OctaiDigit99 
100 Letter 100 
101 OtherChar101 

= "'" (PrintingChar96 I Escape93 I DQUOTE) ""'. 
= DQUOTE { PrintingChar96 I Escape93 I '" " } DQUOTE. 
~ , "n" I "\" !It" I "\" "r" I "\" "f" I "\" "\" I "\" "'" 

1"\" DQUOTE I "\" OctaiDigit99 0ctaiDigit OctalDigit99. 
= Digit98 { Digit98 } 

I Digit98 { Digit98 } "-" HexDigit97 { HexDigit97 } 
I Digit98 { Digit98 } "." Digit98 { Digit98 } [ Exponent95). 

= ("E"I"e"I"D"I"d"I"X"I"x") [" +" I "_") Digit98 { Digit98 }. 
= Letter 100 I Digit98 I OtherChar 101· 
= Digitgg I "An I "8" I "G" I "0" I "E" I "F" 

I "a" I "b" I "e" I "d" I "e" I "f", 
= "0" I "1" I··· 1"9". 
= "0" I "1" 1···1 "7", 
= "A" I "B" I··· I "Z" I "a" I "b" I··· I "z". 
= " " I "!" I "#" I !I\" I " 0/0" I "&" I "(" 1 ")" I "*,, I "+" 

I "," I "-" I "." I "t' I ":" I ";" I "<" I "=" I ">" I"?" 
I "@" I "[" I "]" I ,,"n I "-" I '"'' I "{ " I "I" I "}" I " " 
I ExtendedChar102. 

102 ExtendedChar102 = any char with Iso-Latin-l code in [8240 .. 8_377). 
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Appendix C 

Library interfaces 

C.I Standard interfaces 

The interfaces Thread, Word and Text as well as the floating-point interfaces 
Real, LongReal, Extended, Float and FloatMode must be provided by every 
language environment. The interfaces listed here represent the minimum 
that a Modula-3 language environment must provide; a given environment 
can extend them. 

The floating-point interfaces allow invocation ofthe floating-point arith
metic of the respective language environment. The terminology employed 
stems from ANSI/IEEE Standard 754-1985 for floating-point arithmetic. All 
other interfaces are explained in detail in [Ne191], the source of the inter
faces printed here. 

C.l.I Text 

A variable of type TEXT references a numbered sequence of characters, 
where the first character is at position o. The value NIL does not represent 
a sequence of characters and is never returned by the following procedures; 
passing NIL to these procedures as parameter leads to a run-time error. 
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INTERFACE Text; 

IMPORT Word; 

(*Copyright (C) 1994, Digital Equipment Corporation. *) 

TYPE T = TEXT; 

CONST Brand = "Text-1.0"; 

PROCEDURE Cat(t, u: T): T; 
(*Return the concatenation oft and u. *) 

PROCEDURE Equal(t, u: T): BOOLEAN; 
(*Return TRUE ift and u have the same length and (case-sensitive) contents. *) 

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR; 
(*Return character i oft. It is a checked runtime error ifi >= Length(t). *) 

PROCEDURE Length(t: T): CARDINAL; 
(*Return the number of characters in t. *) 

PROCEDURE Empty(t: T): BOOLEAN; 
(*Equivalent to Length(t) = o. *) 

PROCEDURE Sub(t: T; start: CARDINAL; length: CARDINAL := LAST(CARDINAL)): T; 
(*Return a sub-sequence oft: empty if start >= Length(t) or 

length = 0; otherwise the subsequence ranging from start to the 
minimum ofstart+length-1 and Length(t)-1. *) 

PROCEDURE SetChars(VAR a: ARRAY OF CHAR; t: T); 
(*For each i from 0 to MIN(LAST(a), Length(t)-1), set ali] to GetChar(t, i). *) 

PROCEDURE FromChar(ch: CHAR): T; 
(*Return a text containing the single character ch. *) 

PROCEDURE FromChars(READONLY a: ARRAY OF CHAR): T; 
(*Return a text containing the characters of a. *) 

PROCEDURE Hash(t: T): Word.T; 
(*Return a hash function of the contents oft. *) 

PROCEDURE Compare(t1, t2: T): [-1 .. 1]; 
(*Return -1 ift1 occurs before t2, 0 if Equal(t1, t2), +1 ift1 

occurs after t2 in lexicographic order. *) 

PROCEDURE FindChar(t: T; c: CHAR; start := 0): INTEGER; 
(* If c = t[i] for some i in [start .. Length(t)-11 return the 

smallest such i; otherwise, return -1. *) 

PROCEDURE FindCharR(t: T; c: CHAR; start := LAST(INTEGER)): INTEGER; 
(*If c = t[i] for some i in [0 .. MIN(start, Length(t)-1 )], 

return the largest such i; otherwise, return -1. *) 
END Text. 
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C.1.2 Thread 

A variable of type Thread.T identifies a thread. A MUTEX variable is either 
not locked or is locked by a thread. A condition variable (i.e., a variable of 
type Thread.Condition) is a set of waiting threads. A newly created MUTEX 
variable is not locked; a newly created condition variable is empty. NIL is 
not a practical value for variables of these three types; it is a checked run
time error to pass the NIL MUTEX, condition, or Thread.T to any procedures 
in this interface. 

For a detailed explanation ofthese terms, see Chapter 16. 

INTERFACE Thread; 

TYPE 
T <: ROOT; 
Mutex = MUTEX; 
Condition <: ROOT; 

(*Copyright (C) 1989, 1993 Digital Equipment Corporation *) 

TYPE Closure = OBJECT METHODS applyO: REFANY END; 

PROCEDURE Fork(cl: Closure): T; 
(*Return a handle on a newly-created thread executing cl.applyO. *) 

PROCEDURE Join(t: T): REFANY; 
(*Wait until t has terminated and return its result. It is a 

checked runtime error to call this more than once for any t. *) 

PROCEDURE Wait(m: Mutex; c: Condition); 
(*The calling thread must have m locked. Atomically unlocks m and 

waits on c. Then relocks m and returns. *) 

PROCEDURE Acquire(m: Mutex); 
(*Wait until m is unlocked and then lock it. *) 

PROCEDURE Release(m: Mutex); 
(*The calling thread must have m locked. Unlocks m. *) 

PROCEDURE Broadcast(c: Condition); 
(~All threads waiting on c become eligible to run. *) 

PROCEDURE Signal(c: Condition); 
(*One or more threads waiting on c become eligible to run. *) 

PROCEDURE Pause(n: LONG REAL); 
(*Wait for n seconds to elapse. 

To wait until a specified point in time in the future, say t, 
you can use the call Pause(t - Time.Now()) *) 

PROCEDURE Self 0: T; 
(*Return the handle of the calling thread. *) 
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EXCEPTION Alerted; 
(*Used to approximate asynchronous interrupts. *) 

PROCEDURE Alert(t: T); 
(*Mark t as an alerted thread. *) 

PROCEDURE TestAlertO: BOOLEAN; 
(*Ifthe calling thread has been marked alerted, return TRUE and 

unmark it. *) 

PROCEDURE AlertWait(m: Mutex; c: Condition) RAISES {Alerted}; 
(*Like Wait, but if the thread is marked alerted at the time of 

call or sometime during the wait, lock m and raise Alerted. *) 

PROCEDURE AlertJoin(t: T): REFANY RAISES {Alerted}; 
(*Like Join, but if the thread is marked alerted at the time of 

call or sometime during the wait, raise Alerted. *) 

PROCEDURE AlertPause(n: LONG REAL) RAISES {Alerted}; 
(*Like Pause, but if the thread is marked alerted at the time of 

the call or sometime during the wait, raise Alerted. *) 

(*Specifying thread stack size. 
Normally Fork uses a default value for the size of the stack of 
the new thread. It is possible to change the default value, and also 
to specify the value used for a particular call to Fork by supplying 
a SizedClosure rather than a Closure. Stack sizes are given as a 
number ofWord.Ts. *) 

PROCEDURE GetDefaultStackSizeO: CARDINAL; 
(*Return the current default stack size for new threads. *) 

PROCEDURE MinDefaultStackSize(min: CARDINAL); 
("'Change the default stack size for newly forked threads to the 

greater of min and the current default stack size. *) 

PROCEDURE IncDefaultStackSize(inc: CARDINAL); 
(*Increment the default stack size for newly forked threads by inc. *) 

TYPE 
SizedClosure = Closure OBJECT stackSize: CARDINAL := 0 END; 

END Thread. 

C.1.3 Word 

The type Word.T represents a sequence of Word.Size bits numbered from 
o to Word.Size-1. A value of this type is also a natural number resulting 
when the bits are interpreted as dual digits (with bit number 0 having the 
least place value). 
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INTERFACE Word; (*Copyright (C) 1989, Digital Equipment Corporation *) 

TYPE 
T = INTEGER; (*encoding is implementation-dependent; e.g., 2's complement. *) 

CONST 
Size: INTEGER = BITSIZE (T); 

PROCEDURE Plus 
PROCEDURE Times 
PROCEDURE Minus 
PROCEDURE Divide 
PROCEDURE Mod 
PROCEDURE LT 
PROCEDURE LE 
PROCEDURE GT 
PROCEDURE GE 
PROCEDURE And 
PROCEDURE Or 
PROCEDURE Xor 
PROCEDURE Not 

(x, y: T): T; 
(x, y: T): T; 
(x, y: T): T; 
(x, y: T): T; 
(x, y: T): T; 
(x, y: T): BOOLEAN; 
(x, y: T): BOOLEAN; 
(x, y: T): BOOLEAN; 
(x, y: T): BOOLEAN; 
(x, y: T): T; 
(x, y: T): T; 
(x, y: T): T; 
(x: T): T; 

PROCEDURE Shift (x: T; n: INTEGER): T; 

(*implementation-dependent *) 

(*(x + y) MOD 2Word.Size *) 
(*(x * y) MOD 2Word.Size *) 
(*(x - y) MOD 2Word.Size *) 

(*x divided by y *) 
(*xMOD y *) 

(*x < y *) 

(*x <=y *) 
(*x > y *) 

(*x >=y *) 
(*Bitwise AND of x and y *) 

(*Bitwise OR ofx andy *) 
(*Bitwise XOR of x and y *) 

(*Bitwise complement ofx *) 

(*For all i such that both i and i - n are in the range [0 .. Word.8ize -lJ, 
bit i of the result equals bit i - n ofx. The other bits of the result are O. 
Thus, shifting by n > 0 is like multiplying by 2n *) 

PROCEDURE LeftShift (x: T; n: [O .. Size-1]): T; 
(*= Shift (x, n) *) 

PROCEDURE RightShift (x: T; n: [O .. Size-1]): T; 
(*= Shift (x, -n) *) 

PROCEDURE Rotate (x: T; n: INTEGER): T; 
("'Bit i of the result equals bit (i - n) MOD Word. Size ofx. *) 

PROCEDURE LeftRotate (x: T; n: [O .. Size-1]): T; 
(*= Rotate (x, n) *) 

PROCEDURE RightRotate (x: T; n: [O .. Size-1]): T; 
(*= Rotate (x, -n) *) 

PROCEDURE Extract (x: T; i, n: CARDINAL): T; 
(*Take n bits from x, with bit i as the least significant bit, and return them 

as the least significant n bits of a word whose other bits are O. 
A checked runtime error if n + i > Word. Size. *) 

PROCEDURE Insert (x, y: T; i, n: CARDINAL): T; 
(*Return x with n bits replaced, with bit i as the least significant bit, by 

the least significant n bits ofy. The other bits ofx are unchanged. 
A checked runtime error ifn + i > Word.Size. *) 

END Word. 
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C.1.4 Real 

The interface Real defines the representation and range of floating-point 
numbers in the language environment. There are analogous interfaces for 
LongReal and Extended. The values of constants are examples and depend 
on the language environment. 

INTERFACE Real; (*Copyright (C) 1991, Digital Equipment Corporation *) 

(*Properties of REAL (for ANSI/IEEE Standard 754-1985). 

This package defines some basic properties of the built-in float type REAL. *) 

TYPE T = REAL; 

CONST 
Base: INTEGER = 2; (*The radix of the floating-point representation for T *) 

Precision: INTEGER = 24; (*The number of digits of precision in the given Base for T *) 

MaxFinite: T = 3.40282347E+38; 
(*The maximum finite value in T. For non- IEEE implementations, this is 

the same as LAST(T). *) 

MinPos: T = 1.40239846E-45; 

MinPosNormal: T = 1.17549435E-38; 

(*The minimum positive value in T. *) 

(*The minimum positive normal value in T; differs from MinPos only for 
implementations with denormalized numbers. *) 

CONST 
MaxExpDigits = 2; 
MaxSignifDigits = 9; 

(*MaxExpDigits is the smallest integer with the property that every 
finite number of type T can be written in base-10 scientific 
notation using an exponent with at most MaxExpDigits. 
MaxSignifDigits is the smallest integer with the property that 
floating-decimal numbers with MaxSignifDigits are more closely 
spaced, all along the number line, than are numbers of type T. 
Typically, 
MaxExpDigits = ceiling(loglO(loglO(MaxFinite») 
MaxSignifDigits = ceiling(loglO(BasePreCiSiOn» + 1. *) 

END Real. 

C.1.5 Float 

The generic interface Float provides operations required or recommended 
by ANSIIIEEE Standard 754-1985. They are instantiated as follows: 
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INTERFACE RealFloat = Float(Real) END RealFloat. 
INTERFACE LongFloat = Float(LongReal) END LongFloat. 
INTERFACE ExtendedFloat = Float(Extended) END ExtendedFloat. 

531 

The comments in the interface only describe how the operations func
tion when their arguments are normal numbers and do not raise excep
tions. The IEEE standard explains in more detail how these operations 
should react to non-numeric values (or NaNs: not a number) and to infinite 
values (infinity). Language environments whose floating-point arithmetic 
does not correspond to the standard should describe these special cases 
separately. 

GENERIC INTERFACE Float(R); 

IMPORT FloatMode; 

TYPE T= R.T; 

(*Copyright (CJ 1991, Digital Equipment Corporation *) 

PROCEDURE Scalb(x: T; n: INTEGER): T RAISES {FloatMode.Trap}; 
(*Return x2n. *) 

PROCEDURE Logb(x: T): T RAISES {FloatMode.Trap}; 
(*Return the exponent ofx. More precisely, return the unique integer n such that the 

ratio ABS(x) / Basen is in the half-open interval [1 .. Base), unless x is 
denormalized, in which case return the minimum exponent value for T. *) 

PROCEDURE ILogb(x: T): INTEGER; 
(*Like Logb, but returns an integer, never raises an exception, and always returns the 

n such that ABS(x) / Basen is in the half-open interval [1 .. Base), even for 
denormalized numbers. Special cases: it returns FIRST(INTEGER) when x = 0.0, 
LAST(INTEGER) when x is plus or minus infinity, and zero when x is NaN *) 

PROCEDURE NextAfter(x, y: T): T RAISES {FloatMode.Trap}; 
(*Return the next representable neighbor ofx in the direction towards y. 

ffx = y, return X. *, 
PROCEDURE CopySign(x, y: T): T; 
(*Return x with the sign ofy. *) 

PROCEDURE Finite(x: T): BOOLEAN; 
(*Return TRUE if x is strictly between minus infinity and plus infinity. 

This always returns TRUE on non-IEEE implementations. *) 

PROCEDURE IsNaN(x: T): BOOLEAN; 
(*Return FALSE if x represents a numerical (possibly infinite) value, and 

TRUE if x does not represent a numerical value. For example, on IEEE 
implementations, returns TRUE if x is a NaN, FALSE otherwise. *) 

PROCEDURE Sign(x: T): [0 .. 1]; 
(*Return the sign bit x. For non-IEEE implementations, this is 

the same as ORD(x >= 0); for IEEE implementations, 
Sign(-O) = 1 and Sign(+O) = O. *) 
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PROCEDURE Differs(x, y: T): BOOLEAN; 
(*Return (x < y OR y < x). Thus, for IEEE implementations, 

Differs(NaN,x) is always FALSE; for non-IEEE implementations, 
Differs(x,y) is the same as x # y. *) 

PROCEDURE Unordered(x, y: T): BOOLEAN; 
(*Return NOT (x <= y OR y <= x). Thus, for IEEE implementations, 

Unordered(NaN, x) is always TRUE; for non-IEEE implementations, 
Unordered(x, y) is always FALSE. *) 

PROCEDURE Sqrt(x: T): T RAISES {FloatMode.Trap}; 
(*Return the square root ofT. This must be correctly rounded if 

FloatMode.lEEE is TRUE. *) 

TYPE IEEEClass = {SignalingNaN, QuietNaN, Infinity, Normal, Denormal, Zero}; 

PROCEDURE Class(x: T): IEEEClass; 
(*Return the IEEE number class containing x. On non-IEEE systems, 

the result will be Normal or Zero. *) 

PROCEDURE FromDecimal( 
sign: [0 .. 1]; 
READONLY digits: ARRAY OF [0 .. 9]; 
exp: INTEGER): T RAISES {FloatMode.Trap}; 

(*Convert from floating-decimal to type T. *) 

(*Let F denote the nonnegative, floating-decimal number 
digits[O]. digits[1] ... digits[LAST(digits)] * lOexp 

= sum(i, digits[i] * 1 O(exp . iJ) 

The result of FromDecimal is the number ( -1 )sign * F, rounded 
to a value of type T. 
The procedure FromDecimal is a floating-point operation, just 
like + and *, in the sense that it rounds its ideal result 
correctly, observing the current rounding mode, and it sets flags 
and raises traps by the usual rules. On IEEE implementations, it 
returns minus zero when F is sufficiently small and sign=1. *) 

TYPE 
DecimalApprox = RECORD 

class: IEEEClass; 
sign: [0 .. 1]; 
len: [1 .. R.MaxSignifDigits]; 
digits: ARRAY[O .. R.MaxSignifDigits-1] OF [0 .. 9]; 
exp: INTEGER; 
errorSign: [-1 .. 1] 

END; 

PROCEDURE ToDecimal(x: T): DecimalApprox; 
(*Convert from type T to floating-decimal. *) 

END Float. 
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C.1.6 FloatMode 

This interface allows testing the behavior of rounding and numeric excep
tions. Some language environments allow changing this behavior for indi
vidual threads. 

INTERFACE FloatMode; 

CONST IEEE = TRUE; 

(*Copyright (CJ 1991, Digital Equipment Corporation *) 

(*TRUE for fully-compliant IEEE implementations. *) 

EXCEPTION Failure; 
("'Raised by attempts to set modes that are not supported by the implementation. *) 

TYPE 
RoundingMode = {NearestElseEven, TowardMinuslnfinity, TowardPluslnfinity, 

TowardZero, NearestElseAwayFromZero, IBM370, Other}; 
(*Rounding modes. The first four are the IEEE modes. *) 

CONST RoundDefault = RoundingMode.NearestElseEven; 
(*Implementation-dependent: the default mode for rounding arithmetic 

operations, used by a newly forked thread. This also specifies the 
behavior of the ROUND operation in half-way cases. *) 

PROCEDURE SetRounding(md: RoundingMode) RAISES {Failure}; 
(*Change the rounding mode for the calling thread to md, or raise the exception 

if this cannot be done. This affects the implicit rounding in floating-point operations; 
it does not affect the ROUND operation. Generally this can be done only on IEEE 
implementations and only if md is an IEEE mode. *) 

PROCEDURE GetRoundingO: RoundingMode; 
(*Return the rounding mode for the calling thread. *) 

TYPE 
Flag = {Invalid, Inexact, Overflow, Underflow, 

DivByZero, IntOverflow, IntDivByZero}; 

(*Associated with each thread is a set of boolean status flags recording whether the 
condition represented by the flag has occurred in the thread since the flag was last 
reset. The meaning of the first five flags is defined precisely in the IEEE floating 
point standard; roughly they mean: 

Invalid = invalid argument to an operation. 
Inexact = an operation produced an inexact result. 
Overflow = a floating-point operation produced a result whose 
absolute value is too large to be represented. 
Underflow = a floating-point operation produced a result whose 
absolute value is too small to be represented. 
DivByZero = floating-point division by zero. 
IntOverflow = an integer operation produced a result whose 
absolute value is too large to be represented. 
IntDivByZero = integer DIV or MOD by zero. *) 

CONST NoFlags = SET OF Flag {}; 
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PROCEDURE GetFlagsO: SET OF Flag; 
(*Return the set of flags for the current thread. *) 

PROCEDURE SetFlags(s: SET OF Flag): SET OF Flag RAISES {Failure}; 
(*Set the flags for the current thread to S, and return their previous values. *) 

PROCEDURE ClearFlag(f: Flag); 
(*Turn off the flag f for the current thread. *) 

EXCEPTION Trap(Flag); 

TYPE Behavior = {Trap, SetFlag, Ignore}; 

(*The behavior of an operation that causes one of the flag conditions is either: 
Ignore = return some result and do nothing. 
SetFlag = return some result and set the condition flag. For 
IEEE implementations, the result of the operation is defined by the 
standard. 
Trap = possibly set the condition flag; in any case raise the 
Trap exception with the appropriate flag as the argument. *) 

PROCEDURE SetBehavior(f: Flag; b: Behavior) RAISES {Failure}; 
(*Set the behavior of the current thread for the flag f to be b, 

or raise Failure if this cannot be done. *) 

PROCEDURE GetBehavior(f: Flag): Behavior; 
(*Return the behavior of the current thread for the flag f. *) 

(*misc. *) 

TYPE 
ThreadState = RECORD 

behavior: ARRAY Flag OF Behavior; 
sticky: ARRAY Flag OF BOOLEAN; 

END; 
(*One copy per thread, saved by the thread implementation. *) 

PROCEDURE InitThread(VAR s: ThreadState); 
(*Initialize the current thread to the default floating-point state. *) 

END FloatMode. 

C.2 Formatting 

C.2.1 Fmt 

The procedures of interface Fmt permit converting numbers and other data 
to text. 
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INTERFACE Fmt; (*Copyright (C) 1994, Digital Equipment Corporation *) 

IMPORT Word, Real AS R, LongReal AS LR, Extended AS ER; 

PROCEDURE Bool(b: BOOLEAN): TEXT; 
(*Format b as "TRUE" or "FALSE". *) 

PROCEDURE Char(c: CHAR): TEXT; 
(*Return a text containing the character c. *) 

TYPE Base = [2 .. 16]; 

PROCEDURE Int(n: INTEGER; base: Base := 10): TEXT; 
PROCEDURE Unsigned(n: Word.T; base: Base := 16): TEXT; 
(*Format the signed or unsigned number n in the specified base. *) 

(*The value returned by Int or Unsigned never contains upper-case letters, and it never 
starts with an explicit base and underscore. For example, to render an unsigned 
number N in hexadecimal as a legal Modula-3 literal, you must write something like: 
"16_" & Fmt.Unsigned(N, 16) *) 

TYPE Style = {Sci, Fix, Auto}; 

PROCEDURE Real( 
x: REAL; 
style := Style.Auto; 
prec: CARDINAL := R.MaxSignifDigits - 1; 
literal := FALSE) 

: TEXT; 
PROCEDURE LongReal( 

x: LONG REAL; 
style := Style.Auto; 
prec: CARDINAL := LR.MaxSignifDigits - 1; 
literal := FALSE) 

: TEXT; 
PROCEDURE Extended( 

x: EXTENDED; 
style := Style. Auto; 
prec: CARDINAL := ER.MaxSignifDigits - 1; 
literal := FALSE) 

: TEXT; 
(*Format the floating-point number x. *) 

("Overview. 

Style.Sci gives scientific notation with fields padded to fixed widths, suitable 
for making a table. The parameter prec specifies the number of digits after the 
decimal point-that is, the relative precision. 

Style. Fix gives fixed point, with prec once again specifying the number 
of digits after the decimal point-in this case, the absolute precision. The results 
of Style. Fix have varying widths, but they will form a table if they are 
right-aligned (using Fmt.Pad) in a sufficiently wide field. 
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Style.Auto is not intended for tables. It gives scientific notation with at 
most prec digits after the decimal point for numbers that are very big or very 
small. There may be fewer than prec digits after the decimal point because 
trailing zeros are suppressed. For numbers that are neither too big nor too small, it 
formats the same significant digits-at most prec+ 1 of them-in fixed point, 
for greater legibility. 

All styles omit the decimal point unless it is followed by at least one digit. 

Setting literal to TRUE alters all styles as necessary to make the result 
a legal Modula-3literal of the appropriate type. *) 

TYPE Align = {Left, Right}; 

PROCEDURE Pad( 
text: TEXT; 
length: CARDINAL; 
padChar: CHAR := ' '; 
align: Align := Align.Right): TEXT; 

(*lfText.Length(text) >= length, then text is returned unchanged. 
Otherwise, text is padded with padChar until it has the given 
length. The text goes to the right or left, according to align. *) 

PROCEDURE F(fmt: TEXT; t1, t2, t3, t4, t5: TEXT := NIL): TEXT; 
(*Uses fmt as a format string. The result is a copy offmt in which all 

format specifiers have been replaced, in order, by the text arguments t1, 
t2, etc. *) 

(* A format specifier contains a field width, alignment and one of two padding 
characters. The procedure F evaluates the specifier and replaces it by the 
corresponding text argument padded as it would be by a call to Pad with the 
specified field width, padding character and alignment. 

The syntax of a format specifier is: 

%[-l{0-9}s 

that is, a percent character followed by an optional minus sign, an optional 
number and a compulsory terminating s. If the minus sign is present the alignment 
is Align.Left, otherwise it is Align.Right. The alignment corresponds to the 
align argument to Pad. The number specifies the field width (this 
corresponds to the length argument to Pad). If the number is omitted it 
defaults to zero. If the number is present and starts with the digit "0" the 
padding character is '0'; otherwise it is the space character. The padding 
character corresponds to the padChar argument to Pad. It is a checked 
runtime error iffmt is NIL or the number offormat specifiers in 
fmt is not equal to the number of non-nil arguments to F. Non-nil arguments 
to F must precede any NIL arguments; it is a checked runtime error if they do 
not. Ifl1 to 15 are all NIL and fml contains no format specifiers, the result is fmt. *) 
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(*Examples: 

F("%s %s \n", "Hello", "World") 'returns' "Hello World \n". 
F("%s", Int(3)) 'returns' "3" 
F("%2s", Int(3)) 'returns' " 3" 
F("%-2s", Int(3)) 'returns' "3 " 
F("%02s", Int(3)) 'returns' "03" 
F("%-02s", Int(3)) 'returns' "30" 
F("O/os", "%8") 'returns' "%s" 
F("%s% tax", Int(3)) 'returns' "3% tax" 

The following examples are legal but pointless: 

F("%-s", Int(3)) 'returns' "3" 
F("%Os", Int(3)) 'returns' "3" 
F("%-Os", Int(3)) 'returns' "3" 
*) 

PROCEDURE FN(fmt: TEXT; READONLY texts: ARRAY OF TEXT): TEXT; 
(*Similar to F but accepts an array of text arguments. It is a checked runtime 

error if the number offormat specifiers in fmt is not equal to NUMBER(texts) 
or if any element of texts is NIL. If NUMBER(texts} == 0 and fmt 
contains no format specifiers the result is fmt. *) 

(*Example: 

FN("%s %s %s %s %s %s %s", 
ARRAY OF TEXT {"Too", "many", "arguments", "for", "F", "to", "handle"}} 

returns "Too many arguments for F to handle". *) 

END Fmt. 

537 
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C.2.2 Scan 

The procedures of interface Scan support reading numbers and other data 
from TEXT variables. The procedures read the txt parameter and convert 
its contents to values of the respective target type. Leading blanks and, for 
numbers, leading zeros are skipped. 

INTERFACE Scan; (*Copyright (C) 1994, Digital Equipment Corporation. *) 

IMPORT Word, Lex, FloatMode; 

(*Each of these procedures parses a string of characters and converts 
it to a binary value. Leading and trailing blanks (ie. characters 
in "Lex. Blanks'; are ignored. "Lex.Error" is raised if the first 
non-blank substring is not generated by the corresponding "Lex" 
grammar or if there are zero or more than one non-blank substrings. 
"FloatMode.Trap" is raised as per "Lex". *) 

PROCEDURE Bool(txt: TEXT): BOOLEAN RAISES {Lex.Error}; 

PROCEDURE Int(txt: TEXT; defaultBase: [2 .. 16] := 10): INTEGER 
RAISES {Lex.Error, FloatMode.Trap}; 

PROCEDURE Unsigned(txt: TEXT; defaultBase: [2 .. 16] := 16): Word.T 
RAISES {Lex.Error, FloatMode.Trap}; 

PROCEDURE Real(txt: TEXT): REAL RAISES {Lex.Error, FloatMode.Trap}; 
PROCEDURE LongReal(txt: TEXT): LONG REAL RAISES {Lex.Error, FloatMode.Trap}; 
PROCEDURE Extended(txt: TEXT): EXTENDED RAISES {Lex.Error, FloatMode.Trap}; 

END Scan. 

C.3 Input and output streams 

Input and output streams (readers and writers) are explained in detail in 
[Ne1911. Here we only print the interfaces Rd and Wr. 

C.3.1 Rd 

A variable of type Rd.T identifies an input stream. After initialization (out
side this interface) the stream is open and has a current position (initially 
0). It can be closed later. Reading is not possible from closed streams. The 
operation GetChar reads a character from the stream and increments the 
position by one. The stream can be seekable or intermittent. An explanation 
ofthese terms can be found in Chapter 14. 
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INTERFACE Rd; 

IMPORT AtomList; 

(*Copyright (C) 1989, Digital Equipment Corporation *) 

FROM Thread IMPORT Alerted; 

TYPE T <: ROOT; 

EXCEPTION EndOfFile; Failure(AtomListT); 

(*Since there are many classes of readers, there are many ways that a 
reader can break-for example, the connection to a terminal can be 
broken, the disk can signal a read error, etc. All problems of 
this sort are reported by raising the exception Failure. The 
documentation of a reader class should specify what failures the 
class can raise and how they are encoded in the argument to Failure. 
Illegal operations cause a checked runtime error. *) 

PROCEDURE GetChar(rd: T): CHAR RAISES {EndOfFile, Failure, Alerted}; 
(*Return the next character from rd. *) 

(*Many operations on a reader can wait indefinitely. For example, 
GetChar can wait if the user is not typing. In general these waits 
are alertable, so each procedure that might wait includes 
Thread.Alerted in its RAISES clause. *) 

PROCEDURE EOF(rd: T): BOOLEAN RAISES {Failure, Alerted}; 
(*Return TRUE if rd is at end· of-file. *) 

(*Notice that on an intermittent reader, EOF can block. For example, if there are no 
characters buffered in a terminal reader, EOF must wait until the user types one before 
it can determine whether he typed the special key signalling end·of-file. If you are 
using EOF in an interactive input loop, the right sequence of operations is: 
· prompt the user; 
· call EOF, which probably waits on user input; 
· presuming that EOF returned FALSE, read the user's input. *) 

PROCEDURE UnGetChar(rd: T) RAISES {}; 
(*"Push back" the last character read from rd, so that the next 

call to GetChar will read it again. 
Except there is a special rule: UnGetChar(rd) is guaranteed to 
work only if GetChar(rd) was the last operation on rd. Thus 
UnGetChar cannot be called twice in a row, or after Seek or 
EOF. If this rule is violated, the implementation is allowed (but 
not required) to cause a checked runtime error. *) 

PROCEDURE CharsReady(rd: T): CARDINAL RAISES {Failure}; 
(*Return some number of characters that can be read without 

indefinite waiting. The "end of file marker" counts as one 
character for this purpose, so CharsReady will return 1, not 0, 
if EOF(rd) is true. *) 

PROCEDURE GetSub(rd: T; VAR str: ARRAY OF CHAR) 
: CARDINAL RAISES {Failure, Alerted}; 

(*Read from rd into str until rd is exhausted or str is filled. *) 
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PROCEDURE GetSubLine(rd: T; VAR str: ARRAY OF CHAR) 
: CARDINAL RAISES {Failure, Alerted}; 

(*Read from rd into str until a newline is read, rd is 
exhausted, or str is filled. *) 

(*Note that GetLine strips the terminating line break, while 
GetSubLine does not. *) 

C. Library interfaces 

PROCEDURE GetText(rd: T; len: CARDINAL): TEXT RAISES {Failure, Alerted}; 
(*Read from rd until it is exhausted or len characters have been 

read, and return the result as a TEXT. *) 

PROCEDURE GetLine(rd: T): TEXT RAISES {EndOfFile, Failure, Alerted}; 
(*IfEOF(rd) then raise EndOfFile. Otherwise, read characters 

until a line break is read or rd is exhausted, and return the 
result as a TEXT-but discard the line break ifit is present. *) 

PROCEDURE Seek(rd: T; n: CARDINAL) RAISES {Failure, Alerted}; 
(* If rd is seekable set the current position of rd to n. 

Otherwise cause a checked runtime error. *) 

PROCEDURE Close(rd: T) RAISES {Failure, Alerted}; 
(*Release any resources associated with rd and set closed(rd) := TRUE. 

The documentation of a procedure that creates a reader should specify 
what resources are released when the reader is closed. 
This leaves rd closed even if it raises an exception, and is a no-op if 
rd is closed. *) 

PROCEDURE Index(rd: T): CARDINAL RAISES {}; 
(* Return the current position of rd *) 

PROCEDURE Length(rd: T): INTEGER RAISES {Failure, Alerted}; 
(*Return the number of characters in rd 

If the length is unknown to the implementation of an intermittent 
reader, Length(rd) returns -1 *) 

PROCEDURE Intermittent(rd: T): BOOLEAN RAISES {}; 
PROCEDURE Seekable(rd: T): BOOLEAN RAISES {}; 
PROCEDURE Closed(rd: T): BOOLEAN RAISES {}; 
(*Return intermittent(rd), seekable(rd), and closed(rd), 

respectively. These can be applied to closed readers. *) 

END Rd. 

C.3.2 Wr 

A variable of type Wr. T identifies an output stream. After initialization 
(outside this interface) the stream is open and has a current position (ini
tially 0). It can be closed later. A closed stream cannot be written to. The 
operation PutChar writes a character to the stream and increments the cur-
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rent position by one. Ifthe current position equals the length ofthe stream, 
the stream size is increased by one. New characters overwrite characters 
that might have been in the stream before. The stream can be seekable or 
buffered. An explanation ofthese terms can be found in Chapter 14. 

INTERFACE Wr; 

IMPORT AtomList; 

(*Copyright (C) 1989, Digital Equipment Corporation *) 

FROM Thread IMPORT Alerted; 

TYPE T <: ROOT; 

EXCEPTION Failure(AtomListT); 

(*Since there are many classes of writers, there are many ways that a writer can 
break-for example, the network can go down, the disk can fill up, etc. All 
problems of this sort are reported by raising the exception Failure. The 
documentation of each writer class should specify what failures the class can 
raise and how they are encoded in the argument to Failure. 

Illegal operations (for example, writing to a closed writer) cause 
checked runtime errors. *) 

VAR 
EOL:TEXT; 

(*OnPOSIX, EOLis "\n";on Win32, EO Lis "\r\n". *) 

(*End of line. *) 

(*Many operations on a writer can wait indefinitely. For example, PutChar 
can wait if the user has suspended output to his terminal. These waits can be 
alertable, so each procedure that might wait includes Thread.Alerted in 
its raises clause. *) 

PROCEDURE PutChar(wr: T; ch: CHAR) RAISES {Failure, Alerted}; 
(*Output ch to wr. *) 

PROCEDURE PutText(wr: T; t: TEXT) RAISES {Failure, Alerted}; 
(*Output t to wr. *) 

PROCEDURE PutString(wr: T; READONLY a: ARRAY OF CHAR) 
RAISES {Failure, Alerted}; 

(*Output a to wr. *) 

PROCEDURE Seek(wr: T; n: CARDINAL) RAISES {Failure, Alerted}; 
(*&t the current position ofwr to n. This is an error ifwr is closed. *) 

PROCEDURE Flush(wr: T) RAISES {Failure, Alerted}; 
(*Perform all buffered operations. It is a checked runtime error ifwr is closed. *) 

PROCEDURE Close(wr: T) RAISES {Failure, Alerted}; 
(*Flush wr, release any resources associated with wr, and set 

closed(wr) := TRUE. The documentation for a procedure that creates a 
writer should specify what resources are released when the writer is closed. 
This leaves closed(wr) equal to TRUE even if it raises an exception, 
and is a no-op ifwr is closed. *) 
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PROCEDURE Length(wr: T): CARDINAL RAISES {Failure, Alerted}; 
PROCEDURE Index(wr: T): CARDINAL RAISES {}; 
PROCEDURE Seekable(wr: T): BOOLEAN RAISES {}; 
PROCEDURE Closed(wr: T): BOOLEAN RAISES {}; 
PROCEDURE Buffered(wr: T): BOOLEAN RAISES {}; 
(*These procedures return len(wr), cur(wr), seekable(wr), closed(wr), and buffered(wr), 

respectively. Length and Index cause a checked runtime error ifwr is closed; the other 
three procedures do not. *) 

END Wr. 

C.3.3 Simple input/output (SIO) 

The interface SIO provides a number of auxiliary procedures for frequently 
used combinations of procedures from the interfaces Rd, Wr, Fmt and Lex; 
they are intended to simplify the use of input/output streams. The proce
dures have default values for the input/output stream. If NIL is passed as 
the stream, then Stdio.stdout is used as output stream and Stdio.stdin as in
put stream (these streams do not need to be opened and normally write to 
the screen and read from the keyboard resp.). The read procedures (except 
GetChar) skip all leading blanks and read only to the next blank or to the 
next character that cannot be interpreted as the target type. This char
acter is skipped first, but it can be returned with the procedure TermChar 
(see comment in interface). The procedure GetChar simply reads the next 
character and returns it, without any skipping or interpretation. 

INTERFACE SIO; (*8impleInputIOutput 13.04.94. LB*) 

(*810 provides a Reader and a Writer type. Data can be read from a reader by 
Get-procedures, and can be written by Put-procedures onto a writer. For all elementary 
data types Get- and Put-procedures are provided. They advance a (hidden) position 
over reader resp. writer stream. The procedure LookAhead returns the next character, 
without advancing the reader position. 

All Put-procedures flush automtically on stdout. GetText and GetBool terminate with 
any white space character. Getlnt, GetReal and GetLongReal terminate with any 
character that cannot be interpreted as a number. Leading whitespaces are ignored. 
(White spaces are: new line, tab, space, form feed and carriage return.) The 
terminating character is removed from the reader, and can be retrieved by the 
TermChar function. At the end of the file TermChar returns the null character. 

The exception Error is raised normally only for readers not connected to Stdio.stdin. 
For Stdio.stdin, which is usually connected to the keyboard, the user is prompted to 
type in a new value. He may repeat the input MaxError-times, afterwards Error 
is raised. He may also interrupt the input by the end-of-file escape (Cntrl-Z or 
Cntrl-D), which causes also an Error exception. 



C.3. Input and output streams 

SIO provides some additional functions, such as positioning (seeking) in readers, 
length and end of readers, flushing of writers etc. Writers are strictly sequential, 
positioning is not supported. The default value of the reader or writer parameter is 
always NIL, with the effect, selecting the appropriate standard device. 
Standard reader is Stdio.stdin, which is normally the keyboard. 
Standard writer is Stdio.stdout, which is normally the screen. *) 

IMPORT Rd, Wr; 

EXCEPTION Error; 

TYPE 
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Reader = Rd.T; 
Writer = Wr.T; 

(*A Reader is an Rd.T*l 
(*A Writer is a Wr.T*) 

(*Basic procedures*) 

PROCEDURE GetChar(rd: Reader := NIL): CHAR RAISES {Error}; 
("'Returns the next char. *) 

PROCEDURE PutChar(ch: CHAR; wr: Writer := NIL); 
("'Outputs a single character. *) 

PROCEDURE GetText(rd: Reader := NIL): TEXT RAISES {Error}; 
("'Reads a text. The terminating character is not appended. *) 

PROCEDURE PutText(t: TEXT; wr: Writer := NIL); 
(*Outputs all characters in t. *) 

PROCEDURE GetLine(rd: Reader := NIL): TEXT RAISES {Error}; 
("'Reads a line and returns it as a text. The terminating nl is not appended. *) 

PROCEDURE PutLine(t: TEXT; wr: Writer := NIL); 
(*Outputs all characters in t and appends a new line. *) 

PROCEDURE Getlnt(rd: Reader:= NIL): INTEGER RAISES {Error}; 
("'Reads a decimal integer. *) 

PROCEDURE Putlnt(i: INTEGER; length := 3; wr: Writer := NIL); 
(*Outputs an integer number. The number is right-aligned in a field of length length, i.e. 

leading blanks are output if the number of digits < length. *) 

PROCEDURE GetReal(rd: Reader:= NIL): REAL RAISES {Error}; 
(*Reads a real number. *) 

PROCEDURE PutReal(r: REAL; wr: Writer := NIL); 
(*Outputs a real number. *) 

PROCEDURE GetLongReal(rd: Reader := NIL): LONG REAL RAISES {Error}; 
(*Reads a longreal number. *) 

PROCEDURE PutLongReal(r: LONGREAL; wr: Writer := NIL); 
(*Outputs a longreal number. *) 

PROCEDURE GetBool(rd: Reader := NIL): BOOLEAN RAISES {Error}; 
(*Reads a Boolean constant. 

Legal values are: "TRUE" and "FALSE" and any shorthands of them. 
The case of letters is not significant. *) 
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PROCEDURE PutBool(b: BOOLEAN; wr: Writer := NIL); 
(*Outputs a Boolean value. *) 

(*Additional procedures*) 

C. Library interfaces 

PROCEDURE LookAhead(rd: Reader:= NIL): CHAR RAISES {Error}; 
(*Returns the next character, without removing it from the reader. *) 

PROCEDURE TermChar(rd: Reader := NIL): CHAR RAISES {Error}; 
(*Returns the last terminating character or nUll. At the end of the 

file TermChar returns the null character. There is a restriction on 
the usage of TermChar: it must be applied to the same reader as the 
last read operation, otherwise it returns the null character. 
Therefore, TermChar should not be used in a multi-threaded program. *) 

PROCEDURE NI(wr: Writer := NIL); 
(*Outputs a new line. *) 

PROCEDURE PutUnsigned( i: INTEGER; length := 6; base: [2 .. 16] := 16; 
wr: Writer := NIL); 

(*Outputs an unsigned number with given base right-aligned 
in a field of length length. *) 

PROCEDURE End(rd: Reader := NIL): BOOLEAN; 
(*Returns TRUE iff end of reader reached. 

On the keyboard, CTRL-Z on the PC, and CTRL-D in Unix. *) 

PROCEDURE Flush(wr: Writer := NIL); 
(*Flushes the writer on the file. Not necessary for the standard writer. *) 

PROCEDURE Available(rd: Reader:= NIL): BOOLEAN; 
("Returns TR UE iff some characters are available. 

Returns FALSE if the condition cannot be checked properly. *) 

PROCEDURE Length(rd: Reader:= NIL): CARDINAL; 
("Returns the length of the reader or 0 if the length cannot be computed. *) 

PROCEDURE Seek(rd: Reader:= NIL; position: CARDINAL := 0) RAISES {Error}; 
("Sets the reader on position if it is seekable, is otherwise a no-operation. 

Default corresponds to reset a reader. *) 

(*Some useful constants*) 

CONST 
null = '\000'; 
Blanks = SET OF CHAR f " '\1', '\n', V, '\013', '\f'}; 
NonBlanks = SET OF CHAR f!' .. ' '}; 

VAR 
MaxError: CARDINAL := 3; (*Max. number of retrial after erronous input*) 

END SIO. 
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C.3.4 Simple Files (SF) 

To simplifY the most frequently used file operations, the interface SF pro
vides a number of procedures. 

INTERFACE SF; (*SimpleFiles 14.04.94. LB *) 

(*SimpleFiles provides simple procedures to connect readers and writers with files 
(Open procedures) and to decouple them (Close procedures). Open Read 
connects a reader to an existing file, OpenWrite connects a writer to a new file. 
If the file with the given name already exists, the user may type in a new name 
or confirm an overwrite. OpenAppend positions the writer at the end of a file. 
The text in parameter prompt is displayed on stdout (screen). The file connected 
to a writer is made permanent by a CloseWrite. SimpleFiles provides a flexible 
mechanism for file naming. If the name parameter is omitted or (NIL) on opening, 
then the opening procedures ask the user for a file name. If the user enters an empty 
line or Standard (actually = "#"), the file defaults to standard 110, i.e. normally to 
keyboard (standard input device) and screen (standard output device). GetFileName 
provides more explicit control over file naming. *) 

IMPORT Rd, Wr; 

CONST 
Overwrite = "!"; 
Standard = "#"; 
PromptStart = "Type file name "; 
PromptEnd =" or NL for standard = "; 
InPrompt = PromptStart & "for input" & PromptEnd; 
OutPrompt = PromptStart & "for output" & PromptEnd; 
AppPrompt = PromptStart & "for append" & PromptEnd; 

TYPE 
Reader = Rd.T; 
Writer = Wr.T; 

PROCEDURE OpenRead(name: TEXT := NIL; prompt:= InPrompt): Reader; 
(*Connects file name to a reader: if name is NIL or file does not exist, prompts 

user for file name until file can be opened; if user enters return or Standard ("#"), 
returns Stdio.stdin *) 

PROCEDURE OpenWrite( name: TEXT := NIL; prompt:= OutPrompt; 
overwrite:= FALSE): Writer; 

(*Connects a writer to file name: if name is NIL, prompts user for a file name; 
if user enters return or Standard ("#"), returns Stdio.stdout; if file (specified in 
name or entered by user) already exists and overwrite is false, prompts user for 
another file name or to enter "!" for the constant Overwrite for overwriting; if 
parameter overwrite is true, an existing file with same name is overwritten 
without user confirmation *) 

PROCEDURE OpenAppend(name: TEXT := NIL; prompt:= AppPrompt): Writer; 
(*Connects a writer to file name: if name is NIL, asks user for file name; 

if user enters return or Standard ("#"J, returns Stdio.stdout; if specifed file does not 
exist, creates a new file; iffile already exists, positions writer at end *) 
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PROCEDURE FileExists(name: TEXT): BOOLEAN; 
(*returns TRUE iffile name exists *) 

PROCEDURE CloseRead(VAR rd: Reader); 
(*closes file, assigning NIL to rd unless rd is stdin *) 

PROCEDURE CloseWrite(VAR wr: Writer); 

C. Library interfaces 

(*flushes writer and closes file, assigning NIL to wr unless wr is stdout 
(Close MUST be called if the content of the writer should be made permanent!) *) 

PROCEDURE GetFileName(prompl:= PromptStart & PromptEnd): TEXT; 
(*asks the user for a file name - actually a simple text (this procedure is used by 

Open Read and OpenWrite) *) 

END SF. 



Modula-3 language 
environments 

AppendixD 

This appendix provides an overview of the available Modula-3 language 
environments. First of all, we must mention the environment developed by 
the researchers who developed Modula-3 at the Digital Equipment Corpo
ration Systems Research Center (DEC/SRC). In order to provide all readers 
with a Modula-3language environment, we at the University of Klagenfurt 
(Austria) developed a DOS-PC executable version, which we describe below. 
Along with the language environment, readers can retrieve the source code 
to all examples in this book. 

D.I The DEC/SRC language environment 

The original Modula-3 language environment consists of a compiler and a 
very extensive library. This library encompasses modules for system pro
gramming, distributed programming, the production of rich graphical user 
interfaces (complete with animations, video, and speech synthesis), and 
much more. Together with source code, it is available free for practically all 
Unix platforms (including Linux), and there is a version for WindowslNT 
and Windows95. 

The environment can be retrieved via anonymous FTP from 

gatekeeper.dec.com 

in the directory /pub/DEC/Modula - 3. For a detailed description of this 
environment, refer to the following World-Wide Web site: 

http://www.research.digital.com/SRC/modula-3/html/home.html 

This Web site also provides detailed installation instructions. 
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D.2 A language environment for pes 

For students at the University of Klagenfurt, we developed a lean version 
of the DEC/SRC language environment that runs on a simple DOS-PC. This 
version is also available for free. It contains !post modules of the standard 
library and a simple graphical user interface as well as a special editor for 
developing Modula-3 programs. This section provides an overview of the 
installation and operation of this environment. 

D.2.1 Installation 

The PC language environment requires a PC with an 80386 (or successor) 
processor with a mathematics coprocessor. The PC should have at least 6 
Mbytes of RAM; otherwise compile times become intolerably long. 

The environment can be retrieved per Internet via anonymous FTP or 
from the World-Wide Web. The FTP server is: 

ftp.ifi.uni-klu.ac.at 

The necessary files reside in the directory /pub/Modula - 3. The examples 
in this book can be found in directory /pub /Modula - 3/book. This direc
tory also includes a README file that gives the corresponding file name for 
each example number. 

There are also Web sites describing the PC language environment and 
a home page for this book. The PC language environment can be down
loaded from there. In addition, all the manuals for the environment and 
all example programs of this book are accessable. The address ofthe M3IPC 
Klagenfurt home page is 

http://www.ifi.uni-klu.ac.at/Modula-3/rn3pc/rn3pc.htrnl 

The book home page is 

http://www.ifi.uni-klu.ac.at/Modula-3/rn3book/rn3book.htrnl 

The example programs are accessible via 

http://www.ifi.uni-klu.ac.at/Modula-3/rn3book/exarnples.html 

Readers without Internet access can procure the language environment 
on a set of disks (for the price of reimbursed expenses) from the following 
address: 

Institut fUr Informatik 
Universitat Klagenfurt 
UniversitatsstraBe 65-67 
A-9020 KlagenfurtiAustria 

e-mail: m3book@ifi.uni-klu.ac.at 
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The FTP directory and the first diskette contain the file INSTALL, which 
gives precise directions for installation. The diskettes also contain the ex
amples in this book. After completed installation, you will have a directory 
that contains the documentation ofthe language environment with instruc
tions for the use of all programs and functions described in this appendix. 

D.2.2 The programming editor 

If everything is installed correctly, the command m3 edi t from DOS starts 
the Modula-3 editor. 

The majority of the screen is covered by three windows in which you 
can write source code. At the top is a menu bar, from which you can invoke 
editor functions via pulldown menus. At the bottom is a status bar and 
space for error messages. 

Edit the source code of a program by first clicking with the mouse in a 
window and then loading a text file into it. Select the menu item File-+ 
Open 1. You will be prompted for a file name. If the file does not exist, an 
empty file is created. Now you can type in the window. With the cursor 
keys you can move in the text and correct typing errors. You must save the 
source code before you can compile it. Select the menu item File-+Save. 

Instead of waiting for the editor to prompt you for a file name or an
other parameter, you can write the parameter in another window: if you 
double-click a word in one of the windows (thereby highlighting it), then 
this word serves as input for all editor functions that require a param
eter. This proves particularly practical if you need to search elsewhere 
in your program for a character string (e.g., a variable name) that al
ready appears on the screen: double-click it and then select the function 
Edit-+SearchForward. The editor will display the next occurrence of the 
character string in the program. 

The documentation directory provides an in-depth description of each 
function of the editor. They are also accessable on-line via the above Web 
site. You will find a concise description of the editor functions directly in 
the Help menu. 

Compiling programs 

The editor is capable of collecting all the files necessary for the compila
tion of a program (i.e., all interfaces and implementation modules). This 
requires specifYing the name of the main module. All modules imported by 
the main module (and, in turn, naturally, those imported by the imported 
modules) are passed on to the compiler. Enter the main module with the 

lClick on item File in the menu bar; this opens a submenu. With the mouse button 
pressed, move the mouse down to highlight item Open and then release the mouse button. 
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menu item Build---+MainModule. Use the menu item Build---+BuildProgram 
afterwards to compile the program. Even on powerful PCs, this can take 
some time. 

A PC with a 50 MHz 80486 processor requires one to two minutes to 
compile a smaller program (as we go to press). The reason for this 
sluggishness is above all the fact that the program is first translated 
into a C program, which is then processed by a C compiler. Future 
versions should correct this drawback. 

In the event of compilation errors, error messages appear in the lower 
window. The function Edit---+NextError moves the cursor in the source 
code window to the next error location flagged by the compiler. Progress 
in this way until you have corrected all errors; then restart by selecting 
Build---+BuildProgram. If compilation was successful, you can launch the 
program with the function Build---+RunProgram. 

D.2.3 The browser 

To make the extensive library more accessible, especially for novices, in
voke the browser from the editor. The browser helps to find interfaces in 
the library. You can search interfaces by name, by category (e.g., file man
agement, mathematics, etc.), or by keywords. If you know the name of a 
procedure, but have forgotten which interface exports it, the browser helps 
to find it. You can display the found interfaces immediately in an editor 
window. Press another switch to see the implementation of the module. 

You can also publish your own interfaces for the browser. This does 
require some typing: in a special window, enter the name, category and 
keywords of any additional interfaces that you want to make retrievable 
with the browser. The documentation directory also contains a detailed 
description ofthe browser. 

D.2.4 A graphical user interface 

The library on which the editor is based is available for developing any kind 
of program with a similar user interface. The library is quite simple, essen
tially functioning by linking buttons on the screen with procedures. When 
a button is clicked with the mouse, this invokes the corresponding proce
dure. You can build dialog boxes on the screen for user input. This requires 
no new procedures; after they are invoked via a button, library procedures 
prompt for values. This allows easy installation of multiple simultaneous 
functions on the screen. Primary control remains with a screen manager; 
the procedures only execute in small slices (e.g., installing additional dialog 
boxes on screen) and must terminate immediately (as quickly as possible). 
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The documentation directory also contains an introduction to this li
brary, as well as some examples. 

D.2.5 Restrictions 

The PC language environment necessarily always lags a bit behind the 
DEC/SRC language environment. Thus the libraries might not be com
pletely up to date with the originals. Network objects, the trestle packet 
and most modules that offer Unix operating system services are currently 
unavailable in the DOS-PC version. The scheduler for threads on the PC is 
not preemptive (i.e., it cannot interrupt running threads). However, all the 
programs in Chapter 16 also run on a DOS-PC. 
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abstract modules, 355 
abstract superclass, 310 
actual parameters, 179, 193 
actual type, 250 
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ADDRESS, 249,475 

assignment of, 484 
operations on, 517 

address space, 389 
ADR,517 
ADRSIZE, 515 
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allocated type, 470 
allocation, 509 
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Archimedes, 241 
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arithmetic/logic unit, 4 
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constructors, 144, 508 
element, 140 
first and last elements, 146, 515 
indexing, 141,472,506 
multi-dimensional, 142,472 
number of elements in, 146,515 
operations, 145 
passing as parameters, 485 
relational operations, 146 
sorting, 152 
subarrays, 146,507 
subscript, 506 
subtyping rules, 481 
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values, 144 

artificial intelligence, 4, 278 
ASCII, see ISO-Latin-1 
assembler, 20 
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assertions with ASSERT, 104 
assignable, 483 

READONLY/vALUE formals, 485 
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in set operations, 510, 511 
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return value, 489 
setJarray/record constructors, 508 
variable initializations, 495 
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assignment compatibility, 135 
assignment operation, 41 
assignment statements, 483 
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background storage, 228, 349 
backslash, 64 
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base type, 470 

array, 144 
sets, 164 
subrange, 120 

BEGIN,49 
binary files, 352 
binary number system, 10 
binary search, 291 
binary search tree, 292 
binary semaphore, 414 
binary tree, 290,341 
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in VAR parameters, 485 
subtyping rules, 481 
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procedure, 495 
statement, 486 
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BOOLEAN, 60, 471 

operations on, 514 
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buffer, 356 
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bug, 280 
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call statement, 181 
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in keywords, 518 
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character literals, 64, 508 
character set, 471 
checked runtime error, 469 

INC value out of range, 493 
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SUBARRAY, 507 
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dereferencing NIL, 506 
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undefined procedure, 485 
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in imports lists, 500 
in type declarations, 497 

class, 306 
class hierarchy, 339 
client 

of a module, 202 
of a RPC call, 419 
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code sharing, 312 
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communication, 388, 396 
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compiler, 36, 37 
compiler-compiler, 37 
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concurrent processes, 388 
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condition type, 527 
condition variable, 405, 527 
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constants, 41, 469 
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numeric, 507 
procedure, 476 
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characters and integers, 66 
enumerations and integers, 66, 514 
to floating-point types, 77, 512 

counter, 108 
covers, method signatures, 315 
covers, procedure signatures, 477 
CPU, 4 
critical region, 400, 402 
CSP, 419 
current state, 5 
cursor, 44 
cyclic imports, 209, 500 

Diirrematt, 8 
Dahl, 0., 24 
dangling pointer, 245 
data aggregates, 139 
Data capsules, 212 
data collections, 139 
data record, of object, 477 
data region, 5 
data security, 349 
data space, 212 
data type, 39 
data-parallel algorithms, 397 
database system, 140, 349 
deadlock, 402, 411 
deallocation, 517 
debugger, 280 
DEC, 54,66, 118,493 

on addresses (unsafe), 517 
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declaration, 48, 129, 469 

recursive, 497 
scope of, 494 

Declarations, 48 
decomposition, 192 
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default values 
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procedure parameters, 193, 476, 

484 
deferred methods, 319 
delimiters, complete list, 518 
denumerably infinite, 72 
dereferencing, 244, 506 
design phase, 16 
designators, 469 

operators allowed in, 506 
readonly, 506 
writable, 506 

device drivers, 350 
difference, set, 167,511 
Digital Equipment Corporation 

Systems Research Center, 21 
Dijkstra, E.W., 24, 25, 28, 86, 411, 

413 
dimension, 473 
direct file access, 350 
directed graph, 288 
directory, 350 
DISPOSE, 245, 517 
DIV, 56, 511 
divide-and-conquer, 281, 283 
division by zero, 510 
division, real, 75, 511 
double quote, in literals, 64, 508 
doubly linked list, 264 
dynamic binding, 310, 311, 325 
dynamic data, 241 
dynamic data structures, 227, 261 
dynamic type, 250, 310 

EBNF,28 
eclipse, 174 
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effective, 3 
Eiffel,252 
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ELSE,87 
ELSIF,87 
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empty type, 470 
encapsulated data types, 251 

encapsulation, 257, 308 
end of file, 351 
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enumerations, 115, 470 
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operations, 118 
predefined, 11 7 
range, 117 
selection, 506 
subtyping rules, 480 

environment, of procedure, 475 
EOF,351 
equality operator, 513 
equivalence of types, 133 
errors, static and runtime, 469 
escape sequence, 64 
escape sequences, in literals, 64, 508 
Euclidean algorithm, 100 
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EVAL,194,485 
exception handling, 371 

delayed, 379 
strategy, 382 

exceptions, 371, 482 
RAISES set, 378, 485 
RAISE, 376, 486 
TRY EXCEPT, 376 
TRY FINALLY, 379, 488 
declarations, 376, 496 
delegation, 377 
handlers, 376, 487 
return and exit, 482 

executable program, 37 
EXIT statement, 110, 488 
exit-exception, 110, 482, 488 
expanded definition (oftype), 470 
exponent, 73 
exporting an interface, 500 
EXPORTS, 500 
expression, 125,469,504 

constant, 516 
function procedures in, 508 
order of evaluation, 504 

expression compatibility, 136 
EXTENDED, 73, 471 
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EXTERNAL, 518 
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factorial, 273 
FALSE,60,471 
Feijen, W.H.J., 28 
Fibonacci, 276 
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object, 313 
record, 155, 473 
selection, records/objects, 506 

FIFO,231 
file, 349 

binary, 352 
close, 351 
create, 351 
end,351 
open,351 
positioning, 351 
read,351 
seekable, 356 
type, 352 
write, 351 

file access 
direct, 350 
recordwise, 353 
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file format, 359 
FileRd module, 355 
FileWr module, 355 
FIRST,54,66,78, 118, 146,515 
first-in, first-out, 231 
fixed arrays, 472 

subtyping rules, 481 
FLOAT, 77, 512 
Float generic interface, 530 
floating-point, 471 

input/output, 78 
literals, 74 
operations, 75 
values, 73 

FloatMode interface, 533 
FLOOR, 77, 512 

flush,356 
Fmt interface, 534 
Fmt module, 357 
FOR statement, 108, 491 
form feed, in literals, 64, 508 
formal language, 18, 27 
formal parameter, 178 
Fortran, 22 
FROM ... IMPORT ... , 211,499 
function, 41, 177, 178 

mathematical, 177 
function call, 49 
function procedures, 42, 178,475 

in expressions, 508 
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returning values from, 489 
functional programming language, 21 

Gtidel, Kurt, 7 
garbage collector, 245,474 
generalization, 328 
generic interface, 501 
generic module, 249, 501 
genericity, 249, 257, 340 
generics, 501 
global block, 174 
global variable, 187 
GoTo statement, 86 
graph,261 
guarded statement, 88 

handlers, for exceptions, 376, 487 
hash function, 438 
hash table, 438 
heap, 243 
heavyweight process, 389 
Hello, world, 44 
hexadecimal literal, 507 
hidden procedure body, 260 
hierarchy, 310 
Hoare, C.A.R, 281, 405, 419 
human language, 18 

identifiers, 48, 126, 469 
lexical structure, 522 
qualified, 499 
reserved, 518 
scope of, 174, 494 
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syntax, 522 
IF statement, 87, 489 
imperative programming language, 21 
implementation, 43 
implementation module, 208 
implementation phase, 16 
import cycle, 500 
imports, 210,499 
IN,167,513 
INC,54,66,118,493,517 
increment, for successor, 54 
index type, of array, 140, 472 
indirect recursion, 279 
infinity, 531 
infix,68,127 
information hiding, 43, 203, 205 
inheritence, 307,309 
initialization, 48, 132 

during allocation, 510 
in VAR declaration, 132,495 
modules, 503 
of variables in interfaces, 498 

INLINE,518 
Inorder, 294 
input parameter, 184 
input stream, 353 
input/output parameter, 184 
installation and maintaince phase, 16 
instance, 252, 308 
instance variable, 308, 313 
instantiation, 40 
INTEGER, 53,471 
integer, 39, 53 

division, 56 
integration and testing phase, 16 
interface 

Extended, 530 
Float, 530 
FloatMode, 533 
Fmt, 534 
LongReal, 530 
Rd,538 
Real,530 
Scan,538 
SF,545 
SIO,542 

Text, 525 
Thread,527 
Word,528 
Wr,540 
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interfaces, 43, 202, 207, 498, 500 
exporting, 500 
safe, 503 
unsafe, 503 
variable initializers in, 500 

intermittent input stream, 356 
intersection, set, 167,511 
intrinsically safe, 503 
invariant, 102 
invocation stack, 183 
Is-a relationship, 134, 307 
ISO-Latin-1, 64, 471 
ISTYPE, 326, 514 

jump, 86 

keyword,45 
keyword binding, 157,484 
keywords, complete list, 518 

language environment, 36, 37, 547 
Larch,252 
LAST,54,66,78, 118, 146,515 
last-in, first-out, 228 
lazy evaluation, 128, 151 
left-hand side, 135 
Lex module, 362 
LHS, 135 
libraries, 203, 525 
life cycle, 307 
lifetime, 175 
lightweight process, 389 
line feed, in literals, 64, 508 
linear search, 150 
linker, 37 
Lisp, 278 
list, 238, 240, 262 

doubly linked, 264 
literals, 41 

character, 63, 508 
numeric, 73, 507 
syntax, 522 
text, 67, 508 
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loadable program, 37 
loading, of program, 37 
local procedures, 475 

as parameters, 485 
assignment of, 198, 483 

local variable, 175 
location, 469 
LOCK statement, 402,493 
logical programming language, 22 
logical type, 40, 60 
LONGREAL, 73,471 

literals, 507 
LongReal interface, 530 
LOOP statement, 110, 488 
loop, 97 

body, 97 
condition, 97 
For, 108 
Loop, 110 
Repeat, 105 
While, 97 

loop invariants, 102 
LOOPHOLE, 516 
low-level programming, 20 

machine code, 20 
Main interface, 44 
main module, 43, 44, 499 
main thread, 390 
maintenance phase, 16 
mantissa, 73 
masked field, 478 
Math module, 79 
matrices, 142 
MAX, 512 
member (value in type), 469 
memory, 4 
memory cell, 9 
memory management, 243 
message, 306, 388 
message passing, 317, 396, 418 
metalanguage, 23, 27, 28 
metasymbol, 28 
method suite, 477 
methods, 306, 308, 506 

declaration deferred, 319 

declarations, 313, 478 
implementation, 315 
invocations, 317, 485 
override, 318,479 
specifying in NEW, 510 

MIN,512 
MOD, 56, 511 
mode, see parameter mode 
Modula-2, 23 
modularization, 223 
module, 201 
module concept, 202 
modules, 42, 208, 498, 500 

for type design, 260 
generic, 249 
initialization, 503 
safe, 503 
unsafe, 503 

modulus operation, 56 
monitor, 405 
multi-dimensional arrays, 472 
multiplication, 511 
MUTEX variable, 402, 527 
MUTEX, 402, 482 
mutual exclusion, 400, 402 

name conflict, 116 
name equivalence, 133 
name server, 418 
NaN,531 
NARROW, 325, 514 
negation, 60 
nesting, 85 
network objects, 419 
NEW, 242, 509 
newline, in literals, 64, 508 
NIL, 239, 508 
node, of a tree/graph, 287 
normal outcome, 482 
NOT, 60, 514 
not a number, 531 
NULL, 318, 475 
NUMBER, 118, 146,515 
number literals, 126, 507 
numerics, 73 
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Oberon-2, 23 
OBJECT, 313 
object identifier, 430 
object-oriented 

applications, 311 
databases, 140 
modeling, 305 
programming, 308 

objects, 305, 477 
accessing fields/methods, 317, 477 
allocating, 317, 510 
branded, 478 
declarations, 313 
fields, 306,308, 317, 506 
invoking methods, 317,485 
method declarations, 313, 478 
methods, 306, 308, 506 
subtyping rules, 318, 481 
type, 312 

Occam, 419 
octal literal, 507 
oid,430 
on-line, 389 
OOA,307 
OOD,307 
opaque types, 252,260,496 

rules for design, 260 
open arrays, 246, 472 

allocating, 510 
as formal parameters, 485 
loopholing to, 516 
subtyping rules, 481 

operand, 125 
operating system, 386 
operators, 125 

complete list, 518 
precedence, 505 
tokenizing, 522 

OR, 60,514 
ORD, 66, 118, 514 
order «, >, ... ), 513 
order of evaluation, expressions, 127, 

504 
ordered binary tree, 292 
ordinal number, 66, 118 
ordinal types, 53, 470 
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first and last elements, 54, 515 
subtyping rules, 480 

ordinal value, 66, 470 
output parameter, 184 
output stream, 353 
overflow, 57, 75,510 
overloading, of operation, 504 
OVERRIDES, 314 
overriding methods, 310, 314, 479 

package, see module 
packed types, 170,474 

VAR parameters, 485 
parallel program, 388 
parallel programming, 385 
parameter 

actual, 179 
default, 193 
formal, 178 
input, 184 
input/output, 184 
named, 194 
output, 184 
passing, 183 
positional, 194 
read-only, 186 

parameter mode, 183, 476 
parameter passing, 177, 484 
parent, in a tree, 287 
partial correctness, 103 
partial expansion (oftype), 470 
partial revelation, 256, 260, 344, 496, 

497 
partially opaque type, 256, 496 
Pascal, 23 
path length 

in a graph, 289 
in a tree, 296 

path, of a graph, 289 
persistent, 150 
persistent data structures, 349 
persistent variable, 362 
Pickle, 367 
pipelining, 386 
Pkl,367 
pointer, 236, see reference 
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polymorphism, 310, 325 
port, 39 
positional binding, 157, 484 
postcondition, 86 
Postorder, 295 
pragmas, 104,518 
pre-emption, 390 
precedence, 27 
precedence, of operators, 31, 127,505 
precondition, 86 
predefined subranges, 122 
Preorder, 294 
procedural operator, 505 
procedural programming language, 22 
procedure call, 484 
procedure parameter, 198 
procedures, 2,41, 177,475 

RETURN, 180,489 
assignment, 195 
assignment of local, 483 
body, 179 
call, 181,484 
constant, 180,476 
declarations, 179, 495 
discarding results, 194, 485 
exporting to interface, 500 
head,179 
inline, 518 
invocations, 181 
operations, 195 
parameter passing, 183, 476, 484 
proper, 178 
pure, 178 
raises set, 378,475 
signatures, 179, 475, 476 
subtyping rules, 481 
type, 195 
variable, 195 

process, 388, see thread 
program, 1, 10, 18 
program region, 5 
program system, 14 
program text, 37 
program translator, 20 
program, definition of, 499 
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programming in the small, 17 
programming language, 14, 18, 36 
proper procedure, 178, 475 
pseudocode, 266 
pure procedures, 178 

qualified identifiers, 116, 156, 499 
quasi-parallel processes, 388 
queue, 228,263 

first-in, first-out, 231 
last-in, first-out, 228 
LIFO,228 

Quicksort, 281 
quotataion mark, in literals, 64 

RAISE, 376, 486 
RAISES, 377,476 

dangling, 477 
raising unlisted exception, 485 

raises set, of procedure, 378,475 
range check, 141 
Rd interface, 538 
read-only 

designator, 469, 506 
parameter, 186 
variable, 109, 162 

read/write buffer, 356 
read/write position, 351 
reader, 353 
READONLY parameters, 186,485 
REAL, 72, 471 

conversions to, 77, 512 
converting to integers, 77, 512 
literal, 74,507 

Real interface, 530 
real division, 511 
record length, 353 
records, 154, 473 

constructors, 157,509 
defaulting fields, 473 
fields, 156, 506 
operations, 160 
values, 157 

recursion, 21, 271 
recursive algorithms, 273 
recursive data structure, 287 
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recursive declarations, 497 
redeclaration, 174 
redefinition 

field,334 
method,334 

REF,239 
REFANY, 249, 475 
reference class, 474 
reference semantics, 318 
referenced type, 239, 240 
references, 69, 228, 241, 474 

TYPECASE,492 
assigning, 243 
assigning ADDRESSes, 517 
automatic dereferencing, 506 
deallocation, 244 
dereferencing, 244, 506 
generating with NEW, 241,509 
reference class, 474 
subtyping rules, 481 
traced,244 
typecase, 327 
typecode of, 514 
untraced,245 

referent, 474 
referent type, 475 
reflexivity of subtype, 135,481 
register, 10 
relational operators, 513 
remainder, 56, see MOD 
remote procedure call, 419 
rendezvous, 419 
REPEAT statement, 105,490 
resources 

common, 396 
release, 380 
reservation, 380 

result type, of procedure, 137,180,476 
RETURN statement, 180, 489 
return type, see result type 
return-exception, 482, 489 
reuse, 16 
REVEAL,254,496 
revelations, 253, 254, 496 

imported, 499 
reverse Polish notation, 295 

RHS, 135 
right-hand-side, 135 
ROOT, 318,478 
root class, 339 
root, of a tree, 287 
ROUND, 77,512 
rounding error, 73 
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rounding of arithmetic operations, 510 
RPC, 419 
RPN,295 
run-time error, 121, 375, 469 

checked, 469 
unchecked, 469 

run-time support, 37 

safety, 503 
scalar, 139 
scale factors, in numeric literals, 507 
Scan interface, 538 
Scan module, 357 
scanning, 357 
scheduler, 388, 390 
schema, 308, 428 
Schumacher, E.F., 13, 18 
scope, 108,162,494 

block statement, 486 
exceptions, 496 
locals in FOR, 491 
locals in TRY EXCEPT, 487 
locals in TYPE CASE, 492 
locals in WITH, 490 
of formal parameters, 495 
of identifier, 469 
of imported symbols, 500 
of variable initializations, 495 
revelations, 497 

search,150 
Searle, J., 371 
selection, 428 
selection of fields, 506 
self, 316 
semantics, 18 
semaphore, 413 
semidynamic data, 241 
semifinished system, 308 
sentinel, 150 
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sequence, 84,87 
sequential composition, 486 
sequential file access, 350 
server 

of a RPC call, 419 
server modules, 205 
sets, 163, 474 

constructors for, 165,508 
difference, 167,511 
equality, 167,513 
IN operator, 167,513 
intersection, 167,511 
operations, 165 
subset, 167,513 
symmetric set difference, 167,511 
union, 167,510 
values, 165 

8F interface, 545 
shape, of array, 144,472 
shared variable, 388, 396 
side effect, 3, 97, 187 
sign inversion, 511 
signature, 179,475,476 

covers, 315, 477 
Simple-IO,360 
Simula-67,311 
simulated genericity, 249 
simulation, 311 
single quote, in literals, 64, 508 
810,360 

implementation, 361 
interface, 542 

size, of type, 515 
Smalltalk, 311 
software, 14 
software life cycle, 16 
sorting 

array, 152 
Quicksort, 281 

source code, 37,46 
specialization, 309 
specification, 252 

languages, 15 
phase, 15 

specification language, 37, 252 
square root, 78 

SRC,21 
stack, 183,228,275 
standard interfaces, 525 
starvation, 406, 412 
state space, 5, 41, 204 
state variables, 5 
statement part, 209 
statements, 48, 49, 482 
static data, 241 
static data structure, 227 
static error, 469 
static type, 139, 310, 469 
storage allocation, 241, 509 

DISPOSE, 517 
strings, 508 
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structural type equivalence, 133, 160, 
470 

structure of programs, 35 
structured programming, 24, 35, 86, 

187 
structured statement, 84 
style, of programming, 18 
SUBARRAY, 147,507 
subclass, 307 
subranges,120,471 

operations, 122 
predefined, 122 
subtyping rules, 480 

subscript operator, 506 
subset operation, 513 
subtraction, 511 
subtypes, 134,248,480 

operations on, 135 
reflexivity, 135 
relation, 134 
transitivity, 135 

supercall, 323 
superclass, 307 
supertype, 134, 480 

assignment, 249 
symbol-manipulating machine, 6 
symbolic constant, 41 
symmetric set difference, 167,511 
synchronization, 388, 396 

with barriers, 397 
synchronous communication, 419 
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syntax, 18, 519 
Systems Research Center, DEC, 21 

tab, in literals, 64, 508 
tail recursion, 278 
task, see thread 
termination condition, 97 
termination of program, 499 
TEXT,67,482 
Text interface, 525 
text files, 352 
Text.Compare, 153 
Text.FindChar, 358 
Text.Sub, 358 
texts, 67 

concatenating, 68, 516 
escape sequences, 64, 67, 508 
literals, 67, 508 

THEN,87 
Thread interface, 527 
thread,389 

wait state, 403 
throughput, 385 
time slice scheduling, 390 
TO, 108 
tokenizing, 522 
toolbox, 219 
top-down, 17 
top-level procedure, 475 
total correctness, 103 
Towers of Hanoi, 282 
traced 

object types, 318,478 
references, 244, 474 
types, 474 

transitivity of subtype, 135,481 
tree, 287, 339 

class hierarchy, 339 
height, 290 

tree traversal, 294 
triangular swap, 84 
trigonometric functions, 78 
TRUE, 60, 471 
truly parallel processes, 388 
TRUNC, 77,512 
truth table, 60 

TRY EXCEPT, 376, 487 
TRY FINALLY, 379, 488 
Turing machine, 6 
Turing, Alan, 6 
type, 115, 139,470 

assignable, 483 
composite, 139 
concrete, 496 
declaration of, 131,494 
empty, 470 
of expression, 469 
of variable, 469 
opaque,252,496 
traced, 244, 474 

type coercions 
checked,514 
unchecked,516 

type constructor, 115, 139 
type equivalence, 133, 470 
type expression, 470 
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type identification, see revelation 
type inclusion, 137 
type system, 21, 23 
TYPECASE,327,492 
TYPECODE, 514 

unchecked runtime errors, 469,516 
undefined procedure, 485 
underflow, 75, 510 
union, of sets, 167,510 
Unix, 389 
UNSAFE, 208, 503 
unsafe features, 516 
unsafe interface, 208 
unsafe module, 208, 245 
UNTIL,105 
UNTRACED 

in reference declarations, 475 
in unsafe modules, 517 
objects, 319 
references, 245 

UNTRACED ROOT, 319, 478 
upcall,267 
uses relationship, 309 

VAL,66,118,514 
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VALUE, 185,485 
value, 40, 469 
value parameters, 485 

type checking, 485 
VAR,48 
VAR declarations, 132,495 
VAR parameters, 185,485 
variables, 40, 469, 495 

declaration, 48, 132 
global, 187 
initialization, 48, 132, 495 
initialized in interfaces, 500 
local,175 
procedure, 476 

vector, 141 
verification, 86, 102 
viewport, 221 
virtual memory, 228 
visibility, 175, see scope 
von Neumann bottleneck, 387 
von Neumann computer, 9 
von Neumann, John, 9 

wait state, of thread, 403 
Weizenbaum, J., vii, 14 
WHILE statement, 97, 490 
white space, 46, 361 
whole number, 39, 53 
Wirth, N., 18, 145, 425 
WITH statement, 160, 490 
Wittgenstein, Ludwig, 18 
Word interface, 528 
word,9 
word size, of type, 515 
Wr interface, 540 
writable designator, 469, 506 
writer, 353 

Xerox PARe, 311 

Z,252 
zero, division by, 510 
Zuse, Konrad, 10 
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